Possible fix for bug #14630, which continues bug #14062.
[emacs.git] / src / fns.c
blob7a8ddc0454075de98802f348c589f4073bfa5d60
1 /* Random utility Lisp functions.
3 Copyright (C) 1985-1987, 1993-1995, 1997-2013 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 #include <config.h>
22 #include <unistd.h>
23 #include <time.h>
25 #include <intprops.h>
27 #include "lisp.h"
28 #include "commands.h"
29 #include "character.h"
30 #include "coding.h"
31 #include "buffer.h"
32 #include "keyboard.h"
33 #include "keymap.h"
34 #include "intervals.h"
35 #include "frame.h"
36 #include "window.h"
37 #include "blockinput.h"
38 #ifdef HAVE_MENUS
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42 #endif /* HAVE_MENUS */
44 Lisp_Object Qstring_lessp;
45 static Lisp_Object Qprovide, Qrequire;
46 static Lisp_Object Qyes_or_no_p_history;
47 Lisp_Object Qcursor_in_echo_area;
48 static Lisp_Object Qwidget_type;
49 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
51 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
53 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool);
55 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
56 doc: /* Return the argument unchanged. */)
57 (Lisp_Object arg)
59 return arg;
62 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
63 doc: /* Return a pseudo-random number.
64 All integers representable in Lisp, i.e. between `most-negative-fixnum'
65 and `most-positive-fixnum', inclusive, are equally likely.
67 With positive integer LIMIT, return random number in interval [0,LIMIT).
68 With argument t, set the random number seed from the current time and pid.
69 With a string argument, set the seed based on the string's contents.
70 Other values of LIMIT are ignored.
72 See Info node `(elisp)Random Numbers' for more details. */)
73 (Lisp_Object limit)
75 EMACS_INT val;
77 if (EQ (limit, Qt))
78 init_random ();
79 else if (STRINGP (limit))
80 seed_random (SSDATA (limit), SBYTES (limit));
82 val = get_random ();
83 if (NATNUMP (limit) && XFASTINT (limit) != 0)
84 val %= XFASTINT (limit);
85 return make_number (val);
88 /* Heuristic on how many iterations of a tight loop can be safely done
89 before it's time to do a QUIT. This must be a power of 2. */
90 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
92 /* Random data-structure functions. */
94 static void
95 CHECK_LIST_END (Lisp_Object x, Lisp_Object y)
97 CHECK_TYPE (NILP (x), Qlistp, y);
100 DEFUN ("length", Flength, Slength, 1, 1, 0,
101 doc: /* Return the length of vector, list or string SEQUENCE.
102 A byte-code function object is also allowed.
103 If the string contains multibyte characters, this is not necessarily
104 the number of bytes in the string; it is the number of characters.
105 To get the number of bytes, use `string-bytes'. */)
106 (register Lisp_Object sequence)
108 register Lisp_Object val;
110 if (STRINGP (sequence))
111 XSETFASTINT (val, SCHARS (sequence));
112 else if (VECTORP (sequence))
113 XSETFASTINT (val, ASIZE (sequence));
114 else if (CHAR_TABLE_P (sequence))
115 XSETFASTINT (val, MAX_CHAR);
116 else if (BOOL_VECTOR_P (sequence))
117 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
118 else if (COMPILEDP (sequence))
119 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
120 else if (CONSP (sequence))
122 EMACS_INT i = 0;
126 ++i;
127 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
129 if (MOST_POSITIVE_FIXNUM < i)
130 error ("List too long");
131 QUIT;
133 sequence = XCDR (sequence);
135 while (CONSP (sequence));
137 CHECK_LIST_END (sequence, sequence);
139 val = make_number (i);
141 else if (NILP (sequence))
142 XSETFASTINT (val, 0);
143 else
144 wrong_type_argument (Qsequencep, sequence);
146 return val;
149 /* This does not check for quits. That is safe since it must terminate. */
151 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
152 doc: /* Return the length of a list, but avoid error or infinite loop.
153 This function never gets an error. If LIST is not really a list,
154 it returns 0. If LIST is circular, it returns a finite value
155 which is at least the number of distinct elements. */)
156 (Lisp_Object list)
158 Lisp_Object tail, halftail;
159 double hilen = 0;
160 uintmax_t lolen = 1;
162 if (! CONSP (list))
163 return make_number (0);
165 /* halftail is used to detect circular lists. */
166 for (tail = halftail = list; ; )
168 tail = XCDR (tail);
169 if (! CONSP (tail))
170 break;
171 if (EQ (tail, halftail))
172 break;
173 lolen++;
174 if ((lolen & 1) == 0)
176 halftail = XCDR (halftail);
177 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
179 QUIT;
180 if (lolen == 0)
181 hilen += UINTMAX_MAX + 1.0;
186 /* If the length does not fit into a fixnum, return a float.
187 On all known practical machines this returns an upper bound on
188 the true length. */
189 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
192 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
193 doc: /* Return the number of bytes in STRING.
194 If STRING is multibyte, this may be greater than the length of STRING. */)
195 (Lisp_Object string)
197 CHECK_STRING (string);
198 return make_number (SBYTES (string));
201 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
202 doc: /* Return t if two strings have identical contents.
203 Case is significant, but text properties are ignored.
204 Symbols are also allowed; their print names are used instead. */)
205 (register Lisp_Object s1, Lisp_Object s2)
207 if (SYMBOLP (s1))
208 s1 = SYMBOL_NAME (s1);
209 if (SYMBOLP (s2))
210 s2 = SYMBOL_NAME (s2);
211 CHECK_STRING (s1);
212 CHECK_STRING (s2);
214 if (SCHARS (s1) != SCHARS (s2)
215 || SBYTES (s1) != SBYTES (s2)
216 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
217 return Qnil;
218 return Qt;
221 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
222 doc: /* Compare the contents of two strings, converting to multibyte if needed.
223 The arguments START1, END1, START2, and END2, if non-nil, are
224 positions specifying which parts of STR1 or STR2 to compare. In
225 string STR1, compare the part between START1 (inclusive) and END1
226 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
227 the string; if END1 is nil, it defaults to the length of the string.
228 Likewise, in string STR2, compare the part between START2 and END2.
230 The strings are compared by the numeric values of their characters.
231 For instance, STR1 is "less than" STR2 if its first differing
232 character has a smaller numeric value. If IGNORE-CASE is non-nil,
233 characters are converted to lower-case before comparing them. Unibyte
234 strings are converted to multibyte for comparison.
236 The value is t if the strings (or specified portions) match.
237 If string STR1 is less, the value is a negative number N;
238 - 1 - N is the number of characters that match at the beginning.
239 If string STR1 is greater, the value is a positive number N;
240 N - 1 is the number of characters that match at the beginning. */)
241 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
243 register ptrdiff_t end1_char, end2_char;
244 register ptrdiff_t i1, i1_byte, i2, i2_byte;
246 CHECK_STRING (str1);
247 CHECK_STRING (str2);
248 if (NILP (start1))
249 start1 = make_number (0);
250 if (NILP (start2))
251 start2 = make_number (0);
252 CHECK_NATNUM (start1);
253 CHECK_NATNUM (start2);
254 if (! NILP (end1))
255 CHECK_NATNUM (end1);
256 if (! NILP (end2))
257 CHECK_NATNUM (end2);
259 end1_char = SCHARS (str1);
260 if (! NILP (end1) && end1_char > XINT (end1))
261 end1_char = XINT (end1);
262 if (end1_char < XINT (start1))
263 args_out_of_range (str1, start1);
265 end2_char = SCHARS (str2);
266 if (! NILP (end2) && end2_char > XINT (end2))
267 end2_char = XINT (end2);
268 if (end2_char < XINT (start2))
269 args_out_of_range (str2, start2);
271 i1 = XINT (start1);
272 i2 = XINT (start2);
274 i1_byte = string_char_to_byte (str1, i1);
275 i2_byte = string_char_to_byte (str2, i2);
277 while (i1 < end1_char && i2 < end2_char)
279 /* When we find a mismatch, we must compare the
280 characters, not just the bytes. */
281 int c1, c2;
283 if (STRING_MULTIBYTE (str1))
284 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
285 else
287 c1 = SREF (str1, i1++);
288 MAKE_CHAR_MULTIBYTE (c1);
291 if (STRING_MULTIBYTE (str2))
292 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
293 else
295 c2 = SREF (str2, i2++);
296 MAKE_CHAR_MULTIBYTE (c2);
299 if (c1 == c2)
300 continue;
302 if (! NILP (ignore_case))
304 Lisp_Object tem;
306 tem = Fupcase (make_number (c1));
307 c1 = XINT (tem);
308 tem = Fupcase (make_number (c2));
309 c2 = XINT (tem);
312 if (c1 == c2)
313 continue;
315 /* Note that I1 has already been incremented
316 past the character that we are comparing;
317 hence we don't add or subtract 1 here. */
318 if (c1 < c2)
319 return make_number (- i1 + XINT (start1));
320 else
321 return make_number (i1 - XINT (start1));
324 if (i1 < end1_char)
325 return make_number (i1 - XINT (start1) + 1);
326 if (i2 < end2_char)
327 return make_number (- i1 + XINT (start1) - 1);
329 return Qt;
332 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
333 doc: /* Return t if first arg string is less than second in lexicographic order.
334 Case is significant.
335 Symbols are also allowed; their print names are used instead. */)
336 (register Lisp_Object s1, Lisp_Object s2)
338 register ptrdiff_t end;
339 register ptrdiff_t i1, i1_byte, i2, i2_byte;
341 if (SYMBOLP (s1))
342 s1 = SYMBOL_NAME (s1);
343 if (SYMBOLP (s2))
344 s2 = SYMBOL_NAME (s2);
345 CHECK_STRING (s1);
346 CHECK_STRING (s2);
348 i1 = i1_byte = i2 = i2_byte = 0;
350 end = SCHARS (s1);
351 if (end > SCHARS (s2))
352 end = SCHARS (s2);
354 while (i1 < end)
356 /* When we find a mismatch, we must compare the
357 characters, not just the bytes. */
358 int c1, c2;
360 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
361 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
363 if (c1 != c2)
364 return c1 < c2 ? Qt : Qnil;
366 return i1 < SCHARS (s2) ? Qt : Qnil;
369 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
370 enum Lisp_Type target_type, bool last_special);
372 /* ARGSUSED */
373 Lisp_Object
374 concat2 (Lisp_Object s1, Lisp_Object s2)
376 Lisp_Object args[2];
377 args[0] = s1;
378 args[1] = s2;
379 return concat (2, args, Lisp_String, 0);
382 /* ARGSUSED */
383 Lisp_Object
384 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
386 Lisp_Object args[3];
387 args[0] = s1;
388 args[1] = s2;
389 args[2] = s3;
390 return concat (3, args, Lisp_String, 0);
393 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
394 doc: /* Concatenate all the arguments and make the result a list.
395 The result is a list whose elements are the elements of all the arguments.
396 Each argument may be a list, vector or string.
397 The last argument is not copied, just used as the tail of the new list.
398 usage: (append &rest SEQUENCES) */)
399 (ptrdiff_t nargs, Lisp_Object *args)
401 return concat (nargs, args, Lisp_Cons, 1);
404 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
405 doc: /* Concatenate all the arguments and make the result a string.
406 The result is a string whose elements are the elements of all the arguments.
407 Each argument may be a string or a list or vector of characters (integers).
408 usage: (concat &rest SEQUENCES) */)
409 (ptrdiff_t nargs, Lisp_Object *args)
411 return concat (nargs, args, Lisp_String, 0);
414 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
415 doc: /* Concatenate all the arguments and make the result a vector.
416 The result is a vector whose elements are the elements of all the arguments.
417 Each argument may be a list, vector or string.
418 usage: (vconcat &rest SEQUENCES) */)
419 (ptrdiff_t nargs, Lisp_Object *args)
421 return concat (nargs, args, Lisp_Vectorlike, 0);
425 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
426 doc: /* Return a copy of a list, vector, string or char-table.
427 The elements of a list or vector are not copied; they are shared
428 with the original. */)
429 (Lisp_Object arg)
431 if (NILP (arg)) return arg;
433 if (CHAR_TABLE_P (arg))
435 return copy_char_table (arg);
438 if (BOOL_VECTOR_P (arg))
440 Lisp_Object val;
441 ptrdiff_t size_in_chars
442 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
443 / BOOL_VECTOR_BITS_PER_CHAR);
445 val = Fmake_bool_vector (Flength (arg), Qnil);
446 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
447 size_in_chars);
448 return val;
451 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
452 wrong_type_argument (Qsequencep, arg);
454 return concat (1, &arg, XTYPE (arg), 0);
457 /* This structure holds information of an argument of `concat' that is
458 a string and has text properties to be copied. */
459 struct textprop_rec
461 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
462 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
463 ptrdiff_t to; /* refer to VAL (the target string) */
466 static Lisp_Object
467 concat (ptrdiff_t nargs, Lisp_Object *args,
468 enum Lisp_Type target_type, bool last_special)
470 Lisp_Object val;
471 Lisp_Object tail;
472 Lisp_Object this;
473 ptrdiff_t toindex;
474 ptrdiff_t toindex_byte = 0;
475 EMACS_INT result_len;
476 EMACS_INT result_len_byte;
477 ptrdiff_t argnum;
478 Lisp_Object last_tail;
479 Lisp_Object prev;
480 bool some_multibyte;
481 /* When we make a multibyte string, we can't copy text properties
482 while concatenating each string because the length of resulting
483 string can't be decided until we finish the whole concatenation.
484 So, we record strings that have text properties to be copied
485 here, and copy the text properties after the concatenation. */
486 struct textprop_rec *textprops = NULL;
487 /* Number of elements in textprops. */
488 ptrdiff_t num_textprops = 0;
489 USE_SAFE_ALLOCA;
491 tail = Qnil;
493 /* In append, the last arg isn't treated like the others */
494 if (last_special && nargs > 0)
496 nargs--;
497 last_tail = args[nargs];
499 else
500 last_tail = Qnil;
502 /* Check each argument. */
503 for (argnum = 0; argnum < nargs; argnum++)
505 this = args[argnum];
506 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
507 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
508 wrong_type_argument (Qsequencep, this);
511 /* Compute total length in chars of arguments in RESULT_LEN.
512 If desired output is a string, also compute length in bytes
513 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
514 whether the result should be a multibyte string. */
515 result_len_byte = 0;
516 result_len = 0;
517 some_multibyte = 0;
518 for (argnum = 0; argnum < nargs; argnum++)
520 EMACS_INT len;
521 this = args[argnum];
522 len = XFASTINT (Flength (this));
523 if (target_type == Lisp_String)
525 /* We must count the number of bytes needed in the string
526 as well as the number of characters. */
527 ptrdiff_t i;
528 Lisp_Object ch;
529 int c;
530 ptrdiff_t this_len_byte;
532 if (VECTORP (this) || COMPILEDP (this))
533 for (i = 0; i < len; i++)
535 ch = AREF (this, i);
536 CHECK_CHARACTER (ch);
537 c = XFASTINT (ch);
538 this_len_byte = CHAR_BYTES (c);
539 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
540 string_overflow ();
541 result_len_byte += this_len_byte;
542 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
543 some_multibyte = 1;
545 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
546 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
547 else if (CONSP (this))
548 for (; CONSP (this); this = XCDR (this))
550 ch = XCAR (this);
551 CHECK_CHARACTER (ch);
552 c = XFASTINT (ch);
553 this_len_byte = CHAR_BYTES (c);
554 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
555 string_overflow ();
556 result_len_byte += this_len_byte;
557 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
558 some_multibyte = 1;
560 else if (STRINGP (this))
562 if (STRING_MULTIBYTE (this))
564 some_multibyte = 1;
565 this_len_byte = SBYTES (this);
567 else
568 this_len_byte = count_size_as_multibyte (SDATA (this),
569 SCHARS (this));
570 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
571 string_overflow ();
572 result_len_byte += this_len_byte;
576 result_len += len;
577 if (MOST_POSITIVE_FIXNUM < result_len)
578 memory_full (SIZE_MAX);
581 if (! some_multibyte)
582 result_len_byte = result_len;
584 /* Create the output object. */
585 if (target_type == Lisp_Cons)
586 val = Fmake_list (make_number (result_len), Qnil);
587 else if (target_type == Lisp_Vectorlike)
588 val = Fmake_vector (make_number (result_len), Qnil);
589 else if (some_multibyte)
590 val = make_uninit_multibyte_string (result_len, result_len_byte);
591 else
592 val = make_uninit_string (result_len);
594 /* In `append', if all but last arg are nil, return last arg. */
595 if (target_type == Lisp_Cons && EQ (val, Qnil))
596 return last_tail;
598 /* Copy the contents of the args into the result. */
599 if (CONSP (val))
600 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
601 else
602 toindex = 0, toindex_byte = 0;
604 prev = Qnil;
605 if (STRINGP (val))
606 SAFE_NALLOCA (textprops, 1, nargs);
608 for (argnum = 0; argnum < nargs; argnum++)
610 Lisp_Object thislen;
611 ptrdiff_t thisleni = 0;
612 register ptrdiff_t thisindex = 0;
613 register ptrdiff_t thisindex_byte = 0;
615 this = args[argnum];
616 if (!CONSP (this))
617 thislen = Flength (this), thisleni = XINT (thislen);
619 /* Between strings of the same kind, copy fast. */
620 if (STRINGP (this) && STRINGP (val)
621 && STRING_MULTIBYTE (this) == some_multibyte)
623 ptrdiff_t thislen_byte = SBYTES (this);
625 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
626 if (string_intervals (this))
628 textprops[num_textprops].argnum = argnum;
629 textprops[num_textprops].from = 0;
630 textprops[num_textprops++].to = toindex;
632 toindex_byte += thislen_byte;
633 toindex += thisleni;
635 /* Copy a single-byte string to a multibyte string. */
636 else if (STRINGP (this) && STRINGP (val))
638 if (string_intervals (this))
640 textprops[num_textprops].argnum = argnum;
641 textprops[num_textprops].from = 0;
642 textprops[num_textprops++].to = toindex;
644 toindex_byte += copy_text (SDATA (this),
645 SDATA (val) + toindex_byte,
646 SCHARS (this), 0, 1);
647 toindex += thisleni;
649 else
650 /* Copy element by element. */
651 while (1)
653 register Lisp_Object elt;
655 /* Fetch next element of `this' arg into `elt', or break if
656 `this' is exhausted. */
657 if (NILP (this)) break;
658 if (CONSP (this))
659 elt = XCAR (this), this = XCDR (this);
660 else if (thisindex >= thisleni)
661 break;
662 else if (STRINGP (this))
664 int c;
665 if (STRING_MULTIBYTE (this))
666 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
667 thisindex,
668 thisindex_byte);
669 else
671 c = SREF (this, thisindex); thisindex++;
672 if (some_multibyte && !ASCII_CHAR_P (c))
673 c = BYTE8_TO_CHAR (c);
675 XSETFASTINT (elt, c);
677 else if (BOOL_VECTOR_P (this))
679 int byte;
680 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
681 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
682 elt = Qt;
683 else
684 elt = Qnil;
685 thisindex++;
687 else
689 elt = AREF (this, thisindex);
690 thisindex++;
693 /* Store this element into the result. */
694 if (toindex < 0)
696 XSETCAR (tail, elt);
697 prev = tail;
698 tail = XCDR (tail);
700 else if (VECTORP (val))
702 ASET (val, toindex, elt);
703 toindex++;
705 else
707 int c;
708 CHECK_CHARACTER (elt);
709 c = XFASTINT (elt);
710 if (some_multibyte)
711 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
712 else
713 SSET (val, toindex_byte++, c);
714 toindex++;
718 if (!NILP (prev))
719 XSETCDR (prev, last_tail);
721 if (num_textprops > 0)
723 Lisp_Object props;
724 ptrdiff_t last_to_end = -1;
726 for (argnum = 0; argnum < num_textprops; argnum++)
728 this = args[textprops[argnum].argnum];
729 props = text_property_list (this,
730 make_number (0),
731 make_number (SCHARS (this)),
732 Qnil);
733 /* If successive arguments have properties, be sure that the
734 value of `composition' property be the copy. */
735 if (last_to_end == textprops[argnum].to)
736 make_composition_value_copy (props);
737 add_text_properties_from_list (val, props,
738 make_number (textprops[argnum].to));
739 last_to_end = textprops[argnum].to + SCHARS (this);
743 SAFE_FREE ();
744 return val;
747 static Lisp_Object string_char_byte_cache_string;
748 static ptrdiff_t string_char_byte_cache_charpos;
749 static ptrdiff_t string_char_byte_cache_bytepos;
751 void
752 clear_string_char_byte_cache (void)
754 string_char_byte_cache_string = Qnil;
757 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
759 ptrdiff_t
760 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
762 ptrdiff_t i_byte;
763 ptrdiff_t best_below, best_below_byte;
764 ptrdiff_t best_above, best_above_byte;
766 best_below = best_below_byte = 0;
767 best_above = SCHARS (string);
768 best_above_byte = SBYTES (string);
769 if (best_above == best_above_byte)
770 return char_index;
772 if (EQ (string, string_char_byte_cache_string))
774 if (string_char_byte_cache_charpos < char_index)
776 best_below = string_char_byte_cache_charpos;
777 best_below_byte = string_char_byte_cache_bytepos;
779 else
781 best_above = string_char_byte_cache_charpos;
782 best_above_byte = string_char_byte_cache_bytepos;
786 if (char_index - best_below < best_above - char_index)
788 unsigned char *p = SDATA (string) + best_below_byte;
790 while (best_below < char_index)
792 p += BYTES_BY_CHAR_HEAD (*p);
793 best_below++;
795 i_byte = p - SDATA (string);
797 else
799 unsigned char *p = SDATA (string) + best_above_byte;
801 while (best_above > char_index)
803 p--;
804 while (!CHAR_HEAD_P (*p)) p--;
805 best_above--;
807 i_byte = p - SDATA (string);
810 string_char_byte_cache_bytepos = i_byte;
811 string_char_byte_cache_charpos = char_index;
812 string_char_byte_cache_string = string;
814 return i_byte;
817 /* Return the character index corresponding to BYTE_INDEX in STRING. */
819 ptrdiff_t
820 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
822 ptrdiff_t i, i_byte;
823 ptrdiff_t best_below, best_below_byte;
824 ptrdiff_t best_above, best_above_byte;
826 best_below = best_below_byte = 0;
827 best_above = SCHARS (string);
828 best_above_byte = SBYTES (string);
829 if (best_above == best_above_byte)
830 return byte_index;
832 if (EQ (string, string_char_byte_cache_string))
834 if (string_char_byte_cache_bytepos < byte_index)
836 best_below = string_char_byte_cache_charpos;
837 best_below_byte = string_char_byte_cache_bytepos;
839 else
841 best_above = string_char_byte_cache_charpos;
842 best_above_byte = string_char_byte_cache_bytepos;
846 if (byte_index - best_below_byte < best_above_byte - byte_index)
848 unsigned char *p = SDATA (string) + best_below_byte;
849 unsigned char *pend = SDATA (string) + byte_index;
851 while (p < pend)
853 p += BYTES_BY_CHAR_HEAD (*p);
854 best_below++;
856 i = best_below;
857 i_byte = p - SDATA (string);
859 else
861 unsigned char *p = SDATA (string) + best_above_byte;
862 unsigned char *pbeg = SDATA (string) + byte_index;
864 while (p > pbeg)
866 p--;
867 while (!CHAR_HEAD_P (*p)) p--;
868 best_above--;
870 i = best_above;
871 i_byte = p - SDATA (string);
874 string_char_byte_cache_bytepos = i_byte;
875 string_char_byte_cache_charpos = i;
876 string_char_byte_cache_string = string;
878 return i;
881 /* Convert STRING to a multibyte string. */
883 static Lisp_Object
884 string_make_multibyte (Lisp_Object string)
886 unsigned char *buf;
887 ptrdiff_t nbytes;
888 Lisp_Object ret;
889 USE_SAFE_ALLOCA;
891 if (STRING_MULTIBYTE (string))
892 return string;
894 nbytes = count_size_as_multibyte (SDATA (string),
895 SCHARS (string));
896 /* If all the chars are ASCII, they won't need any more bytes
897 once converted. In that case, we can return STRING itself. */
898 if (nbytes == SBYTES (string))
899 return string;
901 buf = SAFE_ALLOCA (nbytes);
902 copy_text (SDATA (string), buf, SBYTES (string),
903 0, 1);
905 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
906 SAFE_FREE ();
908 return ret;
912 /* Convert STRING (if unibyte) to a multibyte string without changing
913 the number of characters. Characters 0200 trough 0237 are
914 converted to eight-bit characters. */
916 Lisp_Object
917 string_to_multibyte (Lisp_Object string)
919 unsigned char *buf;
920 ptrdiff_t nbytes;
921 Lisp_Object ret;
922 USE_SAFE_ALLOCA;
924 if (STRING_MULTIBYTE (string))
925 return string;
927 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
928 /* If all the chars are ASCII, they won't need any more bytes once
929 converted. */
930 if (nbytes == SBYTES (string))
931 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
933 buf = SAFE_ALLOCA (nbytes);
934 memcpy (buf, SDATA (string), SBYTES (string));
935 str_to_multibyte (buf, nbytes, SBYTES (string));
937 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
938 SAFE_FREE ();
940 return ret;
944 /* Convert STRING to a single-byte string. */
946 Lisp_Object
947 string_make_unibyte (Lisp_Object string)
949 ptrdiff_t nchars;
950 unsigned char *buf;
951 Lisp_Object ret;
952 USE_SAFE_ALLOCA;
954 if (! STRING_MULTIBYTE (string))
955 return string;
957 nchars = SCHARS (string);
959 buf = SAFE_ALLOCA (nchars);
960 copy_text (SDATA (string), buf, SBYTES (string),
961 1, 0);
963 ret = make_unibyte_string ((char *) buf, nchars);
964 SAFE_FREE ();
966 return ret;
969 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
970 1, 1, 0,
971 doc: /* Return the multibyte equivalent of STRING.
972 If STRING is unibyte and contains non-ASCII characters, the function
973 `unibyte-char-to-multibyte' is used to convert each unibyte character
974 to a multibyte character. In this case, the returned string is a
975 newly created string with no text properties. If STRING is multibyte
976 or entirely ASCII, it is returned unchanged. In particular, when
977 STRING is unibyte and entirely ASCII, the returned string is unibyte.
978 \(When the characters are all ASCII, Emacs primitives will treat the
979 string the same way whether it is unibyte or multibyte.) */)
980 (Lisp_Object string)
982 CHECK_STRING (string);
984 return string_make_multibyte (string);
987 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
988 1, 1, 0,
989 doc: /* Return the unibyte equivalent of STRING.
990 Multibyte character codes are converted to unibyte according to
991 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
992 If the lookup in the translation table fails, this function takes just
993 the low 8 bits of each character. */)
994 (Lisp_Object string)
996 CHECK_STRING (string);
998 return string_make_unibyte (string);
1001 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1002 1, 1, 0,
1003 doc: /* Return a unibyte string with the same individual bytes as STRING.
1004 If STRING is unibyte, the result is STRING itself.
1005 Otherwise it is a newly created string, with no text properties.
1006 If STRING is multibyte and contains a character of charset
1007 `eight-bit', it is converted to the corresponding single byte. */)
1008 (Lisp_Object string)
1010 CHECK_STRING (string);
1012 if (STRING_MULTIBYTE (string))
1014 ptrdiff_t bytes = SBYTES (string);
1015 unsigned char *str = xmalloc (bytes);
1017 memcpy (str, SDATA (string), bytes);
1018 bytes = str_as_unibyte (str, bytes);
1019 string = make_unibyte_string ((char *) str, bytes);
1020 xfree (str);
1022 return string;
1025 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1026 1, 1, 0,
1027 doc: /* Return a multibyte string with the same individual bytes as STRING.
1028 If STRING is multibyte, the result is STRING itself.
1029 Otherwise it is a newly created string, with no text properties.
1031 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1032 part of a correct utf-8 sequence), it is converted to the corresponding
1033 multibyte character of charset `eight-bit'.
1034 See also `string-to-multibyte'.
1036 Beware, this often doesn't really do what you think it does.
1037 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1038 If you're not sure, whether to use `string-as-multibyte' or
1039 `string-to-multibyte', use `string-to-multibyte'. */)
1040 (Lisp_Object string)
1042 CHECK_STRING (string);
1044 if (! STRING_MULTIBYTE (string))
1046 Lisp_Object new_string;
1047 ptrdiff_t nchars, nbytes;
1049 parse_str_as_multibyte (SDATA (string),
1050 SBYTES (string),
1051 &nchars, &nbytes);
1052 new_string = make_uninit_multibyte_string (nchars, nbytes);
1053 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1054 if (nbytes != SBYTES (string))
1055 str_as_multibyte (SDATA (new_string), nbytes,
1056 SBYTES (string), NULL);
1057 string = new_string;
1058 set_string_intervals (string, NULL);
1060 return string;
1063 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1064 1, 1, 0,
1065 doc: /* Return a multibyte string with the same individual chars as STRING.
1066 If STRING is multibyte, the result is STRING itself.
1067 Otherwise it is a newly created string, with no text properties.
1069 If STRING is unibyte and contains an 8-bit byte, it is converted to
1070 the corresponding multibyte character of charset `eight-bit'.
1072 This differs from `string-as-multibyte' by converting each byte of a correct
1073 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1074 correct sequence. */)
1075 (Lisp_Object string)
1077 CHECK_STRING (string);
1079 return string_to_multibyte (string);
1082 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1083 1, 1, 0,
1084 doc: /* Return a unibyte string with the same individual chars as STRING.
1085 If STRING is unibyte, the result is STRING itself.
1086 Otherwise it is a newly created string, with no text properties,
1087 where each `eight-bit' character is converted to the corresponding byte.
1088 If STRING contains a non-ASCII, non-`eight-bit' character,
1089 an error is signaled. */)
1090 (Lisp_Object string)
1092 CHECK_STRING (string);
1094 if (STRING_MULTIBYTE (string))
1096 ptrdiff_t chars = SCHARS (string);
1097 unsigned char *str = xmalloc (chars);
1098 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1100 if (converted < chars)
1101 error ("Can't convert the %"pD"dth character to unibyte", converted);
1102 string = make_unibyte_string ((char *) str, chars);
1103 xfree (str);
1105 return string;
1109 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1110 doc: /* Return a copy of ALIST.
1111 This is an alist which represents the same mapping from objects to objects,
1112 but does not share the alist structure with ALIST.
1113 The objects mapped (cars and cdrs of elements of the alist)
1114 are shared, however.
1115 Elements of ALIST that are not conses are also shared. */)
1116 (Lisp_Object alist)
1118 register Lisp_Object tem;
1120 CHECK_LIST (alist);
1121 if (NILP (alist))
1122 return alist;
1123 alist = concat (1, &alist, Lisp_Cons, 0);
1124 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1126 register Lisp_Object car;
1127 car = XCAR (tem);
1129 if (CONSP (car))
1130 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1132 return alist;
1135 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1136 doc: /* Return a new string whose contents are a substring of STRING.
1137 The returned string consists of the characters between index FROM
1138 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1139 zero-indexed: 0 means the first character of STRING. Negative values
1140 are counted from the end of STRING. If TO is nil, the substring runs
1141 to the end of STRING.
1143 The STRING argument may also be a vector. In that case, the return
1144 value is a new vector that contains the elements between index FROM
1145 \(inclusive) and index TO (exclusive) of that vector argument. */)
1146 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1148 Lisp_Object res;
1149 ptrdiff_t size;
1150 EMACS_INT from_char, to_char;
1152 CHECK_VECTOR_OR_STRING (string);
1153 CHECK_NUMBER (from);
1155 if (STRINGP (string))
1156 size = SCHARS (string);
1157 else
1158 size = ASIZE (string);
1160 if (NILP (to))
1161 to_char = size;
1162 else
1164 CHECK_NUMBER (to);
1166 to_char = XINT (to);
1167 if (to_char < 0)
1168 to_char += size;
1171 from_char = XINT (from);
1172 if (from_char < 0)
1173 from_char += size;
1174 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1175 args_out_of_range_3 (string, make_number (from_char),
1176 make_number (to_char));
1178 if (STRINGP (string))
1180 ptrdiff_t to_byte =
1181 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1182 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1183 res = make_specified_string (SSDATA (string) + from_byte,
1184 to_char - from_char, to_byte - from_byte,
1185 STRING_MULTIBYTE (string));
1186 copy_text_properties (make_number (from_char), make_number (to_char),
1187 string, make_number (0), res, Qnil);
1189 else
1190 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1192 return res;
1196 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1197 doc: /* Return a substring of STRING, without text properties.
1198 It starts at index FROM and ends before TO.
1199 TO may be nil or omitted; then the substring runs to the end of STRING.
1200 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1201 If FROM or TO is negative, it counts from the end.
1203 With one argument, just copy STRING without its properties. */)
1204 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1206 ptrdiff_t size;
1207 EMACS_INT from_char, to_char;
1208 ptrdiff_t from_byte, to_byte;
1210 CHECK_STRING (string);
1212 size = SCHARS (string);
1214 if (NILP (from))
1215 from_char = 0;
1216 else
1218 CHECK_NUMBER (from);
1219 from_char = XINT (from);
1220 if (from_char < 0)
1221 from_char += size;
1224 if (NILP (to))
1225 to_char = size;
1226 else
1228 CHECK_NUMBER (to);
1229 to_char = XINT (to);
1230 if (to_char < 0)
1231 to_char += size;
1234 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1235 args_out_of_range_3 (string, make_number (from_char),
1236 make_number (to_char));
1238 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1239 to_byte =
1240 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1241 return make_specified_string (SSDATA (string) + from_byte,
1242 to_char - from_char, to_byte - from_byte,
1243 STRING_MULTIBYTE (string));
1246 /* Extract a substring of STRING, giving start and end positions
1247 both in characters and in bytes. */
1249 Lisp_Object
1250 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1251 ptrdiff_t to, ptrdiff_t to_byte)
1253 Lisp_Object res;
1254 ptrdiff_t size;
1256 CHECK_VECTOR_OR_STRING (string);
1258 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1260 if (!(0 <= from && from <= to && to <= size))
1261 args_out_of_range_3 (string, make_number (from), make_number (to));
1263 if (STRINGP (string))
1265 res = make_specified_string (SSDATA (string) + from_byte,
1266 to - from, to_byte - from_byte,
1267 STRING_MULTIBYTE (string));
1268 copy_text_properties (make_number (from), make_number (to),
1269 string, make_number (0), res, Qnil);
1271 else
1272 res = Fvector (to - from, aref_addr (string, from));
1274 return res;
1277 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1278 doc: /* Take cdr N times on LIST, return the result. */)
1279 (Lisp_Object n, Lisp_Object list)
1281 EMACS_INT i, num;
1282 CHECK_NUMBER (n);
1283 num = XINT (n);
1284 for (i = 0; i < num && !NILP (list); i++)
1286 QUIT;
1287 CHECK_LIST_CONS (list, list);
1288 list = XCDR (list);
1290 return list;
1293 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1294 doc: /* Return the Nth element of LIST.
1295 N counts from zero. If LIST is not that long, nil is returned. */)
1296 (Lisp_Object n, Lisp_Object list)
1298 return Fcar (Fnthcdr (n, list));
1301 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1302 doc: /* Return element of SEQUENCE at index N. */)
1303 (register Lisp_Object sequence, Lisp_Object n)
1305 CHECK_NUMBER (n);
1306 if (CONSP (sequence) || NILP (sequence))
1307 return Fcar (Fnthcdr (n, sequence));
1309 /* Faref signals a "not array" error, so check here. */
1310 CHECK_ARRAY (sequence, Qsequencep);
1311 return Faref (sequence, n);
1314 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1315 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1316 The value is actually the tail of LIST whose car is ELT. */)
1317 (register Lisp_Object elt, Lisp_Object list)
1319 register Lisp_Object tail;
1320 for (tail = list; CONSP (tail); tail = XCDR (tail))
1322 register Lisp_Object tem;
1323 CHECK_LIST_CONS (tail, list);
1324 tem = XCAR (tail);
1325 if (! NILP (Fequal (elt, tem)))
1326 return tail;
1327 QUIT;
1329 return Qnil;
1332 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1333 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1334 The value is actually the tail of LIST whose car is ELT. */)
1335 (register Lisp_Object elt, Lisp_Object list)
1337 while (1)
1339 if (!CONSP (list) || EQ (XCAR (list), elt))
1340 break;
1342 list = XCDR (list);
1343 if (!CONSP (list) || EQ (XCAR (list), elt))
1344 break;
1346 list = XCDR (list);
1347 if (!CONSP (list) || EQ (XCAR (list), elt))
1348 break;
1350 list = XCDR (list);
1351 QUIT;
1354 CHECK_LIST (list);
1355 return list;
1358 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1359 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1360 The value is actually the tail of LIST whose car is ELT. */)
1361 (register Lisp_Object elt, Lisp_Object list)
1363 register Lisp_Object tail;
1365 if (!FLOATP (elt))
1366 return Fmemq (elt, list);
1368 for (tail = list; CONSP (tail); tail = XCDR (tail))
1370 register Lisp_Object tem;
1371 CHECK_LIST_CONS (tail, list);
1372 tem = XCAR (tail);
1373 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1374 return tail;
1375 QUIT;
1377 return Qnil;
1380 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1381 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1382 The value is actually the first element of LIST whose car is KEY.
1383 Elements of LIST that are not conses are ignored. */)
1384 (Lisp_Object key, Lisp_Object list)
1386 while (1)
1388 if (!CONSP (list)
1389 || (CONSP (XCAR (list))
1390 && EQ (XCAR (XCAR (list)), key)))
1391 break;
1393 list = XCDR (list);
1394 if (!CONSP (list)
1395 || (CONSP (XCAR (list))
1396 && EQ (XCAR (XCAR (list)), key)))
1397 break;
1399 list = XCDR (list);
1400 if (!CONSP (list)
1401 || (CONSP (XCAR (list))
1402 && EQ (XCAR (XCAR (list)), key)))
1403 break;
1405 list = XCDR (list);
1406 QUIT;
1409 return CAR (list);
1412 /* Like Fassq but never report an error and do not allow quits.
1413 Use only on lists known never to be circular. */
1415 Lisp_Object
1416 assq_no_quit (Lisp_Object key, Lisp_Object list)
1418 while (CONSP (list)
1419 && (!CONSP (XCAR (list))
1420 || !EQ (XCAR (XCAR (list)), key)))
1421 list = XCDR (list);
1423 return CAR_SAFE (list);
1426 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1427 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1428 The value is actually the first element of LIST whose car equals KEY. */)
1429 (Lisp_Object key, Lisp_Object list)
1431 Lisp_Object car;
1433 while (1)
1435 if (!CONSP (list)
1436 || (CONSP (XCAR (list))
1437 && (car = XCAR (XCAR (list)),
1438 EQ (car, key) || !NILP (Fequal (car, key)))))
1439 break;
1441 list = XCDR (list);
1442 if (!CONSP (list)
1443 || (CONSP (XCAR (list))
1444 && (car = XCAR (XCAR (list)),
1445 EQ (car, key) || !NILP (Fequal (car, key)))))
1446 break;
1448 list = XCDR (list);
1449 if (!CONSP (list)
1450 || (CONSP (XCAR (list))
1451 && (car = XCAR (XCAR (list)),
1452 EQ (car, key) || !NILP (Fequal (car, key)))))
1453 break;
1455 list = XCDR (list);
1456 QUIT;
1459 return CAR (list);
1462 /* Like Fassoc but never report an error and do not allow quits.
1463 Use only on lists known never to be circular. */
1465 Lisp_Object
1466 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1468 while (CONSP (list)
1469 && (!CONSP (XCAR (list))
1470 || (!EQ (XCAR (XCAR (list)), key)
1471 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1472 list = XCDR (list);
1474 return CONSP (list) ? XCAR (list) : Qnil;
1477 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1478 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1479 The value is actually the first element of LIST whose cdr is KEY. */)
1480 (register Lisp_Object key, Lisp_Object list)
1482 while (1)
1484 if (!CONSP (list)
1485 || (CONSP (XCAR (list))
1486 && EQ (XCDR (XCAR (list)), key)))
1487 break;
1489 list = XCDR (list);
1490 if (!CONSP (list)
1491 || (CONSP (XCAR (list))
1492 && EQ (XCDR (XCAR (list)), key)))
1493 break;
1495 list = XCDR (list);
1496 if (!CONSP (list)
1497 || (CONSP (XCAR (list))
1498 && EQ (XCDR (XCAR (list)), key)))
1499 break;
1501 list = XCDR (list);
1502 QUIT;
1505 return CAR (list);
1508 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1509 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1510 The value is actually the first element of LIST whose cdr equals KEY. */)
1511 (Lisp_Object key, Lisp_Object list)
1513 Lisp_Object cdr;
1515 while (1)
1517 if (!CONSP (list)
1518 || (CONSP (XCAR (list))
1519 && (cdr = XCDR (XCAR (list)),
1520 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1521 break;
1523 list = XCDR (list);
1524 if (!CONSP (list)
1525 || (CONSP (XCAR (list))
1526 && (cdr = XCDR (XCAR (list)),
1527 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1528 break;
1530 list = XCDR (list);
1531 if (!CONSP (list)
1532 || (CONSP (XCAR (list))
1533 && (cdr = XCDR (XCAR (list)),
1534 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1535 break;
1537 list = XCDR (list);
1538 QUIT;
1541 return CAR (list);
1544 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1545 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1546 More precisely, this function skips any members `eq' to ELT at the
1547 front of LIST, then removes members `eq' to ELT from the remaining
1548 sublist by modifying its list structure, then returns the resulting
1549 list.
1551 Write `(setq foo (delq element foo))' to be sure of correctly changing
1552 the value of a list `foo'. */)
1553 (register Lisp_Object elt, Lisp_Object list)
1555 register Lisp_Object tail, prev;
1556 register Lisp_Object tem;
1558 tail = list;
1559 prev = Qnil;
1560 while (CONSP (tail))
1562 CHECK_LIST_CONS (tail, list);
1563 tem = XCAR (tail);
1564 if (EQ (elt, tem))
1566 if (NILP (prev))
1567 list = XCDR (tail);
1568 else
1569 Fsetcdr (prev, XCDR (tail));
1571 else
1572 prev = tail;
1573 tail = XCDR (tail);
1574 QUIT;
1576 return list;
1579 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1580 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1581 SEQ must be a sequence (i.e. a list, a vector, or a string).
1582 The return value is a sequence of the same type.
1584 If SEQ is a list, this behaves like `delq', except that it compares
1585 with `equal' instead of `eq'. In particular, it may remove elements
1586 by altering the list structure.
1588 If SEQ is not a list, deletion is never performed destructively;
1589 instead this function creates and returns a new vector or string.
1591 Write `(setq foo (delete element foo))' to be sure of correctly
1592 changing the value of a sequence `foo'. */)
1593 (Lisp_Object elt, Lisp_Object seq)
1595 if (VECTORP (seq))
1597 ptrdiff_t i, n;
1599 for (i = n = 0; i < ASIZE (seq); ++i)
1600 if (NILP (Fequal (AREF (seq, i), elt)))
1601 ++n;
1603 if (n != ASIZE (seq))
1605 struct Lisp_Vector *p = allocate_vector (n);
1607 for (i = n = 0; i < ASIZE (seq); ++i)
1608 if (NILP (Fequal (AREF (seq, i), elt)))
1609 p->contents[n++] = AREF (seq, i);
1611 XSETVECTOR (seq, p);
1614 else if (STRINGP (seq))
1616 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1617 int c;
1619 for (i = nchars = nbytes = ibyte = 0;
1620 i < SCHARS (seq);
1621 ++i, ibyte += cbytes)
1623 if (STRING_MULTIBYTE (seq))
1625 c = STRING_CHAR (SDATA (seq) + ibyte);
1626 cbytes = CHAR_BYTES (c);
1628 else
1630 c = SREF (seq, i);
1631 cbytes = 1;
1634 if (!INTEGERP (elt) || c != XINT (elt))
1636 ++nchars;
1637 nbytes += cbytes;
1641 if (nchars != SCHARS (seq))
1643 Lisp_Object tem;
1645 tem = make_uninit_multibyte_string (nchars, nbytes);
1646 if (!STRING_MULTIBYTE (seq))
1647 STRING_SET_UNIBYTE (tem);
1649 for (i = nchars = nbytes = ibyte = 0;
1650 i < SCHARS (seq);
1651 ++i, ibyte += cbytes)
1653 if (STRING_MULTIBYTE (seq))
1655 c = STRING_CHAR (SDATA (seq) + ibyte);
1656 cbytes = CHAR_BYTES (c);
1658 else
1660 c = SREF (seq, i);
1661 cbytes = 1;
1664 if (!INTEGERP (elt) || c != XINT (elt))
1666 unsigned char *from = SDATA (seq) + ibyte;
1667 unsigned char *to = SDATA (tem) + nbytes;
1668 ptrdiff_t n;
1670 ++nchars;
1671 nbytes += cbytes;
1673 for (n = cbytes; n--; )
1674 *to++ = *from++;
1678 seq = tem;
1681 else
1683 Lisp_Object tail, prev;
1685 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1687 CHECK_LIST_CONS (tail, seq);
1689 if (!NILP (Fequal (elt, XCAR (tail))))
1691 if (NILP (prev))
1692 seq = XCDR (tail);
1693 else
1694 Fsetcdr (prev, XCDR (tail));
1696 else
1697 prev = tail;
1698 QUIT;
1702 return seq;
1705 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1706 doc: /* Reverse LIST by modifying cdr pointers.
1707 Return the reversed list. Expects a properly nil-terminated list. */)
1708 (Lisp_Object list)
1710 register Lisp_Object prev, tail, next;
1712 if (NILP (list)) return list;
1713 prev = Qnil;
1714 tail = list;
1715 while (!NILP (tail))
1717 QUIT;
1718 CHECK_LIST_CONS (tail, tail);
1719 next = XCDR (tail);
1720 Fsetcdr (tail, prev);
1721 prev = tail;
1722 tail = next;
1724 return prev;
1727 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1728 doc: /* Reverse LIST, copying. Return the reversed list.
1729 See also the function `nreverse', which is used more often. */)
1730 (Lisp_Object list)
1732 Lisp_Object new;
1734 for (new = Qnil; CONSP (list); list = XCDR (list))
1736 QUIT;
1737 new = Fcons (XCAR (list), new);
1739 CHECK_LIST_END (list, list);
1740 return new;
1743 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1745 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1746 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1747 Returns the sorted list. LIST is modified by side effects.
1748 PREDICATE is called with two elements of LIST, and should return non-nil
1749 if the first element should sort before the second. */)
1750 (Lisp_Object list, Lisp_Object predicate)
1752 Lisp_Object front, back;
1753 register Lisp_Object len, tem;
1754 struct gcpro gcpro1, gcpro2;
1755 EMACS_INT length;
1757 front = list;
1758 len = Flength (list);
1759 length = XINT (len);
1760 if (length < 2)
1761 return list;
1763 XSETINT (len, (length / 2) - 1);
1764 tem = Fnthcdr (len, list);
1765 back = Fcdr (tem);
1766 Fsetcdr (tem, Qnil);
1768 GCPRO2 (front, back);
1769 front = Fsort (front, predicate);
1770 back = Fsort (back, predicate);
1771 UNGCPRO;
1772 return merge (front, back, predicate);
1775 Lisp_Object
1776 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1778 Lisp_Object value;
1779 register Lisp_Object tail;
1780 Lisp_Object tem;
1781 register Lisp_Object l1, l2;
1782 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1784 l1 = org_l1;
1785 l2 = org_l2;
1786 tail = Qnil;
1787 value = Qnil;
1789 /* It is sufficient to protect org_l1 and org_l2.
1790 When l1 and l2 are updated, we copy the new values
1791 back into the org_ vars. */
1792 GCPRO4 (org_l1, org_l2, pred, value);
1794 while (1)
1796 if (NILP (l1))
1798 UNGCPRO;
1799 if (NILP (tail))
1800 return l2;
1801 Fsetcdr (tail, l2);
1802 return value;
1804 if (NILP (l2))
1806 UNGCPRO;
1807 if (NILP (tail))
1808 return l1;
1809 Fsetcdr (tail, l1);
1810 return value;
1812 tem = call2 (pred, Fcar (l2), Fcar (l1));
1813 if (NILP (tem))
1815 tem = l1;
1816 l1 = Fcdr (l1);
1817 org_l1 = l1;
1819 else
1821 tem = l2;
1822 l2 = Fcdr (l2);
1823 org_l2 = l2;
1825 if (NILP (tail))
1826 value = tem;
1827 else
1828 Fsetcdr (tail, tem);
1829 tail = tem;
1834 /* This does not check for quits. That is safe since it must terminate. */
1836 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1837 doc: /* Extract a value from a property list.
1838 PLIST is a property list, which is a list of the form
1839 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1840 corresponding to the given PROP, or nil if PROP is not one of the
1841 properties on the list. This function never signals an error. */)
1842 (Lisp_Object plist, Lisp_Object prop)
1844 Lisp_Object tail, halftail;
1846 /* halftail is used to detect circular lists. */
1847 tail = halftail = plist;
1848 while (CONSP (tail) && CONSP (XCDR (tail)))
1850 if (EQ (prop, XCAR (tail)))
1851 return XCAR (XCDR (tail));
1853 tail = XCDR (XCDR (tail));
1854 halftail = XCDR (halftail);
1855 if (EQ (tail, halftail))
1856 break;
1859 return Qnil;
1862 DEFUN ("get", Fget, Sget, 2, 2, 0,
1863 doc: /* Return the value of SYMBOL's PROPNAME property.
1864 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1865 (Lisp_Object symbol, Lisp_Object propname)
1867 CHECK_SYMBOL (symbol);
1868 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1871 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1872 doc: /* Change value in PLIST of PROP to VAL.
1873 PLIST is a property list, which is a list of the form
1874 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1875 If PROP is already a property on the list, its value is set to VAL,
1876 otherwise the new PROP VAL pair is added. The new plist is returned;
1877 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1878 The PLIST is modified by side effects. */)
1879 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1881 register Lisp_Object tail, prev;
1882 Lisp_Object newcell;
1883 prev = Qnil;
1884 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1885 tail = XCDR (XCDR (tail)))
1887 if (EQ (prop, XCAR (tail)))
1889 Fsetcar (XCDR (tail), val);
1890 return plist;
1893 prev = tail;
1894 QUIT;
1896 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1897 if (NILP (prev))
1898 return newcell;
1899 else
1900 Fsetcdr (XCDR (prev), newcell);
1901 return plist;
1904 DEFUN ("put", Fput, Sput, 3, 3, 0,
1905 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1906 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1907 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1909 CHECK_SYMBOL (symbol);
1910 set_symbol_plist
1911 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1912 return value;
1915 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1916 doc: /* Extract a value from a property list, comparing with `equal'.
1917 PLIST is a property list, which is a list of the form
1918 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1919 corresponding to the given PROP, or nil if PROP is not
1920 one of the properties on the list. */)
1921 (Lisp_Object plist, Lisp_Object prop)
1923 Lisp_Object tail;
1925 for (tail = plist;
1926 CONSP (tail) && CONSP (XCDR (tail));
1927 tail = XCDR (XCDR (tail)))
1929 if (! NILP (Fequal (prop, XCAR (tail))))
1930 return XCAR (XCDR (tail));
1932 QUIT;
1935 CHECK_LIST_END (tail, prop);
1937 return Qnil;
1940 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1941 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1942 PLIST is a property list, which is a list of the form
1943 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1944 If PROP is already a property on the list, its value is set to VAL,
1945 otherwise the new PROP VAL pair is added. The new plist is returned;
1946 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1947 The PLIST is modified by side effects. */)
1948 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1950 register Lisp_Object tail, prev;
1951 Lisp_Object newcell;
1952 prev = Qnil;
1953 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1954 tail = XCDR (XCDR (tail)))
1956 if (! NILP (Fequal (prop, XCAR (tail))))
1958 Fsetcar (XCDR (tail), val);
1959 return plist;
1962 prev = tail;
1963 QUIT;
1965 newcell = Fcons (prop, Fcons (val, Qnil));
1966 if (NILP (prev))
1967 return newcell;
1968 else
1969 Fsetcdr (XCDR (prev), newcell);
1970 return plist;
1973 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1974 doc: /* Return t if the two args are the same Lisp object.
1975 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1976 (Lisp_Object obj1, Lisp_Object obj2)
1978 if (FLOATP (obj1))
1979 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1980 else
1981 return EQ (obj1, obj2) ? Qt : Qnil;
1984 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1985 doc: /* Return t if two Lisp objects have similar structure and contents.
1986 They must have the same data type.
1987 Conses are compared by comparing the cars and the cdrs.
1988 Vectors and strings are compared element by element.
1989 Numbers are compared by value, but integers cannot equal floats.
1990 (Use `=' if you want integers and floats to be able to be equal.)
1991 Symbols must match exactly. */)
1992 (register Lisp_Object o1, Lisp_Object o2)
1994 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1997 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1998 doc: /* Return t if two Lisp objects have similar structure and contents.
1999 This is like `equal' except that it compares the text properties
2000 of strings. (`equal' ignores text properties.) */)
2001 (register Lisp_Object o1, Lisp_Object o2)
2003 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2006 /* DEPTH is current depth of recursion. Signal an error if it
2007 gets too deep.
2008 PROPS means compare string text properties too. */
2010 static bool
2011 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props)
2013 if (depth > 200)
2014 error ("Stack overflow in equal");
2016 tail_recurse:
2017 QUIT;
2018 if (EQ (o1, o2))
2019 return 1;
2020 if (XTYPE (o1) != XTYPE (o2))
2021 return 0;
2023 switch (XTYPE (o1))
2025 case Lisp_Float:
2027 double d1, d2;
2029 d1 = extract_float (o1);
2030 d2 = extract_float (o2);
2031 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2032 though they are not =. */
2033 return d1 == d2 || (d1 != d1 && d2 != d2);
2036 case Lisp_Cons:
2037 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2038 return 0;
2039 o1 = XCDR (o1);
2040 o2 = XCDR (o2);
2041 goto tail_recurse;
2043 case Lisp_Misc:
2044 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2045 return 0;
2046 if (OVERLAYP (o1))
2048 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2049 depth + 1, props)
2050 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2051 depth + 1, props))
2052 return 0;
2053 o1 = XOVERLAY (o1)->plist;
2054 o2 = XOVERLAY (o2)->plist;
2055 goto tail_recurse;
2057 if (MARKERP (o1))
2059 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2060 && (XMARKER (o1)->buffer == 0
2061 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2063 break;
2065 case Lisp_Vectorlike:
2067 register int i;
2068 ptrdiff_t size = ASIZE (o1);
2069 /* Pseudovectors have the type encoded in the size field, so this test
2070 actually checks that the objects have the same type as well as the
2071 same size. */
2072 if (ASIZE (o2) != size)
2073 return 0;
2074 /* Boolvectors are compared much like strings. */
2075 if (BOOL_VECTOR_P (o1))
2077 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2078 return 0;
2079 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2080 ((XBOOL_VECTOR (o1)->size
2081 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2082 / BOOL_VECTOR_BITS_PER_CHAR)))
2083 return 0;
2084 return 1;
2086 if (WINDOW_CONFIGURATIONP (o1))
2087 return compare_window_configurations (o1, o2, 0);
2089 /* Aside from them, only true vectors, char-tables, compiled
2090 functions, and fonts (font-spec, font-entity, font-object)
2091 are sensible to compare, so eliminate the others now. */
2092 if (size & PSEUDOVECTOR_FLAG)
2094 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2095 < PVEC_COMPILED)
2096 return 0;
2097 size &= PSEUDOVECTOR_SIZE_MASK;
2099 for (i = 0; i < size; i++)
2101 Lisp_Object v1, v2;
2102 v1 = AREF (o1, i);
2103 v2 = AREF (o2, i);
2104 if (!internal_equal (v1, v2, depth + 1, props))
2105 return 0;
2107 return 1;
2109 break;
2111 case Lisp_String:
2112 if (SCHARS (o1) != SCHARS (o2))
2113 return 0;
2114 if (SBYTES (o1) != SBYTES (o2))
2115 return 0;
2116 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2117 return 0;
2118 if (props && !compare_string_intervals (o1, o2))
2119 return 0;
2120 return 1;
2122 default:
2123 break;
2126 return 0;
2130 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2131 doc: /* Store each element of ARRAY with ITEM.
2132 ARRAY is a vector, string, char-table, or bool-vector. */)
2133 (Lisp_Object array, Lisp_Object item)
2135 register ptrdiff_t size, idx;
2137 if (VECTORP (array))
2138 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2139 ASET (array, idx, item);
2140 else if (CHAR_TABLE_P (array))
2142 int i;
2144 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2145 set_char_table_contents (array, i, item);
2146 set_char_table_defalt (array, item);
2148 else if (STRINGP (array))
2150 register unsigned char *p = SDATA (array);
2151 int charval;
2152 CHECK_CHARACTER (item);
2153 charval = XFASTINT (item);
2154 size = SCHARS (array);
2155 if (STRING_MULTIBYTE (array))
2157 unsigned char str[MAX_MULTIBYTE_LENGTH];
2158 int len = CHAR_STRING (charval, str);
2159 ptrdiff_t size_byte = SBYTES (array);
2161 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2162 || SCHARS (array) * len != size_byte)
2163 error ("Attempt to change byte length of a string");
2164 for (idx = 0; idx < size_byte; idx++)
2165 *p++ = str[idx % len];
2167 else
2168 for (idx = 0; idx < size; idx++)
2169 p[idx] = charval;
2171 else if (BOOL_VECTOR_P (array))
2173 register unsigned char *p = XBOOL_VECTOR (array)->data;
2174 size =
2175 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2176 / BOOL_VECTOR_BITS_PER_CHAR);
2178 if (size)
2180 memset (p, ! NILP (item) ? -1 : 0, size);
2182 /* Clear any extraneous bits in the last byte. */
2183 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2186 else
2187 wrong_type_argument (Qarrayp, array);
2188 return array;
2191 DEFUN ("clear-string", Fclear_string, Sclear_string,
2192 1, 1, 0,
2193 doc: /* Clear the contents of STRING.
2194 This makes STRING unibyte and may change its length. */)
2195 (Lisp_Object string)
2197 ptrdiff_t len;
2198 CHECK_STRING (string);
2199 len = SBYTES (string);
2200 memset (SDATA (string), 0, len);
2201 STRING_SET_CHARS (string, len);
2202 STRING_SET_UNIBYTE (string);
2203 return Qnil;
2206 /* ARGSUSED */
2207 Lisp_Object
2208 nconc2 (Lisp_Object s1, Lisp_Object s2)
2210 Lisp_Object args[2];
2211 args[0] = s1;
2212 args[1] = s2;
2213 return Fnconc (2, args);
2216 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2217 doc: /* Concatenate any number of lists by altering them.
2218 Only the last argument is not altered, and need not be a list.
2219 usage: (nconc &rest LISTS) */)
2220 (ptrdiff_t nargs, Lisp_Object *args)
2222 ptrdiff_t argnum;
2223 register Lisp_Object tail, tem, val;
2225 val = tail = Qnil;
2227 for (argnum = 0; argnum < nargs; argnum++)
2229 tem = args[argnum];
2230 if (NILP (tem)) continue;
2232 if (NILP (val))
2233 val = tem;
2235 if (argnum + 1 == nargs) break;
2237 CHECK_LIST_CONS (tem, tem);
2239 while (CONSP (tem))
2241 tail = tem;
2242 tem = XCDR (tail);
2243 QUIT;
2246 tem = args[argnum + 1];
2247 Fsetcdr (tail, tem);
2248 if (NILP (tem))
2249 args[argnum + 1] = tail;
2252 return val;
2255 /* This is the guts of all mapping functions.
2256 Apply FN to each element of SEQ, one by one,
2257 storing the results into elements of VALS, a C vector of Lisp_Objects.
2258 LENI is the length of VALS, which should also be the length of SEQ. */
2260 static void
2261 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2263 register Lisp_Object tail;
2264 Lisp_Object dummy;
2265 register EMACS_INT i;
2266 struct gcpro gcpro1, gcpro2, gcpro3;
2268 if (vals)
2270 /* Don't let vals contain any garbage when GC happens. */
2271 for (i = 0; i < leni; i++)
2272 vals[i] = Qnil;
2274 GCPRO3 (dummy, fn, seq);
2275 gcpro1.var = vals;
2276 gcpro1.nvars = leni;
2278 else
2279 GCPRO2 (fn, seq);
2280 /* We need not explicitly protect `tail' because it is used only on lists, and
2281 1) lists are not relocated and 2) the list is marked via `seq' so will not
2282 be freed */
2284 if (VECTORP (seq) || COMPILEDP (seq))
2286 for (i = 0; i < leni; i++)
2288 dummy = call1 (fn, AREF (seq, i));
2289 if (vals)
2290 vals[i] = dummy;
2293 else if (BOOL_VECTOR_P (seq))
2295 for (i = 0; i < leni; i++)
2297 unsigned char byte;
2298 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2299 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2300 dummy = call1 (fn, dummy);
2301 if (vals)
2302 vals[i] = dummy;
2305 else if (STRINGP (seq))
2307 ptrdiff_t i_byte;
2309 for (i = 0, i_byte = 0; i < leni;)
2311 int c;
2312 ptrdiff_t i_before = i;
2314 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2315 XSETFASTINT (dummy, c);
2316 dummy = call1 (fn, dummy);
2317 if (vals)
2318 vals[i_before] = dummy;
2321 else /* Must be a list, since Flength did not get an error */
2323 tail = seq;
2324 for (i = 0; i < leni && CONSP (tail); i++)
2326 dummy = call1 (fn, XCAR (tail));
2327 if (vals)
2328 vals[i] = dummy;
2329 tail = XCDR (tail);
2333 UNGCPRO;
2336 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2337 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2338 In between each pair of results, stick in SEPARATOR. Thus, " " as
2339 SEPARATOR results in spaces between the values returned by FUNCTION.
2340 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2341 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2343 Lisp_Object len;
2344 register EMACS_INT leni;
2345 EMACS_INT nargs;
2346 ptrdiff_t i;
2347 register Lisp_Object *args;
2348 struct gcpro gcpro1;
2349 Lisp_Object ret;
2350 USE_SAFE_ALLOCA;
2352 len = Flength (sequence);
2353 if (CHAR_TABLE_P (sequence))
2354 wrong_type_argument (Qlistp, sequence);
2355 leni = XINT (len);
2356 nargs = leni + leni - 1;
2357 if (nargs < 0) return empty_unibyte_string;
2359 SAFE_ALLOCA_LISP (args, nargs);
2361 GCPRO1 (separator);
2362 mapcar1 (leni, args, function, sequence);
2363 UNGCPRO;
2365 for (i = leni - 1; i > 0; i--)
2366 args[i + i] = args[i];
2368 for (i = 1; i < nargs; i += 2)
2369 args[i] = separator;
2371 ret = Fconcat (nargs, args);
2372 SAFE_FREE ();
2374 return ret;
2377 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2378 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2379 The result is a list just as long as SEQUENCE.
2380 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2381 (Lisp_Object function, Lisp_Object sequence)
2383 register Lisp_Object len;
2384 register EMACS_INT leni;
2385 register Lisp_Object *args;
2386 Lisp_Object ret;
2387 USE_SAFE_ALLOCA;
2389 len = Flength (sequence);
2390 if (CHAR_TABLE_P (sequence))
2391 wrong_type_argument (Qlistp, sequence);
2392 leni = XFASTINT (len);
2394 SAFE_ALLOCA_LISP (args, leni);
2396 mapcar1 (leni, args, function, sequence);
2398 ret = Flist (leni, args);
2399 SAFE_FREE ();
2401 return ret;
2404 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2405 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2406 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2407 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2408 (Lisp_Object function, Lisp_Object sequence)
2410 register EMACS_INT leni;
2412 leni = XFASTINT (Flength (sequence));
2413 if (CHAR_TABLE_P (sequence))
2414 wrong_type_argument (Qlistp, sequence);
2415 mapcar1 (leni, 0, function, sequence);
2417 return sequence;
2420 /* This is how C code calls `yes-or-no-p' and allows the user
2421 to redefined it.
2423 Anything that calls this function must protect from GC! */
2425 Lisp_Object
2426 do_yes_or_no_p (Lisp_Object prompt)
2428 return call1 (intern ("yes-or-no-p"), prompt);
2431 /* Anything that calls this function must protect from GC! */
2433 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2434 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2435 PROMPT is the string to display to ask the question. It should end in
2436 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2438 The user must confirm the answer with RET, and can edit it until it
2439 has been confirmed.
2441 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2442 is nil, and `use-dialog-box' is non-nil. */)
2443 (Lisp_Object prompt)
2445 register Lisp_Object ans;
2446 Lisp_Object args[2];
2447 struct gcpro gcpro1;
2449 CHECK_STRING (prompt);
2451 #ifdef HAVE_MENUS
2452 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2453 && use_dialog_box
2454 && window_system_available (SELECTED_FRAME ()))
2456 Lisp_Object pane, menu, obj;
2457 redisplay_preserve_echo_area (4);
2458 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2459 Fcons (Fcons (build_string ("No"), Qnil),
2460 Qnil));
2461 GCPRO1 (pane);
2462 menu = Fcons (prompt, pane);
2463 obj = Fx_popup_dialog (Qt, menu, Qnil);
2464 UNGCPRO;
2465 return obj;
2467 #endif /* HAVE_MENUS */
2469 args[0] = prompt;
2470 args[1] = build_string ("(yes or no) ");
2471 prompt = Fconcat (2, args);
2473 GCPRO1 (prompt);
2475 while (1)
2477 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2478 Qyes_or_no_p_history, Qnil,
2479 Qnil));
2480 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2482 UNGCPRO;
2483 return Qt;
2485 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2487 UNGCPRO;
2488 return Qnil;
2491 Fding (Qnil);
2492 Fdiscard_input ();
2493 message1 ("Please answer yes or no.");
2494 Fsleep_for (make_number (2), Qnil);
2498 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2499 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2501 Each of the three load averages is multiplied by 100, then converted
2502 to integer.
2504 When USE-FLOATS is non-nil, floats will be used instead of integers.
2505 These floats are not multiplied by 100.
2507 If the 5-minute or 15-minute load averages are not available, return a
2508 shortened list, containing only those averages which are available.
2510 An error is thrown if the load average can't be obtained. In some
2511 cases making it work would require Emacs being installed setuid or
2512 setgid so that it can read kernel information, and that usually isn't
2513 advisable. */)
2514 (Lisp_Object use_floats)
2516 double load_ave[3];
2517 int loads = getloadavg (load_ave, 3);
2518 Lisp_Object ret = Qnil;
2520 if (loads < 0)
2521 error ("load-average not implemented for this operating system");
2523 while (loads-- > 0)
2525 Lisp_Object load = (NILP (use_floats)
2526 ? make_number (100.0 * load_ave[loads])
2527 : make_float (load_ave[loads]));
2528 ret = Fcons (load, ret);
2531 return ret;
2534 static Lisp_Object Qsubfeatures;
2536 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2537 doc: /* Return t if FEATURE is present in this Emacs.
2539 Use this to conditionalize execution of lisp code based on the
2540 presence or absence of Emacs or environment extensions.
2541 Use `provide' to declare that a feature is available. This function
2542 looks at the value of the variable `features'. The optional argument
2543 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2544 (Lisp_Object feature, Lisp_Object subfeature)
2546 register Lisp_Object tem;
2547 CHECK_SYMBOL (feature);
2548 tem = Fmemq (feature, Vfeatures);
2549 if (!NILP (tem) && !NILP (subfeature))
2550 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2551 return (NILP (tem)) ? Qnil : Qt;
2554 static Lisp_Object Qfuncall;
2556 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2557 doc: /* Announce that FEATURE is a feature of the current Emacs.
2558 The optional argument SUBFEATURES should be a list of symbols listing
2559 particular subfeatures supported in this version of FEATURE. */)
2560 (Lisp_Object feature, Lisp_Object subfeatures)
2562 register Lisp_Object tem;
2563 CHECK_SYMBOL (feature);
2564 CHECK_LIST (subfeatures);
2565 if (!NILP (Vautoload_queue))
2566 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2567 Vautoload_queue);
2568 tem = Fmemq (feature, Vfeatures);
2569 if (NILP (tem))
2570 Vfeatures = Fcons (feature, Vfeatures);
2571 if (!NILP (subfeatures))
2572 Fput (feature, Qsubfeatures, subfeatures);
2573 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2575 /* Run any load-hooks for this file. */
2576 tem = Fassq (feature, Vafter_load_alist);
2577 if (CONSP (tem))
2578 Fmapc (Qfuncall, XCDR (tem));
2580 return feature;
2583 /* `require' and its subroutines. */
2585 /* List of features currently being require'd, innermost first. */
2587 static Lisp_Object require_nesting_list;
2589 static Lisp_Object
2590 require_unwind (Lisp_Object old_value)
2592 return require_nesting_list = old_value;
2595 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2596 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2597 If FEATURE is not a member of the list `features', then the feature
2598 is not loaded; so load the file FILENAME.
2599 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2600 and `load' will try to load this name appended with the suffix `.elc' or
2601 `.el', in that order. The name without appended suffix will not be used.
2602 See `get-load-suffixes' for the complete list of suffixes.
2603 If the optional third argument NOERROR is non-nil,
2604 then return nil if the file is not found instead of signaling an error.
2605 Normally the return value is FEATURE.
2606 The normal messages at start and end of loading FILENAME are suppressed. */)
2607 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2609 Lisp_Object tem;
2610 struct gcpro gcpro1, gcpro2;
2611 bool from_file = load_in_progress;
2613 CHECK_SYMBOL (feature);
2615 /* Record the presence of `require' in this file
2616 even if the feature specified is already loaded.
2617 But not more than once in any file,
2618 and not when we aren't loading or reading from a file. */
2619 if (!from_file)
2620 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2621 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2622 from_file = 1;
2624 if (from_file)
2626 tem = Fcons (Qrequire, feature);
2627 if (NILP (Fmember (tem, Vcurrent_load_list)))
2628 LOADHIST_ATTACH (tem);
2630 tem = Fmemq (feature, Vfeatures);
2632 if (NILP (tem))
2634 ptrdiff_t count = SPECPDL_INDEX ();
2635 int nesting = 0;
2637 /* This is to make sure that loadup.el gives a clear picture
2638 of what files are preloaded and when. */
2639 if (! NILP (Vpurify_flag))
2640 error ("(require %s) while preparing to dump",
2641 SDATA (SYMBOL_NAME (feature)));
2643 /* A certain amount of recursive `require' is legitimate,
2644 but if we require the same feature recursively 3 times,
2645 signal an error. */
2646 tem = require_nesting_list;
2647 while (! NILP (tem))
2649 if (! NILP (Fequal (feature, XCAR (tem))))
2650 nesting++;
2651 tem = XCDR (tem);
2653 if (nesting > 3)
2654 error ("Recursive `require' for feature `%s'",
2655 SDATA (SYMBOL_NAME (feature)));
2657 /* Update the list for any nested `require's that occur. */
2658 record_unwind_protect (require_unwind, require_nesting_list);
2659 require_nesting_list = Fcons (feature, require_nesting_list);
2661 /* Value saved here is to be restored into Vautoload_queue */
2662 record_unwind_protect (un_autoload, Vautoload_queue);
2663 Vautoload_queue = Qt;
2665 /* Load the file. */
2666 GCPRO2 (feature, filename);
2667 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2668 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2669 UNGCPRO;
2671 /* If load failed entirely, return nil. */
2672 if (NILP (tem))
2673 return unbind_to (count, Qnil);
2675 tem = Fmemq (feature, Vfeatures);
2676 if (NILP (tem))
2677 error ("Required feature `%s' was not provided",
2678 SDATA (SYMBOL_NAME (feature)));
2680 /* Once loading finishes, don't undo it. */
2681 Vautoload_queue = Qt;
2682 feature = unbind_to (count, feature);
2685 return feature;
2688 /* Primitives for work of the "widget" library.
2689 In an ideal world, this section would not have been necessary.
2690 However, lisp function calls being as slow as they are, it turns
2691 out that some functions in the widget library (wid-edit.el) are the
2692 bottleneck of Widget operation. Here is their translation to C,
2693 for the sole reason of efficiency. */
2695 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2696 doc: /* Return non-nil if PLIST has the property PROP.
2697 PLIST is a property list, which is a list of the form
2698 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2699 Unlike `plist-get', this allows you to distinguish between a missing
2700 property and a property with the value nil.
2701 The value is actually the tail of PLIST whose car is PROP. */)
2702 (Lisp_Object plist, Lisp_Object prop)
2704 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2706 QUIT;
2707 plist = XCDR (plist);
2708 plist = CDR (plist);
2710 return plist;
2713 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2714 doc: /* In WIDGET, set PROPERTY to VALUE.
2715 The value can later be retrieved with `widget-get'. */)
2716 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2718 CHECK_CONS (widget);
2719 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2720 return value;
2723 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2724 doc: /* In WIDGET, get the value of PROPERTY.
2725 The value could either be specified when the widget was created, or
2726 later with `widget-put'. */)
2727 (Lisp_Object widget, Lisp_Object property)
2729 Lisp_Object tmp;
2731 while (1)
2733 if (NILP (widget))
2734 return Qnil;
2735 CHECK_CONS (widget);
2736 tmp = Fplist_member (XCDR (widget), property);
2737 if (CONSP (tmp))
2739 tmp = XCDR (tmp);
2740 return CAR (tmp);
2742 tmp = XCAR (widget);
2743 if (NILP (tmp))
2744 return Qnil;
2745 widget = Fget (tmp, Qwidget_type);
2749 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2750 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2751 ARGS are passed as extra arguments to the function.
2752 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2753 (ptrdiff_t nargs, Lisp_Object *args)
2755 /* This function can GC. */
2756 Lisp_Object newargs[3];
2757 struct gcpro gcpro1, gcpro2;
2758 Lisp_Object result;
2760 newargs[0] = Fwidget_get (args[0], args[1]);
2761 newargs[1] = args[0];
2762 newargs[2] = Flist (nargs - 2, args + 2);
2763 GCPRO2 (newargs[0], newargs[2]);
2764 result = Fapply (3, newargs);
2765 UNGCPRO;
2766 return result;
2769 #ifdef HAVE_LANGINFO_CODESET
2770 #include <langinfo.h>
2771 #endif
2773 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2774 doc: /* Access locale data ITEM for the current C locale, if available.
2775 ITEM should be one of the following:
2777 `codeset', returning the character set as a string (locale item CODESET);
2779 `days', returning a 7-element vector of day names (locale items DAY_n);
2781 `months', returning a 12-element vector of month names (locale items MON_n);
2783 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2784 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2786 If the system can't provide such information through a call to
2787 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2789 See also Info node `(libc)Locales'.
2791 The data read from the system are decoded using `locale-coding-system'. */)
2792 (Lisp_Object item)
2794 char *str = NULL;
2795 #ifdef HAVE_LANGINFO_CODESET
2796 Lisp_Object val;
2797 if (EQ (item, Qcodeset))
2799 str = nl_langinfo (CODESET);
2800 return build_string (str);
2802 #ifdef DAY_1
2803 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2805 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2806 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2807 int i;
2808 struct gcpro gcpro1;
2809 GCPRO1 (v);
2810 synchronize_system_time_locale ();
2811 for (i = 0; i < 7; i++)
2813 str = nl_langinfo (days[i]);
2814 val = build_unibyte_string (str);
2815 /* Fixme: Is this coding system necessarily right, even if
2816 it is consistent with CODESET? If not, what to do? */
2817 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2818 0));
2820 UNGCPRO;
2821 return v;
2823 #endif /* DAY_1 */
2824 #ifdef MON_1
2825 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2827 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2828 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2829 MON_8, MON_9, MON_10, MON_11, MON_12};
2830 int i;
2831 struct gcpro gcpro1;
2832 GCPRO1 (v);
2833 synchronize_system_time_locale ();
2834 for (i = 0; i < 12; i++)
2836 str = nl_langinfo (months[i]);
2837 val = build_unibyte_string (str);
2838 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2839 0));
2841 UNGCPRO;
2842 return v;
2844 #endif /* MON_1 */
2845 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2846 but is in the locale files. This could be used by ps-print. */
2847 #ifdef PAPER_WIDTH
2848 else if (EQ (item, Qpaper))
2849 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
2850 #endif /* PAPER_WIDTH */
2851 #endif /* HAVE_LANGINFO_CODESET*/
2852 return Qnil;
2855 /* base64 encode/decode functions (RFC 2045).
2856 Based on code from GNU recode. */
2858 #define MIME_LINE_LENGTH 76
2860 #define IS_ASCII(Character) \
2861 ((Character) < 128)
2862 #define IS_BASE64(Character) \
2863 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2864 #define IS_BASE64_IGNORABLE(Character) \
2865 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2866 || (Character) == '\f' || (Character) == '\r')
2868 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2869 character or return retval if there are no characters left to
2870 process. */
2871 #define READ_QUADRUPLET_BYTE(retval) \
2872 do \
2874 if (i == length) \
2876 if (nchars_return) \
2877 *nchars_return = nchars; \
2878 return (retval); \
2880 c = from[i++]; \
2882 while (IS_BASE64_IGNORABLE (c))
2884 /* Table of characters coding the 64 values. */
2885 static const char base64_value_to_char[64] =
2887 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2888 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2889 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2890 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2891 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2892 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2893 '8', '9', '+', '/' /* 60-63 */
2896 /* Table of base64 values for first 128 characters. */
2897 static const short base64_char_to_value[128] =
2899 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2900 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2901 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2902 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2903 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2904 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2905 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2906 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2907 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2908 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2909 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2910 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2911 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2914 /* The following diagram shows the logical steps by which three octets
2915 get transformed into four base64 characters.
2917 .--------. .--------. .--------.
2918 |aaaaaabb| |bbbbcccc| |ccdddddd|
2919 `--------' `--------' `--------'
2920 6 2 4 4 2 6
2921 .--------+--------+--------+--------.
2922 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2923 `--------+--------+--------+--------'
2925 .--------+--------+--------+--------.
2926 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2927 `--------+--------+--------+--------'
2929 The octets are divided into 6 bit chunks, which are then encoded into
2930 base64 characters. */
2933 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2934 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2935 ptrdiff_t *);
2937 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2938 2, 3, "r",
2939 doc: /* Base64-encode the region between BEG and END.
2940 Return the length of the encoded text.
2941 Optional third argument NO-LINE-BREAK means do not break long lines
2942 into shorter lines. */)
2943 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2945 char *encoded;
2946 ptrdiff_t allength, length;
2947 ptrdiff_t ibeg, iend, encoded_length;
2948 ptrdiff_t old_pos = PT;
2949 USE_SAFE_ALLOCA;
2951 validate_region (&beg, &end);
2953 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2954 iend = CHAR_TO_BYTE (XFASTINT (end));
2955 move_gap_both (XFASTINT (beg), ibeg);
2957 /* We need to allocate enough room for encoding the text.
2958 We need 33 1/3% more space, plus a newline every 76
2959 characters, and then we round up. */
2960 length = iend - ibeg;
2961 allength = length + length/3 + 1;
2962 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2964 encoded = SAFE_ALLOCA (allength);
2965 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2966 encoded, length, NILP (no_line_break),
2967 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2968 if (encoded_length > allength)
2969 emacs_abort ();
2971 if (encoded_length < 0)
2973 /* The encoding wasn't possible. */
2974 SAFE_FREE ();
2975 error ("Multibyte character in data for base64 encoding");
2978 /* Now we have encoded the region, so we insert the new contents
2979 and delete the old. (Insert first in order to preserve markers.) */
2980 SET_PT_BOTH (XFASTINT (beg), ibeg);
2981 insert (encoded, encoded_length);
2982 SAFE_FREE ();
2983 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2985 /* If point was outside of the region, restore it exactly; else just
2986 move to the beginning of the region. */
2987 if (old_pos >= XFASTINT (end))
2988 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2989 else if (old_pos > XFASTINT (beg))
2990 old_pos = XFASTINT (beg);
2991 SET_PT (old_pos);
2993 /* We return the length of the encoded text. */
2994 return make_number (encoded_length);
2997 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2998 1, 2, 0,
2999 doc: /* Base64-encode STRING and return the result.
3000 Optional second argument NO-LINE-BREAK means do not break long lines
3001 into shorter lines. */)
3002 (Lisp_Object string, Lisp_Object no_line_break)
3004 ptrdiff_t allength, length, encoded_length;
3005 char *encoded;
3006 Lisp_Object encoded_string;
3007 USE_SAFE_ALLOCA;
3009 CHECK_STRING (string);
3011 /* We need to allocate enough room for encoding the text.
3012 We need 33 1/3% more space, plus a newline every 76
3013 characters, and then we round up. */
3014 length = SBYTES (string);
3015 allength = length + length/3 + 1;
3016 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3018 /* We need to allocate enough room for decoding the text. */
3019 encoded = SAFE_ALLOCA (allength);
3021 encoded_length = base64_encode_1 (SSDATA (string),
3022 encoded, length, NILP (no_line_break),
3023 STRING_MULTIBYTE (string));
3024 if (encoded_length > allength)
3025 emacs_abort ();
3027 if (encoded_length < 0)
3029 /* The encoding wasn't possible. */
3030 SAFE_FREE ();
3031 error ("Multibyte character in data for base64 encoding");
3034 encoded_string = make_unibyte_string (encoded, encoded_length);
3035 SAFE_FREE ();
3037 return encoded_string;
3040 static ptrdiff_t
3041 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3042 bool line_break, bool multibyte)
3044 int counter = 0;
3045 ptrdiff_t i = 0;
3046 char *e = to;
3047 int c;
3048 unsigned int value;
3049 int bytes;
3051 while (i < length)
3053 if (multibyte)
3055 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3056 if (CHAR_BYTE8_P (c))
3057 c = CHAR_TO_BYTE8 (c);
3058 else if (c >= 256)
3059 return -1;
3060 i += bytes;
3062 else
3063 c = from[i++];
3065 /* Wrap line every 76 characters. */
3067 if (line_break)
3069 if (counter < MIME_LINE_LENGTH / 4)
3070 counter++;
3071 else
3073 *e++ = '\n';
3074 counter = 1;
3078 /* Process first byte of a triplet. */
3080 *e++ = base64_value_to_char[0x3f & c >> 2];
3081 value = (0x03 & c) << 4;
3083 /* Process second byte of a triplet. */
3085 if (i == length)
3087 *e++ = base64_value_to_char[value];
3088 *e++ = '=';
3089 *e++ = '=';
3090 break;
3093 if (multibyte)
3095 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3096 if (CHAR_BYTE8_P (c))
3097 c = CHAR_TO_BYTE8 (c);
3098 else if (c >= 256)
3099 return -1;
3100 i += bytes;
3102 else
3103 c = from[i++];
3105 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3106 value = (0x0f & c) << 2;
3108 /* Process third byte of a triplet. */
3110 if (i == length)
3112 *e++ = base64_value_to_char[value];
3113 *e++ = '=';
3114 break;
3117 if (multibyte)
3119 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3120 if (CHAR_BYTE8_P (c))
3121 c = CHAR_TO_BYTE8 (c);
3122 else if (c >= 256)
3123 return -1;
3124 i += bytes;
3126 else
3127 c = from[i++];
3129 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3130 *e++ = base64_value_to_char[0x3f & c];
3133 return e - to;
3137 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3138 2, 2, "r",
3139 doc: /* Base64-decode the region between BEG and END.
3140 Return the length of the decoded text.
3141 If the region can't be decoded, signal an error and don't modify the buffer. */)
3142 (Lisp_Object beg, Lisp_Object end)
3144 ptrdiff_t ibeg, iend, length, allength;
3145 char *decoded;
3146 ptrdiff_t old_pos = PT;
3147 ptrdiff_t decoded_length;
3148 ptrdiff_t inserted_chars;
3149 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3150 USE_SAFE_ALLOCA;
3152 validate_region (&beg, &end);
3154 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3155 iend = CHAR_TO_BYTE (XFASTINT (end));
3157 length = iend - ibeg;
3159 /* We need to allocate enough room for decoding the text. If we are
3160 working on a multibyte buffer, each decoded code may occupy at
3161 most two bytes. */
3162 allength = multibyte ? length * 2 : length;
3163 decoded = SAFE_ALLOCA (allength);
3165 move_gap_both (XFASTINT (beg), ibeg);
3166 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3167 decoded, length,
3168 multibyte, &inserted_chars);
3169 if (decoded_length > allength)
3170 emacs_abort ();
3172 if (decoded_length < 0)
3174 /* The decoding wasn't possible. */
3175 SAFE_FREE ();
3176 error ("Invalid base64 data");
3179 /* Now we have decoded the region, so we insert the new contents
3180 and delete the old. (Insert first in order to preserve markers.) */
3181 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3182 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3183 SAFE_FREE ();
3185 /* Delete the original text. */
3186 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3187 iend + decoded_length, 1);
3189 /* If point was outside of the region, restore it exactly; else just
3190 move to the beginning of the region. */
3191 if (old_pos >= XFASTINT (end))
3192 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3193 else if (old_pos > XFASTINT (beg))
3194 old_pos = XFASTINT (beg);
3195 SET_PT (old_pos > ZV ? ZV : old_pos);
3197 return make_number (inserted_chars);
3200 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3201 1, 1, 0,
3202 doc: /* Base64-decode STRING and return the result. */)
3203 (Lisp_Object string)
3205 char *decoded;
3206 ptrdiff_t length, decoded_length;
3207 Lisp_Object decoded_string;
3208 USE_SAFE_ALLOCA;
3210 CHECK_STRING (string);
3212 length = SBYTES (string);
3213 /* We need to allocate enough room for decoding the text. */
3214 decoded = SAFE_ALLOCA (length);
3216 /* The decoded result should be unibyte. */
3217 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3218 0, NULL);
3219 if (decoded_length > length)
3220 emacs_abort ();
3221 else if (decoded_length >= 0)
3222 decoded_string = make_unibyte_string (decoded, decoded_length);
3223 else
3224 decoded_string = Qnil;
3226 SAFE_FREE ();
3227 if (!STRINGP (decoded_string))
3228 error ("Invalid base64 data");
3230 return decoded_string;
3233 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3234 MULTIBYTE, the decoded result should be in multibyte
3235 form. If NCHARS_RETURN is not NULL, store the number of produced
3236 characters in *NCHARS_RETURN. */
3238 static ptrdiff_t
3239 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3240 bool multibyte, ptrdiff_t *nchars_return)
3242 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3243 char *e = to;
3244 unsigned char c;
3245 unsigned long value;
3246 ptrdiff_t nchars = 0;
3248 while (1)
3250 /* Process first byte of a quadruplet. */
3252 READ_QUADRUPLET_BYTE (e-to);
3254 if (!IS_BASE64 (c))
3255 return -1;
3256 value = base64_char_to_value[c] << 18;
3258 /* Process second byte of a quadruplet. */
3260 READ_QUADRUPLET_BYTE (-1);
3262 if (!IS_BASE64 (c))
3263 return -1;
3264 value |= base64_char_to_value[c] << 12;
3266 c = (unsigned char) (value >> 16);
3267 if (multibyte && c >= 128)
3268 e += BYTE8_STRING (c, e);
3269 else
3270 *e++ = c;
3271 nchars++;
3273 /* Process third byte of a quadruplet. */
3275 READ_QUADRUPLET_BYTE (-1);
3277 if (c == '=')
3279 READ_QUADRUPLET_BYTE (-1);
3281 if (c != '=')
3282 return -1;
3283 continue;
3286 if (!IS_BASE64 (c))
3287 return -1;
3288 value |= base64_char_to_value[c] << 6;
3290 c = (unsigned char) (0xff & value >> 8);
3291 if (multibyte && c >= 128)
3292 e += BYTE8_STRING (c, e);
3293 else
3294 *e++ = c;
3295 nchars++;
3297 /* Process fourth byte of a quadruplet. */
3299 READ_QUADRUPLET_BYTE (-1);
3301 if (c == '=')
3302 continue;
3304 if (!IS_BASE64 (c))
3305 return -1;
3306 value |= base64_char_to_value[c];
3308 c = (unsigned char) (0xff & value);
3309 if (multibyte && c >= 128)
3310 e += BYTE8_STRING (c, e);
3311 else
3312 *e++ = c;
3313 nchars++;
3319 /***********************************************************************
3320 ***** *****
3321 ***** Hash Tables *****
3322 ***** *****
3323 ***********************************************************************/
3325 /* Implemented by gerd@gnu.org. This hash table implementation was
3326 inspired by CMUCL hash tables. */
3328 /* Ideas:
3330 1. For small tables, association lists are probably faster than
3331 hash tables because they have lower overhead.
3333 For uses of hash tables where the O(1) behavior of table
3334 operations is not a requirement, it might therefore be a good idea
3335 not to hash. Instead, we could just do a linear search in the
3336 key_and_value vector of the hash table. This could be done
3337 if a `:linear-search t' argument is given to make-hash-table. */
3340 /* The list of all weak hash tables. Don't staticpro this one. */
3342 static struct Lisp_Hash_Table *weak_hash_tables;
3344 /* Various symbols. */
3346 static Lisp_Object Qhash_table_p;
3347 static Lisp_Object Qkey, Qvalue, Qeql;
3348 Lisp_Object Qeq, Qequal;
3349 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3350 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3353 /***********************************************************************
3354 Utilities
3355 ***********************************************************************/
3357 static void
3358 CHECK_HASH_TABLE (Lisp_Object x)
3360 CHECK_TYPE (HASH_TABLE_P (x), Qhash_table_p, x);
3363 static void
3364 set_hash_key_and_value (struct Lisp_Hash_Table *h, Lisp_Object key_and_value)
3366 h->key_and_value = key_and_value;
3368 static void
3369 set_hash_next (struct Lisp_Hash_Table *h, Lisp_Object next)
3371 h->next = next;
3373 static void
3374 set_hash_next_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3376 gc_aset (h->next, idx, val);
3378 static void
3379 set_hash_hash (struct Lisp_Hash_Table *h, Lisp_Object hash)
3381 h->hash = hash;
3383 static void
3384 set_hash_hash_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3386 gc_aset (h->hash, idx, val);
3388 static void
3389 set_hash_index (struct Lisp_Hash_Table *h, Lisp_Object index)
3391 h->index = index;
3393 static void
3394 set_hash_index_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3396 gc_aset (h->index, idx, val);
3399 /* If OBJ is a Lisp hash table, return a pointer to its struct
3400 Lisp_Hash_Table. Otherwise, signal an error. */
3402 static struct Lisp_Hash_Table *
3403 check_hash_table (Lisp_Object obj)
3405 CHECK_HASH_TABLE (obj);
3406 return XHASH_TABLE (obj);
3410 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3411 number. A number is "almost" a prime number if it is not divisible
3412 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3414 EMACS_INT
3415 next_almost_prime (EMACS_INT n)
3417 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3418 for (n |= 1; ; n += 2)
3419 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3420 return n;
3424 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3425 which USED[I] is non-zero. If found at index I in ARGS, set
3426 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3427 0. This function is used to extract a keyword/argument pair from
3428 a DEFUN parameter list. */
3430 static ptrdiff_t
3431 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3433 ptrdiff_t i;
3435 for (i = 1; i < nargs; i++)
3436 if (!used[i - 1] && EQ (args[i - 1], key))
3438 used[i - 1] = 1;
3439 used[i] = 1;
3440 return i;
3443 return 0;
3447 /* Return a Lisp vector which has the same contents as VEC but has
3448 at least INCR_MIN more entries, where INCR_MIN is positive.
3449 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3450 than NITEMS_MAX. Entries in the resulting
3451 vector that are not copied from VEC are set to nil. */
3453 Lisp_Object
3454 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3456 struct Lisp_Vector *v;
3457 ptrdiff_t i, incr, incr_max, old_size, new_size;
3458 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3459 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3460 ? nitems_max : C_language_max);
3461 eassert (VECTORP (vec));
3462 eassert (0 < incr_min && -1 <= nitems_max);
3463 old_size = ASIZE (vec);
3464 incr_max = n_max - old_size;
3465 incr = max (incr_min, min (old_size >> 1, incr_max));
3466 if (incr_max < incr)
3467 memory_full (SIZE_MAX);
3468 new_size = old_size + incr;
3469 v = allocate_vector (new_size);
3470 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3471 for (i = old_size; i < new_size; ++i)
3472 v->contents[i] = Qnil;
3473 XSETVECTOR (vec, v);
3474 return vec;
3478 /***********************************************************************
3479 Low-level Functions
3480 ***********************************************************************/
3482 static struct hash_table_test hashtest_eq;
3483 struct hash_table_test hashtest_eql, hashtest_equal;
3485 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3486 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3487 KEY2 are the same. */
3489 static bool
3490 cmpfn_eql (struct hash_table_test *ht,
3491 Lisp_Object key1,
3492 Lisp_Object key2)
3494 return (FLOATP (key1)
3495 && FLOATP (key2)
3496 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3500 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3501 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3502 KEY2 are the same. */
3504 static bool
3505 cmpfn_equal (struct hash_table_test *ht,
3506 Lisp_Object key1,
3507 Lisp_Object key2)
3509 return !NILP (Fequal (key1, key2));
3513 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3514 HASH2 in hash table H using H->user_cmp_function. Value is true
3515 if KEY1 and KEY2 are the same. */
3517 static bool
3518 cmpfn_user_defined (struct hash_table_test *ht,
3519 Lisp_Object key1,
3520 Lisp_Object key2)
3522 Lisp_Object args[3];
3524 args[0] = ht->user_cmp_function;
3525 args[1] = key1;
3526 args[2] = key2;
3527 return !NILP (Ffuncall (3, args));
3531 /* Value is a hash code for KEY for use in hash table H which uses
3532 `eq' to compare keys. The hash code returned is guaranteed to fit
3533 in a Lisp integer. */
3535 static EMACS_UINT
3536 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3538 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3539 return hash;
3542 /* Value is a hash code for KEY for use in hash table H which uses
3543 `eql' to compare keys. The hash code returned is guaranteed to fit
3544 in a Lisp integer. */
3546 static EMACS_UINT
3547 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3549 EMACS_UINT hash;
3550 if (FLOATP (key))
3551 hash = sxhash (key, 0);
3552 else
3553 hash = XHASH (key) ^ XTYPE (key);
3554 return hash;
3557 /* Value is a hash code for KEY for use in hash table H which uses
3558 `equal' to compare keys. The hash code returned is guaranteed to fit
3559 in a Lisp integer. */
3561 static EMACS_UINT
3562 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3564 EMACS_UINT hash = sxhash (key, 0);
3565 return hash;
3568 /* Value is a hash code for KEY for use in hash table H which uses as
3569 user-defined function to compare keys. The hash code returned is
3570 guaranteed to fit in a Lisp integer. */
3572 static EMACS_UINT
3573 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3575 Lisp_Object args[2], hash;
3577 args[0] = ht->user_hash_function;
3578 args[1] = key;
3579 hash = Ffuncall (2, args);
3580 if (!INTEGERP (hash))
3581 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3582 return XUINT (hash);
3585 /* An upper bound on the size of a hash table index. It must fit in
3586 ptrdiff_t and be a valid Emacs fixnum. */
3587 #define INDEX_SIZE_BOUND \
3588 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3590 /* Create and initialize a new hash table.
3592 TEST specifies the test the hash table will use to compare keys.
3593 It must be either one of the predefined tests `eq', `eql' or
3594 `equal' or a symbol denoting a user-defined test named TEST with
3595 test and hash functions USER_TEST and USER_HASH.
3597 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3599 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3600 new size when it becomes full is computed by adding REHASH_SIZE to
3601 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3602 table's new size is computed by multiplying its old size with
3603 REHASH_SIZE.
3605 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3606 be resized when the ratio of (number of entries in the table) /
3607 (table size) is >= REHASH_THRESHOLD.
3609 WEAK specifies the weakness of the table. If non-nil, it must be
3610 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3612 Lisp_Object
3613 make_hash_table (struct hash_table_test test,
3614 Lisp_Object size, Lisp_Object rehash_size,
3615 Lisp_Object rehash_threshold, Lisp_Object weak)
3617 struct Lisp_Hash_Table *h;
3618 Lisp_Object table;
3619 EMACS_INT index_size, sz;
3620 ptrdiff_t i;
3621 double index_float;
3623 /* Preconditions. */
3624 eassert (SYMBOLP (test.name));
3625 eassert (INTEGERP (size) && XINT (size) >= 0);
3626 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3627 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3628 eassert (FLOATP (rehash_threshold)
3629 && 0 < XFLOAT_DATA (rehash_threshold)
3630 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3632 if (XFASTINT (size) == 0)
3633 size = make_number (1);
3635 sz = XFASTINT (size);
3636 index_float = sz / XFLOAT_DATA (rehash_threshold);
3637 index_size = (index_float < INDEX_SIZE_BOUND + 1
3638 ? next_almost_prime (index_float)
3639 : INDEX_SIZE_BOUND + 1);
3640 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3641 error ("Hash table too large");
3643 /* Allocate a table and initialize it. */
3644 h = allocate_hash_table ();
3646 /* Initialize hash table slots. */
3647 h->test = test;
3648 h->weak = weak;
3649 h->rehash_threshold = rehash_threshold;
3650 h->rehash_size = rehash_size;
3651 h->count = 0;
3652 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3653 h->hash = Fmake_vector (size, Qnil);
3654 h->next = Fmake_vector (size, Qnil);
3655 h->index = Fmake_vector (make_number (index_size), Qnil);
3657 /* Set up the free list. */
3658 for (i = 0; i < sz - 1; ++i)
3659 set_hash_next_slot (h, i, make_number (i + 1));
3660 h->next_free = make_number (0);
3662 XSET_HASH_TABLE (table, h);
3663 eassert (HASH_TABLE_P (table));
3664 eassert (XHASH_TABLE (table) == h);
3666 /* Maybe add this hash table to the list of all weak hash tables. */
3667 if (NILP (h->weak))
3668 h->next_weak = NULL;
3669 else
3671 h->next_weak = weak_hash_tables;
3672 weak_hash_tables = h;
3675 return table;
3679 /* Return a copy of hash table H1. Keys and values are not copied,
3680 only the table itself is. */
3682 static Lisp_Object
3683 copy_hash_table (struct Lisp_Hash_Table *h1)
3685 Lisp_Object table;
3686 struct Lisp_Hash_Table *h2;
3688 h2 = allocate_hash_table ();
3689 *h2 = *h1;
3690 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3691 h2->hash = Fcopy_sequence (h1->hash);
3692 h2->next = Fcopy_sequence (h1->next);
3693 h2->index = Fcopy_sequence (h1->index);
3694 XSET_HASH_TABLE (table, h2);
3696 /* Maybe add this hash table to the list of all weak hash tables. */
3697 if (!NILP (h2->weak))
3699 h2->next_weak = weak_hash_tables;
3700 weak_hash_tables = h2;
3703 return table;
3707 /* Resize hash table H if it's too full. If H cannot be resized
3708 because it's already too large, throw an error. */
3710 static void
3711 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3713 if (NILP (h->next_free))
3715 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3716 EMACS_INT new_size, index_size, nsize;
3717 ptrdiff_t i;
3718 double index_float;
3720 if (INTEGERP (h->rehash_size))
3721 new_size = old_size + XFASTINT (h->rehash_size);
3722 else
3724 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3725 if (float_new_size < INDEX_SIZE_BOUND + 1)
3727 new_size = float_new_size;
3728 if (new_size <= old_size)
3729 new_size = old_size + 1;
3731 else
3732 new_size = INDEX_SIZE_BOUND + 1;
3734 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3735 index_size = (index_float < INDEX_SIZE_BOUND + 1
3736 ? next_almost_prime (index_float)
3737 : INDEX_SIZE_BOUND + 1);
3738 nsize = max (index_size, 2 * new_size);
3739 if (INDEX_SIZE_BOUND < nsize)
3740 error ("Hash table too large to resize");
3742 #ifdef ENABLE_CHECKING
3743 if (HASH_TABLE_P (Vpurify_flag)
3744 && XHASH_TABLE (Vpurify_flag) == h)
3746 Lisp_Object args[2];
3747 args[0] = build_string ("Growing hash table to: %d");
3748 args[1] = make_number (new_size);
3749 Fmessage (2, args);
3751 #endif
3753 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3754 2 * (new_size - old_size), -1));
3755 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3756 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3757 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3759 /* Update the free list. Do it so that new entries are added at
3760 the end of the free list. This makes some operations like
3761 maphash faster. */
3762 for (i = old_size; i < new_size - 1; ++i)
3763 set_hash_next_slot (h, i, make_number (i + 1));
3765 if (!NILP (h->next_free))
3767 Lisp_Object last, next;
3769 last = h->next_free;
3770 while (next = HASH_NEXT (h, XFASTINT (last)),
3771 !NILP (next))
3772 last = next;
3774 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3776 else
3777 XSETFASTINT (h->next_free, old_size);
3779 /* Rehash. */
3780 for (i = 0; i < old_size; ++i)
3781 if (!NILP (HASH_HASH (h, i)))
3783 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3784 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3785 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3786 set_hash_index_slot (h, start_of_bucket, make_number (i));
3792 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3793 the hash code of KEY. Value is the index of the entry in H
3794 matching KEY, or -1 if not found. */
3796 ptrdiff_t
3797 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3799 EMACS_UINT hash_code;
3800 ptrdiff_t start_of_bucket;
3801 Lisp_Object idx;
3803 hash_code = h->test.hashfn (&h->test, key);
3804 eassert ((hash_code & ~INTMASK) == 0);
3805 if (hash)
3806 *hash = hash_code;
3808 start_of_bucket = hash_code % ASIZE (h->index);
3809 idx = HASH_INDEX (h, start_of_bucket);
3811 /* We need not gcpro idx since it's either an integer or nil. */
3812 while (!NILP (idx))
3814 ptrdiff_t i = XFASTINT (idx);
3815 if (EQ (key, HASH_KEY (h, i))
3816 || (h->test.cmpfn
3817 && hash_code == XUINT (HASH_HASH (h, i))
3818 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3819 break;
3820 idx = HASH_NEXT (h, i);
3823 return NILP (idx) ? -1 : XFASTINT (idx);
3827 /* Put an entry into hash table H that associates KEY with VALUE.
3828 HASH is a previously computed hash code of KEY.
3829 Value is the index of the entry in H matching KEY. */
3831 ptrdiff_t
3832 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3833 EMACS_UINT hash)
3835 ptrdiff_t start_of_bucket, i;
3837 eassert ((hash & ~INTMASK) == 0);
3839 /* Increment count after resizing because resizing may fail. */
3840 maybe_resize_hash_table (h);
3841 h->count++;
3843 /* Store key/value in the key_and_value vector. */
3844 i = XFASTINT (h->next_free);
3845 h->next_free = HASH_NEXT (h, i);
3846 set_hash_key_slot (h, i, key);
3847 set_hash_value_slot (h, i, value);
3849 /* Remember its hash code. */
3850 set_hash_hash_slot (h, i, make_number (hash));
3852 /* Add new entry to its collision chain. */
3853 start_of_bucket = hash % ASIZE (h->index);
3854 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3855 set_hash_index_slot (h, start_of_bucket, make_number (i));
3856 return i;
3860 /* Remove the entry matching KEY from hash table H, if there is one. */
3862 static void
3863 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3865 EMACS_UINT hash_code;
3866 ptrdiff_t start_of_bucket;
3867 Lisp_Object idx, prev;
3869 hash_code = h->test.hashfn (&h->test, key);
3870 eassert ((hash_code & ~INTMASK) == 0);
3871 start_of_bucket = hash_code % ASIZE (h->index);
3872 idx = HASH_INDEX (h, start_of_bucket);
3873 prev = Qnil;
3875 /* We need not gcpro idx, prev since they're either integers or nil. */
3876 while (!NILP (idx))
3878 ptrdiff_t i = XFASTINT (idx);
3880 if (EQ (key, HASH_KEY (h, i))
3881 || (h->test.cmpfn
3882 && hash_code == XUINT (HASH_HASH (h, i))
3883 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3885 /* Take entry out of collision chain. */
3886 if (NILP (prev))
3887 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3888 else
3889 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3891 /* Clear slots in key_and_value and add the slots to
3892 the free list. */
3893 set_hash_key_slot (h, i, Qnil);
3894 set_hash_value_slot (h, i, Qnil);
3895 set_hash_hash_slot (h, i, Qnil);
3896 set_hash_next_slot (h, i, h->next_free);
3897 h->next_free = make_number (i);
3898 h->count--;
3899 eassert (h->count >= 0);
3900 break;
3902 else
3904 prev = idx;
3905 idx = HASH_NEXT (h, i);
3911 /* Clear hash table H. */
3913 static void
3914 hash_clear (struct Lisp_Hash_Table *h)
3916 if (h->count > 0)
3918 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3920 for (i = 0; i < size; ++i)
3922 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3923 set_hash_key_slot (h, i, Qnil);
3924 set_hash_value_slot (h, i, Qnil);
3925 set_hash_hash_slot (h, i, Qnil);
3928 for (i = 0; i < ASIZE (h->index); ++i)
3929 ASET (h->index, i, Qnil);
3931 h->next_free = make_number (0);
3932 h->count = 0;
3938 /************************************************************************
3939 Weak Hash Tables
3940 ************************************************************************/
3942 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3943 entries from the table that don't survive the current GC.
3944 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3945 true if anything was marked. */
3947 static bool
3948 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3950 ptrdiff_t bucket, n;
3951 bool marked;
3953 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3954 marked = 0;
3956 for (bucket = 0; bucket < n; ++bucket)
3958 Lisp_Object idx, next, prev;
3960 /* Follow collision chain, removing entries that
3961 don't survive this garbage collection. */
3962 prev = Qnil;
3963 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3965 ptrdiff_t i = XFASTINT (idx);
3966 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3967 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3968 bool remove_p;
3970 if (EQ (h->weak, Qkey))
3971 remove_p = !key_known_to_survive_p;
3972 else if (EQ (h->weak, Qvalue))
3973 remove_p = !value_known_to_survive_p;
3974 else if (EQ (h->weak, Qkey_or_value))
3975 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3976 else if (EQ (h->weak, Qkey_and_value))
3977 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3978 else
3979 emacs_abort ();
3981 next = HASH_NEXT (h, i);
3983 if (remove_entries_p)
3985 if (remove_p)
3987 /* Take out of collision chain. */
3988 if (NILP (prev))
3989 set_hash_index_slot (h, bucket, next);
3990 else
3991 set_hash_next_slot (h, XFASTINT (prev), next);
3993 /* Add to free list. */
3994 set_hash_next_slot (h, i, h->next_free);
3995 h->next_free = idx;
3997 /* Clear key, value, and hash. */
3998 set_hash_key_slot (h, i, Qnil);
3999 set_hash_value_slot (h, i, Qnil);
4000 set_hash_hash_slot (h, i, Qnil);
4002 h->count--;
4004 else
4006 prev = idx;
4009 else
4011 if (!remove_p)
4013 /* Make sure key and value survive. */
4014 if (!key_known_to_survive_p)
4016 mark_object (HASH_KEY (h, i));
4017 marked = 1;
4020 if (!value_known_to_survive_p)
4022 mark_object (HASH_VALUE (h, i));
4023 marked = 1;
4030 return marked;
4033 /* Remove elements from weak hash tables that don't survive the
4034 current garbage collection. Remove weak tables that don't survive
4035 from Vweak_hash_tables. Called from gc_sweep. */
4037 void
4038 sweep_weak_hash_tables (void)
4040 struct Lisp_Hash_Table *h, *used, *next;
4041 bool marked;
4043 /* Mark all keys and values that are in use. Keep on marking until
4044 there is no more change. This is necessary for cases like
4045 value-weak table A containing an entry X -> Y, where Y is used in a
4046 key-weak table B, Z -> Y. If B comes after A in the list of weak
4047 tables, X -> Y might be removed from A, although when looking at B
4048 one finds that it shouldn't. */
4051 marked = 0;
4052 for (h = weak_hash_tables; h; h = h->next_weak)
4054 if (h->header.size & ARRAY_MARK_FLAG)
4055 marked |= sweep_weak_table (h, 0);
4058 while (marked);
4060 /* Remove tables and entries that aren't used. */
4061 for (h = weak_hash_tables, used = NULL; h; h = next)
4063 next = h->next_weak;
4065 if (h->header.size & ARRAY_MARK_FLAG)
4067 /* TABLE is marked as used. Sweep its contents. */
4068 if (h->count > 0)
4069 sweep_weak_table (h, 1);
4071 /* Add table to the list of used weak hash tables. */
4072 h->next_weak = used;
4073 used = h;
4077 weak_hash_tables = used;
4082 /***********************************************************************
4083 Hash Code Computation
4084 ***********************************************************************/
4086 /* Maximum depth up to which to dive into Lisp structures. */
4088 #define SXHASH_MAX_DEPTH 3
4090 /* Maximum length up to which to take list and vector elements into
4091 account. */
4093 #define SXHASH_MAX_LEN 7
4095 /* Return a hash for string PTR which has length LEN. The hash value
4096 can be any EMACS_UINT value. */
4098 EMACS_UINT
4099 hash_string (char const *ptr, ptrdiff_t len)
4101 char const *p = ptr;
4102 char const *end = p + len;
4103 unsigned char c;
4104 EMACS_UINT hash = 0;
4106 while (p != end)
4108 c = *p++;
4109 hash = sxhash_combine (hash, c);
4112 return hash;
4115 /* Return a hash for string PTR which has length LEN. The hash
4116 code returned is guaranteed to fit in a Lisp integer. */
4118 static EMACS_UINT
4119 sxhash_string (char const *ptr, ptrdiff_t len)
4121 EMACS_UINT hash = hash_string (ptr, len);
4122 return SXHASH_REDUCE (hash);
4125 /* Return a hash for the floating point value VAL. */
4127 static EMACS_UINT
4128 sxhash_float (double val)
4130 EMACS_UINT hash = 0;
4131 enum {
4132 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4133 + (sizeof val % sizeof hash != 0))
4135 union {
4136 double val;
4137 EMACS_UINT word[WORDS_PER_DOUBLE];
4138 } u;
4139 int i;
4140 u.val = val;
4141 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4142 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4143 hash = sxhash_combine (hash, u.word[i]);
4144 return SXHASH_REDUCE (hash);
4147 /* Return a hash for list LIST. DEPTH is the current depth in the
4148 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4150 static EMACS_UINT
4151 sxhash_list (Lisp_Object list, int depth)
4153 EMACS_UINT hash = 0;
4154 int i;
4156 if (depth < SXHASH_MAX_DEPTH)
4157 for (i = 0;
4158 CONSP (list) && i < SXHASH_MAX_LEN;
4159 list = XCDR (list), ++i)
4161 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4162 hash = sxhash_combine (hash, hash2);
4165 if (!NILP (list))
4167 EMACS_UINT hash2 = sxhash (list, depth + 1);
4168 hash = sxhash_combine (hash, hash2);
4171 return SXHASH_REDUCE (hash);
4175 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4176 the Lisp structure. */
4178 static EMACS_UINT
4179 sxhash_vector (Lisp_Object vec, int depth)
4181 EMACS_UINT hash = ASIZE (vec);
4182 int i, n;
4184 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4185 for (i = 0; i < n; ++i)
4187 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4188 hash = sxhash_combine (hash, hash2);
4191 return SXHASH_REDUCE (hash);
4194 /* Return a hash for bool-vector VECTOR. */
4196 static EMACS_UINT
4197 sxhash_bool_vector (Lisp_Object vec)
4199 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4200 int i, n;
4202 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4203 for (i = 0; i < n; ++i)
4204 hash = sxhash_combine (hash, XBOOL_VECTOR (vec)->data[i]);
4206 return SXHASH_REDUCE (hash);
4210 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4211 structure. Value is an unsigned integer clipped to INTMASK. */
4213 EMACS_UINT
4214 sxhash (Lisp_Object obj, int depth)
4216 EMACS_UINT hash;
4218 if (depth > SXHASH_MAX_DEPTH)
4219 return 0;
4221 switch (XTYPE (obj))
4223 case_Lisp_Int:
4224 hash = XUINT (obj);
4225 break;
4227 case Lisp_Misc:
4228 hash = XHASH (obj);
4229 break;
4231 case Lisp_Symbol:
4232 obj = SYMBOL_NAME (obj);
4233 /* Fall through. */
4235 case Lisp_String:
4236 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4237 break;
4239 /* This can be everything from a vector to an overlay. */
4240 case Lisp_Vectorlike:
4241 if (VECTORP (obj))
4242 /* According to the CL HyperSpec, two arrays are equal only if
4243 they are `eq', except for strings and bit-vectors. In
4244 Emacs, this works differently. We have to compare element
4245 by element. */
4246 hash = sxhash_vector (obj, depth);
4247 else if (BOOL_VECTOR_P (obj))
4248 hash = sxhash_bool_vector (obj);
4249 else
4250 /* Others are `equal' if they are `eq', so let's take their
4251 address as hash. */
4252 hash = XHASH (obj);
4253 break;
4255 case Lisp_Cons:
4256 hash = sxhash_list (obj, depth);
4257 break;
4259 case Lisp_Float:
4260 hash = sxhash_float (XFLOAT_DATA (obj));
4261 break;
4263 default:
4264 emacs_abort ();
4267 return hash;
4272 /***********************************************************************
4273 Lisp Interface
4274 ***********************************************************************/
4277 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4278 doc: /* Compute a hash code for OBJ and return it as integer. */)
4279 (Lisp_Object obj)
4281 EMACS_UINT hash = sxhash (obj, 0);
4282 return make_number (hash);
4286 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4287 doc: /* Create and return a new hash table.
4289 Arguments are specified as keyword/argument pairs. The following
4290 arguments are defined:
4292 :test TEST -- TEST must be a symbol that specifies how to compare
4293 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4294 `equal'. User-supplied test and hash functions can be specified via
4295 `define-hash-table-test'.
4297 :size SIZE -- A hint as to how many elements will be put in the table.
4298 Default is 65.
4300 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4301 fills up. If REHASH-SIZE is an integer, increase the size by that
4302 amount. If it is a float, it must be > 1.0, and the new size is the
4303 old size multiplied by that factor. Default is 1.5.
4305 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4306 Resize the hash table when the ratio (number of entries / table size)
4307 is greater than or equal to THRESHOLD. Default is 0.8.
4309 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4310 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4311 returned is a weak table. Key/value pairs are removed from a weak
4312 hash table when there are no non-weak references pointing to their
4313 key, value, one of key or value, or both key and value, depending on
4314 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4315 is nil.
4317 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4318 (ptrdiff_t nargs, Lisp_Object *args)
4320 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4321 struct hash_table_test testdesc;
4322 char *used;
4323 ptrdiff_t i;
4325 /* The vector `used' is used to keep track of arguments that
4326 have been consumed. */
4327 used = alloca (nargs * sizeof *used);
4328 memset (used, 0, nargs * sizeof *used);
4330 /* See if there's a `:test TEST' among the arguments. */
4331 i = get_key_arg (QCtest, nargs, args, used);
4332 test = i ? args[i] : Qeql;
4333 if (EQ (test, Qeq))
4334 testdesc = hashtest_eq;
4335 else if (EQ (test, Qeql))
4336 testdesc = hashtest_eql;
4337 else if (EQ (test, Qequal))
4338 testdesc = hashtest_equal;
4339 else
4341 /* See if it is a user-defined test. */
4342 Lisp_Object prop;
4344 prop = Fget (test, Qhash_table_test);
4345 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4346 signal_error ("Invalid hash table test", test);
4347 testdesc.name = test;
4348 testdesc.user_cmp_function = XCAR (prop);
4349 testdesc.user_hash_function = XCAR (XCDR (prop));
4350 testdesc.hashfn = hashfn_user_defined;
4351 testdesc.cmpfn = cmpfn_user_defined;
4354 /* See if there's a `:size SIZE' argument. */
4355 i = get_key_arg (QCsize, nargs, args, used);
4356 size = i ? args[i] : Qnil;
4357 if (NILP (size))
4358 size = make_number (DEFAULT_HASH_SIZE);
4359 else if (!INTEGERP (size) || XINT (size) < 0)
4360 signal_error ("Invalid hash table size", size);
4362 /* Look for `:rehash-size SIZE'. */
4363 i = get_key_arg (QCrehash_size, nargs, args, used);
4364 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4365 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4366 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4367 signal_error ("Invalid hash table rehash size", rehash_size);
4369 /* Look for `:rehash-threshold THRESHOLD'. */
4370 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4371 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4372 if (! (FLOATP (rehash_threshold)
4373 && 0 < XFLOAT_DATA (rehash_threshold)
4374 && XFLOAT_DATA (rehash_threshold) <= 1))
4375 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4377 /* Look for `:weakness WEAK'. */
4378 i = get_key_arg (QCweakness, nargs, args, used);
4379 weak = i ? args[i] : Qnil;
4380 if (EQ (weak, Qt))
4381 weak = Qkey_and_value;
4382 if (!NILP (weak)
4383 && !EQ (weak, Qkey)
4384 && !EQ (weak, Qvalue)
4385 && !EQ (weak, Qkey_or_value)
4386 && !EQ (weak, Qkey_and_value))
4387 signal_error ("Invalid hash table weakness", weak);
4389 /* Now, all args should have been used up, or there's a problem. */
4390 for (i = 0; i < nargs; ++i)
4391 if (!used[i])
4392 signal_error ("Invalid argument list", args[i]);
4394 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4398 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4399 doc: /* Return a copy of hash table TABLE. */)
4400 (Lisp_Object table)
4402 return copy_hash_table (check_hash_table (table));
4406 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4407 doc: /* Return the number of elements in TABLE. */)
4408 (Lisp_Object table)
4410 return make_number (check_hash_table (table)->count);
4414 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4415 Shash_table_rehash_size, 1, 1, 0,
4416 doc: /* Return the current rehash size of TABLE. */)
4417 (Lisp_Object table)
4419 return check_hash_table (table)->rehash_size;
4423 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4424 Shash_table_rehash_threshold, 1, 1, 0,
4425 doc: /* Return the current rehash threshold of TABLE. */)
4426 (Lisp_Object table)
4428 return check_hash_table (table)->rehash_threshold;
4432 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4433 doc: /* Return the size of TABLE.
4434 The size can be used as an argument to `make-hash-table' to create
4435 a hash table than can hold as many elements as TABLE holds
4436 without need for resizing. */)
4437 (Lisp_Object table)
4439 struct Lisp_Hash_Table *h = check_hash_table (table);
4440 return make_number (HASH_TABLE_SIZE (h));
4444 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4445 doc: /* Return the test TABLE uses. */)
4446 (Lisp_Object table)
4448 return check_hash_table (table)->test.name;
4452 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4453 1, 1, 0,
4454 doc: /* Return the weakness of TABLE. */)
4455 (Lisp_Object table)
4457 return check_hash_table (table)->weak;
4461 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4462 doc: /* Return t if OBJ is a Lisp hash table object. */)
4463 (Lisp_Object obj)
4465 return HASH_TABLE_P (obj) ? Qt : Qnil;
4469 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4470 doc: /* Clear hash table TABLE and return it. */)
4471 (Lisp_Object table)
4473 hash_clear (check_hash_table (table));
4474 /* Be compatible with XEmacs. */
4475 return table;
4479 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4480 doc: /* Look up KEY in TABLE and return its associated value.
4481 If KEY is not found, return DFLT which defaults to nil. */)
4482 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4484 struct Lisp_Hash_Table *h = check_hash_table (table);
4485 ptrdiff_t i = hash_lookup (h, key, NULL);
4486 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4490 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4491 doc: /* Associate KEY with VALUE in hash table TABLE.
4492 If KEY is already present in table, replace its current value with
4493 VALUE. In any case, return VALUE. */)
4494 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4496 struct Lisp_Hash_Table *h = check_hash_table (table);
4497 ptrdiff_t i;
4498 EMACS_UINT hash;
4500 i = hash_lookup (h, key, &hash);
4501 if (i >= 0)
4502 set_hash_value_slot (h, i, value);
4503 else
4504 hash_put (h, key, value, hash);
4506 return value;
4510 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4511 doc: /* Remove KEY from TABLE. */)
4512 (Lisp_Object key, Lisp_Object table)
4514 struct Lisp_Hash_Table *h = check_hash_table (table);
4515 hash_remove_from_table (h, key);
4516 return Qnil;
4520 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4521 doc: /* Call FUNCTION for all entries in hash table TABLE.
4522 FUNCTION is called with two arguments, KEY and VALUE. */)
4523 (Lisp_Object function, Lisp_Object table)
4525 struct Lisp_Hash_Table *h = check_hash_table (table);
4526 Lisp_Object args[3];
4527 ptrdiff_t i;
4529 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4530 if (!NILP (HASH_HASH (h, i)))
4532 args[0] = function;
4533 args[1] = HASH_KEY (h, i);
4534 args[2] = HASH_VALUE (h, i);
4535 Ffuncall (3, args);
4538 return Qnil;
4542 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4543 Sdefine_hash_table_test, 3, 3, 0,
4544 doc: /* Define a new hash table test with name NAME, a symbol.
4546 In hash tables created with NAME specified as test, use TEST to
4547 compare keys, and HASH for computing hash codes of keys.
4549 TEST must be a function taking two arguments and returning non-nil if
4550 both arguments are the same. HASH must be a function taking one
4551 argument and return an integer that is the hash code of the argument.
4552 Hash code computation should use the whole value range of integers,
4553 including negative integers. */)
4554 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4556 return Fput (name, Qhash_table_test, list2 (test, hash));
4561 /************************************************************************
4562 MD5, SHA-1, and SHA-2
4563 ************************************************************************/
4565 #include "md5.h"
4566 #include "sha1.h"
4567 #include "sha256.h"
4568 #include "sha512.h"
4570 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4572 static Lisp_Object
4573 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4575 int i;
4576 ptrdiff_t size;
4577 EMACS_INT start_char = 0, end_char = 0;
4578 ptrdiff_t start_byte, end_byte;
4579 register EMACS_INT b, e;
4580 register struct buffer *bp;
4581 EMACS_INT temp;
4582 int digest_size;
4583 void *(*hash_func) (const char *, size_t, void *);
4584 Lisp_Object digest;
4586 CHECK_SYMBOL (algorithm);
4588 if (STRINGP (object))
4590 if (NILP (coding_system))
4592 /* Decide the coding-system to encode the data with. */
4594 if (STRING_MULTIBYTE (object))
4595 /* use default, we can't guess correct value */
4596 coding_system = preferred_coding_system ();
4597 else
4598 coding_system = Qraw_text;
4601 if (NILP (Fcoding_system_p (coding_system)))
4603 /* Invalid coding system. */
4605 if (!NILP (noerror))
4606 coding_system = Qraw_text;
4607 else
4608 xsignal1 (Qcoding_system_error, coding_system);
4611 if (STRING_MULTIBYTE (object))
4612 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4614 size = SCHARS (object);
4616 if (!NILP (start))
4618 CHECK_NUMBER (start);
4620 start_char = XINT (start);
4622 if (start_char < 0)
4623 start_char += size;
4626 if (NILP (end))
4627 end_char = size;
4628 else
4630 CHECK_NUMBER (end);
4632 end_char = XINT (end);
4634 if (end_char < 0)
4635 end_char += size;
4638 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4639 args_out_of_range_3 (object, make_number (start_char),
4640 make_number (end_char));
4642 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4643 end_byte =
4644 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4646 else
4648 struct buffer *prev = current_buffer;
4650 record_unwind_current_buffer ();
4652 CHECK_BUFFER (object);
4654 bp = XBUFFER (object);
4655 set_buffer_internal (bp);
4657 if (NILP (start))
4658 b = BEGV;
4659 else
4661 CHECK_NUMBER_COERCE_MARKER (start);
4662 b = XINT (start);
4665 if (NILP (end))
4666 e = ZV;
4667 else
4669 CHECK_NUMBER_COERCE_MARKER (end);
4670 e = XINT (end);
4673 if (b > e)
4674 temp = b, b = e, e = temp;
4676 if (!(BEGV <= b && e <= ZV))
4677 args_out_of_range (start, end);
4679 if (NILP (coding_system))
4681 /* Decide the coding-system to encode the data with.
4682 See fileio.c:Fwrite-region */
4684 if (!NILP (Vcoding_system_for_write))
4685 coding_system = Vcoding_system_for_write;
4686 else
4688 bool force_raw_text = 0;
4690 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4691 if (NILP (coding_system)
4692 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4694 coding_system = Qnil;
4695 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4696 force_raw_text = 1;
4699 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4701 /* Check file-coding-system-alist. */
4702 Lisp_Object args[4], val;
4704 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4705 args[3] = Fbuffer_file_name (object);
4706 val = Ffind_operation_coding_system (4, args);
4707 if (CONSP (val) && !NILP (XCDR (val)))
4708 coding_system = XCDR (val);
4711 if (NILP (coding_system)
4712 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4714 /* If we still have not decided a coding system, use the
4715 default value of buffer-file-coding-system. */
4716 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4719 if (!force_raw_text
4720 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4721 /* Confirm that VAL can surely encode the current region. */
4722 coding_system = call4 (Vselect_safe_coding_system_function,
4723 make_number (b), make_number (e),
4724 coding_system, Qnil);
4726 if (force_raw_text)
4727 coding_system = Qraw_text;
4730 if (NILP (Fcoding_system_p (coding_system)))
4732 /* Invalid coding system. */
4734 if (!NILP (noerror))
4735 coding_system = Qraw_text;
4736 else
4737 xsignal1 (Qcoding_system_error, coding_system);
4741 object = make_buffer_string (b, e, 0);
4742 set_buffer_internal (prev);
4743 /* Discard the unwind protect for recovering the current
4744 buffer. */
4745 specpdl_ptr--;
4747 if (STRING_MULTIBYTE (object))
4748 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4749 start_byte = 0;
4750 end_byte = SBYTES (object);
4753 if (EQ (algorithm, Qmd5))
4755 digest_size = MD5_DIGEST_SIZE;
4756 hash_func = md5_buffer;
4758 else if (EQ (algorithm, Qsha1))
4760 digest_size = SHA1_DIGEST_SIZE;
4761 hash_func = sha1_buffer;
4763 else if (EQ (algorithm, Qsha224))
4765 digest_size = SHA224_DIGEST_SIZE;
4766 hash_func = sha224_buffer;
4768 else if (EQ (algorithm, Qsha256))
4770 digest_size = SHA256_DIGEST_SIZE;
4771 hash_func = sha256_buffer;
4773 else if (EQ (algorithm, Qsha384))
4775 digest_size = SHA384_DIGEST_SIZE;
4776 hash_func = sha384_buffer;
4778 else if (EQ (algorithm, Qsha512))
4780 digest_size = SHA512_DIGEST_SIZE;
4781 hash_func = sha512_buffer;
4783 else
4784 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4786 /* allocate 2 x digest_size so that it can be re-used to hold the
4787 hexified value */
4788 digest = make_uninit_string (digest_size * 2);
4790 hash_func (SSDATA (object) + start_byte,
4791 end_byte - start_byte,
4792 SSDATA (digest));
4794 if (NILP (binary))
4796 unsigned char *p = SDATA (digest);
4797 for (i = digest_size - 1; i >= 0; i--)
4799 static char const hexdigit[16] = "0123456789abcdef";
4800 int p_i = p[i];
4801 p[2 * i] = hexdigit[p_i >> 4];
4802 p[2 * i + 1] = hexdigit[p_i & 0xf];
4804 return digest;
4806 else
4807 return make_unibyte_string (SSDATA (digest), digest_size);
4810 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4811 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4813 A message digest is a cryptographic checksum of a document, and the
4814 algorithm to calculate it is defined in RFC 1321.
4816 The two optional arguments START and END are character positions
4817 specifying for which part of OBJECT the message digest should be
4818 computed. If nil or omitted, the digest is computed for the whole
4819 OBJECT.
4821 The MD5 message digest is computed from the result of encoding the
4822 text in a coding system, not directly from the internal Emacs form of
4823 the text. The optional fourth argument CODING-SYSTEM specifies which
4824 coding system to encode the text with. It should be the same coding
4825 system that you used or will use when actually writing the text into a
4826 file.
4828 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4829 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4830 system would be chosen by default for writing this text into a file.
4832 If OBJECT is a string, the most preferred coding system (see the
4833 command `prefer-coding-system') is used.
4835 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4836 guesswork fails. Normally, an error is signaled in such case. */)
4837 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4839 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4842 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4843 doc: /* Return the secure hash of OBJECT, a buffer or string.
4844 ALGORITHM is a symbol specifying the hash to use:
4845 md5, sha1, sha224, sha256, sha384 or sha512.
4847 The two optional arguments START and END are positions specifying for
4848 which part of OBJECT to compute the hash. If nil or omitted, uses the
4849 whole OBJECT.
4851 If BINARY is non-nil, returns a string in binary form. */)
4852 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4854 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4857 void
4858 syms_of_fns (void)
4860 DEFSYM (Qmd5, "md5");
4861 DEFSYM (Qsha1, "sha1");
4862 DEFSYM (Qsha224, "sha224");
4863 DEFSYM (Qsha256, "sha256");
4864 DEFSYM (Qsha384, "sha384");
4865 DEFSYM (Qsha512, "sha512");
4867 /* Hash table stuff. */
4868 DEFSYM (Qhash_table_p, "hash-table-p");
4869 DEFSYM (Qeq, "eq");
4870 DEFSYM (Qeql, "eql");
4871 DEFSYM (Qequal, "equal");
4872 DEFSYM (QCtest, ":test");
4873 DEFSYM (QCsize, ":size");
4874 DEFSYM (QCrehash_size, ":rehash-size");
4875 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4876 DEFSYM (QCweakness, ":weakness");
4877 DEFSYM (Qkey, "key");
4878 DEFSYM (Qvalue, "value");
4879 DEFSYM (Qhash_table_test, "hash-table-test");
4880 DEFSYM (Qkey_or_value, "key-or-value");
4881 DEFSYM (Qkey_and_value, "key-and-value");
4883 defsubr (&Ssxhash);
4884 defsubr (&Smake_hash_table);
4885 defsubr (&Scopy_hash_table);
4886 defsubr (&Shash_table_count);
4887 defsubr (&Shash_table_rehash_size);
4888 defsubr (&Shash_table_rehash_threshold);
4889 defsubr (&Shash_table_size);
4890 defsubr (&Shash_table_test);
4891 defsubr (&Shash_table_weakness);
4892 defsubr (&Shash_table_p);
4893 defsubr (&Sclrhash);
4894 defsubr (&Sgethash);
4895 defsubr (&Sputhash);
4896 defsubr (&Sremhash);
4897 defsubr (&Smaphash);
4898 defsubr (&Sdefine_hash_table_test);
4900 DEFSYM (Qstring_lessp, "string-lessp");
4901 DEFSYM (Qprovide, "provide");
4902 DEFSYM (Qrequire, "require");
4903 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4904 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4905 DEFSYM (Qwidget_type, "widget-type");
4907 staticpro (&string_char_byte_cache_string);
4908 string_char_byte_cache_string = Qnil;
4910 require_nesting_list = Qnil;
4911 staticpro (&require_nesting_list);
4913 Fset (Qyes_or_no_p_history, Qnil);
4915 DEFVAR_LISP ("features", Vfeatures,
4916 doc: /* A list of symbols which are the features of the executing Emacs.
4917 Used by `featurep' and `require', and altered by `provide'. */);
4918 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4919 DEFSYM (Qsubfeatures, "subfeatures");
4920 DEFSYM (Qfuncall, "funcall");
4922 #ifdef HAVE_LANGINFO_CODESET
4923 DEFSYM (Qcodeset, "codeset");
4924 DEFSYM (Qdays, "days");
4925 DEFSYM (Qmonths, "months");
4926 DEFSYM (Qpaper, "paper");
4927 #endif /* HAVE_LANGINFO_CODESET */
4929 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4930 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4931 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4932 invoked by mouse clicks and mouse menu items.
4934 On some platforms, file selection dialogs are also enabled if this is
4935 non-nil. */);
4936 use_dialog_box = 1;
4938 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4939 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4940 This applies to commands from menus and tool bar buttons even when
4941 they are initiated from the keyboard. If `use-dialog-box' is nil,
4942 that disables the use of a file dialog, regardless of the value of
4943 this variable. */);
4944 use_file_dialog = 1;
4946 defsubr (&Sidentity);
4947 defsubr (&Srandom);
4948 defsubr (&Slength);
4949 defsubr (&Ssafe_length);
4950 defsubr (&Sstring_bytes);
4951 defsubr (&Sstring_equal);
4952 defsubr (&Scompare_strings);
4953 defsubr (&Sstring_lessp);
4954 defsubr (&Sappend);
4955 defsubr (&Sconcat);
4956 defsubr (&Svconcat);
4957 defsubr (&Scopy_sequence);
4958 defsubr (&Sstring_make_multibyte);
4959 defsubr (&Sstring_make_unibyte);
4960 defsubr (&Sstring_as_multibyte);
4961 defsubr (&Sstring_as_unibyte);
4962 defsubr (&Sstring_to_multibyte);
4963 defsubr (&Sstring_to_unibyte);
4964 defsubr (&Scopy_alist);
4965 defsubr (&Ssubstring);
4966 defsubr (&Ssubstring_no_properties);
4967 defsubr (&Snthcdr);
4968 defsubr (&Snth);
4969 defsubr (&Selt);
4970 defsubr (&Smember);
4971 defsubr (&Smemq);
4972 defsubr (&Smemql);
4973 defsubr (&Sassq);
4974 defsubr (&Sassoc);
4975 defsubr (&Srassq);
4976 defsubr (&Srassoc);
4977 defsubr (&Sdelq);
4978 defsubr (&Sdelete);
4979 defsubr (&Snreverse);
4980 defsubr (&Sreverse);
4981 defsubr (&Ssort);
4982 defsubr (&Splist_get);
4983 defsubr (&Sget);
4984 defsubr (&Splist_put);
4985 defsubr (&Sput);
4986 defsubr (&Slax_plist_get);
4987 defsubr (&Slax_plist_put);
4988 defsubr (&Seql);
4989 defsubr (&Sequal);
4990 defsubr (&Sequal_including_properties);
4991 defsubr (&Sfillarray);
4992 defsubr (&Sclear_string);
4993 defsubr (&Snconc);
4994 defsubr (&Smapcar);
4995 defsubr (&Smapc);
4996 defsubr (&Smapconcat);
4997 defsubr (&Syes_or_no_p);
4998 defsubr (&Sload_average);
4999 defsubr (&Sfeaturep);
5000 defsubr (&Srequire);
5001 defsubr (&Sprovide);
5002 defsubr (&Splist_member);
5003 defsubr (&Swidget_put);
5004 defsubr (&Swidget_get);
5005 defsubr (&Swidget_apply);
5006 defsubr (&Sbase64_encode_region);
5007 defsubr (&Sbase64_decode_region);
5008 defsubr (&Sbase64_encode_string);
5009 defsubr (&Sbase64_decode_string);
5010 defsubr (&Smd5);
5011 defsubr (&Ssecure_hash);
5012 defsubr (&Slocale_info);
5015 struct hash_table_test
5016 eq = { Qeq, Qnil, Qnil, NULL, hashfn_eq },
5017 eql = { Qeql, Qnil, Qnil, cmpfn_eql, hashfn_eql },
5018 equal = { Qequal, Qnil, Qnil, cmpfn_equal, hashfn_equal };
5019 hashtest_eq = eq;
5020 hashtest_eql = eql;
5021 hashtest_equal = equal;