1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
25 /* Note that this declares bzero on OSF/1. How dumb. */
29 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
30 memory. Can do this only if using gmalloc.c. */
32 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
33 #undef GC_MALLOC_CHECK
36 /* This file is part of the core Lisp implementation, and thus must
37 deal with the real data structures. If the Lisp implementation is
38 replaced, this file likely will not be used. */
40 #undef HIDE_LISP_IMPLEMENTATION
43 #include "intervals.h"
49 #include "blockinput.h"
51 #include "syssignal.h"
57 extern POINTER_TYPE
*sbrk ();
60 #ifdef DOUG_LEA_MALLOC
63 /* malloc.h #defines this as size_t, at least in glibc2. */
64 #ifndef __malloc_size_t
65 #define __malloc_size_t int
68 /* Specify maximum number of areas to mmap. It would be nice to use a
69 value that explicitly means "no limit". */
71 #define MMAP_MAX_AREAS 100000000
73 #else /* not DOUG_LEA_MALLOC */
75 /* The following come from gmalloc.c. */
77 #define __malloc_size_t size_t
78 extern __malloc_size_t _bytes_used
;
79 extern __malloc_size_t __malloc_extra_blocks
;
81 #endif /* not DOUG_LEA_MALLOC */
83 /* Macro to verify that storage intended for Lisp objects is not
84 out of range to fit in the space for a pointer.
85 ADDRESS is the start of the block, and SIZE
86 is the amount of space within which objects can start. */
88 #define VALIDATE_LISP_STORAGE(address, size) \
92 XSETCONS (val, (char *) address + size); \
93 if ((char *) XCONS (val) != (char *) address + size) \
100 /* Value of _bytes_used, when spare_memory was freed. */
102 static __malloc_size_t bytes_used_when_full
;
104 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
105 to a struct Lisp_String. */
107 #define MARK_STRING(S) ((S)->size |= MARKBIT)
108 #define UNMARK_STRING(S) ((S)->size &= ~MARKBIT)
109 #define STRING_MARKED_P(S) ((S)->size & MARKBIT)
111 /* Value is the number of bytes/chars of S, a pointer to a struct
112 Lisp_String. This must be used instead of STRING_BYTES (S) or
113 S->size during GC, because S->size contains the mark bit for
116 #define GC_STRING_BYTES(S) (STRING_BYTES (S) & ~MARKBIT)
117 #define GC_STRING_CHARS(S) ((S)->size & ~MARKBIT)
119 /* Number of bytes of consing done since the last gc. */
121 int consing_since_gc
;
123 /* Count the amount of consing of various sorts of space. */
125 int cons_cells_consed
;
127 int vector_cells_consed
;
129 int string_chars_consed
;
130 int misc_objects_consed
;
131 int intervals_consed
;
134 /* Number of bytes of consing since GC before another GC should be done. */
136 int gc_cons_threshold
;
138 /* Nonzero during GC. */
142 /* Nonzero means display messages at beginning and end of GC. */
144 int garbage_collection_messages
;
146 #ifndef VIRT_ADDR_VARIES
148 #endif /* VIRT_ADDR_VARIES */
149 int malloc_sbrk_used
;
151 #ifndef VIRT_ADDR_VARIES
153 #endif /* VIRT_ADDR_VARIES */
154 int malloc_sbrk_unused
;
156 /* Two limits controlling how much undo information to keep. */
159 int undo_strong_limit
;
161 /* Number of live and free conses etc. */
163 static int total_conses
, total_markers
, total_symbols
, total_vector_size
;
164 static int total_free_conses
, total_free_markers
, total_free_symbols
;
165 static int total_free_floats
, total_floats
;
167 /* Points to memory space allocated as "spare", to be freed if we run
170 static char *spare_memory
;
172 /* Amount of spare memory to keep in reserve. */
174 #define SPARE_MEMORY (1 << 14)
176 /* Number of extra blocks malloc should get when it needs more core. */
178 static int malloc_hysteresis
;
180 /* Non-nil means defun should do purecopy on the function definition. */
182 Lisp_Object Vpurify_flag
;
186 /* Force it into data space! */
188 EMACS_INT pure
[PURESIZE
/ sizeof (EMACS_INT
)] = {0,};
189 #define PUREBEG (char *) pure
193 #define pure PURE_SEG_BITS /* Use shared memory segment */
194 #define PUREBEG (char *)PURE_SEG_BITS
196 #endif /* HAVE_SHM */
198 /* Pointer to the pure area, and its size. */
200 static char *purebeg
;
201 static size_t pure_size
;
203 /* Number of bytes of pure storage used before pure storage overflowed.
204 If this is non-zero, this implies that an overflow occurred. */
206 static size_t pure_bytes_used_before_overflow
;
208 /* Value is non-zero if P points into pure space. */
210 #define PURE_POINTER_P(P) \
211 (((PNTR_COMPARISON_TYPE) (P) \
212 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
213 && ((PNTR_COMPARISON_TYPE) (P) \
214 >= (PNTR_COMPARISON_TYPE) purebeg))
216 /* Index in pure at which next pure object will be allocated.. */
220 /* If nonzero, this is a warning delivered by malloc and not yet
223 char *pending_malloc_warning
;
225 /* Pre-computed signal argument for use when memory is exhausted. */
227 Lisp_Object memory_signal_data
;
229 /* Maximum amount of C stack to save when a GC happens. */
231 #ifndef MAX_SAVE_STACK
232 #define MAX_SAVE_STACK 16000
235 /* Buffer in which we save a copy of the C stack at each GC. */
240 /* Non-zero means ignore malloc warnings. Set during initialization.
241 Currently not used. */
245 Lisp_Object Qgc_cons_threshold
, Qchar_table_extra_slots
;
247 /* Hook run after GC has finished. */
249 Lisp_Object Vpost_gc_hook
, Qpost_gc_hook
;
251 static void mark_buffer
P_ ((Lisp_Object
));
252 static void mark_kboards
P_ ((void));
253 static void gc_sweep
P_ ((void));
254 static void mark_glyph_matrix
P_ ((struct glyph_matrix
*));
255 static void mark_face_cache
P_ ((struct face_cache
*));
257 #ifdef HAVE_WINDOW_SYSTEM
258 static void mark_image
P_ ((struct image
*));
259 static void mark_image_cache
P_ ((struct frame
*));
260 #endif /* HAVE_WINDOW_SYSTEM */
262 static struct Lisp_String
*allocate_string
P_ ((void));
263 static void compact_small_strings
P_ ((void));
264 static void free_large_strings
P_ ((void));
265 static void sweep_strings
P_ ((void));
267 extern int message_enable_multibyte
;
269 /* When scanning the C stack for live Lisp objects, Emacs keeps track
270 of what memory allocated via lisp_malloc is intended for what
271 purpose. This enumeration specifies the type of memory. */
282 /* Keep the following vector-like types together, with
283 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
284 first. Or change the code of live_vector_p, for instance. */
292 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
294 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
295 #include <stdio.h> /* For fprintf. */
298 /* A unique object in pure space used to make some Lisp objects
299 on free lists recognizable in O(1). */
303 #ifdef GC_MALLOC_CHECK
305 enum mem_type allocated_mem_type
;
306 int dont_register_blocks
;
308 #endif /* GC_MALLOC_CHECK */
310 /* A node in the red-black tree describing allocated memory containing
311 Lisp data. Each such block is recorded with its start and end
312 address when it is allocated, and removed from the tree when it
315 A red-black tree is a balanced binary tree with the following
318 1. Every node is either red or black.
319 2. Every leaf is black.
320 3. If a node is red, then both of its children are black.
321 4. Every simple path from a node to a descendant leaf contains
322 the same number of black nodes.
323 5. The root is always black.
325 When nodes are inserted into the tree, or deleted from the tree,
326 the tree is "fixed" so that these properties are always true.
328 A red-black tree with N internal nodes has height at most 2
329 log(N+1). Searches, insertions and deletions are done in O(log N).
330 Please see a text book about data structures for a detailed
331 description of red-black trees. Any book worth its salt should
336 struct mem_node
*left
, *right
, *parent
;
338 /* Start and end of allocated region. */
342 enum {MEM_BLACK
, MEM_RED
} color
;
348 /* Base address of stack. Set in main. */
350 Lisp_Object
*stack_base
;
352 /* Root of the tree describing allocated Lisp memory. */
354 static struct mem_node
*mem_root
;
356 /* Lowest and highest known address in the heap. */
358 static void *min_heap_address
, *max_heap_address
;
360 /* Sentinel node of the tree. */
362 static struct mem_node mem_z
;
363 #define MEM_NIL &mem_z
365 static POINTER_TYPE
*lisp_malloc
P_ ((size_t, enum mem_type
));
366 static struct Lisp_Vector
*allocate_vectorlike
P_ ((EMACS_INT
, enum mem_type
));
367 static void lisp_free
P_ ((POINTER_TYPE
*));
368 static void mark_stack
P_ ((void));
369 static int live_vector_p
P_ ((struct mem_node
*, void *));
370 static int live_buffer_p
P_ ((struct mem_node
*, void *));
371 static int live_string_p
P_ ((struct mem_node
*, void *));
372 static int live_cons_p
P_ ((struct mem_node
*, void *));
373 static int live_symbol_p
P_ ((struct mem_node
*, void *));
374 static int live_float_p
P_ ((struct mem_node
*, void *));
375 static int live_misc_p
P_ ((struct mem_node
*, void *));
376 static void mark_maybe_object
P_ ((Lisp_Object
));
377 static void mark_memory
P_ ((void *, void *));
378 static void mem_init
P_ ((void));
379 static struct mem_node
*mem_insert
P_ ((void *, void *, enum mem_type
));
380 static void mem_insert_fixup
P_ ((struct mem_node
*));
381 static void mem_rotate_left
P_ ((struct mem_node
*));
382 static void mem_rotate_right
P_ ((struct mem_node
*));
383 static void mem_delete
P_ ((struct mem_node
*));
384 static void mem_delete_fixup
P_ ((struct mem_node
*));
385 static INLINE
struct mem_node
*mem_find
P_ ((void *));
387 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
388 static void check_gcpros
P_ ((void));
391 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
393 /* Recording what needs to be marked for gc. */
395 struct gcpro
*gcprolist
;
397 /* Addresses of staticpro'd variables. */
399 #define NSTATICS 1024
400 Lisp_Object
*staticvec
[NSTATICS
] = {0};
402 /* Index of next unused slot in staticvec. */
406 static POINTER_TYPE
*pure_alloc
P_ ((size_t, int));
409 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
410 ALIGNMENT must be a power of 2. */
412 #define ALIGN(SZ, ALIGNMENT) \
413 (((SZ) + (ALIGNMENT) - 1) & ~((ALIGNMENT) - 1))
417 /************************************************************************
419 ************************************************************************/
421 /* Write STR to Vstandard_output plus some advice on how to free some
422 memory. Called when memory gets low. */
425 malloc_warning_1 (str
)
428 Fprinc (str
, Vstandard_output
);
429 write_string ("\nKilling some buffers may delay running out of memory.\n", -1);
430 write_string ("However, certainly by the time you receive the 95% warning,\n", -1);
431 write_string ("you should clean up, kill this Emacs, and start a new one.", -1);
436 /* Function malloc calls this if it finds we are near exhausting
443 pending_malloc_warning
= str
;
447 /* Display a malloc warning in buffer *Danger*. */
450 display_malloc_warning ()
452 register Lisp_Object val
;
454 val
= build_string (pending_malloc_warning
);
455 pending_malloc_warning
= 0;
456 internal_with_output_to_temp_buffer (" *Danger*", malloc_warning_1
, val
);
460 #ifdef DOUG_LEA_MALLOC
461 # define BYTES_USED (mallinfo ().arena)
463 # define BYTES_USED _bytes_used
467 /* Called if malloc returns zero. */
472 #ifndef SYSTEM_MALLOC
473 bytes_used_when_full
= BYTES_USED
;
476 /* The first time we get here, free the spare memory. */
483 /* This used to call error, but if we've run out of memory, we could
484 get infinite recursion trying to build the string. */
486 Fsignal (Qnil
, memory_signal_data
);
490 /* Called if we can't allocate relocatable space for a buffer. */
493 buffer_memory_full ()
495 /* If buffers use the relocating allocator, no need to free
496 spare_memory, because we may have plenty of malloc space left
497 that we could get, and if we don't, the malloc that fails will
498 itself cause spare_memory to be freed. If buffers don't use the
499 relocating allocator, treat this like any other failing
506 /* This used to call error, but if we've run out of memory, we could
507 get infinite recursion trying to build the string. */
509 Fsignal (Qerror
, memory_signal_data
);
513 /* Like malloc but check for no memory and block interrupt input.. */
519 register POINTER_TYPE
*val
;
522 val
= (POINTER_TYPE
*) malloc (size
);
531 /* Like realloc but check for no memory and block interrupt input.. */
534 xrealloc (block
, size
)
538 register POINTER_TYPE
*val
;
541 /* We must call malloc explicitly when BLOCK is 0, since some
542 reallocs don't do this. */
544 val
= (POINTER_TYPE
*) malloc (size
);
546 val
= (POINTER_TYPE
*) realloc (block
, size
);
549 if (!val
&& size
) memory_full ();
554 /* Like free but block interrupt input.. */
566 /* Like strdup, but uses xmalloc. */
572 size_t len
= strlen (s
) + 1;
573 char *p
= (char *) xmalloc (len
);
579 /* Like malloc but used for allocating Lisp data. NBYTES is the
580 number of bytes to allocate, TYPE describes the intended use of the
581 allcated memory block (for strings, for conses, ...). */
583 static POINTER_TYPE
*
584 lisp_malloc (nbytes
, type
)
592 #ifdef GC_MALLOC_CHECK
593 allocated_mem_type
= type
;
596 val
= (void *) malloc (nbytes
);
598 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
599 if (val
&& type
!= MEM_TYPE_NON_LISP
)
600 mem_insert (val
, (char *) val
+ nbytes
, type
);
610 /* Return a new buffer structure allocated from the heap with
611 a call to lisp_malloc. */
617 = (struct buffer
*) lisp_malloc (sizeof (struct buffer
),
619 VALIDATE_LISP_STORAGE (b
, sizeof *b
);
624 /* Free BLOCK. This must be called to free memory allocated with a
625 call to lisp_malloc. */
633 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
634 mem_delete (mem_find (block
));
640 /* Arranging to disable input signals while we're in malloc.
642 This only works with GNU malloc. To help out systems which can't
643 use GNU malloc, all the calls to malloc, realloc, and free
644 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
645 pairs; unfortunately, we have no idea what C library functions
646 might call malloc, so we can't really protect them unless you're
647 using GNU malloc. Fortunately, most of the major operating can use
650 #ifndef SYSTEM_MALLOC
651 #ifndef DOUG_LEA_MALLOC
652 extern void * (*__malloc_hook
) P_ ((size_t));
653 extern void * (*__realloc_hook
) P_ ((void *, size_t));
654 extern void (*__free_hook
) P_ ((void *));
655 /* Else declared in malloc.h, perhaps with an extra arg. */
656 #endif /* DOUG_LEA_MALLOC */
657 static void * (*old_malloc_hook
) ();
658 static void * (*old_realloc_hook
) ();
659 static void (*old_free_hook
) ();
661 /* This function is used as the hook for free to call. */
664 emacs_blocked_free (ptr
)
669 #ifdef GC_MALLOC_CHECK
675 if (m
== MEM_NIL
|| m
->start
!= ptr
)
678 "Freeing `%p' which wasn't allocated with malloc\n", ptr
);
683 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
687 #endif /* GC_MALLOC_CHECK */
689 __free_hook
= old_free_hook
;
692 /* If we released our reserve (due to running out of memory),
693 and we have a fair amount free once again,
694 try to set aside another reserve in case we run out once more. */
695 if (spare_memory
== 0
696 /* Verify there is enough space that even with the malloc
697 hysteresis this call won't run out again.
698 The code here is correct as long as SPARE_MEMORY
699 is substantially larger than the block size malloc uses. */
700 && (bytes_used_when_full
701 > BYTES_USED
+ max (malloc_hysteresis
, 4) * SPARE_MEMORY
))
702 spare_memory
= (char *) malloc ((size_t) SPARE_MEMORY
);
704 __free_hook
= emacs_blocked_free
;
709 /* If we released our reserve (due to running out of memory),
710 and we have a fair amount free once again,
711 try to set aside another reserve in case we run out once more.
713 This is called when a relocatable block is freed in ralloc.c. */
716 refill_memory_reserve ()
718 if (spare_memory
== 0)
719 spare_memory
= (char *) malloc ((size_t) SPARE_MEMORY
);
723 /* This function is the malloc hook that Emacs uses. */
726 emacs_blocked_malloc (size
)
732 __malloc_hook
= old_malloc_hook
;
733 #ifdef DOUG_LEA_MALLOC
734 mallopt (M_TOP_PAD
, malloc_hysteresis
* 4096);
736 __malloc_extra_blocks
= malloc_hysteresis
;
739 value
= (void *) malloc (size
);
741 #ifdef GC_MALLOC_CHECK
743 struct mem_node
*m
= mem_find (value
);
746 fprintf (stderr
, "Malloc returned %p which is already in use\n",
748 fprintf (stderr
, "Region in use is %p...%p, %u bytes, type %d\n",
749 m
->start
, m
->end
, (char *) m
->end
- (char *) m
->start
,
754 if (!dont_register_blocks
)
756 mem_insert (value
, (char *) value
+ max (1, size
), allocated_mem_type
);
757 allocated_mem_type
= MEM_TYPE_NON_LISP
;
760 #endif /* GC_MALLOC_CHECK */
762 __malloc_hook
= emacs_blocked_malloc
;
765 /* fprintf (stderr, "%p malloc\n", value); */
770 /* This function is the realloc hook that Emacs uses. */
773 emacs_blocked_realloc (ptr
, size
)
780 __realloc_hook
= old_realloc_hook
;
782 #ifdef GC_MALLOC_CHECK
785 struct mem_node
*m
= mem_find (ptr
);
786 if (m
== MEM_NIL
|| m
->start
!= ptr
)
789 "Realloc of %p which wasn't allocated with malloc\n",
797 /* fprintf (stderr, "%p -> realloc\n", ptr); */
799 /* Prevent malloc from registering blocks. */
800 dont_register_blocks
= 1;
801 #endif /* GC_MALLOC_CHECK */
803 value
= (void *) realloc (ptr
, size
);
805 #ifdef GC_MALLOC_CHECK
806 dont_register_blocks
= 0;
809 struct mem_node
*m
= mem_find (value
);
812 fprintf (stderr
, "Realloc returns memory that is already in use\n");
816 /* Can't handle zero size regions in the red-black tree. */
817 mem_insert (value
, (char *) value
+ max (size
, 1), MEM_TYPE_NON_LISP
);
820 /* fprintf (stderr, "%p <- realloc\n", value); */
821 #endif /* GC_MALLOC_CHECK */
823 __realloc_hook
= emacs_blocked_realloc
;
830 /* Called from main to set up malloc to use our hooks. */
833 uninterrupt_malloc ()
835 if (__free_hook
!= emacs_blocked_free
)
836 old_free_hook
= __free_hook
;
837 __free_hook
= emacs_blocked_free
;
839 if (__malloc_hook
!= emacs_blocked_malloc
)
840 old_malloc_hook
= __malloc_hook
;
841 __malloc_hook
= emacs_blocked_malloc
;
843 if (__realloc_hook
!= emacs_blocked_realloc
)
844 old_realloc_hook
= __realloc_hook
;
845 __realloc_hook
= emacs_blocked_realloc
;
848 #endif /* not SYSTEM_MALLOC */
852 /***********************************************************************
854 ***********************************************************************/
856 /* Number of intervals allocated in an interval_block structure.
857 The 1020 is 1024 minus malloc overhead. */
859 #define INTERVAL_BLOCK_SIZE \
860 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
862 /* Intervals are allocated in chunks in form of an interval_block
865 struct interval_block
867 struct interval_block
*next
;
868 struct interval intervals
[INTERVAL_BLOCK_SIZE
];
871 /* Current interval block. Its `next' pointer points to older
874 struct interval_block
*interval_block
;
876 /* Index in interval_block above of the next unused interval
879 static int interval_block_index
;
881 /* Number of free and live intervals. */
883 static int total_free_intervals
, total_intervals
;
885 /* List of free intervals. */
887 INTERVAL interval_free_list
;
889 /* Total number of interval blocks now in use. */
891 int n_interval_blocks
;
894 /* Initialize interval allocation. */
900 = (struct interval_block
*) lisp_malloc (sizeof *interval_block
,
902 interval_block
->next
= 0;
903 bzero ((char *) interval_block
->intervals
, sizeof interval_block
->intervals
);
904 interval_block_index
= 0;
905 interval_free_list
= 0;
906 n_interval_blocks
= 1;
910 /* Return a new interval. */
917 if (interval_free_list
)
919 val
= interval_free_list
;
920 interval_free_list
= INTERVAL_PARENT (interval_free_list
);
924 if (interval_block_index
== INTERVAL_BLOCK_SIZE
)
926 register struct interval_block
*newi
;
928 newi
= (struct interval_block
*) lisp_malloc (sizeof *newi
,
931 VALIDATE_LISP_STORAGE (newi
, sizeof *newi
);
932 newi
->next
= interval_block
;
933 interval_block
= newi
;
934 interval_block_index
= 0;
937 val
= &interval_block
->intervals
[interval_block_index
++];
939 consing_since_gc
+= sizeof (struct interval
);
941 RESET_INTERVAL (val
);
946 /* Mark Lisp objects in interval I. */
949 mark_interval (i
, dummy
)
953 if (XMARKBIT (i
->plist
))
955 mark_object (&i
->plist
);
960 /* Mark the interval tree rooted in TREE. Don't call this directly;
961 use the macro MARK_INTERVAL_TREE instead. */
964 mark_interval_tree (tree
)
965 register INTERVAL tree
;
967 /* No need to test if this tree has been marked already; this
968 function is always called through the MARK_INTERVAL_TREE macro,
969 which takes care of that. */
971 /* XMARK expands to an assignment; the LHS of an assignment can't be
973 XMARK (tree
->up
.obj
);
975 traverse_intervals_noorder (tree
, mark_interval
, Qnil
);
979 /* Mark the interval tree rooted in I. */
981 #define MARK_INTERVAL_TREE(i) \
983 if (!NULL_INTERVAL_P (i) \
984 && ! XMARKBIT (i->up.obj)) \
985 mark_interval_tree (i); \
989 /* The oddity in the call to XUNMARK is necessary because XUNMARK
990 expands to an assignment to its argument, and most C compilers
991 don't support casts on the left operand of `='. */
993 #define UNMARK_BALANCE_INTERVALS(i) \
995 if (! NULL_INTERVAL_P (i)) \
997 XUNMARK ((i)->up.obj); \
998 (i) = balance_intervals (i); \
1003 /* Number support. If NO_UNION_TYPE isn't in effect, we
1004 can't create number objects in macros. */
1012 obj
.s
.type
= Lisp_Int
;
1017 /***********************************************************************
1019 ***********************************************************************/
1021 /* Lisp_Strings are allocated in string_block structures. When a new
1022 string_block is allocated, all the Lisp_Strings it contains are
1023 added to a free-list string_free_list. When a new Lisp_String is
1024 needed, it is taken from that list. During the sweep phase of GC,
1025 string_blocks that are entirely free are freed, except two which
1028 String data is allocated from sblock structures. Strings larger
1029 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1030 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1032 Sblocks consist internally of sdata structures, one for each
1033 Lisp_String. The sdata structure points to the Lisp_String it
1034 belongs to. The Lisp_String points back to the `u.data' member of
1035 its sdata structure.
1037 When a Lisp_String is freed during GC, it is put back on
1038 string_free_list, and its `data' member and its sdata's `string'
1039 pointer is set to null. The size of the string is recorded in the
1040 `u.nbytes' member of the sdata. So, sdata structures that are no
1041 longer used, can be easily recognized, and it's easy to compact the
1042 sblocks of small strings which we do in compact_small_strings. */
1044 /* Size in bytes of an sblock structure used for small strings. This
1045 is 8192 minus malloc overhead. */
1047 #define SBLOCK_SIZE 8188
1049 /* Strings larger than this are considered large strings. String data
1050 for large strings is allocated from individual sblocks. */
1052 #define LARGE_STRING_BYTES 1024
1054 /* Structure describing string memory sub-allocated from an sblock.
1055 This is where the contents of Lisp strings are stored. */
1059 /* Back-pointer to the string this sdata belongs to. If null, this
1060 structure is free, and the NBYTES member of the union below
1061 contains the string's byte size (the same value that STRING_BYTES
1062 would return if STRING were non-null). If non-null, STRING_BYTES
1063 (STRING) is the size of the data, and DATA contains the string's
1065 struct Lisp_String
*string
;
1067 #ifdef GC_CHECK_STRING_BYTES
1070 unsigned char data
[1];
1072 #define SDATA_NBYTES(S) (S)->nbytes
1073 #define SDATA_DATA(S) (S)->data
1075 #else /* not GC_CHECK_STRING_BYTES */
1079 /* When STRING in non-null. */
1080 unsigned char data
[1];
1082 /* When STRING is null. */
1087 #define SDATA_NBYTES(S) (S)->u.nbytes
1088 #define SDATA_DATA(S) (S)->u.data
1090 #endif /* not GC_CHECK_STRING_BYTES */
1094 /* Structure describing a block of memory which is sub-allocated to
1095 obtain string data memory for strings. Blocks for small strings
1096 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1097 as large as needed. */
1102 struct sblock
*next
;
1104 /* Pointer to the next free sdata block. This points past the end
1105 of the sblock if there isn't any space left in this block. */
1106 struct sdata
*next_free
;
1108 /* Start of data. */
1109 struct sdata first_data
;
1112 /* Number of Lisp strings in a string_block structure. The 1020 is
1113 1024 minus malloc overhead. */
1115 #define STRINGS_IN_STRING_BLOCK \
1116 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1118 /* Structure describing a block from which Lisp_String structures
1123 struct string_block
*next
;
1124 struct Lisp_String strings
[STRINGS_IN_STRING_BLOCK
];
1127 /* Head and tail of the list of sblock structures holding Lisp string
1128 data. We always allocate from current_sblock. The NEXT pointers
1129 in the sblock structures go from oldest_sblock to current_sblock. */
1131 static struct sblock
*oldest_sblock
, *current_sblock
;
1133 /* List of sblocks for large strings. */
1135 static struct sblock
*large_sblocks
;
1137 /* List of string_block structures, and how many there are. */
1139 static struct string_block
*string_blocks
;
1140 static int n_string_blocks
;
1142 /* Free-list of Lisp_Strings. */
1144 static struct Lisp_String
*string_free_list
;
1146 /* Number of live and free Lisp_Strings. */
1148 static int total_strings
, total_free_strings
;
1150 /* Number of bytes used by live strings. */
1152 static int total_string_size
;
1154 /* Given a pointer to a Lisp_String S which is on the free-list
1155 string_free_list, return a pointer to its successor in the
1158 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1160 /* Return a pointer to the sdata structure belonging to Lisp string S.
1161 S must be live, i.e. S->data must not be null. S->data is actually
1162 a pointer to the `u.data' member of its sdata structure; the
1163 structure starts at a constant offset in front of that. */
1165 #ifdef GC_CHECK_STRING_BYTES
1167 #define SDATA_OF_STRING(S) \
1168 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1169 - sizeof (EMACS_INT)))
1171 #else /* not GC_CHECK_STRING_BYTES */
1173 #define SDATA_OF_STRING(S) \
1174 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1176 #endif /* not GC_CHECK_STRING_BYTES */
1178 /* Value is the size of an sdata structure large enough to hold NBYTES
1179 bytes of string data. The value returned includes a terminating
1180 NUL byte, the size of the sdata structure, and padding. */
1182 #ifdef GC_CHECK_STRING_BYTES
1184 #define SDATA_SIZE(NBYTES) \
1185 ((sizeof (struct Lisp_String *) \
1187 + sizeof (EMACS_INT) \
1188 + sizeof (EMACS_INT) - 1) \
1189 & ~(sizeof (EMACS_INT) - 1))
1191 #else /* not GC_CHECK_STRING_BYTES */
1193 #define SDATA_SIZE(NBYTES) \
1194 ((sizeof (struct Lisp_String *) \
1196 + sizeof (EMACS_INT) - 1) \
1197 & ~(sizeof (EMACS_INT) - 1))
1199 #endif /* not GC_CHECK_STRING_BYTES */
1201 /* Initialize string allocation. Called from init_alloc_once. */
1206 total_strings
= total_free_strings
= total_string_size
= 0;
1207 oldest_sblock
= current_sblock
= large_sblocks
= NULL
;
1208 string_blocks
= NULL
;
1209 n_string_blocks
= 0;
1210 string_free_list
= NULL
;
1214 #ifdef GC_CHECK_STRING_BYTES
1216 static int check_string_bytes_count
;
1218 void check_string_bytes
P_ ((int));
1219 void check_sblock
P_ ((struct sblock
*));
1221 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1224 /* Like GC_STRING_BYTES, but with debugging check. */
1228 struct Lisp_String
*s
;
1230 int nbytes
= (s
->size_byte
< 0 ? s
->size
: s
->size_byte
) & ~MARKBIT
;
1231 if (!PURE_POINTER_P (s
)
1233 && nbytes
!= SDATA_NBYTES (SDATA_OF_STRING (s
)))
1238 /* Check validity Lisp strings' string_bytes member in B. */
1244 struct sdata
*from
, *end
, *from_end
;
1248 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
1250 /* Compute the next FROM here because copying below may
1251 overwrite data we need to compute it. */
1254 /* Check that the string size recorded in the string is the
1255 same as the one recorded in the sdata structure. */
1257 CHECK_STRING_BYTES (from
->string
);
1260 nbytes
= GC_STRING_BYTES (from
->string
);
1262 nbytes
= SDATA_NBYTES (from
);
1264 nbytes
= SDATA_SIZE (nbytes
);
1265 from_end
= (struct sdata
*) ((char *) from
+ nbytes
);
1270 /* Check validity of Lisp strings' string_bytes member. ALL_P
1271 non-zero means check all strings, otherwise check only most
1272 recently allocated strings. Used for hunting a bug. */
1275 check_string_bytes (all_p
)
1282 for (b
= large_sblocks
; b
; b
= b
->next
)
1284 struct Lisp_String
*s
= b
->first_data
.string
;
1286 CHECK_STRING_BYTES (s
);
1289 for (b
= oldest_sblock
; b
; b
= b
->next
)
1293 check_sblock (current_sblock
);
1296 #endif /* GC_CHECK_STRING_BYTES */
1299 /* Return a new Lisp_String. */
1301 static struct Lisp_String
*
1304 struct Lisp_String
*s
;
1306 /* If the free-list is empty, allocate a new string_block, and
1307 add all the Lisp_Strings in it to the free-list. */
1308 if (string_free_list
== NULL
)
1310 struct string_block
*b
;
1313 b
= (struct string_block
*) lisp_malloc (sizeof *b
, MEM_TYPE_STRING
);
1314 VALIDATE_LISP_STORAGE (b
, sizeof *b
);
1315 bzero (b
, sizeof *b
);
1316 b
->next
= string_blocks
;
1320 for (i
= STRINGS_IN_STRING_BLOCK
- 1; i
>= 0; --i
)
1323 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1324 string_free_list
= s
;
1327 total_free_strings
+= STRINGS_IN_STRING_BLOCK
;
1330 /* Pop a Lisp_String off the free-list. */
1331 s
= string_free_list
;
1332 string_free_list
= NEXT_FREE_LISP_STRING (s
);
1334 /* Probably not strictly necessary, but play it safe. */
1335 bzero (s
, sizeof *s
);
1337 --total_free_strings
;
1340 consing_since_gc
+= sizeof *s
;
1342 #ifdef GC_CHECK_STRING_BYTES
1349 if (++check_string_bytes_count
== 200)
1351 check_string_bytes_count
= 0;
1352 check_string_bytes (1);
1355 check_string_bytes (0);
1357 #endif /* GC_CHECK_STRING_BYTES */
1363 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1364 plus a NUL byte at the end. Allocate an sdata structure for S, and
1365 set S->data to its `u.data' member. Store a NUL byte at the end of
1366 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1367 S->data if it was initially non-null. */
1370 allocate_string_data (s
, nchars
, nbytes
)
1371 struct Lisp_String
*s
;
1374 struct sdata
*data
, *old_data
;
1376 int needed
, old_nbytes
;
1378 /* Determine the number of bytes needed to store NBYTES bytes
1380 needed
= SDATA_SIZE (nbytes
);
1382 if (nbytes
> LARGE_STRING_BYTES
)
1384 size_t size
= sizeof *b
- sizeof (struct sdata
) + needed
;
1386 #ifdef DOUG_LEA_MALLOC
1387 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1388 because mapped region contents are not preserved in
1390 mallopt (M_MMAP_MAX
, 0);
1393 b
= (struct sblock
*) lisp_malloc (size
, MEM_TYPE_NON_LISP
);
1395 #ifdef DOUG_LEA_MALLOC
1396 /* Back to a reasonable maximum of mmap'ed areas. */
1397 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1400 b
->next_free
= &b
->first_data
;
1401 b
->first_data
.string
= NULL
;
1402 b
->next
= large_sblocks
;
1405 else if (current_sblock
== NULL
1406 || (((char *) current_sblock
+ SBLOCK_SIZE
1407 - (char *) current_sblock
->next_free
)
1410 /* Not enough room in the current sblock. */
1411 b
= (struct sblock
*) lisp_malloc (SBLOCK_SIZE
, MEM_TYPE_NON_LISP
);
1412 b
->next_free
= &b
->first_data
;
1413 b
->first_data
.string
= NULL
;
1417 current_sblock
->next
= b
;
1425 old_data
= s
->data
? SDATA_OF_STRING (s
) : NULL
;
1426 old_nbytes
= GC_STRING_BYTES (s
);
1428 data
= b
->next_free
;
1430 s
->data
= SDATA_DATA (data
);
1431 #ifdef GC_CHECK_STRING_BYTES
1432 SDATA_NBYTES (data
) = nbytes
;
1435 s
->size_byte
= nbytes
;
1436 s
->data
[nbytes
] = '\0';
1437 b
->next_free
= (struct sdata
*) ((char *) data
+ needed
);
1439 /* If S had already data assigned, mark that as free by setting its
1440 string back-pointer to null, and recording the size of the data
1444 SDATA_NBYTES (old_data
) = old_nbytes
;
1445 old_data
->string
= NULL
;
1448 consing_since_gc
+= needed
;
1452 /* Sweep and compact strings. */
1457 struct string_block
*b
, *next
;
1458 struct string_block
*live_blocks
= NULL
;
1460 string_free_list
= NULL
;
1461 total_strings
= total_free_strings
= 0;
1462 total_string_size
= 0;
1464 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1465 for (b
= string_blocks
; b
; b
= next
)
1468 struct Lisp_String
*free_list_before
= string_free_list
;
1472 for (i
= 0; i
< STRINGS_IN_STRING_BLOCK
; ++i
)
1474 struct Lisp_String
*s
= b
->strings
+ i
;
1478 /* String was not on free-list before. */
1479 if (STRING_MARKED_P (s
))
1481 /* String is live; unmark it and its intervals. */
1484 if (!NULL_INTERVAL_P (s
->intervals
))
1485 UNMARK_BALANCE_INTERVALS (s
->intervals
);
1488 total_string_size
+= STRING_BYTES (s
);
1492 /* String is dead. Put it on the free-list. */
1493 struct sdata
*data
= SDATA_OF_STRING (s
);
1495 /* Save the size of S in its sdata so that we know
1496 how large that is. Reset the sdata's string
1497 back-pointer so that we know it's free. */
1498 #ifdef GC_CHECK_STRING_BYTES
1499 if (GC_STRING_BYTES (s
) != SDATA_NBYTES (data
))
1502 data
->u
.nbytes
= GC_STRING_BYTES (s
);
1504 data
->string
= NULL
;
1506 /* Reset the strings's `data' member so that we
1510 /* Put the string on the free-list. */
1511 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1512 string_free_list
= s
;
1518 /* S was on the free-list before. Put it there again. */
1519 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1520 string_free_list
= s
;
1525 /* Free blocks that contain free Lisp_Strings only, except
1526 the first two of them. */
1527 if (nfree
== STRINGS_IN_STRING_BLOCK
1528 && total_free_strings
> STRINGS_IN_STRING_BLOCK
)
1532 string_free_list
= free_list_before
;
1536 total_free_strings
+= nfree
;
1537 b
->next
= live_blocks
;
1542 string_blocks
= live_blocks
;
1543 free_large_strings ();
1544 compact_small_strings ();
1548 /* Free dead large strings. */
1551 free_large_strings ()
1553 struct sblock
*b
, *next
;
1554 struct sblock
*live_blocks
= NULL
;
1556 for (b
= large_sblocks
; b
; b
= next
)
1560 if (b
->first_data
.string
== NULL
)
1564 b
->next
= live_blocks
;
1569 large_sblocks
= live_blocks
;
1573 /* Compact data of small strings. Free sblocks that don't contain
1574 data of live strings after compaction. */
1577 compact_small_strings ()
1579 struct sblock
*b
, *tb
, *next
;
1580 struct sdata
*from
, *to
, *end
, *tb_end
;
1581 struct sdata
*to_end
, *from_end
;
1583 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1584 to, and TB_END is the end of TB. */
1586 tb_end
= (struct sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1587 to
= &tb
->first_data
;
1589 /* Step through the blocks from the oldest to the youngest. We
1590 expect that old blocks will stabilize over time, so that less
1591 copying will happen this way. */
1592 for (b
= oldest_sblock
; b
; b
= b
->next
)
1595 xassert ((char *) end
<= (char *) b
+ SBLOCK_SIZE
);
1597 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
1599 /* Compute the next FROM here because copying below may
1600 overwrite data we need to compute it. */
1603 #ifdef GC_CHECK_STRING_BYTES
1604 /* Check that the string size recorded in the string is the
1605 same as the one recorded in the sdata structure. */
1607 && GC_STRING_BYTES (from
->string
) != SDATA_NBYTES (from
))
1609 #endif /* GC_CHECK_STRING_BYTES */
1612 nbytes
= GC_STRING_BYTES (from
->string
);
1614 nbytes
= SDATA_NBYTES (from
);
1616 nbytes
= SDATA_SIZE (nbytes
);
1617 from_end
= (struct sdata
*) ((char *) from
+ nbytes
);
1619 /* FROM->string non-null means it's alive. Copy its data. */
1622 /* If TB is full, proceed with the next sblock. */
1623 to_end
= (struct sdata
*) ((char *) to
+ nbytes
);
1624 if (to_end
> tb_end
)
1628 tb_end
= (struct sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1629 to
= &tb
->first_data
;
1630 to_end
= (struct sdata
*) ((char *) to
+ nbytes
);
1633 /* Copy, and update the string's `data' pointer. */
1636 xassert (tb
!= b
|| to
<= from
);
1637 safe_bcopy ((char *) from
, (char *) to
, nbytes
);
1638 to
->string
->data
= SDATA_DATA (to
);
1641 /* Advance past the sdata we copied to. */
1647 /* The rest of the sblocks following TB don't contain live data, so
1648 we can free them. */
1649 for (b
= tb
->next
; b
; b
= next
)
1657 current_sblock
= tb
;
1661 DEFUN ("make-string", Fmake_string
, Smake_string
, 2, 2, 0,
1662 doc
: /* Return a newly created string of length LENGTH, with each element being INIT.
1663 Both LENGTH and INIT must be numbers. */)
1665 Lisp_Object length
, init
;
1667 register Lisp_Object val
;
1668 register unsigned char *p
, *end
;
1671 CHECK_NATNUM (length
);
1672 CHECK_NUMBER (init
);
1675 if (SINGLE_BYTE_CHAR_P (c
))
1677 nbytes
= XINT (length
);
1678 val
= make_uninit_string (nbytes
);
1679 p
= XSTRING (val
)->data
;
1680 end
= p
+ XSTRING (val
)->size
;
1686 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
1687 int len
= CHAR_STRING (c
, str
);
1689 nbytes
= len
* XINT (length
);
1690 val
= make_uninit_multibyte_string (XINT (length
), nbytes
);
1691 p
= XSTRING (val
)->data
;
1695 bcopy (str
, p
, len
);
1705 DEFUN ("make-bool-vector", Fmake_bool_vector
, Smake_bool_vector
, 2, 2, 0,
1706 doc
: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1707 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1709 Lisp_Object length
, init
;
1711 register Lisp_Object val
;
1712 struct Lisp_Bool_Vector
*p
;
1714 int length_in_chars
, length_in_elts
, bits_per_value
;
1716 CHECK_NATNUM (length
);
1718 bits_per_value
= sizeof (EMACS_INT
) * BITS_PER_CHAR
;
1720 length_in_elts
= (XFASTINT (length
) + bits_per_value
- 1) / bits_per_value
;
1721 length_in_chars
= ((XFASTINT (length
) + BITS_PER_CHAR
- 1) / BITS_PER_CHAR
);
1723 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1724 slot `size' of the struct Lisp_Bool_Vector. */
1725 val
= Fmake_vector (make_number (length_in_elts
+ 1), Qnil
);
1726 p
= XBOOL_VECTOR (val
);
1728 /* Get rid of any bits that would cause confusion. */
1730 XSETBOOL_VECTOR (val
, p
);
1731 p
->size
= XFASTINT (length
);
1733 real_init
= (NILP (init
) ? 0 : -1);
1734 for (i
= 0; i
< length_in_chars
; i
++)
1735 p
->data
[i
] = real_init
;
1737 /* Clear the extraneous bits in the last byte. */
1738 if (XINT (length
) != length_in_chars
* BITS_PER_CHAR
)
1739 XBOOL_VECTOR (val
)->data
[length_in_chars
- 1]
1740 &= (1 << (XINT (length
) % BITS_PER_CHAR
)) - 1;
1746 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1747 of characters from the contents. This string may be unibyte or
1748 multibyte, depending on the contents. */
1751 make_string (contents
, nbytes
)
1755 register Lisp_Object val
;
1756 int nchars
, multibyte_nbytes
;
1758 parse_str_as_multibyte (contents
, nbytes
, &nchars
, &multibyte_nbytes
);
1759 if (nbytes
== nchars
|| nbytes
!= multibyte_nbytes
)
1760 /* CONTENTS contains no multibyte sequences or contains an invalid
1761 multibyte sequence. We must make unibyte string. */
1762 val
= make_unibyte_string (contents
, nbytes
);
1764 val
= make_multibyte_string (contents
, nchars
, nbytes
);
1769 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1772 make_unibyte_string (contents
, length
)
1776 register Lisp_Object val
;
1777 val
= make_uninit_string (length
);
1778 bcopy (contents
, XSTRING (val
)->data
, length
);
1779 SET_STRING_BYTES (XSTRING (val
), -1);
1784 /* Make a multibyte string from NCHARS characters occupying NBYTES
1785 bytes at CONTENTS. */
1788 make_multibyte_string (contents
, nchars
, nbytes
)
1792 register Lisp_Object val
;
1793 val
= make_uninit_multibyte_string (nchars
, nbytes
);
1794 bcopy (contents
, XSTRING (val
)->data
, nbytes
);
1799 /* Make a string from NCHARS characters occupying NBYTES bytes at
1800 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
1803 make_string_from_bytes (contents
, nchars
, nbytes
)
1807 register Lisp_Object val
;
1808 val
= make_uninit_multibyte_string (nchars
, nbytes
);
1809 bcopy (contents
, XSTRING (val
)->data
, nbytes
);
1810 if (STRING_BYTES (XSTRING (val
)) == XSTRING (val
)->size
)
1811 SET_STRING_BYTES (XSTRING (val
), -1);
1816 /* Make a string from NCHARS characters occupying NBYTES bytes at
1817 CONTENTS. The argument MULTIBYTE controls whether to label the
1818 string as multibyte. */
1821 make_specified_string (contents
, nchars
, nbytes
, multibyte
)
1826 register Lisp_Object val
;
1827 val
= make_uninit_multibyte_string (nchars
, nbytes
);
1828 bcopy (contents
, XSTRING (val
)->data
, nbytes
);
1830 SET_STRING_BYTES (XSTRING (val
), -1);
1835 /* Make a string from the data at STR, treating it as multibyte if the
1842 return make_string (str
, strlen (str
));
1846 /* Return an unibyte Lisp_String set up to hold LENGTH characters
1847 occupying LENGTH bytes. */
1850 make_uninit_string (length
)
1854 val
= make_uninit_multibyte_string (length
, length
);
1855 SET_STRING_BYTES (XSTRING (val
), -1);
1860 /* Return a multibyte Lisp_String set up to hold NCHARS characters
1861 which occupy NBYTES bytes. */
1864 make_uninit_multibyte_string (nchars
, nbytes
)
1868 struct Lisp_String
*s
;
1873 s
= allocate_string ();
1874 allocate_string_data (s
, nchars
, nbytes
);
1875 XSETSTRING (string
, s
);
1876 string_chars_consed
+= nbytes
;
1882 /***********************************************************************
1884 ***********************************************************************/
1886 /* We store float cells inside of float_blocks, allocating a new
1887 float_block with malloc whenever necessary. Float cells reclaimed
1888 by GC are put on a free list to be reallocated before allocating
1889 any new float cells from the latest float_block.
1891 Each float_block is just under 1020 bytes long, since malloc really
1892 allocates in units of powers of two and uses 4 bytes for its own
1895 #define FLOAT_BLOCK_SIZE \
1896 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
1900 struct float_block
*next
;
1901 struct Lisp_Float floats
[FLOAT_BLOCK_SIZE
];
1904 /* Current float_block. */
1906 struct float_block
*float_block
;
1908 /* Index of first unused Lisp_Float in the current float_block. */
1910 int float_block_index
;
1912 /* Total number of float blocks now in use. */
1916 /* Free-list of Lisp_Floats. */
1918 struct Lisp_Float
*float_free_list
;
1921 /* Initialize float allocation. */
1926 float_block
= (struct float_block
*) lisp_malloc (sizeof *float_block
,
1928 float_block
->next
= 0;
1929 bzero ((char *) float_block
->floats
, sizeof float_block
->floats
);
1930 float_block_index
= 0;
1931 float_free_list
= 0;
1936 /* Explicitly free a float cell by putting it on the free-list. */
1940 struct Lisp_Float
*ptr
;
1942 *(struct Lisp_Float
**)&ptr
->data
= float_free_list
;
1946 float_free_list
= ptr
;
1950 /* Return a new float object with value FLOAT_VALUE. */
1953 make_float (float_value
)
1956 register Lisp_Object val
;
1958 if (float_free_list
)
1960 /* We use the data field for chaining the free list
1961 so that we won't use the same field that has the mark bit. */
1962 XSETFLOAT (val
, float_free_list
);
1963 float_free_list
= *(struct Lisp_Float
**)&float_free_list
->data
;
1967 if (float_block_index
== FLOAT_BLOCK_SIZE
)
1969 register struct float_block
*new;
1971 new = (struct float_block
*) lisp_malloc (sizeof *new,
1973 VALIDATE_LISP_STORAGE (new, sizeof *new);
1974 new->next
= float_block
;
1976 float_block_index
= 0;
1979 XSETFLOAT (val
, &float_block
->floats
[float_block_index
++]);
1982 XFLOAT_DATA (val
) = float_value
;
1983 XSETFASTINT (XFLOAT (val
)->type
, 0); /* bug chasing -wsr */
1984 consing_since_gc
+= sizeof (struct Lisp_Float
);
1991 /***********************************************************************
1993 ***********************************************************************/
1995 /* We store cons cells inside of cons_blocks, allocating a new
1996 cons_block with malloc whenever necessary. Cons cells reclaimed by
1997 GC are put on a free list to be reallocated before allocating
1998 any new cons cells from the latest cons_block.
2000 Each cons_block is just under 1020 bytes long,
2001 since malloc really allocates in units of powers of two
2002 and uses 4 bytes for its own overhead. */
2004 #define CONS_BLOCK_SIZE \
2005 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
2009 struct cons_block
*next
;
2010 struct Lisp_Cons conses
[CONS_BLOCK_SIZE
];
2013 /* Current cons_block. */
2015 struct cons_block
*cons_block
;
2017 /* Index of first unused Lisp_Cons in the current block. */
2019 int cons_block_index
;
2021 /* Free-list of Lisp_Cons structures. */
2023 struct Lisp_Cons
*cons_free_list
;
2025 /* Total number of cons blocks now in use. */
2030 /* Initialize cons allocation. */
2035 cons_block
= (struct cons_block
*) lisp_malloc (sizeof *cons_block
,
2037 cons_block
->next
= 0;
2038 bzero ((char *) cons_block
->conses
, sizeof cons_block
->conses
);
2039 cons_block_index
= 0;
2045 /* Explicitly free a cons cell by putting it on the free-list. */
2049 struct Lisp_Cons
*ptr
;
2051 *(struct Lisp_Cons
**)&ptr
->cdr
= cons_free_list
;
2055 cons_free_list
= ptr
;
2059 DEFUN ("cons", Fcons
, Scons
, 2, 2, 0,
2060 doc
: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2062 Lisp_Object car
, cdr
;
2064 register Lisp_Object val
;
2068 /* We use the cdr for chaining the free list
2069 so that we won't use the same field that has the mark bit. */
2070 XSETCONS (val
, cons_free_list
);
2071 cons_free_list
= *(struct Lisp_Cons
**)&cons_free_list
->cdr
;
2075 if (cons_block_index
== CONS_BLOCK_SIZE
)
2077 register struct cons_block
*new;
2078 new = (struct cons_block
*) lisp_malloc (sizeof *new,
2080 VALIDATE_LISP_STORAGE (new, sizeof *new);
2081 new->next
= cons_block
;
2083 cons_block_index
= 0;
2086 XSETCONS (val
, &cons_block
->conses
[cons_block_index
++]);
2091 consing_since_gc
+= sizeof (struct Lisp_Cons
);
2092 cons_cells_consed
++;
2097 /* Make a list of 2, 3, 4 or 5 specified objects. */
2101 Lisp_Object arg1
, arg2
;
2103 return Fcons (arg1
, Fcons (arg2
, Qnil
));
2108 list3 (arg1
, arg2
, arg3
)
2109 Lisp_Object arg1
, arg2
, arg3
;
2111 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Qnil
)));
2116 list4 (arg1
, arg2
, arg3
, arg4
)
2117 Lisp_Object arg1
, arg2
, arg3
, arg4
;
2119 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
, Qnil
))));
2124 list5 (arg1
, arg2
, arg3
, arg4
, arg5
)
2125 Lisp_Object arg1
, arg2
, arg3
, arg4
, arg5
;
2127 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
,
2128 Fcons (arg5
, Qnil
)))));
2132 DEFUN ("list", Flist
, Slist
, 0, MANY
, 0,
2133 doc
: /* Return a newly created list with specified arguments as elements.
2134 Any number of arguments, even zero arguments, are allowed.
2135 usage: (list &rest OBJECTS) */)
2138 register Lisp_Object
*args
;
2140 register Lisp_Object val
;
2146 val
= Fcons (args
[nargs
], val
);
2152 DEFUN ("make-list", Fmake_list
, Smake_list
, 2, 2, 0,
2153 doc
: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2155 register Lisp_Object length
, init
;
2157 register Lisp_Object val
;
2160 CHECK_NATNUM (length
);
2161 size
= XFASTINT (length
);
2166 val
= Fcons (init
, val
);
2171 val
= Fcons (init
, val
);
2176 val
= Fcons (init
, val
);
2181 val
= Fcons (init
, val
);
2186 val
= Fcons (init
, val
);
2201 /***********************************************************************
2203 ***********************************************************************/
2205 /* Singly-linked list of all vectors. */
2207 struct Lisp_Vector
*all_vectors
;
2209 /* Total number of vector-like objects now in use. */
2214 /* Value is a pointer to a newly allocated Lisp_Vector structure
2215 with room for LEN Lisp_Objects. */
2217 static struct Lisp_Vector
*
2218 allocate_vectorlike (len
, type
)
2222 struct Lisp_Vector
*p
;
2225 #ifdef DOUG_LEA_MALLOC
2226 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2227 because mapped region contents are not preserved in
2229 mallopt (M_MMAP_MAX
, 0);
2232 nbytes
= sizeof *p
+ (len
- 1) * sizeof p
->contents
[0];
2233 p
= (struct Lisp_Vector
*) lisp_malloc (nbytes
, type
);
2235 #ifdef DOUG_LEA_MALLOC
2236 /* Back to a reasonable maximum of mmap'ed areas. */
2237 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
2240 VALIDATE_LISP_STORAGE (p
, 0);
2241 consing_since_gc
+= nbytes
;
2242 vector_cells_consed
+= len
;
2244 p
->next
= all_vectors
;
2251 /* Allocate a vector with NSLOTS slots. */
2253 struct Lisp_Vector
*
2254 allocate_vector (nslots
)
2257 struct Lisp_Vector
*v
= allocate_vectorlike (nslots
, MEM_TYPE_VECTOR
);
2263 /* Allocate other vector-like structures. */
2265 struct Lisp_Hash_Table
*
2266 allocate_hash_table ()
2268 EMACS_INT len
= VECSIZE (struct Lisp_Hash_Table
);
2269 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_HASH_TABLE
);
2273 for (i
= 0; i
< len
; ++i
)
2274 v
->contents
[i
] = Qnil
;
2276 return (struct Lisp_Hash_Table
*) v
;
2283 EMACS_INT len
= VECSIZE (struct window
);
2284 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_WINDOW
);
2287 for (i
= 0; i
< len
; ++i
)
2288 v
->contents
[i
] = Qnil
;
2291 return (struct window
*) v
;
2298 EMACS_INT len
= VECSIZE (struct frame
);
2299 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_FRAME
);
2302 for (i
= 0; i
< len
; ++i
)
2303 v
->contents
[i
] = make_number (0);
2305 return (struct frame
*) v
;
2309 struct Lisp_Process
*
2312 EMACS_INT len
= VECSIZE (struct Lisp_Process
);
2313 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_PROCESS
);
2316 for (i
= 0; i
< len
; ++i
)
2317 v
->contents
[i
] = Qnil
;
2320 return (struct Lisp_Process
*) v
;
2324 struct Lisp_Vector
*
2325 allocate_other_vector (len
)
2328 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_VECTOR
);
2331 for (i
= 0; i
< len
; ++i
)
2332 v
->contents
[i
] = Qnil
;
2339 DEFUN ("make-vector", Fmake_vector
, Smake_vector
, 2, 2, 0,
2340 doc
: /* Return a newly created vector of length LENGTH, with each element being INIT.
2341 See also the function `vector'. */)
2343 register Lisp_Object length
, init
;
2346 register EMACS_INT sizei
;
2348 register struct Lisp_Vector
*p
;
2350 CHECK_NATNUM (length
);
2351 sizei
= XFASTINT (length
);
2353 p
= allocate_vector (sizei
);
2354 for (index
= 0; index
< sizei
; index
++)
2355 p
->contents
[index
] = init
;
2357 XSETVECTOR (vector
, p
);
2362 DEFUN ("make-char-table", Fmake_char_table
, Smake_char_table
, 1, 2, 0,
2363 doc
: /* Return a newly created char-table, with purpose PURPOSE.
2364 Each element is initialized to INIT, which defaults to nil.
2365 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2366 The property's value should be an integer between 0 and 10. */)
2368 register Lisp_Object purpose
, init
;
2372 CHECK_SYMBOL (purpose
);
2373 n
= Fget (purpose
, Qchar_table_extra_slots
);
2375 if (XINT (n
) < 0 || XINT (n
) > 10)
2376 args_out_of_range (n
, Qnil
);
2377 /* Add 2 to the size for the defalt and parent slots. */
2378 vector
= Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS
+ XINT (n
)),
2380 XCHAR_TABLE (vector
)->top
= Qt
;
2381 XCHAR_TABLE (vector
)->parent
= Qnil
;
2382 XCHAR_TABLE (vector
)->purpose
= purpose
;
2383 XSETCHAR_TABLE (vector
, XCHAR_TABLE (vector
));
2388 /* Return a newly created sub char table with default value DEFALT.
2389 Since a sub char table does not appear as a top level Emacs Lisp
2390 object, we don't need a Lisp interface to make it. */
2393 make_sub_char_table (defalt
)
2397 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS
), Qnil
);
2398 XCHAR_TABLE (vector
)->top
= Qnil
;
2399 XCHAR_TABLE (vector
)->defalt
= defalt
;
2400 XSETCHAR_TABLE (vector
, XCHAR_TABLE (vector
));
2405 DEFUN ("vector", Fvector
, Svector
, 0, MANY
, 0,
2406 doc
: /* Return a newly created vector with specified arguments as elements.
2407 Any number of arguments, even zero arguments, are allowed.
2408 usage: (vector &rest OBJECTS) */)
2413 register Lisp_Object len
, val
;
2415 register struct Lisp_Vector
*p
;
2417 XSETFASTINT (len
, nargs
);
2418 val
= Fmake_vector (len
, Qnil
);
2420 for (index
= 0; index
< nargs
; index
++)
2421 p
->contents
[index
] = args
[index
];
2426 DEFUN ("make-byte-code", Fmake_byte_code
, Smake_byte_code
, 4, MANY
, 0,
2427 doc
: /* Create a byte-code object with specified arguments as elements.
2428 The arguments should be the arglist, bytecode-string, constant vector,
2429 stack size, (optional) doc string, and (optional) interactive spec.
2430 The first four arguments are required; at most six have any
2432 usage: (make-byte-code &rest ELEMENTS) */)
2437 register Lisp_Object len
, val
;
2439 register struct Lisp_Vector
*p
;
2441 XSETFASTINT (len
, nargs
);
2442 if (!NILP (Vpurify_flag
))
2443 val
= make_pure_vector ((EMACS_INT
) nargs
);
2445 val
= Fmake_vector (len
, Qnil
);
2447 if (STRINGP (args
[1]) && STRING_MULTIBYTE (args
[1]))
2448 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2449 earlier because they produced a raw 8-bit string for byte-code
2450 and now such a byte-code string is loaded as multibyte while
2451 raw 8-bit characters converted to multibyte form. Thus, now we
2452 must convert them back to the original unibyte form. */
2453 args
[1] = Fstring_as_unibyte (args
[1]);
2456 for (index
= 0; index
< nargs
; index
++)
2458 if (!NILP (Vpurify_flag
))
2459 args
[index
] = Fpurecopy (args
[index
]);
2460 p
->contents
[index
] = args
[index
];
2462 XSETCOMPILED (val
, p
);
2468 /***********************************************************************
2470 ***********************************************************************/
2472 /* Each symbol_block is just under 1020 bytes long, since malloc
2473 really allocates in units of powers of two and uses 4 bytes for its
2476 #define SYMBOL_BLOCK_SIZE \
2477 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2481 struct symbol_block
*next
;
2482 struct Lisp_Symbol symbols
[SYMBOL_BLOCK_SIZE
];
2485 /* Current symbol block and index of first unused Lisp_Symbol
2488 struct symbol_block
*symbol_block
;
2489 int symbol_block_index
;
2491 /* List of free symbols. */
2493 struct Lisp_Symbol
*symbol_free_list
;
2495 /* Total number of symbol blocks now in use. */
2497 int n_symbol_blocks
;
2500 /* Initialize symbol allocation. */
2505 symbol_block
= (struct symbol_block
*) lisp_malloc (sizeof *symbol_block
,
2507 symbol_block
->next
= 0;
2508 bzero ((char *) symbol_block
->symbols
, sizeof symbol_block
->symbols
);
2509 symbol_block_index
= 0;
2510 symbol_free_list
= 0;
2511 n_symbol_blocks
= 1;
2515 DEFUN ("make-symbol", Fmake_symbol
, Smake_symbol
, 1, 1, 0,
2516 doc
: /* Return a newly allocated uninterned symbol whose name is NAME.
2517 Its value and function definition are void, and its property list is nil. */)
2521 register Lisp_Object val
;
2522 register struct Lisp_Symbol
*p
;
2524 CHECK_STRING (name
);
2526 if (symbol_free_list
)
2528 XSETSYMBOL (val
, symbol_free_list
);
2529 symbol_free_list
= *(struct Lisp_Symbol
**)&symbol_free_list
->value
;
2533 if (symbol_block_index
== SYMBOL_BLOCK_SIZE
)
2535 struct symbol_block
*new;
2536 new = (struct symbol_block
*) lisp_malloc (sizeof *new,
2538 VALIDATE_LISP_STORAGE (new, sizeof *new);
2539 new->next
= symbol_block
;
2541 symbol_block_index
= 0;
2544 XSETSYMBOL (val
, &symbol_block
->symbols
[symbol_block_index
++]);
2548 p
->name
= XSTRING (name
);
2550 p
->value
= Qunbound
;
2551 p
->function
= Qunbound
;
2553 p
->interned
= SYMBOL_UNINTERNED
;
2555 p
->indirect_variable
= 0;
2556 consing_since_gc
+= sizeof (struct Lisp_Symbol
);
2563 /***********************************************************************
2564 Marker (Misc) Allocation
2565 ***********************************************************************/
2567 /* Allocation of markers and other objects that share that structure.
2568 Works like allocation of conses. */
2570 #define MARKER_BLOCK_SIZE \
2571 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2575 struct marker_block
*next
;
2576 union Lisp_Misc markers
[MARKER_BLOCK_SIZE
];
2579 struct marker_block
*marker_block
;
2580 int marker_block_index
;
2582 union Lisp_Misc
*marker_free_list
;
2584 /* Total number of marker blocks now in use. */
2586 int n_marker_blocks
;
2591 marker_block
= (struct marker_block
*) lisp_malloc (sizeof *marker_block
,
2593 marker_block
->next
= 0;
2594 bzero ((char *) marker_block
->markers
, sizeof marker_block
->markers
);
2595 marker_block_index
= 0;
2596 marker_free_list
= 0;
2597 n_marker_blocks
= 1;
2600 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2607 if (marker_free_list
)
2609 XSETMISC (val
, marker_free_list
);
2610 marker_free_list
= marker_free_list
->u_free
.chain
;
2614 if (marker_block_index
== MARKER_BLOCK_SIZE
)
2616 struct marker_block
*new;
2617 new = (struct marker_block
*) lisp_malloc (sizeof *new,
2619 VALIDATE_LISP_STORAGE (new, sizeof *new);
2620 new->next
= marker_block
;
2622 marker_block_index
= 0;
2625 XSETMISC (val
, &marker_block
->markers
[marker_block_index
++]);
2628 consing_since_gc
+= sizeof (union Lisp_Misc
);
2629 misc_objects_consed
++;
2633 DEFUN ("make-marker", Fmake_marker
, Smake_marker
, 0, 0, 0,
2634 doc
: /* Return a newly allocated marker which does not point at any place. */)
2637 register Lisp_Object val
;
2638 register struct Lisp_Marker
*p
;
2640 val
= allocate_misc ();
2641 XMISCTYPE (val
) = Lisp_Misc_Marker
;
2647 p
->insertion_type
= 0;
2651 /* Put MARKER back on the free list after using it temporarily. */
2654 free_marker (marker
)
2657 unchain_marker (marker
);
2659 XMISC (marker
)->u_marker
.type
= Lisp_Misc_Free
;
2660 XMISC (marker
)->u_free
.chain
= marker_free_list
;
2661 marker_free_list
= XMISC (marker
);
2663 total_free_markers
++;
2667 /* Return a newly created vector or string with specified arguments as
2668 elements. If all the arguments are characters that can fit
2669 in a string of events, make a string; otherwise, make a vector.
2671 Any number of arguments, even zero arguments, are allowed. */
2674 make_event_array (nargs
, args
)
2680 for (i
= 0; i
< nargs
; i
++)
2681 /* The things that fit in a string
2682 are characters that are in 0...127,
2683 after discarding the meta bit and all the bits above it. */
2684 if (!INTEGERP (args
[i
])
2685 || (XUINT (args
[i
]) & ~(-CHAR_META
)) >= 0200)
2686 return Fvector (nargs
, args
);
2688 /* Since the loop exited, we know that all the things in it are
2689 characters, so we can make a string. */
2693 result
= Fmake_string (make_number (nargs
), make_number (0));
2694 for (i
= 0; i
< nargs
; i
++)
2696 XSTRING (result
)->data
[i
] = XINT (args
[i
]);
2697 /* Move the meta bit to the right place for a string char. */
2698 if (XINT (args
[i
]) & CHAR_META
)
2699 XSTRING (result
)->data
[i
] |= 0x80;
2708 /************************************************************************
2710 ************************************************************************/
2712 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2714 /* Conservative C stack marking requires a method to identify possibly
2715 live Lisp objects given a pointer value. We do this by keeping
2716 track of blocks of Lisp data that are allocated in a red-black tree
2717 (see also the comment of mem_node which is the type of nodes in
2718 that tree). Function lisp_malloc adds information for an allocated
2719 block to the red-black tree with calls to mem_insert, and function
2720 lisp_free removes it with mem_delete. Functions live_string_p etc
2721 call mem_find to lookup information about a given pointer in the
2722 tree, and use that to determine if the pointer points to a Lisp
2725 /* Initialize this part of alloc.c. */
2730 mem_z
.left
= mem_z
.right
= MEM_NIL
;
2731 mem_z
.parent
= NULL
;
2732 mem_z
.color
= MEM_BLACK
;
2733 mem_z
.start
= mem_z
.end
= NULL
;
2738 /* Value is a pointer to the mem_node containing START. Value is
2739 MEM_NIL if there is no node in the tree containing START. */
2741 static INLINE
struct mem_node
*
2747 if (start
< min_heap_address
|| start
> max_heap_address
)
2750 /* Make the search always successful to speed up the loop below. */
2751 mem_z
.start
= start
;
2752 mem_z
.end
= (char *) start
+ 1;
2755 while (start
< p
->start
|| start
>= p
->end
)
2756 p
= start
< p
->start
? p
->left
: p
->right
;
2761 /* Insert a new node into the tree for a block of memory with start
2762 address START, end address END, and type TYPE. Value is a
2763 pointer to the node that was inserted. */
2765 static struct mem_node
*
2766 mem_insert (start
, end
, type
)
2770 struct mem_node
*c
, *parent
, *x
;
2772 if (start
< min_heap_address
)
2773 min_heap_address
= start
;
2774 if (end
> max_heap_address
)
2775 max_heap_address
= end
;
2777 /* See where in the tree a node for START belongs. In this
2778 particular application, it shouldn't happen that a node is already
2779 present. For debugging purposes, let's check that. */
2783 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
2785 while (c
!= MEM_NIL
)
2787 if (start
>= c
->start
&& start
< c
->end
)
2790 c
= start
< c
->start
? c
->left
: c
->right
;
2793 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2795 while (c
!= MEM_NIL
)
2798 c
= start
< c
->start
? c
->left
: c
->right
;
2801 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2803 /* Create a new node. */
2804 #ifdef GC_MALLOC_CHECK
2805 x
= (struct mem_node
*) _malloc_internal (sizeof *x
);
2809 x
= (struct mem_node
*) xmalloc (sizeof *x
);
2815 x
->left
= x
->right
= MEM_NIL
;
2818 /* Insert it as child of PARENT or install it as root. */
2821 if (start
< parent
->start
)
2829 /* Re-establish red-black tree properties. */
2830 mem_insert_fixup (x
);
2836 /* Re-establish the red-black properties of the tree, and thereby
2837 balance the tree, after node X has been inserted; X is always red. */
2840 mem_insert_fixup (x
)
2843 while (x
!= mem_root
&& x
->parent
->color
== MEM_RED
)
2845 /* X is red and its parent is red. This is a violation of
2846 red-black tree property #3. */
2848 if (x
->parent
== x
->parent
->parent
->left
)
2850 /* We're on the left side of our grandparent, and Y is our
2852 struct mem_node
*y
= x
->parent
->parent
->right
;
2854 if (y
->color
== MEM_RED
)
2856 /* Uncle and parent are red but should be black because
2857 X is red. Change the colors accordingly and proceed
2858 with the grandparent. */
2859 x
->parent
->color
= MEM_BLACK
;
2860 y
->color
= MEM_BLACK
;
2861 x
->parent
->parent
->color
= MEM_RED
;
2862 x
= x
->parent
->parent
;
2866 /* Parent and uncle have different colors; parent is
2867 red, uncle is black. */
2868 if (x
== x
->parent
->right
)
2871 mem_rotate_left (x
);
2874 x
->parent
->color
= MEM_BLACK
;
2875 x
->parent
->parent
->color
= MEM_RED
;
2876 mem_rotate_right (x
->parent
->parent
);
2881 /* This is the symmetrical case of above. */
2882 struct mem_node
*y
= x
->parent
->parent
->left
;
2884 if (y
->color
== MEM_RED
)
2886 x
->parent
->color
= MEM_BLACK
;
2887 y
->color
= MEM_BLACK
;
2888 x
->parent
->parent
->color
= MEM_RED
;
2889 x
= x
->parent
->parent
;
2893 if (x
== x
->parent
->left
)
2896 mem_rotate_right (x
);
2899 x
->parent
->color
= MEM_BLACK
;
2900 x
->parent
->parent
->color
= MEM_RED
;
2901 mem_rotate_left (x
->parent
->parent
);
2906 /* The root may have been changed to red due to the algorithm. Set
2907 it to black so that property #5 is satisfied. */
2908 mem_root
->color
= MEM_BLACK
;
2924 /* Turn y's left sub-tree into x's right sub-tree. */
2927 if (y
->left
!= MEM_NIL
)
2928 y
->left
->parent
= x
;
2930 /* Y's parent was x's parent. */
2932 y
->parent
= x
->parent
;
2934 /* Get the parent to point to y instead of x. */
2937 if (x
== x
->parent
->left
)
2938 x
->parent
->left
= y
;
2940 x
->parent
->right
= y
;
2945 /* Put x on y's left. */
2959 mem_rotate_right (x
)
2962 struct mem_node
*y
= x
->left
;
2965 if (y
->right
!= MEM_NIL
)
2966 y
->right
->parent
= x
;
2969 y
->parent
= x
->parent
;
2972 if (x
== x
->parent
->right
)
2973 x
->parent
->right
= y
;
2975 x
->parent
->left
= y
;
2986 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
2992 struct mem_node
*x
, *y
;
2994 if (!z
|| z
== MEM_NIL
)
2997 if (z
->left
== MEM_NIL
|| z
->right
== MEM_NIL
)
3002 while (y
->left
!= MEM_NIL
)
3006 if (y
->left
!= MEM_NIL
)
3011 x
->parent
= y
->parent
;
3014 if (y
== y
->parent
->left
)
3015 y
->parent
->left
= x
;
3017 y
->parent
->right
= x
;
3024 z
->start
= y
->start
;
3029 if (y
->color
== MEM_BLACK
)
3030 mem_delete_fixup (x
);
3032 #ifdef GC_MALLOC_CHECK
3040 /* Re-establish the red-black properties of the tree, after a
3044 mem_delete_fixup (x
)
3047 while (x
!= mem_root
&& x
->color
== MEM_BLACK
)
3049 if (x
== x
->parent
->left
)
3051 struct mem_node
*w
= x
->parent
->right
;
3053 if (w
->color
== MEM_RED
)
3055 w
->color
= MEM_BLACK
;
3056 x
->parent
->color
= MEM_RED
;
3057 mem_rotate_left (x
->parent
);
3058 w
= x
->parent
->right
;
3061 if (w
->left
->color
== MEM_BLACK
&& w
->right
->color
== MEM_BLACK
)
3068 if (w
->right
->color
== MEM_BLACK
)
3070 w
->left
->color
= MEM_BLACK
;
3072 mem_rotate_right (w
);
3073 w
= x
->parent
->right
;
3075 w
->color
= x
->parent
->color
;
3076 x
->parent
->color
= MEM_BLACK
;
3077 w
->right
->color
= MEM_BLACK
;
3078 mem_rotate_left (x
->parent
);
3084 struct mem_node
*w
= x
->parent
->left
;
3086 if (w
->color
== MEM_RED
)
3088 w
->color
= MEM_BLACK
;
3089 x
->parent
->color
= MEM_RED
;
3090 mem_rotate_right (x
->parent
);
3091 w
= x
->parent
->left
;
3094 if (w
->right
->color
== MEM_BLACK
&& w
->left
->color
== MEM_BLACK
)
3101 if (w
->left
->color
== MEM_BLACK
)
3103 w
->right
->color
= MEM_BLACK
;
3105 mem_rotate_left (w
);
3106 w
= x
->parent
->left
;
3109 w
->color
= x
->parent
->color
;
3110 x
->parent
->color
= MEM_BLACK
;
3111 w
->left
->color
= MEM_BLACK
;
3112 mem_rotate_right (x
->parent
);
3118 x
->color
= MEM_BLACK
;
3122 /* Value is non-zero if P is a pointer to a live Lisp string on
3123 the heap. M is a pointer to the mem_block for P. */
3126 live_string_p (m
, p
)
3130 if (m
->type
== MEM_TYPE_STRING
)
3132 struct string_block
*b
= (struct string_block
*) m
->start
;
3133 int offset
= (char *) p
- (char *) &b
->strings
[0];
3135 /* P must point to the start of a Lisp_String structure, and it
3136 must not be on the free-list. */
3138 && offset
% sizeof b
->strings
[0] == 0
3139 && ((struct Lisp_String
*) p
)->data
!= NULL
);
3146 /* Value is non-zero if P is a pointer to a live Lisp cons on
3147 the heap. M is a pointer to the mem_block for P. */
3154 if (m
->type
== MEM_TYPE_CONS
)
3156 struct cons_block
*b
= (struct cons_block
*) m
->start
;
3157 int offset
= (char *) p
- (char *) &b
->conses
[0];
3159 /* P must point to the start of a Lisp_Cons, not be
3160 one of the unused cells in the current cons block,
3161 and not be on the free-list. */
3163 && offset
% sizeof b
->conses
[0] == 0
3165 || offset
/ sizeof b
->conses
[0] < cons_block_index
)
3166 && !EQ (((struct Lisp_Cons
*) p
)->car
, Vdead
));
3173 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3174 the heap. M is a pointer to the mem_block for P. */
3177 live_symbol_p (m
, p
)
3181 if (m
->type
== MEM_TYPE_SYMBOL
)
3183 struct symbol_block
*b
= (struct symbol_block
*) m
->start
;
3184 int offset
= (char *) p
- (char *) &b
->symbols
[0];
3186 /* P must point to the start of a Lisp_Symbol, not be
3187 one of the unused cells in the current symbol block,
3188 and not be on the free-list. */
3190 && offset
% sizeof b
->symbols
[0] == 0
3191 && (b
!= symbol_block
3192 || offset
/ sizeof b
->symbols
[0] < symbol_block_index
)
3193 && !EQ (((struct Lisp_Symbol
*) p
)->function
, Vdead
));
3200 /* Value is non-zero if P is a pointer to a live Lisp float on
3201 the heap. M is a pointer to the mem_block for P. */
3208 if (m
->type
== MEM_TYPE_FLOAT
)
3210 struct float_block
*b
= (struct float_block
*) m
->start
;
3211 int offset
= (char *) p
- (char *) &b
->floats
[0];
3213 /* P must point to the start of a Lisp_Float, not be
3214 one of the unused cells in the current float block,
3215 and not be on the free-list. */
3217 && offset
% sizeof b
->floats
[0] == 0
3218 && (b
!= float_block
3219 || offset
/ sizeof b
->floats
[0] < float_block_index
)
3220 && !EQ (((struct Lisp_Float
*) p
)->type
, Vdead
));
3227 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3228 the heap. M is a pointer to the mem_block for P. */
3235 if (m
->type
== MEM_TYPE_MISC
)
3237 struct marker_block
*b
= (struct marker_block
*) m
->start
;
3238 int offset
= (char *) p
- (char *) &b
->markers
[0];
3240 /* P must point to the start of a Lisp_Misc, not be
3241 one of the unused cells in the current misc block,
3242 and not be on the free-list. */
3244 && offset
% sizeof b
->markers
[0] == 0
3245 && (b
!= marker_block
3246 || offset
/ sizeof b
->markers
[0] < marker_block_index
)
3247 && ((union Lisp_Misc
*) p
)->u_marker
.type
!= Lisp_Misc_Free
);
3254 /* Value is non-zero if P is a pointer to a live vector-like object.
3255 M is a pointer to the mem_block for P. */
3258 live_vector_p (m
, p
)
3262 return (p
== m
->start
3263 && m
->type
>= MEM_TYPE_VECTOR
3264 && m
->type
<= MEM_TYPE_WINDOW
);
3268 /* Value is non-zero of P is a pointer to a live buffer. M is a
3269 pointer to the mem_block for P. */
3272 live_buffer_p (m
, p
)
3276 /* P must point to the start of the block, and the buffer
3277 must not have been killed. */
3278 return (m
->type
== MEM_TYPE_BUFFER
3280 && !NILP (((struct buffer
*) p
)->name
));
3283 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3287 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3289 /* Array of objects that are kept alive because the C stack contains
3290 a pattern that looks like a reference to them . */
3292 #define MAX_ZOMBIES 10
3293 static Lisp_Object zombies
[MAX_ZOMBIES
];
3295 /* Number of zombie objects. */
3297 static int nzombies
;
3299 /* Number of garbage collections. */
3303 /* Average percentage of zombies per collection. */
3305 static double avg_zombies
;
3307 /* Max. number of live and zombie objects. */
3309 static int max_live
, max_zombies
;
3311 /* Average number of live objects per GC. */
3313 static double avg_live
;
3315 DEFUN ("gc-status", Fgc_status
, Sgc_status
, 0, 0, "",
3316 doc
: /* Show information about live and zombie objects. */)
3319 Lisp_Object args
[7];
3320 args
[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d");
3321 args
[1] = make_number (ngcs
);
3322 args
[2] = make_float (avg_live
);
3323 args
[3] = make_float (avg_zombies
);
3324 args
[4] = make_float (avg_zombies
/ avg_live
/ 100);
3325 args
[5] = make_number (max_live
);
3326 args
[6] = make_number (max_zombies
);
3327 return Fmessage (7, args
);
3330 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3333 /* Mark OBJ if we can prove it's a Lisp_Object. */
3336 mark_maybe_object (obj
)
3339 void *po
= (void *) XPNTR (obj
);
3340 struct mem_node
*m
= mem_find (po
);
3346 switch (XGCTYPE (obj
))
3349 mark_p
= (live_string_p (m
, po
)
3350 && !STRING_MARKED_P ((struct Lisp_String
*) po
));
3354 mark_p
= (live_cons_p (m
, po
)
3355 && !XMARKBIT (XCONS (obj
)->car
));
3359 mark_p
= (live_symbol_p (m
, po
)
3360 && !XMARKBIT (XSYMBOL (obj
)->plist
));
3364 mark_p
= (live_float_p (m
, po
)
3365 && !XMARKBIT (XFLOAT (obj
)->type
));
3368 case Lisp_Vectorlike
:
3369 /* Note: can't check GC_BUFFERP before we know it's a
3370 buffer because checking that dereferences the pointer
3371 PO which might point anywhere. */
3372 if (live_vector_p (m
, po
))
3373 mark_p
= (!GC_SUBRP (obj
)
3374 && !(XVECTOR (obj
)->size
& ARRAY_MARK_FLAG
));
3375 else if (live_buffer_p (m
, po
))
3376 mark_p
= GC_BUFFERP (obj
) && !XMARKBIT (XBUFFER (obj
)->name
);
3380 if (live_misc_p (m
, po
))
3382 switch (XMISCTYPE (obj
))
3384 case Lisp_Misc_Marker
:
3385 mark_p
= !XMARKBIT (XMARKER (obj
)->chain
);
3388 case Lisp_Misc_Buffer_Local_Value
:
3389 case Lisp_Misc_Some_Buffer_Local_Value
:
3390 mark_p
= !XMARKBIT (XBUFFER_LOCAL_VALUE (obj
)->realvalue
);
3393 case Lisp_Misc_Overlay
:
3394 mark_p
= !XMARKBIT (XOVERLAY (obj
)->plist
);
3401 case Lisp_Type_Limit
:
3407 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3408 if (nzombies
< MAX_ZOMBIES
)
3409 zombies
[nzombies
] = *p
;
3418 /* If P points to Lisp data, mark that as live if it isn't already
3422 mark_maybe_pointer (p
)
3427 /* Quickly rule out some values which can't point to Lisp data. We
3428 assume that Lisp data is aligned on even addresses. */
3429 if ((EMACS_INT
) p
& 1)
3435 Lisp_Object obj
= Qnil
;
3439 case MEM_TYPE_NON_LISP
:
3440 /* Nothing to do; not a pointer to Lisp memory. */
3443 case MEM_TYPE_BUFFER
:
3444 if (live_buffer_p (m
, p
)
3445 && !XMARKBIT (((struct buffer
*) p
)->name
))
3446 XSETVECTOR (obj
, p
);
3450 if (live_cons_p (m
, p
)
3451 && !XMARKBIT (((struct Lisp_Cons
*) p
)->car
))
3455 case MEM_TYPE_STRING
:
3456 if (live_string_p (m
, p
)
3457 && !STRING_MARKED_P ((struct Lisp_String
*) p
))
3458 XSETSTRING (obj
, p
);
3462 if (live_misc_p (m
, p
))
3467 switch (XMISCTYPE (tem
))
3469 case Lisp_Misc_Marker
:
3470 if (!XMARKBIT (XMARKER (tem
)->chain
))
3474 case Lisp_Misc_Buffer_Local_Value
:
3475 case Lisp_Misc_Some_Buffer_Local_Value
:
3476 if (!XMARKBIT (XBUFFER_LOCAL_VALUE (tem
)->realvalue
))
3480 case Lisp_Misc_Overlay
:
3481 if (!XMARKBIT (XOVERLAY (tem
)->plist
))
3488 case MEM_TYPE_SYMBOL
:
3489 if (live_symbol_p (m
, p
)
3490 && !XMARKBIT (((struct Lisp_Symbol
*) p
)->plist
))
3491 XSETSYMBOL (obj
, p
);
3494 case MEM_TYPE_FLOAT
:
3495 if (live_float_p (m
, p
)
3496 && !XMARKBIT (((struct Lisp_Float
*) p
)->type
))
3500 case MEM_TYPE_VECTOR
:
3501 case MEM_TYPE_PROCESS
:
3502 case MEM_TYPE_HASH_TABLE
:
3503 case MEM_TYPE_FRAME
:
3504 case MEM_TYPE_WINDOW
:
3505 if (live_vector_p (m
, p
))
3508 XSETVECTOR (tem
, p
);
3510 && !(XVECTOR (tem
)->size
& ARRAY_MARK_FLAG
))
3525 /* Mark Lisp objects referenced from the address range START..END. */
3528 mark_memory (start
, end
)
3534 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3538 /* Make START the pointer to the start of the memory region,
3539 if it isn't already. */
3547 /* Mark Lisp_Objects. */
3548 for (p
= (Lisp_Object
*) start
; (void *) p
< end
; ++p
)
3549 mark_maybe_object (*p
);
3551 /* Mark Lisp data pointed to. This is necessary because, in some
3552 situations, the C compiler optimizes Lisp objects away, so that
3553 only a pointer to them remains. Example:
3555 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3558 Lisp_Object obj = build_string ("test");
3559 struct Lisp_String *s = XSTRING (obj);
3560 Fgarbage_collect ();
3561 fprintf (stderr, "test `%s'\n", s->data);
3565 Here, `obj' isn't really used, and the compiler optimizes it
3566 away. The only reference to the life string is through the
3569 for (pp
= (void **) start
; (void *) pp
< end
; ++pp
)
3570 mark_maybe_pointer (*pp
);
3574 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3576 static int setjmp_tested_p
, longjmps_done
;
3578 #define SETJMP_WILL_LIKELY_WORK "\
3580 Emacs garbage collector has been changed to use conservative stack\n\
3581 marking. Emacs has determined that the method it uses to do the\n\
3582 marking will likely work on your system, but this isn't sure.\n\
3584 If you are a system-programmer, or can get the help of a local wizard\n\
3585 who is, please take a look at the function mark_stack in alloc.c, and\n\
3586 verify that the methods used are appropriate for your system.\n\
3588 Please mail the result to <emacs-devel@gnu.org>.\n\
3591 #define SETJMP_WILL_NOT_WORK "\
3593 Emacs garbage collector has been changed to use conservative stack\n\
3594 marking. Emacs has determined that the default method it uses to do the\n\
3595 marking will not work on your system. We will need a system-dependent\n\
3596 solution for your system.\n\
3598 Please take a look at the function mark_stack in alloc.c, and\n\
3599 try to find a way to make it work on your system.\n\
3600 Please mail the result to <emacs-devel@gnu.org>.\n\
3604 /* Perform a quick check if it looks like setjmp saves registers in a
3605 jmp_buf. Print a message to stderr saying so. When this test
3606 succeeds, this is _not_ a proof that setjmp is sufficient for
3607 conservative stack marking. Only the sources or a disassembly
3618 /* Arrange for X to be put in a register. */
3624 if (longjmps_done
== 1)
3626 /* Came here after the longjmp at the end of the function.
3628 If x == 1, the longjmp has restored the register to its
3629 value before the setjmp, and we can hope that setjmp
3630 saves all such registers in the jmp_buf, although that
3633 For other values of X, either something really strange is
3634 taking place, or the setjmp just didn't save the register. */
3637 fprintf (stderr
, SETJMP_WILL_LIKELY_WORK
);
3640 fprintf (stderr
, SETJMP_WILL_NOT_WORK
);
3647 if (longjmps_done
== 1)
3651 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3654 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3656 /* Abort if anything GCPRO'd doesn't survive the GC. */
3664 for (p
= gcprolist
; p
; p
= p
->next
)
3665 for (i
= 0; i
< p
->nvars
; ++i
)
3666 if (!survives_gc_p (p
->var
[i
]))
3670 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3677 fprintf (stderr
, "\nZombies kept alive = %d:\n", nzombies
);
3678 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); ++i
)
3680 fprintf (stderr
, " %d = ", i
);
3681 debug_print (zombies
[i
]);
3685 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3688 /* Mark live Lisp objects on the C stack.
3690 There are several system-dependent problems to consider when
3691 porting this to new architectures:
3695 We have to mark Lisp objects in CPU registers that can hold local
3696 variables or are used to pass parameters.
3698 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3699 something that either saves relevant registers on the stack, or
3700 calls mark_maybe_object passing it each register's contents.
3702 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3703 implementation assumes that calling setjmp saves registers we need
3704 to see in a jmp_buf which itself lies on the stack. This doesn't
3705 have to be true! It must be verified for each system, possibly
3706 by taking a look at the source code of setjmp.
3710 Architectures differ in the way their processor stack is organized.
3711 For example, the stack might look like this
3714 | Lisp_Object | size = 4
3716 | something else | size = 2
3718 | Lisp_Object | size = 4
3722 In such a case, not every Lisp_Object will be aligned equally. To
3723 find all Lisp_Object on the stack it won't be sufficient to walk
3724 the stack in steps of 4 bytes. Instead, two passes will be
3725 necessary, one starting at the start of the stack, and a second
3726 pass starting at the start of the stack + 2. Likewise, if the
3727 minimal alignment of Lisp_Objects on the stack is 1, four passes
3728 would be necessary, each one starting with one byte more offset
3729 from the stack start.
3731 The current code assumes by default that Lisp_Objects are aligned
3732 equally on the stack. */
3739 volatile int stack_grows_down_p
= (char *) &j
> (char *) stack_base
;
3742 /* This trick flushes the register windows so that all the state of
3743 the process is contained in the stack. */
3748 /* Save registers that we need to see on the stack. We need to see
3749 registers used to hold register variables and registers used to
3751 #ifdef GC_SAVE_REGISTERS_ON_STACK
3752 GC_SAVE_REGISTERS_ON_STACK (end
);
3753 #else /* not GC_SAVE_REGISTERS_ON_STACK */
3755 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3756 setjmp will definitely work, test it
3757 and print a message with the result
3759 if (!setjmp_tested_p
)
3761 setjmp_tested_p
= 1;
3764 #endif /* GC_SETJMP_WORKS */
3767 end
= stack_grows_down_p
? (char *) &j
+ sizeof j
: (char *) &j
;
3768 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
3770 /* This assumes that the stack is a contiguous region in memory. If
3771 that's not the case, something has to be done here to iterate
3772 over the stack segments. */
3773 #ifndef GC_LISP_OBJECT_ALIGNMENT
3774 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
3776 for (i
= 0; i
< sizeof (Lisp_Object
); i
+= GC_LISP_OBJECT_ALIGNMENT
)
3777 mark_memory ((char *) stack_base
+ i
, end
);
3779 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3785 #endif /* GC_MARK_STACK != 0 */
3789 /***********************************************************************
3790 Pure Storage Management
3791 ***********************************************************************/
3793 /* Allocate room for SIZE bytes from pure Lisp storage and return a
3794 pointer to it. TYPE is the Lisp type for which the memory is
3795 allocated. TYPE < 0 means it's not used for a Lisp object.
3797 If store_pure_type_info is set and TYPE is >= 0, the type of
3798 the allocated object is recorded in pure_types. */
3800 static POINTER_TYPE
*
3801 pure_alloc (size
, type
)
3806 POINTER_TYPE
*result
;
3807 char *beg
= purebeg
;
3809 /* Give Lisp_Floats an extra alignment. */
3810 if (type
== Lisp_Float
)
3813 #if defined __GNUC__ && __GNUC__ >= 2
3814 alignment
= __alignof (struct Lisp_Float
);
3816 alignment
= sizeof (struct Lisp_Float
);
3818 pure_bytes_used
= ALIGN (pure_bytes_used
, alignment
);
3821 nbytes
= ALIGN (size
, sizeof (EMACS_INT
));
3823 if (pure_bytes_used
+ nbytes
> pure_size
)
3825 /* Don't allocate a large amount here,
3826 because it might get mmap'd and then its address
3827 might not be usable. */
3828 beg
= purebeg
= (char *) xmalloc (10000);
3830 pure_bytes_used_before_overflow
+= pure_bytes_used
;
3831 pure_bytes_used
= 0;
3834 result
= (POINTER_TYPE
*) (beg
+ pure_bytes_used
);
3835 pure_bytes_used
+= nbytes
;
3840 /* Signal an error if PURESIZE is too small. */
3845 if (pure_bytes_used_before_overflow
)
3846 error ("Pure Lisp storage overflow (approx. %d bytes needed)",
3847 (int) (pure_bytes_used
+ pure_bytes_used_before_overflow
));
3851 /* Return a string allocated in pure space. DATA is a buffer holding
3852 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
3853 non-zero means make the result string multibyte.
3855 Must get an error if pure storage is full, since if it cannot hold
3856 a large string it may be able to hold conses that point to that
3857 string; then the string is not protected from gc. */
3860 make_pure_string (data
, nchars
, nbytes
, multibyte
)
3866 struct Lisp_String
*s
;
3868 s
= (struct Lisp_String
*) pure_alloc (sizeof *s
, Lisp_String
);
3869 s
->data
= (unsigned char *) pure_alloc (nbytes
+ 1, -1);
3871 s
->size_byte
= multibyte
? nbytes
: -1;
3872 bcopy (data
, s
->data
, nbytes
);
3873 s
->data
[nbytes
] = '\0';
3874 s
->intervals
= NULL_INTERVAL
;
3875 XSETSTRING (string
, s
);
3880 /* Return a cons allocated from pure space. Give it pure copies
3881 of CAR as car and CDR as cdr. */
3884 pure_cons (car
, cdr
)
3885 Lisp_Object car
, cdr
;
3887 register Lisp_Object
new;
3888 struct Lisp_Cons
*p
;
3890 p
= (struct Lisp_Cons
*) pure_alloc (sizeof *p
, Lisp_Cons
);
3892 XSETCAR (new, Fpurecopy (car
));
3893 XSETCDR (new, Fpurecopy (cdr
));
3898 /* Value is a float object with value NUM allocated from pure space. */
3901 make_pure_float (num
)
3904 register Lisp_Object
new;
3905 struct Lisp_Float
*p
;
3907 p
= (struct Lisp_Float
*) pure_alloc (sizeof *p
, Lisp_Float
);
3909 XFLOAT_DATA (new) = num
;
3914 /* Return a vector with room for LEN Lisp_Objects allocated from
3918 make_pure_vector (len
)
3922 struct Lisp_Vector
*p
;
3923 size_t size
= sizeof *p
+ (len
- 1) * sizeof (Lisp_Object
);
3925 p
= (struct Lisp_Vector
*) pure_alloc (size
, Lisp_Vectorlike
);
3926 XSETVECTOR (new, p
);
3927 XVECTOR (new)->size
= len
;
3932 DEFUN ("purecopy", Fpurecopy
, Spurecopy
, 1, 1, 0,
3933 doc
: /* Make a copy of OBJECT in pure storage.
3934 Recursively copies contents of vectors and cons cells.
3935 Does not copy symbols. Copies strings without text properties. */)
3937 register Lisp_Object obj
;
3939 if (NILP (Vpurify_flag
))
3942 if (PURE_POINTER_P (XPNTR (obj
)))
3946 return pure_cons (XCAR (obj
), XCDR (obj
));
3947 else if (FLOATP (obj
))
3948 return make_pure_float (XFLOAT_DATA (obj
));
3949 else if (STRINGP (obj
))
3950 return make_pure_string (XSTRING (obj
)->data
, XSTRING (obj
)->size
,
3951 STRING_BYTES (XSTRING (obj
)),
3952 STRING_MULTIBYTE (obj
));
3953 else if (COMPILEDP (obj
) || VECTORP (obj
))
3955 register struct Lisp_Vector
*vec
;
3956 register int i
, size
;
3958 size
= XVECTOR (obj
)->size
;
3959 if (size
& PSEUDOVECTOR_FLAG
)
3960 size
&= PSEUDOVECTOR_SIZE_MASK
;
3961 vec
= XVECTOR (make_pure_vector ((EMACS_INT
) size
));
3962 for (i
= 0; i
< size
; i
++)
3963 vec
->contents
[i
] = Fpurecopy (XVECTOR (obj
)->contents
[i
]);
3964 if (COMPILEDP (obj
))
3965 XSETCOMPILED (obj
, vec
);
3967 XSETVECTOR (obj
, vec
);
3970 else if (MARKERP (obj
))
3971 error ("Attempt to copy a marker to pure storage");
3978 /***********************************************************************
3980 ***********************************************************************/
3982 /* Put an entry in staticvec, pointing at the variable with address
3986 staticpro (varaddress
)
3987 Lisp_Object
*varaddress
;
3989 staticvec
[staticidx
++] = varaddress
;
3990 if (staticidx
>= NSTATICS
)
3998 struct catchtag
*next
;
4003 struct backtrace
*next
;
4004 Lisp_Object
*function
;
4005 Lisp_Object
*args
; /* Points to vector of args. */
4006 int nargs
; /* Length of vector. */
4007 /* If nargs is UNEVALLED, args points to slot holding list of
4014 /***********************************************************************
4016 ***********************************************************************/
4018 /* Temporarily prevent garbage collection. */
4021 inhibit_garbage_collection ()
4023 int count
= specpdl_ptr
- specpdl
;
4024 int nbits
= min (VALBITS
, BITS_PER_INT
);
4026 specbind (Qgc_cons_threshold
, make_number (((EMACS_INT
) 1 << (nbits
- 1)) - 1));
4031 DEFUN ("garbage-collect", Fgarbage_collect
, Sgarbage_collect
, 0, 0, "",
4032 doc
: /* Reclaim storage for Lisp objects no longer needed.
4033 Returns info on amount of space in use:
4034 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4035 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4036 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4037 (USED-STRINGS . FREE-STRINGS))
4038 Garbage collection happens automatically if you cons more than
4039 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. */)
4042 register struct gcpro
*tail
;
4043 register struct specbinding
*bind
;
4044 struct catchtag
*catch;
4045 struct handler
*handler
;
4046 register struct backtrace
*backlist
;
4047 char stack_top_variable
;
4050 Lisp_Object total
[8];
4051 int count
= BINDING_STACK_SIZE ();
4053 /* Can't GC if pure storage overflowed because we can't determine
4054 if something is a pure object or not. */
4055 if (pure_bytes_used_before_overflow
)
4058 /* In case user calls debug_print during GC,
4059 don't let that cause a recursive GC. */
4060 consing_since_gc
= 0;
4062 /* Save what's currently displayed in the echo area. */
4063 message_p
= push_message ();
4064 record_unwind_protect (push_message_unwind
, Qnil
);
4066 /* Save a copy of the contents of the stack, for debugging. */
4067 #if MAX_SAVE_STACK > 0
4068 if (NILP (Vpurify_flag
))
4070 i
= &stack_top_variable
- stack_bottom
;
4072 if (i
< MAX_SAVE_STACK
)
4074 if (stack_copy
== 0)
4075 stack_copy
= (char *) xmalloc (stack_copy_size
= i
);
4076 else if (stack_copy_size
< i
)
4077 stack_copy
= (char *) xrealloc (stack_copy
, (stack_copy_size
= i
));
4080 if ((EMACS_INT
) (&stack_top_variable
- stack_bottom
) > 0)
4081 bcopy (stack_bottom
, stack_copy
, i
);
4083 bcopy (&stack_top_variable
, stack_copy
, i
);
4087 #endif /* MAX_SAVE_STACK > 0 */
4089 if (garbage_collection_messages
)
4090 message1_nolog ("Garbage collecting...");
4094 shrink_regexp_cache ();
4096 /* Don't keep undo information around forever. */
4098 register struct buffer
*nextb
= all_buffers
;
4102 /* If a buffer's undo list is Qt, that means that undo is
4103 turned off in that buffer. Calling truncate_undo_list on
4104 Qt tends to return NULL, which effectively turns undo back on.
4105 So don't call truncate_undo_list if undo_list is Qt. */
4106 if (! EQ (nextb
->undo_list
, Qt
))
4108 = truncate_undo_list (nextb
->undo_list
, undo_limit
,
4111 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4112 if (nextb
->base_buffer
== 0 && !NILP (nextb
->name
))
4114 /* If a buffer's gap size is more than 10% of the buffer
4115 size, or larger than 2000 bytes, then shrink it
4116 accordingly. Keep a minimum size of 20 bytes. */
4117 int size
= min (2000, max (20, (nextb
->text
->z_byte
/ 10)));
4119 if (nextb
->text
->gap_size
> size
)
4121 struct buffer
*save_current
= current_buffer
;
4122 current_buffer
= nextb
;
4123 make_gap (-(nextb
->text
->gap_size
- size
));
4124 current_buffer
= save_current
;
4128 nextb
= nextb
->next
;
4134 /* clear_marks (); */
4136 /* Mark all the special slots that serve as the roots of accessibility.
4138 Usually the special slots to mark are contained in particular structures.
4139 Then we know no slot is marked twice because the structures don't overlap.
4140 In some cases, the structures point to the slots to be marked.
4141 For these, we use MARKBIT to avoid double marking of the slot. */
4143 for (i
= 0; i
< staticidx
; i
++)
4144 mark_object (staticvec
[i
]);
4146 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4147 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4150 for (tail
= gcprolist
; tail
; tail
= tail
->next
)
4151 for (i
= 0; i
< tail
->nvars
; i
++)
4152 if (!XMARKBIT (tail
->var
[i
]))
4154 /* Explicit casting prevents compiler warning about
4155 discarding the `volatile' qualifier. */
4156 mark_object ((Lisp_Object
*)&tail
->var
[i
]);
4157 XMARK (tail
->var
[i
]);
4162 for (bind
= specpdl
; bind
!= specpdl_ptr
; bind
++)
4164 mark_object (&bind
->symbol
);
4165 mark_object (&bind
->old_value
);
4167 for (catch = catchlist
; catch; catch = catch->next
)
4169 mark_object (&catch->tag
);
4170 mark_object (&catch->val
);
4172 for (handler
= handlerlist
; handler
; handler
= handler
->next
)
4174 mark_object (&handler
->handler
);
4175 mark_object (&handler
->var
);
4177 for (backlist
= backtrace_list
; backlist
; backlist
= backlist
->next
)
4179 if (!XMARKBIT (*backlist
->function
))
4181 mark_object (backlist
->function
);
4182 XMARK (*backlist
->function
);
4184 if (backlist
->nargs
== UNEVALLED
|| backlist
->nargs
== MANY
)
4187 i
= backlist
->nargs
- 1;
4189 if (!XMARKBIT (backlist
->args
[i
]))
4191 mark_object (&backlist
->args
[i
]);
4192 XMARK (backlist
->args
[i
]);
4197 /* Look thru every buffer's undo list
4198 for elements that update markers that were not marked,
4201 register struct buffer
*nextb
= all_buffers
;
4205 /* If a buffer's undo list is Qt, that means that undo is
4206 turned off in that buffer. Calling truncate_undo_list on
4207 Qt tends to return NULL, which effectively turns undo back on.
4208 So don't call truncate_undo_list if undo_list is Qt. */
4209 if (! EQ (nextb
->undo_list
, Qt
))
4211 Lisp_Object tail
, prev
;
4212 tail
= nextb
->undo_list
;
4214 while (CONSP (tail
))
4216 if (GC_CONSP (XCAR (tail
))
4217 && GC_MARKERP (XCAR (XCAR (tail
)))
4218 && ! XMARKBIT (XMARKER (XCAR (XCAR (tail
)))->chain
))
4221 nextb
->undo_list
= tail
= XCDR (tail
);
4225 XSETCDR (prev
, tail
);
4236 nextb
= nextb
->next
;
4240 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4246 /* Clear the mark bits that we set in certain root slots. */
4248 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4249 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
4250 for (tail
= gcprolist
; tail
; tail
= tail
->next
)
4251 for (i
= 0; i
< tail
->nvars
; i
++)
4252 XUNMARK (tail
->var
[i
]);
4255 unmark_byte_stack ();
4256 for (backlist
= backtrace_list
; backlist
; backlist
= backlist
->next
)
4258 XUNMARK (*backlist
->function
);
4259 if (backlist
->nargs
== UNEVALLED
|| backlist
->nargs
== MANY
)
4262 i
= backlist
->nargs
- 1;
4264 XUNMARK (backlist
->args
[i
]);
4266 XUNMARK (buffer_defaults
.name
);
4267 XUNMARK (buffer_local_symbols
.name
);
4269 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4275 /* clear_marks (); */
4278 consing_since_gc
= 0;
4279 if (gc_cons_threshold
< 10000)
4280 gc_cons_threshold
= 10000;
4282 if (garbage_collection_messages
)
4284 if (message_p
|| minibuf_level
> 0)
4287 message1_nolog ("Garbage collecting...done");
4290 unbind_to (count
, Qnil
);
4292 total
[0] = Fcons (make_number (total_conses
),
4293 make_number (total_free_conses
));
4294 total
[1] = Fcons (make_number (total_symbols
),
4295 make_number (total_free_symbols
));
4296 total
[2] = Fcons (make_number (total_markers
),
4297 make_number (total_free_markers
));
4298 total
[3] = make_number (total_string_size
);
4299 total
[4] = make_number (total_vector_size
);
4300 total
[5] = Fcons (make_number (total_floats
),
4301 make_number (total_free_floats
));
4302 total
[6] = Fcons (make_number (total_intervals
),
4303 make_number (total_free_intervals
));
4304 total
[7] = Fcons (make_number (total_strings
),
4305 make_number (total_free_strings
));
4307 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4309 /* Compute average percentage of zombies. */
4312 for (i
= 0; i
< 7; ++i
)
4313 nlive
+= XFASTINT (XCAR (total
[i
]));
4315 avg_live
= (avg_live
* ngcs
+ nlive
) / (ngcs
+ 1);
4316 max_live
= max (nlive
, max_live
);
4317 avg_zombies
= (avg_zombies
* ngcs
+ nzombies
) / (ngcs
+ 1);
4318 max_zombies
= max (nzombies
, max_zombies
);
4323 if (!NILP (Vpost_gc_hook
))
4325 int count
= inhibit_garbage_collection ();
4326 safe_run_hooks (Qpost_gc_hook
);
4327 unbind_to (count
, Qnil
);
4330 return Flist (sizeof total
/ sizeof *total
, total
);
4334 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4335 only interesting objects referenced from glyphs are strings. */
4338 mark_glyph_matrix (matrix
)
4339 struct glyph_matrix
*matrix
;
4341 struct glyph_row
*row
= matrix
->rows
;
4342 struct glyph_row
*end
= row
+ matrix
->nrows
;
4344 for (; row
< end
; ++row
)
4348 for (area
= LEFT_MARGIN_AREA
; area
< LAST_AREA
; ++area
)
4350 struct glyph
*glyph
= row
->glyphs
[area
];
4351 struct glyph
*end_glyph
= glyph
+ row
->used
[area
];
4353 for (; glyph
< end_glyph
; ++glyph
)
4354 if (GC_STRINGP (glyph
->object
)
4355 && !STRING_MARKED_P (XSTRING (glyph
->object
)))
4356 mark_object (&glyph
->object
);
4362 /* Mark Lisp faces in the face cache C. */
4366 struct face_cache
*c
;
4371 for (i
= 0; i
< c
->used
; ++i
)
4373 struct face
*face
= FACE_FROM_ID (c
->f
, i
);
4377 for (j
= 0; j
< LFACE_VECTOR_SIZE
; ++j
)
4378 mark_object (&face
->lface
[j
]);
4385 #ifdef HAVE_WINDOW_SYSTEM
4387 /* Mark Lisp objects in image IMG. */
4393 mark_object (&img
->spec
);
4395 if (!NILP (img
->data
.lisp_val
))
4396 mark_object (&img
->data
.lisp_val
);
4400 /* Mark Lisp objects in image cache of frame F. It's done this way so
4401 that we don't have to include xterm.h here. */
4404 mark_image_cache (f
)
4407 forall_images_in_image_cache (f
, mark_image
);
4410 #endif /* HAVE_X_WINDOWS */
4414 /* Mark reference to a Lisp_Object.
4415 If the object referred to has not been seen yet, recursively mark
4416 all the references contained in it. */
4418 #define LAST_MARKED_SIZE 500
4419 Lisp_Object
*last_marked
[LAST_MARKED_SIZE
];
4420 int last_marked_index
;
4423 mark_object (argptr
)
4424 Lisp_Object
*argptr
;
4426 Lisp_Object
*objptr
= argptr
;
4427 register Lisp_Object obj
;
4428 #ifdef GC_CHECK_MARKED_OBJECTS
4438 if (PURE_POINTER_P (XPNTR (obj
)))
4441 last_marked
[last_marked_index
++] = objptr
;
4442 if (last_marked_index
== LAST_MARKED_SIZE
)
4443 last_marked_index
= 0;
4445 /* Perform some sanity checks on the objects marked here. Abort if
4446 we encounter an object we know is bogus. This increases GC time
4447 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4448 #ifdef GC_CHECK_MARKED_OBJECTS
4450 po
= (void *) XPNTR (obj
);
4452 /* Check that the object pointed to by PO is known to be a Lisp
4453 structure allocated from the heap. */
4454 #define CHECK_ALLOCATED() \
4456 m = mem_find (po); \
4461 /* Check that the object pointed to by PO is live, using predicate
4463 #define CHECK_LIVE(LIVEP) \
4465 if (!LIVEP (m, po)) \
4469 /* Check both of the above conditions. */
4470 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4472 CHECK_ALLOCATED (); \
4473 CHECK_LIVE (LIVEP); \
4476 #else /* not GC_CHECK_MARKED_OBJECTS */
4478 #define CHECK_ALLOCATED() (void) 0
4479 #define CHECK_LIVE(LIVEP) (void) 0
4480 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4482 #endif /* not GC_CHECK_MARKED_OBJECTS */
4484 switch (SWITCH_ENUM_CAST (XGCTYPE (obj
)))
4488 register struct Lisp_String
*ptr
= XSTRING (obj
);
4489 CHECK_ALLOCATED_AND_LIVE (live_string_p
);
4490 MARK_INTERVAL_TREE (ptr
->intervals
);
4492 #ifdef GC_CHECK_STRING_BYTES
4493 /* Check that the string size recorded in the string is the
4494 same as the one recorded in the sdata structure. */
4495 CHECK_STRING_BYTES (ptr
);
4496 #endif /* GC_CHECK_STRING_BYTES */
4500 case Lisp_Vectorlike
:
4501 #ifdef GC_CHECK_MARKED_OBJECTS
4503 if (m
== MEM_NIL
&& !GC_SUBRP (obj
)
4504 && po
!= &buffer_defaults
4505 && po
!= &buffer_local_symbols
)
4507 #endif /* GC_CHECK_MARKED_OBJECTS */
4509 if (GC_BUFFERP (obj
))
4511 if (!XMARKBIT (XBUFFER (obj
)->name
))
4513 #ifdef GC_CHECK_MARKED_OBJECTS
4514 if (po
!= &buffer_defaults
&& po
!= &buffer_local_symbols
)
4517 for (b
= all_buffers
; b
&& b
!= po
; b
= b
->next
)
4522 #endif /* GC_CHECK_MARKED_OBJECTS */
4526 else if (GC_SUBRP (obj
))
4528 else if (GC_COMPILEDP (obj
))
4529 /* We could treat this just like a vector, but it is better to
4530 save the COMPILED_CONSTANTS element for last and avoid
4533 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
4534 register EMACS_INT size
= ptr
->size
;
4537 if (size
& ARRAY_MARK_FLAG
)
4538 break; /* Already marked */
4540 CHECK_LIVE (live_vector_p
);
4541 ptr
->size
|= ARRAY_MARK_FLAG
; /* Else mark it */
4542 size
&= PSEUDOVECTOR_SIZE_MASK
;
4543 for (i
= 0; i
< size
; i
++) /* and then mark its elements */
4545 if (i
!= COMPILED_CONSTANTS
)
4546 mark_object (&ptr
->contents
[i
]);
4548 /* This cast should be unnecessary, but some Mips compiler complains
4549 (MIPS-ABI + SysVR4, DC/OSx, etc). */
4550 objptr
= (Lisp_Object
*) &ptr
->contents
[COMPILED_CONSTANTS
];
4553 else if (GC_FRAMEP (obj
))
4555 register struct frame
*ptr
= XFRAME (obj
);
4556 register EMACS_INT size
= ptr
->size
;
4558 if (size
& ARRAY_MARK_FLAG
) break; /* Already marked */
4559 ptr
->size
|= ARRAY_MARK_FLAG
; /* Else mark it */
4561 CHECK_LIVE (live_vector_p
);
4562 mark_object (&ptr
->name
);
4563 mark_object (&ptr
->icon_name
);
4564 mark_object (&ptr
->title
);
4565 mark_object (&ptr
->focus_frame
);
4566 mark_object (&ptr
->selected_window
);
4567 mark_object (&ptr
->minibuffer_window
);
4568 mark_object (&ptr
->param_alist
);
4569 mark_object (&ptr
->scroll_bars
);
4570 mark_object (&ptr
->condemned_scroll_bars
);
4571 mark_object (&ptr
->menu_bar_items
);
4572 mark_object (&ptr
->face_alist
);
4573 mark_object (&ptr
->menu_bar_vector
);
4574 mark_object (&ptr
->buffer_predicate
);
4575 mark_object (&ptr
->buffer_list
);
4576 mark_object (&ptr
->menu_bar_window
);
4577 mark_object (&ptr
->tool_bar_window
);
4578 mark_face_cache (ptr
->face_cache
);
4579 #ifdef HAVE_WINDOW_SYSTEM
4580 mark_image_cache (ptr
);
4581 mark_object (&ptr
->tool_bar_items
);
4582 mark_object (&ptr
->desired_tool_bar_string
);
4583 mark_object (&ptr
->current_tool_bar_string
);
4584 #endif /* HAVE_WINDOW_SYSTEM */
4586 else if (GC_BOOL_VECTOR_P (obj
))
4588 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
4590 if (ptr
->size
& ARRAY_MARK_FLAG
)
4591 break; /* Already marked */
4592 CHECK_LIVE (live_vector_p
);
4593 ptr
->size
|= ARRAY_MARK_FLAG
; /* Else mark it */
4595 else if (GC_WINDOWP (obj
))
4597 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
4598 struct window
*w
= XWINDOW (obj
);
4599 register EMACS_INT size
= ptr
->size
;
4602 /* Stop if already marked. */
4603 if (size
& ARRAY_MARK_FLAG
)
4607 CHECK_LIVE (live_vector_p
);
4608 ptr
->size
|= ARRAY_MARK_FLAG
;
4610 /* There is no Lisp data above The member CURRENT_MATRIX in
4611 struct WINDOW. Stop marking when that slot is reached. */
4613 (char *) &ptr
->contents
[i
] < (char *) &w
->current_matrix
;
4615 mark_object (&ptr
->contents
[i
]);
4617 /* Mark glyphs for leaf windows. Marking window matrices is
4618 sufficient because frame matrices use the same glyph
4620 if (NILP (w
->hchild
)
4622 && w
->current_matrix
)
4624 mark_glyph_matrix (w
->current_matrix
);
4625 mark_glyph_matrix (w
->desired_matrix
);
4628 else if (GC_HASH_TABLE_P (obj
))
4630 struct Lisp_Hash_Table
*h
= XHASH_TABLE (obj
);
4631 EMACS_INT size
= h
->size
;
4633 /* Stop if already marked. */
4634 if (size
& ARRAY_MARK_FLAG
)
4638 CHECK_LIVE (live_vector_p
);
4639 h
->size
|= ARRAY_MARK_FLAG
;
4641 /* Mark contents. */
4642 /* Do not mark next_free or next_weak.
4643 Being in the next_weak chain
4644 should not keep the hash table alive.
4645 No need to mark `count' since it is an integer. */
4646 mark_object (&h
->test
);
4647 mark_object (&h
->weak
);
4648 mark_object (&h
->rehash_size
);
4649 mark_object (&h
->rehash_threshold
);
4650 mark_object (&h
->hash
);
4651 mark_object (&h
->next
);
4652 mark_object (&h
->index
);
4653 mark_object (&h
->user_hash_function
);
4654 mark_object (&h
->user_cmp_function
);
4656 /* If hash table is not weak, mark all keys and values.
4657 For weak tables, mark only the vector. */
4658 if (GC_NILP (h
->weak
))
4659 mark_object (&h
->key_and_value
);
4661 XVECTOR (h
->key_and_value
)->size
|= ARRAY_MARK_FLAG
;
4666 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
4667 register EMACS_INT size
= ptr
->size
;
4670 if (size
& ARRAY_MARK_FLAG
) break; /* Already marked */
4671 CHECK_LIVE (live_vector_p
);
4672 ptr
->size
|= ARRAY_MARK_FLAG
; /* Else mark it */
4673 if (size
& PSEUDOVECTOR_FLAG
)
4674 size
&= PSEUDOVECTOR_SIZE_MASK
;
4676 for (i
= 0; i
< size
; i
++) /* and then mark its elements */
4677 mark_object (&ptr
->contents
[i
]);
4683 register struct Lisp_Symbol
*ptr
= XSYMBOL (obj
);
4684 struct Lisp_Symbol
*ptrx
;
4686 if (XMARKBIT (ptr
->plist
)) break;
4687 CHECK_ALLOCATED_AND_LIVE (live_symbol_p
);
4689 mark_object ((Lisp_Object
*) &ptr
->value
);
4690 mark_object (&ptr
->function
);
4691 mark_object (&ptr
->plist
);
4693 if (!PURE_POINTER_P (ptr
->name
))
4694 MARK_STRING (ptr
->name
);
4695 MARK_INTERVAL_TREE (ptr
->name
->intervals
);
4697 /* Note that we do not mark the obarray of the symbol.
4698 It is safe not to do so because nothing accesses that
4699 slot except to check whether it is nil. */
4703 /* For the benefit of the last_marked log. */
4704 objptr
= (Lisp_Object
*)&XSYMBOL (obj
)->next
;
4705 ptrx
= ptr
; /* Use of ptrx avoids compiler bug on Sun */
4706 XSETSYMBOL (obj
, ptrx
);
4707 /* We can't goto loop here because *objptr doesn't contain an
4708 actual Lisp_Object with valid datatype field. */
4715 CHECK_ALLOCATED_AND_LIVE (live_misc_p
);
4716 switch (XMISCTYPE (obj
))
4718 case Lisp_Misc_Marker
:
4719 XMARK (XMARKER (obj
)->chain
);
4720 /* DO NOT mark thru the marker's chain.
4721 The buffer's markers chain does not preserve markers from gc;
4722 instead, markers are removed from the chain when freed by gc. */
4725 case Lisp_Misc_Buffer_Local_Value
:
4726 case Lisp_Misc_Some_Buffer_Local_Value
:
4728 register struct Lisp_Buffer_Local_Value
*ptr
4729 = XBUFFER_LOCAL_VALUE (obj
);
4730 if (XMARKBIT (ptr
->realvalue
)) break;
4731 XMARK (ptr
->realvalue
);
4732 /* If the cdr is nil, avoid recursion for the car. */
4733 if (EQ (ptr
->cdr
, Qnil
))
4735 objptr
= &ptr
->realvalue
;
4738 mark_object (&ptr
->realvalue
);
4739 mark_object (&ptr
->buffer
);
4740 mark_object (&ptr
->frame
);
4745 case Lisp_Misc_Intfwd
:
4746 case Lisp_Misc_Boolfwd
:
4747 case Lisp_Misc_Objfwd
:
4748 case Lisp_Misc_Buffer_Objfwd
:
4749 case Lisp_Misc_Kboard_Objfwd
:
4750 /* Don't bother with Lisp_Buffer_Objfwd,
4751 since all markable slots in current buffer marked anyway. */
4752 /* Don't need to do Lisp_Objfwd, since the places they point
4753 are protected with staticpro. */
4756 case Lisp_Misc_Overlay
:
4758 struct Lisp_Overlay
*ptr
= XOVERLAY (obj
);
4759 if (!XMARKBIT (ptr
->plist
))
4762 mark_object (&ptr
->start
);
4763 mark_object (&ptr
->end
);
4764 objptr
= &ptr
->plist
;
4777 register struct Lisp_Cons
*ptr
= XCONS (obj
);
4778 if (XMARKBIT (ptr
->car
)) break;
4779 CHECK_ALLOCATED_AND_LIVE (live_cons_p
);
4781 /* If the cdr is nil, avoid recursion for the car. */
4782 if (EQ (ptr
->cdr
, Qnil
))
4787 mark_object (&ptr
->car
);
4793 CHECK_ALLOCATED_AND_LIVE (live_float_p
);
4794 XMARK (XFLOAT (obj
)->type
);
4805 #undef CHECK_ALLOCATED
4806 #undef CHECK_ALLOCATED_AND_LIVE
4809 /* Mark the pointers in a buffer structure. */
4815 register struct buffer
*buffer
= XBUFFER (buf
);
4816 register Lisp_Object
*ptr
;
4817 Lisp_Object base_buffer
;
4819 /* This is the buffer's markbit */
4820 mark_object (&buffer
->name
);
4821 XMARK (buffer
->name
);
4823 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer
));
4825 if (CONSP (buffer
->undo_list
))
4828 tail
= buffer
->undo_list
;
4830 while (CONSP (tail
))
4832 register struct Lisp_Cons
*ptr
= XCONS (tail
);
4834 if (XMARKBIT (ptr
->car
))
4837 if (GC_CONSP (ptr
->car
)
4838 && ! XMARKBIT (XCAR (ptr
->car
))
4839 && GC_MARKERP (XCAR (ptr
->car
)))
4841 XMARK (XCAR_AS_LVALUE (ptr
->car
));
4842 mark_object (&XCDR_AS_LVALUE (ptr
->car
));
4845 mark_object (&ptr
->car
);
4847 if (CONSP (ptr
->cdr
))
4853 mark_object (&XCDR_AS_LVALUE (tail
));
4856 mark_object (&buffer
->undo_list
);
4858 for (ptr
= &buffer
->name
+ 1;
4859 (char *)ptr
< (char *)buffer
+ sizeof (struct buffer
);
4863 /* If this is an indirect buffer, mark its base buffer. */
4864 if (buffer
->base_buffer
&& !XMARKBIT (buffer
->base_buffer
->name
))
4866 XSETBUFFER (base_buffer
, buffer
->base_buffer
);
4867 mark_buffer (base_buffer
);
4872 /* Mark the pointers in the kboard objects. */
4879 for (kb
= all_kboards
; kb
; kb
= kb
->next_kboard
)
4881 if (kb
->kbd_macro_buffer
)
4882 for (p
= kb
->kbd_macro_buffer
; p
< kb
->kbd_macro_ptr
; p
++)
4884 mark_object (&kb
->Voverriding_terminal_local_map
);
4885 mark_object (&kb
->Vlast_command
);
4886 mark_object (&kb
->Vreal_last_command
);
4887 mark_object (&kb
->Vprefix_arg
);
4888 mark_object (&kb
->Vlast_prefix_arg
);
4889 mark_object (&kb
->kbd_queue
);
4890 mark_object (&kb
->defining_kbd_macro
);
4891 mark_object (&kb
->Vlast_kbd_macro
);
4892 mark_object (&kb
->Vsystem_key_alist
);
4893 mark_object (&kb
->system_key_syms
);
4894 mark_object (&kb
->Vdefault_minibuffer_frame
);
4899 /* Value is non-zero if OBJ will survive the current GC because it's
4900 either marked or does not need to be marked to survive. */
4908 switch (XGCTYPE (obj
))
4915 survives_p
= XMARKBIT (XSYMBOL (obj
)->plist
);
4919 switch (XMISCTYPE (obj
))
4921 case Lisp_Misc_Marker
:
4922 survives_p
= XMARKBIT (obj
);
4925 case Lisp_Misc_Buffer_Local_Value
:
4926 case Lisp_Misc_Some_Buffer_Local_Value
:
4927 survives_p
= XMARKBIT (XBUFFER_LOCAL_VALUE (obj
)->realvalue
);
4930 case Lisp_Misc_Intfwd
:
4931 case Lisp_Misc_Boolfwd
:
4932 case Lisp_Misc_Objfwd
:
4933 case Lisp_Misc_Buffer_Objfwd
:
4934 case Lisp_Misc_Kboard_Objfwd
:
4938 case Lisp_Misc_Overlay
:
4939 survives_p
= XMARKBIT (XOVERLAY (obj
)->plist
);
4949 struct Lisp_String
*s
= XSTRING (obj
);
4950 survives_p
= STRING_MARKED_P (s
);
4954 case Lisp_Vectorlike
:
4955 if (GC_BUFFERP (obj
))
4956 survives_p
= XMARKBIT (XBUFFER (obj
)->name
);
4957 else if (GC_SUBRP (obj
))
4960 survives_p
= XVECTOR (obj
)->size
& ARRAY_MARK_FLAG
;
4964 survives_p
= XMARKBIT (XCAR (obj
));
4968 survives_p
= XMARKBIT (XFLOAT (obj
)->type
);
4975 return survives_p
|| PURE_POINTER_P ((void *) XPNTR (obj
));
4980 /* Sweep: find all structures not marked, and free them. */
4985 /* Remove or mark entries in weak hash tables.
4986 This must be done before any object is unmarked. */
4987 sweep_weak_hash_tables ();
4990 #ifdef GC_CHECK_STRING_BYTES
4991 if (!noninteractive
)
4992 check_string_bytes (1);
4995 /* Put all unmarked conses on free list */
4997 register struct cons_block
*cblk
;
4998 struct cons_block
**cprev
= &cons_block
;
4999 register int lim
= cons_block_index
;
5000 register int num_free
= 0, num_used
= 0;
5004 for (cblk
= cons_block
; cblk
; cblk
= *cprev
)
5008 for (i
= 0; i
< lim
; i
++)
5009 if (!XMARKBIT (cblk
->conses
[i
].car
))
5012 *(struct Lisp_Cons
**)&cblk
->conses
[i
].cdr
= cons_free_list
;
5013 cons_free_list
= &cblk
->conses
[i
];
5015 cons_free_list
->car
= Vdead
;
5021 XUNMARK (cblk
->conses
[i
].car
);
5023 lim
= CONS_BLOCK_SIZE
;
5024 /* If this block contains only free conses and we have already
5025 seen more than two blocks worth of free conses then deallocate
5027 if (this_free
== CONS_BLOCK_SIZE
&& num_free
> CONS_BLOCK_SIZE
)
5029 *cprev
= cblk
->next
;
5030 /* Unhook from the free list. */
5031 cons_free_list
= *(struct Lisp_Cons
**) &cblk
->conses
[0].cdr
;
5037 num_free
+= this_free
;
5038 cprev
= &cblk
->next
;
5041 total_conses
= num_used
;
5042 total_free_conses
= num_free
;
5045 /* Put all unmarked floats on free list */
5047 register struct float_block
*fblk
;
5048 struct float_block
**fprev
= &float_block
;
5049 register int lim
= float_block_index
;
5050 register int num_free
= 0, num_used
= 0;
5052 float_free_list
= 0;
5054 for (fblk
= float_block
; fblk
; fblk
= *fprev
)
5058 for (i
= 0; i
< lim
; i
++)
5059 if (!XMARKBIT (fblk
->floats
[i
].type
))
5062 *(struct Lisp_Float
**)&fblk
->floats
[i
].data
= float_free_list
;
5063 float_free_list
= &fblk
->floats
[i
];
5065 float_free_list
->type
= Vdead
;
5071 XUNMARK (fblk
->floats
[i
].type
);
5073 lim
= FLOAT_BLOCK_SIZE
;
5074 /* If this block contains only free floats and we have already
5075 seen more than two blocks worth of free floats then deallocate
5077 if (this_free
== FLOAT_BLOCK_SIZE
&& num_free
> FLOAT_BLOCK_SIZE
)
5079 *fprev
= fblk
->next
;
5080 /* Unhook from the free list. */
5081 float_free_list
= *(struct Lisp_Float
**) &fblk
->floats
[0].data
;
5087 num_free
+= this_free
;
5088 fprev
= &fblk
->next
;
5091 total_floats
= num_used
;
5092 total_free_floats
= num_free
;
5095 /* Put all unmarked intervals on free list */
5097 register struct interval_block
*iblk
;
5098 struct interval_block
**iprev
= &interval_block
;
5099 register int lim
= interval_block_index
;
5100 register int num_free
= 0, num_used
= 0;
5102 interval_free_list
= 0;
5104 for (iblk
= interval_block
; iblk
; iblk
= *iprev
)
5109 for (i
= 0; i
< lim
; i
++)
5111 if (! XMARKBIT (iblk
->intervals
[i
].plist
))
5113 SET_INTERVAL_PARENT (&iblk
->intervals
[i
], interval_free_list
);
5114 interval_free_list
= &iblk
->intervals
[i
];
5120 XUNMARK (iblk
->intervals
[i
].plist
);
5123 lim
= INTERVAL_BLOCK_SIZE
;
5124 /* If this block contains only free intervals and we have already
5125 seen more than two blocks worth of free intervals then
5126 deallocate this block. */
5127 if (this_free
== INTERVAL_BLOCK_SIZE
&& num_free
> INTERVAL_BLOCK_SIZE
)
5129 *iprev
= iblk
->next
;
5130 /* Unhook from the free list. */
5131 interval_free_list
= INTERVAL_PARENT (&iblk
->intervals
[0]);
5133 n_interval_blocks
--;
5137 num_free
+= this_free
;
5138 iprev
= &iblk
->next
;
5141 total_intervals
= num_used
;
5142 total_free_intervals
= num_free
;
5145 /* Put all unmarked symbols on free list */
5147 register struct symbol_block
*sblk
;
5148 struct symbol_block
**sprev
= &symbol_block
;
5149 register int lim
= symbol_block_index
;
5150 register int num_free
= 0, num_used
= 0;
5152 symbol_free_list
= NULL
;
5154 for (sblk
= symbol_block
; sblk
; sblk
= *sprev
)
5157 struct Lisp_Symbol
*sym
= sblk
->symbols
;
5158 struct Lisp_Symbol
*end
= sym
+ lim
;
5160 for (; sym
< end
; ++sym
)
5162 /* Check if the symbol was created during loadup. In such a case
5163 it might be pointed to by pure bytecode which we don't trace,
5164 so we conservatively assume that it is live. */
5165 int pure_p
= PURE_POINTER_P (sym
->name
);
5167 if (!XMARKBIT (sym
->plist
) && !pure_p
)
5169 *(struct Lisp_Symbol
**) &sym
->value
= symbol_free_list
;
5170 symbol_free_list
= sym
;
5172 symbol_free_list
->function
= Vdead
;
5180 UNMARK_STRING (sym
->name
);
5181 XUNMARK (sym
->plist
);
5185 lim
= SYMBOL_BLOCK_SIZE
;
5186 /* If this block contains only free symbols and we have already
5187 seen more than two blocks worth of free symbols then deallocate
5189 if (this_free
== SYMBOL_BLOCK_SIZE
&& num_free
> SYMBOL_BLOCK_SIZE
)
5191 *sprev
= sblk
->next
;
5192 /* Unhook from the free list. */
5193 symbol_free_list
= *(struct Lisp_Symbol
**)&sblk
->symbols
[0].value
;
5199 num_free
+= this_free
;
5200 sprev
= &sblk
->next
;
5203 total_symbols
= num_used
;
5204 total_free_symbols
= num_free
;
5207 /* Put all unmarked misc's on free list.
5208 For a marker, first unchain it from the buffer it points into. */
5210 register struct marker_block
*mblk
;
5211 struct marker_block
**mprev
= &marker_block
;
5212 register int lim
= marker_block_index
;
5213 register int num_free
= 0, num_used
= 0;
5215 marker_free_list
= 0;
5217 for (mblk
= marker_block
; mblk
; mblk
= *mprev
)
5221 EMACS_INT already_free
= -1;
5223 for (i
= 0; i
< lim
; i
++)
5225 Lisp_Object
*markword
;
5226 switch (mblk
->markers
[i
].u_marker
.type
)
5228 case Lisp_Misc_Marker
:
5229 markword
= &mblk
->markers
[i
].u_marker
.chain
;
5231 case Lisp_Misc_Buffer_Local_Value
:
5232 case Lisp_Misc_Some_Buffer_Local_Value
:
5233 markword
= &mblk
->markers
[i
].u_buffer_local_value
.realvalue
;
5235 case Lisp_Misc_Overlay
:
5236 markword
= &mblk
->markers
[i
].u_overlay
.plist
;
5238 case Lisp_Misc_Free
:
5239 /* If the object was already free, keep it
5240 on the free list. */
5241 markword
= (Lisp_Object
*) &already_free
;
5247 if (markword
&& !XMARKBIT (*markword
))
5250 if (mblk
->markers
[i
].u_marker
.type
== Lisp_Misc_Marker
)
5252 /* tem1 avoids Sun compiler bug */
5253 struct Lisp_Marker
*tem1
= &mblk
->markers
[i
].u_marker
;
5254 XSETMARKER (tem
, tem1
);
5255 unchain_marker (tem
);
5257 /* Set the type of the freed object to Lisp_Misc_Free.
5258 We could leave the type alone, since nobody checks it,
5259 but this might catch bugs faster. */
5260 mblk
->markers
[i
].u_marker
.type
= Lisp_Misc_Free
;
5261 mblk
->markers
[i
].u_free
.chain
= marker_free_list
;
5262 marker_free_list
= &mblk
->markers
[i
];
5269 XUNMARK (*markword
);
5272 lim
= MARKER_BLOCK_SIZE
;
5273 /* If this block contains only free markers and we have already
5274 seen more than two blocks worth of free markers then deallocate
5276 if (this_free
== MARKER_BLOCK_SIZE
&& num_free
> MARKER_BLOCK_SIZE
)
5278 *mprev
= mblk
->next
;
5279 /* Unhook from the free list. */
5280 marker_free_list
= mblk
->markers
[0].u_free
.chain
;
5286 num_free
+= this_free
;
5287 mprev
= &mblk
->next
;
5291 total_markers
= num_used
;
5292 total_free_markers
= num_free
;
5295 /* Free all unmarked buffers */
5297 register struct buffer
*buffer
= all_buffers
, *prev
= 0, *next
;
5300 if (!XMARKBIT (buffer
->name
))
5303 prev
->next
= buffer
->next
;
5305 all_buffers
= buffer
->next
;
5306 next
= buffer
->next
;
5312 XUNMARK (buffer
->name
);
5313 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer
));
5314 prev
= buffer
, buffer
= buffer
->next
;
5318 /* Free all unmarked vectors */
5320 register struct Lisp_Vector
*vector
= all_vectors
, *prev
= 0, *next
;
5321 total_vector_size
= 0;
5324 if (!(vector
->size
& ARRAY_MARK_FLAG
))
5327 prev
->next
= vector
->next
;
5329 all_vectors
= vector
->next
;
5330 next
= vector
->next
;
5338 vector
->size
&= ~ARRAY_MARK_FLAG
;
5339 if (vector
->size
& PSEUDOVECTOR_FLAG
)
5340 total_vector_size
+= (PSEUDOVECTOR_SIZE_MASK
& vector
->size
);
5342 total_vector_size
+= vector
->size
;
5343 prev
= vector
, vector
= vector
->next
;
5347 #ifdef GC_CHECK_STRING_BYTES
5348 if (!noninteractive
)
5349 check_string_bytes (1);
5356 /* Debugging aids. */
5358 DEFUN ("memory-limit", Fmemory_limit
, Smemory_limit
, 0, 0, 0,
5359 doc
: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5360 This may be helpful in debugging Emacs's memory usage.
5361 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5366 XSETINT (end
, (EMACS_INT
) sbrk (0) / 1024);
5371 DEFUN ("memory-use-counts", Fmemory_use_counts
, Smemory_use_counts
, 0, 0, 0,
5372 doc
: /* Return a list of counters that measure how much consing there has been.
5373 Each of these counters increments for a certain kind of object.
5374 The counters wrap around from the largest positive integer to zero.
5375 Garbage collection does not decrease them.
5376 The elements of the value are as follows:
5377 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5378 All are in units of 1 = one object consed
5379 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5381 MISCS include overlays, markers, and some internal types.
5382 Frames, windows, buffers, and subprocesses count as vectors
5383 (but the contents of a buffer's text do not count here). */)
5386 Lisp_Object consed
[8];
5388 consed
[0] = make_number (min (MOST_POSITIVE_FIXNUM
, cons_cells_consed
));
5389 consed
[1] = make_number (min (MOST_POSITIVE_FIXNUM
, floats_consed
));
5390 consed
[2] = make_number (min (MOST_POSITIVE_FIXNUM
, vector_cells_consed
));
5391 consed
[3] = make_number (min (MOST_POSITIVE_FIXNUM
, symbols_consed
));
5392 consed
[4] = make_number (min (MOST_POSITIVE_FIXNUM
, string_chars_consed
));
5393 consed
[5] = make_number (min (MOST_POSITIVE_FIXNUM
, misc_objects_consed
));
5394 consed
[6] = make_number (min (MOST_POSITIVE_FIXNUM
, intervals_consed
));
5395 consed
[7] = make_number (min (MOST_POSITIVE_FIXNUM
, strings_consed
));
5397 return Flist (8, consed
);
5400 int suppress_checking
;
5402 die (msg
, file
, line
)
5407 fprintf (stderr
, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5412 /* Initialization */
5417 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5419 pure_size
= PURESIZE
;
5420 pure_bytes_used
= 0;
5421 pure_bytes_used_before_overflow
= 0;
5423 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5425 Vdead
= make_pure_string ("DEAD", 4, 4, 0);
5429 ignore_warnings
= 1;
5430 #ifdef DOUG_LEA_MALLOC
5431 mallopt (M_TRIM_THRESHOLD
, 128*1024); /* trim threshold */
5432 mallopt (M_MMAP_THRESHOLD
, 64*1024); /* mmap threshold */
5433 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
); /* max. number of mmap'ed areas */
5443 malloc_hysteresis
= 32;
5445 malloc_hysteresis
= 0;
5448 spare_memory
= (char *) malloc (SPARE_MEMORY
);
5450 ignore_warnings
= 0;
5452 byte_stack_list
= 0;
5454 consing_since_gc
= 0;
5455 gc_cons_threshold
= 100000 * sizeof (Lisp_Object
);
5456 #ifdef VIRT_ADDR_VARIES
5457 malloc_sbrk_unused
= 1<<22; /* A large number */
5458 malloc_sbrk_used
= 100000; /* as reasonable as any number */
5459 #endif /* VIRT_ADDR_VARIES */
5466 byte_stack_list
= 0;
5468 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5469 setjmp_tested_p
= longjmps_done
= 0;
5477 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold
,
5478 doc
: /* *Number of bytes of consing between garbage collections.
5479 Garbage collection can happen automatically once this many bytes have been
5480 allocated since the last garbage collection. All data types count.
5482 Garbage collection happens automatically only when `eval' is called.
5484 By binding this temporarily to a large number, you can effectively
5485 prevent garbage collection during a part of the program. */);
5487 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used
,
5488 doc
: /* Number of bytes of sharable Lisp data allocated so far. */);
5490 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed
,
5491 doc
: /* Number of cons cells that have been consed so far. */);
5493 DEFVAR_INT ("floats-consed", &floats_consed
,
5494 doc
: /* Number of floats that have been consed so far. */);
5496 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed
,
5497 doc
: /* Number of vector cells that have been consed so far. */);
5499 DEFVAR_INT ("symbols-consed", &symbols_consed
,
5500 doc
: /* Number of symbols that have been consed so far. */);
5502 DEFVAR_INT ("string-chars-consed", &string_chars_consed
,
5503 doc
: /* Number of string characters that have been consed so far. */);
5505 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed
,
5506 doc
: /* Number of miscellaneous objects that have been consed so far. */);
5508 DEFVAR_INT ("intervals-consed", &intervals_consed
,
5509 doc
: /* Number of intervals that have been consed so far. */);
5511 DEFVAR_INT ("strings-consed", &strings_consed
,
5512 doc
: /* Number of strings that have been consed so far. */);
5514 DEFVAR_LISP ("purify-flag", &Vpurify_flag
,
5515 doc
: /* Non-nil means loading Lisp code in order to dump an executable.
5516 This means that certain objects should be allocated in shared (pure) space. */);
5518 DEFVAR_INT ("undo-limit", &undo_limit
,
5519 doc
: /* Keep no more undo information once it exceeds this size.
5520 This limit is applied when garbage collection happens.
5521 The size is counted as the number of bytes occupied,
5522 which includes both saved text and other data. */);
5525 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit
,
5526 doc
: /* Don't keep more than this much size of undo information.
5527 A command which pushes past this size is itself forgotten.
5528 This limit is applied when garbage collection happens.
5529 The size is counted as the number of bytes occupied,
5530 which includes both saved text and other data. */);
5531 undo_strong_limit
= 30000;
5533 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages
,
5534 doc
: /* Non-nil means display messages at start and end of garbage collection. */);
5535 garbage_collection_messages
= 0;
5537 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook
,
5538 doc
: /* Hook run after garbage collection has finished. */);
5539 Vpost_gc_hook
= Qnil
;
5540 Qpost_gc_hook
= intern ("post-gc-hook");
5541 staticpro (&Qpost_gc_hook
);
5543 /* We build this in advance because if we wait until we need it, we might
5544 not be able to allocate the memory to hold it. */
5546 = Fcons (Qerror
, Fcons (build_string ("Memory exhausted--use M-x save-some-buffers RET"), Qnil
));
5547 staticpro (&memory_signal_data
);
5549 staticpro (&Qgc_cons_threshold
);
5550 Qgc_cons_threshold
= intern ("gc-cons-threshold");
5552 staticpro (&Qchar_table_extra_slots
);
5553 Qchar_table_extra_slots
= intern ("char-table-extra-slots");
5558 defsubr (&Smake_byte_code
);
5559 defsubr (&Smake_list
);
5560 defsubr (&Smake_vector
);
5561 defsubr (&Smake_char_table
);
5562 defsubr (&Smake_string
);
5563 defsubr (&Smake_bool_vector
);
5564 defsubr (&Smake_symbol
);
5565 defsubr (&Smake_marker
);
5566 defsubr (&Spurecopy
);
5567 defsubr (&Sgarbage_collect
);
5568 defsubr (&Smemory_limit
);
5569 defsubr (&Smemory_use_counts
);
5571 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5572 defsubr (&Sgc_status
);