1 /* CCL (Code Conversion Language) interpreter.
2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
3 Copyright (C) 2001, 2002 Free Software Foundation, Inc.
4 Licensed to the Free Software Foundation.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
32 /* This contains all code conversion map available to CCL. */
33 Lisp_Object Vcode_conversion_map_vector
;
35 /* Alist of fontname patterns vs corresponding CCL program. */
36 Lisp_Object Vfont_ccl_encoder_alist
;
38 /* This symbol is a property which assocates with ccl program vector.
39 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
40 Lisp_Object Qccl_program
;
42 /* These symbols are properties which associate with code conversion
43 map and their ID respectively. */
44 Lisp_Object Qcode_conversion_map
;
45 Lisp_Object Qcode_conversion_map_id
;
47 /* Symbols of ccl program have this property, a value of the property
48 is an index for Vccl_protram_table. */
49 Lisp_Object Qccl_program_idx
;
51 /* Table of registered CCL programs. Each element is a vector of
52 NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of
53 the program, CCL_PROG (vector) is the compiled code of the program,
54 RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is
55 already resolved to index numbers or not. */
56 Lisp_Object Vccl_program_table
;
58 /* Vector of registered hash tables for translation. */
59 Lisp_Object Vtranslation_hash_table_vector
;
61 /* Return a hash table of id number ID. */
62 #define GET_HASH_TABLE(id) \
63 (XHASH_TABLE (XCDR(XVECTOR(Vtranslation_hash_table_vector)->contents[(id)])))
65 /* CCL (Code Conversion Language) is a simple language which has
66 operations on one input buffer, one output buffer, and 7 registers.
67 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
68 `ccl-compile' compiles a CCL program and produces a CCL code which
69 is a vector of integers. The structure of this vector is as
70 follows: The 1st element: buffer-magnification, a factor for the
71 size of output buffer compared with the size of input buffer. The
72 2nd element: address of CCL code to be executed when encountered
73 with end of input stream. The 3rd and the remaining elements: CCL
76 /* Header of CCL compiled code */
77 #define CCL_HEADER_BUF_MAG 0
78 #define CCL_HEADER_EOF 1
79 #define CCL_HEADER_MAIN 2
81 /* CCL code is a sequence of 28-bit non-negative integers (i.e. the
82 MSB is always 0), each contains CCL command and/or arguments in the
85 |----------------- integer (28-bit) ------------------|
86 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
87 |--constant argument--|-register-|-register-|-command-|
88 ccccccccccccccccc RRR rrr XXXXX
90 |------- relative address -------|-register-|-command-|
91 cccccccccccccccccccc rrr XXXXX
93 |------------- constant or other args ----------------|
94 cccccccccccccccccccccccccccc
96 where, `cc...c' is a non-negative integer indicating constant value
97 (the left most `c' is always 0) or an absolute jump address, `RRR'
98 and `rrr' are CCL register number, `XXXXX' is one of the following
103 Each comment fields shows one or more lines for command syntax and
104 the following lines for semantics of the command. In semantics, IC
105 stands for Instruction Counter. */
107 #define CCL_SetRegister 0x00 /* Set register a register value:
108 1:00000000000000000RRRrrrXXXXX
109 ------------------------------
113 #define CCL_SetShortConst 0x01 /* Set register a short constant value:
114 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
115 ------------------------------
116 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
119 #define CCL_SetConst 0x02 /* Set register a constant value:
120 1:00000000000000000000rrrXXXXX
122 ------------------------------
127 #define CCL_SetArray 0x03 /* Set register an element of array:
128 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
132 ------------------------------
133 if (0 <= reg[RRR] < CC..C)
134 reg[rrr] = ELEMENT[reg[RRR]];
138 #define CCL_Jump 0x04 /* Jump:
139 1:A--D--D--R--E--S--S-000XXXXX
140 ------------------------------
144 /* Note: If CC..C is greater than 0, the second code is omitted. */
146 #define CCL_JumpCond 0x05 /* Jump conditional:
147 1:A--D--D--R--E--S--S-rrrXXXXX
148 ------------------------------
154 #define CCL_WriteRegisterJump 0x06 /* Write register and jump:
155 1:A--D--D--R--E--S--S-rrrXXXXX
156 ------------------------------
161 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
162 1:A--D--D--R--E--S--S-rrrXXXXX
163 2:A--D--D--R--E--S--S-rrrYYYYY
164 -----------------------------
170 /* Note: If read is suspended, the resumed execution starts from the
171 second code (YYYYY == CCL_ReadJump). */
173 #define CCL_WriteConstJump 0x08 /* Write constant and jump:
174 1:A--D--D--R--E--S--S-000XXXXX
176 ------------------------------
181 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
182 1:A--D--D--R--E--S--S-rrrXXXXX
184 3:A--D--D--R--E--S--S-rrrYYYYY
185 -----------------------------
191 /* Note: If read is suspended, the resumed execution starts from the
192 second code (YYYYY == CCL_ReadJump). */
194 #define CCL_WriteStringJump 0x0A /* Write string and jump:
195 1:A--D--D--R--E--S--S-000XXXXX
197 3:0000STRIN[0]STRIN[1]STRIN[2]
199 ------------------------------
200 write_string (STRING, LENGTH);
204 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
205 1:A--D--D--R--E--S--S-rrrXXXXX
210 N:A--D--D--R--E--S--S-rrrYYYYY
211 ------------------------------
212 if (0 <= reg[rrr] < LENGTH)
213 write (ELEMENT[reg[rrr]]);
214 IC += LENGTH + 2; (... pointing at N+1)
218 /* Note: If read is suspended, the resumed execution starts from the
219 Nth code (YYYYY == CCL_ReadJump). */
221 #define CCL_ReadJump 0x0C /* Read and jump:
222 1:A--D--D--R--E--S--S-rrrYYYYY
223 -----------------------------
228 #define CCL_Branch 0x0D /* Jump by branch table:
229 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
230 2:A--D--D--R--E-S-S[0]000XXXXX
231 3:A--D--D--R--E-S-S[1]000XXXXX
233 ------------------------------
234 if (0 <= reg[rrr] < CC..C)
235 IC += ADDRESS[reg[rrr]];
237 IC += ADDRESS[CC..C];
240 #define CCL_ReadRegister 0x0E /* Read bytes into registers:
241 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
242 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
244 ------------------------------
249 #define CCL_WriteExprConst 0x0F /* write result of expression:
250 1:00000OPERATION000RRR000XXXXX
252 ------------------------------
253 write (reg[RRR] OPERATION CONSTANT);
257 /* Note: If the Nth read is suspended, the resumed execution starts
258 from the Nth code. */
260 #define CCL_ReadBranch 0x10 /* Read one byte into a register,
261 and jump by branch table:
262 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
263 2:A--D--D--R--E-S-S[0]000XXXXX
264 3:A--D--D--R--E-S-S[1]000XXXXX
266 ------------------------------
268 if (0 <= reg[rrr] < CC..C)
269 IC += ADDRESS[reg[rrr]];
271 IC += ADDRESS[CC..C];
274 #define CCL_WriteRegister 0x11 /* Write registers:
275 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
276 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
278 ------------------------------
284 /* Note: If the Nth write is suspended, the resumed execution
285 starts from the Nth code. */
287 #define CCL_WriteExprRegister 0x12 /* Write result of expression
288 1:00000OPERATIONRrrRRR000XXXXX
289 ------------------------------
290 write (reg[RRR] OPERATION reg[Rrr]);
293 #define CCL_Call 0x13 /* Call the CCL program whose ID is
295 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
296 [2:00000000cccccccccccccccccccc]
297 ------------------------------
305 #define CCL_WriteConstString 0x14 /* Write a constant or a string:
306 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
307 [2:0000STRIN[0]STRIN[1]STRIN[2]]
309 -----------------------------
313 write_string (STRING, CC..C);
314 IC += (CC..C + 2) / 3;
317 #define CCL_WriteArray 0x15 /* Write an element of array:
318 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
322 ------------------------------
323 if (0 <= reg[rrr] < CC..C)
324 write (ELEMENT[reg[rrr]]);
328 #define CCL_End 0x16 /* Terminate:
329 1:00000000000000000000000XXXXX
330 ------------------------------
334 /* The following two codes execute an assignment arithmetic/logical
335 operation. The form of the operation is like REG OP= OPERAND. */
337 #define CCL_ExprSelfConst 0x17 /* REG OP= constant:
338 1:00000OPERATION000000rrrXXXXX
340 ------------------------------
341 reg[rrr] OPERATION= CONSTANT;
344 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
345 1:00000OPERATION000RRRrrrXXXXX
346 ------------------------------
347 reg[rrr] OPERATION= reg[RRR];
350 /* The following codes execute an arithmetic/logical operation. The
351 form of the operation is like REG_X = REG_Y OP OPERAND2. */
353 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
354 1:00000OPERATION000RRRrrrXXXXX
356 ------------------------------
357 reg[rrr] = reg[RRR] OPERATION CONSTANT;
361 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
362 1:00000OPERATIONRrrRRRrrrXXXXX
363 ------------------------------
364 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
367 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
368 an operation on constant:
369 1:A--D--D--R--E--S--S-rrrXXXXX
372 -----------------------------
373 reg[7] = reg[rrr] OPERATION CONSTANT;
380 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
381 an operation on register:
382 1:A--D--D--R--E--S--S-rrrXXXXX
385 -----------------------------
386 reg[7] = reg[rrr] OPERATION reg[RRR];
393 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
394 to an operation on constant:
395 1:A--D--D--R--E--S--S-rrrXXXXX
398 -----------------------------
400 reg[7] = reg[rrr] OPERATION CONSTANT;
407 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
408 to an operation on register:
409 1:A--D--D--R--E--S--S-rrrXXXXX
412 -----------------------------
414 reg[7] = reg[rrr] OPERATION reg[RRR];
421 #define CCL_Extension 0x1F /* Extended CCL code
422 1:ExtendedCOMMNDRrrRRRrrrXXXXX
425 ------------------------------
426 extended_command (rrr,RRR,Rrr,ARGS)
430 Here after, Extended CCL Instructions.
431 Bit length of extended command is 14.
432 Therefore, the instruction code range is 0..16384(0x3fff).
435 /* Read a multibyte characeter.
436 A code point is stored into reg[rrr]. A charset ID is stored into
439 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
440 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
442 /* Write a multibyte character.
443 Write a character whose code point is reg[rrr] and the charset ID
446 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
447 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
449 /* Translate a character whose code point is reg[rrr] and the charset
450 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
452 A translated character is set in reg[rrr] (code point) and reg[RRR]
455 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
456 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
458 /* Translate a character whose code point is reg[rrr] and the charset
459 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
461 A translated character is set in reg[rrr] (code point) and reg[RRR]
464 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
465 1:ExtendedCOMMNDRrrRRRrrrXXXXX
466 2:ARGUMENT(Translation Table ID)
469 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
470 reg[RRR]) MAP until some value is found.
472 Each MAP is a Lisp vector whose element is number, nil, t, or
474 If the element is nil, ignore the map and proceed to the next map.
475 If the element is t or lambda, finish without changing reg[rrr].
476 If the element is a number, set reg[rrr] to the number and finish.
478 Detail of the map structure is descibed in the comment for
479 CCL_MapMultiple below. */
481 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
482 1:ExtendedCOMMNDXXXRRRrrrXXXXX
489 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
492 MAPs are supplied in the succeeding CCL codes as follows:
494 When CCL program gives this nested structure of map to this command:
497 (MAP-ID121 MAP-ID122 MAP-ID123)
500 (MAP-ID211 (MAP-ID2111) MAP-ID212)
502 the compiled CCL codes has this sequence:
503 CCL_MapMultiple (CCL code of this command)
504 16 (total number of MAPs and SEPARATORs)
522 A value of each SEPARATOR follows this rule:
523 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
524 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
526 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
528 When some map fails to map (i.e. it doesn't have a value for
529 reg[rrr]), the mapping is treated as identity.
531 The mapping is iterated for all maps in each map set (set of maps
532 separated by SEPARATOR) except in the case that lambda is
533 encountered. More precisely, the mapping proceeds as below:
535 At first, VAL0 is set to reg[rrr], and it is translated by the
536 first map to VAL1. Then, VAL1 is translated by the next map to
537 VAL2. This mapping is iterated until the last map is used. The
538 result of the mapping is the last value of VAL?. When the mapping
539 process reached to the end of the map set, it moves to the next
540 map set. If the next does not exit, the mapping process terminates,
541 and regard the last value as a result.
543 But, when VALm is mapped to VALn and VALn is not a number, the
544 mapping proceed as below:
546 If VALn is nil, the lastest map is ignored and the mapping of VALm
547 proceed to the next map.
549 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
550 proceed to the next map.
552 If VALn is lambda, move to the next map set like reaching to the
553 end of the current map set.
555 If VALn is a symbol, call the CCL program refered by it.
556 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
557 Such special values are regarded as nil, t, and lambda respectively.
559 Each map is a Lisp vector of the following format (a) or (b):
560 (a)......[STARTPOINT VAL1 VAL2 ...]
561 (b)......[t VAL STARTPOINT ENDPOINT],
563 STARTPOINT is an offset to be used for indexing a map,
564 ENDPOINT is a maximum index number of a map,
565 VAL and VALn is a number, nil, t, or lambda.
567 Valid index range of a map of type (a) is:
568 STARTPOINT <= index < STARTPOINT + map_size - 1
569 Valid index range of a map of type (b) is:
570 STARTPOINT <= index < ENDPOINT */
572 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
573 1:ExtendedCOMMNDXXXRRRrrrXXXXX
585 #define MAX_MAP_SET_LEVEL 30
593 static tr_stack mapping_stack
[MAX_MAP_SET_LEVEL
];
594 static tr_stack
*mapping_stack_pointer
;
596 /* If this variable is non-zero, it indicates the stack_idx
597 of immediately called by CCL_MapMultiple. */
598 static int stack_idx_of_map_multiple
;
600 #define PUSH_MAPPING_STACK(restlen, orig) \
603 mapping_stack_pointer->rest_length = (restlen); \
604 mapping_stack_pointer->orig_val = (orig); \
605 mapping_stack_pointer++; \
609 #define POP_MAPPING_STACK(restlen, orig) \
612 mapping_stack_pointer--; \
613 (restlen) = mapping_stack_pointer->rest_length; \
614 (orig) = mapping_stack_pointer->orig_val; \
618 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
621 struct ccl_program called_ccl; \
622 if (stack_idx >= 256 \
623 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
627 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
628 ic = ccl_prog_stack_struct[0].ic; \
629 eof_ic = ccl_prog_stack_struct[0].eof_ic; \
633 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
634 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
635 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
637 ccl_prog = called_ccl.prog; \
638 ic = CCL_HEADER_MAIN; \
639 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
644 #define CCL_MapSingle 0x12 /* Map by single code conversion map
645 1:ExtendedCOMMNDXXXRRRrrrXXXXX
647 ------------------------------
648 Map reg[rrr] by MAP-ID.
649 If some valid mapping is found,
650 set reg[rrr] to the result,
655 #define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
656 integer key. Afterwards R7 set
657 to 1 iff lookup succeeded.
658 1:ExtendedCOMMNDRrrRRRXXXXXXXX
659 2:ARGUMENT(Hash table ID) */
661 #define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
662 character key. Afterwards R7 set
663 to 1 iff lookup succeeded.
664 1:ExtendedCOMMNDRrrRRRrrrXXXXX
665 2:ARGUMENT(Hash table ID) */
667 /* CCL arithmetic/logical operators. */
668 #define CCL_PLUS 0x00 /* X = Y + Z */
669 #define CCL_MINUS 0x01 /* X = Y - Z */
670 #define CCL_MUL 0x02 /* X = Y * Z */
671 #define CCL_DIV 0x03 /* X = Y / Z */
672 #define CCL_MOD 0x04 /* X = Y % Z */
673 #define CCL_AND 0x05 /* X = Y & Z */
674 #define CCL_OR 0x06 /* X = Y | Z */
675 #define CCL_XOR 0x07 /* X = Y ^ Z */
676 #define CCL_LSH 0x08 /* X = Y << Z */
677 #define CCL_RSH 0x09 /* X = Y >> Z */
678 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
679 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
680 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
681 #define CCL_LS 0x10 /* X = (X < Y) */
682 #define CCL_GT 0x11 /* X = (X > Y) */
683 #define CCL_EQ 0x12 /* X = (X == Y) */
684 #define CCL_LE 0x13 /* X = (X <= Y) */
685 #define CCL_GE 0x14 /* X = (X >= Y) */
686 #define CCL_NE 0x15 /* X = (X != Y) */
688 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
689 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
690 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
691 r[7] = LOWER_BYTE (SJIS (Y, Z) */
693 /* Terminate CCL program successfully. */
694 #define CCL_SUCCESS \
697 ccl->status = CCL_STAT_SUCCESS; \
702 /* Suspend CCL program because of reading from empty input buffer or
703 writing to full output buffer. When this program is resumed, the
704 same I/O command is executed. */
705 #define CCL_SUSPEND(stat) \
709 ccl->status = stat; \
714 /* Terminate CCL program because of invalid command. Should not occur
715 in the normal case. */
718 #define CCL_INVALID_CMD \
721 ccl->status = CCL_STAT_INVALID_CMD; \
722 goto ccl_error_handler; \
728 #define CCL_INVALID_CMD \
731 ccl_debug_hook (this_ic); \
732 ccl->status = CCL_STAT_INVALID_CMD; \
733 goto ccl_error_handler; \
739 /* Encode one character CH to multibyte form and write to the current
740 output buffer. If CH is less than 256, CH is written as is. */
741 #define CCL_WRITE_CHAR(ch) \
743 int bytes = SINGLE_BYTE_CHAR_P (ch) ? 1: CHAR_BYTES (ch); \
746 else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
751 if (extra_bytes && (ch) >= 0x80 && (ch) < 0xA0) \
752 /* We may have to convert this eight-bit char to \
753 multibyte form later. */ \
756 else if (CHAR_VALID_P (ch, 0)) \
757 dst += CHAR_STRING (ch, dst); \
762 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
765 /* Encode one character CH to multibyte form and write to the current
766 output buffer. The output bytes always forms a valid multibyte
768 #define CCL_WRITE_MULTIBYTE_CHAR(ch) \
770 int bytes = CHAR_BYTES (ch); \
773 else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
775 if (CHAR_VALID_P ((ch), 0)) \
776 dst += CHAR_STRING ((ch), dst); \
781 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
784 /* Write a string at ccl_prog[IC] of length LEN to the current output
786 #define CCL_WRITE_STRING(len) \
790 else if (dst + len <= (dst_bytes ? dst_end : src)) \
791 for (i = 0; i < len; i++) \
792 *dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
793 >> ((2 - (i % 3)) * 8)) & 0xFF; \
795 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
798 /* Read one byte from the current input buffer into REGth register. */
799 #define CCL_READ_CHAR(REG) \
803 else if (src < src_end) \
807 && ccl->eol_type != CODING_EOL_LF) \
809 /* We are encoding. */ \
810 if (ccl->eol_type == CODING_EOL_CRLF) \
812 if (ccl->cr_consumed) \
813 ccl->cr_consumed = 0; \
816 ccl->cr_consumed = 1; \
824 if (REG == LEADING_CODE_8_BIT_CONTROL \
826 REG = *src++ - 0x20; \
828 else if (ccl->last_block) \
835 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
839 /* Set C to the character code made from CHARSET and CODE. This is
840 like MAKE_CHAR but check the validity of CHARSET and CODE. If they
841 are not valid, set C to (CODE & 0xFF) because that is usually the
842 case that CCL_ReadMultibyteChar2 read an invalid code and it set
843 CODE to that invalid byte. */
845 #define CCL_MAKE_CHAR(charset, code, c) \
847 if (charset == CHARSET_ASCII) \
849 else if (CHARSET_DEFINED_P (charset) \
850 && (code & 0x7F) >= 32 \
851 && (code < 256 || ((code >> 7) & 0x7F) >= 32)) \
853 int c1 = code & 0x7F, c2 = 0; \
856 c2 = c1, c1 = (code >> 7) & 0x7F; \
857 c = MAKE_CHAR (charset, c1, c2); \
864 /* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
865 text goes to a place pointed by DESTINATION, the length of which
866 should not exceed DST_BYTES. The bytes actually processed is
867 returned as *CONSUMED. The return value is the length of the
868 resulting text. As a side effect, the contents of CCL registers
869 are updated. If SOURCE or DESTINATION is NULL, only operations on
870 registers are permitted. */
873 #define CCL_DEBUG_BACKTRACE_LEN 256
874 int ccl_backtrace_table
[CCL_DEBUG_BACKTRACE_LEN
];
875 int ccl_backtrace_idx
;
878 ccl_debug_hook (int ic
)
885 struct ccl_prog_stack
887 Lisp_Object
*ccl_prog
; /* Pointer to an array of CCL code. */
888 int ic
; /* Instruction Counter. */
889 int eof_ic
; /* Instruction Counter to jump on EOF. */
892 /* For the moment, we only support depth 256 of stack. */
893 static struct ccl_prog_stack ccl_prog_stack_struct
[256];
896 ccl_driver (ccl
, source
, destination
, src_bytes
, dst_bytes
, consumed
)
897 struct ccl_program
*ccl
;
898 unsigned char *source
, *destination
;
899 int src_bytes
, dst_bytes
;
902 register int *reg
= ccl
->reg
;
903 register int ic
= ccl
->ic
;
904 register int code
= 0, field1
, field2
;
905 register Lisp_Object
*ccl_prog
= ccl
->prog
;
906 unsigned char *src
= source
, *src_end
= src
+ src_bytes
;
907 unsigned char *dst
= destination
, *dst_end
= dst
+ dst_bytes
;
910 int stack_idx
= ccl
->stack_idx
;
911 /* Instruction counter of the current CCL code. */
913 /* CCL_WRITE_CHAR will produce 8-bit code of range 0x80..0x9F. But,
914 each of them will be converted to multibyte form of 2-byte
915 sequence. For that conversion, we remember how many more bytes
916 we must keep in DESTINATION in this variable. */
917 int extra_bytes
= ccl
->eight_bit_control
;
918 int eof_ic
= ccl
->eof_ic
;
922 ic
= CCL_HEADER_MAIN
;
924 if (ccl
->buf_magnification
== 0) /* We can't produce any bytes. */
927 /* Set mapping stack pointer. */
928 mapping_stack_pointer
= mapping_stack
;
931 ccl_backtrace_idx
= 0;
938 ccl_backtrace_table
[ccl_backtrace_idx
++] = ic
;
939 if (ccl_backtrace_idx
>= CCL_DEBUG_BACKTRACE_LEN
)
940 ccl_backtrace_idx
= 0;
941 ccl_backtrace_table
[ccl_backtrace_idx
] = 0;
944 if (!NILP (Vquit_flag
) && NILP (Vinhibit_quit
))
946 /* We can't just signal Qquit, instead break the loop as if
947 the whole data is processed. Don't reset Vquit_flag, it
948 must be handled later at a safer place. */
950 src
= source
+ src_bytes
;
951 ccl
->status
= CCL_STAT_QUIT
;
956 code
= XINT (ccl_prog
[ic
]); ic
++;
958 field2
= (code
& 0xFF) >> 5;
961 #define RRR (field1 & 7)
962 #define Rrr ((field1 >> 3) & 7)
964 #define EXCMD (field1 >> 6)
968 case CCL_SetRegister
: /* 00000000000000000RRRrrrXXXXX */
972 case CCL_SetShortConst
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
976 case CCL_SetConst
: /* 00000000000000000000rrrXXXXX */
977 reg
[rrr
] = XINT (ccl_prog
[ic
]);
981 case CCL_SetArray
: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
984 if ((unsigned int) i
< j
)
985 reg
[rrr
] = XINT (ccl_prog
[ic
+ i
]);
989 case CCL_Jump
: /* A--D--D--R--E--S--S-000XXXXX */
993 case CCL_JumpCond
: /* A--D--D--R--E--S--S-rrrXXXXX */
998 case CCL_WriteRegisterJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
1004 case CCL_WriteRegisterReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
1008 CCL_READ_CHAR (reg
[rrr
]);
1012 case CCL_WriteConstJump
: /* A--D--D--R--E--S--S-000XXXXX */
1013 i
= XINT (ccl_prog
[ic
]);
1018 case CCL_WriteConstReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
1019 i
= XINT (ccl_prog
[ic
]);
1022 CCL_READ_CHAR (reg
[rrr
]);
1026 case CCL_WriteStringJump
: /* A--D--D--R--E--S--S-000XXXXX */
1027 j
= XINT (ccl_prog
[ic
]);
1029 CCL_WRITE_STRING (j
);
1033 case CCL_WriteArrayReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
1035 j
= XINT (ccl_prog
[ic
]);
1036 if ((unsigned int) i
< j
)
1038 i
= XINT (ccl_prog
[ic
+ 1 + i
]);
1042 CCL_READ_CHAR (reg
[rrr
]);
1043 ic
+= ADDR
- (j
+ 2);
1046 case CCL_ReadJump
: /* A--D--D--R--E--S--S-rrrYYYYY */
1047 CCL_READ_CHAR (reg
[rrr
]);
1051 case CCL_ReadBranch
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1052 CCL_READ_CHAR (reg
[rrr
]);
1053 /* fall through ... */
1054 case CCL_Branch
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1055 if ((unsigned int) reg
[rrr
] < field1
)
1056 ic
+= XINT (ccl_prog
[ic
+ reg
[rrr
]]);
1058 ic
+= XINT (ccl_prog
[ic
+ field1
]);
1061 case CCL_ReadRegister
: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1064 CCL_READ_CHAR (reg
[rrr
]);
1066 code
= XINT (ccl_prog
[ic
]); ic
++;
1068 field2
= (code
& 0xFF) >> 5;
1072 case CCL_WriteExprConst
: /* 1:00000OPERATION000RRR000XXXXX */
1075 j
= XINT (ccl_prog
[ic
]);
1077 jump_address
= ic
+ 1;
1080 case CCL_WriteRegister
: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1086 code
= XINT (ccl_prog
[ic
]); ic
++;
1088 field2
= (code
& 0xFF) >> 5;
1092 case CCL_WriteExprRegister
: /* 1:00000OPERATIONRrrRRR000XXXXX */
1100 case CCL_Call
: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
1105 /* If FFF is nonzero, the CCL program ID is in the
1109 prog_id
= XINT (ccl_prog
[ic
]);
1115 if (stack_idx
>= 256
1117 || prog_id
>= ASIZE (Vccl_program_table
)
1118 || (slot
= AREF (Vccl_program_table
, prog_id
), !VECTORP (slot
))
1119 || !VECTORP (AREF (slot
, 1)))
1123 ccl_prog
= ccl_prog_stack_struct
[0].ccl_prog
;
1124 ic
= ccl_prog_stack_struct
[0].ic
;
1125 eof_ic
= ccl_prog_stack_struct
[0].eof_ic
;
1130 ccl_prog_stack_struct
[stack_idx
].ccl_prog
= ccl_prog
;
1131 ccl_prog_stack_struct
[stack_idx
].ic
= ic
;
1132 ccl_prog_stack_struct
[stack_idx
].eof_ic
= eof_ic
;
1134 ccl_prog
= XVECTOR (AREF (slot
, 1))->contents
;
1135 ic
= CCL_HEADER_MAIN
;
1136 eof_ic
= XFASTINT (ccl_prog
[CCL_HEADER_EOF
]);
1140 case CCL_WriteConstString
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1142 CCL_WRITE_CHAR (field1
);
1145 CCL_WRITE_STRING (field1
);
1146 ic
+= (field1
+ 2) / 3;
1150 case CCL_WriteArray
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1152 if ((unsigned int) i
< field1
)
1154 j
= XINT (ccl_prog
[ic
+ i
]);
1160 case CCL_End
: /* 0000000000000000000000XXXXX */
1164 ccl_prog
= ccl_prog_stack_struct
[stack_idx
].ccl_prog
;
1165 ic
= ccl_prog_stack_struct
[stack_idx
].ic
;
1166 eof_ic
= ccl_prog_stack_struct
[stack_idx
].eof_ic
;
1173 /* ccl->ic should points to this command code again to
1174 suppress further processing. */
1178 case CCL_ExprSelfConst
: /* 00000OPERATION000000rrrXXXXX */
1179 i
= XINT (ccl_prog
[ic
]);
1184 case CCL_ExprSelfReg
: /* 00000OPERATION000RRRrrrXXXXX */
1191 case CCL_PLUS
: reg
[rrr
] += i
; break;
1192 case CCL_MINUS
: reg
[rrr
] -= i
; break;
1193 case CCL_MUL
: reg
[rrr
] *= i
; break;
1194 case CCL_DIV
: reg
[rrr
] /= i
; break;
1195 case CCL_MOD
: reg
[rrr
] %= i
; break;
1196 case CCL_AND
: reg
[rrr
] &= i
; break;
1197 case CCL_OR
: reg
[rrr
] |= i
; break;
1198 case CCL_XOR
: reg
[rrr
] ^= i
; break;
1199 case CCL_LSH
: reg
[rrr
] <<= i
; break;
1200 case CCL_RSH
: reg
[rrr
] >>= i
; break;
1201 case CCL_LSH8
: reg
[rrr
] <<= 8; reg
[rrr
] |= i
; break;
1202 case CCL_RSH8
: reg
[7] = reg
[rrr
] & 0xFF; reg
[rrr
] >>= 8; break;
1203 case CCL_DIVMOD
: reg
[7] = reg
[rrr
] % i
; reg
[rrr
] /= i
; break;
1204 case CCL_LS
: reg
[rrr
] = reg
[rrr
] < i
; break;
1205 case CCL_GT
: reg
[rrr
] = reg
[rrr
] > i
; break;
1206 case CCL_EQ
: reg
[rrr
] = reg
[rrr
] == i
; break;
1207 case CCL_LE
: reg
[rrr
] = reg
[rrr
] <= i
; break;
1208 case CCL_GE
: reg
[rrr
] = reg
[rrr
] >= i
; break;
1209 case CCL_NE
: reg
[rrr
] = reg
[rrr
] != i
; break;
1210 default: CCL_INVALID_CMD
;
1214 case CCL_SetExprConst
: /* 00000OPERATION000RRRrrrXXXXX */
1216 j
= XINT (ccl_prog
[ic
]);
1218 jump_address
= ++ic
;
1221 case CCL_SetExprReg
: /* 00000OPERATIONRrrRRRrrrXXXXX */
1228 case CCL_ReadJumpCondExprConst
: /* A--D--D--R--E--S--S-rrrXXXXX */
1229 CCL_READ_CHAR (reg
[rrr
]);
1230 case CCL_JumpCondExprConst
: /* A--D--D--R--E--S--S-rrrXXXXX */
1232 op
= XINT (ccl_prog
[ic
]);
1233 jump_address
= ic
++ + ADDR
;
1234 j
= XINT (ccl_prog
[ic
]);
1239 case CCL_ReadJumpCondExprReg
: /* A--D--D--R--E--S--S-rrrXXXXX */
1240 CCL_READ_CHAR (reg
[rrr
]);
1241 case CCL_JumpCondExprReg
:
1243 op
= XINT (ccl_prog
[ic
]);
1244 jump_address
= ic
++ + ADDR
;
1245 j
= reg
[XINT (ccl_prog
[ic
])];
1252 case CCL_PLUS
: reg
[rrr
] = i
+ j
; break;
1253 case CCL_MINUS
: reg
[rrr
] = i
- j
; break;
1254 case CCL_MUL
: reg
[rrr
] = i
* j
; break;
1255 case CCL_DIV
: reg
[rrr
] = i
/ j
; break;
1256 case CCL_MOD
: reg
[rrr
] = i
% j
; break;
1257 case CCL_AND
: reg
[rrr
] = i
& j
; break;
1258 case CCL_OR
: reg
[rrr
] = i
| j
; break;
1259 case CCL_XOR
: reg
[rrr
] = i
^ j
;; break;
1260 case CCL_LSH
: reg
[rrr
] = i
<< j
; break;
1261 case CCL_RSH
: reg
[rrr
] = i
>> j
; break;
1262 case CCL_LSH8
: reg
[rrr
] = (i
<< 8) | j
; break;
1263 case CCL_RSH8
: reg
[rrr
] = i
>> 8; reg
[7] = i
& 0xFF; break;
1264 case CCL_DIVMOD
: reg
[rrr
] = i
/ j
; reg
[7] = i
% j
; break;
1265 case CCL_LS
: reg
[rrr
] = i
< j
; break;
1266 case CCL_GT
: reg
[rrr
] = i
> j
; break;
1267 case CCL_EQ
: reg
[rrr
] = i
== j
; break;
1268 case CCL_LE
: reg
[rrr
] = i
<= j
; break;
1269 case CCL_GE
: reg
[rrr
] = i
>= j
; break;
1270 case CCL_NE
: reg
[rrr
] = i
!= j
; break;
1271 case CCL_DECODE_SJIS
: DECODE_SJIS (i
, j
, reg
[rrr
], reg
[7]); break;
1272 case CCL_ENCODE_SJIS
: ENCODE_SJIS (i
, j
, reg
[rrr
], reg
[7]); break;
1273 default: CCL_INVALID_CMD
;
1276 if (code
== CCL_WriteExprConst
|| code
== CCL_WriteExprRegister
)
1289 case CCL_ReadMultibyteChar2
:
1296 goto ccl_read_multibyte_character_suspend
;
1299 if (!ccl
->multibyte
)
1302 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src
, src_end
- src
, bytes
))
1304 reg
[RRR
] = CHARSET_8_BIT_CONTROL
;
1310 if (i
== '\n' && ccl
->eol_type
!= CODING_EOL_LF
)
1312 /* We are encoding. */
1313 if (ccl
->eol_type
== CODING_EOL_CRLF
)
1315 if (ccl
->cr_consumed
)
1316 ccl
->cr_consumed
= 0;
1319 ccl
->cr_consumed
= 1;
1327 reg
[RRR
] = CHARSET_ASCII
;
1333 reg
[RRR
] = CHARSET_ASCII
;
1335 else if (i
<= MAX_CHARSET_OFFICIAL_DIMENSION2
)
1337 int dimension
= BYTES_BY_CHAR_HEAD (i
) - 1;
1341 /* `i' is a leading code for an undefined charset. */
1342 reg
[RRR
] = CHARSET_8_BIT_GRAPHIC
;
1345 else if (src
+ dimension
> src_end
)
1346 goto ccl_read_multibyte_character_suspend
;
1350 i
= (*src
++ & 0x7F);
1354 reg
[rrr
] = ((i
<< 7) | (*src
++ & 0x7F));
1357 else if ((i
== LEADING_CODE_PRIVATE_11
)
1358 || (i
== LEADING_CODE_PRIVATE_12
))
1360 if ((src
+ 1) >= src_end
)
1361 goto ccl_read_multibyte_character_suspend
;
1363 reg
[rrr
] = (*src
++ & 0x7F);
1365 else if ((i
== LEADING_CODE_PRIVATE_21
)
1366 || (i
== LEADING_CODE_PRIVATE_22
))
1368 if ((src
+ 2) >= src_end
)
1369 goto ccl_read_multibyte_character_suspend
;
1371 i
= (*src
++ & 0x7F);
1372 reg
[rrr
] = ((i
<< 7) | (*src
& 0x7F));
1375 else if (i
== LEADING_CODE_8_BIT_CONTROL
)
1378 goto ccl_read_multibyte_character_suspend
;
1379 reg
[RRR
] = CHARSET_8_BIT_CONTROL
;
1380 reg
[rrr
] = (*src
++ - 0x20);
1384 reg
[RRR
] = CHARSET_8_BIT_GRAPHIC
;
1389 /* INVALID CODE. Return a single byte character. */
1390 reg
[RRR
] = CHARSET_ASCII
;
1395 ccl_read_multibyte_character_suspend
:
1396 if (src
<= src_end
&& !ccl
->multibyte
&& ccl
->last_block
)
1398 reg
[RRR
] = CHARSET_8_BIT_CONTROL
;
1403 if (ccl
->last_block
)
1410 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC
);
1414 case CCL_WriteMultibyteChar2
:
1415 i
= reg
[RRR
]; /* charset */
1416 if (i
== CHARSET_ASCII
1417 || i
== CHARSET_8_BIT_CONTROL
1418 || i
== CHARSET_8_BIT_GRAPHIC
)
1419 i
= reg
[rrr
] & 0xFF;
1420 else if (CHARSET_DIMENSION (i
) == 1)
1421 i
= ((i
- 0x70) << 7) | (reg
[rrr
] & 0x7F);
1422 else if (i
< MIN_CHARSET_PRIVATE_DIMENSION2
)
1423 i
= ((i
- 0x8F) << 14) | reg
[rrr
];
1425 i
= ((i
- 0xE0) << 14) | reg
[rrr
];
1427 CCL_WRITE_MULTIBYTE_CHAR (i
);
1431 case CCL_TranslateCharacter
:
1432 CCL_MAKE_CHAR (reg
[RRR
], reg
[rrr
], i
);
1433 op
= translate_char (GET_TRANSLATION_TABLE (reg
[Rrr
]),
1435 SPLIT_CHAR (op
, reg
[RRR
], i
, j
);
1442 case CCL_TranslateCharacterConstTbl
:
1443 op
= XINT (ccl_prog
[ic
]); /* table */
1445 CCL_MAKE_CHAR (reg
[RRR
], reg
[rrr
], i
);
1446 op
= translate_char (GET_TRANSLATION_TABLE (op
), i
, -1, 0, 0);
1447 SPLIT_CHAR (op
, reg
[RRR
], i
, j
);
1454 case CCL_LookupIntConstTbl
:
1455 op
= XINT (ccl_prog
[ic
]); /* table */
1458 struct Lisp_Hash_Table
*h
= GET_HASH_TABLE (op
);
1460 op
= hash_lookup (h
, make_number (reg
[RRR
]), NULL
);
1464 opl
= HASH_VALUE (h
, op
);
1465 if (!CHAR_VALID_P (XINT (opl
), 0))
1467 SPLIT_CHAR (XINT (opl
), reg
[RRR
], i
, j
);
1471 reg
[7] = 1; /* r7 true for success */
1478 case CCL_LookupCharConstTbl
:
1479 op
= XINT (ccl_prog
[ic
]); /* table */
1481 CCL_MAKE_CHAR (reg
[RRR
], reg
[rrr
], i
);
1483 struct Lisp_Hash_Table
*h
= GET_HASH_TABLE (op
);
1485 op
= hash_lookup (h
, make_number (i
), NULL
);
1489 opl
= HASH_VALUE (h
, op
);
1490 if (!INTEGERP (opl
))
1492 reg
[RRR
] = XINT (opl
);
1493 reg
[7] = 1; /* r7 true for success */
1500 case CCL_IterateMultipleMap
:
1502 Lisp_Object map
, content
, attrib
, value
;
1503 int point
, size
, fin_ic
;
1505 j
= XINT (ccl_prog
[ic
++]); /* number of maps. */
1508 if ((j
> reg
[RRR
]) && (j
>= 0))
1523 size
= ASIZE (Vcode_conversion_map_vector
);
1524 point
= XINT (ccl_prog
[ic
++]);
1525 if (point
>= size
) continue;
1526 map
= AREF (Vcode_conversion_map_vector
, point
);
1528 /* Check map varidity. */
1529 if (!CONSP (map
)) continue;
1531 if (!VECTORP (map
)) continue;
1533 if (size
<= 1) continue;
1535 content
= AREF (map
, 0);
1538 [STARTPOINT VAL1 VAL2 ...] or
1539 [t ELELMENT STARTPOINT ENDPOINT] */
1540 if (NUMBERP (content
))
1542 point
= XUINT (content
);
1543 point
= op
- point
+ 1;
1544 if (!((point
>= 1) && (point
< size
))) continue;
1545 content
= AREF (map
, point
);
1547 else if (EQ (content
, Qt
))
1549 if (size
!= 4) continue;
1550 if ((op
>= XUINT (AREF (map
, 2)))
1551 && (op
< XUINT (AREF (map
, 3))))
1552 content
= AREF (map
, 1);
1561 else if (NUMBERP (content
))
1564 reg
[rrr
] = XINT(content
);
1567 else if (EQ (content
, Qt
) || EQ (content
, Qlambda
))
1572 else if (CONSP (content
))
1574 attrib
= XCAR (content
);
1575 value
= XCDR (content
);
1576 if (!NUMBERP (attrib
) || !NUMBERP (value
))
1579 reg
[rrr
] = XUINT (value
);
1582 else if (SYMBOLP (content
))
1583 CCL_CALL_FOR_MAP_INSTRUCTION (content
, fin_ic
);
1593 case CCL_MapMultiple
:
1595 Lisp_Object map
, content
, attrib
, value
;
1596 int point
, size
, map_vector_size
;
1597 int map_set_rest_length
, fin_ic
;
1598 int current_ic
= this_ic
;
1600 /* inhibit recursive call on MapMultiple. */
1601 if (stack_idx_of_map_multiple
> 0)
1603 if (stack_idx_of_map_multiple
<= stack_idx
)
1605 stack_idx_of_map_multiple
= 0;
1606 mapping_stack_pointer
= mapping_stack
;
1611 mapping_stack_pointer
= mapping_stack
;
1612 stack_idx_of_map_multiple
= 0;
1614 map_set_rest_length
=
1615 XINT (ccl_prog
[ic
++]); /* number of maps and separators. */
1616 fin_ic
= ic
+ map_set_rest_length
;
1619 if ((map_set_rest_length
> reg
[RRR
]) && (reg
[RRR
] >= 0))
1623 map_set_rest_length
-= i
;
1629 mapping_stack_pointer
= mapping_stack
;
1633 if (mapping_stack_pointer
<= (mapping_stack
+ 1))
1635 /* Set up initial state. */
1636 mapping_stack_pointer
= mapping_stack
;
1637 PUSH_MAPPING_STACK (0, op
);
1642 /* Recover after calling other ccl program. */
1645 POP_MAPPING_STACK (map_set_rest_length
, orig_op
);
1646 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1650 /* Regard it as Qnil. */
1654 map_set_rest_length
--;
1657 /* Regard it as Qt. */
1661 map_set_rest_length
--;
1664 /* Regard it as Qlambda. */
1666 i
+= map_set_rest_length
;
1667 ic
+= map_set_rest_length
;
1668 map_set_rest_length
= 0;
1671 /* Regard it as normal mapping. */
1672 i
+= map_set_rest_length
;
1673 ic
+= map_set_rest_length
;
1674 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1678 map_vector_size
= ASIZE (Vcode_conversion_map_vector
);
1681 for (;map_set_rest_length
> 0;i
++, ic
++, map_set_rest_length
--)
1683 point
= XINT(ccl_prog
[ic
]);
1686 /* +1 is for including separator. */
1688 if (mapping_stack_pointer
1689 >= &mapping_stack
[MAX_MAP_SET_LEVEL
])
1691 PUSH_MAPPING_STACK (map_set_rest_length
- point
,
1693 map_set_rest_length
= point
;
1698 if (point
>= map_vector_size
) continue;
1699 map
= AREF (Vcode_conversion_map_vector
, point
);
1701 /* Check map varidity. */
1702 if (!CONSP (map
)) continue;
1704 if (!VECTORP (map
)) continue;
1706 if (size
<= 1) continue;
1708 content
= AREF (map
, 0);
1711 [STARTPOINT VAL1 VAL2 ...] or
1712 [t ELEMENT STARTPOINT ENDPOINT] */
1713 if (NUMBERP (content
))
1715 point
= XUINT (content
);
1716 point
= op
- point
+ 1;
1717 if (!((point
>= 1) && (point
< size
))) continue;
1718 content
= AREF (map
, point
);
1720 else if (EQ (content
, Qt
))
1722 if (size
!= 4) continue;
1723 if ((op
>= XUINT (AREF (map
, 2))) &&
1724 (op
< XUINT (AREF (map
, 3))))
1725 content
= AREF (map
, 1);
1736 if (NUMBERP (content
))
1738 op
= XINT (content
);
1739 i
+= map_set_rest_length
- 1;
1740 ic
+= map_set_rest_length
- 1;
1741 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1742 map_set_rest_length
++;
1744 else if (CONSP (content
))
1746 attrib
= XCAR (content
);
1747 value
= XCDR (content
);
1748 if (!NUMBERP (attrib
) || !NUMBERP (value
))
1751 i
+= map_set_rest_length
- 1;
1752 ic
+= map_set_rest_length
- 1;
1753 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1754 map_set_rest_length
++;
1756 else if (EQ (content
, Qt
))
1760 else if (EQ (content
, Qlambda
))
1762 i
+= map_set_rest_length
;
1763 ic
+= map_set_rest_length
;
1766 else if (SYMBOLP (content
))
1768 if (mapping_stack_pointer
1769 >= &mapping_stack
[MAX_MAP_SET_LEVEL
])
1771 PUSH_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1772 PUSH_MAPPING_STACK (map_set_rest_length
, op
);
1773 stack_idx_of_map_multiple
= stack_idx
+ 1;
1774 CCL_CALL_FOR_MAP_INSTRUCTION (content
, current_ic
);
1779 if (mapping_stack_pointer
<= (mapping_stack
+ 1))
1781 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1782 i
+= map_set_rest_length
;
1783 ic
+= map_set_rest_length
;
1784 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1794 Lisp_Object map
, attrib
, value
, content
;
1796 j
= XINT (ccl_prog
[ic
++]); /* map_id */
1798 if (j
>= ASIZE (Vcode_conversion_map_vector
))
1803 map
= AREF (Vcode_conversion_map_vector
, j
);
1816 point
= XUINT (AREF (map
, 0));
1817 point
= op
- point
+ 1;
1820 (!((point
>= 1) && (point
< size
))))
1825 content
= AREF (map
, point
);
1828 else if (NUMBERP (content
))
1829 reg
[rrr
] = XINT (content
);
1830 else if (EQ (content
, Qt
));
1831 else if (CONSP (content
))
1833 attrib
= XCAR (content
);
1834 value
= XCDR (content
);
1835 if (!NUMBERP (attrib
) || !NUMBERP (value
))
1837 reg
[rrr
] = XUINT(value
);
1840 else if (SYMBOLP (content
))
1841 CCL_CALL_FOR_MAP_INSTRUCTION (content
, ic
);
1859 /* The suppress_error member is set when e.g. a CCL-based coding
1860 system is used for terminal output. */
1861 if (!ccl
->suppress_error
&& destination
)
1863 /* We can insert an error message only if DESTINATION is
1864 specified and we still have a room to store the message
1872 switch (ccl
->status
)
1874 case CCL_STAT_INVALID_CMD
:
1875 sprintf(msg
, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
1876 code
& 0x1F, code
, this_ic
);
1879 int i
= ccl_backtrace_idx
- 1;
1882 msglen
= strlen (msg
);
1883 if (dst
+ msglen
<= (dst_bytes
? dst_end
: src
))
1885 bcopy (msg
, dst
, msglen
);
1889 for (j
= 0; j
< CCL_DEBUG_BACKTRACE_LEN
; j
++, i
--)
1891 if (i
< 0) i
= CCL_DEBUG_BACKTRACE_LEN
- 1;
1892 if (ccl_backtrace_table
[i
] == 0)
1894 sprintf(msg
, " %d", ccl_backtrace_table
[i
]);
1895 msglen
= strlen (msg
);
1896 if (dst
+ msglen
> (dst_bytes
? dst_end
: src
))
1898 bcopy (msg
, dst
, msglen
);
1907 sprintf(msg
, "\nCCL: Quited.");
1911 sprintf(msg
, "\nCCL: Unknown error type (%d)", ccl
->status
);
1914 msglen
= strlen (msg
);
1915 if (dst
+ msglen
<= (dst_bytes
? dst_end
: src
))
1917 bcopy (msg
, dst
, msglen
);
1921 if (ccl
->status
== CCL_STAT_INVALID_CMD
)
1923 #if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1924 results in an invalid multibyte sequence. */
1926 /* Copy the remaining source data. */
1927 int i
= src_end
- src
;
1928 if (dst_bytes
&& (dst_end
- dst
) < i
)
1930 bcopy (src
, dst
, i
);
1934 /* Signal that we've consumed everything. */
1942 ccl
->stack_idx
= stack_idx
;
1943 ccl
->prog
= ccl_prog
;
1944 ccl
->eight_bit_control
= (extra_bytes
> 1);
1946 *consumed
= src
- source
;
1947 return (dst
? dst
- destination
: 0);
1950 /* Resolve symbols in the specified CCL code (Lisp vector). This
1951 function converts symbols of code conversion maps and character
1952 translation tables embeded in the CCL code into their ID numbers.
1954 The return value is a vector (CCL itself or a new vector in which
1955 all symbols are resolved), Qt if resolving of some symbol failed,
1956 or nil if CCL contains invalid data. */
1959 resolve_symbol_ccl_program (ccl
)
1962 int i
, veclen
, unresolved
= 0;
1963 Lisp_Object result
, contents
, val
;
1966 veclen
= ASIZE (result
);
1968 for (i
= 0; i
< veclen
; i
++)
1970 contents
= AREF (result
, i
);
1971 if (INTEGERP (contents
))
1973 else if (CONSP (contents
)
1974 && SYMBOLP (XCAR (contents
))
1975 && SYMBOLP (XCDR (contents
)))
1977 /* This is the new style for embedding symbols. The form is
1978 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1981 if (EQ (result
, ccl
))
1982 result
= Fcopy_sequence (ccl
);
1984 val
= Fget (XCAR (contents
), XCDR (contents
));
1986 AREF (result
, i
) = val
;
1991 else if (SYMBOLP (contents
))
1993 /* This is the old style for embedding symbols. This style
1994 may lead to a bug if, for instance, a translation table
1995 and a code conversion map have the same name. */
1996 if (EQ (result
, ccl
))
1997 result
= Fcopy_sequence (ccl
);
1999 val
= Fget (contents
, Qtranslation_table_id
);
2001 AREF (result
, i
) = val
;
2004 val
= Fget (contents
, Qcode_conversion_map_id
);
2006 AREF (result
, i
) = val
;
2009 val
= Fget (contents
, Qccl_program_idx
);
2011 AREF (result
, i
) = val
;
2021 return (unresolved
? Qt
: result
);
2024 /* Return the compiled code (vector) of CCL program CCL_PROG.
2025 CCL_PROG is a name (symbol) of the program or already compiled
2026 code. If necessary, resolve symbols in the compiled code to index
2027 numbers. If we failed to get the compiled code or to resolve
2028 symbols, return Qnil. */
2031 ccl_get_compiled_code (ccl_prog
)
2032 Lisp_Object ccl_prog
;
2034 Lisp_Object val
, slot
;
2036 if (VECTORP (ccl_prog
))
2038 val
= resolve_symbol_ccl_program (ccl_prog
);
2039 return (VECTORP (val
) ? val
: Qnil
);
2041 if (!SYMBOLP (ccl_prog
))
2044 val
= Fget (ccl_prog
, Qccl_program_idx
);
2046 || XINT (val
) >= ASIZE (Vccl_program_table
))
2048 slot
= AREF (Vccl_program_table
, XINT (val
));
2049 if (! VECTORP (slot
)
2050 || ASIZE (slot
) != 3
2051 || ! VECTORP (AREF (slot
, 1)))
2053 if (NILP (AREF (slot
, 2)))
2055 val
= resolve_symbol_ccl_program (AREF (slot
, 1));
2056 if (! VECTORP (val
))
2058 AREF (slot
, 1) = val
;
2059 AREF (slot
, 2) = Qt
;
2061 return AREF (slot
, 1);
2064 /* Setup fields of the structure pointed by CCL appropriately for the
2065 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
2066 of the CCL program or the already compiled code (vector).
2067 Return 0 if we succeed this setup, else return -1.
2069 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
2071 setup_ccl_program (ccl
, ccl_prog
)
2072 struct ccl_program
*ccl
;
2073 Lisp_Object ccl_prog
;
2077 if (! NILP (ccl_prog
))
2079 struct Lisp_Vector
*vp
;
2081 ccl_prog
= ccl_get_compiled_code (ccl_prog
);
2082 if (! VECTORP (ccl_prog
))
2084 vp
= XVECTOR (ccl_prog
);
2085 ccl
->size
= vp
->size
;
2086 ccl
->prog
= vp
->contents
;
2087 ccl
->eof_ic
= XINT (vp
->contents
[CCL_HEADER_EOF
]);
2088 ccl
->buf_magnification
= XINT (vp
->contents
[CCL_HEADER_BUF_MAG
]);
2090 ccl
->ic
= CCL_HEADER_MAIN
;
2091 for (i
= 0; i
< 8; i
++)
2093 ccl
->last_block
= 0;
2094 ccl
->private_state
= 0;
2097 ccl
->eol_type
= CODING_EOL_LF
;
2098 ccl
->suppress_error
= 0;
2099 ccl
->eight_bit_control
= 0;
2103 DEFUN ("ccl-program-p", Fccl_program_p
, Sccl_program_p
, 1, 1, 0,
2104 doc
: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
2105 See the documentation of `define-ccl-program' for the detail of CCL program. */)
2111 if (VECTORP (object
))
2113 val
= resolve_symbol_ccl_program (object
);
2114 return (VECTORP (val
) ? Qt
: Qnil
);
2116 if (!SYMBOLP (object
))
2119 val
= Fget (object
, Qccl_program_idx
);
2120 return ((! NATNUMP (val
)
2121 || XINT (val
) >= ASIZE (Vccl_program_table
))
2125 DEFUN ("ccl-execute", Fccl_execute
, Sccl_execute
, 2, 2, 0,
2126 doc
: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
2128 CCL-PROGRAM is a CCL program name (symbol)
2129 or compiled code generated by `ccl-compile' (for backward compatibility.
2130 In the latter case, the execution overhead is bigger than in the former).
2131 No I/O commands should appear in CCL-PROGRAM.
2133 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
2134 for the Nth register.
2136 As side effect, each element of REGISTERS holds the value of
2137 the corresponding register after the execution.
2139 See the documentation of `define-ccl-program' for a definition of CCL
2142 Lisp_Object ccl_prog
, reg
;
2144 struct ccl_program ccl
;
2147 if (setup_ccl_program (&ccl
, ccl_prog
) < 0)
2148 error ("Invalid CCL program");
2151 if (ASIZE (reg
) != 8)
2152 error ("Length of vector REGISTERS is not 8");
2154 for (i
= 0; i
< 8; i
++)
2155 ccl
.reg
[i
] = (INTEGERP (AREF (reg
, i
))
2156 ? XINT (AREF (reg
, i
))
2159 ccl_driver (&ccl
, (unsigned char *)0, (unsigned char *)0, 0, 0, (int *)0);
2161 if (ccl
.status
!= CCL_STAT_SUCCESS
)
2162 error ("Error in CCL program at %dth code", ccl
.ic
);
2164 for (i
= 0; i
< 8; i
++)
2165 XSETINT (AREF (reg
, i
), ccl
.reg
[i
]);
2169 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string
, Sccl_execute_on_string
,
2171 doc
: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2173 CCL-PROGRAM is a symbol registered by register-ccl-program,
2174 or a compiled code generated by `ccl-compile' (for backward compatibility,
2175 in this case, the execution is slower).
2177 Read buffer is set to STRING, and write buffer is allocated automatically.
2179 STATUS is a vector of [R0 R1 ... R7 IC], where
2180 R0..R7 are initial values of corresponding registers,
2181 IC is the instruction counter specifying from where to start the program.
2182 If R0..R7 are nil, they are initialized to 0.
2183 If IC is nil, it is initialized to head of the CCL program.
2185 If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2186 when read buffer is exausted, else, IC is always set to the end of
2187 CCL-PROGRAM on exit.
2189 It returns the contents of write buffer as a string,
2190 and as side effect, STATUS is updated.
2191 If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2192 is a unibyte string. By default it is a multibyte string.
2194 See the documentation of `define-ccl-program' for the detail of CCL program. */)
2195 (ccl_prog
, status
, str
, contin
, unibyte_p
)
2196 Lisp_Object ccl_prog
, status
, str
, contin
, unibyte_p
;
2199 struct ccl_program ccl
;
2203 struct gcpro gcpro1
, gcpro2
;
2205 if (setup_ccl_program (&ccl
, ccl_prog
) < 0)
2206 error ("Invalid CCL program");
2208 CHECK_VECTOR (status
);
2209 if (ASIZE (status
) != 9)
2210 error ("Length of vector STATUS is not 9");
2213 GCPRO2 (status
, str
);
2215 for (i
= 0; i
< 8; i
++)
2217 if (NILP (AREF (status
, i
)))
2218 XSETINT (AREF (status
, i
), 0);
2219 if (INTEGERP (AREF (status
, i
)))
2220 ccl
.reg
[i
] = XINT (AREF (status
, i
));
2222 if (INTEGERP (AREF (status
, i
)))
2224 i
= XFASTINT (AREF (status
, 8));
2225 if (ccl
.ic
< i
&& i
< ccl
.size
)
2228 outbufsize
= SBYTES (str
) * ccl
.buf_magnification
+ 256;
2229 outbuf
= (char *) xmalloc (outbufsize
);
2230 ccl
.last_block
= NILP (contin
);
2231 ccl
.multibyte
= STRING_MULTIBYTE (str
);
2232 produced
= ccl_driver (&ccl
, SDATA (str
), outbuf
,
2233 SBYTES (str
), outbufsize
, (int *) 0);
2234 for (i
= 0; i
< 8; i
++)
2235 ASET (status
, i
, make_number (ccl
.reg
[i
]));
2236 ASET (status
, 8, make_number (ccl
.ic
));
2239 if (NILP (unibyte_p
))
2243 produced
= str_as_multibyte (outbuf
, outbufsize
, produced
, &nchars
);
2244 val
= make_multibyte_string (outbuf
, nchars
, produced
);
2247 val
= make_unibyte_string (outbuf
, produced
);
2250 if (ccl
.status
== CCL_STAT_SUSPEND_BY_DST
)
2251 error ("Output buffer for the CCL programs overflow");
2252 if (ccl
.status
!= CCL_STAT_SUCCESS
2253 && ccl
.status
!= CCL_STAT_SUSPEND_BY_SRC
)
2254 error ("Error in CCL program at %dth code", ccl
.ic
);
2259 DEFUN ("register-ccl-program", Fregister_ccl_program
, Sregister_ccl_program
,
2261 doc
: /* Register CCL program CCL_PROG as NAME in `ccl-program-table'.
2262 CCL_PROG should be a compiled CCL program (vector), or nil.
2263 If it is nil, just reserve NAME as a CCL program name.
2264 Return index number of the registered CCL program. */)
2266 Lisp_Object name
, ccl_prog
;
2268 int len
= ASIZE (Vccl_program_table
);
2270 Lisp_Object resolved
;
2272 CHECK_SYMBOL (name
);
2274 if (!NILP (ccl_prog
))
2276 CHECK_VECTOR (ccl_prog
);
2277 resolved
= resolve_symbol_ccl_program (ccl_prog
);
2278 if (NILP (resolved
))
2279 error ("Error in CCL program");
2280 if (VECTORP (resolved
))
2282 ccl_prog
= resolved
;
2289 for (idx
= 0; idx
< len
; idx
++)
2293 slot
= AREF (Vccl_program_table
, idx
);
2294 if (!VECTORP (slot
))
2295 /* This is the first unsed slot. Register NAME here. */
2298 if (EQ (name
, AREF (slot
, 0)))
2300 /* Update this slot. */
2301 AREF (slot
, 1) = ccl_prog
;
2302 AREF (slot
, 2) = resolved
;
2303 return make_number (idx
);
2309 /* Extend the table. */
2310 Lisp_Object new_table
;
2313 new_table
= Fmake_vector (make_number (len
* 2), Qnil
);
2314 for (j
= 0; j
< len
; j
++)
2316 = AREF (Vccl_program_table
, j
);
2317 Vccl_program_table
= new_table
;
2323 elt
= Fmake_vector (make_number (3), Qnil
);
2324 AREF (elt
, 0) = name
;
2325 AREF (elt
, 1) = ccl_prog
;
2326 AREF (elt
, 2) = resolved
;
2327 AREF (Vccl_program_table
, idx
) = elt
;
2330 Fput (name
, Qccl_program_idx
, make_number (idx
));
2331 return make_number (idx
);
2334 /* Register code conversion map.
2335 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
2336 The first element is the start code point.
2337 The other elements are mapped numbers.
2338 Symbol t means to map to an original number before mapping.
2339 Symbol nil means that the corresponding element is empty.
2340 Symbol lambda means to terminate mapping here.
2343 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map
,
2344 Sregister_code_conversion_map
,
2346 doc
: /* Register SYMBOL as code conversion map MAP.
2347 Return index number of the registered map. */)
2349 Lisp_Object symbol
, map
;
2351 int len
= ASIZE (Vcode_conversion_map_vector
);
2355 CHECK_SYMBOL (symbol
);
2358 for (i
= 0; i
< len
; i
++)
2360 Lisp_Object slot
= AREF (Vcode_conversion_map_vector
, i
);
2365 if (EQ (symbol
, XCAR (slot
)))
2367 index
= make_number (i
);
2368 XSETCDR (slot
, map
);
2369 Fput (symbol
, Qcode_conversion_map
, map
);
2370 Fput (symbol
, Qcode_conversion_map_id
, index
);
2377 Lisp_Object new_vector
= Fmake_vector (make_number (len
* 2), Qnil
);
2380 for (j
= 0; j
< len
; j
++)
2381 AREF (new_vector
, j
)
2382 = AREF (Vcode_conversion_map_vector
, j
);
2383 Vcode_conversion_map_vector
= new_vector
;
2386 index
= make_number (i
);
2387 Fput (symbol
, Qcode_conversion_map
, map
);
2388 Fput (symbol
, Qcode_conversion_map_id
, index
);
2389 AREF (Vcode_conversion_map_vector
, i
) = Fcons (symbol
, map
);
2397 staticpro (&Vccl_program_table
);
2398 Vccl_program_table
= Fmake_vector (make_number (32), Qnil
);
2400 Qccl_program
= intern ("ccl-program");
2401 staticpro (&Qccl_program
);
2403 Qccl_program_idx
= intern ("ccl-program-idx");
2404 staticpro (&Qccl_program_idx
);
2406 Qcode_conversion_map
= intern ("code-conversion-map");
2407 staticpro (&Qcode_conversion_map
);
2409 Qcode_conversion_map_id
= intern ("code-conversion-map-id");
2410 staticpro (&Qcode_conversion_map_id
);
2412 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector
,
2413 doc
: /* Vector of code conversion maps. */);
2414 Vcode_conversion_map_vector
= Fmake_vector (make_number (16), Qnil
);
2416 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist
,
2417 doc
: /* Alist of fontname patterns vs corresponding CCL program.
2418 Each element looks like (REGEXP . CCL-CODE),
2419 where CCL-CODE is a compiled CCL program.
2420 When a font whose name matches REGEXP is used for displaying a character,
2421 CCL-CODE is executed to calculate the code point in the font
2422 from the charset number and position code(s) of the character which are set
2423 in CCL registers R0, R1, and R2 before the execution.
2424 The code point in the font is set in CCL registers R1 and R2
2425 when the execution terminated.
2426 If the font is single-byte font, the register R2 is not used. */);
2427 Vfont_ccl_encoder_alist
= Qnil
;
2429 DEFVAR_LISP ("translation-hash-table-vector", &Vtranslation_hash_table_vector
,
2430 doc
: /* Vector containing all translation hash tables ever defined.
2431 Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2432 to `define-translation-hash-table'. The vector is indexed by the table id
2434 Vtranslation_hash_table_vector
= Qnil
;
2436 defsubr (&Sccl_program_p
);
2437 defsubr (&Sccl_execute
);
2438 defsubr (&Sccl_execute_on_string
);
2439 defsubr (&Sregister_ccl_program
);
2440 defsubr (&Sregister_code_conversion_map
);
2443 /* arch-tag: bb9a37be-68ce-4576-8d3d-15d750e4a860
2444 (do not change this comment) */