1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
30 #if defined (emacs) || defined (CONFIG_BROKETS)
31 /* We use <config.h> instead of "config.h" so that a compilation
32 using -I. -I$srcdir will use ./config.h rather than $srcdir/config.h
33 (which it would do because it found this file in $srcdir). */
40 /* We need this for `regex.h', and perhaps for the Emacs include files. */
41 #include <sys/types.h>
47 /* The `emacs' switch turns on certain matching commands
48 that make sense only in Emacs. */
55 /* Emacs uses `NULL' as a predicate. */
68 /* We used to test for `BSTRING' here, but only GCC and Emacs define
69 `BSTRING', as far as I know, and neither of them use this code. */
70 #if HAVE_STRING_H || STDC_HEADERS
73 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
76 #define bcopy(s, d, n) memcpy ((d), (s), (n))
79 #define bzero(s, n) memset ((s), 0, (n))
85 /* Define the syntax stuff for \<, \>, etc. */
87 /* This must be nonzero for the wordchar and notwordchar pattern
88 commands in re_match_2. */
95 extern char *re_syntax_table
;
97 #else /* not SYNTAX_TABLE */
99 /* How many characters in the character set. */
100 #define CHAR_SET_SIZE 256
102 static char re_syntax_table
[CHAR_SET_SIZE
];
113 bzero (re_syntax_table
, sizeof re_syntax_table
);
115 for (c
= 'a'; c
<= 'z'; c
++)
116 re_syntax_table
[c
] = Sword
;
118 for (c
= 'A'; c
<= 'Z'; c
++)
119 re_syntax_table
[c
] = Sword
;
121 for (c
= '0'; c
<= '9'; c
++)
122 re_syntax_table
[c
] = Sword
;
124 re_syntax_table
['_'] = Sword
;
129 #endif /* not SYNTAX_TABLE */
131 #define SYNTAX(c) re_syntax_table[c]
133 #endif /* not emacs */
135 /* Get the interface, including the syntax bits. */
138 /* isalpha etc. are used for the character classes. */
141 /* Jim Meyering writes:
143 "... Some ctype macros are valid only for character codes that
144 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
145 using /bin/cc or gcc but without giving an ansi option). So, all
146 ctype uses should be through macros like ISPRINT... If
147 STDC_HEADERS is defined, then autoconf has verified that the ctype
148 macros don't need to be guarded with references to isascii. ...
149 Defining isascii to 1 should let any compiler worth its salt
150 eliminate the && through constant folding." */
152 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
155 #define ISASCII(c) isascii(c)
159 #define ISBLANK(c) (ISASCII (c) && isblank (c))
161 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
164 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
166 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
169 #define ISPRINT(c) (ISASCII (c) && isprint (c))
170 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
171 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
172 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
173 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
174 #define ISLOWER(c) (ISASCII (c) && islower (c))
175 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
176 #define ISSPACE(c) (ISASCII (c) && isspace (c))
177 #define ISUPPER(c) (ISASCII (c) && isupper (c))
178 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
184 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
185 since ours (we hope) works properly with all combinations of
186 machines, compilers, `char' and `unsigned char' argument types.
187 (Per Bothner suggested the basic approach.) */
188 #undef SIGN_EXTEND_CHAR
190 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
191 #else /* not __STDC__ */
192 /* As in Harbison and Steele. */
193 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
196 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
197 use `alloca' instead of `malloc'. This is because using malloc in
198 re_search* or re_match* could cause memory leaks when C-g is used in
199 Emacs; also, malloc is slower and causes storage fragmentation. On
200 the other hand, malloc is more portable, and easier to debug.
202 Because we sometimes use alloca, some routines have to be macros,
203 not functions -- `alloca'-allocated space disappears at the end of the
204 function it is called in. */
208 #define REGEX_ALLOCATE malloc
209 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
211 #else /* not REGEX_MALLOC */
213 /* Emacs already defines alloca, sometimes. */
216 /* Make alloca work the best possible way. */
218 #define alloca __builtin_alloca
219 #else /* not __GNUC__ */
222 #else /* not __GNUC__ or HAVE_ALLOCA_H */
223 #ifndef _AIX /* Already did AIX, up at the top. */
225 #endif /* not _AIX */
226 #endif /* not HAVE_ALLOCA_H */
227 #endif /* not __GNUC__ */
229 #endif /* not alloca */
231 #define REGEX_ALLOCATE alloca
233 /* Assumes a `char *destination' variable. */
234 #define REGEX_REALLOCATE(source, osize, nsize) \
235 (destination = (char *) alloca (nsize), \
236 bcopy (source, destination, osize), \
239 #endif /* not REGEX_MALLOC */
242 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
243 `string1' or just past its end. This works if PTR is NULL, which is
245 #define FIRST_STRING_P(ptr) \
246 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
248 /* (Re)Allocate N items of type T using malloc, or fail. */
249 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
250 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
251 #define RETALLOC_IF(addr, n, t) \
252 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
253 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
255 #define BYTEWIDTH 8 /* In bits. */
257 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
261 #define MAX(a, b) ((a) > (b) ? (a) : (b))
262 #define MIN(a, b) ((a) < (b) ? (a) : (b))
264 typedef char boolean
;
268 static int re_match_2_internal ();
270 /* These are the command codes that appear in compiled regular
271 expressions. Some opcodes are followed by argument bytes. A
272 command code can specify any interpretation whatsoever for its
273 arguments. Zero bytes may appear in the compiled regular expression.
275 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
276 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
277 `exactn' we use here must also be 1. */
283 /* Followed by one byte giving n, then by n literal bytes. */
286 /* Matches any (more or less) character. */
289 /* Matches any one char belonging to specified set. First
290 following byte is number of bitmap bytes. Then come bytes
291 for a bitmap saying which chars are in. Bits in each byte
292 are ordered low-bit-first. A character is in the set if its
293 bit is 1. A character too large to have a bit in the map is
294 automatically not in the set. */
297 /* Same parameters as charset, but match any character that is
298 not one of those specified. */
301 /* Start remembering the text that is matched, for storing in a
302 register. Followed by one byte with the register number, in
303 the range 0 to one less than the pattern buffer's re_nsub
304 field. Then followed by one byte with the number of groups
305 inner to this one. (This last has to be part of the
306 start_memory only because we need it in the on_failure_jump
310 /* Stop remembering the text that is matched and store it in a
311 memory register. Followed by one byte with the register
312 number, in the range 0 to one less than `re_nsub' in the
313 pattern buffer, and one byte with the number of inner groups,
314 just like `start_memory'. (We need the number of inner
315 groups here because we don't have any easy way of finding the
316 corresponding start_memory when we're at a stop_memory.) */
319 /* Match a duplicate of something remembered. Followed by one
320 byte containing the register number. */
323 /* Fail unless at beginning of line. */
326 /* Fail unless at end of line. */
329 /* Succeeds if at beginning of buffer (if emacs) or at beginning
330 of string to be matched (if not). */
333 /* Analogously, for end of buffer/string. */
336 /* Followed by two byte relative address to which to jump. */
339 /* Same as jump, but marks the end of an alternative. */
342 /* Followed by two-byte relative address of place to resume at
343 in case of failure. */
346 /* Like on_failure_jump, but pushes a placeholder instead of the
347 current string position when executed. */
348 on_failure_keep_string_jump
,
350 /* Throw away latest failure point and then jump to following
351 two-byte relative address. */
354 /* Change to pop_failure_jump if know won't have to backtrack to
355 match; otherwise change to jump. This is used to jump
356 back to the beginning of a repeat. If what follows this jump
357 clearly won't match what the repeat does, such that we can be
358 sure that there is no use backtracking out of repetitions
359 already matched, then we change it to a pop_failure_jump.
360 Followed by two-byte address. */
363 /* Jump to following two-byte address, and push a dummy failure
364 point. This failure point will be thrown away if an attempt
365 is made to use it for a failure. A `+' construct makes this
366 before the first repeat. Also used as an intermediary kind
367 of jump when compiling an alternative. */
370 /* Push a dummy failure point and continue. Used at the end of
374 /* Followed by two-byte relative address and two-byte number n.
375 After matching N times, jump to the address upon failure. */
378 /* Followed by two-byte relative address, and two-byte number n.
379 Jump to the address N times, then fail. */
382 /* Set the following two-byte relative address to the
383 subsequent two-byte number. The address *includes* the two
387 wordchar
, /* Matches any word-constituent character. */
388 notwordchar
, /* Matches any char that is not a word-constituent. */
390 wordbeg
, /* Succeeds if at word beginning. */
391 wordend
, /* Succeeds if at word end. */
393 wordbound
, /* Succeeds if at a word boundary. */
394 notwordbound
/* Succeeds if not at a word boundary. */
397 ,before_dot
, /* Succeeds if before point. */
398 at_dot
, /* Succeeds if at point. */
399 after_dot
, /* Succeeds if after point. */
401 /* Matches any character whose syntax is specified. Followed by
402 a byte which contains a syntax code, e.g., Sword. */
405 /* Matches any character whose syntax is not that specified. */
410 /* Common operations on the compiled pattern. */
412 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
414 #define STORE_NUMBER(destination, number) \
416 (destination)[0] = (number) & 0377; \
417 (destination)[1] = (number) >> 8; \
420 /* Same as STORE_NUMBER, except increment DESTINATION to
421 the byte after where the number is stored. Therefore, DESTINATION
422 must be an lvalue. */
424 #define STORE_NUMBER_AND_INCR(destination, number) \
426 STORE_NUMBER (destination, number); \
427 (destination) += 2; \
430 /* Put into DESTINATION a number stored in two contiguous bytes starting
433 #define EXTRACT_NUMBER(destination, source) \
435 (destination) = *(source) & 0377; \
436 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
441 extract_number (dest
, source
)
443 unsigned char *source
;
445 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
446 *dest
= *source
& 0377;
450 #ifndef EXTRACT_MACROS /* To debug the macros. */
451 #undef EXTRACT_NUMBER
452 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
453 #endif /* not EXTRACT_MACROS */
457 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
458 SOURCE must be an lvalue. */
460 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
462 EXTRACT_NUMBER (destination, source); \
468 extract_number_and_incr (destination
, source
)
470 unsigned char **source
;
472 extract_number (destination
, *source
);
476 #ifndef EXTRACT_MACROS
477 #undef EXTRACT_NUMBER_AND_INCR
478 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
479 extract_number_and_incr (&dest, &src)
480 #endif /* not EXTRACT_MACROS */
484 /* If DEBUG is defined, Regex prints many voluminous messages about what
485 it is doing (if the variable `debug' is nonzero). If linked with the
486 main program in `iregex.c', you can enter patterns and strings
487 interactively. And if linked with the main program in `main.c' and
488 the other test files, you can run the already-written tests. */
492 /* We use standard I/O for debugging. */
495 /* It is useful to test things that ``must'' be true when debugging. */
498 static int debug
= 0;
500 #define DEBUG_STATEMENT(e) e
501 #define DEBUG_PRINT1(x) if (debug) printf (x)
502 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
503 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
504 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
505 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
506 if (debug) print_partial_compiled_pattern (s, e)
507 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
508 if (debug) print_double_string (w, s1, sz1, s2, sz2)
511 extern void printchar ();
513 /* Print the fastmap in human-readable form. */
516 print_fastmap (fastmap
)
519 unsigned was_a_range
= 0;
522 while (i
< (1 << BYTEWIDTH
))
528 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
544 /* Print a compiled pattern string in human-readable form, starting at
545 the START pointer into it and ending just before the pointer END. */
548 print_partial_compiled_pattern (start
, end
)
549 unsigned char *start
;
553 unsigned char *p
= start
;
554 unsigned char *pend
= end
;
562 /* Loop over pattern commands. */
565 printf ("%d:\t", p
- start
);
567 switch ((re_opcode_t
) *p
++)
575 printf ("/exactn/%d", mcnt
);
586 printf ("/start_memory/%d/%d", mcnt
, *p
++);
591 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
595 printf ("/duplicate/%d", *p
++);
605 register int c
, last
= -100;
606 register int in_range
= 0;
608 printf ("/charset [%s",
609 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
611 assert (p
+ *p
< pend
);
613 for (c
= 0; c
< 256; c
++)
615 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
617 /* Are we starting a range? */
618 if (last
+ 1 == c
&& ! in_range
)
623 /* Have we broken a range? */
624 else if (last
+ 1 != c
&& in_range
)
653 case on_failure_jump
:
654 extract_number_and_incr (&mcnt
, &p
);
655 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
658 case on_failure_keep_string_jump
:
659 extract_number_and_incr (&mcnt
, &p
);
660 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
663 case dummy_failure_jump
:
664 extract_number_and_incr (&mcnt
, &p
);
665 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
668 case push_dummy_failure
:
669 printf ("/push_dummy_failure");
673 extract_number_and_incr (&mcnt
, &p
);
674 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
677 case pop_failure_jump
:
678 extract_number_and_incr (&mcnt
, &p
);
679 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
683 extract_number_and_incr (&mcnt
, &p
);
684 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
688 extract_number_and_incr (&mcnt
, &p
);
689 printf ("/jump to %d", p
+ mcnt
- start
);
693 extract_number_and_incr (&mcnt
, &p
);
694 extract_number_and_incr (&mcnt2
, &p
);
695 printf ("/succeed_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
699 extract_number_and_incr (&mcnt
, &p
);
700 extract_number_and_incr (&mcnt2
, &p
);
701 printf ("/jump_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
705 extract_number_and_incr (&mcnt
, &p
);
706 extract_number_and_incr (&mcnt2
, &p
);
707 printf ("/set_number_at location %d to %d", p
+ mcnt
- start
, mcnt2
);
711 printf ("/wordbound");
715 printf ("/notwordbound");
727 printf ("/before_dot");
735 printf ("/after_dot");
739 printf ("/syntaxspec");
741 printf ("/%d", mcnt
);
745 printf ("/notsyntaxspec");
747 printf ("/%d", mcnt
);
752 printf ("/wordchar");
756 printf ("/notwordchar");
768 printf ("?%d", *(p
-1));
774 printf ("%d:\tend of pattern.\n", p
- start
);
779 print_compiled_pattern (bufp
)
780 struct re_pattern_buffer
*bufp
;
782 unsigned char *buffer
= bufp
->buffer
;
784 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
785 printf ("%d bytes used/%d bytes allocated.\n", bufp
->used
, bufp
->allocated
);
787 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
789 printf ("fastmap: ");
790 print_fastmap (bufp
->fastmap
);
793 printf ("re_nsub: %d\t", bufp
->re_nsub
);
794 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
795 printf ("can_be_null: %d\t", bufp
->can_be_null
);
796 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
797 printf ("no_sub: %d\t", bufp
->no_sub
);
798 printf ("not_bol: %d\t", bufp
->not_bol
);
799 printf ("not_eol: %d\t", bufp
->not_eol
);
800 printf ("syntax: %d\n", bufp
->syntax
);
801 /* Perhaps we should print the translate table? */
806 print_double_string (where
, string1
, size1
, string2
, size2
)
819 if (FIRST_STRING_P (where
))
821 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
822 printchar (string1
[this_char
]);
827 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
828 printchar (string2
[this_char
]);
832 #else /* not DEBUG */
837 #define DEBUG_STATEMENT(e)
838 #define DEBUG_PRINT1(x)
839 #define DEBUG_PRINT2(x1, x2)
840 #define DEBUG_PRINT3(x1, x2, x3)
841 #define DEBUG_PRINT4(x1, x2, x3, x4)
842 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
843 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
845 #endif /* not DEBUG */
847 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
848 also be assigned to arbitrarily: each pattern buffer stores its own
849 syntax, so it can be changed between regex compilations. */
850 reg_syntax_t re_syntax_options
= RE_SYNTAX_EMACS
;
853 /* Specify the precise syntax of regexps for compilation. This provides
854 for compatibility for various utilities which historically have
855 different, incompatible syntaxes.
857 The argument SYNTAX is a bit mask comprised of the various bits
858 defined in regex.h. We return the old syntax. */
861 re_set_syntax (syntax
)
864 reg_syntax_t ret
= re_syntax_options
;
866 re_syntax_options
= syntax
;
870 /* This table gives an error message for each of the error codes listed
871 in regex.h. Obviously the order here has to be same as there. */
873 static const char *re_error_msg
[] =
874 { NULL
, /* REG_NOERROR */
875 "No match", /* REG_NOMATCH */
876 "Invalid regular expression", /* REG_BADPAT */
877 "Invalid collation character", /* REG_ECOLLATE */
878 "Invalid character class name", /* REG_ECTYPE */
879 "Trailing backslash", /* REG_EESCAPE */
880 "Invalid back reference", /* REG_ESUBREG */
881 "Unmatched [ or [^", /* REG_EBRACK */
882 "Unmatched ( or \\(", /* REG_EPAREN */
883 "Unmatched \\{", /* REG_EBRACE */
884 "Invalid content of \\{\\}", /* REG_BADBR */
885 "Invalid range end", /* REG_ERANGE */
886 "Memory exhausted", /* REG_ESPACE */
887 "Invalid preceding regular expression", /* REG_BADRPT */
888 "Premature end of regular expression", /* REG_EEND */
889 "Regular expression too big", /* REG_ESIZE */
890 "Unmatched ) or \\)", /* REG_ERPAREN */
893 /* Avoiding alloca during matching, to placate r_alloc. */
895 /* Define MATCH_MAY_ALLOCATE if we need to make sure that the
896 searching and matching functions should not call alloca. On some
897 systems, alloca is implemented in terms of malloc, and if we're
898 using the relocating allocator routines, then malloc could cause a
899 relocation, which might (if the strings being searched are in the
900 ralloc heap) shift the data out from underneath the regexp
903 Here's another reason to avoid allocation: Emacs insists on
904 processing input from X in a signal handler; processing X input may
905 call malloc; if input arrives while a matching routine is calling
906 malloc, then we're scrod. But Emacs can't just block input while
907 calling matching routines; then we don't notice interrupts when
908 they come in. So, Emacs blocks input around all regexp calls
909 except the matching calls, which it leaves unprotected, in the
910 faith that they will not malloc. */
912 /* Normally, this is fine. */
913 #define MATCH_MAY_ALLOCATE
915 /* But under some circumstances, it's not. */
916 #if defined (emacs) || (defined (REL_ALLOC) && defined (C_ALLOCA))
917 #undef MATCH_MAY_ALLOCATE
921 /* Failure stack declarations and macros; both re_compile_fastmap and
922 re_match_2 use a failure stack. These have to be macros because of
926 /* Number of failure points for which to initially allocate space
927 when matching. If this number is exceeded, we allocate more
928 space, so it is not a hard limit. */
929 #ifndef INIT_FAILURE_ALLOC
930 #define INIT_FAILURE_ALLOC 5
933 /* Roughly the maximum number of failure points on the stack. Would be
934 exactly that if always used MAX_FAILURE_SPACE each time we failed.
935 This is a variable only so users of regex can assign to it; we never
936 change it ourselves. */
937 int re_max_failures
= 2000;
939 typedef unsigned char *fail_stack_elt_t
;
943 fail_stack_elt_t
*stack
;
945 unsigned avail
; /* Offset of next open position. */
948 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
949 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
950 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
951 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
954 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
956 #ifdef MATCH_MAY_ALLOCATE
957 #define INIT_FAIL_STACK() \
959 fail_stack.stack = (fail_stack_elt_t *) \
960 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
962 if (fail_stack.stack == NULL) \
965 fail_stack.size = INIT_FAILURE_ALLOC; \
966 fail_stack.avail = 0; \
969 #define INIT_FAIL_STACK() \
971 fail_stack.avail = 0; \
976 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
978 Return 1 if succeeds, and 0 if either ran out of memory
979 allocating space for it or it was already too large.
981 REGEX_REALLOCATE requires `destination' be declared. */
983 #define DOUBLE_FAIL_STACK(fail_stack) \
984 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
986 : ((fail_stack).stack = (fail_stack_elt_t *) \
987 REGEX_REALLOCATE ((fail_stack).stack, \
988 (fail_stack).size * sizeof (fail_stack_elt_t), \
989 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
991 (fail_stack).stack == NULL \
993 : ((fail_stack).size <<= 1, \
997 /* Push PATTERN_OP on FAIL_STACK.
999 Return 1 if was able to do so and 0 if ran out of memory allocating
1001 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
1002 ((FAIL_STACK_FULL () \
1003 && !DOUBLE_FAIL_STACK (fail_stack)) \
1005 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
1008 /* This pushes an item onto the failure stack. Must be a four-byte
1009 value. Assumes the variable `fail_stack'. Probably should only
1010 be called from within `PUSH_FAILURE_POINT'. */
1011 #define PUSH_FAILURE_ITEM(item) \
1012 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
1014 /* The complement operation. Assumes `fail_stack' is nonempty. */
1015 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
1017 /* Used to omit pushing failure point id's when we're not debugging. */
1019 #define DEBUG_PUSH PUSH_FAILURE_ITEM
1020 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1022 #define DEBUG_PUSH(item)
1023 #define DEBUG_POP(item_addr)
1027 /* Push the information about the state we will need
1028 if we ever fail back to it.
1030 Requires variables fail_stack, regstart, regend, reg_info, and
1031 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1034 Does `return FAILURE_CODE' if runs out of memory. */
1036 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1038 char *destination; \
1039 /* Must be int, so when we don't save any registers, the arithmetic \
1040 of 0 + -1 isn't done as unsigned. */ \
1043 DEBUG_STATEMENT (failure_id++); \
1044 DEBUG_STATEMENT (nfailure_points_pushed++); \
1045 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1046 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1047 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1049 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1050 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1052 /* Ensure we have enough space allocated for what we will push. */ \
1053 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1055 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1056 return failure_code; \
1058 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1059 (fail_stack).size); \
1060 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1063 /* Push the info, starting with the registers. */ \
1064 DEBUG_PRINT1 ("\n"); \
1066 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1069 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1070 DEBUG_STATEMENT (num_regs_pushed++); \
1072 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1073 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1075 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1076 PUSH_FAILURE_ITEM (regend[this_reg]); \
1078 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1079 DEBUG_PRINT2 (" match_null=%d", \
1080 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1081 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1082 DEBUG_PRINT2 (" matched_something=%d", \
1083 MATCHED_SOMETHING (reg_info[this_reg])); \
1084 DEBUG_PRINT2 (" ever_matched=%d", \
1085 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1086 DEBUG_PRINT1 ("\n"); \
1087 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1090 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1091 PUSH_FAILURE_ITEM (lowest_active_reg); \
1093 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1094 PUSH_FAILURE_ITEM (highest_active_reg); \
1096 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1097 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1098 PUSH_FAILURE_ITEM (pattern_place); \
1100 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1101 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1103 DEBUG_PRINT1 ("'\n"); \
1104 PUSH_FAILURE_ITEM (string_place); \
1106 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1107 DEBUG_PUSH (failure_id); \
1110 /* This is the number of items that are pushed and popped on the stack
1111 for each register. */
1112 #define NUM_REG_ITEMS 3
1114 /* Individual items aside from the registers. */
1116 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1118 #define NUM_NONREG_ITEMS 4
1121 /* We push at most this many items on the stack. */
1122 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1124 /* We actually push this many items. */
1125 #define NUM_FAILURE_ITEMS \
1126 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1129 /* How many items can still be added to the stack without overflowing it. */
1130 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1133 /* Pops what PUSH_FAIL_STACK pushes.
1135 We restore into the parameters, all of which should be lvalues:
1136 STR -- the saved data position.
1137 PAT -- the saved pattern position.
1138 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1139 REGSTART, REGEND -- arrays of string positions.
1140 REG_INFO -- array of information about each subexpression.
1142 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1143 `pend', `string1', `size1', `string2', and `size2'. */
1145 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1147 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1149 const unsigned char *string_temp; \
1151 assert (!FAIL_STACK_EMPTY ()); \
1153 /* Remove failure points and point to how many regs pushed. */ \
1154 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1155 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1156 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1158 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1160 DEBUG_POP (&failure_id); \
1161 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1163 /* If the saved string location is NULL, it came from an \
1164 on_failure_keep_string_jump opcode, and we want to throw away the \
1165 saved NULL, thus retaining our current position in the string. */ \
1166 string_temp = POP_FAILURE_ITEM (); \
1167 if (string_temp != NULL) \
1168 str = (const char *) string_temp; \
1170 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1171 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1172 DEBUG_PRINT1 ("'\n"); \
1174 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1175 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1176 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1178 /* Restore register info. */ \
1179 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1180 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1182 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1183 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1185 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1187 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1189 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1190 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1192 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1193 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1195 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1196 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1199 DEBUG_STATEMENT (nfailure_points_popped++); \
1200 } /* POP_FAILURE_POINT */
1204 /* Structure for per-register (a.k.a. per-group) information.
1205 This must not be longer than one word, because we push this value
1206 onto the failure stack. Other register information, such as the
1207 starting and ending positions (which are addresses), and the list of
1208 inner groups (which is a bits list) are maintained in separate
1211 We are making a (strictly speaking) nonportable assumption here: that
1212 the compiler will pack our bit fields into something that fits into
1213 the type of `word', i.e., is something that fits into one item on the
1217 fail_stack_elt_t word
;
1220 /* This field is one if this group can match the empty string,
1221 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1222 #define MATCH_NULL_UNSET_VALUE 3
1223 unsigned match_null_string_p
: 2;
1224 unsigned is_active
: 1;
1225 unsigned matched_something
: 1;
1226 unsigned ever_matched_something
: 1;
1228 } register_info_type
;
1230 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1231 #define IS_ACTIVE(R) ((R).bits.is_active)
1232 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1233 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1236 /* Call this when have matched a real character; it sets `matched' flags
1237 for the subexpressions which we are currently inside. Also records
1238 that those subexprs have matched. */
1239 #define SET_REGS_MATCHED() \
1243 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1245 MATCHED_SOMETHING (reg_info[r]) \
1246 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1253 /* Registers are set to a sentinel when they haven't yet matched. */
1254 #define REG_UNSET_VALUE ((char *) -1)
1255 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1259 /* How do we implement a missing MATCH_MAY_ALLOCATE?
1260 We make the fail stack a global thing, and then grow it to
1261 re_max_failures when we compile. */
1262 #ifndef MATCH_MAY_ALLOCATE
1263 static fail_stack_type fail_stack
;
1265 static const char ** regstart
, ** regend
;
1266 static const char ** old_regstart
, ** old_regend
;
1267 static const char **best_regstart
, **best_regend
;
1268 static register_info_type
*reg_info
;
1269 static const char **reg_dummy
;
1270 static register_info_type
*reg_info_dummy
;
1274 /* Subroutine declarations and macros for regex_compile. */
1276 static void store_op1 (), store_op2 ();
1277 static void insert_op1 (), insert_op2 ();
1278 static boolean
at_begline_loc_p (), at_endline_loc_p ();
1279 static boolean
group_in_compile_stack ();
1280 static reg_errcode_t
compile_range ();
1282 /* Fetch the next character in the uncompiled pattern---translating it
1283 if necessary. Also cast from a signed character in the constant
1284 string passed to us by the user to an unsigned char that we can use
1285 as an array index (in, e.g., `translate'). */
1286 #define PATFETCH(c) \
1287 do {if (p == pend) return REG_EEND; \
1288 c = (unsigned char) *p++; \
1289 if (translate) c = translate[c]; \
1292 /* Fetch the next character in the uncompiled pattern, with no
1294 #define PATFETCH_RAW(c) \
1295 do {if (p == pend) return REG_EEND; \
1296 c = (unsigned char) *p++; \
1299 /* Go backwards one character in the pattern. */
1300 #define PATUNFETCH p--
1303 /* If `translate' is non-null, return translate[D], else just D. We
1304 cast the subscript to translate because some data is declared as
1305 `char *', to avoid warnings when a string constant is passed. But
1306 when we use a character as a subscript we must make it unsigned. */
1307 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1310 /* Macros for outputting the compiled pattern into `buffer'. */
1312 /* If the buffer isn't allocated when it comes in, use this. */
1313 #define INIT_BUF_SIZE 32
1315 /* Make sure we have at least N more bytes of space in buffer. */
1316 #define GET_BUFFER_SPACE(n) \
1317 while (b - bufp->buffer + (n) > bufp->allocated) \
1320 /* Make sure we have one more byte of buffer space and then add C to it. */
1321 #define BUF_PUSH(c) \
1323 GET_BUFFER_SPACE (1); \
1324 *b++ = (unsigned char) (c); \
1328 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1329 #define BUF_PUSH_2(c1, c2) \
1331 GET_BUFFER_SPACE (2); \
1332 *b++ = (unsigned char) (c1); \
1333 *b++ = (unsigned char) (c2); \
1337 /* As with BUF_PUSH_2, except for three bytes. */
1338 #define BUF_PUSH_3(c1, c2, c3) \
1340 GET_BUFFER_SPACE (3); \
1341 *b++ = (unsigned char) (c1); \
1342 *b++ = (unsigned char) (c2); \
1343 *b++ = (unsigned char) (c3); \
1347 /* Store a jump with opcode OP at LOC to location TO. We store a
1348 relative address offset by the three bytes the jump itself occupies. */
1349 #define STORE_JUMP(op, loc, to) \
1350 store_op1 (op, loc, (to) - (loc) - 3)
1352 /* Likewise, for a two-argument jump. */
1353 #define STORE_JUMP2(op, loc, to, arg) \
1354 store_op2 (op, loc, (to) - (loc) - 3, arg)
1356 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1357 #define INSERT_JUMP(op, loc, to) \
1358 insert_op1 (op, loc, (to) - (loc) - 3, b)
1360 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1361 #define INSERT_JUMP2(op, loc, to, arg) \
1362 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1365 /* This is not an arbitrary limit: the arguments which represent offsets
1366 into the pattern are two bytes long. So if 2^16 bytes turns out to
1367 be too small, many things would have to change. */
1368 #define MAX_BUF_SIZE (1L << 16)
1371 /* Extend the buffer by twice its current size via realloc and
1372 reset the pointers that pointed into the old block to point to the
1373 correct places in the new one. If extending the buffer results in it
1374 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1375 #define EXTEND_BUFFER() \
1377 unsigned char *old_buffer = bufp->buffer; \
1378 if (bufp->allocated == MAX_BUF_SIZE) \
1380 bufp->allocated <<= 1; \
1381 if (bufp->allocated > MAX_BUF_SIZE) \
1382 bufp->allocated = MAX_BUF_SIZE; \
1383 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1384 if (bufp->buffer == NULL) \
1385 return REG_ESPACE; \
1386 /* If the buffer moved, move all the pointers into it. */ \
1387 if (old_buffer != bufp->buffer) \
1389 b = (b - old_buffer) + bufp->buffer; \
1390 begalt = (begalt - old_buffer) + bufp->buffer; \
1391 if (fixup_alt_jump) \
1392 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1394 laststart = (laststart - old_buffer) + bufp->buffer; \
1395 if (pending_exact) \
1396 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1401 /* Since we have one byte reserved for the register number argument to
1402 {start,stop}_memory, the maximum number of groups we can report
1403 things about is what fits in that byte. */
1404 #define MAX_REGNUM 255
1406 /* But patterns can have more than `MAX_REGNUM' registers. We just
1407 ignore the excess. */
1408 typedef unsigned regnum_t
;
1411 /* Macros for the compile stack. */
1413 /* Since offsets can go either forwards or backwards, this type needs to
1414 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1415 typedef int pattern_offset_t
;
1419 pattern_offset_t begalt_offset
;
1420 pattern_offset_t fixup_alt_jump
;
1421 pattern_offset_t inner_group_offset
;
1422 pattern_offset_t laststart_offset
;
1424 } compile_stack_elt_t
;
1429 compile_stack_elt_t
*stack
;
1431 unsigned avail
; /* Offset of next open position. */
1432 } compile_stack_type
;
1435 #define INIT_COMPILE_STACK_SIZE 32
1437 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1438 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1440 /* The next available element. */
1441 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1444 /* Set the bit for character C in a list. */
1445 #define SET_LIST_BIT(c) \
1446 (b[((unsigned char) (c)) / BYTEWIDTH] \
1447 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1450 /* Get the next unsigned number in the uncompiled pattern. */
1451 #define GET_UNSIGNED_NUMBER(num) \
1455 while (ISDIGIT (c)) \
1459 num = num * 10 + c - '0'; \
1467 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1469 #define IS_CHAR_CLASS(string) \
1470 (STREQ (string, "alpha") || STREQ (string, "upper") \
1471 || STREQ (string, "lower") || STREQ (string, "digit") \
1472 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1473 || STREQ (string, "space") || STREQ (string, "print") \
1474 || STREQ (string, "punct") || STREQ (string, "graph") \
1475 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1477 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1478 Returns one of error codes defined in `regex.h', or zero for success.
1480 Assumes the `allocated' (and perhaps `buffer') and `translate'
1481 fields are set in BUFP on entry.
1483 If it succeeds, results are put in BUFP (if it returns an error, the
1484 contents of BUFP are undefined):
1485 `buffer' is the compiled pattern;
1486 `syntax' is set to SYNTAX;
1487 `used' is set to the length of the compiled pattern;
1488 `fastmap_accurate' is zero;
1489 `re_nsub' is the number of subexpressions in PATTERN;
1490 `not_bol' and `not_eol' are zero;
1492 The `fastmap' and `newline_anchor' fields are neither
1493 examined nor set. */
1495 static reg_errcode_t
1496 regex_compile (pattern
, size
, syntax
, bufp
)
1497 const char *pattern
;
1499 reg_syntax_t syntax
;
1500 struct re_pattern_buffer
*bufp
;
1502 /* We fetch characters from PATTERN here. Even though PATTERN is
1503 `char *' (i.e., signed), we declare these variables as unsigned, so
1504 they can be reliably used as array indices. */
1505 register unsigned char c
, c1
;
1507 /* A random temporary spot in PATTERN. */
1510 /* Points to the end of the buffer, where we should append. */
1511 register unsigned char *b
;
1513 /* Keeps track of unclosed groups. */
1514 compile_stack_type compile_stack
;
1516 /* Points to the current (ending) position in the pattern. */
1517 const char *p
= pattern
;
1518 const char *pend
= pattern
+ size
;
1520 /* How to translate the characters in the pattern. */
1521 char *translate
= bufp
->translate
;
1523 /* Address of the count-byte of the most recently inserted `exactn'
1524 command. This makes it possible to tell if a new exact-match
1525 character can be added to that command or if the character requires
1526 a new `exactn' command. */
1527 unsigned char *pending_exact
= 0;
1529 /* Address of start of the most recently finished expression.
1530 This tells, e.g., postfix * where to find the start of its
1531 operand. Reset at the beginning of groups and alternatives. */
1532 unsigned char *laststart
= 0;
1534 /* Address of beginning of regexp, or inside of last group. */
1535 unsigned char *begalt
;
1537 /* Place in the uncompiled pattern (i.e., the {) to
1538 which to go back if the interval is invalid. */
1539 const char *beg_interval
;
1541 /* Address of the place where a forward jump should go to the end of
1542 the containing expression. Each alternative of an `or' -- except the
1543 last -- ends with a forward jump of this sort. */
1544 unsigned char *fixup_alt_jump
= 0;
1546 /* Counts open-groups as they are encountered. Remembered for the
1547 matching close-group on the compile stack, so the same register
1548 number is put in the stop_memory as the start_memory. */
1549 regnum_t regnum
= 0;
1552 DEBUG_PRINT1 ("\nCompiling pattern: ");
1555 unsigned debug_count
;
1557 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1558 printchar (pattern
[debug_count
]);
1563 /* Initialize the compile stack. */
1564 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1565 if (compile_stack
.stack
== NULL
)
1568 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1569 compile_stack
.avail
= 0;
1571 /* Initialize the pattern buffer. */
1572 bufp
->syntax
= syntax
;
1573 bufp
->fastmap_accurate
= 0;
1574 bufp
->not_bol
= bufp
->not_eol
= 0;
1576 /* Set `used' to zero, so that if we return an error, the pattern
1577 printer (for debugging) will think there's no pattern. We reset it
1581 /* Always count groups, whether or not bufp->no_sub is set. */
1584 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1585 /* Initialize the syntax table. */
1586 init_syntax_once ();
1589 if (bufp
->allocated
== 0)
1592 { /* If zero allocated, but buffer is non-null, try to realloc
1593 enough space. This loses if buffer's address is bogus, but
1594 that is the user's responsibility. */
1595 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1598 { /* Caller did not allocate a buffer. Do it for them. */
1599 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1601 if (!bufp
->buffer
) return REG_ESPACE
;
1603 bufp
->allocated
= INIT_BUF_SIZE
;
1606 begalt
= b
= bufp
->buffer
;
1608 /* Loop through the uncompiled pattern until we're at the end. */
1617 if ( /* If at start of pattern, it's an operator. */
1619 /* If context independent, it's an operator. */
1620 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1621 /* Otherwise, depends on what's come before. */
1622 || at_begline_loc_p (pattern
, p
, syntax
))
1632 if ( /* If at end of pattern, it's an operator. */
1634 /* If context independent, it's an operator. */
1635 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1636 /* Otherwise, depends on what's next. */
1637 || at_endline_loc_p (p
, pend
, syntax
))
1647 if ((syntax
& RE_BK_PLUS_QM
)
1648 || (syntax
& RE_LIMITED_OPS
))
1652 /* If there is no previous pattern... */
1655 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1657 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1662 /* Are we optimizing this jump? */
1663 boolean keep_string_p
= false;
1665 /* 1 means zero (many) matches is allowed. */
1666 char zero_times_ok
= 0, many_times_ok
= 0;
1668 /* If there is a sequence of repetition chars, collapse it
1669 down to just one (the right one). We can't combine
1670 interval operators with these because of, e.g., `a{2}*',
1671 which should only match an even number of `a's. */
1675 zero_times_ok
|= c
!= '+';
1676 many_times_ok
|= c
!= '?';
1684 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
1687 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
1689 if (p
== pend
) return REG_EESCAPE
;
1692 if (!(c1
== '+' || c1
== '?'))
1707 /* If we get here, we found another repeat character. */
1710 /* Star, etc. applied to an empty pattern is equivalent
1711 to an empty pattern. */
1715 /* Now we know whether or not zero matches is allowed
1716 and also whether or not two or more matches is allowed. */
1718 { /* More than one repetition is allowed, so put in at the
1719 end a backward relative jump from `b' to before the next
1720 jump we're going to put in below (which jumps from
1721 laststart to after this jump).
1723 But if we are at the `*' in the exact sequence `.*\n',
1724 insert an unconditional jump backwards to the .,
1725 instead of the beginning of the loop. This way we only
1726 push a failure point once, instead of every time
1727 through the loop. */
1728 assert (p
- 1 > pattern
);
1730 /* Allocate the space for the jump. */
1731 GET_BUFFER_SPACE (3);
1733 /* We know we are not at the first character of the pattern,
1734 because laststart was nonzero. And we've already
1735 incremented `p', by the way, to be the character after
1736 the `*'. Do we have to do something analogous here
1737 for null bytes, because of RE_DOT_NOT_NULL? */
1738 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
1740 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
1741 && !(syntax
& RE_DOT_NEWLINE
))
1742 { /* We have .*\n. */
1743 STORE_JUMP (jump
, b
, laststart
);
1744 keep_string_p
= true;
1747 /* Anything else. */
1748 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
1750 /* We've added more stuff to the buffer. */
1754 /* On failure, jump from laststart to b + 3, which will be the
1755 end of the buffer after this jump is inserted. */
1756 GET_BUFFER_SPACE (3);
1757 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
1765 /* At least one repetition is required, so insert a
1766 `dummy_failure_jump' before the initial
1767 `on_failure_jump' instruction of the loop. This
1768 effects a skip over that instruction the first time
1769 we hit that loop. */
1770 GET_BUFFER_SPACE (3);
1771 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
1786 boolean had_char_class
= false;
1788 if (p
== pend
) return REG_EBRACK
;
1790 /* Ensure that we have enough space to push a charset: the
1791 opcode, the length count, and the bitset; 34 bytes in all. */
1792 GET_BUFFER_SPACE (34);
1796 /* We test `*p == '^' twice, instead of using an if
1797 statement, so we only need one BUF_PUSH. */
1798 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
1802 /* Remember the first position in the bracket expression. */
1805 /* Push the number of bytes in the bitmap. */
1806 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
1808 /* Clear the whole map. */
1809 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
1811 /* charset_not matches newline according to a syntax bit. */
1812 if ((re_opcode_t
) b
[-2] == charset_not
1813 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
1814 SET_LIST_BIT ('\n');
1816 /* Read in characters and ranges, setting map bits. */
1819 if (p
== pend
) return REG_EBRACK
;
1823 /* \ might escape characters inside [...] and [^...]. */
1824 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
1826 if (p
== pend
) return REG_EESCAPE
;
1833 /* Could be the end of the bracket expression. If it's
1834 not (i.e., when the bracket expression is `[]' so
1835 far), the ']' character bit gets set way below. */
1836 if (c
== ']' && p
!= p1
+ 1)
1839 /* Look ahead to see if it's a range when the last thing
1840 was a character class. */
1841 if (had_char_class
&& c
== '-' && *p
!= ']')
1844 /* Look ahead to see if it's a range when the last thing
1845 was a character: if this is a hyphen not at the
1846 beginning or the end of a list, then it's the range
1849 && !(p
- 2 >= pattern
&& p
[-2] == '[')
1850 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
1854 = compile_range (&p
, pend
, translate
, syntax
, b
);
1855 if (ret
!= REG_NOERROR
) return ret
;
1858 else if (p
[0] == '-' && p
[1] != ']')
1859 { /* This handles ranges made up of characters only. */
1862 /* Move past the `-'. */
1865 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
1866 if (ret
!= REG_NOERROR
) return ret
;
1869 /* See if we're at the beginning of a possible character
1872 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
1873 { /* Leave room for the null. */
1874 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
1879 /* If pattern is `[[:'. */
1880 if (p
== pend
) return REG_EBRACK
;
1885 if (c
== ':' || c
== ']' || p
== pend
1886 || c1
== CHAR_CLASS_MAX_LENGTH
)
1892 /* If isn't a word bracketed by `[:' and:`]':
1893 undo the ending character, the letters, and leave
1894 the leading `:' and `[' (but set bits for them). */
1895 if (c
== ':' && *p
== ']')
1898 boolean is_alnum
= STREQ (str
, "alnum");
1899 boolean is_alpha
= STREQ (str
, "alpha");
1900 boolean is_blank
= STREQ (str
, "blank");
1901 boolean is_cntrl
= STREQ (str
, "cntrl");
1902 boolean is_digit
= STREQ (str
, "digit");
1903 boolean is_graph
= STREQ (str
, "graph");
1904 boolean is_lower
= STREQ (str
, "lower");
1905 boolean is_print
= STREQ (str
, "print");
1906 boolean is_punct
= STREQ (str
, "punct");
1907 boolean is_space
= STREQ (str
, "space");
1908 boolean is_upper
= STREQ (str
, "upper");
1909 boolean is_xdigit
= STREQ (str
, "xdigit");
1911 if (!IS_CHAR_CLASS (str
)) return REG_ECTYPE
;
1913 /* Throw away the ] at the end of the character
1917 if (p
== pend
) return REG_EBRACK
;
1919 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
1921 if ( (is_alnum
&& ISALNUM (ch
))
1922 || (is_alpha
&& ISALPHA (ch
))
1923 || (is_blank
&& ISBLANK (ch
))
1924 || (is_cntrl
&& ISCNTRL (ch
))
1925 || (is_digit
&& ISDIGIT (ch
))
1926 || (is_graph
&& ISGRAPH (ch
))
1927 || (is_lower
&& ISLOWER (ch
))
1928 || (is_print
&& ISPRINT (ch
))
1929 || (is_punct
&& ISPUNCT (ch
))
1930 || (is_space
&& ISSPACE (ch
))
1931 || (is_upper
&& ISUPPER (ch
))
1932 || (is_xdigit
&& ISXDIGIT (ch
)))
1935 had_char_class
= true;
1944 had_char_class
= false;
1949 had_char_class
= false;
1954 /* Discard any (non)matching list bytes that are all 0 at the
1955 end of the map. Decrease the map-length byte too. */
1956 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
1964 if (syntax
& RE_NO_BK_PARENS
)
1971 if (syntax
& RE_NO_BK_PARENS
)
1978 if (syntax
& RE_NEWLINE_ALT
)
1985 if (syntax
& RE_NO_BK_VBAR
)
1992 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
1993 goto handle_interval
;
1999 if (p
== pend
) return REG_EESCAPE
;
2001 /* Do not translate the character after the \, so that we can
2002 distinguish, e.g., \B from \b, even if we normally would
2003 translate, e.g., B to b. */
2009 if (syntax
& RE_NO_BK_PARENS
)
2010 goto normal_backslash
;
2016 if (COMPILE_STACK_FULL
)
2018 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2019 compile_stack_elt_t
);
2020 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2022 compile_stack
.size
<<= 1;
2025 /* These are the values to restore when we hit end of this
2026 group. They are all relative offsets, so that if the
2027 whole pattern moves because of realloc, they will still
2029 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2030 COMPILE_STACK_TOP
.fixup_alt_jump
2031 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2032 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2033 COMPILE_STACK_TOP
.regnum
= regnum
;
2035 /* We will eventually replace the 0 with the number of
2036 groups inner to this one. But do not push a
2037 start_memory for groups beyond the last one we can
2038 represent in the compiled pattern. */
2039 if (regnum
<= MAX_REGNUM
)
2041 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2042 BUF_PUSH_3 (start_memory
, regnum
, 0);
2045 compile_stack
.avail
++;
2050 /* If we've reached MAX_REGNUM groups, then this open
2051 won't actually generate any code, so we'll have to
2052 clear pending_exact explicitly. */
2058 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2060 if (COMPILE_STACK_EMPTY
)
2061 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2062 goto normal_backslash
;
2068 { /* Push a dummy failure point at the end of the
2069 alternative for a possible future
2070 `pop_failure_jump' to pop. See comments at
2071 `push_dummy_failure' in `re_match_2'. */
2072 BUF_PUSH (push_dummy_failure
);
2074 /* We allocated space for this jump when we assigned
2075 to `fixup_alt_jump', in the `handle_alt' case below. */
2076 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2079 /* See similar code for backslashed left paren above. */
2080 if (COMPILE_STACK_EMPTY
)
2081 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2086 /* Since we just checked for an empty stack above, this
2087 ``can't happen''. */
2088 assert (compile_stack
.avail
!= 0);
2090 /* We don't just want to restore into `regnum', because
2091 later groups should continue to be numbered higher,
2092 as in `(ab)c(de)' -- the second group is #2. */
2093 regnum_t this_group_regnum
;
2095 compile_stack
.avail
--;
2096 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2098 = COMPILE_STACK_TOP
.fixup_alt_jump
2099 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2101 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2102 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2103 /* If we've reached MAX_REGNUM groups, then this open
2104 won't actually generate any code, so we'll have to
2105 clear pending_exact explicitly. */
2108 /* We're at the end of the group, so now we know how many
2109 groups were inside this one. */
2110 if (this_group_regnum
<= MAX_REGNUM
)
2112 unsigned char *inner_group_loc
2113 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2115 *inner_group_loc
= regnum
- this_group_regnum
;
2116 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2117 regnum
- this_group_regnum
);
2123 case '|': /* `\|'. */
2124 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2125 goto normal_backslash
;
2127 if (syntax
& RE_LIMITED_OPS
)
2130 /* Insert before the previous alternative a jump which
2131 jumps to this alternative if the former fails. */
2132 GET_BUFFER_SPACE (3);
2133 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2137 /* The alternative before this one has a jump after it
2138 which gets executed if it gets matched. Adjust that
2139 jump so it will jump to this alternative's analogous
2140 jump (put in below, which in turn will jump to the next
2141 (if any) alternative's such jump, etc.). The last such
2142 jump jumps to the correct final destination. A picture:
2148 If we are at `b', then fixup_alt_jump right now points to a
2149 three-byte space after `a'. We'll put in the jump, set
2150 fixup_alt_jump to right after `b', and leave behind three
2151 bytes which we'll fill in when we get to after `c'. */
2154 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2156 /* Mark and leave space for a jump after this alternative,
2157 to be filled in later either by next alternative or
2158 when know we're at the end of a series of alternatives. */
2160 GET_BUFFER_SPACE (3);
2169 /* If \{ is a literal. */
2170 if (!(syntax
& RE_INTERVALS
)
2171 /* If we're at `\{' and it's not the open-interval
2173 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2174 || (p
- 2 == pattern
&& p
== pend
))
2175 goto normal_backslash
;
2179 /* If got here, then the syntax allows intervals. */
2181 /* At least (most) this many matches must be made. */
2182 int lower_bound
= -1, upper_bound
= -1;
2184 beg_interval
= p
- 1;
2188 if (syntax
& RE_NO_BK_BRACES
)
2189 goto unfetch_interval
;
2194 GET_UNSIGNED_NUMBER (lower_bound
);
2198 GET_UNSIGNED_NUMBER (upper_bound
);
2199 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2202 /* Interval such as `{1}' => match exactly once. */
2203 upper_bound
= lower_bound
;
2205 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2206 || lower_bound
> upper_bound
)
2208 if (syntax
& RE_NO_BK_BRACES
)
2209 goto unfetch_interval
;
2214 if (!(syntax
& RE_NO_BK_BRACES
))
2216 if (c
!= '\\') return REG_EBRACE
;
2223 if (syntax
& RE_NO_BK_BRACES
)
2224 goto unfetch_interval
;
2229 /* We just parsed a valid interval. */
2231 /* If it's invalid to have no preceding re. */
2234 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2236 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2239 goto unfetch_interval
;
2242 /* If the upper bound is zero, don't want to succeed at
2243 all; jump from `laststart' to `b + 3', which will be
2244 the end of the buffer after we insert the jump. */
2245 if (upper_bound
== 0)
2247 GET_BUFFER_SPACE (3);
2248 INSERT_JUMP (jump
, laststart
, b
+ 3);
2252 /* Otherwise, we have a nontrivial interval. When
2253 we're all done, the pattern will look like:
2254 set_number_at <jump count> <upper bound>
2255 set_number_at <succeed_n count> <lower bound>
2256 succeed_n <after jump addr> <succeed_n count>
2258 jump_n <succeed_n addr> <jump count>
2259 (The upper bound and `jump_n' are omitted if
2260 `upper_bound' is 1, though.) */
2262 { /* If the upper bound is > 1, we need to insert
2263 more at the end of the loop. */
2264 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2266 GET_BUFFER_SPACE (nbytes
);
2268 /* Initialize lower bound of the `succeed_n', even
2269 though it will be set during matching by its
2270 attendant `set_number_at' (inserted next),
2271 because `re_compile_fastmap' needs to know.
2272 Jump to the `jump_n' we might insert below. */
2273 INSERT_JUMP2 (succeed_n
, laststart
,
2274 b
+ 5 + (upper_bound
> 1) * 5,
2278 /* Code to initialize the lower bound. Insert
2279 before the `succeed_n'. The `5' is the last two
2280 bytes of this `set_number_at', plus 3 bytes of
2281 the following `succeed_n'. */
2282 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2285 if (upper_bound
> 1)
2286 { /* More than one repetition is allowed, so
2287 append a backward jump to the `succeed_n'
2288 that starts this interval.
2290 When we've reached this during matching,
2291 we'll have matched the interval once, so
2292 jump back only `upper_bound - 1' times. */
2293 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2297 /* The location we want to set is the second
2298 parameter of the `jump_n'; that is `b-2' as
2299 an absolute address. `laststart' will be
2300 the `set_number_at' we're about to insert;
2301 `laststart+3' the number to set, the source
2302 for the relative address. But we are
2303 inserting into the middle of the pattern --
2304 so everything is getting moved up by 5.
2305 Conclusion: (b - 2) - (laststart + 3) + 5,
2306 i.e., b - laststart.
2308 We insert this at the beginning of the loop
2309 so that if we fail during matching, we'll
2310 reinitialize the bounds. */
2311 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2312 upper_bound
- 1, b
);
2317 beg_interval
= NULL
;
2322 /* If an invalid interval, match the characters as literals. */
2323 assert (beg_interval
);
2325 beg_interval
= NULL
;
2327 /* normal_char and normal_backslash need `c'. */
2330 if (!(syntax
& RE_NO_BK_BRACES
))
2332 if (p
> pattern
&& p
[-1] == '\\')
2333 goto normal_backslash
;
2338 /* There is no way to specify the before_dot and after_dot
2339 operators. rms says this is ok. --karl */
2347 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2353 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2360 BUF_PUSH (wordchar
);
2366 BUF_PUSH (notwordchar
);
2379 BUF_PUSH (wordbound
);
2383 BUF_PUSH (notwordbound
);
2394 case '1': case '2': case '3': case '4': case '5':
2395 case '6': case '7': case '8': case '9':
2396 if (syntax
& RE_NO_BK_REFS
)
2404 /* Can't back reference to a subexpression if inside of it. */
2405 if (group_in_compile_stack (compile_stack
, c1
))
2409 BUF_PUSH_2 (duplicate
, c1
);
2415 if (syntax
& RE_BK_PLUS_QM
)
2418 goto normal_backslash
;
2422 /* You might think it would be useful for \ to mean
2423 not to translate; but if we don't translate it
2424 it will never match anything. */
2432 /* Expects the character in `c'. */
2434 /* If no exactn currently being built. */
2437 /* If last exactn not at current position. */
2438 || pending_exact
+ *pending_exact
+ 1 != b
2440 /* We have only one byte following the exactn for the count. */
2441 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2443 /* If followed by a repetition operator. */
2444 || *p
== '*' || *p
== '^'
2445 || ((syntax
& RE_BK_PLUS_QM
)
2446 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2447 : (*p
== '+' || *p
== '?'))
2448 || ((syntax
& RE_INTERVALS
)
2449 && ((syntax
& RE_NO_BK_BRACES
)
2451 : (p
[0] == '\\' && p
[1] == '{'))))
2453 /* Start building a new exactn. */
2457 BUF_PUSH_2 (exactn
, 0);
2458 pending_exact
= b
- 1;
2465 } /* while p != pend */
2468 /* Through the pattern now. */
2471 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2473 if (!COMPILE_STACK_EMPTY
)
2476 free (compile_stack
.stack
);
2478 /* We have succeeded; set the length of the buffer. */
2479 bufp
->used
= b
- bufp
->buffer
;
2484 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2485 print_compiled_pattern (bufp
);
2489 #ifndef MATCH_MAY_ALLOCATE
2490 /* Initialize the failure stack to the largest possible stack. This
2491 isn't necessary unless we're trying to avoid calling alloca in
2492 the search and match routines. */
2494 int num_regs
= bufp
->re_nsub
+ 1;
2496 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2497 is strictly greater than re_max_failures, the largest possible stack
2498 is 2 * re_max_failures failure points. */
2499 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2500 if (! fail_stack
.stack
)
2502 (fail_stack_elt_t
*) malloc (fail_stack
.size
2503 * sizeof (fail_stack_elt_t
));
2505 /* Initialize some other variables the matcher uses. */
2506 RETALLOC_IF (regstart
, num_regs
, const char *);
2507 RETALLOC_IF (regend
, num_regs
, const char *);
2508 RETALLOC_IF (old_regstart
, num_regs
, const char *);
2509 RETALLOC_IF (old_regend
, num_regs
, const char *);
2510 RETALLOC_IF (best_regstart
, num_regs
, const char *);
2511 RETALLOC_IF (best_regend
, num_regs
, const char *);
2512 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
2513 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
2514 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
2519 } /* regex_compile */
2521 /* Subroutines for `regex_compile'. */
2523 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2526 store_op1 (op
, loc
, arg
)
2531 *loc
= (unsigned char) op
;
2532 STORE_NUMBER (loc
+ 1, arg
);
2536 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2539 store_op2 (op
, loc
, arg1
, arg2
)
2544 *loc
= (unsigned char) op
;
2545 STORE_NUMBER (loc
+ 1, arg1
);
2546 STORE_NUMBER (loc
+ 3, arg2
);
2550 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2551 for OP followed by two-byte integer parameter ARG. */
2554 insert_op1 (op
, loc
, arg
, end
)
2560 register unsigned char *pfrom
= end
;
2561 register unsigned char *pto
= end
+ 3;
2563 while (pfrom
!= loc
)
2566 store_op1 (op
, loc
, arg
);
2570 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2573 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2579 register unsigned char *pfrom
= end
;
2580 register unsigned char *pto
= end
+ 5;
2582 while (pfrom
!= loc
)
2585 store_op2 (op
, loc
, arg1
, arg2
);
2589 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2590 after an alternative or a begin-subexpression. We assume there is at
2591 least one character before the ^. */
2594 at_begline_loc_p (pattern
, p
, syntax
)
2595 const char *pattern
, *p
;
2596 reg_syntax_t syntax
;
2598 const char *prev
= p
- 2;
2599 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
2602 /* After a subexpression? */
2603 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
2604 /* After an alternative? */
2605 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
2609 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2610 at least one character after the $, i.e., `P < PEND'. */
2613 at_endline_loc_p (p
, pend
, syntax
)
2614 const char *p
, *pend
;
2617 const char *next
= p
;
2618 boolean next_backslash
= *next
== '\\';
2619 const char *next_next
= p
+ 1 < pend
? p
+ 1 : NULL
;
2622 /* Before a subexpression? */
2623 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
2624 : next_backslash
&& next_next
&& *next_next
== ')')
2625 /* Before an alternative? */
2626 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
2627 : next_backslash
&& next_next
&& *next_next
== '|');
2631 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2632 false if it's not. */
2635 group_in_compile_stack (compile_stack
, regnum
)
2636 compile_stack_type compile_stack
;
2641 for (this_element
= compile_stack
.avail
- 1;
2644 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
2651 /* Read the ending character of a range (in a bracket expression) from the
2652 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2653 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2654 Then we set the translation of all bits between the starting and
2655 ending characters (inclusive) in the compiled pattern B.
2657 Return an error code.
2659 We use these short variable names so we can use the same macros as
2660 `regex_compile' itself. */
2662 static reg_errcode_t
2663 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
2664 const char **p_ptr
, *pend
;
2666 reg_syntax_t syntax
;
2671 const char *p
= *p_ptr
;
2672 int range_start
, range_end
;
2677 /* Even though the pattern is a signed `char *', we need to fetch
2678 with unsigned char *'s; if the high bit of the pattern character
2679 is set, the range endpoints will be negative if we fetch using a
2682 We also want to fetch the endpoints without translating them; the
2683 appropriate translation is done in the bit-setting loop below. */
2684 range_start
= ((unsigned char *) p
)[-2];
2685 range_end
= ((unsigned char *) p
)[0];
2687 /* Have to increment the pointer into the pattern string, so the
2688 caller isn't still at the ending character. */
2691 /* If the start is after the end, the range is empty. */
2692 if (range_start
> range_end
)
2693 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
2695 /* Here we see why `this_char' has to be larger than an `unsigned
2696 char' -- the range is inclusive, so if `range_end' == 0xff
2697 (assuming 8-bit characters), we would otherwise go into an infinite
2698 loop, since all characters <= 0xff. */
2699 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
2701 SET_LIST_BIT (TRANSLATE (this_char
));
2707 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2708 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2709 characters can start a string that matches the pattern. This fastmap
2710 is used by re_search to skip quickly over impossible starting points.
2712 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2713 area as BUFP->fastmap.
2715 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2718 Returns 0 if we succeed, -2 if an internal error. */
2721 re_compile_fastmap (bufp
)
2722 struct re_pattern_buffer
*bufp
;
2725 #ifdef MATCH_MAY_ALLOCATE
2726 fail_stack_type fail_stack
;
2728 #ifndef REGEX_MALLOC
2731 /* We don't push any register information onto the failure stack. */
2732 unsigned num_regs
= 0;
2734 register char *fastmap
= bufp
->fastmap
;
2735 unsigned char *pattern
= bufp
->buffer
;
2736 unsigned long size
= bufp
->used
;
2737 unsigned char *p
= pattern
;
2738 register unsigned char *pend
= pattern
+ size
;
2740 /* Assume that each path through the pattern can be null until
2741 proven otherwise. We set this false at the bottom of switch
2742 statement, to which we get only if a particular path doesn't
2743 match the empty string. */
2744 boolean path_can_be_null
= true;
2746 /* We aren't doing a `succeed_n' to begin with. */
2747 boolean succeed_n_p
= false;
2749 assert (fastmap
!= NULL
&& p
!= NULL
);
2752 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
2753 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
2754 bufp
->can_be_null
= 0;
2756 while (p
!= pend
|| !FAIL_STACK_EMPTY ())
2760 bufp
->can_be_null
|= path_can_be_null
;
2762 /* Reset for next path. */
2763 path_can_be_null
= true;
2765 p
= fail_stack
.stack
[--fail_stack
.avail
];
2768 /* We should never be about to go beyond the end of the pattern. */
2771 #ifdef SWITCH_ENUM_BUG
2772 switch ((int) ((re_opcode_t
) *p
++))
2774 switch ((re_opcode_t
) *p
++)
2778 /* I guess the idea here is to simply not bother with a fastmap
2779 if a backreference is used, since it's too hard to figure out
2780 the fastmap for the corresponding group. Setting
2781 `can_be_null' stops `re_search_2' from using the fastmap, so
2782 that is all we do. */
2784 bufp
->can_be_null
= 1;
2788 /* Following are the cases which match a character. These end
2797 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2798 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
2804 /* Chars beyond end of map must be allowed. */
2805 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
2808 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2809 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
2815 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2816 if (SYNTAX (j
) == Sword
)
2822 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2823 if (SYNTAX (j
) != Sword
)
2829 /* `.' matches anything ... */
2830 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2833 /* ... except perhaps newline. */
2834 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
2837 /* Return if we have already set `can_be_null'; if we have,
2838 then the fastmap is irrelevant. Something's wrong here. */
2839 else if (bufp
->can_be_null
)
2842 /* Otherwise, have to check alternative paths. */
2849 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2850 if (SYNTAX (j
) == (enum syntaxcode
) k
)
2857 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2858 if (SYNTAX (j
) != (enum syntaxcode
) k
)
2863 /* All cases after this match the empty string. These end with
2871 #endif /* not emacs */
2883 case push_dummy_failure
:
2888 case pop_failure_jump
:
2889 case maybe_pop_jump
:
2892 case dummy_failure_jump
:
2893 EXTRACT_NUMBER_AND_INCR (j
, p
);
2898 /* Jump backward implies we just went through the body of a
2899 loop and matched nothing. Opcode jumped to should be
2900 `on_failure_jump' or `succeed_n'. Just treat it like an
2901 ordinary jump. For a * loop, it has pushed its failure
2902 point already; if so, discard that as redundant. */
2903 if ((re_opcode_t
) *p
!= on_failure_jump
2904 && (re_opcode_t
) *p
!= succeed_n
)
2908 EXTRACT_NUMBER_AND_INCR (j
, p
);
2911 /* If what's on the stack is where we are now, pop it. */
2912 if (!FAIL_STACK_EMPTY ()
2913 && fail_stack
.stack
[fail_stack
.avail
- 1] == p
)
2919 case on_failure_jump
:
2920 case on_failure_keep_string_jump
:
2921 handle_on_failure_jump
:
2922 EXTRACT_NUMBER_AND_INCR (j
, p
);
2924 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2925 end of the pattern. We don't want to push such a point,
2926 since when we restore it above, entering the switch will
2927 increment `p' past the end of the pattern. We don't need
2928 to push such a point since we obviously won't find any more
2929 fastmap entries beyond `pend'. Such a pattern can match
2930 the null string, though. */
2933 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
2937 bufp
->can_be_null
= 1;
2941 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
2942 succeed_n_p
= false;
2949 /* Get to the number of times to succeed. */
2952 /* Increment p past the n for when k != 0. */
2953 EXTRACT_NUMBER_AND_INCR (k
, p
);
2957 succeed_n_p
= true; /* Spaghetti code alert. */
2958 goto handle_on_failure_jump
;
2975 abort (); /* We have listed all the cases. */
2978 /* Getting here means we have found the possible starting
2979 characters for one path of the pattern -- and that the empty
2980 string does not match. We need not follow this path further.
2981 Instead, look at the next alternative (remembered on the
2982 stack), or quit if no more. The test at the top of the loop
2983 does these things. */
2984 path_can_be_null
= false;
2988 /* Set `can_be_null' for the last path (also the first path, if the
2989 pattern is empty). */
2990 bufp
->can_be_null
|= path_can_be_null
;
2992 } /* re_compile_fastmap */
2994 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2995 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2996 this memory for recording register information. STARTS and ENDS
2997 must be allocated using the malloc library routine, and must each
2998 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3000 If NUM_REGS == 0, then subsequent matches should allocate their own
3003 Unless this function is called, the first search or match using
3004 PATTERN_BUFFER will allocate its own register data, without
3005 freeing the old data. */
3008 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3009 struct re_pattern_buffer
*bufp
;
3010 struct re_registers
*regs
;
3012 regoff_t
*starts
, *ends
;
3016 bufp
->regs_allocated
= REGS_REALLOCATE
;
3017 regs
->num_regs
= num_regs
;
3018 regs
->start
= starts
;
3023 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3025 regs
->start
= regs
->end
= (regoff_t
*) 0;
3029 /* Searching routines. */
3031 /* Like re_search_2, below, but only one string is specified, and
3032 doesn't let you say where to stop matching. */
3035 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3036 struct re_pattern_buffer
*bufp
;
3038 int size
, startpos
, range
;
3039 struct re_registers
*regs
;
3041 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3046 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3047 virtual concatenation of STRING1 and STRING2, starting first at index
3048 STARTPOS, then at STARTPOS + 1, and so on.
3050 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3052 RANGE is how far to scan while trying to match. RANGE = 0 means try
3053 only at STARTPOS; in general, the last start tried is STARTPOS +
3056 In REGS, return the indices of the virtual concatenation of STRING1
3057 and STRING2 that matched the entire BUFP->buffer and its contained
3060 Do not consider matching one past the index STOP in the virtual
3061 concatenation of STRING1 and STRING2.
3063 We return either the position in the strings at which the match was
3064 found, -1 if no match, or -2 if error (such as failure
3068 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3069 struct re_pattern_buffer
*bufp
;
3070 const char *string1
, *string2
;
3074 struct re_registers
*regs
;
3078 register char *fastmap
= bufp
->fastmap
;
3079 register char *translate
= bufp
->translate
;
3080 int total_size
= size1
+ size2
;
3081 int endpos
= startpos
+ range
;
3083 /* Check for out-of-range STARTPOS. */
3084 if (startpos
< 0 || startpos
> total_size
)
3087 /* Fix up RANGE if it might eventually take us outside
3088 the virtual concatenation of STRING1 and STRING2. */
3090 range
= -1 - startpos
;
3091 else if (endpos
> total_size
)
3092 range
= total_size
- startpos
;
3094 /* If the search isn't to be a backwards one, don't waste time in a
3095 search for a pattern that must be anchored. */
3096 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3104 /* Update the fastmap now if not correct already. */
3105 if (fastmap
&& !bufp
->fastmap_accurate
)
3106 if (re_compile_fastmap (bufp
) == -2)
3109 /* Loop through the string, looking for a place to start matching. */
3112 /* If a fastmap is supplied, skip quickly over characters that
3113 cannot be the start of a match. If the pattern can match the
3114 null string, however, we don't need to skip characters; we want
3115 the first null string. */
3116 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3118 if (range
> 0) /* Searching forwards. */
3120 register const char *d
;
3121 register int lim
= 0;
3124 if (startpos
< size1
&& startpos
+ range
>= size1
)
3125 lim
= range
- (size1
- startpos
);
3127 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3129 /* Written out as an if-else to avoid testing `translate'
3133 && !fastmap
[(unsigned char)
3134 translate
[(unsigned char) *d
++]])
3137 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3140 startpos
+= irange
- range
;
3142 else /* Searching backwards. */
3144 register char c
= (size1
== 0 || startpos
>= size1
3145 ? string2
[startpos
- size1
]
3146 : string1
[startpos
]);
3148 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3153 /* If can't match the null string, and that's all we have left, fail. */
3154 if (range
>= 0 && startpos
== total_size
&& fastmap
3155 && !bufp
->can_be_null
)
3158 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3159 startpos
, regs
, stop
);
3185 /* Declarations and macros for re_match_2. */
3187 static int bcmp_translate ();
3188 static boolean
alt_match_null_string_p (),
3189 common_op_match_null_string_p (),
3190 group_match_null_string_p ();
3192 /* This converts PTR, a pointer into one of the search strings `string1'
3193 and `string2' into an offset from the beginning of that string. */
3194 #define POINTER_TO_OFFSET(ptr) \
3195 (FIRST_STRING_P (ptr) \
3196 ? ((regoff_t) ((ptr) - string1)) \
3197 : ((regoff_t) ((ptr) - string2 + size1)))
3199 /* Macros for dealing with the split strings in re_match_2. */
3201 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3203 /* Call before fetching a character with *d. This switches over to
3204 string2 if necessary. */
3205 #define PREFETCH() \
3208 /* End of string2 => fail. */ \
3209 if (dend == end_match_2) \
3211 /* End of string1 => advance to string2. */ \
3213 dend = end_match_2; \
3217 /* Test if at very beginning or at very end of the virtual concatenation
3218 of `string1' and `string2'. If only one string, it's `string2'. */
3219 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3220 #define AT_STRINGS_END(d) ((d) == end2)
3223 /* Test if D points to a character which is word-constituent. We have
3224 two special cases to check for: if past the end of string1, look at
3225 the first character in string2; and if before the beginning of
3226 string2, look at the last character in string1. */
3227 #define WORDCHAR_P(d) \
3228 (SYNTAX ((d) == end1 ? *string2 \
3229 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3232 /* Test if the character before D and the one at D differ with respect
3233 to being word-constituent. */
3234 #define AT_WORD_BOUNDARY(d) \
3235 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3236 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3239 /* Free everything we malloc. */
3240 #ifdef MATCH_MAY_ALLOCATE
3242 #define FREE_VAR(var) if (var) free (var); var = NULL
3243 #define FREE_VARIABLES() \
3245 FREE_VAR (fail_stack.stack); \
3246 FREE_VAR (regstart); \
3247 FREE_VAR (regend); \
3248 FREE_VAR (old_regstart); \
3249 FREE_VAR (old_regend); \
3250 FREE_VAR (best_regstart); \
3251 FREE_VAR (best_regend); \
3252 FREE_VAR (reg_info); \
3253 FREE_VAR (reg_dummy); \
3254 FREE_VAR (reg_info_dummy); \
3256 #else /* not REGEX_MALLOC */
3257 /* This used to do alloca (0), but now we do that in the caller. */
3258 #define FREE_VARIABLES() /* Nothing */
3259 #endif /* not REGEX_MALLOC */
3261 #define FREE_VARIABLES() /* Do nothing! */
3262 #endif /* not MATCH_MAY_ALLOCATE */
3264 /* These values must meet several constraints. They must not be valid
3265 register values; since we have a limit of 255 registers (because
3266 we use only one byte in the pattern for the register number), we can
3267 use numbers larger than 255. They must differ by 1, because of
3268 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3269 be larger than the value for the highest register, so we do not try
3270 to actually save any registers when none are active. */
3271 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3272 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3274 /* Matching routines. */
3276 #ifndef emacs /* Emacs never uses this. */
3277 /* re_match is like re_match_2 except it takes only a single string. */
3280 re_match (bufp
, string
, size
, pos
, regs
)
3281 struct re_pattern_buffer
*bufp
;
3284 struct re_registers
*regs
;
3286 int result
= re_match_2_internal (bufp
, NULL
, 0, string
, size
,
3291 #endif /* not emacs */
3294 /* re_match_2 matches the compiled pattern in BUFP against the
3295 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3296 and SIZE2, respectively). We start matching at POS, and stop
3299 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3300 store offsets for the substring each group matched in REGS. See the
3301 documentation for exactly how many groups we fill.
3303 We return -1 if no match, -2 if an internal error (such as the
3304 failure stack overflowing). Otherwise, we return the length of the
3305 matched substring. */
3308 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3309 struct re_pattern_buffer
*bufp
;
3310 const char *string1
, *string2
;
3313 struct re_registers
*regs
;
3316 int result
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3322 /* This is a separate function so that we can force an alloca cleanup
3325 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3326 struct re_pattern_buffer
*bufp
;
3327 const char *string1
, *string2
;
3330 struct re_registers
*regs
;
3333 /* General temporaries. */
3337 /* Just past the end of the corresponding string. */
3338 const char *end1
, *end2
;
3340 /* Pointers into string1 and string2, just past the last characters in
3341 each to consider matching. */
3342 const char *end_match_1
, *end_match_2
;
3344 /* Where we are in the data, and the end of the current string. */
3345 const char *d
, *dend
;
3347 /* Where we are in the pattern, and the end of the pattern. */
3348 unsigned char *p
= bufp
->buffer
;
3349 register unsigned char *pend
= p
+ bufp
->used
;
3351 /* Mark the opcode just after a start_memory, so we can test for an
3352 empty subpattern when we get to the stop_memory. */
3353 unsigned char *just_past_start_mem
= 0;
3355 /* We use this to map every character in the string. */
3356 char *translate
= bufp
->translate
;
3358 /* Failure point stack. Each place that can handle a failure further
3359 down the line pushes a failure point on this stack. It consists of
3360 restart, regend, and reg_info for all registers corresponding to
3361 the subexpressions we're currently inside, plus the number of such
3362 registers, and, finally, two char *'s. The first char * is where
3363 to resume scanning the pattern; the second one is where to resume
3364 scanning the strings. If the latter is zero, the failure point is
3365 a ``dummy''; if a failure happens and the failure point is a dummy,
3366 it gets discarded and the next next one is tried. */
3367 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3368 fail_stack_type fail_stack
;
3371 static unsigned failure_id
= 0;
3372 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3375 /* We fill all the registers internally, independent of what we
3376 return, for use in backreferences. The number here includes
3377 an element for register zero. */
3378 unsigned num_regs
= bufp
->re_nsub
+ 1;
3380 /* The currently active registers. */
3381 unsigned lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3382 unsigned highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3384 /* Information on the contents of registers. These are pointers into
3385 the input strings; they record just what was matched (on this
3386 attempt) by a subexpression part of the pattern, that is, the
3387 regnum-th regstart pointer points to where in the pattern we began
3388 matching and the regnum-th regend points to right after where we
3389 stopped matching the regnum-th subexpression. (The zeroth register
3390 keeps track of what the whole pattern matches.) */
3391 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3392 const char **regstart
, **regend
;
3395 /* If a group that's operated upon by a repetition operator fails to
3396 match anything, then the register for its start will need to be
3397 restored because it will have been set to wherever in the string we
3398 are when we last see its open-group operator. Similarly for a
3400 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3401 const char **old_regstart
, **old_regend
;
3404 /* The is_active field of reg_info helps us keep track of which (possibly
3405 nested) subexpressions we are currently in. The matched_something
3406 field of reg_info[reg_num] helps us tell whether or not we have
3407 matched any of the pattern so far this time through the reg_num-th
3408 subexpression. These two fields get reset each time through any
3409 loop their register is in. */
3410 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3411 register_info_type
*reg_info
;
3414 /* The following record the register info as found in the above
3415 variables when we find a match better than any we've seen before.
3416 This happens as we backtrack through the failure points, which in
3417 turn happens only if we have not yet matched the entire string. */
3418 unsigned best_regs_set
= false;
3419 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3420 const char **best_regstart
, **best_regend
;
3423 /* Logically, this is `best_regend[0]'. But we don't want to have to
3424 allocate space for that if we're not allocating space for anything
3425 else (see below). Also, we never need info about register 0 for
3426 any of the other register vectors, and it seems rather a kludge to
3427 treat `best_regend' differently than the rest. So we keep track of
3428 the end of the best match so far in a separate variable. We
3429 initialize this to NULL so that when we backtrack the first time
3430 and need to test it, it's not garbage. */
3431 const char *match_end
= NULL
;
3433 /* Used when we pop values we don't care about. */
3434 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3435 const char **reg_dummy
;
3436 register_info_type
*reg_info_dummy
;
3440 /* Counts the total number of registers pushed. */
3441 unsigned num_regs_pushed
= 0;
3444 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3448 #ifdef MATCH_MAY_ALLOCATE
3449 /* Do not bother to initialize all the register variables if there are
3450 no groups in the pattern, as it takes a fair amount of time. If
3451 there are groups, we include space for register 0 (the whole
3452 pattern), even though we never use it, since it simplifies the
3453 array indexing. We should fix this. */
3456 regstart
= REGEX_TALLOC (num_regs
, const char *);
3457 regend
= REGEX_TALLOC (num_regs
, const char *);
3458 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3459 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3460 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3461 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3462 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3463 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3464 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3466 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3467 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3473 #if defined (REGEX_MALLOC)
3476 /* We must initialize all our variables to NULL, so that
3477 `FREE_VARIABLES' doesn't try to free them. */
3478 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3479 = best_regend
= reg_dummy
= NULL
;
3480 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3482 #endif /* REGEX_MALLOC */
3483 #endif /* MATCH_MAY_ALLOCATE */
3485 /* The starting position is bogus. */
3486 if (pos
< 0 || pos
> size1
+ size2
)
3492 /* Initialize subexpression text positions to -1 to mark ones that no
3493 start_memory/stop_memory has been seen for. Also initialize the
3494 register information struct. */
3495 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3497 regstart
[mcnt
] = regend
[mcnt
]
3498 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3500 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3501 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3502 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3503 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3506 /* We move `string1' into `string2' if the latter's empty -- but not if
3507 `string1' is null. */
3508 if (size2
== 0 && string1
!= NULL
)
3515 end1
= string1
+ size1
;
3516 end2
= string2
+ size2
;
3518 /* Compute where to stop matching, within the two strings. */
3521 end_match_1
= string1
+ stop
;
3522 end_match_2
= string2
;
3527 end_match_2
= string2
+ stop
- size1
;
3530 /* `p' scans through the pattern as `d' scans through the data.
3531 `dend' is the end of the input string that `d' points within. `d'
3532 is advanced into the following input string whenever necessary, but
3533 this happens before fetching; therefore, at the beginning of the
3534 loop, `d' can be pointing at the end of a string, but it cannot
3536 if (size1
> 0 && pos
<= size1
)
3543 d
= string2
+ pos
- size1
;
3547 DEBUG_PRINT1 ("The compiled pattern is: ");
3548 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
3549 DEBUG_PRINT1 ("The string to match is: `");
3550 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
3551 DEBUG_PRINT1 ("'\n");
3553 /* This loops over pattern commands. It exits by returning from the
3554 function if the match is complete, or it drops through if the match
3555 fails at this starting point in the input data. */
3558 DEBUG_PRINT2 ("\n0x%x: ", p
);
3561 { /* End of pattern means we might have succeeded. */
3562 DEBUG_PRINT1 ("end of pattern ... ");
3564 /* If we haven't matched the entire string, and we want the
3565 longest match, try backtracking. */
3566 if (d
!= end_match_2
)
3568 DEBUG_PRINT1 ("backtracking.\n");
3570 if (!FAIL_STACK_EMPTY ())
3571 { /* More failure points to try. */
3572 boolean same_str_p
= (FIRST_STRING_P (match_end
)
3573 == MATCHING_IN_FIRST_STRING
);
3575 /* If exceeds best match so far, save it. */
3577 || (same_str_p
&& d
> match_end
)
3578 || (!same_str_p
&& !MATCHING_IN_FIRST_STRING
))
3580 best_regs_set
= true;
3583 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3585 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3587 best_regstart
[mcnt
] = regstart
[mcnt
];
3588 best_regend
[mcnt
] = regend
[mcnt
];
3594 /* If no failure points, don't restore garbage. */
3595 else if (best_regs_set
)
3598 /* Restore best match. It may happen that `dend ==
3599 end_match_1' while the restored d is in string2.
3600 For example, the pattern `x.*y.*z' against the
3601 strings `x-' and `y-z-', if the two strings are
3602 not consecutive in memory. */
3603 DEBUG_PRINT1 ("Restoring best registers.\n");
3606 dend
= ((d
>= string1
&& d
<= end1
)
3607 ? end_match_1
: end_match_2
);
3609 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3611 regstart
[mcnt
] = best_regstart
[mcnt
];
3612 regend
[mcnt
] = best_regend
[mcnt
];
3615 } /* d != end_match_2 */
3617 DEBUG_PRINT1 ("Accepting match.\n");
3619 /* If caller wants register contents data back, do it. */
3620 if (regs
&& !bufp
->no_sub
)
3622 /* Have the register data arrays been allocated? */
3623 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
3624 { /* No. So allocate them with malloc. We need one
3625 extra element beyond `num_regs' for the `-1' marker
3627 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
3628 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
3629 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
3630 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3632 bufp
->regs_allocated
= REGS_REALLOCATE
;
3634 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
3635 { /* Yes. If we need more elements than were already
3636 allocated, reallocate them. If we need fewer, just
3638 if (regs
->num_regs
< num_regs
+ 1)
3640 regs
->num_regs
= num_regs
+ 1;
3641 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
3642 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
3643 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3649 /* These braces fend off a "empty body in an else-statement"
3650 warning under GCC when assert expands to nothing. */
3651 assert (bufp
->regs_allocated
== REGS_FIXED
);
3654 /* Convert the pointer data in `regstart' and `regend' to
3655 indices. Register zero has to be set differently,
3656 since we haven't kept track of any info for it. */
3657 if (regs
->num_regs
> 0)
3659 regs
->start
[0] = pos
;
3660 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
3661 ? ((regoff_t
) (d
- string1
))
3662 : ((regoff_t
) (d
- string2
+ size1
)));
3665 /* Go through the first `min (num_regs, regs->num_regs)'
3666 registers, since that is all we initialized. */
3667 for (mcnt
= 1; mcnt
< MIN (num_regs
, regs
->num_regs
); mcnt
++)
3669 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
3670 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3674 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
3676 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
3680 /* If the regs structure we return has more elements than
3681 were in the pattern, set the extra elements to -1. If
3682 we (re)allocated the registers, this is the case,
3683 because we always allocate enough to have at least one
3685 for (mcnt
= num_regs
; mcnt
< regs
->num_regs
; mcnt
++)
3686 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3687 } /* regs && !bufp->no_sub */
3690 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3691 nfailure_points_pushed
, nfailure_points_popped
,
3692 nfailure_points_pushed
- nfailure_points_popped
);
3693 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
3695 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
3699 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
3704 /* Otherwise match next pattern command. */
3705 #ifdef SWITCH_ENUM_BUG
3706 switch ((int) ((re_opcode_t
) *p
++))
3708 switch ((re_opcode_t
) *p
++)
3711 /* Ignore these. Used to ignore the n of succeed_n's which
3712 currently have n == 0. */
3714 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3718 /* Match the next n pattern characters exactly. The following
3719 byte in the pattern defines n, and the n bytes after that
3720 are the characters to match. */
3723 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
3725 /* This is written out as an if-else so we don't waste time
3726 testing `translate' inside the loop. */
3732 if (translate
[(unsigned char) *d
++] != (char) *p
++)
3742 if (*d
++ != (char) *p
++) goto fail
;
3746 SET_REGS_MATCHED ();
3750 /* Match any character except possibly a newline or a null. */
3752 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3756 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
3757 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
3760 SET_REGS_MATCHED ();
3761 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
3769 register unsigned char c
;
3770 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
3772 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3775 c
= TRANSLATE (*d
); /* The character to match. */
3777 /* Cast to `unsigned' instead of `unsigned char' in case the
3778 bit list is a full 32 bytes long. */
3779 if (c
< (unsigned) (*p
* BYTEWIDTH
)
3780 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
3785 if (!not) goto fail
;
3787 SET_REGS_MATCHED ();
3793 /* The beginning of a group is represented by start_memory.
3794 The arguments are the register number in the next byte, and the
3795 number of groups inner to this one in the next. The text
3796 matched within the group is recorded (in the internal
3797 registers data structure) under the register number. */
3799 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
3801 /* Find out if this group can match the empty string. */
3802 p1
= p
; /* To send to group_match_null_string_p. */
3804 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
3805 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3806 = group_match_null_string_p (&p1
, pend
, reg_info
);
3808 /* Save the position in the string where we were the last time
3809 we were at this open-group operator in case the group is
3810 operated upon by a repetition operator, e.g., with `(a*)*b'
3811 against `ab'; then we want to ignore where we are now in
3812 the string in case this attempt to match fails. */
3813 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3814 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
3816 DEBUG_PRINT2 (" old_regstart: %d\n",
3817 POINTER_TO_OFFSET (old_regstart
[*p
]));
3820 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
3822 IS_ACTIVE (reg_info
[*p
]) = 1;
3823 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3825 /* This is the new highest active register. */
3826 highest_active_reg
= *p
;
3828 /* If nothing was active before, this is the new lowest active
3830 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
3831 lowest_active_reg
= *p
;
3833 /* Move past the register number and inner group count. */
3835 just_past_start_mem
= p
;
3839 /* The stop_memory opcode represents the end of a group. Its
3840 arguments are the same as start_memory's: the register
3841 number, and the number of inner groups. */
3843 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
3845 /* We need to save the string position the last time we were at
3846 this close-group operator in case the group is operated
3847 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3848 against `aba'; then we want to ignore where we are now in
3849 the string in case this attempt to match fails. */
3850 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3851 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
3853 DEBUG_PRINT2 (" old_regend: %d\n",
3854 POINTER_TO_OFFSET (old_regend
[*p
]));
3857 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
3859 /* This register isn't active anymore. */
3860 IS_ACTIVE (reg_info
[*p
]) = 0;
3862 /* If this was the only register active, nothing is active
3864 if (lowest_active_reg
== highest_active_reg
)
3866 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3867 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3870 { /* We must scan for the new highest active register, since
3871 it isn't necessarily one less than now: consider
3872 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3873 new highest active register is 1. */
3874 unsigned char r
= *p
- 1;
3875 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
3878 /* If we end up at register zero, that means that we saved
3879 the registers as the result of an `on_failure_jump', not
3880 a `start_memory', and we jumped to past the innermost
3881 `stop_memory'. For example, in ((.)*) we save
3882 registers 1 and 2 as a result of the *, but when we pop
3883 back to the second ), we are at the stop_memory 1.
3884 Thus, nothing is active. */
3887 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3888 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3891 highest_active_reg
= r
;
3894 /* If just failed to match something this time around with a
3895 group that's operated on by a repetition operator, try to
3896 force exit from the ``loop'', and restore the register
3897 information for this group that we had before trying this
3899 if ((!MATCHED_SOMETHING (reg_info
[*p
])
3900 || just_past_start_mem
== p
- 1)
3903 boolean is_a_jump_n
= false;
3907 switch ((re_opcode_t
) *p1
++)
3911 case pop_failure_jump
:
3912 case maybe_pop_jump
:
3914 case dummy_failure_jump
:
3915 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3925 /* If the next operation is a jump backwards in the pattern
3926 to an on_failure_jump right before the start_memory
3927 corresponding to this stop_memory, exit from the loop
3928 by forcing a failure after pushing on the stack the
3929 on_failure_jump's jump in the pattern, and d. */
3930 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
3931 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
3933 /* If this group ever matched anything, then restore
3934 what its registers were before trying this last
3935 failed match, e.g., with `(a*)*b' against `ab' for
3936 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3937 against `aba' for regend[3].
3939 Also restore the registers for inner groups for,
3940 e.g., `((a*)(b*))*' against `aba' (register 3 would
3941 otherwise get trashed). */
3943 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
3947 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3949 /* Restore this and inner groups' (if any) registers. */
3950 for (r
= *p
; r
< *p
+ *(p
+ 1); r
++)
3952 regstart
[r
] = old_regstart
[r
];
3954 /* xx why this test? */
3955 if ((int) old_regend
[r
] >= (int) regstart
[r
])
3956 regend
[r
] = old_regend
[r
];
3960 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3961 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
3967 /* Move past the register number and the inner group count. */
3972 /* \<digit> has been turned into a `duplicate' command which is
3973 followed by the numeric value of <digit> as the register number. */
3976 register const char *d2
, *dend2
;
3977 int regno
= *p
++; /* Get which register to match against. */
3978 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
3980 /* Can't back reference a group which we've never matched. */
3981 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
3984 /* Where in input to try to start matching. */
3985 d2
= regstart
[regno
];
3987 /* Where to stop matching; if both the place to start and
3988 the place to stop matching are in the same string, then
3989 set to the place to stop, otherwise, for now have to use
3990 the end of the first string. */
3992 dend2
= ((FIRST_STRING_P (regstart
[regno
])
3993 == FIRST_STRING_P (regend
[regno
]))
3994 ? regend
[regno
] : end_match_1
);
3997 /* If necessary, advance to next segment in register
4001 if (dend2
== end_match_2
) break;
4002 if (dend2
== regend
[regno
]) break;
4004 /* End of string1 => advance to string2. */
4006 dend2
= regend
[regno
];
4008 /* At end of register contents => success */
4009 if (d2
== dend2
) break;
4011 /* If necessary, advance to next segment in data. */
4014 /* How many characters left in this segment to match. */
4017 /* Want how many consecutive characters we can match in
4018 one shot, so, if necessary, adjust the count. */
4019 if (mcnt
> dend2
- d2
)
4022 /* Compare that many; failure if mismatch, else move
4025 ? bcmp_translate (d
, d2
, mcnt
, translate
)
4026 : bcmp (d
, d2
, mcnt
))
4028 d
+= mcnt
, d2
+= mcnt
;
4034 /* begline matches the empty string at the beginning of the string
4035 (unless `not_bol' is set in `bufp'), and, if
4036 `newline_anchor' is set, after newlines. */
4038 DEBUG_PRINT1 ("EXECUTING begline.\n");
4040 if (AT_STRINGS_BEG (d
))
4042 if (!bufp
->not_bol
) break;
4044 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4048 /* In all other cases, we fail. */
4052 /* endline is the dual of begline. */
4054 DEBUG_PRINT1 ("EXECUTING endline.\n");
4056 if (AT_STRINGS_END (d
))
4058 if (!bufp
->not_eol
) break;
4061 /* We have to ``prefetch'' the next character. */
4062 else if ((d
== end1
? *string2
: *d
) == '\n'
4063 && bufp
->newline_anchor
)
4070 /* Match at the very beginning of the data. */
4072 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4073 if (AT_STRINGS_BEG (d
))
4078 /* Match at the very end of the data. */
4080 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4081 if (AT_STRINGS_END (d
))
4086 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4087 pushes NULL as the value for the string on the stack. Then
4088 `pop_failure_point' will keep the current value for the
4089 string, instead of restoring it. To see why, consider
4090 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4091 then the . fails against the \n. But the next thing we want
4092 to do is match the \n against the \n; if we restored the
4093 string value, we would be back at the foo.
4095 Because this is used only in specific cases, we don't need to
4096 check all the things that `on_failure_jump' does, to make
4097 sure the right things get saved on the stack. Hence we don't
4098 share its code. The only reason to push anything on the
4099 stack at all is that otherwise we would have to change
4100 `anychar's code to do something besides goto fail in this
4101 case; that seems worse than this. */
4102 case on_failure_keep_string_jump
:
4103 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4105 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4106 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4108 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4112 /* Uses of on_failure_jump:
4114 Each alternative starts with an on_failure_jump that points
4115 to the beginning of the next alternative. Each alternative
4116 except the last ends with a jump that in effect jumps past
4117 the rest of the alternatives. (They really jump to the
4118 ending jump of the following alternative, because tensioning
4119 these jumps is a hassle.)
4121 Repeats start with an on_failure_jump that points past both
4122 the repetition text and either the following jump or
4123 pop_failure_jump back to this on_failure_jump. */
4124 case on_failure_jump
:
4126 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4128 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4129 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4131 /* If this on_failure_jump comes right before a group (i.e.,
4132 the original * applied to a group), save the information
4133 for that group and all inner ones, so that if we fail back
4134 to this point, the group's information will be correct.
4135 For example, in \(a*\)*\1, we need the preceding group,
4136 and in \(\(a*\)b*\)\2, we need the inner group. */
4138 /* We can't use `p' to check ahead because we push
4139 a failure point to `p + mcnt' after we do this. */
4142 /* We need to skip no_op's before we look for the
4143 start_memory in case this on_failure_jump is happening as
4144 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4146 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4149 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4151 /* We have a new highest active register now. This will
4152 get reset at the start_memory we are about to get to,
4153 but we will have saved all the registers relevant to
4154 this repetition op, as described above. */
4155 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4156 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4157 lowest_active_reg
= *(p1
+ 1);
4160 DEBUG_PRINT1 (":\n");
4161 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4165 /* A smart repeat ends with `maybe_pop_jump'.
4166 We change it to either `pop_failure_jump' or `jump'. */
4167 case maybe_pop_jump
:
4168 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4169 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4171 register unsigned char *p2
= p
;
4173 /* Compare the beginning of the repeat with what in the
4174 pattern follows its end. If we can establish that there
4175 is nothing that they would both match, i.e., that we
4176 would have to backtrack because of (as in, e.g., `a*a')
4177 then we can change to pop_failure_jump, because we'll
4178 never have to backtrack.
4180 This is not true in the case of alternatives: in
4181 `(a|ab)*' we do need to backtrack to the `ab' alternative
4182 (e.g., if the string was `ab'). But instead of trying to
4183 detect that here, the alternative has put on a dummy
4184 failure point which is what we will end up popping. */
4186 /* Skip over open/close-group commands.
4187 If what follows this loop is a ...+ construct,
4188 look at what begins its body, since we will have to
4189 match at least one of that. */
4193 && ((re_opcode_t
) *p2
== stop_memory
4194 || (re_opcode_t
) *p2
== start_memory
))
4196 else if (p2
+ 6 < pend
4197 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4204 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4205 to the `maybe_finalize_jump' of this case. Examine what
4208 /* If we're at the end of the pattern, we can change. */
4211 /* Consider what happens when matching ":\(.*\)"
4212 against ":/". I don't really understand this code
4214 p
[-3] = (unsigned char) pop_failure_jump
;
4216 (" End of pattern: change to `pop_failure_jump'.\n");
4219 else if ((re_opcode_t
) *p2
== exactn
4220 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4222 register unsigned char c
4223 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4225 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4227 p
[-3] = (unsigned char) pop_failure_jump
;
4228 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4232 else if ((re_opcode_t
) p1
[3] == charset
4233 || (re_opcode_t
) p1
[3] == charset_not
)
4235 int not = (re_opcode_t
) p1
[3] == charset_not
;
4237 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4238 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4241 /* `not' is equal to 1 if c would match, which means
4242 that we can't change to pop_failure_jump. */
4245 p
[-3] = (unsigned char) pop_failure_jump
;
4246 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4250 else if ((re_opcode_t
) *p2
== charset
)
4252 register unsigned char c
4253 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4255 if ((re_opcode_t
) p1
[3] == exactn
4256 && ! (p2
[1] * BYTEWIDTH
> p1
[4]
4257 && (p2
[1 + p1
[4] / BYTEWIDTH
]
4258 & (1 << (p1
[4] % BYTEWIDTH
)))))
4260 p
[-3] = (unsigned char) pop_failure_jump
;
4261 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4265 else if ((re_opcode_t
) p1
[3] == charset_not
)
4268 /* We win if the charset_not inside the loop
4269 lists every character listed in the charset after. */
4270 for (idx
= 0; idx
< p2
[1]; idx
++)
4271 if (! (p2
[2 + idx
] == 0
4273 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4278 p
[-3] = (unsigned char) pop_failure_jump
;
4279 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4282 else if ((re_opcode_t
) p1
[3] == charset
)
4285 /* We win if the charset inside the loop
4286 has no overlap with the one after the loop. */
4287 for (idx
= 0; idx
< p2
[1] && idx
< p1
[4]; idx
++)
4288 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4291 if (idx
== p2
[1] || idx
== p1
[4])
4293 p
[-3] = (unsigned char) pop_failure_jump
;
4294 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4299 p
-= 2; /* Point at relative address again. */
4300 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4302 p
[-1] = (unsigned char) jump
;
4303 DEBUG_PRINT1 (" Match => jump.\n");
4304 goto unconditional_jump
;
4306 /* Note fall through. */
4309 /* The end of a simple repeat has a pop_failure_jump back to
4310 its matching on_failure_jump, where the latter will push a
4311 failure point. The pop_failure_jump takes off failure
4312 points put on by this pop_failure_jump's matching
4313 on_failure_jump; we got through the pattern to here from the
4314 matching on_failure_jump, so didn't fail. */
4315 case pop_failure_jump
:
4317 /* We need to pass separate storage for the lowest and
4318 highest registers, even though we don't care about the
4319 actual values. Otherwise, we will restore only one
4320 register from the stack, since lowest will == highest in
4321 `pop_failure_point'. */
4322 unsigned dummy_low_reg
, dummy_high_reg
;
4323 unsigned char *pdummy
;
4326 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4327 POP_FAILURE_POINT (sdummy
, pdummy
,
4328 dummy_low_reg
, dummy_high_reg
,
4329 reg_dummy
, reg_dummy
, reg_info_dummy
);
4331 /* Note fall through. */
4334 /* Unconditionally jump (without popping any failure points). */
4337 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4338 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4339 p
+= mcnt
; /* Do the jump. */
4340 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4344 /* We need this opcode so we can detect where alternatives end
4345 in `group_match_null_string_p' et al. */
4347 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4348 goto unconditional_jump
;
4351 /* Normally, the on_failure_jump pushes a failure point, which
4352 then gets popped at pop_failure_jump. We will end up at
4353 pop_failure_jump, also, and with a pattern of, say, `a+', we
4354 are skipping over the on_failure_jump, so we have to push
4355 something meaningless for pop_failure_jump to pop. */
4356 case dummy_failure_jump
:
4357 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4358 /* It doesn't matter what we push for the string here. What
4359 the code at `fail' tests is the value for the pattern. */
4360 PUSH_FAILURE_POINT (0, 0, -2);
4361 goto unconditional_jump
;
4364 /* At the end of an alternative, we need to push a dummy failure
4365 point in case we are followed by a `pop_failure_jump', because
4366 we don't want the failure point for the alternative to be
4367 popped. For example, matching `(a|ab)*' against `aab'
4368 requires that we match the `ab' alternative. */
4369 case push_dummy_failure
:
4370 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4371 /* See comments just above at `dummy_failure_jump' about the
4373 PUSH_FAILURE_POINT (0, 0, -2);
4376 /* Have to succeed matching what follows at least n times.
4377 After that, handle like `on_failure_jump'. */
4379 EXTRACT_NUMBER (mcnt
, p
+ 2);
4380 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4383 /* Originally, this is how many times we HAVE to succeed. */
4388 STORE_NUMBER_AND_INCR (p
, mcnt
);
4389 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
, mcnt
);
4393 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4394 p
[2] = (unsigned char) no_op
;
4395 p
[3] = (unsigned char) no_op
;
4401 EXTRACT_NUMBER (mcnt
, p
+ 2);
4402 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4404 /* Originally, this is how many times we CAN jump. */
4408 STORE_NUMBER (p
+ 2, mcnt
);
4409 goto unconditional_jump
;
4411 /* If don't have to jump any more, skip over the rest of command. */
4418 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4420 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4422 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4423 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4424 STORE_NUMBER (p1
, mcnt
);
4429 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4430 if (AT_WORD_BOUNDARY (d
))
4435 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4436 if (AT_WORD_BOUNDARY (d
))
4441 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4442 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
4447 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4448 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
4449 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
4455 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4456 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
4461 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4462 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
4467 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4468 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
4471 #if 0 /* not emacs19 */
4473 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4474 if (PTR_CHAR_POS ((unsigned char *) d
) + 1 != point
)
4477 #endif /* not emacs19 */
4480 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
4485 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4489 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4491 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
4493 SET_REGS_MATCHED ();
4497 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
4499 goto matchnotsyntax
;
4502 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4506 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4508 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
4510 SET_REGS_MATCHED ();
4513 #else /* not emacs */
4515 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4517 if (!WORDCHAR_P (d
))
4519 SET_REGS_MATCHED ();
4524 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4528 SET_REGS_MATCHED ();
4531 #endif /* not emacs */
4536 continue; /* Successfully executed one pattern command; keep going. */
4539 /* We goto here if a matching operation fails. */
4541 if (!FAIL_STACK_EMPTY ())
4542 { /* A restart point is known. Restore to that state. */
4543 DEBUG_PRINT1 ("\nFAIL:\n");
4544 POP_FAILURE_POINT (d
, p
,
4545 lowest_active_reg
, highest_active_reg
,
4546 regstart
, regend
, reg_info
);
4548 /* If this failure point is a dummy, try the next one. */
4552 /* If we failed to the end of the pattern, don't examine *p. */
4556 boolean is_a_jump_n
= false;
4558 /* If failed to a backwards jump that's part of a repetition
4559 loop, need to pop this failure point and use the next one. */
4560 switch ((re_opcode_t
) *p
)
4564 case maybe_pop_jump
:
4565 case pop_failure_jump
:
4568 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4571 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
4573 && (re_opcode_t
) *p1
== on_failure_jump
))
4581 if (d
>= string1
&& d
<= end1
)
4585 break; /* Matching at this starting point really fails. */
4589 goto restore_best_regs
;
4593 return -1; /* Failure to match. */
4596 /* Subroutine definitions for re_match_2. */
4599 /* We are passed P pointing to a register number after a start_memory.
4601 Return true if the pattern up to the corresponding stop_memory can
4602 match the empty string, and false otherwise.
4604 If we find the matching stop_memory, sets P to point to one past its number.
4605 Otherwise, sets P to an undefined byte less than or equal to END.
4607 We don't handle duplicates properly (yet). */
4610 group_match_null_string_p (p
, end
, reg_info
)
4611 unsigned char **p
, *end
;
4612 register_info_type
*reg_info
;
4615 /* Point to after the args to the start_memory. */
4616 unsigned char *p1
= *p
+ 2;
4620 /* Skip over opcodes that can match nothing, and return true or
4621 false, as appropriate, when we get to one that can't, or to the
4622 matching stop_memory. */
4624 switch ((re_opcode_t
) *p1
)
4626 /* Could be either a loop or a series of alternatives. */
4627 case on_failure_jump
:
4629 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4631 /* If the next operation is not a jump backwards in the
4636 /* Go through the on_failure_jumps of the alternatives,
4637 seeing if any of the alternatives cannot match nothing.
4638 The last alternative starts with only a jump,
4639 whereas the rest start with on_failure_jump and end
4640 with a jump, e.g., here is the pattern for `a|b|c':
4642 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4643 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4646 So, we have to first go through the first (n-1)
4647 alternatives and then deal with the last one separately. */
4650 /* Deal with the first (n-1) alternatives, which start
4651 with an on_failure_jump (see above) that jumps to right
4652 past a jump_past_alt. */
4654 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
4656 /* `mcnt' holds how many bytes long the alternative
4657 is, including the ending `jump_past_alt' and
4660 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
4664 /* Move to right after this alternative, including the
4668 /* Break if it's the beginning of an n-th alternative
4669 that doesn't begin with an on_failure_jump. */
4670 if ((re_opcode_t
) *p1
!= on_failure_jump
)
4673 /* Still have to check that it's not an n-th
4674 alternative that starts with an on_failure_jump. */
4676 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4677 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
4679 /* Get to the beginning of the n-th alternative. */
4685 /* Deal with the last alternative: go back and get number
4686 of the `jump_past_alt' just before it. `mcnt' contains
4687 the length of the alternative. */
4688 EXTRACT_NUMBER (mcnt
, p1
- 2);
4690 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
4693 p1
+= mcnt
; /* Get past the n-th alternative. */
4699 assert (p1
[1] == **p
);
4705 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4708 } /* while p1 < end */
4711 } /* group_match_null_string_p */
4714 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4715 It expects P to be the first byte of a single alternative and END one
4716 byte past the last. The alternative can contain groups. */
4719 alt_match_null_string_p (p
, end
, reg_info
)
4720 unsigned char *p
, *end
;
4721 register_info_type
*reg_info
;
4724 unsigned char *p1
= p
;
4728 /* Skip over opcodes that can match nothing, and break when we get
4729 to one that can't. */
4731 switch ((re_opcode_t
) *p1
)
4734 case on_failure_jump
:
4736 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4741 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4744 } /* while p1 < end */
4747 } /* alt_match_null_string_p */
4750 /* Deals with the ops common to group_match_null_string_p and
4751 alt_match_null_string_p.
4753 Sets P to one after the op and its arguments, if any. */
4756 common_op_match_null_string_p (p
, end
, reg_info
)
4757 unsigned char **p
, *end
;
4758 register_info_type
*reg_info
;
4763 unsigned char *p1
= *p
;
4765 switch ((re_opcode_t
) *p1
++)
4785 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
4786 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
4788 /* Have to set this here in case we're checking a group which
4789 contains a group and a back reference to it. */
4791 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
4792 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
4798 /* If this is an optimized succeed_n for zero times, make the jump. */
4800 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4808 /* Get to the number of times to succeed. */
4810 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4815 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4823 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
4831 /* All other opcodes mean we cannot match the empty string. */
4837 } /* common_op_match_null_string_p */
4840 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4841 bytes; nonzero otherwise. */
4844 bcmp_translate (s1
, s2
, len
, translate
)
4845 unsigned char *s1
, *s2
;
4849 register unsigned char *p1
= s1
, *p2
= s2
;
4852 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
4858 /* Entry points for GNU code. */
4860 /* re_compile_pattern is the GNU regular expression compiler: it
4861 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4862 Returns 0 if the pattern was valid, otherwise an error string.
4864 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4865 are set in BUFP on entry.
4867 We call regex_compile to do the actual compilation. */
4870 re_compile_pattern (pattern
, length
, bufp
)
4871 const char *pattern
;
4873 struct re_pattern_buffer
*bufp
;
4877 /* GNU code is written to assume at least RE_NREGS registers will be set
4878 (and at least one extra will be -1). */
4879 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4881 /* And GNU code determines whether or not to get register information
4882 by passing null for the REGS argument to re_match, etc., not by
4886 /* Match anchors at newline. */
4887 bufp
->newline_anchor
= 1;
4889 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
4891 return re_error_msg
[(int) ret
];
4894 /* Entry points compatible with 4.2 BSD regex library. We don't define
4895 them if this is an Emacs or POSIX compilation. */
4897 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4899 /* BSD has one and only one pattern buffer. */
4900 static struct re_pattern_buffer re_comp_buf
;
4910 if (!re_comp_buf
.buffer
)
4911 return "No previous regular expression";
4915 if (!re_comp_buf
.buffer
)
4917 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
4918 if (re_comp_buf
.buffer
== NULL
)
4919 return "Memory exhausted";
4920 re_comp_buf
.allocated
= 200;
4922 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
4923 if (re_comp_buf
.fastmap
== NULL
)
4924 return "Memory exhausted";
4927 /* Since `re_exec' always passes NULL for the `regs' argument, we
4928 don't need to initialize the pattern buffer fields which affect it. */
4930 /* Match anchors at newlines. */
4931 re_comp_buf
.newline_anchor
= 1;
4933 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
4935 /* Yes, we're discarding `const' here. */
4936 return (char *) re_error_msg
[(int) ret
];
4944 const int len
= strlen (s
);
4946 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
4948 #endif /* not emacs and not _POSIX_SOURCE */
4950 /* POSIX.2 functions. Don't define these for Emacs. */
4954 /* regcomp takes a regular expression as a string and compiles it.
4956 PREG is a regex_t *. We do not expect any fields to be initialized,
4957 since POSIX says we shouldn't. Thus, we set
4959 `buffer' to the compiled pattern;
4960 `used' to the length of the compiled pattern;
4961 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4962 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4963 RE_SYNTAX_POSIX_BASIC;
4964 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4965 `fastmap' and `fastmap_accurate' to zero;
4966 `re_nsub' to the number of subexpressions in PATTERN.
4968 PATTERN is the address of the pattern string.
4970 CFLAGS is a series of bits which affect compilation.
4972 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4973 use POSIX basic syntax.
4975 If REG_NEWLINE is set, then . and [^...] don't match newline.
4976 Also, regexec will try a match beginning after every newline.
4978 If REG_ICASE is set, then we considers upper- and lowercase
4979 versions of letters to be equivalent when matching.
4981 If REG_NOSUB is set, then when PREG is passed to regexec, that
4982 routine will report only success or failure, and nothing about the
4985 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4986 the return codes and their meanings.) */
4989 regcomp (preg
, pattern
, cflags
)
4991 const char *pattern
;
4996 = (cflags
& REG_EXTENDED
) ?
4997 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
4999 /* regex_compile will allocate the space for the compiled pattern. */
5001 preg
->allocated
= 0;
5004 /* Don't bother to use a fastmap when searching. This simplifies the
5005 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5006 characters after newlines into the fastmap. This way, we just try
5010 if (cflags
& REG_ICASE
)
5014 preg
->translate
= (char *) malloc (CHAR_SET_SIZE
);
5015 if (preg
->translate
== NULL
)
5016 return (int) REG_ESPACE
;
5018 /* Map uppercase characters to corresponding lowercase ones. */
5019 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5020 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
5023 preg
->translate
= NULL
;
5025 /* If REG_NEWLINE is set, newlines are treated differently. */
5026 if (cflags
& REG_NEWLINE
)
5027 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5028 syntax
&= ~RE_DOT_NEWLINE
;
5029 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5030 /* It also changes the matching behavior. */
5031 preg
->newline_anchor
= 1;
5034 preg
->newline_anchor
= 0;
5036 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5038 /* POSIX says a null character in the pattern terminates it, so we
5039 can use strlen here in compiling the pattern. */
5040 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5042 /* POSIX doesn't distinguish between an unmatched open-group and an
5043 unmatched close-group: both are REG_EPAREN. */
5044 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5050 /* regexec searches for a given pattern, specified by PREG, in the
5053 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5054 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5055 least NMATCH elements, and we set them to the offsets of the
5056 corresponding matched substrings.
5058 EFLAGS specifies `execution flags' which affect matching: if
5059 REG_NOTBOL is set, then ^ does not match at the beginning of the
5060 string; if REG_NOTEOL is set, then $ does not match at the end.
5062 We return 0 if we find a match and REG_NOMATCH if not. */
5065 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5066 const regex_t
*preg
;
5069 regmatch_t pmatch
[];
5073 struct re_registers regs
;
5074 regex_t private_preg
;
5075 int len
= strlen (string
);
5076 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5078 private_preg
= *preg
;
5080 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5081 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5083 /* The user has told us exactly how many registers to return
5084 information about, via `nmatch'. We have to pass that on to the
5085 matching routines. */
5086 private_preg
.regs_allocated
= REGS_FIXED
;
5090 regs
.num_regs
= nmatch
;
5091 regs
.start
= TALLOC (nmatch
, regoff_t
);
5092 regs
.end
= TALLOC (nmatch
, regoff_t
);
5093 if (regs
.start
== NULL
|| regs
.end
== NULL
)
5094 return (int) REG_NOMATCH
;
5097 /* Perform the searching operation. */
5098 ret
= re_search (&private_preg
, string
, len
,
5099 /* start: */ 0, /* range: */ len
,
5100 want_reg_info
? ®s
: (struct re_registers
*) 0);
5102 /* Copy the register information to the POSIX structure. */
5109 for (r
= 0; r
< nmatch
; r
++)
5111 pmatch
[r
].rm_so
= regs
.start
[r
];
5112 pmatch
[r
].rm_eo
= regs
.end
[r
];
5116 /* If we needed the temporary register info, free the space now. */
5121 /* We want zero return to mean success, unlike `re_search'. */
5122 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5126 /* Returns a message corresponding to an error code, ERRCODE, returned
5127 from either regcomp or regexec. We don't use PREG here. */
5130 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5132 const regex_t
*preg
;
5140 || errcode
>= (sizeof (re_error_msg
) / sizeof (re_error_msg
[0])))
5141 /* Only error codes returned by the rest of the code should be passed
5142 to this routine. If we are given anything else, or if other regex
5143 code generates an invalid error code, then the program has a bug.
5144 Dump core so we can fix it. */
5147 msg
= re_error_msg
[errcode
];
5149 /* POSIX doesn't require that we do anything in this case, but why
5154 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5156 if (errbuf_size
!= 0)
5158 if (msg_size
> errbuf_size
)
5160 strncpy (errbuf
, msg
, errbuf_size
- 1);
5161 errbuf
[errbuf_size
- 1] = 0;
5164 strcpy (errbuf
, msg
);
5171 /* Free dynamically allocated space used by PREG. */
5177 if (preg
->buffer
!= NULL
)
5178 free (preg
->buffer
);
5179 preg
->buffer
= NULL
;
5181 preg
->allocated
= 0;
5184 if (preg
->fastmap
!= NULL
)
5185 free (preg
->fastmap
);
5186 preg
->fastmap
= NULL
;
5187 preg
->fastmap_accurate
= 0;
5189 if (preg
->translate
!= NULL
)
5190 free (preg
->translate
);
5191 preg
->translate
= NULL
;
5194 #endif /* not emacs */
5198 make-backup-files: t
5200 trim-versions-without-asking: nil