1 /* CCL (Code Conversion Language) interpreter.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008 Free Software Foundation, Inc.
4 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
6 National Institute of Advanced Industrial Science and Technology (AIST)
7 Registration Number H14PRO021
9 This file is part of GNU Emacs.
11 GNU Emacs is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
16 GNU Emacs is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GNU Emacs; see the file COPYING. If not, write to
23 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
35 /* This contains all code conversion map available to CCL. */
36 Lisp_Object Vcode_conversion_map_vector
;
38 /* Alist of fontname patterns vs corresponding CCL program. */
39 Lisp_Object Vfont_ccl_encoder_alist
;
41 /* This symbol is a property which assocates with ccl program vector.
42 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
43 Lisp_Object Qccl_program
;
45 /* These symbols are properties which associate with code conversion
46 map and their ID respectively. */
47 Lisp_Object Qcode_conversion_map
;
48 Lisp_Object Qcode_conversion_map_id
;
50 /* Symbols of ccl program have this property, a value of the property
51 is an index for Vccl_protram_table. */
52 Lisp_Object Qccl_program_idx
;
54 /* Table of registered CCL programs. Each element is a vector of
55 NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
56 name of the program, CCL_PROG (vector) is the compiled code of the
57 program, RESOLVEDP (t or nil) is the flag to tell if symbols in
58 CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
59 or nil) is the flat to tell if the CCL program is updated after it
61 Lisp_Object Vccl_program_table
;
63 /* Vector of registered hash tables for translation. */
64 Lisp_Object Vtranslation_hash_table_vector
;
66 /* Return a hash table of id number ID. */
67 #define GET_HASH_TABLE(id) \
68 (XHASH_TABLE (XCDR(XVECTOR(Vtranslation_hash_table_vector)->contents[(id)])))
70 /* CCL (Code Conversion Language) is a simple language which has
71 operations on one input buffer, one output buffer, and 7 registers.
72 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
73 `ccl-compile' compiles a CCL program and produces a CCL code which
74 is a vector of integers. The structure of this vector is as
75 follows: The 1st element: buffer-magnification, a factor for the
76 size of output buffer compared with the size of input buffer. The
77 2nd element: address of CCL code to be executed when encountered
78 with end of input stream. The 3rd and the remaining elements: CCL
81 /* Header of CCL compiled code */
82 #define CCL_HEADER_BUF_MAG 0
83 #define CCL_HEADER_EOF 1
84 #define CCL_HEADER_MAIN 2
86 /* CCL code is a sequence of 28-bit non-negative integers (i.e. the
87 MSB is always 0), each contains CCL command and/or arguments in the
90 |----------------- integer (28-bit) ------------------|
91 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
92 |--constant argument--|-register-|-register-|-command-|
93 ccccccccccccccccc RRR rrr XXXXX
95 |------- relative address -------|-register-|-command-|
96 cccccccccccccccccccc rrr XXXXX
98 |------------- constant or other args ----------------|
99 cccccccccccccccccccccccccccc
101 where, `cc...c' is a non-negative integer indicating constant value
102 (the left most `c' is always 0) or an absolute jump address, `RRR'
103 and `rrr' are CCL register number, `XXXXX' is one of the following
108 Each comment fields shows one or more lines for command syntax and
109 the following lines for semantics of the command. In semantics, IC
110 stands for Instruction Counter. */
112 #define CCL_SetRegister 0x00 /* Set register a register value:
113 1:00000000000000000RRRrrrXXXXX
114 ------------------------------
118 #define CCL_SetShortConst 0x01 /* Set register a short constant value:
119 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
120 ------------------------------
121 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
124 #define CCL_SetConst 0x02 /* Set register a constant value:
125 1:00000000000000000000rrrXXXXX
127 ------------------------------
132 #define CCL_SetArray 0x03 /* Set register an element of array:
133 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
137 ------------------------------
138 if (0 <= reg[RRR] < CC..C)
139 reg[rrr] = ELEMENT[reg[RRR]];
143 #define CCL_Jump 0x04 /* Jump:
144 1:A--D--D--R--E--S--S-000XXXXX
145 ------------------------------
149 /* Note: If CC..C is greater than 0, the second code is omitted. */
151 #define CCL_JumpCond 0x05 /* Jump conditional:
152 1:A--D--D--R--E--S--S-rrrXXXXX
153 ------------------------------
159 #define CCL_WriteRegisterJump 0x06 /* Write register and jump:
160 1:A--D--D--R--E--S--S-rrrXXXXX
161 ------------------------------
166 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
167 1:A--D--D--R--E--S--S-rrrXXXXX
168 2:A--D--D--R--E--S--S-rrrYYYYY
169 -----------------------------
175 /* Note: If read is suspended, the resumed execution starts from the
176 second code (YYYYY == CCL_ReadJump). */
178 #define CCL_WriteConstJump 0x08 /* Write constant and jump:
179 1:A--D--D--R--E--S--S-000XXXXX
181 ------------------------------
186 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
187 1:A--D--D--R--E--S--S-rrrXXXXX
189 3:A--D--D--R--E--S--S-rrrYYYYY
190 -----------------------------
196 /* Note: If read is suspended, the resumed execution starts from the
197 second code (YYYYY == CCL_ReadJump). */
199 #define CCL_WriteStringJump 0x0A /* Write string and jump:
200 1:A--D--D--R--E--S--S-000XXXXX
202 3:0000STRIN[0]STRIN[1]STRIN[2]
204 ------------------------------
205 write_string (STRING, LENGTH);
209 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
210 1:A--D--D--R--E--S--S-rrrXXXXX
215 N:A--D--D--R--E--S--S-rrrYYYYY
216 ------------------------------
217 if (0 <= reg[rrr] < LENGTH)
218 write (ELEMENT[reg[rrr]]);
219 IC += LENGTH + 2; (... pointing at N+1)
223 /* Note: If read is suspended, the resumed execution starts from the
224 Nth code (YYYYY == CCL_ReadJump). */
226 #define CCL_ReadJump 0x0C /* Read and jump:
227 1:A--D--D--R--E--S--S-rrrYYYYY
228 -----------------------------
233 #define CCL_Branch 0x0D /* Jump by branch table:
234 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
235 2:A--D--D--R--E-S-S[0]000XXXXX
236 3:A--D--D--R--E-S-S[1]000XXXXX
238 ------------------------------
239 if (0 <= reg[rrr] < CC..C)
240 IC += ADDRESS[reg[rrr]];
242 IC += ADDRESS[CC..C];
245 #define CCL_ReadRegister 0x0E /* Read bytes into registers:
246 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
247 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
249 ------------------------------
254 #define CCL_WriteExprConst 0x0F /* write result of expression:
255 1:00000OPERATION000RRR000XXXXX
257 ------------------------------
258 write (reg[RRR] OPERATION CONSTANT);
262 /* Note: If the Nth read is suspended, the resumed execution starts
263 from the Nth code. */
265 #define CCL_ReadBranch 0x10 /* Read one byte into a register,
266 and jump by branch table:
267 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
268 2:A--D--D--R--E-S-S[0]000XXXXX
269 3:A--D--D--R--E-S-S[1]000XXXXX
271 ------------------------------
273 if (0 <= reg[rrr] < CC..C)
274 IC += ADDRESS[reg[rrr]];
276 IC += ADDRESS[CC..C];
279 #define CCL_WriteRegister 0x11 /* Write registers:
280 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
281 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
283 ------------------------------
289 /* Note: If the Nth write is suspended, the resumed execution
290 starts from the Nth code. */
292 #define CCL_WriteExprRegister 0x12 /* Write result of expression
293 1:00000OPERATIONRrrRRR000XXXXX
294 ------------------------------
295 write (reg[RRR] OPERATION reg[Rrr]);
298 #define CCL_Call 0x13 /* Call the CCL program whose ID is
300 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
301 [2:00000000cccccccccccccccccccc]
302 ------------------------------
310 #define CCL_WriteConstString 0x14 /* Write a constant or a string:
311 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
312 [2:0000STRIN[0]STRIN[1]STRIN[2]]
314 -----------------------------
318 write_string (STRING, CC..C);
319 IC += (CC..C + 2) / 3;
322 #define CCL_WriteArray 0x15 /* Write an element of array:
323 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
327 ------------------------------
328 if (0 <= reg[rrr] < CC..C)
329 write (ELEMENT[reg[rrr]]);
333 #define CCL_End 0x16 /* Terminate:
334 1:00000000000000000000000XXXXX
335 ------------------------------
339 /* The following two codes execute an assignment arithmetic/logical
340 operation. The form of the operation is like REG OP= OPERAND. */
342 #define CCL_ExprSelfConst 0x17 /* REG OP= constant:
343 1:00000OPERATION000000rrrXXXXX
345 ------------------------------
346 reg[rrr] OPERATION= CONSTANT;
349 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
350 1:00000OPERATION000RRRrrrXXXXX
351 ------------------------------
352 reg[rrr] OPERATION= reg[RRR];
355 /* The following codes execute an arithmetic/logical operation. The
356 form of the operation is like REG_X = REG_Y OP OPERAND2. */
358 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
359 1:00000OPERATION000RRRrrrXXXXX
361 ------------------------------
362 reg[rrr] = reg[RRR] OPERATION CONSTANT;
366 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
367 1:00000OPERATIONRrrRRRrrrXXXXX
368 ------------------------------
369 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
372 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
373 an operation on constant:
374 1:A--D--D--R--E--S--S-rrrXXXXX
377 -----------------------------
378 reg[7] = reg[rrr] OPERATION CONSTANT;
385 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
386 an operation on register:
387 1:A--D--D--R--E--S--S-rrrXXXXX
390 -----------------------------
391 reg[7] = reg[rrr] OPERATION reg[RRR];
398 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
399 to an operation on constant:
400 1:A--D--D--R--E--S--S-rrrXXXXX
403 -----------------------------
405 reg[7] = reg[rrr] OPERATION CONSTANT;
412 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
413 to an operation on register:
414 1:A--D--D--R--E--S--S-rrrXXXXX
417 -----------------------------
419 reg[7] = reg[rrr] OPERATION reg[RRR];
426 #define CCL_Extension 0x1F /* Extended CCL code
427 1:ExtendedCOMMNDRrrRRRrrrXXXXX
430 ------------------------------
431 extended_command (rrr,RRR,Rrr,ARGS)
435 Here after, Extended CCL Instructions.
436 Bit length of extended command is 14.
437 Therefore, the instruction code range is 0..16384(0x3fff).
440 /* Read a multibyte characeter.
441 A code point is stored into reg[rrr]. A charset ID is stored into
444 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
445 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
447 /* Write a multibyte character.
448 Write a character whose code point is reg[rrr] and the charset ID
451 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
452 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
454 /* Translate a character whose code point is reg[rrr] and the charset
455 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
457 A translated character is set in reg[rrr] (code point) and reg[RRR]
460 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
461 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
463 /* Translate a character whose code point is reg[rrr] and the charset
464 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
466 A translated character is set in reg[rrr] (code point) and reg[RRR]
469 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
470 1:ExtendedCOMMNDRrrRRRrrrXXXXX
471 2:ARGUMENT(Translation Table ID)
474 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
475 reg[RRR]) MAP until some value is found.
477 Each MAP is a Lisp vector whose element is number, nil, t, or
479 If the element is nil, ignore the map and proceed to the next map.
480 If the element is t or lambda, finish without changing reg[rrr].
481 If the element is a number, set reg[rrr] to the number and finish.
483 Detail of the map structure is descibed in the comment for
484 CCL_MapMultiple below. */
486 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
487 1:ExtendedCOMMNDXXXRRRrrrXXXXX
494 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
497 MAPs are supplied in the succeeding CCL codes as follows:
499 When CCL program gives this nested structure of map to this command:
502 (MAP-ID121 MAP-ID122 MAP-ID123)
505 (MAP-ID211 (MAP-ID2111) MAP-ID212)
507 the compiled CCL codes has this sequence:
508 CCL_MapMultiple (CCL code of this command)
509 16 (total number of MAPs and SEPARATORs)
527 A value of each SEPARATOR follows this rule:
528 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
529 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
531 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
533 When some map fails to map (i.e. it doesn't have a value for
534 reg[rrr]), the mapping is treated as identity.
536 The mapping is iterated for all maps in each map set (set of maps
537 separated by SEPARATOR) except in the case that lambda is
538 encountered. More precisely, the mapping proceeds as below:
540 At first, VAL0 is set to reg[rrr], and it is translated by the
541 first map to VAL1. Then, VAL1 is translated by the next map to
542 VAL2. This mapping is iterated until the last map is used. The
543 result of the mapping is the last value of VAL?. When the mapping
544 process reached to the end of the map set, it moves to the next
545 map set. If the next does not exit, the mapping process terminates,
546 and regard the last value as a result.
548 But, when VALm is mapped to VALn and VALn is not a number, the
549 mapping proceed as below:
551 If VALn is nil, the lastest map is ignored and the mapping of VALm
552 proceed to the next map.
554 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
555 proceed to the next map.
557 If VALn is lambda, move to the next map set like reaching to the
558 end of the current map set.
560 If VALn is a symbol, call the CCL program refered by it.
561 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
562 Such special values are regarded as nil, t, and lambda respectively.
564 Each map is a Lisp vector of the following format (a) or (b):
565 (a)......[STARTPOINT VAL1 VAL2 ...]
566 (b)......[t VAL STARTPOINT ENDPOINT],
568 STARTPOINT is an offset to be used for indexing a map,
569 ENDPOINT is a maximum index number of a map,
570 VAL and VALn is a number, nil, t, or lambda.
572 Valid index range of a map of type (a) is:
573 STARTPOINT <= index < STARTPOINT + map_size - 1
574 Valid index range of a map of type (b) is:
575 STARTPOINT <= index < ENDPOINT */
577 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
578 1:ExtendedCOMMNDXXXRRRrrrXXXXX
590 #define MAX_MAP_SET_LEVEL 30
598 static tr_stack mapping_stack
[MAX_MAP_SET_LEVEL
];
599 static tr_stack
*mapping_stack_pointer
;
601 /* If this variable is non-zero, it indicates the stack_idx
602 of immediately called by CCL_MapMultiple. */
603 static int stack_idx_of_map_multiple
;
605 #define PUSH_MAPPING_STACK(restlen, orig) \
608 mapping_stack_pointer->rest_length = (restlen); \
609 mapping_stack_pointer->orig_val = (orig); \
610 mapping_stack_pointer++; \
614 #define POP_MAPPING_STACK(restlen, orig) \
617 mapping_stack_pointer--; \
618 (restlen) = mapping_stack_pointer->rest_length; \
619 (orig) = mapping_stack_pointer->orig_val; \
623 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
626 struct ccl_program called_ccl; \
627 if (stack_idx >= 256 \
628 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
632 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
633 ic = ccl_prog_stack_struct[0].ic; \
634 eof_ic = ccl_prog_stack_struct[0].eof_ic; \
638 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
639 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
640 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
642 ccl_prog = called_ccl.prog; \
643 ic = CCL_HEADER_MAIN; \
644 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
649 #define CCL_MapSingle 0x12 /* Map by single code conversion map
650 1:ExtendedCOMMNDXXXRRRrrrXXXXX
652 ------------------------------
653 Map reg[rrr] by MAP-ID.
654 If some valid mapping is found,
655 set reg[rrr] to the result,
660 #define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
661 integer key. Afterwards R7 set
662 to 1 if lookup succeeded.
663 1:ExtendedCOMMNDRrrRRRXXXXXXXX
664 2:ARGUMENT(Hash table ID) */
666 #define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
667 character key. Afterwards R7 set
668 to 1 if lookup succeeded.
669 1:ExtendedCOMMNDRrrRRRrrrXXXXX
670 2:ARGUMENT(Hash table ID) */
672 /* CCL arithmetic/logical operators. */
673 #define CCL_PLUS 0x00 /* X = Y + Z */
674 #define CCL_MINUS 0x01 /* X = Y - Z */
675 #define CCL_MUL 0x02 /* X = Y * Z */
676 #define CCL_DIV 0x03 /* X = Y / Z */
677 #define CCL_MOD 0x04 /* X = Y % Z */
678 #define CCL_AND 0x05 /* X = Y & Z */
679 #define CCL_OR 0x06 /* X = Y | Z */
680 #define CCL_XOR 0x07 /* X = Y ^ Z */
681 #define CCL_LSH 0x08 /* X = Y << Z */
682 #define CCL_RSH 0x09 /* X = Y >> Z */
683 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
684 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
685 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
686 #define CCL_LS 0x10 /* X = (X < Y) */
687 #define CCL_GT 0x11 /* X = (X > Y) */
688 #define CCL_EQ 0x12 /* X = (X == Y) */
689 #define CCL_LE 0x13 /* X = (X <= Y) */
690 #define CCL_GE 0x14 /* X = (X >= Y) */
691 #define CCL_NE 0x15 /* X = (X != Y) */
693 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
694 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
695 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
696 r[7] = LOWER_BYTE (SJIS (Y, Z) */
698 /* Terminate CCL program successfully. */
699 #define CCL_SUCCESS \
702 ccl->status = CCL_STAT_SUCCESS; \
707 /* Suspend CCL program because of reading from empty input buffer or
708 writing to full output buffer. When this program is resumed, the
709 same I/O command is executed. */
710 #define CCL_SUSPEND(stat) \
714 ccl->status = stat; \
719 /* Terminate CCL program because of invalid command. Should not occur
720 in the normal case. */
723 #define CCL_INVALID_CMD \
726 ccl->status = CCL_STAT_INVALID_CMD; \
727 goto ccl_error_handler; \
733 #define CCL_INVALID_CMD \
736 ccl_debug_hook (this_ic); \
737 ccl->status = CCL_STAT_INVALID_CMD; \
738 goto ccl_error_handler; \
744 /* Encode one character CH to multibyte form and write to the current
745 output buffer. If CH is less than 256, CH is written as is. */
746 #define CCL_WRITE_CHAR(ch) \
748 int bytes = SINGLE_BYTE_CHAR_P (ch) ? 1: CHAR_BYTES (ch); \
751 else if (dst + bytes + extra_bytes <= (dst_bytes ? dst_end : src)) \
756 if (extra_bytes && (ch) >= 0x80 && (ch) < 0xA0) \
757 /* We may have to convert this eight-bit char to \
758 multibyte form later. */ \
761 else if (CHAR_VALID_P (ch, 0)) \
762 dst += CHAR_STRING (ch, dst); \
767 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
770 /* Encode one character CH to multibyte form and write to the current
771 output buffer. The output bytes always forms a valid multibyte
773 #define CCL_WRITE_MULTIBYTE_CHAR(ch) \
775 int bytes = CHAR_BYTES (ch); \
778 else if (dst + bytes + extra_bytes <= (dst_bytes ? dst_end : src)) \
780 if (CHAR_VALID_P ((ch), 0)) \
781 dst += CHAR_STRING ((ch), dst); \
786 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
789 /* Write a string at ccl_prog[IC] of length LEN to the current output
791 #define CCL_WRITE_STRING(len) \
795 else if (dst + len <= (dst_bytes ? dst_end : src)) \
796 for (i = 0; i < len; i++) \
797 *dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
798 >> ((2 - (i % 3)) * 8)) & 0xFF; \
800 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
803 /* Read one byte from the current input buffer into REGth register. */
804 #define CCL_READ_CHAR(REG) \
808 else if (src < src_end) \
812 && ccl->eol_type != CODING_EOL_LF) \
814 /* We are encoding. */ \
815 if (ccl->eol_type == CODING_EOL_CRLF) \
817 if (ccl->cr_consumed) \
818 ccl->cr_consumed = 0; \
821 ccl->cr_consumed = 1; \
829 if (REG == LEADING_CODE_8_BIT_CONTROL \
831 REG = *src++ - 0x20; \
833 else if (ccl->last_block) \
840 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
844 /* Set C to the character code made from CHARSET and CODE. This is
845 like MAKE_CHAR but check the validity of CHARSET and CODE. If they
846 are not valid, set C to (CODE & 0xFF) because that is usually the
847 case that CCL_ReadMultibyteChar2 read an invalid code and it set
848 CODE to that invalid byte. */
850 #define CCL_MAKE_CHAR(charset, code, c) \
852 if (charset == CHARSET_ASCII) \
854 else if (CHARSET_DEFINED_P (charset) \
855 && (code & 0x7F) >= 32 \
856 && (code < 256 || ((code >> 7) & 0x7F) >= 32)) \
858 int c1 = code & 0x7F, c2 = 0; \
861 c2 = c1, c1 = (code >> 7) & 0x7F; \
862 c = MAKE_CHAR (charset, c1, c2); \
869 /* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
870 text goes to a place pointed by DESTINATION, the length of which
871 should not exceed DST_BYTES. The bytes actually processed is
872 returned as *CONSUMED. The return value is the length of the
873 resulting text. As a side effect, the contents of CCL registers
874 are updated. If SOURCE or DESTINATION is NULL, only operations on
875 registers are permitted. */
878 #define CCL_DEBUG_BACKTRACE_LEN 256
879 int ccl_backtrace_table
[CCL_DEBUG_BACKTRACE_LEN
];
880 int ccl_backtrace_idx
;
883 ccl_debug_hook (int ic
)
890 struct ccl_prog_stack
892 Lisp_Object
*ccl_prog
; /* Pointer to an array of CCL code. */
893 int ic
; /* Instruction Counter. */
894 int eof_ic
; /* Instruction Counter to jump on EOF. */
897 /* For the moment, we only support depth 256 of stack. */
898 static struct ccl_prog_stack ccl_prog_stack_struct
[256];
901 ccl_driver (ccl
, source
, destination
, src_bytes
, dst_bytes
, consumed
)
902 struct ccl_program
*ccl
;
903 unsigned char *source
, *destination
;
904 int src_bytes
, dst_bytes
;
907 register int *reg
= ccl
->reg
;
908 register int ic
= ccl
->ic
;
909 register int code
= 0, field1
, field2
;
910 register Lisp_Object
*ccl_prog
= ccl
->prog
;
911 unsigned char *src
= source
, *src_end
= src
+ src_bytes
;
912 unsigned char *dst
= destination
, *dst_end
= dst
+ dst_bytes
;
915 int stack_idx
= ccl
->stack_idx
;
916 /* Instruction counter of the current CCL code. */
918 /* CCL_WRITE_CHAR will produce 8-bit code of range 0x80..0x9F. But,
919 each of them will be converted to multibyte form of 2-byte
920 sequence. For that conversion, we remember how many more bytes
921 we must keep in DESTINATION in this variable. */
922 int extra_bytes
= ccl
->eight_bit_control
;
923 int eof_ic
= ccl
->eof_ic
;
927 ic
= CCL_HEADER_MAIN
;
929 if (ccl
->buf_magnification
== 0) /* We can't produce any bytes. */
932 /* Set mapping stack pointer. */
933 mapping_stack_pointer
= mapping_stack
;
936 ccl_backtrace_idx
= 0;
943 ccl_backtrace_table
[ccl_backtrace_idx
++] = ic
;
944 if (ccl_backtrace_idx
>= CCL_DEBUG_BACKTRACE_LEN
)
945 ccl_backtrace_idx
= 0;
946 ccl_backtrace_table
[ccl_backtrace_idx
] = 0;
949 if (!NILP (Vquit_flag
) && NILP (Vinhibit_quit
))
951 /* We can't just signal Qquit, instead break the loop as if
952 the whole data is processed. Don't reset Vquit_flag, it
953 must be handled later at a safer place. */
955 src
= source
+ src_bytes
;
956 ccl
->status
= CCL_STAT_QUIT
;
961 code
= XINT (ccl_prog
[ic
]); ic
++;
963 field2
= (code
& 0xFF) >> 5;
966 #define RRR (field1 & 7)
967 #define Rrr ((field1 >> 3) & 7)
969 #define EXCMD (field1 >> 6)
973 case CCL_SetRegister
: /* 00000000000000000RRRrrrXXXXX */
977 case CCL_SetShortConst
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
981 case CCL_SetConst
: /* 00000000000000000000rrrXXXXX */
982 reg
[rrr
] = XINT (ccl_prog
[ic
]);
986 case CCL_SetArray
: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
989 if ((unsigned int) i
< j
)
990 reg
[rrr
] = XINT (ccl_prog
[ic
+ i
]);
994 case CCL_Jump
: /* A--D--D--R--E--S--S-000XXXXX */
998 case CCL_JumpCond
: /* A--D--D--R--E--S--S-rrrXXXXX */
1003 case CCL_WriteRegisterJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
1009 case CCL_WriteRegisterReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
1013 CCL_READ_CHAR (reg
[rrr
]);
1017 case CCL_WriteConstJump
: /* A--D--D--R--E--S--S-000XXXXX */
1018 i
= XINT (ccl_prog
[ic
]);
1023 case CCL_WriteConstReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
1024 i
= XINT (ccl_prog
[ic
]);
1027 CCL_READ_CHAR (reg
[rrr
]);
1031 case CCL_WriteStringJump
: /* A--D--D--R--E--S--S-000XXXXX */
1032 j
= XINT (ccl_prog
[ic
]);
1034 CCL_WRITE_STRING (j
);
1038 case CCL_WriteArrayReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
1040 j
= XINT (ccl_prog
[ic
]);
1041 if ((unsigned int) i
< j
)
1043 i
= XINT (ccl_prog
[ic
+ 1 + i
]);
1047 CCL_READ_CHAR (reg
[rrr
]);
1048 ic
+= ADDR
- (j
+ 2);
1051 case CCL_ReadJump
: /* A--D--D--R--E--S--S-rrrYYYYY */
1052 CCL_READ_CHAR (reg
[rrr
]);
1056 case CCL_ReadBranch
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1057 CCL_READ_CHAR (reg
[rrr
]);
1058 /* fall through ... */
1059 case CCL_Branch
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1060 if ((unsigned int) reg
[rrr
] < field1
)
1061 ic
+= XINT (ccl_prog
[ic
+ reg
[rrr
]]);
1063 ic
+= XINT (ccl_prog
[ic
+ field1
]);
1066 case CCL_ReadRegister
: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1069 CCL_READ_CHAR (reg
[rrr
]);
1071 code
= XINT (ccl_prog
[ic
]); ic
++;
1073 field2
= (code
& 0xFF) >> 5;
1077 case CCL_WriteExprConst
: /* 1:00000OPERATION000RRR000XXXXX */
1080 j
= XINT (ccl_prog
[ic
]);
1082 jump_address
= ic
+ 1;
1085 case CCL_WriteRegister
: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1091 code
= XINT (ccl_prog
[ic
]); ic
++;
1093 field2
= (code
& 0xFF) >> 5;
1097 case CCL_WriteExprRegister
: /* 1:00000OPERATIONRrrRRR000XXXXX */
1105 case CCL_Call
: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
1110 /* If FFF is nonzero, the CCL program ID is in the
1114 prog_id
= XINT (ccl_prog
[ic
]);
1120 if (stack_idx
>= 256
1122 || prog_id
>= ASIZE (Vccl_program_table
)
1123 || (slot
= AREF (Vccl_program_table
, prog_id
), !VECTORP (slot
))
1124 || !VECTORP (AREF (slot
, 1)))
1128 ccl_prog
= ccl_prog_stack_struct
[0].ccl_prog
;
1129 ic
= ccl_prog_stack_struct
[0].ic
;
1130 eof_ic
= ccl_prog_stack_struct
[0].eof_ic
;
1135 ccl_prog_stack_struct
[stack_idx
].ccl_prog
= ccl_prog
;
1136 ccl_prog_stack_struct
[stack_idx
].ic
= ic
;
1137 ccl_prog_stack_struct
[stack_idx
].eof_ic
= eof_ic
;
1139 ccl_prog
= XVECTOR (AREF (slot
, 1))->contents
;
1140 ic
= CCL_HEADER_MAIN
;
1141 eof_ic
= XFASTINT (ccl_prog
[CCL_HEADER_EOF
]);
1145 case CCL_WriteConstString
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1147 CCL_WRITE_CHAR (field1
);
1150 CCL_WRITE_STRING (field1
);
1151 ic
+= (field1
+ 2) / 3;
1155 case CCL_WriteArray
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1157 if ((unsigned int) i
< field1
)
1159 j
= XINT (ccl_prog
[ic
+ i
]);
1165 case CCL_End
: /* 0000000000000000000000XXXXX */
1169 ccl_prog
= ccl_prog_stack_struct
[stack_idx
].ccl_prog
;
1170 ic
= ccl_prog_stack_struct
[stack_idx
].ic
;
1171 eof_ic
= ccl_prog_stack_struct
[stack_idx
].eof_ic
;
1178 /* ccl->ic should points to this command code again to
1179 suppress further processing. */
1183 case CCL_ExprSelfConst
: /* 00000OPERATION000000rrrXXXXX */
1184 i
= XINT (ccl_prog
[ic
]);
1189 case CCL_ExprSelfReg
: /* 00000OPERATION000RRRrrrXXXXX */
1196 case CCL_PLUS
: reg
[rrr
] += i
; break;
1197 case CCL_MINUS
: reg
[rrr
] -= i
; break;
1198 case CCL_MUL
: reg
[rrr
] *= i
; break;
1199 case CCL_DIV
: reg
[rrr
] /= i
; break;
1200 case CCL_MOD
: reg
[rrr
] %= i
; break;
1201 case CCL_AND
: reg
[rrr
] &= i
; break;
1202 case CCL_OR
: reg
[rrr
] |= i
; break;
1203 case CCL_XOR
: reg
[rrr
] ^= i
; break;
1204 case CCL_LSH
: reg
[rrr
] <<= i
; break;
1205 case CCL_RSH
: reg
[rrr
] >>= i
; break;
1206 case CCL_LSH8
: reg
[rrr
] <<= 8; reg
[rrr
] |= i
; break;
1207 case CCL_RSH8
: reg
[7] = reg
[rrr
] & 0xFF; reg
[rrr
] >>= 8; break;
1208 case CCL_DIVMOD
: reg
[7] = reg
[rrr
] % i
; reg
[rrr
] /= i
; break;
1209 case CCL_LS
: reg
[rrr
] = reg
[rrr
] < i
; break;
1210 case CCL_GT
: reg
[rrr
] = reg
[rrr
] > i
; break;
1211 case CCL_EQ
: reg
[rrr
] = reg
[rrr
] == i
; break;
1212 case CCL_LE
: reg
[rrr
] = reg
[rrr
] <= i
; break;
1213 case CCL_GE
: reg
[rrr
] = reg
[rrr
] >= i
; break;
1214 case CCL_NE
: reg
[rrr
] = reg
[rrr
] != i
; break;
1215 default: CCL_INVALID_CMD
;
1219 case CCL_SetExprConst
: /* 00000OPERATION000RRRrrrXXXXX */
1221 j
= XINT (ccl_prog
[ic
]);
1223 jump_address
= ++ic
;
1226 case CCL_SetExprReg
: /* 00000OPERATIONRrrRRRrrrXXXXX */
1233 case CCL_ReadJumpCondExprConst
: /* A--D--D--R--E--S--S-rrrXXXXX */
1234 CCL_READ_CHAR (reg
[rrr
]);
1235 case CCL_JumpCondExprConst
: /* A--D--D--R--E--S--S-rrrXXXXX */
1237 op
= XINT (ccl_prog
[ic
]);
1238 jump_address
= ic
++ + ADDR
;
1239 j
= XINT (ccl_prog
[ic
]);
1244 case CCL_ReadJumpCondExprReg
: /* A--D--D--R--E--S--S-rrrXXXXX */
1245 CCL_READ_CHAR (reg
[rrr
]);
1246 case CCL_JumpCondExprReg
:
1248 op
= XINT (ccl_prog
[ic
]);
1249 jump_address
= ic
++ + ADDR
;
1250 j
= reg
[XINT (ccl_prog
[ic
])];
1257 case CCL_PLUS
: reg
[rrr
] = i
+ j
; break;
1258 case CCL_MINUS
: reg
[rrr
] = i
- j
; break;
1259 case CCL_MUL
: reg
[rrr
] = i
* j
; break;
1260 case CCL_DIV
: reg
[rrr
] = i
/ j
; break;
1261 case CCL_MOD
: reg
[rrr
] = i
% j
; break;
1262 case CCL_AND
: reg
[rrr
] = i
& j
; break;
1263 case CCL_OR
: reg
[rrr
] = i
| j
; break;
1264 case CCL_XOR
: reg
[rrr
] = i
^ j
; break;
1265 case CCL_LSH
: reg
[rrr
] = i
<< j
; break;
1266 case CCL_RSH
: reg
[rrr
] = i
>> j
; break;
1267 case CCL_LSH8
: reg
[rrr
] = (i
<< 8) | j
; break;
1268 case CCL_RSH8
: reg
[rrr
] = i
>> 8; reg
[7] = i
& 0xFF; break;
1269 case CCL_DIVMOD
: reg
[rrr
] = i
/ j
; reg
[7] = i
% j
; break;
1270 case CCL_LS
: reg
[rrr
] = i
< j
; break;
1271 case CCL_GT
: reg
[rrr
] = i
> j
; break;
1272 case CCL_EQ
: reg
[rrr
] = i
== j
; break;
1273 case CCL_LE
: reg
[rrr
] = i
<= j
; break;
1274 case CCL_GE
: reg
[rrr
] = i
>= j
; break;
1275 case CCL_NE
: reg
[rrr
] = i
!= j
; break;
1276 case CCL_DECODE_SJIS
: DECODE_SJIS (i
, j
, reg
[rrr
], reg
[7]); break;
1277 case CCL_ENCODE_SJIS
: ENCODE_SJIS (i
, j
, reg
[rrr
], reg
[7]); break;
1278 default: CCL_INVALID_CMD
;
1281 if (code
== CCL_WriteExprConst
|| code
== CCL_WriteExprRegister
)
1294 case CCL_ReadMultibyteChar2
:
1301 goto ccl_read_multibyte_character_suspend
;
1304 if (!ccl
->multibyte
)
1307 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src
, src_end
- src
, bytes
))
1309 reg
[RRR
] = CHARSET_8_BIT_CONTROL
;
1315 if (i
== '\n' && ccl
->eol_type
!= CODING_EOL_LF
)
1317 /* We are encoding. */
1318 if (ccl
->eol_type
== CODING_EOL_CRLF
)
1320 if (ccl
->cr_consumed
)
1321 ccl
->cr_consumed
= 0;
1324 ccl
->cr_consumed
= 1;
1332 reg
[RRR
] = CHARSET_ASCII
;
1338 reg
[RRR
] = CHARSET_ASCII
;
1340 else if (i
<= MAX_CHARSET_OFFICIAL_DIMENSION2
)
1342 int dimension
= BYTES_BY_CHAR_HEAD (i
) - 1;
1346 /* `i' is a leading code for an undefined charset. */
1347 reg
[RRR
] = CHARSET_8_BIT_GRAPHIC
;
1350 else if (src
+ dimension
> src_end
)
1351 goto ccl_read_multibyte_character_suspend
;
1355 i
= (*src
++ & 0x7F);
1359 reg
[rrr
] = ((i
<< 7) | (*src
++ & 0x7F));
1362 else if ((i
== LEADING_CODE_PRIVATE_11
)
1363 || (i
== LEADING_CODE_PRIVATE_12
))
1365 if ((src
+ 1) >= src_end
)
1366 goto ccl_read_multibyte_character_suspend
;
1368 reg
[rrr
] = (*src
++ & 0x7F);
1370 else if ((i
== LEADING_CODE_PRIVATE_21
)
1371 || (i
== LEADING_CODE_PRIVATE_22
))
1373 if ((src
+ 2) >= src_end
)
1374 goto ccl_read_multibyte_character_suspend
;
1376 i
= (*src
++ & 0x7F);
1377 reg
[rrr
] = ((i
<< 7) | (*src
& 0x7F));
1380 else if (i
== LEADING_CODE_8_BIT_CONTROL
)
1383 goto ccl_read_multibyte_character_suspend
;
1384 reg
[RRR
] = CHARSET_8_BIT_CONTROL
;
1385 reg
[rrr
] = (*src
++ - 0x20);
1389 reg
[RRR
] = CHARSET_8_BIT_GRAPHIC
;
1394 /* INVALID CODE. Return a single byte character. */
1395 reg
[RRR
] = CHARSET_ASCII
;
1400 ccl_read_multibyte_character_suspend
:
1401 if (src
<= src_end
&& !ccl
->multibyte
&& ccl
->last_block
)
1403 reg
[RRR
] = CHARSET_8_BIT_CONTROL
;
1408 if (ccl
->last_block
)
1415 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC
);
1419 case CCL_WriteMultibyteChar2
:
1420 i
= reg
[RRR
]; /* charset */
1421 if (i
== CHARSET_ASCII
1422 || i
== CHARSET_8_BIT_CONTROL
1423 || i
== CHARSET_8_BIT_GRAPHIC
)
1424 i
= reg
[rrr
] & 0xFF;
1425 else if (CHARSET_DIMENSION (i
) == 1)
1426 i
= ((i
- 0x70) << 7) | (reg
[rrr
] & 0x7F);
1427 else if (i
< MIN_CHARSET_PRIVATE_DIMENSION2
)
1428 i
= ((i
- 0x8F) << 14) | reg
[rrr
];
1430 i
= ((i
- 0xE0) << 14) | reg
[rrr
];
1432 CCL_WRITE_MULTIBYTE_CHAR (i
);
1436 case CCL_TranslateCharacter
:
1437 CCL_MAKE_CHAR (reg
[RRR
], reg
[rrr
], i
);
1438 op
= translate_char (GET_TRANSLATION_TABLE (reg
[Rrr
]),
1440 SPLIT_CHAR (op
, reg
[RRR
], i
, j
);
1447 case CCL_TranslateCharacterConstTbl
:
1448 op
= XINT (ccl_prog
[ic
]); /* table */
1450 CCL_MAKE_CHAR (reg
[RRR
], reg
[rrr
], i
);
1451 op
= translate_char (GET_TRANSLATION_TABLE (op
), i
, -1, 0, 0);
1452 SPLIT_CHAR (op
, reg
[RRR
], i
, j
);
1459 case CCL_LookupIntConstTbl
:
1460 op
= XINT (ccl_prog
[ic
]); /* table */
1463 struct Lisp_Hash_Table
*h
= GET_HASH_TABLE (op
);
1465 op
= hash_lookup (h
, make_number (reg
[RRR
]), NULL
);
1469 opl
= HASH_VALUE (h
, op
);
1470 if (!CHAR_VALID_P (XINT (opl
), 0))
1472 SPLIT_CHAR (XINT (opl
), reg
[RRR
], i
, j
);
1476 reg
[7] = 1; /* r7 true for success */
1483 case CCL_LookupCharConstTbl
:
1484 op
= XINT (ccl_prog
[ic
]); /* table */
1486 CCL_MAKE_CHAR (reg
[RRR
], reg
[rrr
], i
);
1488 struct Lisp_Hash_Table
*h
= GET_HASH_TABLE (op
);
1490 op
= hash_lookup (h
, make_number (i
), NULL
);
1494 opl
= HASH_VALUE (h
, op
);
1495 if (!INTEGERP (opl
))
1497 reg
[RRR
] = XINT (opl
);
1498 reg
[7] = 1; /* r7 true for success */
1505 case CCL_IterateMultipleMap
:
1507 Lisp_Object map
, content
, attrib
, value
;
1508 int point
, size
, fin_ic
;
1510 j
= XINT (ccl_prog
[ic
++]); /* number of maps. */
1513 if ((j
> reg
[RRR
]) && (j
>= 0))
1528 size
= ASIZE (Vcode_conversion_map_vector
);
1529 point
= XINT (ccl_prog
[ic
++]);
1530 if (point
>= size
) continue;
1531 map
= AREF (Vcode_conversion_map_vector
, point
);
1533 /* Check map varidity. */
1534 if (!CONSP (map
)) continue;
1536 if (!VECTORP (map
)) continue;
1538 if (size
<= 1) continue;
1540 content
= AREF (map
, 0);
1543 [STARTPOINT VAL1 VAL2 ...] or
1544 [t ELELMENT STARTPOINT ENDPOINT] */
1545 if (NUMBERP (content
))
1547 point
= XUINT (content
);
1548 point
= op
- point
+ 1;
1549 if (!((point
>= 1) && (point
< size
))) continue;
1550 content
= AREF (map
, point
);
1552 else if (EQ (content
, Qt
))
1554 if (size
!= 4) continue;
1555 if ((op
>= XUINT (AREF (map
, 2)))
1556 && (op
< XUINT (AREF (map
, 3))))
1557 content
= AREF (map
, 1);
1566 else if (NUMBERP (content
))
1569 reg
[rrr
] = XINT(content
);
1572 else if (EQ (content
, Qt
) || EQ (content
, Qlambda
))
1577 else if (CONSP (content
))
1579 attrib
= XCAR (content
);
1580 value
= XCDR (content
);
1581 if (!NUMBERP (attrib
) || !NUMBERP (value
))
1584 reg
[rrr
] = XUINT (value
);
1587 else if (SYMBOLP (content
))
1588 CCL_CALL_FOR_MAP_INSTRUCTION (content
, fin_ic
);
1598 case CCL_MapMultiple
:
1600 Lisp_Object map
, content
, attrib
, value
;
1601 int point
, size
, map_vector_size
;
1602 int map_set_rest_length
, fin_ic
;
1603 int current_ic
= this_ic
;
1605 /* inhibit recursive call on MapMultiple. */
1606 if (stack_idx_of_map_multiple
> 0)
1608 if (stack_idx_of_map_multiple
<= stack_idx
)
1610 stack_idx_of_map_multiple
= 0;
1611 mapping_stack_pointer
= mapping_stack
;
1616 mapping_stack_pointer
= mapping_stack
;
1617 stack_idx_of_map_multiple
= 0;
1619 map_set_rest_length
=
1620 XINT (ccl_prog
[ic
++]); /* number of maps and separators. */
1621 fin_ic
= ic
+ map_set_rest_length
;
1624 if ((map_set_rest_length
> reg
[RRR
]) && (reg
[RRR
] >= 0))
1628 map_set_rest_length
-= i
;
1634 mapping_stack_pointer
= mapping_stack
;
1638 if (mapping_stack_pointer
<= (mapping_stack
+ 1))
1640 /* Set up initial state. */
1641 mapping_stack_pointer
= mapping_stack
;
1642 PUSH_MAPPING_STACK (0, op
);
1647 /* Recover after calling other ccl program. */
1650 POP_MAPPING_STACK (map_set_rest_length
, orig_op
);
1651 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1655 /* Regard it as Qnil. */
1659 map_set_rest_length
--;
1662 /* Regard it as Qt. */
1666 map_set_rest_length
--;
1669 /* Regard it as Qlambda. */
1671 i
+= map_set_rest_length
;
1672 ic
+= map_set_rest_length
;
1673 map_set_rest_length
= 0;
1676 /* Regard it as normal mapping. */
1677 i
+= map_set_rest_length
;
1678 ic
+= map_set_rest_length
;
1679 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1683 map_vector_size
= ASIZE (Vcode_conversion_map_vector
);
1686 for (;map_set_rest_length
> 0;i
++, ic
++, map_set_rest_length
--)
1688 point
= XINT(ccl_prog
[ic
]);
1691 /* +1 is for including separator. */
1693 if (mapping_stack_pointer
1694 >= &mapping_stack
[MAX_MAP_SET_LEVEL
])
1696 PUSH_MAPPING_STACK (map_set_rest_length
- point
,
1698 map_set_rest_length
= point
;
1703 if (point
>= map_vector_size
) continue;
1704 map
= AREF (Vcode_conversion_map_vector
, point
);
1706 /* Check map varidity. */
1707 if (!CONSP (map
)) continue;
1709 if (!VECTORP (map
)) continue;
1711 if (size
<= 1) continue;
1713 content
= AREF (map
, 0);
1716 [STARTPOINT VAL1 VAL2 ...] or
1717 [t ELEMENT STARTPOINT ENDPOINT] */
1718 if (NUMBERP (content
))
1720 point
= XUINT (content
);
1721 point
= op
- point
+ 1;
1722 if (!((point
>= 1) && (point
< size
))) continue;
1723 content
= AREF (map
, point
);
1725 else if (EQ (content
, Qt
))
1727 if (size
!= 4) continue;
1728 if ((op
>= XUINT (AREF (map
, 2))) &&
1729 (op
< XUINT (AREF (map
, 3))))
1730 content
= AREF (map
, 1);
1741 if (NUMBERP (content
))
1743 op
= XINT (content
);
1744 i
+= map_set_rest_length
- 1;
1745 ic
+= map_set_rest_length
- 1;
1746 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1747 map_set_rest_length
++;
1749 else if (CONSP (content
))
1751 attrib
= XCAR (content
);
1752 value
= XCDR (content
);
1753 if (!NUMBERP (attrib
) || !NUMBERP (value
))
1756 i
+= map_set_rest_length
- 1;
1757 ic
+= map_set_rest_length
- 1;
1758 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1759 map_set_rest_length
++;
1761 else if (EQ (content
, Qt
))
1765 else if (EQ (content
, Qlambda
))
1767 i
+= map_set_rest_length
;
1768 ic
+= map_set_rest_length
;
1771 else if (SYMBOLP (content
))
1773 if (mapping_stack_pointer
1774 >= &mapping_stack
[MAX_MAP_SET_LEVEL
])
1776 PUSH_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1777 PUSH_MAPPING_STACK (map_set_rest_length
, op
);
1778 stack_idx_of_map_multiple
= stack_idx
+ 1;
1779 CCL_CALL_FOR_MAP_INSTRUCTION (content
, current_ic
);
1784 if (mapping_stack_pointer
<= (mapping_stack
+ 1))
1786 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1787 i
+= map_set_rest_length
;
1788 ic
+= map_set_rest_length
;
1789 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1799 Lisp_Object map
, attrib
, value
, content
;
1801 j
= XINT (ccl_prog
[ic
++]); /* map_id */
1803 if (j
>= ASIZE (Vcode_conversion_map_vector
))
1808 map
= AREF (Vcode_conversion_map_vector
, j
);
1821 point
= XUINT (AREF (map
, 0));
1822 point
= op
- point
+ 1;
1825 (!((point
>= 1) && (point
< size
))))
1830 content
= AREF (map
, point
);
1833 else if (NUMBERP (content
))
1834 reg
[rrr
] = XINT (content
);
1835 else if (EQ (content
, Qt
));
1836 else if (CONSP (content
))
1838 attrib
= XCAR (content
);
1839 value
= XCDR (content
);
1840 if (!NUMBERP (attrib
) || !NUMBERP (value
))
1842 reg
[rrr
] = XUINT(value
);
1845 else if (SYMBOLP (content
))
1846 CCL_CALL_FOR_MAP_INSTRUCTION (content
, ic
);
1864 /* The suppress_error member is set when e.g. a CCL-based coding
1865 system is used for terminal output. */
1866 if (!ccl
->suppress_error
&& destination
)
1868 /* We can insert an error message only if DESTINATION is
1869 specified and we still have a room to store the message
1877 switch (ccl
->status
)
1879 case CCL_STAT_INVALID_CMD
:
1880 sprintf(msg
, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
1881 code
& 0x1F, code
, this_ic
);
1884 int i
= ccl_backtrace_idx
- 1;
1887 msglen
= strlen (msg
);
1888 if (dst
+ msglen
<= (dst_bytes
? dst_end
: src
))
1890 bcopy (msg
, dst
, msglen
);
1894 for (j
= 0; j
< CCL_DEBUG_BACKTRACE_LEN
; j
++, i
--)
1896 if (i
< 0) i
= CCL_DEBUG_BACKTRACE_LEN
- 1;
1897 if (ccl_backtrace_table
[i
] == 0)
1899 sprintf(msg
, " %d", ccl_backtrace_table
[i
]);
1900 msglen
= strlen (msg
);
1901 if (dst
+ msglen
> (dst_bytes
? dst_end
: src
))
1903 bcopy (msg
, dst
, msglen
);
1912 if (! ccl
->quit_silently
)
1913 sprintf(msg
, "\nCCL: Quited.");
1917 sprintf(msg
, "\nCCL: Unknown error type (%d)", ccl
->status
);
1920 msglen
= strlen (msg
);
1921 if (dst
+ msglen
<= (dst_bytes
? dst_end
: src
))
1923 bcopy (msg
, dst
, msglen
);
1927 if (ccl
->status
== CCL_STAT_INVALID_CMD
)
1929 #if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1930 results in an invalid multibyte sequence. */
1932 /* Copy the remaining source data. */
1933 int i
= src_end
- src
;
1934 if (dst_bytes
&& (dst_end
- dst
) < i
)
1936 bcopy (src
, dst
, i
);
1940 /* Signal that we've consumed everything. */
1948 ccl
->stack_idx
= stack_idx
;
1949 ccl
->prog
= ccl_prog
;
1950 ccl
->eight_bit_control
= (extra_bytes
> 1);
1952 *consumed
= src
- source
;
1953 return (dst
? dst
- destination
: 0);
1956 /* Resolve symbols in the specified CCL code (Lisp vector). This
1957 function converts symbols of code conversion maps and character
1958 translation tables embeded in the CCL code into their ID numbers.
1960 The return value is a vector (CCL itself or a new vector in which
1961 all symbols are resolved), Qt if resolving of some symbol failed,
1962 or nil if CCL contains invalid data. */
1965 resolve_symbol_ccl_program (ccl
)
1968 int i
, veclen
, unresolved
= 0;
1969 Lisp_Object result
, contents
, val
;
1972 veclen
= ASIZE (result
);
1974 for (i
= 0; i
< veclen
; i
++)
1976 contents
= AREF (result
, i
);
1977 if (INTEGERP (contents
))
1979 else if (CONSP (contents
)
1980 && SYMBOLP (XCAR (contents
))
1981 && SYMBOLP (XCDR (contents
)))
1983 /* This is the new style for embedding symbols. The form is
1984 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1987 if (EQ (result
, ccl
))
1988 result
= Fcopy_sequence (ccl
);
1990 val
= Fget (XCAR (contents
), XCDR (contents
));
1992 AREF (result
, i
) = val
;
1997 else if (SYMBOLP (contents
))
1999 /* This is the old style for embedding symbols. This style
2000 may lead to a bug if, for instance, a translation table
2001 and a code conversion map have the same name. */
2002 if (EQ (result
, ccl
))
2003 result
= Fcopy_sequence (ccl
);
2005 val
= Fget (contents
, Qtranslation_table_id
);
2007 AREF (result
, i
) = val
;
2010 val
= Fget (contents
, Qcode_conversion_map_id
);
2012 AREF (result
, i
) = val
;
2015 val
= Fget (contents
, Qccl_program_idx
);
2017 AREF (result
, i
) = val
;
2027 return (unresolved
? Qt
: result
);
2030 /* Return the compiled code (vector) of CCL program CCL_PROG.
2031 CCL_PROG is a name (symbol) of the program or already compiled
2032 code. If necessary, resolve symbols in the compiled code to index
2033 numbers. If we failed to get the compiled code or to resolve
2034 symbols, return Qnil. */
2037 ccl_get_compiled_code (ccl_prog
, idx
)
2038 Lisp_Object ccl_prog
;
2041 Lisp_Object val
, slot
;
2043 if (VECTORP (ccl_prog
))
2045 val
= resolve_symbol_ccl_program (ccl_prog
);
2047 return (VECTORP (val
) ? val
: Qnil
);
2049 if (!SYMBOLP (ccl_prog
))
2052 val
= Fget (ccl_prog
, Qccl_program_idx
);
2054 || XINT (val
) >= ASIZE (Vccl_program_table
))
2056 slot
= AREF (Vccl_program_table
, XINT (val
));
2057 if (! VECTORP (slot
)
2058 || ASIZE (slot
) != 4
2059 || ! VECTORP (AREF (slot
, 1)))
2062 if (NILP (AREF (slot
, 2)))
2064 val
= resolve_symbol_ccl_program (AREF (slot
, 1));
2065 if (! VECTORP (val
))
2067 AREF (slot
, 1) = val
;
2068 AREF (slot
, 2) = Qt
;
2070 return AREF (slot
, 1);
2073 /* Setup fields of the structure pointed by CCL appropriately for the
2074 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
2075 of the CCL program or the already compiled code (vector).
2076 Return 0 if we succeed this setup, else return -1.
2078 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
2080 setup_ccl_program (ccl
, ccl_prog
)
2081 struct ccl_program
*ccl
;
2082 Lisp_Object ccl_prog
;
2086 if (! NILP (ccl_prog
))
2088 struct Lisp_Vector
*vp
;
2090 ccl_prog
= ccl_get_compiled_code (ccl_prog
, &ccl
->idx
);
2091 if (! VECTORP (ccl_prog
))
2093 vp
= XVECTOR (ccl_prog
);
2094 ccl
->size
= vp
->size
;
2095 ccl
->prog
= vp
->contents
;
2096 ccl
->eof_ic
= XINT (vp
->contents
[CCL_HEADER_EOF
]);
2097 ccl
->buf_magnification
= XINT (vp
->contents
[CCL_HEADER_BUF_MAG
]);
2102 slot
= AREF (Vccl_program_table
, ccl
->idx
);
2103 ASET (slot
, 3, Qnil
);
2106 ccl
->ic
= CCL_HEADER_MAIN
;
2107 for (i
= 0; i
< 8; i
++)
2109 ccl
->last_block
= 0;
2110 ccl
->private_state
= 0;
2113 ccl
->eol_type
= CODING_EOL_LF
;
2114 ccl
->suppress_error
= 0;
2115 ccl
->eight_bit_control
= 0;
2116 ccl
->quit_silently
= 0;
2121 /* Check if CCL is updated or not. If not, re-setup members of CCL. */
2124 check_ccl_update (ccl
)
2125 struct ccl_program
*ccl
;
2127 Lisp_Object slot
, ccl_prog
;
2131 slot
= AREF (Vccl_program_table
, ccl
->idx
);
2132 if (NILP (AREF (slot
, 3)))
2134 ccl_prog
= ccl_get_compiled_code (AREF (slot
, 0), &ccl
->idx
);
2135 if (! VECTORP (ccl_prog
))
2137 ccl
->size
= ASIZE (ccl_prog
);
2138 ccl
->prog
= XVECTOR (ccl_prog
)->contents
;
2139 ccl
->eof_ic
= XINT (AREF (ccl_prog
, CCL_HEADER_EOF
));
2140 ccl
->buf_magnification
= XINT (AREF (ccl_prog
, CCL_HEADER_BUF_MAG
));
2141 ASET (slot
, 3, Qnil
);
2146 DEFUN ("ccl-program-p", Fccl_program_p
, Sccl_program_p
, 1, 1, 0,
2147 doc
: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
2148 See the documentation of `define-ccl-program' for the detail of CCL program. */)
2154 if (VECTORP (object
))
2156 val
= resolve_symbol_ccl_program (object
);
2157 return (VECTORP (val
) ? Qt
: Qnil
);
2159 if (!SYMBOLP (object
))
2162 val
= Fget (object
, Qccl_program_idx
);
2163 return ((! NATNUMP (val
)
2164 || XINT (val
) >= ASIZE (Vccl_program_table
))
2168 DEFUN ("ccl-execute", Fccl_execute
, Sccl_execute
, 2, 2, 0,
2169 doc
: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
2171 CCL-PROGRAM is a CCL program name (symbol)
2172 or compiled code generated by `ccl-compile' (for backward compatibility.
2173 In the latter case, the execution overhead is bigger than in the former).
2174 No I/O commands should appear in CCL-PROGRAM.
2176 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
2177 for the Nth register.
2179 As side effect, each element of REGISTERS holds the value of
2180 the corresponding register after the execution.
2182 See the documentation of `define-ccl-program' for a definition of CCL
2185 Lisp_Object ccl_prog
, reg
;
2187 struct ccl_program ccl
;
2190 if (setup_ccl_program (&ccl
, ccl_prog
) < 0)
2191 error ("Invalid CCL program");
2194 if (ASIZE (reg
) != 8)
2195 error ("Length of vector REGISTERS is not 8");
2197 for (i
= 0; i
< 8; i
++)
2198 ccl
.reg
[i
] = (INTEGERP (AREF (reg
, i
))
2199 ? XINT (AREF (reg
, i
))
2202 ccl_driver (&ccl
, (unsigned char *)0, (unsigned char *)0, 0, 0, (int *)0);
2204 if (ccl
.status
!= CCL_STAT_SUCCESS
)
2205 error ("Error in CCL program at %dth code", ccl
.ic
);
2207 for (i
= 0; i
< 8; i
++)
2208 XSETINT (AREF (reg
, i
), ccl
.reg
[i
]);
2212 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string
, Sccl_execute_on_string
,
2214 doc
: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2216 CCL-PROGRAM is a symbol registered by `register-ccl-program',
2217 or a compiled code generated by `ccl-compile' (for backward compatibility,
2218 in this case, the execution is slower).
2220 Read buffer is set to STRING, and write buffer is allocated automatically.
2222 STATUS is a vector of [R0 R1 ... R7 IC], where
2223 R0..R7 are initial values of corresponding registers,
2224 IC is the instruction counter specifying from where to start the program.
2225 If R0..R7 are nil, they are initialized to 0.
2226 If IC is nil, it is initialized to head of the CCL program.
2228 If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2229 when read buffer is exausted, else, IC is always set to the end of
2230 CCL-PROGRAM on exit.
2232 It returns the contents of write buffer as a string,
2233 and as side effect, STATUS is updated.
2234 If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2235 is a unibyte string. By default it is a multibyte string.
2237 See the documentation of `define-ccl-program' for the detail of CCL program.
2238 usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P) */)
2239 (ccl_prog
, status
, str
, contin
, unibyte_p
)
2240 Lisp_Object ccl_prog
, status
, str
, contin
, unibyte_p
;
2243 struct ccl_program ccl
;
2247 struct gcpro gcpro1
, gcpro2
;
2249 if (setup_ccl_program (&ccl
, ccl_prog
) < 0)
2250 error ("Invalid CCL program");
2252 CHECK_VECTOR (status
);
2253 if (ASIZE (status
) != 9)
2254 error ("Length of vector STATUS is not 9");
2257 GCPRO2 (status
, str
);
2259 for (i
= 0; i
< 8; i
++)
2261 if (NILP (AREF (status
, i
)))
2262 XSETINT (AREF (status
, i
), 0);
2263 if (INTEGERP (AREF (status
, i
)))
2264 ccl
.reg
[i
] = XINT (AREF (status
, i
));
2266 if (INTEGERP (AREF (status
, i
)))
2268 i
= XFASTINT (AREF (status
, 8));
2269 if (ccl
.ic
< i
&& i
< ccl
.size
)
2272 outbufsize
= SBYTES (str
) * ccl
.buf_magnification
+ 256;
2273 outbuf
= (char *) xmalloc (outbufsize
);
2274 ccl
.last_block
= NILP (contin
);
2275 ccl
.multibyte
= STRING_MULTIBYTE (str
);
2276 produced
= ccl_driver (&ccl
, SDATA (str
), outbuf
,
2277 SBYTES (str
), outbufsize
, (int *) 0);
2278 for (i
= 0; i
< 8; i
++)
2279 ASET (status
, i
, make_number (ccl
.reg
[i
]));
2280 ASET (status
, 8, make_number (ccl
.ic
));
2283 if (NILP (unibyte_p
))
2287 produced
= str_as_multibyte (outbuf
, outbufsize
, produced
, &nchars
);
2288 val
= make_multibyte_string (outbuf
, nchars
, produced
);
2291 val
= make_unibyte_string (outbuf
, produced
);
2294 if (ccl
.status
== CCL_STAT_SUSPEND_BY_DST
)
2295 error ("Output buffer for the CCL programs overflow");
2296 if (ccl
.status
!= CCL_STAT_SUCCESS
2297 && ccl
.status
!= CCL_STAT_SUSPEND_BY_SRC
)
2298 error ("Error in CCL program at %dth code", ccl
.ic
);
2303 DEFUN ("register-ccl-program", Fregister_ccl_program
, Sregister_ccl_program
,
2305 doc
: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
2306 CCL-PROG should be a compiled CCL program (vector), or nil.
2307 If it is nil, just reserve NAME as a CCL program name.
2308 Return index number of the registered CCL program. */)
2310 Lisp_Object name
, ccl_prog
;
2312 int len
= ASIZE (Vccl_program_table
);
2314 Lisp_Object resolved
;
2316 CHECK_SYMBOL (name
);
2318 if (!NILP (ccl_prog
))
2320 CHECK_VECTOR (ccl_prog
);
2321 resolved
= resolve_symbol_ccl_program (ccl_prog
);
2322 if (NILP (resolved
))
2323 error ("Error in CCL program");
2324 if (VECTORP (resolved
))
2326 ccl_prog
= resolved
;
2333 for (idx
= 0; idx
< len
; idx
++)
2337 slot
= AREF (Vccl_program_table
, idx
);
2338 if (!VECTORP (slot
))
2339 /* This is the first unsed slot. Register NAME here. */
2342 if (EQ (name
, AREF (slot
, 0)))
2344 /* Update this slot. */
2345 ASET (slot
, 1, ccl_prog
);
2346 ASET (slot
, 2, resolved
);
2348 return make_number (idx
);
2354 /* Extend the table. */
2355 Lisp_Object new_table
;
2358 new_table
= Fmake_vector (make_number (len
* 2), Qnil
);
2359 for (j
= 0; j
< len
; j
++)
2360 ASET (new_table
, j
, AREF (Vccl_program_table
, j
));
2361 Vccl_program_table
= new_table
;
2367 elt
= Fmake_vector (make_number (4), Qnil
);
2368 ASET (elt
, 0, name
);
2369 ASET (elt
, 1, ccl_prog
);
2370 ASET (elt
, 2, resolved
);
2372 ASET (Vccl_program_table
, idx
, elt
);
2375 Fput (name
, Qccl_program_idx
, make_number (idx
));
2376 return make_number (idx
);
2379 /* Register code conversion map.
2380 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
2381 The first element is the start code point.
2382 The other elements are mapped numbers.
2383 Symbol t means to map to an original number before mapping.
2384 Symbol nil means that the corresponding element is empty.
2385 Symbol lambda means to terminate mapping here.
2388 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map
,
2389 Sregister_code_conversion_map
,
2391 doc
: /* Register SYMBOL as code conversion map MAP.
2392 Return index number of the registered map. */)
2394 Lisp_Object symbol
, map
;
2396 int len
= ASIZE (Vcode_conversion_map_vector
);
2400 CHECK_SYMBOL (symbol
);
2403 for (i
= 0; i
< len
; i
++)
2405 Lisp_Object slot
= AREF (Vcode_conversion_map_vector
, i
);
2410 if (EQ (symbol
, XCAR (slot
)))
2412 index
= make_number (i
);
2413 XSETCDR (slot
, map
);
2414 Fput (symbol
, Qcode_conversion_map
, map
);
2415 Fput (symbol
, Qcode_conversion_map_id
, index
);
2422 Lisp_Object new_vector
= Fmake_vector (make_number (len
* 2), Qnil
);
2425 for (j
= 0; j
< len
; j
++)
2426 AREF (new_vector
, j
)
2427 = AREF (Vcode_conversion_map_vector
, j
);
2428 Vcode_conversion_map_vector
= new_vector
;
2431 index
= make_number (i
);
2432 Fput (symbol
, Qcode_conversion_map
, map
);
2433 Fput (symbol
, Qcode_conversion_map_id
, index
);
2434 AREF (Vcode_conversion_map_vector
, i
) = Fcons (symbol
, map
);
2442 staticpro (&Vccl_program_table
);
2443 Vccl_program_table
= Fmake_vector (make_number (32), Qnil
);
2445 Qccl_program
= intern ("ccl-program");
2446 staticpro (&Qccl_program
);
2448 Qccl_program_idx
= intern ("ccl-program-idx");
2449 staticpro (&Qccl_program_idx
);
2451 Qcode_conversion_map
= intern ("code-conversion-map");
2452 staticpro (&Qcode_conversion_map
);
2454 Qcode_conversion_map_id
= intern ("code-conversion-map-id");
2455 staticpro (&Qcode_conversion_map_id
);
2457 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector
,
2458 doc
: /* Vector of code conversion maps. */);
2459 Vcode_conversion_map_vector
= Fmake_vector (make_number (16), Qnil
);
2461 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist
,
2462 doc
: /* Alist of fontname patterns vs corresponding CCL program.
2463 Each element looks like (REGEXP . CCL-CODE),
2464 where CCL-CODE is a compiled CCL program.
2465 When a font whose name matches REGEXP is used for displaying a character,
2466 CCL-CODE is executed to calculate the code point in the font
2467 from the charset number and position code(s) of the character which are set
2468 in CCL registers R0, R1, and R2 before the execution.
2469 The code point in the font is set in CCL registers R1 and R2
2470 when the execution terminated.
2471 If the font is single-byte font, the register R2 is not used. */);
2472 Vfont_ccl_encoder_alist
= Qnil
;
2474 DEFVAR_LISP ("translation-hash-table-vector", &Vtranslation_hash_table_vector
,
2475 doc
: /* Vector containing all translation hash tables ever defined.
2476 Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2477 to `define-translation-hash-table'. The vector is indexed by the table id
2479 Vtranslation_hash_table_vector
= Qnil
;
2481 defsubr (&Sccl_program_p
);
2482 defsubr (&Sccl_execute
);
2483 defsubr (&Sccl_execute_on_string
);
2484 defsubr (&Sregister_ccl_program
);
2485 defsubr (&Sregister_code_conversion_map
);
2488 /* arch-tag: bb9a37be-68ce-4576-8d3d-15d750e4a860
2489 (do not change this comment) */