* lisp/dired-aux.el (dired-do-chmod): Use `eq' to detect empty input.
[emacs.git] / src / floatfns.c
blob66d7ca4af2c7e7e57478003b883b7ad9f1072ea8
1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
3 Copyright (C) 1988, 1993-1994, 1999, 2001-2012
4 Free Software Foundation, Inc.
6 Author: Wolfgang Rupprecht
7 (according to ack.texi)
9 This file is part of GNU Emacs.
11 GNU Emacs is free software: you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
16 GNU Emacs is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
25 /* C89 requires only the following math.h functions, and Emacs omits
26 the starred functions since we haven't found a use for them:
27 acos, asin, atan, atan2, ceil, cos, *cosh, exp, fabs, floor, fmod,
28 frexp, ldexp, log, log10, *modf, pow, sin, *sinh, sqrt, tan, *tanh.
31 #include <config.h>
32 #include <setjmp.h>
33 #include "lisp.h"
34 #include "syssignal.h"
36 #include <float.h>
37 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
38 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
39 #define IEEE_FLOATING_POINT 1
40 #else
41 #define IEEE_FLOATING_POINT 0
42 #endif
44 #include <math.h>
46 #ifndef isfinite
47 # define isfinite(x) ((x) - (x) == 0)
48 #endif
49 #ifndef isnan
50 # define isnan(x) ((x) != (x))
51 #endif
53 /* Extract a Lisp number as a `double', or signal an error. */
55 double
56 extract_float (Lisp_Object num)
58 CHECK_NUMBER_OR_FLOAT (num);
60 if (FLOATP (num))
61 return XFLOAT_DATA (num);
62 return (double) XINT (num);
65 /* Trig functions. */
67 DEFUN ("acos", Facos, Sacos, 1, 1, 0,
68 doc: /* Return the inverse cosine of ARG. */)
69 (Lisp_Object arg)
71 double d = extract_float (arg);
72 d = acos (d);
73 return make_float (d);
76 DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
77 doc: /* Return the inverse sine of ARG. */)
78 (Lisp_Object arg)
80 double d = extract_float (arg);
81 d = asin (d);
82 return make_float (d);
85 DEFUN ("atan", Fatan, Satan, 1, 2, 0,
86 doc: /* Return the inverse tangent of the arguments.
87 If only one argument Y is given, return the inverse tangent of Y.
88 If two arguments Y and X are given, return the inverse tangent of Y
89 divided by X, i.e. the angle in radians between the vector (X, Y)
90 and the x-axis. */)
91 (Lisp_Object y, Lisp_Object x)
93 double d = extract_float (y);
95 if (NILP (x))
96 d = atan (d);
97 else
99 double d2 = extract_float (x);
100 d = atan2 (d, d2);
102 return make_float (d);
105 DEFUN ("cos", Fcos, Scos, 1, 1, 0,
106 doc: /* Return the cosine of ARG. */)
107 (Lisp_Object arg)
109 double d = extract_float (arg);
110 d = cos (d);
111 return make_float (d);
114 DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
115 doc: /* Return the sine of ARG. */)
116 (Lisp_Object arg)
118 double d = extract_float (arg);
119 d = sin (d);
120 return make_float (d);
123 DEFUN ("tan", Ftan, Stan, 1, 1, 0,
124 doc: /* Return the tangent of ARG. */)
125 (Lisp_Object arg)
127 double d = extract_float (arg);
128 d = tan (d);
129 return make_float (d);
132 DEFUN ("isnan", Fisnan, Sisnan, 1, 1, 0,
133 doc: /* Return non nil iff argument X is a NaN. */)
134 (Lisp_Object x)
136 CHECK_FLOAT (x);
137 return isnan (XFLOAT_DATA (x)) ? Qt : Qnil;
140 #ifdef HAVE_COPYSIGN
141 DEFUN ("copysign", Fcopysign, Scopysign, 2, 2, 0,
142 doc: /* Copy sign of X2 to value of X1, and return the result.
143 Cause an error if X1 or X2 is not a float. */)
144 (Lisp_Object x1, Lisp_Object x2)
146 double f1, f2;
148 CHECK_FLOAT (x1);
149 CHECK_FLOAT (x2);
151 f1 = XFLOAT_DATA (x1);
152 f2 = XFLOAT_DATA (x2);
154 return make_float (copysign (f1, f2));
156 #endif
158 DEFUN ("frexp", Ffrexp, Sfrexp, 1, 1, 0,
159 doc: /* Get significand and exponent of a floating point number.
160 Breaks the floating point number X into its binary significand SGNFCAND
161 \(a floating point value between 0.5 (included) and 1.0 (excluded))
162 and an integral exponent EXP for 2, such that:
164 X = SGNFCAND * 2^EXP
166 The function returns the cons cell (SGNFCAND . EXP).
167 If X is zero, both parts (SGNFCAND and EXP) are zero. */)
168 (Lisp_Object x)
170 double f = XFLOATINT (x);
171 int exponent;
172 double sgnfcand = frexp (f, &exponent);
173 return Fcons (make_float (sgnfcand), make_number (exponent));
176 DEFUN ("ldexp", Fldexp, Sldexp, 1, 2, 0,
177 doc: /* Construct number X from significand SGNFCAND and exponent EXP.
178 Returns the floating point value resulting from multiplying SGNFCAND
179 (the significand) by 2 raised to the power of EXP (the exponent). */)
180 (Lisp_Object sgnfcand, Lisp_Object exponent)
182 CHECK_NUMBER (exponent);
183 return make_float (ldexp (XFLOATINT (sgnfcand), XINT (exponent)));
186 DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
187 doc: /* Return the exponential base e of ARG. */)
188 (Lisp_Object arg)
190 double d = extract_float (arg);
191 d = exp (d);
192 return make_float (d);
195 DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
196 doc: /* Return the exponential ARG1 ** ARG2. */)
197 (Lisp_Object arg1, Lisp_Object arg2)
199 double f1, f2, f3;
201 CHECK_NUMBER_OR_FLOAT (arg1);
202 CHECK_NUMBER_OR_FLOAT (arg2);
203 if (INTEGERP (arg1) /* common lisp spec */
204 && INTEGERP (arg2) /* don't promote, if both are ints, and */
205 && 0 <= XINT (arg2)) /* we are sure the result is not fractional */
206 { /* this can be improved by pre-calculating */
207 EMACS_INT y; /* some binary powers of x then accumulating */
208 EMACS_UINT acc, x; /* Unsigned so that overflow is well defined. */
209 Lisp_Object val;
211 x = XINT (arg1);
212 y = XINT (arg2);
213 acc = (y & 1 ? x : 1);
215 while ((y >>= 1) != 0)
217 x *= x;
218 if (y & 1)
219 acc *= x;
221 XSETINT (val, acc);
222 return val;
224 f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
225 f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
226 f3 = pow (f1, f2);
227 return make_float (f3);
230 DEFUN ("log", Flog, Slog, 1, 2, 0,
231 doc: /* Return the natural logarithm of ARG.
232 If the optional argument BASE is given, return log ARG using that base. */)
233 (Lisp_Object arg, Lisp_Object base)
235 double d = extract_float (arg);
237 if (NILP (base))
238 d = log (d);
239 else
241 double b = extract_float (base);
243 if (b == 10.0)
244 d = log10 (d);
245 else
246 d = log (d) / log (b);
248 return make_float (d);
251 DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
252 doc: /* Return the logarithm base 10 of ARG. */)
253 (Lisp_Object arg)
255 double d = extract_float (arg);
256 d = log10 (d);
257 return make_float (d);
260 DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
261 doc: /* Return the square root of ARG. */)
262 (Lisp_Object arg)
264 double d = extract_float (arg);
265 d = sqrt (d);
266 return make_float (d);
269 DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
270 doc: /* Return the absolute value of ARG. */)
271 (register Lisp_Object arg)
273 CHECK_NUMBER_OR_FLOAT (arg);
275 if (FLOATP (arg))
276 arg = make_float (fabs (XFLOAT_DATA (arg)));
277 else if (XINT (arg) < 0)
278 XSETINT (arg, - XINT (arg));
280 return arg;
283 DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
284 doc: /* Return the floating point number equal to ARG. */)
285 (register Lisp_Object arg)
287 CHECK_NUMBER_OR_FLOAT (arg);
289 if (INTEGERP (arg))
290 return make_float ((double) XINT (arg));
291 else /* give 'em the same float back */
292 return arg;
295 DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
296 doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
297 This is the same as the exponent of a float. */)
298 (Lisp_Object arg)
300 Lisp_Object val;
301 EMACS_INT value;
302 double f = extract_float (arg);
304 if (f == 0.0)
305 value = MOST_NEGATIVE_FIXNUM;
306 else if (isfinite (f))
308 int ivalue;
309 frexp (f, &ivalue);
310 value = ivalue - 1;
312 else
313 value = MOST_POSITIVE_FIXNUM;
315 XSETINT (val, value);
316 return val;
320 /* the rounding functions */
322 static Lisp_Object
323 rounding_driver (Lisp_Object arg, Lisp_Object divisor,
324 double (*double_round) (double),
325 EMACS_INT (*int_round2) (EMACS_INT, EMACS_INT),
326 const char *name)
328 CHECK_NUMBER_OR_FLOAT (arg);
330 if (! NILP (divisor))
332 EMACS_INT i1, i2;
334 CHECK_NUMBER_OR_FLOAT (divisor);
336 if (FLOATP (arg) || FLOATP (divisor))
338 double f1, f2;
340 f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
341 f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
342 if (! IEEE_FLOATING_POINT && f2 == 0)
343 xsignal0 (Qarith_error);
345 f1 = (*double_round) (f1 / f2);
346 if (FIXNUM_OVERFLOW_P (f1))
347 xsignal3 (Qrange_error, build_string (name), arg, divisor);
348 arg = make_number (f1);
349 return arg;
352 i1 = XINT (arg);
353 i2 = XINT (divisor);
355 if (i2 == 0)
356 xsignal0 (Qarith_error);
358 XSETINT (arg, (*int_round2) (i1, i2));
359 return arg;
362 if (FLOATP (arg))
364 double d = (*double_round) (XFLOAT_DATA (arg));
365 if (FIXNUM_OVERFLOW_P (d))
366 xsignal2 (Qrange_error, build_string (name), arg);
367 arg = make_number (d);
370 return arg;
373 /* With C's /, the result is implementation-defined if either operand
374 is negative, so take care with negative operands in the following
375 integer functions. */
377 static EMACS_INT
378 ceiling2 (EMACS_INT i1, EMACS_INT i2)
380 return (i2 < 0
381 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
382 : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
385 static EMACS_INT
386 floor2 (EMACS_INT i1, EMACS_INT i2)
388 return (i2 < 0
389 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
390 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
393 static EMACS_INT
394 truncate2 (EMACS_INT i1, EMACS_INT i2)
396 return (i2 < 0
397 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
398 : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
401 static EMACS_INT
402 round2 (EMACS_INT i1, EMACS_INT i2)
404 /* The C language's division operator gives us one remainder R, but
405 we want the remainder R1 on the other side of 0 if R1 is closer
406 to 0 than R is; because we want to round to even, we also want R1
407 if R and R1 are the same distance from 0 and if C's quotient is
408 odd. */
409 EMACS_INT q = i1 / i2;
410 EMACS_INT r = i1 % i2;
411 EMACS_INT abs_r = r < 0 ? -r : r;
412 EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
413 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
416 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
417 if `rint' exists but does not work right. */
418 #ifdef HAVE_RINT
419 #define emacs_rint rint
420 #else
421 static double
422 emacs_rint (double d)
424 return floor (d + 0.5);
426 #endif
428 static double
429 double_identity (double d)
431 return d;
434 DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
435 doc: /* Return the smallest integer no less than ARG.
436 This rounds the value towards +inf.
437 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
438 (Lisp_Object arg, Lisp_Object divisor)
440 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
443 DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
444 doc: /* Return the largest integer no greater than ARG.
445 This rounds the value towards -inf.
446 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
447 (Lisp_Object arg, Lisp_Object divisor)
449 return rounding_driver (arg, divisor, floor, floor2, "floor");
452 DEFUN ("round", Fround, Sround, 1, 2, 0,
453 doc: /* Return the nearest integer to ARG.
454 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
456 Rounding a value equidistant between two integers may choose the
457 integer closer to zero, or it may prefer an even integer, depending on
458 your machine. For example, \(round 2.5\) can return 3 on some
459 systems, but 2 on others. */)
460 (Lisp_Object arg, Lisp_Object divisor)
462 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
465 DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
466 doc: /* Truncate a floating point number to an int.
467 Rounds ARG toward zero.
468 With optional DIVISOR, truncate ARG/DIVISOR. */)
469 (Lisp_Object arg, Lisp_Object divisor)
471 return rounding_driver (arg, divisor, double_identity, truncate2,
472 "truncate");
476 Lisp_Object
477 fmod_float (Lisp_Object x, Lisp_Object y)
479 double f1, f2;
481 f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
482 f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
484 f1 = fmod (f1, f2);
486 /* If the "remainder" comes out with the wrong sign, fix it. */
487 if (f2 < 0 ? 0 < f1 : f1 < 0)
488 f1 += f2;
490 return make_float (f1);
493 DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
494 doc: /* Return the smallest integer no less than ARG, as a float.
495 \(Round toward +inf.\) */)
496 (Lisp_Object arg)
498 double d = extract_float (arg);
499 d = ceil (d);
500 return make_float (d);
503 DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
504 doc: /* Return the largest integer no greater than ARG, as a float.
505 \(Round towards -inf.\) */)
506 (Lisp_Object arg)
508 double d = extract_float (arg);
509 d = floor (d);
510 return make_float (d);
513 DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
514 doc: /* Return the nearest integer to ARG, as a float. */)
515 (Lisp_Object arg)
517 double d = extract_float (arg);
518 d = emacs_rint (d);
519 return make_float (d);
522 DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
523 doc: /* Truncate a floating point number to an integral float value.
524 Rounds the value toward zero. */)
525 (Lisp_Object arg)
527 double d = extract_float (arg);
528 if (d >= 0.0)
529 d = floor (d);
530 else
531 d = ceil (d);
532 return make_float (d);
535 void
536 syms_of_floatfns (void)
538 defsubr (&Sacos);
539 defsubr (&Sasin);
540 defsubr (&Satan);
541 defsubr (&Scos);
542 defsubr (&Ssin);
543 defsubr (&Stan);
544 defsubr (&Sisnan);
545 #ifdef HAVE_COPYSIGN
546 defsubr (&Scopysign);
547 #endif
548 defsubr (&Sfrexp);
549 defsubr (&Sldexp);
550 defsubr (&Sfceiling);
551 defsubr (&Sffloor);
552 defsubr (&Sfround);
553 defsubr (&Sftruncate);
554 defsubr (&Sexp);
555 defsubr (&Sexpt);
556 defsubr (&Slog);
557 defsubr (&Slog10);
558 defsubr (&Ssqrt);
560 defsubr (&Sabs);
561 defsubr (&Sfloat);
562 defsubr (&Slogb);
563 defsubr (&Sceiling);
564 defsubr (&Sfloor);
565 defsubr (&Sround);
566 defsubr (&Struncate);