Avoid bidi-related crashes in Cperl Mode.
[emacs.git] / src / alloc.c
blob43befd722bb8475543fc793830d089e82acf4b63
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
25 #include <signal.h>
27 #ifdef HAVE_GTK_AND_PTHREAD
28 #include <pthread.h>
29 #endif
31 /* This file is part of the core Lisp implementation, and thus must
32 deal with the real data structures. If the Lisp implementation is
33 replaced, this file likely will not be used. */
35 #undef HIDE_LISP_IMPLEMENTATION
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "character.h"
46 #include "syssignal.h"
47 #include "termhooks.h" /* For struct terminal. */
48 #include <setjmp.h>
50 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
51 memory. Can do this only if using gmalloc.c. */
53 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
54 #undef GC_MALLOC_CHECK
55 #endif
57 #include <unistd.h>
58 #ifndef HAVE_UNISTD_H
59 extern POINTER_TYPE *sbrk ();
60 #endif
62 #include <fcntl.h>
64 #ifdef WINDOWSNT
65 #include "w32.h"
66 #endif
68 #ifdef DOUG_LEA_MALLOC
70 #include <malloc.h>
71 /* malloc.h #defines this as size_t, at least in glibc2. */
72 #ifndef __malloc_size_t
73 #define __malloc_size_t int
74 #endif
76 /* Specify maximum number of areas to mmap. It would be nice to use a
77 value that explicitly means "no limit". */
79 #define MMAP_MAX_AREAS 100000000
81 #else /* not DOUG_LEA_MALLOC */
83 /* The following come from gmalloc.c. */
85 #define __malloc_size_t size_t
86 extern __malloc_size_t _bytes_used;
87 extern __malloc_size_t __malloc_extra_blocks;
89 #endif /* not DOUG_LEA_MALLOC */
91 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
92 #ifdef HAVE_GTK_AND_PTHREAD
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
111 static pthread_mutex_t alloc_mutex;
113 #define BLOCK_INPUT_ALLOC \
114 do \
116 if (pthread_equal (pthread_self (), main_thread)) \
117 BLOCK_INPUT; \
118 pthread_mutex_lock (&alloc_mutex); \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
124 pthread_mutex_unlock (&alloc_mutex); \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 UNBLOCK_INPUT; \
128 while (0)
130 #else /* ! defined HAVE_GTK_AND_PTHREAD */
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
135 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
136 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
138 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
139 to a struct Lisp_String. */
141 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
142 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
143 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
145 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
146 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
147 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
149 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
150 Be careful during GC, because S->size contains the mark bit for
151 strings. */
153 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
155 /* Global variables. */
156 struct emacs_globals globals;
158 /* Number of bytes of consing done since the last gc. */
160 EMACS_INT consing_since_gc;
162 /* Similar minimum, computed from Vgc_cons_percentage. */
164 EMACS_INT gc_relative_threshold;
166 /* Minimum number of bytes of consing since GC before next GC,
167 when memory is full. */
169 EMACS_INT memory_full_cons_threshold;
171 /* Nonzero during GC. */
173 int gc_in_progress;
175 /* Nonzero means abort if try to GC.
176 This is for code which is written on the assumption that
177 no GC will happen, so as to verify that assumption. */
179 int abort_on_gc;
181 /* Number of live and free conses etc. */
183 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
184 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
185 static EMACS_INT total_free_floats, total_floats;
187 /* Points to memory space allocated as "spare", to be freed if we run
188 out of memory. We keep one large block, four cons-blocks, and
189 two string blocks. */
191 static char *spare_memory[7];
193 /* Amount of spare memory to keep in large reserve block, or to see
194 whether this much is available when malloc fails on a larger request. */
196 #define SPARE_MEMORY (1 << 14)
198 /* Number of extra blocks malloc should get when it needs more core. */
200 static int malloc_hysteresis;
202 /* Initialize it to a nonzero value to force it into data space
203 (rather than bss space). That way unexec will remap it into text
204 space (pure), on some systems. We have not implemented the
205 remapping on more recent systems because this is less important
206 nowadays than in the days of small memories and timesharing. */
208 #ifndef VIRT_ADDR_VARIES
209 static
210 #endif
211 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
212 #define PUREBEG (char *) pure
214 /* Pointer to the pure area, and its size. */
216 static char *purebeg;
217 static size_t pure_size;
219 /* Number of bytes of pure storage used before pure storage overflowed.
220 If this is non-zero, this implies that an overflow occurred. */
222 static size_t pure_bytes_used_before_overflow;
224 /* Value is non-zero if P points into pure space. */
226 #define PURE_POINTER_P(P) \
227 (((PNTR_COMPARISON_TYPE) (P) \
228 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
229 && ((PNTR_COMPARISON_TYPE) (P) \
230 >= (PNTR_COMPARISON_TYPE) purebeg))
232 /* Index in pure at which next pure Lisp object will be allocated.. */
234 static EMACS_INT pure_bytes_used_lisp;
236 /* Number of bytes allocated for non-Lisp objects in pure storage. */
238 static EMACS_INT pure_bytes_used_non_lisp;
240 /* If nonzero, this is a warning delivered by malloc and not yet
241 displayed. */
243 const char *pending_malloc_warning;
245 /* Maximum amount of C stack to save when a GC happens. */
247 #ifndef MAX_SAVE_STACK
248 #define MAX_SAVE_STACK 16000
249 #endif
251 /* Buffer in which we save a copy of the C stack at each GC. */
253 #if MAX_SAVE_STACK > 0
254 static char *stack_copy;
255 static size_t stack_copy_size;
256 #endif
258 /* Non-zero means ignore malloc warnings. Set during initialization.
259 Currently not used. */
261 static int ignore_warnings;
263 static Lisp_Object Qgc_cons_threshold;
264 Lisp_Object Qchar_table_extra_slots;
266 /* Hook run after GC has finished. */
268 static Lisp_Object Qpost_gc_hook;
270 static void mark_buffer (Lisp_Object);
271 static void mark_terminals (void);
272 static void gc_sweep (void);
273 static void mark_glyph_matrix (struct glyph_matrix *);
274 static void mark_face_cache (struct face_cache *);
276 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
277 static void refill_memory_reserve (void);
278 #endif
279 static struct Lisp_String *allocate_string (void);
280 static void compact_small_strings (void);
281 static void free_large_strings (void);
282 static void sweep_strings (void);
283 static void free_misc (Lisp_Object);
285 /* When scanning the C stack for live Lisp objects, Emacs keeps track
286 of what memory allocated via lisp_malloc is intended for what
287 purpose. This enumeration specifies the type of memory. */
289 enum mem_type
291 MEM_TYPE_NON_LISP,
292 MEM_TYPE_BUFFER,
293 MEM_TYPE_CONS,
294 MEM_TYPE_STRING,
295 MEM_TYPE_MISC,
296 MEM_TYPE_SYMBOL,
297 MEM_TYPE_FLOAT,
298 /* We used to keep separate mem_types for subtypes of vectors such as
299 process, hash_table, frame, terminal, and window, but we never made
300 use of the distinction, so it only caused source-code complexity
301 and runtime slowdown. Minor but pointless. */
302 MEM_TYPE_VECTORLIKE
305 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
306 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
309 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
311 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
312 #include <stdio.h> /* For fprintf. */
313 #endif
315 /* A unique object in pure space used to make some Lisp objects
316 on free lists recognizable in O(1). */
318 static Lisp_Object Vdead;
320 #ifdef GC_MALLOC_CHECK
322 enum mem_type allocated_mem_type;
323 static int dont_register_blocks;
325 #endif /* GC_MALLOC_CHECK */
327 /* A node in the red-black tree describing allocated memory containing
328 Lisp data. Each such block is recorded with its start and end
329 address when it is allocated, and removed from the tree when it
330 is freed.
332 A red-black tree is a balanced binary tree with the following
333 properties:
335 1. Every node is either red or black.
336 2. Every leaf is black.
337 3. If a node is red, then both of its children are black.
338 4. Every simple path from a node to a descendant leaf contains
339 the same number of black nodes.
340 5. The root is always black.
342 When nodes are inserted into the tree, or deleted from the tree,
343 the tree is "fixed" so that these properties are always true.
345 A red-black tree with N internal nodes has height at most 2
346 log(N+1). Searches, insertions and deletions are done in O(log N).
347 Please see a text book about data structures for a detailed
348 description of red-black trees. Any book worth its salt should
349 describe them. */
351 struct mem_node
353 /* Children of this node. These pointers are never NULL. When there
354 is no child, the value is MEM_NIL, which points to a dummy node. */
355 struct mem_node *left, *right;
357 /* The parent of this node. In the root node, this is NULL. */
358 struct mem_node *parent;
360 /* Start and end of allocated region. */
361 void *start, *end;
363 /* Node color. */
364 enum {MEM_BLACK, MEM_RED} color;
366 /* Memory type. */
367 enum mem_type type;
370 /* Base address of stack. Set in main. */
372 Lisp_Object *stack_base;
374 /* Root of the tree describing allocated Lisp memory. */
376 static struct mem_node *mem_root;
378 /* Lowest and highest known address in the heap. */
380 static void *min_heap_address, *max_heap_address;
382 /* Sentinel node of the tree. */
384 static struct mem_node mem_z;
385 #define MEM_NIL &mem_z
387 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
388 static void lisp_free (POINTER_TYPE *);
389 static void mark_stack (void);
390 static int live_vector_p (struct mem_node *, void *);
391 static int live_buffer_p (struct mem_node *, void *);
392 static int live_string_p (struct mem_node *, void *);
393 static int live_cons_p (struct mem_node *, void *);
394 static int live_symbol_p (struct mem_node *, void *);
395 static int live_float_p (struct mem_node *, void *);
396 static int live_misc_p (struct mem_node *, void *);
397 static void mark_maybe_object (Lisp_Object);
398 static void mark_memory (void *, void *, int);
399 static void mem_init (void);
400 static struct mem_node *mem_insert (void *, void *, enum mem_type);
401 static void mem_insert_fixup (struct mem_node *);
402 static void mem_rotate_left (struct mem_node *);
403 static void mem_rotate_right (struct mem_node *);
404 static void mem_delete (struct mem_node *);
405 static void mem_delete_fixup (struct mem_node *);
406 static inline struct mem_node *mem_find (void *);
409 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
410 static void check_gcpros (void);
411 #endif
413 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
415 /* Recording what needs to be marked for gc. */
417 struct gcpro *gcprolist;
419 /* Addresses of staticpro'd variables. Initialize it to a nonzero
420 value; otherwise some compilers put it into BSS. */
422 #define NSTATICS 0x640
423 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
425 /* Index of next unused slot in staticvec. */
427 static int staticidx = 0;
429 static POINTER_TYPE *pure_alloc (size_t, int);
432 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
433 ALIGNMENT must be a power of 2. */
435 #define ALIGN(ptr, ALIGNMENT) \
436 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
437 & ~((ALIGNMENT) - 1)))
441 /************************************************************************
442 Malloc
443 ************************************************************************/
445 /* Function malloc calls this if it finds we are near exhausting storage. */
447 void
448 malloc_warning (const char *str)
450 pending_malloc_warning = str;
454 /* Display an already-pending malloc warning. */
456 void
457 display_malloc_warning (void)
459 call3 (intern ("display-warning"),
460 intern ("alloc"),
461 build_string (pending_malloc_warning),
462 intern ("emergency"));
463 pending_malloc_warning = 0;
466 /* Called if we can't allocate relocatable space for a buffer. */
468 void
469 buffer_memory_full (EMACS_INT nbytes)
471 /* If buffers use the relocating allocator, no need to free
472 spare_memory, because we may have plenty of malloc space left
473 that we could get, and if we don't, the malloc that fails will
474 itself cause spare_memory to be freed. If buffers don't use the
475 relocating allocator, treat this like any other failing
476 malloc. */
478 #ifndef REL_ALLOC
479 memory_full (nbytes);
480 #endif
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 xsignal (Qnil, Vmemory_signal_data);
488 #ifndef XMALLOC_OVERRUN_CHECK
489 #define XMALLOC_OVERRUN_CHECK_SIZE 0
490 #else
492 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
493 and a 16 byte trailer around each block.
495 The header consists of 12 fixed bytes + a 4 byte integer contaning the
496 original block size, while the trailer consists of 16 fixed bytes.
498 The header is used to detect whether this block has been allocated
499 through these functions -- as it seems that some low-level libc
500 functions may bypass the malloc hooks.
504 #define XMALLOC_OVERRUN_CHECK_SIZE 16
506 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
507 { 0x9a, 0x9b, 0xae, 0xaf,
508 0xbf, 0xbe, 0xce, 0xcf,
509 0xea, 0xeb, 0xec, 0xed };
511 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
512 { 0xaa, 0xab, 0xac, 0xad,
513 0xba, 0xbb, 0xbc, 0xbd,
514 0xca, 0xcb, 0xcc, 0xcd,
515 0xda, 0xdb, 0xdc, 0xdd };
517 /* Macros to insert and extract the block size in the header. */
519 #define XMALLOC_PUT_SIZE(ptr, size) \
520 (ptr[-1] = (size & 0xff), \
521 ptr[-2] = ((size >> 8) & 0xff), \
522 ptr[-3] = ((size >> 16) & 0xff), \
523 ptr[-4] = ((size >> 24) & 0xff))
525 #define XMALLOC_GET_SIZE(ptr) \
526 (size_t)((unsigned)(ptr[-1]) | \
527 ((unsigned)(ptr[-2]) << 8) | \
528 ((unsigned)(ptr[-3]) << 16) | \
529 ((unsigned)(ptr[-4]) << 24))
532 /* The call depth in overrun_check functions. For example, this might happen:
533 xmalloc()
534 overrun_check_malloc()
535 -> malloc -> (via hook)_-> emacs_blocked_malloc
536 -> overrun_check_malloc
537 call malloc (hooks are NULL, so real malloc is called).
538 malloc returns 10000.
539 add overhead, return 10016.
540 <- (back in overrun_check_malloc)
541 add overhead again, return 10032
542 xmalloc returns 10032.
544 (time passes).
546 xfree(10032)
547 overrun_check_free(10032)
548 decrease overhed
549 free(10016) <- crash, because 10000 is the original pointer. */
551 static int check_depth;
553 /* Like malloc, but wraps allocated block with header and trailer. */
555 static POINTER_TYPE *
556 overrun_check_malloc (size_t size)
558 register unsigned char *val;
559 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
561 val = (unsigned char *) malloc (size + overhead);
562 if (val && check_depth == 1)
564 memcpy (val, xmalloc_overrun_check_header,
565 XMALLOC_OVERRUN_CHECK_SIZE - 4);
566 val += XMALLOC_OVERRUN_CHECK_SIZE;
567 XMALLOC_PUT_SIZE(val, size);
568 memcpy (val + size, xmalloc_overrun_check_trailer,
569 XMALLOC_OVERRUN_CHECK_SIZE);
571 --check_depth;
572 return (POINTER_TYPE *)val;
576 /* Like realloc, but checks old block for overrun, and wraps new block
577 with header and trailer. */
579 static POINTER_TYPE *
580 overrun_check_realloc (POINTER_TYPE *block, size_t size)
582 register unsigned char *val = (unsigned char *) block;
583 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
585 if (val
586 && check_depth == 1
587 && memcmp (xmalloc_overrun_check_header,
588 val - XMALLOC_OVERRUN_CHECK_SIZE,
589 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
591 size_t osize = XMALLOC_GET_SIZE (val);
592 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
593 XMALLOC_OVERRUN_CHECK_SIZE))
594 abort ();
595 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
596 val -= XMALLOC_OVERRUN_CHECK_SIZE;
597 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
600 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
602 if (val && check_depth == 1)
604 memcpy (val, xmalloc_overrun_check_header,
605 XMALLOC_OVERRUN_CHECK_SIZE - 4);
606 val += XMALLOC_OVERRUN_CHECK_SIZE;
607 XMALLOC_PUT_SIZE(val, size);
608 memcpy (val + size, xmalloc_overrun_check_trailer,
609 XMALLOC_OVERRUN_CHECK_SIZE);
611 --check_depth;
612 return (POINTER_TYPE *)val;
615 /* Like free, but checks block for overrun. */
617 static void
618 overrun_check_free (POINTER_TYPE *block)
620 unsigned char *val = (unsigned char *) block;
622 ++check_depth;
623 if (val
624 && check_depth == 1
625 && memcmp (xmalloc_overrun_check_header,
626 val - XMALLOC_OVERRUN_CHECK_SIZE,
627 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
629 size_t osize = XMALLOC_GET_SIZE (val);
630 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
631 XMALLOC_OVERRUN_CHECK_SIZE))
632 abort ();
633 #ifdef XMALLOC_CLEAR_FREE_MEMORY
634 val -= XMALLOC_OVERRUN_CHECK_SIZE;
635 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
636 #else
637 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
638 val -= XMALLOC_OVERRUN_CHECK_SIZE;
639 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
640 #endif
643 free (val);
644 --check_depth;
647 #undef malloc
648 #undef realloc
649 #undef free
650 #define malloc overrun_check_malloc
651 #define realloc overrun_check_realloc
652 #define free overrun_check_free
653 #endif
655 #ifdef SYNC_INPUT
656 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
657 there's no need to block input around malloc. */
658 #define MALLOC_BLOCK_INPUT ((void)0)
659 #define MALLOC_UNBLOCK_INPUT ((void)0)
660 #else
661 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
662 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
663 #endif
665 /* Like malloc but check for no memory and block interrupt input.. */
667 POINTER_TYPE *
668 xmalloc (size_t size)
670 register POINTER_TYPE *val;
672 MALLOC_BLOCK_INPUT;
673 val = (POINTER_TYPE *) malloc (size);
674 MALLOC_UNBLOCK_INPUT;
676 if (!val && size)
677 memory_full (size);
678 return val;
682 /* Like realloc but check for no memory and block interrupt input.. */
684 POINTER_TYPE *
685 xrealloc (POINTER_TYPE *block, size_t size)
687 register POINTER_TYPE *val;
689 MALLOC_BLOCK_INPUT;
690 /* We must call malloc explicitly when BLOCK is 0, since some
691 reallocs don't do this. */
692 if (! block)
693 val = (POINTER_TYPE *) malloc (size);
694 else
695 val = (POINTER_TYPE *) realloc (block, size);
696 MALLOC_UNBLOCK_INPUT;
698 if (!val && size)
699 memory_full (size);
700 return val;
704 /* Like free but block interrupt input. */
706 void
707 xfree (POINTER_TYPE *block)
709 if (!block)
710 return;
711 MALLOC_BLOCK_INPUT;
712 free (block);
713 MALLOC_UNBLOCK_INPUT;
714 /* We don't call refill_memory_reserve here
715 because that duplicates doing so in emacs_blocked_free
716 and the criterion should go there. */
720 /* Like strdup, but uses xmalloc. */
722 char *
723 xstrdup (const char *s)
725 size_t len = strlen (s) + 1;
726 char *p = (char *) xmalloc (len);
727 memcpy (p, s, len);
728 return p;
732 /* Unwind for SAFE_ALLOCA */
734 Lisp_Object
735 safe_alloca_unwind (Lisp_Object arg)
737 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
739 p->dogc = 0;
740 xfree (p->pointer);
741 p->pointer = 0;
742 free_misc (arg);
743 return Qnil;
747 /* Like malloc but used for allocating Lisp data. NBYTES is the
748 number of bytes to allocate, TYPE describes the intended use of the
749 allcated memory block (for strings, for conses, ...). */
751 #ifndef USE_LSB_TAG
752 static void *lisp_malloc_loser;
753 #endif
755 static POINTER_TYPE *
756 lisp_malloc (size_t nbytes, enum mem_type type)
758 register void *val;
760 MALLOC_BLOCK_INPUT;
762 #ifdef GC_MALLOC_CHECK
763 allocated_mem_type = type;
764 #endif
766 val = (void *) malloc (nbytes);
768 #ifndef USE_LSB_TAG
769 /* If the memory just allocated cannot be addressed thru a Lisp
770 object's pointer, and it needs to be,
771 that's equivalent to running out of memory. */
772 if (val && type != MEM_TYPE_NON_LISP)
774 Lisp_Object tem;
775 XSETCONS (tem, (char *) val + nbytes - 1);
776 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
778 lisp_malloc_loser = val;
779 free (val);
780 val = 0;
783 #endif
785 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
786 if (val && type != MEM_TYPE_NON_LISP)
787 mem_insert (val, (char *) val + nbytes, type);
788 #endif
790 MALLOC_UNBLOCK_INPUT;
791 if (!val && nbytes)
792 memory_full (nbytes);
793 return val;
796 /* Free BLOCK. This must be called to free memory allocated with a
797 call to lisp_malloc. */
799 static void
800 lisp_free (POINTER_TYPE *block)
802 MALLOC_BLOCK_INPUT;
803 free (block);
804 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
805 mem_delete (mem_find (block));
806 #endif
807 MALLOC_UNBLOCK_INPUT;
810 /* Allocation of aligned blocks of memory to store Lisp data. */
811 /* The entry point is lisp_align_malloc which returns blocks of at most */
812 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
814 /* Use posix_memalloc if the system has it and we're using the system's
815 malloc (because our gmalloc.c routines don't have posix_memalign although
816 its memalloc could be used). */
817 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
818 #define USE_POSIX_MEMALIGN 1
819 #endif
821 /* BLOCK_ALIGN has to be a power of 2. */
822 #define BLOCK_ALIGN (1 << 10)
824 /* Padding to leave at the end of a malloc'd block. This is to give
825 malloc a chance to minimize the amount of memory wasted to alignment.
826 It should be tuned to the particular malloc library used.
827 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
828 posix_memalign on the other hand would ideally prefer a value of 4
829 because otherwise, there's 1020 bytes wasted between each ablocks.
830 In Emacs, testing shows that those 1020 can most of the time be
831 efficiently used by malloc to place other objects, so a value of 0 can
832 still preferable unless you have a lot of aligned blocks and virtually
833 nothing else. */
834 #define BLOCK_PADDING 0
835 #define BLOCK_BYTES \
836 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
838 /* Internal data structures and constants. */
840 #define ABLOCKS_SIZE 16
842 /* An aligned block of memory. */
843 struct ablock
845 union
847 char payload[BLOCK_BYTES];
848 struct ablock *next_free;
849 } x;
850 /* `abase' is the aligned base of the ablocks. */
851 /* It is overloaded to hold the virtual `busy' field that counts
852 the number of used ablock in the parent ablocks.
853 The first ablock has the `busy' field, the others have the `abase'
854 field. To tell the difference, we assume that pointers will have
855 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
856 is used to tell whether the real base of the parent ablocks is `abase'
857 (if not, the word before the first ablock holds a pointer to the
858 real base). */
859 struct ablocks *abase;
860 /* The padding of all but the last ablock is unused. The padding of
861 the last ablock in an ablocks is not allocated. */
862 #if BLOCK_PADDING
863 char padding[BLOCK_PADDING];
864 #endif
867 /* A bunch of consecutive aligned blocks. */
868 struct ablocks
870 struct ablock blocks[ABLOCKS_SIZE];
873 /* Size of the block requested from malloc or memalign. */
874 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
876 #define ABLOCK_ABASE(block) \
877 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
878 ? (struct ablocks *)(block) \
879 : (block)->abase)
881 /* Virtual `busy' field. */
882 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
884 /* Pointer to the (not necessarily aligned) malloc block. */
885 #ifdef USE_POSIX_MEMALIGN
886 #define ABLOCKS_BASE(abase) (abase)
887 #else
888 #define ABLOCKS_BASE(abase) \
889 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
890 #endif
892 /* The list of free ablock. */
893 static struct ablock *free_ablock;
895 /* Allocate an aligned block of nbytes.
896 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
897 smaller or equal to BLOCK_BYTES. */
898 static POINTER_TYPE *
899 lisp_align_malloc (size_t nbytes, enum mem_type type)
901 void *base, *val;
902 struct ablocks *abase;
904 eassert (nbytes <= BLOCK_BYTES);
906 MALLOC_BLOCK_INPUT;
908 #ifdef GC_MALLOC_CHECK
909 allocated_mem_type = type;
910 #endif
912 if (!free_ablock)
914 int i;
915 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
917 #ifdef DOUG_LEA_MALLOC
918 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
919 because mapped region contents are not preserved in
920 a dumped Emacs. */
921 mallopt (M_MMAP_MAX, 0);
922 #endif
924 #ifdef USE_POSIX_MEMALIGN
926 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
927 if (err)
928 base = NULL;
929 abase = base;
931 #else
932 base = malloc (ABLOCKS_BYTES);
933 abase = ALIGN (base, BLOCK_ALIGN);
934 #endif
936 if (base == 0)
938 MALLOC_UNBLOCK_INPUT;
939 memory_full (ABLOCKS_BYTES);
942 aligned = (base == abase);
943 if (!aligned)
944 ((void**)abase)[-1] = base;
946 #ifdef DOUG_LEA_MALLOC
947 /* Back to a reasonable maximum of mmap'ed areas. */
948 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
949 #endif
951 #ifndef USE_LSB_TAG
952 /* If the memory just allocated cannot be addressed thru a Lisp
953 object's pointer, and it needs to be, that's equivalent to
954 running out of memory. */
955 if (type != MEM_TYPE_NON_LISP)
957 Lisp_Object tem;
958 char *end = (char *) base + ABLOCKS_BYTES - 1;
959 XSETCONS (tem, end);
960 if ((char *) XCONS (tem) != end)
962 lisp_malloc_loser = base;
963 free (base);
964 MALLOC_UNBLOCK_INPUT;
965 memory_full (SIZE_MAX);
968 #endif
970 /* Initialize the blocks and put them on the free list.
971 Is `base' was not properly aligned, we can't use the last block. */
972 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
974 abase->blocks[i].abase = abase;
975 abase->blocks[i].x.next_free = free_ablock;
976 free_ablock = &abase->blocks[i];
978 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
980 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
981 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
982 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
983 eassert (ABLOCKS_BASE (abase) == base);
984 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
987 abase = ABLOCK_ABASE (free_ablock);
988 ABLOCKS_BUSY (abase) =
989 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
990 val = free_ablock;
991 free_ablock = free_ablock->x.next_free;
993 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
994 if (type != MEM_TYPE_NON_LISP)
995 mem_insert (val, (char *) val + nbytes, type);
996 #endif
998 MALLOC_UNBLOCK_INPUT;
1000 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1001 return val;
1004 static void
1005 lisp_align_free (POINTER_TYPE *block)
1007 struct ablock *ablock = block;
1008 struct ablocks *abase = ABLOCK_ABASE (ablock);
1010 MALLOC_BLOCK_INPUT;
1011 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1012 mem_delete (mem_find (block));
1013 #endif
1014 /* Put on free list. */
1015 ablock->x.next_free = free_ablock;
1016 free_ablock = ablock;
1017 /* Update busy count. */
1018 ABLOCKS_BUSY (abase) =
1019 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1021 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1022 { /* All the blocks are free. */
1023 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1024 struct ablock **tem = &free_ablock;
1025 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1027 while (*tem)
1029 if (*tem >= (struct ablock *) abase && *tem < atop)
1031 i++;
1032 *tem = (*tem)->x.next_free;
1034 else
1035 tem = &(*tem)->x.next_free;
1037 eassert ((aligned & 1) == aligned);
1038 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1039 #ifdef USE_POSIX_MEMALIGN
1040 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1041 #endif
1042 free (ABLOCKS_BASE (abase));
1044 MALLOC_UNBLOCK_INPUT;
1047 /* Return a new buffer structure allocated from the heap with
1048 a call to lisp_malloc. */
1050 struct buffer *
1051 allocate_buffer (void)
1053 struct buffer *b
1054 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1055 MEM_TYPE_BUFFER);
1056 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1057 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1058 / sizeof (EMACS_INT)));
1059 return b;
1063 #ifndef SYSTEM_MALLOC
1065 /* Arranging to disable input signals while we're in malloc.
1067 This only works with GNU malloc. To help out systems which can't
1068 use GNU malloc, all the calls to malloc, realloc, and free
1069 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1070 pair; unfortunately, we have no idea what C library functions
1071 might call malloc, so we can't really protect them unless you're
1072 using GNU malloc. Fortunately, most of the major operating systems
1073 can use GNU malloc. */
1075 #ifndef SYNC_INPUT
1076 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1077 there's no need to block input around malloc. */
1079 #ifndef DOUG_LEA_MALLOC
1080 extern void * (*__malloc_hook) (size_t, const void *);
1081 extern void * (*__realloc_hook) (void *, size_t, const void *);
1082 extern void (*__free_hook) (void *, const void *);
1083 /* Else declared in malloc.h, perhaps with an extra arg. */
1084 #endif /* DOUG_LEA_MALLOC */
1085 static void * (*old_malloc_hook) (size_t, const void *);
1086 static void * (*old_realloc_hook) (void *, size_t, const void*);
1087 static void (*old_free_hook) (void*, const void*);
1089 #ifdef DOUG_LEA_MALLOC
1090 # define BYTES_USED (mallinfo ().uordblks)
1091 #else
1092 # define BYTES_USED _bytes_used
1093 #endif
1095 static __malloc_size_t bytes_used_when_reconsidered;
1097 /* Value of _bytes_used, when spare_memory was freed. */
1099 static __malloc_size_t bytes_used_when_full;
1101 /* This function is used as the hook for free to call. */
1103 static void
1104 emacs_blocked_free (void *ptr, const void *ptr2)
1106 BLOCK_INPUT_ALLOC;
1108 #ifdef GC_MALLOC_CHECK
1109 if (ptr)
1111 struct mem_node *m;
1113 m = mem_find (ptr);
1114 if (m == MEM_NIL || m->start != ptr)
1116 fprintf (stderr,
1117 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1118 abort ();
1120 else
1122 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1123 mem_delete (m);
1126 #endif /* GC_MALLOC_CHECK */
1128 __free_hook = old_free_hook;
1129 free (ptr);
1131 /* If we released our reserve (due to running out of memory),
1132 and we have a fair amount free once again,
1133 try to set aside another reserve in case we run out once more. */
1134 if (! NILP (Vmemory_full)
1135 /* Verify there is enough space that even with the malloc
1136 hysteresis this call won't run out again.
1137 The code here is correct as long as SPARE_MEMORY
1138 is substantially larger than the block size malloc uses. */
1139 && (bytes_used_when_full
1140 > ((bytes_used_when_reconsidered = BYTES_USED)
1141 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1142 refill_memory_reserve ();
1144 __free_hook = emacs_blocked_free;
1145 UNBLOCK_INPUT_ALLOC;
1149 /* This function is the malloc hook that Emacs uses. */
1151 static void *
1152 emacs_blocked_malloc (size_t size, const void *ptr)
1154 void *value;
1156 BLOCK_INPUT_ALLOC;
1157 __malloc_hook = old_malloc_hook;
1158 #ifdef DOUG_LEA_MALLOC
1159 /* Segfaults on my system. --lorentey */
1160 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1161 #else
1162 __malloc_extra_blocks = malloc_hysteresis;
1163 #endif
1165 value = (void *) malloc (size);
1167 #ifdef GC_MALLOC_CHECK
1169 struct mem_node *m = mem_find (value);
1170 if (m != MEM_NIL)
1172 fprintf (stderr, "Malloc returned %p which is already in use\n",
1173 value);
1174 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1175 m->start, m->end, (char *) m->end - (char *) m->start,
1176 m->type);
1177 abort ();
1180 if (!dont_register_blocks)
1182 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1183 allocated_mem_type = MEM_TYPE_NON_LISP;
1186 #endif /* GC_MALLOC_CHECK */
1188 __malloc_hook = emacs_blocked_malloc;
1189 UNBLOCK_INPUT_ALLOC;
1191 /* fprintf (stderr, "%p malloc\n", value); */
1192 return value;
1196 /* This function is the realloc hook that Emacs uses. */
1198 static void *
1199 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1201 void *value;
1203 BLOCK_INPUT_ALLOC;
1204 __realloc_hook = old_realloc_hook;
1206 #ifdef GC_MALLOC_CHECK
1207 if (ptr)
1209 struct mem_node *m = mem_find (ptr);
1210 if (m == MEM_NIL || m->start != ptr)
1212 fprintf (stderr,
1213 "Realloc of %p which wasn't allocated with malloc\n",
1214 ptr);
1215 abort ();
1218 mem_delete (m);
1221 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1223 /* Prevent malloc from registering blocks. */
1224 dont_register_blocks = 1;
1225 #endif /* GC_MALLOC_CHECK */
1227 value = (void *) realloc (ptr, size);
1229 #ifdef GC_MALLOC_CHECK
1230 dont_register_blocks = 0;
1233 struct mem_node *m = mem_find (value);
1234 if (m != MEM_NIL)
1236 fprintf (stderr, "Realloc returns memory that is already in use\n");
1237 abort ();
1240 /* Can't handle zero size regions in the red-black tree. */
1241 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1244 /* fprintf (stderr, "%p <- realloc\n", value); */
1245 #endif /* GC_MALLOC_CHECK */
1247 __realloc_hook = emacs_blocked_realloc;
1248 UNBLOCK_INPUT_ALLOC;
1250 return value;
1254 #ifdef HAVE_GTK_AND_PTHREAD
1255 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1256 normal malloc. Some thread implementations need this as they call
1257 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1258 calls malloc because it is the first call, and we have an endless loop. */
1260 void
1261 reset_malloc_hooks ()
1263 __free_hook = old_free_hook;
1264 __malloc_hook = old_malloc_hook;
1265 __realloc_hook = old_realloc_hook;
1267 #endif /* HAVE_GTK_AND_PTHREAD */
1270 /* Called from main to set up malloc to use our hooks. */
1272 void
1273 uninterrupt_malloc (void)
1275 #ifdef HAVE_GTK_AND_PTHREAD
1276 #ifdef DOUG_LEA_MALLOC
1277 pthread_mutexattr_t attr;
1279 /* GLIBC has a faster way to do this, but lets keep it portable.
1280 This is according to the Single UNIX Specification. */
1281 pthread_mutexattr_init (&attr);
1282 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1283 pthread_mutex_init (&alloc_mutex, &attr);
1284 #else /* !DOUG_LEA_MALLOC */
1285 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1286 and the bundled gmalloc.c doesn't require it. */
1287 pthread_mutex_init (&alloc_mutex, NULL);
1288 #endif /* !DOUG_LEA_MALLOC */
1289 #endif /* HAVE_GTK_AND_PTHREAD */
1291 if (__free_hook != emacs_blocked_free)
1292 old_free_hook = __free_hook;
1293 __free_hook = emacs_blocked_free;
1295 if (__malloc_hook != emacs_blocked_malloc)
1296 old_malloc_hook = __malloc_hook;
1297 __malloc_hook = emacs_blocked_malloc;
1299 if (__realloc_hook != emacs_blocked_realloc)
1300 old_realloc_hook = __realloc_hook;
1301 __realloc_hook = emacs_blocked_realloc;
1304 #endif /* not SYNC_INPUT */
1305 #endif /* not SYSTEM_MALLOC */
1309 /***********************************************************************
1310 Interval Allocation
1311 ***********************************************************************/
1313 /* Number of intervals allocated in an interval_block structure.
1314 The 1020 is 1024 minus malloc overhead. */
1316 #define INTERVAL_BLOCK_SIZE \
1317 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1319 /* Intervals are allocated in chunks in form of an interval_block
1320 structure. */
1322 struct interval_block
1324 /* Place `intervals' first, to preserve alignment. */
1325 struct interval intervals[INTERVAL_BLOCK_SIZE];
1326 struct interval_block *next;
1329 /* Current interval block. Its `next' pointer points to older
1330 blocks. */
1332 static struct interval_block *interval_block;
1334 /* Index in interval_block above of the next unused interval
1335 structure. */
1337 static int interval_block_index;
1339 /* Number of free and live intervals. */
1341 static EMACS_INT total_free_intervals, total_intervals;
1343 /* List of free intervals. */
1345 static INTERVAL interval_free_list;
1348 /* Initialize interval allocation. */
1350 static void
1351 init_intervals (void)
1353 interval_block = NULL;
1354 interval_block_index = INTERVAL_BLOCK_SIZE;
1355 interval_free_list = 0;
1359 /* Return a new interval. */
1361 INTERVAL
1362 make_interval (void)
1364 INTERVAL val;
1366 /* eassert (!handling_signal); */
1368 MALLOC_BLOCK_INPUT;
1370 if (interval_free_list)
1372 val = interval_free_list;
1373 interval_free_list = INTERVAL_PARENT (interval_free_list);
1375 else
1377 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1379 register struct interval_block *newi;
1381 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1382 MEM_TYPE_NON_LISP);
1384 newi->next = interval_block;
1385 interval_block = newi;
1386 interval_block_index = 0;
1388 val = &interval_block->intervals[interval_block_index++];
1391 MALLOC_UNBLOCK_INPUT;
1393 consing_since_gc += sizeof (struct interval);
1394 intervals_consed++;
1395 RESET_INTERVAL (val);
1396 val->gcmarkbit = 0;
1397 return val;
1401 /* Mark Lisp objects in interval I. */
1403 static void
1404 mark_interval (register INTERVAL i, Lisp_Object dummy)
1406 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1407 i->gcmarkbit = 1;
1408 mark_object (i->plist);
1412 /* Mark the interval tree rooted in TREE. Don't call this directly;
1413 use the macro MARK_INTERVAL_TREE instead. */
1415 static void
1416 mark_interval_tree (register INTERVAL tree)
1418 /* No need to test if this tree has been marked already; this
1419 function is always called through the MARK_INTERVAL_TREE macro,
1420 which takes care of that. */
1422 traverse_intervals_noorder (tree, mark_interval, Qnil);
1426 /* Mark the interval tree rooted in I. */
1428 #define MARK_INTERVAL_TREE(i) \
1429 do { \
1430 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1431 mark_interval_tree (i); \
1432 } while (0)
1435 #define UNMARK_BALANCE_INTERVALS(i) \
1436 do { \
1437 if (! NULL_INTERVAL_P (i)) \
1438 (i) = balance_intervals (i); \
1439 } while (0)
1442 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1443 can't create number objects in macros. */
1444 #ifndef make_number
1445 Lisp_Object
1446 make_number (EMACS_INT n)
1448 Lisp_Object obj;
1449 obj.s.val = n;
1450 obj.s.type = Lisp_Int;
1451 return obj;
1453 #endif
1455 /***********************************************************************
1456 String Allocation
1457 ***********************************************************************/
1459 /* Lisp_Strings are allocated in string_block structures. When a new
1460 string_block is allocated, all the Lisp_Strings it contains are
1461 added to a free-list string_free_list. When a new Lisp_String is
1462 needed, it is taken from that list. During the sweep phase of GC,
1463 string_blocks that are entirely free are freed, except two which
1464 we keep.
1466 String data is allocated from sblock structures. Strings larger
1467 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1468 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1470 Sblocks consist internally of sdata structures, one for each
1471 Lisp_String. The sdata structure points to the Lisp_String it
1472 belongs to. The Lisp_String points back to the `u.data' member of
1473 its sdata structure.
1475 When a Lisp_String is freed during GC, it is put back on
1476 string_free_list, and its `data' member and its sdata's `string'
1477 pointer is set to null. The size of the string is recorded in the
1478 `u.nbytes' member of the sdata. So, sdata structures that are no
1479 longer used, can be easily recognized, and it's easy to compact the
1480 sblocks of small strings which we do in compact_small_strings. */
1482 /* Size in bytes of an sblock structure used for small strings. This
1483 is 8192 minus malloc overhead. */
1485 #define SBLOCK_SIZE 8188
1487 /* Strings larger than this are considered large strings. String data
1488 for large strings is allocated from individual sblocks. */
1490 #define LARGE_STRING_BYTES 1024
1492 /* Structure describing string memory sub-allocated from an sblock.
1493 This is where the contents of Lisp strings are stored. */
1495 struct sdata
1497 /* Back-pointer to the string this sdata belongs to. If null, this
1498 structure is free, and the NBYTES member of the union below
1499 contains the string's byte size (the same value that STRING_BYTES
1500 would return if STRING were non-null). If non-null, STRING_BYTES
1501 (STRING) is the size of the data, and DATA contains the string's
1502 contents. */
1503 struct Lisp_String *string;
1505 #ifdef GC_CHECK_STRING_BYTES
1507 EMACS_INT nbytes;
1508 unsigned char data[1];
1510 #define SDATA_NBYTES(S) (S)->nbytes
1511 #define SDATA_DATA(S) (S)->data
1512 #define SDATA_SELECTOR(member) member
1514 #else /* not GC_CHECK_STRING_BYTES */
1516 union
1518 /* When STRING is non-null. */
1519 unsigned char data[1];
1521 /* When STRING is null. */
1522 EMACS_INT nbytes;
1523 } u;
1525 #define SDATA_NBYTES(S) (S)->u.nbytes
1526 #define SDATA_DATA(S) (S)->u.data
1527 #define SDATA_SELECTOR(member) u.member
1529 #endif /* not GC_CHECK_STRING_BYTES */
1531 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1535 /* Structure describing a block of memory which is sub-allocated to
1536 obtain string data memory for strings. Blocks for small strings
1537 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1538 as large as needed. */
1540 struct sblock
1542 /* Next in list. */
1543 struct sblock *next;
1545 /* Pointer to the next free sdata block. This points past the end
1546 of the sblock if there isn't any space left in this block. */
1547 struct sdata *next_free;
1549 /* Start of data. */
1550 struct sdata first_data;
1553 /* Number of Lisp strings in a string_block structure. The 1020 is
1554 1024 minus malloc overhead. */
1556 #define STRING_BLOCK_SIZE \
1557 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1559 /* Structure describing a block from which Lisp_String structures
1560 are allocated. */
1562 struct string_block
1564 /* Place `strings' first, to preserve alignment. */
1565 struct Lisp_String strings[STRING_BLOCK_SIZE];
1566 struct string_block *next;
1569 /* Head and tail of the list of sblock structures holding Lisp string
1570 data. We always allocate from current_sblock. The NEXT pointers
1571 in the sblock structures go from oldest_sblock to current_sblock. */
1573 static struct sblock *oldest_sblock, *current_sblock;
1575 /* List of sblocks for large strings. */
1577 static struct sblock *large_sblocks;
1579 /* List of string_block structures. */
1581 static struct string_block *string_blocks;
1583 /* Free-list of Lisp_Strings. */
1585 static struct Lisp_String *string_free_list;
1587 /* Number of live and free Lisp_Strings. */
1589 static EMACS_INT total_strings, total_free_strings;
1591 /* Number of bytes used by live strings. */
1593 static EMACS_INT total_string_size;
1595 /* Given a pointer to a Lisp_String S which is on the free-list
1596 string_free_list, return a pointer to its successor in the
1597 free-list. */
1599 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1601 /* Return a pointer to the sdata structure belonging to Lisp string S.
1602 S must be live, i.e. S->data must not be null. S->data is actually
1603 a pointer to the `u.data' member of its sdata structure; the
1604 structure starts at a constant offset in front of that. */
1606 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1609 #ifdef GC_CHECK_STRING_OVERRUN
1611 /* We check for overrun in string data blocks by appending a small
1612 "cookie" after each allocated string data block, and check for the
1613 presence of this cookie during GC. */
1615 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1616 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1617 { '\xde', '\xad', '\xbe', '\xef' };
1619 #else
1620 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1621 #endif
1623 /* Value is the size of an sdata structure large enough to hold NBYTES
1624 bytes of string data. The value returned includes a terminating
1625 NUL byte, the size of the sdata structure, and padding. */
1627 #ifdef GC_CHECK_STRING_BYTES
1629 #define SDATA_SIZE(NBYTES) \
1630 ((SDATA_DATA_OFFSET \
1631 + (NBYTES) + 1 \
1632 + sizeof (EMACS_INT) - 1) \
1633 & ~(sizeof (EMACS_INT) - 1))
1635 #else /* not GC_CHECK_STRING_BYTES */
1637 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1638 less than the size of that member. The 'max' is not needed when
1639 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1640 alignment code reserves enough space. */
1642 #define SDATA_SIZE(NBYTES) \
1643 ((SDATA_DATA_OFFSET \
1644 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1645 ? NBYTES \
1646 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1647 + 1 \
1648 + sizeof (EMACS_INT) - 1) \
1649 & ~(sizeof (EMACS_INT) - 1))
1651 #endif /* not GC_CHECK_STRING_BYTES */
1653 /* Extra bytes to allocate for each string. */
1655 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1657 /* Exact bound on the number of bytes in a string, not counting the
1658 terminating null. A string cannot contain more bytes than
1659 STRING_BYTES_BOUND, nor can it be so long that the size_t
1660 arithmetic in allocate_string_data would overflow while it is
1661 calculating a value to be passed to malloc. */
1662 #define STRING_BYTES_MAX \
1663 min (STRING_BYTES_BOUND, \
1664 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_SIZE - GC_STRING_EXTRA \
1665 - offsetof (struct sblock, first_data) \
1666 - SDATA_DATA_OFFSET) \
1667 & ~(sizeof (EMACS_INT) - 1)))
1669 /* Initialize string allocation. Called from init_alloc_once. */
1671 static void
1672 init_strings (void)
1674 total_strings = total_free_strings = total_string_size = 0;
1675 oldest_sblock = current_sblock = large_sblocks = NULL;
1676 string_blocks = NULL;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1683 #ifdef GC_CHECK_STRING_BYTES
1685 static int check_string_bytes_count;
1687 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1690 /* Like GC_STRING_BYTES, but with debugging check. */
1692 EMACS_INT
1693 string_bytes (struct Lisp_String *s)
1695 EMACS_INT nbytes =
1696 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1698 if (!PURE_POINTER_P (s)
1699 && s->data
1700 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1701 abort ();
1702 return nbytes;
1705 /* Check validity of Lisp strings' string_bytes member in B. */
1707 static void
1708 check_sblock (struct sblock *b)
1710 struct sdata *from, *end, *from_end;
1712 end = b->next_free;
1714 for (from = &b->first_data; from < end; from = from_end)
1716 /* Compute the next FROM here because copying below may
1717 overwrite data we need to compute it. */
1718 EMACS_INT nbytes;
1720 /* Check that the string size recorded in the string is the
1721 same as the one recorded in the sdata structure. */
1722 if (from->string)
1723 CHECK_STRING_BYTES (from->string);
1725 if (from->string)
1726 nbytes = GC_STRING_BYTES (from->string);
1727 else
1728 nbytes = SDATA_NBYTES (from);
1730 nbytes = SDATA_SIZE (nbytes);
1731 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1736 /* Check validity of Lisp strings' string_bytes member. ALL_P
1737 non-zero means check all strings, otherwise check only most
1738 recently allocated strings. Used for hunting a bug. */
1740 static void
1741 check_string_bytes (int all_p)
1743 if (all_p)
1745 struct sblock *b;
1747 for (b = large_sblocks; b; b = b->next)
1749 struct Lisp_String *s = b->first_data.string;
1750 if (s)
1751 CHECK_STRING_BYTES (s);
1754 for (b = oldest_sblock; b; b = b->next)
1755 check_sblock (b);
1757 else
1758 check_sblock (current_sblock);
1761 #endif /* GC_CHECK_STRING_BYTES */
1763 #ifdef GC_CHECK_STRING_FREE_LIST
1765 /* Walk through the string free list looking for bogus next pointers.
1766 This may catch buffer overrun from a previous string. */
1768 static void
1769 check_string_free_list (void)
1771 struct Lisp_String *s;
1773 /* Pop a Lisp_String off the free-list. */
1774 s = string_free_list;
1775 while (s != NULL)
1777 if ((uintptr_t) s < 1024)
1778 abort();
1779 s = NEXT_FREE_LISP_STRING (s);
1782 #else
1783 #define check_string_free_list()
1784 #endif
1786 /* Return a new Lisp_String. */
1788 static struct Lisp_String *
1789 allocate_string (void)
1791 struct Lisp_String *s;
1793 /* eassert (!handling_signal); */
1795 MALLOC_BLOCK_INPUT;
1797 /* If the free-list is empty, allocate a new string_block, and
1798 add all the Lisp_Strings in it to the free-list. */
1799 if (string_free_list == NULL)
1801 struct string_block *b;
1802 int i;
1804 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1805 memset (b, 0, sizeof *b);
1806 b->next = string_blocks;
1807 string_blocks = b;
1809 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1811 s = b->strings + i;
1812 NEXT_FREE_LISP_STRING (s) = string_free_list;
1813 string_free_list = s;
1816 total_free_strings += STRING_BLOCK_SIZE;
1819 check_string_free_list ();
1821 /* Pop a Lisp_String off the free-list. */
1822 s = string_free_list;
1823 string_free_list = NEXT_FREE_LISP_STRING (s);
1825 MALLOC_UNBLOCK_INPUT;
1827 /* Probably not strictly necessary, but play it safe. */
1828 memset (s, 0, sizeof *s);
1830 --total_free_strings;
1831 ++total_strings;
1832 ++strings_consed;
1833 consing_since_gc += sizeof *s;
1835 #ifdef GC_CHECK_STRING_BYTES
1836 if (!noninteractive)
1838 if (++check_string_bytes_count == 200)
1840 check_string_bytes_count = 0;
1841 check_string_bytes (1);
1843 else
1844 check_string_bytes (0);
1846 #endif /* GC_CHECK_STRING_BYTES */
1848 return s;
1852 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1853 plus a NUL byte at the end. Allocate an sdata structure for S, and
1854 set S->data to its `u.data' member. Store a NUL byte at the end of
1855 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1856 S->data if it was initially non-null. */
1858 void
1859 allocate_string_data (struct Lisp_String *s,
1860 EMACS_INT nchars, EMACS_INT nbytes)
1862 struct sdata *data, *old_data;
1863 struct sblock *b;
1864 EMACS_INT needed, old_nbytes;
1866 if (STRING_BYTES_MAX < nbytes)
1867 string_overflow ();
1869 /* Determine the number of bytes needed to store NBYTES bytes
1870 of string data. */
1871 needed = SDATA_SIZE (nbytes);
1872 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1873 old_nbytes = GC_STRING_BYTES (s);
1875 MALLOC_BLOCK_INPUT;
1877 if (nbytes > LARGE_STRING_BYTES)
1879 size_t size = offsetof (struct sblock, first_data) + needed;
1881 #ifdef DOUG_LEA_MALLOC
1882 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1883 because mapped region contents are not preserved in
1884 a dumped Emacs.
1886 In case you think of allowing it in a dumped Emacs at the
1887 cost of not being able to re-dump, there's another reason:
1888 mmap'ed data typically have an address towards the top of the
1889 address space, which won't fit into an EMACS_INT (at least on
1890 32-bit systems with the current tagging scheme). --fx */
1891 mallopt (M_MMAP_MAX, 0);
1892 #endif
1894 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1896 #ifdef DOUG_LEA_MALLOC
1897 /* Back to a reasonable maximum of mmap'ed areas. */
1898 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1899 #endif
1901 b->next_free = &b->first_data;
1902 b->first_data.string = NULL;
1903 b->next = large_sblocks;
1904 large_sblocks = b;
1906 else if (current_sblock == NULL
1907 || (((char *) current_sblock + SBLOCK_SIZE
1908 - (char *) current_sblock->next_free)
1909 < (needed + GC_STRING_EXTRA)))
1911 /* Not enough room in the current sblock. */
1912 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1913 b->next_free = &b->first_data;
1914 b->first_data.string = NULL;
1915 b->next = NULL;
1917 if (current_sblock)
1918 current_sblock->next = b;
1919 else
1920 oldest_sblock = b;
1921 current_sblock = b;
1923 else
1924 b = current_sblock;
1926 data = b->next_free;
1927 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1929 MALLOC_UNBLOCK_INPUT;
1931 data->string = s;
1932 s->data = SDATA_DATA (data);
1933 #ifdef GC_CHECK_STRING_BYTES
1934 SDATA_NBYTES (data) = nbytes;
1935 #endif
1936 s->size = nchars;
1937 s->size_byte = nbytes;
1938 s->data[nbytes] = '\0';
1939 #ifdef GC_CHECK_STRING_OVERRUN
1940 memcpy ((char *) data + needed, string_overrun_cookie,
1941 GC_STRING_OVERRUN_COOKIE_SIZE);
1942 #endif
1944 /* If S had already data assigned, mark that as free by setting its
1945 string back-pointer to null, and recording the size of the data
1946 in it. */
1947 if (old_data)
1949 SDATA_NBYTES (old_data) = old_nbytes;
1950 old_data->string = NULL;
1953 consing_since_gc += needed;
1957 /* Sweep and compact strings. */
1959 static void
1960 sweep_strings (void)
1962 struct string_block *b, *next;
1963 struct string_block *live_blocks = NULL;
1965 string_free_list = NULL;
1966 total_strings = total_free_strings = 0;
1967 total_string_size = 0;
1969 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1970 for (b = string_blocks; b; b = next)
1972 int i, nfree = 0;
1973 struct Lisp_String *free_list_before = string_free_list;
1975 next = b->next;
1977 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1979 struct Lisp_String *s = b->strings + i;
1981 if (s->data)
1983 /* String was not on free-list before. */
1984 if (STRING_MARKED_P (s))
1986 /* String is live; unmark it and its intervals. */
1987 UNMARK_STRING (s);
1989 if (!NULL_INTERVAL_P (s->intervals))
1990 UNMARK_BALANCE_INTERVALS (s->intervals);
1992 ++total_strings;
1993 total_string_size += STRING_BYTES (s);
1995 else
1997 /* String is dead. Put it on the free-list. */
1998 struct sdata *data = SDATA_OF_STRING (s);
2000 /* Save the size of S in its sdata so that we know
2001 how large that is. Reset the sdata's string
2002 back-pointer so that we know it's free. */
2003 #ifdef GC_CHECK_STRING_BYTES
2004 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2005 abort ();
2006 #else
2007 data->u.nbytes = GC_STRING_BYTES (s);
2008 #endif
2009 data->string = NULL;
2011 /* Reset the strings's `data' member so that we
2012 know it's free. */
2013 s->data = NULL;
2015 /* Put the string on the free-list. */
2016 NEXT_FREE_LISP_STRING (s) = string_free_list;
2017 string_free_list = s;
2018 ++nfree;
2021 else
2023 /* S was on the free-list before. Put it there again. */
2024 NEXT_FREE_LISP_STRING (s) = string_free_list;
2025 string_free_list = s;
2026 ++nfree;
2030 /* Free blocks that contain free Lisp_Strings only, except
2031 the first two of them. */
2032 if (nfree == STRING_BLOCK_SIZE
2033 && total_free_strings > STRING_BLOCK_SIZE)
2035 lisp_free (b);
2036 string_free_list = free_list_before;
2038 else
2040 total_free_strings += nfree;
2041 b->next = live_blocks;
2042 live_blocks = b;
2046 check_string_free_list ();
2048 string_blocks = live_blocks;
2049 free_large_strings ();
2050 compact_small_strings ();
2052 check_string_free_list ();
2056 /* Free dead large strings. */
2058 static void
2059 free_large_strings (void)
2061 struct sblock *b, *next;
2062 struct sblock *live_blocks = NULL;
2064 for (b = large_sblocks; b; b = next)
2066 next = b->next;
2068 if (b->first_data.string == NULL)
2069 lisp_free (b);
2070 else
2072 b->next = live_blocks;
2073 live_blocks = b;
2077 large_sblocks = live_blocks;
2081 /* Compact data of small strings. Free sblocks that don't contain
2082 data of live strings after compaction. */
2084 static void
2085 compact_small_strings (void)
2087 struct sblock *b, *tb, *next;
2088 struct sdata *from, *to, *end, *tb_end;
2089 struct sdata *to_end, *from_end;
2091 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2092 to, and TB_END is the end of TB. */
2093 tb = oldest_sblock;
2094 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2095 to = &tb->first_data;
2097 /* Step through the blocks from the oldest to the youngest. We
2098 expect that old blocks will stabilize over time, so that less
2099 copying will happen this way. */
2100 for (b = oldest_sblock; b; b = b->next)
2102 end = b->next_free;
2103 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2105 for (from = &b->first_data; from < end; from = from_end)
2107 /* Compute the next FROM here because copying below may
2108 overwrite data we need to compute it. */
2109 EMACS_INT nbytes;
2111 #ifdef GC_CHECK_STRING_BYTES
2112 /* Check that the string size recorded in the string is the
2113 same as the one recorded in the sdata structure. */
2114 if (from->string
2115 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2116 abort ();
2117 #endif /* GC_CHECK_STRING_BYTES */
2119 if (from->string)
2120 nbytes = GC_STRING_BYTES (from->string);
2121 else
2122 nbytes = SDATA_NBYTES (from);
2124 if (nbytes > LARGE_STRING_BYTES)
2125 abort ();
2127 nbytes = SDATA_SIZE (nbytes);
2128 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2130 #ifdef GC_CHECK_STRING_OVERRUN
2131 if (memcmp (string_overrun_cookie,
2132 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2133 GC_STRING_OVERRUN_COOKIE_SIZE))
2134 abort ();
2135 #endif
2137 /* FROM->string non-null means it's alive. Copy its data. */
2138 if (from->string)
2140 /* If TB is full, proceed with the next sblock. */
2141 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2142 if (to_end > tb_end)
2144 tb->next_free = to;
2145 tb = tb->next;
2146 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2147 to = &tb->first_data;
2148 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2151 /* Copy, and update the string's `data' pointer. */
2152 if (from != to)
2154 xassert (tb != b || to < from);
2155 memmove (to, from, nbytes + GC_STRING_EXTRA);
2156 to->string->data = SDATA_DATA (to);
2159 /* Advance past the sdata we copied to. */
2160 to = to_end;
2165 /* The rest of the sblocks following TB don't contain live data, so
2166 we can free them. */
2167 for (b = tb->next; b; b = next)
2169 next = b->next;
2170 lisp_free (b);
2173 tb->next_free = to;
2174 tb->next = NULL;
2175 current_sblock = tb;
2178 void
2179 string_overflow (void)
2181 error ("Maximum string size exceeded");
2184 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2185 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2186 LENGTH must be an integer.
2187 INIT must be an integer that represents a character. */)
2188 (Lisp_Object length, Lisp_Object init)
2190 register Lisp_Object val;
2191 register unsigned char *p, *end;
2192 int c;
2193 EMACS_INT nbytes;
2195 CHECK_NATNUM (length);
2196 CHECK_CHARACTER (init);
2198 c = XFASTINT (init);
2199 if (ASCII_CHAR_P (c))
2201 nbytes = XINT (length);
2202 val = make_uninit_string (nbytes);
2203 p = SDATA (val);
2204 end = p + SCHARS (val);
2205 while (p != end)
2206 *p++ = c;
2208 else
2210 unsigned char str[MAX_MULTIBYTE_LENGTH];
2211 int len = CHAR_STRING (c, str);
2212 EMACS_INT string_len = XINT (length);
2214 if (string_len > STRING_BYTES_MAX / len)
2215 string_overflow ();
2216 nbytes = len * string_len;
2217 val = make_uninit_multibyte_string (string_len, nbytes);
2218 p = SDATA (val);
2219 end = p + nbytes;
2220 while (p != end)
2222 memcpy (p, str, len);
2223 p += len;
2227 *p = 0;
2228 return val;
2232 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2233 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2234 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2235 (Lisp_Object length, Lisp_Object init)
2237 register Lisp_Object val;
2238 struct Lisp_Bool_Vector *p;
2239 EMACS_INT length_in_chars, length_in_elts;
2240 int bits_per_value;
2242 CHECK_NATNUM (length);
2244 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2246 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2247 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2248 / BOOL_VECTOR_BITS_PER_CHAR);
2250 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2251 slot `size' of the struct Lisp_Bool_Vector. */
2252 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2254 /* No Lisp_Object to trace in there. */
2255 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2257 p = XBOOL_VECTOR (val);
2258 p->size = XFASTINT (length);
2260 if (length_in_chars)
2262 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2264 /* Clear any extraneous bits in the last byte. */
2265 p->data[length_in_chars - 1]
2266 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2269 return val;
2273 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2274 of characters from the contents. This string may be unibyte or
2275 multibyte, depending on the contents. */
2277 Lisp_Object
2278 make_string (const char *contents, EMACS_INT nbytes)
2280 register Lisp_Object val;
2281 EMACS_INT nchars, multibyte_nbytes;
2283 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2284 &nchars, &multibyte_nbytes);
2285 if (nbytes == nchars || nbytes != multibyte_nbytes)
2286 /* CONTENTS contains no multibyte sequences or contains an invalid
2287 multibyte sequence. We must make unibyte string. */
2288 val = make_unibyte_string (contents, nbytes);
2289 else
2290 val = make_multibyte_string (contents, nchars, nbytes);
2291 return val;
2295 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2297 Lisp_Object
2298 make_unibyte_string (const char *contents, EMACS_INT length)
2300 register Lisp_Object val;
2301 val = make_uninit_string (length);
2302 memcpy (SDATA (val), contents, length);
2303 return val;
2307 /* Make a multibyte string from NCHARS characters occupying NBYTES
2308 bytes at CONTENTS. */
2310 Lisp_Object
2311 make_multibyte_string (const char *contents,
2312 EMACS_INT nchars, EMACS_INT nbytes)
2314 register Lisp_Object val;
2315 val = make_uninit_multibyte_string (nchars, nbytes);
2316 memcpy (SDATA (val), contents, nbytes);
2317 return val;
2321 /* Make a string from NCHARS characters occupying NBYTES bytes at
2322 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2324 Lisp_Object
2325 make_string_from_bytes (const char *contents,
2326 EMACS_INT nchars, EMACS_INT nbytes)
2328 register Lisp_Object val;
2329 val = make_uninit_multibyte_string (nchars, nbytes);
2330 memcpy (SDATA (val), contents, nbytes);
2331 if (SBYTES (val) == SCHARS (val))
2332 STRING_SET_UNIBYTE (val);
2333 return val;
2337 /* Make a string from NCHARS characters occupying NBYTES bytes at
2338 CONTENTS. The argument MULTIBYTE controls whether to label the
2339 string as multibyte. If NCHARS is negative, it counts the number of
2340 characters by itself. */
2342 Lisp_Object
2343 make_specified_string (const char *contents,
2344 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2346 register Lisp_Object val;
2348 if (nchars < 0)
2350 if (multibyte)
2351 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2352 nbytes);
2353 else
2354 nchars = nbytes;
2356 val = make_uninit_multibyte_string (nchars, nbytes);
2357 memcpy (SDATA (val), contents, nbytes);
2358 if (!multibyte)
2359 STRING_SET_UNIBYTE (val);
2360 return val;
2364 /* Make a string from the data at STR, treating it as multibyte if the
2365 data warrants. */
2367 Lisp_Object
2368 build_string (const char *str)
2370 return make_string (str, strlen (str));
2374 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2375 occupying LENGTH bytes. */
2377 Lisp_Object
2378 make_uninit_string (EMACS_INT length)
2380 Lisp_Object val;
2382 if (!length)
2383 return empty_unibyte_string;
2384 val = make_uninit_multibyte_string (length, length);
2385 STRING_SET_UNIBYTE (val);
2386 return val;
2390 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2391 which occupy NBYTES bytes. */
2393 Lisp_Object
2394 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2396 Lisp_Object string;
2397 struct Lisp_String *s;
2399 if (nchars < 0)
2400 abort ();
2401 if (!nbytes)
2402 return empty_multibyte_string;
2404 s = allocate_string ();
2405 allocate_string_data (s, nchars, nbytes);
2406 XSETSTRING (string, s);
2407 string_chars_consed += nbytes;
2408 return string;
2413 /***********************************************************************
2414 Float Allocation
2415 ***********************************************************************/
2417 /* We store float cells inside of float_blocks, allocating a new
2418 float_block with malloc whenever necessary. Float cells reclaimed
2419 by GC are put on a free list to be reallocated before allocating
2420 any new float cells from the latest float_block. */
2422 #define FLOAT_BLOCK_SIZE \
2423 (((BLOCK_BYTES - sizeof (struct float_block *) \
2424 /* The compiler might add padding at the end. */ \
2425 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2426 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2428 #define GETMARKBIT(block,n) \
2429 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2430 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2431 & 1)
2433 #define SETMARKBIT(block,n) \
2434 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2435 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2437 #define UNSETMARKBIT(block,n) \
2438 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2439 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2441 #define FLOAT_BLOCK(fptr) \
2442 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2444 #define FLOAT_INDEX(fptr) \
2445 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2447 struct float_block
2449 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2450 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2451 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2452 struct float_block *next;
2455 #define FLOAT_MARKED_P(fptr) \
2456 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2458 #define FLOAT_MARK(fptr) \
2459 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2461 #define FLOAT_UNMARK(fptr) \
2462 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2464 /* Current float_block. */
2466 static struct float_block *float_block;
2468 /* Index of first unused Lisp_Float in the current float_block. */
2470 static int float_block_index;
2472 /* Free-list of Lisp_Floats. */
2474 static struct Lisp_Float *float_free_list;
2477 /* Initialize float allocation. */
2479 static void
2480 init_float (void)
2482 float_block = NULL;
2483 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2484 float_free_list = 0;
2488 /* Return a new float object with value FLOAT_VALUE. */
2490 Lisp_Object
2491 make_float (double float_value)
2493 register Lisp_Object val;
2495 /* eassert (!handling_signal); */
2497 MALLOC_BLOCK_INPUT;
2499 if (float_free_list)
2501 /* We use the data field for chaining the free list
2502 so that we won't use the same field that has the mark bit. */
2503 XSETFLOAT (val, float_free_list);
2504 float_free_list = float_free_list->u.chain;
2506 else
2508 if (float_block_index == FLOAT_BLOCK_SIZE)
2510 register struct float_block *new;
2512 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2513 MEM_TYPE_FLOAT);
2514 new->next = float_block;
2515 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2516 float_block = new;
2517 float_block_index = 0;
2519 XSETFLOAT (val, &float_block->floats[float_block_index]);
2520 float_block_index++;
2523 MALLOC_UNBLOCK_INPUT;
2525 XFLOAT_INIT (val, float_value);
2526 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2527 consing_since_gc += sizeof (struct Lisp_Float);
2528 floats_consed++;
2529 return val;
2534 /***********************************************************************
2535 Cons Allocation
2536 ***********************************************************************/
2538 /* We store cons cells inside of cons_blocks, allocating a new
2539 cons_block with malloc whenever necessary. Cons cells reclaimed by
2540 GC are put on a free list to be reallocated before allocating
2541 any new cons cells from the latest cons_block. */
2543 #define CONS_BLOCK_SIZE \
2544 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2545 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2547 #define CONS_BLOCK(fptr) \
2548 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2550 #define CONS_INDEX(fptr) \
2551 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2553 struct cons_block
2555 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2556 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2557 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2558 struct cons_block *next;
2561 #define CONS_MARKED_P(fptr) \
2562 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2564 #define CONS_MARK(fptr) \
2565 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2567 #define CONS_UNMARK(fptr) \
2568 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2570 /* Current cons_block. */
2572 static struct cons_block *cons_block;
2574 /* Index of first unused Lisp_Cons in the current block. */
2576 static int cons_block_index;
2578 /* Free-list of Lisp_Cons structures. */
2580 static struct Lisp_Cons *cons_free_list;
2583 /* Initialize cons allocation. */
2585 static void
2586 init_cons (void)
2588 cons_block = NULL;
2589 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2590 cons_free_list = 0;
2594 /* Explicitly free a cons cell by putting it on the free-list. */
2596 void
2597 free_cons (struct Lisp_Cons *ptr)
2599 ptr->u.chain = cons_free_list;
2600 #if GC_MARK_STACK
2601 ptr->car = Vdead;
2602 #endif
2603 cons_free_list = ptr;
2606 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2607 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2608 (Lisp_Object car, Lisp_Object cdr)
2610 register Lisp_Object val;
2612 /* eassert (!handling_signal); */
2614 MALLOC_BLOCK_INPUT;
2616 if (cons_free_list)
2618 /* We use the cdr for chaining the free list
2619 so that we won't use the same field that has the mark bit. */
2620 XSETCONS (val, cons_free_list);
2621 cons_free_list = cons_free_list->u.chain;
2623 else
2625 if (cons_block_index == CONS_BLOCK_SIZE)
2627 register struct cons_block *new;
2628 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2629 MEM_TYPE_CONS);
2630 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2631 new->next = cons_block;
2632 cons_block = new;
2633 cons_block_index = 0;
2635 XSETCONS (val, &cons_block->conses[cons_block_index]);
2636 cons_block_index++;
2639 MALLOC_UNBLOCK_INPUT;
2641 XSETCAR (val, car);
2642 XSETCDR (val, cdr);
2643 eassert (!CONS_MARKED_P (XCONS (val)));
2644 consing_since_gc += sizeof (struct Lisp_Cons);
2645 cons_cells_consed++;
2646 return val;
2649 #ifdef GC_CHECK_CONS_LIST
2650 /* Get an error now if there's any junk in the cons free list. */
2651 void
2652 check_cons_list (void)
2654 struct Lisp_Cons *tail = cons_free_list;
2656 while (tail)
2657 tail = tail->u.chain;
2659 #endif
2661 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2663 Lisp_Object
2664 list1 (Lisp_Object arg1)
2666 return Fcons (arg1, Qnil);
2669 Lisp_Object
2670 list2 (Lisp_Object arg1, Lisp_Object arg2)
2672 return Fcons (arg1, Fcons (arg2, Qnil));
2676 Lisp_Object
2677 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2679 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2683 Lisp_Object
2684 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2686 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2690 Lisp_Object
2691 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2693 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2694 Fcons (arg5, Qnil)))));
2698 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2699 doc: /* Return a newly created list with specified arguments as elements.
2700 Any number of arguments, even zero arguments, are allowed.
2701 usage: (list &rest OBJECTS) */)
2702 (ptrdiff_t nargs, Lisp_Object *args)
2704 register Lisp_Object val;
2705 val = Qnil;
2707 while (nargs > 0)
2709 nargs--;
2710 val = Fcons (args[nargs], val);
2712 return val;
2716 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2717 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2718 (register Lisp_Object length, Lisp_Object init)
2720 register Lisp_Object val;
2721 register EMACS_INT size;
2723 CHECK_NATNUM (length);
2724 size = XFASTINT (length);
2726 val = Qnil;
2727 while (size > 0)
2729 val = Fcons (init, val);
2730 --size;
2732 if (size > 0)
2734 val = Fcons (init, val);
2735 --size;
2737 if (size > 0)
2739 val = Fcons (init, val);
2740 --size;
2742 if (size > 0)
2744 val = Fcons (init, val);
2745 --size;
2747 if (size > 0)
2749 val = Fcons (init, val);
2750 --size;
2756 QUIT;
2759 return val;
2764 /***********************************************************************
2765 Vector Allocation
2766 ***********************************************************************/
2768 /* Singly-linked list of all vectors. */
2770 static struct Lisp_Vector *all_vectors;
2772 /* Handy constants for vectorlike objects. */
2773 enum
2775 header_size = offsetof (struct Lisp_Vector, contents),
2776 word_size = sizeof (Lisp_Object)
2779 /* Value is a pointer to a newly allocated Lisp_Vector structure
2780 with room for LEN Lisp_Objects. */
2782 static struct Lisp_Vector *
2783 allocate_vectorlike (EMACS_INT len)
2785 struct Lisp_Vector *p;
2786 size_t nbytes;
2788 MALLOC_BLOCK_INPUT;
2790 #ifdef DOUG_LEA_MALLOC
2791 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2792 because mapped region contents are not preserved in
2793 a dumped Emacs. */
2794 mallopt (M_MMAP_MAX, 0);
2795 #endif
2797 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2798 /* eassert (!handling_signal); */
2800 nbytes = header_size + len * word_size;
2801 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2803 #ifdef DOUG_LEA_MALLOC
2804 /* Back to a reasonable maximum of mmap'ed areas. */
2805 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2806 #endif
2808 consing_since_gc += nbytes;
2809 vector_cells_consed += len;
2811 p->header.next.vector = all_vectors;
2812 all_vectors = p;
2814 MALLOC_UNBLOCK_INPUT;
2816 return p;
2820 /* Allocate a vector with LEN slots. */
2822 struct Lisp_Vector *
2823 allocate_vector (EMACS_INT len)
2825 struct Lisp_Vector *v;
2826 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2828 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2829 memory_full (SIZE_MAX);
2830 v = allocate_vectorlike (len);
2831 v->header.size = len;
2832 return v;
2836 /* Allocate other vector-like structures. */
2838 struct Lisp_Vector *
2839 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2841 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2842 int i;
2844 /* Only the first lisplen slots will be traced normally by the GC. */
2845 for (i = 0; i < lisplen; ++i)
2846 v->contents[i] = Qnil;
2848 XSETPVECTYPESIZE (v, tag, lisplen);
2849 return v;
2852 struct Lisp_Hash_Table *
2853 allocate_hash_table (void)
2855 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2859 struct window *
2860 allocate_window (void)
2862 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2866 struct terminal *
2867 allocate_terminal (void)
2869 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2870 next_terminal, PVEC_TERMINAL);
2871 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2872 memset (&t->next_terminal, 0,
2873 (char*) (t + 1) - (char*) &t->next_terminal);
2875 return t;
2878 struct frame *
2879 allocate_frame (void)
2881 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2882 face_cache, PVEC_FRAME);
2883 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2884 memset (&f->face_cache, 0,
2885 (char *) (f + 1) - (char *) &f->face_cache);
2886 return f;
2890 struct Lisp_Process *
2891 allocate_process (void)
2893 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2897 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2898 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2899 See also the function `vector'. */)
2900 (register Lisp_Object length, Lisp_Object init)
2902 Lisp_Object vector;
2903 register EMACS_INT sizei;
2904 register EMACS_INT i;
2905 register struct Lisp_Vector *p;
2907 CHECK_NATNUM (length);
2908 sizei = XFASTINT (length);
2910 p = allocate_vector (sizei);
2911 for (i = 0; i < sizei; i++)
2912 p->contents[i] = init;
2914 XSETVECTOR (vector, p);
2915 return vector;
2919 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2920 doc: /* Return a newly created vector with specified arguments as elements.
2921 Any number of arguments, even zero arguments, are allowed.
2922 usage: (vector &rest OBJECTS) */)
2923 (ptrdiff_t nargs, Lisp_Object *args)
2925 register Lisp_Object len, val;
2926 ptrdiff_t i;
2927 register struct Lisp_Vector *p;
2929 XSETFASTINT (len, nargs);
2930 val = Fmake_vector (len, Qnil);
2931 p = XVECTOR (val);
2932 for (i = 0; i < nargs; i++)
2933 p->contents[i] = args[i];
2934 return val;
2938 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2939 doc: /* Create a byte-code object with specified arguments as elements.
2940 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2941 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2942 and (optional) INTERACTIVE-SPEC.
2943 The first four arguments are required; at most six have any
2944 significance.
2945 The ARGLIST can be either like the one of `lambda', in which case the arguments
2946 will be dynamically bound before executing the byte code, or it can be an
2947 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2948 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2949 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2950 argument to catch the left-over arguments. If such an integer is used, the
2951 arguments will not be dynamically bound but will be instead pushed on the
2952 stack before executing the byte-code.
2953 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2954 (ptrdiff_t nargs, Lisp_Object *args)
2956 register Lisp_Object len, val;
2957 ptrdiff_t i;
2958 register struct Lisp_Vector *p;
2960 XSETFASTINT (len, nargs);
2961 if (!NILP (Vpurify_flag))
2962 val = make_pure_vector (nargs);
2963 else
2964 val = Fmake_vector (len, Qnil);
2966 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2967 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2968 earlier because they produced a raw 8-bit string for byte-code
2969 and now such a byte-code string is loaded as multibyte while
2970 raw 8-bit characters converted to multibyte form. Thus, now we
2971 must convert them back to the original unibyte form. */
2972 args[1] = Fstring_as_unibyte (args[1]);
2974 p = XVECTOR (val);
2975 for (i = 0; i < nargs; i++)
2977 if (!NILP (Vpurify_flag))
2978 args[i] = Fpurecopy (args[i]);
2979 p->contents[i] = args[i];
2981 XSETPVECTYPE (p, PVEC_COMPILED);
2982 XSETCOMPILED (val, p);
2983 return val;
2988 /***********************************************************************
2989 Symbol Allocation
2990 ***********************************************************************/
2992 /* Each symbol_block is just under 1020 bytes long, since malloc
2993 really allocates in units of powers of two and uses 4 bytes for its
2994 own overhead. */
2996 #define SYMBOL_BLOCK_SIZE \
2997 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2999 struct symbol_block
3001 /* Place `symbols' first, to preserve alignment. */
3002 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3003 struct symbol_block *next;
3006 /* Current symbol block and index of first unused Lisp_Symbol
3007 structure in it. */
3009 static struct symbol_block *symbol_block;
3010 static int symbol_block_index;
3012 /* List of free symbols. */
3014 static struct Lisp_Symbol *symbol_free_list;
3017 /* Initialize symbol allocation. */
3019 static void
3020 init_symbol (void)
3022 symbol_block = NULL;
3023 symbol_block_index = SYMBOL_BLOCK_SIZE;
3024 symbol_free_list = 0;
3028 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3029 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3030 Its value and function definition are void, and its property list is nil. */)
3031 (Lisp_Object name)
3033 register Lisp_Object val;
3034 register struct Lisp_Symbol *p;
3036 CHECK_STRING (name);
3038 /* eassert (!handling_signal); */
3040 MALLOC_BLOCK_INPUT;
3042 if (symbol_free_list)
3044 XSETSYMBOL (val, symbol_free_list);
3045 symbol_free_list = symbol_free_list->next;
3047 else
3049 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3051 struct symbol_block *new;
3052 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3053 MEM_TYPE_SYMBOL);
3054 new->next = symbol_block;
3055 symbol_block = new;
3056 symbol_block_index = 0;
3058 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3059 symbol_block_index++;
3062 MALLOC_UNBLOCK_INPUT;
3064 p = XSYMBOL (val);
3065 p->xname = name;
3066 p->plist = Qnil;
3067 p->redirect = SYMBOL_PLAINVAL;
3068 SET_SYMBOL_VAL (p, Qunbound);
3069 p->function = Qunbound;
3070 p->next = NULL;
3071 p->gcmarkbit = 0;
3072 p->interned = SYMBOL_UNINTERNED;
3073 p->constant = 0;
3074 p->declared_special = 0;
3075 consing_since_gc += sizeof (struct Lisp_Symbol);
3076 symbols_consed++;
3077 return val;
3082 /***********************************************************************
3083 Marker (Misc) Allocation
3084 ***********************************************************************/
3086 /* Allocation of markers and other objects that share that structure.
3087 Works like allocation of conses. */
3089 #define MARKER_BLOCK_SIZE \
3090 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3092 struct marker_block
3094 /* Place `markers' first, to preserve alignment. */
3095 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3096 struct marker_block *next;
3099 static struct marker_block *marker_block;
3100 static int marker_block_index;
3102 static union Lisp_Misc *marker_free_list;
3104 static void
3105 init_marker (void)
3107 marker_block = NULL;
3108 marker_block_index = MARKER_BLOCK_SIZE;
3109 marker_free_list = 0;
3112 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3114 Lisp_Object
3115 allocate_misc (void)
3117 Lisp_Object val;
3119 /* eassert (!handling_signal); */
3121 MALLOC_BLOCK_INPUT;
3123 if (marker_free_list)
3125 XSETMISC (val, marker_free_list);
3126 marker_free_list = marker_free_list->u_free.chain;
3128 else
3130 if (marker_block_index == MARKER_BLOCK_SIZE)
3132 struct marker_block *new;
3133 new = (struct marker_block *) lisp_malloc (sizeof *new,
3134 MEM_TYPE_MISC);
3135 new->next = marker_block;
3136 marker_block = new;
3137 marker_block_index = 0;
3138 total_free_markers += MARKER_BLOCK_SIZE;
3140 XSETMISC (val, &marker_block->markers[marker_block_index]);
3141 marker_block_index++;
3144 MALLOC_UNBLOCK_INPUT;
3146 --total_free_markers;
3147 consing_since_gc += sizeof (union Lisp_Misc);
3148 misc_objects_consed++;
3149 XMISCANY (val)->gcmarkbit = 0;
3150 return val;
3153 /* Free a Lisp_Misc object */
3155 static void
3156 free_misc (Lisp_Object misc)
3158 XMISCTYPE (misc) = Lisp_Misc_Free;
3159 XMISC (misc)->u_free.chain = marker_free_list;
3160 marker_free_list = XMISC (misc);
3162 total_free_markers++;
3165 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3166 INTEGER. This is used to package C values to call record_unwind_protect.
3167 The unwind function can get the C values back using XSAVE_VALUE. */
3169 Lisp_Object
3170 make_save_value (void *pointer, ptrdiff_t integer)
3172 register Lisp_Object val;
3173 register struct Lisp_Save_Value *p;
3175 val = allocate_misc ();
3176 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3177 p = XSAVE_VALUE (val);
3178 p->pointer = pointer;
3179 p->integer = integer;
3180 p->dogc = 0;
3181 return val;
3184 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3185 doc: /* Return a newly allocated marker which does not point at any place. */)
3186 (void)
3188 register Lisp_Object val;
3189 register struct Lisp_Marker *p;
3191 val = allocate_misc ();
3192 XMISCTYPE (val) = Lisp_Misc_Marker;
3193 p = XMARKER (val);
3194 p->buffer = 0;
3195 p->bytepos = 0;
3196 p->charpos = 0;
3197 p->next = NULL;
3198 p->insertion_type = 0;
3199 return val;
3202 /* Put MARKER back on the free list after using it temporarily. */
3204 void
3205 free_marker (Lisp_Object marker)
3207 unchain_marker (XMARKER (marker));
3208 free_misc (marker);
3212 /* Return a newly created vector or string with specified arguments as
3213 elements. If all the arguments are characters that can fit
3214 in a string of events, make a string; otherwise, make a vector.
3216 Any number of arguments, even zero arguments, are allowed. */
3218 Lisp_Object
3219 make_event_array (register int nargs, Lisp_Object *args)
3221 int i;
3223 for (i = 0; i < nargs; i++)
3224 /* The things that fit in a string
3225 are characters that are in 0...127,
3226 after discarding the meta bit and all the bits above it. */
3227 if (!INTEGERP (args[i])
3228 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3229 return Fvector (nargs, args);
3231 /* Since the loop exited, we know that all the things in it are
3232 characters, so we can make a string. */
3234 Lisp_Object result;
3236 result = Fmake_string (make_number (nargs), make_number (0));
3237 for (i = 0; i < nargs; i++)
3239 SSET (result, i, XINT (args[i]));
3240 /* Move the meta bit to the right place for a string char. */
3241 if (XINT (args[i]) & CHAR_META)
3242 SSET (result, i, SREF (result, i) | 0x80);
3245 return result;
3251 /************************************************************************
3252 Memory Full Handling
3253 ************************************************************************/
3256 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3257 there may have been size_t overflow so that malloc was never
3258 called, or perhaps malloc was invoked successfully but the
3259 resulting pointer had problems fitting into a tagged EMACS_INT. In
3260 either case this counts as memory being full even though malloc did
3261 not fail. */
3263 void
3264 memory_full (size_t nbytes)
3266 /* Do not go into hysterics merely because a large request failed. */
3267 int enough_free_memory = 0;
3268 if (SPARE_MEMORY < nbytes)
3270 void *p = malloc (SPARE_MEMORY);
3271 if (p)
3273 free (p);
3274 enough_free_memory = 1;
3278 if (! enough_free_memory)
3280 int i;
3282 Vmemory_full = Qt;
3284 memory_full_cons_threshold = sizeof (struct cons_block);
3286 /* The first time we get here, free the spare memory. */
3287 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3288 if (spare_memory[i])
3290 if (i == 0)
3291 free (spare_memory[i]);
3292 else if (i >= 1 && i <= 4)
3293 lisp_align_free (spare_memory[i]);
3294 else
3295 lisp_free (spare_memory[i]);
3296 spare_memory[i] = 0;
3299 /* Record the space now used. When it decreases substantially,
3300 we can refill the memory reserve. */
3301 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3302 bytes_used_when_full = BYTES_USED;
3303 #endif
3306 /* This used to call error, but if we've run out of memory, we could
3307 get infinite recursion trying to build the string. */
3308 xsignal (Qnil, Vmemory_signal_data);
3311 /* If we released our reserve (due to running out of memory),
3312 and we have a fair amount free once again,
3313 try to set aside another reserve in case we run out once more.
3315 This is called when a relocatable block is freed in ralloc.c,
3316 and also directly from this file, in case we're not using ralloc.c. */
3318 void
3319 refill_memory_reserve (void)
3321 #ifndef SYSTEM_MALLOC
3322 if (spare_memory[0] == 0)
3323 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3324 if (spare_memory[1] == 0)
3325 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3326 MEM_TYPE_CONS);
3327 if (spare_memory[2] == 0)
3328 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3329 MEM_TYPE_CONS);
3330 if (spare_memory[3] == 0)
3331 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3332 MEM_TYPE_CONS);
3333 if (spare_memory[4] == 0)
3334 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3335 MEM_TYPE_CONS);
3336 if (spare_memory[5] == 0)
3337 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3338 MEM_TYPE_STRING);
3339 if (spare_memory[6] == 0)
3340 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3341 MEM_TYPE_STRING);
3342 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3343 Vmemory_full = Qnil;
3344 #endif
3347 /************************************************************************
3348 C Stack Marking
3349 ************************************************************************/
3351 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3353 /* Conservative C stack marking requires a method to identify possibly
3354 live Lisp objects given a pointer value. We do this by keeping
3355 track of blocks of Lisp data that are allocated in a red-black tree
3356 (see also the comment of mem_node which is the type of nodes in
3357 that tree). Function lisp_malloc adds information for an allocated
3358 block to the red-black tree with calls to mem_insert, and function
3359 lisp_free removes it with mem_delete. Functions live_string_p etc
3360 call mem_find to lookup information about a given pointer in the
3361 tree, and use that to determine if the pointer points to a Lisp
3362 object or not. */
3364 /* Initialize this part of alloc.c. */
3366 static void
3367 mem_init (void)
3369 mem_z.left = mem_z.right = MEM_NIL;
3370 mem_z.parent = NULL;
3371 mem_z.color = MEM_BLACK;
3372 mem_z.start = mem_z.end = NULL;
3373 mem_root = MEM_NIL;
3377 /* Value is a pointer to the mem_node containing START. Value is
3378 MEM_NIL if there is no node in the tree containing START. */
3380 static inline struct mem_node *
3381 mem_find (void *start)
3383 struct mem_node *p;
3385 if (start < min_heap_address || start > max_heap_address)
3386 return MEM_NIL;
3388 /* Make the search always successful to speed up the loop below. */
3389 mem_z.start = start;
3390 mem_z.end = (char *) start + 1;
3392 p = mem_root;
3393 while (start < p->start || start >= p->end)
3394 p = start < p->start ? p->left : p->right;
3395 return p;
3399 /* Insert a new node into the tree for a block of memory with start
3400 address START, end address END, and type TYPE. Value is a
3401 pointer to the node that was inserted. */
3403 static struct mem_node *
3404 mem_insert (void *start, void *end, enum mem_type type)
3406 struct mem_node *c, *parent, *x;
3408 if (min_heap_address == NULL || start < min_heap_address)
3409 min_heap_address = start;
3410 if (max_heap_address == NULL || end > max_heap_address)
3411 max_heap_address = end;
3413 /* See where in the tree a node for START belongs. In this
3414 particular application, it shouldn't happen that a node is already
3415 present. For debugging purposes, let's check that. */
3416 c = mem_root;
3417 parent = NULL;
3419 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3421 while (c != MEM_NIL)
3423 if (start >= c->start && start < c->end)
3424 abort ();
3425 parent = c;
3426 c = start < c->start ? c->left : c->right;
3429 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3431 while (c != MEM_NIL)
3433 parent = c;
3434 c = start < c->start ? c->left : c->right;
3437 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3439 /* Create a new node. */
3440 #ifdef GC_MALLOC_CHECK
3441 x = (struct mem_node *) _malloc_internal (sizeof *x);
3442 if (x == NULL)
3443 abort ();
3444 #else
3445 x = (struct mem_node *) xmalloc (sizeof *x);
3446 #endif
3447 x->start = start;
3448 x->end = end;
3449 x->type = type;
3450 x->parent = parent;
3451 x->left = x->right = MEM_NIL;
3452 x->color = MEM_RED;
3454 /* Insert it as child of PARENT or install it as root. */
3455 if (parent)
3457 if (start < parent->start)
3458 parent->left = x;
3459 else
3460 parent->right = x;
3462 else
3463 mem_root = x;
3465 /* Re-establish red-black tree properties. */
3466 mem_insert_fixup (x);
3468 return x;
3472 /* Re-establish the red-black properties of the tree, and thereby
3473 balance the tree, after node X has been inserted; X is always red. */
3475 static void
3476 mem_insert_fixup (struct mem_node *x)
3478 while (x != mem_root && x->parent->color == MEM_RED)
3480 /* X is red and its parent is red. This is a violation of
3481 red-black tree property #3. */
3483 if (x->parent == x->parent->parent->left)
3485 /* We're on the left side of our grandparent, and Y is our
3486 "uncle". */
3487 struct mem_node *y = x->parent->parent->right;
3489 if (y->color == MEM_RED)
3491 /* Uncle and parent are red but should be black because
3492 X is red. Change the colors accordingly and proceed
3493 with the grandparent. */
3494 x->parent->color = MEM_BLACK;
3495 y->color = MEM_BLACK;
3496 x->parent->parent->color = MEM_RED;
3497 x = x->parent->parent;
3499 else
3501 /* Parent and uncle have different colors; parent is
3502 red, uncle is black. */
3503 if (x == x->parent->right)
3505 x = x->parent;
3506 mem_rotate_left (x);
3509 x->parent->color = MEM_BLACK;
3510 x->parent->parent->color = MEM_RED;
3511 mem_rotate_right (x->parent->parent);
3514 else
3516 /* This is the symmetrical case of above. */
3517 struct mem_node *y = x->parent->parent->left;
3519 if (y->color == MEM_RED)
3521 x->parent->color = MEM_BLACK;
3522 y->color = MEM_BLACK;
3523 x->parent->parent->color = MEM_RED;
3524 x = x->parent->parent;
3526 else
3528 if (x == x->parent->left)
3530 x = x->parent;
3531 mem_rotate_right (x);
3534 x->parent->color = MEM_BLACK;
3535 x->parent->parent->color = MEM_RED;
3536 mem_rotate_left (x->parent->parent);
3541 /* The root may have been changed to red due to the algorithm. Set
3542 it to black so that property #5 is satisfied. */
3543 mem_root->color = MEM_BLACK;
3547 /* (x) (y)
3548 / \ / \
3549 a (y) ===> (x) c
3550 / \ / \
3551 b c a b */
3553 static void
3554 mem_rotate_left (struct mem_node *x)
3556 struct mem_node *y;
3558 /* Turn y's left sub-tree into x's right sub-tree. */
3559 y = x->right;
3560 x->right = y->left;
3561 if (y->left != MEM_NIL)
3562 y->left->parent = x;
3564 /* Y's parent was x's parent. */
3565 if (y != MEM_NIL)
3566 y->parent = x->parent;
3568 /* Get the parent to point to y instead of x. */
3569 if (x->parent)
3571 if (x == x->parent->left)
3572 x->parent->left = y;
3573 else
3574 x->parent->right = y;
3576 else
3577 mem_root = y;
3579 /* Put x on y's left. */
3580 y->left = x;
3581 if (x != MEM_NIL)
3582 x->parent = y;
3586 /* (x) (Y)
3587 / \ / \
3588 (y) c ===> a (x)
3589 / \ / \
3590 a b b c */
3592 static void
3593 mem_rotate_right (struct mem_node *x)
3595 struct mem_node *y = x->left;
3597 x->left = y->right;
3598 if (y->right != MEM_NIL)
3599 y->right->parent = x;
3601 if (y != MEM_NIL)
3602 y->parent = x->parent;
3603 if (x->parent)
3605 if (x == x->parent->right)
3606 x->parent->right = y;
3607 else
3608 x->parent->left = y;
3610 else
3611 mem_root = y;
3613 y->right = x;
3614 if (x != MEM_NIL)
3615 x->parent = y;
3619 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3621 static void
3622 mem_delete (struct mem_node *z)
3624 struct mem_node *x, *y;
3626 if (!z || z == MEM_NIL)
3627 return;
3629 if (z->left == MEM_NIL || z->right == MEM_NIL)
3630 y = z;
3631 else
3633 y = z->right;
3634 while (y->left != MEM_NIL)
3635 y = y->left;
3638 if (y->left != MEM_NIL)
3639 x = y->left;
3640 else
3641 x = y->right;
3643 x->parent = y->parent;
3644 if (y->parent)
3646 if (y == y->parent->left)
3647 y->parent->left = x;
3648 else
3649 y->parent->right = x;
3651 else
3652 mem_root = x;
3654 if (y != z)
3656 z->start = y->start;
3657 z->end = y->end;
3658 z->type = y->type;
3661 if (y->color == MEM_BLACK)
3662 mem_delete_fixup (x);
3664 #ifdef GC_MALLOC_CHECK
3665 _free_internal (y);
3666 #else
3667 xfree (y);
3668 #endif
3672 /* Re-establish the red-black properties of the tree, after a
3673 deletion. */
3675 static void
3676 mem_delete_fixup (struct mem_node *x)
3678 while (x != mem_root && x->color == MEM_BLACK)
3680 if (x == x->parent->left)
3682 struct mem_node *w = x->parent->right;
3684 if (w->color == MEM_RED)
3686 w->color = MEM_BLACK;
3687 x->parent->color = MEM_RED;
3688 mem_rotate_left (x->parent);
3689 w = x->parent->right;
3692 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3694 w->color = MEM_RED;
3695 x = x->parent;
3697 else
3699 if (w->right->color == MEM_BLACK)
3701 w->left->color = MEM_BLACK;
3702 w->color = MEM_RED;
3703 mem_rotate_right (w);
3704 w = x->parent->right;
3706 w->color = x->parent->color;
3707 x->parent->color = MEM_BLACK;
3708 w->right->color = MEM_BLACK;
3709 mem_rotate_left (x->parent);
3710 x = mem_root;
3713 else
3715 struct mem_node *w = x->parent->left;
3717 if (w->color == MEM_RED)
3719 w->color = MEM_BLACK;
3720 x->parent->color = MEM_RED;
3721 mem_rotate_right (x->parent);
3722 w = x->parent->left;
3725 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3727 w->color = MEM_RED;
3728 x = x->parent;
3730 else
3732 if (w->left->color == MEM_BLACK)
3734 w->right->color = MEM_BLACK;
3735 w->color = MEM_RED;
3736 mem_rotate_left (w);
3737 w = x->parent->left;
3740 w->color = x->parent->color;
3741 x->parent->color = MEM_BLACK;
3742 w->left->color = MEM_BLACK;
3743 mem_rotate_right (x->parent);
3744 x = mem_root;
3749 x->color = MEM_BLACK;
3753 /* Value is non-zero if P is a pointer to a live Lisp string on
3754 the heap. M is a pointer to the mem_block for P. */
3756 static inline int
3757 live_string_p (struct mem_node *m, void *p)
3759 if (m->type == MEM_TYPE_STRING)
3761 struct string_block *b = (struct string_block *) m->start;
3762 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3764 /* P must point to the start of a Lisp_String structure, and it
3765 must not be on the free-list. */
3766 return (offset >= 0
3767 && offset % sizeof b->strings[0] == 0
3768 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3769 && ((struct Lisp_String *) p)->data != NULL);
3771 else
3772 return 0;
3776 /* Value is non-zero if P is a pointer to a live Lisp cons on
3777 the heap. M is a pointer to the mem_block for P. */
3779 static inline int
3780 live_cons_p (struct mem_node *m, void *p)
3782 if (m->type == MEM_TYPE_CONS)
3784 struct cons_block *b = (struct cons_block *) m->start;
3785 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3787 /* P must point to the start of a Lisp_Cons, not be
3788 one of the unused cells in the current cons block,
3789 and not be on the free-list. */
3790 return (offset >= 0
3791 && offset % sizeof b->conses[0] == 0
3792 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3793 && (b != cons_block
3794 || offset / sizeof b->conses[0] < cons_block_index)
3795 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3797 else
3798 return 0;
3802 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3803 the heap. M is a pointer to the mem_block for P. */
3805 static inline int
3806 live_symbol_p (struct mem_node *m, void *p)
3808 if (m->type == MEM_TYPE_SYMBOL)
3810 struct symbol_block *b = (struct symbol_block *) m->start;
3811 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3813 /* P must point to the start of a Lisp_Symbol, not be
3814 one of the unused cells in the current symbol block,
3815 and not be on the free-list. */
3816 return (offset >= 0
3817 && offset % sizeof b->symbols[0] == 0
3818 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3819 && (b != symbol_block
3820 || offset / sizeof b->symbols[0] < symbol_block_index)
3821 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3823 else
3824 return 0;
3828 /* Value is non-zero if P is a pointer to a live Lisp float on
3829 the heap. M is a pointer to the mem_block for P. */
3831 static inline int
3832 live_float_p (struct mem_node *m, void *p)
3834 if (m->type == MEM_TYPE_FLOAT)
3836 struct float_block *b = (struct float_block *) m->start;
3837 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3839 /* P must point to the start of a Lisp_Float and not be
3840 one of the unused cells in the current float block. */
3841 return (offset >= 0
3842 && offset % sizeof b->floats[0] == 0
3843 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3844 && (b != float_block
3845 || offset / sizeof b->floats[0] < float_block_index));
3847 else
3848 return 0;
3852 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3853 the heap. M is a pointer to the mem_block for P. */
3855 static inline int
3856 live_misc_p (struct mem_node *m, void *p)
3858 if (m->type == MEM_TYPE_MISC)
3860 struct marker_block *b = (struct marker_block *) m->start;
3861 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3863 /* P must point to the start of a Lisp_Misc, not be
3864 one of the unused cells in the current misc block,
3865 and not be on the free-list. */
3866 return (offset >= 0
3867 && offset % sizeof b->markers[0] == 0
3868 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3869 && (b != marker_block
3870 || offset / sizeof b->markers[0] < marker_block_index)
3871 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3873 else
3874 return 0;
3878 /* Value is non-zero if P is a pointer to a live vector-like object.
3879 M is a pointer to the mem_block for P. */
3881 static inline int
3882 live_vector_p (struct mem_node *m, void *p)
3884 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3888 /* Value is non-zero if P is a pointer to a live buffer. M is a
3889 pointer to the mem_block for P. */
3891 static inline int
3892 live_buffer_p (struct mem_node *m, void *p)
3894 /* P must point to the start of the block, and the buffer
3895 must not have been killed. */
3896 return (m->type == MEM_TYPE_BUFFER
3897 && p == m->start
3898 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3901 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3903 #if GC_MARK_STACK
3905 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3907 /* Array of objects that are kept alive because the C stack contains
3908 a pattern that looks like a reference to them . */
3910 #define MAX_ZOMBIES 10
3911 static Lisp_Object zombies[MAX_ZOMBIES];
3913 /* Number of zombie objects. */
3915 static EMACS_INT nzombies;
3917 /* Number of garbage collections. */
3919 static EMACS_INT ngcs;
3921 /* Average percentage of zombies per collection. */
3923 static double avg_zombies;
3925 /* Max. number of live and zombie objects. */
3927 static EMACS_INT max_live, max_zombies;
3929 /* Average number of live objects per GC. */
3931 static double avg_live;
3933 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3934 doc: /* Show information about live and zombie objects. */)
3935 (void)
3937 Lisp_Object args[8], zombie_list = Qnil;
3938 EMACS_INT i;
3939 for (i = 0; i < nzombies; i++)
3940 zombie_list = Fcons (zombies[i], zombie_list);
3941 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3942 args[1] = make_number (ngcs);
3943 args[2] = make_float (avg_live);
3944 args[3] = make_float (avg_zombies);
3945 args[4] = make_float (avg_zombies / avg_live / 100);
3946 args[5] = make_number (max_live);
3947 args[6] = make_number (max_zombies);
3948 args[7] = zombie_list;
3949 return Fmessage (8, args);
3952 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3955 /* Mark OBJ if we can prove it's a Lisp_Object. */
3957 static inline void
3958 mark_maybe_object (Lisp_Object obj)
3960 void *po;
3961 struct mem_node *m;
3963 if (INTEGERP (obj))
3964 return;
3966 po = (void *) XPNTR (obj);
3967 m = mem_find (po);
3969 if (m != MEM_NIL)
3971 int mark_p = 0;
3973 switch (XTYPE (obj))
3975 case Lisp_String:
3976 mark_p = (live_string_p (m, po)
3977 && !STRING_MARKED_P ((struct Lisp_String *) po));
3978 break;
3980 case Lisp_Cons:
3981 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3982 break;
3984 case Lisp_Symbol:
3985 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3986 break;
3988 case Lisp_Float:
3989 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3990 break;
3992 case Lisp_Vectorlike:
3993 /* Note: can't check BUFFERP before we know it's a
3994 buffer because checking that dereferences the pointer
3995 PO which might point anywhere. */
3996 if (live_vector_p (m, po))
3997 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3998 else if (live_buffer_p (m, po))
3999 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4000 break;
4002 case Lisp_Misc:
4003 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4004 break;
4006 default:
4007 break;
4010 if (mark_p)
4012 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4013 if (nzombies < MAX_ZOMBIES)
4014 zombies[nzombies] = obj;
4015 ++nzombies;
4016 #endif
4017 mark_object (obj);
4023 /* If P points to Lisp data, mark that as live if it isn't already
4024 marked. */
4026 static inline void
4027 mark_maybe_pointer (void *p)
4029 struct mem_node *m;
4031 /* Quickly rule out some values which can't point to Lisp data. */
4032 if ((intptr_t) p %
4033 #ifdef USE_LSB_TAG
4034 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4035 #else
4036 2 /* We assume that Lisp data is aligned on even addresses. */
4037 #endif
4039 return;
4041 m = mem_find (p);
4042 if (m != MEM_NIL)
4044 Lisp_Object obj = Qnil;
4046 switch (m->type)
4048 case MEM_TYPE_NON_LISP:
4049 /* Nothing to do; not a pointer to Lisp memory. */
4050 break;
4052 case MEM_TYPE_BUFFER:
4053 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4054 XSETVECTOR (obj, p);
4055 break;
4057 case MEM_TYPE_CONS:
4058 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4059 XSETCONS (obj, p);
4060 break;
4062 case MEM_TYPE_STRING:
4063 if (live_string_p (m, p)
4064 && !STRING_MARKED_P ((struct Lisp_String *) p))
4065 XSETSTRING (obj, p);
4066 break;
4068 case MEM_TYPE_MISC:
4069 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4070 XSETMISC (obj, p);
4071 break;
4073 case MEM_TYPE_SYMBOL:
4074 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4075 XSETSYMBOL (obj, p);
4076 break;
4078 case MEM_TYPE_FLOAT:
4079 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4080 XSETFLOAT (obj, p);
4081 break;
4083 case MEM_TYPE_VECTORLIKE:
4084 if (live_vector_p (m, p))
4086 Lisp_Object tem;
4087 XSETVECTOR (tem, p);
4088 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4089 obj = tem;
4091 break;
4093 default:
4094 abort ();
4097 if (!NILP (obj))
4098 mark_object (obj);
4103 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4104 or END+OFFSET..START. */
4106 static void
4107 mark_memory (void *start, void *end, int offset)
4109 Lisp_Object *p;
4110 void **pp;
4112 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4113 nzombies = 0;
4114 #endif
4116 /* Make START the pointer to the start of the memory region,
4117 if it isn't already. */
4118 if (end < start)
4120 void *tem = start;
4121 start = end;
4122 end = tem;
4125 /* Mark Lisp_Objects. */
4126 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4127 mark_maybe_object (*p);
4129 /* Mark Lisp data pointed to. This is necessary because, in some
4130 situations, the C compiler optimizes Lisp objects away, so that
4131 only a pointer to them remains. Example:
4133 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4136 Lisp_Object obj = build_string ("test");
4137 struct Lisp_String *s = XSTRING (obj);
4138 Fgarbage_collect ();
4139 fprintf (stderr, "test `%s'\n", s->data);
4140 return Qnil;
4143 Here, `obj' isn't really used, and the compiler optimizes it
4144 away. The only reference to the life string is through the
4145 pointer `s'. */
4147 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4148 mark_maybe_pointer (*pp);
4151 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4152 the GCC system configuration. In gcc 3.2, the only systems for
4153 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4154 by others?) and ns32k-pc532-min. */
4156 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4158 static int setjmp_tested_p, longjmps_done;
4160 #define SETJMP_WILL_LIKELY_WORK "\
4162 Emacs garbage collector has been changed to use conservative stack\n\
4163 marking. Emacs has determined that the method it uses to do the\n\
4164 marking will likely work on your system, but this isn't sure.\n\
4166 If you are a system-programmer, or can get the help of a local wizard\n\
4167 who is, please take a look at the function mark_stack in alloc.c, and\n\
4168 verify that the methods used are appropriate for your system.\n\
4170 Please mail the result to <emacs-devel@gnu.org>.\n\
4173 #define SETJMP_WILL_NOT_WORK "\
4175 Emacs garbage collector has been changed to use conservative stack\n\
4176 marking. Emacs has determined that the default method it uses to do the\n\
4177 marking will not work on your system. We will need a system-dependent\n\
4178 solution for your system.\n\
4180 Please take a look at the function mark_stack in alloc.c, and\n\
4181 try to find a way to make it work on your system.\n\
4183 Note that you may get false negatives, depending on the compiler.\n\
4184 In particular, you need to use -O with GCC for this test.\n\
4186 Please mail the result to <emacs-devel@gnu.org>.\n\
4190 /* Perform a quick check if it looks like setjmp saves registers in a
4191 jmp_buf. Print a message to stderr saying so. When this test
4192 succeeds, this is _not_ a proof that setjmp is sufficient for
4193 conservative stack marking. Only the sources or a disassembly
4194 can prove that. */
4196 static void
4197 test_setjmp (void)
4199 char buf[10];
4200 register int x;
4201 jmp_buf jbuf;
4202 int result = 0;
4204 /* Arrange for X to be put in a register. */
4205 sprintf (buf, "1");
4206 x = strlen (buf);
4207 x = 2 * x - 1;
4209 setjmp (jbuf);
4210 if (longjmps_done == 1)
4212 /* Came here after the longjmp at the end of the function.
4214 If x == 1, the longjmp has restored the register to its
4215 value before the setjmp, and we can hope that setjmp
4216 saves all such registers in the jmp_buf, although that
4217 isn't sure.
4219 For other values of X, either something really strange is
4220 taking place, or the setjmp just didn't save the register. */
4222 if (x == 1)
4223 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4224 else
4226 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4227 exit (1);
4231 ++longjmps_done;
4232 x = 2;
4233 if (longjmps_done == 1)
4234 longjmp (jbuf, 1);
4237 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4240 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4242 /* Abort if anything GCPRO'd doesn't survive the GC. */
4244 static void
4245 check_gcpros (void)
4247 struct gcpro *p;
4248 ptrdiff_t i;
4250 for (p = gcprolist; p; p = p->next)
4251 for (i = 0; i < p->nvars; ++i)
4252 if (!survives_gc_p (p->var[i]))
4253 /* FIXME: It's not necessarily a bug. It might just be that the
4254 GCPRO is unnecessary or should release the object sooner. */
4255 abort ();
4258 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4260 static void
4261 dump_zombies (void)
4263 int i;
4265 fprintf (stderr, "\nZombies kept alive = %"pI":\n", nzombies);
4266 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4268 fprintf (stderr, " %d = ", i);
4269 debug_print (zombies[i]);
4273 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4276 /* Mark live Lisp objects on the C stack.
4278 There are several system-dependent problems to consider when
4279 porting this to new architectures:
4281 Processor Registers
4283 We have to mark Lisp objects in CPU registers that can hold local
4284 variables or are used to pass parameters.
4286 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4287 something that either saves relevant registers on the stack, or
4288 calls mark_maybe_object passing it each register's contents.
4290 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4291 implementation assumes that calling setjmp saves registers we need
4292 to see in a jmp_buf which itself lies on the stack. This doesn't
4293 have to be true! It must be verified for each system, possibly
4294 by taking a look at the source code of setjmp.
4296 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4297 can use it as a machine independent method to store all registers
4298 to the stack. In this case the macros described in the previous
4299 two paragraphs are not used.
4301 Stack Layout
4303 Architectures differ in the way their processor stack is organized.
4304 For example, the stack might look like this
4306 +----------------+
4307 | Lisp_Object | size = 4
4308 +----------------+
4309 | something else | size = 2
4310 +----------------+
4311 | Lisp_Object | size = 4
4312 +----------------+
4313 | ... |
4315 In such a case, not every Lisp_Object will be aligned equally. To
4316 find all Lisp_Object on the stack it won't be sufficient to walk
4317 the stack in steps of 4 bytes. Instead, two passes will be
4318 necessary, one starting at the start of the stack, and a second
4319 pass starting at the start of the stack + 2. Likewise, if the
4320 minimal alignment of Lisp_Objects on the stack is 1, four passes
4321 would be necessary, each one starting with one byte more offset
4322 from the stack start.
4324 The current code assumes by default that Lisp_Objects are aligned
4325 equally on the stack. */
4327 static void
4328 mark_stack (void)
4330 int i;
4331 void *end;
4333 #ifdef HAVE___BUILTIN_UNWIND_INIT
4334 /* Force callee-saved registers and register windows onto the stack.
4335 This is the preferred method if available, obviating the need for
4336 machine dependent methods. */
4337 __builtin_unwind_init ();
4338 end = &end;
4339 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4340 #ifndef GC_SAVE_REGISTERS_ON_STACK
4341 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4342 union aligned_jmpbuf {
4343 Lisp_Object o;
4344 jmp_buf j;
4345 } j;
4346 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4347 #endif
4348 /* This trick flushes the register windows so that all the state of
4349 the process is contained in the stack. */
4350 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4351 needed on ia64 too. See mach_dep.c, where it also says inline
4352 assembler doesn't work with relevant proprietary compilers. */
4353 #ifdef __sparc__
4354 #if defined (__sparc64__) && defined (__FreeBSD__)
4355 /* FreeBSD does not have a ta 3 handler. */
4356 asm ("flushw");
4357 #else
4358 asm ("ta 3");
4359 #endif
4360 #endif
4362 /* Save registers that we need to see on the stack. We need to see
4363 registers used to hold register variables and registers used to
4364 pass parameters. */
4365 #ifdef GC_SAVE_REGISTERS_ON_STACK
4366 GC_SAVE_REGISTERS_ON_STACK (end);
4367 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4369 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4370 setjmp will definitely work, test it
4371 and print a message with the result
4372 of the test. */
4373 if (!setjmp_tested_p)
4375 setjmp_tested_p = 1;
4376 test_setjmp ();
4378 #endif /* GC_SETJMP_WORKS */
4380 setjmp (j.j);
4381 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4382 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4383 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4385 /* This assumes that the stack is a contiguous region in memory. If
4386 that's not the case, something has to be done here to iterate
4387 over the stack segments. */
4388 #ifndef GC_LISP_OBJECT_ALIGNMENT
4389 #ifdef __GNUC__
4390 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4391 #else
4392 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4393 #endif
4394 #endif
4395 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4396 mark_memory (stack_base, end, i);
4397 /* Allow for marking a secondary stack, like the register stack on the
4398 ia64. */
4399 #ifdef GC_MARK_SECONDARY_STACK
4400 GC_MARK_SECONDARY_STACK ();
4401 #endif
4403 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4404 check_gcpros ();
4405 #endif
4408 #endif /* GC_MARK_STACK != 0 */
4411 /* Determine whether it is safe to access memory at address P. */
4412 static int
4413 valid_pointer_p (void *p)
4415 #ifdef WINDOWSNT
4416 return w32_valid_pointer_p (p, 16);
4417 #else
4418 int fd;
4420 /* Obviously, we cannot just access it (we would SEGV trying), so we
4421 trick the o/s to tell us whether p is a valid pointer.
4422 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4423 not validate p in that case. */
4425 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4427 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4428 emacs_close (fd);
4429 unlink ("__Valid__Lisp__Object__");
4430 return valid;
4433 return -1;
4434 #endif
4437 /* Return 1 if OBJ is a valid lisp object.
4438 Return 0 if OBJ is NOT a valid lisp object.
4439 Return -1 if we cannot validate OBJ.
4440 This function can be quite slow,
4441 so it should only be used in code for manual debugging. */
4444 valid_lisp_object_p (Lisp_Object obj)
4446 void *p;
4447 #if GC_MARK_STACK
4448 struct mem_node *m;
4449 #endif
4451 if (INTEGERP (obj))
4452 return 1;
4454 p = (void *) XPNTR (obj);
4455 if (PURE_POINTER_P (p))
4456 return 1;
4458 #if !GC_MARK_STACK
4459 return valid_pointer_p (p);
4460 #else
4462 m = mem_find (p);
4464 if (m == MEM_NIL)
4466 int valid = valid_pointer_p (p);
4467 if (valid <= 0)
4468 return valid;
4470 if (SUBRP (obj))
4471 return 1;
4473 return 0;
4476 switch (m->type)
4478 case MEM_TYPE_NON_LISP:
4479 return 0;
4481 case MEM_TYPE_BUFFER:
4482 return live_buffer_p (m, p);
4484 case MEM_TYPE_CONS:
4485 return live_cons_p (m, p);
4487 case MEM_TYPE_STRING:
4488 return live_string_p (m, p);
4490 case MEM_TYPE_MISC:
4491 return live_misc_p (m, p);
4493 case MEM_TYPE_SYMBOL:
4494 return live_symbol_p (m, p);
4496 case MEM_TYPE_FLOAT:
4497 return live_float_p (m, p);
4499 case MEM_TYPE_VECTORLIKE:
4500 return live_vector_p (m, p);
4502 default:
4503 break;
4506 return 0;
4507 #endif
4513 /***********************************************************************
4514 Pure Storage Management
4515 ***********************************************************************/
4517 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4518 pointer to it. TYPE is the Lisp type for which the memory is
4519 allocated. TYPE < 0 means it's not used for a Lisp object. */
4521 static POINTER_TYPE *
4522 pure_alloc (size_t size, int type)
4524 POINTER_TYPE *result;
4525 #ifdef USE_LSB_TAG
4526 size_t alignment = (1 << GCTYPEBITS);
4527 #else
4528 size_t alignment = sizeof (EMACS_INT);
4530 /* Give Lisp_Floats an extra alignment. */
4531 if (type == Lisp_Float)
4533 #if defined __GNUC__ && __GNUC__ >= 2
4534 alignment = __alignof (struct Lisp_Float);
4535 #else
4536 alignment = sizeof (struct Lisp_Float);
4537 #endif
4539 #endif
4541 again:
4542 if (type >= 0)
4544 /* Allocate space for a Lisp object from the beginning of the free
4545 space with taking account of alignment. */
4546 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4547 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4549 else
4551 /* Allocate space for a non-Lisp object from the end of the free
4552 space. */
4553 pure_bytes_used_non_lisp += size;
4554 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4556 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4558 if (pure_bytes_used <= pure_size)
4559 return result;
4561 /* Don't allocate a large amount here,
4562 because it might get mmap'd and then its address
4563 might not be usable. */
4564 purebeg = (char *) xmalloc (10000);
4565 pure_size = 10000;
4566 pure_bytes_used_before_overflow += pure_bytes_used - size;
4567 pure_bytes_used = 0;
4568 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4569 goto again;
4573 /* Print a warning if PURESIZE is too small. */
4575 void
4576 check_pure_size (void)
4578 if (pure_bytes_used_before_overflow)
4579 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4580 " bytes needed)"),
4581 pure_bytes_used + pure_bytes_used_before_overflow);
4585 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4586 the non-Lisp data pool of the pure storage, and return its start
4587 address. Return NULL if not found. */
4589 static char *
4590 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4592 int i;
4593 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4594 const unsigned char *p;
4595 char *non_lisp_beg;
4597 if (pure_bytes_used_non_lisp < nbytes + 1)
4598 return NULL;
4600 /* Set up the Boyer-Moore table. */
4601 skip = nbytes + 1;
4602 for (i = 0; i < 256; i++)
4603 bm_skip[i] = skip;
4605 p = (const unsigned char *) data;
4606 while (--skip > 0)
4607 bm_skip[*p++] = skip;
4609 last_char_skip = bm_skip['\0'];
4611 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4612 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4614 /* See the comments in the function `boyer_moore' (search.c) for the
4615 use of `infinity'. */
4616 infinity = pure_bytes_used_non_lisp + 1;
4617 bm_skip['\0'] = infinity;
4619 p = (const unsigned char *) non_lisp_beg + nbytes;
4620 start = 0;
4623 /* Check the last character (== '\0'). */
4626 start += bm_skip[*(p + start)];
4628 while (start <= start_max);
4630 if (start < infinity)
4631 /* Couldn't find the last character. */
4632 return NULL;
4634 /* No less than `infinity' means we could find the last
4635 character at `p[start - infinity]'. */
4636 start -= infinity;
4638 /* Check the remaining characters. */
4639 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4640 /* Found. */
4641 return non_lisp_beg + start;
4643 start += last_char_skip;
4645 while (start <= start_max);
4647 return NULL;
4651 /* Return a string allocated in pure space. DATA is a buffer holding
4652 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4653 non-zero means make the result string multibyte.
4655 Must get an error if pure storage is full, since if it cannot hold
4656 a large string it may be able to hold conses that point to that
4657 string; then the string is not protected from gc. */
4659 Lisp_Object
4660 make_pure_string (const char *data,
4661 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4663 Lisp_Object string;
4664 struct Lisp_String *s;
4666 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4667 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4668 if (s->data == NULL)
4670 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4671 memcpy (s->data, data, nbytes);
4672 s->data[nbytes] = '\0';
4674 s->size = nchars;
4675 s->size_byte = multibyte ? nbytes : -1;
4676 s->intervals = NULL_INTERVAL;
4677 XSETSTRING (string, s);
4678 return string;
4681 /* Return a string a string allocated in pure space. Do not allocate
4682 the string data, just point to DATA. */
4684 Lisp_Object
4685 make_pure_c_string (const char *data)
4687 Lisp_Object string;
4688 struct Lisp_String *s;
4689 EMACS_INT nchars = strlen (data);
4691 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4692 s->size = nchars;
4693 s->size_byte = -1;
4694 s->data = (unsigned char *) data;
4695 s->intervals = NULL_INTERVAL;
4696 XSETSTRING (string, s);
4697 return string;
4700 /* Return a cons allocated from pure space. Give it pure copies
4701 of CAR as car and CDR as cdr. */
4703 Lisp_Object
4704 pure_cons (Lisp_Object car, Lisp_Object cdr)
4706 register Lisp_Object new;
4707 struct Lisp_Cons *p;
4709 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4710 XSETCONS (new, p);
4711 XSETCAR (new, Fpurecopy (car));
4712 XSETCDR (new, Fpurecopy (cdr));
4713 return new;
4717 /* Value is a float object with value NUM allocated from pure space. */
4719 static Lisp_Object
4720 make_pure_float (double num)
4722 register Lisp_Object new;
4723 struct Lisp_Float *p;
4725 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4726 XSETFLOAT (new, p);
4727 XFLOAT_INIT (new, num);
4728 return new;
4732 /* Return a vector with room for LEN Lisp_Objects allocated from
4733 pure space. */
4735 Lisp_Object
4736 make_pure_vector (EMACS_INT len)
4738 Lisp_Object new;
4739 struct Lisp_Vector *p;
4740 size_t size = (offsetof (struct Lisp_Vector, contents)
4741 + len * sizeof (Lisp_Object));
4743 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4744 XSETVECTOR (new, p);
4745 XVECTOR (new)->header.size = len;
4746 return new;
4750 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4751 doc: /* Make a copy of object OBJ in pure storage.
4752 Recursively copies contents of vectors and cons cells.
4753 Does not copy symbols. Copies strings without text properties. */)
4754 (register Lisp_Object obj)
4756 if (NILP (Vpurify_flag))
4757 return obj;
4759 if (PURE_POINTER_P (XPNTR (obj)))
4760 return obj;
4762 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4764 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4765 if (!NILP (tmp))
4766 return tmp;
4769 if (CONSP (obj))
4770 obj = pure_cons (XCAR (obj), XCDR (obj));
4771 else if (FLOATP (obj))
4772 obj = make_pure_float (XFLOAT_DATA (obj));
4773 else if (STRINGP (obj))
4774 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4775 SBYTES (obj),
4776 STRING_MULTIBYTE (obj));
4777 else if (COMPILEDP (obj) || VECTORP (obj))
4779 register struct Lisp_Vector *vec;
4780 register EMACS_INT i;
4781 EMACS_INT size;
4783 size = ASIZE (obj);
4784 if (size & PSEUDOVECTOR_FLAG)
4785 size &= PSEUDOVECTOR_SIZE_MASK;
4786 vec = XVECTOR (make_pure_vector (size));
4787 for (i = 0; i < size; i++)
4788 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4789 if (COMPILEDP (obj))
4791 XSETPVECTYPE (vec, PVEC_COMPILED);
4792 XSETCOMPILED (obj, vec);
4794 else
4795 XSETVECTOR (obj, vec);
4797 else if (MARKERP (obj))
4798 error ("Attempt to copy a marker to pure storage");
4799 else
4800 /* Not purified, don't hash-cons. */
4801 return obj;
4803 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4804 Fputhash (obj, obj, Vpurify_flag);
4806 return obj;
4811 /***********************************************************************
4812 Protection from GC
4813 ***********************************************************************/
4815 /* Put an entry in staticvec, pointing at the variable with address
4816 VARADDRESS. */
4818 void
4819 staticpro (Lisp_Object *varaddress)
4821 staticvec[staticidx++] = varaddress;
4822 if (staticidx >= NSTATICS)
4823 abort ();
4827 /***********************************************************************
4828 Protection from GC
4829 ***********************************************************************/
4831 /* Temporarily prevent garbage collection. */
4834 inhibit_garbage_collection (void)
4836 int count = SPECPDL_INDEX ();
4838 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
4839 return count;
4843 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4844 doc: /* Reclaim storage for Lisp objects no longer needed.
4845 Garbage collection happens automatically if you cons more than
4846 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4847 `garbage-collect' normally returns a list with info on amount of space in use:
4848 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4849 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4850 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4851 (USED-STRINGS . FREE-STRINGS))
4852 However, if there was overflow in pure space, `garbage-collect'
4853 returns nil, because real GC can't be done. */)
4854 (void)
4856 register struct specbinding *bind;
4857 char stack_top_variable;
4858 ptrdiff_t i;
4859 int message_p;
4860 Lisp_Object total[8];
4861 int count = SPECPDL_INDEX ();
4862 EMACS_TIME t1, t2, t3;
4864 if (abort_on_gc)
4865 abort ();
4867 /* Can't GC if pure storage overflowed because we can't determine
4868 if something is a pure object or not. */
4869 if (pure_bytes_used_before_overflow)
4870 return Qnil;
4872 CHECK_CONS_LIST ();
4874 /* Don't keep undo information around forever.
4875 Do this early on, so it is no problem if the user quits. */
4877 register struct buffer *nextb = all_buffers;
4879 while (nextb)
4881 /* If a buffer's undo list is Qt, that means that undo is
4882 turned off in that buffer. Calling truncate_undo_list on
4883 Qt tends to return NULL, which effectively turns undo back on.
4884 So don't call truncate_undo_list if undo_list is Qt. */
4885 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4886 truncate_undo_list (nextb);
4888 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4889 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4890 && ! nextb->text->inhibit_shrinking)
4892 /* If a buffer's gap size is more than 10% of the buffer
4893 size, or larger than 2000 bytes, then shrink it
4894 accordingly. Keep a minimum size of 20 bytes. */
4895 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4897 if (nextb->text->gap_size > size)
4899 struct buffer *save_current = current_buffer;
4900 current_buffer = nextb;
4901 make_gap (-(nextb->text->gap_size - size));
4902 current_buffer = save_current;
4906 nextb = nextb->header.next.buffer;
4910 EMACS_GET_TIME (t1);
4912 /* In case user calls debug_print during GC,
4913 don't let that cause a recursive GC. */
4914 consing_since_gc = 0;
4916 /* Save what's currently displayed in the echo area. */
4917 message_p = push_message ();
4918 record_unwind_protect (pop_message_unwind, Qnil);
4920 /* Save a copy of the contents of the stack, for debugging. */
4921 #if MAX_SAVE_STACK > 0
4922 if (NILP (Vpurify_flag))
4924 char *stack;
4925 size_t stack_size;
4926 if (&stack_top_variable < stack_bottom)
4928 stack = &stack_top_variable;
4929 stack_size = stack_bottom - &stack_top_variable;
4931 else
4933 stack = stack_bottom;
4934 stack_size = &stack_top_variable - stack_bottom;
4936 if (stack_size <= MAX_SAVE_STACK)
4938 if (stack_copy_size < stack_size)
4940 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4941 stack_copy_size = stack_size;
4943 memcpy (stack_copy, stack, stack_size);
4946 #endif /* MAX_SAVE_STACK > 0 */
4948 if (garbage_collection_messages)
4949 message1_nolog ("Garbage collecting...");
4951 BLOCK_INPUT;
4953 shrink_regexp_cache ();
4955 gc_in_progress = 1;
4957 /* clear_marks (); */
4959 /* Mark all the special slots that serve as the roots of accessibility. */
4961 for (i = 0; i < staticidx; i++)
4962 mark_object (*staticvec[i]);
4964 for (bind = specpdl; bind != specpdl_ptr; bind++)
4966 mark_object (bind->symbol);
4967 mark_object (bind->old_value);
4969 mark_terminals ();
4970 mark_kboards ();
4971 mark_ttys ();
4973 #ifdef USE_GTK
4975 extern void xg_mark_data (void);
4976 xg_mark_data ();
4978 #endif
4980 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4981 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4982 mark_stack ();
4983 #else
4985 register struct gcpro *tail;
4986 for (tail = gcprolist; tail; tail = tail->next)
4987 for (i = 0; i < tail->nvars; i++)
4988 mark_object (tail->var[i]);
4990 mark_byte_stack ();
4992 struct catchtag *catch;
4993 struct handler *handler;
4995 for (catch = catchlist; catch; catch = catch->next)
4997 mark_object (catch->tag);
4998 mark_object (catch->val);
5000 for (handler = handlerlist; handler; handler = handler->next)
5002 mark_object (handler->handler);
5003 mark_object (handler->var);
5006 mark_backtrace ();
5007 #endif
5009 #ifdef HAVE_WINDOW_SYSTEM
5010 mark_fringe_data ();
5011 #endif
5013 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5014 mark_stack ();
5015 #endif
5017 /* Everything is now marked, except for the things that require special
5018 finalization, i.e. the undo_list.
5019 Look thru every buffer's undo list
5020 for elements that update markers that were not marked,
5021 and delete them. */
5023 register struct buffer *nextb = all_buffers;
5025 while (nextb)
5027 /* If a buffer's undo list is Qt, that means that undo is
5028 turned off in that buffer. Calling truncate_undo_list on
5029 Qt tends to return NULL, which effectively turns undo back on.
5030 So don't call truncate_undo_list if undo_list is Qt. */
5031 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5033 Lisp_Object tail, prev;
5034 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5035 prev = Qnil;
5036 while (CONSP (tail))
5038 if (CONSP (XCAR (tail))
5039 && MARKERP (XCAR (XCAR (tail)))
5040 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5042 if (NILP (prev))
5043 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5044 else
5046 tail = XCDR (tail);
5047 XSETCDR (prev, tail);
5050 else
5052 prev = tail;
5053 tail = XCDR (tail);
5057 /* Now that we have stripped the elements that need not be in the
5058 undo_list any more, we can finally mark the list. */
5059 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5061 nextb = nextb->header.next.buffer;
5065 gc_sweep ();
5067 /* Clear the mark bits that we set in certain root slots. */
5069 unmark_byte_stack ();
5070 VECTOR_UNMARK (&buffer_defaults);
5071 VECTOR_UNMARK (&buffer_local_symbols);
5073 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5074 dump_zombies ();
5075 #endif
5077 UNBLOCK_INPUT;
5079 CHECK_CONS_LIST ();
5081 /* clear_marks (); */
5082 gc_in_progress = 0;
5084 consing_since_gc = 0;
5085 if (gc_cons_threshold < 10000)
5086 gc_cons_threshold = 10000;
5088 gc_relative_threshold = 0;
5089 if (FLOATP (Vgc_cons_percentage))
5090 { /* Set gc_cons_combined_threshold. */
5091 double tot = 0;
5093 tot += total_conses * sizeof (struct Lisp_Cons);
5094 tot += total_symbols * sizeof (struct Lisp_Symbol);
5095 tot += total_markers * sizeof (union Lisp_Misc);
5096 tot += total_string_size;
5097 tot += total_vector_size * sizeof (Lisp_Object);
5098 tot += total_floats * sizeof (struct Lisp_Float);
5099 tot += total_intervals * sizeof (struct interval);
5100 tot += total_strings * sizeof (struct Lisp_String);
5102 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5103 if (0 < tot)
5105 if (tot < TYPE_MAXIMUM (EMACS_INT))
5106 gc_relative_threshold = tot;
5107 else
5108 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5112 if (garbage_collection_messages)
5114 if (message_p || minibuf_level > 0)
5115 restore_message ();
5116 else
5117 message1_nolog ("Garbage collecting...done");
5120 unbind_to (count, Qnil);
5122 total[0] = Fcons (make_number (total_conses),
5123 make_number (total_free_conses));
5124 total[1] = Fcons (make_number (total_symbols),
5125 make_number (total_free_symbols));
5126 total[2] = Fcons (make_number (total_markers),
5127 make_number (total_free_markers));
5128 total[3] = make_number (total_string_size);
5129 total[4] = make_number (total_vector_size);
5130 total[5] = Fcons (make_number (total_floats),
5131 make_number (total_free_floats));
5132 total[6] = Fcons (make_number (total_intervals),
5133 make_number (total_free_intervals));
5134 total[7] = Fcons (make_number (total_strings),
5135 make_number (total_free_strings));
5137 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5139 /* Compute average percentage of zombies. */
5140 double nlive = 0;
5142 for (i = 0; i < 7; ++i)
5143 if (CONSP (total[i]))
5144 nlive += XFASTINT (XCAR (total[i]));
5146 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5147 max_live = max (nlive, max_live);
5148 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5149 max_zombies = max (nzombies, max_zombies);
5150 ++ngcs;
5152 #endif
5154 if (!NILP (Vpost_gc_hook))
5156 int gc_count = inhibit_garbage_collection ();
5157 safe_run_hooks (Qpost_gc_hook);
5158 unbind_to (gc_count, Qnil);
5161 /* Accumulate statistics. */
5162 EMACS_GET_TIME (t2);
5163 EMACS_SUB_TIME (t3, t2, t1);
5164 if (FLOATP (Vgc_elapsed))
5165 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5166 EMACS_SECS (t3) +
5167 EMACS_USECS (t3) * 1.0e-6);
5168 gcs_done++;
5170 return Flist (sizeof total / sizeof *total, total);
5174 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5175 only interesting objects referenced from glyphs are strings. */
5177 static void
5178 mark_glyph_matrix (struct glyph_matrix *matrix)
5180 struct glyph_row *row = matrix->rows;
5181 struct glyph_row *end = row + matrix->nrows;
5183 for (; row < end; ++row)
5184 if (row->enabled_p)
5186 int area;
5187 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5189 struct glyph *glyph = row->glyphs[area];
5190 struct glyph *end_glyph = glyph + row->used[area];
5192 for (; glyph < end_glyph; ++glyph)
5193 if (STRINGP (glyph->object)
5194 && !STRING_MARKED_P (XSTRING (glyph->object)))
5195 mark_object (glyph->object);
5201 /* Mark Lisp faces in the face cache C. */
5203 static void
5204 mark_face_cache (struct face_cache *c)
5206 if (c)
5208 int i, j;
5209 for (i = 0; i < c->used; ++i)
5211 struct face *face = FACE_FROM_ID (c->f, i);
5213 if (face)
5215 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5216 mark_object (face->lface[j]);
5224 /* Mark reference to a Lisp_Object.
5225 If the object referred to has not been seen yet, recursively mark
5226 all the references contained in it. */
5228 #define LAST_MARKED_SIZE 500
5229 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5230 static int last_marked_index;
5232 /* For debugging--call abort when we cdr down this many
5233 links of a list, in mark_object. In debugging,
5234 the call to abort will hit a breakpoint.
5235 Normally this is zero and the check never goes off. */
5236 static size_t mark_object_loop_halt;
5238 static void
5239 mark_vectorlike (struct Lisp_Vector *ptr)
5241 EMACS_INT size = ptr->header.size;
5242 EMACS_INT i;
5244 eassert (!VECTOR_MARKED_P (ptr));
5245 VECTOR_MARK (ptr); /* Else mark it */
5246 if (size & PSEUDOVECTOR_FLAG)
5247 size &= PSEUDOVECTOR_SIZE_MASK;
5249 /* Note that this size is not the memory-footprint size, but only
5250 the number of Lisp_Object fields that we should trace.
5251 The distinction is used e.g. by Lisp_Process which places extra
5252 non-Lisp_Object fields at the end of the structure. */
5253 for (i = 0; i < size; i++) /* and then mark its elements */
5254 mark_object (ptr->contents[i]);
5257 /* Like mark_vectorlike but optimized for char-tables (and
5258 sub-char-tables) assuming that the contents are mostly integers or
5259 symbols. */
5261 static void
5262 mark_char_table (struct Lisp_Vector *ptr)
5264 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5265 int i;
5267 eassert (!VECTOR_MARKED_P (ptr));
5268 VECTOR_MARK (ptr);
5269 for (i = 0; i < size; i++)
5271 Lisp_Object val = ptr->contents[i];
5273 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5274 continue;
5275 if (SUB_CHAR_TABLE_P (val))
5277 if (! VECTOR_MARKED_P (XVECTOR (val)))
5278 mark_char_table (XVECTOR (val));
5280 else
5281 mark_object (val);
5285 void
5286 mark_object (Lisp_Object arg)
5288 register Lisp_Object obj = arg;
5289 #ifdef GC_CHECK_MARKED_OBJECTS
5290 void *po;
5291 struct mem_node *m;
5292 #endif
5293 size_t cdr_count = 0;
5295 loop:
5297 if (PURE_POINTER_P (XPNTR (obj)))
5298 return;
5300 last_marked[last_marked_index++] = obj;
5301 if (last_marked_index == LAST_MARKED_SIZE)
5302 last_marked_index = 0;
5304 /* Perform some sanity checks on the objects marked here. Abort if
5305 we encounter an object we know is bogus. This increases GC time
5306 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5307 #ifdef GC_CHECK_MARKED_OBJECTS
5309 po = (void *) XPNTR (obj);
5311 /* Check that the object pointed to by PO is known to be a Lisp
5312 structure allocated from the heap. */
5313 #define CHECK_ALLOCATED() \
5314 do { \
5315 m = mem_find (po); \
5316 if (m == MEM_NIL) \
5317 abort (); \
5318 } while (0)
5320 /* Check that the object pointed to by PO is live, using predicate
5321 function LIVEP. */
5322 #define CHECK_LIVE(LIVEP) \
5323 do { \
5324 if (!LIVEP (m, po)) \
5325 abort (); \
5326 } while (0)
5328 /* Check both of the above conditions. */
5329 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5330 do { \
5331 CHECK_ALLOCATED (); \
5332 CHECK_LIVE (LIVEP); \
5333 } while (0) \
5335 #else /* not GC_CHECK_MARKED_OBJECTS */
5337 #define CHECK_LIVE(LIVEP) (void) 0
5338 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5340 #endif /* not GC_CHECK_MARKED_OBJECTS */
5342 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5344 case Lisp_String:
5346 register struct Lisp_String *ptr = XSTRING (obj);
5347 if (STRING_MARKED_P (ptr))
5348 break;
5349 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5350 MARK_INTERVAL_TREE (ptr->intervals);
5351 MARK_STRING (ptr);
5352 #ifdef GC_CHECK_STRING_BYTES
5353 /* Check that the string size recorded in the string is the
5354 same as the one recorded in the sdata structure. */
5355 CHECK_STRING_BYTES (ptr);
5356 #endif /* GC_CHECK_STRING_BYTES */
5358 break;
5360 case Lisp_Vectorlike:
5361 if (VECTOR_MARKED_P (XVECTOR (obj)))
5362 break;
5363 #ifdef GC_CHECK_MARKED_OBJECTS
5364 m = mem_find (po);
5365 if (m == MEM_NIL && !SUBRP (obj)
5366 && po != &buffer_defaults
5367 && po != &buffer_local_symbols)
5368 abort ();
5369 #endif /* GC_CHECK_MARKED_OBJECTS */
5371 if (BUFFERP (obj))
5373 #ifdef GC_CHECK_MARKED_OBJECTS
5374 if (po != &buffer_defaults && po != &buffer_local_symbols)
5376 struct buffer *b;
5377 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5379 if (b == NULL)
5380 abort ();
5382 #endif /* GC_CHECK_MARKED_OBJECTS */
5383 mark_buffer (obj);
5385 else if (SUBRP (obj))
5386 break;
5387 else if (COMPILEDP (obj))
5388 /* We could treat this just like a vector, but it is better to
5389 save the COMPILED_CONSTANTS element for last and avoid
5390 recursion there. */
5392 register struct Lisp_Vector *ptr = XVECTOR (obj);
5393 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5394 int i;
5396 CHECK_LIVE (live_vector_p);
5397 VECTOR_MARK (ptr); /* Else mark it */
5398 for (i = 0; i < size; i++) /* and then mark its elements */
5400 if (i != COMPILED_CONSTANTS)
5401 mark_object (ptr->contents[i]);
5403 obj = ptr->contents[COMPILED_CONSTANTS];
5404 goto loop;
5406 else if (FRAMEP (obj))
5408 register struct frame *ptr = XFRAME (obj);
5409 mark_vectorlike (XVECTOR (obj));
5410 mark_face_cache (ptr->face_cache);
5412 else if (WINDOWP (obj))
5414 register struct Lisp_Vector *ptr = XVECTOR (obj);
5415 struct window *w = XWINDOW (obj);
5416 mark_vectorlike (ptr);
5417 /* Mark glyphs for leaf windows. Marking window matrices is
5418 sufficient because frame matrices use the same glyph
5419 memory. */
5420 if (NILP (w->hchild)
5421 && NILP (w->vchild)
5422 && w->current_matrix)
5424 mark_glyph_matrix (w->current_matrix);
5425 mark_glyph_matrix (w->desired_matrix);
5428 else if (HASH_TABLE_P (obj))
5430 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5431 mark_vectorlike ((struct Lisp_Vector *)h);
5432 /* If hash table is not weak, mark all keys and values.
5433 For weak tables, mark only the vector. */
5434 if (NILP (h->weak))
5435 mark_object (h->key_and_value);
5436 else
5437 VECTOR_MARK (XVECTOR (h->key_and_value));
5439 else if (CHAR_TABLE_P (obj))
5440 mark_char_table (XVECTOR (obj));
5441 else
5442 mark_vectorlike (XVECTOR (obj));
5443 break;
5445 case Lisp_Symbol:
5447 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5448 struct Lisp_Symbol *ptrx;
5450 if (ptr->gcmarkbit)
5451 break;
5452 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5453 ptr->gcmarkbit = 1;
5454 mark_object (ptr->function);
5455 mark_object (ptr->plist);
5456 switch (ptr->redirect)
5458 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5459 case SYMBOL_VARALIAS:
5461 Lisp_Object tem;
5462 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5463 mark_object (tem);
5464 break;
5466 case SYMBOL_LOCALIZED:
5468 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5469 /* If the value is forwarded to a buffer or keyboard field,
5470 these are marked when we see the corresponding object.
5471 And if it's forwarded to a C variable, either it's not
5472 a Lisp_Object var, or it's staticpro'd already. */
5473 mark_object (blv->where);
5474 mark_object (blv->valcell);
5475 mark_object (blv->defcell);
5476 break;
5478 case SYMBOL_FORWARDED:
5479 /* If the value is forwarded to a buffer or keyboard field,
5480 these are marked when we see the corresponding object.
5481 And if it's forwarded to a C variable, either it's not
5482 a Lisp_Object var, or it's staticpro'd already. */
5483 break;
5484 default: abort ();
5486 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5487 MARK_STRING (XSTRING (ptr->xname));
5488 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5490 ptr = ptr->next;
5491 if (ptr)
5493 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5494 XSETSYMBOL (obj, ptrx);
5495 goto loop;
5498 break;
5500 case Lisp_Misc:
5501 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5502 if (XMISCANY (obj)->gcmarkbit)
5503 break;
5504 XMISCANY (obj)->gcmarkbit = 1;
5506 switch (XMISCTYPE (obj))
5509 case Lisp_Misc_Marker:
5510 /* DO NOT mark thru the marker's chain.
5511 The buffer's markers chain does not preserve markers from gc;
5512 instead, markers are removed from the chain when freed by gc. */
5513 break;
5515 case Lisp_Misc_Save_Value:
5516 #if GC_MARK_STACK
5518 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5519 /* If DOGC is set, POINTER is the address of a memory
5520 area containing INTEGER potential Lisp_Objects. */
5521 if (ptr->dogc)
5523 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5524 ptrdiff_t nelt;
5525 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5526 mark_maybe_object (*p);
5529 #endif
5530 break;
5532 case Lisp_Misc_Overlay:
5534 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5535 mark_object (ptr->start);
5536 mark_object (ptr->end);
5537 mark_object (ptr->plist);
5538 if (ptr->next)
5540 XSETMISC (obj, ptr->next);
5541 goto loop;
5544 break;
5546 default:
5547 abort ();
5549 break;
5551 case Lisp_Cons:
5553 register struct Lisp_Cons *ptr = XCONS (obj);
5554 if (CONS_MARKED_P (ptr))
5555 break;
5556 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5557 CONS_MARK (ptr);
5558 /* If the cdr is nil, avoid recursion for the car. */
5559 if (EQ (ptr->u.cdr, Qnil))
5561 obj = ptr->car;
5562 cdr_count = 0;
5563 goto loop;
5565 mark_object (ptr->car);
5566 obj = ptr->u.cdr;
5567 cdr_count++;
5568 if (cdr_count == mark_object_loop_halt)
5569 abort ();
5570 goto loop;
5573 case Lisp_Float:
5574 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5575 FLOAT_MARK (XFLOAT (obj));
5576 break;
5578 case_Lisp_Int:
5579 break;
5581 default:
5582 abort ();
5585 #undef CHECK_LIVE
5586 #undef CHECK_ALLOCATED
5587 #undef CHECK_ALLOCATED_AND_LIVE
5590 /* Mark the pointers in a buffer structure. */
5592 static void
5593 mark_buffer (Lisp_Object buf)
5595 register struct buffer *buffer = XBUFFER (buf);
5596 register Lisp_Object *ptr, tmp;
5597 Lisp_Object base_buffer;
5599 eassert (!VECTOR_MARKED_P (buffer));
5600 VECTOR_MARK (buffer);
5602 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5604 /* For now, we just don't mark the undo_list. It's done later in
5605 a special way just before the sweep phase, and after stripping
5606 some of its elements that are not needed any more. */
5608 if (buffer->overlays_before)
5610 XSETMISC (tmp, buffer->overlays_before);
5611 mark_object (tmp);
5613 if (buffer->overlays_after)
5615 XSETMISC (tmp, buffer->overlays_after);
5616 mark_object (tmp);
5619 /* buffer-local Lisp variables start at `undo_list',
5620 tho only the ones from `name' on are GC'd normally. */
5621 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5622 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5623 ptr++)
5624 mark_object (*ptr);
5626 /* If this is an indirect buffer, mark its base buffer. */
5627 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5629 XSETBUFFER (base_buffer, buffer->base_buffer);
5630 mark_buffer (base_buffer);
5634 /* Mark the Lisp pointers in the terminal objects.
5635 Called by the Fgarbage_collector. */
5637 static void
5638 mark_terminals (void)
5640 struct terminal *t;
5641 for (t = terminal_list; t; t = t->next_terminal)
5643 eassert (t->name != NULL);
5644 #ifdef HAVE_WINDOW_SYSTEM
5645 /* If a terminal object is reachable from a stacpro'ed object,
5646 it might have been marked already. Make sure the image cache
5647 gets marked. */
5648 mark_image_cache (t->image_cache);
5649 #endif /* HAVE_WINDOW_SYSTEM */
5650 if (!VECTOR_MARKED_P (t))
5651 mark_vectorlike ((struct Lisp_Vector *)t);
5657 /* Value is non-zero if OBJ will survive the current GC because it's
5658 either marked or does not need to be marked to survive. */
5661 survives_gc_p (Lisp_Object obj)
5663 int survives_p;
5665 switch (XTYPE (obj))
5667 case_Lisp_Int:
5668 survives_p = 1;
5669 break;
5671 case Lisp_Symbol:
5672 survives_p = XSYMBOL (obj)->gcmarkbit;
5673 break;
5675 case Lisp_Misc:
5676 survives_p = XMISCANY (obj)->gcmarkbit;
5677 break;
5679 case Lisp_String:
5680 survives_p = STRING_MARKED_P (XSTRING (obj));
5681 break;
5683 case Lisp_Vectorlike:
5684 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5685 break;
5687 case Lisp_Cons:
5688 survives_p = CONS_MARKED_P (XCONS (obj));
5689 break;
5691 case Lisp_Float:
5692 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5693 break;
5695 default:
5696 abort ();
5699 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5704 /* Sweep: find all structures not marked, and free them. */
5706 static void
5707 gc_sweep (void)
5709 /* Remove or mark entries in weak hash tables.
5710 This must be done before any object is unmarked. */
5711 sweep_weak_hash_tables ();
5713 sweep_strings ();
5714 #ifdef GC_CHECK_STRING_BYTES
5715 if (!noninteractive)
5716 check_string_bytes (1);
5717 #endif
5719 /* Put all unmarked conses on free list */
5721 register struct cons_block *cblk;
5722 struct cons_block **cprev = &cons_block;
5723 register int lim = cons_block_index;
5724 EMACS_INT num_free = 0, num_used = 0;
5726 cons_free_list = 0;
5728 for (cblk = cons_block; cblk; cblk = *cprev)
5730 register int i = 0;
5731 int this_free = 0;
5732 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5734 /* Scan the mark bits an int at a time. */
5735 for (i = 0; i <= ilim; i++)
5737 if (cblk->gcmarkbits[i] == -1)
5739 /* Fast path - all cons cells for this int are marked. */
5740 cblk->gcmarkbits[i] = 0;
5741 num_used += BITS_PER_INT;
5743 else
5745 /* Some cons cells for this int are not marked.
5746 Find which ones, and free them. */
5747 int start, pos, stop;
5749 start = i * BITS_PER_INT;
5750 stop = lim - start;
5751 if (stop > BITS_PER_INT)
5752 stop = BITS_PER_INT;
5753 stop += start;
5755 for (pos = start; pos < stop; pos++)
5757 if (!CONS_MARKED_P (&cblk->conses[pos]))
5759 this_free++;
5760 cblk->conses[pos].u.chain = cons_free_list;
5761 cons_free_list = &cblk->conses[pos];
5762 #if GC_MARK_STACK
5763 cons_free_list->car = Vdead;
5764 #endif
5766 else
5768 num_used++;
5769 CONS_UNMARK (&cblk->conses[pos]);
5775 lim = CONS_BLOCK_SIZE;
5776 /* If this block contains only free conses and we have already
5777 seen more than two blocks worth of free conses then deallocate
5778 this block. */
5779 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5781 *cprev = cblk->next;
5782 /* Unhook from the free list. */
5783 cons_free_list = cblk->conses[0].u.chain;
5784 lisp_align_free (cblk);
5786 else
5788 num_free += this_free;
5789 cprev = &cblk->next;
5792 total_conses = num_used;
5793 total_free_conses = num_free;
5796 /* Put all unmarked floats on free list */
5798 register struct float_block *fblk;
5799 struct float_block **fprev = &float_block;
5800 register int lim = float_block_index;
5801 EMACS_INT num_free = 0, num_used = 0;
5803 float_free_list = 0;
5805 for (fblk = float_block; fblk; fblk = *fprev)
5807 register int i;
5808 int this_free = 0;
5809 for (i = 0; i < lim; i++)
5810 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5812 this_free++;
5813 fblk->floats[i].u.chain = float_free_list;
5814 float_free_list = &fblk->floats[i];
5816 else
5818 num_used++;
5819 FLOAT_UNMARK (&fblk->floats[i]);
5821 lim = FLOAT_BLOCK_SIZE;
5822 /* If this block contains only free floats and we have already
5823 seen more than two blocks worth of free floats then deallocate
5824 this block. */
5825 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5827 *fprev = fblk->next;
5828 /* Unhook from the free list. */
5829 float_free_list = fblk->floats[0].u.chain;
5830 lisp_align_free (fblk);
5832 else
5834 num_free += this_free;
5835 fprev = &fblk->next;
5838 total_floats = num_used;
5839 total_free_floats = num_free;
5842 /* Put all unmarked intervals on free list */
5844 register struct interval_block *iblk;
5845 struct interval_block **iprev = &interval_block;
5846 register int lim = interval_block_index;
5847 EMACS_INT num_free = 0, num_used = 0;
5849 interval_free_list = 0;
5851 for (iblk = interval_block; iblk; iblk = *iprev)
5853 register int i;
5854 int this_free = 0;
5856 for (i = 0; i < lim; i++)
5858 if (!iblk->intervals[i].gcmarkbit)
5860 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5861 interval_free_list = &iblk->intervals[i];
5862 this_free++;
5864 else
5866 num_used++;
5867 iblk->intervals[i].gcmarkbit = 0;
5870 lim = INTERVAL_BLOCK_SIZE;
5871 /* If this block contains only free intervals and we have already
5872 seen more than two blocks worth of free intervals then
5873 deallocate this block. */
5874 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5876 *iprev = iblk->next;
5877 /* Unhook from the free list. */
5878 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5879 lisp_free (iblk);
5881 else
5883 num_free += this_free;
5884 iprev = &iblk->next;
5887 total_intervals = num_used;
5888 total_free_intervals = num_free;
5891 /* Put all unmarked symbols on free list */
5893 register struct symbol_block *sblk;
5894 struct symbol_block **sprev = &symbol_block;
5895 register int lim = symbol_block_index;
5896 EMACS_INT num_free = 0, num_used = 0;
5898 symbol_free_list = NULL;
5900 for (sblk = symbol_block; sblk; sblk = *sprev)
5902 int this_free = 0;
5903 struct Lisp_Symbol *sym = sblk->symbols;
5904 struct Lisp_Symbol *end = sym + lim;
5906 for (; sym < end; ++sym)
5908 /* Check if the symbol was created during loadup. In such a case
5909 it might be pointed to by pure bytecode which we don't trace,
5910 so we conservatively assume that it is live. */
5911 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5913 if (!sym->gcmarkbit && !pure_p)
5915 if (sym->redirect == SYMBOL_LOCALIZED)
5916 xfree (SYMBOL_BLV (sym));
5917 sym->next = symbol_free_list;
5918 symbol_free_list = sym;
5919 #if GC_MARK_STACK
5920 symbol_free_list->function = Vdead;
5921 #endif
5922 ++this_free;
5924 else
5926 ++num_used;
5927 if (!pure_p)
5928 UNMARK_STRING (XSTRING (sym->xname));
5929 sym->gcmarkbit = 0;
5933 lim = SYMBOL_BLOCK_SIZE;
5934 /* If this block contains only free symbols and we have already
5935 seen more than two blocks worth of free symbols then deallocate
5936 this block. */
5937 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5939 *sprev = sblk->next;
5940 /* Unhook from the free list. */
5941 symbol_free_list = sblk->symbols[0].next;
5942 lisp_free (sblk);
5944 else
5946 num_free += this_free;
5947 sprev = &sblk->next;
5950 total_symbols = num_used;
5951 total_free_symbols = num_free;
5954 /* Put all unmarked misc's on free list.
5955 For a marker, first unchain it from the buffer it points into. */
5957 register struct marker_block *mblk;
5958 struct marker_block **mprev = &marker_block;
5959 register int lim = marker_block_index;
5960 EMACS_INT num_free = 0, num_used = 0;
5962 marker_free_list = 0;
5964 for (mblk = marker_block; mblk; mblk = *mprev)
5966 register int i;
5967 int this_free = 0;
5969 for (i = 0; i < lim; i++)
5971 if (!mblk->markers[i].u_any.gcmarkbit)
5973 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5974 unchain_marker (&mblk->markers[i].u_marker);
5975 /* Set the type of the freed object to Lisp_Misc_Free.
5976 We could leave the type alone, since nobody checks it,
5977 but this might catch bugs faster. */
5978 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5979 mblk->markers[i].u_free.chain = marker_free_list;
5980 marker_free_list = &mblk->markers[i];
5981 this_free++;
5983 else
5985 num_used++;
5986 mblk->markers[i].u_any.gcmarkbit = 0;
5989 lim = MARKER_BLOCK_SIZE;
5990 /* If this block contains only free markers and we have already
5991 seen more than two blocks worth of free markers then deallocate
5992 this block. */
5993 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5995 *mprev = mblk->next;
5996 /* Unhook from the free list. */
5997 marker_free_list = mblk->markers[0].u_free.chain;
5998 lisp_free (mblk);
6000 else
6002 num_free += this_free;
6003 mprev = &mblk->next;
6007 total_markers = num_used;
6008 total_free_markers = num_free;
6011 /* Free all unmarked buffers */
6013 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6015 while (buffer)
6016 if (!VECTOR_MARKED_P (buffer))
6018 if (prev)
6019 prev->header.next = buffer->header.next;
6020 else
6021 all_buffers = buffer->header.next.buffer;
6022 next = buffer->header.next.buffer;
6023 lisp_free (buffer);
6024 buffer = next;
6026 else
6028 VECTOR_UNMARK (buffer);
6029 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6030 prev = buffer, buffer = buffer->header.next.buffer;
6034 /* Free all unmarked vectors */
6036 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6037 total_vector_size = 0;
6039 while (vector)
6040 if (!VECTOR_MARKED_P (vector))
6042 if (prev)
6043 prev->header.next = vector->header.next;
6044 else
6045 all_vectors = vector->header.next.vector;
6046 next = vector->header.next.vector;
6047 lisp_free (vector);
6048 vector = next;
6051 else
6053 VECTOR_UNMARK (vector);
6054 if (vector->header.size & PSEUDOVECTOR_FLAG)
6055 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
6056 else
6057 total_vector_size += vector->header.size;
6058 prev = vector, vector = vector->header.next.vector;
6062 #ifdef GC_CHECK_STRING_BYTES
6063 if (!noninteractive)
6064 check_string_bytes (1);
6065 #endif
6071 /* Debugging aids. */
6073 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6074 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6075 This may be helpful in debugging Emacs's memory usage.
6076 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6077 (void)
6079 Lisp_Object end;
6081 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6083 return end;
6086 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6087 doc: /* Return a list of counters that measure how much consing there has been.
6088 Each of these counters increments for a certain kind of object.
6089 The counters wrap around from the largest positive integer to zero.
6090 Garbage collection does not decrease them.
6091 The elements of the value are as follows:
6092 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6093 All are in units of 1 = one object consed
6094 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6095 objects consed.
6096 MISCS include overlays, markers, and some internal types.
6097 Frames, windows, buffers, and subprocesses count as vectors
6098 (but the contents of a buffer's text do not count here). */)
6099 (void)
6101 Lisp_Object consed[8];
6103 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6104 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6105 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6106 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6107 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6108 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6109 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6110 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6112 return Flist (8, consed);
6115 #ifdef ENABLE_CHECKING
6116 int suppress_checking;
6118 void
6119 die (const char *msg, const char *file, int line)
6121 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6122 file, line, msg);
6123 abort ();
6125 #endif
6127 /* Initialization */
6129 void
6130 init_alloc_once (void)
6132 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6133 purebeg = PUREBEG;
6134 pure_size = PURESIZE;
6135 pure_bytes_used = 0;
6136 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6137 pure_bytes_used_before_overflow = 0;
6139 /* Initialize the list of free aligned blocks. */
6140 free_ablock = NULL;
6142 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6143 mem_init ();
6144 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6145 #endif
6147 all_vectors = 0;
6148 ignore_warnings = 1;
6149 #ifdef DOUG_LEA_MALLOC
6150 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6151 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6152 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6153 #endif
6154 init_strings ();
6155 init_cons ();
6156 init_symbol ();
6157 init_marker ();
6158 init_float ();
6159 init_intervals ();
6160 init_weak_hash_tables ();
6162 #ifdef REL_ALLOC
6163 malloc_hysteresis = 32;
6164 #else
6165 malloc_hysteresis = 0;
6166 #endif
6168 refill_memory_reserve ();
6170 ignore_warnings = 0;
6171 gcprolist = 0;
6172 byte_stack_list = 0;
6173 staticidx = 0;
6174 consing_since_gc = 0;
6175 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6176 gc_relative_threshold = 0;
6179 void
6180 init_alloc (void)
6182 gcprolist = 0;
6183 byte_stack_list = 0;
6184 #if GC_MARK_STACK
6185 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6186 setjmp_tested_p = longjmps_done = 0;
6187 #endif
6188 #endif
6189 Vgc_elapsed = make_float (0.0);
6190 gcs_done = 0;
6193 void
6194 syms_of_alloc (void)
6196 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6197 doc: /* *Number of bytes of consing between garbage collections.
6198 Garbage collection can happen automatically once this many bytes have been
6199 allocated since the last garbage collection. All data types count.
6201 Garbage collection happens automatically only when `eval' is called.
6203 By binding this temporarily to a large number, you can effectively
6204 prevent garbage collection during a part of the program.
6205 See also `gc-cons-percentage'. */);
6207 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6208 doc: /* *Portion of the heap used for allocation.
6209 Garbage collection can happen automatically once this portion of the heap
6210 has been allocated since the last garbage collection.
6211 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6212 Vgc_cons_percentage = make_float (0.1);
6214 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6215 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6217 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6218 doc: /* Number of cons cells that have been consed so far. */);
6220 DEFVAR_INT ("floats-consed", floats_consed,
6221 doc: /* Number of floats that have been consed so far. */);
6223 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6224 doc: /* Number of vector cells that have been consed so far. */);
6226 DEFVAR_INT ("symbols-consed", symbols_consed,
6227 doc: /* Number of symbols that have been consed so far. */);
6229 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6230 doc: /* Number of string characters that have been consed so far. */);
6232 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6233 doc: /* Number of miscellaneous objects that have been consed so far. */);
6235 DEFVAR_INT ("intervals-consed", intervals_consed,
6236 doc: /* Number of intervals that have been consed so far. */);
6238 DEFVAR_INT ("strings-consed", strings_consed,
6239 doc: /* Number of strings that have been consed so far. */);
6241 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6242 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6243 This means that certain objects should be allocated in shared (pure) space.
6244 It can also be set to a hash-table, in which case this table is used to
6245 do hash-consing of the objects allocated to pure space. */);
6247 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6248 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6249 garbage_collection_messages = 0;
6251 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6252 doc: /* Hook run after garbage collection has finished. */);
6253 Vpost_gc_hook = Qnil;
6254 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6256 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6257 doc: /* Precomputed `signal' argument for memory-full error. */);
6258 /* We build this in advance because if we wait until we need it, we might
6259 not be able to allocate the memory to hold it. */
6260 Vmemory_signal_data
6261 = pure_cons (Qerror,
6262 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6264 DEFVAR_LISP ("memory-full", Vmemory_full,
6265 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6266 Vmemory_full = Qnil;
6268 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6269 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6271 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6272 doc: /* Accumulated time elapsed in garbage collections.
6273 The time is in seconds as a floating point value. */);
6274 DEFVAR_INT ("gcs-done", gcs_done,
6275 doc: /* Accumulated number of garbage collections done. */);
6277 defsubr (&Scons);
6278 defsubr (&Slist);
6279 defsubr (&Svector);
6280 defsubr (&Smake_byte_code);
6281 defsubr (&Smake_list);
6282 defsubr (&Smake_vector);
6283 defsubr (&Smake_string);
6284 defsubr (&Smake_bool_vector);
6285 defsubr (&Smake_symbol);
6286 defsubr (&Smake_marker);
6287 defsubr (&Spurecopy);
6288 defsubr (&Sgarbage_collect);
6289 defsubr (&Smemory_limit);
6290 defsubr (&Smemory_use_counts);
6292 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6293 defsubr (&Sgc_status);
6294 #endif