1 ;;; float.el --- obsolete floating point arithmetic package
3 ;; Copyright (C) 1986, 2001, 2002, 2003, 2004, 2005,
4 ;; 2006, 2007 Free Software Foundation, Inc.
6 ;; Author: Bill Rosenblatt
8 ;; Keywords: extensions
10 ;; This file is part of GNU Emacs.
12 ;; GNU Emacs is free software; you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation; either version 3, or (at your option)
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs; see the file COPYING. If not, write to the
24 ;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 ;; Boston, MA 02110-1301, USA.
29 ;; Floating point numbers are represented by dot-pairs (mant . exp)
30 ;; where mant is the 24-bit signed integral mantissa and exp is the
33 ;; Emacs LISP supports a 24-bit signed integer data type, which has a
34 ;; range of -(2**23) to +(2**23)-1, or -8388608 to 8388607 decimal.
35 ;; This gives six significant decimal digit accuracy. Exponents can
36 ;; be anything in the range -(2**23) to +(2**23)-1.
39 ;; function f converts from integer to floating point
40 ;; function string-to-float converts from string to floating point
41 ;; function fint converts a floating point to integer (with truncation)
42 ;; function float-to-string converts from floating point to string
45 ;; - Exponents outside of the range of +/-100 or so will cause certain
46 ;; functions (especially conversion routines) to take forever.
47 ;; - Very little checking is done for fixed point overflow/underflow.
48 ;; - No checking is done for over/underflow of the exponent
49 ;; (hardly necessary when exponent can be 2**23).
58 ;; fundamental implementation constants
60 "Base of exponent in this floating point representation.")
62 (defconst mantissa-bits
24
63 "Number of significant bits in this floating point representation.")
65 (defconst decimal-digits
6
66 "Number of decimal digits expected to be accurate.")
68 (defconst expt-digits
2
69 "Maximum permitted digits in a scientific notation exponent.")
72 (defconst maxbit
(1- mantissa-bits
)
73 "Number of highest bit")
75 (defconst mantissa-maxval
(1- (ash 1 maxbit
))
76 "Maximum permissible value of mantissa")
78 (defconst mantissa-minval
(ash 1 maxbit
)
79 "Minimum permissible value of mantissa")
81 (defconst floating-point-regexp
82 "^[ \t]*\\(-?\\)\\([0-9]*\\)\
83 \\(\\.\\([0-9]*\\)\\|\\)\
84 \\(\\(\\([Ee]\\)\\(-?\\)\\([0-9][0-9]*\\)\\)\\|\\)[ \t]*$"
85 "Regular expression to match floating point numbers. Extract matches:
89 8 - minus sign for power of ten
93 (defconst high-bit-mask
(ash 1 maxbit
)
94 "Masks all bits except the high-order (sign) bit.")
96 (defconst second-bit-mask
(ash 1 (1- maxbit
))
97 "Masks all bits except the highest-order magnitude bit")
99 ;; various useful floating point constants
100 (defconst _f0
'(0 .
1))
102 (defconst _f1
/2 '(4194304 . -
23))
104 (defconst _f1
'(4194304 . -
22))
106 (defconst _f10
'(5242880 . -
19))
108 ;; support for decimal conversion routines
109 (defvar powers-of-10
(make-vector (1+ decimal-digits
) _f1
))
110 (aset powers-of-10
1 _f10
)
111 (aset powers-of-10
2 '(6553600 . -
16))
112 (aset powers-of-10
3 '(8192000 . -
13))
113 (aset powers-of-10
4 '(5120000 . -
9))
114 (aset powers-of-10
5 '(6400000 . -
6))
115 (aset powers-of-10
6 '(8000000 . -
3))
117 (defconst all-decimal-digs-minval
(aref powers-of-10
(1- decimal-digits
)))
118 (defconst highest-power-of-10
(aref powers-of-10 decimal-digits
))
120 (defun fashl (fnum) ; floating-point arithmetic shift left
121 (cons (ash (car fnum
) 1) (1- (cdr fnum
))))
123 (defun fashr (fnum) ; floating point arithmetic shift right
124 (cons (ash (car fnum
) -
1) (1+ (cdr fnum
))))
126 (defun normalize (fnum)
127 (if (> (car fnum
) 0) ; make sure next-to-highest bit is set
128 (while (zerop (logand (car fnum
) second-bit-mask
))
129 (setq fnum
(fashl fnum
)))
130 (if (< (car fnum
) 0) ; make sure highest bit is set
131 (while (zerop (logand (car fnum
) high-bit-mask
))
132 (setq fnum
(fashl fnum
)))
133 (setq fnum _f0
))) ; "standard 0"
136 (defun abs (n) ; integer absolute value
137 (if (>= n
0) n
(- n
)))
139 (defun fabs (fnum) ; re-normalize after taking abs value
140 (normalize (cons (abs (car fnum
)) (cdr fnum
))))
142 (defun xor (a b
) ; logical exclusive or
143 (and (or a b
) (not (and a b
))))
145 (defun same-sign (a b
) ; two f-p numbers have same sign?
146 (not (xor (natnump (car a
)) (natnump (car b
)))))
148 (defun extract-match (str i
) ; used after string-match
150 (substring str
(match-beginning i
) (match-end i
))
153 ;; support for the multiplication function
154 (defconst halfword-bits
(/ mantissa-bits
2)) ; bits in a halfword
155 (defconst masklo
(1- (ash 1 halfword-bits
))) ; isolate the lower halfword
156 (defconst maskhi
(lognot masklo
)) ; isolate the upper halfword
157 (defconst round-limit
(ash 1 (/ halfword-bits
2)))
159 (defun hihalf (n) ; return high halfword, shifted down
160 (ash (logand n maskhi
) (- halfword-bits
)))
162 (defun lohalf (n) ; return low halfword
167 ;; Arithmetic functions
169 "Returns the sum of two floating point numbers."
170 (let ((f1 (fmax a1 a2
))
172 (if (same-sign a1 a2
)
173 (setq f1
(fashr f1
) ; shift right to avoid overflow
176 (cons (+ (car f1
) (ash (car f2
) (- (cdr f2
) (cdr f1
))))
179 (defun f- (a1 &optional a2
) ; unary or binary minus
180 "Returns the difference of two floating point numbers."
183 (normalize (cons (- (car a1
)) (cdr a1
)))))
185 (defun f* (a1 a2
) ; multiply in halfword chunks
186 "Returns the product of two floating point numbers."
187 (let* ((i1 (car (fabs a1
)))
189 (sign (not (same-sign a1 a2
)))
190 (prodlo (+ (hihalf (* (lohalf i1
) (lohalf i2
)))
191 (lohalf (* (hihalf i1
) (lohalf i2
)))
192 (lohalf (* (lohalf i1
) (hihalf i2
)))))
193 (prodhi (+ (* (hihalf i1
) (hihalf i2
))
194 (hihalf (* (hihalf i1
) (lohalf i2
)))
195 (hihalf (* (lohalf i1
) (hihalf i2
)))
197 (if (> (lohalf prodlo
) round-limit
)
198 (setq prodhi
(1+ prodhi
))) ; round off truncated bits
200 (cons (if sign
(- prodhi
) prodhi
)
201 (+ (cdr (fabs a1
)) (cdr (fabs a2
)) mantissa-bits
)))))
203 (defun f/ (a1 a2
) ; SLOW subtract-and-shift algorithm
204 "Returns the quotient of two floating point numbers."
205 (if (zerop (car a2
)) ; if divide by 0
206 (signal 'arith-error
(list "attempt to divide by zero" a1 a2
))
207 (let ((bits (1- maxbit
))
209 (dividend (car (fabs a1
)))
210 (divisor (car (fabs a2
)))
211 (sign (not (same-sign a1 a2
))))
212 (while (natnump bits
)
213 (if (< (- dividend divisor
) 0)
214 (setq quotient
(ash quotient
1))
215 (setq quotient
(1+ (ash quotient
1))
216 dividend
(- dividend divisor
)))
217 (setq dividend
(ash dividend
1)
220 (cons (if sign
(- quotient
) quotient
)
221 (- (cdr (fabs a1
)) (cdr (fabs a2
)) (1- maxbit
)))))))
224 "Returns the remainder of first floating point number divided by second."
225 (f- a1
(f* (ftrunc (f/ a1 a2
)) a2
)))
228 ;; Comparison functions
230 "Returns t if two floating point numbers are equal, nil otherwise."
234 "Returns t if first floating point number is greater than second,
236 (cond ((and (natnump (car a1
)) (< (car a2
) 0))
237 t
) ; a1 nonnegative, a2 negative
238 ((and (> (car a1
) 0) (<= (car a2
) 0))
239 t
) ; a1 positive, a2 nonpositive
240 ((and (<= (car a1
) 0) (natnump (car a2
)))
241 nil
) ; a1 nonpos, a2 nonneg
242 ((/= (cdr a1
) (cdr a2
)) ; same signs. exponents differ
243 (> (cdr a1
) (cdr a2
))) ; compare the mantissas.
245 (> (car a1
) (car a2
))))) ; same exponents.
248 "Returns t if first floating point number is greater than or equal to
249 second, nil otherwise."
250 (or (f> a1 a2
) (f= a1 a2
)))
253 "Returns t if first floating point number is less than second,
258 "Returns t if first floating point number is less than or equal to
259 second, nil otherwise."
263 "Returns t if first floating point number is not equal to second,
268 "Returns the minimum of two floating point numbers."
269 (if (f< a1 a2
) a1 a2
))
272 "Returns the maximum of two floating point numbers."
273 (if (f> a1 a2
) a1 a2
))
276 "Returns t if the floating point number is zero, nil otherwise."
280 "Returns t if the arg is a floating point number, nil otherwise."
281 (and (consp fnum
) (integerp (car fnum
)) (integerp (cdr fnum
))))
283 ;; Conversion routines
285 "Convert the integer argument to floating point, like a C cast operator."
286 (normalize (cons int
'0)))
288 (defun int-to-hex-string (int)
289 "Convert the integer argument to a C-style hexadecimal string."
292 (hex-chars "0123456789ABCDEF"))
293 (while (<= shiftval
0)
294 (setq str
(concat str
(char-to-string
296 (logand (lsh int shiftval
) 15))))
297 shiftval
(+ shiftval
4)))
300 (defun ftrunc (fnum) ; truncate fractional part
301 "Truncate the fractional part of a floating point number."
302 (cond ((natnump (cdr fnum
)) ; it's all integer, return number as is
304 ((<= (cdr fnum
) (- maxbit
)) ; it's all fractional, return 0
306 (t ; otherwise mask out fractional bits
307 (let ((mant (car fnum
)) (exp (cdr fnum
)))
309 (cons (if (natnump mant
) ; if negative, use absolute value
310 (ash (ash mant exp
) (- exp
))
311 (- (ash (ash (- mant
) exp
) (- exp
))))
314 (defun fint (fnum) ; truncate and convert to integer
315 "Convert the floating point number to integer, with truncation,
316 like a C cast operator."
317 (let* ((tf (ftrunc fnum
)) (tint (car tf
)) (texp (cdr tf
)))
318 (cond ((>= texp mantissa-bits
) ; too high, return "maxint"
320 ((<= texp
(- mantissa-bits
)) ; too low, return "minint"
323 (ash tint texp
))))) ; shift so that exponent is 0
325 (defun float-to-string (fnum &optional sci
)
326 "Convert the floating point number to a decimal string.
327 Optional second argument non-nil means use scientific notation."
328 (let* ((value (fabs fnum
)) (sign (< (car fnum
) 0))
329 (power 0) (result 0) (str "")
330 (temp 0) (pow10 _f1
))
334 (if (f>= value _f1
) ; find largest power of 10 <= value
335 (progn ; value >= 1, power is positive
336 (while (f<= (setq temp
(f* pow10 highest-power-of-10
)) value
)
338 power
(+ power decimal-digits
)))
339 (while (f<= (setq temp
(f* pow10 _f10
)) value
)
342 (progn ; value < 1, power is negative
343 (while (f> (setq temp
(f/ pow10 highest-power-of-10
)) value
)
345 power
(- power decimal-digits
)))
346 (while (f> pow10 value
)
347 (setq pow10
(f/ pow10 _f10
)
349 ; get value in range 100000 to 999999
350 (setq value
(f* (f/ value pow10
) all-decimal-digs-minval
)
351 result
(ftrunc value
))
353 (if (f> (f- value result
) _f1
/2) ; round up if remainder > 0.5
354 (setq int
(1+ (fint result
)))
355 (setq int
(fint result
)))
356 (setq str
(int-to-string int
))
358 (setq power
(1+ power
))))
360 (if sci
; scientific notation
361 (setq str
(concat (substring str
0 1) "." (substring str
1)
362 "E" (int-to-string power
)))
364 ; regular decimal string
365 (cond ((>= power
(1- decimal-digits
))
366 ; large power, append zeroes
367 (let ((zeroes (- power decimal-digits
)))
368 (while (natnump zeroes
)
369 (setq str
(concat str
"0")
370 zeroes
(1- zeroes
)))))
372 ; negative power, prepend decimal
373 ((< power
0) ; point and zeroes
374 (let ((zeroes (- (- power
) 2)))
375 (while (natnump zeroes
)
376 (setq str
(concat "0" str
)
378 (setq str
(concat "0." str
))))
380 (t ; in range, insert decimal point
382 (substring str
0 (1+ power
))
384 (substring str
(1+ power
)))))))
386 (if sign
; if negative, prepend minus sign
391 ;; string to float conversion.
392 ;; accepts scientific notation, but ignores anything after the first two
393 ;; digits of the exponent.
394 (defun string-to-float (str)
395 "Convert the string to a floating point number.
396 Accepts a decimal string in scientific notation, with exponent preceded
397 by either E or e. Only the six most significant digits of the integer
398 and fractional parts are used; only the first two digits of the exponent
399 are used. Negative signs preceding both the decimal number and the exponent
402 (if (string-match floating-point-regexp str
0)
405 ; calculate the mantissa
406 (let* ((int-subst (extract-match str
2))
407 (fract-subst (extract-match str
4))
408 (digit-string (concat int-subst fract-subst
))
409 (mant-sign (equal (extract-match str
1) "-"))
410 (leading-0s 0) (round-up nil
))
412 ; get rid of leading 0's
413 (setq power
(- (length int-subst
) decimal-digits
))
414 (while (and (< leading-0s
(length digit-string
))
415 (= (aref digit-string leading-0s
) ?
0))
416 (setq leading-0s
(1+ leading-0s
)))
417 (setq power
(- power leading-0s
)
418 digit-string
(substring digit-string leading-0s
))
420 ; if more than 6 digits, round off
421 (if (> (length digit-string
) decimal-digits
)
422 (setq round-up
(>= (aref digit-string decimal-digits
) ?
5)
423 digit-string
(substring digit-string
0 decimal-digits
))
424 (setq power
(+ power
(- decimal-digits
(length digit-string
)))))
426 ; round up and add minus sign, if necessary
427 (f (* (+ (string-to-number digit-string
)
429 (if mant-sign -
1 1))))
431 ; calculate the exponent (power of ten)
432 (let* ((expt-subst (extract-match str
9))
433 (expt-sign (equal (extract-match str
8) "-"))
434 (expt 0) (chunks 0) (tens 0) (exponent _f1
)
437 (setq expt
(+ (* (string-to-number
438 (substring expt-subst
0
439 (min expt-digits
(length expt-subst
))))
442 (if (< expt
0) ; if power of 10 negative
443 (setq expt
(- expt
) ; take abs val of exponent
444 func
'f
/)) ; and set up to divide, not multiply
446 (setq chunks
(/ expt decimal-digits
)
447 tens
(% expt decimal-digits
))
448 ; divide or multiply by "chunks" of 10**6
450 (setq exponent
(funcall func exponent highest-power-of-10
)
452 ; divide or multiply by remaining power of ten
453 (funcall func exponent
(aref powers-of-10 tens
)))))
455 _f0
)) ; if invalid, return 0
459 ;;; arch-tag: cc0c89c6-5718-49af-978e-585f6b14e347
460 ;;; float.el ends here