1 /* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992
2 Free Software Foundation, Inc.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2, or (at your option)
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 In other words, you are welcome to use, share and improve this program.
19 You are forbidden to forbid anyone else to use, share and improve
20 what you give them. Help stamp out software-hoarding! */
24 * unexec.c - Convert a running program into an a.out file.
26 * Author: Spencer W. Thomas
27 * Computer Science Dept.
29 * Date: Tue Mar 2 1982
30 * Modified heavily since then.
33 * unexec (new_name, a_name, data_start, bss_start, entry_address)
34 * char *new_name, *a_name;
35 * unsigned data_start, bss_start, entry_address;
37 * Takes a snapshot of the program and makes an a.out format file in the
38 * file named by the string argument new_name.
39 * If a_name is non-NULL, the symbol table will be taken from the given file.
40 * On some machines, an existing a_name file is required.
42 * The boundaries within the a.out file may be adjusted with the data_start
43 * and bss_start arguments. Either or both may be given as 0 for defaults.
45 * Data_start gives the boundary between the text segment and the data
46 * segment of the program. The text segment can contain shared, read-only
47 * program code and literal data, while the data segment is always unshared
48 * and unprotected. Data_start gives the lowest unprotected address.
49 * The value you specify may be rounded down to a suitable boundary
50 * as required by the machine you are using.
52 * Specifying zero for data_start means the boundary between text and data
53 * should not be the same as when the program was loaded.
54 * If NO_REMAP is defined, the argument data_start is ignored and the
55 * segment boundaries are never changed.
57 * Bss_start indicates how much of the data segment is to be saved in the
58 * a.out file and restored when the program is executed. It gives the lowest
59 * unsaved address, and is rounded up to a page boundary. The default when 0
60 * is given assumes that the entire data segment is to be stored, including
61 * the previous data and bss as well as any additional storage allocated with
64 * The new file is set up to start at entry_address.
66 * If you make improvements I'd like to get them too.
67 * harpo!utah-cs!thomas, thomas@Utah-20
71 /* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co.
74 * Basic theory: the data space of the running process needs to be
75 * dumped to the output file. Normally we would just enlarge the size
76 * of .data, scooting everything down. But we can't do that in ELF,
77 * because there is often something between the .data space and the
80 * In the temacs dump below, notice that the Global Offset Table
81 * (.got) and the Dynamic link data (.dynamic) come between .data1 and
82 * .bss. It does not work to overlap .data with these fields.
84 * The solution is to create a new .data segment. This segment is
85 * filled with data from the current process. Since the contents of
86 * various sections refer to sections by index, the new .data segment
87 * is made the last in the table to avoid changing any existing index.
89 * This is an example of how the section headers are changed. "Addr"
90 * is a process virtual address. "Offset" is a file offset.
92 raid:/nfs/raid/src/dist-18.56/src> dump -h temacs
96 **** SECTION HEADER TABLE ****
97 [No] Type Flags Addr Offset Size Name
98 Link Info Adralgn Entsize
100 [1] 1 2 0x80480d4 0xd4 0x13 .interp
103 [2] 5 2 0x80480e8 0xe8 0x388 .hash
106 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
109 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
112 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
115 [6] 1 6 0x8049348 0x1348 0x3 .init
118 [7] 1 6 0x804934c 0x134c 0x680 .plt
121 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
124 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
127 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
130 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
133 [12] 1 3 0x8088330 0x3f330 0x20afc .data
136 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
139 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
142 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
145 [16] 8 3 0x80a98f4 0x608f4 0x449c .bss
148 [17] 2 0 0 0x608f4 0x9b90 .symtab
151 [18] 3 0 0 0x6a484 0x8526 .strtab
154 [19] 3 0 0 0x729aa 0x93 .shstrtab
157 [20] 1 0 0 0x72a3d 0x68b7 .comment
160 raid:/nfs/raid/src/dist-18.56/src> dump -h xemacs
164 **** SECTION HEADER TABLE ****
165 [No] Type Flags Addr Offset Size Name
166 Link Info Adralgn Entsize
168 [1] 1 2 0x80480d4 0xd4 0x13 .interp
171 [2] 5 2 0x80480e8 0xe8 0x388 .hash
174 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
177 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
180 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
183 [6] 1 6 0x8049348 0x1348 0x3 .init
186 [7] 1 6 0x804934c 0x134c 0x680 .plt
189 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
192 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
195 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
198 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
201 [12] 1 3 0x8088330 0x3f330 0x20afc .data
204 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
207 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
210 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
213 [16] 8 3 0x80c6800 0x7d800 0 .bss
216 [17] 2 0 0 0x7d800 0x9b90 .symtab
219 [18] 3 0 0 0x87390 0x8526 .strtab
222 [19] 3 0 0 0x8f8b6 0x93 .shstrtab
225 [20] 1 0 0 0x8f949 0x68b7 .comment
228 [21] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
231 * This is an example of how the file header is changed. "Shoff" is
232 * the section header offset within the file. Since that table is
233 * after the new .data section, it is moved. "Shnum" is the number of
234 * sections, which we increment.
236 * "Phoff" is the file offset to the program header. "Phentsize" and
237 * "Shentsz" are the program and section header entries sizes respectively.
238 * These can be larger than the apparent struct sizes.
240 raid:/nfs/raid/src/dist-18.56/src> dump -f temacs
245 Class Data Type Machine Version
246 Entry Phoff Shoff Flags Ehsize
247 Phentsize Phnum Shentsz Shnum Shstrndx
250 0x80499cc 0x34 0x792f4 0 0x34
253 raid:/nfs/raid/src/dist-18.56/src> dump -f xemacs
258 Class Data Type Machine Version
259 Entry Phoff Shoff Flags Ehsize
260 Phentsize Phnum Shentsz Shnum Shstrndx
263 0x80499cc 0x34 0x96200 0 0x34
266 * These are the program headers. "Offset" is the file offset to the
267 * segment. "Vaddr" is the memory load address. "Filesz" is the
268 * segment size as it appears in the file, and "Memsz" is the size in
269 * memory. Below, the third segment is the code and the fourth is the
270 * data: the difference between Filesz and Memsz is .bss
272 raid:/nfs/raid/src/dist-18.56/src> dump -o temacs
275 ***** PROGRAM EXECUTION HEADER *****
276 Type Offset Vaddr Paddr
277 Filesz Memsz Flags Align
286 0x3f2f9 0x3f2f9 5 0x1000
288 1 0x3f330 0x8088330 0
289 0x215c4 0x25a60 7 0x1000
291 2 0x60874 0x80a9874 0
294 raid:/nfs/raid/src/dist-18.56/src> dump -o xemacs
297 ***** PROGRAM EXECUTION HEADER *****
298 Type Offset Vaddr Paddr
299 Filesz Memsz Flags Align
308 0x3f2f9 0x3f2f9 5 0x1000
310 1 0x3f330 0x8088330 0
311 0x3e4d0 0x3e4d0 7 0x1000
313 2 0x60874 0x80a9874 0
319 /* Modified by wtien@urbana.mcd.mot.com of Motorola Inc.
321 * The above mechanism does not work if the unexeced ELF file is being
322 * re-layout by other applications (such as `strip'). All the applications
323 * that re-layout the internal of ELF will layout all sections in ascending
324 * order of their file offsets. After the re-layout, the data2 section will
325 * still be the LAST section in the section header vector, but its file offset
326 * is now being pushed far away down, and causes part of it not to be mapped
327 * in (ie. not covered by the load segment entry in PHDR vector), therefore
328 * causes the new binary to fail.
330 * The solution is to modify the unexec algorithm to insert the new data2
331 * section header right before the new bss section header, so their file
332 * offsets will be in the ascending order. Since some of the section's (all
333 * sections AFTER the bss section) indexes are now changed, we also need to
334 * modify some fields to make them point to the right sections. This is done
335 * by macro PATCH_INDEX. All the fields that need to be patched are:
337 * 1. ELF header e_shstrndx field.
338 * 2. section header sh_link and sh_info field.
339 * 3. symbol table entry st_shndx field.
341 * The above example now should look like:
343 **** SECTION HEADER TABLE ****
344 [No] Type Flags Addr Offset Size Name
345 Link Info Adralgn Entsize
347 [1] 1 2 0x80480d4 0xd4 0x13 .interp
350 [2] 5 2 0x80480e8 0xe8 0x388 .hash
353 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
356 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
359 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
362 [6] 1 6 0x8049348 0x1348 0x3 .init
365 [7] 1 6 0x804934c 0x134c 0x680 .plt
368 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
371 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
374 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
377 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
380 [12] 1 3 0x8088330 0x3f330 0x20afc .data
383 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
386 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
389 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
392 [16] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
395 [17] 8 3 0x80c6800 0x7d800 0 .bss
398 [18] 2 0 0 0x7d800 0x9b90 .symtab
401 [19] 3 0 0 0x87390 0x8526 .strtab
404 [20] 3 0 0 0x8f8b6 0x93 .shstrtab
407 [21] 1 0 0 0x8f949 0x68b7 .comment
412 #include <sys/types.h>
414 #include <sys/stat.h>
421 #include <sys/mman.h>
424 #define fatal(a, b, c) fprintf (stderr, a, b, c), exit (1)
426 extern void fatal (char *, ...);
429 /* Get the address of a particular section or program header entry,
430 * accounting for the size of the entries.
433 #define OLD_SECTION_H(n) \
434 (*(Elf32_Shdr *) ((byte *) old_section_h + old_file_h->e_shentsize * (n)))
435 #define NEW_SECTION_H(n) \
436 (*(Elf32_Shdr *) ((byte *) new_section_h + new_file_h->e_shentsize * (n)))
437 #define OLD_PROGRAM_H(n) \
438 (*(Elf32_Phdr *) ((byte *) old_program_h + old_file_h->e_phentsize * (n)))
439 #define NEW_PROGRAM_H(n) \
440 (*(Elf32_Phdr *) ((byte *) new_program_h + new_file_h->e_phentsize * (n)))
442 #define PATCH_INDEX(n) \
444 if ((int) (n) >= old_bss_index) \
446 typedef unsigned char byte
;
448 /* Round X up to a multiple of Y. */
460 /* ****************************************************************
465 * In ELF, this works by replacing the old .bss section with a new
466 * .data section, and inserting an empty .bss immediately afterwards.
470 unexec (new_name
, old_name
, data_start
, bss_start
, entry_address
)
471 char *new_name
, *old_name
;
472 unsigned data_start
, bss_start
, entry_address
;
474 extern unsigned int bss_end
;
475 int new_file
, old_file
, new_file_size
;
477 /* Pointers to the base of the image of the two files. */
478 caddr_t old_base
, new_base
;
480 /* Pointers to the file, program and section headers for the old and new
483 Elf32_Ehdr
*old_file_h
, *new_file_h
;
484 Elf32_Phdr
*old_program_h
, *new_program_h
;
485 Elf32_Shdr
*old_section_h
, *new_section_h
;
487 /* Point to the section name table in the old file */
488 char *old_section_names
;
490 Elf32_Addr old_bss_addr
, new_bss_addr
;
491 Elf32_Word old_bss_size
, new_data2_size
;
492 Elf32_Off new_data2_offset
;
493 Elf32_Addr new_data2_addr
;
495 int n
, nn
, old_bss_index
, old_data_index
, new_data2_index
;
496 struct stat stat_buf
;
498 /* Open the old file & map it into the address space. */
500 old_file
= open (old_name
, O_RDONLY
);
503 fatal ("Can't open %s for reading: errno %d\n", old_name
, errno
);
505 if (fstat (old_file
, &stat_buf
) == -1)
506 fatal ("Can't fstat (%s): errno %d\n", old_name
, errno
);
508 old_base
= mmap (0, stat_buf
.st_size
, PROT_READ
, MAP_SHARED
, old_file
, 0);
510 if (old_base
== (caddr_t
) -1)
511 fatal ("Can't mmap (%s): errno %d\n", old_name
, errno
);
514 fprintf (stderr
, "mmap (%s, %x) -> %x\n", old_name
, stat_buf
.st_size
,
518 /* Get pointers to headers & section names */
520 old_file_h
= (Elf32_Ehdr
*) old_base
;
521 old_program_h
= (Elf32_Phdr
*) ((byte
*) old_base
+ old_file_h
->e_phoff
);
522 old_section_h
= (Elf32_Shdr
*) ((byte
*) old_base
+ old_file_h
->e_shoff
);
523 old_section_names
= (char *) old_base
524 + OLD_SECTION_H (old_file_h
->e_shstrndx
).sh_offset
;
526 /* Find the old .bss section. Figure out parameters of the new
527 * data2 and bss sections.
530 for (old_bss_index
= 1; old_bss_index
< (int) old_file_h
->e_shnum
;
534 fprintf (stderr
, "Looking for .bss - found %s\n",
535 old_section_names
+ OLD_SECTION_H (old_bss_index
).sh_name
);
537 if (!strcmp (old_section_names
+ OLD_SECTION_H (old_bss_index
).sh_name
,
541 if (old_bss_index
== old_file_h
->e_shnum
)
542 fatal ("Can't find .bss in %s.\n", old_name
, 0);
544 old_bss_addr
= OLD_SECTION_H (old_bss_index
).sh_addr
;
545 old_bss_size
= OLD_SECTION_H (old_bss_index
).sh_size
;
546 #if defined(emacs) || !defined(DEBUG)
547 bss_end
= (unsigned int) sbrk (0);
548 new_bss_addr
= (Elf32_Addr
) bss_end
;
550 new_bss_addr
= old_bss_addr
+ old_bss_size
+ 0x1234;
552 new_data2_addr
= old_bss_addr
;
553 new_data2_size
= new_bss_addr
- old_bss_addr
;
554 new_data2_offset
= OLD_SECTION_H (old_bss_index
).sh_offset
;
557 fprintf (stderr
, "old_bss_index %d\n", old_bss_index
);
558 fprintf (stderr
, "old_bss_addr %x\n", old_bss_addr
);
559 fprintf (stderr
, "old_bss_size %x\n", old_bss_size
);
560 fprintf (stderr
, "new_bss_addr %x\n", new_bss_addr
);
561 fprintf (stderr
, "new_data2_addr %x\n", new_data2_addr
);
562 fprintf (stderr
, "new_data2_size %x\n", new_data2_size
);
563 fprintf (stderr
, "new_data2_offset %x\n", new_data2_offset
);
566 if ((unsigned) new_bss_addr
< (unsigned) old_bss_addr
+ old_bss_size
)
567 fatal (".bss shrank when undumping???\n", 0, 0);
569 /* Set the output file to the right size and mmap it. Set
570 * pointers to various interesting objects. stat_buf still has
574 new_file
= open (new_name
, O_RDWR
| O_CREAT
, 0666);
576 fatal ("Can't creat (%s): errno %d\n", new_name
, errno
);
578 new_file_size
= stat_buf
.st_size
+ old_file_h
->e_shentsize
+ new_data2_size
;
580 if (ftruncate (new_file
, new_file_size
))
581 fatal ("Can't ftruncate (%s): errno %d\n", new_name
, errno
);
583 new_base
= mmap (0, new_file_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
586 if (new_base
== (caddr_t
) -1)
587 fatal ("Can't mmap (%s): errno %d\n", new_name
, errno
);
589 new_file_h
= (Elf32_Ehdr
*) new_base
;
590 new_program_h
= (Elf32_Phdr
*) ((byte
*) new_base
+ old_file_h
->e_phoff
);
591 new_section_h
= (Elf32_Shdr
*)
592 ((byte
*) new_base
+ old_file_h
->e_shoff
+ new_data2_size
);
594 /* Make our new file, program and section headers as copies of the
598 memcpy (new_file_h
, old_file_h
, old_file_h
->e_ehsize
);
599 memcpy (new_program_h
, old_program_h
,
600 old_file_h
->e_phnum
* old_file_h
->e_phentsize
);
602 /* Modify the e_shstrndx if necessary. */
603 PATCH_INDEX (new_file_h
->e_shstrndx
);
605 /* Fix up file header. We'll add one section. Section header is
609 new_file_h
->e_shoff
+= new_data2_size
;
610 new_file_h
->e_shnum
+= 1;
613 fprintf (stderr
, "Old section offset %x\n", old_file_h
->e_shoff
);
614 fprintf (stderr
, "Old section count %d\n", old_file_h
->e_shnum
);
615 fprintf (stderr
, "New section offset %x\n", new_file_h
->e_shoff
);
616 fprintf (stderr
, "New section count %d\n", new_file_h
->e_shnum
);
619 /* Fix up a new program header. Extend the writable data segment so
620 * that the bss area is covered too. Find that segment by looking
621 * for a segment that ends just before the .bss area. Make sure
622 * that no segments are above the new .data2. Put a loop at the end
623 * to adjust the offset and address of any segment that is above
624 * data2, just in case we decide to allow this later.
627 for (n
= new_file_h
->e_phnum
- 1; n
>= 0; n
--)
629 /* Compute maximum of all requirements for alignment of section. */
630 int alignment
= (NEW_PROGRAM_H (n
)).p_align
;
631 if ((OLD_SECTION_H (old_bss_index
)).sh_addralign
> alignment
)
632 alignment
= OLD_SECTION_H (old_bss_index
).sh_addralign
;
634 if (NEW_PROGRAM_H (n
).p_vaddr
+ NEW_PROGRAM_H (n
).p_filesz
> old_bss_addr
)
635 fatal ("Program segment above .bss in %s\n", old_name
, 0);
637 if (NEW_PROGRAM_H (n
).p_type
== PT_LOAD
638 && (round_up ((NEW_PROGRAM_H (n
)).p_vaddr
639 + (NEW_PROGRAM_H (n
)).p_filesz
,
641 == round_up (old_bss_addr
, alignment
)))
645 fatal ("Couldn't find segment next to .bss in %s\n", old_name
, 0);
647 NEW_PROGRAM_H (n
).p_filesz
+= new_data2_size
;
648 NEW_PROGRAM_H (n
).p_memsz
= NEW_PROGRAM_H (n
).p_filesz
;
650 #if 0 /* Maybe allow section after data2 - does this ever happen? */
651 for (n
= new_file_h
->e_phnum
- 1; n
>= 0; n
--)
653 if (NEW_PROGRAM_H (n
).p_vaddr
654 && NEW_PROGRAM_H (n
).p_vaddr
>= new_data2_addr
)
655 NEW_PROGRAM_H (n
).p_vaddr
+= new_data2_size
- old_bss_size
;
657 if (NEW_PROGRAM_H (n
).p_offset
>= new_data2_offset
)
658 NEW_PROGRAM_H (n
).p_offset
+= new_data2_size
;
662 /* Fix up section headers based on new .data2 section. Any section
663 * whose offset or virtual address is after the new .data2 section
664 * gets its value adjusted. .bss size becomes zero and new address
665 * is set. data2 section header gets added by copying the existing
666 * .data header and modifying the offset, address and size.
668 for (old_data_index
= 1; old_data_index
< (int) old_file_h
->e_shnum
;
670 if (!strcmp (old_section_names
+ OLD_SECTION_H (old_data_index
).sh_name
,
673 if (old_data_index
== old_file_h
->e_shnum
)
674 fatal ("Can't find .data in %s.\n", old_name
, 0);
676 /* Walk through all section headers, insert the new data2 section right
677 before the new bss section. */
678 for (n
= 1, nn
= 1; n
< (int) old_file_h
->e_shnum
; n
++, nn
++)
681 /* If it is bss section, insert the new data2 section before it. */
682 if (n
== old_bss_index
)
684 /* Steal the data section header for this data2 section. */
685 memcpy (&NEW_SECTION_H (nn
), &OLD_SECTION_H (old_data_index
),
686 new_file_h
->e_shentsize
);
688 NEW_SECTION_H (nn
).sh_addr
= new_data2_addr
;
689 NEW_SECTION_H (nn
).sh_offset
= new_data2_offset
;
690 NEW_SECTION_H (nn
).sh_size
= new_data2_size
;
691 /* Use the bss section's alignment. This will assure that the
692 new data2 section always be placed in the same spot as the old
693 bss section by any other application. */
694 NEW_SECTION_H (nn
).sh_addralign
= OLD_SECTION_H (n
).sh_addralign
;
696 /* Now copy over what we have in the memory now. */
697 memcpy (NEW_SECTION_H (nn
).sh_offset
+ new_base
,
698 (caddr_t
) OLD_SECTION_H (n
).sh_addr
,
703 memcpy (&NEW_SECTION_H (nn
), &OLD_SECTION_H (n
),
704 old_file_h
->e_shentsize
);
706 /* The new bss section's size is zero, and its file offset and virtual
707 address should be off by NEW_DATA2_SIZE. */
708 if (n
== old_bss_index
)
710 /* NN should be `old_bss_index + 1' at this point. */
711 NEW_SECTION_H (nn
).sh_offset
+= new_data2_size
;
712 NEW_SECTION_H (nn
).sh_addr
+= new_data2_size
;
713 /* Let the new bss section address alignment be the same as the
714 section address alignment followed the old bss section, so
715 this section will be placed in exactly the same place. */
716 NEW_SECTION_H (nn
).sh_addralign
= OLD_SECTION_H (nn
).sh_addralign
;
717 NEW_SECTION_H (nn
).sh_size
= 0;
719 /* Any section that was original placed AFTER the bss section should now
720 be off by NEW_DATA2_SIZE. */
721 else if (NEW_SECTION_H (nn
).sh_offset
>= new_data2_offset
)
722 NEW_SECTION_H (nn
).sh_offset
+= new_data2_size
;
724 /* If any section hdr refers to the section after the new .data
725 section, make it refer to next one because we have inserted
726 a new section in between. */
728 PATCH_INDEX (NEW_SECTION_H (nn
).sh_link
);
729 PATCH_INDEX (NEW_SECTION_H (nn
).sh_info
);
731 /* Now, start to copy the content of sections. */
732 if (NEW_SECTION_H (nn
).sh_type
== SHT_NULL
733 || NEW_SECTION_H (nn
).sh_type
== SHT_NOBITS
)
736 /* Write out the sections. .data and .data1 (and data2, called
737 * ".data" in the strings table) get copied from the current process
738 * instead of the old file.
740 if (!strcmp (old_section_names
+ NEW_SECTION_H (n
).sh_name
, ".data")
741 || !strcmp ((old_section_names
+ NEW_SECTION_H (n
).sh_name
),
743 src
= (caddr_t
) OLD_SECTION_H (n
).sh_addr
;
745 src
= old_base
+ OLD_SECTION_H (n
).sh_offset
;
747 memcpy (NEW_SECTION_H (nn
).sh_offset
+ new_base
, src
,
748 NEW_SECTION_H (nn
).sh_size
);
750 /* If it is the symbol table, its st_shndx field needs to be patched. */
751 if (NEW_SECTION_H (nn
).sh_type
== SHT_SYMTAB
752 || NEW_SECTION_H (nn
).sh_type
== SHT_DYNSYM
)
754 Elf32_Shdr
*spt
= &NEW_SECTION_H (nn
);
755 unsigned int num
= spt
->sh_size
/ spt
->sh_entsize
;
756 Elf32_Sym
* sym
= (Elf32_Sym
*) (NEW_SECTION_H (nn
).sh_offset
+
760 if ((sym
->st_shndx
== SHN_UNDEF
)
761 || (sym
->st_shndx
== SHN_ABS
)
762 || (sym
->st_shndx
== SHN_COMMON
))
765 PATCH_INDEX (sym
->st_shndx
);
770 /* Close the files and make the new file executable */
772 if (close (old_file
))
773 fatal ("Can't close (%s): errno %d\n", old_name
, errno
);
775 if (close (new_file
))
776 fatal ("Can't close (%s): errno %d\n", new_name
, errno
);
778 if (stat (new_name
, &stat_buf
) == -1)
779 fatal ("Can't stat (%s): errno %d\n", new_name
, errno
);
783 stat_buf
.st_mode
|= 0111 & ~n
;
784 if (chmod (new_name
, stat_buf
.st_mode
) == -1)
785 fatal ("Can't chmod (%s): errno %d\n", new_name
, errno
);