1 /* Low-level bidirectional buffer/string-scanning functions for GNU Emacs.
2 Copyright (C) 2000-2001, 2004-2005, 2009-2011
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 /* Written by Eli Zaretskii <eliz@gnu.org>.
22 A sequential implementation of the Unicode Bidirectional algorithm,
23 (UBA) as per UAX#9, a part of the Unicode Standard.
25 Unlike the reference and most other implementations, this one is
26 designed to be called once for every character in the buffer or
29 The main entry point is bidi_move_to_visually_next. Each time it
30 is called, it finds the next character in the visual order, and
31 returns its information in a special structure. The caller is then
32 expected to process this character for display or any other
33 purposes, and call bidi_move_to_visually_next for the next
34 character. See the comments in bidi_move_to_visually_next for more
35 details about its algorithm that finds the next visual-order
36 character by resolving their levels on the fly.
38 Two other entry points are bidi_paragraph_init and
39 bidi_mirror_char. The first determines the base direction of a
40 paragraph, while the second returns the mirrored version of its
43 A few auxiliary entry points are used to initialize the bidi
44 iterator for iterating an object (buffer or string), push and pop
45 the bidi iterator state, and save and restore the state of the bidi
48 If you want to understand the code, you will have to read it
49 together with the relevant portions of UAX#9. The comments include
50 references to UAX#9 rules, for that very reason.
52 A note about references to UAX#9 rules: if the reference says
53 something like "X9/Retaining", it means that you need to refer to
54 rule X9 and to its modifications described in the "Implementation
55 Notes" section of UAX#9, under "Retaining Format Codes". */
63 #include "character.h"
64 #include "dispextern.h"
66 static int bidi_initialized
= 0;
68 static Lisp_Object bidi_type_table
, bidi_mirror_table
;
70 #define LRM_CHAR 0x200E
71 #define RLM_CHAR 0x200F
74 /* Data type for describing the bidirectional character categories. */
82 /* UAX#9 says to search only for L, AL, or R types of characters, and
83 ignore RLE, RLO, LRE, and LRO, when determining the base paragraph
84 level. Yudit indeed ignores them. This variable is therefore set
85 by default to ignore them, but setting it to zero will take them
87 extern int bidi_ignore_explicit_marks_for_paragraph_level EXTERNALLY_VISIBLE
;
88 int bidi_ignore_explicit_marks_for_paragraph_level
= 1;
90 static Lisp_Object paragraph_start_re
, paragraph_separate_re
;
91 static Lisp_Object Qparagraph_start
, Qparagraph_separate
;
94 /***********************************************************************
96 ***********************************************************************/
98 /* Return the bidi type of a character CH, subject to the current
99 directional OVERRIDE. */
100 static inline bidi_type_t
101 bidi_get_type (int ch
, bidi_dir_t override
)
103 bidi_type_t default_type
;
107 if (ch
< 0 || ch
> MAX_CHAR
)
110 default_type
= (bidi_type_t
) XINT (CHAR_TABLE_REF (bidi_type_table
, ch
));
111 /* Every valid character code, even those that are unassigned by the
112 UCD, have some bidi-class property, according to
113 DerivedBidiClass.txt file. Therefore, if we ever get UNKNOWN_BT
114 (= zero) code from CHAR_TABLE_REF, that's a bug. */
115 if (default_type
== UNKNOWN_BT
)
118 if (override
== NEUTRAL_DIR
)
121 switch (default_type
)
123 /* Although UAX#9 does not tell, it doesn't make sense to
124 override NEUTRAL_B and LRM/RLM characters. */
139 if (override
== L2R
) /* X6 */
141 else if (override
== R2L
)
144 abort (); /* can't happen: handled above */
150 bidi_check_type (bidi_type_t type
)
152 xassert (UNKNOWN_BT
<= type
&& type
<= NEUTRAL_ON
);
155 /* Given a bidi TYPE of a character, return its category. */
156 static inline bidi_category_t
157 bidi_get_category (bidi_type_t type
)
171 case PDF
: /* ??? really?? */
190 /* Return the mirrored character of C, if it has one. If C has no
191 mirrored counterpart, return C.
192 Note: The conditions in UAX#9 clause L4 regarding the surrounding
193 context must be tested by the caller. */
195 bidi_mirror_char (int c
)
201 if (c
< 0 || c
> MAX_CHAR
)
204 val
= CHAR_TABLE_REF (bidi_mirror_table
, c
);
209 if (v
< 0 || v
> MAX_CHAR
)
218 /* Determine the start-of-run (sor) directional type given the two
219 embedding levels on either side of the run boundary. Also, update
220 the saved info about previously seen characters, since that info is
221 generally valid for a single level run. */
223 bidi_set_sor_type (struct bidi_it
*bidi_it
, int level_before
, int level_after
)
225 int higher_level
= (level_before
> level_after
? level_before
: level_after
);
227 /* The prev_was_pdf gork is required for when we have several PDFs
228 in a row. In that case, we want to compute the sor type for the
229 next level run only once: when we see the first PDF. That's
230 because the sor type depends only on the higher of the two levels
231 that we find on the two sides of the level boundary (see UAX#9,
232 clause X10), and so we don't need to know the final embedding
233 level to which we descend after processing all the PDFs. */
234 if (!bidi_it
->prev_was_pdf
|| level_before
< level_after
)
235 /* FIXME: should the default sor direction be user selectable? */
236 bidi_it
->sor
= ((higher_level
& 1) != 0 ? R2L
: L2R
);
237 if (level_before
> level_after
)
238 bidi_it
->prev_was_pdf
= 1;
240 bidi_it
->prev
.type
= UNKNOWN_BT
;
241 bidi_it
->last_strong
.type
= bidi_it
->last_strong
.type_after_w1
242 = bidi_it
->last_strong
.orig_type
= UNKNOWN_BT
;
243 bidi_it
->prev_for_neutral
.type
= (bidi_it
->sor
== R2L
? STRONG_R
: STRONG_L
);
244 bidi_it
->prev_for_neutral
.charpos
= bidi_it
->charpos
;
245 bidi_it
->prev_for_neutral
.bytepos
= bidi_it
->bytepos
;
246 bidi_it
->next_for_neutral
.type
= bidi_it
->next_for_neutral
.type_after_w1
247 = bidi_it
->next_for_neutral
.orig_type
= UNKNOWN_BT
;
248 bidi_it
->ignore_bn_limit
= -1; /* meaning it's unknown */
251 /* Push the current embedding level and override status; reset the
252 current level to LEVEL and the current override status to OVERRIDE. */
254 bidi_push_embedding_level (struct bidi_it
*bidi_it
,
255 int level
, bidi_dir_t override
)
257 bidi_it
->stack_idx
++;
258 xassert (bidi_it
->stack_idx
< BIDI_MAXLEVEL
);
259 bidi_it
->level_stack
[bidi_it
->stack_idx
].level
= level
;
260 bidi_it
->level_stack
[bidi_it
->stack_idx
].override
= override
;
263 /* Pop the embedding level and directional override status from the
264 stack, and return the new level. */
266 bidi_pop_embedding_level (struct bidi_it
*bidi_it
)
268 /* UAX#9 says to ignore invalid PDFs. */
269 if (bidi_it
->stack_idx
> 0)
270 bidi_it
->stack_idx
--;
271 return bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
274 /* Record in SAVED_INFO the information about the current character. */
276 bidi_remember_char (struct bidi_saved_info
*saved_info
,
277 struct bidi_it
*bidi_it
)
279 saved_info
->charpos
= bidi_it
->charpos
;
280 saved_info
->bytepos
= bidi_it
->bytepos
;
281 saved_info
->type
= bidi_it
->type
;
282 bidi_check_type (bidi_it
->type
);
283 saved_info
->type_after_w1
= bidi_it
->type_after_w1
;
284 bidi_check_type (bidi_it
->type_after_w1
);
285 saved_info
->orig_type
= bidi_it
->orig_type
;
286 bidi_check_type (bidi_it
->orig_type
);
289 /* Copy the bidi iterator from FROM to TO. To save cycles, this only
290 copies the part of the level stack that is actually in use. */
292 bidi_copy_it (struct bidi_it
*to
, struct bidi_it
*from
)
296 /* Copy everything except the level stack and beyond. */
297 memcpy (to
, from
, offsetof (struct bidi_it
, level_stack
[0]));
299 /* Copy the active part of the level stack. */
300 to
->level_stack
[0] = from
->level_stack
[0]; /* level zero is always in use */
301 for (i
= 1; i
<= from
->stack_idx
; i
++)
302 to
->level_stack
[i
] = from
->level_stack
[i
];
306 /***********************************************************************
307 Caching the bidi iterator states
308 ***********************************************************************/
310 #define BIDI_CACHE_CHUNK 200
311 static struct bidi_it
*bidi_cache
;
312 static ptrdiff_t bidi_cache_size
= 0;
313 enum { elsz
= sizeof (struct bidi_it
) };
314 static ptrdiff_t bidi_cache_idx
; /* next unused cache slot */
315 static ptrdiff_t bidi_cache_last_idx
; /* slot of last cache hit */
316 static ptrdiff_t bidi_cache_start
= 0; /* start of cache for this
319 /* 5-slot stack for saving the start of the previous level of the
320 cache. xdisp.c maintains a 5-slot stack for its iterator state,
321 and we need the same size of our stack. */
322 static ptrdiff_t bidi_cache_start_stack
[IT_STACK_SIZE
];
323 static int bidi_cache_sp
;
325 /* Size of header used by bidi_shelve_cache. */
328 bidi_shelve_header_size
329 = (sizeof (bidi_cache_idx
) + sizeof (bidi_cache_start_stack
)
330 + sizeof (bidi_cache_sp
) + sizeof (bidi_cache_start
)
331 + sizeof (bidi_cache_last_idx
))
334 /* Reset the cache state to the empty state. We only reset the part
335 of the cache relevant to iteration of the current object. Previous
336 objects, which are pushed on the display iterator's stack, are left
337 intact. This is called when the cached information is no more
338 useful for the current iteration, e.g. when we were reseated to a
339 new position on the same object. */
341 bidi_cache_reset (void)
343 bidi_cache_idx
= bidi_cache_start
;
344 bidi_cache_last_idx
= -1;
347 /* Shrink the cache to its minimal size. Called when we init the bidi
348 iterator for reordering a buffer or a string that does not come
349 from display properties, because that means all the previously
350 cached info is of no further use. */
352 bidi_cache_shrink (void)
354 if (bidi_cache_size
> BIDI_CACHE_CHUNK
)
357 = (struct bidi_it
*) xrealloc (bidi_cache
, BIDI_CACHE_CHUNK
* elsz
);
358 bidi_cache_size
= BIDI_CACHE_CHUNK
;
364 bidi_cache_fetch_state (ptrdiff_t idx
, struct bidi_it
*bidi_it
)
366 int current_scan_dir
= bidi_it
->scan_dir
;
368 if (idx
< bidi_cache_start
|| idx
>= bidi_cache_idx
)
371 bidi_copy_it (bidi_it
, &bidi_cache
[idx
]);
372 bidi_it
->scan_dir
= current_scan_dir
;
373 bidi_cache_last_idx
= idx
;
376 /* Find a cached state with a given CHARPOS and resolved embedding
377 level less or equal to LEVEL. if LEVEL is -1, disregard the
378 resolved levels in cached states. DIR, if non-zero, means search
379 in that direction from the last cache hit. */
380 static inline ptrdiff_t
381 bidi_cache_search (EMACS_INT charpos
, int level
, int dir
)
383 ptrdiff_t i
, i_start
;
385 if (bidi_cache_idx
> bidi_cache_start
)
387 if (bidi_cache_last_idx
== -1)
388 bidi_cache_last_idx
= bidi_cache_idx
- 1;
389 if (charpos
< bidi_cache
[bidi_cache_last_idx
].charpos
)
392 i_start
= bidi_cache_last_idx
- 1;
394 else if (charpos
> (bidi_cache
[bidi_cache_last_idx
].charpos
395 + bidi_cache
[bidi_cache_last_idx
].nchars
- 1))
398 i_start
= bidi_cache_last_idx
+ 1;
401 i_start
= bidi_cache_last_idx
;
405 i_start
= bidi_cache_idx
- 1;
410 /* Linear search for now; FIXME! */
411 for (i
= i_start
; i
>= bidi_cache_start
; i
--)
412 if (bidi_cache
[i
].charpos
<= charpos
413 && charpos
< bidi_cache
[i
].charpos
+ bidi_cache
[i
].nchars
414 && (level
== -1 || bidi_cache
[i
].resolved_level
<= level
))
419 for (i
= i_start
; i
< bidi_cache_idx
; i
++)
420 if (bidi_cache
[i
].charpos
<= charpos
421 && charpos
< bidi_cache
[i
].charpos
+ bidi_cache
[i
].nchars
422 && (level
== -1 || bidi_cache
[i
].resolved_level
<= level
))
430 /* Find a cached state where the resolved level changes to a value
431 that is lower than LEVEL, and return its cache slot index. DIR is
432 the direction to search, starting with the last used cache slot.
433 If DIR is zero, we search backwards from the last occupied cache
434 slot. BEFORE, if non-zero, means return the index of the slot that
435 is ``before'' the level change in the search direction. That is,
436 given the cached levels like this:
441 and assuming we are at the position cached at the slot marked with
442 C, searching backwards (DIR = -1) for LEVEL = 2 will return the
443 index of slot B or A, depending whether BEFORE is, respectively,
446 bidi_cache_find_level_change (int level
, int dir
, int before
)
450 ptrdiff_t i
= dir
? bidi_cache_last_idx
: bidi_cache_idx
- 1;
451 int incr
= before
? 1 : 0;
453 xassert (!dir
|| bidi_cache_last_idx
>= 0);
462 while (i
>= bidi_cache_start
+ incr
)
464 if (bidi_cache
[i
- incr
].resolved_level
>= 0
465 && bidi_cache
[i
- incr
].resolved_level
< level
)
472 while (i
< bidi_cache_idx
- incr
)
474 if (bidi_cache
[i
+ incr
].resolved_level
>= 0
475 && bidi_cache
[i
+ incr
].resolved_level
< level
)
486 bidi_cache_ensure_space (ptrdiff_t idx
)
488 /* Enlarge the cache as needed. */
489 if (idx
>= bidi_cache_size
)
491 /* The bidi cache cannot be larger than the largest Lisp string
493 ptrdiff_t string_or_buffer_bound
494 = max (BUF_BYTES_MAX
, STRING_BYTES_BOUND
);
496 /* Also, it cannot be larger than what C can represent. */
498 = (min (PTRDIFF_MAX
, SIZE_MAX
) - bidi_shelve_header_size
) / elsz
;
501 = xpalloc (bidi_cache
, &bidi_cache_size
,
502 max (BIDI_CACHE_CHUNK
, idx
- bidi_cache_size
+ 1),
503 min (string_or_buffer_bound
, c_bound
), elsz
);
508 bidi_cache_iterator_state (struct bidi_it
*bidi_it
, int resolved
)
512 /* We should never cache on backward scans. */
513 if (bidi_it
->scan_dir
== -1)
515 idx
= bidi_cache_search (bidi_it
->charpos
, -1, 1);
519 idx
= bidi_cache_idx
;
520 bidi_cache_ensure_space (idx
);
521 /* Character positions should correspond to cache positions 1:1.
522 If we are outside the range of cached positions, the cache is
523 useless and must be reset. */
524 if (idx
> bidi_cache_start
&&
525 (bidi_it
->charpos
> (bidi_cache
[idx
- 1].charpos
526 + bidi_cache
[idx
- 1].nchars
)
527 || bidi_it
->charpos
< bidi_cache
[bidi_cache_start
].charpos
))
530 idx
= bidi_cache_start
;
532 if (bidi_it
->nchars
<= 0)
534 bidi_copy_it (&bidi_cache
[idx
], bidi_it
);
536 bidi_cache
[idx
].resolved_level
= -1;
540 /* Copy only the members which could have changed, to avoid
541 costly copying of the entire struct. */
542 bidi_cache
[idx
].type
= bidi_it
->type
;
543 bidi_check_type (bidi_it
->type
);
544 bidi_cache
[idx
].type_after_w1
= bidi_it
->type_after_w1
;
545 bidi_check_type (bidi_it
->type_after_w1
);
547 bidi_cache
[idx
].resolved_level
= bidi_it
->resolved_level
;
549 bidi_cache
[idx
].resolved_level
= -1;
550 bidi_cache
[idx
].invalid_levels
= bidi_it
->invalid_levels
;
551 bidi_cache
[idx
].invalid_rl_levels
= bidi_it
->invalid_rl_levels
;
552 bidi_cache
[idx
].next_for_neutral
= bidi_it
->next_for_neutral
;
553 bidi_cache
[idx
].next_for_ws
= bidi_it
->next_for_ws
;
554 bidi_cache
[idx
].ignore_bn_limit
= bidi_it
->ignore_bn_limit
;
555 bidi_cache
[idx
].disp_pos
= bidi_it
->disp_pos
;
556 bidi_cache
[idx
].disp_prop
= bidi_it
->disp_prop
;
559 bidi_cache_last_idx
= idx
;
560 if (idx
>= bidi_cache_idx
)
561 bidi_cache_idx
= idx
+ 1;
564 static inline bidi_type_t
565 bidi_cache_find (EMACS_INT charpos
, int level
, struct bidi_it
*bidi_it
)
567 ptrdiff_t i
= bidi_cache_search (charpos
, level
, bidi_it
->scan_dir
);
569 if (i
>= bidi_cache_start
)
571 bidi_dir_t current_scan_dir
= bidi_it
->scan_dir
;
573 bidi_copy_it (bidi_it
, &bidi_cache
[i
]);
574 bidi_cache_last_idx
= i
;
575 /* Don't let scan direction from from the cached state override
576 the current scan direction. */
577 bidi_it
->scan_dir
= current_scan_dir
;
578 return bidi_it
->type
;
585 bidi_peek_at_next_level (struct bidi_it
*bidi_it
)
587 if (bidi_cache_idx
== bidi_cache_start
|| bidi_cache_last_idx
== -1)
589 return bidi_cache
[bidi_cache_last_idx
+ bidi_it
->scan_dir
].resolved_level
;
593 /***********************************************************************
594 Pushing and popping the bidi iterator state
595 ***********************************************************************/
597 /* Push the bidi iterator state in preparation for reordering a
598 different object, e.g. display string found at certain buffer
599 position. Pushing the bidi iterator boils down to saving its
600 entire state on the cache and starting a new cache "stacked" on top
601 of the current cache. */
603 bidi_push_it (struct bidi_it
*bidi_it
)
605 /* Save the current iterator state in its entirety after the last
607 bidi_cache_ensure_space (bidi_cache_idx
);
608 memcpy (&bidi_cache
[bidi_cache_idx
++], bidi_it
, sizeof (struct bidi_it
));
610 /* Push the current cache start onto the stack. */
611 xassert (bidi_cache_sp
< IT_STACK_SIZE
);
612 bidi_cache_start_stack
[bidi_cache_sp
++] = bidi_cache_start
;
614 /* Start a new level of cache, and make it empty. */
615 bidi_cache_start
= bidi_cache_idx
;
616 bidi_cache_last_idx
= -1;
619 /* Restore the iterator state saved by bidi_push_it and return the
620 cache to the corresponding state. */
622 bidi_pop_it (struct bidi_it
*bidi_it
)
624 if (bidi_cache_start
<= 0)
627 /* Reset the next free cache slot index to what it was before the
628 call to bidi_push_it. */
629 bidi_cache_idx
= bidi_cache_start
- 1;
631 /* Restore the bidi iterator state saved in the cache. */
632 memcpy (bidi_it
, &bidi_cache
[bidi_cache_idx
], sizeof (struct bidi_it
));
634 /* Pop the previous cache start from the stack. */
635 if (bidi_cache_sp
<= 0)
637 bidi_cache_start
= bidi_cache_start_stack
[--bidi_cache_sp
];
639 /* Invalidate the last-used cache slot data. */
640 bidi_cache_last_idx
= -1;
643 static ptrdiff_t bidi_cache_total_alloc
;
645 /* Stash away a copy of the cache and its control variables. */
647 bidi_shelve_cache (void)
649 unsigned char *databuf
;
653 if (bidi_cache_idx
== 0)
656 alloc
= (bidi_shelve_header_size
657 + bidi_cache_idx
* sizeof (struct bidi_it
));
658 databuf
= xmalloc (alloc
);
659 bidi_cache_total_alloc
+= alloc
;
661 memcpy (databuf
, &bidi_cache_idx
, sizeof (bidi_cache_idx
));
662 memcpy (databuf
+ sizeof (bidi_cache_idx
),
663 bidi_cache
, bidi_cache_idx
* sizeof (struct bidi_it
));
664 memcpy (databuf
+ sizeof (bidi_cache_idx
)
665 + bidi_cache_idx
* sizeof (struct bidi_it
),
666 bidi_cache_start_stack
, sizeof (bidi_cache_start_stack
));
667 memcpy (databuf
+ sizeof (bidi_cache_idx
)
668 + bidi_cache_idx
* sizeof (struct bidi_it
)
669 + sizeof (bidi_cache_start_stack
),
670 &bidi_cache_sp
, sizeof (bidi_cache_sp
));
671 memcpy (databuf
+ sizeof (bidi_cache_idx
)
672 + bidi_cache_idx
* sizeof (struct bidi_it
)
673 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
),
674 &bidi_cache_start
, sizeof (bidi_cache_start
));
675 memcpy (databuf
+ sizeof (bidi_cache_idx
)
676 + bidi_cache_idx
* sizeof (struct bidi_it
)
677 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
)
678 + sizeof (bidi_cache_start
),
679 &bidi_cache_last_idx
, sizeof (bidi_cache_last_idx
));
684 /* Restore the cache state from a copy stashed away by
685 bidi_shelve_cache, and free the buffer used to stash that copy.
686 JUST_FREE non-zero means free the buffer, but don't restore the
687 cache; used when the corresponding iterator is discarded instead of
690 bidi_unshelve_cache (void *databuf
, int just_free
)
692 unsigned char *p
= databuf
;
698 /* A NULL pointer means an empty cache. */
699 bidi_cache_start
= 0;
710 memcpy (&idx
, p
, sizeof (bidi_cache_idx
));
711 bidi_cache_total_alloc
712 -= bidi_shelve_header_size
+ idx
* sizeof (struct bidi_it
);
716 memcpy (&bidi_cache_idx
, p
, sizeof (bidi_cache_idx
));
717 bidi_cache_ensure_space (bidi_cache_idx
);
718 memcpy (bidi_cache
, p
+ sizeof (bidi_cache_idx
),
719 bidi_cache_idx
* sizeof (struct bidi_it
));
720 memcpy (bidi_cache_start_stack
,
721 p
+ sizeof (bidi_cache_idx
)
722 + bidi_cache_idx
* sizeof (struct bidi_it
),
723 sizeof (bidi_cache_start_stack
));
724 memcpy (&bidi_cache_sp
,
725 p
+ sizeof (bidi_cache_idx
)
726 + bidi_cache_idx
* sizeof (struct bidi_it
)
727 + sizeof (bidi_cache_start_stack
),
728 sizeof (bidi_cache_sp
));
729 memcpy (&bidi_cache_start
,
730 p
+ sizeof (bidi_cache_idx
)
731 + bidi_cache_idx
* sizeof (struct bidi_it
)
732 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
),
733 sizeof (bidi_cache_start
));
734 memcpy (&bidi_cache_last_idx
,
735 p
+ sizeof (bidi_cache_idx
)
736 + bidi_cache_idx
* sizeof (struct bidi_it
)
737 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
)
738 + sizeof (bidi_cache_start
),
739 sizeof (bidi_cache_last_idx
));
740 bidi_cache_total_alloc
741 -= (bidi_shelve_header_size
742 + bidi_cache_idx
* sizeof (struct bidi_it
));
750 /***********************************************************************
752 ***********************************************************************/
754 bidi_initialize (void)
756 bidi_type_table
= uniprop_table (intern ("bidi-class"));
757 if (NILP (bidi_type_table
))
759 staticpro (&bidi_type_table
);
761 bidi_mirror_table
= uniprop_table (intern ("mirroring"));
762 if (NILP (bidi_mirror_table
))
764 staticpro (&bidi_mirror_table
);
766 Qparagraph_start
= intern ("paragraph-start");
767 staticpro (&Qparagraph_start
);
768 paragraph_start_re
= Fsymbol_value (Qparagraph_start
);
769 if (!STRINGP (paragraph_start_re
))
770 paragraph_start_re
= build_string ("\f\\|[ \t]*$");
771 staticpro (¶graph_start_re
);
772 Qparagraph_separate
= intern ("paragraph-separate");
773 staticpro (&Qparagraph_separate
);
774 paragraph_separate_re
= Fsymbol_value (Qparagraph_separate
);
775 if (!STRINGP (paragraph_separate_re
))
776 paragraph_separate_re
= build_string ("[ \t\f]*$");
777 staticpro (¶graph_separate_re
);
780 bidi_cache_total_alloc
= 0;
782 bidi_initialized
= 1;
785 /* Do whatever UAX#9 clause X8 says should be done at paragraph's
788 bidi_set_paragraph_end (struct bidi_it
*bidi_it
)
790 bidi_it
->invalid_levels
= 0;
791 bidi_it
->invalid_rl_levels
= -1;
792 bidi_it
->stack_idx
= 0;
793 bidi_it
->resolved_level
= bidi_it
->level_stack
[0].level
;
796 /* Initialize the bidi iterator from buffer/string position CHARPOS. */
798 bidi_init_it (EMACS_INT charpos
, EMACS_INT bytepos
, int frame_window_p
,
799 struct bidi_it
*bidi_it
)
801 if (! bidi_initialized
)
804 bidi_it
->charpos
= charpos
;
806 bidi_it
->bytepos
= bytepos
;
807 bidi_it
->frame_window_p
= frame_window_p
;
808 bidi_it
->nchars
= -1; /* to be computed in bidi_resolve_explicit_1 */
809 bidi_it
->first_elt
= 1;
810 bidi_set_paragraph_end (bidi_it
);
811 bidi_it
->new_paragraph
= 1;
812 bidi_it
->separator_limit
= -1;
813 bidi_it
->type
= NEUTRAL_B
;
814 bidi_it
->type_after_w1
= NEUTRAL_B
;
815 bidi_it
->orig_type
= NEUTRAL_B
;
816 bidi_it
->prev_was_pdf
= 0;
817 bidi_it
->prev
.type
= bidi_it
->prev
.type_after_w1
818 = bidi_it
->prev
.orig_type
= UNKNOWN_BT
;
819 bidi_it
->last_strong
.type
= bidi_it
->last_strong
.type_after_w1
820 = bidi_it
->last_strong
.orig_type
= UNKNOWN_BT
;
821 bidi_it
->next_for_neutral
.charpos
= -1;
822 bidi_it
->next_for_neutral
.type
823 = bidi_it
->next_for_neutral
.type_after_w1
824 = bidi_it
->next_for_neutral
.orig_type
= UNKNOWN_BT
;
825 bidi_it
->prev_for_neutral
.charpos
= -1;
826 bidi_it
->prev_for_neutral
.type
827 = bidi_it
->prev_for_neutral
.type_after_w1
828 = bidi_it
->prev_for_neutral
.orig_type
= UNKNOWN_BT
;
829 bidi_it
->sor
= L2R
; /* FIXME: should it be user-selectable? */
830 bidi_it
->disp_pos
= -1; /* invalid/unknown */
831 bidi_it
->disp_prop
= 0;
832 /* We can only shrink the cache if we are at the bottom level of its
834 if (bidi_cache_start
== 0)
835 bidi_cache_shrink ();
840 /* Perform initializations for reordering a new line of bidi text. */
842 bidi_line_init (struct bidi_it
*bidi_it
)
844 bidi_it
->scan_dir
= 1; /* FIXME: do we need to have control on this? */
845 bidi_it
->resolved_level
= bidi_it
->level_stack
[0].level
;
846 bidi_it
->level_stack
[0].override
= NEUTRAL_DIR
; /* X1 */
847 bidi_it
->invalid_levels
= 0;
848 bidi_it
->invalid_rl_levels
= -1;
849 /* Setting this to zero will force its recomputation the first time
850 we need it for W5. */
851 bidi_it
->next_en_pos
= 0;
852 bidi_it
->next_en_type
= UNKNOWN_BT
;
853 bidi_it
->next_for_ws
.type
= UNKNOWN_BT
;
854 bidi_set_sor_type (bidi_it
,
855 (bidi_it
->paragraph_dir
== R2L
? 1 : 0),
856 bidi_it
->level_stack
[0].level
); /* X10 */
862 /***********************************************************************
864 ***********************************************************************/
866 /* Count bytes in string S between BEG/BEGBYTE and END. BEG and END
867 are zero-based character positions in S, BEGBYTE is byte position
868 corresponding to BEG. UNIBYTE, if non-zero, means S is a unibyte
870 static inline EMACS_INT
871 bidi_count_bytes (const unsigned char *s
, const EMACS_INT beg
,
872 const EMACS_INT begbyte
, const EMACS_INT end
, int unibyte
)
875 const unsigned char *p
= s
+ begbyte
, *start
= p
;
881 if (!CHAR_HEAD_P (*p
))
886 p
+= BYTES_BY_CHAR_HEAD (*p
);
894 /* Fetch and returns the character at byte position BYTEPOS. If S is
895 non-NULL, fetch the character from string S; otherwise fetch the
896 character from the current buffer. UNIBYTE non-zero means S is a
899 bidi_char_at_pos (EMACS_INT bytepos
, const unsigned char *s
, int unibyte
)
906 return STRING_CHAR (s
+ bytepos
);
909 return FETCH_MULTIBYTE_CHAR (bytepos
);
912 /* Fetch and return the character at BYTEPOS/CHARPOS. If that
913 character is covered by a display string, treat the entire run of
914 covered characters as a single character, either u+2029 or u+FFFC,
915 and return their combined length in CH_LEN and NCHARS. DISP_POS
916 specifies the character position of the next display string, or -1
917 if not yet computed. When the next character is at or beyond that
918 position, the function updates DISP_POS with the position of the
919 next display string. DISP_PROP non-zero means that there's really
920 a display string at DISP_POS, as opposed to when we searched till
921 DISP_POS without finding one. If DISP_PROP is 2, it means the
922 display spec is of the form `(space ...)', which is replaced with
923 u+2029 to handle it as a paragraph separator. STRING->s is the C
924 string to iterate, or NULL if iterating over a buffer or a Lisp
925 string; in the latter case, STRING->lstring is the Lisp string. */
927 bidi_fetch_char (EMACS_INT bytepos
, EMACS_INT charpos
, EMACS_INT
*disp_pos
,
928 int *disp_prop
, struct bidi_string_data
*string
,
929 int frame_window_p
, EMACS_INT
*ch_len
, EMACS_INT
*nchars
)
933 = (string
->s
|| STRINGP (string
->lstring
)) ? string
->schars
: ZV
;
936 /* If we got past the last known position of display string, compute
937 the position of the next one. That position could be at CHARPOS. */
938 if (charpos
< endpos
&& charpos
> *disp_pos
)
940 SET_TEXT_POS (pos
, charpos
, bytepos
);
941 *disp_pos
= compute_display_string_pos (&pos
, string
, frame_window_p
,
945 /* Fetch the character at BYTEPOS. */
946 if (charpos
>= endpos
)
954 else if (charpos
>= *disp_pos
&& *disp_prop
)
956 EMACS_INT disp_end_pos
;
958 /* We don't expect to find ourselves in the middle of a display
959 property. Hopefully, it will never be needed. */
960 if (charpos
> *disp_pos
)
962 /* Text covered by `display' properties and overlays with
963 display properties or display strings is handled as a single
964 character that represents the entire run of characters
965 covered by the display property. */
968 /* `(space ...)' display specs are handled as paragraph
969 separators for the purposes of the reordering; see UAX#9
970 section 3 and clause HL1 in section 4.3 there. */
975 /* All other display specs are handled as the Unicode Object
976 Replacement Character. */
979 disp_end_pos
= compute_display_string_end (*disp_pos
, string
);
980 if (disp_end_pos
< 0)
982 /* Somebody removed the display string from the buffer
983 behind our back. Recover by processing this buffer
984 position as if no display property were present there to
989 *nchars
= disp_end_pos
- *disp_pos
;
993 *ch_len
= bidi_count_bytes (string
->s
, *disp_pos
, bytepos
,
994 disp_end_pos
, string
->unibyte
);
995 else if (STRINGP (string
->lstring
))
996 *ch_len
= bidi_count_bytes (SDATA (string
->lstring
), *disp_pos
,
997 bytepos
, disp_end_pos
, string
->unibyte
);
999 *ch_len
= CHAR_TO_BYTE (disp_end_pos
) - bytepos
;
1008 if (!string
->unibyte
)
1010 ch
= STRING_CHAR_AND_LENGTH (string
->s
+ bytepos
, len
);
1015 ch
= UNIBYTE_TO_CHAR (string
->s
[bytepos
]);
1019 else if (STRINGP (string
->lstring
))
1023 if (!string
->unibyte
)
1025 ch
= STRING_CHAR_AND_LENGTH (SDATA (string
->lstring
) + bytepos
,
1031 ch
= UNIBYTE_TO_CHAR (SREF (string
->lstring
, bytepos
));
1037 ch
= FETCH_MULTIBYTE_CHAR (bytepos
);
1038 *ch_len
= CHAR_BYTES (ch
);
1043 /* If we just entered a run of characters covered by a display
1044 string, compute the position of the next display string. */
1045 if (charpos
+ *nchars
<= endpos
&& charpos
+ *nchars
> *disp_pos
1048 SET_TEXT_POS (pos
, charpos
+ *nchars
, bytepos
+ *ch_len
);
1049 *disp_pos
= compute_display_string_pos (&pos
, string
, frame_window_p
,
1057 /***********************************************************************
1058 Determining paragraph direction
1059 ***********************************************************************/
1061 /* Check if buffer position CHARPOS/BYTEPOS is the end of a paragraph.
1062 Value is the non-negative length of the paragraph separator
1063 following the buffer position, -1 if position is at the beginning
1064 of a new paragraph, or -2 if position is neither at beginning nor
1065 at end of a paragraph. */
1067 bidi_at_paragraph_end (EMACS_INT charpos
, EMACS_INT bytepos
)
1070 Lisp_Object start_re
;
1073 sep_re
= paragraph_separate_re
;
1074 start_re
= paragraph_start_re
;
1076 val
= fast_looking_at (sep_re
, charpos
, bytepos
, ZV
, ZV_BYTE
, Qnil
);
1079 if (fast_looking_at (start_re
, charpos
, bytepos
, ZV
, ZV_BYTE
, Qnil
) >= 0)
1088 /* On my 2005-vintage machine, searching back for paragraph start
1089 takes ~1 ms per line. And bidi_paragraph_init is called 4 times
1090 when user types C-p. The number below limits each call to
1091 bidi_paragraph_init to about 10 ms. */
1092 #define MAX_PARAGRAPH_SEARCH 7500
1094 /* Find the beginning of this paragraph by looking back in the buffer.
1095 Value is the byte position of the paragraph's beginning, or
1096 BEGV_BYTE if paragraph_start_re is still not found after looking
1097 back MAX_PARAGRAPH_SEARCH lines in the buffer. */
1099 bidi_find_paragraph_start (EMACS_INT pos
, EMACS_INT pos_byte
)
1101 Lisp_Object re
= paragraph_start_re
;
1102 EMACS_INT limit
= ZV
, limit_byte
= ZV_BYTE
;
1105 while (pos_byte
> BEGV_BYTE
1106 && n
++ < MAX_PARAGRAPH_SEARCH
1107 && fast_looking_at (re
, pos
, pos_byte
, limit
, limit_byte
, Qnil
) < 0)
1109 /* FIXME: What if the paragraph beginning is covered by a
1110 display string? And what if a display string covering some
1111 of the text over which we scan back includes
1112 paragraph_start_re? */
1113 pos
= find_next_newline_no_quit (pos
- 1, -1);
1114 pos_byte
= CHAR_TO_BYTE (pos
);
1116 if (n
>= MAX_PARAGRAPH_SEARCH
)
1117 pos_byte
= BEGV_BYTE
;
1121 /* Determine the base direction, a.k.a. base embedding level, of the
1122 paragraph we are about to iterate through. If DIR is either L2R or
1123 R2L, just use that. Otherwise, determine the paragraph direction
1124 from the first strong directional character of the paragraph.
1126 NO_DEFAULT_P non-zero means don't default to L2R if the paragraph
1127 has no strong directional characters and both DIR and
1128 bidi_it->paragraph_dir are NEUTRAL_DIR. In that case, search back
1129 in the buffer until a paragraph is found with a strong character,
1130 or until hitting BEGV. In the latter case, fall back to L2R. This
1131 flag is used in current-bidi-paragraph-direction.
1133 Note that this function gives the paragraph separator the same
1134 direction as the preceding paragraph, even though Emacs generally
1135 views the separartor as not belonging to any paragraph. */
1137 bidi_paragraph_init (bidi_dir_t dir
, struct bidi_it
*bidi_it
, int no_default_p
)
1139 EMACS_INT bytepos
= bidi_it
->bytepos
;
1140 int string_p
= bidi_it
->string
.s
!= NULL
|| STRINGP (bidi_it
->string
.lstring
);
1141 EMACS_INT pstartbyte
;
1142 /* Note that begbyte is a byte position, while end is a character
1143 position. Yes, this is ugly, but we are trying to avoid costly
1144 calls to BYTE_TO_CHAR and its ilk. */
1145 EMACS_INT begbyte
= string_p
? 0 : BEGV_BYTE
;
1146 EMACS_INT end
= string_p
? bidi_it
->string
.schars
: ZV
;
1148 /* Special case for an empty buffer. */
1149 if (bytepos
== begbyte
&& bidi_it
->charpos
== end
)
1151 /* We should never be called at EOB or before BEGV. */
1152 else if (bidi_it
->charpos
>= end
|| bytepos
< begbyte
)
1157 bidi_it
->paragraph_dir
= L2R
;
1158 bidi_it
->new_paragraph
= 0;
1160 else if (dir
== R2L
)
1162 bidi_it
->paragraph_dir
= R2L
;
1163 bidi_it
->new_paragraph
= 0;
1165 else if (dir
== NEUTRAL_DIR
) /* P2 */
1168 EMACS_INT ch_len
, nchars
;
1169 EMACS_INT pos
, disp_pos
= -1;
1172 const unsigned char *s
;
1174 if (!bidi_initialized
)
1177 /* If we are inside a paragraph separator, we are just waiting
1178 for the separator to be exhausted; use the previous paragraph
1179 direction. But don't do that if we have been just reseated,
1180 because we need to reinitialize below in that case. */
1181 if (!bidi_it
->first_elt
1182 && bidi_it
->charpos
< bidi_it
->separator_limit
)
1185 /* If we are on a newline, get past it to where the next
1186 paragraph might start. But don't do that at BEGV since then
1187 we are potentially in a new paragraph that doesn't yet
1189 pos
= bidi_it
->charpos
;
1190 s
= (STRINGP (bidi_it
->string
.lstring
)
1191 ? SDATA (bidi_it
->string
.lstring
)
1192 : bidi_it
->string
.s
);
1193 if (bytepos
> begbyte
1194 && bidi_char_at_pos (bytepos
, s
, bidi_it
->string
.unibyte
) == '\n')
1200 /* We are either at the beginning of a paragraph or in the
1201 middle of it. Find where this paragraph starts. */
1204 /* We don't support changes of paragraph direction inside a
1205 string. It is treated as a single paragraph. */
1209 pstartbyte
= bidi_find_paragraph_start (pos
, bytepos
);
1210 bidi_it
->separator_limit
= -1;
1211 bidi_it
->new_paragraph
= 0;
1213 /* The following loop is run more than once only if NO_DEFAULT_P
1214 is non-zero, and only if we are iterating on a buffer. */
1216 bytepos
= pstartbyte
;
1218 pos
= BYTE_TO_CHAR (bytepos
);
1219 ch
= bidi_fetch_char (bytepos
, pos
, &disp_pos
, &disp_prop
,
1221 bidi_it
->frame_window_p
, &ch_len
, &nchars
);
1222 type
= bidi_get_type (ch
, NEUTRAL_DIR
);
1224 for (pos
+= nchars
, bytepos
+= ch_len
;
1225 (bidi_get_category (type
) != STRONG
)
1226 || (bidi_ignore_explicit_marks_for_paragraph_level
1227 && (type
== RLE
|| type
== RLO
1228 || type
== LRE
|| type
== LRO
));
1229 type
= bidi_get_type (ch
, NEUTRAL_DIR
))
1233 /* Pretend there's a paragraph separator at end of
1239 && type
== NEUTRAL_B
1240 && bidi_at_paragraph_end (pos
, bytepos
) >= -1)
1242 /* Fetch next character and advance to get past it. */
1243 ch
= bidi_fetch_char (bytepos
, pos
, &disp_pos
,
1244 &disp_prop
, &bidi_it
->string
,
1245 bidi_it
->frame_window_p
, &ch_len
, &nchars
);
1249 if ((type
== STRONG_R
|| type
== STRONG_AL
) /* P3 */
1250 || (!bidi_ignore_explicit_marks_for_paragraph_level
1251 && (type
== RLO
|| type
== RLE
)))
1252 bidi_it
->paragraph_dir
= R2L
;
1253 else if (type
== STRONG_L
1254 || (!bidi_ignore_explicit_marks_for_paragraph_level
1255 && (type
== LRO
|| type
== LRE
)))
1256 bidi_it
->paragraph_dir
= L2R
;
1258 && no_default_p
&& bidi_it
->paragraph_dir
== NEUTRAL_DIR
)
1260 /* If this paragraph is at BEGV, default to L2R. */
1261 if (pstartbyte
== BEGV_BYTE
)
1262 bidi_it
->paragraph_dir
= L2R
; /* P3 and HL1 */
1265 EMACS_INT prevpbyte
= pstartbyte
;
1266 EMACS_INT p
= BYTE_TO_CHAR (pstartbyte
), pbyte
= pstartbyte
;
1268 /* Find the beginning of the previous paragraph, if any. */
1269 while (pbyte
> BEGV_BYTE
&& prevpbyte
>= pstartbyte
)
1271 /* FXIME: What if p is covered by a display
1272 string? See also a FIXME inside
1273 bidi_find_paragraph_start. */
1275 pbyte
= CHAR_TO_BYTE (p
);
1276 prevpbyte
= bidi_find_paragraph_start (p
, pbyte
);
1278 pstartbyte
= prevpbyte
;
1282 && no_default_p
&& bidi_it
->paragraph_dir
== NEUTRAL_DIR
);
1287 /* Contrary to UAX#9 clause P3, we only default the paragraph
1288 direction to L2R if we have no previous usable paragraph
1289 direction. This is allowed by the HL1 clause. */
1290 if (bidi_it
->paragraph_dir
!= L2R
&& bidi_it
->paragraph_dir
!= R2L
)
1291 bidi_it
->paragraph_dir
= L2R
; /* P3 and HL1 ``higher-level protocols'' */
1292 if (bidi_it
->paragraph_dir
== R2L
)
1293 bidi_it
->level_stack
[0].level
= 1;
1295 bidi_it
->level_stack
[0].level
= 0;
1297 bidi_line_init (bidi_it
);
1301 /***********************************************************************
1302 Resolving explicit and implicit levels.
1303 The rest of this file constitutes the core of the UBA implementation.
1304 ***********************************************************************/
1307 bidi_explicit_dir_char (int ch
)
1309 bidi_type_t ch_type
;
1311 if (!bidi_initialized
)
1313 ch_type
= (bidi_type_t
) XINT (CHAR_TABLE_REF (bidi_type_table
, ch
));
1314 return (ch_type
== LRE
|| ch_type
== LRO
1315 || ch_type
== RLE
|| ch_type
== RLO
1319 /* A helper function for bidi_resolve_explicit. It advances to the
1320 next character in logical order and determines the new embedding
1321 level and directional override, but does not take into account
1322 empty embeddings. */
1324 bidi_resolve_explicit_1 (struct bidi_it
*bidi_it
)
1330 bidi_dir_t override
;
1331 int string_p
= bidi_it
->string
.s
!= NULL
|| STRINGP (bidi_it
->string
.lstring
);
1333 /* If reseat()'ed, don't advance, so as to start iteration from the
1334 position where we were reseated. bidi_it->bytepos can be less
1335 than BEGV_BYTE after reseat to BEGV. */
1336 if (bidi_it
->bytepos
< (string_p
? 0 : BEGV_BYTE
)
1337 || bidi_it
->first_elt
)
1339 bidi_it
->first_elt
= 0;
1342 const unsigned char *p
1343 = (STRINGP (bidi_it
->string
.lstring
)
1344 ? SDATA (bidi_it
->string
.lstring
)
1345 : bidi_it
->string
.s
);
1347 if (bidi_it
->charpos
< 0)
1348 bidi_it
->charpos
= 0;
1349 bidi_it
->bytepos
= bidi_count_bytes (p
, 0, 0, bidi_it
->charpos
,
1350 bidi_it
->string
.unibyte
);
1354 if (bidi_it
->charpos
< BEGV
)
1355 bidi_it
->charpos
= BEGV
;
1356 bidi_it
->bytepos
= CHAR_TO_BYTE (bidi_it
->charpos
);
1359 /* Don't move at end of buffer/string. */
1360 else if (bidi_it
->charpos
< (string_p
? bidi_it
->string
.schars
: ZV
))
1362 /* Advance to the next character, skipping characters covered by
1363 display strings (nchars > 1). */
1364 if (bidi_it
->nchars
<= 0)
1366 bidi_it
->charpos
+= bidi_it
->nchars
;
1367 if (bidi_it
->ch_len
== 0)
1369 bidi_it
->bytepos
+= bidi_it
->ch_len
;
1372 current_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
; /* X1 */
1373 override
= bidi_it
->level_stack
[bidi_it
->stack_idx
].override
;
1374 new_level
= current_level
;
1376 if (bidi_it
->charpos
>= (string_p
? bidi_it
->string
.schars
: ZV
))
1379 bidi_it
->ch_len
= 1;
1380 bidi_it
->nchars
= 1;
1381 bidi_it
->disp_pos
= (string_p
? bidi_it
->string
.schars
: ZV
);
1382 bidi_it
->disp_prop
= 0;
1386 /* Fetch the character at BYTEPOS. If it is covered by a
1387 display string, treat the entire run of covered characters as
1388 a single character u+FFFC. */
1389 curchar
= bidi_fetch_char (bidi_it
->bytepos
, bidi_it
->charpos
,
1390 &bidi_it
->disp_pos
, &bidi_it
->disp_prop
,
1391 &bidi_it
->string
, bidi_it
->frame_window_p
,
1392 &bidi_it
->ch_len
, &bidi_it
->nchars
);
1394 bidi_it
->ch
= curchar
;
1396 /* Don't apply directional override here, as all the types we handle
1397 below will not be affected by the override anyway, and we need
1398 the original type unaltered. The override will be applied in
1399 bidi_resolve_weak. */
1400 type
= bidi_get_type (curchar
, NEUTRAL_DIR
);
1401 bidi_it
->orig_type
= type
;
1402 bidi_check_type (bidi_it
->orig_type
);
1405 bidi_it
->prev_was_pdf
= 0;
1407 bidi_it
->type_after_w1
= UNKNOWN_BT
;
1413 bidi_it
->type_after_w1
= type
;
1414 bidi_check_type (bidi_it
->type_after_w1
);
1415 type
= WEAK_BN
; /* X9/Retaining */
1416 if (bidi_it
->ignore_bn_limit
<= -1)
1418 if (current_level
<= BIDI_MAXLEVEL
- 4)
1420 /* Compute the least odd embedding level greater than
1421 the current level. */
1422 new_level
= ((current_level
+ 1) & ~1) + 1;
1423 if (bidi_it
->type_after_w1
== RLE
)
1424 override
= NEUTRAL_DIR
;
1427 if (current_level
== BIDI_MAXLEVEL
- 4)
1428 bidi_it
->invalid_rl_levels
= 0;
1429 bidi_push_embedding_level (bidi_it
, new_level
, override
);
1433 bidi_it
->invalid_levels
++;
1434 /* See the commentary about invalid_rl_levels below. */
1435 if (bidi_it
->invalid_rl_levels
< 0)
1436 bidi_it
->invalid_rl_levels
= 0;
1437 bidi_it
->invalid_rl_levels
++;
1440 else if (bidi_it
->prev
.type_after_w1
== WEAK_EN
/* W5/Retaining */
1441 || (bidi_it
->next_en_pos
> bidi_it
->charpos
1442 && bidi_it
->next_en_type
== WEAK_EN
))
1447 bidi_it
->type_after_w1
= type
;
1448 bidi_check_type (bidi_it
->type_after_w1
);
1449 type
= WEAK_BN
; /* X9/Retaining */
1450 if (bidi_it
->ignore_bn_limit
<= -1)
1452 if (current_level
<= BIDI_MAXLEVEL
- 5)
1454 /* Compute the least even embedding level greater than
1455 the current level. */
1456 new_level
= ((current_level
+ 2) & ~1);
1457 if (bidi_it
->type_after_w1
== LRE
)
1458 override
= NEUTRAL_DIR
;
1461 bidi_push_embedding_level (bidi_it
, new_level
, override
);
1465 bidi_it
->invalid_levels
++;
1466 /* invalid_rl_levels counts invalid levels encountered
1467 while the embedding level was already too high for
1468 LRE/LRO, but not for RLE/RLO. That is because
1469 there may be exactly one PDF which we should not
1470 ignore even though invalid_levels is non-zero.
1471 invalid_rl_levels helps to know what PDF is
1473 if (bidi_it
->invalid_rl_levels
>= 0)
1474 bidi_it
->invalid_rl_levels
++;
1477 else if (bidi_it
->prev
.type_after_w1
== WEAK_EN
/* W5/Retaining */
1478 || (bidi_it
->next_en_pos
> bidi_it
->charpos
1479 && bidi_it
->next_en_type
== WEAK_EN
))
1483 bidi_it
->type_after_w1
= type
;
1484 bidi_check_type (bidi_it
->type_after_w1
);
1485 type
= WEAK_BN
; /* X9/Retaining */
1486 if (bidi_it
->ignore_bn_limit
<= -1)
1488 if (!bidi_it
->invalid_rl_levels
)
1490 new_level
= bidi_pop_embedding_level (bidi_it
);
1491 bidi_it
->invalid_rl_levels
= -1;
1492 if (bidi_it
->invalid_levels
)
1493 bidi_it
->invalid_levels
--;
1494 /* else nothing: UAX#9 says to ignore invalid PDFs */
1496 if (!bidi_it
->invalid_levels
)
1497 new_level
= bidi_pop_embedding_level (bidi_it
);
1500 bidi_it
->invalid_levels
--;
1501 bidi_it
->invalid_rl_levels
--;
1504 else if (bidi_it
->prev
.type_after_w1
== WEAK_EN
/* W5/Retaining */
1505 || (bidi_it
->next_en_pos
> bidi_it
->charpos
1506 && bidi_it
->next_en_type
== WEAK_EN
))
1514 bidi_it
->type
= type
;
1515 bidi_check_type (bidi_it
->type
);
1520 /* Given an iterator state in BIDI_IT, advance one character position
1521 in the buffer/string to the next character (in the logical order),
1522 resolve any explicit embeddings and directional overrides, and
1523 return the embedding level of the character after resolving
1524 explicit directives and ignoring empty embeddings. */
1526 bidi_resolve_explicit (struct bidi_it
*bidi_it
)
1528 int prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
1529 int new_level
= bidi_resolve_explicit_1 (bidi_it
);
1530 EMACS_INT eob
= bidi_it
->string
.s
? bidi_it
->string
.schars
: ZV
;
1531 const unsigned char *s
1532 = (STRINGP (bidi_it
->string
.lstring
)
1533 ? SDATA (bidi_it
->string
.lstring
)
1534 : bidi_it
->string
.s
);
1536 if (prev_level
< new_level
1537 && bidi_it
->type
== WEAK_BN
1538 && bidi_it
->ignore_bn_limit
== -1 /* only if not already known */
1539 && bidi_it
->charpos
< eob
/* not already at EOB */
1540 && bidi_explicit_dir_char (bidi_char_at_pos (bidi_it
->bytepos
1541 + bidi_it
->ch_len
, s
,
1542 bidi_it
->string
.unibyte
)))
1544 /* Avoid pushing and popping embedding levels if the level run
1545 is empty, as this breaks level runs where it shouldn't.
1546 UAX#9 removes all the explicit embedding and override codes,
1547 so empty embeddings disappear without a trace. We need to
1548 behave as if we did the same. */
1549 struct bidi_it saved_it
;
1550 int level
= prev_level
;
1552 bidi_copy_it (&saved_it
, bidi_it
);
1554 while (bidi_explicit_dir_char (bidi_char_at_pos (bidi_it
->bytepos
1555 + bidi_it
->ch_len
, s
,
1556 bidi_it
->string
.unibyte
)))
1558 /* This advances to the next character, skipping any
1559 characters covered by display strings. */
1560 level
= bidi_resolve_explicit_1 (bidi_it
);
1561 /* If string.lstring was relocated inside bidi_resolve_explicit_1,
1562 a pointer to its data is no longer valid. */
1563 if (STRINGP (bidi_it
->string
.lstring
))
1564 s
= SDATA (bidi_it
->string
.lstring
);
1567 if (bidi_it
->nchars
<= 0)
1569 if (level
== prev_level
) /* empty embedding */
1570 saved_it
.ignore_bn_limit
= bidi_it
->charpos
+ bidi_it
->nchars
;
1571 else /* this embedding is non-empty */
1572 saved_it
.ignore_bn_limit
= -2;
1574 bidi_copy_it (bidi_it
, &saved_it
);
1575 if (bidi_it
->ignore_bn_limit
> -1)
1577 /* We pushed a level, but we shouldn't have. Undo that. */
1578 if (!bidi_it
->invalid_rl_levels
)
1580 new_level
= bidi_pop_embedding_level (bidi_it
);
1581 bidi_it
->invalid_rl_levels
= -1;
1582 if (bidi_it
->invalid_levels
)
1583 bidi_it
->invalid_levels
--;
1585 if (!bidi_it
->invalid_levels
)
1586 new_level
= bidi_pop_embedding_level (bidi_it
);
1589 bidi_it
->invalid_levels
--;
1590 bidi_it
->invalid_rl_levels
--;
1595 if (bidi_it
->type
== NEUTRAL_B
) /* X8 */
1597 bidi_set_paragraph_end (bidi_it
);
1598 /* This is needed by bidi_resolve_weak below, and in L1. */
1599 bidi_it
->type_after_w1
= bidi_it
->type
;
1600 bidi_check_type (bidi_it
->type_after_w1
);
1606 /* Advance in the buffer/string, resolve weak types and return the
1607 type of the next character after weak type resolution. */
1609 bidi_resolve_weak (struct bidi_it
*bidi_it
)
1612 bidi_dir_t override
;
1613 int prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
1614 int new_level
= bidi_resolve_explicit (bidi_it
);
1616 bidi_type_t type_of_next
;
1617 struct bidi_it saved_it
;
1619 = ((STRINGP (bidi_it
->string
.lstring
) || bidi_it
->string
.s
)
1620 ? bidi_it
->string
.schars
: ZV
);
1622 type
= bidi_it
->type
;
1623 override
= bidi_it
->level_stack
[bidi_it
->stack_idx
].override
;
1625 if (type
== UNKNOWN_BT
1633 if (new_level
!= prev_level
1634 || bidi_it
->type
== NEUTRAL_B
)
1636 /* We've got a new embedding level run, compute the directional
1637 type of sor and initialize per-run variables (UAX#9, clause
1639 bidi_set_sor_type (bidi_it
, prev_level
, new_level
);
1641 else if (type
== NEUTRAL_S
|| type
== NEUTRAL_WS
1642 || type
== WEAK_BN
|| type
== STRONG_AL
)
1643 bidi_it
->type_after_w1
= type
; /* needed in L1 */
1644 bidi_check_type (bidi_it
->type_after_w1
);
1646 /* Level and directional override status are already recorded in
1647 bidi_it, and do not need any change; see X6. */
1648 if (override
== R2L
) /* X6 */
1650 else if (override
== L2R
)
1654 if (type
== WEAK_NSM
) /* W1 */
1656 /* Note that we don't need to consider the case where the
1657 prev character has its type overridden by an RLO or LRO,
1658 because then either the type of this NSM would have been
1659 also overridden, or the previous character is outside the
1660 current level run, and thus not relevant to this NSM.
1661 This is why NSM gets the type_after_w1 of the previous
1663 if (bidi_it
->prev
.type_after_w1
!= UNKNOWN_BT
1664 /* if type_after_w1 is NEUTRAL_B, this NSM is at sor */
1665 && bidi_it
->prev
.type_after_w1
!= NEUTRAL_B
)
1666 type
= bidi_it
->prev
.type_after_w1
;
1667 else if (bidi_it
->sor
== R2L
)
1669 else if (bidi_it
->sor
== L2R
)
1671 else /* shouldn't happen! */
1674 if (type
== WEAK_EN
/* W2 */
1675 && bidi_it
->last_strong
.type_after_w1
== STRONG_AL
)
1677 else if (type
== STRONG_AL
) /* W3 */
1679 else if ((type
== WEAK_ES
/* W4 */
1680 && bidi_it
->prev
.type_after_w1
== WEAK_EN
1681 && bidi_it
->prev
.orig_type
== WEAK_EN
)
1683 && ((bidi_it
->prev
.type_after_w1
== WEAK_EN
1684 && bidi_it
->prev
.orig_type
== WEAK_EN
)
1685 || bidi_it
->prev
.type_after_w1
== WEAK_AN
)))
1687 const unsigned char *s
1688 = (STRINGP (bidi_it
->string
.lstring
)
1689 ? SDATA (bidi_it
->string
.lstring
)
1690 : bidi_it
->string
.s
);
1692 next_char
= (bidi_it
->charpos
+ bidi_it
->nchars
>= eob
1694 : bidi_char_at_pos (bidi_it
->bytepos
+ bidi_it
->ch_len
,
1695 s
, bidi_it
->string
.unibyte
));
1696 type_of_next
= bidi_get_type (next_char
, override
);
1698 if (type_of_next
== WEAK_BN
1699 || bidi_explicit_dir_char (next_char
))
1701 bidi_copy_it (&saved_it
, bidi_it
);
1702 while (bidi_resolve_explicit (bidi_it
) == new_level
1703 && bidi_it
->type
== WEAK_BN
)
1705 type_of_next
= bidi_it
->type
;
1706 bidi_copy_it (bidi_it
, &saved_it
);
1709 /* If the next character is EN, but the last strong-type
1710 character is AL, that next EN will be changed to AN when
1711 we process it in W2 above. So in that case, this ES
1712 should not be changed into EN. */
1714 && type_of_next
== WEAK_EN
1715 && bidi_it
->last_strong
.type_after_w1
!= STRONG_AL
)
1717 else if (type
== WEAK_CS
)
1719 if (bidi_it
->prev
.type_after_w1
== WEAK_AN
1720 && (type_of_next
== WEAK_AN
1721 /* If the next character is EN, but the last
1722 strong-type character is AL, EN will be later
1723 changed to AN when we process it in W2 above.
1724 So in that case, this ES should not be
1726 || (type_of_next
== WEAK_EN
1727 && bidi_it
->last_strong
.type_after_w1
== STRONG_AL
)))
1729 else if (bidi_it
->prev
.type_after_w1
== WEAK_EN
1730 && type_of_next
== WEAK_EN
1731 && bidi_it
->last_strong
.type_after_w1
!= STRONG_AL
)
1735 else if (type
== WEAK_ET
/* W5: ET with EN before or after it */
1736 || type
== WEAK_BN
) /* W5/Retaining */
1738 if (bidi_it
->prev
.type_after_w1
== WEAK_EN
) /* ET/BN w/EN before it */
1740 else if (bidi_it
->next_en_pos
> bidi_it
->charpos
1741 && bidi_it
->next_en_type
!= WEAK_BN
)
1743 if (bidi_it
->next_en_type
== WEAK_EN
) /* ET/BN with EN after it */
1746 else if (bidi_it
->next_en_pos
>=0)
1748 EMACS_INT en_pos
= bidi_it
->charpos
+ bidi_it
->nchars
;
1749 const unsigned char *s
= (STRINGP (bidi_it
->string
.lstring
)
1750 ? SDATA (bidi_it
->string
.lstring
)
1751 : bidi_it
->string
.s
);
1753 if (bidi_it
->nchars
<= 0)
1756 = (bidi_it
->charpos
+ bidi_it
->nchars
>= eob
1758 : bidi_char_at_pos (bidi_it
->bytepos
+ bidi_it
->ch_len
, s
,
1759 bidi_it
->string
.unibyte
));
1760 type_of_next
= bidi_get_type (next_char
, override
);
1762 if (type_of_next
== WEAK_ET
1763 || type_of_next
== WEAK_BN
1764 || bidi_explicit_dir_char (next_char
))
1766 bidi_copy_it (&saved_it
, bidi_it
);
1767 while (bidi_resolve_explicit (bidi_it
) == new_level
1768 && (bidi_it
->type
== WEAK_BN
1769 || bidi_it
->type
== WEAK_ET
))
1771 type_of_next
= bidi_it
->type
;
1772 en_pos
= bidi_it
->charpos
;
1773 bidi_copy_it (bidi_it
, &saved_it
);
1775 /* Remember this position, to speed up processing of the
1777 bidi_it
->next_en_pos
= en_pos
;
1778 if (type_of_next
== WEAK_EN
)
1780 /* If the last strong character is AL, the EN we've
1781 found will become AN when we get to it (W2). */
1782 if (bidi_it
->last_strong
.type_after_w1
== STRONG_AL
)
1783 type_of_next
= WEAK_AN
;
1784 else if (type
== WEAK_BN
)
1785 type
= NEUTRAL_ON
; /* W6/Retaining */
1789 else if (type_of_next
== NEUTRAL_B
)
1790 /* Record the fact that there are no more ENs from
1791 here to the end of paragraph, to avoid entering the
1792 loop above ever again in this paragraph. */
1793 bidi_it
->next_en_pos
= -1;
1794 /* Record the type of the character where we ended our search. */
1795 bidi_it
->next_en_type
= type_of_next
;
1800 if (type
== WEAK_ES
|| type
== WEAK_ET
|| type
== WEAK_CS
/* W6 */
1802 && (bidi_it
->prev
.type_after_w1
== WEAK_CS
/* W6/Retaining */
1803 || bidi_it
->prev
.type_after_w1
== WEAK_ES
1804 || bidi_it
->prev
.type_after_w1
== WEAK_ET
)))
1807 /* Store the type we've got so far, before we clobber it with strong
1808 types in W7 and while resolving neutral types. But leave alone
1809 the original types that were recorded above, because we will need
1810 them for the L1 clause. */
1811 if (bidi_it
->type_after_w1
== UNKNOWN_BT
)
1812 bidi_it
->type_after_w1
= type
;
1813 bidi_check_type (bidi_it
->type_after_w1
);
1815 if (type
== WEAK_EN
) /* W7 */
1817 if ((bidi_it
->last_strong
.type_after_w1
== STRONG_L
)
1818 || (bidi_it
->last_strong
.type
== UNKNOWN_BT
&& bidi_it
->sor
== L2R
))
1822 bidi_it
->type
= type
;
1823 bidi_check_type (bidi_it
->type
);
1827 /* Resolve the type of a neutral character according to the type of
1828 surrounding strong text and the current embedding level. */
1829 static inline bidi_type_t
1830 bidi_resolve_neutral_1 (bidi_type_t prev_type
, bidi_type_t next_type
, int lev
)
1832 /* N1: European and Arabic numbers are treated as though they were R. */
1833 if (next_type
== WEAK_EN
|| next_type
== WEAK_AN
)
1834 next_type
= STRONG_R
;
1835 if (prev_type
== WEAK_EN
|| prev_type
== WEAK_AN
)
1836 prev_type
= STRONG_R
;
1838 if (next_type
== prev_type
) /* N1 */
1840 else if ((lev
& 1) == 0) /* N2 */
1847 bidi_resolve_neutral (struct bidi_it
*bidi_it
)
1849 int prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
1850 bidi_type_t type
= bidi_resolve_weak (bidi_it
);
1851 int current_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
1853 if (!(type
== STRONG_R
1858 || type
== NEUTRAL_B
1859 || type
== NEUTRAL_S
1860 || type
== NEUTRAL_WS
1861 || type
== NEUTRAL_ON
))
1864 if ((type
!= NEUTRAL_B
/* Don't risk entering the long loop below if
1865 we are already at paragraph end. */
1866 && bidi_get_category (type
) == NEUTRAL
)
1867 || (type
== WEAK_BN
&& prev_level
== current_level
))
1869 if (bidi_it
->next_for_neutral
.type
!= UNKNOWN_BT
)
1870 type
= bidi_resolve_neutral_1 (bidi_it
->prev_for_neutral
.type
,
1871 bidi_it
->next_for_neutral
.type
,
1873 /* The next two "else if" clauses are shortcuts for the
1874 important special case when we have a long sequence of
1875 neutral or WEAK_BN characters, such as whitespace or nulls or
1876 other control characters, on the base embedding level of the
1877 paragraph, and that sequence goes all the way to the end of
1878 the paragraph and follows a character whose resolved
1879 directionality is identical to the base embedding level.
1880 (This is what happens in a buffer with plain L2R text that
1881 happens to include long sequences of control characters.) By
1882 virtue of N1, the result of examining this long sequence will
1883 always be either STRONG_L or STRONG_R, depending on the base
1884 embedding level. So we use this fact directly instead of
1885 entering the expensive loop in the "else" clause. */
1886 else if (current_level
== 0
1887 && bidi_it
->prev_for_neutral
.type
== STRONG_L
1888 && !bidi_explicit_dir_char (bidi_it
->ch
))
1889 type
= bidi_resolve_neutral_1 (bidi_it
->prev_for_neutral
.type
,
1890 STRONG_L
, current_level
);
1891 else if (/* current level is 1 */
1893 /* base embedding level is also 1 */
1894 && bidi_it
->level_stack
[0].level
== 1
1895 /* previous character is one of those considered R for
1896 the purposes of W5 */
1897 && (bidi_it
->prev_for_neutral
.type
== STRONG_R
1898 || bidi_it
->prev_for_neutral
.type
== WEAK_EN
1899 || bidi_it
->prev_for_neutral
.type
== WEAK_AN
)
1900 && !bidi_explicit_dir_char (bidi_it
->ch
))
1901 type
= bidi_resolve_neutral_1 (bidi_it
->prev_for_neutral
.type
,
1902 STRONG_R
, current_level
);
1905 /* Arrrgh!! The UAX#9 algorithm is too deeply entrenched in
1906 the assumption of batch-style processing; see clauses W4,
1907 W5, and especially N1, which require to look far forward
1908 (as well as back) in the buffer/string. May the fleas of
1909 a thousand camels infest the armpits of those who design
1910 supposedly general-purpose algorithms by looking at their
1911 own implementations, and fail to consider other possible
1913 struct bidi_it saved_it
;
1914 bidi_type_t next_type
;
1916 if (bidi_it
->scan_dir
== -1)
1919 bidi_copy_it (&saved_it
, bidi_it
);
1920 /* Scan the text forward until we find the first non-neutral
1921 character, and then use that to resolve the neutral we
1922 are dealing with now. We also cache the scanned iterator
1923 states, to salvage some of the effort later. */
1924 bidi_cache_iterator_state (bidi_it
, 0);
1926 /* Record the info about the previous character, so that
1927 it will be cached below with this state. */
1928 if (bidi_it
->type_after_w1
!= WEAK_BN
/* W1/Retaining */
1929 && bidi_it
->type
!= WEAK_BN
)
1930 bidi_remember_char (&bidi_it
->prev
, bidi_it
);
1931 type
= bidi_resolve_weak (bidi_it
);
1932 /* Paragraph separators have their levels fully resolved
1933 at this point, so cache them as resolved. */
1934 bidi_cache_iterator_state (bidi_it
, type
== NEUTRAL_B
);
1935 /* FIXME: implement L1 here, by testing for a newline and
1936 resetting the level for any sequence of whitespace
1937 characters adjacent to it. */
1938 } while (!(type
== NEUTRAL_B
1940 && bidi_get_category (type
) != NEUTRAL
)
1941 /* This is all per level run, so stop when we
1942 reach the end of this level run. */
1943 || (bidi_it
->level_stack
[bidi_it
->stack_idx
].level
1944 != current_level
)));
1946 bidi_remember_char (&saved_it
.next_for_neutral
, bidi_it
);
1953 /* Actually, STRONG_AL cannot happen here, because
1954 bidi_resolve_weak converts it to STRONG_R, per W3. */
1955 xassert (type
!= STRONG_AL
);
1960 /* N1: ``European and Arabic numbers are treated as
1961 though they were R.'' */
1962 next_type
= STRONG_R
;
1965 if (!bidi_explicit_dir_char (bidi_it
->ch
))
1966 abort (); /* can't happen: BNs are skipped */
1969 /* Marched all the way to the end of this level run.
1970 We need to use the eor type, whose information is
1971 stored by bidi_set_sor_type in the prev_for_neutral
1973 if (saved_it
.type
!= WEAK_BN
1974 || bidi_get_category (bidi_it
->prev
.type_after_w1
) == NEUTRAL
)
1975 next_type
= bidi_it
->prev_for_neutral
.type
;
1978 /* This is a BN which does not adjoin neutrals.
1979 Leave its type alone. */
1980 bidi_copy_it (bidi_it
, &saved_it
);
1981 return bidi_it
->type
;
1987 type
= bidi_resolve_neutral_1 (saved_it
.prev_for_neutral
.type
,
1988 next_type
, current_level
);
1989 saved_it
.next_for_neutral
.type
= next_type
;
1990 saved_it
.type
= type
;
1991 bidi_check_type (next_type
);
1992 bidi_check_type (type
);
1993 bidi_copy_it (bidi_it
, &saved_it
);
1999 /* Given an iterator state in BIDI_IT, advance one character position
2000 in the buffer/string to the next character (in the logical order),
2001 resolve the bidi type of that next character, and return that
2004 bidi_type_of_next_char (struct bidi_it
*bidi_it
)
2008 /* This should always be called during a forward scan. */
2009 if (bidi_it
->scan_dir
!= 1)
2012 /* Reset the limit until which to ignore BNs if we step out of the
2013 area where we found only empty levels. */
2014 if ((bidi_it
->ignore_bn_limit
> -1
2015 && bidi_it
->ignore_bn_limit
<= bidi_it
->charpos
)
2016 || (bidi_it
->ignore_bn_limit
== -2
2017 && !bidi_explicit_dir_char (bidi_it
->ch
)))
2018 bidi_it
->ignore_bn_limit
= -1;
2020 type
= bidi_resolve_neutral (bidi_it
);
2025 /* Given an iterator state BIDI_IT, advance one character position in
2026 the buffer/string to the next character (in the current scan
2027 direction), resolve the embedding and implicit levels of that next
2028 character, and return the resulting level. */
2030 bidi_level_of_next_char (struct bidi_it
*bidi_it
)
2033 int level
, prev_level
= -1;
2034 struct bidi_saved_info next_for_neutral
;
2035 EMACS_INT next_char_pos
= -2;
2037 if (bidi_it
->scan_dir
== 1)
2040 = ((bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
))
2041 ? bidi_it
->string
.schars
: ZV
);
2043 /* There's no sense in trying to advance if we hit end of text. */
2044 if (bidi_it
->charpos
>= eob
)
2045 return bidi_it
->resolved_level
;
2047 /* Record the info about the previous character. */
2048 if (bidi_it
->type_after_w1
!= WEAK_BN
/* W1/Retaining */
2049 && bidi_it
->type
!= WEAK_BN
)
2050 bidi_remember_char (&bidi_it
->prev
, bidi_it
);
2051 if (bidi_it
->type_after_w1
== STRONG_R
2052 || bidi_it
->type_after_w1
== STRONG_L
2053 || bidi_it
->type_after_w1
== STRONG_AL
)
2054 bidi_remember_char (&bidi_it
->last_strong
, bidi_it
);
2055 /* FIXME: it sounds like we don't need both prev and
2056 prev_for_neutral members, but I'm leaving them both for now. */
2057 if (bidi_it
->type
== STRONG_R
|| bidi_it
->type
== STRONG_L
2058 || bidi_it
->type
== WEAK_EN
|| bidi_it
->type
== WEAK_AN
)
2059 bidi_remember_char (&bidi_it
->prev_for_neutral
, bidi_it
);
2061 /* If we overstepped the characters used for resolving neutrals
2062 and whitespace, invalidate their info in the iterator. */
2063 if (bidi_it
->charpos
>= bidi_it
->next_for_neutral
.charpos
)
2064 bidi_it
->next_for_neutral
.type
= UNKNOWN_BT
;
2065 if (bidi_it
->next_en_pos
>= 0
2066 && bidi_it
->charpos
>= bidi_it
->next_en_pos
)
2068 bidi_it
->next_en_pos
= 0;
2069 bidi_it
->next_en_type
= UNKNOWN_BT
;
2071 if (bidi_it
->next_for_ws
.type
!= UNKNOWN_BT
2072 && bidi_it
->charpos
>= bidi_it
->next_for_ws
.charpos
)
2073 bidi_it
->next_for_ws
.type
= UNKNOWN_BT
;
2075 /* This must be taken before we fill the iterator with the info
2076 about the next char. If we scan backwards, the iterator
2077 state must be already cached, so there's no need to know the
2078 embedding level of the previous character, since we will be
2079 returning to our caller shortly. */
2080 prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
2082 next_for_neutral
= bidi_it
->next_for_neutral
;
2084 /* Perhaps the character we want is already cached. If it is, the
2085 call to bidi_cache_find below will return a type other than
2087 if (bidi_cache_idx
> bidi_cache_start
&& !bidi_it
->first_elt
)
2089 int bob
= ((bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
))
2091 if (bidi_it
->scan_dir
> 0)
2093 if (bidi_it
->nchars
<= 0)
2095 next_char_pos
= bidi_it
->charpos
+ bidi_it
->nchars
;
2097 else if (bidi_it
->charpos
>= bob
)
2098 /* Implementation note: we allow next_char_pos to be as low as
2099 0 for buffers or -1 for strings, and that is okay because
2100 that's the "position" of the sentinel iterator state we
2101 cached at the beginning of the iteration. */
2102 next_char_pos
= bidi_it
->charpos
- 1;
2103 if (next_char_pos
>= bob
- 1)
2104 type
= bidi_cache_find (next_char_pos
, -1, bidi_it
);
2110 if (type
!= UNKNOWN_BT
)
2112 /* Don't lose the information for resolving neutrals! The
2113 cached states could have been cached before their
2114 next_for_neutral member was computed. If we are on our way
2115 forward, we can simply take the info from the previous
2117 if (bidi_it
->scan_dir
== 1
2118 && bidi_it
->next_for_neutral
.type
== UNKNOWN_BT
)
2119 bidi_it
->next_for_neutral
= next_for_neutral
;
2121 /* If resolved_level is -1, it means this state was cached
2122 before it was completely resolved, so we cannot return
2124 if (bidi_it
->resolved_level
!= -1)
2125 return bidi_it
->resolved_level
;
2127 if (bidi_it
->scan_dir
== -1)
2128 /* If we are going backwards, the iterator state is already cached
2129 from previous scans, and should be fully resolved. */
2132 if (type
== UNKNOWN_BT
)
2133 type
= bidi_type_of_next_char (bidi_it
);
2135 if (type
== NEUTRAL_B
)
2136 return bidi_it
->resolved_level
;
2138 level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
2139 if ((bidi_get_category (type
) == NEUTRAL
/* && type != NEUTRAL_B */)
2140 || (type
== WEAK_BN
&& prev_level
== level
))
2142 if (bidi_it
->next_for_neutral
.type
== UNKNOWN_BT
)
2145 /* If the cached state shows a neutral character, it was not
2146 resolved by bidi_resolve_neutral, so do it now. */
2147 type
= bidi_resolve_neutral_1 (bidi_it
->prev_for_neutral
.type
,
2148 bidi_it
->next_for_neutral
.type
,
2152 if (!(type
== STRONG_R
2156 || type
== WEAK_AN
))
2158 bidi_it
->type
= type
;
2159 bidi_check_type (bidi_it
->type
);
2161 /* For L1 below, we need to know, for each WS character, whether
2162 it belongs to a sequence of WS characters preceding a newline
2163 or a TAB or a paragraph separator. */
2164 if (bidi_it
->orig_type
== NEUTRAL_WS
2165 && bidi_it
->next_for_ws
.type
== UNKNOWN_BT
)
2168 EMACS_INT clen
= bidi_it
->ch_len
;
2169 EMACS_INT bpos
= bidi_it
->bytepos
;
2170 EMACS_INT cpos
= bidi_it
->charpos
;
2171 EMACS_INT disp_pos
= bidi_it
->disp_pos
;
2172 EMACS_INT nc
= bidi_it
->nchars
;
2173 struct bidi_string_data bs
= bidi_it
->string
;
2175 int fwp
= bidi_it
->frame_window_p
;
2176 int dpp
= bidi_it
->disp_prop
;
2178 if (bidi_it
->nchars
<= 0)
2181 ch
= bidi_fetch_char (bpos
+= clen
, cpos
+= nc
, &disp_pos
, &dpp
, &bs
,
2183 if (ch
== '\n' || ch
== BIDI_EOB
)
2186 chtype
= bidi_get_type (ch
, NEUTRAL_DIR
);
2187 } while (chtype
== NEUTRAL_WS
|| chtype
== WEAK_BN
2188 || bidi_explicit_dir_char (ch
)); /* L1/Retaining */
2189 bidi_it
->next_for_ws
.type
= chtype
;
2190 bidi_check_type (bidi_it
->next_for_ws
.type
);
2191 bidi_it
->next_for_ws
.charpos
= cpos
;
2192 bidi_it
->next_for_ws
.bytepos
= bpos
;
2195 /* Resolve implicit levels, with a twist: PDFs get the embedding
2196 level of the embedding they terminate. See below for the
2198 if (bidi_it
->orig_type
== PDF
2199 /* Don't do this if this formatting code didn't change the
2200 embedding level due to invalid or empty embeddings. */
2201 && prev_level
!= level
)
2203 /* Don't look in UAX#9 for the reason for this: it's our own
2204 private quirk. The reason is that we want the formatting
2205 codes to be delivered so that they bracket the text of their
2206 embedding. For example, given the text
2210 we want it to be displayed as
2218 which will result because we bump up the embedding level as
2219 soon as we see the RLO and pop it as soon as we see the PDF,
2220 so RLO itself has the same embedding level as "teST", and
2221 thus would be normally delivered last, just before the PDF.
2222 The switch below fiddles with the level of PDF so that this
2223 ugly side effect does not happen.
2225 (This is, of course, only important if the formatting codes
2226 are actually displayed, but Emacs does need to display them
2227 if the user wants to.) */
2230 else if (bidi_it
->orig_type
== NEUTRAL_B
/* L1 */
2231 || bidi_it
->orig_type
== NEUTRAL_S
2232 || bidi_it
->ch
== '\n' || bidi_it
->ch
== BIDI_EOB
2233 || (bidi_it
->orig_type
== NEUTRAL_WS
2234 && (bidi_it
->next_for_ws
.type
== NEUTRAL_B
2235 || bidi_it
->next_for_ws
.type
== NEUTRAL_S
)))
2236 level
= bidi_it
->level_stack
[0].level
;
2237 else if ((level
& 1) == 0) /* I1 */
2239 if (type
== STRONG_R
)
2241 else if (type
== WEAK_EN
|| type
== WEAK_AN
)
2246 if (type
== STRONG_L
|| type
== WEAK_EN
|| type
== WEAK_AN
)
2250 bidi_it
->resolved_level
= level
;
2254 /* Move to the other edge of a level given by LEVEL. If END_FLAG is
2255 non-zero, we are at the end of a level, and we need to prepare to
2256 resume the scan of the lower level.
2258 If this level's other edge is cached, we simply jump to it, filling
2259 the iterator structure with the iterator state on the other edge.
2260 Otherwise, we walk the buffer or string until we come back to the
2261 same level as LEVEL.
2263 Note: we are not talking here about a ``level run'' in the UAX#9
2264 sense of the term, but rather about a ``level'' which includes
2265 all the levels higher than it. In other words, given the levels
2268 11111112222222333333334443343222222111111112223322111
2271 and assuming we are at point A scanning left to right, this
2272 function moves to point C, whereas the UAX#9 ``level 2 run'' ends
2275 bidi_find_other_level_edge (struct bidi_it
*bidi_it
, int level
, int end_flag
)
2277 int dir
= end_flag
? -bidi_it
->scan_dir
: bidi_it
->scan_dir
;
2280 /* Try the cache first. */
2281 if ((idx
= bidi_cache_find_level_change (level
, dir
, end_flag
))
2282 >= bidi_cache_start
)
2283 bidi_cache_fetch_state (idx
, bidi_it
);
2289 abort (); /* if we are at end of level, its edges must be cached */
2291 bidi_cache_iterator_state (bidi_it
, 1);
2293 new_level
= bidi_level_of_next_char (bidi_it
);
2294 bidi_cache_iterator_state (bidi_it
, 1);
2295 } while (new_level
>= level
);
2300 bidi_move_to_visually_next (struct bidi_it
*bidi_it
)
2302 int old_level
, new_level
, next_level
;
2303 struct bidi_it sentinel
;
2304 struct gcpro gcpro1
;
2306 if (bidi_it
->charpos
< 0 || bidi_it
->bytepos
< 0)
2309 if (bidi_it
->scan_dir
== 0)
2311 bidi_it
->scan_dir
= 1; /* default to logical order */
2314 /* The code below can call eval, and thus cause GC. If we are
2315 iterating a Lisp string, make sure it won't be GCed. */
2316 if (STRINGP (bidi_it
->string
.lstring
))
2317 GCPRO1 (bidi_it
->string
.lstring
);
2319 /* If we just passed a newline, initialize for the next line. */
2320 if (!bidi_it
->first_elt
2321 && (bidi_it
->ch
== '\n' || bidi_it
->ch
== BIDI_EOB
))
2322 bidi_line_init (bidi_it
);
2324 /* Prepare the sentinel iterator state, and cache it. When we bump
2325 into it, scanning backwards, we'll know that the last non-base
2326 level is exhausted. */
2327 if (bidi_cache_idx
== bidi_cache_start
)
2329 bidi_copy_it (&sentinel
, bidi_it
);
2330 if (bidi_it
->first_elt
)
2332 sentinel
.charpos
--; /* cached charpos needs to be monotonic */
2334 sentinel
.ch
= '\n'; /* doesn't matter, but why not? */
2335 sentinel
.ch_len
= 1;
2336 sentinel
.nchars
= 1;
2338 bidi_cache_iterator_state (&sentinel
, 1);
2341 old_level
= bidi_it
->resolved_level
;
2342 new_level
= bidi_level_of_next_char (bidi_it
);
2344 /* Reordering of resolved levels (clause L2) is implemented by
2345 jumping to the other edge of the level and flipping direction of
2346 scanning the text whenever we find a level change. */
2347 if (new_level
!= old_level
)
2349 int ascending
= new_level
> old_level
;
2350 int level_to_search
= ascending
? old_level
+ 1 : old_level
;
2351 int incr
= ascending
? 1 : -1;
2352 int expected_next_level
= old_level
+ incr
;
2354 /* Jump (or walk) to the other edge of this level. */
2355 bidi_find_other_level_edge (bidi_it
, level_to_search
, !ascending
);
2356 /* Switch scan direction and peek at the next character in the
2358 bidi_it
->scan_dir
= -bidi_it
->scan_dir
;
2360 /* The following loop handles the case where the resolved level
2361 jumps by more than one. This is typical for numbers inside a
2362 run of text with left-to-right embedding direction, but can
2363 also happen in other situations. In those cases the decision
2364 where to continue after a level change, and in what direction,
2365 is tricky. For example, given a text like below:
2370 (where the numbers below the text show the resolved levels),
2371 the result of reordering according to UAX#9 should be this:
2375 This is implemented by the loop below which flips direction
2376 and jumps to the other edge of the level each time it finds
2377 the new level not to be the expected one. The expected level
2378 is always one more or one less than the previous one. */
2379 next_level
= bidi_peek_at_next_level (bidi_it
);
2380 while (next_level
!= expected_next_level
)
2382 expected_next_level
+= incr
;
2383 level_to_search
+= incr
;
2384 bidi_find_other_level_edge (bidi_it
, level_to_search
, !ascending
);
2385 bidi_it
->scan_dir
= -bidi_it
->scan_dir
;
2386 next_level
= bidi_peek_at_next_level (bidi_it
);
2389 /* Finally, deliver the next character in the new direction. */
2390 next_level
= bidi_level_of_next_char (bidi_it
);
2393 /* Take note when we have just processed the newline that precedes
2394 the end of the paragraph. The next time we are about to be
2395 called, set_iterator_to_next will automatically reinit the
2396 paragraph direction, if needed. We do this at the newline before
2397 the paragraph separator, because the next character might not be
2398 the first character of the next paragraph, due to the bidi
2399 reordering, whereas we _must_ know the paragraph base direction
2400 _before_ we process the paragraph's text, since the base
2401 direction affects the reordering. */
2402 if (bidi_it
->scan_dir
== 1
2403 && (bidi_it
->ch
== '\n' || bidi_it
->ch
== BIDI_EOB
))
2405 /* The paragraph direction of the entire string, once
2406 determined, is in effect for the entire string. Setting the
2407 separator limit to the end of the string prevents
2408 bidi_paragraph_init from being called automatically on this
2410 if (bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
))
2411 bidi_it
->separator_limit
= bidi_it
->string
.schars
;
2412 else if (bidi_it
->bytepos
< ZV_BYTE
)
2415 = bidi_at_paragraph_end (bidi_it
->charpos
+ bidi_it
->nchars
,
2416 bidi_it
->bytepos
+ bidi_it
->ch_len
);
2417 if (bidi_it
->nchars
<= 0)
2421 bidi_it
->new_paragraph
= 1;
2422 /* Record the buffer position of the last character of the
2423 paragraph separator. */
2424 bidi_it
->separator_limit
2425 = bidi_it
->charpos
+ bidi_it
->nchars
+ sep_len
;
2430 if (bidi_it
->scan_dir
== 1 && bidi_cache_idx
> bidi_cache_start
)
2432 /* If we are at paragraph's base embedding level and beyond the
2433 last cached position, the cache's job is done and we can
2435 if (bidi_it
->resolved_level
== bidi_it
->level_stack
[0].level
2436 && bidi_it
->charpos
> (bidi_cache
[bidi_cache_idx
- 1].charpos
2437 + bidi_cache
[bidi_cache_idx
- 1].nchars
- 1))
2438 bidi_cache_reset ();
2439 /* But as long as we are caching during forward scan, we must
2440 cache each state, or else the cache integrity will be
2441 compromised: it assumes cached states correspond to buffer
2444 bidi_cache_iterator_state (bidi_it
, 1);
2447 if (STRINGP (bidi_it
->string
.lstring
))
2451 /* This is meant to be called from within the debugger, whenever you
2452 wish to examine the cache contents. */
2453 void bidi_dump_cached_states (void) EXTERNALLY_VISIBLE
;
2455 bidi_dump_cached_states (void)
2460 if (bidi_cache_idx
== 0)
2462 fprintf (stderr
, "The cache is empty.\n");
2465 fprintf (stderr
, "Total of %"pD
"d state%s in cache:\n",
2466 bidi_cache_idx
, bidi_cache_idx
== 1 ? "" : "s");
2468 for (i
= bidi_cache
[bidi_cache_idx
- 1].charpos
; i
> 0; i
/= 10)
2470 fputs ("ch ", stderr
);
2471 for (i
= 0; i
< bidi_cache_idx
; i
++)
2472 fprintf (stderr
, "%*c", ndigits
, bidi_cache
[i
].ch
);
2473 fputs ("\n", stderr
);
2474 fputs ("lvl ", stderr
);
2475 for (i
= 0; i
< bidi_cache_idx
; i
++)
2476 fprintf (stderr
, "%*d", ndigits
, bidi_cache
[i
].resolved_level
);
2477 fputs ("\n", stderr
);
2478 fputs ("pos ", stderr
);
2479 for (i
= 0; i
< bidi_cache_idx
; i
++)
2480 fprintf (stderr
, "%*"pI
"d", ndigits
, bidi_cache
[i
].charpos
);
2481 fputs ("\n", stderr
);