1 /* Only edit this file through the CVS module in subversions. This file
2 is automatically updated whenever changes are made to it there, and
3 all of your work will be lost! - jbailey Sep 19, 2000 */
5 /* Extended regular expression matching and search library, version
6 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
7 internationalization features.)
9 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
27 - structure the opcode space into opcode+flag.
28 - merge with glibc's regex.[ch].
29 - replace succeed_n + jump_n with a combined operation so that the counter
30 can simply be decremented when popping the failure_point without having
31 to stack up failure_count entries.
34 /* AIX requires this to be the first thing in the file. */
35 #if defined _AIX && !defined REGEX_MALLOC
46 #if defined STDC_HEADERS && !defined emacs
49 /* We need this for `regex.h', and perhaps for the Emacs include files. */
50 # include <sys/types.h>
53 /* Whether to use ISO C Amendment 1 wide char functions.
54 Those should not be used for Emacs since it uses its own. */
55 #define WIDE_CHAR_SUPPORT \
56 (defined _LIBC || HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(errcode, preg, errbuf, errbuf_size) \
72 __regerror(errcode, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88 /* Make sure we call libc's function even if the user overrides them. */
89 # define btowc __btowc
90 # define iswctype __iswctype
91 # define wctype __wctype
93 # define WEAK_ALIAS(a,b) weak_alias (a, b)
95 /* We are also using some library internals. */
96 # include <locale/localeinfo.h>
97 # include <locale/elem-hash.h>
98 # include <langinfo.h>
100 # define WEAK_ALIAS(a,b)
103 /* This is for other GNU distributions with internationalized messages. */
104 #if HAVE_LIBINTL_H || defined _LIBC
105 # include <libintl.h>
107 # define gettext(msgid) (msgid)
111 /* This define is so xgettext can find the internationalizable
113 # define gettext_noop(String) String
116 /* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
123 /* Make syntax table lookup grant data in gl_state. */
124 # define SYNTAX_ENTRY_VIA_PROPERTY
127 # include "charset.h"
128 # include "category.h"
130 # define malloc xmalloc
131 # define realloc xrealloc
134 /* Converts the pointer to the char to BEG-based offset from the start. */
135 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
136 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
138 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
139 # define RE_STRING_CHAR(p, s) \
140 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
141 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
142 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
144 /* Set C a (possibly multibyte) character before P. P points into a
145 string which is the virtual concatenation of STR1 (which ends at
146 END1) or STR2 (which ends at END2). */
147 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
151 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
152 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
153 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
154 c = STRING_CHAR (dtemp, (p) - dtemp); \
157 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
161 #else /* not emacs */
163 /* If we are not linking with Emacs proper,
164 we can't use the relocating allocator
165 even if config.h says that we can. */
168 # if defined STDC_HEADERS || defined _LIBC
175 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
176 If nothing else has been done, use the method below. */
177 # ifdef INHIBIT_STRING_HEADER
178 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
179 # if !defined bzero && !defined bcopy
180 # undef INHIBIT_STRING_HEADER
185 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
186 This is used in most programs--a few other programs avoid this
187 by defining INHIBIT_STRING_HEADER. */
188 # ifndef INHIBIT_STRING_HEADER
189 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
193 # define bzero(s, n) (memset (s, '\0', n), (s))
195 # define bzero(s, n) __bzero (s, n)
199 # include <strings.h>
201 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
204 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
209 /* Define the syntax stuff for \<, \>, etc. */
211 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
212 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1 };
214 # ifdef SWITCH_ENUM_BUG
215 # define SWITCH_ENUM_CAST(x) ((int)(x))
217 # define SWITCH_ENUM_CAST(x) (x)
220 /* Dummy macros for non-Emacs environments. */
221 # define BASE_LEADING_CODE_P(c) (0)
222 # define CHAR_CHARSET(c) 0
223 # define CHARSET_LEADING_CODE_BASE(c) 0
224 # define MAX_MULTIBYTE_LENGTH 1
225 # define RE_MULTIBYTE_P(x) 0
226 # define WORD_BOUNDARY_P(c1, c2) (0)
227 # define CHAR_HEAD_P(p) (1)
228 # define SINGLE_BYTE_CHAR_P(c) (1)
229 # define SAME_CHARSET_P(c1, c2) (1)
230 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
231 # define STRING_CHAR(p, s) (*(p))
232 # define RE_STRING_CHAR STRING_CHAR
233 # define CHAR_STRING(c, s) (*(s) = (c), 1)
234 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
235 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
236 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
237 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
238 # define MAKE_CHAR(charset, c1, c2) (c1)
239 #endif /* not emacs */
242 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
243 # define RE_TRANSLATE_P(TBL) (TBL)
246 /* Get the interface, including the syntax bits. */
249 /* isalpha etc. are used for the character classes. */
254 /* 1 if C is an ASCII character. */
255 # define IS_REAL_ASCII(c) ((c) < 0200)
257 /* 1 if C is a unibyte character. */
258 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
260 /* The Emacs definitions should not be directly affected by locales. */
262 /* In Emacs, these are only used for single-byte characters. */
263 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
264 # define ISCNTRL(c) ((c) < ' ')
265 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
266 || ((c) >= 'a' && (c) <= 'f') \
267 || ((c) >= 'A' && (c) <= 'F'))
269 /* This is only used for single-byte characters. */
270 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
272 /* The rest must handle multibyte characters. */
274 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
275 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
278 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
279 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
282 # define ISALNUM(c) (IS_REAL_ASCII (c) \
283 ? (((c) >= 'a' && (c) <= 'z') \
284 || ((c) >= 'A' && (c) <= 'Z') \
285 || ((c) >= '0' && (c) <= '9')) \
286 : SYNTAX (c) == Sword)
288 # define ISALPHA(c) (IS_REAL_ASCII (c) \
289 ? (((c) >= 'a' && (c) <= 'z') \
290 || ((c) >= 'A' && (c) <= 'Z')) \
291 : SYNTAX (c) == Sword)
293 # define ISLOWER(c) (LOWERCASEP (c))
295 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
296 ? ((c) > ' ' && (c) < 0177 \
297 && !(((c) >= 'a' && (c) <= 'z') \
298 || ((c) >= 'A' && (c) <= 'Z') \
299 || ((c) >= '0' && (c) <= '9'))) \
300 : SYNTAX (c) != Sword)
302 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
304 # define ISUPPER(c) (UPPERCASEP (c))
306 # define ISWORD(c) (SYNTAX (c) == Sword)
308 #else /* not emacs */
310 /* Jim Meyering writes:
312 "... Some ctype macros are valid only for character codes that
313 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
314 using /bin/cc or gcc but without giving an ansi option). So, all
315 ctype uses should be through macros like ISPRINT... If
316 STDC_HEADERS is defined, then autoconf has verified that the ctype
317 macros don't need to be guarded with references to isascii. ...
318 Defining isascii to 1 should let any compiler worth its salt
319 eliminate the && through constant folding."
320 Solaris defines some of these symbols so we must undefine them first. */
323 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
324 # define ISASCII(c) 1
326 # define ISASCII(c) isascii(c)
329 /* 1 if C is an ASCII character. */
330 # define IS_REAL_ASCII(c) ((c) < 0200)
332 /* This distinction is not meaningful, except in Emacs. */
333 # define ISUNIBYTE(c) 1
336 # define ISBLANK(c) (ISASCII (c) && isblank (c))
338 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
341 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
343 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
347 # define ISPRINT(c) (ISASCII (c) && isprint (c))
348 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
349 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
350 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
351 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
352 # define ISLOWER(c) (ISASCII (c) && islower (c))
353 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
354 # define ISSPACE(c) (ISASCII (c) && isspace (c))
355 # define ISUPPER(c) (ISASCII (c) && isupper (c))
356 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
358 # define ISWORD(c) ISALPHA(c)
361 # define TOLOWER(c) _tolower(c)
363 # define TOLOWER(c) tolower(c)
366 /* How many characters in the character set. */
367 # define CHAR_SET_SIZE 256
371 extern char *re_syntax_table
;
373 # else /* not SYNTAX_TABLE */
375 static char re_syntax_table
[CHAR_SET_SIZE
];
386 bzero (re_syntax_table
, sizeof re_syntax_table
);
388 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
390 re_syntax_table
[c
] = Sword
;
392 re_syntax_table
['_'] = Sword
;
397 # endif /* not SYNTAX_TABLE */
399 # define SYNTAX(c) re_syntax_table[(c)]
401 #endif /* not emacs */
404 # define NULL (void *)0
407 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
408 since ours (we hope) works properly with all combinations of
409 machines, compilers, `char' and `unsigned char' argument types.
410 (Per Bothner suggested the basic approach.) */
411 #undef SIGN_EXTEND_CHAR
413 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
414 #else /* not __STDC__ */
415 /* As in Harbison and Steele. */
416 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
419 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
420 use `alloca' instead of `malloc'. This is because using malloc in
421 re_search* or re_match* could cause memory leaks when C-g is used in
422 Emacs; also, malloc is slower and causes storage fragmentation. On
423 the other hand, malloc is more portable, and easier to debug.
425 Because we sometimes use alloca, some routines have to be macros,
426 not functions -- `alloca'-allocated space disappears at the end of the
427 function it is called in. */
431 # define REGEX_ALLOCATE malloc
432 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
433 # define REGEX_FREE free
435 #else /* not REGEX_MALLOC */
437 /* Emacs already defines alloca, sometimes. */
440 /* Make alloca work the best possible way. */
442 # define alloca __builtin_alloca
443 # else /* not __GNUC__ */
446 # endif /* HAVE_ALLOCA_H */
447 # endif /* not __GNUC__ */
449 # endif /* not alloca */
451 # define REGEX_ALLOCATE alloca
453 /* Assumes a `char *destination' variable. */
454 # define REGEX_REALLOCATE(source, osize, nsize) \
455 (destination = (char *) alloca (nsize), \
456 memcpy (destination, source, osize))
458 /* No need to do anything to free, after alloca. */
459 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
461 #endif /* not REGEX_MALLOC */
463 /* Define how to allocate the failure stack. */
465 #if defined REL_ALLOC && defined REGEX_MALLOC
467 # define REGEX_ALLOCATE_STACK(size) \
468 r_alloc (&failure_stack_ptr, (size))
469 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
470 r_re_alloc (&failure_stack_ptr, (nsize))
471 # define REGEX_FREE_STACK(ptr) \
472 r_alloc_free (&failure_stack_ptr)
474 #else /* not using relocating allocator */
478 # define REGEX_ALLOCATE_STACK malloc
479 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
480 # define REGEX_FREE_STACK free
482 # else /* not REGEX_MALLOC */
484 # define REGEX_ALLOCATE_STACK alloca
486 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
487 REGEX_REALLOCATE (source, osize, nsize)
488 /* No need to explicitly free anything. */
489 # define REGEX_FREE_STACK(arg) ((void)0)
491 # endif /* not REGEX_MALLOC */
492 #endif /* not using relocating allocator */
495 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
496 `string1' or just past its end. This works if PTR is NULL, which is
498 #define FIRST_STRING_P(ptr) \
499 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
501 /* (Re)Allocate N items of type T using malloc, or fail. */
502 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
503 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
504 #define RETALLOC_IF(addr, n, t) \
505 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
506 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
508 #define BYTEWIDTH 8 /* In bits. */
510 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
514 #define MAX(a, b) ((a) > (b) ? (a) : (b))
515 #define MIN(a, b) ((a) < (b) ? (a) : (b))
517 /* Type of source-pattern and string chars. */
518 typedef const unsigned char re_char
;
520 typedef char boolean
;
524 static int re_match_2_internal
_RE_ARGS ((struct re_pattern_buffer
*bufp
,
525 re_char
*string1
, int size1
,
526 re_char
*string2
, int size2
,
528 struct re_registers
*regs
,
531 /* These are the command codes that appear in compiled regular
532 expressions. Some opcodes are followed by argument bytes. A
533 command code can specify any interpretation whatsoever for its
534 arguments. Zero bytes may appear in the compiled regular expression. */
540 /* Succeed right away--no more backtracking. */
543 /* Followed by one byte giving n, then by n literal bytes. */
546 /* Matches any (more or less) character. */
549 /* Matches any one char belonging to specified set. First
550 following byte is number of bitmap bytes. Then come bytes
551 for a bitmap saying which chars are in. Bits in each byte
552 are ordered low-bit-first. A character is in the set if its
553 bit is 1. A character too large to have a bit in the map is
554 automatically not in the set.
556 If the length byte has the 0x80 bit set, then that stuff
557 is followed by a range table:
558 2 bytes of flags for character sets (low 8 bits, high 8 bits)
559 See RANGE_TABLE_WORK_BITS below.
560 2 bytes, the number of pairs that follow
561 pairs, each 2 multibyte characters,
562 each multibyte character represented as 3 bytes. */
565 /* Same parameters as charset, but match any character that is
566 not one of those specified. */
569 /* Start remembering the text that is matched, for storing in a
570 register. Followed by one byte with the register number, in
571 the range 0 to one less than the pattern buffer's re_nsub
575 /* Stop remembering the text that is matched and store it in a
576 memory register. Followed by one byte with the register
577 number, in the range 0 to one less than `re_nsub' in the
581 /* Match a duplicate of something remembered. Followed by one
582 byte containing the register number. */
585 /* Fail unless at beginning of line. */
588 /* Fail unless at end of line. */
591 /* Succeeds if at beginning of buffer (if emacs) or at beginning
592 of string to be matched (if not). */
595 /* Analogously, for end of buffer/string. */
598 /* Followed by two byte relative address to which to jump. */
601 /* Followed by two-byte relative address of place to resume at
602 in case of failure. */
605 /* Like on_failure_jump, but pushes a placeholder instead of the
606 current string position when executed. */
607 on_failure_keep_string_jump
,
609 /* Just like `on_failure_jump', except that it checks that we
610 don't get stuck in an infinite loop (matching an empty string
612 on_failure_jump_loop
,
614 /* Just like `on_failure_jump_loop', except that it checks for
615 a different kind of loop (the kind that shows up with non-greedy
616 operators). This operation has to be immediately preceded
618 on_failure_jump_nastyloop
,
620 /* A smart `on_failure_jump' used for greedy * and + operators.
621 It analyses the loop before which it is put and if the
622 loop does not require backtracking, it changes itself to
623 `on_failure_keep_string_jump' and short-circuits the loop,
624 else it just defaults to changing itself into `on_failure_jump'.
625 It assumes that it is pointing to just past a `jump'. */
626 on_failure_jump_smart
,
628 /* Followed by two-byte relative address and two-byte number n.
629 After matching N times, jump to the address upon failure.
630 Does not work if N starts at 0: use on_failure_jump_loop
634 /* Followed by two-byte relative address, and two-byte number n.
635 Jump to the address N times, then fail. */
638 /* Set the following two-byte relative address to the
639 subsequent two-byte number. The address *includes* the two
643 wordbeg
, /* Succeeds if at word beginning. */
644 wordend
, /* Succeeds if at word end. */
646 wordbound
, /* Succeeds if at a word boundary. */
647 notwordbound
, /* Succeeds if not at a word boundary. */
649 /* Matches any character whose syntax is specified. Followed by
650 a byte which contains a syntax code, e.g., Sword. */
653 /* Matches any character whose syntax is not that specified. */
657 ,before_dot
, /* Succeeds if before point. */
658 at_dot
, /* Succeeds if at point. */
659 after_dot
, /* Succeeds if after point. */
661 /* Matches any character whose category-set contains the specified
662 category. The operator is followed by a byte which contains a
663 category code (mnemonic ASCII character). */
666 /* Matches any character whose category-set does not contain the
667 specified category. The operator is followed by a byte which
668 contains the category code (mnemonic ASCII character). */
673 /* Common operations on the compiled pattern. */
675 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
677 #define STORE_NUMBER(destination, number) \
679 (destination)[0] = (number) & 0377; \
680 (destination)[1] = (number) >> 8; \
683 /* Same as STORE_NUMBER, except increment DESTINATION to
684 the byte after where the number is stored. Therefore, DESTINATION
685 must be an lvalue. */
687 #define STORE_NUMBER_AND_INCR(destination, number) \
689 STORE_NUMBER (destination, number); \
690 (destination) += 2; \
693 /* Put into DESTINATION a number stored in two contiguous bytes starting
696 #define EXTRACT_NUMBER(destination, source) \
698 (destination) = *(source) & 0377; \
699 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
703 static void extract_number
_RE_ARGS ((int *dest
, re_char
*source
));
705 extract_number (dest
, source
)
707 unsigned char *source
;
709 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
710 *dest
= *source
& 0377;
714 # ifndef EXTRACT_MACROS /* To debug the macros. */
715 # undef EXTRACT_NUMBER
716 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
717 # endif /* not EXTRACT_MACROS */
721 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
722 SOURCE must be an lvalue. */
724 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
726 EXTRACT_NUMBER (destination, source); \
731 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
734 extract_number_and_incr (destination
, source
)
736 unsigned char **source
;
738 extract_number (destination
, *source
);
742 # ifndef EXTRACT_MACROS
743 # undef EXTRACT_NUMBER_AND_INCR
744 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
745 extract_number_and_incr (&dest, &src)
746 # endif /* not EXTRACT_MACROS */
750 /* Store a multibyte character in three contiguous bytes starting
751 DESTINATION, and increment DESTINATION to the byte after where the
752 character is stored. Therefore, DESTINATION must be an lvalue. */
754 #define STORE_CHARACTER_AND_INCR(destination, character) \
756 (destination)[0] = (character) & 0377; \
757 (destination)[1] = ((character) >> 8) & 0377; \
758 (destination)[2] = (character) >> 16; \
759 (destination) += 3; \
762 /* Put into DESTINATION a character stored in three contiguous bytes
763 starting at SOURCE. */
765 #define EXTRACT_CHARACTER(destination, source) \
767 (destination) = ((source)[0] \
768 | ((source)[1] << 8) \
769 | ((source)[2] << 16)); \
773 /* Macros for charset. */
775 /* Size of bitmap of charset P in bytes. P is a start of charset,
776 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
777 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
779 /* Nonzero if charset P has range table. */
780 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
782 /* Return the address of range table of charset P. But not the start
783 of table itself, but the before where the number of ranges is
784 stored. `2 +' means to skip re_opcode_t and size of bitmap,
785 and the 2 bytes of flags at the start of the range table. */
786 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
788 /* Extract the bit flags that start a range table. */
789 #define CHARSET_RANGE_TABLE_BITS(p) \
790 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
791 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
793 /* Test if C is listed in the bitmap of charset P. */
794 #define CHARSET_LOOKUP_BITMAP(p, c) \
795 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
796 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
798 /* Return the address of end of RANGE_TABLE. COUNT is number of
799 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
800 is start of range and end of range. `* 3' is size of each start
802 #define CHARSET_RANGE_TABLE_END(range_table, count) \
803 ((range_table) + (count) * 2 * 3)
805 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
806 COUNT is number of ranges in RANGE_TABLE. */
807 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
810 int range_start, range_end; \
812 unsigned char *range_table_end \
813 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
815 for (p = (range_table); p < range_table_end; p += 2 * 3) \
817 EXTRACT_CHARACTER (range_start, p); \
818 EXTRACT_CHARACTER (range_end, p + 3); \
820 if (range_start <= (c) && (c) <= range_end) \
829 /* Test if C is in range table of CHARSET. The flag NOT is negated if
830 C is listed in it. */
831 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
834 /* Number of ranges in range table. */ \
836 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
838 EXTRACT_NUMBER_AND_INCR (count, range_table); \
839 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
843 /* If DEBUG is defined, Regex prints many voluminous messages about what
844 it is doing (if the variable `debug' is nonzero). If linked with the
845 main program in `iregex.c', you can enter patterns and strings
846 interactively. And if linked with the main program in `main.c' and
847 the other test files, you can run the already-written tests. */
851 /* We use standard I/O for debugging. */
854 /* It is useful to test things that ``must'' be true when debugging. */
857 static int debug
= -100000;
859 # define DEBUG_STATEMENT(e) e
860 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
861 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
862 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
863 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
864 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
865 if (debug > 0) print_partial_compiled_pattern (s, e)
866 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
867 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
870 /* Print the fastmap in human-readable form. */
873 print_fastmap (fastmap
)
876 unsigned was_a_range
= 0;
879 while (i
< (1 << BYTEWIDTH
))
885 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
901 /* Print a compiled pattern string in human-readable form, starting at
902 the START pointer into it and ending just before the pointer END. */
905 print_partial_compiled_pattern (start
, end
)
906 unsigned char *start
;
910 unsigned char *p
= start
;
911 unsigned char *pend
= end
;
919 /* Loop over pattern commands. */
922 printf ("%d:\t", p
- start
);
924 switch ((re_opcode_t
) *p
++)
936 printf ("/exactn/%d", mcnt
);
946 printf ("/start_memory/%d", *p
++);
950 printf ("/stop_memory/%d", *p
++);
954 printf ("/duplicate/%d", *p
++);
964 register int c
, last
= -100;
965 register int in_range
= 0;
966 int length
= CHARSET_BITMAP_SIZE (p
- 1);
967 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
969 printf ("/charset [%s",
970 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
972 assert (p
+ *p
< pend
);
974 for (c
= 0; c
< 256; c
++)
976 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
978 /* Are we starting a range? */
979 if (last
+ 1 == c
&& ! in_range
)
984 /* Have we broken a range? */
985 else if (last
+ 1 != c
&& in_range
)
1004 if (has_range_table
)
1007 printf ("has-range-table");
1009 /* ??? Should print the range table; for now, just skip it. */
1010 p
+= 2; /* skip range table bits */
1011 EXTRACT_NUMBER_AND_INCR (count
, p
);
1012 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1018 printf ("/begline");
1022 printf ("/endline");
1025 case on_failure_jump
:
1026 extract_number_and_incr (&mcnt
, &p
);
1027 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
1030 case on_failure_keep_string_jump
:
1031 extract_number_and_incr (&mcnt
, &p
);
1032 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1035 case on_failure_jump_nastyloop
:
1036 extract_number_and_incr (&mcnt
, &p
);
1037 printf ("/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1040 case on_failure_jump_loop
:
1041 extract_number_and_incr (&mcnt
, &p
);
1042 printf ("/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1045 case on_failure_jump_smart
:
1046 extract_number_and_incr (&mcnt
, &p
);
1047 printf ("/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1051 extract_number_and_incr (&mcnt
, &p
);
1052 printf ("/jump to %d", p
+ mcnt
- start
);
1056 extract_number_and_incr (&mcnt
, &p
);
1057 extract_number_and_incr (&mcnt2
, &p
);
1058 printf ("/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1062 extract_number_and_incr (&mcnt
, &p
);
1063 extract_number_and_incr (&mcnt2
, &p
);
1064 printf ("/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1068 extract_number_and_incr (&mcnt
, &p
);
1069 extract_number_and_incr (&mcnt2
, &p
);
1070 printf ("/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1074 printf ("/wordbound");
1078 printf ("/notwordbound");
1082 printf ("/wordbeg");
1086 printf ("/wordend");
1089 printf ("/syntaxspec");
1091 printf ("/%d", mcnt
);
1095 printf ("/notsyntaxspec");
1097 printf ("/%d", mcnt
);
1102 printf ("/before_dot");
1110 printf ("/after_dot");
1114 printf ("/categoryspec");
1116 printf ("/%d", mcnt
);
1119 case notcategoryspec
:
1120 printf ("/notcategoryspec");
1122 printf ("/%d", mcnt
);
1135 printf ("?%d", *(p
-1));
1141 printf ("%d:\tend of pattern.\n", p
- start
);
1146 print_compiled_pattern (bufp
)
1147 struct re_pattern_buffer
*bufp
;
1149 unsigned char *buffer
= bufp
->buffer
;
1151 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1152 printf ("%ld bytes used/%ld bytes allocated.\n",
1153 bufp
->used
, bufp
->allocated
);
1155 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1157 printf ("fastmap: ");
1158 print_fastmap (bufp
->fastmap
);
1161 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1162 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1163 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1164 printf ("no_sub: %d\t", bufp
->no_sub
);
1165 printf ("not_bol: %d\t", bufp
->not_bol
);
1166 printf ("not_eol: %d\t", bufp
->not_eol
);
1167 printf ("syntax: %lx\n", bufp
->syntax
);
1169 /* Perhaps we should print the translate table? */
1174 print_double_string (where
, string1
, size1
, string2
, size2
)
1187 if (FIRST_STRING_P (where
))
1189 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1190 putchar (string1
[this_char
]);
1195 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1196 putchar (string2
[this_char
]);
1200 #else /* not DEBUG */
1205 # define DEBUG_STATEMENT(e)
1206 # define DEBUG_PRINT1(x)
1207 # define DEBUG_PRINT2(x1, x2)
1208 # define DEBUG_PRINT3(x1, x2, x3)
1209 # define DEBUG_PRINT4(x1, x2, x3, x4)
1210 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1211 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1213 #endif /* not DEBUG */
1215 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1216 also be assigned to arbitrarily: each pattern buffer stores its own
1217 syntax, so it can be changed between regex compilations. */
1218 /* This has no initializer because initialized variables in Emacs
1219 become read-only after dumping. */
1220 reg_syntax_t re_syntax_options
;
1223 /* Specify the precise syntax of regexps for compilation. This provides
1224 for compatibility for various utilities which historically have
1225 different, incompatible syntaxes.
1227 The argument SYNTAX is a bit mask comprised of the various bits
1228 defined in regex.h. We return the old syntax. */
1231 re_set_syntax (syntax
)
1232 reg_syntax_t syntax
;
1234 reg_syntax_t ret
= re_syntax_options
;
1236 re_syntax_options
= syntax
;
1239 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1241 /* This table gives an error message for each of the error codes listed
1242 in regex.h. Obviously the order here has to be same as there.
1243 POSIX doesn't require that we do anything for REG_NOERROR,
1244 but why not be nice? */
1246 static const char *re_error_msgid
[] =
1248 gettext_noop ("Success"), /* REG_NOERROR */
1249 gettext_noop ("No match"), /* REG_NOMATCH */
1250 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1251 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1252 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1253 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1254 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1255 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1256 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1257 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1258 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1259 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1260 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1261 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1262 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1263 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1264 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1267 /* Avoiding alloca during matching, to placate r_alloc. */
1269 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1270 searching and matching functions should not call alloca. On some
1271 systems, alloca is implemented in terms of malloc, and if we're
1272 using the relocating allocator routines, then malloc could cause a
1273 relocation, which might (if the strings being searched are in the
1274 ralloc heap) shift the data out from underneath the regexp
1277 Here's another reason to avoid allocation: Emacs
1278 processes input from X in a signal handler; processing X input may
1279 call malloc; if input arrives while a matching routine is calling
1280 malloc, then we're scrod. But Emacs can't just block input while
1281 calling matching routines; then we don't notice interrupts when
1282 they come in. So, Emacs blocks input around all regexp calls
1283 except the matching calls, which it leaves unprotected, in the
1284 faith that they will not malloc. */
1286 /* Normally, this is fine. */
1287 #define MATCH_MAY_ALLOCATE
1289 /* When using GNU C, we are not REALLY using the C alloca, no matter
1290 what config.h may say. So don't take precautions for it. */
1295 /* The match routines may not allocate if (1) they would do it with malloc
1296 and (2) it's not safe for them to use malloc.
1297 Note that if REL_ALLOC is defined, matching would not use malloc for the
1298 failure stack, but we would still use it for the register vectors;
1299 so REL_ALLOC should not affect this. */
1300 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1301 # undef MATCH_MAY_ALLOCATE
1305 /* Failure stack declarations and macros; both re_compile_fastmap and
1306 re_match_2 use a failure stack. These have to be macros because of
1307 REGEX_ALLOCATE_STACK. */
1310 /* Approximate number of failure points for which to initially allocate space
1311 when matching. If this number is exceeded, we allocate more
1312 space, so it is not a hard limit. */
1313 #ifndef INIT_FAILURE_ALLOC
1314 # define INIT_FAILURE_ALLOC 20
1317 /* Roughly the maximum number of failure points on the stack. Would be
1318 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1319 This is a variable only so users of regex can assign to it; we never
1320 change it ourselves. */
1321 # if defined MATCH_MAY_ALLOCATE
1322 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1323 whose default stack limit is 2mb. In order for a larger
1324 value to work reliably, you have to try to make it accord
1325 with the process stack limit. */
1326 size_t re_max_failures
= 40000;
1328 size_t re_max_failures
= 4000;
1331 union fail_stack_elt
1333 const unsigned char *pointer
;
1334 /* This should be the biggest `int' that's no bigger than a pointer. */
1338 typedef union fail_stack_elt fail_stack_elt_t
;
1342 fail_stack_elt_t
*stack
;
1344 size_t avail
; /* Offset of next open position. */
1345 size_t frame
; /* Offset of the cur constructed frame. */
1348 #define PATTERN_STACK_EMPTY() (fail_stack.avail == 0)
1349 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1350 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1353 /* Define macros to initialize and free the failure stack.
1354 Do `return -2' if the alloc fails. */
1356 #ifdef MATCH_MAY_ALLOCATE
1357 # define INIT_FAIL_STACK() \
1359 fail_stack.stack = (fail_stack_elt_t *) \
1360 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1361 * sizeof (fail_stack_elt_t)); \
1363 if (fail_stack.stack == NULL) \
1366 fail_stack.size = INIT_FAILURE_ALLOC; \
1367 fail_stack.avail = 0; \
1368 fail_stack.frame = 0; \
1371 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1373 # define INIT_FAIL_STACK() \
1375 fail_stack.avail = 0; \
1376 fail_stack.frame = 0; \
1379 # define RESET_FAIL_STACK() ((void)0)
1383 /* Double the size of FAIL_STACK, up to a limit
1384 which allows approximately `re_max_failures' items.
1386 Return 1 if succeeds, and 0 if either ran out of memory
1387 allocating space for it or it was already too large.
1389 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1391 /* Factor to increase the failure stack size by
1392 when we increase it.
1393 This used to be 2, but 2 was too wasteful
1394 because the old discarded stacks added up to as much space
1395 were as ultimate, maximum-size stack. */
1396 #define FAIL_STACK_GROWTH_FACTOR 4
1398 #define GROW_FAIL_STACK(fail_stack) \
1399 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1400 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1402 : ((fail_stack).stack \
1403 = (fail_stack_elt_t *) \
1404 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1405 (fail_stack).size * sizeof (fail_stack_elt_t), \
1406 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1407 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1408 * FAIL_STACK_GROWTH_FACTOR))), \
1410 (fail_stack).stack == NULL \
1412 : ((fail_stack).size \
1413 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1414 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1415 * FAIL_STACK_GROWTH_FACTOR)) \
1416 / sizeof (fail_stack_elt_t)), \
1420 /* Push pointer POINTER on FAIL_STACK.
1421 Return 1 if was able to do so and 0 if ran out of memory allocating
1423 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1424 ((FAIL_STACK_FULL () \
1425 && !GROW_FAIL_STACK (FAIL_STACK)) \
1427 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1429 #define POP_PATTERN_OP() POP_FAILURE_POINTER ()
1431 /* Push a pointer value onto the failure stack.
1432 Assumes the variable `fail_stack'. Probably should only
1433 be called from within `PUSH_FAILURE_POINT'. */
1434 #define PUSH_FAILURE_POINTER(item) \
1435 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1437 /* This pushes an integer-valued item onto the failure stack.
1438 Assumes the variable `fail_stack'. Probably should only
1439 be called from within `PUSH_FAILURE_POINT'. */
1440 #define PUSH_FAILURE_INT(item) \
1441 fail_stack.stack[fail_stack.avail++].integer = (item)
1443 /* Push a fail_stack_elt_t value onto the failure stack.
1444 Assumes the variable `fail_stack'. Probably should only
1445 be called from within `PUSH_FAILURE_POINT'. */
1446 #define PUSH_FAILURE_ELT(item) \
1447 fail_stack.stack[fail_stack.avail++] = (item)
1449 /* These three POP... operations complement the three PUSH... operations.
1450 All assume that `fail_stack' is nonempty. */
1451 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1452 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1453 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1455 /* Individual items aside from the registers. */
1456 #define NUM_NONREG_ITEMS 3
1458 /* Used to examine the stack (to detect infinite loops). */
1459 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1460 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1461 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1462 #define TOP_FAILURE_HANDLE() fail_stack.frame
1465 #define ENSURE_FAIL_STACK(space) \
1466 while (REMAINING_AVAIL_SLOTS <= space) { \
1467 if (!GROW_FAIL_STACK (fail_stack)) \
1469 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1470 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1473 /* Push register NUM onto the stack. */
1474 #define PUSH_FAILURE_REG(num) \
1476 char *destination; \
1477 ENSURE_FAIL_STACK(3); \
1478 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1479 num, regstart[num], regend[num]); \
1480 PUSH_FAILURE_POINTER (regstart[num]); \
1481 PUSH_FAILURE_POINTER (regend[num]); \
1482 PUSH_FAILURE_INT (num); \
1485 #define PUSH_FAILURE_COUNT(ptr) \
1487 char *destination; \
1489 ENSURE_FAIL_STACK(3); \
1490 EXTRACT_NUMBER (c, ptr); \
1491 DEBUG_PRINT3 (" Push counter %p = %d\n", ptr, c); \
1492 PUSH_FAILURE_INT (c); \
1493 PUSH_FAILURE_POINTER (ptr); \
1494 PUSH_FAILURE_INT (-1); \
1497 /* Pop a saved register off the stack. */
1498 #define POP_FAILURE_REG_OR_COUNT() \
1500 int reg = POP_FAILURE_INT (); \
1503 /* It's a counter. */ \
1504 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1505 reg = POP_FAILURE_INT (); \
1506 STORE_NUMBER (ptr, reg); \
1507 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1511 regend[reg] = POP_FAILURE_POINTER (); \
1512 regstart[reg] = POP_FAILURE_POINTER (); \
1513 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1514 reg, regstart[reg], regend[reg]); \
1518 /* Check that we are not stuck in an infinite loop. */
1519 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1521 int failure = TOP_FAILURE_HANDLE(); \
1522 /* Check for infinite matching loops */ \
1523 while (failure > 0 && \
1524 (FAILURE_STR (failure) == string_place \
1525 || FAILURE_STR (failure) == NULL)) \
1527 assert (FAILURE_PAT (failure) >= bufp->buffer \
1528 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1529 if (FAILURE_PAT (failure) == pat_cur) \
1531 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1532 failure = NEXT_FAILURE_HANDLE(failure); \
1534 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1537 /* Push the information about the state we will need
1538 if we ever fail back to it.
1540 Requires variables fail_stack, regstart, regend and
1541 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1544 Does `return FAILURE_CODE' if runs out of memory. */
1546 #define PUSH_FAILURE_POINT(pattern, string_place) \
1548 char *destination; \
1549 /* Must be int, so when we don't save any registers, the arithmetic \
1550 of 0 + -1 isn't done as unsigned. */ \
1552 DEBUG_STATEMENT (nfailure_points_pushed++); \
1553 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1554 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1555 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1557 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1559 DEBUG_PRINT1 ("\n"); \
1561 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1562 PUSH_FAILURE_INT (fail_stack.frame); \
1564 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1565 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1566 DEBUG_PRINT1 ("'\n"); \
1567 PUSH_FAILURE_POINTER (string_place); \
1569 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1570 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1571 PUSH_FAILURE_POINTER (pattern); \
1573 /* Close the frame by moving the frame pointer past it. */ \
1574 fail_stack.frame = fail_stack.avail; \
1577 /* Estimate the size of data pushed by a typical failure stack entry.
1578 An estimate is all we need, because all we use this for
1579 is to choose a limit for how big to make the failure stack. */
1581 #define TYPICAL_FAILURE_SIZE 20
1583 /* How many items can still be added to the stack without overflowing it. */
1584 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1587 /* Pops what PUSH_FAIL_STACK pushes.
1589 We restore into the parameters, all of which should be lvalues:
1590 STR -- the saved data position.
1591 PAT -- the saved pattern position.
1592 REGSTART, REGEND -- arrays of string positions.
1594 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1595 `pend', `string1', `size1', `string2', and `size2'. */
1597 #define POP_FAILURE_POINT(str, pat) \
1599 assert (!FAIL_STACK_EMPTY ()); \
1601 /* Remove failure points and point to how many regs pushed. */ \
1602 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1603 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1604 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1606 /* Pop the saved registers. */ \
1607 while (fail_stack.frame < fail_stack.avail) \
1608 POP_FAILURE_REG_OR_COUNT (); \
1610 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1611 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1612 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1614 /* If the saved string location is NULL, it came from an \
1615 on_failure_keep_string_jump opcode, and we want to throw away the \
1616 saved NULL, thus retaining our current position in the string. */ \
1617 str = (re_char *) POP_FAILURE_POINTER (); \
1618 DEBUG_PRINT2 (" Popping string %p: `", str); \
1619 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1620 DEBUG_PRINT1 ("'\n"); \
1622 fail_stack.frame = POP_FAILURE_INT (); \
1623 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1625 assert (fail_stack.avail >= 0); \
1626 assert (fail_stack.frame <= fail_stack.avail); \
1628 DEBUG_STATEMENT (nfailure_points_popped++); \
1629 } while (0) /* POP_FAILURE_POINT */
1633 /* Registers are set to a sentinel when they haven't yet matched. */
1634 #define REG_UNSET(e) ((e) == NULL)
1636 /* Subroutine declarations and macros for regex_compile. */
1638 static reg_errcode_t regex_compile
_RE_ARGS ((re_char
*pattern
, size_t size
,
1639 reg_syntax_t syntax
,
1640 struct re_pattern_buffer
*bufp
));
1641 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1642 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1643 int arg1
, int arg2
));
1644 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1645 int arg
, unsigned char *end
));
1646 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1647 int arg1
, int arg2
, unsigned char *end
));
1648 static boolean at_begline_loc_p
_RE_ARGS ((const unsigned char *pattern
,
1649 const unsigned char *p
,
1650 reg_syntax_t syntax
));
1651 static boolean at_endline_loc_p
_RE_ARGS ((const unsigned char *p
,
1652 const unsigned char *pend
,
1653 reg_syntax_t syntax
));
1654 static unsigned char *skip_one_char
_RE_ARGS ((unsigned char *p
));
1655 static int analyse_first
_RE_ARGS ((unsigned char *p
, unsigned char *pend
,
1656 char *fastmap
, const int multibyte
));
1658 /* Fetch the next character in the uncompiled pattern---translating it
1659 if necessary. Also cast from a signed character in the constant
1660 string passed to us by the user to an unsigned char that we can use
1661 as an array index (in, e.g., `translate'). */
1662 #define PATFETCH(c) \
1665 c = TRANSLATE (c); \
1668 /* Fetch the next character in the uncompiled pattern, with no
1670 #define PATFETCH_RAW(c) \
1673 if (p == pend) return REG_EEND; \
1674 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1679 /* If `translate' is non-null, return translate[D], else just D. We
1680 cast the subscript to translate because some data is declared as
1681 `char *', to avoid warnings when a string constant is passed. But
1682 when we use a character as a subscript we must make it unsigned. */
1684 # define TRANSLATE(d) \
1685 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1689 /* Macros for outputting the compiled pattern into `buffer'. */
1691 /* If the buffer isn't allocated when it comes in, use this. */
1692 #define INIT_BUF_SIZE 32
1694 /* Make sure we have at least N more bytes of space in buffer. */
1695 #define GET_BUFFER_SPACE(n) \
1696 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1699 /* Make sure we have one more byte of buffer space and then add C to it. */
1700 #define BUF_PUSH(c) \
1702 GET_BUFFER_SPACE (1); \
1703 *b++ = (unsigned char) (c); \
1707 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1708 #define BUF_PUSH_2(c1, c2) \
1710 GET_BUFFER_SPACE (2); \
1711 *b++ = (unsigned char) (c1); \
1712 *b++ = (unsigned char) (c2); \
1716 /* As with BUF_PUSH_2, except for three bytes. */
1717 #define BUF_PUSH_3(c1, c2, c3) \
1719 GET_BUFFER_SPACE (3); \
1720 *b++ = (unsigned char) (c1); \
1721 *b++ = (unsigned char) (c2); \
1722 *b++ = (unsigned char) (c3); \
1726 /* Store a jump with opcode OP at LOC to location TO. We store a
1727 relative address offset by the three bytes the jump itself occupies. */
1728 #define STORE_JUMP(op, loc, to) \
1729 store_op1 (op, loc, (to) - (loc) - 3)
1731 /* Likewise, for a two-argument jump. */
1732 #define STORE_JUMP2(op, loc, to, arg) \
1733 store_op2 (op, loc, (to) - (loc) - 3, arg)
1735 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1736 #define INSERT_JUMP(op, loc, to) \
1737 insert_op1 (op, loc, (to) - (loc) - 3, b)
1739 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1740 #define INSERT_JUMP2(op, loc, to, arg) \
1741 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1744 /* This is not an arbitrary limit: the arguments which represent offsets
1745 into the pattern are two bytes long. So if 2^16 bytes turns out to
1746 be too small, many things would have to change. */
1747 /* Any other compiler which, like MSC, has allocation limit below 2^16
1748 bytes will have to use approach similar to what was done below for
1749 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1750 reallocating to 0 bytes. Such thing is not going to work too well.
1751 You have been warned!! */
1752 #if defined _MSC_VER && !defined WIN32
1753 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1754 # define MAX_BUF_SIZE 65500L
1756 # define MAX_BUF_SIZE (1L << 16)
1759 /* Extend the buffer by twice its current size via realloc and
1760 reset the pointers that pointed into the old block to point to the
1761 correct places in the new one. If extending the buffer results in it
1762 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1763 #if __BOUNDED_POINTERS__
1764 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1765 # define MOVE_BUFFER_POINTER(P) \
1766 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1767 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1770 SET_HIGH_BOUND (b); \
1771 SET_HIGH_BOUND (begalt); \
1772 if (fixup_alt_jump) \
1773 SET_HIGH_BOUND (fixup_alt_jump); \
1775 SET_HIGH_BOUND (laststart); \
1776 if (pending_exact) \
1777 SET_HIGH_BOUND (pending_exact); \
1780 # define MOVE_BUFFER_POINTER(P) (P) += incr
1781 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1783 #define EXTEND_BUFFER() \
1785 unsigned char *old_buffer = bufp->buffer; \
1786 if (bufp->allocated == MAX_BUF_SIZE) \
1788 bufp->allocated <<= 1; \
1789 if (bufp->allocated > MAX_BUF_SIZE) \
1790 bufp->allocated = MAX_BUF_SIZE; \
1791 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1792 if (bufp->buffer == NULL) \
1793 return REG_ESPACE; \
1794 /* If the buffer moved, move all the pointers into it. */ \
1795 if (old_buffer != bufp->buffer) \
1797 int incr = bufp->buffer - old_buffer; \
1798 MOVE_BUFFER_POINTER (b); \
1799 MOVE_BUFFER_POINTER (begalt); \
1800 if (fixup_alt_jump) \
1801 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1803 MOVE_BUFFER_POINTER (laststart); \
1804 if (pending_exact) \
1805 MOVE_BUFFER_POINTER (pending_exact); \
1807 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1811 /* Since we have one byte reserved for the register number argument to
1812 {start,stop}_memory, the maximum number of groups we can report
1813 things about is what fits in that byte. */
1814 #define MAX_REGNUM 255
1816 /* But patterns can have more than `MAX_REGNUM' registers. We just
1817 ignore the excess. */
1818 typedef unsigned regnum_t
;
1821 /* Macros for the compile stack. */
1823 /* Since offsets can go either forwards or backwards, this type needs to
1824 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1825 /* int may be not enough when sizeof(int) == 2. */
1826 typedef long pattern_offset_t
;
1830 pattern_offset_t begalt_offset
;
1831 pattern_offset_t fixup_alt_jump
;
1832 pattern_offset_t laststart_offset
;
1834 } compile_stack_elt_t
;
1839 compile_stack_elt_t
*stack
;
1841 unsigned avail
; /* Offset of next open position. */
1842 } compile_stack_type
;
1845 #define INIT_COMPILE_STACK_SIZE 32
1847 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1848 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1850 /* The next available element. */
1851 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1854 /* Structure to manage work area for range table. */
1855 struct range_table_work_area
1857 int *table
; /* actual work area. */
1858 int allocated
; /* allocated size for work area in bytes. */
1859 int used
; /* actually used size in words. */
1860 int bits
; /* flag to record character classes */
1863 /* Make sure that WORK_AREA can hold more N multibyte characters. */
1864 #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1866 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1868 (work_area).allocated += 16 * sizeof (int); \
1869 if ((work_area).table) \
1871 = (int *) realloc ((work_area).table, (work_area).allocated); \
1874 = (int *) malloc ((work_area).allocated); \
1875 if ((work_area).table == 0) \
1876 FREE_STACK_RETURN (REG_ESPACE); \
1880 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1881 (work_area).bits |= (bit)
1883 /* Bits used to implement the multibyte-part of the various character classes
1884 such as [:alnum:] in a charset's range table. */
1885 #define BIT_WORD 0x1
1886 #define BIT_LOWER 0x2
1887 #define BIT_PUNCT 0x4
1888 #define BIT_SPACE 0x8
1889 #define BIT_UPPER 0x10
1890 #define BIT_MULTIBYTE 0x20
1892 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1893 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1895 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1896 (work_area).table[(work_area).used++] = (range_start); \
1897 (work_area).table[(work_area).used++] = (range_end); \
1900 /* Free allocated memory for WORK_AREA. */
1901 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1903 if ((work_area).table) \
1904 free ((work_area).table); \
1907 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1908 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1909 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1910 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1913 /* Set the bit for character C in a list. */
1914 #define SET_LIST_BIT(c) \
1915 (b[((unsigned char) (c)) / BYTEWIDTH] \
1916 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1919 /* Get the next unsigned number in the uncompiled pattern. */
1920 #define GET_UNSIGNED_NUMBER(num) \
1921 do { if (p != pend) \
1924 while ('0' <= c && c <= '9') \
1928 num = num * 10 + c - '0'; \
1936 #if WIDE_CHAR_SUPPORT
1937 /* The GNU C library provides support for user-defined character classes
1938 and the functions from ISO C amendement 1. */
1939 # ifdef CHARCLASS_NAME_MAX
1940 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1942 /* This shouldn't happen but some implementation might still have this
1943 problem. Use a reasonable default value. */
1944 # define CHAR_CLASS_MAX_LENGTH 256
1946 typedef wctype_t re_wctype_t
;
1947 # define re_wctype wctype
1948 # define re_iswctype iswctype
1949 # define re_wctype_to_bit(cc) 0
1951 # define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1954 /* Character classes' indices. */
1955 typedef enum { RECC_ERROR
= 0,
1956 RECC_ALNUM
, RECC_ALPHA
, RECC_WORD
,
1957 RECC_GRAPH
, RECC_PRINT
,
1958 RECC_LOWER
, RECC_UPPER
,
1959 RECC_PUNCT
, RECC_CNTRL
,
1960 RECC_DIGIT
, RECC_XDIGIT
,
1961 RECC_BLANK
, RECC_SPACE
,
1962 RECC_MULTIBYTE
, RECC_NONASCII
,
1963 RECC_ASCII
, RECC_UNIBYTE
1966 /* Map a string to the char class it names (if any). */
1969 unsigned char *string
;
1971 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
1972 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
1973 else if (STREQ (string
, "word")) return RECC_WORD
;
1974 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
1975 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
1976 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
1977 else if (STREQ (string
, "lower")) return RECC_LOWER
;
1978 else if (STREQ (string
, "print")) return RECC_PRINT
;
1979 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
1980 else if (STREQ (string
, "space")) return RECC_SPACE
;
1981 else if (STREQ (string
, "upper")) return RECC_UPPER
;
1982 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
1983 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
1984 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
1985 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
1986 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
1987 else if (STREQ (string
, "blank")) return RECC_BLANK
;
1991 /* True iff CH is in the char class CC. */
1993 re_iswctype (ch
, cc
)
1999 case RECC_ALNUM
: return ISALNUM (ch
);
2000 case RECC_ALPHA
: return ISALPHA (ch
);
2001 case RECC_BLANK
: return ISBLANK (ch
);
2002 case RECC_CNTRL
: return ISCNTRL (ch
);
2003 case RECC_DIGIT
: return ISDIGIT (ch
);
2004 case RECC_GRAPH
: return ISGRAPH (ch
);
2005 case RECC_LOWER
: return ISLOWER (ch
);
2006 case RECC_PRINT
: return ISPRINT (ch
);
2007 case RECC_PUNCT
: return ISPUNCT (ch
);
2008 case RECC_SPACE
: return ISSPACE (ch
);
2009 case RECC_UPPER
: return ISUPPER (ch
);
2010 case RECC_XDIGIT
: return ISXDIGIT (ch
);
2011 case RECC_ASCII
: return IS_REAL_ASCII (ch
);
2012 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2013 case RECC_UNIBYTE
: return ISUNIBYTE (ch
);
2014 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2015 case RECC_WORD
: return ISWORD (ch
);
2016 case RECC_ERROR
: return false;
2020 /* Return a bit-pattern to use in the range-table bits to match multibyte
2021 chars of class CC. */
2023 re_wctype_to_bit (cc
)
2028 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2029 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2030 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2031 case RECC_LOWER
: return BIT_LOWER
;
2032 case RECC_UPPER
: return BIT_UPPER
;
2033 case RECC_PUNCT
: return BIT_PUNCT
;
2034 case RECC_SPACE
: return BIT_SPACE
;
2035 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2036 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2041 /* QUIT is only used on NTemacs. */
2042 #if !defined WINDOWSNT || !defined emacs || !defined QUIT
2047 #ifndef MATCH_MAY_ALLOCATE
2049 /* If we cannot allocate large objects within re_match_2_internal,
2050 we make the fail stack and register vectors global.
2051 The fail stack, we grow to the maximum size when a regexp
2053 The register vectors, we adjust in size each time we
2054 compile a regexp, according to the number of registers it needs. */
2056 static fail_stack_type fail_stack
;
2058 /* Size with which the following vectors are currently allocated.
2059 That is so we can make them bigger as needed,
2060 but never make them smaller. */
2061 static int regs_allocated_size
;
2063 static re_char
** regstart
, ** regend
;
2064 static re_char
**best_regstart
, **best_regend
;
2066 /* Make the register vectors big enough for NUM_REGS registers,
2067 but don't make them smaller. */
2070 regex_grow_registers (num_regs
)
2073 if (num_regs
> regs_allocated_size
)
2075 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2076 RETALLOC_IF (regend
, num_regs
, re_char
*);
2077 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2078 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2080 regs_allocated_size
= num_regs
;
2084 #endif /* not MATCH_MAY_ALLOCATE */
2086 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2090 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2091 Returns one of error codes defined in `regex.h', or zero for success.
2093 Assumes the `allocated' (and perhaps `buffer') and `translate'
2094 fields are set in BUFP on entry.
2096 If it succeeds, results are put in BUFP (if it returns an error, the
2097 contents of BUFP are undefined):
2098 `buffer' is the compiled pattern;
2099 `syntax' is set to SYNTAX;
2100 `used' is set to the length of the compiled pattern;
2101 `fastmap_accurate' is zero;
2102 `re_nsub' is the number of subexpressions in PATTERN;
2103 `not_bol' and `not_eol' are zero;
2105 The `fastmap' field is neither examined nor set. */
2107 /* Insert the `jump' from the end of last alternative to "here".
2108 The space for the jump has already been allocated. */
2109 #define FIXUP_ALT_JUMP() \
2111 if (fixup_alt_jump) \
2112 STORE_JUMP (jump, fixup_alt_jump, b); \
2116 /* Return, freeing storage we allocated. */
2117 #define FREE_STACK_RETURN(value) \
2119 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2120 free (compile_stack.stack); \
2124 static reg_errcode_t
2125 regex_compile (pattern
, size
, syntax
, bufp
)
2128 reg_syntax_t syntax
;
2129 struct re_pattern_buffer
*bufp
;
2131 /* We fetch characters from PATTERN here. Even though PATTERN is
2132 `char *' (i.e., signed), we declare these variables as unsigned, so
2133 they can be reliably used as array indices. */
2134 register unsigned int c
, c1
;
2136 /* A random temporary spot in PATTERN. */
2139 /* Points to the end of the buffer, where we should append. */
2140 register unsigned char *b
;
2142 /* Keeps track of unclosed groups. */
2143 compile_stack_type compile_stack
;
2145 /* Points to the current (ending) position in the pattern. */
2147 /* `const' makes AIX compiler fail. */
2148 unsigned char *p
= pattern
;
2150 re_char
*p
= pattern
;
2152 re_char
*pend
= pattern
+ size
;
2154 /* How to translate the characters in the pattern. */
2155 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2157 /* Address of the count-byte of the most recently inserted `exactn'
2158 command. This makes it possible to tell if a new exact-match
2159 character can be added to that command or if the character requires
2160 a new `exactn' command. */
2161 unsigned char *pending_exact
= 0;
2163 /* Address of start of the most recently finished expression.
2164 This tells, e.g., postfix * where to find the start of its
2165 operand. Reset at the beginning of groups and alternatives. */
2166 unsigned char *laststart
= 0;
2168 /* Address of beginning of regexp, or inside of last group. */
2169 unsigned char *begalt
;
2171 /* Place in the uncompiled pattern (i.e., the {) to
2172 which to go back if the interval is invalid. */
2173 re_char
*beg_interval
;
2175 /* Address of the place where a forward jump should go to the end of
2176 the containing expression. Each alternative of an `or' -- except the
2177 last -- ends with a forward jump of this sort. */
2178 unsigned char *fixup_alt_jump
= 0;
2180 /* Counts open-groups as they are encountered. Remembered for the
2181 matching close-group on the compile stack, so the same register
2182 number is put in the stop_memory as the start_memory. */
2183 regnum_t regnum
= 0;
2185 /* Work area for range table of charset. */
2186 struct range_table_work_area range_table_work
;
2188 /* If the object matched can contain multibyte characters. */
2189 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2193 DEBUG_PRINT1 ("\nCompiling pattern: ");
2196 unsigned debug_count
;
2198 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2199 putchar (pattern
[debug_count
]);
2204 /* Initialize the compile stack. */
2205 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2206 if (compile_stack
.stack
== NULL
)
2209 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2210 compile_stack
.avail
= 0;
2212 range_table_work
.table
= 0;
2213 range_table_work
.allocated
= 0;
2215 /* Initialize the pattern buffer. */
2216 bufp
->syntax
= syntax
;
2217 bufp
->fastmap_accurate
= 0;
2218 bufp
->not_bol
= bufp
->not_eol
= 0;
2220 /* Set `used' to zero, so that if we return an error, the pattern
2221 printer (for debugging) will think there's no pattern. We reset it
2225 /* Always count groups, whether or not bufp->no_sub is set. */
2228 #if !defined emacs && !defined SYNTAX_TABLE
2229 /* Initialize the syntax table. */
2230 init_syntax_once ();
2233 if (bufp
->allocated
== 0)
2236 { /* If zero allocated, but buffer is non-null, try to realloc
2237 enough space. This loses if buffer's address is bogus, but
2238 that is the user's responsibility. */
2239 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2242 { /* Caller did not allocate a buffer. Do it for them. */
2243 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2245 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2247 bufp
->allocated
= INIT_BUF_SIZE
;
2250 begalt
= b
= bufp
->buffer
;
2252 /* Loop through the uncompiled pattern until we're at the end. */
2261 if ( /* If at start of pattern, it's an operator. */
2263 /* If context independent, it's an operator. */
2264 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2265 /* Otherwise, depends on what's come before. */
2266 || at_begline_loc_p (pattern
, p
, syntax
))
2267 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2276 if ( /* If at end of pattern, it's an operator. */
2278 /* If context independent, it's an operator. */
2279 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2280 /* Otherwise, depends on what's next. */
2281 || at_endline_loc_p (p
, pend
, syntax
))
2282 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2291 if ((syntax
& RE_BK_PLUS_QM
)
2292 || (syntax
& RE_LIMITED_OPS
))
2296 /* If there is no previous pattern... */
2299 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2300 FREE_STACK_RETURN (REG_BADRPT
);
2301 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2306 /* 1 means zero (many) matches is allowed. */
2307 boolean zero_times_ok
= 0, many_times_ok
= 0;
2310 /* If there is a sequence of repetition chars, collapse it
2311 down to just one (the right one). We can't combine
2312 interval operators with these because of, e.g., `a{2}*',
2313 which should only match an even number of `a's. */
2317 if ((syntax
& RE_FRUGAL
)
2318 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2322 zero_times_ok
|= c
!= '+';
2323 many_times_ok
|= c
!= '?';
2329 || (!(syntax
& RE_BK_PLUS_QM
)
2330 && (*p
== '+' || *p
== '?')))
2332 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2335 FREE_STACK_RETURN (REG_EESCAPE
);
2336 if (p
[1] == '+' || p
[1] == '?')
2337 PATFETCH (c
); /* Gobble up the backslash. */
2343 /* If we get here, we found another repeat character. */
2347 /* Star, etc. applied to an empty pattern is equivalent
2348 to an empty pattern. */
2349 if (!laststart
|| laststart
== b
)
2352 /* Now we know whether or not zero matches is allowed
2353 and also whether or not two or more matches is allowed. */
2358 boolean simple
= skip_one_char (laststart
) == b
;
2359 unsigned int startoffset
= 0;
2361 (simple
|| !analyse_first (laststart
, b
, NULL
, 0)) ?
2362 on_failure_jump
: on_failure_jump_loop
;
2363 assert (skip_one_char (laststart
) <= b
);
2365 if (!zero_times_ok
&& simple
)
2366 { /* Since simple * loops can be made faster by using
2367 on_failure_keep_string_jump, we turn simple P+
2368 into PP* if P is simple. */
2369 unsigned char *p1
, *p2
;
2370 startoffset
= b
- laststart
;
2371 GET_BUFFER_SPACE (startoffset
);
2372 p1
= b
; p2
= laststart
;
2378 GET_BUFFER_SPACE (6);
2381 STORE_JUMP (ofj
, b
, b
+ 6);
2383 /* Simple * loops can use on_failure_keep_string_jump
2384 depending on what follows. But since we don't know
2385 that yet, we leave the decision up to
2386 on_failure_jump_smart. */
2387 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2388 laststart
+ startoffset
, b
+ 6);
2390 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2395 /* A simple ? pattern. */
2396 assert (zero_times_ok
);
2397 GET_BUFFER_SPACE (3);
2398 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2402 else /* not greedy */
2403 { /* I wish the greedy and non-greedy cases could be merged. */
2405 GET_BUFFER_SPACE (7); /* We might use less. */
2408 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2410 /* The non-greedy multiple match looks like a repeat..until:
2411 we only need a conditional jump at the end of the loop */
2412 if (emptyp
) BUF_PUSH (no_op
);
2413 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2414 : on_failure_jump
, b
, laststart
);
2418 /* The repeat...until naturally matches one or more.
2419 To also match zero times, we need to first jump to
2420 the end of the loop (its conditional jump). */
2421 INSERT_JUMP (jump
, laststart
, b
);
2427 /* non-greedy a?? */
2428 INSERT_JUMP (jump
, laststart
, b
+ 3);
2430 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2447 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2449 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2451 /* Ensure that we have enough space to push a charset: the
2452 opcode, the length count, and the bitset; 34 bytes in all. */
2453 GET_BUFFER_SPACE (34);
2457 /* We test `*p == '^' twice, instead of using an if
2458 statement, so we only need one BUF_PUSH. */
2459 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2463 /* Remember the first position in the bracket expression. */
2466 /* Push the number of bytes in the bitmap. */
2467 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2469 /* Clear the whole map. */
2470 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2472 /* charset_not matches newline according to a syntax bit. */
2473 if ((re_opcode_t
) b
[-2] == charset_not
2474 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2475 SET_LIST_BIT ('\n');
2477 /* Read in characters and ranges, setting map bits. */
2480 boolean escaped_char
= false;
2481 const unsigned char *p2
= p
;
2483 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2487 /* \ might escape characters inside [...] and [^...]. */
2488 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2490 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2493 escaped_char
= true;
2497 /* Could be the end of the bracket expression. If it's
2498 not (i.e., when the bracket expression is `[]' so
2499 far), the ']' character bit gets set way below. */
2500 if (c
== ']' && p2
!= p1
)
2504 /* What should we do for the character which is
2505 greater than 0x7F, but not BASE_LEADING_CODE_P?
2508 /* See if we're at the beginning of a possible character
2511 if (!escaped_char
&&
2512 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2514 /* Leave room for the null. */
2515 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2516 const unsigned char *class_beg
;
2522 /* If pattern is `[[:'. */
2523 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2528 if ((c
== ':' && *p
== ']') || p
== pend
)
2530 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2533 /* This is in any case an invalid class name. */
2538 /* If isn't a word bracketed by `[:' and `:]':
2539 undo the ending character, the letters, and
2540 leave the leading `:' and `[' (but set bits for
2542 if (c
== ':' && *p
== ']')
2547 cc
= re_wctype (str
);
2550 FREE_STACK_RETURN (REG_ECTYPE
);
2552 /* Throw away the ] at the end of the character
2556 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2558 /* Most character classes in a multibyte match
2559 just set a flag. Exceptions are is_blank,
2560 is_digit, is_cntrl, and is_xdigit, since
2561 they can only match ASCII characters. We
2562 don't need to handle them for multibyte.
2563 They are distinguished by a negative wctype. */
2566 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work
,
2567 re_wctype_to_bit (cc
));
2569 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2571 int translated
= TRANSLATE (ch
);
2572 if (re_iswctype (btowc (ch
), cc
))
2573 SET_LIST_BIT (translated
);
2576 /* Repeat the loop. */
2581 /* Go back to right after the "[:". */
2585 /* Because the `:' may starts the range, we
2586 can't simply set bit and repeat the loop.
2587 Instead, just set it to C and handle below. */
2592 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2595 /* Discard the `-'. */
2598 /* Fetch the character which ends the range. */
2601 if (SINGLE_BYTE_CHAR_P (c
))
2603 if (! SINGLE_BYTE_CHAR_P (c1
))
2605 /* Handle a range such as \177-\377 in
2606 multibyte mode. Split that into two
2607 ranges, the low one ending at 0237, and
2608 the high one starting at the smallest
2609 character in the charset of C1 and
2611 int charset
= CHAR_CHARSET (c1
);
2612 int c2
= MAKE_CHAR (charset
, 0, 0);
2614 SET_RANGE_TABLE_WORK_AREA (range_table_work
,
2619 else if (!SAME_CHARSET_P (c
, c1
))
2620 FREE_STACK_RETURN (REG_ERANGE
);
2623 /* Range from C to C. */
2626 /* Set the range ... */
2627 if (SINGLE_BYTE_CHAR_P (c
))
2628 /* ... into bitmap. */
2631 int range_start
= c
, range_end
= c1
;
2633 /* If the start is after the end, the range is empty. */
2634 if (range_start
> range_end
)
2636 if (syntax
& RE_NO_EMPTY_RANGES
)
2637 FREE_STACK_RETURN (REG_ERANGE
);
2638 /* Else, repeat the loop. */
2642 for (this_char
= range_start
; this_char
<= range_end
;
2644 SET_LIST_BIT (TRANSLATE (this_char
));
2648 /* ... into range table. */
2649 SET_RANGE_TABLE_WORK_AREA (range_table_work
, c
, c1
);
2652 /* Discard any (non)matching list bytes that are all 0 at the
2653 end of the map. Decrease the map-length byte too. */
2654 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2658 /* Build real range table from work area. */
2659 if (RANGE_TABLE_WORK_USED (range_table_work
)
2660 || RANGE_TABLE_WORK_BITS (range_table_work
))
2663 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
2665 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2666 bytes for flags, two for COUNT, and three bytes for
2668 GET_BUFFER_SPACE (4 + used
* 3);
2670 /* Indicate the existence of range table. */
2671 laststart
[1] |= 0x80;
2673 /* Store the character class flag bits into the range table.
2674 If not in emacs, these flag bits are always 0. */
2675 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
2676 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
2678 STORE_NUMBER_AND_INCR (b
, used
/ 2);
2679 for (i
= 0; i
< used
; i
++)
2680 STORE_CHARACTER_AND_INCR
2681 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
2688 if (syntax
& RE_NO_BK_PARENS
)
2695 if (syntax
& RE_NO_BK_PARENS
)
2702 if (syntax
& RE_NEWLINE_ALT
)
2709 if (syntax
& RE_NO_BK_VBAR
)
2716 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2717 goto handle_interval
;
2723 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2725 /* Do not translate the character after the \, so that we can
2726 distinguish, e.g., \B from \b, even if we normally would
2727 translate, e.g., B to b. */
2733 if (syntax
& RE_NO_BK_PARENS
)
2734 goto normal_backslash
;
2741 /* Look for a special (?...) construct */
2742 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
2744 PATFETCH (c
); /* Gobble up the '?'. */
2748 case ':': shy
= 1; break;
2750 /* Only (?:...) is supported right now. */
2751 FREE_STACK_RETURN (REG_BADPAT
);
2762 if (COMPILE_STACK_FULL
)
2764 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2765 compile_stack_elt_t
);
2766 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2768 compile_stack
.size
<<= 1;
2771 /* These are the values to restore when we hit end of this
2772 group. They are all relative offsets, so that if the
2773 whole pattern moves because of realloc, they will still
2775 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2776 COMPILE_STACK_TOP
.fixup_alt_jump
2777 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2778 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2779 COMPILE_STACK_TOP
.regnum
= shy
? -regnum
: regnum
;
2782 start_memory for groups beyond the last one we can
2783 represent in the compiled pattern. */
2784 if (regnum
<= MAX_REGNUM
&& !shy
)
2785 BUF_PUSH_2 (start_memory
, regnum
);
2787 compile_stack
.avail
++;
2792 /* If we've reached MAX_REGNUM groups, then this open
2793 won't actually generate any code, so we'll have to
2794 clear pending_exact explicitly. */
2800 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2802 if (COMPILE_STACK_EMPTY
)
2804 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2805 goto normal_backslash
;
2807 FREE_STACK_RETURN (REG_ERPAREN
);
2813 /* See similar code for backslashed left paren above. */
2814 if (COMPILE_STACK_EMPTY
)
2816 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2819 FREE_STACK_RETURN (REG_ERPAREN
);
2822 /* Since we just checked for an empty stack above, this
2823 ``can't happen''. */
2824 assert (compile_stack
.avail
!= 0);
2826 /* We don't just want to restore into `regnum', because
2827 later groups should continue to be numbered higher,
2828 as in `(ab)c(de)' -- the second group is #2. */
2829 regnum_t this_group_regnum
;
2831 compile_stack
.avail
--;
2832 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2834 = COMPILE_STACK_TOP
.fixup_alt_jump
2835 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2837 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2838 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2839 /* If we've reached MAX_REGNUM groups, then this open
2840 won't actually generate any code, so we'll have to
2841 clear pending_exact explicitly. */
2844 /* We're at the end of the group, so now we know how many
2845 groups were inside this one. */
2846 if (this_group_regnum
<= MAX_REGNUM
&& this_group_regnum
> 0)
2847 BUF_PUSH_2 (stop_memory
, this_group_regnum
);
2852 case '|': /* `\|'. */
2853 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2854 goto normal_backslash
;
2856 if (syntax
& RE_LIMITED_OPS
)
2859 /* Insert before the previous alternative a jump which
2860 jumps to this alternative if the former fails. */
2861 GET_BUFFER_SPACE (3);
2862 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2866 /* The alternative before this one has a jump after it
2867 which gets executed if it gets matched. Adjust that
2868 jump so it will jump to this alternative's analogous
2869 jump (put in below, which in turn will jump to the next
2870 (if any) alternative's such jump, etc.). The last such
2871 jump jumps to the correct final destination. A picture:
2877 If we are at `b', then fixup_alt_jump right now points to a
2878 three-byte space after `a'. We'll put in the jump, set
2879 fixup_alt_jump to right after `b', and leave behind three
2880 bytes which we'll fill in when we get to after `c'. */
2884 /* Mark and leave space for a jump after this alternative,
2885 to be filled in later either by next alternative or
2886 when know we're at the end of a series of alternatives. */
2888 GET_BUFFER_SPACE (3);
2897 /* If \{ is a literal. */
2898 if (!(syntax
& RE_INTERVALS
)
2899 /* If we're at `\{' and it's not the open-interval
2901 || (syntax
& RE_NO_BK_BRACES
))
2902 goto normal_backslash
;
2906 /* If got here, then the syntax allows intervals. */
2908 /* At least (most) this many matches must be made. */
2909 int lower_bound
= 0, upper_bound
= -1;
2914 FREE_STACK_RETURN (REG_EBRACE
);
2916 GET_UNSIGNED_NUMBER (lower_bound
);
2919 GET_UNSIGNED_NUMBER (upper_bound
);
2921 /* Interval such as `{1}' => match exactly once. */
2922 upper_bound
= lower_bound
;
2924 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2925 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
2926 FREE_STACK_RETURN (REG_BADBR
);
2928 if (!(syntax
& RE_NO_BK_BRACES
))
2931 FREE_STACK_RETURN (REG_BADBR
);
2937 FREE_STACK_RETURN (REG_BADBR
);
2939 /* We just parsed a valid interval. */
2941 /* If it's invalid to have no preceding re. */
2944 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2945 FREE_STACK_RETURN (REG_BADRPT
);
2946 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2949 goto unfetch_interval
;
2952 if (upper_bound
== 0)
2953 /* If the upper bound is zero, just drop the sub pattern
2956 else if (lower_bound
== 1 && upper_bound
== 1)
2957 /* Just match it once: nothing to do here. */
2960 /* Otherwise, we have a nontrivial interval. When
2961 we're all done, the pattern will look like:
2962 set_number_at <jump count> <upper bound>
2963 set_number_at <succeed_n count> <lower bound>
2964 succeed_n <after jump addr> <succeed_n count>
2966 jump_n <succeed_n addr> <jump count>
2967 (The upper bound and `jump_n' are omitted if
2968 `upper_bound' is 1, though.) */
2970 { /* If the upper bound is > 1, we need to insert
2971 more at the end of the loop. */
2972 unsigned int nbytes
= (upper_bound
< 0 ? 3
2973 : upper_bound
> 1 ? 5 : 0);
2974 unsigned int startoffset
= 0;
2976 GET_BUFFER_SPACE (20); /* We might use less. */
2978 if (lower_bound
== 0)
2980 /* A succeed_n that starts with 0 is really a
2981 a simple on_failure_jump_loop. */
2982 INSERT_JUMP (on_failure_jump_loop
, laststart
,
2988 /* Initialize lower bound of the `succeed_n', even
2989 though it will be set during matching by its
2990 attendant `set_number_at' (inserted next),
2991 because `re_compile_fastmap' needs to know.
2992 Jump to the `jump_n' we might insert below. */
2993 INSERT_JUMP2 (succeed_n
, laststart
,
2998 /* Code to initialize the lower bound. Insert
2999 before the `succeed_n'. The `5' is the last two
3000 bytes of this `set_number_at', plus 3 bytes of
3001 the following `succeed_n'. */
3002 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3007 if (upper_bound
< 0)
3009 /* A negative upper bound stands for infinity,
3010 in which case it degenerates to a plain jump. */
3011 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3014 else if (upper_bound
> 1)
3015 { /* More than one repetition is allowed, so
3016 append a backward jump to the `succeed_n'
3017 that starts this interval.
3019 When we've reached this during matching,
3020 we'll have matched the interval once, so
3021 jump back only `upper_bound - 1' times. */
3022 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3026 /* The location we want to set is the second
3027 parameter of the `jump_n'; that is `b-2' as
3028 an absolute address. `laststart' will be
3029 the `set_number_at' we're about to insert;
3030 `laststart+3' the number to set, the source
3031 for the relative address. But we are
3032 inserting into the middle of the pattern --
3033 so everything is getting moved up by 5.
3034 Conclusion: (b - 2) - (laststart + 3) + 5,
3035 i.e., b - laststart.
3037 We insert this at the beginning of the loop
3038 so that if we fail during matching, we'll
3039 reinitialize the bounds. */
3040 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3041 upper_bound
- 1, b
);
3046 beg_interval
= NULL
;
3051 /* If an invalid interval, match the characters as literals. */
3052 assert (beg_interval
);
3054 beg_interval
= NULL
;
3056 /* normal_char and normal_backslash need `c'. */
3059 if (!(syntax
& RE_NO_BK_BRACES
))
3061 assert (p
> pattern
&& p
[-1] == '\\');
3062 goto normal_backslash
;
3068 /* There is no way to specify the before_dot and after_dot
3069 operators. rms says this is ok. --karl */
3077 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3083 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3089 BUF_PUSH_2 (categoryspec
, c
);
3095 BUF_PUSH_2 (notcategoryspec
, c
);
3101 if (syntax
& RE_NO_GNU_OPS
)
3104 BUF_PUSH_2 (syntaxspec
, Sword
);
3109 if (syntax
& RE_NO_GNU_OPS
)
3112 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3117 if (syntax
& RE_NO_GNU_OPS
)
3123 if (syntax
& RE_NO_GNU_OPS
)
3129 if (syntax
& RE_NO_GNU_OPS
)
3131 BUF_PUSH (wordbound
);
3135 if (syntax
& RE_NO_GNU_OPS
)
3137 BUF_PUSH (notwordbound
);
3141 if (syntax
& RE_NO_GNU_OPS
)
3147 if (syntax
& RE_NO_GNU_OPS
)
3152 case '1': case '2': case '3': case '4': case '5':
3153 case '6': case '7': case '8': case '9':
3154 if (syntax
& RE_NO_BK_REFS
)
3160 FREE_STACK_RETURN (REG_ESUBREG
);
3162 /* Can't back reference to a subexpression if inside of it. */
3163 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
3167 BUF_PUSH_2 (duplicate
, c1
);
3173 if (syntax
& RE_BK_PLUS_QM
)
3176 goto normal_backslash
;
3180 /* You might think it would be useful for \ to mean
3181 not to translate; but if we don't translate it
3182 it will never match anything. */
3190 /* Expects the character in `c'. */
3192 /* If no exactn currently being built. */
3195 /* If last exactn not at current position. */
3196 || pending_exact
+ *pending_exact
+ 1 != b
3198 /* We have only one byte following the exactn for the count. */
3199 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3201 /* If followed by a repetition operator. */
3202 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3203 || ((syntax
& RE_BK_PLUS_QM
)
3204 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3205 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3206 || ((syntax
& RE_INTERVALS
)
3207 && ((syntax
& RE_NO_BK_BRACES
)
3208 ? p
!= pend
&& *p
== '{'
3209 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3211 /* Start building a new exactn. */
3215 BUF_PUSH_2 (exactn
, 0);
3216 pending_exact
= b
- 1;
3219 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3224 len
= CHAR_STRING (c
, b
);
3228 (*pending_exact
) += len
;
3233 } /* while p != pend */
3236 /* Through the pattern now. */
3240 if (!COMPILE_STACK_EMPTY
)
3241 FREE_STACK_RETURN (REG_EPAREN
);
3243 /* If we don't want backtracking, force success
3244 the first time we reach the end of the compiled pattern. */
3245 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3248 free (compile_stack
.stack
);
3250 /* We have succeeded; set the length of the buffer. */
3251 bufp
->used
= b
- bufp
->buffer
;
3256 re_compile_fastmap (bufp
);
3257 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3258 print_compiled_pattern (bufp
);
3263 #ifndef MATCH_MAY_ALLOCATE
3264 /* Initialize the failure stack to the largest possible stack. This
3265 isn't necessary unless we're trying to avoid calling alloca in
3266 the search and match routines. */
3268 int num_regs
= bufp
->re_nsub
+ 1;
3270 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3272 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3274 if (! fail_stack
.stack
)
3276 = (fail_stack_elt_t
*) malloc (fail_stack
.size
3277 * sizeof (fail_stack_elt_t
));
3280 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
3282 * sizeof (fail_stack_elt_t
)));
3285 regex_grow_registers (num_regs
);
3287 #endif /* not MATCH_MAY_ALLOCATE */
3290 } /* regex_compile */
3292 /* Subroutines for `regex_compile'. */
3294 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3297 store_op1 (op
, loc
, arg
)
3302 *loc
= (unsigned char) op
;
3303 STORE_NUMBER (loc
+ 1, arg
);
3307 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3310 store_op2 (op
, loc
, arg1
, arg2
)
3315 *loc
= (unsigned char) op
;
3316 STORE_NUMBER (loc
+ 1, arg1
);
3317 STORE_NUMBER (loc
+ 3, arg2
);
3321 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3322 for OP followed by two-byte integer parameter ARG. */
3325 insert_op1 (op
, loc
, arg
, end
)
3331 register unsigned char *pfrom
= end
;
3332 register unsigned char *pto
= end
+ 3;
3334 while (pfrom
!= loc
)
3337 store_op1 (op
, loc
, arg
);
3341 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3344 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3350 register unsigned char *pfrom
= end
;
3351 register unsigned char *pto
= end
+ 5;
3353 while (pfrom
!= loc
)
3356 store_op2 (op
, loc
, arg1
, arg2
);
3360 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3361 after an alternative or a begin-subexpression. We assume there is at
3362 least one character before the ^. */
3365 at_begline_loc_p (pattern
, p
, syntax
)
3366 const unsigned char *pattern
, *p
;
3367 reg_syntax_t syntax
;
3369 const unsigned char *prev
= p
- 2;
3370 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3373 /* After a subexpression? */
3374 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3375 /* After an alternative? */
3376 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
))
3377 /* After a shy subexpression? */
3378 || ((syntax
& RE_SHY_GROUPS
) && prev
- 2 >= pattern
3379 && prev
[-1] == '?' && prev
[-2] == '('
3380 && (syntax
& RE_NO_BK_PARENS
3381 || (prev
- 3 >= pattern
&& prev
[-3] == '\\')));
3385 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3386 at least one character after the $, i.e., `P < PEND'. */
3389 at_endline_loc_p (p
, pend
, syntax
)
3390 const unsigned char *p
, *pend
;
3391 reg_syntax_t syntax
;
3393 const unsigned char *next
= p
;
3394 boolean next_backslash
= *next
== '\\';
3395 const unsigned char *next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3398 /* Before a subexpression? */
3399 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3400 : next_backslash
&& next_next
&& *next_next
== ')')
3401 /* Before an alternative? */
3402 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3403 : next_backslash
&& next_next
&& *next_next
== '|');
3407 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3408 false if it's not. */
3411 group_in_compile_stack (compile_stack
, regnum
)
3412 compile_stack_type compile_stack
;
3417 for (this_element
= compile_stack
.avail
- 1;
3420 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3427 If fastmap is non-NULL, go through the pattern and fill fastmap
3428 with all the possible leading chars. If fastmap is NULL, don't
3429 bother filling it up (obviously) and only return whether the
3430 pattern could potentially match the empty string.
3432 Return 1 if p..pend might match the empty string.
3433 Return 0 if p..pend matches at least one char.
3434 Return -1 if p..pend matches at least one char, but fastmap was not
3436 Return -2 if an error occurred. */
3439 analyse_first (p
, pend
, fastmap
, multibyte
)
3440 unsigned char *p
, *pend
;
3442 const int multibyte
;
3446 #ifdef MATCH_MAY_ALLOCATE
3447 fail_stack_type fail_stack
;
3449 #ifndef REGEX_MALLOC
3453 #if defined REL_ALLOC && defined REGEX_MALLOC
3454 /* This holds the pointer to the failure stack, when
3455 it is allocated relocatably. */
3456 fail_stack_elt_t
*failure_stack_ptr
;
3459 /* Assume that each path through the pattern can be null until
3460 proven otherwise. We set this false at the bottom of switch
3461 statement, to which we get only if a particular path doesn't
3462 match the empty string. */
3463 boolean path_can_be_null
= true;
3465 /* If all elements for base leading-codes in fastmap is set, this
3466 flag is set true. */
3467 boolean match_any_multibyte_characters
= false;
3473 /* The loop below works as follows:
3474 - It has a working-list kept in the PATTERN_STACK and which basically
3475 starts by only containing a pointer to the first operation.
3476 - If the opcode we're looking at is a match against some set of
3477 chars, then we add those chars to the fastmap and go on to the
3478 next work element from the worklist (done via `break').
3479 - If the opcode is a control operator on the other hand, we either
3480 ignore it (if it's meaningless at this point, such as `start_memory')
3481 or execute it (if it's a jump). If the jump has several destinations
3482 (i.e. `on_failure_jump'), then we push the other destination onto the
3484 We guarantee termination by ignoring backward jumps (more or less),
3485 so that `p' is monotonically increasing. More to the point, we
3486 never set `p' (or push) anything `<= p1'. */
3490 /* `p1' is used as a marker of how far back a `on_failure_jump'
3491 can go without being ignored. It is normally equal to `p'
3492 (which prevents any backward `on_failure_jump') except right
3493 after a plain `jump', to allow patterns such as:
3496 10: on_failure_jump 3
3497 as used for the *? operator. */
3498 unsigned char *p1
= p
;
3502 if (path_can_be_null
)
3503 return (RESET_FAIL_STACK (), 1);
3505 /* We have reached the (effective) end of pattern. */
3506 if (PATTERN_STACK_EMPTY ())
3507 return (RESET_FAIL_STACK (), 0);
3509 p
= (unsigned char*) POP_PATTERN_OP ();
3510 path_can_be_null
= true;
3514 /* We should never be about to go beyond the end of the pattern. */
3517 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3524 /* If the first character has to match a backreference, that means
3525 that the group was empty (since it already matched). Since this
3526 is the only case that interests us here, we can assume that the
3527 backreference must match the empty string. */
3532 /* Following are the cases which match a character. These end
3538 int c
= RE_STRING_CHAR (p
+ 1, pend
- p
);
3540 if (SINGLE_BYTE_CHAR_P (c
))
3549 /* We could put all the chars except for \n (and maybe \0)
3550 but we don't bother since it is generally not worth it. */
3551 if (!fastmap
) break;
3552 return (RESET_FAIL_STACK (), -1);
3556 /* Chars beyond end of bitmap are possible matches.
3557 All the single-byte codes can occur in multibyte buffers.
3558 So any that are not listed in the charset
3559 are possible matches, even in multibyte buffers. */
3560 if (!fastmap
) break;
3561 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3562 j
< (1 << BYTEWIDTH
); j
++)
3566 if (!fastmap
) break;
3567 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3568 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3570 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3573 if ((not && multibyte
)
3574 /* Any character set can possibly contain a character
3575 which doesn't match the specified set of characters. */
3576 || (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3577 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3578 /* If we can match a character class, we can match
3579 any character set. */
3581 set_fastmap_for_multibyte_characters
:
3582 if (match_any_multibyte_characters
== false)
3584 for (j
= 0x80; j
< 0xA0; j
++) /* XXX */
3585 if (BASE_LEADING_CODE_P (j
))
3587 match_any_multibyte_characters
= true;
3591 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3592 && match_any_multibyte_characters
== false)
3594 /* Set fastmap[I] 1 where I is a base leading code of each
3595 multibyte character in the range table. */
3598 /* Make P points the range table. `+ 2' is to skip flag
3599 bits for a character class. */
3600 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
3602 /* Extract the number of ranges in range table into COUNT. */
3603 EXTRACT_NUMBER_AND_INCR (count
, p
);
3604 for (; count
> 0; count
--, p
+= 2 * 3) /* XXX */
3606 /* Extract the start of each range. */
3607 EXTRACT_CHARACTER (c
, p
);
3608 j
= CHAR_CHARSET (c
);
3609 fastmap
[CHARSET_LEADING_CODE_BASE (j
)] = 1;
3616 if (!fastmap
) break;
3618 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
3620 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3621 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
3625 /* This match depends on text properties. These end with
3626 aborting optimizations. */
3627 return (RESET_FAIL_STACK (), -1);
3630 case notcategoryspec
:
3631 if (!fastmap
) break;
3632 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
3634 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3635 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
3639 /* Any character set can possibly contain a character
3640 whose category is K (or not). */
3641 goto set_fastmap_for_multibyte_characters
;
3644 /* All cases after this match the empty string. These end with
3664 EXTRACT_NUMBER_AND_INCR (j
, p
);
3666 /* Backward jumps can only go back to code that we've already
3667 visited. `re_compile' should make sure this is true. */
3670 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
3672 case on_failure_jump
:
3673 case on_failure_keep_string_jump
:
3674 case on_failure_jump_loop
:
3675 case on_failure_jump_nastyloop
:
3676 case on_failure_jump_smart
:
3682 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3683 to jump back to "just after here". */
3686 case on_failure_jump
:
3687 case on_failure_keep_string_jump
:
3688 case on_failure_jump_nastyloop
:
3689 case on_failure_jump_loop
:
3690 case on_failure_jump_smart
:
3691 EXTRACT_NUMBER_AND_INCR (j
, p
);
3693 ; /* Backward jump to be ignored. */
3694 else if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
3695 return (RESET_FAIL_STACK (), -2);
3700 /* This code simply does not properly handle forward jump_n. */
3701 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
3703 /* jump_n can either jump or fall through. The (backward) jump
3704 case has already been handled, so we only need to look at the
3705 fallthrough case. */
3709 /* If N == 0, it should be an on_failure_jump_loop instead. */
3710 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
3712 /* We only care about one iteration of the loop, so we don't
3713 need to consider the case where this behaves like an
3730 abort (); /* We have listed all the cases. */
3733 /* Getting here means we have found the possible starting
3734 characters for one path of the pattern -- and that the empty
3735 string does not match. We need not follow this path further.
3736 Instead, look at the next alternative (remembered on the
3737 stack), or quit if no more. The test at the top of the loop
3738 does these things. */
3739 path_can_be_null
= false;
3743 return (RESET_FAIL_STACK (), 0);
3744 } /* analyse_first */
3746 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3747 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3748 characters can start a string that matches the pattern. This fastmap
3749 is used by re_search to skip quickly over impossible starting points.
3751 Character codes above (1 << BYTEWIDTH) are not represented in the
3752 fastmap, but the leading codes are represented. Thus, the fastmap
3753 indicates which character sets could start a match.
3755 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3756 area as BUFP->fastmap.
3758 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3761 Returns 0 if we succeed, -2 if an internal error. */
3764 re_compile_fastmap (bufp
)
3765 struct re_pattern_buffer
*bufp
;
3767 char *fastmap
= bufp
->fastmap
;
3770 assert (fastmap
&& bufp
->buffer
);
3772 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
3773 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
3775 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
3776 fastmap
, RE_MULTIBYTE_P (bufp
));
3777 bufp
->can_be_null
= (analysis
!= 0);
3781 } /* re_compile_fastmap */
3783 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3784 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3785 this memory for recording register information. STARTS and ENDS
3786 must be allocated using the malloc library routine, and must each
3787 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3789 If NUM_REGS == 0, then subsequent matches should allocate their own
3792 Unless this function is called, the first search or match using
3793 PATTERN_BUFFER will allocate its own register data, without
3794 freeing the old data. */
3797 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3798 struct re_pattern_buffer
*bufp
;
3799 struct re_registers
*regs
;
3801 regoff_t
*starts
, *ends
;
3805 bufp
->regs_allocated
= REGS_REALLOCATE
;
3806 regs
->num_regs
= num_regs
;
3807 regs
->start
= starts
;
3812 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3814 regs
->start
= regs
->end
= (regoff_t
*) 0;
3817 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
3819 /* Searching routines. */
3821 /* Like re_search_2, below, but only one string is specified, and
3822 doesn't let you say where to stop matching. */
3825 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3826 struct re_pattern_buffer
*bufp
;
3828 int size
, startpos
, range
;
3829 struct re_registers
*regs
;
3831 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3834 WEAK_ALIAS (__re_search
, re_search
)
3836 /* End address of virtual concatenation of string. */
3837 #define STOP_ADDR_VSTRING(P) \
3838 (((P) >= size1 ? string2 + size2 : string1 + size1))
3840 /* Address of POS in the concatenation of virtual string. */
3841 #define POS_ADDR_VSTRING(POS) \
3842 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
3844 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3845 virtual concatenation of STRING1 and STRING2, starting first at index
3846 STARTPOS, then at STARTPOS + 1, and so on.
3848 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3850 RANGE is how far to scan while trying to match. RANGE = 0 means try
3851 only at STARTPOS; in general, the last start tried is STARTPOS +
3854 In REGS, return the indices of the virtual concatenation of STRING1
3855 and STRING2 that matched the entire BUFP->buffer and its contained
3858 Do not consider matching one past the index STOP in the virtual
3859 concatenation of STRING1 and STRING2.
3861 We return either the position in the strings at which the match was
3862 found, -1 if no match, or -2 if error (such as failure
3866 re_search_2 (bufp
, str1
, size1
, str2
, size2
, startpos
, range
, regs
, stop
)
3867 struct re_pattern_buffer
*bufp
;
3868 const char *str1
, *str2
;
3872 struct re_registers
*regs
;
3876 re_char
*string1
= (re_char
*) str1
;
3877 re_char
*string2
= (re_char
*) str2
;
3878 register char *fastmap
= bufp
->fastmap
;
3879 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3880 int total_size
= size1
+ size2
;
3881 int endpos
= startpos
+ range
;
3882 boolean anchored_start
;
3884 /* Nonzero if we have to concern multibyte character. */
3885 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
3887 /* Check for out-of-range STARTPOS. */
3888 if (startpos
< 0 || startpos
> total_size
)
3891 /* Fix up RANGE if it might eventually take us outside
3892 the virtual concatenation of STRING1 and STRING2.
3893 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3895 range
= 0 - startpos
;
3896 else if (endpos
> total_size
)
3897 range
= total_size
- startpos
;
3899 /* If the search isn't to be a backwards one, don't waste time in a
3900 search for a pattern anchored at beginning of buffer. */
3901 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3910 /* In a forward search for something that starts with \=.
3911 don't keep searching past point. */
3912 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
3914 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
3920 /* Update the fastmap now if not correct already. */
3921 if (fastmap
&& !bufp
->fastmap_accurate
)
3922 if (re_compile_fastmap (bufp
) == -2)
3925 /* See whether the pattern is anchored. */
3926 anchored_start
= (bufp
->buffer
[0] == begline
);
3929 gl_state
.object
= re_match_object
;
3931 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
3933 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
3937 /* Loop through the string, looking for a place to start matching. */
3940 /* If the pattern is anchored,
3941 skip quickly past places we cannot match.
3942 We don't bother to treat startpos == 0 specially
3943 because that case doesn't repeat. */
3944 if (anchored_start
&& startpos
> 0)
3946 if (! ((startpos
<= size1
? string1
[startpos
- 1]
3947 : string2
[startpos
- size1
- 1])
3952 /* If a fastmap is supplied, skip quickly over characters that
3953 cannot be the start of a match. If the pattern can match the
3954 null string, however, we don't need to skip characters; we want
3955 the first null string. */
3956 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3958 register re_char
*d
;
3959 register unsigned int buf_ch
;
3961 d
= POS_ADDR_VSTRING (startpos
);
3963 if (range
> 0) /* Searching forwards. */
3965 register int lim
= 0;
3968 if (startpos
< size1
&& startpos
+ range
>= size1
)
3969 lim
= range
- (size1
- startpos
);
3971 /* Written out as an if-else to avoid testing `translate'
3973 if (RE_TRANSLATE_P (translate
))
3980 buf_ch
= STRING_CHAR_AND_LENGTH (d
, range
- lim
,
3983 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
3988 range
-= buf_charlen
;
3993 && !fastmap
[RE_TRANSLATE (translate
, *d
)])
4000 while (range
> lim
&& !fastmap
[*d
])
4006 startpos
+= irange
- range
;
4008 else /* Searching backwards. */
4010 int room
= (startpos
>= size1
4011 ? size2
+ size1
- startpos
4012 : size1
- startpos
);
4013 buf_ch
= RE_STRING_CHAR (d
, room
);
4014 buf_ch
= TRANSLATE (buf_ch
);
4016 if (! (buf_ch
>= 0400
4017 || fastmap
[buf_ch
]))
4022 /* If can't match the null string, and that's all we have left, fail. */
4023 if (range
>= 0 && startpos
== total_size
&& fastmap
4024 && !bufp
->can_be_null
)
4027 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4028 startpos
, regs
, stop
);
4029 #ifndef REGEX_MALLOC
4046 /* Update STARTPOS to the next character boundary. */
4049 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4050 re_char
*pend
= STOP_ADDR_VSTRING (startpos
);
4051 int len
= MULTIBYTE_FORM_LENGTH (p
, pend
- p
);
4069 /* Update STARTPOS to the previous character boundary. */
4072 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4075 /* Find the head of multibyte form. */
4076 while (!CHAR_HEAD_P (*p
))
4081 if (MULTIBYTE_FORM_LENGTH (p
, len
+ 1) != (len
+ 1))
4097 WEAK_ALIAS (__re_search_2
, re_search_2
)
4099 /* Declarations and macros for re_match_2. */
4101 static int bcmp_translate
_RE_ARGS((re_char
*s1
, re_char
*s2
,
4103 RE_TRANSLATE_TYPE translate
,
4104 const int multibyte
));
4106 /* This converts PTR, a pointer into one of the search strings `string1'
4107 and `string2' into an offset from the beginning of that string. */
4108 #define POINTER_TO_OFFSET(ptr) \
4109 (FIRST_STRING_P (ptr) \
4110 ? ((regoff_t) ((ptr) - string1)) \
4111 : ((regoff_t) ((ptr) - string2 + size1)))
4113 /* Call before fetching a character with *d. This switches over to
4114 string2 if necessary.
4115 Check re_match_2_internal for a discussion of why end_match_2 might
4116 not be within string2 (but be equal to end_match_1 instead). */
4117 #define PREFETCH() \
4120 /* End of string2 => fail. */ \
4121 if (dend == end_match_2) \
4123 /* End of string1 => advance to string2. */ \
4125 dend = end_match_2; \
4128 /* Call before fetching a char with *d if you already checked other limits.
4129 This is meant for use in lookahead operations like wordend, etc..
4130 where we might need to look at parts of the string that might be
4131 outside of the LIMITs (i.e past `stop'). */
4132 #define PREFETCH_NOLIMIT() \
4136 dend = end_match_2; \
4139 /* Test if at very beginning or at very end of the virtual concatenation
4140 of `string1' and `string2'. If only one string, it's `string2'. */
4141 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4142 #define AT_STRINGS_END(d) ((d) == end2)
4145 /* Test if D points to a character which is word-constituent. We have
4146 two special cases to check for: if past the end of string1, look at
4147 the first character in string2; and if before the beginning of
4148 string2, look at the last character in string1. */
4149 #define WORDCHAR_P(d) \
4150 (SYNTAX ((d) == end1 ? *string2 \
4151 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4154 /* Disabled due to a compiler bug -- see comment at case wordbound */
4156 /* The comment at case wordbound is following one, but we don't use
4157 AT_WORD_BOUNDARY anymore to support multibyte form.
4159 The DEC Alpha C compiler 3.x generates incorrect code for the
4160 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4161 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4162 macro and introducing temporary variables works around the bug. */
4165 /* Test if the character before D and the one at D differ with respect
4166 to being word-constituent. */
4167 #define AT_WORD_BOUNDARY(d) \
4168 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4169 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4172 /* Free everything we malloc. */
4173 #ifdef MATCH_MAY_ALLOCATE
4174 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4175 # define FREE_VARIABLES() \
4177 REGEX_FREE_STACK (fail_stack.stack); \
4178 FREE_VAR (regstart); \
4179 FREE_VAR (regend); \
4180 FREE_VAR (best_regstart); \
4181 FREE_VAR (best_regend); \
4184 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4185 #endif /* not MATCH_MAY_ALLOCATE */
4188 /* Optimization routines. */
4190 /* If the operation is a match against one or more chars,
4191 return a pointer to the next operation, else return NULL. */
4192 static unsigned char *
4196 switch (SWITCH_ENUM_CAST (*p
++))
4207 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4210 p
= CHARSET_RANGE_TABLE (p
- 1);
4211 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4212 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4215 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4222 case notcategoryspec
:
4234 /* Jump over non-matching operations. */
4235 static unsigned char *
4236 skip_noops (p
, pend
)
4237 unsigned char *p
, *pend
;
4242 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4251 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4262 /* Non-zero if "p1 matches something" implies "p2 fails". */
4264 mutually_exclusive_p (bufp
, p1
, p2
)
4265 struct re_pattern_buffer
*bufp
;
4266 unsigned char *p1
, *p2
;
4269 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4270 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4272 assert (p1
>= bufp
->buffer
&& p1
< pend
4273 && p2
>= bufp
->buffer
&& p2
<= pend
);
4275 /* Skip over open/close-group commands.
4276 If what follows this loop is a ...+ construct,
4277 look at what begins its body, since we will have to
4278 match at least one of that. */
4279 p2
= skip_noops (p2
, pend
);
4280 /* The same skip can be done for p1, except that this function
4281 is only used in the case where p1 is a simple match operator. */
4282 /* p1 = skip_noops (p1, pend); */
4284 assert (p1
>= bufp
->buffer
&& p1
< pend
4285 && p2
>= bufp
->buffer
&& p2
<= pend
);
4287 op2
= p2
== pend
? succeed
: *p2
;
4289 switch (SWITCH_ENUM_CAST (op2
))
4293 /* If we're at the end of the pattern, we can change. */
4294 if (skip_one_char (p1
))
4296 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4304 register unsigned int c
4305 = (re_opcode_t
) *p2
== endline
? '\n'
4306 : RE_STRING_CHAR(p2
+ 2, pend
- p2
- 2);
4308 if ((re_opcode_t
) *p1
== exactn
)
4310 if (c
!= RE_STRING_CHAR (p1
+ 2, pend
- p1
- 2))
4312 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4317 else if ((re_opcode_t
) *p1
== charset
4318 || (re_opcode_t
) *p1
== charset_not
)
4320 int not = (re_opcode_t
) *p1
== charset_not
;
4322 /* Test if C is listed in charset (or charset_not)
4324 if (SINGLE_BYTE_CHAR_P (c
))
4326 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4327 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4330 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4331 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4333 /* `not' is equal to 1 if c would match, which means
4334 that we can't change to pop_failure_jump. */
4337 DEBUG_PRINT1 (" No match => fast loop.\n");
4341 else if ((re_opcode_t
) *p1
== anychar
4344 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4353 if ((re_opcode_t
) *p1
== exactn
)
4354 /* Reuse the code above. */
4355 return mutually_exclusive_p (bufp
, p2
, p1
);
4358 /* It is hard to list up all the character in charset
4359 P2 if it includes multibyte character. Give up in
4361 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4363 /* Now, we are sure that P2 has no range table.
4364 So, for the size of bitmap in P2, `p2[1]' is
4365 enough. But P1 may have range table, so the
4366 size of bitmap table of P1 is extracted by
4367 using macro `CHARSET_BITMAP_SIZE'.
4369 Since we know that all the character listed in
4370 P2 is ASCII, it is enough to test only bitmap
4376 /* We win if the charset inside the loop
4377 has no overlap with the one after the loop. */
4380 && idx
< CHARSET_BITMAP_SIZE (p1
));
4382 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4386 || idx
== CHARSET_BITMAP_SIZE (p1
))
4388 DEBUG_PRINT1 (" No match => fast loop.\n");
4392 else if ((re_opcode_t
) *p1
== charset
4393 || (re_opcode_t
) *p1
== charset_not
)
4396 /* We win if the charset_not inside the loop lists
4397 every character listed in the charset after. */
4398 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4399 if (! (p2
[2 + idx
] == 0
4400 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4401 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4406 DEBUG_PRINT1 (" No match => fast loop.\n");
4415 return ((re_opcode_t
) *p1
== syntaxspec
4416 && p1
[1] == (op2
== wordend
? Sword
: p2
[1]));
4420 return ((re_opcode_t
) *p1
== notsyntaxspec
4421 && p1
[1] == (op2
== wordend
? Sword
: p2
[1]));
4424 return (((re_opcode_t
) *p1
== notsyntaxspec
4425 || (re_opcode_t
) *p1
== syntaxspec
)
4430 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4431 case notcategoryspec
:
4432 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4444 /* Matching routines. */
4446 #ifndef emacs /* Emacs never uses this. */
4447 /* re_match is like re_match_2 except it takes only a single string. */
4450 re_match (bufp
, string
, size
, pos
, regs
)
4451 struct re_pattern_buffer
*bufp
;
4454 struct re_registers
*regs
;
4456 int result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
, size
,
4458 # if defined C_ALLOCA && !defined REGEX_MALLOC
4463 WEAK_ALIAS (__re_match
, re_match
)
4464 #endif /* not emacs */
4467 /* In Emacs, this is the string or buffer in which we
4468 are matching. It is used for looking up syntax properties. */
4469 Lisp_Object re_match_object
;
4472 /* re_match_2 matches the compiled pattern in BUFP against the
4473 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4474 and SIZE2, respectively). We start matching at POS, and stop
4477 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4478 store offsets for the substring each group matched in REGS. See the
4479 documentation for exactly how many groups we fill.
4481 We return -1 if no match, -2 if an internal error (such as the
4482 failure stack overflowing). Otherwise, we return the length of the
4483 matched substring. */
4486 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4487 struct re_pattern_buffer
*bufp
;
4488 const char *string1
, *string2
;
4491 struct re_registers
*regs
;
4498 gl_state
.object
= re_match_object
;
4499 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4500 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4503 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4504 (re_char
*) string2
, size2
,
4506 #if defined C_ALLOCA && !defined REGEX_MALLOC
4511 WEAK_ALIAS (__re_match_2
, re_match_2
)
4513 /* This is a separate function so that we can force an alloca cleanup
4516 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4517 struct re_pattern_buffer
*bufp
;
4518 re_char
*string1
, *string2
;
4521 struct re_registers
*regs
;
4524 /* General temporaries. */
4529 /* Just past the end of the corresponding string. */
4530 re_char
*end1
, *end2
;
4532 /* Pointers into string1 and string2, just past the last characters in
4533 each to consider matching. */
4534 re_char
*end_match_1
, *end_match_2
;
4536 /* Where we are in the data, and the end of the current string. */
4539 /* Used sometimes to remember where we were before starting matching
4540 an operator so that we can go back in case of failure. This "atomic"
4541 behavior of matching opcodes is indispensable to the correctness
4542 of the on_failure_keep_string_jump optimization. */
4545 /* Where we are in the pattern, and the end of the pattern. */
4546 unsigned char *p
= bufp
->buffer
;
4547 register unsigned char *pend
= p
+ bufp
->used
;
4549 /* We use this to map every character in the string. */
4550 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4552 /* Nonzero if we have to concern multibyte character. */
4553 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4555 /* Failure point stack. Each place that can handle a failure further
4556 down the line pushes a failure point on this stack. It consists of
4557 regstart, and regend for all registers corresponding to
4558 the subexpressions we're currently inside, plus the number of such
4559 registers, and, finally, two char *'s. The first char * is where
4560 to resume scanning the pattern; the second one is where to resume
4561 scanning the strings. */
4562 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4563 fail_stack_type fail_stack
;
4566 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4569 #if defined REL_ALLOC && defined REGEX_MALLOC
4570 /* This holds the pointer to the failure stack, when
4571 it is allocated relocatably. */
4572 fail_stack_elt_t
*failure_stack_ptr
;
4575 /* We fill all the registers internally, independent of what we
4576 return, for use in backreferences. The number here includes
4577 an element for register zero. */
4578 size_t num_regs
= bufp
->re_nsub
+ 1;
4580 /* Information on the contents of registers. These are pointers into
4581 the input strings; they record just what was matched (on this
4582 attempt) by a subexpression part of the pattern, that is, the
4583 regnum-th regstart pointer points to where in the pattern we began
4584 matching and the regnum-th regend points to right after where we
4585 stopped matching the regnum-th subexpression. (The zeroth register
4586 keeps track of what the whole pattern matches.) */
4587 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4588 re_char
**regstart
, **regend
;
4591 /* The following record the register info as found in the above
4592 variables when we find a match better than any we've seen before.
4593 This happens as we backtrack through the failure points, which in
4594 turn happens only if we have not yet matched the entire string. */
4595 unsigned best_regs_set
= false;
4596 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4597 re_char
**best_regstart
, **best_regend
;
4600 /* Logically, this is `best_regend[0]'. But we don't want to have to
4601 allocate space for that if we're not allocating space for anything
4602 else (see below). Also, we never need info about register 0 for
4603 any of the other register vectors, and it seems rather a kludge to
4604 treat `best_regend' differently than the rest. So we keep track of
4605 the end of the best match so far in a separate variable. We
4606 initialize this to NULL so that when we backtrack the first time
4607 and need to test it, it's not garbage. */
4608 re_char
*match_end
= NULL
;
4611 /* Counts the total number of registers pushed. */
4612 unsigned num_regs_pushed
= 0;
4615 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4619 #ifdef MATCH_MAY_ALLOCATE
4620 /* Do not bother to initialize all the register variables if there are
4621 no groups in the pattern, as it takes a fair amount of time. If
4622 there are groups, we include space for register 0 (the whole
4623 pattern), even though we never use it, since it simplifies the
4624 array indexing. We should fix this. */
4627 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4628 regend
= REGEX_TALLOC (num_regs
, re_char
*);
4629 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4630 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
4632 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
4640 /* We must initialize all our variables to NULL, so that
4641 `FREE_VARIABLES' doesn't try to free them. */
4642 regstart
= regend
= best_regstart
= best_regend
= NULL
;
4644 #endif /* MATCH_MAY_ALLOCATE */
4646 /* The starting position is bogus. */
4647 if (pos
< 0 || pos
> size1
+ size2
)
4653 /* Initialize subexpression text positions to -1 to mark ones that no
4654 start_memory/stop_memory has been seen for. Also initialize the
4655 register information struct. */
4656 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
4657 regstart
[mcnt
] = regend
[mcnt
] = NULL
;
4659 /* We move `string1' into `string2' if the latter's empty -- but not if
4660 `string1' is null. */
4661 if (size2
== 0 && string1
!= NULL
)
4668 end1
= string1
+ size1
;
4669 end2
= string2
+ size2
;
4671 /* `p' scans through the pattern as `d' scans through the data.
4672 `dend' is the end of the input string that `d' points within. `d'
4673 is advanced into the following input string whenever necessary, but
4674 this happens before fetching; therefore, at the beginning of the
4675 loop, `d' can be pointing at the end of a string, but it cannot
4679 /* Only match within string2. */
4680 d
= string2
+ pos
- size1
;
4681 dend
= end_match_2
= string2
+ stop
- size1
;
4682 end_match_1
= end1
; /* Just to give it a value. */
4688 /* Only match within string1. */
4689 end_match_1
= string1
+ stop
;
4691 When we reach end_match_1, PREFETCH normally switches to string2.
4692 But in the present case, this means that just doing a PREFETCH
4693 makes us jump from `stop' to `gap' within the string.
4694 What we really want here is for the search to stop as
4695 soon as we hit end_match_1. That's why we set end_match_2
4696 to end_match_1 (since PREFETCH fails as soon as we hit
4698 end_match_2
= end_match_1
;
4701 { /* It's important to use this code when stop == size so that
4702 moving `d' from end1 to string2 will not prevent the d == dend
4703 check from catching the end of string. */
4705 end_match_2
= string2
+ stop
- size1
;
4711 DEBUG_PRINT1 ("The compiled pattern is: ");
4712 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
4713 DEBUG_PRINT1 ("The string to match is: `");
4714 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
4715 DEBUG_PRINT1 ("'\n");
4717 /* This loops over pattern commands. It exits by returning from the
4718 function if the match is complete, or it drops through if the match
4719 fails at this starting point in the input data. */
4722 DEBUG_PRINT2 ("\n%p: ", p
);
4725 { /* End of pattern means we might have succeeded. */
4726 DEBUG_PRINT1 ("end of pattern ... ");
4728 /* If we haven't matched the entire string, and we want the
4729 longest match, try backtracking. */
4730 if (d
!= end_match_2
)
4732 /* 1 if this match ends in the same string (string1 or string2)
4733 as the best previous match. */
4734 boolean same_str_p
= (FIRST_STRING_P (match_end
)
4735 == FIRST_STRING_P (d
));
4736 /* 1 if this match is the best seen so far. */
4737 boolean best_match_p
;
4739 /* AIX compiler got confused when this was combined
4740 with the previous declaration. */
4742 best_match_p
= d
> match_end
;
4744 best_match_p
= !FIRST_STRING_P (d
);
4746 DEBUG_PRINT1 ("backtracking.\n");
4748 if (!FAIL_STACK_EMPTY ())
4749 { /* More failure points to try. */
4751 /* If exceeds best match so far, save it. */
4752 if (!best_regs_set
|| best_match_p
)
4754 best_regs_set
= true;
4757 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4759 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
4761 best_regstart
[mcnt
] = regstart
[mcnt
];
4762 best_regend
[mcnt
] = regend
[mcnt
];
4768 /* If no failure points, don't restore garbage. And if
4769 last match is real best match, don't restore second
4771 else if (best_regs_set
&& !best_match_p
)
4774 /* Restore best match. It may happen that `dend ==
4775 end_match_1' while the restored d is in string2.
4776 For example, the pattern `x.*y.*z' against the
4777 strings `x-' and `y-z-', if the two strings are
4778 not consecutive in memory. */
4779 DEBUG_PRINT1 ("Restoring best registers.\n");
4782 dend
= ((d
>= string1
&& d
<= end1
)
4783 ? end_match_1
: end_match_2
);
4785 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
4787 regstart
[mcnt
] = best_regstart
[mcnt
];
4788 regend
[mcnt
] = best_regend
[mcnt
];
4791 } /* d != end_match_2 */
4794 DEBUG_PRINT1 ("Accepting match.\n");
4796 /* If caller wants register contents data back, do it. */
4797 if (regs
&& !bufp
->no_sub
)
4799 /* Have the register data arrays been allocated? */
4800 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
4801 { /* No. So allocate them with malloc. We need one
4802 extra element beyond `num_regs' for the `-1' marker
4804 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
4805 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
4806 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
4807 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4812 bufp
->regs_allocated
= REGS_REALLOCATE
;
4814 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
4815 { /* Yes. If we need more elements than were already
4816 allocated, reallocate them. If we need fewer, just
4818 if (regs
->num_regs
< num_regs
+ 1)
4820 regs
->num_regs
= num_regs
+ 1;
4821 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
4822 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
4823 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4832 /* These braces fend off a "empty body in an else-statement"
4833 warning under GCC when assert expands to nothing. */
4834 assert (bufp
->regs_allocated
== REGS_FIXED
);
4837 /* Convert the pointer data in `regstart' and `regend' to
4838 indices. Register zero has to be set differently,
4839 since we haven't kept track of any info for it. */
4840 if (regs
->num_regs
> 0)
4842 regs
->start
[0] = pos
;
4843 regs
->end
[0] = POINTER_TO_OFFSET (d
);
4846 /* Go through the first `min (num_regs, regs->num_regs)'
4847 registers, since that is all we initialized. */
4848 for (mcnt
= 1; mcnt
< MIN (num_regs
, regs
->num_regs
); mcnt
++)
4850 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
4851 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4855 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
4857 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
4861 /* If the regs structure we return has more elements than
4862 were in the pattern, set the extra elements to -1. If
4863 we (re)allocated the registers, this is the case,
4864 because we always allocate enough to have at least one
4866 for (mcnt
= num_regs
; mcnt
< regs
->num_regs
; mcnt
++)
4867 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4868 } /* regs && !bufp->no_sub */
4870 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4871 nfailure_points_pushed
, nfailure_points_popped
,
4872 nfailure_points_pushed
- nfailure_points_popped
);
4873 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
4875 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
4877 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
4883 /* Otherwise match next pattern command. */
4884 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4886 /* Ignore these. Used to ignore the n of succeed_n's which
4887 currently have n == 0. */
4889 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4893 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4896 /* Match the next n pattern characters exactly. The following
4897 byte in the pattern defines n, and the n bytes after that
4898 are the characters to match. */
4901 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
4903 /* Remember the start point to rollback upon failure. */
4906 /* This is written out as an if-else so we don't waste time
4907 testing `translate' inside the loop. */
4908 if (RE_TRANSLATE_P (translate
))
4913 int pat_charlen
, buf_charlen
;
4914 unsigned int pat_ch
, buf_ch
;
4917 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pend
- p
, pat_charlen
);
4918 buf_ch
= STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
4920 if (RE_TRANSLATE (translate
, buf_ch
)
4929 mcnt
-= pat_charlen
;
4936 if (RE_TRANSLATE (translate
, *d
) != *p
++)
4961 /* Match any character except possibly a newline or a null. */
4965 unsigned int buf_ch
;
4967 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4970 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
4971 buf_ch
= TRANSLATE (buf_ch
);
4973 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
4975 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
4976 && buf_ch
== '\000'))
4979 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
4988 register unsigned int c
;
4989 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
4992 /* Start of actual range_table, or end of bitmap if there is no
4994 unsigned char *range_table
;
4996 /* Nonzero if there is a range table. */
4997 int range_table_exists
;
4999 /* Number of ranges of range table. This is not included
5000 in the initial byte-length of the command. */
5003 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5005 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5007 if (range_table_exists
)
5009 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5010 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5014 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5015 c
= TRANSLATE (c
); /* The character to match. */
5017 if (SINGLE_BYTE_CHAR_P (c
))
5018 { /* Lookup bitmap. */
5019 /* Cast to `unsigned' instead of `unsigned char' in
5020 case the bit list is a full 32 bytes long. */
5021 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5022 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5026 else if (range_table_exists
)
5028 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5030 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5031 | (class_bits
& BIT_MULTIBYTE
)
5032 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5033 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5034 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5035 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5038 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5042 if (range_table_exists
)
5043 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5045 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5047 if (!not) goto fail
;
5054 /* The beginning of a group is represented by start_memory.
5055 The argument is the register number. The text
5056 matched within the group is recorded (in the internal
5057 registers data structure) under the register number. */
5059 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5061 /* In case we need to undo this operation (via backtracking). */
5062 PUSH_FAILURE_REG ((unsigned int)*p
);
5065 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5066 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5068 /* Move past the register number and inner group count. */
5073 /* The stop_memory opcode represents the end of a group. Its
5074 argument is the same as start_memory's: the register number. */
5076 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5078 assert (!REG_UNSET (regstart
[*p
]));
5079 /* Strictly speaking, there should be code such as:
5081 assert (REG_UNSET (regend[*p]));
5082 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5084 But the only info to be pushed is regend[*p] and it is known to
5085 be UNSET, so there really isn't anything to push.
5086 Not pushing anything, on the other hand deprives us from the
5087 guarantee that regend[*p] is UNSET since undoing this operation
5088 will not reset its value properly. This is not important since
5089 the value will only be read on the next start_memory or at
5090 the very end and both events can only happen if this stop_memory
5094 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5096 /* Move past the register number and the inner group count. */
5101 /* \<digit> has been turned into a `duplicate' command which is
5102 followed by the numeric value of <digit> as the register number. */
5105 register re_char
*d2
, *dend2
;
5106 int regno
= *p
++; /* Get which register to match against. */
5107 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5109 /* Can't back reference a group which we've never matched. */
5110 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5113 /* Where in input to try to start matching. */
5114 d2
= regstart
[regno
];
5116 /* Remember the start point to rollback upon failure. */
5119 /* Where to stop matching; if both the place to start and
5120 the place to stop matching are in the same string, then
5121 set to the place to stop, otherwise, for now have to use
5122 the end of the first string. */
5124 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5125 == FIRST_STRING_P (regend
[regno
]))
5126 ? regend
[regno
] : end_match_1
);
5129 /* If necessary, advance to next segment in register
5133 if (dend2
== end_match_2
) break;
5134 if (dend2
== regend
[regno
]) break;
5136 /* End of string1 => advance to string2. */
5138 dend2
= regend
[regno
];
5140 /* At end of register contents => success */
5141 if (d2
== dend2
) break;
5143 /* If necessary, advance to next segment in data. */
5146 /* How many characters left in this segment to match. */
5149 /* Want how many consecutive characters we can match in
5150 one shot, so, if necessary, adjust the count. */
5151 if (mcnt
> dend2
- d2
)
5154 /* Compare that many; failure if mismatch, else move
5156 if (RE_TRANSLATE_P (translate
)
5157 ? bcmp_translate (d
, d2
, mcnt
, translate
, multibyte
)
5158 : memcmp (d
, d2
, mcnt
))
5163 d
+= mcnt
, d2
+= mcnt
;
5169 /* begline matches the empty string at the beginning of the string
5170 (unless `not_bol' is set in `bufp'), and after newlines. */
5172 DEBUG_PRINT1 ("EXECUTING begline.\n");
5174 if (AT_STRINGS_BEG (d
))
5176 if (!bufp
->not_bol
) break;
5181 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5185 /* In all other cases, we fail. */
5189 /* endline is the dual of begline. */
5191 DEBUG_PRINT1 ("EXECUTING endline.\n");
5193 if (AT_STRINGS_END (d
))
5195 if (!bufp
->not_eol
) break;
5199 PREFETCH_NOLIMIT ();
5206 /* Match at the very beginning of the data. */
5208 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5209 if (AT_STRINGS_BEG (d
))
5214 /* Match at the very end of the data. */
5216 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5217 if (AT_STRINGS_END (d
))
5222 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5223 pushes NULL as the value for the string on the stack. Then
5224 `POP_FAILURE_POINT' will keep the current value for the
5225 string, instead of restoring it. To see why, consider
5226 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5227 then the . fails against the \n. But the next thing we want
5228 to do is match the \n against the \n; if we restored the
5229 string value, we would be back at the foo.
5231 Because this is used only in specific cases, we don't need to
5232 check all the things that `on_failure_jump' does, to make
5233 sure the right things get saved on the stack. Hence we don't
5234 share its code. The only reason to push anything on the
5235 stack at all is that otherwise we would have to change
5236 `anychar's code to do something besides goto fail in this
5237 case; that seems worse than this. */
5238 case on_failure_keep_string_jump
:
5239 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5240 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5243 PUSH_FAILURE_POINT (p
- 3, NULL
);
5246 /* A nasty loop is introduced by the non-greedy *? and +?.
5247 With such loops, the stack only ever contains one failure point
5248 at a time, so that a plain on_failure_jump_loop kind of
5249 cycle detection cannot work. Worse yet, such a detection
5250 can not only fail to detect a cycle, but it can also wrongly
5251 detect a cycle (between different instantiations of the same
5253 So the method used for those nasty loops is a little different:
5254 We use a special cycle-detection-stack-frame which is pushed
5255 when the on_failure_jump_nastyloop failure-point is *popped*.
5256 This special frame thus marks the beginning of one iteration
5257 through the loop and we can hence easily check right here
5258 whether something matched between the beginning and the end of
5260 case on_failure_jump_nastyloop
:
5261 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5262 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5265 assert ((re_opcode_t
)p
[-4] == no_op
);
5266 CHECK_INFINITE_LOOP (p
- 4, d
);
5267 PUSH_FAILURE_POINT (p
- 3, d
);
5271 /* Simple loop detecting on_failure_jump: just check on the
5272 failure stack if the same spot was already hit earlier. */
5273 case on_failure_jump_loop
:
5275 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5276 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5279 CHECK_INFINITE_LOOP (p
- 3, d
);
5280 PUSH_FAILURE_POINT (p
- 3, d
);
5284 /* Uses of on_failure_jump:
5286 Each alternative starts with an on_failure_jump that points
5287 to the beginning of the next alternative. Each alternative
5288 except the last ends with a jump that in effect jumps past
5289 the rest of the alternatives. (They really jump to the
5290 ending jump of the following alternative, because tensioning
5291 these jumps is a hassle.)
5293 Repeats start with an on_failure_jump that points past both
5294 the repetition text and either the following jump or
5295 pop_failure_jump back to this on_failure_jump. */
5296 case on_failure_jump
:
5298 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5299 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5302 PUSH_FAILURE_POINT (p
-3, d
);
5305 /* This operation is used for greedy *.
5306 Compare the beginning of the repeat with what in the
5307 pattern follows its end. If we can establish that there
5308 is nothing that they would both match, i.e., that we
5309 would have to backtrack because of (as in, e.g., `a*a')
5310 then we can use a non-backtracking loop based on
5311 on_failure_keep_string_jump instead of on_failure_jump. */
5312 case on_failure_jump_smart
:
5314 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5315 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5318 unsigned char *p1
= p
; /* Next operation. */
5319 unsigned char *p2
= p
+ mcnt
; /* Destination of the jump. */
5321 p
-= 3; /* Reset so that we will re-execute the
5322 instruction once it's been changed. */
5324 EXTRACT_NUMBER (mcnt
, p2
- 2);
5326 /* Ensure this is a indeed the trivial kind of loop
5327 we are expecting. */
5328 assert (skip_one_char (p1
) == p2
- 3);
5329 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5330 DEBUG_STATEMENT (debug
+= 2);
5331 if (mutually_exclusive_p (bufp
, p1
, p2
))
5333 /* Use a fast `on_failure_keep_string_jump' loop. */
5334 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5335 *p
= (unsigned char) on_failure_keep_string_jump
;
5336 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5340 /* Default to a safe `on_failure_jump' loop. */
5341 DEBUG_PRINT1 (" smart default => slow loop.\n");
5342 *p
= (unsigned char) on_failure_jump
;
5344 DEBUG_STATEMENT (debug
-= 2);
5348 /* Unconditionally jump (without popping any failure points). */
5352 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5353 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
5354 p
+= mcnt
; /* Do the jump. */
5355 DEBUG_PRINT2 ("(to %p).\n", p
);
5359 /* Have to succeed matching what follows at least n times.
5360 After that, handle like `on_failure_jump'. */
5362 EXTRACT_NUMBER (mcnt
, p
+ 2);
5363 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
5365 /* Originally, mcnt is how many times we HAVE to succeed. */
5370 PUSH_FAILURE_COUNT (p
);
5371 DEBUG_PRINT3 (" Setting %p to %d.\n", p
, mcnt
);
5372 STORE_NUMBER_AND_INCR (p
, mcnt
);
5375 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5380 EXTRACT_NUMBER (mcnt
, p
+ 2);
5381 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
5383 /* Originally, this is how many times we CAN jump. */
5387 PUSH_FAILURE_COUNT (p
+ 2);
5388 STORE_NUMBER (p
+ 2, mcnt
);
5389 goto unconditional_jump
;
5391 /* If don't have to jump any more, skip over the rest of command. */
5398 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5400 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5402 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5403 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
5404 PUSH_FAILURE_COUNT (p1
);
5405 STORE_NUMBER (p1
, mcnt
);
5411 not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5412 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5414 /* We SUCCEED (or FAIL) in one of the following cases: */
5416 /* Case 1: D is at the beginning or the end of string. */
5417 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5421 /* C1 is the character before D, S1 is the syntax of C1, C2
5422 is the character at D, and S2 is the syntax of C2. */
5425 int offset
= PTR_TO_OFFSET (d
- 1);
5426 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5427 UPDATE_SYNTAX_TABLE (charpos
);
5429 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5432 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5434 PREFETCH_NOLIMIT ();
5435 c2
= RE_STRING_CHAR (d
, dend
- d
);
5438 if (/* Case 2: Only one of S1 and S2 is Sword. */
5439 ((s1
== Sword
) != (s2
== Sword
))
5440 /* Case 3: Both of S1 and S2 are Sword, and macro
5441 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5442 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5451 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5453 /* We FAIL in one of the following cases: */
5455 /* Case 1: D is at the end of string. */
5456 if (AT_STRINGS_END (d
))
5460 /* C1 is the character before D, S1 is the syntax of C1, C2
5461 is the character at D, and S2 is the syntax of C2. */
5464 int offset
= PTR_TO_OFFSET (d
);
5465 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5466 UPDATE_SYNTAX_TABLE (charpos
);
5469 c2
= RE_STRING_CHAR (d
, dend
- d
);
5472 /* Case 2: S2 is not Sword. */
5476 /* Case 3: D is not at the beginning of string ... */
5477 if (!AT_STRINGS_BEG (d
))
5479 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5481 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5485 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5487 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5494 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5496 /* We FAIL in one of the following cases: */
5498 /* Case 1: D is at the beginning of string. */
5499 if (AT_STRINGS_BEG (d
))
5503 /* C1 is the character before D, S1 is the syntax of C1, C2
5504 is the character at D, and S2 is the syntax of C2. */
5507 int offset
= PTR_TO_OFFSET (d
) - 1;
5508 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5509 UPDATE_SYNTAX_TABLE (charpos
);
5511 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5514 /* Case 2: S1 is not Sword. */
5518 /* Case 3: D is not at the end of string ... */
5519 if (!AT_STRINGS_END (d
))
5521 PREFETCH_NOLIMIT ();
5522 c2
= RE_STRING_CHAR (d
, dend
- d
);
5524 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
5528 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5530 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5538 not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
5540 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
5544 int offset
= PTR_TO_OFFSET (d
);
5545 int pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5546 UPDATE_SYNTAX_TABLE (pos1
);
5552 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5554 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
5562 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5563 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
5568 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5569 if (PTR_BYTE_POS (d
) != PT_BYTE
)
5574 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5575 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
5580 case notcategoryspec
:
5581 not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
5583 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt
);
5587 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5589 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
5600 continue; /* Successfully executed one pattern command; keep going. */
5603 /* We goto here if a matching operation fails. */
5606 if (!FAIL_STACK_EMPTY ())
5610 /* A restart point is known. Restore to that state. */
5611 DEBUG_PRINT1 ("\nFAIL:\n");
5612 POP_FAILURE_POINT (str
, pat
);
5613 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *pat
++))
5615 case on_failure_keep_string_jump
:
5616 assert (str
== NULL
);
5617 goto continue_failure_jump
;
5619 case on_failure_jump_nastyloop
:
5620 assert ((re_opcode_t
)pat
[-2] == no_op
);
5621 PUSH_FAILURE_POINT (pat
- 2, str
);
5624 case on_failure_jump_loop
:
5625 case on_failure_jump
:
5628 continue_failure_jump
:
5629 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
5634 /* A special frame used for nastyloops. */
5641 assert (p
>= bufp
->buffer
&& p
<= pend
);
5643 if (d
>= string1
&& d
<= end1
)
5647 break; /* Matching at this starting point really fails. */
5651 goto restore_best_regs
;
5655 return -1; /* Failure to match. */
5658 /* Subroutine definitions for re_match_2. */
5660 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5661 bytes; nonzero otherwise. */
5664 bcmp_translate (s1
, s2
, len
, translate
, multibyte
)
5667 RE_TRANSLATE_TYPE translate
;
5668 const int multibyte
;
5670 register re_char
*p1
= s1
, *p2
= s2
;
5671 re_char
*p1_end
= s1
+ len
;
5672 re_char
*p2_end
= s2
+ len
;
5674 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5675 different lengths, but relying on a single `len' would break this. -sm */
5676 while (p1
< p1_end
&& p2
< p2_end
)
5678 int p1_charlen
, p2_charlen
;
5681 p1_ch
= RE_STRING_CHAR_AND_LENGTH (p1
, p1_end
- p1
, p1_charlen
);
5682 p2_ch
= RE_STRING_CHAR_AND_LENGTH (p2
, p2_end
- p2
, p2_charlen
);
5684 if (RE_TRANSLATE (translate
, p1_ch
)
5685 != RE_TRANSLATE (translate
, p2_ch
))
5688 p1
+= p1_charlen
, p2
+= p2_charlen
;
5691 if (p1
!= p1_end
|| p2
!= p2_end
)
5697 /* Entry points for GNU code. */
5699 /* re_compile_pattern is the GNU regular expression compiler: it
5700 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5701 Returns 0 if the pattern was valid, otherwise an error string.
5703 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5704 are set in BUFP on entry.
5706 We call regex_compile to do the actual compilation. */
5709 re_compile_pattern (pattern
, length
, bufp
)
5710 const char *pattern
;
5712 struct re_pattern_buffer
*bufp
;
5716 /* GNU code is written to assume at least RE_NREGS registers will be set
5717 (and at least one extra will be -1). */
5718 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5720 /* And GNU code determines whether or not to get register information
5721 by passing null for the REGS argument to re_match, etc., not by
5725 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
5729 return gettext (re_error_msgid
[(int) ret
]);
5731 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
5733 /* Entry points compatible with 4.2 BSD regex library. We don't define
5734 them unless specifically requested. */
5736 #if defined _REGEX_RE_COMP || defined _LIBC
5738 /* BSD has one and only one pattern buffer. */
5739 static struct re_pattern_buffer re_comp_buf
;
5743 /* Make these definitions weak in libc, so POSIX programs can redefine
5744 these names if they don't use our functions, and still use
5745 regcomp/regexec below without link errors. */
5755 if (!re_comp_buf
.buffer
)
5756 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5757 return (char *) gettext ("No previous regular expression");
5761 if (!re_comp_buf
.buffer
)
5763 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
5764 if (re_comp_buf
.buffer
== NULL
)
5765 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5766 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5767 re_comp_buf
.allocated
= 200;
5769 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5770 if (re_comp_buf
.fastmap
== NULL
)
5771 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5772 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5775 /* Since `re_exec' always passes NULL for the `regs' argument, we
5776 don't need to initialize the pattern buffer fields which affect it. */
5778 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
5783 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5784 return (char *) gettext (re_error_msgid
[(int) ret
]);
5795 const int len
= strlen (s
);
5797 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
5799 #endif /* _REGEX_RE_COMP */
5801 /* POSIX.2 functions. Don't define these for Emacs. */
5805 /* regcomp takes a regular expression as a string and compiles it.
5807 PREG is a regex_t *. We do not expect any fields to be initialized,
5808 since POSIX says we shouldn't. Thus, we set
5810 `buffer' to the compiled pattern;
5811 `used' to the length of the compiled pattern;
5812 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5813 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5814 RE_SYNTAX_POSIX_BASIC;
5815 `fastmap' to an allocated space for the fastmap;
5816 `fastmap_accurate' to zero;
5817 `re_nsub' to the number of subexpressions in PATTERN.
5819 PATTERN is the address of the pattern string.
5821 CFLAGS is a series of bits which affect compilation.
5823 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5824 use POSIX basic syntax.
5826 If REG_NEWLINE is set, then . and [^...] don't match newline.
5827 Also, regexec will try a match beginning after every newline.
5829 If REG_ICASE is set, then we considers upper- and lowercase
5830 versions of letters to be equivalent when matching.
5832 If REG_NOSUB is set, then when PREG is passed to regexec, that
5833 routine will report only success or failure, and nothing about the
5836 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5837 the return codes and their meanings.) */
5840 regcomp (preg
, pattern
, cflags
)
5842 const char *pattern
;
5847 = (cflags
& REG_EXTENDED
) ?
5848 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5850 /* regex_compile will allocate the space for the compiled pattern. */
5852 preg
->allocated
= 0;
5855 /* Try to allocate space for the fastmap. */
5856 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5858 if (cflags
& REG_ICASE
)
5863 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
5864 * sizeof (*(RE_TRANSLATE_TYPE
)0));
5865 if (preg
->translate
== NULL
)
5866 return (int) REG_ESPACE
;
5868 /* Map uppercase characters to corresponding lowercase ones. */
5869 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5870 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
5873 preg
->translate
= NULL
;
5875 /* If REG_NEWLINE is set, newlines are treated differently. */
5876 if (cflags
& REG_NEWLINE
)
5877 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5878 syntax
&= ~RE_DOT_NEWLINE
;
5879 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5882 syntax
|= RE_NO_NEWLINE_ANCHOR
;
5884 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5886 /* POSIX says a null character in the pattern terminates it, so we
5887 can use strlen here in compiling the pattern. */
5888 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
5890 /* POSIX doesn't distinguish between an unmatched open-group and an
5891 unmatched close-group: both are REG_EPAREN. */
5892 if (ret
== REG_ERPAREN
)
5895 if (ret
== REG_NOERROR
&& preg
->fastmap
)
5896 { /* Compute the fastmap now, since regexec cannot modify the pattern
5898 re_compile_fastmap (preg
);
5899 if (preg
->can_be_null
)
5900 { /* The fastmap can't be used anyway. */
5901 free (preg
->fastmap
);
5902 preg
->fastmap
= NULL
;
5907 WEAK_ALIAS (__regcomp
, regcomp
)
5910 /* regexec searches for a given pattern, specified by PREG, in the
5913 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5914 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5915 least NMATCH elements, and we set them to the offsets of the
5916 corresponding matched substrings.
5918 EFLAGS specifies `execution flags' which affect matching: if
5919 REG_NOTBOL is set, then ^ does not match at the beginning of the
5920 string; if REG_NOTEOL is set, then $ does not match at the end.
5922 We return 0 if we find a match and REG_NOMATCH if not. */
5925 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5926 const regex_t
*preg
;
5929 regmatch_t pmatch
[];
5933 struct re_registers regs
;
5934 regex_t private_preg
;
5935 int len
= strlen (string
);
5936 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
5938 private_preg
= *preg
;
5940 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5941 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5943 /* The user has told us exactly how many registers to return
5944 information about, via `nmatch'. We have to pass that on to the
5945 matching routines. */
5946 private_preg
.regs_allocated
= REGS_FIXED
;
5950 regs
.num_regs
= nmatch
;
5951 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
5952 if (regs
.start
== NULL
)
5953 return (int) REG_NOMATCH
;
5954 regs
.end
= regs
.start
+ nmatch
;
5957 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
5958 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
5959 was a little bit longer but still only matching the real part.
5960 This works because the `endline' will check for a '\n' and will find a
5961 '\0', correctly deciding that this is not the end of a line.
5962 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
5963 a convenient '\0' there. For all we know, the string could be preceded
5964 by '\n' which would throw things off. */
5966 /* Perform the searching operation. */
5967 ret
= re_search (&private_preg
, string
, len
,
5968 /* start: */ 0, /* range: */ len
,
5969 want_reg_info
? ®s
: (struct re_registers
*) 0);
5971 /* Copy the register information to the POSIX structure. */
5978 for (r
= 0; r
< nmatch
; r
++)
5980 pmatch
[r
].rm_so
= regs
.start
[r
];
5981 pmatch
[r
].rm_eo
= regs
.end
[r
];
5985 /* If we needed the temporary register info, free the space now. */
5989 /* We want zero return to mean success, unlike `re_search'. */
5990 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5992 WEAK_ALIAS (__regexec
, regexec
)
5995 /* Returns a message corresponding to an error code, ERRCODE, returned
5996 from either regcomp or regexec. We don't use PREG here. */
5999 regerror (errcode
, preg
, errbuf
, errbuf_size
)
6001 const regex_t
*preg
;
6009 || errcode
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6010 /* Only error codes returned by the rest of the code should be passed
6011 to this routine. If we are given anything else, or if other regex
6012 code generates an invalid error code, then the program has a bug.
6013 Dump core so we can fix it. */
6016 msg
= gettext (re_error_msgid
[errcode
]);
6018 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6020 if (errbuf_size
!= 0)
6022 if (msg_size
> errbuf_size
)
6024 strncpy (errbuf
, msg
, errbuf_size
- 1);
6025 errbuf
[errbuf_size
- 1] = 0;
6028 strcpy (errbuf
, msg
);
6033 WEAK_ALIAS (__regerror
, regerror
)
6036 /* Free dynamically allocated space used by PREG. */
6042 if (preg
->buffer
!= NULL
)
6043 free (preg
->buffer
);
6044 preg
->buffer
= NULL
;
6046 preg
->allocated
= 0;
6049 if (preg
->fastmap
!= NULL
)
6050 free (preg
->fastmap
);
6051 preg
->fastmap
= NULL
;
6052 preg
->fastmap_accurate
= 0;
6054 if (preg
->translate
!= NULL
)
6055 free (preg
->translate
);
6056 preg
->translate
= NULL
;
6058 WEAK_ALIAS (__regfree
, regfree
)
6060 #endif /* not emacs */