Fix last ChangeLog entry.
[emacs.git] / src / alloc.c
blob62c3beec1d2a37ab80dc01efe53a7eaa444f8535
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
49 #include <verify.h>
51 #if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54 # define USE_VALGRIND 1
55 #endif
57 #if USE_VALGRIND
58 #include <valgrind/valgrind.h>
59 #include <valgrind/memcheck.h>
60 static bool valgrind_p;
61 #endif
63 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
65 #if ! GC_MARK_STACK
66 # undef GC_CHECK_MARKED_OBJECTS
67 #endif
69 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
71 marked objects. */
73 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75 #undef GC_MALLOC_CHECK
76 #endif
78 #include <unistd.h>
79 #include <fcntl.h>
81 #ifdef USE_GTK
82 # include "gtkutil.h"
83 #endif
84 #ifdef WINDOWSNT
85 #include "w32.h"
86 #include "w32heap.h" /* for sbrk */
87 #endif
89 #ifdef DOUG_LEA_MALLOC
91 #include <malloc.h>
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
96 #define MMAP_MAX_AREAS 100000000
98 #endif /* not DOUG_LEA_MALLOC */
100 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
103 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
107 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
111 /* Default value of gc_cons_threshold (see below). */
113 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
115 /* Global variables. */
116 struct emacs_globals globals;
118 /* Number of bytes of consing done since the last gc. */
120 EMACS_INT consing_since_gc;
122 /* Similar minimum, computed from Vgc_cons_percentage. */
124 EMACS_INT gc_relative_threshold;
126 /* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
129 EMACS_INT memory_full_cons_threshold;
131 /* True during GC. */
133 bool gc_in_progress;
135 /* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
139 bool abort_on_gc;
141 /* Number of live and free conses etc. */
143 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
144 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
145 static EMACS_INT total_free_floats, total_floats;
147 /* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
151 static char *spare_memory[7];
153 /* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
156 #define SPARE_MEMORY (1 << 14)
158 /* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
164 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
165 #define PUREBEG (char *) pure
167 /* Pointer to the pure area, and its size. */
169 static char *purebeg;
170 static ptrdiff_t pure_size;
172 /* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
175 static ptrdiff_t pure_bytes_used_before_overflow;
177 /* True if P points into pure space. */
179 #define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
182 /* Index in pure at which next pure Lisp object will be allocated.. */
184 static ptrdiff_t pure_bytes_used_lisp;
186 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188 static ptrdiff_t pure_bytes_used_non_lisp;
190 /* If nonzero, this is a warning delivered by malloc and not yet
191 displayed. */
193 const char *pending_malloc_warning;
195 /* Maximum amount of C stack to save when a GC happens. */
197 #ifndef MAX_SAVE_STACK
198 #define MAX_SAVE_STACK 16000
199 #endif
201 /* Buffer in which we save a copy of the C stack at each GC. */
203 #if MAX_SAVE_STACK > 0
204 static char *stack_copy;
205 static ptrdiff_t stack_copy_size;
207 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
208 avoiding any address sanitization. */
210 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
211 no_sanitize_memcpy (void *dest, void const *src, size_t size)
213 if (! ADDRESS_SANITIZER)
214 return memcpy (dest, src, size);
215 else
217 size_t i;
218 char *d = dest;
219 char const *s = src;
220 for (i = 0; i < size; i++)
221 d[i] = s[i];
222 return dest;
226 #endif /* MAX_SAVE_STACK > 0 */
228 static Lisp_Object Qconses;
229 static Lisp_Object Qsymbols;
230 static Lisp_Object Qmiscs;
231 static Lisp_Object Qstrings;
232 static Lisp_Object Qvectors;
233 static Lisp_Object Qfloats;
234 static Lisp_Object Qintervals;
235 static Lisp_Object Qbuffers;
236 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
237 static Lisp_Object Qgc_cons_threshold;
238 Lisp_Object Qautomatic_gc;
239 Lisp_Object Qchar_table_extra_slots;
241 /* Hook run after GC has finished. */
243 static Lisp_Object Qpost_gc_hook;
245 static void mark_terminals (void);
246 static void gc_sweep (void);
247 static Lisp_Object make_pure_vector (ptrdiff_t);
248 static void mark_buffer (struct buffer *);
250 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
251 static void refill_memory_reserve (void);
252 #endif
253 static void compact_small_strings (void);
254 static void free_large_strings (void);
255 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
257 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
258 what memory allocated via lisp_malloc and lisp_align_malloc is intended
259 for what purpose. This enumeration specifies the type of memory. */
261 enum mem_type
263 MEM_TYPE_NON_LISP,
264 MEM_TYPE_BUFFER,
265 MEM_TYPE_CONS,
266 MEM_TYPE_STRING,
267 MEM_TYPE_MISC,
268 MEM_TYPE_SYMBOL,
269 MEM_TYPE_FLOAT,
270 /* Since all non-bool pseudovectors are small enough to be
271 allocated from vector blocks, this memory type denotes
272 large regular vectors and large bool pseudovectors. */
273 MEM_TYPE_VECTORLIKE,
274 /* Special type to denote vector blocks. */
275 MEM_TYPE_VECTOR_BLOCK,
276 /* Special type to denote reserved memory. */
277 MEM_TYPE_SPARE
280 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
282 /* A unique object in pure space used to make some Lisp objects
283 on free lists recognizable in O(1). */
285 static Lisp_Object Vdead;
286 #define DEADP(x) EQ (x, Vdead)
288 #ifdef GC_MALLOC_CHECK
290 enum mem_type allocated_mem_type;
292 #endif /* GC_MALLOC_CHECK */
294 /* A node in the red-black tree describing allocated memory containing
295 Lisp data. Each such block is recorded with its start and end
296 address when it is allocated, and removed from the tree when it
297 is freed.
299 A red-black tree is a balanced binary tree with the following
300 properties:
302 1. Every node is either red or black.
303 2. Every leaf is black.
304 3. If a node is red, then both of its children are black.
305 4. Every simple path from a node to a descendant leaf contains
306 the same number of black nodes.
307 5. The root is always black.
309 When nodes are inserted into the tree, or deleted from the tree,
310 the tree is "fixed" so that these properties are always true.
312 A red-black tree with N internal nodes has height at most 2
313 log(N+1). Searches, insertions and deletions are done in O(log N).
314 Please see a text book about data structures for a detailed
315 description of red-black trees. Any book worth its salt should
316 describe them. */
318 struct mem_node
320 /* Children of this node. These pointers are never NULL. When there
321 is no child, the value is MEM_NIL, which points to a dummy node. */
322 struct mem_node *left, *right;
324 /* The parent of this node. In the root node, this is NULL. */
325 struct mem_node *parent;
327 /* Start and end of allocated region. */
328 void *start, *end;
330 /* Node color. */
331 enum {MEM_BLACK, MEM_RED} color;
333 /* Memory type. */
334 enum mem_type type;
337 /* Base address of stack. Set in main. */
339 Lisp_Object *stack_base;
341 /* Root of the tree describing allocated Lisp memory. */
343 static struct mem_node *mem_root;
345 /* Lowest and highest known address in the heap. */
347 static void *min_heap_address, *max_heap_address;
349 /* Sentinel node of the tree. */
351 static struct mem_node mem_z;
352 #define MEM_NIL &mem_z
354 static struct mem_node *mem_insert (void *, void *, enum mem_type);
355 static void mem_insert_fixup (struct mem_node *);
356 static void mem_rotate_left (struct mem_node *);
357 static void mem_rotate_right (struct mem_node *);
358 static void mem_delete (struct mem_node *);
359 static void mem_delete_fixup (struct mem_node *);
360 static struct mem_node *mem_find (void *);
362 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
364 #ifndef DEADP
365 # define DEADP(x) 0
366 #endif
368 /* Recording what needs to be marked for gc. */
370 struct gcpro *gcprolist;
372 /* Addresses of staticpro'd variables. Initialize it to a nonzero
373 value; otherwise some compilers put it into BSS. */
375 enum { NSTATICS = 2048 };
376 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
378 /* Index of next unused slot in staticvec. */
380 static int staticidx;
382 static void *pure_alloc (size_t, int);
384 /* Return X rounded to the next multiple of Y. Arguments should not
385 have side effects, as they are evaluated more than once. Assume X
386 + Y - 1 does not overflow. Tune for Y being a power of 2. */
388 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
389 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
390 : ((x) + (y) - 1) & ~ ((y) - 1))
392 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
394 static void *
395 ALIGN (void *ptr, int alignment)
397 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
400 static void
401 XFLOAT_INIT (Lisp_Object f, double n)
403 XFLOAT (f)->u.data = n;
407 /************************************************************************
408 Malloc
409 ************************************************************************/
411 /* Function malloc calls this if it finds we are near exhausting storage. */
413 void
414 malloc_warning (const char *str)
416 pending_malloc_warning = str;
420 /* Display an already-pending malloc warning. */
422 void
423 display_malloc_warning (void)
425 call3 (intern ("display-warning"),
426 intern ("alloc"),
427 build_string (pending_malloc_warning),
428 intern ("emergency"));
429 pending_malloc_warning = 0;
432 /* Called if we can't allocate relocatable space for a buffer. */
434 void
435 buffer_memory_full (ptrdiff_t nbytes)
437 /* If buffers use the relocating allocator, no need to free
438 spare_memory, because we may have plenty of malloc space left
439 that we could get, and if we don't, the malloc that fails will
440 itself cause spare_memory to be freed. If buffers don't use the
441 relocating allocator, treat this like any other failing
442 malloc. */
444 #ifndef REL_ALLOC
445 memory_full (nbytes);
446 #else
447 /* This used to call error, but if we've run out of memory, we could
448 get infinite recursion trying to build the string. */
449 xsignal (Qnil, Vmemory_signal_data);
450 #endif
453 /* A common multiple of the positive integers A and B. Ideally this
454 would be the least common multiple, but there's no way to do that
455 as a constant expression in C, so do the best that we can easily do. */
456 #define COMMON_MULTIPLE(a, b) \
457 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
459 #ifndef XMALLOC_OVERRUN_CHECK
460 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
461 #else
463 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
464 around each block.
466 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
467 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
468 block size in little-endian order. The trailer consists of
469 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
471 The header is used to detect whether this block has been allocated
472 through these functions, as some low-level libc functions may
473 bypass the malloc hooks. */
475 #define XMALLOC_OVERRUN_CHECK_SIZE 16
476 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
477 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
479 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
480 hold a size_t value and (2) the header size is a multiple of the
481 alignment that Emacs needs for C types and for USE_LSB_TAG. */
482 #define XMALLOC_BASE_ALIGNMENT \
483 alignof (union { long double d; intmax_t i; void *p; })
485 #if USE_LSB_TAG
486 # define XMALLOC_HEADER_ALIGNMENT \
487 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
488 #else
489 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
490 #endif
491 #define XMALLOC_OVERRUN_SIZE_SIZE \
492 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
493 + XMALLOC_HEADER_ALIGNMENT - 1) \
494 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
495 - XMALLOC_OVERRUN_CHECK_SIZE)
497 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
498 { '\x9a', '\x9b', '\xae', '\xaf',
499 '\xbf', '\xbe', '\xce', '\xcf',
500 '\xea', '\xeb', '\xec', '\xed',
501 '\xdf', '\xde', '\x9c', '\x9d' };
503 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
504 { '\xaa', '\xab', '\xac', '\xad',
505 '\xba', '\xbb', '\xbc', '\xbd',
506 '\xca', '\xcb', '\xcc', '\xcd',
507 '\xda', '\xdb', '\xdc', '\xdd' };
509 /* Insert and extract the block size in the header. */
511 static void
512 xmalloc_put_size (unsigned char *ptr, size_t size)
514 int i;
515 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
517 *--ptr = size & ((1 << CHAR_BIT) - 1);
518 size >>= CHAR_BIT;
522 static size_t
523 xmalloc_get_size (unsigned char *ptr)
525 size_t size = 0;
526 int i;
527 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
528 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
530 size <<= CHAR_BIT;
531 size += *ptr++;
533 return size;
537 /* Like malloc, but wraps allocated block with header and trailer. */
539 static void *
540 overrun_check_malloc (size_t size)
542 register unsigned char *val;
543 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
544 emacs_abort ();
546 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
547 if (val)
549 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
550 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
551 xmalloc_put_size (val, size);
552 memcpy (val + size, xmalloc_overrun_check_trailer,
553 XMALLOC_OVERRUN_CHECK_SIZE);
555 return val;
559 /* Like realloc, but checks old block for overrun, and wraps new block
560 with header and trailer. */
562 static void *
563 overrun_check_realloc (void *block, size_t size)
565 register unsigned char *val = (unsigned char *) block;
566 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
567 emacs_abort ();
569 if (val
570 && memcmp (xmalloc_overrun_check_header,
571 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
572 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
574 size_t osize = xmalloc_get_size (val);
575 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
576 XMALLOC_OVERRUN_CHECK_SIZE))
577 emacs_abort ();
578 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
579 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
580 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
583 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
585 if (val)
587 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
588 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
589 xmalloc_put_size (val, size);
590 memcpy (val + size, xmalloc_overrun_check_trailer,
591 XMALLOC_OVERRUN_CHECK_SIZE);
593 return val;
596 /* Like free, but checks block for overrun. */
598 static void
599 overrun_check_free (void *block)
601 unsigned char *val = (unsigned char *) block;
603 if (val
604 && memcmp (xmalloc_overrun_check_header,
605 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
606 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
608 size_t osize = xmalloc_get_size (val);
609 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
610 XMALLOC_OVERRUN_CHECK_SIZE))
611 emacs_abort ();
612 #ifdef XMALLOC_CLEAR_FREE_MEMORY
613 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
614 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
615 #else
616 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
617 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
618 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
619 #endif
622 free (val);
625 #undef malloc
626 #undef realloc
627 #undef free
628 #define malloc overrun_check_malloc
629 #define realloc overrun_check_realloc
630 #define free overrun_check_free
631 #endif
633 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
634 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
635 If that variable is set, block input while in one of Emacs's memory
636 allocation functions. There should be no need for this debugging
637 option, since signal handlers do not allocate memory, but Emacs
638 formerly allocated memory in signal handlers and this compile-time
639 option remains as a way to help debug the issue should it rear its
640 ugly head again. */
641 #ifdef XMALLOC_BLOCK_INPUT_CHECK
642 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
643 static void
644 malloc_block_input (void)
646 if (block_input_in_memory_allocators)
647 block_input ();
649 static void
650 malloc_unblock_input (void)
652 if (block_input_in_memory_allocators)
653 unblock_input ();
655 # define MALLOC_BLOCK_INPUT malloc_block_input ()
656 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
657 #else
658 # define MALLOC_BLOCK_INPUT ((void) 0)
659 # define MALLOC_UNBLOCK_INPUT ((void) 0)
660 #endif
662 #define MALLOC_PROBE(size) \
663 do { \
664 if (profiler_memory_running) \
665 malloc_probe (size); \
666 } while (0)
669 /* Like malloc but check for no memory and block interrupt input.. */
671 void *
672 xmalloc (size_t size)
674 void *val;
676 MALLOC_BLOCK_INPUT;
677 val = malloc (size);
678 MALLOC_UNBLOCK_INPUT;
680 if (!val && size)
681 memory_full (size);
682 MALLOC_PROBE (size);
683 return val;
686 /* Like the above, but zeroes out the memory just allocated. */
688 void *
689 xzalloc (size_t size)
691 void *val;
693 MALLOC_BLOCK_INPUT;
694 val = malloc (size);
695 MALLOC_UNBLOCK_INPUT;
697 if (!val && size)
698 memory_full (size);
699 memset (val, 0, size);
700 MALLOC_PROBE (size);
701 return val;
704 /* Like realloc but check for no memory and block interrupt input.. */
706 void *
707 xrealloc (void *block, size_t size)
709 void *val;
711 MALLOC_BLOCK_INPUT;
712 /* We must call malloc explicitly when BLOCK is 0, since some
713 reallocs don't do this. */
714 if (! block)
715 val = malloc (size);
716 else
717 val = realloc (block, size);
718 MALLOC_UNBLOCK_INPUT;
720 if (!val && size)
721 memory_full (size);
722 MALLOC_PROBE (size);
723 return val;
727 /* Like free but block interrupt input. */
729 void
730 xfree (void *block)
732 if (!block)
733 return;
734 MALLOC_BLOCK_INPUT;
735 free (block);
736 MALLOC_UNBLOCK_INPUT;
737 /* We don't call refill_memory_reserve here
738 because in practice the call in r_alloc_free seems to suffice. */
742 /* Other parts of Emacs pass large int values to allocator functions
743 expecting ptrdiff_t. This is portable in practice, but check it to
744 be safe. */
745 verify (INT_MAX <= PTRDIFF_MAX);
748 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
749 Signal an error on memory exhaustion, and block interrupt input. */
751 void *
752 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
754 eassert (0 <= nitems && 0 < item_size);
755 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
756 memory_full (SIZE_MAX);
757 return xmalloc (nitems * item_size);
761 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
762 Signal an error on memory exhaustion, and block interrupt input. */
764 void *
765 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
767 eassert (0 <= nitems && 0 < item_size);
768 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
769 memory_full (SIZE_MAX);
770 return xrealloc (pa, nitems * item_size);
774 /* Grow PA, which points to an array of *NITEMS items, and return the
775 location of the reallocated array, updating *NITEMS to reflect its
776 new size. The new array will contain at least NITEMS_INCR_MIN more
777 items, but will not contain more than NITEMS_MAX items total.
778 ITEM_SIZE is the size of each item, in bytes.
780 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
781 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
782 infinity.
784 If PA is null, then allocate a new array instead of reallocating
785 the old one.
787 Block interrupt input as needed. If memory exhaustion occurs, set
788 *NITEMS to zero if PA is null, and signal an error (i.e., do not
789 return).
791 Thus, to grow an array A without saving its old contents, do
792 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
793 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
794 and signals an error, and later this code is reexecuted and
795 attempts to free A. */
797 void *
798 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
799 ptrdiff_t nitems_max, ptrdiff_t item_size)
801 /* The approximate size to use for initial small allocation
802 requests. This is the largest "small" request for the GNU C
803 library malloc. */
804 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
806 /* If the array is tiny, grow it to about (but no greater than)
807 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
808 ptrdiff_t n = *nitems;
809 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
810 ptrdiff_t half_again = n >> 1;
811 ptrdiff_t incr_estimate = max (tiny_max, half_again);
813 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
814 NITEMS_MAX, and what the C language can represent safely. */
815 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
816 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
817 ? nitems_max : C_language_max);
818 ptrdiff_t nitems_incr_max = n_max - n;
819 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
821 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
822 if (! pa)
823 *nitems = 0;
824 if (nitems_incr_max < incr)
825 memory_full (SIZE_MAX);
826 n += incr;
827 pa = xrealloc (pa, n * item_size);
828 *nitems = n;
829 return pa;
833 /* Like strdup, but uses xmalloc. */
835 char *
836 xstrdup (const char *s)
838 ptrdiff_t size;
839 eassert (s);
840 size = strlen (s) + 1;
841 return memcpy (xmalloc (size), s, size);
844 /* Like above, but duplicates Lisp string to C string. */
846 char *
847 xlispstrdup (Lisp_Object string)
849 ptrdiff_t size = SBYTES (string) + 1;
850 return memcpy (xmalloc (size), SSDATA (string), size);
853 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
854 pointed to. If STRING is null, assign it without copying anything.
855 Allocate before freeing, to avoid a dangling pointer if allocation
856 fails. */
858 void
859 dupstring (char **ptr, char const *string)
861 char *old = *ptr;
862 *ptr = string ? xstrdup (string) : 0;
863 xfree (old);
867 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
868 argument is a const pointer. */
870 void
871 xputenv (char const *string)
873 if (putenv ((char *) string) != 0)
874 memory_full (0);
877 /* Return a newly allocated memory block of SIZE bytes, remembering
878 to free it when unwinding. */
879 void *
880 record_xmalloc (size_t size)
882 void *p = xmalloc (size);
883 record_unwind_protect_ptr (xfree, p);
884 return p;
888 /* Like malloc but used for allocating Lisp data. NBYTES is the
889 number of bytes to allocate, TYPE describes the intended use of the
890 allocated memory block (for strings, for conses, ...). */
892 #if ! USE_LSB_TAG
893 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
894 #endif
896 static void *
897 lisp_malloc (size_t nbytes, enum mem_type type)
899 register void *val;
901 MALLOC_BLOCK_INPUT;
903 #ifdef GC_MALLOC_CHECK
904 allocated_mem_type = type;
905 #endif
907 val = malloc (nbytes);
909 #if ! USE_LSB_TAG
910 /* If the memory just allocated cannot be addressed thru a Lisp
911 object's pointer, and it needs to be,
912 that's equivalent to running out of memory. */
913 if (val && type != MEM_TYPE_NON_LISP)
915 Lisp_Object tem;
916 XSETCONS (tem, (char *) val + nbytes - 1);
917 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
919 lisp_malloc_loser = val;
920 free (val);
921 val = 0;
924 #endif
926 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
927 if (val && type != MEM_TYPE_NON_LISP)
928 mem_insert (val, (char *) val + nbytes, type);
929 #endif
931 MALLOC_UNBLOCK_INPUT;
932 if (!val && nbytes)
933 memory_full (nbytes);
934 MALLOC_PROBE (nbytes);
935 return val;
938 /* Free BLOCK. This must be called to free memory allocated with a
939 call to lisp_malloc. */
941 static void
942 lisp_free (void *block)
944 MALLOC_BLOCK_INPUT;
945 free (block);
946 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
947 mem_delete (mem_find (block));
948 #endif
949 MALLOC_UNBLOCK_INPUT;
952 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
954 /* The entry point is lisp_align_malloc which returns blocks of at most
955 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
957 /* Use aligned_alloc if it or a simple substitute is available.
958 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
959 clang 3.3 anyway. */
961 #if ! ADDRESS_SANITIZER
962 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
963 # define USE_ALIGNED_ALLOC 1
964 /* Defined in gmalloc.c. */
965 void *aligned_alloc (size_t, size_t);
966 # elif defined HAVE_ALIGNED_ALLOC
967 # define USE_ALIGNED_ALLOC 1
968 # elif defined HAVE_POSIX_MEMALIGN
969 # define USE_ALIGNED_ALLOC 1
970 static void *
971 aligned_alloc (size_t alignment, size_t size)
973 void *p;
974 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
976 # endif
977 #endif
979 /* BLOCK_ALIGN has to be a power of 2. */
980 #define BLOCK_ALIGN (1 << 10)
982 /* Padding to leave at the end of a malloc'd block. This is to give
983 malloc a chance to minimize the amount of memory wasted to alignment.
984 It should be tuned to the particular malloc library used.
985 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
986 aligned_alloc on the other hand would ideally prefer a value of 4
987 because otherwise, there's 1020 bytes wasted between each ablocks.
988 In Emacs, testing shows that those 1020 can most of the time be
989 efficiently used by malloc to place other objects, so a value of 0 can
990 still preferable unless you have a lot of aligned blocks and virtually
991 nothing else. */
992 #define BLOCK_PADDING 0
993 #define BLOCK_BYTES \
994 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
996 /* Internal data structures and constants. */
998 #define ABLOCKS_SIZE 16
1000 /* An aligned block of memory. */
1001 struct ablock
1003 union
1005 char payload[BLOCK_BYTES];
1006 struct ablock *next_free;
1007 } x;
1008 /* `abase' is the aligned base of the ablocks. */
1009 /* It is overloaded to hold the virtual `busy' field that counts
1010 the number of used ablock in the parent ablocks.
1011 The first ablock has the `busy' field, the others have the `abase'
1012 field. To tell the difference, we assume that pointers will have
1013 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1014 is used to tell whether the real base of the parent ablocks is `abase'
1015 (if not, the word before the first ablock holds a pointer to the
1016 real base). */
1017 struct ablocks *abase;
1018 /* The padding of all but the last ablock is unused. The padding of
1019 the last ablock in an ablocks is not allocated. */
1020 #if BLOCK_PADDING
1021 char padding[BLOCK_PADDING];
1022 #endif
1025 /* A bunch of consecutive aligned blocks. */
1026 struct ablocks
1028 struct ablock blocks[ABLOCKS_SIZE];
1031 /* Size of the block requested from malloc or aligned_alloc. */
1032 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1034 #define ABLOCK_ABASE(block) \
1035 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1036 ? (struct ablocks *)(block) \
1037 : (block)->abase)
1039 /* Virtual `busy' field. */
1040 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1042 /* Pointer to the (not necessarily aligned) malloc block. */
1043 #ifdef USE_ALIGNED_ALLOC
1044 #define ABLOCKS_BASE(abase) (abase)
1045 #else
1046 #define ABLOCKS_BASE(abase) \
1047 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1048 #endif
1050 /* The list of free ablock. */
1051 static struct ablock *free_ablock;
1053 /* Allocate an aligned block of nbytes.
1054 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1055 smaller or equal to BLOCK_BYTES. */
1056 static void *
1057 lisp_align_malloc (size_t nbytes, enum mem_type type)
1059 void *base, *val;
1060 struct ablocks *abase;
1062 eassert (nbytes <= BLOCK_BYTES);
1064 MALLOC_BLOCK_INPUT;
1066 #ifdef GC_MALLOC_CHECK
1067 allocated_mem_type = type;
1068 #endif
1070 if (!free_ablock)
1072 int i;
1073 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1075 #ifdef DOUG_LEA_MALLOC
1076 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1077 because mapped region contents are not preserved in
1078 a dumped Emacs. */
1079 mallopt (M_MMAP_MAX, 0);
1080 #endif
1082 #ifdef USE_ALIGNED_ALLOC
1083 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1084 #else
1085 base = malloc (ABLOCKS_BYTES);
1086 abase = ALIGN (base, BLOCK_ALIGN);
1087 #endif
1089 if (base == 0)
1091 MALLOC_UNBLOCK_INPUT;
1092 memory_full (ABLOCKS_BYTES);
1095 aligned = (base == abase);
1096 if (!aligned)
1097 ((void **) abase)[-1] = base;
1099 #ifdef DOUG_LEA_MALLOC
1100 /* Back to a reasonable maximum of mmap'ed areas. */
1101 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1102 #endif
1104 #if ! USE_LSB_TAG
1105 /* If the memory just allocated cannot be addressed thru a Lisp
1106 object's pointer, and it needs to be, that's equivalent to
1107 running out of memory. */
1108 if (type != MEM_TYPE_NON_LISP)
1110 Lisp_Object tem;
1111 char *end = (char *) base + ABLOCKS_BYTES - 1;
1112 XSETCONS (tem, end);
1113 if ((char *) XCONS (tem) != end)
1115 lisp_malloc_loser = base;
1116 free (base);
1117 MALLOC_UNBLOCK_INPUT;
1118 memory_full (SIZE_MAX);
1121 #endif
1123 /* Initialize the blocks and put them on the free list.
1124 If `base' was not properly aligned, we can't use the last block. */
1125 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1127 abase->blocks[i].abase = abase;
1128 abase->blocks[i].x.next_free = free_ablock;
1129 free_ablock = &abase->blocks[i];
1131 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1133 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1134 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1135 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1136 eassert (ABLOCKS_BASE (abase) == base);
1137 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1140 abase = ABLOCK_ABASE (free_ablock);
1141 ABLOCKS_BUSY (abase)
1142 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1143 val = free_ablock;
1144 free_ablock = free_ablock->x.next_free;
1146 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1147 if (type != MEM_TYPE_NON_LISP)
1148 mem_insert (val, (char *) val + nbytes, type);
1149 #endif
1151 MALLOC_UNBLOCK_INPUT;
1153 MALLOC_PROBE (nbytes);
1155 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1156 return val;
1159 static void
1160 lisp_align_free (void *block)
1162 struct ablock *ablock = block;
1163 struct ablocks *abase = ABLOCK_ABASE (ablock);
1165 MALLOC_BLOCK_INPUT;
1166 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1167 mem_delete (mem_find (block));
1168 #endif
1169 /* Put on free list. */
1170 ablock->x.next_free = free_ablock;
1171 free_ablock = ablock;
1172 /* Update busy count. */
1173 ABLOCKS_BUSY (abase)
1174 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1176 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1177 { /* All the blocks are free. */
1178 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1179 struct ablock **tem = &free_ablock;
1180 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1182 while (*tem)
1184 if (*tem >= (struct ablock *) abase && *tem < atop)
1186 i++;
1187 *tem = (*tem)->x.next_free;
1189 else
1190 tem = &(*tem)->x.next_free;
1192 eassert ((aligned & 1) == aligned);
1193 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1194 #ifdef USE_POSIX_MEMALIGN
1195 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1196 #endif
1197 free (ABLOCKS_BASE (abase));
1199 MALLOC_UNBLOCK_INPUT;
1203 /***********************************************************************
1204 Interval Allocation
1205 ***********************************************************************/
1207 /* Number of intervals allocated in an interval_block structure.
1208 The 1020 is 1024 minus malloc overhead. */
1210 #define INTERVAL_BLOCK_SIZE \
1211 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1213 /* Intervals are allocated in chunks in the form of an interval_block
1214 structure. */
1216 struct interval_block
1218 /* Place `intervals' first, to preserve alignment. */
1219 struct interval intervals[INTERVAL_BLOCK_SIZE];
1220 struct interval_block *next;
1223 /* Current interval block. Its `next' pointer points to older
1224 blocks. */
1226 static struct interval_block *interval_block;
1228 /* Index in interval_block above of the next unused interval
1229 structure. */
1231 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1233 /* Number of free and live intervals. */
1235 static EMACS_INT total_free_intervals, total_intervals;
1237 /* List of free intervals. */
1239 static INTERVAL interval_free_list;
1241 /* Return a new interval. */
1243 INTERVAL
1244 make_interval (void)
1246 INTERVAL val;
1248 MALLOC_BLOCK_INPUT;
1250 if (interval_free_list)
1252 val = interval_free_list;
1253 interval_free_list = INTERVAL_PARENT (interval_free_list);
1255 else
1257 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1259 struct interval_block *newi
1260 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1262 newi->next = interval_block;
1263 interval_block = newi;
1264 interval_block_index = 0;
1265 total_free_intervals += INTERVAL_BLOCK_SIZE;
1267 val = &interval_block->intervals[interval_block_index++];
1270 MALLOC_UNBLOCK_INPUT;
1272 consing_since_gc += sizeof (struct interval);
1273 intervals_consed++;
1274 total_free_intervals--;
1275 RESET_INTERVAL (val);
1276 val->gcmarkbit = 0;
1277 return val;
1281 /* Mark Lisp objects in interval I. */
1283 static void
1284 mark_interval (register INTERVAL i, Lisp_Object dummy)
1286 /* Intervals should never be shared. So, if extra internal checking is
1287 enabled, GC aborts if it seems to have visited an interval twice. */
1288 eassert (!i->gcmarkbit);
1289 i->gcmarkbit = 1;
1290 mark_object (i->plist);
1293 /* Mark the interval tree rooted in I. */
1295 #define MARK_INTERVAL_TREE(i) \
1296 do { \
1297 if (i && !i->gcmarkbit) \
1298 traverse_intervals_noorder (i, mark_interval, Qnil); \
1299 } while (0)
1301 /***********************************************************************
1302 String Allocation
1303 ***********************************************************************/
1305 /* Lisp_Strings are allocated in string_block structures. When a new
1306 string_block is allocated, all the Lisp_Strings it contains are
1307 added to a free-list string_free_list. When a new Lisp_String is
1308 needed, it is taken from that list. During the sweep phase of GC,
1309 string_blocks that are entirely free are freed, except two which
1310 we keep.
1312 String data is allocated from sblock structures. Strings larger
1313 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1314 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1316 Sblocks consist internally of sdata structures, one for each
1317 Lisp_String. The sdata structure points to the Lisp_String it
1318 belongs to. The Lisp_String points back to the `u.data' member of
1319 its sdata structure.
1321 When a Lisp_String is freed during GC, it is put back on
1322 string_free_list, and its `data' member and its sdata's `string'
1323 pointer is set to null. The size of the string is recorded in the
1324 `n.nbytes' member of the sdata. So, sdata structures that are no
1325 longer used, can be easily recognized, and it's easy to compact the
1326 sblocks of small strings which we do in compact_small_strings. */
1328 /* Size in bytes of an sblock structure used for small strings. This
1329 is 8192 minus malloc overhead. */
1331 #define SBLOCK_SIZE 8188
1333 /* Strings larger than this are considered large strings. String data
1334 for large strings is allocated from individual sblocks. */
1336 #define LARGE_STRING_BYTES 1024
1338 /* The SDATA typedef is a struct or union describing string memory
1339 sub-allocated from an sblock. This is where the contents of Lisp
1340 strings are stored. */
1342 struct sdata
1344 /* Back-pointer to the string this sdata belongs to. If null, this
1345 structure is free, and NBYTES (in this structure or in the union below)
1346 contains the string's byte size (the same value that STRING_BYTES
1347 would return if STRING were non-null). If non-null, STRING_BYTES
1348 (STRING) is the size of the data, and DATA contains the string's
1349 contents. */
1350 struct Lisp_String *string;
1352 #ifdef GC_CHECK_STRING_BYTES
1353 ptrdiff_t nbytes;
1354 #endif
1356 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1359 #ifdef GC_CHECK_STRING_BYTES
1361 typedef struct sdata sdata;
1362 #define SDATA_NBYTES(S) (S)->nbytes
1363 #define SDATA_DATA(S) (S)->data
1365 #else
1367 typedef union
1369 struct Lisp_String *string;
1371 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1372 which has a flexible array member. However, if implemented by
1373 giving this union a member of type 'struct sdata', the union
1374 could not be the last (flexible) member of 'struct sblock',
1375 because C99 prohibits a flexible array member from having a type
1376 that is itself a flexible array. So, comment this member out here,
1377 but remember that the option's there when using this union. */
1378 #if 0
1379 struct sdata u;
1380 #endif
1382 /* When STRING is null. */
1383 struct
1385 struct Lisp_String *string;
1386 ptrdiff_t nbytes;
1387 } n;
1388 } sdata;
1390 #define SDATA_NBYTES(S) (S)->n.nbytes
1391 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1393 #endif /* not GC_CHECK_STRING_BYTES */
1395 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1397 /* Structure describing a block of memory which is sub-allocated to
1398 obtain string data memory for strings. Blocks for small strings
1399 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1400 as large as needed. */
1402 struct sblock
1404 /* Next in list. */
1405 struct sblock *next;
1407 /* Pointer to the next free sdata block. This points past the end
1408 of the sblock if there isn't any space left in this block. */
1409 sdata *next_free;
1411 /* String data. */
1412 sdata data[FLEXIBLE_ARRAY_MEMBER];
1415 /* Number of Lisp strings in a string_block structure. The 1020 is
1416 1024 minus malloc overhead. */
1418 #define STRING_BLOCK_SIZE \
1419 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1421 /* Structure describing a block from which Lisp_String structures
1422 are allocated. */
1424 struct string_block
1426 /* Place `strings' first, to preserve alignment. */
1427 struct Lisp_String strings[STRING_BLOCK_SIZE];
1428 struct string_block *next;
1431 /* Head and tail of the list of sblock structures holding Lisp string
1432 data. We always allocate from current_sblock. The NEXT pointers
1433 in the sblock structures go from oldest_sblock to current_sblock. */
1435 static struct sblock *oldest_sblock, *current_sblock;
1437 /* List of sblocks for large strings. */
1439 static struct sblock *large_sblocks;
1441 /* List of string_block structures. */
1443 static struct string_block *string_blocks;
1445 /* Free-list of Lisp_Strings. */
1447 static struct Lisp_String *string_free_list;
1449 /* Number of live and free Lisp_Strings. */
1451 static EMACS_INT total_strings, total_free_strings;
1453 /* Number of bytes used by live strings. */
1455 static EMACS_INT total_string_bytes;
1457 /* Given a pointer to a Lisp_String S which is on the free-list
1458 string_free_list, return a pointer to its successor in the
1459 free-list. */
1461 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1463 /* Return a pointer to the sdata structure belonging to Lisp string S.
1464 S must be live, i.e. S->data must not be null. S->data is actually
1465 a pointer to the `u.data' member of its sdata structure; the
1466 structure starts at a constant offset in front of that. */
1468 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1471 #ifdef GC_CHECK_STRING_OVERRUN
1473 /* We check for overrun in string data blocks by appending a small
1474 "cookie" after each allocated string data block, and check for the
1475 presence of this cookie during GC. */
1477 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1478 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1479 { '\xde', '\xad', '\xbe', '\xef' };
1481 #else
1482 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1483 #endif
1485 /* Value is the size of an sdata structure large enough to hold NBYTES
1486 bytes of string data. The value returned includes a terminating
1487 NUL byte, the size of the sdata structure, and padding. */
1489 #ifdef GC_CHECK_STRING_BYTES
1491 #define SDATA_SIZE(NBYTES) \
1492 ((SDATA_DATA_OFFSET \
1493 + (NBYTES) + 1 \
1494 + sizeof (ptrdiff_t) - 1) \
1495 & ~(sizeof (ptrdiff_t) - 1))
1497 #else /* not GC_CHECK_STRING_BYTES */
1499 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1500 less than the size of that member. The 'max' is not needed when
1501 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1502 alignment code reserves enough space. */
1504 #define SDATA_SIZE(NBYTES) \
1505 ((SDATA_DATA_OFFSET \
1506 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1507 ? NBYTES \
1508 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1509 + 1 \
1510 + sizeof (ptrdiff_t) - 1) \
1511 & ~(sizeof (ptrdiff_t) - 1))
1513 #endif /* not GC_CHECK_STRING_BYTES */
1515 /* Extra bytes to allocate for each string. */
1517 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1519 /* Exact bound on the number of bytes in a string, not counting the
1520 terminating null. A string cannot contain more bytes than
1521 STRING_BYTES_BOUND, nor can it be so long that the size_t
1522 arithmetic in allocate_string_data would overflow while it is
1523 calculating a value to be passed to malloc. */
1524 static ptrdiff_t const STRING_BYTES_MAX =
1525 min (STRING_BYTES_BOUND,
1526 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1527 - GC_STRING_EXTRA
1528 - offsetof (struct sblock, data)
1529 - SDATA_DATA_OFFSET)
1530 & ~(sizeof (EMACS_INT) - 1)));
1532 /* Initialize string allocation. Called from init_alloc_once. */
1534 static void
1535 init_strings (void)
1537 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1538 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1542 #ifdef GC_CHECK_STRING_BYTES
1544 static int check_string_bytes_count;
1546 /* Like STRING_BYTES, but with debugging check. Can be
1547 called during GC, so pay attention to the mark bit. */
1549 ptrdiff_t
1550 string_bytes (struct Lisp_String *s)
1552 ptrdiff_t nbytes =
1553 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1555 if (!PURE_POINTER_P (s)
1556 && s->data
1557 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1558 emacs_abort ();
1559 return nbytes;
1562 /* Check validity of Lisp strings' string_bytes member in B. */
1564 static void
1565 check_sblock (struct sblock *b)
1567 sdata *from, *end, *from_end;
1569 end = b->next_free;
1571 for (from = b->data; from < end; from = from_end)
1573 /* Compute the next FROM here because copying below may
1574 overwrite data we need to compute it. */
1575 ptrdiff_t nbytes;
1577 /* Check that the string size recorded in the string is the
1578 same as the one recorded in the sdata structure. */
1579 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1580 : SDATA_NBYTES (from));
1581 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1586 /* Check validity of Lisp strings' string_bytes member. ALL_P
1587 means check all strings, otherwise check only most
1588 recently allocated strings. Used for hunting a bug. */
1590 static void
1591 check_string_bytes (bool all_p)
1593 if (all_p)
1595 struct sblock *b;
1597 for (b = large_sblocks; b; b = b->next)
1599 struct Lisp_String *s = b->data[0].string;
1600 if (s)
1601 string_bytes (s);
1604 for (b = oldest_sblock; b; b = b->next)
1605 check_sblock (b);
1607 else if (current_sblock)
1608 check_sblock (current_sblock);
1611 #else /* not GC_CHECK_STRING_BYTES */
1613 #define check_string_bytes(all) ((void) 0)
1615 #endif /* GC_CHECK_STRING_BYTES */
1617 #ifdef GC_CHECK_STRING_FREE_LIST
1619 /* Walk through the string free list looking for bogus next pointers.
1620 This may catch buffer overrun from a previous string. */
1622 static void
1623 check_string_free_list (void)
1625 struct Lisp_String *s;
1627 /* Pop a Lisp_String off the free-list. */
1628 s = string_free_list;
1629 while (s != NULL)
1631 if ((uintptr_t) s < 1024)
1632 emacs_abort ();
1633 s = NEXT_FREE_LISP_STRING (s);
1636 #else
1637 #define check_string_free_list()
1638 #endif
1640 /* Return a new Lisp_String. */
1642 static struct Lisp_String *
1643 allocate_string (void)
1645 struct Lisp_String *s;
1647 MALLOC_BLOCK_INPUT;
1649 /* If the free-list is empty, allocate a new string_block, and
1650 add all the Lisp_Strings in it to the free-list. */
1651 if (string_free_list == NULL)
1653 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1654 int i;
1656 b->next = string_blocks;
1657 string_blocks = b;
1659 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1661 s = b->strings + i;
1662 /* Every string on a free list should have NULL data pointer. */
1663 s->data = NULL;
1664 NEXT_FREE_LISP_STRING (s) = string_free_list;
1665 string_free_list = s;
1668 total_free_strings += STRING_BLOCK_SIZE;
1671 check_string_free_list ();
1673 /* Pop a Lisp_String off the free-list. */
1674 s = string_free_list;
1675 string_free_list = NEXT_FREE_LISP_STRING (s);
1677 MALLOC_UNBLOCK_INPUT;
1679 --total_free_strings;
1680 ++total_strings;
1681 ++strings_consed;
1682 consing_since_gc += sizeof *s;
1684 #ifdef GC_CHECK_STRING_BYTES
1685 if (!noninteractive)
1687 if (++check_string_bytes_count == 200)
1689 check_string_bytes_count = 0;
1690 check_string_bytes (1);
1692 else
1693 check_string_bytes (0);
1695 #endif /* GC_CHECK_STRING_BYTES */
1697 return s;
1701 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1702 plus a NUL byte at the end. Allocate an sdata structure for S, and
1703 set S->data to its `u.data' member. Store a NUL byte at the end of
1704 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1705 S->data if it was initially non-null. */
1707 void
1708 allocate_string_data (struct Lisp_String *s,
1709 EMACS_INT nchars, EMACS_INT nbytes)
1711 sdata *data, *old_data;
1712 struct sblock *b;
1713 ptrdiff_t needed, old_nbytes;
1715 if (STRING_BYTES_MAX < nbytes)
1716 string_overflow ();
1718 /* Determine the number of bytes needed to store NBYTES bytes
1719 of string data. */
1720 needed = SDATA_SIZE (nbytes);
1721 if (s->data)
1723 old_data = SDATA_OF_STRING (s);
1724 old_nbytes = STRING_BYTES (s);
1726 else
1727 old_data = NULL;
1729 MALLOC_BLOCK_INPUT;
1731 if (nbytes > LARGE_STRING_BYTES)
1733 size_t size = offsetof (struct sblock, data) + needed;
1735 #ifdef DOUG_LEA_MALLOC
1736 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1737 because mapped region contents are not preserved in
1738 a dumped Emacs.
1740 In case you think of allowing it in a dumped Emacs at the
1741 cost of not being able to re-dump, there's another reason:
1742 mmap'ed data typically have an address towards the top of the
1743 address space, which won't fit into an EMACS_INT (at least on
1744 32-bit systems with the current tagging scheme). --fx */
1745 mallopt (M_MMAP_MAX, 0);
1746 #endif
1748 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1750 #ifdef DOUG_LEA_MALLOC
1751 /* Back to a reasonable maximum of mmap'ed areas. */
1752 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1753 #endif
1755 b->next_free = b->data;
1756 b->data[0].string = NULL;
1757 b->next = large_sblocks;
1758 large_sblocks = b;
1760 else if (current_sblock == NULL
1761 || (((char *) current_sblock + SBLOCK_SIZE
1762 - (char *) current_sblock->next_free)
1763 < (needed + GC_STRING_EXTRA)))
1765 /* Not enough room in the current sblock. */
1766 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1767 b->next_free = b->data;
1768 b->data[0].string = NULL;
1769 b->next = NULL;
1771 if (current_sblock)
1772 current_sblock->next = b;
1773 else
1774 oldest_sblock = b;
1775 current_sblock = b;
1777 else
1778 b = current_sblock;
1780 data = b->next_free;
1781 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1783 MALLOC_UNBLOCK_INPUT;
1785 data->string = s;
1786 s->data = SDATA_DATA (data);
1787 #ifdef GC_CHECK_STRING_BYTES
1788 SDATA_NBYTES (data) = nbytes;
1789 #endif
1790 s->size = nchars;
1791 s->size_byte = nbytes;
1792 s->data[nbytes] = '\0';
1793 #ifdef GC_CHECK_STRING_OVERRUN
1794 memcpy ((char *) data + needed, string_overrun_cookie,
1795 GC_STRING_OVERRUN_COOKIE_SIZE);
1796 #endif
1798 /* Note that Faset may call to this function when S has already data
1799 assigned. In this case, mark data as free by setting it's string
1800 back-pointer to null, and record the size of the data in it. */
1801 if (old_data)
1803 SDATA_NBYTES (old_data) = old_nbytes;
1804 old_data->string = NULL;
1807 consing_since_gc += needed;
1811 /* Sweep and compact strings. */
1813 static void
1814 sweep_strings (void)
1816 struct string_block *b, *next;
1817 struct string_block *live_blocks = NULL;
1819 string_free_list = NULL;
1820 total_strings = total_free_strings = 0;
1821 total_string_bytes = 0;
1823 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1824 for (b = string_blocks; b; b = next)
1826 int i, nfree = 0;
1827 struct Lisp_String *free_list_before = string_free_list;
1829 next = b->next;
1831 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1833 struct Lisp_String *s = b->strings + i;
1835 if (s->data)
1837 /* String was not on free-list before. */
1838 if (STRING_MARKED_P (s))
1840 /* String is live; unmark it and its intervals. */
1841 UNMARK_STRING (s);
1843 /* Do not use string_(set|get)_intervals here. */
1844 s->intervals = balance_intervals (s->intervals);
1846 ++total_strings;
1847 total_string_bytes += STRING_BYTES (s);
1849 else
1851 /* String is dead. Put it on the free-list. */
1852 sdata *data = SDATA_OF_STRING (s);
1854 /* Save the size of S in its sdata so that we know
1855 how large that is. Reset the sdata's string
1856 back-pointer so that we know it's free. */
1857 #ifdef GC_CHECK_STRING_BYTES
1858 if (string_bytes (s) != SDATA_NBYTES (data))
1859 emacs_abort ();
1860 #else
1861 data->n.nbytes = STRING_BYTES (s);
1862 #endif
1863 data->string = NULL;
1865 /* Reset the strings's `data' member so that we
1866 know it's free. */
1867 s->data = NULL;
1869 /* Put the string on the free-list. */
1870 NEXT_FREE_LISP_STRING (s) = string_free_list;
1871 string_free_list = s;
1872 ++nfree;
1875 else
1877 /* S was on the free-list before. Put it there again. */
1878 NEXT_FREE_LISP_STRING (s) = string_free_list;
1879 string_free_list = s;
1880 ++nfree;
1884 /* Free blocks that contain free Lisp_Strings only, except
1885 the first two of them. */
1886 if (nfree == STRING_BLOCK_SIZE
1887 && total_free_strings > STRING_BLOCK_SIZE)
1889 lisp_free (b);
1890 string_free_list = free_list_before;
1892 else
1894 total_free_strings += nfree;
1895 b->next = live_blocks;
1896 live_blocks = b;
1900 check_string_free_list ();
1902 string_blocks = live_blocks;
1903 free_large_strings ();
1904 compact_small_strings ();
1906 check_string_free_list ();
1910 /* Free dead large strings. */
1912 static void
1913 free_large_strings (void)
1915 struct sblock *b, *next;
1916 struct sblock *live_blocks = NULL;
1918 for (b = large_sblocks; b; b = next)
1920 next = b->next;
1922 if (b->data[0].string == NULL)
1923 lisp_free (b);
1924 else
1926 b->next = live_blocks;
1927 live_blocks = b;
1931 large_sblocks = live_blocks;
1935 /* Compact data of small strings. Free sblocks that don't contain
1936 data of live strings after compaction. */
1938 static void
1939 compact_small_strings (void)
1941 struct sblock *b, *tb, *next;
1942 sdata *from, *to, *end, *tb_end;
1943 sdata *to_end, *from_end;
1945 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1946 to, and TB_END is the end of TB. */
1947 tb = oldest_sblock;
1948 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1949 to = tb->data;
1951 /* Step through the blocks from the oldest to the youngest. We
1952 expect that old blocks will stabilize over time, so that less
1953 copying will happen this way. */
1954 for (b = oldest_sblock; b; b = b->next)
1956 end = b->next_free;
1957 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1959 for (from = b->data; from < end; from = from_end)
1961 /* Compute the next FROM here because copying below may
1962 overwrite data we need to compute it. */
1963 ptrdiff_t nbytes;
1964 struct Lisp_String *s = from->string;
1966 #ifdef GC_CHECK_STRING_BYTES
1967 /* Check that the string size recorded in the string is the
1968 same as the one recorded in the sdata structure. */
1969 if (s && string_bytes (s) != SDATA_NBYTES (from))
1970 emacs_abort ();
1971 #endif /* GC_CHECK_STRING_BYTES */
1973 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1974 eassert (nbytes <= LARGE_STRING_BYTES);
1976 nbytes = SDATA_SIZE (nbytes);
1977 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1979 #ifdef GC_CHECK_STRING_OVERRUN
1980 if (memcmp (string_overrun_cookie,
1981 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1982 GC_STRING_OVERRUN_COOKIE_SIZE))
1983 emacs_abort ();
1984 #endif
1986 /* Non-NULL S means it's alive. Copy its data. */
1987 if (s)
1989 /* If TB is full, proceed with the next sblock. */
1990 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1991 if (to_end > tb_end)
1993 tb->next_free = to;
1994 tb = tb->next;
1995 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1996 to = tb->data;
1997 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2000 /* Copy, and update the string's `data' pointer. */
2001 if (from != to)
2003 eassert (tb != b || to < from);
2004 memmove (to, from, nbytes + GC_STRING_EXTRA);
2005 to->string->data = SDATA_DATA (to);
2008 /* Advance past the sdata we copied to. */
2009 to = to_end;
2014 /* The rest of the sblocks following TB don't contain live data, so
2015 we can free them. */
2016 for (b = tb->next; b; b = next)
2018 next = b->next;
2019 lisp_free (b);
2022 tb->next_free = to;
2023 tb->next = NULL;
2024 current_sblock = tb;
2027 void
2028 string_overflow (void)
2030 error ("Maximum string size exceeded");
2033 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2034 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2035 LENGTH must be an integer.
2036 INIT must be an integer that represents a character. */)
2037 (Lisp_Object length, Lisp_Object init)
2039 register Lisp_Object val;
2040 int c;
2041 EMACS_INT nbytes;
2043 CHECK_NATNUM (length);
2044 CHECK_CHARACTER (init);
2046 c = XFASTINT (init);
2047 if (ASCII_CHAR_P (c))
2049 nbytes = XINT (length);
2050 val = make_uninit_string (nbytes);
2051 memset (SDATA (val), c, nbytes);
2052 SDATA (val)[nbytes] = 0;
2054 else
2056 unsigned char str[MAX_MULTIBYTE_LENGTH];
2057 ptrdiff_t len = CHAR_STRING (c, str);
2058 EMACS_INT string_len = XINT (length);
2059 unsigned char *p, *beg, *end;
2061 if (string_len > STRING_BYTES_MAX / len)
2062 string_overflow ();
2063 nbytes = len * string_len;
2064 val = make_uninit_multibyte_string (string_len, nbytes);
2065 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2067 /* First time we just copy `str' to the data of `val'. */
2068 if (p == beg)
2069 memcpy (p, str, len);
2070 else
2072 /* Next time we copy largest possible chunk from
2073 initialized to uninitialized part of `val'. */
2074 len = min (p - beg, end - p);
2075 memcpy (p, beg, len);
2078 *p = 0;
2081 return val;
2084 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2085 Return A. */
2087 Lisp_Object
2088 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2090 EMACS_INT nbits = bool_vector_size (a);
2091 if (0 < nbits)
2093 unsigned char *data = bool_vector_uchar_data (a);
2094 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2095 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2096 int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2097 memset (data, pattern, nbytes - 1);
2098 data[nbytes - 1] = pattern & last_mask;
2100 return a;
2103 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2105 Lisp_Object
2106 make_uninit_bool_vector (EMACS_INT nbits)
2108 Lisp_Object val;
2109 EMACS_INT words = bool_vector_words (nbits);
2110 EMACS_INT word_bytes = words * sizeof (bits_word);
2111 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2112 + word_size - 1)
2113 / word_size);
2114 struct Lisp_Bool_Vector *p
2115 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2116 XSETVECTOR (val, p);
2117 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2118 p->size = nbits;
2120 /* Clear padding at the end. */
2121 if (words)
2122 p->data[words - 1] = 0;
2124 return val;
2127 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2128 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2129 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2130 (Lisp_Object length, Lisp_Object init)
2132 Lisp_Object val;
2134 CHECK_NATNUM (length);
2135 val = make_uninit_bool_vector (XFASTINT (length));
2136 return bool_vector_fill (val, init);
2140 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2141 of characters from the contents. This string may be unibyte or
2142 multibyte, depending on the contents. */
2144 Lisp_Object
2145 make_string (const char *contents, ptrdiff_t nbytes)
2147 register Lisp_Object val;
2148 ptrdiff_t nchars, multibyte_nbytes;
2150 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2151 &nchars, &multibyte_nbytes);
2152 if (nbytes == nchars || nbytes != multibyte_nbytes)
2153 /* CONTENTS contains no multibyte sequences or contains an invalid
2154 multibyte sequence. We must make unibyte string. */
2155 val = make_unibyte_string (contents, nbytes);
2156 else
2157 val = make_multibyte_string (contents, nchars, nbytes);
2158 return val;
2162 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2164 Lisp_Object
2165 make_unibyte_string (const char *contents, ptrdiff_t length)
2167 register Lisp_Object val;
2168 val = make_uninit_string (length);
2169 memcpy (SDATA (val), contents, length);
2170 return val;
2174 /* Make a multibyte string from NCHARS characters occupying NBYTES
2175 bytes at CONTENTS. */
2177 Lisp_Object
2178 make_multibyte_string (const char *contents,
2179 ptrdiff_t nchars, ptrdiff_t nbytes)
2181 register Lisp_Object val;
2182 val = make_uninit_multibyte_string (nchars, nbytes);
2183 memcpy (SDATA (val), contents, nbytes);
2184 return val;
2188 /* Make a string from NCHARS characters occupying NBYTES bytes at
2189 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2191 Lisp_Object
2192 make_string_from_bytes (const char *contents,
2193 ptrdiff_t nchars, ptrdiff_t nbytes)
2195 register Lisp_Object val;
2196 val = make_uninit_multibyte_string (nchars, nbytes);
2197 memcpy (SDATA (val), contents, nbytes);
2198 if (SBYTES (val) == SCHARS (val))
2199 STRING_SET_UNIBYTE (val);
2200 return val;
2204 /* Make a string from NCHARS characters occupying NBYTES bytes at
2205 CONTENTS. The argument MULTIBYTE controls whether to label the
2206 string as multibyte. If NCHARS is negative, it counts the number of
2207 characters by itself. */
2209 Lisp_Object
2210 make_specified_string (const char *contents,
2211 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2213 Lisp_Object val;
2215 if (nchars < 0)
2217 if (multibyte)
2218 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2219 nbytes);
2220 else
2221 nchars = nbytes;
2223 val = make_uninit_multibyte_string (nchars, nbytes);
2224 memcpy (SDATA (val), contents, nbytes);
2225 if (!multibyte)
2226 STRING_SET_UNIBYTE (val);
2227 return val;
2231 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2232 occupying LENGTH bytes. */
2234 Lisp_Object
2235 make_uninit_string (EMACS_INT length)
2237 Lisp_Object val;
2239 if (!length)
2240 return empty_unibyte_string;
2241 val = make_uninit_multibyte_string (length, length);
2242 STRING_SET_UNIBYTE (val);
2243 return val;
2247 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2248 which occupy NBYTES bytes. */
2250 Lisp_Object
2251 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2253 Lisp_Object string;
2254 struct Lisp_String *s;
2256 if (nchars < 0)
2257 emacs_abort ();
2258 if (!nbytes)
2259 return empty_multibyte_string;
2261 s = allocate_string ();
2262 s->intervals = NULL;
2263 allocate_string_data (s, nchars, nbytes);
2264 XSETSTRING (string, s);
2265 string_chars_consed += nbytes;
2266 return string;
2269 /* Print arguments to BUF according to a FORMAT, then return
2270 a Lisp_String initialized with the data from BUF. */
2272 Lisp_Object
2273 make_formatted_string (char *buf, const char *format, ...)
2275 va_list ap;
2276 int length;
2278 va_start (ap, format);
2279 length = vsprintf (buf, format, ap);
2280 va_end (ap);
2281 return make_string (buf, length);
2285 /***********************************************************************
2286 Float Allocation
2287 ***********************************************************************/
2289 /* We store float cells inside of float_blocks, allocating a new
2290 float_block with malloc whenever necessary. Float cells reclaimed
2291 by GC are put on a free list to be reallocated before allocating
2292 any new float cells from the latest float_block. */
2294 #define FLOAT_BLOCK_SIZE \
2295 (((BLOCK_BYTES - sizeof (struct float_block *) \
2296 /* The compiler might add padding at the end. */ \
2297 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2298 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2300 #define GETMARKBIT(block,n) \
2301 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2302 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2303 & 1)
2305 #define SETMARKBIT(block,n) \
2306 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2307 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2309 #define UNSETMARKBIT(block,n) \
2310 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2311 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2313 #define FLOAT_BLOCK(fptr) \
2314 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2316 #define FLOAT_INDEX(fptr) \
2317 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2319 struct float_block
2321 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2322 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2323 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2324 struct float_block *next;
2327 #define FLOAT_MARKED_P(fptr) \
2328 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2330 #define FLOAT_MARK(fptr) \
2331 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2333 #define FLOAT_UNMARK(fptr) \
2334 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2336 /* Current float_block. */
2338 static struct float_block *float_block;
2340 /* Index of first unused Lisp_Float in the current float_block. */
2342 static int float_block_index = FLOAT_BLOCK_SIZE;
2344 /* Free-list of Lisp_Floats. */
2346 static struct Lisp_Float *float_free_list;
2348 /* Return a new float object with value FLOAT_VALUE. */
2350 Lisp_Object
2351 make_float (double float_value)
2353 register Lisp_Object val;
2355 MALLOC_BLOCK_INPUT;
2357 if (float_free_list)
2359 /* We use the data field for chaining the free list
2360 so that we won't use the same field that has the mark bit. */
2361 XSETFLOAT (val, float_free_list);
2362 float_free_list = float_free_list->u.chain;
2364 else
2366 if (float_block_index == FLOAT_BLOCK_SIZE)
2368 struct float_block *new
2369 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2370 new->next = float_block;
2371 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2372 float_block = new;
2373 float_block_index = 0;
2374 total_free_floats += FLOAT_BLOCK_SIZE;
2376 XSETFLOAT (val, &float_block->floats[float_block_index]);
2377 float_block_index++;
2380 MALLOC_UNBLOCK_INPUT;
2382 XFLOAT_INIT (val, float_value);
2383 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2384 consing_since_gc += sizeof (struct Lisp_Float);
2385 floats_consed++;
2386 total_free_floats--;
2387 return val;
2392 /***********************************************************************
2393 Cons Allocation
2394 ***********************************************************************/
2396 /* We store cons cells inside of cons_blocks, allocating a new
2397 cons_block with malloc whenever necessary. Cons cells reclaimed by
2398 GC are put on a free list to be reallocated before allocating
2399 any new cons cells from the latest cons_block. */
2401 #define CONS_BLOCK_SIZE \
2402 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2403 /* The compiler might add padding at the end. */ \
2404 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2405 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2407 #define CONS_BLOCK(fptr) \
2408 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2410 #define CONS_INDEX(fptr) \
2411 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2413 struct cons_block
2415 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2416 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2417 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2418 struct cons_block *next;
2421 #define CONS_MARKED_P(fptr) \
2422 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2424 #define CONS_MARK(fptr) \
2425 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2427 #define CONS_UNMARK(fptr) \
2428 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2430 /* Current cons_block. */
2432 static struct cons_block *cons_block;
2434 /* Index of first unused Lisp_Cons in the current block. */
2436 static int cons_block_index = CONS_BLOCK_SIZE;
2438 /* Free-list of Lisp_Cons structures. */
2440 static struct Lisp_Cons *cons_free_list;
2442 /* Explicitly free a cons cell by putting it on the free-list. */
2444 void
2445 free_cons (struct Lisp_Cons *ptr)
2447 ptr->u.chain = cons_free_list;
2448 #if GC_MARK_STACK
2449 ptr->car = Vdead;
2450 #endif
2451 cons_free_list = ptr;
2452 consing_since_gc -= sizeof *ptr;
2453 total_free_conses++;
2456 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2457 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2458 (Lisp_Object car, Lisp_Object cdr)
2460 register Lisp_Object val;
2462 MALLOC_BLOCK_INPUT;
2464 if (cons_free_list)
2466 /* We use the cdr for chaining the free list
2467 so that we won't use the same field that has the mark bit. */
2468 XSETCONS (val, cons_free_list);
2469 cons_free_list = cons_free_list->u.chain;
2471 else
2473 if (cons_block_index == CONS_BLOCK_SIZE)
2475 struct cons_block *new
2476 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2477 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2478 new->next = cons_block;
2479 cons_block = new;
2480 cons_block_index = 0;
2481 total_free_conses += CONS_BLOCK_SIZE;
2483 XSETCONS (val, &cons_block->conses[cons_block_index]);
2484 cons_block_index++;
2487 MALLOC_UNBLOCK_INPUT;
2489 XSETCAR (val, car);
2490 XSETCDR (val, cdr);
2491 eassert (!CONS_MARKED_P (XCONS (val)));
2492 consing_since_gc += sizeof (struct Lisp_Cons);
2493 total_free_conses--;
2494 cons_cells_consed++;
2495 return val;
2498 #ifdef GC_CHECK_CONS_LIST
2499 /* Get an error now if there's any junk in the cons free list. */
2500 void
2501 check_cons_list (void)
2503 struct Lisp_Cons *tail = cons_free_list;
2505 while (tail)
2506 tail = tail->u.chain;
2508 #endif
2510 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2512 Lisp_Object
2513 list1 (Lisp_Object arg1)
2515 return Fcons (arg1, Qnil);
2518 Lisp_Object
2519 list2 (Lisp_Object arg1, Lisp_Object arg2)
2521 return Fcons (arg1, Fcons (arg2, Qnil));
2525 Lisp_Object
2526 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2528 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2532 Lisp_Object
2533 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2535 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2539 Lisp_Object
2540 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2542 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2543 Fcons (arg5, Qnil)))));
2546 /* Make a list of COUNT Lisp_Objects, where ARG is the
2547 first one. Allocate conses from pure space if TYPE
2548 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2550 Lisp_Object
2551 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2553 va_list ap;
2554 ptrdiff_t i;
2555 Lisp_Object val, *objp;
2557 /* Change to SAFE_ALLOCA if you hit this eassert. */
2558 eassert (count <= MAX_ALLOCA / word_size);
2560 objp = alloca (count * word_size);
2561 objp[0] = arg;
2562 va_start (ap, arg);
2563 for (i = 1; i < count; i++)
2564 objp[i] = va_arg (ap, Lisp_Object);
2565 va_end (ap);
2567 for (val = Qnil, i = count - 1; i >= 0; i--)
2569 if (type == CONSTYPE_PURE)
2570 val = pure_cons (objp[i], val);
2571 else if (type == CONSTYPE_HEAP)
2572 val = Fcons (objp[i], val);
2573 else
2574 emacs_abort ();
2576 return val;
2579 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2580 doc: /* Return a newly created list with specified arguments as elements.
2581 Any number of arguments, even zero arguments, are allowed.
2582 usage: (list &rest OBJECTS) */)
2583 (ptrdiff_t nargs, Lisp_Object *args)
2585 register Lisp_Object val;
2586 val = Qnil;
2588 while (nargs > 0)
2590 nargs--;
2591 val = Fcons (args[nargs], val);
2593 return val;
2597 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2598 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2599 (register Lisp_Object length, Lisp_Object init)
2601 register Lisp_Object val;
2602 register EMACS_INT size;
2604 CHECK_NATNUM (length);
2605 size = XFASTINT (length);
2607 val = Qnil;
2608 while (size > 0)
2610 val = Fcons (init, val);
2611 --size;
2613 if (size > 0)
2615 val = Fcons (init, val);
2616 --size;
2618 if (size > 0)
2620 val = Fcons (init, val);
2621 --size;
2623 if (size > 0)
2625 val = Fcons (init, val);
2626 --size;
2628 if (size > 0)
2630 val = Fcons (init, val);
2631 --size;
2637 QUIT;
2640 return val;
2645 /***********************************************************************
2646 Vector Allocation
2647 ***********************************************************************/
2649 /* Sometimes a vector's contents are merely a pointer internally used
2650 in vector allocation code. Usually you don't want to touch this. */
2652 static struct Lisp_Vector *
2653 next_vector (struct Lisp_Vector *v)
2655 return XUNTAG (v->contents[0], 0);
2658 static void
2659 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2661 v->contents[0] = make_lisp_ptr (p, 0);
2664 /* This value is balanced well enough to avoid too much internal overhead
2665 for the most common cases; it's not required to be a power of two, but
2666 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2668 #define VECTOR_BLOCK_SIZE 4096
2670 enum
2672 /* Alignment of struct Lisp_Vector objects. */
2673 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2674 USE_LSB_TAG ? GCALIGNMENT : 1),
2676 /* Vector size requests are a multiple of this. */
2677 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2680 /* Verify assumptions described above. */
2681 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2682 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2684 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2685 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2686 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2687 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2689 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2691 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2693 /* Size of the minimal vector allocated from block. */
2695 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2697 /* Size of the largest vector allocated from block. */
2699 #define VBLOCK_BYTES_MAX \
2700 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2702 /* We maintain one free list for each possible block-allocated
2703 vector size, and this is the number of free lists we have. */
2705 #define VECTOR_MAX_FREE_LIST_INDEX \
2706 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2708 /* Common shortcut to advance vector pointer over a block data. */
2710 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2712 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2714 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2716 /* Common shortcut to setup vector on a free list. */
2718 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2719 do { \
2720 (tmp) = ((nbytes - header_size) / word_size); \
2721 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2722 eassert ((nbytes) % roundup_size == 0); \
2723 (tmp) = VINDEX (nbytes); \
2724 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2725 set_next_vector (v, vector_free_lists[tmp]); \
2726 vector_free_lists[tmp] = (v); \
2727 total_free_vector_slots += (nbytes) / word_size; \
2728 } while (0)
2730 /* This internal type is used to maintain the list of large vectors
2731 which are allocated at their own, e.g. outside of vector blocks.
2733 struct large_vector itself cannot contain a struct Lisp_Vector, as
2734 the latter contains a flexible array member and C99 does not allow
2735 such structs to be nested. Instead, each struct large_vector
2736 object LV is followed by a struct Lisp_Vector, which is at offset
2737 large_vector_offset from LV, and whose address is therefore
2738 large_vector_vec (&LV). */
2740 struct large_vector
2742 struct large_vector *next;
2745 enum
2747 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2750 static struct Lisp_Vector *
2751 large_vector_vec (struct large_vector *p)
2753 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2756 /* This internal type is used to maintain an underlying storage
2757 for small vectors. */
2759 struct vector_block
2761 char data[VECTOR_BLOCK_BYTES];
2762 struct vector_block *next;
2765 /* Chain of vector blocks. */
2767 static struct vector_block *vector_blocks;
2769 /* Vector free lists, where NTH item points to a chain of free
2770 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2772 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2774 /* Singly-linked list of large vectors. */
2776 static struct large_vector *large_vectors;
2778 /* The only vector with 0 slots, allocated from pure space. */
2780 Lisp_Object zero_vector;
2782 /* Number of live vectors. */
2784 static EMACS_INT total_vectors;
2786 /* Total size of live and free vectors, in Lisp_Object units. */
2788 static EMACS_INT total_vector_slots, total_free_vector_slots;
2790 /* Get a new vector block. */
2792 static struct vector_block *
2793 allocate_vector_block (void)
2795 struct vector_block *block = xmalloc (sizeof *block);
2797 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2798 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2799 MEM_TYPE_VECTOR_BLOCK);
2800 #endif
2802 block->next = vector_blocks;
2803 vector_blocks = block;
2804 return block;
2807 /* Called once to initialize vector allocation. */
2809 static void
2810 init_vectors (void)
2812 zero_vector = make_pure_vector (0);
2815 /* Allocate vector from a vector block. */
2817 static struct Lisp_Vector *
2818 allocate_vector_from_block (size_t nbytes)
2820 struct Lisp_Vector *vector;
2821 struct vector_block *block;
2822 size_t index, restbytes;
2824 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2825 eassert (nbytes % roundup_size == 0);
2827 /* First, try to allocate from a free list
2828 containing vectors of the requested size. */
2829 index = VINDEX (nbytes);
2830 if (vector_free_lists[index])
2832 vector = vector_free_lists[index];
2833 vector_free_lists[index] = next_vector (vector);
2834 total_free_vector_slots -= nbytes / word_size;
2835 return vector;
2838 /* Next, check free lists containing larger vectors. Since
2839 we will split the result, we should have remaining space
2840 large enough to use for one-slot vector at least. */
2841 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2842 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2843 if (vector_free_lists[index])
2845 /* This vector is larger than requested. */
2846 vector = vector_free_lists[index];
2847 vector_free_lists[index] = next_vector (vector);
2848 total_free_vector_slots -= nbytes / word_size;
2850 /* Excess bytes are used for the smaller vector,
2851 which should be set on an appropriate free list. */
2852 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2853 eassert (restbytes % roundup_size == 0);
2854 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2855 return vector;
2858 /* Finally, need a new vector block. */
2859 block = allocate_vector_block ();
2861 /* New vector will be at the beginning of this block. */
2862 vector = (struct Lisp_Vector *) block->data;
2864 /* If the rest of space from this block is large enough
2865 for one-slot vector at least, set up it on a free list. */
2866 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2867 if (restbytes >= VBLOCK_BYTES_MIN)
2869 eassert (restbytes % roundup_size == 0);
2870 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2872 return vector;
2875 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2877 #define VECTOR_IN_BLOCK(vector, block) \
2878 ((char *) (vector) <= (block)->data \
2879 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2881 /* Return the memory footprint of V in bytes. */
2883 static ptrdiff_t
2884 vector_nbytes (struct Lisp_Vector *v)
2886 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2887 ptrdiff_t nwords;
2889 if (size & PSEUDOVECTOR_FLAG)
2891 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2893 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2894 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2895 * sizeof (bits_word));
2896 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2897 verify (header_size <= bool_header_size);
2898 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2900 else
2901 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2902 + ((size & PSEUDOVECTOR_REST_MASK)
2903 >> PSEUDOVECTOR_SIZE_BITS));
2905 else
2906 nwords = size;
2907 return vroundup (header_size + word_size * nwords);
2910 /* Release extra resources still in use by VECTOR, which may be any
2911 vector-like object. For now, this is used just to free data in
2912 font objects. */
2914 static void
2915 cleanup_vector (struct Lisp_Vector *vector)
2917 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2918 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2919 == FONT_OBJECT_MAX))
2921 /* Attempt to catch subtle bugs like Bug#16140. */
2922 eassert (valid_font_driver (((struct font *) vector)->driver));
2923 ((struct font *) vector)->driver->close ((struct font *) vector);
2927 /* Reclaim space used by unmarked vectors. */
2929 static void
2930 sweep_vectors (void)
2932 struct vector_block *block, **bprev = &vector_blocks;
2933 struct large_vector *lv, **lvprev = &large_vectors;
2934 struct Lisp_Vector *vector, *next;
2936 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2937 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2939 /* Looking through vector blocks. */
2941 for (block = vector_blocks; block; block = *bprev)
2943 bool free_this_block = 0;
2944 ptrdiff_t nbytes;
2946 for (vector = (struct Lisp_Vector *) block->data;
2947 VECTOR_IN_BLOCK (vector, block); vector = next)
2949 if (VECTOR_MARKED_P (vector))
2951 VECTOR_UNMARK (vector);
2952 total_vectors++;
2953 nbytes = vector_nbytes (vector);
2954 total_vector_slots += nbytes / word_size;
2955 next = ADVANCE (vector, nbytes);
2957 else
2959 ptrdiff_t total_bytes;
2961 cleanup_vector (vector);
2962 nbytes = vector_nbytes (vector);
2963 total_bytes = nbytes;
2964 next = ADVANCE (vector, nbytes);
2966 /* While NEXT is not marked, try to coalesce with VECTOR,
2967 thus making VECTOR of the largest possible size. */
2969 while (VECTOR_IN_BLOCK (next, block))
2971 if (VECTOR_MARKED_P (next))
2972 break;
2973 cleanup_vector (next);
2974 nbytes = vector_nbytes (next);
2975 total_bytes += nbytes;
2976 next = ADVANCE (next, nbytes);
2979 eassert (total_bytes % roundup_size == 0);
2981 if (vector == (struct Lisp_Vector *) block->data
2982 && !VECTOR_IN_BLOCK (next, block))
2983 /* This block should be freed because all of it's
2984 space was coalesced into the only free vector. */
2985 free_this_block = 1;
2986 else
2988 size_t tmp;
2989 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2994 if (free_this_block)
2996 *bprev = block->next;
2997 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2998 mem_delete (mem_find (block->data));
2999 #endif
3000 xfree (block);
3002 else
3003 bprev = &block->next;
3006 /* Sweep large vectors. */
3008 for (lv = large_vectors; lv; lv = *lvprev)
3010 vector = large_vector_vec (lv);
3011 if (VECTOR_MARKED_P (vector))
3013 VECTOR_UNMARK (vector);
3014 total_vectors++;
3015 if (vector->header.size & PSEUDOVECTOR_FLAG)
3017 /* All non-bool pseudovectors are small enough to be allocated
3018 from vector blocks. This code should be redesigned if some
3019 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3020 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3021 total_vector_slots += vector_nbytes (vector) / word_size;
3023 else
3024 total_vector_slots
3025 += header_size / word_size + vector->header.size;
3026 lvprev = &lv->next;
3028 else
3030 *lvprev = lv->next;
3031 lisp_free (lv);
3036 /* Value is a pointer to a newly allocated Lisp_Vector structure
3037 with room for LEN Lisp_Objects. */
3039 static struct Lisp_Vector *
3040 allocate_vectorlike (ptrdiff_t len)
3042 struct Lisp_Vector *p;
3044 MALLOC_BLOCK_INPUT;
3046 if (len == 0)
3047 p = XVECTOR (zero_vector);
3048 else
3050 size_t nbytes = header_size + len * word_size;
3052 #ifdef DOUG_LEA_MALLOC
3053 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3054 because mapped region contents are not preserved in
3055 a dumped Emacs. */
3056 mallopt (M_MMAP_MAX, 0);
3057 #endif
3059 if (nbytes <= VBLOCK_BYTES_MAX)
3060 p = allocate_vector_from_block (vroundup (nbytes));
3061 else
3063 struct large_vector *lv
3064 = lisp_malloc ((large_vector_offset + header_size
3065 + len * word_size),
3066 MEM_TYPE_VECTORLIKE);
3067 lv->next = large_vectors;
3068 large_vectors = lv;
3069 p = large_vector_vec (lv);
3072 #ifdef DOUG_LEA_MALLOC
3073 /* Back to a reasonable maximum of mmap'ed areas. */
3074 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3075 #endif
3077 consing_since_gc += nbytes;
3078 vector_cells_consed += len;
3081 MALLOC_UNBLOCK_INPUT;
3083 return p;
3087 /* Allocate a vector with LEN slots. */
3089 struct Lisp_Vector *
3090 allocate_vector (EMACS_INT len)
3092 struct Lisp_Vector *v;
3093 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3095 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3096 memory_full (SIZE_MAX);
3097 v = allocate_vectorlike (len);
3098 v->header.size = len;
3099 return v;
3103 /* Allocate other vector-like structures. */
3105 struct Lisp_Vector *
3106 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3108 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3109 int i;
3111 /* Catch bogus values. */
3112 eassert (tag <= PVEC_FONT);
3113 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3114 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3116 /* Only the first lisplen slots will be traced normally by the GC. */
3117 for (i = 0; i < lisplen; ++i)
3118 v->contents[i] = Qnil;
3120 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3121 return v;
3124 struct buffer *
3125 allocate_buffer (void)
3127 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3129 BUFFER_PVEC_INIT (b);
3130 /* Put B on the chain of all buffers including killed ones. */
3131 b->next = all_buffers;
3132 all_buffers = b;
3133 /* Note that the rest fields of B are not initialized. */
3134 return b;
3137 struct Lisp_Hash_Table *
3138 allocate_hash_table (void)
3140 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3143 struct window *
3144 allocate_window (void)
3146 struct window *w;
3148 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3149 /* Users assumes that non-Lisp data is zeroed. */
3150 memset (&w->current_matrix, 0,
3151 sizeof (*w) - offsetof (struct window, current_matrix));
3152 return w;
3155 struct terminal *
3156 allocate_terminal (void)
3158 struct terminal *t;
3160 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3161 /* Users assumes that non-Lisp data is zeroed. */
3162 memset (&t->next_terminal, 0,
3163 sizeof (*t) - offsetof (struct terminal, next_terminal));
3164 return t;
3167 struct frame *
3168 allocate_frame (void)
3170 struct frame *f;
3172 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3173 /* Users assumes that non-Lisp data is zeroed. */
3174 memset (&f->face_cache, 0,
3175 sizeof (*f) - offsetof (struct frame, face_cache));
3176 return f;
3179 struct Lisp_Process *
3180 allocate_process (void)
3182 struct Lisp_Process *p;
3184 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3185 /* Users assumes that non-Lisp data is zeroed. */
3186 memset (&p->pid, 0,
3187 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3188 return p;
3191 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3192 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3193 See also the function `vector'. */)
3194 (register Lisp_Object length, Lisp_Object init)
3196 Lisp_Object vector;
3197 register ptrdiff_t sizei;
3198 register ptrdiff_t i;
3199 register struct Lisp_Vector *p;
3201 CHECK_NATNUM (length);
3203 p = allocate_vector (XFASTINT (length));
3204 sizei = XFASTINT (length);
3205 for (i = 0; i < sizei; i++)
3206 p->contents[i] = init;
3208 XSETVECTOR (vector, p);
3209 return vector;
3213 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3214 doc: /* Return a newly created vector with specified arguments as elements.
3215 Any number of arguments, even zero arguments, are allowed.
3216 usage: (vector &rest OBJECTS) */)
3217 (ptrdiff_t nargs, Lisp_Object *args)
3219 ptrdiff_t i;
3220 register Lisp_Object val = make_uninit_vector (nargs);
3221 register struct Lisp_Vector *p = XVECTOR (val);
3223 for (i = 0; i < nargs; i++)
3224 p->contents[i] = args[i];
3225 return val;
3228 void
3229 make_byte_code (struct Lisp_Vector *v)
3231 /* Don't allow the global zero_vector to become a byte code object. */
3232 eassert (0 < v->header.size);
3234 if (v->header.size > 1 && STRINGP (v->contents[1])
3235 && STRING_MULTIBYTE (v->contents[1]))
3236 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3237 earlier because they produced a raw 8-bit string for byte-code
3238 and now such a byte-code string is loaded as multibyte while
3239 raw 8-bit characters converted to multibyte form. Thus, now we
3240 must convert them back to the original unibyte form. */
3241 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3242 XSETPVECTYPE (v, PVEC_COMPILED);
3245 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3246 doc: /* Create a byte-code object with specified arguments as elements.
3247 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3248 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3249 and (optional) INTERACTIVE-SPEC.
3250 The first four arguments are required; at most six have any
3251 significance.
3252 The ARGLIST can be either like the one of `lambda', in which case the arguments
3253 will be dynamically bound before executing the byte code, or it can be an
3254 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3255 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3256 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3257 argument to catch the left-over arguments. If such an integer is used, the
3258 arguments will not be dynamically bound but will be instead pushed on the
3259 stack before executing the byte-code.
3260 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3261 (ptrdiff_t nargs, Lisp_Object *args)
3263 ptrdiff_t i;
3264 register Lisp_Object val = make_uninit_vector (nargs);
3265 register struct Lisp_Vector *p = XVECTOR (val);
3267 /* We used to purecopy everything here, if purify-flag was set. This worked
3268 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3269 dangerous, since make-byte-code is used during execution to build
3270 closures, so any closure built during the preload phase would end up
3271 copied into pure space, including its free variables, which is sometimes
3272 just wasteful and other times plainly wrong (e.g. those free vars may want
3273 to be setcar'd). */
3275 for (i = 0; i < nargs; i++)
3276 p->contents[i] = args[i];
3277 make_byte_code (p);
3278 XSETCOMPILED (val, p);
3279 return val;
3284 /***********************************************************************
3285 Symbol Allocation
3286 ***********************************************************************/
3288 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3289 of the required alignment if LSB tags are used. */
3291 union aligned_Lisp_Symbol
3293 struct Lisp_Symbol s;
3294 #if USE_LSB_TAG
3295 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3296 & -GCALIGNMENT];
3297 #endif
3300 /* Each symbol_block is just under 1020 bytes long, since malloc
3301 really allocates in units of powers of two and uses 4 bytes for its
3302 own overhead. */
3304 #define SYMBOL_BLOCK_SIZE \
3305 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3307 struct symbol_block
3309 /* Place `symbols' first, to preserve alignment. */
3310 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3311 struct symbol_block *next;
3314 /* Current symbol block and index of first unused Lisp_Symbol
3315 structure in it. */
3317 static struct symbol_block *symbol_block;
3318 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3320 /* List of free symbols. */
3322 static struct Lisp_Symbol *symbol_free_list;
3324 static void
3325 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3327 XSYMBOL (sym)->name = name;
3330 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3331 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3332 Its value is void, and its function definition and property list are nil. */)
3333 (Lisp_Object name)
3335 register Lisp_Object val;
3336 register struct Lisp_Symbol *p;
3338 CHECK_STRING (name);
3340 MALLOC_BLOCK_INPUT;
3342 if (symbol_free_list)
3344 XSETSYMBOL (val, symbol_free_list);
3345 symbol_free_list = symbol_free_list->next;
3347 else
3349 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3351 struct symbol_block *new
3352 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3353 new->next = symbol_block;
3354 symbol_block = new;
3355 symbol_block_index = 0;
3356 total_free_symbols += SYMBOL_BLOCK_SIZE;
3358 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3359 symbol_block_index++;
3362 MALLOC_UNBLOCK_INPUT;
3364 p = XSYMBOL (val);
3365 set_symbol_name (val, name);
3366 set_symbol_plist (val, Qnil);
3367 p->redirect = SYMBOL_PLAINVAL;
3368 SET_SYMBOL_VAL (p, Qunbound);
3369 set_symbol_function (val, Qnil);
3370 set_symbol_next (val, NULL);
3371 p->gcmarkbit = 0;
3372 p->interned = SYMBOL_UNINTERNED;
3373 p->constant = 0;
3374 p->declared_special = 0;
3375 consing_since_gc += sizeof (struct Lisp_Symbol);
3376 symbols_consed++;
3377 total_free_symbols--;
3378 return val;
3383 /***********************************************************************
3384 Marker (Misc) Allocation
3385 ***********************************************************************/
3387 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3388 the required alignment when LSB tags are used. */
3390 union aligned_Lisp_Misc
3392 union Lisp_Misc m;
3393 #if USE_LSB_TAG
3394 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3395 & -GCALIGNMENT];
3396 #endif
3399 /* Allocation of markers and other objects that share that structure.
3400 Works like allocation of conses. */
3402 #define MARKER_BLOCK_SIZE \
3403 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3405 struct marker_block
3407 /* Place `markers' first, to preserve alignment. */
3408 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3409 struct marker_block *next;
3412 static struct marker_block *marker_block;
3413 static int marker_block_index = MARKER_BLOCK_SIZE;
3415 static union Lisp_Misc *marker_free_list;
3417 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3419 static Lisp_Object
3420 allocate_misc (enum Lisp_Misc_Type type)
3422 Lisp_Object val;
3424 MALLOC_BLOCK_INPUT;
3426 if (marker_free_list)
3428 XSETMISC (val, marker_free_list);
3429 marker_free_list = marker_free_list->u_free.chain;
3431 else
3433 if (marker_block_index == MARKER_BLOCK_SIZE)
3435 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3436 new->next = marker_block;
3437 marker_block = new;
3438 marker_block_index = 0;
3439 total_free_markers += MARKER_BLOCK_SIZE;
3441 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3442 marker_block_index++;
3445 MALLOC_UNBLOCK_INPUT;
3447 --total_free_markers;
3448 consing_since_gc += sizeof (union Lisp_Misc);
3449 misc_objects_consed++;
3450 XMISCANY (val)->type = type;
3451 XMISCANY (val)->gcmarkbit = 0;
3452 return val;
3455 /* Free a Lisp_Misc object. */
3457 void
3458 free_misc (Lisp_Object misc)
3460 XMISCANY (misc)->type = Lisp_Misc_Free;
3461 XMISC (misc)->u_free.chain = marker_free_list;
3462 marker_free_list = XMISC (misc);
3463 consing_since_gc -= sizeof (union Lisp_Misc);
3464 total_free_markers++;
3467 /* Verify properties of Lisp_Save_Value's representation
3468 that are assumed here and elsewhere. */
3470 verify (SAVE_UNUSED == 0);
3471 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3472 >> SAVE_SLOT_BITS)
3473 == 0);
3475 /* Return Lisp_Save_Value objects for the various combinations
3476 that callers need. */
3478 Lisp_Object
3479 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3481 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3482 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3483 p->save_type = SAVE_TYPE_INT_INT_INT;
3484 p->data[0].integer = a;
3485 p->data[1].integer = b;
3486 p->data[2].integer = c;
3487 return val;
3490 Lisp_Object
3491 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3492 Lisp_Object d)
3494 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3495 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3496 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3497 p->data[0].object = a;
3498 p->data[1].object = b;
3499 p->data[2].object = c;
3500 p->data[3].object = d;
3501 return val;
3504 Lisp_Object
3505 make_save_ptr (void *a)
3507 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3508 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3509 p->save_type = SAVE_POINTER;
3510 p->data[0].pointer = a;
3511 return val;
3514 Lisp_Object
3515 make_save_ptr_int (void *a, ptrdiff_t b)
3517 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3518 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3519 p->save_type = SAVE_TYPE_PTR_INT;
3520 p->data[0].pointer = a;
3521 p->data[1].integer = b;
3522 return val;
3525 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3526 Lisp_Object
3527 make_save_ptr_ptr (void *a, void *b)
3529 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3530 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3531 p->save_type = SAVE_TYPE_PTR_PTR;
3532 p->data[0].pointer = a;
3533 p->data[1].pointer = b;
3534 return val;
3536 #endif
3538 Lisp_Object
3539 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3541 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3542 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3543 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3544 p->data[0].funcpointer = a;
3545 p->data[1].pointer = b;
3546 p->data[2].object = c;
3547 return val;
3550 /* Return a Lisp_Save_Value object that represents an array A
3551 of N Lisp objects. */
3553 Lisp_Object
3554 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3556 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3557 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3558 p->save_type = SAVE_TYPE_MEMORY;
3559 p->data[0].pointer = a;
3560 p->data[1].integer = n;
3561 return val;
3564 /* Free a Lisp_Save_Value object. Do not use this function
3565 if SAVE contains pointer other than returned by xmalloc. */
3567 void
3568 free_save_value (Lisp_Object save)
3570 xfree (XSAVE_POINTER (save, 0));
3571 free_misc (save);
3574 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3576 Lisp_Object
3577 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3579 register Lisp_Object overlay;
3581 overlay = allocate_misc (Lisp_Misc_Overlay);
3582 OVERLAY_START (overlay) = start;
3583 OVERLAY_END (overlay) = end;
3584 set_overlay_plist (overlay, plist);
3585 XOVERLAY (overlay)->next = NULL;
3586 return overlay;
3589 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3590 doc: /* Return a newly allocated marker which does not point at any place. */)
3591 (void)
3593 register Lisp_Object val;
3594 register struct Lisp_Marker *p;
3596 val = allocate_misc (Lisp_Misc_Marker);
3597 p = XMARKER (val);
3598 p->buffer = 0;
3599 p->bytepos = 0;
3600 p->charpos = 0;
3601 p->next = NULL;
3602 p->insertion_type = 0;
3603 p->need_adjustment = 0;
3604 return val;
3607 /* Return a newly allocated marker which points into BUF
3608 at character position CHARPOS and byte position BYTEPOS. */
3610 Lisp_Object
3611 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3613 Lisp_Object obj;
3614 struct Lisp_Marker *m;
3616 /* No dead buffers here. */
3617 eassert (BUFFER_LIVE_P (buf));
3619 /* Every character is at least one byte. */
3620 eassert (charpos <= bytepos);
3622 obj = allocate_misc (Lisp_Misc_Marker);
3623 m = XMARKER (obj);
3624 m->buffer = buf;
3625 m->charpos = charpos;
3626 m->bytepos = bytepos;
3627 m->insertion_type = 0;
3628 m->need_adjustment = 0;
3629 m->next = BUF_MARKERS (buf);
3630 BUF_MARKERS (buf) = m;
3631 return obj;
3634 /* Put MARKER back on the free list after using it temporarily. */
3636 void
3637 free_marker (Lisp_Object marker)
3639 unchain_marker (XMARKER (marker));
3640 free_misc (marker);
3644 /* Return a newly created vector or string with specified arguments as
3645 elements. If all the arguments are characters that can fit
3646 in a string of events, make a string; otherwise, make a vector.
3648 Any number of arguments, even zero arguments, are allowed. */
3650 Lisp_Object
3651 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3653 ptrdiff_t i;
3655 for (i = 0; i < nargs; i++)
3656 /* The things that fit in a string
3657 are characters that are in 0...127,
3658 after discarding the meta bit and all the bits above it. */
3659 if (!INTEGERP (args[i])
3660 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3661 return Fvector (nargs, args);
3663 /* Since the loop exited, we know that all the things in it are
3664 characters, so we can make a string. */
3666 Lisp_Object result;
3668 result = Fmake_string (make_number (nargs), make_number (0));
3669 for (i = 0; i < nargs; i++)
3671 SSET (result, i, XINT (args[i]));
3672 /* Move the meta bit to the right place for a string char. */
3673 if (XINT (args[i]) & CHAR_META)
3674 SSET (result, i, SREF (result, i) | 0x80);
3677 return result;
3683 /************************************************************************
3684 Memory Full Handling
3685 ************************************************************************/
3688 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3689 there may have been size_t overflow so that malloc was never
3690 called, or perhaps malloc was invoked successfully but the
3691 resulting pointer had problems fitting into a tagged EMACS_INT. In
3692 either case this counts as memory being full even though malloc did
3693 not fail. */
3695 void
3696 memory_full (size_t nbytes)
3698 /* Do not go into hysterics merely because a large request failed. */
3699 bool enough_free_memory = 0;
3700 if (SPARE_MEMORY < nbytes)
3702 void *p;
3704 MALLOC_BLOCK_INPUT;
3705 p = malloc (SPARE_MEMORY);
3706 if (p)
3708 free (p);
3709 enough_free_memory = 1;
3711 MALLOC_UNBLOCK_INPUT;
3714 if (! enough_free_memory)
3716 int i;
3718 Vmemory_full = Qt;
3720 memory_full_cons_threshold = sizeof (struct cons_block);
3722 /* The first time we get here, free the spare memory. */
3723 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3724 if (spare_memory[i])
3726 if (i == 0)
3727 free (spare_memory[i]);
3728 else if (i >= 1 && i <= 4)
3729 lisp_align_free (spare_memory[i]);
3730 else
3731 lisp_free (spare_memory[i]);
3732 spare_memory[i] = 0;
3736 /* This used to call error, but if we've run out of memory, we could
3737 get infinite recursion trying to build the string. */
3738 xsignal (Qnil, Vmemory_signal_data);
3741 /* If we released our reserve (due to running out of memory),
3742 and we have a fair amount free once again,
3743 try to set aside another reserve in case we run out once more.
3745 This is called when a relocatable block is freed in ralloc.c,
3746 and also directly from this file, in case we're not using ralloc.c. */
3748 void
3749 refill_memory_reserve (void)
3751 #ifndef SYSTEM_MALLOC
3752 if (spare_memory[0] == 0)
3753 spare_memory[0] = malloc (SPARE_MEMORY);
3754 if (spare_memory[1] == 0)
3755 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3756 MEM_TYPE_SPARE);
3757 if (spare_memory[2] == 0)
3758 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3759 MEM_TYPE_SPARE);
3760 if (spare_memory[3] == 0)
3761 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3762 MEM_TYPE_SPARE);
3763 if (spare_memory[4] == 0)
3764 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3765 MEM_TYPE_SPARE);
3766 if (spare_memory[5] == 0)
3767 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3768 MEM_TYPE_SPARE);
3769 if (spare_memory[6] == 0)
3770 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3771 MEM_TYPE_SPARE);
3772 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3773 Vmemory_full = Qnil;
3774 #endif
3777 /************************************************************************
3778 C Stack Marking
3779 ************************************************************************/
3781 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3783 /* Conservative C stack marking requires a method to identify possibly
3784 live Lisp objects given a pointer value. We do this by keeping
3785 track of blocks of Lisp data that are allocated in a red-black tree
3786 (see also the comment of mem_node which is the type of nodes in
3787 that tree). Function lisp_malloc adds information for an allocated
3788 block to the red-black tree with calls to mem_insert, and function
3789 lisp_free removes it with mem_delete. Functions live_string_p etc
3790 call mem_find to lookup information about a given pointer in the
3791 tree, and use that to determine if the pointer points to a Lisp
3792 object or not. */
3794 /* Initialize this part of alloc.c. */
3796 static void
3797 mem_init (void)
3799 mem_z.left = mem_z.right = MEM_NIL;
3800 mem_z.parent = NULL;
3801 mem_z.color = MEM_BLACK;
3802 mem_z.start = mem_z.end = NULL;
3803 mem_root = MEM_NIL;
3807 /* Value is a pointer to the mem_node containing START. Value is
3808 MEM_NIL if there is no node in the tree containing START. */
3810 static struct mem_node *
3811 mem_find (void *start)
3813 struct mem_node *p;
3815 if (start < min_heap_address || start > max_heap_address)
3816 return MEM_NIL;
3818 /* Make the search always successful to speed up the loop below. */
3819 mem_z.start = start;
3820 mem_z.end = (char *) start + 1;
3822 p = mem_root;
3823 while (start < p->start || start >= p->end)
3824 p = start < p->start ? p->left : p->right;
3825 return p;
3829 /* Insert a new node into the tree for a block of memory with start
3830 address START, end address END, and type TYPE. Value is a
3831 pointer to the node that was inserted. */
3833 static struct mem_node *
3834 mem_insert (void *start, void *end, enum mem_type type)
3836 struct mem_node *c, *parent, *x;
3838 if (min_heap_address == NULL || start < min_heap_address)
3839 min_heap_address = start;
3840 if (max_heap_address == NULL || end > max_heap_address)
3841 max_heap_address = end;
3843 /* See where in the tree a node for START belongs. In this
3844 particular application, it shouldn't happen that a node is already
3845 present. For debugging purposes, let's check that. */
3846 c = mem_root;
3847 parent = NULL;
3849 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3851 while (c != MEM_NIL)
3853 if (start >= c->start && start < c->end)
3854 emacs_abort ();
3855 parent = c;
3856 c = start < c->start ? c->left : c->right;
3859 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3861 while (c != MEM_NIL)
3863 parent = c;
3864 c = start < c->start ? c->left : c->right;
3867 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3869 /* Create a new node. */
3870 #ifdef GC_MALLOC_CHECK
3871 x = malloc (sizeof *x);
3872 if (x == NULL)
3873 emacs_abort ();
3874 #else
3875 x = xmalloc (sizeof *x);
3876 #endif
3877 x->start = start;
3878 x->end = end;
3879 x->type = type;
3880 x->parent = parent;
3881 x->left = x->right = MEM_NIL;
3882 x->color = MEM_RED;
3884 /* Insert it as child of PARENT or install it as root. */
3885 if (parent)
3887 if (start < parent->start)
3888 parent->left = x;
3889 else
3890 parent->right = x;
3892 else
3893 mem_root = x;
3895 /* Re-establish red-black tree properties. */
3896 mem_insert_fixup (x);
3898 return x;
3902 /* Re-establish the red-black properties of the tree, and thereby
3903 balance the tree, after node X has been inserted; X is always red. */
3905 static void
3906 mem_insert_fixup (struct mem_node *x)
3908 while (x != mem_root && x->parent->color == MEM_RED)
3910 /* X is red and its parent is red. This is a violation of
3911 red-black tree property #3. */
3913 if (x->parent == x->parent->parent->left)
3915 /* We're on the left side of our grandparent, and Y is our
3916 "uncle". */
3917 struct mem_node *y = x->parent->parent->right;
3919 if (y->color == MEM_RED)
3921 /* Uncle and parent are red but should be black because
3922 X is red. Change the colors accordingly and proceed
3923 with the grandparent. */
3924 x->parent->color = MEM_BLACK;
3925 y->color = MEM_BLACK;
3926 x->parent->parent->color = MEM_RED;
3927 x = x->parent->parent;
3929 else
3931 /* Parent and uncle have different colors; parent is
3932 red, uncle is black. */
3933 if (x == x->parent->right)
3935 x = x->parent;
3936 mem_rotate_left (x);
3939 x->parent->color = MEM_BLACK;
3940 x->parent->parent->color = MEM_RED;
3941 mem_rotate_right (x->parent->parent);
3944 else
3946 /* This is the symmetrical case of above. */
3947 struct mem_node *y = x->parent->parent->left;
3949 if (y->color == MEM_RED)
3951 x->parent->color = MEM_BLACK;
3952 y->color = MEM_BLACK;
3953 x->parent->parent->color = MEM_RED;
3954 x = x->parent->parent;
3956 else
3958 if (x == x->parent->left)
3960 x = x->parent;
3961 mem_rotate_right (x);
3964 x->parent->color = MEM_BLACK;
3965 x->parent->parent->color = MEM_RED;
3966 mem_rotate_left (x->parent->parent);
3971 /* The root may have been changed to red due to the algorithm. Set
3972 it to black so that property #5 is satisfied. */
3973 mem_root->color = MEM_BLACK;
3977 /* (x) (y)
3978 / \ / \
3979 a (y) ===> (x) c
3980 / \ / \
3981 b c a b */
3983 static void
3984 mem_rotate_left (struct mem_node *x)
3986 struct mem_node *y;
3988 /* Turn y's left sub-tree into x's right sub-tree. */
3989 y = x->right;
3990 x->right = y->left;
3991 if (y->left != MEM_NIL)
3992 y->left->parent = x;
3994 /* Y's parent was x's parent. */
3995 if (y != MEM_NIL)
3996 y->parent = x->parent;
3998 /* Get the parent to point to y instead of x. */
3999 if (x->parent)
4001 if (x == x->parent->left)
4002 x->parent->left = y;
4003 else
4004 x->parent->right = y;
4006 else
4007 mem_root = y;
4009 /* Put x on y's left. */
4010 y->left = x;
4011 if (x != MEM_NIL)
4012 x->parent = y;
4016 /* (x) (Y)
4017 / \ / \
4018 (y) c ===> a (x)
4019 / \ / \
4020 a b b c */
4022 static void
4023 mem_rotate_right (struct mem_node *x)
4025 struct mem_node *y = x->left;
4027 x->left = y->right;
4028 if (y->right != MEM_NIL)
4029 y->right->parent = x;
4031 if (y != MEM_NIL)
4032 y->parent = x->parent;
4033 if (x->parent)
4035 if (x == x->parent->right)
4036 x->parent->right = y;
4037 else
4038 x->parent->left = y;
4040 else
4041 mem_root = y;
4043 y->right = x;
4044 if (x != MEM_NIL)
4045 x->parent = y;
4049 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4051 static void
4052 mem_delete (struct mem_node *z)
4054 struct mem_node *x, *y;
4056 if (!z || z == MEM_NIL)
4057 return;
4059 if (z->left == MEM_NIL || z->right == MEM_NIL)
4060 y = z;
4061 else
4063 y = z->right;
4064 while (y->left != MEM_NIL)
4065 y = y->left;
4068 if (y->left != MEM_NIL)
4069 x = y->left;
4070 else
4071 x = y->right;
4073 x->parent = y->parent;
4074 if (y->parent)
4076 if (y == y->parent->left)
4077 y->parent->left = x;
4078 else
4079 y->parent->right = x;
4081 else
4082 mem_root = x;
4084 if (y != z)
4086 z->start = y->start;
4087 z->end = y->end;
4088 z->type = y->type;
4091 if (y->color == MEM_BLACK)
4092 mem_delete_fixup (x);
4094 #ifdef GC_MALLOC_CHECK
4095 free (y);
4096 #else
4097 xfree (y);
4098 #endif
4102 /* Re-establish the red-black properties of the tree, after a
4103 deletion. */
4105 static void
4106 mem_delete_fixup (struct mem_node *x)
4108 while (x != mem_root && x->color == MEM_BLACK)
4110 if (x == x->parent->left)
4112 struct mem_node *w = x->parent->right;
4114 if (w->color == MEM_RED)
4116 w->color = MEM_BLACK;
4117 x->parent->color = MEM_RED;
4118 mem_rotate_left (x->parent);
4119 w = x->parent->right;
4122 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4124 w->color = MEM_RED;
4125 x = x->parent;
4127 else
4129 if (w->right->color == MEM_BLACK)
4131 w->left->color = MEM_BLACK;
4132 w->color = MEM_RED;
4133 mem_rotate_right (w);
4134 w = x->parent->right;
4136 w->color = x->parent->color;
4137 x->parent->color = MEM_BLACK;
4138 w->right->color = MEM_BLACK;
4139 mem_rotate_left (x->parent);
4140 x = mem_root;
4143 else
4145 struct mem_node *w = x->parent->left;
4147 if (w->color == MEM_RED)
4149 w->color = MEM_BLACK;
4150 x->parent->color = MEM_RED;
4151 mem_rotate_right (x->parent);
4152 w = x->parent->left;
4155 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4157 w->color = MEM_RED;
4158 x = x->parent;
4160 else
4162 if (w->left->color == MEM_BLACK)
4164 w->right->color = MEM_BLACK;
4165 w->color = MEM_RED;
4166 mem_rotate_left (w);
4167 w = x->parent->left;
4170 w->color = x->parent->color;
4171 x->parent->color = MEM_BLACK;
4172 w->left->color = MEM_BLACK;
4173 mem_rotate_right (x->parent);
4174 x = mem_root;
4179 x->color = MEM_BLACK;
4183 /* Value is non-zero if P is a pointer to a live Lisp string on
4184 the heap. M is a pointer to the mem_block for P. */
4186 static bool
4187 live_string_p (struct mem_node *m, void *p)
4189 if (m->type == MEM_TYPE_STRING)
4191 struct string_block *b = m->start;
4192 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4194 /* P must point to the start of a Lisp_String structure, and it
4195 must not be on the free-list. */
4196 return (offset >= 0
4197 && offset % sizeof b->strings[0] == 0
4198 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4199 && ((struct Lisp_String *) p)->data != NULL);
4201 else
4202 return 0;
4206 /* Value is non-zero if P is a pointer to a live Lisp cons on
4207 the heap. M is a pointer to the mem_block for P. */
4209 static bool
4210 live_cons_p (struct mem_node *m, void *p)
4212 if (m->type == MEM_TYPE_CONS)
4214 struct cons_block *b = m->start;
4215 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4217 /* P must point to the start of a Lisp_Cons, not be
4218 one of the unused cells in the current cons block,
4219 and not be on the free-list. */
4220 return (offset >= 0
4221 && offset % sizeof b->conses[0] == 0
4222 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4223 && (b != cons_block
4224 || offset / sizeof b->conses[0] < cons_block_index)
4225 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4227 else
4228 return 0;
4232 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4233 the heap. M is a pointer to the mem_block for P. */
4235 static bool
4236 live_symbol_p (struct mem_node *m, void *p)
4238 if (m->type == MEM_TYPE_SYMBOL)
4240 struct symbol_block *b = m->start;
4241 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4243 /* P must point to the start of a Lisp_Symbol, not be
4244 one of the unused cells in the current symbol block,
4245 and not be on the free-list. */
4246 return (offset >= 0
4247 && offset % sizeof b->symbols[0] == 0
4248 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4249 && (b != symbol_block
4250 || offset / sizeof b->symbols[0] < symbol_block_index)
4251 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4253 else
4254 return 0;
4258 /* Value is non-zero if P is a pointer to a live Lisp float on
4259 the heap. M is a pointer to the mem_block for P. */
4261 static bool
4262 live_float_p (struct mem_node *m, void *p)
4264 if (m->type == MEM_TYPE_FLOAT)
4266 struct float_block *b = m->start;
4267 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4269 /* P must point to the start of a Lisp_Float and not be
4270 one of the unused cells in the current float block. */
4271 return (offset >= 0
4272 && offset % sizeof b->floats[0] == 0
4273 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4274 && (b != float_block
4275 || offset / sizeof b->floats[0] < float_block_index));
4277 else
4278 return 0;
4282 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4283 the heap. M is a pointer to the mem_block for P. */
4285 static bool
4286 live_misc_p (struct mem_node *m, void *p)
4288 if (m->type == MEM_TYPE_MISC)
4290 struct marker_block *b = m->start;
4291 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4293 /* P must point to the start of a Lisp_Misc, not be
4294 one of the unused cells in the current misc block,
4295 and not be on the free-list. */
4296 return (offset >= 0
4297 && offset % sizeof b->markers[0] == 0
4298 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4299 && (b != marker_block
4300 || offset / sizeof b->markers[0] < marker_block_index)
4301 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4303 else
4304 return 0;
4308 /* Value is non-zero if P is a pointer to a live vector-like object.
4309 M is a pointer to the mem_block for P. */
4311 static bool
4312 live_vector_p (struct mem_node *m, void *p)
4314 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4316 /* This memory node corresponds to a vector block. */
4317 struct vector_block *block = m->start;
4318 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4320 /* P is in the block's allocation range. Scan the block
4321 up to P and see whether P points to the start of some
4322 vector which is not on a free list. FIXME: check whether
4323 some allocation patterns (probably a lot of short vectors)
4324 may cause a substantial overhead of this loop. */
4325 while (VECTOR_IN_BLOCK (vector, block)
4326 && vector <= (struct Lisp_Vector *) p)
4328 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4329 return 1;
4330 else
4331 vector = ADVANCE (vector, vector_nbytes (vector));
4334 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4335 /* This memory node corresponds to a large vector. */
4336 return 1;
4337 return 0;
4341 /* Value is non-zero if P is a pointer to a live buffer. M is a
4342 pointer to the mem_block for P. */
4344 static bool
4345 live_buffer_p (struct mem_node *m, void *p)
4347 /* P must point to the start of the block, and the buffer
4348 must not have been killed. */
4349 return (m->type == MEM_TYPE_BUFFER
4350 && p == m->start
4351 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4354 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4356 #if GC_MARK_STACK
4358 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4360 /* Currently not used, but may be called from gdb. */
4362 void dump_zombies (void) EXTERNALLY_VISIBLE;
4364 /* Array of objects that are kept alive because the C stack contains
4365 a pattern that looks like a reference to them. */
4367 #define MAX_ZOMBIES 10
4368 static Lisp_Object zombies[MAX_ZOMBIES];
4370 /* Number of zombie objects. */
4372 static EMACS_INT nzombies;
4374 /* Number of garbage collections. */
4376 static EMACS_INT ngcs;
4378 /* Average percentage of zombies per collection. */
4380 static double avg_zombies;
4382 /* Max. number of live and zombie objects. */
4384 static EMACS_INT max_live, max_zombies;
4386 /* Average number of live objects per GC. */
4388 static double avg_live;
4390 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4391 doc: /* Show information about live and zombie objects. */)
4392 (void)
4394 Lisp_Object args[8], zombie_list = Qnil;
4395 EMACS_INT i;
4396 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4397 zombie_list = Fcons (zombies[i], zombie_list);
4398 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4399 args[1] = make_number (ngcs);
4400 args[2] = make_float (avg_live);
4401 args[3] = make_float (avg_zombies);
4402 args[4] = make_float (avg_zombies / avg_live / 100);
4403 args[5] = make_number (max_live);
4404 args[6] = make_number (max_zombies);
4405 args[7] = zombie_list;
4406 return Fmessage (8, args);
4409 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4412 /* Mark OBJ if we can prove it's a Lisp_Object. */
4414 static void
4415 mark_maybe_object (Lisp_Object obj)
4417 void *po;
4418 struct mem_node *m;
4420 #if USE_VALGRIND
4421 if (valgrind_p)
4422 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4423 #endif
4425 if (INTEGERP (obj))
4426 return;
4428 po = (void *) XPNTR (obj);
4429 m = mem_find (po);
4431 if (m != MEM_NIL)
4433 bool mark_p = 0;
4435 switch (XTYPE (obj))
4437 case Lisp_String:
4438 mark_p = (live_string_p (m, po)
4439 && !STRING_MARKED_P ((struct Lisp_String *) po));
4440 break;
4442 case Lisp_Cons:
4443 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4444 break;
4446 case Lisp_Symbol:
4447 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4448 break;
4450 case Lisp_Float:
4451 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4452 break;
4454 case Lisp_Vectorlike:
4455 /* Note: can't check BUFFERP before we know it's a
4456 buffer because checking that dereferences the pointer
4457 PO which might point anywhere. */
4458 if (live_vector_p (m, po))
4459 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4460 else if (live_buffer_p (m, po))
4461 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4462 break;
4464 case Lisp_Misc:
4465 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4466 break;
4468 default:
4469 break;
4472 if (mark_p)
4474 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4475 if (nzombies < MAX_ZOMBIES)
4476 zombies[nzombies] = obj;
4477 ++nzombies;
4478 #endif
4479 mark_object (obj);
4485 /* If P points to Lisp data, mark that as live if it isn't already
4486 marked. */
4488 static void
4489 mark_maybe_pointer (void *p)
4491 struct mem_node *m;
4493 #if USE_VALGRIND
4494 if (valgrind_p)
4495 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4496 #endif
4498 /* Quickly rule out some values which can't point to Lisp data.
4499 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4500 Otherwise, assume that Lisp data is aligned on even addresses. */
4501 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4502 return;
4504 m = mem_find (p);
4505 if (m != MEM_NIL)
4507 Lisp_Object obj = Qnil;
4509 switch (m->type)
4511 case MEM_TYPE_NON_LISP:
4512 case MEM_TYPE_SPARE:
4513 /* Nothing to do; not a pointer to Lisp memory. */
4514 break;
4516 case MEM_TYPE_BUFFER:
4517 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4518 XSETVECTOR (obj, p);
4519 break;
4521 case MEM_TYPE_CONS:
4522 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4523 XSETCONS (obj, p);
4524 break;
4526 case MEM_TYPE_STRING:
4527 if (live_string_p (m, p)
4528 && !STRING_MARKED_P ((struct Lisp_String *) p))
4529 XSETSTRING (obj, p);
4530 break;
4532 case MEM_TYPE_MISC:
4533 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4534 XSETMISC (obj, p);
4535 break;
4537 case MEM_TYPE_SYMBOL:
4538 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4539 XSETSYMBOL (obj, p);
4540 break;
4542 case MEM_TYPE_FLOAT:
4543 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4544 XSETFLOAT (obj, p);
4545 break;
4547 case MEM_TYPE_VECTORLIKE:
4548 case MEM_TYPE_VECTOR_BLOCK:
4549 if (live_vector_p (m, p))
4551 Lisp_Object tem;
4552 XSETVECTOR (tem, p);
4553 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4554 obj = tem;
4556 break;
4558 default:
4559 emacs_abort ();
4562 if (!NILP (obj))
4563 mark_object (obj);
4568 /* Alignment of pointer values. Use alignof, as it sometimes returns
4569 a smaller alignment than GCC's __alignof__ and mark_memory might
4570 miss objects if __alignof__ were used. */
4571 #define GC_POINTER_ALIGNMENT alignof (void *)
4573 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4574 not suffice, which is the typical case. A host where a Lisp_Object is
4575 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4576 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4577 suffice to widen it to to a Lisp_Object and check it that way. */
4578 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4579 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4580 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4581 nor mark_maybe_object can follow the pointers. This should not occur on
4582 any practical porting target. */
4583 # error "MSB type bits straddle pointer-word boundaries"
4584 # endif
4585 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4586 pointer words that hold pointers ORed with type bits. */
4587 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4588 #else
4589 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4590 words that hold unmodified pointers. */
4591 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4592 #endif
4594 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4595 or END+OFFSET..START. */
4597 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4598 mark_memory (void *start, void *end)
4600 void **pp;
4601 int i;
4603 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4604 nzombies = 0;
4605 #endif
4607 /* Make START the pointer to the start of the memory region,
4608 if it isn't already. */
4609 if (end < start)
4611 void *tem = start;
4612 start = end;
4613 end = tem;
4616 /* Mark Lisp data pointed to. This is necessary because, in some
4617 situations, the C compiler optimizes Lisp objects away, so that
4618 only a pointer to them remains. Example:
4620 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4623 Lisp_Object obj = build_string ("test");
4624 struct Lisp_String *s = XSTRING (obj);
4625 Fgarbage_collect ();
4626 fprintf (stderr, "test `%s'\n", s->data);
4627 return Qnil;
4630 Here, `obj' isn't really used, and the compiler optimizes it
4631 away. The only reference to the life string is through the
4632 pointer `s'. */
4634 for (pp = start; (void *) pp < end; pp++)
4635 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4637 void *p = *(void **) ((char *) pp + i);
4638 mark_maybe_pointer (p);
4639 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4640 mark_maybe_object (XIL ((intptr_t) p));
4644 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4646 static bool setjmp_tested_p;
4647 static int longjmps_done;
4649 #define SETJMP_WILL_LIKELY_WORK "\
4651 Emacs garbage collector has been changed to use conservative stack\n\
4652 marking. Emacs has determined that the method it uses to do the\n\
4653 marking will likely work on your system, but this isn't sure.\n\
4655 If you are a system-programmer, or can get the help of a local wizard\n\
4656 who is, please take a look at the function mark_stack in alloc.c, and\n\
4657 verify that the methods used are appropriate for your system.\n\
4659 Please mail the result to <emacs-devel@gnu.org>.\n\
4662 #define SETJMP_WILL_NOT_WORK "\
4664 Emacs garbage collector has been changed to use conservative stack\n\
4665 marking. Emacs has determined that the default method it uses to do the\n\
4666 marking will not work on your system. We will need a system-dependent\n\
4667 solution for your system.\n\
4669 Please take a look at the function mark_stack in alloc.c, and\n\
4670 try to find a way to make it work on your system.\n\
4672 Note that you may get false negatives, depending on the compiler.\n\
4673 In particular, you need to use -O with GCC for this test.\n\
4675 Please mail the result to <emacs-devel@gnu.org>.\n\
4679 /* Perform a quick check if it looks like setjmp saves registers in a
4680 jmp_buf. Print a message to stderr saying so. When this test
4681 succeeds, this is _not_ a proof that setjmp is sufficient for
4682 conservative stack marking. Only the sources or a disassembly
4683 can prove that. */
4685 static void
4686 test_setjmp (void)
4688 char buf[10];
4689 register int x;
4690 sys_jmp_buf jbuf;
4692 /* Arrange for X to be put in a register. */
4693 sprintf (buf, "1");
4694 x = strlen (buf);
4695 x = 2 * x - 1;
4697 sys_setjmp (jbuf);
4698 if (longjmps_done == 1)
4700 /* Came here after the longjmp at the end of the function.
4702 If x == 1, the longjmp has restored the register to its
4703 value before the setjmp, and we can hope that setjmp
4704 saves all such registers in the jmp_buf, although that
4705 isn't sure.
4707 For other values of X, either something really strange is
4708 taking place, or the setjmp just didn't save the register. */
4710 if (x == 1)
4711 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4712 else
4714 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4715 exit (1);
4719 ++longjmps_done;
4720 x = 2;
4721 if (longjmps_done == 1)
4722 sys_longjmp (jbuf, 1);
4725 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4728 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4730 /* Abort if anything GCPRO'd doesn't survive the GC. */
4732 static void
4733 check_gcpros (void)
4735 struct gcpro *p;
4736 ptrdiff_t i;
4738 for (p = gcprolist; p; p = p->next)
4739 for (i = 0; i < p->nvars; ++i)
4740 if (!survives_gc_p (p->var[i]))
4741 /* FIXME: It's not necessarily a bug. It might just be that the
4742 GCPRO is unnecessary or should release the object sooner. */
4743 emacs_abort ();
4746 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4748 void
4749 dump_zombies (void)
4751 int i;
4753 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4754 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4756 fprintf (stderr, " %d = ", i);
4757 debug_print (zombies[i]);
4761 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4764 /* Mark live Lisp objects on the C stack.
4766 There are several system-dependent problems to consider when
4767 porting this to new architectures:
4769 Processor Registers
4771 We have to mark Lisp objects in CPU registers that can hold local
4772 variables or are used to pass parameters.
4774 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4775 something that either saves relevant registers on the stack, or
4776 calls mark_maybe_object passing it each register's contents.
4778 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4779 implementation assumes that calling setjmp saves registers we need
4780 to see in a jmp_buf which itself lies on the stack. This doesn't
4781 have to be true! It must be verified for each system, possibly
4782 by taking a look at the source code of setjmp.
4784 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4785 can use it as a machine independent method to store all registers
4786 to the stack. In this case the macros described in the previous
4787 two paragraphs are not used.
4789 Stack Layout
4791 Architectures differ in the way their processor stack is organized.
4792 For example, the stack might look like this
4794 +----------------+
4795 | Lisp_Object | size = 4
4796 +----------------+
4797 | something else | size = 2
4798 +----------------+
4799 | Lisp_Object | size = 4
4800 +----------------+
4801 | ... |
4803 In such a case, not every Lisp_Object will be aligned equally. To
4804 find all Lisp_Object on the stack it won't be sufficient to walk
4805 the stack in steps of 4 bytes. Instead, two passes will be
4806 necessary, one starting at the start of the stack, and a second
4807 pass starting at the start of the stack + 2. Likewise, if the
4808 minimal alignment of Lisp_Objects on the stack is 1, four passes
4809 would be necessary, each one starting with one byte more offset
4810 from the stack start. */
4812 static void
4813 mark_stack (void)
4815 void *end;
4817 #ifdef HAVE___BUILTIN_UNWIND_INIT
4818 /* Force callee-saved registers and register windows onto the stack.
4819 This is the preferred method if available, obviating the need for
4820 machine dependent methods. */
4821 __builtin_unwind_init ();
4822 end = &end;
4823 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4824 #ifndef GC_SAVE_REGISTERS_ON_STACK
4825 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4826 union aligned_jmpbuf {
4827 Lisp_Object o;
4828 sys_jmp_buf j;
4829 } j;
4830 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4831 #endif
4832 /* This trick flushes the register windows so that all the state of
4833 the process is contained in the stack. */
4834 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4835 needed on ia64 too. See mach_dep.c, where it also says inline
4836 assembler doesn't work with relevant proprietary compilers. */
4837 #ifdef __sparc__
4838 #if defined (__sparc64__) && defined (__FreeBSD__)
4839 /* FreeBSD does not have a ta 3 handler. */
4840 asm ("flushw");
4841 #else
4842 asm ("ta 3");
4843 #endif
4844 #endif
4846 /* Save registers that we need to see on the stack. We need to see
4847 registers used to hold register variables and registers used to
4848 pass parameters. */
4849 #ifdef GC_SAVE_REGISTERS_ON_STACK
4850 GC_SAVE_REGISTERS_ON_STACK (end);
4851 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4853 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4854 setjmp will definitely work, test it
4855 and print a message with the result
4856 of the test. */
4857 if (!setjmp_tested_p)
4859 setjmp_tested_p = 1;
4860 test_setjmp ();
4862 #endif /* GC_SETJMP_WORKS */
4864 sys_setjmp (j.j);
4865 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4866 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4867 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4869 /* This assumes that the stack is a contiguous region in memory. If
4870 that's not the case, something has to be done here to iterate
4871 over the stack segments. */
4872 mark_memory (stack_base, end);
4874 /* Allow for marking a secondary stack, like the register stack on the
4875 ia64. */
4876 #ifdef GC_MARK_SECONDARY_STACK
4877 GC_MARK_SECONDARY_STACK ();
4878 #endif
4880 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4881 check_gcpros ();
4882 #endif
4885 #else /* GC_MARK_STACK == 0 */
4887 #define mark_maybe_object(obj) emacs_abort ()
4889 #endif /* GC_MARK_STACK != 0 */
4892 /* Determine whether it is safe to access memory at address P. */
4893 static int
4894 valid_pointer_p (void *p)
4896 #ifdef WINDOWSNT
4897 return w32_valid_pointer_p (p, 16);
4898 #else
4899 int fd[2];
4901 /* Obviously, we cannot just access it (we would SEGV trying), so we
4902 trick the o/s to tell us whether p is a valid pointer.
4903 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4904 not validate p in that case. */
4906 if (emacs_pipe (fd) == 0)
4908 bool valid = emacs_write (fd[1], p, 16) == 16;
4909 emacs_close (fd[1]);
4910 emacs_close (fd[0]);
4911 return valid;
4914 return -1;
4915 #endif
4918 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4919 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4920 cannot validate OBJ. This function can be quite slow, so its primary
4921 use is the manual debugging. The only exception is print_object, where
4922 we use it to check whether the memory referenced by the pointer of
4923 Lisp_Save_Value object contains valid objects. */
4926 valid_lisp_object_p (Lisp_Object obj)
4928 void *p;
4929 #if GC_MARK_STACK
4930 struct mem_node *m;
4931 #endif
4933 if (INTEGERP (obj))
4934 return 1;
4936 p = (void *) XPNTR (obj);
4937 if (PURE_POINTER_P (p))
4938 return 1;
4940 if (p == &buffer_defaults || p == &buffer_local_symbols)
4941 return 2;
4943 #if !GC_MARK_STACK
4944 return valid_pointer_p (p);
4945 #else
4947 m = mem_find (p);
4949 if (m == MEM_NIL)
4951 int valid = valid_pointer_p (p);
4952 if (valid <= 0)
4953 return valid;
4955 if (SUBRP (obj))
4956 return 1;
4958 return 0;
4961 switch (m->type)
4963 case MEM_TYPE_NON_LISP:
4964 case MEM_TYPE_SPARE:
4965 return 0;
4967 case MEM_TYPE_BUFFER:
4968 return live_buffer_p (m, p) ? 1 : 2;
4970 case MEM_TYPE_CONS:
4971 return live_cons_p (m, p);
4973 case MEM_TYPE_STRING:
4974 return live_string_p (m, p);
4976 case MEM_TYPE_MISC:
4977 return live_misc_p (m, p);
4979 case MEM_TYPE_SYMBOL:
4980 return live_symbol_p (m, p);
4982 case MEM_TYPE_FLOAT:
4983 return live_float_p (m, p);
4985 case MEM_TYPE_VECTORLIKE:
4986 case MEM_TYPE_VECTOR_BLOCK:
4987 return live_vector_p (m, p);
4989 default:
4990 break;
4993 return 0;
4994 #endif
5000 /***********************************************************************
5001 Pure Storage Management
5002 ***********************************************************************/
5004 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5005 pointer to it. TYPE is the Lisp type for which the memory is
5006 allocated. TYPE < 0 means it's not used for a Lisp object. */
5008 static void *
5009 pure_alloc (size_t size, int type)
5011 void *result;
5012 #if USE_LSB_TAG
5013 size_t alignment = GCALIGNMENT;
5014 #else
5015 size_t alignment = alignof (EMACS_INT);
5017 /* Give Lisp_Floats an extra alignment. */
5018 if (type == Lisp_Float)
5019 alignment = alignof (struct Lisp_Float);
5020 #endif
5022 again:
5023 if (type >= 0)
5025 /* Allocate space for a Lisp object from the beginning of the free
5026 space with taking account of alignment. */
5027 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5028 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5030 else
5032 /* Allocate space for a non-Lisp object from the end of the free
5033 space. */
5034 pure_bytes_used_non_lisp += size;
5035 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5037 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5039 if (pure_bytes_used <= pure_size)
5040 return result;
5042 /* Don't allocate a large amount here,
5043 because it might get mmap'd and then its address
5044 might not be usable. */
5045 purebeg = xmalloc (10000);
5046 pure_size = 10000;
5047 pure_bytes_used_before_overflow += pure_bytes_used - size;
5048 pure_bytes_used = 0;
5049 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5050 goto again;
5054 /* Print a warning if PURESIZE is too small. */
5056 void
5057 check_pure_size (void)
5059 if (pure_bytes_used_before_overflow)
5060 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5061 " bytes needed)"),
5062 pure_bytes_used + pure_bytes_used_before_overflow);
5066 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5067 the non-Lisp data pool of the pure storage, and return its start
5068 address. Return NULL if not found. */
5070 static char *
5071 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5073 int i;
5074 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5075 const unsigned char *p;
5076 char *non_lisp_beg;
5078 if (pure_bytes_used_non_lisp <= nbytes)
5079 return NULL;
5081 /* Set up the Boyer-Moore table. */
5082 skip = nbytes + 1;
5083 for (i = 0; i < 256; i++)
5084 bm_skip[i] = skip;
5086 p = (const unsigned char *) data;
5087 while (--skip > 0)
5088 bm_skip[*p++] = skip;
5090 last_char_skip = bm_skip['\0'];
5092 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5093 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5095 /* See the comments in the function `boyer_moore' (search.c) for the
5096 use of `infinity'. */
5097 infinity = pure_bytes_used_non_lisp + 1;
5098 bm_skip['\0'] = infinity;
5100 p = (const unsigned char *) non_lisp_beg + nbytes;
5101 start = 0;
5104 /* Check the last character (== '\0'). */
5107 start += bm_skip[*(p + start)];
5109 while (start <= start_max);
5111 if (start < infinity)
5112 /* Couldn't find the last character. */
5113 return NULL;
5115 /* No less than `infinity' means we could find the last
5116 character at `p[start - infinity]'. */
5117 start -= infinity;
5119 /* Check the remaining characters. */
5120 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5121 /* Found. */
5122 return non_lisp_beg + start;
5124 start += last_char_skip;
5126 while (start <= start_max);
5128 return NULL;
5132 /* Return a string allocated in pure space. DATA is a buffer holding
5133 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5134 means make the result string multibyte.
5136 Must get an error if pure storage is full, since if it cannot hold
5137 a large string it may be able to hold conses that point to that
5138 string; then the string is not protected from gc. */
5140 Lisp_Object
5141 make_pure_string (const char *data,
5142 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5144 Lisp_Object string;
5145 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5146 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5147 if (s->data == NULL)
5149 s->data = pure_alloc (nbytes + 1, -1);
5150 memcpy (s->data, data, nbytes);
5151 s->data[nbytes] = '\0';
5153 s->size = nchars;
5154 s->size_byte = multibyte ? nbytes : -1;
5155 s->intervals = NULL;
5156 XSETSTRING (string, s);
5157 return string;
5160 /* Return a string allocated in pure space. Do not
5161 allocate the string data, just point to DATA. */
5163 Lisp_Object
5164 make_pure_c_string (const char *data, ptrdiff_t nchars)
5166 Lisp_Object string;
5167 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5168 s->size = nchars;
5169 s->size_byte = -1;
5170 s->data = (unsigned char *) data;
5171 s->intervals = NULL;
5172 XSETSTRING (string, s);
5173 return string;
5176 /* Return a cons allocated from pure space. Give it pure copies
5177 of CAR as car and CDR as cdr. */
5179 Lisp_Object
5180 pure_cons (Lisp_Object car, Lisp_Object cdr)
5182 Lisp_Object new;
5183 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5184 XSETCONS (new, p);
5185 XSETCAR (new, Fpurecopy (car));
5186 XSETCDR (new, Fpurecopy (cdr));
5187 return new;
5191 /* Value is a float object with value NUM allocated from pure space. */
5193 static Lisp_Object
5194 make_pure_float (double num)
5196 Lisp_Object new;
5197 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5198 XSETFLOAT (new, p);
5199 XFLOAT_INIT (new, num);
5200 return new;
5204 /* Return a vector with room for LEN Lisp_Objects allocated from
5205 pure space. */
5207 static Lisp_Object
5208 make_pure_vector (ptrdiff_t len)
5210 Lisp_Object new;
5211 size_t size = header_size + len * word_size;
5212 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5213 XSETVECTOR (new, p);
5214 XVECTOR (new)->header.size = len;
5215 return new;
5219 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5220 doc: /* Make a copy of object OBJ in pure storage.
5221 Recursively copies contents of vectors and cons cells.
5222 Does not copy symbols. Copies strings without text properties. */)
5223 (register Lisp_Object obj)
5225 if (NILP (Vpurify_flag))
5226 return obj;
5228 if (PURE_POINTER_P (XPNTR (obj)))
5229 return obj;
5231 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5233 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5234 if (!NILP (tmp))
5235 return tmp;
5238 if (CONSP (obj))
5239 obj = pure_cons (XCAR (obj), XCDR (obj));
5240 else if (FLOATP (obj))
5241 obj = make_pure_float (XFLOAT_DATA (obj));
5242 else if (STRINGP (obj))
5243 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5244 SBYTES (obj),
5245 STRING_MULTIBYTE (obj));
5246 else if (COMPILEDP (obj) || VECTORP (obj))
5248 register struct Lisp_Vector *vec;
5249 register ptrdiff_t i;
5250 ptrdiff_t size;
5252 size = ASIZE (obj);
5253 if (size & PSEUDOVECTOR_FLAG)
5254 size &= PSEUDOVECTOR_SIZE_MASK;
5255 vec = XVECTOR (make_pure_vector (size));
5256 for (i = 0; i < size; i++)
5257 vec->contents[i] = Fpurecopy (AREF (obj, i));
5258 if (COMPILEDP (obj))
5260 XSETPVECTYPE (vec, PVEC_COMPILED);
5261 XSETCOMPILED (obj, vec);
5263 else
5264 XSETVECTOR (obj, vec);
5266 else if (MARKERP (obj))
5267 error ("Attempt to copy a marker to pure storage");
5268 else
5269 /* Not purified, don't hash-cons. */
5270 return obj;
5272 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5273 Fputhash (obj, obj, Vpurify_flag);
5275 return obj;
5280 /***********************************************************************
5281 Protection from GC
5282 ***********************************************************************/
5284 /* Put an entry in staticvec, pointing at the variable with address
5285 VARADDRESS. */
5287 void
5288 staticpro (Lisp_Object *varaddress)
5290 if (staticidx >= NSTATICS)
5291 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5292 staticvec[staticidx++] = varaddress;
5296 /***********************************************************************
5297 Protection from GC
5298 ***********************************************************************/
5300 /* Temporarily prevent garbage collection. */
5302 ptrdiff_t
5303 inhibit_garbage_collection (void)
5305 ptrdiff_t count = SPECPDL_INDEX ();
5307 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5308 return count;
5311 /* Used to avoid possible overflows when
5312 converting from C to Lisp integers. */
5314 static Lisp_Object
5315 bounded_number (EMACS_INT number)
5317 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5320 /* Calculate total bytes of live objects. */
5322 static size_t
5323 total_bytes_of_live_objects (void)
5325 size_t tot = 0;
5326 tot += total_conses * sizeof (struct Lisp_Cons);
5327 tot += total_symbols * sizeof (struct Lisp_Symbol);
5328 tot += total_markers * sizeof (union Lisp_Misc);
5329 tot += total_string_bytes;
5330 tot += total_vector_slots * word_size;
5331 tot += total_floats * sizeof (struct Lisp_Float);
5332 tot += total_intervals * sizeof (struct interval);
5333 tot += total_strings * sizeof (struct Lisp_String);
5334 return tot;
5337 #ifdef HAVE_WINDOW_SYSTEM
5339 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5341 #if !defined (HAVE_NTGUI)
5343 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5344 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5346 static Lisp_Object
5347 compact_font_cache_entry (Lisp_Object entry)
5349 Lisp_Object tail, *prev = &entry;
5351 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5353 bool drop = 0;
5354 Lisp_Object obj = XCAR (tail);
5356 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5357 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5358 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5359 && VECTORP (XCDR (obj)))
5361 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5363 /* If font-spec is not marked, most likely all font-entities
5364 are not marked too. But we must be sure that nothing is
5365 marked within OBJ before we really drop it. */
5366 for (i = 0; i < size; i++)
5367 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5368 break;
5370 if (i == size)
5371 drop = 1;
5373 if (drop)
5374 *prev = XCDR (tail);
5375 else
5376 prev = xcdr_addr (tail);
5378 return entry;
5381 #endif /* not HAVE_NTGUI */
5383 /* Compact font caches on all terminals and mark
5384 everything which is still here after compaction. */
5386 static void
5387 compact_font_caches (void)
5389 struct terminal *t;
5391 for (t = terminal_list; t; t = t->next_terminal)
5393 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5394 #if !defined (HAVE_NTGUI)
5395 if (CONSP (cache))
5397 Lisp_Object entry;
5399 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5400 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5402 #endif /* not HAVE_NTGUI */
5403 mark_object (cache);
5407 #else /* not HAVE_WINDOW_SYSTEM */
5409 #define compact_font_caches() (void)(0)
5411 #endif /* HAVE_WINDOW_SYSTEM */
5413 /* Remove (MARKER . DATA) entries with unmarked MARKER
5414 from buffer undo LIST and return changed list. */
5416 static Lisp_Object
5417 compact_undo_list (Lisp_Object list)
5419 Lisp_Object tail, *prev = &list;
5421 for (tail = list; CONSP (tail); tail = XCDR (tail))
5423 if (CONSP (XCAR (tail))
5424 && MARKERP (XCAR (XCAR (tail)))
5425 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5426 *prev = XCDR (tail);
5427 else
5428 prev = xcdr_addr (tail);
5430 return list;
5433 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5434 doc: /* Reclaim storage for Lisp objects no longer needed.
5435 Garbage collection happens automatically if you cons more than
5436 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5437 `garbage-collect' normally returns a list with info on amount of space in use,
5438 where each entry has the form (NAME SIZE USED FREE), where:
5439 - NAME is a symbol describing the kind of objects this entry represents,
5440 - SIZE is the number of bytes used by each one,
5441 - USED is the number of those objects that were found live in the heap,
5442 - FREE is the number of those objects that are not live but that Emacs
5443 keeps around for future allocations (maybe because it does not know how
5444 to return them to the OS).
5445 However, if there was overflow in pure space, `garbage-collect'
5446 returns nil, because real GC can't be done.
5447 See Info node `(elisp)Garbage Collection'. */)
5448 (void)
5450 struct buffer *nextb;
5451 char stack_top_variable;
5452 ptrdiff_t i;
5453 bool message_p;
5454 ptrdiff_t count = SPECPDL_INDEX ();
5455 struct timespec start;
5456 Lisp_Object retval = Qnil;
5457 size_t tot_before = 0;
5459 if (abort_on_gc)
5460 emacs_abort ();
5462 /* Can't GC if pure storage overflowed because we can't determine
5463 if something is a pure object or not. */
5464 if (pure_bytes_used_before_overflow)
5465 return Qnil;
5467 /* Record this function, so it appears on the profiler's backtraces. */
5468 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5470 check_cons_list ();
5472 /* Don't keep undo information around forever.
5473 Do this early on, so it is no problem if the user quits. */
5474 FOR_EACH_BUFFER (nextb)
5475 compact_buffer (nextb);
5477 if (profiler_memory_running)
5478 tot_before = total_bytes_of_live_objects ();
5480 start = current_timespec ();
5482 /* In case user calls debug_print during GC,
5483 don't let that cause a recursive GC. */
5484 consing_since_gc = 0;
5486 /* Save what's currently displayed in the echo area. */
5487 message_p = push_message ();
5488 record_unwind_protect_void (pop_message_unwind);
5490 /* Save a copy of the contents of the stack, for debugging. */
5491 #if MAX_SAVE_STACK > 0
5492 if (NILP (Vpurify_flag))
5494 char *stack;
5495 ptrdiff_t stack_size;
5496 if (&stack_top_variable < stack_bottom)
5498 stack = &stack_top_variable;
5499 stack_size = stack_bottom - &stack_top_variable;
5501 else
5503 stack = stack_bottom;
5504 stack_size = &stack_top_variable - stack_bottom;
5506 if (stack_size <= MAX_SAVE_STACK)
5508 if (stack_copy_size < stack_size)
5510 stack_copy = xrealloc (stack_copy, stack_size);
5511 stack_copy_size = stack_size;
5513 no_sanitize_memcpy (stack_copy, stack, stack_size);
5516 #endif /* MAX_SAVE_STACK > 0 */
5518 if (garbage_collection_messages)
5519 message1_nolog ("Garbage collecting...");
5521 block_input ();
5523 shrink_regexp_cache ();
5525 gc_in_progress = 1;
5527 /* Mark all the special slots that serve as the roots of accessibility. */
5529 mark_buffer (&buffer_defaults);
5530 mark_buffer (&buffer_local_symbols);
5532 for (i = 0; i < staticidx; i++)
5533 mark_object (*staticvec[i]);
5535 mark_specpdl ();
5536 mark_terminals ();
5537 mark_kboards ();
5539 #ifdef USE_GTK
5540 xg_mark_data ();
5541 #endif
5543 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5544 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5545 mark_stack ();
5546 #else
5548 register struct gcpro *tail;
5549 for (tail = gcprolist; tail; tail = tail->next)
5550 for (i = 0; i < tail->nvars; i++)
5551 mark_object (tail->var[i]);
5553 mark_byte_stack ();
5554 #endif
5556 struct handler *handler;
5557 for (handler = handlerlist; handler; handler = handler->next)
5559 mark_object (handler->tag_or_ch);
5560 mark_object (handler->val);
5563 #ifdef HAVE_WINDOW_SYSTEM
5564 mark_fringe_data ();
5565 #endif
5567 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5568 mark_stack ();
5569 #endif
5571 /* Everything is now marked, except for the data in font caches
5572 and undo lists. They're compacted by removing an items which
5573 aren't reachable otherwise. */
5575 compact_font_caches ();
5577 FOR_EACH_BUFFER (nextb)
5579 if (!EQ (BVAR (nextb, undo_list), Qt))
5580 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5581 /* Now that we have stripped the elements that need not be
5582 in the undo_list any more, we can finally mark the list. */
5583 mark_object (BVAR (nextb, undo_list));
5586 gc_sweep ();
5588 /* Clear the mark bits that we set in certain root slots. */
5590 unmark_byte_stack ();
5591 VECTOR_UNMARK (&buffer_defaults);
5592 VECTOR_UNMARK (&buffer_local_symbols);
5594 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5595 dump_zombies ();
5596 #endif
5598 check_cons_list ();
5600 gc_in_progress = 0;
5602 unblock_input ();
5604 consing_since_gc = 0;
5605 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5606 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5608 gc_relative_threshold = 0;
5609 if (FLOATP (Vgc_cons_percentage))
5610 { /* Set gc_cons_combined_threshold. */
5611 double tot = total_bytes_of_live_objects ();
5613 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5614 if (0 < tot)
5616 if (tot < TYPE_MAXIMUM (EMACS_INT))
5617 gc_relative_threshold = tot;
5618 else
5619 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5623 if (garbage_collection_messages)
5625 if (message_p || minibuf_level > 0)
5626 restore_message ();
5627 else
5628 message1_nolog ("Garbage collecting...done");
5631 unbind_to (count, Qnil);
5633 Lisp_Object total[11];
5634 int total_size = 10;
5636 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5637 bounded_number (total_conses),
5638 bounded_number (total_free_conses));
5640 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5641 bounded_number (total_symbols),
5642 bounded_number (total_free_symbols));
5644 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5645 bounded_number (total_markers),
5646 bounded_number (total_free_markers));
5648 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5649 bounded_number (total_strings),
5650 bounded_number (total_free_strings));
5652 total[4] = list3 (Qstring_bytes, make_number (1),
5653 bounded_number (total_string_bytes));
5655 total[5] = list3 (Qvectors,
5656 make_number (header_size + sizeof (Lisp_Object)),
5657 bounded_number (total_vectors));
5659 total[6] = list4 (Qvector_slots, make_number (word_size),
5660 bounded_number (total_vector_slots),
5661 bounded_number (total_free_vector_slots));
5663 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5664 bounded_number (total_floats),
5665 bounded_number (total_free_floats));
5667 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5668 bounded_number (total_intervals),
5669 bounded_number (total_free_intervals));
5671 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5672 bounded_number (total_buffers));
5674 #ifdef DOUG_LEA_MALLOC
5675 total_size++;
5676 total[10] = list4 (Qheap, make_number (1024),
5677 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5678 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5679 #endif
5680 retval = Flist (total_size, total);
5683 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5685 /* Compute average percentage of zombies. */
5686 double nlive
5687 = (total_conses + total_symbols + total_markers + total_strings
5688 + total_vectors + total_floats + total_intervals + total_buffers);
5690 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5691 max_live = max (nlive, max_live);
5692 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5693 max_zombies = max (nzombies, max_zombies);
5694 ++ngcs;
5696 #endif
5698 if (!NILP (Vpost_gc_hook))
5700 ptrdiff_t gc_count = inhibit_garbage_collection ();
5701 safe_run_hooks (Qpost_gc_hook);
5702 unbind_to (gc_count, Qnil);
5705 /* Accumulate statistics. */
5706 if (FLOATP (Vgc_elapsed))
5708 struct timespec since_start = timespec_sub (current_timespec (), start);
5709 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5710 + timespectod (since_start));
5713 gcs_done++;
5715 /* Collect profiling data. */
5716 if (profiler_memory_running)
5718 size_t swept = 0;
5719 size_t tot_after = total_bytes_of_live_objects ();
5720 if (tot_before > tot_after)
5721 swept = tot_before - tot_after;
5722 malloc_probe (swept);
5725 return retval;
5729 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5730 only interesting objects referenced from glyphs are strings. */
5732 static void
5733 mark_glyph_matrix (struct glyph_matrix *matrix)
5735 struct glyph_row *row = matrix->rows;
5736 struct glyph_row *end = row + matrix->nrows;
5738 for (; row < end; ++row)
5739 if (row->enabled_p)
5741 int area;
5742 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5744 struct glyph *glyph = row->glyphs[area];
5745 struct glyph *end_glyph = glyph + row->used[area];
5747 for (; glyph < end_glyph; ++glyph)
5748 if (STRINGP (glyph->object)
5749 && !STRING_MARKED_P (XSTRING (glyph->object)))
5750 mark_object (glyph->object);
5755 /* Mark reference to a Lisp_Object.
5756 If the object referred to has not been seen yet, recursively mark
5757 all the references contained in it. */
5759 #define LAST_MARKED_SIZE 500
5760 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5761 static int last_marked_index;
5763 /* For debugging--call abort when we cdr down this many
5764 links of a list, in mark_object. In debugging,
5765 the call to abort will hit a breakpoint.
5766 Normally this is zero and the check never goes off. */
5767 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5769 static void
5770 mark_vectorlike (struct Lisp_Vector *ptr)
5772 ptrdiff_t size = ptr->header.size;
5773 ptrdiff_t i;
5775 eassert (!VECTOR_MARKED_P (ptr));
5776 VECTOR_MARK (ptr); /* Else mark it. */
5777 if (size & PSEUDOVECTOR_FLAG)
5778 size &= PSEUDOVECTOR_SIZE_MASK;
5780 /* Note that this size is not the memory-footprint size, but only
5781 the number of Lisp_Object fields that we should trace.
5782 The distinction is used e.g. by Lisp_Process which places extra
5783 non-Lisp_Object fields at the end of the structure... */
5784 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5785 mark_object (ptr->contents[i]);
5788 /* Like mark_vectorlike but optimized for char-tables (and
5789 sub-char-tables) assuming that the contents are mostly integers or
5790 symbols. */
5792 static void
5793 mark_char_table (struct Lisp_Vector *ptr)
5795 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5796 int i;
5798 eassert (!VECTOR_MARKED_P (ptr));
5799 VECTOR_MARK (ptr);
5800 for (i = 0; i < size; i++)
5802 Lisp_Object val = ptr->contents[i];
5804 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5805 continue;
5806 if (SUB_CHAR_TABLE_P (val))
5808 if (! VECTOR_MARKED_P (XVECTOR (val)))
5809 mark_char_table (XVECTOR (val));
5811 else
5812 mark_object (val);
5816 /* Mark the chain of overlays starting at PTR. */
5818 static void
5819 mark_overlay (struct Lisp_Overlay *ptr)
5821 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5823 ptr->gcmarkbit = 1;
5824 mark_object (ptr->start);
5825 mark_object (ptr->end);
5826 mark_object (ptr->plist);
5830 /* Mark Lisp_Objects and special pointers in BUFFER. */
5832 static void
5833 mark_buffer (struct buffer *buffer)
5835 /* This is handled much like other pseudovectors... */
5836 mark_vectorlike ((struct Lisp_Vector *) buffer);
5838 /* ...but there are some buffer-specific things. */
5840 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5842 /* For now, we just don't mark the undo_list. It's done later in
5843 a special way just before the sweep phase, and after stripping
5844 some of its elements that are not needed any more. */
5846 mark_overlay (buffer->overlays_before);
5847 mark_overlay (buffer->overlays_after);
5849 /* If this is an indirect buffer, mark its base buffer. */
5850 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5851 mark_buffer (buffer->base_buffer);
5854 /* Mark Lisp faces in the face cache C. */
5856 static void
5857 mark_face_cache (struct face_cache *c)
5859 if (c)
5861 int i, j;
5862 for (i = 0; i < c->used; ++i)
5864 struct face *face = FACE_FROM_ID (c->f, i);
5866 if (face)
5868 if (face->font && !VECTOR_MARKED_P (face->font))
5869 mark_vectorlike ((struct Lisp_Vector *) face->font);
5871 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5872 mark_object (face->lface[j]);
5878 /* Remove killed buffers or items whose car is a killed buffer from
5879 LIST, and mark other items. Return changed LIST, which is marked. */
5881 static Lisp_Object
5882 mark_discard_killed_buffers (Lisp_Object list)
5884 Lisp_Object tail, *prev = &list;
5886 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5887 tail = XCDR (tail))
5889 Lisp_Object tem = XCAR (tail);
5890 if (CONSP (tem))
5891 tem = XCAR (tem);
5892 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5893 *prev = XCDR (tail);
5894 else
5896 CONS_MARK (XCONS (tail));
5897 mark_object (XCAR (tail));
5898 prev = xcdr_addr (tail);
5901 mark_object (tail);
5902 return list;
5905 /* Determine type of generic Lisp_Object and mark it accordingly. */
5907 void
5908 mark_object (Lisp_Object arg)
5910 register Lisp_Object obj = arg;
5911 #ifdef GC_CHECK_MARKED_OBJECTS
5912 void *po;
5913 struct mem_node *m;
5914 #endif
5915 ptrdiff_t cdr_count = 0;
5917 loop:
5919 if (PURE_POINTER_P (XPNTR (obj)))
5920 return;
5922 last_marked[last_marked_index++] = obj;
5923 if (last_marked_index == LAST_MARKED_SIZE)
5924 last_marked_index = 0;
5926 /* Perform some sanity checks on the objects marked here. Abort if
5927 we encounter an object we know is bogus. This increases GC time
5928 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5929 #ifdef GC_CHECK_MARKED_OBJECTS
5931 po = (void *) XPNTR (obj);
5933 /* Check that the object pointed to by PO is known to be a Lisp
5934 structure allocated from the heap. */
5935 #define CHECK_ALLOCATED() \
5936 do { \
5937 m = mem_find (po); \
5938 if (m == MEM_NIL) \
5939 emacs_abort (); \
5940 } while (0)
5942 /* Check that the object pointed to by PO is live, using predicate
5943 function LIVEP. */
5944 #define CHECK_LIVE(LIVEP) \
5945 do { \
5946 if (!LIVEP (m, po)) \
5947 emacs_abort (); \
5948 } while (0)
5950 /* Check both of the above conditions. */
5951 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5952 do { \
5953 CHECK_ALLOCATED (); \
5954 CHECK_LIVE (LIVEP); \
5955 } while (0) \
5957 #else /* not GC_CHECK_MARKED_OBJECTS */
5959 #define CHECK_LIVE(LIVEP) (void) 0
5960 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5962 #endif /* not GC_CHECK_MARKED_OBJECTS */
5964 switch (XTYPE (obj))
5966 case Lisp_String:
5968 register struct Lisp_String *ptr = XSTRING (obj);
5969 if (STRING_MARKED_P (ptr))
5970 break;
5971 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5972 MARK_STRING (ptr);
5973 MARK_INTERVAL_TREE (ptr->intervals);
5974 #ifdef GC_CHECK_STRING_BYTES
5975 /* Check that the string size recorded in the string is the
5976 same as the one recorded in the sdata structure. */
5977 string_bytes (ptr);
5978 #endif /* GC_CHECK_STRING_BYTES */
5980 break;
5982 case Lisp_Vectorlike:
5984 register struct Lisp_Vector *ptr = XVECTOR (obj);
5985 register ptrdiff_t pvectype;
5987 if (VECTOR_MARKED_P (ptr))
5988 break;
5990 #ifdef GC_CHECK_MARKED_OBJECTS
5991 m = mem_find (po);
5992 if (m == MEM_NIL && !SUBRP (obj))
5993 emacs_abort ();
5994 #endif /* GC_CHECK_MARKED_OBJECTS */
5996 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5997 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5998 >> PSEUDOVECTOR_AREA_BITS);
5999 else
6000 pvectype = PVEC_NORMAL_VECTOR;
6002 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6003 CHECK_LIVE (live_vector_p);
6005 switch (pvectype)
6007 case PVEC_BUFFER:
6008 #ifdef GC_CHECK_MARKED_OBJECTS
6010 struct buffer *b;
6011 FOR_EACH_BUFFER (b)
6012 if (b == po)
6013 break;
6014 if (b == NULL)
6015 emacs_abort ();
6017 #endif /* GC_CHECK_MARKED_OBJECTS */
6018 mark_buffer ((struct buffer *) ptr);
6019 break;
6021 case PVEC_COMPILED:
6022 { /* We could treat this just like a vector, but it is better
6023 to save the COMPILED_CONSTANTS element for last and avoid
6024 recursion there. */
6025 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6026 int i;
6028 VECTOR_MARK (ptr);
6029 for (i = 0; i < size; i++)
6030 if (i != COMPILED_CONSTANTS)
6031 mark_object (ptr->contents[i]);
6032 if (size > COMPILED_CONSTANTS)
6034 obj = ptr->contents[COMPILED_CONSTANTS];
6035 goto loop;
6038 break;
6040 case PVEC_FRAME:
6042 struct frame *f = (struct frame *) ptr;
6044 mark_vectorlike (ptr);
6045 mark_face_cache (f->face_cache);
6046 #ifdef HAVE_WINDOW_SYSTEM
6047 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6049 struct font *font = FRAME_FONT (f);
6051 if (font && !VECTOR_MARKED_P (font))
6052 mark_vectorlike ((struct Lisp_Vector *) font);
6054 #endif
6056 break;
6058 case PVEC_WINDOW:
6060 struct window *w = (struct window *) ptr;
6062 mark_vectorlike (ptr);
6064 /* Mark glyph matrices, if any. Marking window
6065 matrices is sufficient because frame matrices
6066 use the same glyph memory. */
6067 if (w->current_matrix)
6069 mark_glyph_matrix (w->current_matrix);
6070 mark_glyph_matrix (w->desired_matrix);
6073 /* Filter out killed buffers from both buffer lists
6074 in attempt to help GC to reclaim killed buffers faster.
6075 We can do it elsewhere for live windows, but this is the
6076 best place to do it for dead windows. */
6077 wset_prev_buffers
6078 (w, mark_discard_killed_buffers (w->prev_buffers));
6079 wset_next_buffers
6080 (w, mark_discard_killed_buffers (w->next_buffers));
6082 break;
6084 case PVEC_HASH_TABLE:
6086 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6088 mark_vectorlike (ptr);
6089 mark_object (h->test.name);
6090 mark_object (h->test.user_hash_function);
6091 mark_object (h->test.user_cmp_function);
6092 /* If hash table is not weak, mark all keys and values.
6093 For weak tables, mark only the vector. */
6094 if (NILP (h->weak))
6095 mark_object (h->key_and_value);
6096 else
6097 VECTOR_MARK (XVECTOR (h->key_and_value));
6099 break;
6101 case PVEC_CHAR_TABLE:
6102 mark_char_table (ptr);
6103 break;
6105 case PVEC_BOOL_VECTOR:
6106 /* No Lisp_Objects to mark in a bool vector. */
6107 VECTOR_MARK (ptr);
6108 break;
6110 case PVEC_SUBR:
6111 break;
6113 case PVEC_FREE:
6114 emacs_abort ();
6116 default:
6117 mark_vectorlike (ptr);
6120 break;
6122 case Lisp_Symbol:
6124 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6125 struct Lisp_Symbol *ptrx;
6127 if (ptr->gcmarkbit)
6128 break;
6129 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6130 ptr->gcmarkbit = 1;
6131 mark_object (ptr->function);
6132 mark_object (ptr->plist);
6133 switch (ptr->redirect)
6135 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6136 case SYMBOL_VARALIAS:
6138 Lisp_Object tem;
6139 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6140 mark_object (tem);
6141 break;
6143 case SYMBOL_LOCALIZED:
6145 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6146 Lisp_Object where = blv->where;
6147 /* If the value is set up for a killed buffer or deleted
6148 frame, restore it's global binding. If the value is
6149 forwarded to a C variable, either it's not a Lisp_Object
6150 var, or it's staticpro'd already. */
6151 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6152 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6153 swap_in_global_binding (ptr);
6154 mark_object (blv->where);
6155 mark_object (blv->valcell);
6156 mark_object (blv->defcell);
6157 break;
6159 case SYMBOL_FORWARDED:
6160 /* If the value is forwarded to a buffer or keyboard field,
6161 these are marked when we see the corresponding object.
6162 And if it's forwarded to a C variable, either it's not
6163 a Lisp_Object var, or it's staticpro'd already. */
6164 break;
6165 default: emacs_abort ();
6167 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6168 MARK_STRING (XSTRING (ptr->name));
6169 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6171 ptr = ptr->next;
6172 if (ptr)
6174 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6175 XSETSYMBOL (obj, ptrx);
6176 goto loop;
6179 break;
6181 case Lisp_Misc:
6182 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6184 if (XMISCANY (obj)->gcmarkbit)
6185 break;
6187 switch (XMISCTYPE (obj))
6189 case Lisp_Misc_Marker:
6190 /* DO NOT mark thru the marker's chain.
6191 The buffer's markers chain does not preserve markers from gc;
6192 instead, markers are removed from the chain when freed by gc. */
6193 XMISCANY (obj)->gcmarkbit = 1;
6194 break;
6196 case Lisp_Misc_Save_Value:
6197 XMISCANY (obj)->gcmarkbit = 1;
6199 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6200 /* If `save_type' is zero, `data[0].pointer' is the address
6201 of a memory area containing `data[1].integer' potential
6202 Lisp_Objects. */
6203 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6205 Lisp_Object *p = ptr->data[0].pointer;
6206 ptrdiff_t nelt;
6207 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6208 mark_maybe_object (*p);
6210 else
6212 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6213 int i;
6214 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6215 if (save_type (ptr, i) == SAVE_OBJECT)
6216 mark_object (ptr->data[i].object);
6219 break;
6221 case Lisp_Misc_Overlay:
6222 mark_overlay (XOVERLAY (obj));
6223 break;
6225 default:
6226 emacs_abort ();
6228 break;
6230 case Lisp_Cons:
6232 register struct Lisp_Cons *ptr = XCONS (obj);
6233 if (CONS_MARKED_P (ptr))
6234 break;
6235 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6236 CONS_MARK (ptr);
6237 /* If the cdr is nil, avoid recursion for the car. */
6238 if (EQ (ptr->u.cdr, Qnil))
6240 obj = ptr->car;
6241 cdr_count = 0;
6242 goto loop;
6244 mark_object (ptr->car);
6245 obj = ptr->u.cdr;
6246 cdr_count++;
6247 if (cdr_count == mark_object_loop_halt)
6248 emacs_abort ();
6249 goto loop;
6252 case Lisp_Float:
6253 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6254 FLOAT_MARK (XFLOAT (obj));
6255 break;
6257 case_Lisp_Int:
6258 break;
6260 default:
6261 emacs_abort ();
6264 #undef CHECK_LIVE
6265 #undef CHECK_ALLOCATED
6266 #undef CHECK_ALLOCATED_AND_LIVE
6268 /* Mark the Lisp pointers in the terminal objects.
6269 Called by Fgarbage_collect. */
6271 static void
6272 mark_terminals (void)
6274 struct terminal *t;
6275 for (t = terminal_list; t; t = t->next_terminal)
6277 eassert (t->name != NULL);
6278 #ifdef HAVE_WINDOW_SYSTEM
6279 /* If a terminal object is reachable from a stacpro'ed object,
6280 it might have been marked already. Make sure the image cache
6281 gets marked. */
6282 mark_image_cache (t->image_cache);
6283 #endif /* HAVE_WINDOW_SYSTEM */
6284 if (!VECTOR_MARKED_P (t))
6285 mark_vectorlike ((struct Lisp_Vector *)t);
6291 /* Value is non-zero if OBJ will survive the current GC because it's
6292 either marked or does not need to be marked to survive. */
6294 bool
6295 survives_gc_p (Lisp_Object obj)
6297 bool survives_p;
6299 switch (XTYPE (obj))
6301 case_Lisp_Int:
6302 survives_p = 1;
6303 break;
6305 case Lisp_Symbol:
6306 survives_p = XSYMBOL (obj)->gcmarkbit;
6307 break;
6309 case Lisp_Misc:
6310 survives_p = XMISCANY (obj)->gcmarkbit;
6311 break;
6313 case Lisp_String:
6314 survives_p = STRING_MARKED_P (XSTRING (obj));
6315 break;
6317 case Lisp_Vectorlike:
6318 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6319 break;
6321 case Lisp_Cons:
6322 survives_p = CONS_MARKED_P (XCONS (obj));
6323 break;
6325 case Lisp_Float:
6326 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6327 break;
6329 default:
6330 emacs_abort ();
6333 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6338 /* Sweep: find all structures not marked, and free them. */
6340 static void
6341 gc_sweep (void)
6343 /* Remove or mark entries in weak hash tables.
6344 This must be done before any object is unmarked. */
6345 sweep_weak_hash_tables ();
6347 sweep_strings ();
6348 check_string_bytes (!noninteractive);
6350 /* Put all unmarked conses on free list. */
6352 register struct cons_block *cblk;
6353 struct cons_block **cprev = &cons_block;
6354 register int lim = cons_block_index;
6355 EMACS_INT num_free = 0, num_used = 0;
6357 cons_free_list = 0;
6359 for (cblk = cons_block; cblk; cblk = *cprev)
6361 register int i = 0;
6362 int this_free = 0;
6363 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6365 /* Scan the mark bits an int at a time. */
6366 for (i = 0; i < ilim; i++)
6368 if (cblk->gcmarkbits[i] == -1)
6370 /* Fast path - all cons cells for this int are marked. */
6371 cblk->gcmarkbits[i] = 0;
6372 num_used += BITS_PER_INT;
6374 else
6376 /* Some cons cells for this int are not marked.
6377 Find which ones, and free them. */
6378 int start, pos, stop;
6380 start = i * BITS_PER_INT;
6381 stop = lim - start;
6382 if (stop > BITS_PER_INT)
6383 stop = BITS_PER_INT;
6384 stop += start;
6386 for (pos = start; pos < stop; pos++)
6388 if (!CONS_MARKED_P (&cblk->conses[pos]))
6390 this_free++;
6391 cblk->conses[pos].u.chain = cons_free_list;
6392 cons_free_list = &cblk->conses[pos];
6393 #if GC_MARK_STACK
6394 cons_free_list->car = Vdead;
6395 #endif
6397 else
6399 num_used++;
6400 CONS_UNMARK (&cblk->conses[pos]);
6406 lim = CONS_BLOCK_SIZE;
6407 /* If this block contains only free conses and we have already
6408 seen more than two blocks worth of free conses then deallocate
6409 this block. */
6410 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6412 *cprev = cblk->next;
6413 /* Unhook from the free list. */
6414 cons_free_list = cblk->conses[0].u.chain;
6415 lisp_align_free (cblk);
6417 else
6419 num_free += this_free;
6420 cprev = &cblk->next;
6423 total_conses = num_used;
6424 total_free_conses = num_free;
6427 /* Put all unmarked floats on free list. */
6429 register struct float_block *fblk;
6430 struct float_block **fprev = &float_block;
6431 register int lim = float_block_index;
6432 EMACS_INT num_free = 0, num_used = 0;
6434 float_free_list = 0;
6436 for (fblk = float_block; fblk; fblk = *fprev)
6438 register int i;
6439 int this_free = 0;
6440 for (i = 0; i < lim; i++)
6441 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6443 this_free++;
6444 fblk->floats[i].u.chain = float_free_list;
6445 float_free_list = &fblk->floats[i];
6447 else
6449 num_used++;
6450 FLOAT_UNMARK (&fblk->floats[i]);
6452 lim = FLOAT_BLOCK_SIZE;
6453 /* If this block contains only free floats and we have already
6454 seen more than two blocks worth of free floats then deallocate
6455 this block. */
6456 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6458 *fprev = fblk->next;
6459 /* Unhook from the free list. */
6460 float_free_list = fblk->floats[0].u.chain;
6461 lisp_align_free (fblk);
6463 else
6465 num_free += this_free;
6466 fprev = &fblk->next;
6469 total_floats = num_used;
6470 total_free_floats = num_free;
6473 /* Put all unmarked intervals on free list. */
6475 register struct interval_block *iblk;
6476 struct interval_block **iprev = &interval_block;
6477 register int lim = interval_block_index;
6478 EMACS_INT num_free = 0, num_used = 0;
6480 interval_free_list = 0;
6482 for (iblk = interval_block; iblk; iblk = *iprev)
6484 register int i;
6485 int this_free = 0;
6487 for (i = 0; i < lim; i++)
6489 if (!iblk->intervals[i].gcmarkbit)
6491 set_interval_parent (&iblk->intervals[i], interval_free_list);
6492 interval_free_list = &iblk->intervals[i];
6493 this_free++;
6495 else
6497 num_used++;
6498 iblk->intervals[i].gcmarkbit = 0;
6501 lim = INTERVAL_BLOCK_SIZE;
6502 /* If this block contains only free intervals and we have already
6503 seen more than two blocks worth of free intervals then
6504 deallocate this block. */
6505 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6507 *iprev = iblk->next;
6508 /* Unhook from the free list. */
6509 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6510 lisp_free (iblk);
6512 else
6514 num_free += this_free;
6515 iprev = &iblk->next;
6518 total_intervals = num_used;
6519 total_free_intervals = num_free;
6522 /* Put all unmarked symbols on free list. */
6524 register struct symbol_block *sblk;
6525 struct symbol_block **sprev = &symbol_block;
6526 register int lim = symbol_block_index;
6527 EMACS_INT num_free = 0, num_used = 0;
6529 symbol_free_list = NULL;
6531 for (sblk = symbol_block; sblk; sblk = *sprev)
6533 int this_free = 0;
6534 union aligned_Lisp_Symbol *sym = sblk->symbols;
6535 union aligned_Lisp_Symbol *end = sym + lim;
6537 for (; sym < end; ++sym)
6539 /* Check if the symbol was created during loadup. In such a case
6540 it might be pointed to by pure bytecode which we don't trace,
6541 so we conservatively assume that it is live. */
6542 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6544 if (!sym->s.gcmarkbit && !pure_p)
6546 if (sym->s.redirect == SYMBOL_LOCALIZED)
6547 xfree (SYMBOL_BLV (&sym->s));
6548 sym->s.next = symbol_free_list;
6549 symbol_free_list = &sym->s;
6550 #if GC_MARK_STACK
6551 symbol_free_list->function = Vdead;
6552 #endif
6553 ++this_free;
6555 else
6557 ++num_used;
6558 if (!pure_p)
6559 eassert (!STRING_MARKED_P (XSTRING (sym->s.name)));
6560 sym->s.gcmarkbit = 0;
6564 lim = SYMBOL_BLOCK_SIZE;
6565 /* If this block contains only free symbols and we have already
6566 seen more than two blocks worth of free symbols then deallocate
6567 this block. */
6568 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6570 *sprev = sblk->next;
6571 /* Unhook from the free list. */
6572 symbol_free_list = sblk->symbols[0].s.next;
6573 lisp_free (sblk);
6575 else
6577 num_free += this_free;
6578 sprev = &sblk->next;
6581 total_symbols = num_used;
6582 total_free_symbols = num_free;
6585 /* Put all unmarked misc's on free list.
6586 For a marker, first unchain it from the buffer it points into. */
6588 register struct marker_block *mblk;
6589 struct marker_block **mprev = &marker_block;
6590 register int lim = marker_block_index;
6591 EMACS_INT num_free = 0, num_used = 0;
6593 marker_free_list = 0;
6595 for (mblk = marker_block; mblk; mblk = *mprev)
6597 register int i;
6598 int this_free = 0;
6600 for (i = 0; i < lim; i++)
6602 if (!mblk->markers[i].m.u_any.gcmarkbit)
6604 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6605 unchain_marker (&mblk->markers[i].m.u_marker);
6606 /* Set the type of the freed object to Lisp_Misc_Free.
6607 We could leave the type alone, since nobody checks it,
6608 but this might catch bugs faster. */
6609 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6610 mblk->markers[i].m.u_free.chain = marker_free_list;
6611 marker_free_list = &mblk->markers[i].m;
6612 this_free++;
6614 else
6616 num_used++;
6617 mblk->markers[i].m.u_any.gcmarkbit = 0;
6620 lim = MARKER_BLOCK_SIZE;
6621 /* If this block contains only free markers and we have already
6622 seen more than two blocks worth of free markers then deallocate
6623 this block. */
6624 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6626 *mprev = mblk->next;
6627 /* Unhook from the free list. */
6628 marker_free_list = mblk->markers[0].m.u_free.chain;
6629 lisp_free (mblk);
6631 else
6633 num_free += this_free;
6634 mprev = &mblk->next;
6638 total_markers = num_used;
6639 total_free_markers = num_free;
6642 /* Free all unmarked buffers */
6644 register struct buffer *buffer, **bprev = &all_buffers;
6646 total_buffers = 0;
6647 for (buffer = all_buffers; buffer; buffer = *bprev)
6648 if (!VECTOR_MARKED_P (buffer))
6650 *bprev = buffer->next;
6651 lisp_free (buffer);
6653 else
6655 VECTOR_UNMARK (buffer);
6656 /* Do not use buffer_(set|get)_intervals here. */
6657 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6658 total_buffers++;
6659 bprev = &buffer->next;
6663 sweep_vectors ();
6664 check_string_bytes (!noninteractive);
6670 /* Debugging aids. */
6672 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6673 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6674 This may be helpful in debugging Emacs's memory usage.
6675 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6676 (void)
6678 Lisp_Object end;
6680 #ifdef HAVE_NS
6681 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6682 XSETINT (end, 0);
6683 #else
6684 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6685 #endif
6687 return end;
6690 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6691 doc: /* Return a list of counters that measure how much consing there has been.
6692 Each of these counters increments for a certain kind of object.
6693 The counters wrap around from the largest positive integer to zero.
6694 Garbage collection does not decrease them.
6695 The elements of the value are as follows:
6696 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6697 All are in units of 1 = one object consed
6698 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6699 objects consed.
6700 MISCS include overlays, markers, and some internal types.
6701 Frames, windows, buffers, and subprocesses count as vectors
6702 (but the contents of a buffer's text do not count here). */)
6703 (void)
6705 return listn (CONSTYPE_HEAP, 8,
6706 bounded_number (cons_cells_consed),
6707 bounded_number (floats_consed),
6708 bounded_number (vector_cells_consed),
6709 bounded_number (symbols_consed),
6710 bounded_number (string_chars_consed),
6711 bounded_number (misc_objects_consed),
6712 bounded_number (intervals_consed),
6713 bounded_number (strings_consed));
6716 /* Find at most FIND_MAX symbols which have OBJ as their value or
6717 function. This is used in gdbinit's `xwhichsymbols' command. */
6719 Lisp_Object
6720 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6722 struct symbol_block *sblk;
6723 ptrdiff_t gc_count = inhibit_garbage_collection ();
6724 Lisp_Object found = Qnil;
6726 if (! DEADP (obj))
6728 for (sblk = symbol_block; sblk; sblk = sblk->next)
6730 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6731 int bn;
6733 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6735 struct Lisp_Symbol *sym = &aligned_sym->s;
6736 Lisp_Object val;
6737 Lisp_Object tem;
6739 if (sblk == symbol_block && bn >= symbol_block_index)
6740 break;
6742 XSETSYMBOL (tem, sym);
6743 val = find_symbol_value (tem);
6744 if (EQ (val, obj)
6745 || EQ (sym->function, obj)
6746 || (!NILP (sym->function)
6747 && COMPILEDP (sym->function)
6748 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6749 || (!NILP (val)
6750 && COMPILEDP (val)
6751 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6753 found = Fcons (tem, found);
6754 if (--find_max == 0)
6755 goto out;
6761 out:
6762 unbind_to (gc_count, Qnil);
6763 return found;
6766 #ifdef ENABLE_CHECKING
6768 bool suppress_checking;
6770 void
6771 die (const char *msg, const char *file, int line)
6773 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6774 file, line, msg);
6775 terminate_due_to_signal (SIGABRT, INT_MAX);
6777 #endif
6779 /* Initialization. */
6781 void
6782 init_alloc_once (void)
6784 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6785 purebeg = PUREBEG;
6786 pure_size = PURESIZE;
6788 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6789 mem_init ();
6790 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6791 #endif
6793 #ifdef DOUG_LEA_MALLOC
6794 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6795 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6796 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6797 #endif
6798 init_strings ();
6799 init_vectors ();
6801 refill_memory_reserve ();
6802 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6805 void
6806 init_alloc (void)
6808 gcprolist = 0;
6809 byte_stack_list = 0;
6810 #if GC_MARK_STACK
6811 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6812 setjmp_tested_p = longjmps_done = 0;
6813 #endif
6814 #endif
6815 Vgc_elapsed = make_float (0.0);
6816 gcs_done = 0;
6818 #if USE_VALGRIND
6819 valgrind_p = RUNNING_ON_VALGRIND != 0;
6820 #endif
6823 void
6824 syms_of_alloc (void)
6826 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6827 doc: /* Number of bytes of consing between garbage collections.
6828 Garbage collection can happen automatically once this many bytes have been
6829 allocated since the last garbage collection. All data types count.
6831 Garbage collection happens automatically only when `eval' is called.
6833 By binding this temporarily to a large number, you can effectively
6834 prevent garbage collection during a part of the program.
6835 See also `gc-cons-percentage'. */);
6837 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6838 doc: /* Portion of the heap used for allocation.
6839 Garbage collection can happen automatically once this portion of the heap
6840 has been allocated since the last garbage collection.
6841 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6842 Vgc_cons_percentage = make_float (0.1);
6844 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6845 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6847 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6848 doc: /* Number of cons cells that have been consed so far. */);
6850 DEFVAR_INT ("floats-consed", floats_consed,
6851 doc: /* Number of floats that have been consed so far. */);
6853 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6854 doc: /* Number of vector cells that have been consed so far. */);
6856 DEFVAR_INT ("symbols-consed", symbols_consed,
6857 doc: /* Number of symbols that have been consed so far. */);
6859 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6860 doc: /* Number of string characters that have been consed so far. */);
6862 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6863 doc: /* Number of miscellaneous objects that have been consed so far.
6864 These include markers and overlays, plus certain objects not visible
6865 to users. */);
6867 DEFVAR_INT ("intervals-consed", intervals_consed,
6868 doc: /* Number of intervals that have been consed so far. */);
6870 DEFVAR_INT ("strings-consed", strings_consed,
6871 doc: /* Number of strings that have been consed so far. */);
6873 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6874 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6875 This means that certain objects should be allocated in shared (pure) space.
6876 It can also be set to a hash-table, in which case this table is used to
6877 do hash-consing of the objects allocated to pure space. */);
6879 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6880 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6881 garbage_collection_messages = 0;
6883 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6884 doc: /* Hook run after garbage collection has finished. */);
6885 Vpost_gc_hook = Qnil;
6886 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6888 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6889 doc: /* Precomputed `signal' argument for memory-full error. */);
6890 /* We build this in advance because if we wait until we need it, we might
6891 not be able to allocate the memory to hold it. */
6892 Vmemory_signal_data
6893 = listn (CONSTYPE_PURE, 2, Qerror,
6894 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6896 DEFVAR_LISP ("memory-full", Vmemory_full,
6897 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6898 Vmemory_full = Qnil;
6900 DEFSYM (Qconses, "conses");
6901 DEFSYM (Qsymbols, "symbols");
6902 DEFSYM (Qmiscs, "miscs");
6903 DEFSYM (Qstrings, "strings");
6904 DEFSYM (Qvectors, "vectors");
6905 DEFSYM (Qfloats, "floats");
6906 DEFSYM (Qintervals, "intervals");
6907 DEFSYM (Qbuffers, "buffers");
6908 DEFSYM (Qstring_bytes, "string-bytes");
6909 DEFSYM (Qvector_slots, "vector-slots");
6910 DEFSYM (Qheap, "heap");
6911 DEFSYM (Qautomatic_gc, "Automatic GC");
6913 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6914 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6916 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6917 doc: /* Accumulated time elapsed in garbage collections.
6918 The time is in seconds as a floating point value. */);
6919 DEFVAR_INT ("gcs-done", gcs_done,
6920 doc: /* Accumulated number of garbage collections done. */);
6922 defsubr (&Scons);
6923 defsubr (&Slist);
6924 defsubr (&Svector);
6925 defsubr (&Smake_byte_code);
6926 defsubr (&Smake_list);
6927 defsubr (&Smake_vector);
6928 defsubr (&Smake_string);
6929 defsubr (&Smake_bool_vector);
6930 defsubr (&Smake_symbol);
6931 defsubr (&Smake_marker);
6932 defsubr (&Spurecopy);
6933 defsubr (&Sgarbage_collect);
6934 defsubr (&Smemory_limit);
6935 defsubr (&Smemory_use_counts);
6937 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6938 defsubr (&Sgc_status);
6939 #endif
6942 /* When compiled with GCC, GDB might say "No enum type named
6943 pvec_type" if we don't have at least one symbol with that type, and
6944 then xbacktrace could fail. Similarly for the other enums and
6945 their values. Some non-GCC compilers don't like these constructs. */
6946 #ifdef __GNUC__
6947 union
6949 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6950 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6951 enum char_bits char_bits;
6952 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6953 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6954 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6955 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6956 enum Lisp_Bits Lisp_Bits;
6957 enum Lisp_Compiled Lisp_Compiled;
6958 enum maxargs maxargs;
6959 enum MAX_ALLOCA MAX_ALLOCA;
6960 enum More_Lisp_Bits More_Lisp_Bits;
6961 enum pvec_type pvec_type;
6962 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6963 #endif /* __GNUC__ */