Implement context-sentitive dual behaviour for mouse-1 click.
[emacs.git] / src / alloc.c
blob5038fdfce102edd7e711f3063079504e0064a83c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
30 /* Note that this declares bzero on OSF/1. How dumb. */
32 #include <signal.h>
34 #ifdef HAVE_GTK_AND_PTHREAD
35 #include <pthread.h>
36 #endif
38 /* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
42 #undef HIDE_LISP_IMPLEMENTATION
43 #include "lisp.h"
44 #include "process.h"
45 #include "intervals.h"
46 #include "puresize.h"
47 #include "buffer.h"
48 #include "window.h"
49 #include "keyboard.h"
50 #include "frame.h"
51 #include "blockinput.h"
52 #include "charset.h"
53 #include "syssignal.h"
54 #include <setjmp.h>
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
59 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60 #undef GC_MALLOC_CHECK
61 #endif
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #else
66 extern POINTER_TYPE *sbrk ();
67 #endif
69 #ifdef DOUG_LEA_MALLOC
71 #include <malloc.h>
72 /* malloc.h #defines this as size_t, at least in glibc2. */
73 #ifndef __malloc_size_t
74 #define __malloc_size_t int
75 #endif
77 /* Specify maximum number of areas to mmap. It would be nice to use a
78 value that explicitly means "no limit". */
80 #define MMAP_MAX_AREAS 100000000
82 #else /* not DOUG_LEA_MALLOC */
84 /* The following come from gmalloc.c. */
86 #define __malloc_size_t size_t
87 extern __malloc_size_t _bytes_used;
88 extern __malloc_size_t __malloc_extra_blocks;
90 #endif /* not DOUG_LEA_MALLOC */
92 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
106 When UNBLOCK_INPUT is called, revoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
111 static pthread_mutex_t alloc_mutex;
113 #define BLOCK_INPUT_ALLOC \
114 do \
116 pthread_mutex_lock (&alloc_mutex); \
117 if (pthread_self () == main_thread) \
118 BLOCK_INPUT; \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
124 if (pthread_self () == main_thread) \
125 UNBLOCK_INPUT; \
126 pthread_mutex_unlock (&alloc_mutex); \
128 while (0)
130 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
135 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
137 /* Value of _bytes_used, when spare_memory was freed. */
139 static __malloc_size_t bytes_used_when_full;
141 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
142 to a struct Lisp_String. */
144 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
145 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
146 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
148 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
149 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
150 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
152 /* Value is the number of bytes/chars of S, a pointer to a struct
153 Lisp_String. This must be used instead of STRING_BYTES (S) or
154 S->size during GC, because S->size contains the mark bit for
155 strings. */
157 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
158 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
160 /* Number of bytes of consing done since the last gc. */
162 int consing_since_gc;
164 /* Count the amount of consing of various sorts of space. */
166 EMACS_INT cons_cells_consed;
167 EMACS_INT floats_consed;
168 EMACS_INT vector_cells_consed;
169 EMACS_INT symbols_consed;
170 EMACS_INT string_chars_consed;
171 EMACS_INT misc_objects_consed;
172 EMACS_INT intervals_consed;
173 EMACS_INT strings_consed;
175 /* Number of bytes of consing since GC before another GC should be done. */
177 EMACS_INT gc_cons_threshold;
179 /* Nonzero during GC. */
181 int gc_in_progress;
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
187 int abort_on_gc;
189 /* Nonzero means display messages at beginning and end of GC. */
191 int garbage_collection_messages;
193 #ifndef VIRT_ADDR_VARIES
194 extern
195 #endif /* VIRT_ADDR_VARIES */
196 int malloc_sbrk_used;
198 #ifndef VIRT_ADDR_VARIES
199 extern
200 #endif /* VIRT_ADDR_VARIES */
201 int malloc_sbrk_unused;
203 /* Two limits controlling how much undo information to keep. */
205 EMACS_INT undo_limit;
206 EMACS_INT undo_strong_limit;
207 EMACS_INT undo_outer_limit;
209 /* Number of live and free conses etc. */
211 static int total_conses, total_markers, total_symbols, total_vector_size;
212 static int total_free_conses, total_free_markers, total_free_symbols;
213 static int total_free_floats, total_floats;
215 /* Points to memory space allocated as "spare", to be freed if we run
216 out of memory. */
218 static char *spare_memory;
220 /* Amount of spare memory to keep in reserve. */
222 #define SPARE_MEMORY (1 << 14)
224 /* Number of extra blocks malloc should get when it needs more core. */
226 static int malloc_hysteresis;
228 /* Non-nil means defun should do purecopy on the function definition. */
230 Lisp_Object Vpurify_flag;
232 /* Non-nil means we are handling a memory-full error. */
234 Lisp_Object Vmemory_full;
236 #ifndef HAVE_SHM
238 /* Initialize it to a nonzero value to force it into data space
239 (rather than bss space). That way unexec will remap it into text
240 space (pure), on some systems. We have not implemented the
241 remapping on more recent systems because this is less important
242 nowadays than in the days of small memories and timesharing. */
244 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
245 #define PUREBEG (char *) pure
247 #else /* HAVE_SHM */
249 #define pure PURE_SEG_BITS /* Use shared memory segment */
250 #define PUREBEG (char *)PURE_SEG_BITS
252 #endif /* HAVE_SHM */
254 /* Pointer to the pure area, and its size. */
256 static char *purebeg;
257 static size_t pure_size;
259 /* Number of bytes of pure storage used before pure storage overflowed.
260 If this is non-zero, this implies that an overflow occurred. */
262 static size_t pure_bytes_used_before_overflow;
264 /* Value is non-zero if P points into pure space. */
266 #define PURE_POINTER_P(P) \
267 (((PNTR_COMPARISON_TYPE) (P) \
268 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
269 && ((PNTR_COMPARISON_TYPE) (P) \
270 >= (PNTR_COMPARISON_TYPE) purebeg))
272 /* Index in pure at which next pure object will be allocated.. */
274 EMACS_INT pure_bytes_used;
276 /* If nonzero, this is a warning delivered by malloc and not yet
277 displayed. */
279 char *pending_malloc_warning;
281 /* Pre-computed signal argument for use when memory is exhausted. */
283 Lisp_Object Vmemory_signal_data;
285 /* Maximum amount of C stack to save when a GC happens. */
287 #ifndef MAX_SAVE_STACK
288 #define MAX_SAVE_STACK 16000
289 #endif
291 /* Buffer in which we save a copy of the C stack at each GC. */
293 char *stack_copy;
294 int stack_copy_size;
296 /* Non-zero means ignore malloc warnings. Set during initialization.
297 Currently not used. */
299 int ignore_warnings;
301 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
303 /* Hook run after GC has finished. */
305 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
307 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
308 EMACS_INT gcs_done; /* accumulated GCs */
310 static void mark_buffer P_ ((Lisp_Object));
311 extern void mark_kboards P_ ((void));
312 extern void mark_backtrace P_ ((void));
313 static void gc_sweep P_ ((void));
314 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
315 static void mark_face_cache P_ ((struct face_cache *));
317 #ifdef HAVE_WINDOW_SYSTEM
318 static void mark_image P_ ((struct image *));
319 static void mark_image_cache P_ ((struct frame *));
320 #endif /* HAVE_WINDOW_SYSTEM */
322 static struct Lisp_String *allocate_string P_ ((void));
323 static void compact_small_strings P_ ((void));
324 static void free_large_strings P_ ((void));
325 static void sweep_strings P_ ((void));
327 extern int message_enable_multibyte;
329 /* When scanning the C stack for live Lisp objects, Emacs keeps track
330 of what memory allocated via lisp_malloc is intended for what
331 purpose. This enumeration specifies the type of memory. */
333 enum mem_type
335 MEM_TYPE_NON_LISP,
336 MEM_TYPE_BUFFER,
337 MEM_TYPE_CONS,
338 MEM_TYPE_STRING,
339 MEM_TYPE_MISC,
340 MEM_TYPE_SYMBOL,
341 MEM_TYPE_FLOAT,
342 /* Keep the following vector-like types together, with
343 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
344 first. Or change the code of live_vector_p, for instance. */
345 MEM_TYPE_VECTOR,
346 MEM_TYPE_PROCESS,
347 MEM_TYPE_HASH_TABLE,
348 MEM_TYPE_FRAME,
349 MEM_TYPE_WINDOW
352 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
354 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
355 #include <stdio.h> /* For fprintf. */
356 #endif
358 /* A unique object in pure space used to make some Lisp objects
359 on free lists recognizable in O(1). */
361 Lisp_Object Vdead;
363 #ifdef GC_MALLOC_CHECK
365 enum mem_type allocated_mem_type;
366 int dont_register_blocks;
368 #endif /* GC_MALLOC_CHECK */
370 /* A node in the red-black tree describing allocated memory containing
371 Lisp data. Each such block is recorded with its start and end
372 address when it is allocated, and removed from the tree when it
373 is freed.
375 A red-black tree is a balanced binary tree with the following
376 properties:
378 1. Every node is either red or black.
379 2. Every leaf is black.
380 3. If a node is red, then both of its children are black.
381 4. Every simple path from a node to a descendant leaf contains
382 the same number of black nodes.
383 5. The root is always black.
385 When nodes are inserted into the tree, or deleted from the tree,
386 the tree is "fixed" so that these properties are always true.
388 A red-black tree with N internal nodes has height at most 2
389 log(N+1). Searches, insertions and deletions are done in O(log N).
390 Please see a text book about data structures for a detailed
391 description of red-black trees. Any book worth its salt should
392 describe them. */
394 struct mem_node
396 /* Children of this node. These pointers are never NULL. When there
397 is no child, the value is MEM_NIL, which points to a dummy node. */
398 struct mem_node *left, *right;
400 /* The parent of this node. In the root node, this is NULL. */
401 struct mem_node *parent;
403 /* Start and end of allocated region. */
404 void *start, *end;
406 /* Node color. */
407 enum {MEM_BLACK, MEM_RED} color;
409 /* Memory type. */
410 enum mem_type type;
413 /* Base address of stack. Set in main. */
415 Lisp_Object *stack_base;
417 /* Root of the tree describing allocated Lisp memory. */
419 static struct mem_node *mem_root;
421 /* Lowest and highest known address in the heap. */
423 static void *min_heap_address, *max_heap_address;
425 /* Sentinel node of the tree. */
427 static struct mem_node mem_z;
428 #define MEM_NIL &mem_z
430 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
431 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
432 static void lisp_free P_ ((POINTER_TYPE *));
433 static void mark_stack P_ ((void));
434 static int live_vector_p P_ ((struct mem_node *, void *));
435 static int live_buffer_p P_ ((struct mem_node *, void *));
436 static int live_string_p P_ ((struct mem_node *, void *));
437 static int live_cons_p P_ ((struct mem_node *, void *));
438 static int live_symbol_p P_ ((struct mem_node *, void *));
439 static int live_float_p P_ ((struct mem_node *, void *));
440 static int live_misc_p P_ ((struct mem_node *, void *));
441 static void mark_maybe_object P_ ((Lisp_Object));
442 static void mark_memory P_ ((void *, void *));
443 static void mem_init P_ ((void));
444 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
445 static void mem_insert_fixup P_ ((struct mem_node *));
446 static void mem_rotate_left P_ ((struct mem_node *));
447 static void mem_rotate_right P_ ((struct mem_node *));
448 static void mem_delete P_ ((struct mem_node *));
449 static void mem_delete_fixup P_ ((struct mem_node *));
450 static INLINE struct mem_node *mem_find P_ ((void *));
452 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
453 static void check_gcpros P_ ((void));
454 #endif
456 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
458 /* Recording what needs to be marked for gc. */
460 struct gcpro *gcprolist;
462 /* Addresses of staticpro'd variables. Initialize it to a nonzero
463 value; otherwise some compilers put it into BSS. */
465 #define NSTATICS 1280
466 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
468 /* Index of next unused slot in staticvec. */
470 int staticidx = 0;
472 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
475 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
476 ALIGNMENT must be a power of 2. */
478 #define ALIGN(ptr, ALIGNMENT) \
479 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
480 & ~((ALIGNMENT) - 1)))
484 /************************************************************************
485 Malloc
486 ************************************************************************/
488 /* Function malloc calls this if it finds we are near exhausting storage. */
490 void
491 malloc_warning (str)
492 char *str;
494 pending_malloc_warning = str;
498 /* Display an already-pending malloc warning. */
500 void
501 display_malloc_warning ()
503 call3 (intern ("display-warning"),
504 intern ("alloc"),
505 build_string (pending_malloc_warning),
506 intern ("emergency"));
507 pending_malloc_warning = 0;
511 #ifdef DOUG_LEA_MALLOC
512 # define BYTES_USED (mallinfo ().arena)
513 #else
514 # define BYTES_USED _bytes_used
515 #endif
518 /* Called if malloc returns zero. */
520 void
521 memory_full ()
523 Vmemory_full = Qt;
525 #ifndef SYSTEM_MALLOC
526 bytes_used_when_full = BYTES_USED;
527 #endif
529 /* The first time we get here, free the spare memory. */
530 if (spare_memory)
532 free (spare_memory);
533 spare_memory = 0;
536 /* This used to call error, but if we've run out of memory, we could
537 get infinite recursion trying to build the string. */
538 while (1)
539 Fsignal (Qnil, Vmemory_signal_data);
543 /* Called if we can't allocate relocatable space for a buffer. */
545 void
546 buffer_memory_full ()
548 /* If buffers use the relocating allocator, no need to free
549 spare_memory, because we may have plenty of malloc space left
550 that we could get, and if we don't, the malloc that fails will
551 itself cause spare_memory to be freed. If buffers don't use the
552 relocating allocator, treat this like any other failing
553 malloc. */
555 #ifndef REL_ALLOC
556 memory_full ();
557 #endif
559 Vmemory_full = Qt;
561 /* This used to call error, but if we've run out of memory, we could
562 get infinite recursion trying to build the string. */
563 while (1)
564 Fsignal (Qnil, Vmemory_signal_data);
568 #ifdef XMALLOC_OVERRUN_CHECK
570 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
571 and a 16 byte trailer around each block.
573 The header consists of 12 fixed bytes + a 4 byte integer contaning the
574 original block size, while the trailer consists of 16 fixed bytes.
576 The header is used to detect whether this block has been allocated
577 through these functions -- as it seems that some low-level libc
578 functions may bypass the malloc hooks.
582 #define XMALLOC_OVERRUN_CHECK_SIZE 16
584 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
585 { 0x9a, 0x9b, 0xae, 0xaf,
586 0xbf, 0xbe, 0xce, 0xcf,
587 0xea, 0xeb, 0xec, 0xed };
589 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
590 { 0xaa, 0xab, 0xac, 0xad,
591 0xba, 0xbb, 0xbc, 0xbd,
592 0xca, 0xcb, 0xcc, 0xcd,
593 0xda, 0xdb, 0xdc, 0xdd };
595 /* Macros to insert and extract the block size in the header. */
597 #define XMALLOC_PUT_SIZE(ptr, size) \
598 (ptr[-1] = (size & 0xff), \
599 ptr[-2] = ((size >> 8) & 0xff), \
600 ptr[-3] = ((size >> 16) & 0xff), \
601 ptr[-4] = ((size >> 24) & 0xff))
603 #define XMALLOC_GET_SIZE(ptr) \
604 (size_t)((unsigned)(ptr[-1]) | \
605 ((unsigned)(ptr[-2]) << 8) | \
606 ((unsigned)(ptr[-3]) << 16) | \
607 ((unsigned)(ptr[-4]) << 24))
610 /* Like malloc, but wraps allocated block with header and trailer. */
612 POINTER_TYPE *
613 overrun_check_malloc (size)
614 size_t size;
616 register unsigned char *val;
618 val = (unsigned char *) malloc (size + XMALLOC_OVERRUN_CHECK_SIZE*2);
619 if (val)
621 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
622 val += XMALLOC_OVERRUN_CHECK_SIZE;
623 XMALLOC_PUT_SIZE(val, size);
624 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
626 return (POINTER_TYPE *)val;
630 /* Like realloc, but checks old block for overrun, and wraps new block
631 with header and trailer. */
633 POINTER_TYPE *
634 overrun_check_realloc (block, size)
635 POINTER_TYPE *block;
636 size_t size;
638 register unsigned char *val = (unsigned char *)block;
640 if (val
641 && bcmp (xmalloc_overrun_check_header,
642 val - XMALLOC_OVERRUN_CHECK_SIZE,
643 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
645 size_t osize = XMALLOC_GET_SIZE (val);
646 if (bcmp (xmalloc_overrun_check_trailer,
647 val + osize,
648 XMALLOC_OVERRUN_CHECK_SIZE))
649 abort ();
650 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
651 val -= XMALLOC_OVERRUN_CHECK_SIZE;
652 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
655 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + XMALLOC_OVERRUN_CHECK_SIZE*2);
657 if (val)
659 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
660 val += XMALLOC_OVERRUN_CHECK_SIZE;
661 XMALLOC_PUT_SIZE(val, size);
662 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
664 return (POINTER_TYPE *)val;
667 /* Like free, but checks block for overrun. */
669 void
670 overrun_check_free (block)
671 POINTER_TYPE *block;
673 unsigned char *val = (unsigned char *)block;
675 if (val
676 && bcmp (xmalloc_overrun_check_header,
677 val - XMALLOC_OVERRUN_CHECK_SIZE,
678 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
680 size_t osize = XMALLOC_GET_SIZE (val);
681 if (bcmp (xmalloc_overrun_check_trailer,
682 val + osize,
683 XMALLOC_OVERRUN_CHECK_SIZE))
684 abort ();
685 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
686 val -= XMALLOC_OVERRUN_CHECK_SIZE;
687 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
690 free (val);
693 #undef malloc
694 #undef realloc
695 #undef free
696 #define malloc overrun_check_malloc
697 #define realloc overrun_check_realloc
698 #define free overrun_check_free
699 #endif
702 /* Like malloc but check for no memory and block interrupt input.. */
704 POINTER_TYPE *
705 xmalloc (size)
706 size_t size;
708 register POINTER_TYPE *val;
710 BLOCK_INPUT;
711 val = (POINTER_TYPE *) malloc (size);
712 UNBLOCK_INPUT;
714 if (!val && size)
715 memory_full ();
716 return val;
720 /* Like realloc but check for no memory and block interrupt input.. */
722 POINTER_TYPE *
723 xrealloc (block, size)
724 POINTER_TYPE *block;
725 size_t size;
727 register POINTER_TYPE *val;
729 BLOCK_INPUT;
730 /* We must call malloc explicitly when BLOCK is 0, since some
731 reallocs don't do this. */
732 if (! block)
733 val = (POINTER_TYPE *) malloc (size);
734 else
735 val = (POINTER_TYPE *) realloc (block, size);
736 UNBLOCK_INPUT;
738 if (!val && size) memory_full ();
739 return val;
743 /* Like free but block interrupt input. */
745 void
746 xfree (block)
747 POINTER_TYPE *block;
749 BLOCK_INPUT;
750 free (block);
751 UNBLOCK_INPUT;
755 /* Like strdup, but uses xmalloc. */
757 char *
758 xstrdup (s)
759 const char *s;
761 size_t len = strlen (s) + 1;
762 char *p = (char *) xmalloc (len);
763 bcopy (s, p, len);
764 return p;
768 /* Unwind for SAFE_ALLOCA */
770 Lisp_Object
771 safe_alloca_unwind (arg)
772 Lisp_Object arg;
774 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
776 p->dogc = 0;
777 xfree (p->pointer);
778 p->pointer = 0;
779 free_misc (arg);
780 return Qnil;
784 /* Like malloc but used for allocating Lisp data. NBYTES is the
785 number of bytes to allocate, TYPE describes the intended use of the
786 allcated memory block (for strings, for conses, ...). */
788 #ifndef USE_LSB_TAG
789 static void *lisp_malloc_loser;
790 #endif
792 static POINTER_TYPE *
793 lisp_malloc (nbytes, type)
794 size_t nbytes;
795 enum mem_type type;
797 register void *val;
799 BLOCK_INPUT;
801 #ifdef GC_MALLOC_CHECK
802 allocated_mem_type = type;
803 #endif
805 val = (void *) malloc (nbytes);
807 #ifndef USE_LSB_TAG
808 /* If the memory just allocated cannot be addressed thru a Lisp
809 object's pointer, and it needs to be,
810 that's equivalent to running out of memory. */
811 if (val && type != MEM_TYPE_NON_LISP)
813 Lisp_Object tem;
814 XSETCONS (tem, (char *) val + nbytes - 1);
815 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
817 lisp_malloc_loser = val;
818 free (val);
819 val = 0;
822 #endif
824 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
825 if (val && type != MEM_TYPE_NON_LISP)
826 mem_insert (val, (char *) val + nbytes, type);
827 #endif
829 UNBLOCK_INPUT;
830 if (!val && nbytes)
831 memory_full ();
832 return val;
835 /* Free BLOCK. This must be called to free memory allocated with a
836 call to lisp_malloc. */
838 static void
839 lisp_free (block)
840 POINTER_TYPE *block;
842 BLOCK_INPUT;
843 free (block);
844 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
845 mem_delete (mem_find (block));
846 #endif
847 UNBLOCK_INPUT;
850 /* Allocation of aligned blocks of memory to store Lisp data. */
851 /* The entry point is lisp_align_malloc which returns blocks of at most */
852 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
855 /* BLOCK_ALIGN has to be a power of 2. */
856 #define BLOCK_ALIGN (1 << 10)
858 /* Padding to leave at the end of a malloc'd block. This is to give
859 malloc a chance to minimize the amount of memory wasted to alignment.
860 It should be tuned to the particular malloc library used.
861 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
862 posix_memalign on the other hand would ideally prefer a value of 4
863 because otherwise, there's 1020 bytes wasted between each ablocks.
864 But testing shows that those 1020 will most of the time be efficiently
865 used by malloc to place other objects, so a value of 0 is still preferable
866 unless you have a lot of cons&floats and virtually nothing else. */
867 #define BLOCK_PADDING 0
868 #define BLOCK_BYTES \
869 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
871 /* Internal data structures and constants. */
873 #define ABLOCKS_SIZE 16
875 /* An aligned block of memory. */
876 struct ablock
878 union
880 char payload[BLOCK_BYTES];
881 struct ablock *next_free;
882 } x;
883 /* `abase' is the aligned base of the ablocks. */
884 /* It is overloaded to hold the virtual `busy' field that counts
885 the number of used ablock in the parent ablocks.
886 The first ablock has the `busy' field, the others have the `abase'
887 field. To tell the difference, we assume that pointers will have
888 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
889 is used to tell whether the real base of the parent ablocks is `abase'
890 (if not, the word before the first ablock holds a pointer to the
891 real base). */
892 struct ablocks *abase;
893 /* The padding of all but the last ablock is unused. The padding of
894 the last ablock in an ablocks is not allocated. */
895 #if BLOCK_PADDING
896 char padding[BLOCK_PADDING];
897 #endif
900 /* A bunch of consecutive aligned blocks. */
901 struct ablocks
903 struct ablock blocks[ABLOCKS_SIZE];
906 /* Size of the block requested from malloc or memalign. */
907 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
909 #define ABLOCK_ABASE(block) \
910 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
911 ? (struct ablocks *)(block) \
912 : (block)->abase)
914 /* Virtual `busy' field. */
915 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
917 /* Pointer to the (not necessarily aligned) malloc block. */
918 #ifdef HAVE_POSIX_MEMALIGN
919 #define ABLOCKS_BASE(abase) (abase)
920 #else
921 #define ABLOCKS_BASE(abase) \
922 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
923 #endif
925 /* The list of free ablock. */
926 static struct ablock *free_ablock;
928 /* Allocate an aligned block of nbytes.
929 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
930 smaller or equal to BLOCK_BYTES. */
931 static POINTER_TYPE *
932 lisp_align_malloc (nbytes, type)
933 size_t nbytes;
934 enum mem_type type;
936 void *base, *val;
937 struct ablocks *abase;
939 eassert (nbytes <= BLOCK_BYTES);
941 BLOCK_INPUT;
943 #ifdef GC_MALLOC_CHECK
944 allocated_mem_type = type;
945 #endif
947 if (!free_ablock)
949 int i;
950 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
952 #ifdef DOUG_LEA_MALLOC
953 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
954 because mapped region contents are not preserved in
955 a dumped Emacs. */
956 mallopt (M_MMAP_MAX, 0);
957 #endif
959 #ifdef HAVE_POSIX_MEMALIGN
961 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
962 if (err)
963 base = NULL;
964 abase = base;
966 #else
967 base = malloc (ABLOCKS_BYTES);
968 abase = ALIGN (base, BLOCK_ALIGN);
969 #endif
971 if (base == 0)
973 UNBLOCK_INPUT;
974 memory_full ();
977 aligned = (base == abase);
978 if (!aligned)
979 ((void**)abase)[-1] = base;
981 #ifdef DOUG_LEA_MALLOC
982 /* Back to a reasonable maximum of mmap'ed areas. */
983 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
984 #endif
986 #ifndef USE_LSB_TAG
987 /* If the memory just allocated cannot be addressed thru a Lisp
988 object's pointer, and it needs to be, that's equivalent to
989 running out of memory. */
990 if (type != MEM_TYPE_NON_LISP)
992 Lisp_Object tem;
993 char *end = (char *) base + ABLOCKS_BYTES - 1;
994 XSETCONS (tem, end);
995 if ((char *) XCONS (tem) != end)
997 lisp_malloc_loser = base;
998 free (base);
999 UNBLOCK_INPUT;
1000 memory_full ();
1003 #endif
1005 /* Initialize the blocks and put them on the free list.
1006 Is `base' was not properly aligned, we can't use the last block. */
1007 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1009 abase->blocks[i].abase = abase;
1010 abase->blocks[i].x.next_free = free_ablock;
1011 free_ablock = &abase->blocks[i];
1013 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1015 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1016 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1017 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1018 eassert (ABLOCKS_BASE (abase) == base);
1019 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1022 abase = ABLOCK_ABASE (free_ablock);
1023 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1024 val = free_ablock;
1025 free_ablock = free_ablock->x.next_free;
1027 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1028 if (val && type != MEM_TYPE_NON_LISP)
1029 mem_insert (val, (char *) val + nbytes, type);
1030 #endif
1032 UNBLOCK_INPUT;
1033 if (!val && nbytes)
1034 memory_full ();
1036 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1037 return val;
1040 static void
1041 lisp_align_free (block)
1042 POINTER_TYPE *block;
1044 struct ablock *ablock = block;
1045 struct ablocks *abase = ABLOCK_ABASE (ablock);
1047 BLOCK_INPUT;
1048 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1049 mem_delete (mem_find (block));
1050 #endif
1051 /* Put on free list. */
1052 ablock->x.next_free = free_ablock;
1053 free_ablock = ablock;
1054 /* Update busy count. */
1055 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1057 if (2 > (long) ABLOCKS_BUSY (abase))
1058 { /* All the blocks are free. */
1059 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1060 struct ablock **tem = &free_ablock;
1061 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1063 while (*tem)
1065 if (*tem >= (struct ablock *) abase && *tem < atop)
1067 i++;
1068 *tem = (*tem)->x.next_free;
1070 else
1071 tem = &(*tem)->x.next_free;
1073 eassert ((aligned & 1) == aligned);
1074 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1075 free (ABLOCKS_BASE (abase));
1077 UNBLOCK_INPUT;
1080 /* Return a new buffer structure allocated from the heap with
1081 a call to lisp_malloc. */
1083 struct buffer *
1084 allocate_buffer ()
1086 struct buffer *b
1087 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1088 MEM_TYPE_BUFFER);
1089 return b;
1093 /* Arranging to disable input signals while we're in malloc.
1095 This only works with GNU malloc. To help out systems which can't
1096 use GNU malloc, all the calls to malloc, realloc, and free
1097 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1098 pairs; unfortunately, we have no idea what C library functions
1099 might call malloc, so we can't really protect them unless you're
1100 using GNU malloc. Fortunately, most of the major operating systems
1101 can use GNU malloc. */
1103 #ifndef SYSTEM_MALLOC
1104 #ifndef DOUG_LEA_MALLOC
1105 extern void * (*__malloc_hook) P_ ((size_t));
1106 extern void * (*__realloc_hook) P_ ((void *, size_t));
1107 extern void (*__free_hook) P_ ((void *));
1108 /* Else declared in malloc.h, perhaps with an extra arg. */
1109 #endif /* DOUG_LEA_MALLOC */
1110 static void * (*old_malloc_hook) ();
1111 static void * (*old_realloc_hook) ();
1112 static void (*old_free_hook) ();
1114 /* This function is used as the hook for free to call. */
1116 static void
1117 emacs_blocked_free (ptr)
1118 void *ptr;
1120 BLOCK_INPUT_ALLOC;
1122 #ifdef GC_MALLOC_CHECK
1123 if (ptr)
1125 struct mem_node *m;
1127 m = mem_find (ptr);
1128 if (m == MEM_NIL || m->start != ptr)
1130 fprintf (stderr,
1131 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1132 abort ();
1134 else
1136 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1137 mem_delete (m);
1140 #endif /* GC_MALLOC_CHECK */
1142 __free_hook = old_free_hook;
1143 free (ptr);
1145 /* If we released our reserve (due to running out of memory),
1146 and we have a fair amount free once again,
1147 try to set aside another reserve in case we run out once more. */
1148 if (spare_memory == 0
1149 /* Verify there is enough space that even with the malloc
1150 hysteresis this call won't run out again.
1151 The code here is correct as long as SPARE_MEMORY
1152 is substantially larger than the block size malloc uses. */
1153 && (bytes_used_when_full
1154 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
1155 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1157 __free_hook = emacs_blocked_free;
1158 UNBLOCK_INPUT_ALLOC;
1162 /* If we released our reserve (due to running out of memory),
1163 and we have a fair amount free once again,
1164 try to set aside another reserve in case we run out once more.
1166 This is called when a relocatable block is freed in ralloc.c. */
1168 void
1169 refill_memory_reserve ()
1171 if (spare_memory == 0)
1172 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1176 /* This function is the malloc hook that Emacs uses. */
1178 static void *
1179 emacs_blocked_malloc (size)
1180 size_t size;
1182 void *value;
1184 BLOCK_INPUT_ALLOC;
1185 __malloc_hook = old_malloc_hook;
1186 #ifdef DOUG_LEA_MALLOC
1187 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1188 #else
1189 __malloc_extra_blocks = malloc_hysteresis;
1190 #endif
1192 value = (void *) malloc (size);
1194 #ifdef GC_MALLOC_CHECK
1196 struct mem_node *m = mem_find (value);
1197 if (m != MEM_NIL)
1199 fprintf (stderr, "Malloc returned %p which is already in use\n",
1200 value);
1201 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1202 m->start, m->end, (char *) m->end - (char *) m->start,
1203 m->type);
1204 abort ();
1207 if (!dont_register_blocks)
1209 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1210 allocated_mem_type = MEM_TYPE_NON_LISP;
1213 #endif /* GC_MALLOC_CHECK */
1215 __malloc_hook = emacs_blocked_malloc;
1216 UNBLOCK_INPUT_ALLOC;
1218 /* fprintf (stderr, "%p malloc\n", value); */
1219 return value;
1223 /* This function is the realloc hook that Emacs uses. */
1225 static void *
1226 emacs_blocked_realloc (ptr, size)
1227 void *ptr;
1228 size_t size;
1230 void *value;
1232 BLOCK_INPUT_ALLOC;
1233 __realloc_hook = old_realloc_hook;
1235 #ifdef GC_MALLOC_CHECK
1236 if (ptr)
1238 struct mem_node *m = mem_find (ptr);
1239 if (m == MEM_NIL || m->start != ptr)
1241 fprintf (stderr,
1242 "Realloc of %p which wasn't allocated with malloc\n",
1243 ptr);
1244 abort ();
1247 mem_delete (m);
1250 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1252 /* Prevent malloc from registering blocks. */
1253 dont_register_blocks = 1;
1254 #endif /* GC_MALLOC_CHECK */
1256 value = (void *) realloc (ptr, size);
1258 #ifdef GC_MALLOC_CHECK
1259 dont_register_blocks = 0;
1262 struct mem_node *m = mem_find (value);
1263 if (m != MEM_NIL)
1265 fprintf (stderr, "Realloc returns memory that is already in use\n");
1266 abort ();
1269 /* Can't handle zero size regions in the red-black tree. */
1270 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1273 /* fprintf (stderr, "%p <- realloc\n", value); */
1274 #endif /* GC_MALLOC_CHECK */
1276 __realloc_hook = emacs_blocked_realloc;
1277 UNBLOCK_INPUT_ALLOC;
1279 return value;
1283 #ifdef HAVE_GTK_AND_PTHREAD
1284 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1285 normal malloc. Some thread implementations need this as they call
1286 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1287 calls malloc because it is the first call, and we have an endless loop. */
1289 void
1290 reset_malloc_hooks ()
1292 __free_hook = 0;
1293 __malloc_hook = 0;
1294 __realloc_hook = 0;
1296 #endif /* HAVE_GTK_AND_PTHREAD */
1299 /* Called from main to set up malloc to use our hooks. */
1301 void
1302 uninterrupt_malloc ()
1304 #ifdef HAVE_GTK_AND_PTHREAD
1305 pthread_mutexattr_t attr;
1307 /* GLIBC has a faster way to do this, but lets keep it portable.
1308 This is according to the Single UNIX Specification. */
1309 pthread_mutexattr_init (&attr);
1310 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1311 pthread_mutex_init (&alloc_mutex, &attr);
1312 #endif /* HAVE_GTK_AND_PTHREAD */
1314 if (__free_hook != emacs_blocked_free)
1315 old_free_hook = __free_hook;
1316 __free_hook = emacs_blocked_free;
1318 if (__malloc_hook != emacs_blocked_malloc)
1319 old_malloc_hook = __malloc_hook;
1320 __malloc_hook = emacs_blocked_malloc;
1322 if (__realloc_hook != emacs_blocked_realloc)
1323 old_realloc_hook = __realloc_hook;
1324 __realloc_hook = emacs_blocked_realloc;
1327 #endif /* not SYSTEM_MALLOC */
1331 /***********************************************************************
1332 Interval Allocation
1333 ***********************************************************************/
1335 /* Number of intervals allocated in an interval_block structure.
1336 The 1020 is 1024 minus malloc overhead. */
1338 #define INTERVAL_BLOCK_SIZE \
1339 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1341 /* Intervals are allocated in chunks in form of an interval_block
1342 structure. */
1344 struct interval_block
1346 /* Place `intervals' first, to preserve alignment. */
1347 struct interval intervals[INTERVAL_BLOCK_SIZE];
1348 struct interval_block *next;
1351 /* Current interval block. Its `next' pointer points to older
1352 blocks. */
1354 struct interval_block *interval_block;
1356 /* Index in interval_block above of the next unused interval
1357 structure. */
1359 static int interval_block_index;
1361 /* Number of free and live intervals. */
1363 static int total_free_intervals, total_intervals;
1365 /* List of free intervals. */
1367 INTERVAL interval_free_list;
1369 /* Total number of interval blocks now in use. */
1371 int n_interval_blocks;
1374 /* Initialize interval allocation. */
1376 static void
1377 init_intervals ()
1379 interval_block = NULL;
1380 interval_block_index = INTERVAL_BLOCK_SIZE;
1381 interval_free_list = 0;
1382 n_interval_blocks = 0;
1386 /* Return a new interval. */
1388 INTERVAL
1389 make_interval ()
1391 INTERVAL val;
1393 if (interval_free_list)
1395 val = interval_free_list;
1396 interval_free_list = INTERVAL_PARENT (interval_free_list);
1398 else
1400 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1402 register struct interval_block *newi;
1404 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1405 MEM_TYPE_NON_LISP);
1407 newi->next = interval_block;
1408 interval_block = newi;
1409 interval_block_index = 0;
1410 n_interval_blocks++;
1412 val = &interval_block->intervals[interval_block_index++];
1414 consing_since_gc += sizeof (struct interval);
1415 intervals_consed++;
1416 RESET_INTERVAL (val);
1417 val->gcmarkbit = 0;
1418 return val;
1422 /* Mark Lisp objects in interval I. */
1424 static void
1425 mark_interval (i, dummy)
1426 register INTERVAL i;
1427 Lisp_Object dummy;
1429 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1430 i->gcmarkbit = 1;
1431 mark_object (i->plist);
1435 /* Mark the interval tree rooted in TREE. Don't call this directly;
1436 use the macro MARK_INTERVAL_TREE instead. */
1438 static void
1439 mark_interval_tree (tree)
1440 register INTERVAL tree;
1442 /* No need to test if this tree has been marked already; this
1443 function is always called through the MARK_INTERVAL_TREE macro,
1444 which takes care of that. */
1446 traverse_intervals_noorder (tree, mark_interval, Qnil);
1450 /* Mark the interval tree rooted in I. */
1452 #define MARK_INTERVAL_TREE(i) \
1453 do { \
1454 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1455 mark_interval_tree (i); \
1456 } while (0)
1459 #define UNMARK_BALANCE_INTERVALS(i) \
1460 do { \
1461 if (! NULL_INTERVAL_P (i)) \
1462 (i) = balance_intervals (i); \
1463 } while (0)
1466 /* Number support. If NO_UNION_TYPE isn't in effect, we
1467 can't create number objects in macros. */
1468 #ifndef make_number
1469 Lisp_Object
1470 make_number (n)
1471 int n;
1473 Lisp_Object obj;
1474 obj.s.val = n;
1475 obj.s.type = Lisp_Int;
1476 return obj;
1478 #endif
1480 /***********************************************************************
1481 String Allocation
1482 ***********************************************************************/
1484 /* Lisp_Strings are allocated in string_block structures. When a new
1485 string_block is allocated, all the Lisp_Strings it contains are
1486 added to a free-list string_free_list. When a new Lisp_String is
1487 needed, it is taken from that list. During the sweep phase of GC,
1488 string_blocks that are entirely free are freed, except two which
1489 we keep.
1491 String data is allocated from sblock structures. Strings larger
1492 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1493 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1495 Sblocks consist internally of sdata structures, one for each
1496 Lisp_String. The sdata structure points to the Lisp_String it
1497 belongs to. The Lisp_String points back to the `u.data' member of
1498 its sdata structure.
1500 When a Lisp_String is freed during GC, it is put back on
1501 string_free_list, and its `data' member and its sdata's `string'
1502 pointer is set to null. The size of the string is recorded in the
1503 `u.nbytes' member of the sdata. So, sdata structures that are no
1504 longer used, can be easily recognized, and it's easy to compact the
1505 sblocks of small strings which we do in compact_small_strings. */
1507 /* Size in bytes of an sblock structure used for small strings. This
1508 is 8192 minus malloc overhead. */
1510 #define SBLOCK_SIZE 8188
1512 /* Strings larger than this are considered large strings. String data
1513 for large strings is allocated from individual sblocks. */
1515 #define LARGE_STRING_BYTES 1024
1517 /* Structure describing string memory sub-allocated from an sblock.
1518 This is where the contents of Lisp strings are stored. */
1520 struct sdata
1522 /* Back-pointer to the string this sdata belongs to. If null, this
1523 structure is free, and the NBYTES member of the union below
1524 contains the string's byte size (the same value that STRING_BYTES
1525 would return if STRING were non-null). If non-null, STRING_BYTES
1526 (STRING) is the size of the data, and DATA contains the string's
1527 contents. */
1528 struct Lisp_String *string;
1530 #ifdef GC_CHECK_STRING_BYTES
1532 EMACS_INT nbytes;
1533 unsigned char data[1];
1535 #define SDATA_NBYTES(S) (S)->nbytes
1536 #define SDATA_DATA(S) (S)->data
1538 #else /* not GC_CHECK_STRING_BYTES */
1540 union
1542 /* When STRING in non-null. */
1543 unsigned char data[1];
1545 /* When STRING is null. */
1546 EMACS_INT nbytes;
1547 } u;
1550 #define SDATA_NBYTES(S) (S)->u.nbytes
1551 #define SDATA_DATA(S) (S)->u.data
1553 #endif /* not GC_CHECK_STRING_BYTES */
1557 /* Structure describing a block of memory which is sub-allocated to
1558 obtain string data memory for strings. Blocks for small strings
1559 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1560 as large as needed. */
1562 struct sblock
1564 /* Next in list. */
1565 struct sblock *next;
1567 /* Pointer to the next free sdata block. This points past the end
1568 of the sblock if there isn't any space left in this block. */
1569 struct sdata *next_free;
1571 /* Start of data. */
1572 struct sdata first_data;
1575 /* Number of Lisp strings in a string_block structure. The 1020 is
1576 1024 minus malloc overhead. */
1578 #define STRING_BLOCK_SIZE \
1579 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1581 /* Structure describing a block from which Lisp_String structures
1582 are allocated. */
1584 struct string_block
1586 /* Place `strings' first, to preserve alignment. */
1587 struct Lisp_String strings[STRING_BLOCK_SIZE];
1588 struct string_block *next;
1591 /* Head and tail of the list of sblock structures holding Lisp string
1592 data. We always allocate from current_sblock. The NEXT pointers
1593 in the sblock structures go from oldest_sblock to current_sblock. */
1595 static struct sblock *oldest_sblock, *current_sblock;
1597 /* List of sblocks for large strings. */
1599 static struct sblock *large_sblocks;
1601 /* List of string_block structures, and how many there are. */
1603 static struct string_block *string_blocks;
1604 static int n_string_blocks;
1606 /* Free-list of Lisp_Strings. */
1608 static struct Lisp_String *string_free_list;
1610 /* Number of live and free Lisp_Strings. */
1612 static int total_strings, total_free_strings;
1614 /* Number of bytes used by live strings. */
1616 static int total_string_size;
1618 /* Given a pointer to a Lisp_String S which is on the free-list
1619 string_free_list, return a pointer to its successor in the
1620 free-list. */
1622 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1624 /* Return a pointer to the sdata structure belonging to Lisp string S.
1625 S must be live, i.e. S->data must not be null. S->data is actually
1626 a pointer to the `u.data' member of its sdata structure; the
1627 structure starts at a constant offset in front of that. */
1629 #ifdef GC_CHECK_STRING_BYTES
1631 #define SDATA_OF_STRING(S) \
1632 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1633 - sizeof (EMACS_INT)))
1635 #else /* not GC_CHECK_STRING_BYTES */
1637 #define SDATA_OF_STRING(S) \
1638 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1640 #endif /* not GC_CHECK_STRING_BYTES */
1643 #ifdef GC_CHECK_STRING_OVERRUN
1645 /* We check for overrun in string data blocks by appending a small
1646 "cookie" after each allocated string data block, and check for the
1647 presense of this cookie during GC. */
1649 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1650 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1651 { 0xde, 0xad, 0xbe, 0xef };
1653 #else
1654 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1655 #endif
1657 /* Value is the size of an sdata structure large enough to hold NBYTES
1658 bytes of string data. The value returned includes a terminating
1659 NUL byte, the size of the sdata structure, and padding. */
1661 #ifdef GC_CHECK_STRING_BYTES
1663 #define SDATA_SIZE(NBYTES) \
1664 ((sizeof (struct Lisp_String *) \
1665 + (NBYTES) + 1 \
1666 + sizeof (EMACS_INT) \
1667 + sizeof (EMACS_INT) - 1) \
1668 & ~(sizeof (EMACS_INT) - 1))
1670 #else /* not GC_CHECK_STRING_BYTES */
1672 #define SDATA_SIZE(NBYTES) \
1673 ((sizeof (struct Lisp_String *) \
1674 + (NBYTES) + 1 \
1675 + sizeof (EMACS_INT) - 1) \
1676 & ~(sizeof (EMACS_INT) - 1))
1678 #endif /* not GC_CHECK_STRING_BYTES */
1680 /* Extra bytes to allocate for each string. */
1682 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1684 /* Initialize string allocation. Called from init_alloc_once. */
1686 void
1687 init_strings ()
1689 total_strings = total_free_strings = total_string_size = 0;
1690 oldest_sblock = current_sblock = large_sblocks = NULL;
1691 string_blocks = NULL;
1692 n_string_blocks = 0;
1693 string_free_list = NULL;
1697 #ifdef GC_CHECK_STRING_BYTES
1699 static int check_string_bytes_count;
1701 void check_string_bytes P_ ((int));
1702 void check_sblock P_ ((struct sblock *));
1704 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1707 /* Like GC_STRING_BYTES, but with debugging check. */
1710 string_bytes (s)
1711 struct Lisp_String *s;
1713 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1714 if (!PURE_POINTER_P (s)
1715 && s->data
1716 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1717 abort ();
1718 return nbytes;
1721 /* Check validity of Lisp strings' string_bytes member in B. */
1723 void
1724 check_sblock (b)
1725 struct sblock *b;
1727 struct sdata *from, *end, *from_end;
1729 end = b->next_free;
1731 for (from = &b->first_data; from < end; from = from_end)
1733 /* Compute the next FROM here because copying below may
1734 overwrite data we need to compute it. */
1735 int nbytes;
1737 /* Check that the string size recorded in the string is the
1738 same as the one recorded in the sdata structure. */
1739 if (from->string)
1740 CHECK_STRING_BYTES (from->string);
1742 if (from->string)
1743 nbytes = GC_STRING_BYTES (from->string);
1744 else
1745 nbytes = SDATA_NBYTES (from);
1747 nbytes = SDATA_SIZE (nbytes);
1748 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1753 /* Check validity of Lisp strings' string_bytes member. ALL_P
1754 non-zero means check all strings, otherwise check only most
1755 recently allocated strings. Used for hunting a bug. */
1757 void
1758 check_string_bytes (all_p)
1759 int all_p;
1761 if (all_p)
1763 struct sblock *b;
1765 for (b = large_sblocks; b; b = b->next)
1767 struct Lisp_String *s = b->first_data.string;
1768 if (s)
1769 CHECK_STRING_BYTES (s);
1772 for (b = oldest_sblock; b; b = b->next)
1773 check_sblock (b);
1775 else
1776 check_sblock (current_sblock);
1779 #endif /* GC_CHECK_STRING_BYTES */
1781 #ifdef GC_CHECK_STRING_FREE_LIST
1783 /* Walk through the string free list looking for bogus next pointers.
1784 This may catch buffer overrun from a previous string. */
1786 static void
1787 check_string_free_list ()
1789 struct Lisp_String *s;
1791 /* Pop a Lisp_String off the free-list. */
1792 s = string_free_list;
1793 while (s != NULL)
1795 if ((unsigned)s < 1024)
1796 abort();
1797 s = NEXT_FREE_LISP_STRING (s);
1800 #else
1801 #define check_string_free_list()
1802 #endif
1804 /* Return a new Lisp_String. */
1806 static struct Lisp_String *
1807 allocate_string ()
1809 struct Lisp_String *s;
1811 /* If the free-list is empty, allocate a new string_block, and
1812 add all the Lisp_Strings in it to the free-list. */
1813 if (string_free_list == NULL)
1815 struct string_block *b;
1816 int i;
1818 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1819 bzero (b, sizeof *b);
1820 b->next = string_blocks;
1821 string_blocks = b;
1822 ++n_string_blocks;
1824 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1826 s = b->strings + i;
1827 NEXT_FREE_LISP_STRING (s) = string_free_list;
1828 string_free_list = s;
1831 total_free_strings += STRING_BLOCK_SIZE;
1834 check_string_free_list ();
1836 /* Pop a Lisp_String off the free-list. */
1837 s = string_free_list;
1838 string_free_list = NEXT_FREE_LISP_STRING (s);
1840 /* Probably not strictly necessary, but play it safe. */
1841 bzero (s, sizeof *s);
1843 --total_free_strings;
1844 ++total_strings;
1845 ++strings_consed;
1846 consing_since_gc += sizeof *s;
1848 #ifdef GC_CHECK_STRING_BYTES
1849 if (!noninteractive
1850 #ifdef MAC_OS8
1851 && current_sblock
1852 #endif
1855 if (++check_string_bytes_count == 200)
1857 check_string_bytes_count = 0;
1858 check_string_bytes (1);
1860 else
1861 check_string_bytes (0);
1863 #endif /* GC_CHECK_STRING_BYTES */
1865 return s;
1869 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1870 plus a NUL byte at the end. Allocate an sdata structure for S, and
1871 set S->data to its `u.data' member. Store a NUL byte at the end of
1872 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1873 S->data if it was initially non-null. */
1875 void
1876 allocate_string_data (s, nchars, nbytes)
1877 struct Lisp_String *s;
1878 int nchars, nbytes;
1880 struct sdata *data, *old_data;
1881 struct sblock *b;
1882 int needed, old_nbytes;
1884 /* Determine the number of bytes needed to store NBYTES bytes
1885 of string data. */
1886 needed = SDATA_SIZE (nbytes);
1888 if (nbytes > LARGE_STRING_BYTES)
1890 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1892 #ifdef DOUG_LEA_MALLOC
1893 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1894 because mapped region contents are not preserved in
1895 a dumped Emacs.
1897 In case you think of allowing it in a dumped Emacs at the
1898 cost of not being able to re-dump, there's another reason:
1899 mmap'ed data typically have an address towards the top of the
1900 address space, which won't fit into an EMACS_INT (at least on
1901 32-bit systems with the current tagging scheme). --fx */
1902 mallopt (M_MMAP_MAX, 0);
1903 #endif
1905 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1907 #ifdef DOUG_LEA_MALLOC
1908 /* Back to a reasonable maximum of mmap'ed areas. */
1909 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1910 #endif
1912 b->next_free = &b->first_data;
1913 b->first_data.string = NULL;
1914 b->next = large_sblocks;
1915 large_sblocks = b;
1917 else if (current_sblock == NULL
1918 || (((char *) current_sblock + SBLOCK_SIZE
1919 - (char *) current_sblock->next_free)
1920 < (needed + GC_STRING_EXTRA)))
1922 /* Not enough room in the current sblock. */
1923 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1924 b->next_free = &b->first_data;
1925 b->first_data.string = NULL;
1926 b->next = NULL;
1928 if (current_sblock)
1929 current_sblock->next = b;
1930 else
1931 oldest_sblock = b;
1932 current_sblock = b;
1934 else
1935 b = current_sblock;
1937 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1938 old_nbytes = GC_STRING_BYTES (s);
1940 data = b->next_free;
1941 data->string = s;
1942 s->data = SDATA_DATA (data);
1943 #ifdef GC_CHECK_STRING_BYTES
1944 SDATA_NBYTES (data) = nbytes;
1945 #endif
1946 s->size = nchars;
1947 s->size_byte = nbytes;
1948 s->data[nbytes] = '\0';
1949 #ifdef GC_CHECK_STRING_OVERRUN
1950 bcopy (string_overrun_cookie, (char *) data + needed,
1951 GC_STRING_OVERRUN_COOKIE_SIZE);
1952 #endif
1953 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1955 /* If S had already data assigned, mark that as free by setting its
1956 string back-pointer to null, and recording the size of the data
1957 in it. */
1958 if (old_data)
1960 SDATA_NBYTES (old_data) = old_nbytes;
1961 old_data->string = NULL;
1964 consing_since_gc += needed;
1968 /* Sweep and compact strings. */
1970 static void
1971 sweep_strings ()
1973 struct string_block *b, *next;
1974 struct string_block *live_blocks = NULL;
1976 string_free_list = NULL;
1977 total_strings = total_free_strings = 0;
1978 total_string_size = 0;
1980 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1981 for (b = string_blocks; b; b = next)
1983 int i, nfree = 0;
1984 struct Lisp_String *free_list_before = string_free_list;
1986 next = b->next;
1988 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1990 struct Lisp_String *s = b->strings + i;
1992 if (s->data)
1994 /* String was not on free-list before. */
1995 if (STRING_MARKED_P (s))
1997 /* String is live; unmark it and its intervals. */
1998 UNMARK_STRING (s);
2000 if (!NULL_INTERVAL_P (s->intervals))
2001 UNMARK_BALANCE_INTERVALS (s->intervals);
2003 ++total_strings;
2004 total_string_size += STRING_BYTES (s);
2006 else
2008 /* String is dead. Put it on the free-list. */
2009 struct sdata *data = SDATA_OF_STRING (s);
2011 /* Save the size of S in its sdata so that we know
2012 how large that is. Reset the sdata's string
2013 back-pointer so that we know it's free. */
2014 #ifdef GC_CHECK_STRING_BYTES
2015 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2016 abort ();
2017 #else
2018 data->u.nbytes = GC_STRING_BYTES (s);
2019 #endif
2020 data->string = NULL;
2022 /* Reset the strings's `data' member so that we
2023 know it's free. */
2024 s->data = NULL;
2026 /* Put the string on the free-list. */
2027 NEXT_FREE_LISP_STRING (s) = string_free_list;
2028 string_free_list = s;
2029 ++nfree;
2032 else
2034 /* S was on the free-list before. Put it there again. */
2035 NEXT_FREE_LISP_STRING (s) = string_free_list;
2036 string_free_list = s;
2037 ++nfree;
2041 /* Free blocks that contain free Lisp_Strings only, except
2042 the first two of them. */
2043 if (nfree == STRING_BLOCK_SIZE
2044 && total_free_strings > STRING_BLOCK_SIZE)
2046 lisp_free (b);
2047 --n_string_blocks;
2048 string_free_list = free_list_before;
2050 else
2052 total_free_strings += nfree;
2053 b->next = live_blocks;
2054 live_blocks = b;
2058 check_string_free_list ();
2060 string_blocks = live_blocks;
2061 free_large_strings ();
2062 compact_small_strings ();
2064 check_string_free_list ();
2068 /* Free dead large strings. */
2070 static void
2071 free_large_strings ()
2073 struct sblock *b, *next;
2074 struct sblock *live_blocks = NULL;
2076 for (b = large_sblocks; b; b = next)
2078 next = b->next;
2080 if (b->first_data.string == NULL)
2081 lisp_free (b);
2082 else
2084 b->next = live_blocks;
2085 live_blocks = b;
2089 large_sblocks = live_blocks;
2093 /* Compact data of small strings. Free sblocks that don't contain
2094 data of live strings after compaction. */
2096 static void
2097 compact_small_strings ()
2099 struct sblock *b, *tb, *next;
2100 struct sdata *from, *to, *end, *tb_end;
2101 struct sdata *to_end, *from_end;
2103 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2104 to, and TB_END is the end of TB. */
2105 tb = oldest_sblock;
2106 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2107 to = &tb->first_data;
2109 /* Step through the blocks from the oldest to the youngest. We
2110 expect that old blocks will stabilize over time, so that less
2111 copying will happen this way. */
2112 for (b = oldest_sblock; b; b = b->next)
2114 end = b->next_free;
2115 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2117 for (from = &b->first_data; from < end; from = from_end)
2119 /* Compute the next FROM here because copying below may
2120 overwrite data we need to compute it. */
2121 int nbytes;
2123 #ifdef GC_CHECK_STRING_BYTES
2124 /* Check that the string size recorded in the string is the
2125 same as the one recorded in the sdata structure. */
2126 if (from->string
2127 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2128 abort ();
2129 #endif /* GC_CHECK_STRING_BYTES */
2131 if (from->string)
2132 nbytes = GC_STRING_BYTES (from->string);
2133 else
2134 nbytes = SDATA_NBYTES (from);
2136 if (nbytes > LARGE_STRING_BYTES)
2137 abort ();
2139 nbytes = SDATA_SIZE (nbytes);
2140 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2142 #ifdef GC_CHECK_STRING_OVERRUN
2143 if (bcmp (string_overrun_cookie,
2144 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2145 GC_STRING_OVERRUN_COOKIE_SIZE))
2146 abort ();
2147 #endif
2149 /* FROM->string non-null means it's alive. Copy its data. */
2150 if (from->string)
2152 /* If TB is full, proceed with the next sblock. */
2153 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2154 if (to_end > tb_end)
2156 tb->next_free = to;
2157 tb = tb->next;
2158 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2159 to = &tb->first_data;
2160 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2163 /* Copy, and update the string's `data' pointer. */
2164 if (from != to)
2166 xassert (tb != b || to <= from);
2167 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2168 to->string->data = SDATA_DATA (to);
2171 /* Advance past the sdata we copied to. */
2172 to = to_end;
2177 /* The rest of the sblocks following TB don't contain live data, so
2178 we can free them. */
2179 for (b = tb->next; b; b = next)
2181 next = b->next;
2182 lisp_free (b);
2185 tb->next_free = to;
2186 tb->next = NULL;
2187 current_sblock = tb;
2191 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2192 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2193 LENGTH must be an integer.
2194 INIT must be an integer that represents a character. */)
2195 (length, init)
2196 Lisp_Object length, init;
2198 register Lisp_Object val;
2199 register unsigned char *p, *end;
2200 int c, nbytes;
2202 CHECK_NATNUM (length);
2203 CHECK_NUMBER (init);
2205 c = XINT (init);
2206 if (SINGLE_BYTE_CHAR_P (c))
2208 nbytes = XINT (length);
2209 val = make_uninit_string (nbytes);
2210 p = SDATA (val);
2211 end = p + SCHARS (val);
2212 while (p != end)
2213 *p++ = c;
2215 else
2217 unsigned char str[MAX_MULTIBYTE_LENGTH];
2218 int len = CHAR_STRING (c, str);
2220 nbytes = len * XINT (length);
2221 val = make_uninit_multibyte_string (XINT (length), nbytes);
2222 p = SDATA (val);
2223 end = p + nbytes;
2224 while (p != end)
2226 bcopy (str, p, len);
2227 p += len;
2231 *p = 0;
2232 return val;
2236 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2237 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
2238 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2239 (length, init)
2240 Lisp_Object length, init;
2242 register Lisp_Object val;
2243 struct Lisp_Bool_Vector *p;
2244 int real_init, i;
2245 int length_in_chars, length_in_elts, bits_per_value;
2247 CHECK_NATNUM (length);
2249 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2251 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2252 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2253 / BOOL_VECTOR_BITS_PER_CHAR);
2255 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2256 slot `size' of the struct Lisp_Bool_Vector. */
2257 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2258 p = XBOOL_VECTOR (val);
2260 /* Get rid of any bits that would cause confusion. */
2261 p->vector_size = 0;
2262 XSETBOOL_VECTOR (val, p);
2263 p->size = XFASTINT (length);
2265 real_init = (NILP (init) ? 0 : -1);
2266 for (i = 0; i < length_in_chars ; i++)
2267 p->data[i] = real_init;
2269 /* Clear the extraneous bits in the last byte. */
2270 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2271 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2272 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2274 return val;
2278 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2279 of characters from the contents. This string may be unibyte or
2280 multibyte, depending on the contents. */
2282 Lisp_Object
2283 make_string (contents, nbytes)
2284 const char *contents;
2285 int nbytes;
2287 register Lisp_Object val;
2288 int nchars, multibyte_nbytes;
2290 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2291 if (nbytes == nchars || nbytes != multibyte_nbytes)
2292 /* CONTENTS contains no multibyte sequences or contains an invalid
2293 multibyte sequence. We must make unibyte string. */
2294 val = make_unibyte_string (contents, nbytes);
2295 else
2296 val = make_multibyte_string (contents, nchars, nbytes);
2297 return val;
2301 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2303 Lisp_Object
2304 make_unibyte_string (contents, length)
2305 const char *contents;
2306 int length;
2308 register Lisp_Object val;
2309 val = make_uninit_string (length);
2310 bcopy (contents, SDATA (val), length);
2311 STRING_SET_UNIBYTE (val);
2312 return val;
2316 /* Make a multibyte string from NCHARS characters occupying NBYTES
2317 bytes at CONTENTS. */
2319 Lisp_Object
2320 make_multibyte_string (contents, nchars, nbytes)
2321 const char *contents;
2322 int nchars, nbytes;
2324 register Lisp_Object val;
2325 val = make_uninit_multibyte_string (nchars, nbytes);
2326 bcopy (contents, SDATA (val), nbytes);
2327 return val;
2331 /* Make a string from NCHARS characters occupying NBYTES bytes at
2332 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2334 Lisp_Object
2335 make_string_from_bytes (contents, nchars, nbytes)
2336 const char *contents;
2337 int nchars, nbytes;
2339 register Lisp_Object val;
2340 val = make_uninit_multibyte_string (nchars, nbytes);
2341 bcopy (contents, SDATA (val), nbytes);
2342 if (SBYTES (val) == SCHARS (val))
2343 STRING_SET_UNIBYTE (val);
2344 return val;
2348 /* Make a string from NCHARS characters occupying NBYTES bytes at
2349 CONTENTS. The argument MULTIBYTE controls whether to label the
2350 string as multibyte. If NCHARS is negative, it counts the number of
2351 characters by itself. */
2353 Lisp_Object
2354 make_specified_string (contents, nchars, nbytes, multibyte)
2355 const char *contents;
2356 int nchars, nbytes;
2357 int multibyte;
2359 register Lisp_Object val;
2361 if (nchars < 0)
2363 if (multibyte)
2364 nchars = multibyte_chars_in_text (contents, nbytes);
2365 else
2366 nchars = nbytes;
2368 val = make_uninit_multibyte_string (nchars, nbytes);
2369 bcopy (contents, SDATA (val), nbytes);
2370 if (!multibyte)
2371 STRING_SET_UNIBYTE (val);
2372 return val;
2376 /* Make a string from the data at STR, treating it as multibyte if the
2377 data warrants. */
2379 Lisp_Object
2380 build_string (str)
2381 const char *str;
2383 return make_string (str, strlen (str));
2387 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2388 occupying LENGTH bytes. */
2390 Lisp_Object
2391 make_uninit_string (length)
2392 int length;
2394 Lisp_Object val;
2395 val = make_uninit_multibyte_string (length, length);
2396 STRING_SET_UNIBYTE (val);
2397 return val;
2401 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2402 which occupy NBYTES bytes. */
2404 Lisp_Object
2405 make_uninit_multibyte_string (nchars, nbytes)
2406 int nchars, nbytes;
2408 Lisp_Object string;
2409 struct Lisp_String *s;
2411 if (nchars < 0)
2412 abort ();
2414 s = allocate_string ();
2415 allocate_string_data (s, nchars, nbytes);
2416 XSETSTRING (string, s);
2417 string_chars_consed += nbytes;
2418 return string;
2423 /***********************************************************************
2424 Float Allocation
2425 ***********************************************************************/
2427 /* We store float cells inside of float_blocks, allocating a new
2428 float_block with malloc whenever necessary. Float cells reclaimed
2429 by GC are put on a free list to be reallocated before allocating
2430 any new float cells from the latest float_block. */
2432 #define FLOAT_BLOCK_SIZE \
2433 (((BLOCK_BYTES - sizeof (struct float_block *) \
2434 /* The compiler might add padding at the end. */ \
2435 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2436 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2438 #define GETMARKBIT(block,n) \
2439 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2440 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2441 & 1)
2443 #define SETMARKBIT(block,n) \
2444 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2445 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2447 #define UNSETMARKBIT(block,n) \
2448 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2449 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2451 #define FLOAT_BLOCK(fptr) \
2452 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2454 #define FLOAT_INDEX(fptr) \
2455 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2457 struct float_block
2459 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2460 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2461 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2462 struct float_block *next;
2465 #define FLOAT_MARKED_P(fptr) \
2466 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2468 #define FLOAT_MARK(fptr) \
2469 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2471 #define FLOAT_UNMARK(fptr) \
2472 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2474 /* Current float_block. */
2476 struct float_block *float_block;
2478 /* Index of first unused Lisp_Float in the current float_block. */
2480 int float_block_index;
2482 /* Total number of float blocks now in use. */
2484 int n_float_blocks;
2486 /* Free-list of Lisp_Floats. */
2488 struct Lisp_Float *float_free_list;
2491 /* Initialize float allocation. */
2493 void
2494 init_float ()
2496 float_block = NULL;
2497 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2498 float_free_list = 0;
2499 n_float_blocks = 0;
2503 /* Explicitly free a float cell by putting it on the free-list. */
2505 void
2506 free_float (ptr)
2507 struct Lisp_Float *ptr;
2509 *(struct Lisp_Float **)&ptr->data = float_free_list;
2510 float_free_list = ptr;
2514 /* Return a new float object with value FLOAT_VALUE. */
2516 Lisp_Object
2517 make_float (float_value)
2518 double float_value;
2520 register Lisp_Object val;
2522 if (float_free_list)
2524 /* We use the data field for chaining the free list
2525 so that we won't use the same field that has the mark bit. */
2526 XSETFLOAT (val, float_free_list);
2527 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2529 else
2531 if (float_block_index == FLOAT_BLOCK_SIZE)
2533 register struct float_block *new;
2535 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2536 MEM_TYPE_FLOAT);
2537 new->next = float_block;
2538 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2539 float_block = new;
2540 float_block_index = 0;
2541 n_float_blocks++;
2543 XSETFLOAT (val, &float_block->floats[float_block_index]);
2544 float_block_index++;
2547 XFLOAT_DATA (val) = float_value;
2548 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2549 consing_since_gc += sizeof (struct Lisp_Float);
2550 floats_consed++;
2551 return val;
2556 /***********************************************************************
2557 Cons Allocation
2558 ***********************************************************************/
2560 /* We store cons cells inside of cons_blocks, allocating a new
2561 cons_block with malloc whenever necessary. Cons cells reclaimed by
2562 GC are put on a free list to be reallocated before allocating
2563 any new cons cells from the latest cons_block. */
2565 #define CONS_BLOCK_SIZE \
2566 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2567 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2569 #define CONS_BLOCK(fptr) \
2570 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2572 #define CONS_INDEX(fptr) \
2573 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2575 struct cons_block
2577 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2578 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2579 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2580 struct cons_block *next;
2583 #define CONS_MARKED_P(fptr) \
2584 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2586 #define CONS_MARK(fptr) \
2587 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2589 #define CONS_UNMARK(fptr) \
2590 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2592 /* Current cons_block. */
2594 struct cons_block *cons_block;
2596 /* Index of first unused Lisp_Cons in the current block. */
2598 int cons_block_index;
2600 /* Free-list of Lisp_Cons structures. */
2602 struct Lisp_Cons *cons_free_list;
2604 /* Total number of cons blocks now in use. */
2606 int n_cons_blocks;
2609 /* Initialize cons allocation. */
2611 void
2612 init_cons ()
2614 cons_block = NULL;
2615 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2616 cons_free_list = 0;
2617 n_cons_blocks = 0;
2621 /* Explicitly free a cons cell by putting it on the free-list. */
2623 void
2624 free_cons (ptr)
2625 struct Lisp_Cons *ptr;
2627 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2628 #if GC_MARK_STACK
2629 ptr->car = Vdead;
2630 #endif
2631 cons_free_list = ptr;
2634 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2635 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2636 (car, cdr)
2637 Lisp_Object car, cdr;
2639 register Lisp_Object val;
2641 if (cons_free_list)
2643 /* We use the cdr for chaining the free list
2644 so that we won't use the same field that has the mark bit. */
2645 XSETCONS (val, cons_free_list);
2646 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2648 else
2650 if (cons_block_index == CONS_BLOCK_SIZE)
2652 register struct cons_block *new;
2653 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2654 MEM_TYPE_CONS);
2655 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2656 new->next = cons_block;
2657 cons_block = new;
2658 cons_block_index = 0;
2659 n_cons_blocks++;
2661 XSETCONS (val, &cons_block->conses[cons_block_index]);
2662 cons_block_index++;
2665 XSETCAR (val, car);
2666 XSETCDR (val, cdr);
2667 eassert (!CONS_MARKED_P (XCONS (val)));
2668 consing_since_gc += sizeof (struct Lisp_Cons);
2669 cons_cells_consed++;
2670 return val;
2673 /* Get an error now if there's any junk in the cons free list. */
2674 void
2675 check_cons_list ()
2677 #ifdef GC_CHECK_CONS_LIST
2678 struct Lisp_Cons *tail = cons_free_list;
2680 while (tail)
2681 tail = *(struct Lisp_Cons **)&tail->cdr;
2682 #endif
2685 /* Make a list of 2, 3, 4 or 5 specified objects. */
2687 Lisp_Object
2688 list2 (arg1, arg2)
2689 Lisp_Object arg1, arg2;
2691 return Fcons (arg1, Fcons (arg2, Qnil));
2695 Lisp_Object
2696 list3 (arg1, arg2, arg3)
2697 Lisp_Object arg1, arg2, arg3;
2699 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2703 Lisp_Object
2704 list4 (arg1, arg2, arg3, arg4)
2705 Lisp_Object arg1, arg2, arg3, arg4;
2707 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2711 Lisp_Object
2712 list5 (arg1, arg2, arg3, arg4, arg5)
2713 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2715 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2716 Fcons (arg5, Qnil)))));
2720 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2721 doc: /* Return a newly created list with specified arguments as elements.
2722 Any number of arguments, even zero arguments, are allowed.
2723 usage: (list &rest OBJECTS) */)
2724 (nargs, args)
2725 int nargs;
2726 register Lisp_Object *args;
2728 register Lisp_Object val;
2729 val = Qnil;
2731 while (nargs > 0)
2733 nargs--;
2734 val = Fcons (args[nargs], val);
2736 return val;
2740 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2741 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2742 (length, init)
2743 register Lisp_Object length, init;
2745 register Lisp_Object val;
2746 register int size;
2748 CHECK_NATNUM (length);
2749 size = XFASTINT (length);
2751 val = Qnil;
2752 while (size > 0)
2754 val = Fcons (init, val);
2755 --size;
2757 if (size > 0)
2759 val = Fcons (init, val);
2760 --size;
2762 if (size > 0)
2764 val = Fcons (init, val);
2765 --size;
2767 if (size > 0)
2769 val = Fcons (init, val);
2770 --size;
2772 if (size > 0)
2774 val = Fcons (init, val);
2775 --size;
2781 QUIT;
2784 return val;
2789 /***********************************************************************
2790 Vector Allocation
2791 ***********************************************************************/
2793 /* Singly-linked list of all vectors. */
2795 struct Lisp_Vector *all_vectors;
2797 /* Total number of vector-like objects now in use. */
2799 int n_vectors;
2802 /* Value is a pointer to a newly allocated Lisp_Vector structure
2803 with room for LEN Lisp_Objects. */
2805 static struct Lisp_Vector *
2806 allocate_vectorlike (len, type)
2807 EMACS_INT len;
2808 enum mem_type type;
2810 struct Lisp_Vector *p;
2811 size_t nbytes;
2813 #ifdef DOUG_LEA_MALLOC
2814 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2815 because mapped region contents are not preserved in
2816 a dumped Emacs. */
2817 BLOCK_INPUT;
2818 mallopt (M_MMAP_MAX, 0);
2819 UNBLOCK_INPUT;
2820 #endif
2822 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2823 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2825 #ifdef DOUG_LEA_MALLOC
2826 /* Back to a reasonable maximum of mmap'ed areas. */
2827 BLOCK_INPUT;
2828 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2829 UNBLOCK_INPUT;
2830 #endif
2832 consing_since_gc += nbytes;
2833 vector_cells_consed += len;
2835 p->next = all_vectors;
2836 all_vectors = p;
2837 ++n_vectors;
2838 return p;
2842 /* Allocate a vector with NSLOTS slots. */
2844 struct Lisp_Vector *
2845 allocate_vector (nslots)
2846 EMACS_INT nslots;
2848 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2849 v->size = nslots;
2850 return v;
2854 /* Allocate other vector-like structures. */
2856 struct Lisp_Hash_Table *
2857 allocate_hash_table ()
2859 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2860 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2861 EMACS_INT i;
2863 v->size = len;
2864 for (i = 0; i < len; ++i)
2865 v->contents[i] = Qnil;
2867 return (struct Lisp_Hash_Table *) v;
2871 struct window *
2872 allocate_window ()
2874 EMACS_INT len = VECSIZE (struct window);
2875 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2876 EMACS_INT i;
2878 for (i = 0; i < len; ++i)
2879 v->contents[i] = Qnil;
2880 v->size = len;
2882 return (struct window *) v;
2886 struct frame *
2887 allocate_frame ()
2889 EMACS_INT len = VECSIZE (struct frame);
2890 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2891 EMACS_INT i;
2893 for (i = 0; i < len; ++i)
2894 v->contents[i] = make_number (0);
2895 v->size = len;
2896 return (struct frame *) v;
2900 struct Lisp_Process *
2901 allocate_process ()
2903 EMACS_INT len = VECSIZE (struct Lisp_Process);
2904 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2905 EMACS_INT i;
2907 for (i = 0; i < len; ++i)
2908 v->contents[i] = Qnil;
2909 v->size = len;
2911 return (struct Lisp_Process *) v;
2915 struct Lisp_Vector *
2916 allocate_other_vector (len)
2917 EMACS_INT len;
2919 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2920 EMACS_INT i;
2922 for (i = 0; i < len; ++i)
2923 v->contents[i] = Qnil;
2924 v->size = len;
2926 return v;
2930 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2931 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2932 See also the function `vector'. */)
2933 (length, init)
2934 register Lisp_Object length, init;
2936 Lisp_Object vector;
2937 register EMACS_INT sizei;
2938 register int index;
2939 register struct Lisp_Vector *p;
2941 CHECK_NATNUM (length);
2942 sizei = XFASTINT (length);
2944 p = allocate_vector (sizei);
2945 for (index = 0; index < sizei; index++)
2946 p->contents[index] = init;
2948 XSETVECTOR (vector, p);
2949 return vector;
2953 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2954 doc: /* Return a newly created char-table, with purpose PURPOSE.
2955 Each element is initialized to INIT, which defaults to nil.
2956 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2957 The property's value should be an integer between 0 and 10. */)
2958 (purpose, init)
2959 register Lisp_Object purpose, init;
2961 Lisp_Object vector;
2962 Lisp_Object n;
2963 CHECK_SYMBOL (purpose);
2964 n = Fget (purpose, Qchar_table_extra_slots);
2965 CHECK_NUMBER (n);
2966 if (XINT (n) < 0 || XINT (n) > 10)
2967 args_out_of_range (n, Qnil);
2968 /* Add 2 to the size for the defalt and parent slots. */
2969 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2970 init);
2971 XCHAR_TABLE (vector)->top = Qt;
2972 XCHAR_TABLE (vector)->parent = Qnil;
2973 XCHAR_TABLE (vector)->purpose = purpose;
2974 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2975 return vector;
2979 /* Return a newly created sub char table with default value DEFALT.
2980 Since a sub char table does not appear as a top level Emacs Lisp
2981 object, we don't need a Lisp interface to make it. */
2983 Lisp_Object
2984 make_sub_char_table (defalt)
2985 Lisp_Object defalt;
2987 Lisp_Object vector
2988 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2989 XCHAR_TABLE (vector)->top = Qnil;
2990 XCHAR_TABLE (vector)->defalt = defalt;
2991 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2992 return vector;
2996 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2997 doc: /* Return a newly created vector with specified arguments as elements.
2998 Any number of arguments, even zero arguments, are allowed.
2999 usage: (vector &rest OBJECTS) */)
3000 (nargs, args)
3001 register int nargs;
3002 Lisp_Object *args;
3004 register Lisp_Object len, val;
3005 register int index;
3006 register struct Lisp_Vector *p;
3008 XSETFASTINT (len, nargs);
3009 val = Fmake_vector (len, Qnil);
3010 p = XVECTOR (val);
3011 for (index = 0; index < nargs; index++)
3012 p->contents[index] = args[index];
3013 return val;
3017 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3018 doc: /* Create a byte-code object with specified arguments as elements.
3019 The arguments should be the arglist, bytecode-string, constant vector,
3020 stack size, (optional) doc string, and (optional) interactive spec.
3021 The first four arguments are required; at most six have any
3022 significance.
3023 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3024 (nargs, args)
3025 register int nargs;
3026 Lisp_Object *args;
3028 register Lisp_Object len, val;
3029 register int index;
3030 register struct Lisp_Vector *p;
3032 XSETFASTINT (len, nargs);
3033 if (!NILP (Vpurify_flag))
3034 val = make_pure_vector ((EMACS_INT) nargs);
3035 else
3036 val = Fmake_vector (len, Qnil);
3038 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3039 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3040 earlier because they produced a raw 8-bit string for byte-code
3041 and now such a byte-code string is loaded as multibyte while
3042 raw 8-bit characters converted to multibyte form. Thus, now we
3043 must convert them back to the original unibyte form. */
3044 args[1] = Fstring_as_unibyte (args[1]);
3046 p = XVECTOR (val);
3047 for (index = 0; index < nargs; index++)
3049 if (!NILP (Vpurify_flag))
3050 args[index] = Fpurecopy (args[index]);
3051 p->contents[index] = args[index];
3053 XSETCOMPILED (val, p);
3054 return val;
3059 /***********************************************************************
3060 Symbol Allocation
3061 ***********************************************************************/
3063 /* Each symbol_block is just under 1020 bytes long, since malloc
3064 really allocates in units of powers of two and uses 4 bytes for its
3065 own overhead. */
3067 #define SYMBOL_BLOCK_SIZE \
3068 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3070 struct symbol_block
3072 /* Place `symbols' first, to preserve alignment. */
3073 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3074 struct symbol_block *next;
3077 /* Current symbol block and index of first unused Lisp_Symbol
3078 structure in it. */
3080 struct symbol_block *symbol_block;
3081 int symbol_block_index;
3083 /* List of free symbols. */
3085 struct Lisp_Symbol *symbol_free_list;
3087 /* Total number of symbol blocks now in use. */
3089 int n_symbol_blocks;
3092 /* Initialize symbol allocation. */
3094 void
3095 init_symbol ()
3097 symbol_block = NULL;
3098 symbol_block_index = SYMBOL_BLOCK_SIZE;
3099 symbol_free_list = 0;
3100 n_symbol_blocks = 0;
3104 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3105 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3106 Its value and function definition are void, and its property list is nil. */)
3107 (name)
3108 Lisp_Object name;
3110 register Lisp_Object val;
3111 register struct Lisp_Symbol *p;
3113 CHECK_STRING (name);
3115 if (symbol_free_list)
3117 XSETSYMBOL (val, symbol_free_list);
3118 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
3120 else
3122 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3124 struct symbol_block *new;
3125 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3126 MEM_TYPE_SYMBOL);
3127 new->next = symbol_block;
3128 symbol_block = new;
3129 symbol_block_index = 0;
3130 n_symbol_blocks++;
3132 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3133 symbol_block_index++;
3136 p = XSYMBOL (val);
3137 p->xname = name;
3138 p->plist = Qnil;
3139 p->value = Qunbound;
3140 p->function = Qunbound;
3141 p->next = NULL;
3142 p->gcmarkbit = 0;
3143 p->interned = SYMBOL_UNINTERNED;
3144 p->constant = 0;
3145 p->indirect_variable = 0;
3146 consing_since_gc += sizeof (struct Lisp_Symbol);
3147 symbols_consed++;
3148 return val;
3153 /***********************************************************************
3154 Marker (Misc) Allocation
3155 ***********************************************************************/
3157 /* Allocation of markers and other objects that share that structure.
3158 Works like allocation of conses. */
3160 #define MARKER_BLOCK_SIZE \
3161 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3163 struct marker_block
3165 /* Place `markers' first, to preserve alignment. */
3166 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3167 struct marker_block *next;
3170 struct marker_block *marker_block;
3171 int marker_block_index;
3173 union Lisp_Misc *marker_free_list;
3175 /* Total number of marker blocks now in use. */
3177 int n_marker_blocks;
3179 void
3180 init_marker ()
3182 marker_block = NULL;
3183 marker_block_index = MARKER_BLOCK_SIZE;
3184 marker_free_list = 0;
3185 n_marker_blocks = 0;
3188 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3190 Lisp_Object
3191 allocate_misc ()
3193 Lisp_Object val;
3195 if (marker_free_list)
3197 XSETMISC (val, marker_free_list);
3198 marker_free_list = marker_free_list->u_free.chain;
3200 else
3202 if (marker_block_index == MARKER_BLOCK_SIZE)
3204 struct marker_block *new;
3205 new = (struct marker_block *) lisp_malloc (sizeof *new,
3206 MEM_TYPE_MISC);
3207 new->next = marker_block;
3208 marker_block = new;
3209 marker_block_index = 0;
3210 n_marker_blocks++;
3211 total_free_markers += MARKER_BLOCK_SIZE;
3213 XSETMISC (val, &marker_block->markers[marker_block_index]);
3214 marker_block_index++;
3217 --total_free_markers;
3218 consing_since_gc += sizeof (union Lisp_Misc);
3219 misc_objects_consed++;
3220 XMARKER (val)->gcmarkbit = 0;
3221 return val;
3224 /* Free a Lisp_Misc object */
3226 void
3227 free_misc (misc)
3228 Lisp_Object misc;
3230 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3231 XMISC (misc)->u_free.chain = marker_free_list;
3232 marker_free_list = XMISC (misc);
3234 total_free_markers++;
3237 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3238 INTEGER. This is used to package C values to call record_unwind_protect.
3239 The unwind function can get the C values back using XSAVE_VALUE. */
3241 Lisp_Object
3242 make_save_value (pointer, integer)
3243 void *pointer;
3244 int integer;
3246 register Lisp_Object val;
3247 register struct Lisp_Save_Value *p;
3249 val = allocate_misc ();
3250 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3251 p = XSAVE_VALUE (val);
3252 p->pointer = pointer;
3253 p->integer = integer;
3254 p->dogc = 0;
3255 return val;
3258 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3259 doc: /* Return a newly allocated marker which does not point at any place. */)
3262 register Lisp_Object val;
3263 register struct Lisp_Marker *p;
3265 val = allocate_misc ();
3266 XMISCTYPE (val) = Lisp_Misc_Marker;
3267 p = XMARKER (val);
3268 p->buffer = 0;
3269 p->bytepos = 0;
3270 p->charpos = 0;
3271 p->next = NULL;
3272 p->insertion_type = 0;
3273 return val;
3276 /* Put MARKER back on the free list after using it temporarily. */
3278 void
3279 free_marker (marker)
3280 Lisp_Object marker;
3282 unchain_marker (XMARKER (marker));
3283 free_misc (marker);
3287 /* Return a newly created vector or string with specified arguments as
3288 elements. If all the arguments are characters that can fit
3289 in a string of events, make a string; otherwise, make a vector.
3291 Any number of arguments, even zero arguments, are allowed. */
3293 Lisp_Object
3294 make_event_array (nargs, args)
3295 register int nargs;
3296 Lisp_Object *args;
3298 int i;
3300 for (i = 0; i < nargs; i++)
3301 /* The things that fit in a string
3302 are characters that are in 0...127,
3303 after discarding the meta bit and all the bits above it. */
3304 if (!INTEGERP (args[i])
3305 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3306 return Fvector (nargs, args);
3308 /* Since the loop exited, we know that all the things in it are
3309 characters, so we can make a string. */
3311 Lisp_Object result;
3313 result = Fmake_string (make_number (nargs), make_number (0));
3314 for (i = 0; i < nargs; i++)
3316 SSET (result, i, XINT (args[i]));
3317 /* Move the meta bit to the right place for a string char. */
3318 if (XINT (args[i]) & CHAR_META)
3319 SSET (result, i, SREF (result, i) | 0x80);
3322 return result;
3328 /************************************************************************
3329 C Stack Marking
3330 ************************************************************************/
3332 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3334 /* Conservative C stack marking requires a method to identify possibly
3335 live Lisp objects given a pointer value. We do this by keeping
3336 track of blocks of Lisp data that are allocated in a red-black tree
3337 (see also the comment of mem_node which is the type of nodes in
3338 that tree). Function lisp_malloc adds information for an allocated
3339 block to the red-black tree with calls to mem_insert, and function
3340 lisp_free removes it with mem_delete. Functions live_string_p etc
3341 call mem_find to lookup information about a given pointer in the
3342 tree, and use that to determine if the pointer points to a Lisp
3343 object or not. */
3345 /* Initialize this part of alloc.c. */
3347 static void
3348 mem_init ()
3350 mem_z.left = mem_z.right = MEM_NIL;
3351 mem_z.parent = NULL;
3352 mem_z.color = MEM_BLACK;
3353 mem_z.start = mem_z.end = NULL;
3354 mem_root = MEM_NIL;
3358 /* Value is a pointer to the mem_node containing START. Value is
3359 MEM_NIL if there is no node in the tree containing START. */
3361 static INLINE struct mem_node *
3362 mem_find (start)
3363 void *start;
3365 struct mem_node *p;
3367 if (start < min_heap_address || start > max_heap_address)
3368 return MEM_NIL;
3370 /* Make the search always successful to speed up the loop below. */
3371 mem_z.start = start;
3372 mem_z.end = (char *) start + 1;
3374 p = mem_root;
3375 while (start < p->start || start >= p->end)
3376 p = start < p->start ? p->left : p->right;
3377 return p;
3381 /* Insert a new node into the tree for a block of memory with start
3382 address START, end address END, and type TYPE. Value is a
3383 pointer to the node that was inserted. */
3385 static struct mem_node *
3386 mem_insert (start, end, type)
3387 void *start, *end;
3388 enum mem_type type;
3390 struct mem_node *c, *parent, *x;
3392 if (start < min_heap_address)
3393 min_heap_address = start;
3394 if (end > max_heap_address)
3395 max_heap_address = end;
3397 /* See where in the tree a node for START belongs. In this
3398 particular application, it shouldn't happen that a node is already
3399 present. For debugging purposes, let's check that. */
3400 c = mem_root;
3401 parent = NULL;
3403 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3405 while (c != MEM_NIL)
3407 if (start >= c->start && start < c->end)
3408 abort ();
3409 parent = c;
3410 c = start < c->start ? c->left : c->right;
3413 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3415 while (c != MEM_NIL)
3417 parent = c;
3418 c = start < c->start ? c->left : c->right;
3421 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3423 /* Create a new node. */
3424 #ifdef GC_MALLOC_CHECK
3425 x = (struct mem_node *) _malloc_internal (sizeof *x);
3426 if (x == NULL)
3427 abort ();
3428 #else
3429 x = (struct mem_node *) xmalloc (sizeof *x);
3430 #endif
3431 x->start = start;
3432 x->end = end;
3433 x->type = type;
3434 x->parent = parent;
3435 x->left = x->right = MEM_NIL;
3436 x->color = MEM_RED;
3438 /* Insert it as child of PARENT or install it as root. */
3439 if (parent)
3441 if (start < parent->start)
3442 parent->left = x;
3443 else
3444 parent->right = x;
3446 else
3447 mem_root = x;
3449 /* Re-establish red-black tree properties. */
3450 mem_insert_fixup (x);
3452 return x;
3456 /* Re-establish the red-black properties of the tree, and thereby
3457 balance the tree, after node X has been inserted; X is always red. */
3459 static void
3460 mem_insert_fixup (x)
3461 struct mem_node *x;
3463 while (x != mem_root && x->parent->color == MEM_RED)
3465 /* X is red and its parent is red. This is a violation of
3466 red-black tree property #3. */
3468 if (x->parent == x->parent->parent->left)
3470 /* We're on the left side of our grandparent, and Y is our
3471 "uncle". */
3472 struct mem_node *y = x->parent->parent->right;
3474 if (y->color == MEM_RED)
3476 /* Uncle and parent are red but should be black because
3477 X is red. Change the colors accordingly and proceed
3478 with the grandparent. */
3479 x->parent->color = MEM_BLACK;
3480 y->color = MEM_BLACK;
3481 x->parent->parent->color = MEM_RED;
3482 x = x->parent->parent;
3484 else
3486 /* Parent and uncle have different colors; parent is
3487 red, uncle is black. */
3488 if (x == x->parent->right)
3490 x = x->parent;
3491 mem_rotate_left (x);
3494 x->parent->color = MEM_BLACK;
3495 x->parent->parent->color = MEM_RED;
3496 mem_rotate_right (x->parent->parent);
3499 else
3501 /* This is the symmetrical case of above. */
3502 struct mem_node *y = x->parent->parent->left;
3504 if (y->color == MEM_RED)
3506 x->parent->color = MEM_BLACK;
3507 y->color = MEM_BLACK;
3508 x->parent->parent->color = MEM_RED;
3509 x = x->parent->parent;
3511 else
3513 if (x == x->parent->left)
3515 x = x->parent;
3516 mem_rotate_right (x);
3519 x->parent->color = MEM_BLACK;
3520 x->parent->parent->color = MEM_RED;
3521 mem_rotate_left (x->parent->parent);
3526 /* The root may have been changed to red due to the algorithm. Set
3527 it to black so that property #5 is satisfied. */
3528 mem_root->color = MEM_BLACK;
3532 /* (x) (y)
3533 / \ / \
3534 a (y) ===> (x) c
3535 / \ / \
3536 b c a b */
3538 static void
3539 mem_rotate_left (x)
3540 struct mem_node *x;
3542 struct mem_node *y;
3544 /* Turn y's left sub-tree into x's right sub-tree. */
3545 y = x->right;
3546 x->right = y->left;
3547 if (y->left != MEM_NIL)
3548 y->left->parent = x;
3550 /* Y's parent was x's parent. */
3551 if (y != MEM_NIL)
3552 y->parent = x->parent;
3554 /* Get the parent to point to y instead of x. */
3555 if (x->parent)
3557 if (x == x->parent->left)
3558 x->parent->left = y;
3559 else
3560 x->parent->right = y;
3562 else
3563 mem_root = y;
3565 /* Put x on y's left. */
3566 y->left = x;
3567 if (x != MEM_NIL)
3568 x->parent = y;
3572 /* (x) (Y)
3573 / \ / \
3574 (y) c ===> a (x)
3575 / \ / \
3576 a b b c */
3578 static void
3579 mem_rotate_right (x)
3580 struct mem_node *x;
3582 struct mem_node *y = x->left;
3584 x->left = y->right;
3585 if (y->right != MEM_NIL)
3586 y->right->parent = x;
3588 if (y != MEM_NIL)
3589 y->parent = x->parent;
3590 if (x->parent)
3592 if (x == x->parent->right)
3593 x->parent->right = y;
3594 else
3595 x->parent->left = y;
3597 else
3598 mem_root = y;
3600 y->right = x;
3601 if (x != MEM_NIL)
3602 x->parent = y;
3606 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3608 static void
3609 mem_delete (z)
3610 struct mem_node *z;
3612 struct mem_node *x, *y;
3614 if (!z || z == MEM_NIL)
3615 return;
3617 if (z->left == MEM_NIL || z->right == MEM_NIL)
3618 y = z;
3619 else
3621 y = z->right;
3622 while (y->left != MEM_NIL)
3623 y = y->left;
3626 if (y->left != MEM_NIL)
3627 x = y->left;
3628 else
3629 x = y->right;
3631 x->parent = y->parent;
3632 if (y->parent)
3634 if (y == y->parent->left)
3635 y->parent->left = x;
3636 else
3637 y->parent->right = x;
3639 else
3640 mem_root = x;
3642 if (y != z)
3644 z->start = y->start;
3645 z->end = y->end;
3646 z->type = y->type;
3649 if (y->color == MEM_BLACK)
3650 mem_delete_fixup (x);
3652 #ifdef GC_MALLOC_CHECK
3653 _free_internal (y);
3654 #else
3655 xfree (y);
3656 #endif
3660 /* Re-establish the red-black properties of the tree, after a
3661 deletion. */
3663 static void
3664 mem_delete_fixup (x)
3665 struct mem_node *x;
3667 while (x != mem_root && x->color == MEM_BLACK)
3669 if (x == x->parent->left)
3671 struct mem_node *w = x->parent->right;
3673 if (w->color == MEM_RED)
3675 w->color = MEM_BLACK;
3676 x->parent->color = MEM_RED;
3677 mem_rotate_left (x->parent);
3678 w = x->parent->right;
3681 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3683 w->color = MEM_RED;
3684 x = x->parent;
3686 else
3688 if (w->right->color == MEM_BLACK)
3690 w->left->color = MEM_BLACK;
3691 w->color = MEM_RED;
3692 mem_rotate_right (w);
3693 w = x->parent->right;
3695 w->color = x->parent->color;
3696 x->parent->color = MEM_BLACK;
3697 w->right->color = MEM_BLACK;
3698 mem_rotate_left (x->parent);
3699 x = mem_root;
3702 else
3704 struct mem_node *w = x->parent->left;
3706 if (w->color == MEM_RED)
3708 w->color = MEM_BLACK;
3709 x->parent->color = MEM_RED;
3710 mem_rotate_right (x->parent);
3711 w = x->parent->left;
3714 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3716 w->color = MEM_RED;
3717 x = x->parent;
3719 else
3721 if (w->left->color == MEM_BLACK)
3723 w->right->color = MEM_BLACK;
3724 w->color = MEM_RED;
3725 mem_rotate_left (w);
3726 w = x->parent->left;
3729 w->color = x->parent->color;
3730 x->parent->color = MEM_BLACK;
3731 w->left->color = MEM_BLACK;
3732 mem_rotate_right (x->parent);
3733 x = mem_root;
3738 x->color = MEM_BLACK;
3742 /* Value is non-zero if P is a pointer to a live Lisp string on
3743 the heap. M is a pointer to the mem_block for P. */
3745 static INLINE int
3746 live_string_p (m, p)
3747 struct mem_node *m;
3748 void *p;
3750 if (m->type == MEM_TYPE_STRING)
3752 struct string_block *b = (struct string_block *) m->start;
3753 int offset = (char *) p - (char *) &b->strings[0];
3755 /* P must point to the start of a Lisp_String structure, and it
3756 must not be on the free-list. */
3757 return (offset >= 0
3758 && offset % sizeof b->strings[0] == 0
3759 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3760 && ((struct Lisp_String *) p)->data != NULL);
3762 else
3763 return 0;
3767 /* Value is non-zero if P is a pointer to a live Lisp cons on
3768 the heap. M is a pointer to the mem_block for P. */
3770 static INLINE int
3771 live_cons_p (m, p)
3772 struct mem_node *m;
3773 void *p;
3775 if (m->type == MEM_TYPE_CONS)
3777 struct cons_block *b = (struct cons_block *) m->start;
3778 int offset = (char *) p - (char *) &b->conses[0];
3780 /* P must point to the start of a Lisp_Cons, not be
3781 one of the unused cells in the current cons block,
3782 and not be on the free-list. */
3783 return (offset >= 0
3784 && offset % sizeof b->conses[0] == 0
3785 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3786 && (b != cons_block
3787 || offset / sizeof b->conses[0] < cons_block_index)
3788 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3790 else
3791 return 0;
3795 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3796 the heap. M is a pointer to the mem_block for P. */
3798 static INLINE int
3799 live_symbol_p (m, p)
3800 struct mem_node *m;
3801 void *p;
3803 if (m->type == MEM_TYPE_SYMBOL)
3805 struct symbol_block *b = (struct symbol_block *) m->start;
3806 int offset = (char *) p - (char *) &b->symbols[0];
3808 /* P must point to the start of a Lisp_Symbol, not be
3809 one of the unused cells in the current symbol block,
3810 and not be on the free-list. */
3811 return (offset >= 0
3812 && offset % sizeof b->symbols[0] == 0
3813 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3814 && (b != symbol_block
3815 || offset / sizeof b->symbols[0] < symbol_block_index)
3816 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3818 else
3819 return 0;
3823 /* Value is non-zero if P is a pointer to a live Lisp float on
3824 the heap. M is a pointer to the mem_block for P. */
3826 static INLINE int
3827 live_float_p (m, p)
3828 struct mem_node *m;
3829 void *p;
3831 if (m->type == MEM_TYPE_FLOAT)
3833 struct float_block *b = (struct float_block *) m->start;
3834 int offset = (char *) p - (char *) &b->floats[0];
3836 /* P must point to the start of a Lisp_Float and not be
3837 one of the unused cells in the current float block. */
3838 return (offset >= 0
3839 && offset % sizeof b->floats[0] == 0
3840 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3841 && (b != float_block
3842 || offset / sizeof b->floats[0] < float_block_index));
3844 else
3845 return 0;
3849 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3850 the heap. M is a pointer to the mem_block for P. */
3852 static INLINE int
3853 live_misc_p (m, p)
3854 struct mem_node *m;
3855 void *p;
3857 if (m->type == MEM_TYPE_MISC)
3859 struct marker_block *b = (struct marker_block *) m->start;
3860 int offset = (char *) p - (char *) &b->markers[0];
3862 /* P must point to the start of a Lisp_Misc, not be
3863 one of the unused cells in the current misc block,
3864 and not be on the free-list. */
3865 return (offset >= 0
3866 && offset % sizeof b->markers[0] == 0
3867 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3868 && (b != marker_block
3869 || offset / sizeof b->markers[0] < marker_block_index)
3870 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3872 else
3873 return 0;
3877 /* Value is non-zero if P is a pointer to a live vector-like object.
3878 M is a pointer to the mem_block for P. */
3880 static INLINE int
3881 live_vector_p (m, p)
3882 struct mem_node *m;
3883 void *p;
3885 return (p == m->start
3886 && m->type >= MEM_TYPE_VECTOR
3887 && m->type <= MEM_TYPE_WINDOW);
3891 /* Value is non-zero if P is a pointer to a live buffer. M is a
3892 pointer to the mem_block for P. */
3894 static INLINE int
3895 live_buffer_p (m, p)
3896 struct mem_node *m;
3897 void *p;
3899 /* P must point to the start of the block, and the buffer
3900 must not have been killed. */
3901 return (m->type == MEM_TYPE_BUFFER
3902 && p == m->start
3903 && !NILP (((struct buffer *) p)->name));
3906 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3908 #if GC_MARK_STACK
3910 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3912 /* Array of objects that are kept alive because the C stack contains
3913 a pattern that looks like a reference to them . */
3915 #define MAX_ZOMBIES 10
3916 static Lisp_Object zombies[MAX_ZOMBIES];
3918 /* Number of zombie objects. */
3920 static int nzombies;
3922 /* Number of garbage collections. */
3924 static int ngcs;
3926 /* Average percentage of zombies per collection. */
3928 static double avg_zombies;
3930 /* Max. number of live and zombie objects. */
3932 static int max_live, max_zombies;
3934 /* Average number of live objects per GC. */
3936 static double avg_live;
3938 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3939 doc: /* Show information about live and zombie objects. */)
3942 Lisp_Object args[8], zombie_list = Qnil;
3943 int i;
3944 for (i = 0; i < nzombies; i++)
3945 zombie_list = Fcons (zombies[i], zombie_list);
3946 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3947 args[1] = make_number (ngcs);
3948 args[2] = make_float (avg_live);
3949 args[3] = make_float (avg_zombies);
3950 args[4] = make_float (avg_zombies / avg_live / 100);
3951 args[5] = make_number (max_live);
3952 args[6] = make_number (max_zombies);
3953 args[7] = zombie_list;
3954 return Fmessage (8, args);
3957 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3960 /* Mark OBJ if we can prove it's a Lisp_Object. */
3962 static INLINE void
3963 mark_maybe_object (obj)
3964 Lisp_Object obj;
3966 void *po = (void *) XPNTR (obj);
3967 struct mem_node *m = mem_find (po);
3969 if (m != MEM_NIL)
3971 int mark_p = 0;
3973 switch (XGCTYPE (obj))
3975 case Lisp_String:
3976 mark_p = (live_string_p (m, po)
3977 && !STRING_MARKED_P ((struct Lisp_String *) po));
3978 break;
3980 case Lisp_Cons:
3981 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3982 break;
3984 case Lisp_Symbol:
3985 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3986 break;
3988 case Lisp_Float:
3989 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3990 break;
3992 case Lisp_Vectorlike:
3993 /* Note: can't check GC_BUFFERP before we know it's a
3994 buffer because checking that dereferences the pointer
3995 PO which might point anywhere. */
3996 if (live_vector_p (m, po))
3997 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3998 else if (live_buffer_p (m, po))
3999 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4000 break;
4002 case Lisp_Misc:
4003 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4004 break;
4006 case Lisp_Int:
4007 case Lisp_Type_Limit:
4008 break;
4011 if (mark_p)
4013 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4014 if (nzombies < MAX_ZOMBIES)
4015 zombies[nzombies] = obj;
4016 ++nzombies;
4017 #endif
4018 mark_object (obj);
4024 /* If P points to Lisp data, mark that as live if it isn't already
4025 marked. */
4027 static INLINE void
4028 mark_maybe_pointer (p)
4029 void *p;
4031 struct mem_node *m;
4033 /* Quickly rule out some values which can't point to Lisp data. We
4034 assume that Lisp data is aligned on even addresses. */
4035 if ((EMACS_INT) p & 1)
4036 return;
4038 m = mem_find (p);
4039 if (m != MEM_NIL)
4041 Lisp_Object obj = Qnil;
4043 switch (m->type)
4045 case MEM_TYPE_NON_LISP:
4046 /* Nothing to do; not a pointer to Lisp memory. */
4047 break;
4049 case MEM_TYPE_BUFFER:
4050 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4051 XSETVECTOR (obj, p);
4052 break;
4054 case MEM_TYPE_CONS:
4055 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4056 XSETCONS (obj, p);
4057 break;
4059 case MEM_TYPE_STRING:
4060 if (live_string_p (m, p)
4061 && !STRING_MARKED_P ((struct Lisp_String *) p))
4062 XSETSTRING (obj, p);
4063 break;
4065 case MEM_TYPE_MISC:
4066 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4067 XSETMISC (obj, p);
4068 break;
4070 case MEM_TYPE_SYMBOL:
4071 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4072 XSETSYMBOL (obj, p);
4073 break;
4075 case MEM_TYPE_FLOAT:
4076 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4077 XSETFLOAT (obj, p);
4078 break;
4080 case MEM_TYPE_VECTOR:
4081 case MEM_TYPE_PROCESS:
4082 case MEM_TYPE_HASH_TABLE:
4083 case MEM_TYPE_FRAME:
4084 case MEM_TYPE_WINDOW:
4085 if (live_vector_p (m, p))
4087 Lisp_Object tem;
4088 XSETVECTOR (tem, p);
4089 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4090 obj = tem;
4092 break;
4094 default:
4095 abort ();
4098 if (!GC_NILP (obj))
4099 mark_object (obj);
4104 /* Mark Lisp objects referenced from the address range START..END. */
4106 static void
4107 mark_memory (start, end)
4108 void *start, *end;
4110 Lisp_Object *p;
4111 void **pp;
4113 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4114 nzombies = 0;
4115 #endif
4117 /* Make START the pointer to the start of the memory region,
4118 if it isn't already. */
4119 if (end < start)
4121 void *tem = start;
4122 start = end;
4123 end = tem;
4126 /* Mark Lisp_Objects. */
4127 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4128 mark_maybe_object (*p);
4130 /* Mark Lisp data pointed to. This is necessary because, in some
4131 situations, the C compiler optimizes Lisp objects away, so that
4132 only a pointer to them remains. Example:
4134 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4137 Lisp_Object obj = build_string ("test");
4138 struct Lisp_String *s = XSTRING (obj);
4139 Fgarbage_collect ();
4140 fprintf (stderr, "test `%s'\n", s->data);
4141 return Qnil;
4144 Here, `obj' isn't really used, and the compiler optimizes it
4145 away. The only reference to the life string is through the
4146 pointer `s'. */
4148 for (pp = (void **) start; (void *) pp < end; ++pp)
4149 mark_maybe_pointer (*pp);
4152 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4153 the GCC system configuration. In gcc 3.2, the only systems for
4154 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4155 by others?) and ns32k-pc532-min. */
4157 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4159 static int setjmp_tested_p, longjmps_done;
4161 #define SETJMP_WILL_LIKELY_WORK "\
4163 Emacs garbage collector has been changed to use conservative stack\n\
4164 marking. Emacs has determined that the method it uses to do the\n\
4165 marking will likely work on your system, but this isn't sure.\n\
4167 If you are a system-programmer, or can get the help of a local wizard\n\
4168 who is, please take a look at the function mark_stack in alloc.c, and\n\
4169 verify that the methods used are appropriate for your system.\n\
4171 Please mail the result to <emacs-devel@gnu.org>.\n\
4174 #define SETJMP_WILL_NOT_WORK "\
4176 Emacs garbage collector has been changed to use conservative stack\n\
4177 marking. Emacs has determined that the default method it uses to do the\n\
4178 marking will not work on your system. We will need a system-dependent\n\
4179 solution for your system.\n\
4181 Please take a look at the function mark_stack in alloc.c, and\n\
4182 try to find a way to make it work on your system.\n\
4184 Note that you may get false negatives, depending on the compiler.\n\
4185 In particular, you need to use -O with GCC for this test.\n\
4187 Please mail the result to <emacs-devel@gnu.org>.\n\
4191 /* Perform a quick check if it looks like setjmp saves registers in a
4192 jmp_buf. Print a message to stderr saying so. When this test
4193 succeeds, this is _not_ a proof that setjmp is sufficient for
4194 conservative stack marking. Only the sources or a disassembly
4195 can prove that. */
4197 static void
4198 test_setjmp ()
4200 char buf[10];
4201 register int x;
4202 jmp_buf jbuf;
4203 int result = 0;
4205 /* Arrange for X to be put in a register. */
4206 sprintf (buf, "1");
4207 x = strlen (buf);
4208 x = 2 * x - 1;
4210 setjmp (jbuf);
4211 if (longjmps_done == 1)
4213 /* Came here after the longjmp at the end of the function.
4215 If x == 1, the longjmp has restored the register to its
4216 value before the setjmp, and we can hope that setjmp
4217 saves all such registers in the jmp_buf, although that
4218 isn't sure.
4220 For other values of X, either something really strange is
4221 taking place, or the setjmp just didn't save the register. */
4223 if (x == 1)
4224 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4225 else
4227 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4228 exit (1);
4232 ++longjmps_done;
4233 x = 2;
4234 if (longjmps_done == 1)
4235 longjmp (jbuf, 1);
4238 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4241 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4243 /* Abort if anything GCPRO'd doesn't survive the GC. */
4245 static void
4246 check_gcpros ()
4248 struct gcpro *p;
4249 int i;
4251 for (p = gcprolist; p; p = p->next)
4252 for (i = 0; i < p->nvars; ++i)
4253 if (!survives_gc_p (p->var[i]))
4254 /* FIXME: It's not necessarily a bug. It might just be that the
4255 GCPRO is unnecessary or should release the object sooner. */
4256 abort ();
4259 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4261 static void
4262 dump_zombies ()
4264 int i;
4266 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4267 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4269 fprintf (stderr, " %d = ", i);
4270 debug_print (zombies[i]);
4274 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4277 /* Mark live Lisp objects on the C stack.
4279 There are several system-dependent problems to consider when
4280 porting this to new architectures:
4282 Processor Registers
4284 We have to mark Lisp objects in CPU registers that can hold local
4285 variables or are used to pass parameters.
4287 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4288 something that either saves relevant registers on the stack, or
4289 calls mark_maybe_object passing it each register's contents.
4291 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4292 implementation assumes that calling setjmp saves registers we need
4293 to see in a jmp_buf which itself lies on the stack. This doesn't
4294 have to be true! It must be verified for each system, possibly
4295 by taking a look at the source code of setjmp.
4297 Stack Layout
4299 Architectures differ in the way their processor stack is organized.
4300 For example, the stack might look like this
4302 +----------------+
4303 | Lisp_Object | size = 4
4304 +----------------+
4305 | something else | size = 2
4306 +----------------+
4307 | Lisp_Object | size = 4
4308 +----------------+
4309 | ... |
4311 In such a case, not every Lisp_Object will be aligned equally. To
4312 find all Lisp_Object on the stack it won't be sufficient to walk
4313 the stack in steps of 4 bytes. Instead, two passes will be
4314 necessary, one starting at the start of the stack, and a second
4315 pass starting at the start of the stack + 2. Likewise, if the
4316 minimal alignment of Lisp_Objects on the stack is 1, four passes
4317 would be necessary, each one starting with one byte more offset
4318 from the stack start.
4320 The current code assumes by default that Lisp_Objects are aligned
4321 equally on the stack. */
4323 static void
4324 mark_stack ()
4326 int i;
4327 jmp_buf j;
4328 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4329 void *end;
4331 /* This trick flushes the register windows so that all the state of
4332 the process is contained in the stack. */
4333 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4334 needed on ia64 too. See mach_dep.c, where it also says inline
4335 assembler doesn't work with relevant proprietary compilers. */
4336 #ifdef sparc
4337 asm ("ta 3");
4338 #endif
4340 /* Save registers that we need to see on the stack. We need to see
4341 registers used to hold register variables and registers used to
4342 pass parameters. */
4343 #ifdef GC_SAVE_REGISTERS_ON_STACK
4344 GC_SAVE_REGISTERS_ON_STACK (end);
4345 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4347 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4348 setjmp will definitely work, test it
4349 and print a message with the result
4350 of the test. */
4351 if (!setjmp_tested_p)
4353 setjmp_tested_p = 1;
4354 test_setjmp ();
4356 #endif /* GC_SETJMP_WORKS */
4358 setjmp (j);
4359 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4360 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4362 /* This assumes that the stack is a contiguous region in memory. If
4363 that's not the case, something has to be done here to iterate
4364 over the stack segments. */
4365 #ifndef GC_LISP_OBJECT_ALIGNMENT
4366 #ifdef __GNUC__
4367 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4368 #else
4369 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4370 #endif
4371 #endif
4372 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4373 mark_memory ((char *) stack_base + i, end);
4374 /* Allow for marking a secondary stack, like the register stack on the
4375 ia64. */
4376 #ifdef GC_MARK_SECONDARY_STACK
4377 GC_MARK_SECONDARY_STACK ();
4378 #endif
4380 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4381 check_gcpros ();
4382 #endif
4386 #endif /* GC_MARK_STACK != 0 */
4390 /***********************************************************************
4391 Pure Storage Management
4392 ***********************************************************************/
4394 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4395 pointer to it. TYPE is the Lisp type for which the memory is
4396 allocated. TYPE < 0 means it's not used for a Lisp object.
4398 If store_pure_type_info is set and TYPE is >= 0, the type of
4399 the allocated object is recorded in pure_types. */
4401 static POINTER_TYPE *
4402 pure_alloc (size, type)
4403 size_t size;
4404 int type;
4406 POINTER_TYPE *result;
4407 #ifdef USE_LSB_TAG
4408 size_t alignment = (1 << GCTYPEBITS);
4409 #else
4410 size_t alignment = sizeof (EMACS_INT);
4412 /* Give Lisp_Floats an extra alignment. */
4413 if (type == Lisp_Float)
4415 #if defined __GNUC__ && __GNUC__ >= 2
4416 alignment = __alignof (struct Lisp_Float);
4417 #else
4418 alignment = sizeof (struct Lisp_Float);
4419 #endif
4421 #endif
4423 again:
4424 result = ALIGN (purebeg + pure_bytes_used, alignment);
4425 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4427 if (pure_bytes_used <= pure_size)
4428 return result;
4430 /* Don't allocate a large amount here,
4431 because it might get mmap'd and then its address
4432 might not be usable. */
4433 purebeg = (char *) xmalloc (10000);
4434 pure_size = 10000;
4435 pure_bytes_used_before_overflow += pure_bytes_used - size;
4436 pure_bytes_used = 0;
4437 goto again;
4441 /* Print a warning if PURESIZE is too small. */
4443 void
4444 check_pure_size ()
4446 if (pure_bytes_used_before_overflow)
4447 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4448 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4452 /* Return a string allocated in pure space. DATA is a buffer holding
4453 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4454 non-zero means make the result string multibyte.
4456 Must get an error if pure storage is full, since if it cannot hold
4457 a large string it may be able to hold conses that point to that
4458 string; then the string is not protected from gc. */
4460 Lisp_Object
4461 make_pure_string (data, nchars, nbytes, multibyte)
4462 char *data;
4463 int nchars, nbytes;
4464 int multibyte;
4466 Lisp_Object string;
4467 struct Lisp_String *s;
4469 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4470 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4471 s->size = nchars;
4472 s->size_byte = multibyte ? nbytes : -1;
4473 bcopy (data, s->data, nbytes);
4474 s->data[nbytes] = '\0';
4475 s->intervals = NULL_INTERVAL;
4476 XSETSTRING (string, s);
4477 return string;
4481 /* Return a cons allocated from pure space. Give it pure copies
4482 of CAR as car and CDR as cdr. */
4484 Lisp_Object
4485 pure_cons (car, cdr)
4486 Lisp_Object car, cdr;
4488 register Lisp_Object new;
4489 struct Lisp_Cons *p;
4491 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4492 XSETCONS (new, p);
4493 XSETCAR (new, Fpurecopy (car));
4494 XSETCDR (new, Fpurecopy (cdr));
4495 return new;
4499 /* Value is a float object with value NUM allocated from pure space. */
4501 Lisp_Object
4502 make_pure_float (num)
4503 double num;
4505 register Lisp_Object new;
4506 struct Lisp_Float *p;
4508 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4509 XSETFLOAT (new, p);
4510 XFLOAT_DATA (new) = num;
4511 return new;
4515 /* Return a vector with room for LEN Lisp_Objects allocated from
4516 pure space. */
4518 Lisp_Object
4519 make_pure_vector (len)
4520 EMACS_INT len;
4522 Lisp_Object new;
4523 struct Lisp_Vector *p;
4524 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4526 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4527 XSETVECTOR (new, p);
4528 XVECTOR (new)->size = len;
4529 return new;
4533 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4534 doc: /* Make a copy of OBJECT in pure storage.
4535 Recursively copies contents of vectors and cons cells.
4536 Does not copy symbols. Copies strings without text properties. */)
4537 (obj)
4538 register Lisp_Object obj;
4540 if (NILP (Vpurify_flag))
4541 return obj;
4543 if (PURE_POINTER_P (XPNTR (obj)))
4544 return obj;
4546 if (CONSP (obj))
4547 return pure_cons (XCAR (obj), XCDR (obj));
4548 else if (FLOATP (obj))
4549 return make_pure_float (XFLOAT_DATA (obj));
4550 else if (STRINGP (obj))
4551 return make_pure_string (SDATA (obj), SCHARS (obj),
4552 SBYTES (obj),
4553 STRING_MULTIBYTE (obj));
4554 else if (COMPILEDP (obj) || VECTORP (obj))
4556 register struct Lisp_Vector *vec;
4557 register int i;
4558 EMACS_INT size;
4560 size = XVECTOR (obj)->size;
4561 if (size & PSEUDOVECTOR_FLAG)
4562 size &= PSEUDOVECTOR_SIZE_MASK;
4563 vec = XVECTOR (make_pure_vector (size));
4564 for (i = 0; i < size; i++)
4565 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4566 if (COMPILEDP (obj))
4567 XSETCOMPILED (obj, vec);
4568 else
4569 XSETVECTOR (obj, vec);
4570 return obj;
4572 else if (MARKERP (obj))
4573 error ("Attempt to copy a marker to pure storage");
4575 return obj;
4580 /***********************************************************************
4581 Protection from GC
4582 ***********************************************************************/
4584 /* Put an entry in staticvec, pointing at the variable with address
4585 VARADDRESS. */
4587 void
4588 staticpro (varaddress)
4589 Lisp_Object *varaddress;
4591 staticvec[staticidx++] = varaddress;
4592 if (staticidx >= NSTATICS)
4593 abort ();
4596 struct catchtag
4598 Lisp_Object tag;
4599 Lisp_Object val;
4600 struct catchtag *next;
4604 /***********************************************************************
4605 Protection from GC
4606 ***********************************************************************/
4608 /* Temporarily prevent garbage collection. */
4611 inhibit_garbage_collection ()
4613 int count = SPECPDL_INDEX ();
4614 int nbits = min (VALBITS, BITS_PER_INT);
4616 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4617 return count;
4621 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4622 doc: /* Reclaim storage for Lisp objects no longer needed.
4623 Garbage collection happens automatically if you cons more than
4624 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4625 `garbage-collect' normally returns a list with info on amount of space in use:
4626 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4627 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4628 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4629 (USED-STRINGS . FREE-STRINGS))
4630 However, if there was overflow in pure space, `garbage-collect'
4631 returns nil, because real GC can't be done. */)
4634 register struct specbinding *bind;
4635 struct catchtag *catch;
4636 struct handler *handler;
4637 char stack_top_variable;
4638 register int i;
4639 int message_p;
4640 Lisp_Object total[8];
4641 int count = SPECPDL_INDEX ();
4642 EMACS_TIME t1, t2, t3;
4644 if (abort_on_gc)
4645 abort ();
4647 EMACS_GET_TIME (t1);
4649 /* Can't GC if pure storage overflowed because we can't determine
4650 if something is a pure object or not. */
4651 if (pure_bytes_used_before_overflow)
4652 return Qnil;
4654 /* In case user calls debug_print during GC,
4655 don't let that cause a recursive GC. */
4656 consing_since_gc = 0;
4658 /* Save what's currently displayed in the echo area. */
4659 message_p = push_message ();
4660 record_unwind_protect (pop_message_unwind, Qnil);
4662 /* Save a copy of the contents of the stack, for debugging. */
4663 #if MAX_SAVE_STACK > 0
4664 if (NILP (Vpurify_flag))
4666 i = &stack_top_variable - stack_bottom;
4667 if (i < 0) i = -i;
4668 if (i < MAX_SAVE_STACK)
4670 if (stack_copy == 0)
4671 stack_copy = (char *) xmalloc (stack_copy_size = i);
4672 else if (stack_copy_size < i)
4673 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4674 if (stack_copy)
4676 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4677 bcopy (stack_bottom, stack_copy, i);
4678 else
4679 bcopy (&stack_top_variable, stack_copy, i);
4683 #endif /* MAX_SAVE_STACK > 0 */
4685 if (garbage_collection_messages)
4686 message1_nolog ("Garbage collecting...");
4688 BLOCK_INPUT;
4690 shrink_regexp_cache ();
4692 /* Don't keep undo information around forever. */
4694 register struct buffer *nextb = all_buffers;
4696 while (nextb)
4698 /* If a buffer's undo list is Qt, that means that undo is
4699 turned off in that buffer. Calling truncate_undo_list on
4700 Qt tends to return NULL, which effectively turns undo back on.
4701 So don't call truncate_undo_list if undo_list is Qt. */
4702 if (! EQ (nextb->undo_list, Qt))
4703 nextb->undo_list
4704 = truncate_undo_list (nextb->undo_list, undo_limit,
4705 undo_strong_limit, undo_outer_limit);
4707 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4708 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4710 /* If a buffer's gap size is more than 10% of the buffer
4711 size, or larger than 2000 bytes, then shrink it
4712 accordingly. Keep a minimum size of 20 bytes. */
4713 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4715 if (nextb->text->gap_size > size)
4717 struct buffer *save_current = current_buffer;
4718 current_buffer = nextb;
4719 make_gap (-(nextb->text->gap_size - size));
4720 current_buffer = save_current;
4724 nextb = nextb->next;
4728 gc_in_progress = 1;
4730 /* clear_marks (); */
4732 /* Mark all the special slots that serve as the roots of accessibility. */
4734 for (i = 0; i < staticidx; i++)
4735 mark_object (*staticvec[i]);
4737 for (bind = specpdl; bind != specpdl_ptr; bind++)
4739 mark_object (bind->symbol);
4740 mark_object (bind->old_value);
4742 mark_kboards ();
4744 #ifdef USE_GTK
4746 extern void xg_mark_data ();
4747 xg_mark_data ();
4749 #endif
4751 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4752 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4753 mark_stack ();
4754 #else
4756 register struct gcpro *tail;
4757 for (tail = gcprolist; tail; tail = tail->next)
4758 for (i = 0; i < tail->nvars; i++)
4759 mark_object (tail->var[i]);
4761 #endif
4763 mark_byte_stack ();
4764 for (catch = catchlist; catch; catch = catch->next)
4766 mark_object (catch->tag);
4767 mark_object (catch->val);
4769 for (handler = handlerlist; handler; handler = handler->next)
4771 mark_object (handler->handler);
4772 mark_object (handler->var);
4774 mark_backtrace ();
4776 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4777 mark_stack ();
4778 #endif
4780 /* Everything is now marked, except for the things that require special
4781 finalization, i.e. the undo_list.
4782 Look thru every buffer's undo list
4783 for elements that update markers that were not marked,
4784 and delete them. */
4786 register struct buffer *nextb = all_buffers;
4788 while (nextb)
4790 /* If a buffer's undo list is Qt, that means that undo is
4791 turned off in that buffer. Calling truncate_undo_list on
4792 Qt tends to return NULL, which effectively turns undo back on.
4793 So don't call truncate_undo_list if undo_list is Qt. */
4794 if (! EQ (nextb->undo_list, Qt))
4796 Lisp_Object tail, prev;
4797 tail = nextb->undo_list;
4798 prev = Qnil;
4799 while (CONSP (tail))
4801 if (GC_CONSP (XCAR (tail))
4802 && GC_MARKERP (XCAR (XCAR (tail)))
4803 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4805 if (NILP (prev))
4806 nextb->undo_list = tail = XCDR (tail);
4807 else
4809 tail = XCDR (tail);
4810 XSETCDR (prev, tail);
4813 else
4815 prev = tail;
4816 tail = XCDR (tail);
4820 /* Now that we have stripped the elements that need not be in the
4821 undo_list any more, we can finally mark the list. */
4822 mark_object (nextb->undo_list);
4824 nextb = nextb->next;
4828 gc_sweep ();
4830 /* Clear the mark bits that we set in certain root slots. */
4832 unmark_byte_stack ();
4833 VECTOR_UNMARK (&buffer_defaults);
4834 VECTOR_UNMARK (&buffer_local_symbols);
4836 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4837 dump_zombies ();
4838 #endif
4840 UNBLOCK_INPUT;
4842 /* clear_marks (); */
4843 gc_in_progress = 0;
4845 consing_since_gc = 0;
4846 if (gc_cons_threshold < 10000)
4847 gc_cons_threshold = 10000;
4849 if (garbage_collection_messages)
4851 if (message_p || minibuf_level > 0)
4852 restore_message ();
4853 else
4854 message1_nolog ("Garbage collecting...done");
4857 unbind_to (count, Qnil);
4859 total[0] = Fcons (make_number (total_conses),
4860 make_number (total_free_conses));
4861 total[1] = Fcons (make_number (total_symbols),
4862 make_number (total_free_symbols));
4863 total[2] = Fcons (make_number (total_markers),
4864 make_number (total_free_markers));
4865 total[3] = make_number (total_string_size);
4866 total[4] = make_number (total_vector_size);
4867 total[5] = Fcons (make_number (total_floats),
4868 make_number (total_free_floats));
4869 total[6] = Fcons (make_number (total_intervals),
4870 make_number (total_free_intervals));
4871 total[7] = Fcons (make_number (total_strings),
4872 make_number (total_free_strings));
4874 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4876 /* Compute average percentage of zombies. */
4877 double nlive = 0;
4879 for (i = 0; i < 7; ++i)
4880 if (CONSP (total[i]))
4881 nlive += XFASTINT (XCAR (total[i]));
4883 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4884 max_live = max (nlive, max_live);
4885 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4886 max_zombies = max (nzombies, max_zombies);
4887 ++ngcs;
4889 #endif
4891 if (!NILP (Vpost_gc_hook))
4893 int count = inhibit_garbage_collection ();
4894 safe_run_hooks (Qpost_gc_hook);
4895 unbind_to (count, Qnil);
4898 /* Accumulate statistics. */
4899 EMACS_GET_TIME (t2);
4900 EMACS_SUB_TIME (t3, t2, t1);
4901 if (FLOATP (Vgc_elapsed))
4902 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4903 EMACS_SECS (t3) +
4904 EMACS_USECS (t3) * 1.0e-6);
4905 gcs_done++;
4907 return Flist (sizeof total / sizeof *total, total);
4911 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4912 only interesting objects referenced from glyphs are strings. */
4914 static void
4915 mark_glyph_matrix (matrix)
4916 struct glyph_matrix *matrix;
4918 struct glyph_row *row = matrix->rows;
4919 struct glyph_row *end = row + matrix->nrows;
4921 for (; row < end; ++row)
4922 if (row->enabled_p)
4924 int area;
4925 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4927 struct glyph *glyph = row->glyphs[area];
4928 struct glyph *end_glyph = glyph + row->used[area];
4930 for (; glyph < end_glyph; ++glyph)
4931 if (GC_STRINGP (glyph->object)
4932 && !STRING_MARKED_P (XSTRING (glyph->object)))
4933 mark_object (glyph->object);
4939 /* Mark Lisp faces in the face cache C. */
4941 static void
4942 mark_face_cache (c)
4943 struct face_cache *c;
4945 if (c)
4947 int i, j;
4948 for (i = 0; i < c->used; ++i)
4950 struct face *face = FACE_FROM_ID (c->f, i);
4952 if (face)
4954 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4955 mark_object (face->lface[j]);
4962 #ifdef HAVE_WINDOW_SYSTEM
4964 /* Mark Lisp objects in image IMG. */
4966 static void
4967 mark_image (img)
4968 struct image *img;
4970 mark_object (img->spec);
4972 if (!NILP (img->data.lisp_val))
4973 mark_object (img->data.lisp_val);
4977 /* Mark Lisp objects in image cache of frame F. It's done this way so
4978 that we don't have to include xterm.h here. */
4980 static void
4981 mark_image_cache (f)
4982 struct frame *f;
4984 forall_images_in_image_cache (f, mark_image);
4987 #endif /* HAVE_X_WINDOWS */
4991 /* Mark reference to a Lisp_Object.
4992 If the object referred to has not been seen yet, recursively mark
4993 all the references contained in it. */
4995 #define LAST_MARKED_SIZE 500
4996 Lisp_Object last_marked[LAST_MARKED_SIZE];
4997 int last_marked_index;
4999 /* For debugging--call abort when we cdr down this many
5000 links of a list, in mark_object. In debugging,
5001 the call to abort will hit a breakpoint.
5002 Normally this is zero and the check never goes off. */
5003 int mark_object_loop_halt;
5005 void
5006 mark_object (arg)
5007 Lisp_Object arg;
5009 register Lisp_Object obj = arg;
5010 #ifdef GC_CHECK_MARKED_OBJECTS
5011 void *po;
5012 struct mem_node *m;
5013 #endif
5014 int cdr_count = 0;
5016 loop:
5018 if (PURE_POINTER_P (XPNTR (obj)))
5019 return;
5021 last_marked[last_marked_index++] = obj;
5022 if (last_marked_index == LAST_MARKED_SIZE)
5023 last_marked_index = 0;
5025 /* Perform some sanity checks on the objects marked here. Abort if
5026 we encounter an object we know is bogus. This increases GC time
5027 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5028 #ifdef GC_CHECK_MARKED_OBJECTS
5030 po = (void *) XPNTR (obj);
5032 /* Check that the object pointed to by PO is known to be a Lisp
5033 structure allocated from the heap. */
5034 #define CHECK_ALLOCATED() \
5035 do { \
5036 m = mem_find (po); \
5037 if (m == MEM_NIL) \
5038 abort (); \
5039 } while (0)
5041 /* Check that the object pointed to by PO is live, using predicate
5042 function LIVEP. */
5043 #define CHECK_LIVE(LIVEP) \
5044 do { \
5045 if (!LIVEP (m, po)) \
5046 abort (); \
5047 } while (0)
5049 /* Check both of the above conditions. */
5050 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5051 do { \
5052 CHECK_ALLOCATED (); \
5053 CHECK_LIVE (LIVEP); \
5054 } while (0) \
5056 #else /* not GC_CHECK_MARKED_OBJECTS */
5058 #define CHECK_ALLOCATED() (void) 0
5059 #define CHECK_LIVE(LIVEP) (void) 0
5060 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5062 #endif /* not GC_CHECK_MARKED_OBJECTS */
5064 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5066 case Lisp_String:
5068 register struct Lisp_String *ptr = XSTRING (obj);
5069 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5070 MARK_INTERVAL_TREE (ptr->intervals);
5071 MARK_STRING (ptr);
5072 #ifdef GC_CHECK_STRING_BYTES
5073 /* Check that the string size recorded in the string is the
5074 same as the one recorded in the sdata structure. */
5075 CHECK_STRING_BYTES (ptr);
5076 #endif /* GC_CHECK_STRING_BYTES */
5078 break;
5080 case Lisp_Vectorlike:
5081 #ifdef GC_CHECK_MARKED_OBJECTS
5082 m = mem_find (po);
5083 if (m == MEM_NIL && !GC_SUBRP (obj)
5084 && po != &buffer_defaults
5085 && po != &buffer_local_symbols)
5086 abort ();
5087 #endif /* GC_CHECK_MARKED_OBJECTS */
5089 if (GC_BUFFERP (obj))
5091 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5093 #ifdef GC_CHECK_MARKED_OBJECTS
5094 if (po != &buffer_defaults && po != &buffer_local_symbols)
5096 struct buffer *b;
5097 for (b = all_buffers; b && b != po; b = b->next)
5099 if (b == NULL)
5100 abort ();
5102 #endif /* GC_CHECK_MARKED_OBJECTS */
5103 mark_buffer (obj);
5106 else if (GC_SUBRP (obj))
5107 break;
5108 else if (GC_COMPILEDP (obj))
5109 /* We could treat this just like a vector, but it is better to
5110 save the COMPILED_CONSTANTS element for last and avoid
5111 recursion there. */
5113 register struct Lisp_Vector *ptr = XVECTOR (obj);
5114 register EMACS_INT size = ptr->size;
5115 register int i;
5117 if (VECTOR_MARKED_P (ptr))
5118 break; /* Already marked */
5120 CHECK_LIVE (live_vector_p);
5121 VECTOR_MARK (ptr); /* Else mark it */
5122 size &= PSEUDOVECTOR_SIZE_MASK;
5123 for (i = 0; i < size; i++) /* and then mark its elements */
5125 if (i != COMPILED_CONSTANTS)
5126 mark_object (ptr->contents[i]);
5128 obj = ptr->contents[COMPILED_CONSTANTS];
5129 goto loop;
5131 else if (GC_FRAMEP (obj))
5133 register struct frame *ptr = XFRAME (obj);
5135 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5136 VECTOR_MARK (ptr); /* Else mark it */
5138 CHECK_LIVE (live_vector_p);
5139 mark_object (ptr->name);
5140 mark_object (ptr->icon_name);
5141 mark_object (ptr->title);
5142 mark_object (ptr->focus_frame);
5143 mark_object (ptr->selected_window);
5144 mark_object (ptr->minibuffer_window);
5145 mark_object (ptr->param_alist);
5146 mark_object (ptr->scroll_bars);
5147 mark_object (ptr->condemned_scroll_bars);
5148 mark_object (ptr->menu_bar_items);
5149 mark_object (ptr->face_alist);
5150 mark_object (ptr->menu_bar_vector);
5151 mark_object (ptr->buffer_predicate);
5152 mark_object (ptr->buffer_list);
5153 mark_object (ptr->menu_bar_window);
5154 mark_object (ptr->tool_bar_window);
5155 mark_face_cache (ptr->face_cache);
5156 #ifdef HAVE_WINDOW_SYSTEM
5157 mark_image_cache (ptr);
5158 mark_object (ptr->tool_bar_items);
5159 mark_object (ptr->desired_tool_bar_string);
5160 mark_object (ptr->current_tool_bar_string);
5161 #endif /* HAVE_WINDOW_SYSTEM */
5163 else if (GC_BOOL_VECTOR_P (obj))
5165 register struct Lisp_Vector *ptr = XVECTOR (obj);
5167 if (VECTOR_MARKED_P (ptr))
5168 break; /* Already marked */
5169 CHECK_LIVE (live_vector_p);
5170 VECTOR_MARK (ptr); /* Else mark it */
5172 else if (GC_WINDOWP (obj))
5174 register struct Lisp_Vector *ptr = XVECTOR (obj);
5175 struct window *w = XWINDOW (obj);
5176 register int i;
5178 /* Stop if already marked. */
5179 if (VECTOR_MARKED_P (ptr))
5180 break;
5182 /* Mark it. */
5183 CHECK_LIVE (live_vector_p);
5184 VECTOR_MARK (ptr);
5186 /* There is no Lisp data above The member CURRENT_MATRIX in
5187 struct WINDOW. Stop marking when that slot is reached. */
5188 for (i = 0;
5189 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5190 i++)
5191 mark_object (ptr->contents[i]);
5193 /* Mark glyphs for leaf windows. Marking window matrices is
5194 sufficient because frame matrices use the same glyph
5195 memory. */
5196 if (NILP (w->hchild)
5197 && NILP (w->vchild)
5198 && w->current_matrix)
5200 mark_glyph_matrix (w->current_matrix);
5201 mark_glyph_matrix (w->desired_matrix);
5204 else if (GC_HASH_TABLE_P (obj))
5206 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5208 /* Stop if already marked. */
5209 if (VECTOR_MARKED_P (h))
5210 break;
5212 /* Mark it. */
5213 CHECK_LIVE (live_vector_p);
5214 VECTOR_MARK (h);
5216 /* Mark contents. */
5217 /* Do not mark next_free or next_weak.
5218 Being in the next_weak chain
5219 should not keep the hash table alive.
5220 No need to mark `count' since it is an integer. */
5221 mark_object (h->test);
5222 mark_object (h->weak);
5223 mark_object (h->rehash_size);
5224 mark_object (h->rehash_threshold);
5225 mark_object (h->hash);
5226 mark_object (h->next);
5227 mark_object (h->index);
5228 mark_object (h->user_hash_function);
5229 mark_object (h->user_cmp_function);
5231 /* If hash table is not weak, mark all keys and values.
5232 For weak tables, mark only the vector. */
5233 if (GC_NILP (h->weak))
5234 mark_object (h->key_and_value);
5235 else
5236 VECTOR_MARK (XVECTOR (h->key_and_value));
5238 else
5240 register struct Lisp_Vector *ptr = XVECTOR (obj);
5241 register EMACS_INT size = ptr->size;
5242 register int i;
5244 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5245 CHECK_LIVE (live_vector_p);
5246 VECTOR_MARK (ptr); /* Else mark it */
5247 if (size & PSEUDOVECTOR_FLAG)
5248 size &= PSEUDOVECTOR_SIZE_MASK;
5250 for (i = 0; i < size; i++) /* and then mark its elements */
5251 mark_object (ptr->contents[i]);
5253 break;
5255 case Lisp_Symbol:
5257 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5258 struct Lisp_Symbol *ptrx;
5260 if (ptr->gcmarkbit) break;
5261 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5262 ptr->gcmarkbit = 1;
5263 mark_object (ptr->value);
5264 mark_object (ptr->function);
5265 mark_object (ptr->plist);
5267 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5268 MARK_STRING (XSTRING (ptr->xname));
5269 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5271 /* Note that we do not mark the obarray of the symbol.
5272 It is safe not to do so because nothing accesses that
5273 slot except to check whether it is nil. */
5274 ptr = ptr->next;
5275 if (ptr)
5277 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5278 XSETSYMBOL (obj, ptrx);
5279 goto loop;
5282 break;
5284 case Lisp_Misc:
5285 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5286 if (XMARKER (obj)->gcmarkbit)
5287 break;
5288 XMARKER (obj)->gcmarkbit = 1;
5290 switch (XMISCTYPE (obj))
5292 case Lisp_Misc_Buffer_Local_Value:
5293 case Lisp_Misc_Some_Buffer_Local_Value:
5295 register struct Lisp_Buffer_Local_Value *ptr
5296 = XBUFFER_LOCAL_VALUE (obj);
5297 /* If the cdr is nil, avoid recursion for the car. */
5298 if (EQ (ptr->cdr, Qnil))
5300 obj = ptr->realvalue;
5301 goto loop;
5303 mark_object (ptr->realvalue);
5304 mark_object (ptr->buffer);
5305 mark_object (ptr->frame);
5306 obj = ptr->cdr;
5307 goto loop;
5310 case Lisp_Misc_Marker:
5311 /* DO NOT mark thru the marker's chain.
5312 The buffer's markers chain does not preserve markers from gc;
5313 instead, markers are removed from the chain when freed by gc. */
5314 break;
5316 case Lisp_Misc_Intfwd:
5317 case Lisp_Misc_Boolfwd:
5318 case Lisp_Misc_Objfwd:
5319 case Lisp_Misc_Buffer_Objfwd:
5320 case Lisp_Misc_Kboard_Objfwd:
5321 /* Don't bother with Lisp_Buffer_Objfwd,
5322 since all markable slots in current buffer marked anyway. */
5323 /* Don't need to do Lisp_Objfwd, since the places they point
5324 are protected with staticpro. */
5325 break;
5327 case Lisp_Misc_Save_Value:
5328 #if GC_MARK_STACK
5330 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5331 /* If DOGC is set, POINTER is the address of a memory
5332 area containing INTEGER potential Lisp_Objects. */
5333 if (ptr->dogc)
5335 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5336 int nelt;
5337 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5338 mark_maybe_object (*p);
5341 #endif
5342 break;
5344 case Lisp_Misc_Overlay:
5346 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5347 mark_object (ptr->start);
5348 mark_object (ptr->end);
5349 mark_object (ptr->plist);
5350 if (ptr->next)
5352 XSETMISC (obj, ptr->next);
5353 goto loop;
5356 break;
5358 default:
5359 abort ();
5361 break;
5363 case Lisp_Cons:
5365 register struct Lisp_Cons *ptr = XCONS (obj);
5366 if (CONS_MARKED_P (ptr)) break;
5367 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5368 CONS_MARK (ptr);
5369 /* If the cdr is nil, avoid recursion for the car. */
5370 if (EQ (ptr->cdr, Qnil))
5372 obj = ptr->car;
5373 cdr_count = 0;
5374 goto loop;
5376 mark_object (ptr->car);
5377 obj = ptr->cdr;
5378 cdr_count++;
5379 if (cdr_count == mark_object_loop_halt)
5380 abort ();
5381 goto loop;
5384 case Lisp_Float:
5385 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5386 FLOAT_MARK (XFLOAT (obj));
5387 break;
5389 case Lisp_Int:
5390 break;
5392 default:
5393 abort ();
5396 #undef CHECK_LIVE
5397 #undef CHECK_ALLOCATED
5398 #undef CHECK_ALLOCATED_AND_LIVE
5401 /* Mark the pointers in a buffer structure. */
5403 static void
5404 mark_buffer (buf)
5405 Lisp_Object buf;
5407 register struct buffer *buffer = XBUFFER (buf);
5408 register Lisp_Object *ptr, tmp;
5409 Lisp_Object base_buffer;
5411 VECTOR_MARK (buffer);
5413 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5415 /* For now, we just don't mark the undo_list. It's done later in
5416 a special way just before the sweep phase, and after stripping
5417 some of its elements that are not needed any more. */
5419 if (buffer->overlays_before)
5421 XSETMISC (tmp, buffer->overlays_before);
5422 mark_object (tmp);
5424 if (buffer->overlays_after)
5426 XSETMISC (tmp, buffer->overlays_after);
5427 mark_object (tmp);
5430 for (ptr = &buffer->name;
5431 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5432 ptr++)
5433 mark_object (*ptr);
5435 /* If this is an indirect buffer, mark its base buffer. */
5436 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5438 XSETBUFFER (base_buffer, buffer->base_buffer);
5439 mark_buffer (base_buffer);
5444 /* Value is non-zero if OBJ will survive the current GC because it's
5445 either marked or does not need to be marked to survive. */
5448 survives_gc_p (obj)
5449 Lisp_Object obj;
5451 int survives_p;
5453 switch (XGCTYPE (obj))
5455 case Lisp_Int:
5456 survives_p = 1;
5457 break;
5459 case Lisp_Symbol:
5460 survives_p = XSYMBOL (obj)->gcmarkbit;
5461 break;
5463 case Lisp_Misc:
5464 survives_p = XMARKER (obj)->gcmarkbit;
5465 break;
5467 case Lisp_String:
5468 survives_p = STRING_MARKED_P (XSTRING (obj));
5469 break;
5471 case Lisp_Vectorlike:
5472 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5473 break;
5475 case Lisp_Cons:
5476 survives_p = CONS_MARKED_P (XCONS (obj));
5477 break;
5479 case Lisp_Float:
5480 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5481 break;
5483 default:
5484 abort ();
5487 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5492 /* Sweep: find all structures not marked, and free them. */
5494 static void
5495 gc_sweep ()
5497 /* Remove or mark entries in weak hash tables.
5498 This must be done before any object is unmarked. */
5499 sweep_weak_hash_tables ();
5501 sweep_strings ();
5502 #ifdef GC_CHECK_STRING_BYTES
5503 if (!noninteractive)
5504 check_string_bytes (1);
5505 #endif
5507 /* Put all unmarked conses on free list */
5509 register struct cons_block *cblk;
5510 struct cons_block **cprev = &cons_block;
5511 register int lim = cons_block_index;
5512 register int num_free = 0, num_used = 0;
5514 cons_free_list = 0;
5516 for (cblk = cons_block; cblk; cblk = *cprev)
5518 register int i;
5519 int this_free = 0;
5520 for (i = 0; i < lim; i++)
5521 if (!CONS_MARKED_P (&cblk->conses[i]))
5523 this_free++;
5524 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5525 cons_free_list = &cblk->conses[i];
5526 #if GC_MARK_STACK
5527 cons_free_list->car = Vdead;
5528 #endif
5530 else
5532 num_used++;
5533 CONS_UNMARK (&cblk->conses[i]);
5535 lim = CONS_BLOCK_SIZE;
5536 /* If this block contains only free conses and we have already
5537 seen more than two blocks worth of free conses then deallocate
5538 this block. */
5539 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5541 *cprev = cblk->next;
5542 /* Unhook from the free list. */
5543 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5544 lisp_align_free (cblk);
5545 n_cons_blocks--;
5547 else
5549 num_free += this_free;
5550 cprev = &cblk->next;
5553 total_conses = num_used;
5554 total_free_conses = num_free;
5557 /* Put all unmarked floats on free list */
5559 register struct float_block *fblk;
5560 struct float_block **fprev = &float_block;
5561 register int lim = float_block_index;
5562 register int num_free = 0, num_used = 0;
5564 float_free_list = 0;
5566 for (fblk = float_block; fblk; fblk = *fprev)
5568 register int i;
5569 int this_free = 0;
5570 for (i = 0; i < lim; i++)
5571 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5573 this_free++;
5574 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5575 float_free_list = &fblk->floats[i];
5577 else
5579 num_used++;
5580 FLOAT_UNMARK (&fblk->floats[i]);
5582 lim = FLOAT_BLOCK_SIZE;
5583 /* If this block contains only free floats and we have already
5584 seen more than two blocks worth of free floats then deallocate
5585 this block. */
5586 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5588 *fprev = fblk->next;
5589 /* Unhook from the free list. */
5590 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5591 lisp_align_free (fblk);
5592 n_float_blocks--;
5594 else
5596 num_free += this_free;
5597 fprev = &fblk->next;
5600 total_floats = num_used;
5601 total_free_floats = num_free;
5604 /* Put all unmarked intervals on free list */
5606 register struct interval_block *iblk;
5607 struct interval_block **iprev = &interval_block;
5608 register int lim = interval_block_index;
5609 register int num_free = 0, num_used = 0;
5611 interval_free_list = 0;
5613 for (iblk = interval_block; iblk; iblk = *iprev)
5615 register int i;
5616 int this_free = 0;
5618 for (i = 0; i < lim; i++)
5620 if (!iblk->intervals[i].gcmarkbit)
5622 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5623 interval_free_list = &iblk->intervals[i];
5624 this_free++;
5626 else
5628 num_used++;
5629 iblk->intervals[i].gcmarkbit = 0;
5632 lim = INTERVAL_BLOCK_SIZE;
5633 /* If this block contains only free intervals and we have already
5634 seen more than two blocks worth of free intervals then
5635 deallocate this block. */
5636 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5638 *iprev = iblk->next;
5639 /* Unhook from the free list. */
5640 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5641 lisp_free (iblk);
5642 n_interval_blocks--;
5644 else
5646 num_free += this_free;
5647 iprev = &iblk->next;
5650 total_intervals = num_used;
5651 total_free_intervals = num_free;
5654 /* Put all unmarked symbols on free list */
5656 register struct symbol_block *sblk;
5657 struct symbol_block **sprev = &symbol_block;
5658 register int lim = symbol_block_index;
5659 register int num_free = 0, num_used = 0;
5661 symbol_free_list = NULL;
5663 for (sblk = symbol_block; sblk; sblk = *sprev)
5665 int this_free = 0;
5666 struct Lisp_Symbol *sym = sblk->symbols;
5667 struct Lisp_Symbol *end = sym + lim;
5669 for (; sym < end; ++sym)
5671 /* Check if the symbol was created during loadup. In such a case
5672 it might be pointed to by pure bytecode which we don't trace,
5673 so we conservatively assume that it is live. */
5674 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5676 if (!sym->gcmarkbit && !pure_p)
5678 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5679 symbol_free_list = sym;
5680 #if GC_MARK_STACK
5681 symbol_free_list->function = Vdead;
5682 #endif
5683 ++this_free;
5685 else
5687 ++num_used;
5688 if (!pure_p)
5689 UNMARK_STRING (XSTRING (sym->xname));
5690 sym->gcmarkbit = 0;
5694 lim = SYMBOL_BLOCK_SIZE;
5695 /* If this block contains only free symbols and we have already
5696 seen more than two blocks worth of free symbols then deallocate
5697 this block. */
5698 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5700 *sprev = sblk->next;
5701 /* Unhook from the free list. */
5702 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5703 lisp_free (sblk);
5704 n_symbol_blocks--;
5706 else
5708 num_free += this_free;
5709 sprev = &sblk->next;
5712 total_symbols = num_used;
5713 total_free_symbols = num_free;
5716 /* Put all unmarked misc's on free list.
5717 For a marker, first unchain it from the buffer it points into. */
5719 register struct marker_block *mblk;
5720 struct marker_block **mprev = &marker_block;
5721 register int lim = marker_block_index;
5722 register int num_free = 0, num_used = 0;
5724 marker_free_list = 0;
5726 for (mblk = marker_block; mblk; mblk = *mprev)
5728 register int i;
5729 int this_free = 0;
5731 for (i = 0; i < lim; i++)
5733 if (!mblk->markers[i].u_marker.gcmarkbit)
5735 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5736 unchain_marker (&mblk->markers[i].u_marker);
5737 /* Set the type of the freed object to Lisp_Misc_Free.
5738 We could leave the type alone, since nobody checks it,
5739 but this might catch bugs faster. */
5740 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5741 mblk->markers[i].u_free.chain = marker_free_list;
5742 marker_free_list = &mblk->markers[i];
5743 this_free++;
5745 else
5747 num_used++;
5748 mblk->markers[i].u_marker.gcmarkbit = 0;
5751 lim = MARKER_BLOCK_SIZE;
5752 /* If this block contains only free markers and we have already
5753 seen more than two blocks worth of free markers then deallocate
5754 this block. */
5755 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5757 *mprev = mblk->next;
5758 /* Unhook from the free list. */
5759 marker_free_list = mblk->markers[0].u_free.chain;
5760 lisp_free (mblk);
5761 n_marker_blocks--;
5763 else
5765 num_free += this_free;
5766 mprev = &mblk->next;
5770 total_markers = num_used;
5771 total_free_markers = num_free;
5774 /* Free all unmarked buffers */
5776 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5778 while (buffer)
5779 if (!VECTOR_MARKED_P (buffer))
5781 if (prev)
5782 prev->next = buffer->next;
5783 else
5784 all_buffers = buffer->next;
5785 next = buffer->next;
5786 lisp_free (buffer);
5787 buffer = next;
5789 else
5791 VECTOR_UNMARK (buffer);
5792 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5793 prev = buffer, buffer = buffer->next;
5797 /* Free all unmarked vectors */
5799 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5800 total_vector_size = 0;
5802 while (vector)
5803 if (!VECTOR_MARKED_P (vector))
5805 if (prev)
5806 prev->next = vector->next;
5807 else
5808 all_vectors = vector->next;
5809 next = vector->next;
5810 lisp_free (vector);
5811 n_vectors--;
5812 vector = next;
5815 else
5817 VECTOR_UNMARK (vector);
5818 if (vector->size & PSEUDOVECTOR_FLAG)
5819 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5820 else
5821 total_vector_size += vector->size;
5822 prev = vector, vector = vector->next;
5826 #ifdef GC_CHECK_STRING_BYTES
5827 if (!noninteractive)
5828 check_string_bytes (1);
5829 #endif
5835 /* Debugging aids. */
5837 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5838 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5839 This may be helpful in debugging Emacs's memory usage.
5840 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5843 Lisp_Object end;
5845 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5847 return end;
5850 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5851 doc: /* Return a list of counters that measure how much consing there has been.
5852 Each of these counters increments for a certain kind of object.
5853 The counters wrap around from the largest positive integer to zero.
5854 Garbage collection does not decrease them.
5855 The elements of the value are as follows:
5856 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5857 All are in units of 1 = one object consed
5858 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5859 objects consed.
5860 MISCS include overlays, markers, and some internal types.
5861 Frames, windows, buffers, and subprocesses count as vectors
5862 (but the contents of a buffer's text do not count here). */)
5865 Lisp_Object consed[8];
5867 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5868 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5869 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5870 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5871 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5872 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5873 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5874 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5876 return Flist (8, consed);
5879 int suppress_checking;
5880 void
5881 die (msg, file, line)
5882 const char *msg;
5883 const char *file;
5884 int line;
5886 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5887 file, line, msg);
5888 abort ();
5891 /* Initialization */
5893 void
5894 init_alloc_once ()
5896 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5897 purebeg = PUREBEG;
5898 pure_size = PURESIZE;
5899 pure_bytes_used = 0;
5900 pure_bytes_used_before_overflow = 0;
5902 /* Initialize the list of free aligned blocks. */
5903 free_ablock = NULL;
5905 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5906 mem_init ();
5907 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5908 #endif
5910 all_vectors = 0;
5911 ignore_warnings = 1;
5912 #ifdef DOUG_LEA_MALLOC
5913 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5914 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5915 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5916 #endif
5917 init_strings ();
5918 init_cons ();
5919 init_symbol ();
5920 init_marker ();
5921 init_float ();
5922 init_intervals ();
5924 #ifdef REL_ALLOC
5925 malloc_hysteresis = 32;
5926 #else
5927 malloc_hysteresis = 0;
5928 #endif
5930 spare_memory = (char *) malloc (SPARE_MEMORY);
5932 ignore_warnings = 0;
5933 gcprolist = 0;
5934 byte_stack_list = 0;
5935 staticidx = 0;
5936 consing_since_gc = 0;
5937 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5938 #ifdef VIRT_ADDR_VARIES
5939 malloc_sbrk_unused = 1<<22; /* A large number */
5940 malloc_sbrk_used = 100000; /* as reasonable as any number */
5941 #endif /* VIRT_ADDR_VARIES */
5944 void
5945 init_alloc ()
5947 gcprolist = 0;
5948 byte_stack_list = 0;
5949 #if GC_MARK_STACK
5950 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5951 setjmp_tested_p = longjmps_done = 0;
5952 #endif
5953 #endif
5954 Vgc_elapsed = make_float (0.0);
5955 gcs_done = 0;
5958 void
5959 syms_of_alloc ()
5961 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5962 doc: /* *Number of bytes of consing between garbage collections.
5963 Garbage collection can happen automatically once this many bytes have been
5964 allocated since the last garbage collection. All data types count.
5966 Garbage collection happens automatically only when `eval' is called.
5968 By binding this temporarily to a large number, you can effectively
5969 prevent garbage collection during a part of the program. */);
5971 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5972 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5974 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5975 doc: /* Number of cons cells that have been consed so far. */);
5977 DEFVAR_INT ("floats-consed", &floats_consed,
5978 doc: /* Number of floats that have been consed so far. */);
5980 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5981 doc: /* Number of vector cells that have been consed so far. */);
5983 DEFVAR_INT ("symbols-consed", &symbols_consed,
5984 doc: /* Number of symbols that have been consed so far. */);
5986 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5987 doc: /* Number of string characters that have been consed so far. */);
5989 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5990 doc: /* Number of miscellaneous objects that have been consed so far. */);
5992 DEFVAR_INT ("intervals-consed", &intervals_consed,
5993 doc: /* Number of intervals that have been consed so far. */);
5995 DEFVAR_INT ("strings-consed", &strings_consed,
5996 doc: /* Number of strings that have been consed so far. */);
5998 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5999 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6000 This means that certain objects should be allocated in shared (pure) space. */);
6002 DEFVAR_INT ("undo-limit", &undo_limit,
6003 doc: /* Keep no more undo information once it exceeds this size.
6004 This limit is applied when garbage collection happens.
6005 The size is counted as the number of bytes occupied,
6006 which includes both saved text and other data. */);
6007 undo_limit = 20000;
6009 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
6010 doc: /* Don't keep more than this much size of undo information.
6011 A previous command which pushes the undo list past this size
6012 is entirely forgotten when GC happens.
6013 The size is counted as the number of bytes occupied,
6014 which includes both saved text and other data. */);
6015 undo_strong_limit = 30000;
6017 DEFVAR_INT ("undo-outer-limit", &undo_outer_limit,
6018 doc: /* Don't keep more than this much size of undo information.
6019 If the current command has produced more than this much undo information,
6020 GC discards it. This is a last-ditch limit to prevent memory overflow.
6021 The size is counted as the number of bytes occupied,
6022 which includes both saved text and other data. */);
6023 undo_outer_limit = 300000;
6025 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6026 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6027 garbage_collection_messages = 0;
6029 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6030 doc: /* Hook run after garbage collection has finished. */);
6031 Vpost_gc_hook = Qnil;
6032 Qpost_gc_hook = intern ("post-gc-hook");
6033 staticpro (&Qpost_gc_hook);
6035 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6036 doc: /* Precomputed `signal' argument for memory-full error. */);
6037 /* We build this in advance because if we wait until we need it, we might
6038 not be able to allocate the memory to hold it. */
6039 Vmemory_signal_data
6040 = list2 (Qerror,
6041 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6043 DEFVAR_LISP ("memory-full", &Vmemory_full,
6044 doc: /* Non-nil means we are handling a memory-full error. */);
6045 Vmemory_full = Qnil;
6047 staticpro (&Qgc_cons_threshold);
6048 Qgc_cons_threshold = intern ("gc-cons-threshold");
6050 staticpro (&Qchar_table_extra_slots);
6051 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6053 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6054 doc: /* Accumulated time elapsed in garbage collections.
6055 The time is in seconds as a floating point value. */);
6056 DEFVAR_INT ("gcs-done", &gcs_done,
6057 doc: /* Accumulated number of garbage collections done. */);
6059 defsubr (&Scons);
6060 defsubr (&Slist);
6061 defsubr (&Svector);
6062 defsubr (&Smake_byte_code);
6063 defsubr (&Smake_list);
6064 defsubr (&Smake_vector);
6065 defsubr (&Smake_char_table);
6066 defsubr (&Smake_string);
6067 defsubr (&Smake_bool_vector);
6068 defsubr (&Smake_symbol);
6069 defsubr (&Smake_marker);
6070 defsubr (&Spurecopy);
6071 defsubr (&Sgarbage_collect);
6072 defsubr (&Smemory_limit);
6073 defsubr (&Smemory_use_counts);
6075 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6076 defsubr (&Sgc_status);
6077 #endif
6080 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6081 (do not change this comment) */