Dan Nicolaescu <dann at ics.uci.edu>
[emacs.git] / lisp / calc / calc-poly.el
blobe94a8e0c07a8b8a84cd937bc70507dbe1e570338
1 ;;; calc-poly.el --- polynomial functions for Calc
3 ;; Copyright (C) 1990, 1991, 1992, 1993, 2001, 2002, 2003, 2004,
4 ;; 2005, 2006, 2007 Free Software Foundation, Inc.
6 ;; Author: David Gillespie <daveg@synaptics.com>
7 ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
9 ;; This file is part of GNU Emacs.
11 ;; GNU Emacs is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 3, or (at your option)
14 ;; any later version.
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs; see the file COPYING. If not, write to the
23 ;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 ;; Boston, MA 02110-1301, USA.
26 ;;; Commentary:
28 ;;; Code:
30 ;; This file is autoloaded from calc-ext.el.
32 (require 'calc-ext)
33 (require 'calc-macs)
35 (defun calcFunc-pcont (expr &optional var)
36 (cond ((Math-primp expr)
37 (cond ((Math-zerop expr) 1)
38 ((Math-messy-integerp expr) (math-trunc expr))
39 ((Math-objectp expr) expr)
40 ((or (equal expr var) (not var)) 1)
41 (t expr)))
42 ((eq (car expr) '*)
43 (math-mul (calcFunc-pcont (nth 1 expr) var)
44 (calcFunc-pcont (nth 2 expr) var)))
45 ((eq (car expr) '/)
46 (math-div (calcFunc-pcont (nth 1 expr) var)
47 (calcFunc-pcont (nth 2 expr) var)))
48 ((and (eq (car expr) '^) (Math-natnump (nth 2 expr)))
49 (math-pow (calcFunc-pcont (nth 1 expr) var) (nth 2 expr)))
50 ((memq (car expr) '(neg polar))
51 (calcFunc-pcont (nth 1 expr) var))
52 ((consp var)
53 (let ((p (math-is-polynomial expr var)))
54 (if p
55 (let ((lead (nth (1- (length p)) p))
56 (cont (math-poly-gcd-list p)))
57 (if (math-guess-if-neg lead)
58 (math-neg cont)
59 cont))
60 1)))
61 ((memq (car expr) '(+ - cplx sdev))
62 (let ((cont (calcFunc-pcont (nth 1 expr) var)))
63 (if (eq cont 1)
65 (let ((c2 (calcFunc-pcont (nth 2 expr) var)))
66 (if (and (math-negp cont)
67 (if (eq (car expr) '-) (math-posp c2) (math-negp c2)))
68 (math-neg (math-poly-gcd cont c2))
69 (math-poly-gcd cont c2))))))
70 (var expr)
71 (t 1)))
73 (defun calcFunc-pprim (expr &optional var)
74 (let ((cont (calcFunc-pcont expr var)))
75 (if (math-equal-int cont 1)
76 expr
77 (math-poly-div-exact expr cont var))))
79 (defun math-div-poly-const (expr c)
80 (cond ((memq (car-safe expr) '(+ -))
81 (list (car expr)
82 (math-div-poly-const (nth 1 expr) c)
83 (math-div-poly-const (nth 2 expr) c)))
84 (t (math-div expr c))))
86 (defun calcFunc-pdeg (expr &optional var)
87 (if (Math-zerop expr)
88 '(neg (var inf var-inf))
89 (if var
90 (or (math-polynomial-p expr var)
91 (math-reject-arg expr "Expected a polynomial"))
92 (math-poly-degree expr))))
94 (defun math-poly-degree (expr)
95 (cond ((Math-primp expr)
96 (if (eq (car-safe expr) 'var) 1 0))
97 ((eq (car expr) 'neg)
98 (math-poly-degree (nth 1 expr)))
99 ((eq (car expr) '*)
100 (+ (math-poly-degree (nth 1 expr))
101 (math-poly-degree (nth 2 expr))))
102 ((eq (car expr) '/)
103 (- (math-poly-degree (nth 1 expr))
104 (math-poly-degree (nth 2 expr))))
105 ((and (eq (car expr) '^) (natnump (nth 2 expr)))
106 (* (math-poly-degree (nth 1 expr)) (nth 2 expr)))
107 ((memq (car expr) '(+ -))
108 (max (math-poly-degree (nth 1 expr))
109 (math-poly-degree (nth 2 expr))))
110 (t 1)))
112 (defun calcFunc-plead (expr var)
113 (cond ((eq (car-safe expr) '*)
114 (math-mul (calcFunc-plead (nth 1 expr) var)
115 (calcFunc-plead (nth 2 expr) var)))
116 ((eq (car-safe expr) '/)
117 (math-div (calcFunc-plead (nth 1 expr) var)
118 (calcFunc-plead (nth 2 expr) var)))
119 ((and (eq (car-safe expr) '^) (math-natnump (nth 2 expr)))
120 (math-pow (calcFunc-plead (nth 1 expr) var) (nth 2 expr)))
121 ((Math-primp expr)
122 (if (equal expr var)
124 expr))
126 (let ((p (math-is-polynomial expr var)))
127 (if (cdr p)
128 (nth (1- (length p)) p)
129 1)))))
135 ;;; Polynomial quotient, remainder, and GCD.
136 ;;; Originally by Ove Ewerlid (ewerlid@mizar.DoCS.UU.SE).
137 ;;; Modifications and simplifications by daveg.
139 (defvar math-poly-modulus 1)
141 ;;; Return gcd of two polynomials
142 (defun calcFunc-pgcd (pn pd)
143 (if (math-any-floats pn)
144 (math-reject-arg pn "Coefficients must be rational"))
145 (if (math-any-floats pd)
146 (math-reject-arg pd "Coefficients must be rational"))
147 (let ((calc-prefer-frac t)
148 (math-poly-modulus (math-poly-modulus pn pd)))
149 (math-poly-gcd pn pd)))
151 ;;; Return only quotient to top of stack (nil if zero)
153 ;; calc-poly-div-remainder is a local variable for
154 ;; calc-poly-div (in calc-alg.el), but is used by
155 ;; calcFunc-pdiv, which is called by calc-poly-div.
156 (defvar calc-poly-div-remainder)
158 (defun calcFunc-pdiv (pn pd &optional base)
159 (let* ((calc-prefer-frac t)
160 (math-poly-modulus (math-poly-modulus pn pd))
161 (res (math-poly-div pn pd base)))
162 (setq calc-poly-div-remainder (cdr res))
163 (car res)))
165 ;;; Return only remainder to top of stack
166 (defun calcFunc-prem (pn pd &optional base)
167 (let ((calc-prefer-frac t)
168 (math-poly-modulus (math-poly-modulus pn pd)))
169 (cdr (math-poly-div pn pd base))))
171 (defun calcFunc-pdivrem (pn pd &optional base)
172 (let* ((calc-prefer-frac t)
173 (math-poly-modulus (math-poly-modulus pn pd))
174 (res (math-poly-div pn pd base)))
175 (list 'vec (car res) (cdr res))))
177 (defun calcFunc-pdivide (pn pd &optional base)
178 (let* ((calc-prefer-frac t)
179 (math-poly-modulus (math-poly-modulus pn pd))
180 (res (math-poly-div pn pd base)))
181 (math-add (car res) (math-div (cdr res) pd))))
184 ;;; Multiply two terms, expanding out products of sums.
185 (defun math-mul-thru (lhs rhs)
186 (if (memq (car-safe lhs) '(+ -))
187 (list (car lhs)
188 (math-mul-thru (nth 1 lhs) rhs)
189 (math-mul-thru (nth 2 lhs) rhs))
190 (if (memq (car-safe rhs) '(+ -))
191 (list (car rhs)
192 (math-mul-thru lhs (nth 1 rhs))
193 (math-mul-thru lhs (nth 2 rhs)))
194 (math-mul lhs rhs))))
196 (defun math-div-thru (num den)
197 (if (memq (car-safe num) '(+ -))
198 (list (car num)
199 (math-div-thru (nth 1 num) den)
200 (math-div-thru (nth 2 num) den))
201 (math-div num den)))
204 ;;; Sort the terms of a sum into canonical order.
205 (defun math-sort-terms (expr)
206 (if (memq (car-safe expr) '(+ -))
207 (math-list-to-sum
208 (sort (math-sum-to-list expr)
209 (function (lambda (a b) (math-beforep (car a) (car b))))))
210 expr))
212 (defun math-list-to-sum (lst)
213 (if (cdr lst)
214 (list (if (cdr (car lst)) '- '+)
215 (math-list-to-sum (cdr lst))
216 (car (car lst)))
217 (if (cdr (car lst))
218 (math-neg (car (car lst)))
219 (car (car lst)))))
221 (defun math-sum-to-list (tree &optional neg)
222 (cond ((eq (car-safe tree) '+)
223 (nconc (math-sum-to-list (nth 1 tree) neg)
224 (math-sum-to-list (nth 2 tree) neg)))
225 ((eq (car-safe tree) '-)
226 (nconc (math-sum-to-list (nth 1 tree) neg)
227 (math-sum-to-list (nth 2 tree) (not neg))))
228 (t (list (cons tree neg)))))
230 ;;; Check if the polynomial coefficients are modulo forms.
231 (defun math-poly-modulus (expr &optional expr2)
232 (or (math-poly-modulus-rec expr)
233 (and expr2 (math-poly-modulus-rec expr2))
236 (defun math-poly-modulus-rec (expr)
237 (if (and (eq (car-safe expr) 'mod) (Math-natnump (nth 2 expr)))
238 (list 'mod 1 (nth 2 expr))
239 (and (memq (car-safe expr) '(+ - * /))
240 (or (math-poly-modulus-rec (nth 1 expr))
241 (math-poly-modulus-rec (nth 2 expr))))))
244 ;;; Divide two polynomials. Return (quotient . remainder).
245 (defvar math-poly-div-base nil)
246 (defun math-poly-div (u v &optional math-poly-div-base)
247 (if math-poly-div-base
248 (math-do-poly-div u v)
249 (math-do-poly-div (calcFunc-expand u) (calcFunc-expand v))))
251 (defun math-poly-div-exact (u v &optional base)
252 (let ((res (math-poly-div u v base)))
253 (if (eq (cdr res) 0)
254 (car res)
255 (math-reject-arg (list 'vec u v) "Argument is not a polynomial"))))
257 (defun math-do-poly-div (u v)
258 (cond ((math-constp u)
259 (if (math-constp v)
260 (cons (math-div u v) 0)
261 (cons 0 u)))
262 ((math-constp v)
263 (cons (if (eq v 1)
265 (if (memq (car-safe u) '(+ -))
266 (math-add-or-sub (math-poly-div-exact (nth 1 u) v)
267 (math-poly-div-exact (nth 2 u) v)
268 nil (eq (car u) '-))
269 (math-div u v)))
271 ((Math-equal u v)
272 (cons math-poly-modulus 0))
273 ((and (math-atomic-factorp u) (math-atomic-factorp v))
274 (cons (math-simplify (math-div u v)) 0))
276 (let ((base (or math-poly-div-base
277 (math-poly-div-base u v)))
278 vp up res)
279 (if (or (null base)
280 (null (setq vp (math-is-polynomial v base nil 'gen))))
281 (cons 0 u)
282 (setq up (math-is-polynomial u base nil 'gen)
283 res (math-poly-div-coefs up vp))
284 (cons (math-build-polynomial-expr (car res) base)
285 (math-build-polynomial-expr (cdr res) base)))))))
287 (defun math-poly-div-rec (u v)
288 (cond ((math-constp u)
289 (math-div u v))
290 ((math-constp v)
291 (if (eq v 1)
293 (if (memq (car-safe u) '(+ -))
294 (math-add-or-sub (math-poly-div-rec (nth 1 u) v)
295 (math-poly-div-rec (nth 2 u) v)
296 nil (eq (car u) '-))
297 (math-div u v))))
298 ((Math-equal u v) math-poly-modulus)
299 ((and (math-atomic-factorp u) (math-atomic-factorp v))
300 (math-simplify (math-div u v)))
301 (math-poly-div-base
302 (math-div u v))
304 (let ((base (math-poly-div-base u v))
305 vp up res)
306 (if (or (null base)
307 (null (setq vp (math-is-polynomial v base nil 'gen))))
308 (math-div u v)
309 (setq up (math-is-polynomial u base nil 'gen)
310 res (math-poly-div-coefs up vp))
311 (math-add (math-build-polynomial-expr (car res) base)
312 (math-div (math-build-polynomial-expr (cdr res) base)
313 v)))))))
315 ;;; Divide two polynomials in coefficient-list form. Return (quot . rem).
316 (defun math-poly-div-coefs (u v)
317 (cond ((null v) (math-reject-arg nil "Division by zero"))
318 ((< (length u) (length v)) (cons nil u))
319 ((cdr u)
320 (let ((q nil)
321 (urev (reverse u))
322 (vrev (reverse v)))
323 (while
324 (let ((qk (math-poly-div-rec (math-simplify (car urev))
325 (car vrev)))
326 (up urev)
327 (vp vrev))
328 (if (or q (not (math-zerop qk)))
329 (setq q (cons qk q)))
330 (while (setq up (cdr up) vp (cdr vp))
331 (setcar up (math-sub (car up) (math-mul-thru qk (car vp)))))
332 (setq urev (cdr urev))
333 up))
334 (while (and urev (Math-zerop (car urev)))
335 (setq urev (cdr urev)))
336 (cons q (nreverse (mapcar 'math-simplify urev)))))
338 (cons (list (math-poly-div-rec (car u) (car v)))
339 nil))))
341 ;;; Perform a pseudo-division of polynomials. (See Knuth section 4.6.1.)
342 ;;; This returns only the remainder from the pseudo-division.
343 (defun math-poly-pseudo-div (u v)
344 (cond ((null v) nil)
345 ((< (length u) (length v)) u)
346 ((or (cdr u) (cdr v))
347 (let ((urev (reverse u))
348 (vrev (reverse v))
350 (while
351 (let ((vp vrev))
352 (setq up urev)
353 (while (setq up (cdr up) vp (cdr vp))
354 (setcar up (math-sub (math-mul-thru (car vrev) (car up))
355 (math-mul-thru (car urev) (car vp)))))
356 (setq urev (cdr urev))
358 (while up
359 (setcar up (math-mul-thru (car vrev) (car up)))
360 (setq up (cdr up))))
361 (while (and urev (Math-zerop (car urev)))
362 (setq urev (cdr urev)))
363 (nreverse (mapcar 'math-simplify urev))))
364 (t nil)))
366 ;;; Compute the GCD of two multivariate polynomials.
367 (defun math-poly-gcd (u v)
368 (cond ((Math-equal u v) u)
369 ((math-constp u)
370 (if (Math-zerop u)
372 (calcFunc-gcd u (calcFunc-pcont v))))
373 ((math-constp v)
374 (if (Math-zerop v)
376 (calcFunc-gcd v (calcFunc-pcont u))))
378 (let ((base (math-poly-gcd-base u v)))
379 (if base
380 (math-simplify
381 (calcFunc-expand
382 (math-build-polynomial-expr
383 (math-poly-gcd-coefs (math-is-polynomial u base nil 'gen)
384 (math-is-polynomial v base nil 'gen))
385 base)))
386 (calcFunc-gcd (calcFunc-pcont u) (calcFunc-pcont u)))))))
388 (defun math-poly-div-list (lst a)
389 (if (eq a 1)
391 (if (eq a -1)
392 (math-mul-list lst a)
393 (mapcar (function (lambda (x) (math-poly-div-exact x a))) lst))))
395 (defun math-mul-list (lst a)
396 (if (eq a 1)
398 (if (eq a -1)
399 (mapcar 'math-neg lst)
400 (and (not (eq a 0))
401 (mapcar (function (lambda (x) (math-mul x a))) lst)))))
403 ;;; Run GCD on all elements in a list.
404 (defun math-poly-gcd-list (lst)
405 (if (or (memq 1 lst) (memq -1 lst))
406 (math-poly-gcd-frac-list lst)
407 (let ((gcd (car lst)))
408 (while (and (setq lst (cdr lst)) (not (eq gcd 1)))
409 (or (eq (car lst) 0)
410 (setq gcd (math-poly-gcd gcd (car lst)))))
411 (if lst (setq lst (math-poly-gcd-frac-list lst)))
412 gcd)))
414 (defun math-poly-gcd-frac-list (lst)
415 (while (and lst (not (eq (car-safe (car lst)) 'frac)))
416 (setq lst (cdr lst)))
417 (if lst
418 (let ((denom (nth 2 (car lst))))
419 (while (setq lst (cdr lst))
420 (if (eq (car-safe (car lst)) 'frac)
421 (setq denom (calcFunc-lcm denom (nth 2 (car lst))))))
422 (list 'frac 1 denom))
425 ;;; Compute the GCD of two monovariate polynomial lists.
426 ;;; Knuth section 4.6.1, algorithm C.
427 (defun math-poly-gcd-coefs (u v)
428 (let ((d (math-poly-gcd (math-poly-gcd-list u)
429 (math-poly-gcd-list v)))
430 (g 1) (h 1) (z 0) hh r delta ghd)
431 (while (and u v (Math-zerop (car u)) (Math-zerop (car v)))
432 (setq u (cdr u) v (cdr v) z (1+ z)))
433 (or (eq d 1)
434 (setq u (math-poly-div-list u d)
435 v (math-poly-div-list v d)))
436 (while (progn
437 (setq delta (- (length u) (length v)))
438 (if (< delta 0)
439 (setq r u u v v r delta (- delta)))
440 (setq r (math-poly-pseudo-div u v))
441 (cdr r))
442 (setq u v
443 v (math-poly-div-list r (math-mul g (math-pow h delta)))
444 g (nth (1- (length u)) u)
445 h (if (<= delta 1)
446 (math-mul (math-pow g delta) (math-pow h (- 1 delta)))
447 (math-poly-div-exact (math-pow g delta)
448 (math-pow h (1- delta))))))
449 (setq v (if r
450 (list d)
451 (math-mul-list (math-poly-div-list v (math-poly-gcd-list v)) d)))
452 (if (math-guess-if-neg (nth (1- (length v)) v))
453 (setq v (math-mul-list v -1)))
454 (while (>= (setq z (1- z)) 0)
455 (setq v (cons 0 v)))
459 ;;; Return true if is a factor containing no sums or quotients.
460 (defun math-atomic-factorp (expr)
461 (cond ((eq (car-safe expr) '*)
462 (and (math-atomic-factorp (nth 1 expr))
463 (math-atomic-factorp (nth 2 expr))))
464 ((memq (car-safe expr) '(+ - /))
465 nil)
466 ((memq (car-safe expr) '(^ neg))
467 (math-atomic-factorp (nth 1 expr)))
468 (t t)))
470 ;;; Find a suitable base for dividing a by b.
471 ;;; The base must exist in both expressions.
472 ;;; The degree in the numerator must be higher or equal than the
473 ;;; degree in the denominator.
474 ;;; If the above conditions are not met the quotient is just a remainder.
475 ;;; Return nil if this is the case.
477 (defun math-poly-div-base (a b)
478 (let (a-base b-base)
479 (and (setq a-base (math-total-polynomial-base a))
480 (setq b-base (math-total-polynomial-base b))
481 (catch 'return
482 (while a-base
483 (let ((maybe (assoc (car (car a-base)) b-base)))
484 (if maybe
485 (if (>= (nth 1 (car a-base)) (nth 1 maybe))
486 (throw 'return (car (car a-base))))))
487 (setq a-base (cdr a-base)))))))
489 ;;; Same as above but for gcd algorithm.
490 ;;; Here there is no requirement that degree(a) > degree(b).
491 ;;; Take the base that has the highest degree considering both a and b.
492 ;;; ("a^20+b^21+x^3+a+b", "a+b^2+x^5+a^22+b^10") --> (a 22)
494 (defun math-poly-gcd-base (a b)
495 (let (a-base b-base)
496 (and (setq a-base (math-total-polynomial-base a))
497 (setq b-base (math-total-polynomial-base b))
498 (catch 'return
499 (while (and a-base b-base)
500 (if (> (nth 1 (car a-base)) (nth 1 (car b-base)))
501 (if (assoc (car (car a-base)) b-base)
502 (throw 'return (car (car a-base)))
503 (setq a-base (cdr a-base)))
504 (if (assoc (car (car b-base)) a-base)
505 (throw 'return (car (car b-base)))
506 (setq b-base (cdr b-base)))))))))
508 ;;; Sort a list of polynomial bases.
509 (defun math-sort-poly-base-list (lst)
510 (sort lst (function (lambda (a b)
511 (or (> (nth 1 a) (nth 1 b))
512 (and (= (nth 1 a) (nth 1 b))
513 (math-beforep (car a) (car b))))))))
515 ;;; Given an expression find all variables that are polynomial bases.
516 ;;; Return list in the form '( (var1 degree1) (var2 degree2) ... ).
518 ;; The variable math-poly-base-total-base is local to
519 ;; math-total-polynomial-base, but is used by math-polynomial-p1,
520 ;; which is called by math-total-polynomial-base.
521 (defvar math-poly-base-total-base)
523 (defun math-total-polynomial-base (expr)
524 (let ((math-poly-base-total-base nil))
525 (math-polynomial-base expr 'math-polynomial-p1)
526 (math-sort-poly-base-list math-poly-base-total-base)))
528 ;; The variable math-poly-base-top-expr is local to math-polynomial-base
529 ;; in calc-alg.el, but is used by math-polynomial-p1 which is called
530 ;; by math-polynomial-base.
531 (defvar math-poly-base-top-expr)
533 (defun math-polynomial-p1 (subexpr)
534 (or (assoc subexpr math-poly-base-total-base)
535 (memq (car subexpr) '(+ - * / neg))
536 (and (eq (car subexpr) '^) (natnump (nth 2 subexpr)))
537 (let* ((math-poly-base-variable subexpr)
538 (exponent (math-polynomial-p math-poly-base-top-expr subexpr)))
539 (if exponent
540 (setq math-poly-base-total-base (cons (list subexpr exponent)
541 math-poly-base-total-base)))))
542 nil)
544 ;; The variable math-factored-vars is local to calcFunc-factors and
545 ;; calcFunc-factor, but is used by math-factor-expr and
546 ;; math-factor-expr-part, which are called (directly and indirectly) by
547 ;; calcFunc-factor and calcFunc-factors.
548 (defvar math-factored-vars)
550 ;; The variable math-fact-expr is local to calcFunc-factors,
551 ;; calcFunc-factor and math-factor-expr, but is used by math-factor-expr-try
552 ;; and math-factor-expr-part, which are called (directly and indirectly) by
553 ;; calcFunc-factor, calcFunc-factors and math-factor-expr.
554 (defvar math-fact-expr)
556 ;; The variable math-to-list is local to calcFunc-factors and
557 ;; calcFunc-factor, but is used by math-accum-factors, which is
558 ;; called (indirectly) by calcFunc-factors and calcFunc-factor.
559 (defvar math-to-list)
561 (defun calcFunc-factors (math-fact-expr &optional var)
562 (let ((math-factored-vars (if var t nil))
563 (math-to-list t)
564 (calc-prefer-frac t))
565 (or var
566 (setq var (math-polynomial-base math-fact-expr)))
567 (let ((res (math-factor-finish
568 (or (catch 'factor (math-factor-expr-try var))
569 math-fact-expr))))
570 (math-simplify (if (math-vectorp res)
572 (list 'vec (list 'vec res 1)))))))
574 (defun calcFunc-factor (math-fact-expr &optional var)
575 (let ((math-factored-vars nil)
576 (math-to-list nil)
577 (calc-prefer-frac t))
578 (math-simplify (math-factor-finish
579 (if var
580 (let ((math-factored-vars t))
581 (or (catch 'factor (math-factor-expr-try var)) math-fact-expr))
582 (math-factor-expr math-fact-expr))))))
584 (defun math-factor-finish (x)
585 (if (Math-primp x)
587 (if (eq (car x) 'calcFunc-Fac-Prot)
588 (math-factor-finish (nth 1 x))
589 (cons (car x) (mapcar 'math-factor-finish (cdr x))))))
591 (defun math-factor-protect (x)
592 (if (memq (car-safe x) '(+ -))
593 (list 'calcFunc-Fac-Prot x)
596 (defun math-factor-expr (math-fact-expr)
597 (cond ((eq math-factored-vars t) math-fact-expr)
598 ((or (memq (car-safe math-fact-expr) '(* / ^ neg))
599 (assq (car-safe math-fact-expr) calc-tweak-eqn-table))
600 (cons (car math-fact-expr) (mapcar 'math-factor-expr (cdr math-fact-expr))))
601 ((memq (car-safe math-fact-expr) '(+ -))
602 (let* ((math-factored-vars math-factored-vars)
603 (y (catch 'factor (math-factor-expr-part math-fact-expr))))
604 (if y
605 (math-factor-expr y)
606 math-fact-expr)))
607 (t math-fact-expr)))
609 (defun math-factor-expr-part (x) ; uses "expr"
610 (if (memq (car-safe x) '(+ - * / ^ neg))
611 (while (setq x (cdr x))
612 (math-factor-expr-part (car x)))
613 (and (not (Math-objvecp x))
614 (not (assoc x math-factored-vars))
615 (> (math-factor-contains math-fact-expr x) 1)
616 (setq math-factored-vars (cons (list x) math-factored-vars))
617 (math-factor-expr-try x))))
619 ;; The variable math-fet-x is local to math-factor-expr-try, but is
620 ;; used by math-factor-poly-coefs, which is called by math-factor-expr-try.
621 (defvar math-fet-x)
623 (defun math-factor-expr-try (math-fet-x)
624 (if (eq (car-safe math-fact-expr) '*)
625 (let ((res1 (catch 'factor (let ((math-fact-expr (nth 1 math-fact-expr)))
626 (math-factor-expr-try math-fet-x))))
627 (res2 (catch 'factor (let ((math-fact-expr (nth 2 math-fact-expr)))
628 (math-factor-expr-try math-fet-x)))))
629 (and (or res1 res2)
630 (throw 'factor (math-accum-factors (or res1 (nth 1 math-fact-expr)) 1
631 (or res2 (nth 2 math-fact-expr))))))
632 (let* ((p (math-is-polynomial math-fact-expr math-fet-x 30 'gen))
633 (math-poly-modulus (math-poly-modulus math-fact-expr))
634 res)
635 (and (cdr p)
636 (setq res (math-factor-poly-coefs p))
637 (throw 'factor res)))))
639 (defun math-accum-factors (fac pow facs)
640 (if math-to-list
641 (if (math-vectorp fac)
642 (progn
643 (while (setq fac (cdr fac))
644 (setq facs (math-accum-factors (nth 1 (car fac))
645 (* pow (nth 2 (car fac)))
646 facs)))
647 facs)
648 (if (and (eq (car-safe fac) '^) (natnump (nth 2 fac)))
649 (setq pow (* pow (nth 2 fac))
650 fac (nth 1 fac)))
651 (if (eq fac 1)
652 facs
653 (or (math-vectorp facs)
654 (setq facs (if (eq facs 1) '(vec)
655 (list 'vec (list 'vec facs 1)))))
656 (let ((found facs))
657 (while (and (setq found (cdr found))
658 (not (equal fac (nth 1 (car found))))))
659 (if found
660 (progn
661 (setcar (cdr (cdr (car found))) (+ pow (nth 2 (car found))))
662 facs)
663 ;; Put constant term first.
664 (if (and (cdr facs) (Math-ratp (nth 1 (nth 1 facs))))
665 (cons 'vec (cons (nth 1 facs) (cons (list 'vec fac pow)
666 (cdr (cdr facs)))))
667 (cons 'vec (cons (list 'vec fac pow) (cdr facs))))))))
668 (math-mul (math-pow fac pow) facs)))
670 (defun math-factor-poly-coefs (p &optional square-free) ; uses "x"
671 (let (t1 t2 temp)
672 (cond ((not (cdr p))
673 (or (car p) 0))
675 ;; Strip off multiples of math-fet-x.
676 ((Math-zerop (car p))
677 (let ((z 0))
678 (while (and p (Math-zerop (car p)))
679 (setq z (1+ z) p (cdr p)))
680 (if (cdr p)
681 (setq p (math-factor-poly-coefs p square-free))
682 (setq p (math-sort-terms (math-factor-expr (car p)))))
683 (math-accum-factors math-fet-x z (math-factor-protect p))))
685 ;; Factor out content.
686 ((and (not square-free)
687 (not (eq 1 (setq t1 (math-mul (math-poly-gcd-list p)
688 (if (math-guess-if-neg
689 (nth (1- (length p)) p))
690 -1 1))))))
691 (math-accum-factors t1 1 (math-factor-poly-coefs
692 (math-poly-div-list p t1) 'cont)))
694 ;; Check if linear in math-fet-x.
695 ((not (cdr (cdr p)))
696 (math-sort-terms
697 (math-add (math-factor-protect
698 (math-sort-terms
699 (math-factor-expr (car p))))
700 (math-mul math-fet-x (math-factor-protect
701 (math-sort-terms
702 (math-factor-expr (nth 1 p))))))))
704 ;; If symbolic coefficients, use FactorRules.
705 ((let ((pp p))
706 (while (and pp (or (Math-ratp (car pp))
707 (and (eq (car (car pp)) 'mod)
708 (Math-integerp (nth 1 (car pp)))
709 (Math-integerp (nth 2 (car pp))))))
710 (setq pp (cdr pp)))
712 (let ((res (math-rewrite
713 (list 'calcFunc-thecoefs math-fet-x (cons 'vec p))
714 '(var FactorRules var-FactorRules))))
715 (or (and (eq (car-safe res) 'calcFunc-thefactors)
716 (= (length res) 3)
717 (math-vectorp (nth 2 res))
718 (let ((facs 1)
719 (vec (nth 2 res)))
720 (while (setq vec (cdr vec))
721 (setq facs (math-accum-factors (car vec) 1 facs)))
722 facs))
723 (math-build-polynomial-expr p math-fet-x))))
725 ;; Check if rational coefficients (i.e., not modulo a prime).
726 ((eq math-poly-modulus 1)
728 ;; Check if there are any squared terms, or a content not = 1.
729 (if (or (eq square-free t)
730 (equal (setq t1 (math-poly-gcd-coefs
731 p (setq t2 (math-poly-deriv-coefs p))))
732 '(1)))
734 ;; We now have a square-free polynomial with integer coefs.
735 ;; For now, we use a kludgey method that finds linear and
736 ;; quadratic terms using floating-point root-finding.
737 (if (setq t1 (let ((calc-symbolic-mode nil))
738 (math-poly-all-roots nil p t)))
739 (let ((roots (car t1))
740 (csign (if (math-negp (nth (1- (length p)) p)) -1 1))
741 (expr 1)
742 (unfac (nth 1 t1))
743 (scale (nth 2 t1)))
744 (while roots
745 (let ((coef0 (car (car roots)))
746 (coef1 (cdr (car roots))))
747 (setq expr (math-accum-factors
748 (if coef1
749 (let ((den (math-lcm-denoms
750 coef0 coef1)))
751 (setq scale (math-div scale den))
752 (math-add
753 (math-add
754 (math-mul den (math-pow math-fet-x 2))
755 (math-mul (math-mul coef1 den)
756 math-fet-x))
757 (math-mul coef0 den)))
758 (let ((den (math-lcm-denoms coef0)))
759 (setq scale (math-div scale den))
760 (math-add (math-mul den math-fet-x)
761 (math-mul coef0 den))))
762 1 expr)
763 roots (cdr roots))))
764 (setq expr (math-accum-factors
765 expr 1
766 (math-mul csign
767 (math-build-polynomial-expr
768 (math-mul-list (nth 1 t1) scale)
769 math-fet-x)))))
770 (math-build-polynomial-expr p math-fet-x)) ; can't factor it.
772 ;; Separate out the squared terms (Knuth exercise 4.6.2-34).
773 ;; This step also divides out the content of the polynomial.
774 (let* ((cabs (math-poly-gcd-list p))
775 (csign (if (math-negp (nth (1- (length p)) p)) -1 1))
776 (t1s (math-mul-list t1 csign))
777 (uu nil)
778 (v (car (math-poly-div-coefs p t1s)))
779 (w (car (math-poly-div-coefs t2 t1s))))
780 (while
781 (not (math-poly-zerop
782 (setq t2 (math-poly-simplify
783 (math-poly-mix
784 w 1 (math-poly-deriv-coefs v) -1)))))
785 (setq t1 (math-poly-gcd-coefs v t2)
786 uu (cons t1 uu)
787 v (car (math-poly-div-coefs v t1))
788 w (car (math-poly-div-coefs t2 t1))))
789 (setq t1 (length uu)
790 t2 (math-accum-factors (math-factor-poly-coefs v t)
791 (1+ t1) 1))
792 (while uu
793 (setq t2 (math-accum-factors (math-factor-poly-coefs
794 (car uu) t)
795 t1 t2)
796 t1 (1- t1)
797 uu (cdr uu)))
798 (math-accum-factors (math-mul cabs csign) 1 t2))))
800 ;; Factoring modulo a prime.
801 ((and (= (length (setq temp (math-poly-gcd-coefs
802 p (math-poly-deriv-coefs p))))
803 (length p)))
804 (setq p (car temp))
805 (while (cdr temp)
806 (setq temp (nthcdr (nth 2 math-poly-modulus) temp)
807 p (cons (car temp) p)))
808 (and (setq temp (math-factor-poly-coefs p))
809 (math-pow temp (nth 2 math-poly-modulus))))
811 (math-reject-arg nil "*Modulo factorization not yet implemented")))))
813 (defun math-poly-deriv-coefs (p)
814 (let ((n 1)
815 (dp nil))
816 (while (setq p (cdr p))
817 (setq dp (cons (math-mul (car p) n) dp)
818 n (1+ n)))
819 (nreverse dp)))
821 (defun math-factor-contains (x a)
822 (if (equal x a)
824 (if (memq (car-safe x) '(+ - * / neg))
825 (let ((sum 0))
826 (while (setq x (cdr x))
827 (setq sum (+ sum (math-factor-contains (car x) a))))
828 sum)
829 (if (and (eq (car-safe x) '^)
830 (natnump (nth 2 x)))
831 (* (math-factor-contains (nth 1 x) a) (nth 2 x))
832 0))))
838 ;;; Merge all quotients and expand/simplify the numerator
839 (defun calcFunc-nrat (expr)
840 (if (math-any-floats expr)
841 (setq expr (calcFunc-pfrac expr)))
842 (if (or (math-vectorp expr)
843 (assq (car-safe expr) calc-tweak-eqn-table))
844 (cons (car expr) (mapcar 'calcFunc-nrat (cdr expr)))
845 (let* ((calc-prefer-frac t)
846 (res (math-to-ratpoly expr))
847 (num (math-simplify (math-sort-terms (calcFunc-expand (car res)))))
848 (den (math-simplify (math-sort-terms (calcFunc-expand (cdr res)))))
849 (g (math-poly-gcd num den)))
850 (or (eq g 1)
851 (let ((num2 (math-poly-div num g))
852 (den2 (math-poly-div den g)))
853 (and (eq (cdr num2) 0) (eq (cdr den2) 0)
854 (setq num (car num2) den (car den2)))))
855 (math-simplify (math-div num den)))))
857 ;;; Returns expressions (num . denom).
858 (defun math-to-ratpoly (expr)
859 (let ((res (math-to-ratpoly-rec expr)))
860 (cons (math-simplify (car res)) (math-simplify (cdr res)))))
862 (defun math-to-ratpoly-rec (expr)
863 (cond ((Math-primp expr)
864 (cons expr 1))
865 ((memq (car expr) '(+ -))
866 (let ((r1 (math-to-ratpoly-rec (nth 1 expr)))
867 (r2 (math-to-ratpoly-rec (nth 2 expr))))
868 (if (equal (cdr r1) (cdr r2))
869 (cons (list (car expr) (car r1) (car r2)) (cdr r1))
870 (if (eq (cdr r1) 1)
871 (cons (list (car expr)
872 (math-mul (car r1) (cdr r2))
873 (car r2))
874 (cdr r2))
875 (if (eq (cdr r2) 1)
876 (cons (list (car expr)
877 (car r1)
878 (math-mul (car r2) (cdr r1)))
879 (cdr r1))
880 (let ((g (math-poly-gcd (cdr r1) (cdr r2))))
881 (let ((d1 (and (not (eq g 1)) (math-poly-div (cdr r1) g)))
882 (d2 (and (not (eq g 1)) (math-poly-div
883 (math-mul (car r1) (cdr r2))
884 g))))
885 (if (and (eq (cdr d1) 0) (eq (cdr d2) 0))
886 (cons (list (car expr) (car d2)
887 (math-mul (car r2) (car d1)))
888 (math-mul (car d1) (cdr r2)))
889 (cons (list (car expr)
890 (math-mul (car r1) (cdr r2))
891 (math-mul (car r2) (cdr r1)))
892 (math-mul (cdr r1) (cdr r2)))))))))))
893 ((eq (car expr) '*)
894 (let* ((r1 (math-to-ratpoly-rec (nth 1 expr)))
895 (r2 (math-to-ratpoly-rec (nth 2 expr)))
896 (g (math-mul (math-poly-gcd (car r1) (cdr r2))
897 (math-poly-gcd (cdr r1) (car r2)))))
898 (if (eq g 1)
899 (cons (math-mul (car r1) (car r2))
900 (math-mul (cdr r1) (cdr r2)))
901 (cons (math-poly-div-exact (math-mul (car r1) (car r2)) g)
902 (math-poly-div-exact (math-mul (cdr r1) (cdr r2)) g)))))
903 ((eq (car expr) '/)
904 (let* ((r1 (math-to-ratpoly-rec (nth 1 expr)))
905 (r2 (math-to-ratpoly-rec (nth 2 expr))))
906 (if (and (eq (cdr r1) 1) (eq (cdr r2) 1))
907 (cons (car r1) (car r2))
908 (let ((g (math-mul (math-poly-gcd (car r1) (car r2))
909 (math-poly-gcd (cdr r1) (cdr r2)))))
910 (if (eq g 1)
911 (cons (math-mul (car r1) (cdr r2))
912 (math-mul (cdr r1) (car r2)))
913 (cons (math-poly-div-exact (math-mul (car r1) (cdr r2)) g)
914 (math-poly-div-exact (math-mul (cdr r1) (car r2))
915 g)))))))
916 ((and (eq (car expr) '^) (integerp (nth 2 expr)))
917 (let ((r1 (math-to-ratpoly-rec (nth 1 expr))))
918 (if (> (nth 2 expr) 0)
919 (cons (math-pow (car r1) (nth 2 expr))
920 (math-pow (cdr r1) (nth 2 expr)))
921 (cons (math-pow (cdr r1) (- (nth 2 expr)))
922 (math-pow (car r1) (- (nth 2 expr)))))))
923 ((eq (car expr) 'neg)
924 (let ((r1 (math-to-ratpoly-rec (nth 1 expr))))
925 (cons (math-neg (car r1)) (cdr r1))))
926 (t (cons expr 1))))
929 (defun math-ratpoly-p (expr &optional var)
930 (cond ((equal expr var) 1)
931 ((Math-primp expr) 0)
932 ((memq (car expr) '(+ -))
933 (let ((p1 (math-ratpoly-p (nth 1 expr) var))
935 (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
936 (max p1 p2))))
937 ((eq (car expr) '*)
938 (let ((p1 (math-ratpoly-p (nth 1 expr) var))
940 (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
941 (+ p1 p2))))
942 ((eq (car expr) 'neg)
943 (math-ratpoly-p (nth 1 expr) var))
944 ((eq (car expr) '/)
945 (let ((p1 (math-ratpoly-p (nth 1 expr) var))
947 (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
948 (- p1 p2))))
949 ((and (eq (car expr) '^)
950 (integerp (nth 2 expr)))
951 (let ((p1 (math-ratpoly-p (nth 1 expr) var)))
952 (and p1 (* p1 (nth 2 expr)))))
953 ((not var) 1)
954 ((math-poly-depends expr var) nil)
955 (t 0)))
958 (defun calcFunc-apart (expr &optional var)
959 (cond ((Math-primp expr) expr)
960 ((eq (car expr) '+)
961 (math-add (calcFunc-apart (nth 1 expr) var)
962 (calcFunc-apart (nth 2 expr) var)))
963 ((eq (car expr) '-)
964 (math-sub (calcFunc-apart (nth 1 expr) var)
965 (calcFunc-apart (nth 2 expr) var)))
966 ((not (math-ratpoly-p expr var))
967 (math-reject-arg expr "Expected a rational function"))
969 (let* ((calc-prefer-frac t)
970 (rat (math-to-ratpoly expr))
971 (num (car rat))
972 (den (cdr rat))
973 (qr (math-poly-div num den))
974 (q (car qr))
975 (r (cdr qr)))
976 (or var
977 (setq var (math-polynomial-base den)))
978 (math-add q (or (and var
979 (math-expr-contains den var)
980 (math-partial-fractions r den var))
981 (math-div r den)))))))
984 (defun math-padded-polynomial (expr var deg)
985 (let ((p (math-is-polynomial expr var deg)))
986 (append p (make-list (- deg (length p)) 0))))
988 (defun math-partial-fractions (r den var)
989 (let* ((fden (calcFunc-factors den var))
990 (tdeg (math-polynomial-p den var))
991 (fp fden)
992 (dlist nil)
993 (eqns 0)
994 (lz nil)
995 (tz (make-list (1- tdeg) 0))
996 (calc-matrix-mode 'scalar))
997 (and (not (and (= (length fden) 2) (eq (nth 2 (nth 1 fden)) 1)))
998 (progn
999 (while (setq fp (cdr fp))
1000 (let ((rpt (nth 2 (car fp)))
1001 (deg (math-polynomial-p (nth 1 (car fp)) var))
1002 dnum dvar deg2)
1003 (while (> rpt 0)
1004 (setq deg2 deg
1005 dnum 0)
1006 (while (> deg2 0)
1007 (setq dvar (append '(vec) lz '(1) tz)
1008 lz (cons 0 lz)
1009 tz (cdr tz)
1010 deg2 (1- deg2)
1011 dnum (math-add dnum (math-mul dvar
1012 (math-pow var deg2)))
1013 dlist (cons (and (= deg2 (1- deg))
1014 (math-pow (nth 1 (car fp)) rpt))
1015 dlist)))
1016 (let ((fpp fden)
1017 (mult 1))
1018 (while (setq fpp (cdr fpp))
1019 (or (eq fpp fp)
1020 (setq mult (math-mul mult
1021 (math-pow (nth 1 (car fpp))
1022 (nth 2 (car fpp)))))))
1023 (setq dnum (math-mul dnum mult)))
1024 (setq eqns (math-add eqns (math-mul dnum
1025 (math-pow
1026 (nth 1 (car fp))
1027 (- (nth 2 (car fp))
1028 rpt))))
1029 rpt (1- rpt)))))
1030 (setq eqns (math-div (cons 'vec (math-padded-polynomial r var tdeg))
1031 (math-transpose
1032 (cons 'vec
1033 (mapcar
1034 (function
1035 (lambda (x)
1036 (cons 'vec (math-padded-polynomial
1037 x var tdeg))))
1038 (cdr eqns))))))
1039 (and (math-vectorp eqns)
1040 (let ((res 0)
1041 (num nil))
1042 (setq eqns (nreverse eqns))
1043 (while eqns
1044 (setq num (cons (car eqns) num)
1045 eqns (cdr eqns))
1046 (if (car dlist)
1047 (setq num (math-build-polynomial-expr
1048 (nreverse num) var)
1049 res (math-add res (math-div num (car dlist)))
1050 num nil))
1051 (setq dlist (cdr dlist)))
1052 (math-normalize res)))))))
1056 (defun math-expand-term (expr)
1057 (cond ((and (eq (car-safe expr) '*)
1058 (memq (car-safe (nth 1 expr)) '(+ -)))
1059 (math-add-or-sub (list '* (nth 1 (nth 1 expr)) (nth 2 expr))
1060 (list '* (nth 2 (nth 1 expr)) (nth 2 expr))
1061 nil (eq (car (nth 1 expr)) '-)))
1062 ((and (eq (car-safe expr) '*)
1063 (memq (car-safe (nth 2 expr)) '(+ -)))
1064 (math-add-or-sub (list '* (nth 1 expr) (nth 1 (nth 2 expr)))
1065 (list '* (nth 1 expr) (nth 2 (nth 2 expr)))
1066 nil (eq (car (nth 2 expr)) '-)))
1067 ((and (eq (car-safe expr) '/)
1068 (memq (car-safe (nth 1 expr)) '(+ -)))
1069 (math-add-or-sub (list '/ (nth 1 (nth 1 expr)) (nth 2 expr))
1070 (list '/ (nth 2 (nth 1 expr)) (nth 2 expr))
1071 nil (eq (car (nth 1 expr)) '-)))
1072 ((and (eq (car-safe expr) '^)
1073 (memq (car-safe (nth 1 expr)) '(+ -))
1074 (integerp (nth 2 expr))
1075 (if (and
1076 (or (math-known-matrixp (nth 1 (nth 1 expr)))
1077 (math-known-matrixp (nth 2 (nth 1 expr)))
1078 (and
1079 calc-matrix-mode
1080 (not (eq calc-matrix-mode 'scalar))
1081 (not (and (math-known-scalarp (nth 1 (nth 1 expr)))
1082 (math-known-scalarp (nth 2 (nth 1 expr)))))))
1083 (> (nth 2 expr) 1))
1084 (if (= (nth 2 expr) 2)
1085 (math-add-or-sub (list '* (nth 1 (nth 1 expr)) (nth 1 expr))
1086 (list '* (nth 2 (nth 1 expr)) (nth 1 expr))
1087 nil (eq (car (nth 1 expr)) '-))
1088 (math-add-or-sub (list '* (nth 1 (nth 1 expr))
1089 (list '^ (nth 1 expr)
1090 (1- (nth 2 expr))))
1091 (list '* (nth 2 (nth 1 expr))
1092 (list '^ (nth 1 expr)
1093 (1- (nth 2 expr))))
1094 nil (eq (car (nth 1 expr)) '-)))
1095 (if (> (nth 2 expr) 0)
1096 (or (and (or (> math-mt-many 500000) (< math-mt-many -500000))
1097 (math-expand-power (nth 1 expr) (nth 2 expr)
1098 nil t))
1099 (list '*
1100 (nth 1 expr)
1101 (list '^ (nth 1 expr) (1- (nth 2 expr)))))
1102 (if (< (nth 2 expr) 0)
1103 (list '/ 1 (list '^ (nth 1 expr) (- (nth 2 expr)))))))))
1104 (t expr)))
1106 (defun calcFunc-expand (expr &optional many)
1107 (math-normalize (math-map-tree 'math-expand-term expr many)))
1109 (defun math-expand-power (x n &optional var else-nil)
1110 (or (and (natnump n)
1111 (memq (car-safe x) '(+ -))
1112 (let ((terms nil)
1113 (cterms nil))
1114 (while (memq (car-safe x) '(+ -))
1115 (setq terms (cons (if (eq (car x) '-)
1116 (math-neg (nth 2 x))
1117 (nth 2 x))
1118 terms)
1119 x (nth 1 x)))
1120 (setq terms (cons x terms))
1121 (if var
1122 (let ((p terms))
1123 (while p
1124 (or (math-expr-contains (car p) var)
1125 (setq terms (delq (car p) terms)
1126 cterms (cons (car p) cterms)))
1127 (setq p (cdr p)))
1128 (if cterms
1129 (setq terms (cons (apply 'calcFunc-add cterms)
1130 terms)))))
1131 (if (= (length terms) 2)
1132 (let ((i 0)
1133 (accum 0))
1134 (while (<= i n)
1135 (setq accum (list '+ accum
1136 (list '* (calcFunc-choose n i)
1137 (list '*
1138 (list '^ (nth 1 terms) i)
1139 (list '^ (car terms)
1140 (- n i)))))
1141 i (1+ i)))
1142 accum)
1143 (if (= n 2)
1144 (let ((accum 0)
1145 (p1 terms)
1147 (while p1
1148 (setq accum (list '+ accum
1149 (list '^ (car p1) 2))
1150 p2 p1)
1151 (while (setq p2 (cdr p2))
1152 (setq accum (list '+ accum
1153 (list '* 2 (list '*
1154 (car p1)
1155 (car p2))))))
1156 (setq p1 (cdr p1)))
1157 accum)
1158 (if (= n 3)
1159 (let ((accum 0)
1160 (p1 terms)
1161 p2 p3)
1162 (while p1
1163 (setq accum (list '+ accum (list '^ (car p1) 3))
1164 p2 p1)
1165 (while (setq p2 (cdr p2))
1166 (setq accum (list '+
1167 (list '+
1168 accum
1169 (list '* 3
1170 (list
1172 (list '^ (car p1) 2)
1173 (car p2))))
1174 (list '* 3
1175 (list
1176 '* (car p1)
1177 (list '^ (car p2) 2))))
1178 p3 p2)
1179 (while (setq p3 (cdr p3))
1180 (setq accum (list '+ accum
1181 (list '* 6
1182 (list '*
1183 (car p1)
1184 (list
1185 '* (car p2)
1186 (car p3))))))))
1187 (setq p1 (cdr p1)))
1188 accum))))))
1189 (and (not else-nil)
1190 (list '^ x n))))
1192 (defun calcFunc-expandpow (x n)
1193 (math-normalize (math-expand-power x n)))
1195 (provide 'calc-poly)
1197 ;;; arch-tag: d2566c51-2ccc-45f1-8c50-f3462c2953ff
1198 ;;; calc-poly.el ends here