Merge from mainline.
[emacs.git] / src / ralloc.c
blob6faee2cac898752901bb9d0fb8485d1bf379cdc4
1 /* Block-relocating memory allocator.
2 Copyright (C) 1993, 1995, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 /* NOTES:
22 Only relocate the blocs necessary for SIZE in r_alloc_sbrk,
23 rather than all of them. This means allowing for a possible
24 hole between the first bloc and the end of malloc storage. */
26 #ifdef emacs
28 #include <config.h>
29 #include <setjmp.h>
30 #include "lisp.h" /* Needed for VALBITS. */
31 #include "blockinput.h"
33 #ifdef HAVE_UNISTD_H
34 #include <unistd.h>
35 #endif
37 typedef POINTER_TYPE *POINTER;
38 typedef size_t SIZE;
40 /* Declared in dispnew.c, this version doesn't screw up if regions
41 overlap. */
43 extern void safe_bcopy ();
45 #ifdef DOUG_LEA_MALLOC
46 #define M_TOP_PAD -2
47 extern int mallopt ();
48 #else /* not DOUG_LEA_MALLOC */
49 #ifndef SYSTEM_MALLOC
50 extern size_t __malloc_extra_blocks;
51 #endif /* SYSTEM_MALLOC */
52 #endif /* not DOUG_LEA_MALLOC */
54 #else /* not emacs */
56 #include <stddef.h>
58 typedef size_t SIZE;
59 typedef void *POINTER;
61 #include <unistd.h>
62 #include <malloc.h>
64 #define safe_bcopy(x, y, z) memmove (y, x, z)
65 #define bzero(x, len) memset (x, 0, len)
67 #endif /* not emacs */
70 #include "getpagesize.h"
72 #define NIL ((POINTER) 0)
74 /* A flag to indicate whether we have initialized ralloc yet. For
75 Emacs's sake, please do not make this local to malloc_init; on some
76 machines, the dumping procedure makes all static variables
77 read-only. On these machines, the word static is #defined to be
78 the empty string, meaning that r_alloc_initialized becomes an
79 automatic variable, and loses its value each time Emacs is started
80 up. */
82 static int r_alloc_initialized = 0;
84 static void r_alloc_init ();
87 /* Declarations for working with the malloc, ralloc, and system breaks. */
89 /* Function to set the real break value. */
90 POINTER (*real_morecore) ();
92 /* The break value, as seen by malloc. */
93 static POINTER virtual_break_value;
95 /* The address of the end of the last data in use by ralloc,
96 including relocatable blocs as well as malloc data. */
97 static POINTER break_value;
99 /* This is the size of a page. We round memory requests to this boundary. */
100 static int page_size;
102 /* Whenever we get memory from the system, get this many extra bytes. This
103 must be a multiple of page_size. */
104 static int extra_bytes;
106 /* Macros for rounding. Note that rounding to any value is possible
107 by changing the definition of PAGE. */
108 #define PAGE (getpagesize ())
109 #define ALIGNED(addr) (((unsigned long int) (addr) & (page_size - 1)) == 0)
110 #define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \
111 & ~(page_size - 1))
112 #define ROUND_TO_PAGE(addr) (addr & (~(page_size - 1)))
114 #define MEM_ALIGN sizeof(double)
115 #define MEM_ROUNDUP(addr) (((unsigned long int)(addr) + MEM_ALIGN - 1) \
116 & ~(MEM_ALIGN - 1))
118 /* The hook `malloc' uses for the function which gets more space
119 from the system. */
121 #ifndef SYSTEM_MALLOC
122 extern POINTER (*__morecore) ();
123 #endif
127 /***********************************************************************
128 Implementation using sbrk
129 ***********************************************************************/
131 /* Data structures of heaps and blocs. */
133 /* The relocatable objects, or blocs, and the malloc data
134 both reside within one or more heaps.
135 Each heap contains malloc data, running from `start' to `bloc_start',
136 and relocatable objects, running from `bloc_start' to `free'.
138 Relocatable objects may relocate within the same heap
139 or may move into another heap; the heaps themselves may grow
140 but they never move.
142 We try to make just one heap and make it larger as necessary.
143 But sometimes we can't do that, because we can't get contiguous
144 space to add onto the heap. When that happens, we start a new heap. */
146 typedef struct heap
148 struct heap *next;
149 struct heap *prev;
150 /* Start of memory range of this heap. */
151 POINTER start;
152 /* End of memory range of this heap. */
153 POINTER end;
154 /* Start of relocatable data in this heap. */
155 POINTER bloc_start;
156 /* Start of unused space in this heap. */
157 POINTER free;
158 /* First bloc in this heap. */
159 struct bp *first_bloc;
160 /* Last bloc in this heap. */
161 struct bp *last_bloc;
162 } *heap_ptr;
164 #define NIL_HEAP ((heap_ptr) 0)
165 #define HEAP_PTR_SIZE (sizeof (struct heap))
167 /* This is the first heap object.
168 If we need additional heap objects, each one resides at the beginning of
169 the space it covers. */
170 static struct heap heap_base;
172 /* Head and tail of the list of heaps. */
173 static heap_ptr first_heap, last_heap;
175 /* These structures are allocated in the malloc arena.
176 The linked list is kept in order of increasing '.data' members.
177 The data blocks abut each other; if b->next is non-nil, then
178 b->data + b->size == b->next->data.
180 An element with variable==NIL denotes a freed block, which has not yet
181 been collected. They may only appear while r_alloc_freeze_level > 0,
182 and will be freed when the arena is thawed. Currently, these blocs are
183 not reusable, while the arena is frozen. Very inefficient. */
185 typedef struct bp
187 struct bp *next;
188 struct bp *prev;
189 POINTER *variable;
190 POINTER data;
191 SIZE size;
192 POINTER new_data; /* temporarily used for relocation */
193 struct heap *heap; /* Heap this bloc is in. */
194 } *bloc_ptr;
196 #define NIL_BLOC ((bloc_ptr) 0)
197 #define BLOC_PTR_SIZE (sizeof (struct bp))
199 /* Head and tail of the list of relocatable blocs. */
200 static bloc_ptr first_bloc, last_bloc;
202 static int use_relocatable_buffers;
204 /* If >0, no relocation whatsoever takes place. */
205 static int r_alloc_freeze_level;
208 /* Functions to get and return memory from the system. */
210 /* Find the heap that ADDRESS falls within. */
212 static heap_ptr
213 find_heap (address)
214 POINTER address;
216 heap_ptr heap;
218 for (heap = last_heap; heap; heap = heap->prev)
220 if (heap->start <= address && address <= heap->end)
221 return heap;
224 return NIL_HEAP;
227 /* Find SIZE bytes of space in a heap.
228 Try to get them at ADDRESS (which must fall within some heap's range)
229 if we can get that many within one heap.
231 If enough space is not presently available in our reserve, this means
232 getting more page-aligned space from the system. If the returned space
233 is not contiguous to the last heap, allocate a new heap, and append it
235 obtain does not try to keep track of whether space is in use
236 or not in use. It just returns the address of SIZE bytes that
237 fall within a single heap. If you call obtain twice in a row
238 with the same arguments, you typically get the same value.
239 to the heap list. It's the caller's responsibility to keep
240 track of what space is in use.
242 Return the address of the space if all went well, or zero if we couldn't
243 allocate the memory. */
245 static POINTER
246 obtain (address, size)
247 POINTER address;
248 SIZE size;
250 heap_ptr heap;
251 SIZE already_available;
253 /* Find the heap that ADDRESS falls within. */
254 for (heap = last_heap; heap; heap = heap->prev)
256 if (heap->start <= address && address <= heap->end)
257 break;
260 if (! heap)
261 abort ();
263 /* If we can't fit SIZE bytes in that heap,
264 try successive later heaps. */
265 while (heap && (char *) address + size > (char *) heap->end)
267 heap = heap->next;
268 if (heap == NIL_HEAP)
269 break;
270 address = heap->bloc_start;
273 /* If we can't fit them within any existing heap,
274 get more space. */
275 if (heap == NIL_HEAP)
277 POINTER new = (*real_morecore)(0);
278 SIZE get;
280 already_available = (char *)last_heap->end - (char *)address;
282 if (new != last_heap->end)
284 /* Someone else called sbrk. Make a new heap. */
286 heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP (new);
287 POINTER bloc_start = (POINTER) MEM_ROUNDUP ((POINTER)(new_heap + 1));
289 if ((*real_morecore) ((char *) bloc_start - (char *) new) != new)
290 return 0;
292 new_heap->start = new;
293 new_heap->end = bloc_start;
294 new_heap->bloc_start = bloc_start;
295 new_heap->free = bloc_start;
296 new_heap->next = NIL_HEAP;
297 new_heap->prev = last_heap;
298 new_heap->first_bloc = NIL_BLOC;
299 new_heap->last_bloc = NIL_BLOC;
300 last_heap->next = new_heap;
301 last_heap = new_heap;
303 address = bloc_start;
304 already_available = 0;
307 /* Add space to the last heap (which we may have just created).
308 Get some extra, so we can come here less often. */
310 get = size + extra_bytes - already_available;
311 get = (char *) ROUNDUP ((char *)last_heap->end + get)
312 - (char *) last_heap->end;
314 if ((*real_morecore) (get) != last_heap->end)
315 return 0;
317 last_heap->end = (char *) last_heap->end + get;
320 return address;
323 /* Return unused heap space to the system
324 if there is a lot of unused space now.
325 This can make the last heap smaller;
326 it can also eliminate the last heap entirely. */
328 static void
329 relinquish ()
331 register heap_ptr h;
332 long excess = 0;
334 /* Add the amount of space beyond break_value
335 in all heaps which have extend beyond break_value at all. */
337 for (h = last_heap; h && break_value < h->end; h = h->prev)
339 excess += (char *) h->end - (char *) ((break_value < h->bloc_start)
340 ? h->bloc_start : break_value);
343 if (excess > extra_bytes * 2 && (*real_morecore) (0) == last_heap->end)
345 /* Keep extra_bytes worth of empty space.
346 And don't free anything unless we can free at least extra_bytes. */
347 excess -= extra_bytes;
349 if ((char *)last_heap->end - (char *)last_heap->bloc_start <= excess)
351 /* This heap should have no blocs in it. */
352 if (last_heap->first_bloc != NIL_BLOC
353 || last_heap->last_bloc != NIL_BLOC)
354 abort ();
356 /* Return the last heap, with its header, to the system. */
357 excess = (char *)last_heap->end - (char *)last_heap->start;
358 last_heap = last_heap->prev;
359 last_heap->next = NIL_HEAP;
361 else
363 excess = (char *) last_heap->end
364 - (char *) ROUNDUP ((char *)last_heap->end - excess);
365 last_heap->end = (char *) last_heap->end - excess;
368 if ((*real_morecore) (- excess) == 0)
370 /* If the system didn't want that much memory back, adjust
371 the end of the last heap to reflect that. This can occur
372 if break_value is still within the original data segment. */
373 last_heap->end = (char *) last_heap->end + excess;
374 /* Make sure that the result of the adjustment is accurate.
375 It should be, for the else clause above; the other case,
376 which returns the entire last heap to the system, seems
377 unlikely to trigger this mode of failure. */
378 if (last_heap->end != (*real_morecore) (0))
379 abort ();
384 /* Return the total size in use by relocating allocator,
385 above where malloc gets space. */
387 long
388 r_alloc_size_in_use ()
390 return (char *) break_value - (char *) virtual_break_value;
393 /* The meat - allocating, freeing, and relocating blocs. */
395 /* Find the bloc referenced by the address in PTR. Returns a pointer
396 to that block. */
398 static bloc_ptr
399 find_bloc (ptr)
400 POINTER *ptr;
402 register bloc_ptr p = first_bloc;
404 while (p != NIL_BLOC)
406 /* Consistency check. Don't return inconsistent blocs.
407 Don't abort here, as callers might be expecting this, but
408 callers that always expect a bloc to be returned should abort
409 if one isn't to avoid a memory corruption bug that is
410 difficult to track down. */
411 if (p->variable == ptr && p->data == *ptr)
412 return p;
414 p = p->next;
417 return p;
420 /* Allocate a bloc of SIZE bytes and append it to the chain of blocs.
421 Returns a pointer to the new bloc, or zero if we couldn't allocate
422 memory for the new block. */
424 static bloc_ptr
425 get_bloc (size)
426 SIZE size;
428 register bloc_ptr new_bloc;
429 register heap_ptr heap;
431 if (! (new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE))
432 || ! (new_bloc->data = obtain (break_value, size)))
434 free (new_bloc);
436 return 0;
439 break_value = (char *) new_bloc->data + size;
441 new_bloc->size = size;
442 new_bloc->next = NIL_BLOC;
443 new_bloc->variable = (POINTER *) NIL;
444 new_bloc->new_data = 0;
446 /* Record in the heap that this space is in use. */
447 heap = find_heap (new_bloc->data);
448 heap->free = break_value;
450 /* Maintain the correspondence between heaps and blocs. */
451 new_bloc->heap = heap;
452 heap->last_bloc = new_bloc;
453 if (heap->first_bloc == NIL_BLOC)
454 heap->first_bloc = new_bloc;
456 /* Put this bloc on the doubly-linked list of blocs. */
457 if (first_bloc)
459 new_bloc->prev = last_bloc;
460 last_bloc->next = new_bloc;
461 last_bloc = new_bloc;
463 else
465 first_bloc = last_bloc = new_bloc;
466 new_bloc->prev = NIL_BLOC;
469 return new_bloc;
472 /* Calculate new locations of blocs in the list beginning with BLOC,
473 relocating it to start at ADDRESS, in heap HEAP. If enough space is
474 not presently available in our reserve, call obtain for
475 more space.
477 Store the new location of each bloc in its new_data field.
478 Do not touch the contents of blocs or break_value. */
480 static int
481 relocate_blocs (bloc, heap, address)
482 bloc_ptr bloc;
483 heap_ptr heap;
484 POINTER address;
486 register bloc_ptr b = bloc;
488 /* No need to ever call this if arena is frozen, bug somewhere! */
489 if (r_alloc_freeze_level)
490 abort();
492 while (b)
494 /* If bloc B won't fit within HEAP,
495 move to the next heap and try again. */
496 while (heap && (char *) address + b->size > (char *) heap->end)
498 heap = heap->next;
499 if (heap == NIL_HEAP)
500 break;
501 address = heap->bloc_start;
504 /* If BLOC won't fit in any heap,
505 get enough new space to hold BLOC and all following blocs. */
506 if (heap == NIL_HEAP)
508 register bloc_ptr tb = b;
509 register SIZE s = 0;
511 /* Add up the size of all the following blocs. */
512 while (tb != NIL_BLOC)
514 if (tb->variable)
515 s += tb->size;
517 tb = tb->next;
520 /* Get that space. */
521 address = obtain (address, s);
522 if (address == 0)
523 return 0;
525 heap = last_heap;
528 /* Record the new address of this bloc
529 and update where the next bloc can start. */
530 b->new_data = address;
531 if (b->variable)
532 address = (char *) address + b->size;
533 b = b->next;
536 return 1;
539 /* Reorder the bloc BLOC to go before bloc BEFORE in the doubly linked list.
540 This is necessary if we put the memory of space of BLOC
541 before that of BEFORE. */
543 static void
544 reorder_bloc (bloc, before)
545 bloc_ptr bloc, before;
547 bloc_ptr prev, next;
549 /* Splice BLOC out from where it is. */
550 prev = bloc->prev;
551 next = bloc->next;
553 if (prev)
554 prev->next = next;
555 if (next)
556 next->prev = prev;
558 /* Splice it in before BEFORE. */
559 prev = before->prev;
561 if (prev)
562 prev->next = bloc;
563 bloc->prev = prev;
565 before->prev = bloc;
566 bloc->next = before;
569 /* Update the records of which heaps contain which blocs, starting
570 with heap HEAP and bloc BLOC. */
572 static void
573 update_heap_bloc_correspondence (bloc, heap)
574 bloc_ptr bloc;
575 heap_ptr heap;
577 register bloc_ptr b;
579 /* Initialize HEAP's status to reflect blocs before BLOC. */
580 if (bloc != NIL_BLOC && bloc->prev != NIL_BLOC && bloc->prev->heap == heap)
582 /* The previous bloc is in HEAP. */
583 heap->last_bloc = bloc->prev;
584 heap->free = (char *) bloc->prev->data + bloc->prev->size;
586 else
588 /* HEAP contains no blocs before BLOC. */
589 heap->first_bloc = NIL_BLOC;
590 heap->last_bloc = NIL_BLOC;
591 heap->free = heap->bloc_start;
594 /* Advance through blocs one by one. */
595 for (b = bloc; b != NIL_BLOC; b = b->next)
597 /* Advance through heaps, marking them empty,
598 till we get to the one that B is in. */
599 while (heap)
601 if (heap->bloc_start <= b->data && b->data <= heap->end)
602 break;
603 heap = heap->next;
604 /* We know HEAP is not null now,
605 because there has to be space for bloc B. */
606 heap->first_bloc = NIL_BLOC;
607 heap->last_bloc = NIL_BLOC;
608 heap->free = heap->bloc_start;
611 /* Update HEAP's status for bloc B. */
612 heap->free = (char *) b->data + b->size;
613 heap->last_bloc = b;
614 if (heap->first_bloc == NIL_BLOC)
615 heap->first_bloc = b;
617 /* Record that B is in HEAP. */
618 b->heap = heap;
621 /* If there are any remaining heaps and no blocs left,
622 mark those heaps as empty. */
623 heap = heap->next;
624 while (heap)
626 heap->first_bloc = NIL_BLOC;
627 heap->last_bloc = NIL_BLOC;
628 heap->free = heap->bloc_start;
629 heap = heap->next;
633 /* Resize BLOC to SIZE bytes. This relocates the blocs
634 that come after BLOC in memory. */
636 static int
637 resize_bloc (bloc, size)
638 bloc_ptr bloc;
639 SIZE size;
641 register bloc_ptr b;
642 heap_ptr heap;
643 POINTER address;
644 SIZE old_size;
646 /* No need to ever call this if arena is frozen, bug somewhere! */
647 if (r_alloc_freeze_level)
648 abort();
650 if (bloc == NIL_BLOC || size == bloc->size)
651 return 1;
653 for (heap = first_heap; heap != NIL_HEAP; heap = heap->next)
655 if (heap->bloc_start <= bloc->data && bloc->data <= heap->end)
656 break;
659 if (heap == NIL_HEAP)
660 abort ();
662 old_size = bloc->size;
663 bloc->size = size;
665 /* Note that bloc could be moved into the previous heap. */
666 address = (bloc->prev ? (char *) bloc->prev->data + bloc->prev->size
667 : (char *) first_heap->bloc_start);
668 while (heap)
670 if (heap->bloc_start <= address && address <= heap->end)
671 break;
672 heap = heap->prev;
675 if (! relocate_blocs (bloc, heap, address))
677 bloc->size = old_size;
678 return 0;
681 if (size > old_size)
683 for (b = last_bloc; b != bloc; b = b->prev)
685 if (!b->variable)
687 b->size = 0;
688 b->data = b->new_data;
690 else
692 safe_bcopy (b->data, b->new_data, b->size);
693 *b->variable = b->data = b->new_data;
696 if (!bloc->variable)
698 bloc->size = 0;
699 bloc->data = bloc->new_data;
701 else
703 safe_bcopy (bloc->data, bloc->new_data, old_size);
704 bzero ((char *) bloc->new_data + old_size, size - old_size);
705 *bloc->variable = bloc->data = bloc->new_data;
708 else
710 for (b = bloc; b != NIL_BLOC; b = b->next)
712 if (!b->variable)
714 b->size = 0;
715 b->data = b->new_data;
717 else
719 safe_bcopy (b->data, b->new_data, b->size);
720 *b->variable = b->data = b->new_data;
725 update_heap_bloc_correspondence (bloc, heap);
727 break_value = (last_bloc ? (char *) last_bloc->data + last_bloc->size
728 : (char *) first_heap->bloc_start);
729 return 1;
732 /* Free BLOC from the chain of blocs, relocating any blocs above it.
733 This may return space to the system. */
735 static void
736 free_bloc (bloc)
737 bloc_ptr bloc;
739 heap_ptr heap = bloc->heap;
741 if (r_alloc_freeze_level)
743 bloc->variable = (POINTER *) NIL;
744 return;
747 resize_bloc (bloc, 0);
749 if (bloc == first_bloc && bloc == last_bloc)
751 first_bloc = last_bloc = NIL_BLOC;
753 else if (bloc == last_bloc)
755 last_bloc = bloc->prev;
756 last_bloc->next = NIL_BLOC;
758 else if (bloc == first_bloc)
760 first_bloc = bloc->next;
761 first_bloc->prev = NIL_BLOC;
763 else
765 bloc->next->prev = bloc->prev;
766 bloc->prev->next = bloc->next;
769 /* Update the records of which blocs are in HEAP. */
770 if (heap->first_bloc == bloc)
772 if (bloc->next != 0 && bloc->next->heap == heap)
773 heap->first_bloc = bloc->next;
774 else
775 heap->first_bloc = heap->last_bloc = NIL_BLOC;
777 if (heap->last_bloc == bloc)
779 if (bloc->prev != 0 && bloc->prev->heap == heap)
780 heap->last_bloc = bloc->prev;
781 else
782 heap->first_bloc = heap->last_bloc = NIL_BLOC;
785 relinquish ();
786 free (bloc);
789 /* Interface routines. */
791 /* Obtain SIZE bytes of storage from the free pool, or the system, as
792 necessary. If relocatable blocs are in use, this means relocating
793 them. This function gets plugged into the GNU malloc's __morecore
794 hook.
796 We provide hysteresis, never relocating by less than extra_bytes.
798 If we're out of memory, we should return zero, to imitate the other
799 __morecore hook values - in particular, __default_morecore in the
800 GNU malloc package. */
802 POINTER
803 r_alloc_sbrk (size)
804 long size;
806 register bloc_ptr b;
807 POINTER address;
809 if (! r_alloc_initialized)
810 r_alloc_init ();
812 if (! use_relocatable_buffers)
813 return (*real_morecore) (size);
815 if (size == 0)
816 return virtual_break_value;
818 if (size > 0)
820 /* Allocate a page-aligned space. GNU malloc would reclaim an
821 extra space if we passed an unaligned one. But we could
822 not always find a space which is contiguous to the previous. */
823 POINTER new_bloc_start;
824 heap_ptr h = first_heap;
825 SIZE get = ROUNDUP (size);
827 address = (POINTER) ROUNDUP (virtual_break_value);
829 /* Search the list upward for a heap which is large enough. */
830 while ((char *) h->end < (char *) MEM_ROUNDUP ((char *)address + get))
832 h = h->next;
833 if (h == NIL_HEAP)
834 break;
835 address = (POINTER) ROUNDUP (h->start);
838 /* If not found, obtain more space. */
839 if (h == NIL_HEAP)
841 get += extra_bytes + page_size;
843 if (! obtain (address, get))
844 return 0;
846 if (first_heap == last_heap)
847 address = (POINTER) ROUNDUP (virtual_break_value);
848 else
849 address = (POINTER) ROUNDUP (last_heap->start);
850 h = last_heap;
853 new_bloc_start = (POINTER) MEM_ROUNDUP ((char *)address + get);
855 if (first_heap->bloc_start < new_bloc_start)
857 /* This is no clean solution - no idea how to do it better. */
858 if (r_alloc_freeze_level)
859 return NIL;
861 /* There is a bug here: if the above obtain call succeeded, but the
862 relocate_blocs call below does not succeed, we need to free
863 the memory that we got with obtain. */
865 /* Move all blocs upward. */
866 if (! relocate_blocs (first_bloc, h, new_bloc_start))
867 return 0;
869 /* Note that (POINTER)(h+1) <= new_bloc_start since
870 get >= page_size, so the following does not destroy the heap
871 header. */
872 for (b = last_bloc; b != NIL_BLOC; b = b->prev)
874 safe_bcopy (b->data, b->new_data, b->size);
875 *b->variable = b->data = b->new_data;
878 h->bloc_start = new_bloc_start;
880 update_heap_bloc_correspondence (first_bloc, h);
882 if (h != first_heap)
884 /* Give up managing heaps below the one the new
885 virtual_break_value points to. */
886 first_heap->prev = NIL_HEAP;
887 first_heap->next = h->next;
888 first_heap->start = h->start;
889 first_heap->end = h->end;
890 first_heap->free = h->free;
891 first_heap->first_bloc = h->first_bloc;
892 first_heap->last_bloc = h->last_bloc;
893 first_heap->bloc_start = h->bloc_start;
895 if (first_heap->next)
896 first_heap->next->prev = first_heap;
897 else
898 last_heap = first_heap;
901 bzero (address, size);
903 else /* size < 0 */
905 SIZE excess = (char *)first_heap->bloc_start
906 - ((char *)virtual_break_value + size);
908 address = virtual_break_value;
910 if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes)
912 excess -= extra_bytes;
913 first_heap->bloc_start
914 = (POINTER) MEM_ROUNDUP ((char *)first_heap->bloc_start - excess);
916 relocate_blocs (first_bloc, first_heap, first_heap->bloc_start);
918 for (b = first_bloc; b != NIL_BLOC; b = b->next)
920 safe_bcopy (b->data, b->new_data, b->size);
921 *b->variable = b->data = b->new_data;
925 if ((char *)virtual_break_value + size < (char *)first_heap->start)
927 /* We found an additional space below the first heap */
928 first_heap->start = (POINTER) ((char *)virtual_break_value + size);
932 virtual_break_value = (POINTER) ((char *)address + size);
933 break_value = (last_bloc
934 ? (char *) last_bloc->data + last_bloc->size
935 : (char *) first_heap->bloc_start);
936 if (size < 0)
937 relinquish ();
939 return address;
943 /* Allocate a relocatable bloc of storage of size SIZE. A pointer to
944 the data is returned in *PTR. PTR is thus the address of some variable
945 which will use the data area.
947 The allocation of 0 bytes is valid.
948 In case r_alloc_freeze_level is set, a best fit of unused blocs could be
949 done before allocating a new area. Not yet done.
951 If we can't allocate the necessary memory, set *PTR to zero, and
952 return zero. */
954 POINTER
955 r_alloc (ptr, size)
956 POINTER *ptr;
957 SIZE size;
959 register bloc_ptr new_bloc;
961 if (! r_alloc_initialized)
962 r_alloc_init ();
964 new_bloc = get_bloc (MEM_ROUNDUP (size));
965 if (new_bloc)
967 new_bloc->variable = ptr;
968 *ptr = new_bloc->data;
970 else
971 *ptr = 0;
973 return *ptr;
976 /* Free a bloc of relocatable storage whose data is pointed to by PTR.
977 Store 0 in *PTR to show there's no block allocated. */
979 void
980 r_alloc_free (ptr)
981 register POINTER *ptr;
983 register bloc_ptr dead_bloc;
985 if (! r_alloc_initialized)
986 r_alloc_init ();
988 dead_bloc = find_bloc (ptr);
989 if (dead_bloc == NIL_BLOC)
990 abort (); /* Double free? PTR not originally used to allocate? */
992 free_bloc (dead_bloc);
993 *ptr = 0;
995 #ifdef emacs
996 refill_memory_reserve ();
997 #endif
1000 /* Given a pointer at address PTR to relocatable data, resize it to SIZE.
1001 Do this by shifting all blocks above this one up in memory, unless
1002 SIZE is less than or equal to the current bloc size, in which case
1003 do nothing.
1005 In case r_alloc_freeze_level is set, a new bloc is allocated, and the
1006 memory copied to it. Not very efficient. We could traverse the
1007 bloc_list for a best fit of free blocs first.
1009 Change *PTR to reflect the new bloc, and return this value.
1011 If more memory cannot be allocated, then leave *PTR unchanged, and
1012 return zero. */
1014 POINTER
1015 r_re_alloc (ptr, size)
1016 POINTER *ptr;
1017 SIZE size;
1019 register bloc_ptr bloc;
1021 if (! r_alloc_initialized)
1022 r_alloc_init ();
1024 if (!*ptr)
1025 return r_alloc (ptr, size);
1026 if (!size)
1028 r_alloc_free (ptr);
1029 return r_alloc (ptr, 0);
1032 bloc = find_bloc (ptr);
1033 if (bloc == NIL_BLOC)
1034 abort (); /* Already freed? PTR not originally used to allocate? */
1036 if (size < bloc->size)
1038 /* Wouldn't it be useful to actually resize the bloc here? */
1039 /* I think so too, but not if it's too expensive... */
1040 if ((bloc->size - MEM_ROUNDUP (size) >= page_size)
1041 && r_alloc_freeze_level == 0)
1043 resize_bloc (bloc, MEM_ROUNDUP (size));
1044 /* Never mind if this fails, just do nothing... */
1045 /* It *should* be infallible! */
1048 else if (size > bloc->size)
1050 if (r_alloc_freeze_level)
1052 bloc_ptr new_bloc;
1053 new_bloc = get_bloc (MEM_ROUNDUP (size));
1054 if (new_bloc)
1056 new_bloc->variable = ptr;
1057 *ptr = new_bloc->data;
1058 bloc->variable = (POINTER *) NIL;
1060 else
1061 return NIL;
1063 else
1065 if (! resize_bloc (bloc, MEM_ROUNDUP (size)))
1066 return NIL;
1069 return *ptr;
1072 /* Disable relocations, after making room for at least SIZE bytes
1073 of non-relocatable heap if possible. The relocatable blocs are
1074 guaranteed to hold still until thawed, even if this means that
1075 malloc must return a null pointer. */
1077 void
1078 r_alloc_freeze (size)
1079 long size;
1081 if (! r_alloc_initialized)
1082 r_alloc_init ();
1084 /* If already frozen, we can't make any more room, so don't try. */
1085 if (r_alloc_freeze_level > 0)
1086 size = 0;
1087 /* If we can't get the amount requested, half is better than nothing. */
1088 while (size > 0 && r_alloc_sbrk (size) == 0)
1089 size /= 2;
1090 ++r_alloc_freeze_level;
1091 if (size > 0)
1092 r_alloc_sbrk (-size);
1095 void
1096 r_alloc_thaw ()
1099 if (! r_alloc_initialized)
1100 r_alloc_init ();
1102 if (--r_alloc_freeze_level < 0)
1103 abort ();
1105 /* This frees all unused blocs. It is not too inefficient, as the resize
1106 and bcopy is done only once. Afterwards, all unreferenced blocs are
1107 already shrunk to zero size. */
1108 if (!r_alloc_freeze_level)
1110 bloc_ptr *b = &first_bloc;
1111 while (*b)
1112 if (!(*b)->variable)
1113 free_bloc (*b);
1114 else
1115 b = &(*b)->next;
1120 #if defined (emacs) && defined (DOUG_LEA_MALLOC)
1122 /* Reinitialize the morecore hook variables after restarting a dumped
1123 Emacs. This is needed when using Doug Lea's malloc from GNU libc. */
1124 void
1125 r_alloc_reinit ()
1127 /* Only do this if the hook has been reset, so that we don't get an
1128 infinite loop, in case Emacs was linked statically. */
1129 if (__morecore != r_alloc_sbrk)
1131 real_morecore = __morecore;
1132 __morecore = r_alloc_sbrk;
1136 #endif /* emacs && DOUG_LEA_MALLOC */
1138 #ifdef DEBUG
1140 #include <assert.h>
1142 void
1143 r_alloc_check ()
1145 int found = 0;
1146 heap_ptr h, ph = 0;
1147 bloc_ptr b, pb = 0;
1149 if (!r_alloc_initialized)
1150 return;
1152 assert (first_heap);
1153 assert (last_heap->end <= (POINTER) sbrk (0));
1154 assert ((POINTER) first_heap < first_heap->start);
1155 assert (first_heap->start <= virtual_break_value);
1156 assert (virtual_break_value <= first_heap->end);
1158 for (h = first_heap; h; h = h->next)
1160 assert (h->prev == ph);
1161 assert ((POINTER) ROUNDUP (h->end) == h->end);
1162 #if 0 /* ??? The code in ralloc.c does not really try to ensure
1163 the heap start has any sort of alignment.
1164 Perhaps it should. */
1165 assert ((POINTER) MEM_ROUNDUP (h->start) == h->start);
1166 #endif
1167 assert ((POINTER) MEM_ROUNDUP (h->bloc_start) == h->bloc_start);
1168 assert (h->start <= h->bloc_start && h->bloc_start <= h->end);
1170 if (ph)
1172 assert (ph->end < h->start);
1173 assert (h->start <= (POINTER)h && (POINTER)(h+1) <= h->bloc_start);
1176 if (h->bloc_start <= break_value && break_value <= h->end)
1177 found = 1;
1179 ph = h;
1182 assert (found);
1183 assert (last_heap == ph);
1185 for (b = first_bloc; b; b = b->next)
1187 assert (b->prev == pb);
1188 assert ((POINTER) MEM_ROUNDUP (b->data) == b->data);
1189 assert ((SIZE) MEM_ROUNDUP (b->size) == b->size);
1191 ph = 0;
1192 for (h = first_heap; h; h = h->next)
1194 if (h->bloc_start <= b->data && b->data + b->size <= h->end)
1195 break;
1196 ph = h;
1199 assert (h);
1201 if (pb && pb->data + pb->size != b->data)
1203 assert (ph && b->data == h->bloc_start);
1204 while (ph)
1206 if (ph->bloc_start <= pb->data
1207 && pb->data + pb->size <= ph->end)
1209 assert (pb->data + pb->size + b->size > ph->end);
1210 break;
1212 else
1214 assert (ph->bloc_start + b->size > ph->end);
1216 ph = ph->prev;
1219 pb = b;
1222 assert (last_bloc == pb);
1224 if (last_bloc)
1225 assert (last_bloc->data + last_bloc->size == break_value);
1226 else
1227 assert (first_heap->bloc_start == break_value);
1230 #endif /* DEBUG */
1232 /* Update the internal record of which variable points to some data to NEW.
1233 Used by buffer-swap-text in Emacs to restore consistency after it
1234 swaps the buffer text between two buffer objects. The OLD pointer
1235 is checked to ensure that memory corruption does not occur due to
1236 misuse. */
1237 void
1238 r_alloc_reset_variable (old, new)
1239 POINTER *old, *new;
1241 bloc_ptr bloc = first_bloc;
1243 /* Find the bloc that corresponds to the data pointed to by pointer.
1244 find_bloc cannot be used, as it has internal consistency checks
1245 which fail when the variable needs reseting. */
1246 while (bloc != NIL_BLOC)
1248 if (bloc->data == *new)
1249 break;
1251 bloc = bloc->next;
1254 if (bloc == NIL_BLOC || bloc->variable != old)
1255 abort (); /* Already freed? OLD not originally used to allocate? */
1257 /* Update variable to point to the new location. */
1258 bloc->variable = new;
1262 /***********************************************************************
1263 Initialization
1264 ***********************************************************************/
1266 /* Initialize various things for memory allocation. */
1268 static void
1269 r_alloc_init ()
1271 if (r_alloc_initialized)
1272 return;
1273 r_alloc_initialized = 1;
1275 page_size = PAGE;
1276 #ifndef SYSTEM_MALLOC
1277 real_morecore = __morecore;
1278 __morecore = r_alloc_sbrk;
1280 first_heap = last_heap = &heap_base;
1281 first_heap->next = first_heap->prev = NIL_HEAP;
1282 first_heap->start = first_heap->bloc_start
1283 = virtual_break_value = break_value = (*real_morecore) (0);
1284 if (break_value == NIL)
1285 abort ();
1287 extra_bytes = ROUNDUP (50000);
1288 #endif
1290 #ifdef DOUG_LEA_MALLOC
1291 BLOCK_INPUT;
1292 mallopt (M_TOP_PAD, 64 * 4096);
1293 UNBLOCK_INPUT;
1294 #else
1295 #ifndef SYSTEM_MALLOC
1296 /* Give GNU malloc's morecore some hysteresis
1297 so that we move all the relocatable blocks much less often. */
1298 __malloc_extra_blocks = 64;
1299 #endif
1300 #endif
1302 #ifndef SYSTEM_MALLOC
1303 first_heap->end = (POINTER) ROUNDUP (first_heap->start);
1305 /* The extra call to real_morecore guarantees that the end of the
1306 address space is a multiple of page_size, even if page_size is
1307 not really the page size of the system running the binary in
1308 which page_size is stored. This allows a binary to be built on a
1309 system with one page size and run on a system with a smaller page
1310 size. */
1311 (*real_morecore) ((char *) first_heap->end - (char *) first_heap->start);
1313 /* Clear the rest of the last page; this memory is in our address space
1314 even though it is after the sbrk value. */
1315 /* Doubly true, with the additional call that explicitly adds the
1316 rest of that page to the address space. */
1317 bzero (first_heap->start,
1318 (char *) first_heap->end - (char *) first_heap->start);
1319 virtual_break_value = break_value = first_heap->bloc_start = first_heap->end;
1320 #endif
1322 use_relocatable_buffers = 1;
1325 /* arch-tag: 6a524a15-faff-44c8-95d4-a5da6f55110f
1326 (do not change this comment) */