Update Changelog.
[emacs.git] / src / regex.c
blob1e80b9bbeef285c1467a49d25990d5fd300e267f
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
21 USA. */
23 /* TODO:
24 - structure the opcode space into opcode+flag.
25 - merge with glibc's regex.[ch].
26 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
27 need to modify the compiled regexp so that re_match can be reentrant.
28 - get rid of on_failure_jump_smart by doing the optimization in re_comp
29 rather than at run-time, so that re_match can be reentrant.
32 /* AIX requires this to be the first thing in the file. */
33 #if defined _AIX && !defined REGEX_MALLOC
34 #pragma alloca
35 #endif
37 #ifdef HAVE_CONFIG_H
38 # include <config.h>
39 #endif
41 #if defined STDC_HEADERS && !defined emacs
42 # include <stddef.h>
43 #else
44 /* We need this for `regex.h', and perhaps for the Emacs include files. */
45 # include <sys/types.h>
46 #endif
48 /* Whether to use ISO C Amendment 1 wide char functions.
49 Those should not be used for Emacs since it uses its own. */
50 #if defined _LIBC
51 #define WIDE_CHAR_SUPPORT 1
52 #else
53 #define WIDE_CHAR_SUPPORT \
54 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
55 #endif
57 /* For platform which support the ISO C amendement 1 functionality we
58 support user defined character classes. */
59 #if WIDE_CHAR_SUPPORT
60 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
61 # include <wchar.h>
62 # include <wctype.h>
63 #endif
65 #ifdef _LIBC
66 /* We have to keep the namespace clean. */
67 # define regfree(preg) __regfree (preg)
68 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
70 # define regerror(err_code, preg, errbuf, errbuf_size) \
71 __regerror(err_code, preg, errbuf, errbuf_size)
72 # define re_set_registers(bu, re, nu, st, en) \
73 __re_set_registers (bu, re, nu, st, en)
74 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76 # define re_match(bufp, string, size, pos, regs) \
77 __re_match (bufp, string, size, pos, regs)
78 # define re_search(bufp, string, size, startpos, range, regs) \
79 __re_search (bufp, string, size, startpos, range, regs)
80 # define re_compile_pattern(pattern, length, bufp) \
81 __re_compile_pattern (pattern, length, bufp)
82 # define re_set_syntax(syntax) __re_set_syntax (syntax)
83 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87 /* Make sure we call libc's function even if the user overrides them. */
88 # define btowc __btowc
89 # define iswctype __iswctype
90 # define wctype __wctype
92 # define WEAK_ALIAS(a,b) weak_alias (a, b)
94 /* We are also using some library internals. */
95 # include <locale/localeinfo.h>
96 # include <locale/elem-hash.h>
97 # include <langinfo.h>
98 #else
99 # define WEAK_ALIAS(a,b)
100 #endif
102 /* This is for other GNU distributions with internationalized messages. */
103 #if HAVE_LIBINTL_H || defined _LIBC
104 # include <libintl.h>
105 #else
106 # define gettext(msgid) (msgid)
107 #endif
109 #ifndef gettext_noop
110 /* This define is so xgettext can find the internationalizable
111 strings. */
112 # define gettext_noop(String) String
113 #endif
115 /* The `emacs' switch turns on certain matching commands
116 that make sense only in Emacs. */
117 #ifdef emacs
119 # include "lisp.h"
120 # include "buffer.h"
122 /* Make syntax table lookup grant data in gl_state. */
123 # define SYNTAX_ENTRY_VIA_PROPERTY
125 # include "syntax.h"
126 # include "charset.h"
127 # include "category.h"
129 # ifdef malloc
130 # undef malloc
131 # endif
132 # define malloc xmalloc
133 # ifdef realloc
134 # undef realloc
135 # endif
136 # define realloc xrealloc
137 # ifdef free
138 # undef free
139 # endif
140 # define free xfree
142 /* Converts the pointer to the char to BEG-based offset from the start. */
143 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
144 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
146 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
147 # define RE_STRING_CHAR(p, s) \
148 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
149 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
150 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
152 /* Set C a (possibly multibyte) character before P. P points into a
153 string which is the virtual concatenation of STR1 (which ends at
154 END1) or STR2 (which ends at END2). */
155 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
156 do { \
157 if (multibyte) \
159 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
160 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
161 re_char *d0 = dtemp; \
162 PREV_CHAR_BOUNDARY (d0, dlimit); \
163 c = STRING_CHAR (d0, dtemp - d0); \
165 else \
166 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
167 } while (0)
170 #else /* not emacs */
172 /* If we are not linking with Emacs proper,
173 we can't use the relocating allocator
174 even if config.h says that we can. */
175 # undef REL_ALLOC
177 # if defined STDC_HEADERS || defined _LIBC
178 # include <stdlib.h>
179 # else
180 char *malloc ();
181 char *realloc ();
182 # endif
184 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
186 void *
187 xmalloc (size)
188 size_t size;
190 register void *val;
191 val = (void *) malloc (size);
192 if (!val && size)
194 write (2, "virtual memory exhausted\n", 25);
195 exit (1);
197 return val;
200 void *
201 xrealloc (block, size)
202 void *block;
203 size_t size;
205 register void *val;
206 /* We must call malloc explicitly when BLOCK is 0, since some
207 reallocs don't do this. */
208 if (! block)
209 val = (void *) malloc (size);
210 else
211 val = (void *) realloc (block, size);
212 if (!val && size)
214 write (2, "virtual memory exhausted\n", 25);
215 exit (1);
217 return val;
220 # ifdef malloc
221 # undef malloc
222 # endif
223 # define malloc xmalloc
224 # ifdef realloc
225 # undef realloc
226 # endif
227 # define realloc xrealloc
229 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
230 If nothing else has been done, use the method below. */
231 # ifdef INHIBIT_STRING_HEADER
232 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
233 # if !defined bzero && !defined bcopy
234 # undef INHIBIT_STRING_HEADER
235 # endif
236 # endif
237 # endif
239 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
240 This is used in most programs--a few other programs avoid this
241 by defining INHIBIT_STRING_HEADER. */
242 # ifndef INHIBIT_STRING_HEADER
243 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
244 # include <string.h>
245 # ifndef bzero
246 # ifndef _LIBC
247 # define bzero(s, n) (memset (s, '\0', n), (s))
248 # else
249 # define bzero(s, n) __bzero (s, n)
250 # endif
251 # endif
252 # else
253 # include <strings.h>
254 # ifndef memcmp
255 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
256 # endif
257 # ifndef memcpy
258 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
259 # endif
260 # endif
261 # endif
263 /* Define the syntax stuff for \<, \>, etc. */
265 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
266 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
268 # ifdef SWITCH_ENUM_BUG
269 # define SWITCH_ENUM_CAST(x) ((int)(x))
270 # else
271 # define SWITCH_ENUM_CAST(x) (x)
272 # endif
274 /* Dummy macros for non-Emacs environments. */
275 # define BASE_LEADING_CODE_P(c) (0)
276 # define CHAR_CHARSET(c) 0
277 # define CHARSET_LEADING_CODE_BASE(c) 0
278 # define MAX_MULTIBYTE_LENGTH 1
279 # define RE_MULTIBYTE_P(x) 0
280 # define WORD_BOUNDARY_P(c1, c2) (0)
281 # define CHAR_HEAD_P(p) (1)
282 # define SINGLE_BYTE_CHAR_P(c) (1)
283 # define SAME_CHARSET_P(c1, c2) (1)
284 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
285 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
286 # define STRING_CHAR(p, s) (*(p))
287 # define RE_STRING_CHAR STRING_CHAR
288 # define CHAR_STRING(c, s) (*(s) = (c), 1)
289 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
290 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
291 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
292 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
293 # define MAKE_CHAR(charset, c1, c2) (c1)
294 #endif /* not emacs */
296 #ifndef RE_TRANSLATE
297 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
298 # define RE_TRANSLATE_P(TBL) (TBL)
299 #endif
301 /* Get the interface, including the syntax bits. */
302 #include "regex.h"
304 /* isalpha etc. are used for the character classes. */
305 #include <ctype.h>
307 #ifdef emacs
309 /* 1 if C is an ASCII character. */
310 # define IS_REAL_ASCII(c) ((c) < 0200)
312 /* 1 if C is a unibyte character. */
313 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
315 /* The Emacs definitions should not be directly affected by locales. */
317 /* In Emacs, these are only used for single-byte characters. */
318 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
319 # define ISCNTRL(c) ((c) < ' ')
320 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
321 || ((c) >= 'a' && (c) <= 'f') \
322 || ((c) >= 'A' && (c) <= 'F'))
324 /* This is only used for single-byte characters. */
325 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
327 /* The rest must handle multibyte characters. */
329 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
330 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
331 : 1)
333 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
334 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
335 : 1)
337 # define ISALNUM(c) (IS_REAL_ASCII (c) \
338 ? (((c) >= 'a' && (c) <= 'z') \
339 || ((c) >= 'A' && (c) <= 'Z') \
340 || ((c) >= '0' && (c) <= '9')) \
341 : SYNTAX (c) == Sword)
343 # define ISALPHA(c) (IS_REAL_ASCII (c) \
344 ? (((c) >= 'a' && (c) <= 'z') \
345 || ((c) >= 'A' && (c) <= 'Z')) \
346 : SYNTAX (c) == Sword)
348 # define ISLOWER(c) (LOWERCASEP (c))
350 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
351 ? ((c) > ' ' && (c) < 0177 \
352 && !(((c) >= 'a' && (c) <= 'z') \
353 || ((c) >= 'A' && (c) <= 'Z') \
354 || ((c) >= '0' && (c) <= '9'))) \
355 : SYNTAX (c) != Sword)
357 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
359 # define ISUPPER(c) (UPPERCASEP (c))
361 # define ISWORD(c) (SYNTAX (c) == Sword)
363 #else /* not emacs */
365 /* Jim Meyering writes:
367 "... Some ctype macros are valid only for character codes that
368 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
369 using /bin/cc or gcc but without giving an ansi option). So, all
370 ctype uses should be through macros like ISPRINT... If
371 STDC_HEADERS is defined, then autoconf has verified that the ctype
372 macros don't need to be guarded with references to isascii. ...
373 Defining isascii to 1 should let any compiler worth its salt
374 eliminate the && through constant folding."
375 Solaris defines some of these symbols so we must undefine them first. */
377 # undef ISASCII
378 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
379 # define ISASCII(c) 1
380 # else
381 # define ISASCII(c) isascii(c)
382 # endif
384 /* 1 if C is an ASCII character. */
385 # define IS_REAL_ASCII(c) ((c) < 0200)
387 /* This distinction is not meaningful, except in Emacs. */
388 # define ISUNIBYTE(c) 1
390 # ifdef isblank
391 # define ISBLANK(c) (ISASCII (c) && isblank (c))
392 # else
393 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
394 # endif
395 # ifdef isgraph
396 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
397 # else
398 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
399 # endif
401 # undef ISPRINT
402 # define ISPRINT(c) (ISASCII (c) && isprint (c))
403 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
404 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
405 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
406 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
407 # define ISLOWER(c) (ISASCII (c) && islower (c))
408 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
409 # define ISSPACE(c) (ISASCII (c) && isspace (c))
410 # define ISUPPER(c) (ISASCII (c) && isupper (c))
411 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
413 # define ISWORD(c) ISALPHA(c)
415 # ifdef _tolower
416 # define TOLOWER(c) _tolower(c)
417 # else
418 # define TOLOWER(c) tolower(c)
419 # endif
421 /* How many characters in the character set. */
422 # define CHAR_SET_SIZE 256
424 # ifdef SYNTAX_TABLE
426 extern char *re_syntax_table;
428 # else /* not SYNTAX_TABLE */
430 static char re_syntax_table[CHAR_SET_SIZE];
432 static void
433 init_syntax_once ()
435 register int c;
436 static int done = 0;
438 if (done)
439 return;
441 bzero (re_syntax_table, sizeof re_syntax_table);
443 for (c = 0; c < CHAR_SET_SIZE; ++c)
444 if (ISALNUM (c))
445 re_syntax_table[c] = Sword;
447 re_syntax_table['_'] = Ssymbol;
449 done = 1;
452 # endif /* not SYNTAX_TABLE */
454 # define SYNTAX(c) re_syntax_table[(c)]
456 #endif /* not emacs */
458 #ifndef NULL
459 # define NULL (void *)0
460 #endif
462 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
463 since ours (we hope) works properly with all combinations of
464 machines, compilers, `char' and `unsigned char' argument types.
465 (Per Bothner suggested the basic approach.) */
466 #undef SIGN_EXTEND_CHAR
467 #if __STDC__
468 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
469 #else /* not __STDC__ */
470 /* As in Harbison and Steele. */
471 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
472 #endif
474 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
475 use `alloca' instead of `malloc'. This is because using malloc in
476 re_search* or re_match* could cause memory leaks when C-g is used in
477 Emacs; also, malloc is slower and causes storage fragmentation. On
478 the other hand, malloc is more portable, and easier to debug.
480 Because we sometimes use alloca, some routines have to be macros,
481 not functions -- `alloca'-allocated space disappears at the end of the
482 function it is called in. */
484 #ifdef REGEX_MALLOC
486 # define REGEX_ALLOCATE malloc
487 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
488 # define REGEX_FREE free
490 #else /* not REGEX_MALLOC */
492 /* Emacs already defines alloca, sometimes. */
493 # ifndef alloca
495 /* Make alloca work the best possible way. */
496 # ifdef __GNUC__
497 # define alloca __builtin_alloca
498 # else /* not __GNUC__ */
499 # if HAVE_ALLOCA_H
500 # include <alloca.h>
501 # endif /* HAVE_ALLOCA_H */
502 # endif /* not __GNUC__ */
504 # endif /* not alloca */
506 # define REGEX_ALLOCATE alloca
508 /* Assumes a `char *destination' variable. */
509 # define REGEX_REALLOCATE(source, osize, nsize) \
510 (destination = (char *) alloca (nsize), \
511 memcpy (destination, source, osize))
513 /* No need to do anything to free, after alloca. */
514 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
516 #endif /* not REGEX_MALLOC */
518 /* Define how to allocate the failure stack. */
520 #if defined REL_ALLOC && defined REGEX_MALLOC
522 # define REGEX_ALLOCATE_STACK(size) \
523 r_alloc (&failure_stack_ptr, (size))
524 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
525 r_re_alloc (&failure_stack_ptr, (nsize))
526 # define REGEX_FREE_STACK(ptr) \
527 r_alloc_free (&failure_stack_ptr)
529 #else /* not using relocating allocator */
531 # ifdef REGEX_MALLOC
533 # define REGEX_ALLOCATE_STACK malloc
534 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
535 # define REGEX_FREE_STACK free
537 # else /* not REGEX_MALLOC */
539 # define REGEX_ALLOCATE_STACK alloca
541 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
542 REGEX_REALLOCATE (source, osize, nsize)
543 /* No need to explicitly free anything. */
544 # define REGEX_FREE_STACK(arg) ((void)0)
546 # endif /* not REGEX_MALLOC */
547 #endif /* not using relocating allocator */
550 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
551 `string1' or just past its end. This works if PTR is NULL, which is
552 a good thing. */
553 #define FIRST_STRING_P(ptr) \
554 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
556 /* (Re)Allocate N items of type T using malloc, or fail. */
557 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
558 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
559 #define RETALLOC_IF(addr, n, t) \
560 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
561 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
563 #define BYTEWIDTH 8 /* In bits. */
565 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
567 #undef MAX
568 #undef MIN
569 #define MAX(a, b) ((a) > (b) ? (a) : (b))
570 #define MIN(a, b) ((a) < (b) ? (a) : (b))
572 /* Type of source-pattern and string chars. */
573 typedef const unsigned char re_char;
575 typedef char boolean;
576 #define false 0
577 #define true 1
579 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
580 re_char *string1, int size1,
581 re_char *string2, int size2,
582 int pos,
583 struct re_registers *regs,
584 int stop));
586 /* These are the command codes that appear in compiled regular
587 expressions. Some opcodes are followed by argument bytes. A
588 command code can specify any interpretation whatsoever for its
589 arguments. Zero bytes may appear in the compiled regular expression. */
591 typedef enum
593 no_op = 0,
595 /* Succeed right away--no more backtracking. */
596 succeed,
598 /* Followed by one byte giving n, then by n literal bytes. */
599 exactn,
601 /* Matches any (more or less) character. */
602 anychar,
604 /* Matches any one char belonging to specified set. First
605 following byte is number of bitmap bytes. Then come bytes
606 for a bitmap saying which chars are in. Bits in each byte
607 are ordered low-bit-first. A character is in the set if its
608 bit is 1. A character too large to have a bit in the map is
609 automatically not in the set.
611 If the length byte has the 0x80 bit set, then that stuff
612 is followed by a range table:
613 2 bytes of flags for character sets (low 8 bits, high 8 bits)
614 See RANGE_TABLE_WORK_BITS below.
615 2 bytes, the number of pairs that follow (upto 32767)
616 pairs, each 2 multibyte characters,
617 each multibyte character represented as 3 bytes. */
618 charset,
620 /* Same parameters as charset, but match any character that is
621 not one of those specified. */
622 charset_not,
624 /* Start remembering the text that is matched, for storing in a
625 register. Followed by one byte with the register number, in
626 the range 0 to one less than the pattern buffer's re_nsub
627 field. */
628 start_memory,
630 /* Stop remembering the text that is matched and store it in a
631 memory register. Followed by one byte with the register
632 number, in the range 0 to one less than `re_nsub' in the
633 pattern buffer. */
634 stop_memory,
636 /* Match a duplicate of something remembered. Followed by one
637 byte containing the register number. */
638 duplicate,
640 /* Fail unless at beginning of line. */
641 begline,
643 /* Fail unless at end of line. */
644 endline,
646 /* Succeeds if at beginning of buffer (if emacs) or at beginning
647 of string to be matched (if not). */
648 begbuf,
650 /* Analogously, for end of buffer/string. */
651 endbuf,
653 /* Followed by two byte relative address to which to jump. */
654 jump,
656 /* Followed by two-byte relative address of place to resume at
657 in case of failure. */
658 on_failure_jump,
660 /* Like on_failure_jump, but pushes a placeholder instead of the
661 current string position when executed. */
662 on_failure_keep_string_jump,
664 /* Just like `on_failure_jump', except that it checks that we
665 don't get stuck in an infinite loop (matching an empty string
666 indefinitely). */
667 on_failure_jump_loop,
669 /* Just like `on_failure_jump_loop', except that it checks for
670 a different kind of loop (the kind that shows up with non-greedy
671 operators). This operation has to be immediately preceded
672 by a `no_op'. */
673 on_failure_jump_nastyloop,
675 /* A smart `on_failure_jump' used for greedy * and + operators.
676 It analyses the loop before which it is put and if the
677 loop does not require backtracking, it changes itself to
678 `on_failure_keep_string_jump' and short-circuits the loop,
679 else it just defaults to changing itself into `on_failure_jump'.
680 It assumes that it is pointing to just past a `jump'. */
681 on_failure_jump_smart,
683 /* Followed by two-byte relative address and two-byte number n.
684 After matching N times, jump to the address upon failure.
685 Does not work if N starts at 0: use on_failure_jump_loop
686 instead. */
687 succeed_n,
689 /* Followed by two-byte relative address, and two-byte number n.
690 Jump to the address N times, then fail. */
691 jump_n,
693 /* Set the following two-byte relative address to the
694 subsequent two-byte number. The address *includes* the two
695 bytes of number. */
696 set_number_at,
698 wordbeg, /* Succeeds if at word beginning. */
699 wordend, /* Succeeds if at word end. */
701 wordbound, /* Succeeds if at a word boundary. */
702 notwordbound, /* Succeeds if not at a word boundary. */
704 symbeg, /* Succeeds if at symbol beginning. */
705 symend, /* Succeeds if at symbol end. */
707 /* Matches any character whose syntax is specified. Followed by
708 a byte which contains a syntax code, e.g., Sword. */
709 syntaxspec,
711 /* Matches any character whose syntax is not that specified. */
712 notsyntaxspec
714 #ifdef emacs
715 ,before_dot, /* Succeeds if before point. */
716 at_dot, /* Succeeds if at point. */
717 after_dot, /* Succeeds if after point. */
719 /* Matches any character whose category-set contains the specified
720 category. The operator is followed by a byte which contains a
721 category code (mnemonic ASCII character). */
722 categoryspec,
724 /* Matches any character whose category-set does not contain the
725 specified category. The operator is followed by a byte which
726 contains the category code (mnemonic ASCII character). */
727 notcategoryspec
728 #endif /* emacs */
729 } re_opcode_t;
731 /* Common operations on the compiled pattern. */
733 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
735 #define STORE_NUMBER(destination, number) \
736 do { \
737 (destination)[0] = (number) & 0377; \
738 (destination)[1] = (number) >> 8; \
739 } while (0)
741 /* Same as STORE_NUMBER, except increment DESTINATION to
742 the byte after where the number is stored. Therefore, DESTINATION
743 must be an lvalue. */
745 #define STORE_NUMBER_AND_INCR(destination, number) \
746 do { \
747 STORE_NUMBER (destination, number); \
748 (destination) += 2; \
749 } while (0)
751 /* Put into DESTINATION a number stored in two contiguous bytes starting
752 at SOURCE. */
754 #define EXTRACT_NUMBER(destination, source) \
755 do { \
756 (destination) = *(source) & 0377; \
757 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
758 } while (0)
760 #ifdef DEBUG
761 static void extract_number _RE_ARGS ((int *dest, re_char *source));
762 static void
763 extract_number (dest, source)
764 int *dest;
765 re_char *source;
767 int temp = SIGN_EXTEND_CHAR (*(source + 1));
768 *dest = *source & 0377;
769 *dest += temp << 8;
772 # ifndef EXTRACT_MACROS /* To debug the macros. */
773 # undef EXTRACT_NUMBER
774 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
775 # endif /* not EXTRACT_MACROS */
777 #endif /* DEBUG */
779 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
780 SOURCE must be an lvalue. */
782 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
783 do { \
784 EXTRACT_NUMBER (destination, source); \
785 (source) += 2; \
786 } while (0)
788 #ifdef DEBUG
789 static void extract_number_and_incr _RE_ARGS ((int *destination,
790 re_char **source));
791 static void
792 extract_number_and_incr (destination, source)
793 int *destination;
794 re_char **source;
796 extract_number (destination, *source);
797 *source += 2;
800 # ifndef EXTRACT_MACROS
801 # undef EXTRACT_NUMBER_AND_INCR
802 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
803 extract_number_and_incr (&dest, &src)
804 # endif /* not EXTRACT_MACROS */
806 #endif /* DEBUG */
808 /* Store a multibyte character in three contiguous bytes starting
809 DESTINATION, and increment DESTINATION to the byte after where the
810 character is stored. Therefore, DESTINATION must be an lvalue. */
812 #define STORE_CHARACTER_AND_INCR(destination, character) \
813 do { \
814 (destination)[0] = (character) & 0377; \
815 (destination)[1] = ((character) >> 8) & 0377; \
816 (destination)[2] = (character) >> 16; \
817 (destination) += 3; \
818 } while (0)
820 /* Put into DESTINATION a character stored in three contiguous bytes
821 starting at SOURCE. */
823 #define EXTRACT_CHARACTER(destination, source) \
824 do { \
825 (destination) = ((source)[0] \
826 | ((source)[1] << 8) \
827 | ((source)[2] << 16)); \
828 } while (0)
831 /* Macros for charset. */
833 /* Size of bitmap of charset P in bytes. P is a start of charset,
834 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
835 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
837 /* Nonzero if charset P has range table. */
838 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
840 /* Return the address of range table of charset P. But not the start
841 of table itself, but the before where the number of ranges is
842 stored. `2 +' means to skip re_opcode_t and size of bitmap,
843 and the 2 bytes of flags at the start of the range table. */
844 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
846 /* Extract the bit flags that start a range table. */
847 #define CHARSET_RANGE_TABLE_BITS(p) \
848 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
849 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
851 /* Test if C is listed in the bitmap of charset P. */
852 #define CHARSET_LOOKUP_BITMAP(p, c) \
853 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
854 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
856 /* Return the address of end of RANGE_TABLE. COUNT is number of
857 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
858 is start of range and end of range. `* 3' is size of each start
859 and end. */
860 #define CHARSET_RANGE_TABLE_END(range_table, count) \
861 ((range_table) + (count) * 2 * 3)
863 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
864 COUNT is number of ranges in RANGE_TABLE. */
865 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
866 do \
868 re_wchar_t range_start, range_end; \
869 re_char *p; \
870 re_char *range_table_end \
871 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
873 for (p = (range_table); p < range_table_end; p += 2 * 3) \
875 EXTRACT_CHARACTER (range_start, p); \
876 EXTRACT_CHARACTER (range_end, p + 3); \
878 if (range_start <= (c) && (c) <= range_end) \
880 (not) = !(not); \
881 break; \
885 while (0)
887 /* Test if C is in range table of CHARSET. The flag NOT is negated if
888 C is listed in it. */
889 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
890 do \
892 /* Number of ranges in range table. */ \
893 int count; \
894 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
896 EXTRACT_NUMBER_AND_INCR (count, range_table); \
897 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
899 while (0)
901 /* If DEBUG is defined, Regex prints many voluminous messages about what
902 it is doing (if the variable `debug' is nonzero). If linked with the
903 main program in `iregex.c', you can enter patterns and strings
904 interactively. And if linked with the main program in `main.c' and
905 the other test files, you can run the already-written tests. */
907 #ifdef DEBUG
909 /* We use standard I/O for debugging. */
910 # include <stdio.h>
912 /* It is useful to test things that ``must'' be true when debugging. */
913 # include <assert.h>
915 static int debug = -100000;
917 # define DEBUG_STATEMENT(e) e
918 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
919 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
920 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
921 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
922 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
923 if (debug > 0) print_partial_compiled_pattern (s, e)
924 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
925 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
928 /* Print the fastmap in human-readable form. */
930 void
931 print_fastmap (fastmap)
932 char *fastmap;
934 unsigned was_a_range = 0;
935 unsigned i = 0;
937 while (i < (1 << BYTEWIDTH))
939 if (fastmap[i++])
941 was_a_range = 0;
942 putchar (i - 1);
943 while (i < (1 << BYTEWIDTH) && fastmap[i])
945 was_a_range = 1;
946 i++;
948 if (was_a_range)
950 printf ("-");
951 putchar (i - 1);
955 putchar ('\n');
959 /* Print a compiled pattern string in human-readable form, starting at
960 the START pointer into it and ending just before the pointer END. */
962 void
963 print_partial_compiled_pattern (start, end)
964 re_char *start;
965 re_char *end;
967 int mcnt, mcnt2;
968 re_char *p = start;
969 re_char *pend = end;
971 if (start == NULL)
973 fprintf (stderr, "(null)\n");
974 return;
977 /* Loop over pattern commands. */
978 while (p < pend)
980 fprintf (stderr, "%d:\t", p - start);
982 switch ((re_opcode_t) *p++)
984 case no_op:
985 fprintf (stderr, "/no_op");
986 break;
988 case succeed:
989 fprintf (stderr, "/succeed");
990 break;
992 case exactn:
993 mcnt = *p++;
994 fprintf (stderr, "/exactn/%d", mcnt);
997 fprintf (stderr, "/%c", *p++);
999 while (--mcnt);
1000 break;
1002 case start_memory:
1003 fprintf (stderr, "/start_memory/%d", *p++);
1004 break;
1006 case stop_memory:
1007 fprintf (stderr, "/stop_memory/%d", *p++);
1008 break;
1010 case duplicate:
1011 fprintf (stderr, "/duplicate/%d", *p++);
1012 break;
1014 case anychar:
1015 fprintf (stderr, "/anychar");
1016 break;
1018 case charset:
1019 case charset_not:
1021 register int c, last = -100;
1022 register int in_range = 0;
1023 int length = CHARSET_BITMAP_SIZE (p - 1);
1024 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
1026 fprintf (stderr, "/charset [%s",
1027 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
1029 if (p + *p >= pend)
1030 fprintf (stderr, " !extends past end of pattern! ");
1032 for (c = 0; c < 256; c++)
1033 if (c / 8 < length
1034 && (p[1 + (c/8)] & (1 << (c % 8))))
1036 /* Are we starting a range? */
1037 if (last + 1 == c && ! in_range)
1039 fprintf (stderr, "-");
1040 in_range = 1;
1042 /* Have we broken a range? */
1043 else if (last + 1 != c && in_range)
1045 fprintf (stderr, "%c", last);
1046 in_range = 0;
1049 if (! in_range)
1050 fprintf (stderr, "%c", c);
1052 last = c;
1055 if (in_range)
1056 fprintf (stderr, "%c", last);
1058 fprintf (stderr, "]");
1060 p += 1 + length;
1062 if (has_range_table)
1064 int count;
1065 fprintf (stderr, "has-range-table");
1067 /* ??? Should print the range table; for now, just skip it. */
1068 p += 2; /* skip range table bits */
1069 EXTRACT_NUMBER_AND_INCR (count, p);
1070 p = CHARSET_RANGE_TABLE_END (p, count);
1073 break;
1075 case begline:
1076 fprintf (stderr, "/begline");
1077 break;
1079 case endline:
1080 fprintf (stderr, "/endline");
1081 break;
1083 case on_failure_jump:
1084 extract_number_and_incr (&mcnt, &p);
1085 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1086 break;
1088 case on_failure_keep_string_jump:
1089 extract_number_and_incr (&mcnt, &p);
1090 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1091 break;
1093 case on_failure_jump_nastyloop:
1094 extract_number_and_incr (&mcnt, &p);
1095 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1096 break;
1098 case on_failure_jump_loop:
1099 extract_number_and_incr (&mcnt, &p);
1100 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1101 break;
1103 case on_failure_jump_smart:
1104 extract_number_and_incr (&mcnt, &p);
1105 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1106 break;
1108 case jump:
1109 extract_number_and_incr (&mcnt, &p);
1110 fprintf (stderr, "/jump to %d", p + mcnt - start);
1111 break;
1113 case succeed_n:
1114 extract_number_and_incr (&mcnt, &p);
1115 extract_number_and_incr (&mcnt2, &p);
1116 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1117 break;
1119 case jump_n:
1120 extract_number_and_incr (&mcnt, &p);
1121 extract_number_and_incr (&mcnt2, &p);
1122 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1123 break;
1125 case set_number_at:
1126 extract_number_and_incr (&mcnt, &p);
1127 extract_number_and_incr (&mcnt2, &p);
1128 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1129 break;
1131 case wordbound:
1132 fprintf (stderr, "/wordbound");
1133 break;
1135 case notwordbound:
1136 fprintf (stderr, "/notwordbound");
1137 break;
1139 case wordbeg:
1140 fprintf (stderr, "/wordbeg");
1141 break;
1143 case wordend:
1144 fprintf (stderr, "/wordend");
1145 break;
1147 case symbeg:
1148 fprintf (stderr, "/symbeg");
1149 break;
1151 case symend:
1152 fprintf (stderr, "/symend");
1153 break;
1155 case syntaxspec:
1156 fprintf (stderr, "/syntaxspec");
1157 mcnt = *p++;
1158 fprintf (stderr, "/%d", mcnt);
1159 break;
1161 case notsyntaxspec:
1162 fprintf (stderr, "/notsyntaxspec");
1163 mcnt = *p++;
1164 fprintf (stderr, "/%d", mcnt);
1165 break;
1167 # ifdef emacs
1168 case before_dot:
1169 fprintf (stderr, "/before_dot");
1170 break;
1172 case at_dot:
1173 fprintf (stderr, "/at_dot");
1174 break;
1176 case after_dot:
1177 fprintf (stderr, "/after_dot");
1178 break;
1180 case categoryspec:
1181 fprintf (stderr, "/categoryspec");
1182 mcnt = *p++;
1183 fprintf (stderr, "/%d", mcnt);
1184 break;
1186 case notcategoryspec:
1187 fprintf (stderr, "/notcategoryspec");
1188 mcnt = *p++;
1189 fprintf (stderr, "/%d", mcnt);
1190 break;
1191 # endif /* emacs */
1193 case begbuf:
1194 fprintf (stderr, "/begbuf");
1195 break;
1197 case endbuf:
1198 fprintf (stderr, "/endbuf");
1199 break;
1201 default:
1202 fprintf (stderr, "?%d", *(p-1));
1205 fprintf (stderr, "\n");
1208 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1212 void
1213 print_compiled_pattern (bufp)
1214 struct re_pattern_buffer *bufp;
1216 re_char *buffer = bufp->buffer;
1218 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1219 printf ("%ld bytes used/%ld bytes allocated.\n",
1220 bufp->used, bufp->allocated);
1222 if (bufp->fastmap_accurate && bufp->fastmap)
1224 printf ("fastmap: ");
1225 print_fastmap (bufp->fastmap);
1228 printf ("re_nsub: %d\t", bufp->re_nsub);
1229 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1230 printf ("can_be_null: %d\t", bufp->can_be_null);
1231 printf ("no_sub: %d\t", bufp->no_sub);
1232 printf ("not_bol: %d\t", bufp->not_bol);
1233 printf ("not_eol: %d\t", bufp->not_eol);
1234 printf ("syntax: %lx\n", bufp->syntax);
1235 fflush (stdout);
1236 /* Perhaps we should print the translate table? */
1240 void
1241 print_double_string (where, string1, size1, string2, size2)
1242 re_char *where;
1243 re_char *string1;
1244 re_char *string2;
1245 int size1;
1246 int size2;
1248 int this_char;
1250 if (where == NULL)
1251 printf ("(null)");
1252 else
1254 if (FIRST_STRING_P (where))
1256 for (this_char = where - string1; this_char < size1; this_char++)
1257 putchar (string1[this_char]);
1259 where = string2;
1262 for (this_char = where - string2; this_char < size2; this_char++)
1263 putchar (string2[this_char]);
1267 #else /* not DEBUG */
1269 # undef assert
1270 # define assert(e)
1272 # define DEBUG_STATEMENT(e)
1273 # define DEBUG_PRINT1(x)
1274 # define DEBUG_PRINT2(x1, x2)
1275 # define DEBUG_PRINT3(x1, x2, x3)
1276 # define DEBUG_PRINT4(x1, x2, x3, x4)
1277 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1278 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1280 #endif /* not DEBUG */
1282 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1283 also be assigned to arbitrarily: each pattern buffer stores its own
1284 syntax, so it can be changed between regex compilations. */
1285 /* This has no initializer because initialized variables in Emacs
1286 become read-only after dumping. */
1287 reg_syntax_t re_syntax_options;
1290 /* Specify the precise syntax of regexps for compilation. This provides
1291 for compatibility for various utilities which historically have
1292 different, incompatible syntaxes.
1294 The argument SYNTAX is a bit mask comprised of the various bits
1295 defined in regex.h. We return the old syntax. */
1297 reg_syntax_t
1298 re_set_syntax (syntax)
1299 reg_syntax_t syntax;
1301 reg_syntax_t ret = re_syntax_options;
1303 re_syntax_options = syntax;
1304 return ret;
1306 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1308 /* Regexp to use to replace spaces, or NULL meaning don't. */
1309 static re_char *whitespace_regexp;
1311 void
1312 re_set_whitespace_regexp (regexp)
1313 const char *regexp;
1315 whitespace_regexp = (re_char *) regexp;
1317 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1319 /* This table gives an error message for each of the error codes listed
1320 in regex.h. Obviously the order here has to be same as there.
1321 POSIX doesn't require that we do anything for REG_NOERROR,
1322 but why not be nice? */
1324 static const char *re_error_msgid[] =
1326 gettext_noop ("Success"), /* REG_NOERROR */
1327 gettext_noop ("No match"), /* REG_NOMATCH */
1328 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1329 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1330 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1331 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1332 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1333 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1334 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1335 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1336 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1337 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1338 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1339 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1340 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1341 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1342 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1343 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1346 /* Avoiding alloca during matching, to placate r_alloc. */
1348 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1349 searching and matching functions should not call alloca. On some
1350 systems, alloca is implemented in terms of malloc, and if we're
1351 using the relocating allocator routines, then malloc could cause a
1352 relocation, which might (if the strings being searched are in the
1353 ralloc heap) shift the data out from underneath the regexp
1354 routines.
1356 Here's another reason to avoid allocation: Emacs
1357 processes input from X in a signal handler; processing X input may
1358 call malloc; if input arrives while a matching routine is calling
1359 malloc, then we're scrod. But Emacs can't just block input while
1360 calling matching routines; then we don't notice interrupts when
1361 they come in. So, Emacs blocks input around all regexp calls
1362 except the matching calls, which it leaves unprotected, in the
1363 faith that they will not malloc. */
1365 /* Normally, this is fine. */
1366 #define MATCH_MAY_ALLOCATE
1368 /* When using GNU C, we are not REALLY using the C alloca, no matter
1369 what config.h may say. So don't take precautions for it. */
1370 #ifdef __GNUC__
1371 # undef C_ALLOCA
1372 #endif
1374 /* The match routines may not allocate if (1) they would do it with malloc
1375 and (2) it's not safe for them to use malloc.
1376 Note that if REL_ALLOC is defined, matching would not use malloc for the
1377 failure stack, but we would still use it for the register vectors;
1378 so REL_ALLOC should not affect this. */
1379 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1380 # undef MATCH_MAY_ALLOCATE
1381 #endif
1384 /* Failure stack declarations and macros; both re_compile_fastmap and
1385 re_match_2 use a failure stack. These have to be macros because of
1386 REGEX_ALLOCATE_STACK. */
1389 /* Approximate number of failure points for which to initially allocate space
1390 when matching. If this number is exceeded, we allocate more
1391 space, so it is not a hard limit. */
1392 #ifndef INIT_FAILURE_ALLOC
1393 # define INIT_FAILURE_ALLOC 20
1394 #endif
1396 /* Roughly the maximum number of failure points on the stack. Would be
1397 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1398 This is a variable only so users of regex can assign to it; we never
1399 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1400 before using it, so it should probably be a byte-count instead. */
1401 # if defined MATCH_MAY_ALLOCATE
1402 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1403 whose default stack limit is 2mb. In order for a larger
1404 value to work reliably, you have to try to make it accord
1405 with the process stack limit. */
1406 size_t re_max_failures = 40000;
1407 # else
1408 size_t re_max_failures = 4000;
1409 # endif
1411 union fail_stack_elt
1413 re_char *pointer;
1414 /* This should be the biggest `int' that's no bigger than a pointer. */
1415 long integer;
1418 typedef union fail_stack_elt fail_stack_elt_t;
1420 typedef struct
1422 fail_stack_elt_t *stack;
1423 size_t size;
1424 size_t avail; /* Offset of next open position. */
1425 size_t frame; /* Offset of the cur constructed frame. */
1426 } fail_stack_type;
1428 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1429 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1432 /* Define macros to initialize and free the failure stack.
1433 Do `return -2' if the alloc fails. */
1435 #ifdef MATCH_MAY_ALLOCATE
1436 # define INIT_FAIL_STACK() \
1437 do { \
1438 fail_stack.stack = (fail_stack_elt_t *) \
1439 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1440 * sizeof (fail_stack_elt_t)); \
1442 if (fail_stack.stack == NULL) \
1443 return -2; \
1445 fail_stack.size = INIT_FAILURE_ALLOC; \
1446 fail_stack.avail = 0; \
1447 fail_stack.frame = 0; \
1448 } while (0)
1450 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1451 #else
1452 # define INIT_FAIL_STACK() \
1453 do { \
1454 fail_stack.avail = 0; \
1455 fail_stack.frame = 0; \
1456 } while (0)
1458 # define RESET_FAIL_STACK() ((void)0)
1459 #endif
1462 /* Double the size of FAIL_STACK, up to a limit
1463 which allows approximately `re_max_failures' items.
1465 Return 1 if succeeds, and 0 if either ran out of memory
1466 allocating space for it or it was already too large.
1468 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1470 /* Factor to increase the failure stack size by
1471 when we increase it.
1472 This used to be 2, but 2 was too wasteful
1473 because the old discarded stacks added up to as much space
1474 were as ultimate, maximum-size stack. */
1475 #define FAIL_STACK_GROWTH_FACTOR 4
1477 #define GROW_FAIL_STACK(fail_stack) \
1478 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1479 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1480 ? 0 \
1481 : ((fail_stack).stack \
1482 = (fail_stack_elt_t *) \
1483 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1484 (fail_stack).size * sizeof (fail_stack_elt_t), \
1485 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1486 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1487 * FAIL_STACK_GROWTH_FACTOR))), \
1489 (fail_stack).stack == NULL \
1490 ? 0 \
1491 : ((fail_stack).size \
1492 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1493 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1494 * FAIL_STACK_GROWTH_FACTOR)) \
1495 / sizeof (fail_stack_elt_t)), \
1496 1)))
1499 /* Push a pointer value onto the failure stack.
1500 Assumes the variable `fail_stack'. Probably should only
1501 be called from within `PUSH_FAILURE_POINT'. */
1502 #define PUSH_FAILURE_POINTER(item) \
1503 fail_stack.stack[fail_stack.avail++].pointer = (item)
1505 /* This pushes an integer-valued item onto the failure stack.
1506 Assumes the variable `fail_stack'. Probably should only
1507 be called from within `PUSH_FAILURE_POINT'. */
1508 #define PUSH_FAILURE_INT(item) \
1509 fail_stack.stack[fail_stack.avail++].integer = (item)
1511 /* Push a fail_stack_elt_t value onto the failure stack.
1512 Assumes the variable `fail_stack'. Probably should only
1513 be called from within `PUSH_FAILURE_POINT'. */
1514 #define PUSH_FAILURE_ELT(item) \
1515 fail_stack.stack[fail_stack.avail++] = (item)
1517 /* These three POP... operations complement the three PUSH... operations.
1518 All assume that `fail_stack' is nonempty. */
1519 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1520 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1521 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1523 /* Individual items aside from the registers. */
1524 #define NUM_NONREG_ITEMS 3
1526 /* Used to examine the stack (to detect infinite loops). */
1527 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1528 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1529 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1530 #define TOP_FAILURE_HANDLE() fail_stack.frame
1533 #define ENSURE_FAIL_STACK(space) \
1534 while (REMAINING_AVAIL_SLOTS <= space) { \
1535 if (!GROW_FAIL_STACK (fail_stack)) \
1536 return -2; \
1537 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1538 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1541 /* Push register NUM onto the stack. */
1542 #define PUSH_FAILURE_REG(num) \
1543 do { \
1544 char *destination; \
1545 ENSURE_FAIL_STACK(3); \
1546 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1547 num, regstart[num], regend[num]); \
1548 PUSH_FAILURE_POINTER (regstart[num]); \
1549 PUSH_FAILURE_POINTER (regend[num]); \
1550 PUSH_FAILURE_INT (num); \
1551 } while (0)
1553 /* Change the counter's value to VAL, but make sure that it will
1554 be reset when backtracking. */
1555 #define PUSH_NUMBER(ptr,val) \
1556 do { \
1557 char *destination; \
1558 int c; \
1559 ENSURE_FAIL_STACK(3); \
1560 EXTRACT_NUMBER (c, ptr); \
1561 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1562 PUSH_FAILURE_INT (c); \
1563 PUSH_FAILURE_POINTER (ptr); \
1564 PUSH_FAILURE_INT (-1); \
1565 STORE_NUMBER (ptr, val); \
1566 } while (0)
1568 /* Pop a saved register off the stack. */
1569 #define POP_FAILURE_REG_OR_COUNT() \
1570 do { \
1571 int reg = POP_FAILURE_INT (); \
1572 if (reg == -1) \
1574 /* It's a counter. */ \
1575 /* Here, we discard `const', making re_match non-reentrant. */ \
1576 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1577 reg = POP_FAILURE_INT (); \
1578 STORE_NUMBER (ptr, reg); \
1579 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1581 else \
1583 regend[reg] = POP_FAILURE_POINTER (); \
1584 regstart[reg] = POP_FAILURE_POINTER (); \
1585 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1586 reg, regstart[reg], regend[reg]); \
1588 } while (0)
1590 /* Check that we are not stuck in an infinite loop. */
1591 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1592 do { \
1593 int failure = TOP_FAILURE_HANDLE (); \
1594 /* Check for infinite matching loops */ \
1595 while (failure > 0 \
1596 && (FAILURE_STR (failure) == string_place \
1597 || FAILURE_STR (failure) == NULL)) \
1599 assert (FAILURE_PAT (failure) >= bufp->buffer \
1600 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1601 if (FAILURE_PAT (failure) == pat_cur) \
1603 cycle = 1; \
1604 break; \
1606 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1607 failure = NEXT_FAILURE_HANDLE(failure); \
1609 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1610 } while (0)
1612 /* Push the information about the state we will need
1613 if we ever fail back to it.
1615 Requires variables fail_stack, regstart, regend and
1616 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1617 declared.
1619 Does `return FAILURE_CODE' if runs out of memory. */
1621 #define PUSH_FAILURE_POINT(pattern, string_place) \
1622 do { \
1623 char *destination; \
1624 /* Must be int, so when we don't save any registers, the arithmetic \
1625 of 0 + -1 isn't done as unsigned. */ \
1627 DEBUG_STATEMENT (nfailure_points_pushed++); \
1628 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1629 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1630 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1632 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1634 DEBUG_PRINT1 ("\n"); \
1636 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1637 PUSH_FAILURE_INT (fail_stack.frame); \
1639 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1640 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1641 DEBUG_PRINT1 ("'\n"); \
1642 PUSH_FAILURE_POINTER (string_place); \
1644 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1645 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1646 PUSH_FAILURE_POINTER (pattern); \
1648 /* Close the frame by moving the frame pointer past it. */ \
1649 fail_stack.frame = fail_stack.avail; \
1650 } while (0)
1652 /* Estimate the size of data pushed by a typical failure stack entry.
1653 An estimate is all we need, because all we use this for
1654 is to choose a limit for how big to make the failure stack. */
1655 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1656 #define TYPICAL_FAILURE_SIZE 20
1658 /* How many items can still be added to the stack without overflowing it. */
1659 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1662 /* Pops what PUSH_FAIL_STACK pushes.
1664 We restore into the parameters, all of which should be lvalues:
1665 STR -- the saved data position.
1666 PAT -- the saved pattern position.
1667 REGSTART, REGEND -- arrays of string positions.
1669 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1670 `pend', `string1', `size1', `string2', and `size2'. */
1672 #define POP_FAILURE_POINT(str, pat) \
1673 do { \
1674 assert (!FAIL_STACK_EMPTY ()); \
1676 /* Remove failure points and point to how many regs pushed. */ \
1677 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1678 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1679 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1681 /* Pop the saved registers. */ \
1682 while (fail_stack.frame < fail_stack.avail) \
1683 POP_FAILURE_REG_OR_COUNT (); \
1685 pat = POP_FAILURE_POINTER (); \
1686 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1687 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1689 /* If the saved string location is NULL, it came from an \
1690 on_failure_keep_string_jump opcode, and we want to throw away the \
1691 saved NULL, thus retaining our current position in the string. */ \
1692 str = POP_FAILURE_POINTER (); \
1693 DEBUG_PRINT2 (" Popping string %p: `", str); \
1694 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1695 DEBUG_PRINT1 ("'\n"); \
1697 fail_stack.frame = POP_FAILURE_INT (); \
1698 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1700 assert (fail_stack.avail >= 0); \
1701 assert (fail_stack.frame <= fail_stack.avail); \
1703 DEBUG_STATEMENT (nfailure_points_popped++); \
1704 } while (0) /* POP_FAILURE_POINT */
1708 /* Registers are set to a sentinel when they haven't yet matched. */
1709 #define REG_UNSET(e) ((e) == NULL)
1711 /* Subroutine declarations and macros for regex_compile. */
1713 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1714 reg_syntax_t syntax,
1715 struct re_pattern_buffer *bufp));
1716 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1717 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1718 int arg1, int arg2));
1719 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1720 int arg, unsigned char *end));
1721 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1722 int arg1, int arg2, unsigned char *end));
1723 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1724 re_char *p,
1725 reg_syntax_t syntax));
1726 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1727 re_char *pend,
1728 reg_syntax_t syntax));
1729 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1730 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1731 char *fastmap, const int multibyte));
1733 /* Fetch the next character in the uncompiled pattern, with no
1734 translation. */
1735 #define PATFETCH(c) \
1736 do { \
1737 int len; \
1738 if (p == pend) return REG_EEND; \
1739 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1740 p += len; \
1741 } while (0)
1744 /* If `translate' is non-null, return translate[D], else just D. We
1745 cast the subscript to translate because some data is declared as
1746 `char *', to avoid warnings when a string constant is passed. But
1747 when we use a character as a subscript we must make it unsigned. */
1748 #ifndef TRANSLATE
1749 # define TRANSLATE(d) \
1750 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1751 #endif
1754 /* Macros for outputting the compiled pattern into `buffer'. */
1756 /* If the buffer isn't allocated when it comes in, use this. */
1757 #define INIT_BUF_SIZE 32
1759 /* Make sure we have at least N more bytes of space in buffer. */
1760 #define GET_BUFFER_SPACE(n) \
1761 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1762 EXTEND_BUFFER ()
1764 /* Make sure we have one more byte of buffer space and then add C to it. */
1765 #define BUF_PUSH(c) \
1766 do { \
1767 GET_BUFFER_SPACE (1); \
1768 *b++ = (unsigned char) (c); \
1769 } while (0)
1772 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1773 #define BUF_PUSH_2(c1, c2) \
1774 do { \
1775 GET_BUFFER_SPACE (2); \
1776 *b++ = (unsigned char) (c1); \
1777 *b++ = (unsigned char) (c2); \
1778 } while (0)
1781 /* As with BUF_PUSH_2, except for three bytes. */
1782 #define BUF_PUSH_3(c1, c2, c3) \
1783 do { \
1784 GET_BUFFER_SPACE (3); \
1785 *b++ = (unsigned char) (c1); \
1786 *b++ = (unsigned char) (c2); \
1787 *b++ = (unsigned char) (c3); \
1788 } while (0)
1791 /* Store a jump with opcode OP at LOC to location TO. We store a
1792 relative address offset by the three bytes the jump itself occupies. */
1793 #define STORE_JUMP(op, loc, to) \
1794 store_op1 (op, loc, (to) - (loc) - 3)
1796 /* Likewise, for a two-argument jump. */
1797 #define STORE_JUMP2(op, loc, to, arg) \
1798 store_op2 (op, loc, (to) - (loc) - 3, arg)
1800 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1801 #define INSERT_JUMP(op, loc, to) \
1802 insert_op1 (op, loc, (to) - (loc) - 3, b)
1804 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1805 #define INSERT_JUMP2(op, loc, to, arg) \
1806 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1809 /* This is not an arbitrary limit: the arguments which represent offsets
1810 into the pattern are two bytes long. So if 2^15 bytes turns out to
1811 be too small, many things would have to change. */
1812 # define MAX_BUF_SIZE (1L << 15)
1814 #if 0 /* This is when we thought it could be 2^16 bytes. */
1815 /* Any other compiler which, like MSC, has allocation limit below 2^16
1816 bytes will have to use approach similar to what was done below for
1817 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1818 reallocating to 0 bytes. Such thing is not going to work too well.
1819 You have been warned!! */
1820 #if defined _MSC_VER && !defined WIN32
1821 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1822 # define MAX_BUF_SIZE 65500L
1823 #else
1824 # define MAX_BUF_SIZE (1L << 16)
1825 #endif
1826 #endif /* 0 */
1828 /* Extend the buffer by twice its current size via realloc and
1829 reset the pointers that pointed into the old block to point to the
1830 correct places in the new one. If extending the buffer results in it
1831 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1832 #if __BOUNDED_POINTERS__
1833 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1834 # define MOVE_BUFFER_POINTER(P) \
1835 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1836 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1837 else \
1839 SET_HIGH_BOUND (b); \
1840 SET_HIGH_BOUND (begalt); \
1841 if (fixup_alt_jump) \
1842 SET_HIGH_BOUND (fixup_alt_jump); \
1843 if (laststart) \
1844 SET_HIGH_BOUND (laststart); \
1845 if (pending_exact) \
1846 SET_HIGH_BOUND (pending_exact); \
1848 #else
1849 # define MOVE_BUFFER_POINTER(P) (P) += incr
1850 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1851 #endif
1852 #define EXTEND_BUFFER() \
1853 do { \
1854 re_char *old_buffer = bufp->buffer; \
1855 if (bufp->allocated == MAX_BUF_SIZE) \
1856 return REG_ESIZE; \
1857 bufp->allocated <<= 1; \
1858 if (bufp->allocated > MAX_BUF_SIZE) \
1859 bufp->allocated = MAX_BUF_SIZE; \
1860 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1861 if (bufp->buffer == NULL) \
1862 return REG_ESPACE; \
1863 /* If the buffer moved, move all the pointers into it. */ \
1864 if (old_buffer != bufp->buffer) \
1866 int incr = bufp->buffer - old_buffer; \
1867 MOVE_BUFFER_POINTER (b); \
1868 MOVE_BUFFER_POINTER (begalt); \
1869 if (fixup_alt_jump) \
1870 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1871 if (laststart) \
1872 MOVE_BUFFER_POINTER (laststart); \
1873 if (pending_exact) \
1874 MOVE_BUFFER_POINTER (pending_exact); \
1876 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1877 } while (0)
1880 /* Since we have one byte reserved for the register number argument to
1881 {start,stop}_memory, the maximum number of groups we can report
1882 things about is what fits in that byte. */
1883 #define MAX_REGNUM 255
1885 /* But patterns can have more than `MAX_REGNUM' registers. We just
1886 ignore the excess. */
1887 typedef int regnum_t;
1890 /* Macros for the compile stack. */
1892 /* Since offsets can go either forwards or backwards, this type needs to
1893 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1894 /* int may be not enough when sizeof(int) == 2. */
1895 typedef long pattern_offset_t;
1897 typedef struct
1899 pattern_offset_t begalt_offset;
1900 pattern_offset_t fixup_alt_jump;
1901 pattern_offset_t laststart_offset;
1902 regnum_t regnum;
1903 } compile_stack_elt_t;
1906 typedef struct
1908 compile_stack_elt_t *stack;
1909 unsigned size;
1910 unsigned avail; /* Offset of next open position. */
1911 } compile_stack_type;
1914 #define INIT_COMPILE_STACK_SIZE 32
1916 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1917 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1919 /* The next available element. */
1920 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1922 /* Explicit quit checking is only used on NTemacs and whenever we
1923 use polling to process input events. */
1924 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1925 extern int immediate_quit;
1926 # define IMMEDIATE_QUIT_CHECK \
1927 do { \
1928 if (immediate_quit) QUIT; \
1929 } while (0)
1930 #else
1931 # define IMMEDIATE_QUIT_CHECK ((void)0)
1932 #endif
1934 /* Structure to manage work area for range table. */
1935 struct range_table_work_area
1937 int *table; /* actual work area. */
1938 int allocated; /* allocated size for work area in bytes. */
1939 int used; /* actually used size in words. */
1940 int bits; /* flag to record character classes */
1943 /* Make sure that WORK_AREA can hold more N multibyte characters.
1944 This is used only in set_image_of_range and set_image_of_range_1.
1945 It expects WORK_AREA to be a pointer.
1946 If it can't get the space, it returns from the surrounding function. */
1948 #define EXTEND_RANGE_TABLE(work_area, n) \
1949 do { \
1950 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1952 extend_range_table_work_area (work_area); \
1953 if ((work_area)->table == 0) \
1954 return (REG_ESPACE); \
1956 } while (0)
1958 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1959 (work_area).bits |= (bit)
1961 /* Bits used to implement the multibyte-part of the various character classes
1962 such as [:alnum:] in a charset's range table. */
1963 #define BIT_WORD 0x1
1964 #define BIT_LOWER 0x2
1965 #define BIT_PUNCT 0x4
1966 #define BIT_SPACE 0x8
1967 #define BIT_UPPER 0x10
1968 #define BIT_MULTIBYTE 0x20
1970 /* Set a range START..END to WORK_AREA.
1971 The range is passed through TRANSLATE, so START and END
1972 should be untranslated. */
1973 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1974 do { \
1975 int tem; \
1976 tem = set_image_of_range (&work_area, start, end, translate); \
1977 if (tem > 0) \
1978 FREE_STACK_RETURN (tem); \
1979 } while (0)
1981 /* Free allocated memory for WORK_AREA. */
1982 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1983 do { \
1984 if ((work_area).table) \
1985 free ((work_area).table); \
1986 } while (0)
1988 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1989 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1990 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1991 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1994 /* Set the bit for character C in a list. */
1995 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1998 /* Get the next unsigned number in the uncompiled pattern. */
1999 #define GET_UNSIGNED_NUMBER(num) \
2000 do { \
2001 if (p == pend) \
2002 FREE_STACK_RETURN (REG_EBRACE); \
2003 else \
2005 PATFETCH (c); \
2006 while ('0' <= c && c <= '9') \
2008 int prev; \
2009 if (num < 0) \
2010 num = 0; \
2011 prev = num; \
2012 num = num * 10 + c - '0'; \
2013 if (num / 10 != prev) \
2014 FREE_STACK_RETURN (REG_BADBR); \
2015 if (p == pend) \
2016 FREE_STACK_RETURN (REG_EBRACE); \
2017 PATFETCH (c); \
2020 } while (0)
2022 #if ! WIDE_CHAR_SUPPORT
2024 /* Map a string to the char class it names (if any). */
2025 re_wctype_t
2026 re_wctype (str)
2027 re_char *str;
2029 const char *string = str;
2030 if (STREQ (string, "alnum")) return RECC_ALNUM;
2031 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2032 else if (STREQ (string, "word")) return RECC_WORD;
2033 else if (STREQ (string, "ascii")) return RECC_ASCII;
2034 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2035 else if (STREQ (string, "graph")) return RECC_GRAPH;
2036 else if (STREQ (string, "lower")) return RECC_LOWER;
2037 else if (STREQ (string, "print")) return RECC_PRINT;
2038 else if (STREQ (string, "punct")) return RECC_PUNCT;
2039 else if (STREQ (string, "space")) return RECC_SPACE;
2040 else if (STREQ (string, "upper")) return RECC_UPPER;
2041 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2042 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2043 else if (STREQ (string, "digit")) return RECC_DIGIT;
2044 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2045 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2046 else if (STREQ (string, "blank")) return RECC_BLANK;
2047 else return 0;
2050 /* True iff CH is in the char class CC. */
2051 boolean
2052 re_iswctype (ch, cc)
2053 int ch;
2054 re_wctype_t cc;
2056 switch (cc)
2058 case RECC_ALNUM: return ISALNUM (ch);
2059 case RECC_ALPHA: return ISALPHA (ch);
2060 case RECC_BLANK: return ISBLANK (ch);
2061 case RECC_CNTRL: return ISCNTRL (ch);
2062 case RECC_DIGIT: return ISDIGIT (ch);
2063 case RECC_GRAPH: return ISGRAPH (ch);
2064 case RECC_LOWER: return ISLOWER (ch);
2065 case RECC_PRINT: return ISPRINT (ch);
2066 case RECC_PUNCT: return ISPUNCT (ch);
2067 case RECC_SPACE: return ISSPACE (ch);
2068 case RECC_UPPER: return ISUPPER (ch);
2069 case RECC_XDIGIT: return ISXDIGIT (ch);
2070 case RECC_ASCII: return IS_REAL_ASCII (ch);
2071 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2072 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2073 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2074 case RECC_WORD: return ISWORD (ch);
2075 case RECC_ERROR: return false;
2076 default:
2077 abort();
2081 /* Return a bit-pattern to use in the range-table bits to match multibyte
2082 chars of class CC. */
2083 static int
2084 re_wctype_to_bit (cc)
2085 re_wctype_t cc;
2087 switch (cc)
2089 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2090 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2091 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2092 case RECC_LOWER: return BIT_LOWER;
2093 case RECC_UPPER: return BIT_UPPER;
2094 case RECC_PUNCT: return BIT_PUNCT;
2095 case RECC_SPACE: return BIT_SPACE;
2096 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2097 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2098 default:
2099 abort();
2102 #endif
2104 /* Filling in the work area of a range. */
2106 /* Actually extend the space in WORK_AREA. */
2108 static void
2109 extend_range_table_work_area (work_area)
2110 struct range_table_work_area *work_area;
2112 work_area->allocated += 16 * sizeof (int);
2113 if (work_area->table)
2114 work_area->table
2115 = (int *) realloc (work_area->table, work_area->allocated);
2116 else
2117 work_area->table
2118 = (int *) malloc (work_area->allocated);
2121 #ifdef emacs
2123 /* Carefully find the ranges of codes that are equivalent
2124 under case conversion to the range start..end when passed through
2125 TRANSLATE. Handle the case where non-letters can come in between
2126 two upper-case letters (which happens in Latin-1).
2127 Also handle the case of groups of more than 2 case-equivalent chars.
2129 The basic method is to look at consecutive characters and see
2130 if they can form a run that can be handled as one.
2132 Returns -1 if successful, REG_ESPACE if ran out of space. */
2134 static int
2135 set_image_of_range_1 (work_area, start, end, translate)
2136 RE_TRANSLATE_TYPE translate;
2137 struct range_table_work_area *work_area;
2138 re_wchar_t start, end;
2140 /* `one_case' indicates a character, or a run of characters,
2141 each of which is an isolate (no case-equivalents).
2142 This includes all ASCII non-letters.
2144 `two_case' indicates a character, or a run of characters,
2145 each of which has two case-equivalent forms.
2146 This includes all ASCII letters.
2148 `strange' indicates a character that has more than one
2149 case-equivalent. */
2151 enum case_type {one_case, two_case, strange};
2153 /* Describe the run that is in progress,
2154 which the next character can try to extend.
2155 If run_type is strange, that means there really is no run.
2156 If run_type is one_case, then run_start...run_end is the run.
2157 If run_type is two_case, then the run is run_start...run_end,
2158 and the case-equivalents end at run_eqv_end. */
2160 enum case_type run_type = strange;
2161 int run_start, run_end, run_eqv_end;
2163 Lisp_Object eqv_table;
2165 if (!RE_TRANSLATE_P (translate))
2167 EXTEND_RANGE_TABLE (work_area, 2);
2168 work_area->table[work_area->used++] = (start);
2169 work_area->table[work_area->used++] = (end);
2170 return -1;
2173 eqv_table = XCHAR_TABLE (translate)->extras[2];
2175 for (; start <= end; start++)
2177 enum case_type this_type;
2178 int eqv = RE_TRANSLATE (eqv_table, start);
2179 int minchar, maxchar;
2181 /* Classify this character */
2182 if (eqv == start)
2183 this_type = one_case;
2184 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2185 this_type = two_case;
2186 else
2187 this_type = strange;
2189 if (start < eqv)
2190 minchar = start, maxchar = eqv;
2191 else
2192 minchar = eqv, maxchar = start;
2194 /* Can this character extend the run in progress? */
2195 if (this_type == strange || this_type != run_type
2196 || !(minchar == run_end + 1
2197 && (run_type == two_case
2198 ? maxchar == run_eqv_end + 1 : 1)))
2200 /* No, end the run.
2201 Record each of its equivalent ranges. */
2202 if (run_type == one_case)
2204 EXTEND_RANGE_TABLE (work_area, 2);
2205 work_area->table[work_area->used++] = run_start;
2206 work_area->table[work_area->used++] = run_end;
2208 else if (run_type == two_case)
2210 EXTEND_RANGE_TABLE (work_area, 4);
2211 work_area->table[work_area->used++] = run_start;
2212 work_area->table[work_area->used++] = run_end;
2213 work_area->table[work_area->used++]
2214 = RE_TRANSLATE (eqv_table, run_start);
2215 work_area->table[work_area->used++]
2216 = RE_TRANSLATE (eqv_table, run_end);
2218 run_type = strange;
2221 if (this_type == strange)
2223 /* For a strange character, add each of its equivalents, one
2224 by one. Don't start a range. */
2227 EXTEND_RANGE_TABLE (work_area, 2);
2228 work_area->table[work_area->used++] = eqv;
2229 work_area->table[work_area->used++] = eqv;
2230 eqv = RE_TRANSLATE (eqv_table, eqv);
2232 while (eqv != start);
2235 /* Add this char to the run, or start a new run. */
2236 else if (run_type == strange)
2238 /* Initialize a new range. */
2239 run_type = this_type;
2240 run_start = start;
2241 run_end = start;
2242 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2244 else
2246 /* Extend a running range. */
2247 run_end = minchar;
2248 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2252 /* If a run is still in progress at the end, finish it now
2253 by recording its equivalent ranges. */
2254 if (run_type == one_case)
2256 EXTEND_RANGE_TABLE (work_area, 2);
2257 work_area->table[work_area->used++] = run_start;
2258 work_area->table[work_area->used++] = run_end;
2260 else if (run_type == two_case)
2262 EXTEND_RANGE_TABLE (work_area, 4);
2263 work_area->table[work_area->used++] = run_start;
2264 work_area->table[work_area->used++] = run_end;
2265 work_area->table[work_area->used++]
2266 = RE_TRANSLATE (eqv_table, run_start);
2267 work_area->table[work_area->used++]
2268 = RE_TRANSLATE (eqv_table, run_end);
2271 return -1;
2274 #endif /* emacs */
2276 /* Record the the image of the range start..end when passed through
2277 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2278 and is not even necessarily contiguous.
2279 Normally we approximate it with the smallest contiguous range that contains
2280 all the chars we need. However, for Latin-1 we go to extra effort
2281 to do a better job.
2283 This function is not called for ASCII ranges.
2285 Returns -1 if successful, REG_ESPACE if ran out of space. */
2287 static int
2288 set_image_of_range (work_area, start, end, translate)
2289 RE_TRANSLATE_TYPE translate;
2290 struct range_table_work_area *work_area;
2291 re_wchar_t start, end;
2293 re_wchar_t cmin, cmax;
2295 #ifdef emacs
2296 /* For Latin-1 ranges, use set_image_of_range_1
2297 to get proper handling of ranges that include letters and nonletters.
2298 For a range that includes the whole of Latin-1, this is not necessary.
2299 For other character sets, we don't bother to get this right. */
2300 if (RE_TRANSLATE_P (translate) && start < 04400
2301 && !(start < 04200 && end >= 04377))
2303 int newend;
2304 int tem;
2305 newend = end;
2306 if (newend > 04377)
2307 newend = 04377;
2308 tem = set_image_of_range_1 (work_area, start, newend, translate);
2309 if (tem > 0)
2310 return tem;
2312 start = 04400;
2313 if (end < 04400)
2314 return -1;
2316 #endif
2318 EXTEND_RANGE_TABLE (work_area, 2);
2319 work_area->table[work_area->used++] = (start);
2320 work_area->table[work_area->used++] = (end);
2322 cmin = -1, cmax = -1;
2324 if (RE_TRANSLATE_P (translate))
2326 int ch;
2328 for (ch = start; ch <= end; ch++)
2330 re_wchar_t c = TRANSLATE (ch);
2331 if (! (start <= c && c <= end))
2333 if (cmin == -1)
2334 cmin = c, cmax = c;
2335 else
2337 cmin = MIN (cmin, c);
2338 cmax = MAX (cmax, c);
2343 if (cmin != -1)
2345 EXTEND_RANGE_TABLE (work_area, 2);
2346 work_area->table[work_area->used++] = (cmin);
2347 work_area->table[work_area->used++] = (cmax);
2351 return -1;
2354 #ifndef MATCH_MAY_ALLOCATE
2356 /* If we cannot allocate large objects within re_match_2_internal,
2357 we make the fail stack and register vectors global.
2358 The fail stack, we grow to the maximum size when a regexp
2359 is compiled.
2360 The register vectors, we adjust in size each time we
2361 compile a regexp, according to the number of registers it needs. */
2363 static fail_stack_type fail_stack;
2365 /* Size with which the following vectors are currently allocated.
2366 That is so we can make them bigger as needed,
2367 but never make them smaller. */
2368 static int regs_allocated_size;
2370 static re_char ** regstart, ** regend;
2371 static re_char **best_regstart, **best_regend;
2373 /* Make the register vectors big enough for NUM_REGS registers,
2374 but don't make them smaller. */
2376 static
2377 regex_grow_registers (num_regs)
2378 int num_regs;
2380 if (num_regs > regs_allocated_size)
2382 RETALLOC_IF (regstart, num_regs, re_char *);
2383 RETALLOC_IF (regend, num_regs, re_char *);
2384 RETALLOC_IF (best_regstart, num_regs, re_char *);
2385 RETALLOC_IF (best_regend, num_regs, re_char *);
2387 regs_allocated_size = num_regs;
2391 #endif /* not MATCH_MAY_ALLOCATE */
2393 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2394 compile_stack,
2395 regnum_t regnum));
2397 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2398 Returns one of error codes defined in `regex.h', or zero for success.
2400 Assumes the `allocated' (and perhaps `buffer') and `translate'
2401 fields are set in BUFP on entry.
2403 If it succeeds, results are put in BUFP (if it returns an error, the
2404 contents of BUFP are undefined):
2405 `buffer' is the compiled pattern;
2406 `syntax' is set to SYNTAX;
2407 `used' is set to the length of the compiled pattern;
2408 `fastmap_accurate' is zero;
2409 `re_nsub' is the number of subexpressions in PATTERN;
2410 `not_bol' and `not_eol' are zero;
2412 The `fastmap' field is neither examined nor set. */
2414 /* Insert the `jump' from the end of last alternative to "here".
2415 The space for the jump has already been allocated. */
2416 #define FIXUP_ALT_JUMP() \
2417 do { \
2418 if (fixup_alt_jump) \
2419 STORE_JUMP (jump, fixup_alt_jump, b); \
2420 } while (0)
2423 /* Return, freeing storage we allocated. */
2424 #define FREE_STACK_RETURN(value) \
2425 do { \
2426 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2427 free (compile_stack.stack); \
2428 return value; \
2429 } while (0)
2431 static reg_errcode_t
2432 regex_compile (pattern, size, syntax, bufp)
2433 re_char *pattern;
2434 size_t size;
2435 reg_syntax_t syntax;
2436 struct re_pattern_buffer *bufp;
2438 /* We fetch characters from PATTERN here. */
2439 register re_wchar_t c, c1;
2441 /* A random temporary spot in PATTERN. */
2442 re_char *p1;
2444 /* Points to the end of the buffer, where we should append. */
2445 register unsigned char *b;
2447 /* Keeps track of unclosed groups. */
2448 compile_stack_type compile_stack;
2450 /* Points to the current (ending) position in the pattern. */
2451 #ifdef AIX
2452 /* `const' makes AIX compiler fail. */
2453 unsigned char *p = pattern;
2454 #else
2455 re_char *p = pattern;
2456 #endif
2457 re_char *pend = pattern + size;
2459 /* How to translate the characters in the pattern. */
2460 RE_TRANSLATE_TYPE translate = bufp->translate;
2462 /* Address of the count-byte of the most recently inserted `exactn'
2463 command. This makes it possible to tell if a new exact-match
2464 character can be added to that command or if the character requires
2465 a new `exactn' command. */
2466 unsigned char *pending_exact = 0;
2468 /* Address of start of the most recently finished expression.
2469 This tells, e.g., postfix * where to find the start of its
2470 operand. Reset at the beginning of groups and alternatives. */
2471 unsigned char *laststart = 0;
2473 /* Address of beginning of regexp, or inside of last group. */
2474 unsigned char *begalt;
2476 /* Place in the uncompiled pattern (i.e., the {) to
2477 which to go back if the interval is invalid. */
2478 re_char *beg_interval;
2480 /* Address of the place where a forward jump should go to the end of
2481 the containing expression. Each alternative of an `or' -- except the
2482 last -- ends with a forward jump of this sort. */
2483 unsigned char *fixup_alt_jump = 0;
2485 /* Work area for range table of charset. */
2486 struct range_table_work_area range_table_work;
2488 /* If the object matched can contain multibyte characters. */
2489 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2491 /* Nonzero if we have pushed down into a subpattern. */
2492 int in_subpattern = 0;
2494 /* These hold the values of p, pattern, and pend from the main
2495 pattern when we have pushed into a subpattern. */
2496 re_char *main_p;
2497 re_char *main_pattern;
2498 re_char *main_pend;
2500 #ifdef DEBUG
2501 debug++;
2502 DEBUG_PRINT1 ("\nCompiling pattern: ");
2503 if (debug > 0)
2505 unsigned debug_count;
2507 for (debug_count = 0; debug_count < size; debug_count++)
2508 putchar (pattern[debug_count]);
2509 putchar ('\n');
2511 #endif /* DEBUG */
2513 /* Initialize the compile stack. */
2514 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2515 if (compile_stack.stack == NULL)
2516 return REG_ESPACE;
2518 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2519 compile_stack.avail = 0;
2521 range_table_work.table = 0;
2522 range_table_work.allocated = 0;
2524 /* Initialize the pattern buffer. */
2525 bufp->syntax = syntax;
2526 bufp->fastmap_accurate = 0;
2527 bufp->not_bol = bufp->not_eol = 0;
2528 bufp->used_syntax = 0;
2530 /* Set `used' to zero, so that if we return an error, the pattern
2531 printer (for debugging) will think there's no pattern. We reset it
2532 at the end. */
2533 bufp->used = 0;
2535 /* Always count groups, whether or not bufp->no_sub is set. */
2536 bufp->re_nsub = 0;
2538 #if !defined emacs && !defined SYNTAX_TABLE
2539 /* Initialize the syntax table. */
2540 init_syntax_once ();
2541 #endif
2543 if (bufp->allocated == 0)
2545 if (bufp->buffer)
2546 { /* If zero allocated, but buffer is non-null, try to realloc
2547 enough space. This loses if buffer's address is bogus, but
2548 that is the user's responsibility. */
2549 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2551 else
2552 { /* Caller did not allocate a buffer. Do it for them. */
2553 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2555 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2557 bufp->allocated = INIT_BUF_SIZE;
2560 begalt = b = bufp->buffer;
2562 /* Loop through the uncompiled pattern until we're at the end. */
2563 while (1)
2565 if (p == pend)
2567 /* If this is the end of an included regexp,
2568 pop back to the main regexp and try again. */
2569 if (in_subpattern)
2571 in_subpattern = 0;
2572 pattern = main_pattern;
2573 p = main_p;
2574 pend = main_pend;
2575 continue;
2577 /* If this is the end of the main regexp, we are done. */
2578 break;
2581 PATFETCH (c);
2583 switch (c)
2585 case ' ':
2587 re_char *p1 = p;
2589 /* If there's no special whitespace regexp, treat
2590 spaces normally. And don't try to do this recursively. */
2591 if (!whitespace_regexp || in_subpattern)
2592 goto normal_char;
2594 /* Peek past following spaces. */
2595 while (p1 != pend)
2597 if (*p1 != ' ')
2598 break;
2599 p1++;
2601 /* If the spaces are followed by a repetition op,
2602 treat them normally. */
2603 if (p1 != pend
2604 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2605 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2606 goto normal_char;
2608 /* Replace the spaces with the whitespace regexp. */
2609 in_subpattern = 1;
2610 main_p = p1;
2611 main_pend = pend;
2612 main_pattern = pattern;
2613 p = pattern = whitespace_regexp;
2614 pend = p + strlen (p);
2615 break;
2618 case '^':
2620 if ( /* If at start of pattern, it's an operator. */
2621 p == pattern + 1
2622 /* If context independent, it's an operator. */
2623 || syntax & RE_CONTEXT_INDEP_ANCHORS
2624 /* Otherwise, depends on what's come before. */
2625 || at_begline_loc_p (pattern, p, syntax))
2626 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2627 else
2628 goto normal_char;
2630 break;
2633 case '$':
2635 if ( /* If at end of pattern, it's an operator. */
2636 p == pend
2637 /* If context independent, it's an operator. */
2638 || syntax & RE_CONTEXT_INDEP_ANCHORS
2639 /* Otherwise, depends on what's next. */
2640 || at_endline_loc_p (p, pend, syntax))
2641 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2642 else
2643 goto normal_char;
2645 break;
2648 case '+':
2649 case '?':
2650 if ((syntax & RE_BK_PLUS_QM)
2651 || (syntax & RE_LIMITED_OPS))
2652 goto normal_char;
2653 handle_plus:
2654 case '*':
2655 /* If there is no previous pattern... */
2656 if (!laststart)
2658 if (syntax & RE_CONTEXT_INVALID_OPS)
2659 FREE_STACK_RETURN (REG_BADRPT);
2660 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2661 goto normal_char;
2665 /* 1 means zero (many) matches is allowed. */
2666 boolean zero_times_ok = 0, many_times_ok = 0;
2667 boolean greedy = 1;
2669 /* If there is a sequence of repetition chars, collapse it
2670 down to just one (the right one). We can't combine
2671 interval operators with these because of, e.g., `a{2}*',
2672 which should only match an even number of `a's. */
2674 for (;;)
2676 if ((syntax & RE_FRUGAL)
2677 && c == '?' && (zero_times_ok || many_times_ok))
2678 greedy = 0;
2679 else
2681 zero_times_ok |= c != '+';
2682 many_times_ok |= c != '?';
2685 if (p == pend)
2686 break;
2687 else if (*p == '*'
2688 || (!(syntax & RE_BK_PLUS_QM)
2689 && (*p == '+' || *p == '?')))
2691 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2693 if (p+1 == pend)
2694 FREE_STACK_RETURN (REG_EESCAPE);
2695 if (p[1] == '+' || p[1] == '?')
2696 PATFETCH (c); /* Gobble up the backslash. */
2697 else
2698 break;
2700 else
2701 break;
2702 /* If we get here, we found another repeat character. */
2703 PATFETCH (c);
2706 /* Star, etc. applied to an empty pattern is equivalent
2707 to an empty pattern. */
2708 if (!laststart || laststart == b)
2709 break;
2711 /* Now we know whether or not zero matches is allowed
2712 and also whether or not two or more matches is allowed. */
2713 if (greedy)
2715 if (many_times_ok)
2717 boolean simple = skip_one_char (laststart) == b;
2718 unsigned int startoffset = 0;
2719 re_opcode_t ofj =
2720 /* Check if the loop can match the empty string. */
2721 (simple || !analyse_first (laststart, b, NULL, 0))
2722 ? on_failure_jump : on_failure_jump_loop;
2723 assert (skip_one_char (laststart) <= b);
2725 if (!zero_times_ok && simple)
2726 { /* Since simple * loops can be made faster by using
2727 on_failure_keep_string_jump, we turn simple P+
2728 into PP* if P is simple. */
2729 unsigned char *p1, *p2;
2730 startoffset = b - laststart;
2731 GET_BUFFER_SPACE (startoffset);
2732 p1 = b; p2 = laststart;
2733 while (p2 < p1)
2734 *b++ = *p2++;
2735 zero_times_ok = 1;
2738 GET_BUFFER_SPACE (6);
2739 if (!zero_times_ok)
2740 /* A + loop. */
2741 STORE_JUMP (ofj, b, b + 6);
2742 else
2743 /* Simple * loops can use on_failure_keep_string_jump
2744 depending on what follows. But since we don't know
2745 that yet, we leave the decision up to
2746 on_failure_jump_smart. */
2747 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2748 laststart + startoffset, b + 6);
2749 b += 3;
2750 STORE_JUMP (jump, b, laststart + startoffset);
2751 b += 3;
2753 else
2755 /* A simple ? pattern. */
2756 assert (zero_times_ok);
2757 GET_BUFFER_SPACE (3);
2758 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2759 b += 3;
2762 else /* not greedy */
2763 { /* I wish the greedy and non-greedy cases could be merged. */
2765 GET_BUFFER_SPACE (7); /* We might use less. */
2766 if (many_times_ok)
2768 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2770 /* The non-greedy multiple match looks like
2771 a repeat..until: we only need a conditional jump
2772 at the end of the loop. */
2773 if (emptyp) BUF_PUSH (no_op);
2774 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2775 : on_failure_jump, b, laststart);
2776 b += 3;
2777 if (zero_times_ok)
2779 /* The repeat...until naturally matches one or more.
2780 To also match zero times, we need to first jump to
2781 the end of the loop (its conditional jump). */
2782 INSERT_JUMP (jump, laststart, b);
2783 b += 3;
2786 else
2788 /* non-greedy a?? */
2789 INSERT_JUMP (jump, laststart, b + 3);
2790 b += 3;
2791 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2792 b += 3;
2796 pending_exact = 0;
2797 break;
2800 case '.':
2801 laststart = b;
2802 BUF_PUSH (anychar);
2803 break;
2806 case '[':
2808 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2810 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2812 /* Ensure that we have enough space to push a charset: the
2813 opcode, the length count, and the bitset; 34 bytes in all. */
2814 GET_BUFFER_SPACE (34);
2816 laststart = b;
2818 /* We test `*p == '^' twice, instead of using an if
2819 statement, so we only need one BUF_PUSH. */
2820 BUF_PUSH (*p == '^' ? charset_not : charset);
2821 if (*p == '^')
2822 p++;
2824 /* Remember the first position in the bracket expression. */
2825 p1 = p;
2827 /* Push the number of bytes in the bitmap. */
2828 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2830 /* Clear the whole map. */
2831 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2833 /* charset_not matches newline according to a syntax bit. */
2834 if ((re_opcode_t) b[-2] == charset_not
2835 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2836 SET_LIST_BIT ('\n');
2838 /* Read in characters and ranges, setting map bits. */
2839 for (;;)
2841 boolean escaped_char = false;
2842 const unsigned char *p2 = p;
2844 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2846 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2847 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2848 So the translation is done later in a loop. Example:
2849 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2850 PATFETCH (c);
2852 /* \ might escape characters inside [...] and [^...]. */
2853 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2855 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2857 PATFETCH (c);
2858 escaped_char = true;
2860 else
2862 /* Could be the end of the bracket expression. If it's
2863 not (i.e., when the bracket expression is `[]' so
2864 far), the ']' character bit gets set way below. */
2865 if (c == ']' && p2 != p1)
2866 break;
2869 /* What should we do for the character which is
2870 greater than 0x7F, but not BASE_LEADING_CODE_P?
2871 XXX */
2873 /* See if we're at the beginning of a possible character
2874 class. */
2876 if (!escaped_char &&
2877 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2879 /* Leave room for the null. */
2880 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2881 const unsigned char *class_beg;
2883 PATFETCH (c);
2884 c1 = 0;
2885 class_beg = p;
2887 /* If pattern is `[[:'. */
2888 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2890 for (;;)
2892 PATFETCH (c);
2893 if ((c == ':' && *p == ']') || p == pend)
2894 break;
2895 if (c1 < CHAR_CLASS_MAX_LENGTH)
2896 str[c1++] = c;
2897 else
2898 /* This is in any case an invalid class name. */
2899 str[0] = '\0';
2901 str[c1] = '\0';
2903 /* If isn't a word bracketed by `[:' and `:]':
2904 undo the ending character, the letters, and
2905 leave the leading `:' and `[' (but set bits for
2906 them). */
2907 if (c == ':' && *p == ']')
2909 re_wchar_t ch;
2910 re_wctype_t cc;
2912 cc = re_wctype (str);
2914 if (cc == 0)
2915 FREE_STACK_RETURN (REG_ECTYPE);
2917 /* Throw away the ] at the end of the character
2918 class. */
2919 PATFETCH (c);
2921 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2923 /* Most character classes in a multibyte match
2924 just set a flag. Exceptions are is_blank,
2925 is_digit, is_cntrl, and is_xdigit, since
2926 they can only match ASCII characters. We
2927 don't need to handle them for multibyte.
2928 They are distinguished by a negative wctype. */
2930 if (multibyte)
2931 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2932 re_wctype_to_bit (cc));
2934 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2936 int translated = TRANSLATE (ch);
2937 if (translated < (1 << BYTEWIDTH)
2938 && re_iswctype (btowc (ch), cc))
2939 SET_LIST_BIT (translated);
2942 /* In most cases the matching rule for char classes
2943 only uses the syntax table for multibyte chars,
2944 so that the content of the syntax-table it is not
2945 hardcoded in the range_table. SPACE and WORD are
2946 the two exceptions. */
2947 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
2948 bufp->used_syntax = 1;
2950 /* Repeat the loop. */
2951 continue;
2953 else
2955 /* Go back to right after the "[:". */
2956 p = class_beg;
2957 SET_LIST_BIT ('[');
2959 /* Because the `:' may starts the range, we
2960 can't simply set bit and repeat the loop.
2961 Instead, just set it to C and handle below. */
2962 c = ':';
2966 if (p < pend && p[0] == '-' && p[1] != ']')
2969 /* Discard the `-'. */
2970 PATFETCH (c1);
2972 /* Fetch the character which ends the range. */
2973 PATFETCH (c1);
2975 if (SINGLE_BYTE_CHAR_P (c))
2977 if (! SINGLE_BYTE_CHAR_P (c1))
2979 /* Handle a range starting with a
2980 character of less than 256, and ending
2981 with a character of not less than 256.
2982 Split that into two ranges, the low one
2983 ending at 0377, and the high one
2984 starting at the smallest character in
2985 the charset of C1 and ending at C1. */
2986 int charset = CHAR_CHARSET (c1);
2987 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2989 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2990 c2, c1);
2991 c1 = 0377;
2994 else if (!SAME_CHARSET_P (c, c1))
2995 FREE_STACK_RETURN (REG_ERANGEX);
2997 else
2998 /* Range from C to C. */
2999 c1 = c;
3001 /* Set the range ... */
3002 if (SINGLE_BYTE_CHAR_P (c))
3003 /* ... into bitmap. */
3005 re_wchar_t this_char;
3006 re_wchar_t range_start = c, range_end = c1;
3008 /* If the start is after the end, the range is empty. */
3009 if (range_start > range_end)
3011 if (syntax & RE_NO_EMPTY_RANGES)
3012 FREE_STACK_RETURN (REG_ERANGE);
3013 /* Else, repeat the loop. */
3015 else
3017 for (this_char = range_start; this_char <= range_end;
3018 this_char++)
3020 int translated = TRANSLATE (this_char);
3021 if (translated < (1 << BYTEWIDTH))
3022 SET_LIST_BIT (translated);
3023 else
3024 SET_RANGE_TABLE_WORK_AREA
3025 (range_table_work, translated, translated);
3029 else
3030 /* ... into range table. */
3031 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
3034 /* Discard any (non)matching list bytes that are all 0 at the
3035 end of the map. Decrease the map-length byte too. */
3036 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3037 b[-1]--;
3038 b += b[-1];
3040 /* Build real range table from work area. */
3041 if (RANGE_TABLE_WORK_USED (range_table_work)
3042 || RANGE_TABLE_WORK_BITS (range_table_work))
3044 int i;
3045 int used = RANGE_TABLE_WORK_USED (range_table_work);
3047 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3048 bytes for flags, two for COUNT, and three bytes for
3049 each character. */
3050 GET_BUFFER_SPACE (4 + used * 3);
3052 /* Indicate the existence of range table. */
3053 laststart[1] |= 0x80;
3055 /* Store the character class flag bits into the range table.
3056 If not in emacs, these flag bits are always 0. */
3057 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3058 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3060 STORE_NUMBER_AND_INCR (b, used / 2);
3061 for (i = 0; i < used; i++)
3062 STORE_CHARACTER_AND_INCR
3063 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3066 break;
3069 case '(':
3070 if (syntax & RE_NO_BK_PARENS)
3071 goto handle_open;
3072 else
3073 goto normal_char;
3076 case ')':
3077 if (syntax & RE_NO_BK_PARENS)
3078 goto handle_close;
3079 else
3080 goto normal_char;
3083 case '\n':
3084 if (syntax & RE_NEWLINE_ALT)
3085 goto handle_alt;
3086 else
3087 goto normal_char;
3090 case '|':
3091 if (syntax & RE_NO_BK_VBAR)
3092 goto handle_alt;
3093 else
3094 goto normal_char;
3097 case '{':
3098 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3099 goto handle_interval;
3100 else
3101 goto normal_char;
3104 case '\\':
3105 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3107 /* Do not translate the character after the \, so that we can
3108 distinguish, e.g., \B from \b, even if we normally would
3109 translate, e.g., B to b. */
3110 PATFETCH (c);
3112 switch (c)
3114 case '(':
3115 if (syntax & RE_NO_BK_PARENS)
3116 goto normal_backslash;
3118 handle_open:
3120 int shy = 0;
3121 regnum_t regnum = 0;
3122 if (p+1 < pend)
3124 /* Look for a special (?...) construct */
3125 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3127 PATFETCH (c); /* Gobble up the '?'. */
3128 while (!shy)
3130 PATFETCH (c);
3131 switch (c)
3133 case ':': shy = 1; break;
3134 case '0':
3135 /* An explicitly specified regnum must start
3136 with non-0. */
3137 if (regnum == 0)
3138 FREE_STACK_RETURN (REG_BADPAT);
3139 case '1': case '2': case '3': case '4':
3140 case '5': case '6': case '7': case '8': case '9':
3141 regnum = 10*regnum + (c - '0'); break;
3142 default:
3143 /* Only (?:...) is supported right now. */
3144 FREE_STACK_RETURN (REG_BADPAT);
3150 if (!shy)
3151 regnum = ++bufp->re_nsub;
3152 else if (regnum)
3153 { /* It's actually not shy, but explicitly numbered. */
3154 shy = 0;
3155 if (regnum > bufp->re_nsub)
3156 bufp->re_nsub = regnum;
3157 else if (regnum > bufp->re_nsub
3158 /* Ideally, we'd want to check that the specified
3159 group can't have matched (i.e. all subgroups
3160 using the same regnum are in other branches of
3161 OR patterns), but we don't currently keep track
3162 of enough info to do that easily. */
3163 || group_in_compile_stack (compile_stack, regnum))
3164 FREE_STACK_RETURN (REG_BADPAT);
3166 else
3167 /* It's really shy. */
3168 regnum = - bufp->re_nsub;
3170 if (COMPILE_STACK_FULL)
3172 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3173 compile_stack_elt_t);
3174 if (compile_stack.stack == NULL) return REG_ESPACE;
3176 compile_stack.size <<= 1;
3179 /* These are the values to restore when we hit end of this
3180 group. They are all relative offsets, so that if the
3181 whole pattern moves because of realloc, they will still
3182 be valid. */
3183 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3184 COMPILE_STACK_TOP.fixup_alt_jump
3185 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3186 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3187 COMPILE_STACK_TOP.regnum = regnum;
3189 /* Do not push a start_memory for groups beyond the last one
3190 we can represent in the compiled pattern. */
3191 if (regnum <= MAX_REGNUM && regnum > 0)
3192 BUF_PUSH_2 (start_memory, regnum);
3194 compile_stack.avail++;
3196 fixup_alt_jump = 0;
3197 laststart = 0;
3198 begalt = b;
3199 /* If we've reached MAX_REGNUM groups, then this open
3200 won't actually generate any code, so we'll have to
3201 clear pending_exact explicitly. */
3202 pending_exact = 0;
3203 break;
3206 case ')':
3207 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3209 if (COMPILE_STACK_EMPTY)
3211 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3212 goto normal_backslash;
3213 else
3214 FREE_STACK_RETURN (REG_ERPAREN);
3217 handle_close:
3218 FIXUP_ALT_JUMP ();
3220 /* See similar code for backslashed left paren above. */
3221 if (COMPILE_STACK_EMPTY)
3223 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3224 goto normal_char;
3225 else
3226 FREE_STACK_RETURN (REG_ERPAREN);
3229 /* Since we just checked for an empty stack above, this
3230 ``can't happen''. */
3231 assert (compile_stack.avail != 0);
3233 /* We don't just want to restore into `regnum', because
3234 later groups should continue to be numbered higher,
3235 as in `(ab)c(de)' -- the second group is #2. */
3236 regnum_t regnum;
3238 compile_stack.avail--;
3239 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3240 fixup_alt_jump
3241 = COMPILE_STACK_TOP.fixup_alt_jump
3242 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3243 : 0;
3244 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3245 regnum = COMPILE_STACK_TOP.regnum;
3246 /* If we've reached MAX_REGNUM groups, then this open
3247 won't actually generate any code, so we'll have to
3248 clear pending_exact explicitly. */
3249 pending_exact = 0;
3251 /* We're at the end of the group, so now we know how many
3252 groups were inside this one. */
3253 if (regnum <= MAX_REGNUM && regnum > 0)
3254 BUF_PUSH_2 (stop_memory, regnum);
3256 break;
3259 case '|': /* `\|'. */
3260 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3261 goto normal_backslash;
3262 handle_alt:
3263 if (syntax & RE_LIMITED_OPS)
3264 goto normal_char;
3266 /* Insert before the previous alternative a jump which
3267 jumps to this alternative if the former fails. */
3268 GET_BUFFER_SPACE (3);
3269 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3270 pending_exact = 0;
3271 b += 3;
3273 /* The alternative before this one has a jump after it
3274 which gets executed if it gets matched. Adjust that
3275 jump so it will jump to this alternative's analogous
3276 jump (put in below, which in turn will jump to the next
3277 (if any) alternative's such jump, etc.). The last such
3278 jump jumps to the correct final destination. A picture:
3279 _____ _____
3280 | | | |
3281 | v | v
3282 a | b | c
3284 If we are at `b', then fixup_alt_jump right now points to a
3285 three-byte space after `a'. We'll put in the jump, set
3286 fixup_alt_jump to right after `b', and leave behind three
3287 bytes which we'll fill in when we get to after `c'. */
3289 FIXUP_ALT_JUMP ();
3291 /* Mark and leave space for a jump after this alternative,
3292 to be filled in later either by next alternative or
3293 when know we're at the end of a series of alternatives. */
3294 fixup_alt_jump = b;
3295 GET_BUFFER_SPACE (3);
3296 b += 3;
3298 laststart = 0;
3299 begalt = b;
3300 break;
3303 case '{':
3304 /* If \{ is a literal. */
3305 if (!(syntax & RE_INTERVALS)
3306 /* If we're at `\{' and it's not the open-interval
3307 operator. */
3308 || (syntax & RE_NO_BK_BRACES))
3309 goto normal_backslash;
3311 handle_interval:
3313 /* If got here, then the syntax allows intervals. */
3315 /* At least (most) this many matches must be made. */
3316 int lower_bound = 0, upper_bound = -1;
3318 beg_interval = p;
3320 GET_UNSIGNED_NUMBER (lower_bound);
3322 if (c == ',')
3323 GET_UNSIGNED_NUMBER (upper_bound);
3324 else
3325 /* Interval such as `{1}' => match exactly once. */
3326 upper_bound = lower_bound;
3328 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3329 || (upper_bound >= 0 && lower_bound > upper_bound))
3330 FREE_STACK_RETURN (REG_BADBR);
3332 if (!(syntax & RE_NO_BK_BRACES))
3334 if (c != '\\')
3335 FREE_STACK_RETURN (REG_BADBR);
3336 if (p == pend)
3337 FREE_STACK_RETURN (REG_EESCAPE);
3338 PATFETCH (c);
3341 if (c != '}')
3342 FREE_STACK_RETURN (REG_BADBR);
3344 /* We just parsed a valid interval. */
3346 /* If it's invalid to have no preceding re. */
3347 if (!laststart)
3349 if (syntax & RE_CONTEXT_INVALID_OPS)
3350 FREE_STACK_RETURN (REG_BADRPT);
3351 else if (syntax & RE_CONTEXT_INDEP_OPS)
3352 laststart = b;
3353 else
3354 goto unfetch_interval;
3357 if (upper_bound == 0)
3358 /* If the upper bound is zero, just drop the sub pattern
3359 altogether. */
3360 b = laststart;
3361 else if (lower_bound == 1 && upper_bound == 1)
3362 /* Just match it once: nothing to do here. */
3365 /* Otherwise, we have a nontrivial interval. When
3366 we're all done, the pattern will look like:
3367 set_number_at <jump count> <upper bound>
3368 set_number_at <succeed_n count> <lower bound>
3369 succeed_n <after jump addr> <succeed_n count>
3370 <body of loop>
3371 jump_n <succeed_n addr> <jump count>
3372 (The upper bound and `jump_n' are omitted if
3373 `upper_bound' is 1, though.) */
3374 else
3375 { /* If the upper bound is > 1, we need to insert
3376 more at the end of the loop. */
3377 unsigned int nbytes = (upper_bound < 0 ? 3
3378 : upper_bound > 1 ? 5 : 0);
3379 unsigned int startoffset = 0;
3381 GET_BUFFER_SPACE (20); /* We might use less. */
3383 if (lower_bound == 0)
3385 /* A succeed_n that starts with 0 is really a
3386 a simple on_failure_jump_loop. */
3387 INSERT_JUMP (on_failure_jump_loop, laststart,
3388 b + 3 + nbytes);
3389 b += 3;
3391 else
3393 /* Initialize lower bound of the `succeed_n', even
3394 though it will be set during matching by its
3395 attendant `set_number_at' (inserted next),
3396 because `re_compile_fastmap' needs to know.
3397 Jump to the `jump_n' we might insert below. */
3398 INSERT_JUMP2 (succeed_n, laststart,
3399 b + 5 + nbytes,
3400 lower_bound);
3401 b += 5;
3403 /* Code to initialize the lower bound. Insert
3404 before the `succeed_n'. The `5' is the last two
3405 bytes of this `set_number_at', plus 3 bytes of
3406 the following `succeed_n'. */
3407 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3408 b += 5;
3409 startoffset += 5;
3412 if (upper_bound < 0)
3414 /* A negative upper bound stands for infinity,
3415 in which case it degenerates to a plain jump. */
3416 STORE_JUMP (jump, b, laststart + startoffset);
3417 b += 3;
3419 else if (upper_bound > 1)
3420 { /* More than one repetition is allowed, so
3421 append a backward jump to the `succeed_n'
3422 that starts this interval.
3424 When we've reached this during matching,
3425 we'll have matched the interval once, so
3426 jump back only `upper_bound - 1' times. */
3427 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3428 upper_bound - 1);
3429 b += 5;
3431 /* The location we want to set is the second
3432 parameter of the `jump_n'; that is `b-2' as
3433 an absolute address. `laststart' will be
3434 the `set_number_at' we're about to insert;
3435 `laststart+3' the number to set, the source
3436 for the relative address. But we are
3437 inserting into the middle of the pattern --
3438 so everything is getting moved up by 5.
3439 Conclusion: (b - 2) - (laststart + 3) + 5,
3440 i.e., b - laststart.
3442 We insert this at the beginning of the loop
3443 so that if we fail during matching, we'll
3444 reinitialize the bounds. */
3445 insert_op2 (set_number_at, laststart, b - laststart,
3446 upper_bound - 1, b);
3447 b += 5;
3450 pending_exact = 0;
3451 beg_interval = NULL;
3453 break;
3455 unfetch_interval:
3456 /* If an invalid interval, match the characters as literals. */
3457 assert (beg_interval);
3458 p = beg_interval;
3459 beg_interval = NULL;
3461 /* normal_char and normal_backslash need `c'. */
3462 c = '{';
3464 if (!(syntax & RE_NO_BK_BRACES))
3466 assert (p > pattern && p[-1] == '\\');
3467 goto normal_backslash;
3469 else
3470 goto normal_char;
3472 #ifdef emacs
3473 /* There is no way to specify the before_dot and after_dot
3474 operators. rms says this is ok. --karl */
3475 case '=':
3476 BUF_PUSH (at_dot);
3477 break;
3479 case 's':
3480 laststart = b;
3481 PATFETCH (c);
3482 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3483 break;
3485 case 'S':
3486 laststart = b;
3487 PATFETCH (c);
3488 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3489 break;
3491 case 'c':
3492 laststart = b;
3493 PATFETCH (c);
3494 BUF_PUSH_2 (categoryspec, c);
3495 break;
3497 case 'C':
3498 laststart = b;
3499 PATFETCH (c);
3500 BUF_PUSH_2 (notcategoryspec, c);
3501 break;
3502 #endif /* emacs */
3505 case 'w':
3506 if (syntax & RE_NO_GNU_OPS)
3507 goto normal_char;
3508 laststart = b;
3509 BUF_PUSH_2 (syntaxspec, Sword);
3510 break;
3513 case 'W':
3514 if (syntax & RE_NO_GNU_OPS)
3515 goto normal_char;
3516 laststart = b;
3517 BUF_PUSH_2 (notsyntaxspec, Sword);
3518 break;
3521 case '<':
3522 if (syntax & RE_NO_GNU_OPS)
3523 goto normal_char;
3524 BUF_PUSH (wordbeg);
3525 break;
3527 case '>':
3528 if (syntax & RE_NO_GNU_OPS)
3529 goto normal_char;
3530 BUF_PUSH (wordend);
3531 break;
3533 case '_':
3534 if (syntax & RE_NO_GNU_OPS)
3535 goto normal_char;
3536 laststart = b;
3537 PATFETCH (c);
3538 if (c == '<')
3539 BUF_PUSH (symbeg);
3540 else if (c == '>')
3541 BUF_PUSH (symend);
3542 else
3543 FREE_STACK_RETURN (REG_BADPAT);
3544 break;
3546 case 'b':
3547 if (syntax & RE_NO_GNU_OPS)
3548 goto normal_char;
3549 BUF_PUSH (wordbound);
3550 break;
3552 case 'B':
3553 if (syntax & RE_NO_GNU_OPS)
3554 goto normal_char;
3555 BUF_PUSH (notwordbound);
3556 break;
3558 case '`':
3559 if (syntax & RE_NO_GNU_OPS)
3560 goto normal_char;
3561 BUF_PUSH (begbuf);
3562 break;
3564 case '\'':
3565 if (syntax & RE_NO_GNU_OPS)
3566 goto normal_char;
3567 BUF_PUSH (endbuf);
3568 break;
3570 case '1': case '2': case '3': case '4': case '5':
3571 case '6': case '7': case '8': case '9':
3573 regnum_t reg;
3575 if (syntax & RE_NO_BK_REFS)
3576 goto normal_backslash;
3578 reg = c - '0';
3580 if (reg > bufp->re_nsub || reg < 1
3581 /* Can't back reference to a subexp before its end. */
3582 || group_in_compile_stack (compile_stack, reg))
3583 FREE_STACK_RETURN (REG_ESUBREG);
3585 laststart = b;
3586 BUF_PUSH_2 (duplicate, reg);
3588 break;
3591 case '+':
3592 case '?':
3593 if (syntax & RE_BK_PLUS_QM)
3594 goto handle_plus;
3595 else
3596 goto normal_backslash;
3598 default:
3599 normal_backslash:
3600 /* You might think it would be useful for \ to mean
3601 not to translate; but if we don't translate it
3602 it will never match anything. */
3603 goto normal_char;
3605 break;
3608 default:
3609 /* Expects the character in `c'. */
3610 normal_char:
3611 /* If no exactn currently being built. */
3612 if (!pending_exact
3614 /* If last exactn not at current position. */
3615 || pending_exact + *pending_exact + 1 != b
3617 /* We have only one byte following the exactn for the count. */
3618 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3620 /* If followed by a repetition operator. */
3621 || (p != pend && (*p == '*' || *p == '^'))
3622 || ((syntax & RE_BK_PLUS_QM)
3623 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3624 : p != pend && (*p == '+' || *p == '?'))
3625 || ((syntax & RE_INTERVALS)
3626 && ((syntax & RE_NO_BK_BRACES)
3627 ? p != pend && *p == '{'
3628 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3630 /* Start building a new exactn. */
3632 laststart = b;
3634 BUF_PUSH_2 (exactn, 0);
3635 pending_exact = b - 1;
3638 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3640 int len;
3642 c = TRANSLATE (c);
3643 if (multibyte)
3644 len = CHAR_STRING (c, b);
3645 else
3646 *b = c, len = 1;
3647 b += len;
3648 (*pending_exact) += len;
3651 break;
3652 } /* switch (c) */
3653 } /* while p != pend */
3656 /* Through the pattern now. */
3658 FIXUP_ALT_JUMP ();
3660 if (!COMPILE_STACK_EMPTY)
3661 FREE_STACK_RETURN (REG_EPAREN);
3663 /* If we don't want backtracking, force success
3664 the first time we reach the end of the compiled pattern. */
3665 if (syntax & RE_NO_POSIX_BACKTRACKING)
3666 BUF_PUSH (succeed);
3668 /* We have succeeded; set the length of the buffer. */
3669 bufp->used = b - bufp->buffer;
3671 #ifdef DEBUG
3672 if (debug > 0)
3674 re_compile_fastmap (bufp);
3675 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3676 print_compiled_pattern (bufp);
3678 debug--;
3679 #endif /* DEBUG */
3681 #ifndef MATCH_MAY_ALLOCATE
3682 /* Initialize the failure stack to the largest possible stack. This
3683 isn't necessary unless we're trying to avoid calling alloca in
3684 the search and match routines. */
3686 int num_regs = bufp->re_nsub + 1;
3688 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3690 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3692 if (! fail_stack.stack)
3693 fail_stack.stack
3694 = (fail_stack_elt_t *) malloc (fail_stack.size
3695 * sizeof (fail_stack_elt_t));
3696 else
3697 fail_stack.stack
3698 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3699 (fail_stack.size
3700 * sizeof (fail_stack_elt_t)));
3703 regex_grow_registers (num_regs);
3705 #endif /* not MATCH_MAY_ALLOCATE */
3707 FREE_STACK_RETURN (REG_NOERROR);
3708 } /* regex_compile */
3710 /* Subroutines for `regex_compile'. */
3712 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3714 static void
3715 store_op1 (op, loc, arg)
3716 re_opcode_t op;
3717 unsigned char *loc;
3718 int arg;
3720 *loc = (unsigned char) op;
3721 STORE_NUMBER (loc + 1, arg);
3725 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3727 static void
3728 store_op2 (op, loc, arg1, arg2)
3729 re_opcode_t op;
3730 unsigned char *loc;
3731 int arg1, arg2;
3733 *loc = (unsigned char) op;
3734 STORE_NUMBER (loc + 1, arg1);
3735 STORE_NUMBER (loc + 3, arg2);
3739 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3740 for OP followed by two-byte integer parameter ARG. */
3742 static void
3743 insert_op1 (op, loc, arg, end)
3744 re_opcode_t op;
3745 unsigned char *loc;
3746 int arg;
3747 unsigned char *end;
3749 register unsigned char *pfrom = end;
3750 register unsigned char *pto = end + 3;
3752 while (pfrom != loc)
3753 *--pto = *--pfrom;
3755 store_op1 (op, loc, arg);
3759 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3761 static void
3762 insert_op2 (op, loc, arg1, arg2, end)
3763 re_opcode_t op;
3764 unsigned char *loc;
3765 int arg1, arg2;
3766 unsigned char *end;
3768 register unsigned char *pfrom = end;
3769 register unsigned char *pto = end + 5;
3771 while (pfrom != loc)
3772 *--pto = *--pfrom;
3774 store_op2 (op, loc, arg1, arg2);
3778 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3779 after an alternative or a begin-subexpression. We assume there is at
3780 least one character before the ^. */
3782 static boolean
3783 at_begline_loc_p (pattern, p, syntax)
3784 re_char *pattern, *p;
3785 reg_syntax_t syntax;
3787 re_char *prev = p - 2;
3788 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3790 return
3791 /* After a subexpression? */
3792 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3793 /* After an alternative? */
3794 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3795 /* After a shy subexpression? */
3796 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3797 && prev[-1] == '?' && prev[-2] == '('
3798 && (syntax & RE_NO_BK_PARENS
3799 || (prev - 3 >= pattern && prev[-3] == '\\')));
3803 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3804 at least one character after the $, i.e., `P < PEND'. */
3806 static boolean
3807 at_endline_loc_p (p, pend, syntax)
3808 re_char *p, *pend;
3809 reg_syntax_t syntax;
3811 re_char *next = p;
3812 boolean next_backslash = *next == '\\';
3813 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3815 return
3816 /* Before a subexpression? */
3817 (syntax & RE_NO_BK_PARENS ? *next == ')'
3818 : next_backslash && next_next && *next_next == ')')
3819 /* Before an alternative? */
3820 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3821 : next_backslash && next_next && *next_next == '|');
3825 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3826 false if it's not. */
3828 static boolean
3829 group_in_compile_stack (compile_stack, regnum)
3830 compile_stack_type compile_stack;
3831 regnum_t regnum;
3833 int this_element;
3835 for (this_element = compile_stack.avail - 1;
3836 this_element >= 0;
3837 this_element--)
3838 if (compile_stack.stack[this_element].regnum == regnum)
3839 return true;
3841 return false;
3844 /* analyse_first.
3845 If fastmap is non-NULL, go through the pattern and fill fastmap
3846 with all the possible leading chars. If fastmap is NULL, don't
3847 bother filling it up (obviously) and only return whether the
3848 pattern could potentially match the empty string.
3850 Return 1 if p..pend might match the empty string.
3851 Return 0 if p..pend matches at least one char.
3852 Return -1 if fastmap was not updated accurately. */
3854 static int
3855 analyse_first (p, pend, fastmap, multibyte)
3856 re_char *p, *pend;
3857 char *fastmap;
3858 const int multibyte;
3860 int j, k;
3861 boolean not;
3863 /* If all elements for base leading-codes in fastmap is set, this
3864 flag is set true. */
3865 boolean match_any_multibyte_characters = false;
3867 assert (p);
3869 /* The loop below works as follows:
3870 - It has a working-list kept in the PATTERN_STACK and which basically
3871 starts by only containing a pointer to the first operation.
3872 - If the opcode we're looking at is a match against some set of
3873 chars, then we add those chars to the fastmap and go on to the
3874 next work element from the worklist (done via `break').
3875 - If the opcode is a control operator on the other hand, we either
3876 ignore it (if it's meaningless at this point, such as `start_memory')
3877 or execute it (if it's a jump). If the jump has several destinations
3878 (i.e. `on_failure_jump'), then we push the other destination onto the
3879 worklist.
3880 We guarantee termination by ignoring backward jumps (more or less),
3881 so that `p' is monotonically increasing. More to the point, we
3882 never set `p' (or push) anything `<= p1'. */
3884 while (p < pend)
3886 /* `p1' is used as a marker of how far back a `on_failure_jump'
3887 can go without being ignored. It is normally equal to `p'
3888 (which prevents any backward `on_failure_jump') except right
3889 after a plain `jump', to allow patterns such as:
3890 0: jump 10
3891 3..9: <body>
3892 10: on_failure_jump 3
3893 as used for the *? operator. */
3894 re_char *p1 = p;
3896 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3898 case succeed:
3899 return 1;
3900 continue;
3902 case duplicate:
3903 /* If the first character has to match a backreference, that means
3904 that the group was empty (since it already matched). Since this
3905 is the only case that interests us here, we can assume that the
3906 backreference must match the empty string. */
3907 p++;
3908 continue;
3911 /* Following are the cases which match a character. These end
3912 with `break'. */
3914 case exactn:
3915 if (fastmap)
3917 int c = RE_STRING_CHAR (p + 1, pend - p);
3918 /* When fast-scanning, the fastmap can be indexed either with
3919 a char (smaller than 256) or with the first byte of
3920 a char's byte sequence. So we have to conservatively add
3921 both to the table. */
3922 if (SINGLE_BYTE_CHAR_P (c))
3923 fastmap[c] = 1;
3924 fastmap[p[1]] = 1;
3926 break;
3929 case anychar:
3930 /* We could put all the chars except for \n (and maybe \0)
3931 but we don't bother since it is generally not worth it. */
3932 if (!fastmap) break;
3933 return -1;
3936 case charset_not:
3937 /* Chars beyond end of bitmap are possible matches.
3938 All the single-byte codes can occur in multibyte buffers.
3939 So any that are not listed in the charset
3940 are possible matches, even in multibyte buffers. */
3941 if (!fastmap) break;
3942 /* We don't need to mark LEADING_CODE_8_BIT_CONTROL specially
3943 because it will automatically be set when needed by virtue of
3944 being larger than the highest char of its charset (0xbf) but
3945 smaller than (1<<BYTEWIDTH). */
3946 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3947 j < (1 << BYTEWIDTH); j++)
3948 fastmap[j] = 1;
3949 /* Fallthrough */
3950 case charset:
3951 if (!fastmap) break;
3952 not = (re_opcode_t) *(p - 1) == charset_not;
3953 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3954 j >= 0; j--)
3955 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3957 fastmap[j] = 1;
3958 #ifdef emacs
3959 if (j >= 0x80 && j < 0xa0)
3960 fastmap[LEADING_CODE_8_BIT_CONTROL] = 1;
3961 #endif
3964 if ((not && multibyte)
3965 /* Any character set can possibly contain a character
3966 which doesn't match the specified set of characters. */
3967 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3968 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3969 /* If we can match a character class, we can match
3970 any character set. */
3972 set_fastmap_for_multibyte_characters:
3973 if (match_any_multibyte_characters == false)
3975 for (j = 0x80; j < 0xA0; j++) /* XXX */
3976 if (BASE_LEADING_CODE_P (j))
3977 fastmap[j] = 1;
3978 match_any_multibyte_characters = true;
3982 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3983 && match_any_multibyte_characters == false)
3985 /* Set fastmap[I] 1 where I is a base leading code of each
3986 multibyte character in the range table. */
3987 int c, count;
3989 /* Make P points the range table. `+ 2' is to skip flag
3990 bits for a character class. */
3991 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3993 /* Extract the number of ranges in range table into COUNT. */
3994 EXTRACT_NUMBER_AND_INCR (count, p);
3995 for (; count > 0; count--, p += 2 * 3) /* XXX */
3997 /* Extract the start of each range. */
3998 EXTRACT_CHARACTER (c, p);
3999 j = CHAR_CHARSET (c);
4000 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
4003 break;
4005 case syntaxspec:
4006 case notsyntaxspec:
4007 if (!fastmap) break;
4008 #ifndef emacs
4009 not = (re_opcode_t)p[-1] == notsyntaxspec;
4010 k = *p++;
4011 for (j = 0; j < (1 << BYTEWIDTH); j++)
4012 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
4013 fastmap[j] = 1;
4014 break;
4015 #else /* emacs */
4016 /* This match depends on text properties. These end with
4017 aborting optimizations. */
4018 return -1;
4020 case categoryspec:
4021 case notcategoryspec:
4022 if (!fastmap) break;
4023 not = (re_opcode_t)p[-1] == notcategoryspec;
4024 k = *p++;
4025 for (j = 0; j < (1 << BYTEWIDTH); j++)
4026 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
4027 fastmap[j] = 1;
4029 if (multibyte)
4030 /* Any character set can possibly contain a character
4031 whose category is K (or not). */
4032 goto set_fastmap_for_multibyte_characters;
4033 break;
4035 /* All cases after this match the empty string. These end with
4036 `continue'. */
4038 case before_dot:
4039 case at_dot:
4040 case after_dot:
4041 #endif /* !emacs */
4042 case no_op:
4043 case begline:
4044 case endline:
4045 case begbuf:
4046 case endbuf:
4047 case wordbound:
4048 case notwordbound:
4049 case wordbeg:
4050 case wordend:
4051 case symbeg:
4052 case symend:
4053 continue;
4056 case jump:
4057 EXTRACT_NUMBER_AND_INCR (j, p);
4058 if (j < 0)
4059 /* Backward jumps can only go back to code that we've already
4060 visited. `re_compile' should make sure this is true. */
4061 break;
4062 p += j;
4063 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4065 case on_failure_jump:
4066 case on_failure_keep_string_jump:
4067 case on_failure_jump_loop:
4068 case on_failure_jump_nastyloop:
4069 case on_failure_jump_smart:
4070 p++;
4071 break;
4072 default:
4073 continue;
4075 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4076 to jump back to "just after here". */
4077 /* Fallthrough */
4079 case on_failure_jump:
4080 case on_failure_keep_string_jump:
4081 case on_failure_jump_nastyloop:
4082 case on_failure_jump_loop:
4083 case on_failure_jump_smart:
4084 EXTRACT_NUMBER_AND_INCR (j, p);
4085 if (p + j <= p1)
4086 ; /* Backward jump to be ignored. */
4087 else
4088 { /* We have to look down both arms.
4089 We first go down the "straight" path so as to minimize
4090 stack usage when going through alternatives. */
4091 int r = analyse_first (p, pend, fastmap, multibyte);
4092 if (r) return r;
4093 p += j;
4095 continue;
4098 case jump_n:
4099 /* This code simply does not properly handle forward jump_n. */
4100 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4101 p += 4;
4102 /* jump_n can either jump or fall through. The (backward) jump
4103 case has already been handled, so we only need to look at the
4104 fallthrough case. */
4105 continue;
4107 case succeed_n:
4108 /* If N == 0, it should be an on_failure_jump_loop instead. */
4109 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4110 p += 4;
4111 /* We only care about one iteration of the loop, so we don't
4112 need to consider the case where this behaves like an
4113 on_failure_jump. */
4114 continue;
4117 case set_number_at:
4118 p += 4;
4119 continue;
4122 case start_memory:
4123 case stop_memory:
4124 p += 1;
4125 continue;
4128 default:
4129 abort (); /* We have listed all the cases. */
4130 } /* switch *p++ */
4132 /* Getting here means we have found the possible starting
4133 characters for one path of the pattern -- and that the empty
4134 string does not match. We need not follow this path further. */
4135 return 0;
4136 } /* while p */
4138 /* We reached the end without matching anything. */
4139 return 1;
4141 } /* analyse_first */
4143 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4144 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4145 characters can start a string that matches the pattern. This fastmap
4146 is used by re_search to skip quickly over impossible starting points.
4148 Character codes above (1 << BYTEWIDTH) are not represented in the
4149 fastmap, but the leading codes are represented. Thus, the fastmap
4150 indicates which character sets could start a match.
4152 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4153 area as BUFP->fastmap.
4155 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4156 the pattern buffer.
4158 Returns 0 if we succeed, -2 if an internal error. */
4161 re_compile_fastmap (bufp)
4162 struct re_pattern_buffer *bufp;
4164 char *fastmap = bufp->fastmap;
4165 int analysis;
4167 assert (fastmap && bufp->buffer);
4169 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4170 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4172 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4173 fastmap, RE_MULTIBYTE_P (bufp));
4174 bufp->can_be_null = (analysis != 0);
4175 return 0;
4176 } /* re_compile_fastmap */
4178 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4179 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4180 this memory for recording register information. STARTS and ENDS
4181 must be allocated using the malloc library routine, and must each
4182 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4184 If NUM_REGS == 0, then subsequent matches should allocate their own
4185 register data.
4187 Unless this function is called, the first search or match using
4188 PATTERN_BUFFER will allocate its own register data, without
4189 freeing the old data. */
4191 void
4192 re_set_registers (bufp, regs, num_regs, starts, ends)
4193 struct re_pattern_buffer *bufp;
4194 struct re_registers *regs;
4195 unsigned num_regs;
4196 regoff_t *starts, *ends;
4198 if (num_regs)
4200 bufp->regs_allocated = REGS_REALLOCATE;
4201 regs->num_regs = num_regs;
4202 regs->start = starts;
4203 regs->end = ends;
4205 else
4207 bufp->regs_allocated = REGS_UNALLOCATED;
4208 regs->num_regs = 0;
4209 regs->start = regs->end = (regoff_t *) 0;
4212 WEAK_ALIAS (__re_set_registers, re_set_registers)
4214 /* Searching routines. */
4216 /* Like re_search_2, below, but only one string is specified, and
4217 doesn't let you say where to stop matching. */
4220 re_search (bufp, string, size, startpos, range, regs)
4221 struct re_pattern_buffer *bufp;
4222 const char *string;
4223 int size, startpos, range;
4224 struct re_registers *regs;
4226 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4227 regs, size);
4229 WEAK_ALIAS (__re_search, re_search)
4231 /* Head address of virtual concatenation of string. */
4232 #define HEAD_ADDR_VSTRING(P) \
4233 (((P) >= size1 ? string2 : string1))
4235 /* End address of virtual concatenation of string. */
4236 #define STOP_ADDR_VSTRING(P) \
4237 (((P) >= size1 ? string2 + size2 : string1 + size1))
4239 /* Address of POS in the concatenation of virtual string. */
4240 #define POS_ADDR_VSTRING(POS) \
4241 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4243 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4244 virtual concatenation of STRING1 and STRING2, starting first at index
4245 STARTPOS, then at STARTPOS + 1, and so on.
4247 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4249 RANGE is how far to scan while trying to match. RANGE = 0 means try
4250 only at STARTPOS; in general, the last start tried is STARTPOS +
4251 RANGE.
4253 In REGS, return the indices of the virtual concatenation of STRING1
4254 and STRING2 that matched the entire BUFP->buffer and its contained
4255 subexpressions.
4257 Do not consider matching one past the index STOP in the virtual
4258 concatenation of STRING1 and STRING2.
4260 We return either the position in the strings at which the match was
4261 found, -1 if no match, or -2 if error (such as failure
4262 stack overflow). */
4265 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
4266 struct re_pattern_buffer *bufp;
4267 const char *str1, *str2;
4268 int size1, size2;
4269 int startpos;
4270 int range;
4271 struct re_registers *regs;
4272 int stop;
4274 int val;
4275 re_char *string1 = (re_char*) str1;
4276 re_char *string2 = (re_char*) str2;
4277 register char *fastmap = bufp->fastmap;
4278 register RE_TRANSLATE_TYPE translate = bufp->translate;
4279 int total_size = size1 + size2;
4280 int endpos = startpos + range;
4281 boolean anchored_start;
4283 /* Nonzero if we have to concern multibyte character. */
4284 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4286 /* Check for out-of-range STARTPOS. */
4287 if (startpos < 0 || startpos > total_size)
4288 return -1;
4290 /* Fix up RANGE if it might eventually take us outside
4291 the virtual concatenation of STRING1 and STRING2.
4292 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4293 if (endpos < 0)
4294 range = 0 - startpos;
4295 else if (endpos > total_size)
4296 range = total_size - startpos;
4298 /* If the search isn't to be a backwards one, don't waste time in a
4299 search for a pattern anchored at beginning of buffer. */
4300 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4302 if (startpos > 0)
4303 return -1;
4304 else
4305 range = 0;
4308 #ifdef emacs
4309 /* In a forward search for something that starts with \=.
4310 don't keep searching past point. */
4311 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4313 range = PT_BYTE - BEGV_BYTE - startpos;
4314 if (range < 0)
4315 return -1;
4317 #endif /* emacs */
4319 /* Update the fastmap now if not correct already. */
4320 if (fastmap && !bufp->fastmap_accurate)
4321 re_compile_fastmap (bufp);
4323 /* See whether the pattern is anchored. */
4324 anchored_start = (bufp->buffer[0] == begline);
4326 #ifdef emacs
4327 gl_state.object = re_match_object;
4329 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4331 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4333 #endif
4335 /* Loop through the string, looking for a place to start matching. */
4336 for (;;)
4338 /* If the pattern is anchored,
4339 skip quickly past places we cannot match.
4340 We don't bother to treat startpos == 0 specially
4341 because that case doesn't repeat. */
4342 if (anchored_start && startpos > 0)
4344 if (! ((startpos <= size1 ? string1[startpos - 1]
4345 : string2[startpos - size1 - 1])
4346 == '\n'))
4347 goto advance;
4350 /* If a fastmap is supplied, skip quickly over characters that
4351 cannot be the start of a match. If the pattern can match the
4352 null string, however, we don't need to skip characters; we want
4353 the first null string. */
4354 if (fastmap && startpos < total_size && !bufp->can_be_null)
4356 register re_char *d;
4357 register re_wchar_t buf_ch;
4359 d = POS_ADDR_VSTRING (startpos);
4361 if (range > 0) /* Searching forwards. */
4363 register int lim = 0;
4364 int irange = range;
4366 if (startpos < size1 && startpos + range >= size1)
4367 lim = range - (size1 - startpos);
4369 /* Written out as an if-else to avoid testing `translate'
4370 inside the loop. */
4371 if (RE_TRANSLATE_P (translate))
4373 if (multibyte)
4374 while (range > lim)
4376 int buf_charlen;
4378 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4379 buf_charlen);
4381 buf_ch = RE_TRANSLATE (translate, buf_ch);
4382 if (buf_ch >= 0400
4383 || fastmap[buf_ch])
4384 break;
4386 range -= buf_charlen;
4387 d += buf_charlen;
4389 else
4391 /* Convert *d to integer to shut up GCC's
4392 whining about comparison that is always
4393 true. */
4394 int di = *d;
4396 while (range > lim
4397 && !fastmap[RE_TRANSLATE (translate, di)])
4399 di = *(++d);
4400 range--;
4404 else
4407 re_char *d_start = d;
4408 while (range > lim && !fastmap[*d])
4410 d++;
4411 range--;
4413 #ifdef emacs
4414 if (multibyte && range > lim)
4416 /* Check that we are at the beginning of a char. */
4417 int at_boundary;
4418 AT_CHAR_BOUNDARY_P (at_boundary, d, d_start);
4419 if (at_boundary)
4420 break;
4421 else
4422 { /* We have matched an internal byte of a char
4423 rather than the leading byte, so it's a false
4424 positive: we should keep scanning. */
4425 d++; range--;
4428 else
4429 #endif
4430 break;
4431 } while (1);
4433 startpos += irange - range;
4435 else /* Searching backwards. */
4437 int room = (startpos >= size1
4438 ? size2 + size1 - startpos
4439 : size1 - startpos);
4440 buf_ch = RE_STRING_CHAR (d, room);
4441 buf_ch = TRANSLATE (buf_ch);
4443 if (! (buf_ch >= 0400
4444 || fastmap[buf_ch]))
4445 goto advance;
4449 /* If can't match the null string, and that's all we have left, fail. */
4450 if (range >= 0 && startpos == total_size && fastmap
4451 && !bufp->can_be_null)
4452 return -1;
4454 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4455 startpos, regs, stop);
4456 #ifndef REGEX_MALLOC
4457 # ifdef C_ALLOCA
4458 alloca (0);
4459 # endif
4460 #endif
4462 if (val >= 0)
4463 return startpos;
4465 if (val == -2)
4466 return -2;
4468 advance:
4469 if (!range)
4470 break;
4471 else if (range > 0)
4473 /* Update STARTPOS to the next character boundary. */
4474 if (multibyte)
4476 re_char *p = POS_ADDR_VSTRING (startpos);
4477 re_char *pend = STOP_ADDR_VSTRING (startpos);
4478 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4480 range -= len;
4481 if (range < 0)
4482 break;
4483 startpos += len;
4485 else
4487 range--;
4488 startpos++;
4491 else
4493 range++;
4494 startpos--;
4496 /* Update STARTPOS to the previous character boundary. */
4497 if (multibyte)
4499 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4500 re_char *p0 = p;
4501 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4503 /* Find the head of multibyte form. */
4504 PREV_CHAR_BOUNDARY (p, phead);
4505 range += p0 - 1 - p;
4506 if (range > 0)
4507 break;
4509 startpos -= p0 - 1 - p;
4513 return -1;
4514 } /* re_search_2 */
4515 WEAK_ALIAS (__re_search_2, re_search_2)
4517 /* Declarations and macros for re_match_2. */
4519 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4520 register int len,
4521 RE_TRANSLATE_TYPE translate,
4522 const int multibyte));
4524 /* This converts PTR, a pointer into one of the search strings `string1'
4525 and `string2' into an offset from the beginning of that string. */
4526 #define POINTER_TO_OFFSET(ptr) \
4527 (FIRST_STRING_P (ptr) \
4528 ? ((regoff_t) ((ptr) - string1)) \
4529 : ((regoff_t) ((ptr) - string2 + size1)))
4531 /* Call before fetching a character with *d. This switches over to
4532 string2 if necessary.
4533 Check re_match_2_internal for a discussion of why end_match_2 might
4534 not be within string2 (but be equal to end_match_1 instead). */
4535 #define PREFETCH() \
4536 while (d == dend) \
4538 /* End of string2 => fail. */ \
4539 if (dend == end_match_2) \
4540 goto fail; \
4541 /* End of string1 => advance to string2. */ \
4542 d = string2; \
4543 dend = end_match_2; \
4546 /* Call before fetching a char with *d if you already checked other limits.
4547 This is meant for use in lookahead operations like wordend, etc..
4548 where we might need to look at parts of the string that might be
4549 outside of the LIMITs (i.e past `stop'). */
4550 #define PREFETCH_NOLIMIT() \
4551 if (d == end1) \
4553 d = string2; \
4554 dend = end_match_2; \
4557 /* Test if at very beginning or at very end of the virtual concatenation
4558 of `string1' and `string2'. If only one string, it's `string2'. */
4559 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4560 #define AT_STRINGS_END(d) ((d) == end2)
4563 /* Test if D points to a character which is word-constituent. We have
4564 two special cases to check for: if past the end of string1, look at
4565 the first character in string2; and if before the beginning of
4566 string2, look at the last character in string1. */
4567 #define WORDCHAR_P(d) \
4568 (SYNTAX ((d) == end1 ? *string2 \
4569 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4570 == Sword)
4572 /* Disabled due to a compiler bug -- see comment at case wordbound */
4574 /* The comment at case wordbound is following one, but we don't use
4575 AT_WORD_BOUNDARY anymore to support multibyte form.
4577 The DEC Alpha C compiler 3.x generates incorrect code for the
4578 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4579 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4580 macro and introducing temporary variables works around the bug. */
4582 #if 0
4583 /* Test if the character before D and the one at D differ with respect
4584 to being word-constituent. */
4585 #define AT_WORD_BOUNDARY(d) \
4586 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4587 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4588 #endif
4590 /* Free everything we malloc. */
4591 #ifdef MATCH_MAY_ALLOCATE
4592 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4593 # define FREE_VARIABLES() \
4594 do { \
4595 REGEX_FREE_STACK (fail_stack.stack); \
4596 FREE_VAR (regstart); \
4597 FREE_VAR (regend); \
4598 FREE_VAR (best_regstart); \
4599 FREE_VAR (best_regend); \
4600 } while (0)
4601 #else
4602 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4603 #endif /* not MATCH_MAY_ALLOCATE */
4606 /* Optimization routines. */
4608 /* If the operation is a match against one or more chars,
4609 return a pointer to the next operation, else return NULL. */
4610 static re_char *
4611 skip_one_char (p)
4612 re_char *p;
4614 switch (SWITCH_ENUM_CAST (*p++))
4616 case anychar:
4617 break;
4619 case exactn:
4620 p += *p + 1;
4621 break;
4623 case charset_not:
4624 case charset:
4625 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4627 int mcnt;
4628 p = CHARSET_RANGE_TABLE (p - 1);
4629 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4630 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4632 else
4633 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4634 break;
4636 case syntaxspec:
4637 case notsyntaxspec:
4638 #ifdef emacs
4639 case categoryspec:
4640 case notcategoryspec:
4641 #endif /* emacs */
4642 p++;
4643 break;
4645 default:
4646 p = NULL;
4648 return p;
4652 /* Jump over non-matching operations. */
4653 static re_char *
4654 skip_noops (p, pend)
4655 re_char *p, *pend;
4657 int mcnt;
4658 while (p < pend)
4660 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4662 case start_memory:
4663 case stop_memory:
4664 p += 2; break;
4665 case no_op:
4666 p += 1; break;
4667 case jump:
4668 p += 1;
4669 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4670 p += mcnt;
4671 break;
4672 default:
4673 return p;
4676 assert (p == pend);
4677 return p;
4680 /* Non-zero if "p1 matches something" implies "p2 fails". */
4681 static int
4682 mutually_exclusive_p (bufp, p1, p2)
4683 struct re_pattern_buffer *bufp;
4684 re_char *p1, *p2;
4686 re_opcode_t op2;
4687 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4688 unsigned char *pend = bufp->buffer + bufp->used;
4690 assert (p1 >= bufp->buffer && p1 < pend
4691 && p2 >= bufp->buffer && p2 <= pend);
4693 /* Skip over open/close-group commands.
4694 If what follows this loop is a ...+ construct,
4695 look at what begins its body, since we will have to
4696 match at least one of that. */
4697 p2 = skip_noops (p2, pend);
4698 /* The same skip can be done for p1, except that this function
4699 is only used in the case where p1 is a simple match operator. */
4700 /* p1 = skip_noops (p1, pend); */
4702 assert (p1 >= bufp->buffer && p1 < pend
4703 && p2 >= bufp->buffer && p2 <= pend);
4705 op2 = p2 == pend ? succeed : *p2;
4707 switch (SWITCH_ENUM_CAST (op2))
4709 case succeed:
4710 case endbuf:
4711 /* If we're at the end of the pattern, we can change. */
4712 if (skip_one_char (p1))
4714 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4715 return 1;
4717 break;
4719 case endline:
4720 case exactn:
4722 register re_wchar_t c
4723 = (re_opcode_t) *p2 == endline ? '\n'
4724 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4726 if ((re_opcode_t) *p1 == exactn)
4728 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4730 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4731 return 1;
4735 else if ((re_opcode_t) *p1 == charset
4736 || (re_opcode_t) *p1 == charset_not)
4738 int not = (re_opcode_t) *p1 == charset_not;
4740 /* Test if C is listed in charset (or charset_not)
4741 at `p1'. */
4742 if (SINGLE_BYTE_CHAR_P (c))
4744 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4745 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4746 not = !not;
4748 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4749 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4751 /* `not' is equal to 1 if c would match, which means
4752 that we can't change to pop_failure_jump. */
4753 if (!not)
4755 DEBUG_PRINT1 (" No match => fast loop.\n");
4756 return 1;
4759 else if ((re_opcode_t) *p1 == anychar
4760 && c == '\n')
4762 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4763 return 1;
4766 break;
4768 case charset:
4770 if ((re_opcode_t) *p1 == exactn)
4771 /* Reuse the code above. */
4772 return mutually_exclusive_p (bufp, p2, p1);
4774 /* It is hard to list up all the character in charset
4775 P2 if it includes multibyte character. Give up in
4776 such case. */
4777 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4779 /* Now, we are sure that P2 has no range table.
4780 So, for the size of bitmap in P2, `p2[1]' is
4781 enough. But P1 may have range table, so the
4782 size of bitmap table of P1 is extracted by
4783 using macro `CHARSET_BITMAP_SIZE'.
4785 Since we know that all the character listed in
4786 P2 is ASCII, it is enough to test only bitmap
4787 table of P1. */
4789 if ((re_opcode_t) *p1 == charset)
4791 int idx;
4792 /* We win if the charset inside the loop
4793 has no overlap with the one after the loop. */
4794 for (idx = 0;
4795 (idx < (int) p2[1]
4796 && idx < CHARSET_BITMAP_SIZE (p1));
4797 idx++)
4798 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4799 break;
4801 if (idx == p2[1]
4802 || idx == CHARSET_BITMAP_SIZE (p1))
4804 DEBUG_PRINT1 (" No match => fast loop.\n");
4805 return 1;
4808 else if ((re_opcode_t) *p1 == charset_not)
4810 int idx;
4811 /* We win if the charset_not inside the loop lists
4812 every character listed in the charset after. */
4813 for (idx = 0; idx < (int) p2[1]; idx++)
4814 if (! (p2[2 + idx] == 0
4815 || (idx < CHARSET_BITMAP_SIZE (p1)
4816 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4817 break;
4819 if (idx == p2[1])
4821 DEBUG_PRINT1 (" No match => fast loop.\n");
4822 return 1;
4827 break;
4829 case charset_not:
4830 switch (SWITCH_ENUM_CAST (*p1))
4832 case exactn:
4833 case charset:
4834 /* Reuse the code above. */
4835 return mutually_exclusive_p (bufp, p2, p1);
4836 case charset_not:
4837 /* When we have two charset_not, it's very unlikely that
4838 they don't overlap. The union of the two sets of excluded
4839 chars should cover all possible chars, which, as a matter of
4840 fact, is virtually impossible in multibyte buffers. */
4841 break;
4843 break;
4845 case wordend:
4846 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4847 case symend:
4848 return ((re_opcode_t) *p1 == syntaxspec
4849 && (p1[1] == Ssymbol || p1[1] == Sword));
4850 case notsyntaxspec:
4851 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4853 case wordbeg:
4854 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4855 case symbeg:
4856 return ((re_opcode_t) *p1 == notsyntaxspec
4857 && (p1[1] == Ssymbol || p1[1] == Sword));
4858 case syntaxspec:
4859 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4861 case wordbound:
4862 return (((re_opcode_t) *p1 == notsyntaxspec
4863 || (re_opcode_t) *p1 == syntaxspec)
4864 && p1[1] == Sword);
4866 #ifdef emacs
4867 case categoryspec:
4868 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4869 case notcategoryspec:
4870 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4871 #endif /* emacs */
4873 default:
4877 /* Safe default. */
4878 return 0;
4882 /* Matching routines. */
4884 #ifndef emacs /* Emacs never uses this. */
4885 /* re_match is like re_match_2 except it takes only a single string. */
4888 re_match (bufp, string, size, pos, regs)
4889 struct re_pattern_buffer *bufp;
4890 const char *string;
4891 int size, pos;
4892 struct re_registers *regs;
4894 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4895 pos, regs, size);
4896 # if defined C_ALLOCA && !defined REGEX_MALLOC
4897 alloca (0);
4898 # endif
4899 return result;
4901 WEAK_ALIAS (__re_match, re_match)
4902 #endif /* not emacs */
4904 #ifdef emacs
4905 /* In Emacs, this is the string or buffer in which we
4906 are matching. It is used for looking up syntax properties. */
4907 Lisp_Object re_match_object;
4908 #endif
4910 /* re_match_2 matches the compiled pattern in BUFP against the
4911 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4912 and SIZE2, respectively). We start matching at POS, and stop
4913 matching at STOP.
4915 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4916 store offsets for the substring each group matched in REGS. See the
4917 documentation for exactly how many groups we fill.
4919 We return -1 if no match, -2 if an internal error (such as the
4920 failure stack overflowing). Otherwise, we return the length of the
4921 matched substring. */
4924 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4925 struct re_pattern_buffer *bufp;
4926 const char *string1, *string2;
4927 int size1, size2;
4928 int pos;
4929 struct re_registers *regs;
4930 int stop;
4932 int result;
4934 #ifdef emacs
4935 int charpos;
4936 gl_state.object = re_match_object;
4937 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4938 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4939 #endif
4941 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4942 (re_char*) string2, size2,
4943 pos, regs, stop);
4944 #if defined C_ALLOCA && !defined REGEX_MALLOC
4945 alloca (0);
4946 #endif
4947 return result;
4949 WEAK_ALIAS (__re_match_2, re_match_2)
4951 /* This is a separate function so that we can force an alloca cleanup
4952 afterwards. */
4953 static int
4954 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4955 struct re_pattern_buffer *bufp;
4956 re_char *string1, *string2;
4957 int size1, size2;
4958 int pos;
4959 struct re_registers *regs;
4960 int stop;
4962 /* General temporaries. */
4963 int mcnt;
4964 size_t reg;
4965 boolean not;
4967 /* Just past the end of the corresponding string. */
4968 re_char *end1, *end2;
4970 /* Pointers into string1 and string2, just past the last characters in
4971 each to consider matching. */
4972 re_char *end_match_1, *end_match_2;
4974 /* Where we are in the data, and the end of the current string. */
4975 re_char *d, *dend;
4977 /* Used sometimes to remember where we were before starting matching
4978 an operator so that we can go back in case of failure. This "atomic"
4979 behavior of matching opcodes is indispensable to the correctness
4980 of the on_failure_keep_string_jump optimization. */
4981 re_char *dfail;
4983 /* Where we are in the pattern, and the end of the pattern. */
4984 re_char *p = bufp->buffer;
4985 re_char *pend = p + bufp->used;
4987 /* We use this to map every character in the string. */
4988 RE_TRANSLATE_TYPE translate = bufp->translate;
4990 /* Nonzero if we have to concern multibyte character. */
4991 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4993 /* Failure point stack. Each place that can handle a failure further
4994 down the line pushes a failure point on this stack. It consists of
4995 regstart, and regend for all registers corresponding to
4996 the subexpressions we're currently inside, plus the number of such
4997 registers, and, finally, two char *'s. The first char * is where
4998 to resume scanning the pattern; the second one is where to resume
4999 scanning the strings. */
5000 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5001 fail_stack_type fail_stack;
5002 #endif
5003 #ifdef DEBUG
5004 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5005 #endif
5007 #if defined REL_ALLOC && defined REGEX_MALLOC
5008 /* This holds the pointer to the failure stack, when
5009 it is allocated relocatably. */
5010 fail_stack_elt_t *failure_stack_ptr;
5011 #endif
5013 /* We fill all the registers internally, independent of what we
5014 return, for use in backreferences. The number here includes
5015 an element for register zero. */
5016 size_t num_regs = bufp->re_nsub + 1;
5018 /* Information on the contents of registers. These are pointers into
5019 the input strings; they record just what was matched (on this
5020 attempt) by a subexpression part of the pattern, that is, the
5021 regnum-th regstart pointer points to where in the pattern we began
5022 matching and the regnum-th regend points to right after where we
5023 stopped matching the regnum-th subexpression. (The zeroth register
5024 keeps track of what the whole pattern matches.) */
5025 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5026 re_char **regstart, **regend;
5027 #endif
5029 /* The following record the register info as found in the above
5030 variables when we find a match better than any we've seen before.
5031 This happens as we backtrack through the failure points, which in
5032 turn happens only if we have not yet matched the entire string. */
5033 unsigned best_regs_set = false;
5034 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5035 re_char **best_regstart, **best_regend;
5036 #endif
5038 /* Logically, this is `best_regend[0]'. But we don't want to have to
5039 allocate space for that if we're not allocating space for anything
5040 else (see below). Also, we never need info about register 0 for
5041 any of the other register vectors, and it seems rather a kludge to
5042 treat `best_regend' differently than the rest. So we keep track of
5043 the end of the best match so far in a separate variable. We
5044 initialize this to NULL so that when we backtrack the first time
5045 and need to test it, it's not garbage. */
5046 re_char *match_end = NULL;
5048 #ifdef DEBUG
5049 /* Counts the total number of registers pushed. */
5050 unsigned num_regs_pushed = 0;
5051 #endif
5053 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5055 INIT_FAIL_STACK ();
5057 #ifdef MATCH_MAY_ALLOCATE
5058 /* Do not bother to initialize all the register variables if there are
5059 no groups in the pattern, as it takes a fair amount of time. If
5060 there are groups, we include space for register 0 (the whole
5061 pattern), even though we never use it, since it simplifies the
5062 array indexing. We should fix this. */
5063 if (bufp->re_nsub)
5065 regstart = REGEX_TALLOC (num_regs, re_char *);
5066 regend = REGEX_TALLOC (num_regs, re_char *);
5067 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5068 best_regend = REGEX_TALLOC (num_regs, re_char *);
5070 if (!(regstart && regend && best_regstart && best_regend))
5072 FREE_VARIABLES ();
5073 return -2;
5076 else
5078 /* We must initialize all our variables to NULL, so that
5079 `FREE_VARIABLES' doesn't try to free them. */
5080 regstart = regend = best_regstart = best_regend = NULL;
5082 #endif /* MATCH_MAY_ALLOCATE */
5084 /* The starting position is bogus. */
5085 if (pos < 0 || pos > size1 + size2)
5087 FREE_VARIABLES ();
5088 return -1;
5091 /* Initialize subexpression text positions to -1 to mark ones that no
5092 start_memory/stop_memory has been seen for. Also initialize the
5093 register information struct. */
5094 for (reg = 1; reg < num_regs; reg++)
5095 regstart[reg] = regend[reg] = NULL;
5097 /* We move `string1' into `string2' if the latter's empty -- but not if
5098 `string1' is null. */
5099 if (size2 == 0 && string1 != NULL)
5101 string2 = string1;
5102 size2 = size1;
5103 string1 = 0;
5104 size1 = 0;
5106 end1 = string1 + size1;
5107 end2 = string2 + size2;
5109 /* `p' scans through the pattern as `d' scans through the data.
5110 `dend' is the end of the input string that `d' points within. `d'
5111 is advanced into the following input string whenever necessary, but
5112 this happens before fetching; therefore, at the beginning of the
5113 loop, `d' can be pointing at the end of a string, but it cannot
5114 equal `string2'. */
5115 if (pos >= size1)
5117 /* Only match within string2. */
5118 d = string2 + pos - size1;
5119 dend = end_match_2 = string2 + stop - size1;
5120 end_match_1 = end1; /* Just to give it a value. */
5122 else
5124 if (stop < size1)
5126 /* Only match within string1. */
5127 end_match_1 = string1 + stop;
5128 /* BEWARE!
5129 When we reach end_match_1, PREFETCH normally switches to string2.
5130 But in the present case, this means that just doing a PREFETCH
5131 makes us jump from `stop' to `gap' within the string.
5132 What we really want here is for the search to stop as
5133 soon as we hit end_match_1. That's why we set end_match_2
5134 to end_match_1 (since PREFETCH fails as soon as we hit
5135 end_match_2). */
5136 end_match_2 = end_match_1;
5138 else
5139 { /* It's important to use this code when stop == size so that
5140 moving `d' from end1 to string2 will not prevent the d == dend
5141 check from catching the end of string. */
5142 end_match_1 = end1;
5143 end_match_2 = string2 + stop - size1;
5145 d = string1 + pos;
5146 dend = end_match_1;
5149 DEBUG_PRINT1 ("The compiled pattern is: ");
5150 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5151 DEBUG_PRINT1 ("The string to match is: `");
5152 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5153 DEBUG_PRINT1 ("'\n");
5155 /* This loops over pattern commands. It exits by returning from the
5156 function if the match is complete, or it drops through if the match
5157 fails at this starting point in the input data. */
5158 for (;;)
5160 DEBUG_PRINT2 ("\n%p: ", p);
5162 if (p == pend)
5163 { /* End of pattern means we might have succeeded. */
5164 DEBUG_PRINT1 ("end of pattern ... ");
5166 /* If we haven't matched the entire string, and we want the
5167 longest match, try backtracking. */
5168 if (d != end_match_2)
5170 /* 1 if this match ends in the same string (string1 or string2)
5171 as the best previous match. */
5172 boolean same_str_p = (FIRST_STRING_P (match_end)
5173 == FIRST_STRING_P (d));
5174 /* 1 if this match is the best seen so far. */
5175 boolean best_match_p;
5177 /* AIX compiler got confused when this was combined
5178 with the previous declaration. */
5179 if (same_str_p)
5180 best_match_p = d > match_end;
5181 else
5182 best_match_p = !FIRST_STRING_P (d);
5184 DEBUG_PRINT1 ("backtracking.\n");
5186 if (!FAIL_STACK_EMPTY ())
5187 { /* More failure points to try. */
5189 /* If exceeds best match so far, save it. */
5190 if (!best_regs_set || best_match_p)
5192 best_regs_set = true;
5193 match_end = d;
5195 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5197 for (reg = 1; reg < num_regs; reg++)
5199 best_regstart[reg] = regstart[reg];
5200 best_regend[reg] = regend[reg];
5203 goto fail;
5206 /* If no failure points, don't restore garbage. And if
5207 last match is real best match, don't restore second
5208 best one. */
5209 else if (best_regs_set && !best_match_p)
5211 restore_best_regs:
5212 /* Restore best match. It may happen that `dend ==
5213 end_match_1' while the restored d is in string2.
5214 For example, the pattern `x.*y.*z' against the
5215 strings `x-' and `y-z-', if the two strings are
5216 not consecutive in memory. */
5217 DEBUG_PRINT1 ("Restoring best registers.\n");
5219 d = match_end;
5220 dend = ((d >= string1 && d <= end1)
5221 ? end_match_1 : end_match_2);
5223 for (reg = 1; reg < num_regs; reg++)
5225 regstart[reg] = best_regstart[reg];
5226 regend[reg] = best_regend[reg];
5229 } /* d != end_match_2 */
5231 succeed_label:
5232 DEBUG_PRINT1 ("Accepting match.\n");
5234 /* If caller wants register contents data back, do it. */
5235 if (regs && !bufp->no_sub)
5237 /* Have the register data arrays been allocated? */
5238 if (bufp->regs_allocated == REGS_UNALLOCATED)
5239 { /* No. So allocate them with malloc. We need one
5240 extra element beyond `num_regs' for the `-1' marker
5241 GNU code uses. */
5242 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5243 regs->start = TALLOC (regs->num_regs, regoff_t);
5244 regs->end = TALLOC (regs->num_regs, regoff_t);
5245 if (regs->start == NULL || regs->end == NULL)
5247 FREE_VARIABLES ();
5248 return -2;
5250 bufp->regs_allocated = REGS_REALLOCATE;
5252 else if (bufp->regs_allocated == REGS_REALLOCATE)
5253 { /* Yes. If we need more elements than were already
5254 allocated, reallocate them. If we need fewer, just
5255 leave it alone. */
5256 if (regs->num_regs < num_regs + 1)
5258 regs->num_regs = num_regs + 1;
5259 RETALLOC (regs->start, regs->num_regs, regoff_t);
5260 RETALLOC (regs->end, regs->num_regs, regoff_t);
5261 if (regs->start == NULL || regs->end == NULL)
5263 FREE_VARIABLES ();
5264 return -2;
5268 else
5270 /* These braces fend off a "empty body in an else-statement"
5271 warning under GCC when assert expands to nothing. */
5272 assert (bufp->regs_allocated == REGS_FIXED);
5275 /* Convert the pointer data in `regstart' and `regend' to
5276 indices. Register zero has to be set differently,
5277 since we haven't kept track of any info for it. */
5278 if (regs->num_regs > 0)
5280 regs->start[0] = pos;
5281 regs->end[0] = POINTER_TO_OFFSET (d);
5284 /* Go through the first `min (num_regs, regs->num_regs)'
5285 registers, since that is all we initialized. */
5286 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5288 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5289 regs->start[reg] = regs->end[reg] = -1;
5290 else
5292 regs->start[reg]
5293 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5294 regs->end[reg]
5295 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5299 /* If the regs structure we return has more elements than
5300 were in the pattern, set the extra elements to -1. If
5301 we (re)allocated the registers, this is the case,
5302 because we always allocate enough to have at least one
5303 -1 at the end. */
5304 for (reg = num_regs; reg < regs->num_regs; reg++)
5305 regs->start[reg] = regs->end[reg] = -1;
5306 } /* regs && !bufp->no_sub */
5308 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5309 nfailure_points_pushed, nfailure_points_popped,
5310 nfailure_points_pushed - nfailure_points_popped);
5311 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5313 mcnt = POINTER_TO_OFFSET (d) - pos;
5315 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5317 FREE_VARIABLES ();
5318 return mcnt;
5321 /* Otherwise match next pattern command. */
5322 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5324 /* Ignore these. Used to ignore the n of succeed_n's which
5325 currently have n == 0. */
5326 case no_op:
5327 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5328 break;
5330 case succeed:
5331 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5332 goto succeed_label;
5334 /* Match the next n pattern characters exactly. The following
5335 byte in the pattern defines n, and the n bytes after that
5336 are the characters to match. */
5337 case exactn:
5338 mcnt = *p++;
5339 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5341 /* Remember the start point to rollback upon failure. */
5342 dfail = d;
5344 /* This is written out as an if-else so we don't waste time
5345 testing `translate' inside the loop. */
5346 if (RE_TRANSLATE_P (translate))
5348 if (multibyte)
5351 int pat_charlen, buf_charlen;
5352 unsigned int pat_ch, buf_ch;
5354 PREFETCH ();
5355 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5356 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5358 if (RE_TRANSLATE (translate, buf_ch)
5359 != pat_ch)
5361 d = dfail;
5362 goto fail;
5365 p += pat_charlen;
5366 d += buf_charlen;
5367 mcnt -= pat_charlen;
5369 while (mcnt > 0);
5370 else
5373 /* Avoid compiler whining about comparison being
5374 always true. */
5375 int di;
5377 PREFETCH ();
5378 di = *d;
5379 if (RE_TRANSLATE (translate, di) != *p++)
5381 d = dfail;
5382 goto fail;
5384 d++;
5386 while (--mcnt);
5388 else
5392 PREFETCH ();
5393 if (*d++ != *p++)
5395 d = dfail;
5396 goto fail;
5399 while (--mcnt);
5401 break;
5404 /* Match any character except possibly a newline or a null. */
5405 case anychar:
5407 int buf_charlen;
5408 re_wchar_t buf_ch;
5410 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5412 PREFETCH ();
5413 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5414 buf_ch = TRANSLATE (buf_ch);
5416 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5417 && buf_ch == '\n')
5418 || ((bufp->syntax & RE_DOT_NOT_NULL)
5419 && buf_ch == '\000'))
5420 goto fail;
5422 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5423 d += buf_charlen;
5425 break;
5428 case charset:
5429 case charset_not:
5431 register unsigned int c;
5432 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5433 int len;
5435 /* Start of actual range_table, or end of bitmap if there is no
5436 range table. */
5437 re_char *range_table;
5439 /* Nonzero if there is a range table. */
5440 int range_table_exists;
5442 /* Number of ranges of range table. This is not included
5443 in the initial byte-length of the command. */
5444 int count = 0;
5446 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5448 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5450 if (range_table_exists)
5452 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5453 EXTRACT_NUMBER_AND_INCR (count, range_table);
5456 PREFETCH ();
5457 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5458 c = TRANSLATE (c); /* The character to match. */
5460 if (SINGLE_BYTE_CHAR_P (c))
5461 { /* Lookup bitmap. */
5462 /* Cast to `unsigned' instead of `unsigned char' in
5463 case the bit list is a full 32 bytes long. */
5464 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5465 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5466 not = !not;
5468 #ifdef emacs
5469 else if (range_table_exists)
5471 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5473 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5474 | (class_bits & BIT_MULTIBYTE)
5475 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5476 | (class_bits & BIT_SPACE && ISSPACE (c))
5477 | (class_bits & BIT_UPPER && ISUPPER (c))
5478 | (class_bits & BIT_WORD && ISWORD (c)))
5479 not = !not;
5480 else
5481 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5483 #endif /* emacs */
5485 if (range_table_exists)
5486 p = CHARSET_RANGE_TABLE_END (range_table, count);
5487 else
5488 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5490 if (!not) goto fail;
5492 d += len;
5493 break;
5497 /* The beginning of a group is represented by start_memory.
5498 The argument is the register number. The text
5499 matched within the group is recorded (in the internal
5500 registers data structure) under the register number. */
5501 case start_memory:
5502 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5504 /* In case we need to undo this operation (via backtracking). */
5505 PUSH_FAILURE_REG ((unsigned int)*p);
5507 regstart[*p] = d;
5508 regend[*p] = NULL; /* probably unnecessary. -sm */
5509 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5511 /* Move past the register number and inner group count. */
5512 p += 1;
5513 break;
5516 /* The stop_memory opcode represents the end of a group. Its
5517 argument is the same as start_memory's: the register number. */
5518 case stop_memory:
5519 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5521 assert (!REG_UNSET (regstart[*p]));
5522 /* Strictly speaking, there should be code such as:
5524 assert (REG_UNSET (regend[*p]));
5525 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5527 But the only info to be pushed is regend[*p] and it is known to
5528 be UNSET, so there really isn't anything to push.
5529 Not pushing anything, on the other hand deprives us from the
5530 guarantee that regend[*p] is UNSET since undoing this operation
5531 will not reset its value properly. This is not important since
5532 the value will only be read on the next start_memory or at
5533 the very end and both events can only happen if this stop_memory
5534 is *not* undone. */
5536 regend[*p] = d;
5537 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5539 /* Move past the register number and the inner group count. */
5540 p += 1;
5541 break;
5544 /* \<digit> has been turned into a `duplicate' command which is
5545 followed by the numeric value of <digit> as the register number. */
5546 case duplicate:
5548 register re_char *d2, *dend2;
5549 int regno = *p++; /* Get which register to match against. */
5550 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5552 /* Can't back reference a group which we've never matched. */
5553 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5554 goto fail;
5556 /* Where in input to try to start matching. */
5557 d2 = regstart[regno];
5559 /* Remember the start point to rollback upon failure. */
5560 dfail = d;
5562 /* Where to stop matching; if both the place to start and
5563 the place to stop matching are in the same string, then
5564 set to the place to stop, otherwise, for now have to use
5565 the end of the first string. */
5567 dend2 = ((FIRST_STRING_P (regstart[regno])
5568 == FIRST_STRING_P (regend[regno]))
5569 ? regend[regno] : end_match_1);
5570 for (;;)
5572 /* If necessary, advance to next segment in register
5573 contents. */
5574 while (d2 == dend2)
5576 if (dend2 == end_match_2) break;
5577 if (dend2 == regend[regno]) break;
5579 /* End of string1 => advance to string2. */
5580 d2 = string2;
5581 dend2 = regend[regno];
5583 /* At end of register contents => success */
5584 if (d2 == dend2) break;
5586 /* If necessary, advance to next segment in data. */
5587 PREFETCH ();
5589 /* How many characters left in this segment to match. */
5590 mcnt = dend - d;
5592 /* Want how many consecutive characters we can match in
5593 one shot, so, if necessary, adjust the count. */
5594 if (mcnt > dend2 - d2)
5595 mcnt = dend2 - d2;
5597 /* Compare that many; failure if mismatch, else move
5598 past them. */
5599 if (RE_TRANSLATE_P (translate)
5600 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5601 : memcmp (d, d2, mcnt))
5603 d = dfail;
5604 goto fail;
5606 d += mcnt, d2 += mcnt;
5609 break;
5612 /* begline matches the empty string at the beginning of the string
5613 (unless `not_bol' is set in `bufp'), and after newlines. */
5614 case begline:
5615 DEBUG_PRINT1 ("EXECUTING begline.\n");
5617 if (AT_STRINGS_BEG (d))
5619 if (!bufp->not_bol) break;
5621 else
5623 unsigned char c;
5624 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5625 if (c == '\n')
5626 break;
5628 /* In all other cases, we fail. */
5629 goto fail;
5632 /* endline is the dual of begline. */
5633 case endline:
5634 DEBUG_PRINT1 ("EXECUTING endline.\n");
5636 if (AT_STRINGS_END (d))
5638 if (!bufp->not_eol) break;
5640 else
5642 PREFETCH_NOLIMIT ();
5643 if (*d == '\n')
5644 break;
5646 goto fail;
5649 /* Match at the very beginning of the data. */
5650 case begbuf:
5651 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5652 if (AT_STRINGS_BEG (d))
5653 break;
5654 goto fail;
5657 /* Match at the very end of the data. */
5658 case endbuf:
5659 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5660 if (AT_STRINGS_END (d))
5661 break;
5662 goto fail;
5665 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5666 pushes NULL as the value for the string on the stack. Then
5667 `POP_FAILURE_POINT' will keep the current value for the
5668 string, instead of restoring it. To see why, consider
5669 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5670 then the . fails against the \n. But the next thing we want
5671 to do is match the \n against the \n; if we restored the
5672 string value, we would be back at the foo.
5674 Because this is used only in specific cases, we don't need to
5675 check all the things that `on_failure_jump' does, to make
5676 sure the right things get saved on the stack. Hence we don't
5677 share its code. The only reason to push anything on the
5678 stack at all is that otherwise we would have to change
5679 `anychar's code to do something besides goto fail in this
5680 case; that seems worse than this. */
5681 case on_failure_keep_string_jump:
5682 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5683 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5684 mcnt, p + mcnt);
5686 PUSH_FAILURE_POINT (p - 3, NULL);
5687 break;
5689 /* A nasty loop is introduced by the non-greedy *? and +?.
5690 With such loops, the stack only ever contains one failure point
5691 at a time, so that a plain on_failure_jump_loop kind of
5692 cycle detection cannot work. Worse yet, such a detection
5693 can not only fail to detect a cycle, but it can also wrongly
5694 detect a cycle (between different instantiations of the same
5695 loop).
5696 So the method used for those nasty loops is a little different:
5697 We use a special cycle-detection-stack-frame which is pushed
5698 when the on_failure_jump_nastyloop failure-point is *popped*.
5699 This special frame thus marks the beginning of one iteration
5700 through the loop and we can hence easily check right here
5701 whether something matched between the beginning and the end of
5702 the loop. */
5703 case on_failure_jump_nastyloop:
5704 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5705 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5706 mcnt, p + mcnt);
5708 assert ((re_opcode_t)p[-4] == no_op);
5710 int cycle = 0;
5711 CHECK_INFINITE_LOOP (p - 4, d);
5712 if (!cycle)
5713 /* If there's a cycle, just continue without pushing
5714 this failure point. The failure point is the "try again"
5715 option, which shouldn't be tried.
5716 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5717 PUSH_FAILURE_POINT (p - 3, d);
5719 break;
5721 /* Simple loop detecting on_failure_jump: just check on the
5722 failure stack if the same spot was already hit earlier. */
5723 case on_failure_jump_loop:
5724 on_failure:
5725 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5726 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5727 mcnt, p + mcnt);
5729 int cycle = 0;
5730 CHECK_INFINITE_LOOP (p - 3, d);
5731 if (cycle)
5732 /* If there's a cycle, get out of the loop, as if the matching
5733 had failed. We used to just `goto fail' here, but that was
5734 aborting the search a bit too early: we want to keep the
5735 empty-loop-match and keep matching after the loop.
5736 We want (x?)*y\1z to match both xxyz and xxyxz. */
5737 p += mcnt;
5738 else
5739 PUSH_FAILURE_POINT (p - 3, d);
5741 break;
5744 /* Uses of on_failure_jump:
5746 Each alternative starts with an on_failure_jump that points
5747 to the beginning of the next alternative. Each alternative
5748 except the last ends with a jump that in effect jumps past
5749 the rest of the alternatives. (They really jump to the
5750 ending jump of the following alternative, because tensioning
5751 these jumps is a hassle.)
5753 Repeats start with an on_failure_jump that points past both
5754 the repetition text and either the following jump or
5755 pop_failure_jump back to this on_failure_jump. */
5756 case on_failure_jump:
5757 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5758 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5759 mcnt, p + mcnt);
5761 PUSH_FAILURE_POINT (p -3, d);
5762 break;
5764 /* This operation is used for greedy *.
5765 Compare the beginning of the repeat with what in the
5766 pattern follows its end. If we can establish that there
5767 is nothing that they would both match, i.e., that we
5768 would have to backtrack because of (as in, e.g., `a*a')
5769 then we can use a non-backtracking loop based on
5770 on_failure_keep_string_jump instead of on_failure_jump. */
5771 case on_failure_jump_smart:
5772 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5773 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5774 mcnt, p + mcnt);
5776 re_char *p1 = p; /* Next operation. */
5777 /* Here, we discard `const', making re_match non-reentrant. */
5778 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5779 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5781 p -= 3; /* Reset so that we will re-execute the
5782 instruction once it's been changed. */
5784 EXTRACT_NUMBER (mcnt, p2 - 2);
5786 /* Ensure this is a indeed the trivial kind of loop
5787 we are expecting. */
5788 assert (skip_one_char (p1) == p2 - 3);
5789 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5790 DEBUG_STATEMENT (debug += 2);
5791 if (mutually_exclusive_p (bufp, p1, p2))
5793 /* Use a fast `on_failure_keep_string_jump' loop. */
5794 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5795 *p3 = (unsigned char) on_failure_keep_string_jump;
5796 STORE_NUMBER (p2 - 2, mcnt + 3);
5798 else
5800 /* Default to a safe `on_failure_jump' loop. */
5801 DEBUG_PRINT1 (" smart default => slow loop.\n");
5802 *p3 = (unsigned char) on_failure_jump;
5804 DEBUG_STATEMENT (debug -= 2);
5806 break;
5808 /* Unconditionally jump (without popping any failure points). */
5809 case jump:
5810 unconditional_jump:
5811 IMMEDIATE_QUIT_CHECK;
5812 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5813 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5814 p += mcnt; /* Do the jump. */
5815 DEBUG_PRINT2 ("(to %p).\n", p);
5816 break;
5819 /* Have to succeed matching what follows at least n times.
5820 After that, handle like `on_failure_jump'. */
5821 case succeed_n:
5822 /* Signedness doesn't matter since we only compare MCNT to 0. */
5823 EXTRACT_NUMBER (mcnt, p + 2);
5824 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5826 /* Originally, mcnt is how many times we HAVE to succeed. */
5827 if (mcnt != 0)
5829 /* Here, we discard `const', making re_match non-reentrant. */
5830 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5831 mcnt--;
5832 p += 4;
5833 PUSH_NUMBER (p2, mcnt);
5835 else
5836 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5837 goto on_failure;
5838 break;
5840 case jump_n:
5841 /* Signedness doesn't matter since we only compare MCNT to 0. */
5842 EXTRACT_NUMBER (mcnt, p + 2);
5843 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5845 /* Originally, this is how many times we CAN jump. */
5846 if (mcnt != 0)
5848 /* Here, we discard `const', making re_match non-reentrant. */
5849 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5850 mcnt--;
5851 PUSH_NUMBER (p2, mcnt);
5852 goto unconditional_jump;
5854 /* If don't have to jump any more, skip over the rest of command. */
5855 else
5856 p += 4;
5857 break;
5859 case set_number_at:
5861 unsigned char *p2; /* Location of the counter. */
5862 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5864 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5865 /* Here, we discard `const', making re_match non-reentrant. */
5866 p2 = (unsigned char*) p + mcnt;
5867 /* Signedness doesn't matter since we only copy MCNT's bits . */
5868 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5869 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5870 PUSH_NUMBER (p2, mcnt);
5871 break;
5874 case wordbound:
5875 case notwordbound:
5876 not = (re_opcode_t) *(p - 1) == notwordbound;
5877 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5879 /* We SUCCEED (or FAIL) in one of the following cases: */
5881 /* Case 1: D is at the beginning or the end of string. */
5882 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5883 not = !not;
5884 else
5886 /* C1 is the character before D, S1 is the syntax of C1, C2
5887 is the character at D, and S2 is the syntax of C2. */
5888 re_wchar_t c1, c2;
5889 int s1, s2;
5890 #ifdef emacs
5891 int offset = PTR_TO_OFFSET (d - 1);
5892 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5893 UPDATE_SYNTAX_TABLE (charpos);
5894 #endif
5895 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5896 s1 = SYNTAX (c1);
5897 #ifdef emacs
5898 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5899 #endif
5900 PREFETCH_NOLIMIT ();
5901 c2 = RE_STRING_CHAR (d, dend - d);
5902 s2 = SYNTAX (c2);
5904 if (/* Case 2: Only one of S1 and S2 is Sword. */
5905 ((s1 == Sword) != (s2 == Sword))
5906 /* Case 3: Both of S1 and S2 are Sword, and macro
5907 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5908 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5909 not = !not;
5911 if (not)
5912 break;
5913 else
5914 goto fail;
5916 case wordbeg:
5917 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5919 /* We FAIL in one of the following cases: */
5921 /* Case 1: D is at the end of string. */
5922 if (AT_STRINGS_END (d))
5923 goto fail;
5924 else
5926 /* C1 is the character before D, S1 is the syntax of C1, C2
5927 is the character at D, and S2 is the syntax of C2. */
5928 re_wchar_t c1, c2;
5929 int s1, s2;
5930 #ifdef emacs
5931 int offset = PTR_TO_OFFSET (d);
5932 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5933 UPDATE_SYNTAX_TABLE (charpos);
5934 #endif
5935 PREFETCH ();
5936 c2 = RE_STRING_CHAR (d, dend - d);
5937 s2 = SYNTAX (c2);
5939 /* Case 2: S2 is not Sword. */
5940 if (s2 != Sword)
5941 goto fail;
5943 /* Case 3: D is not at the beginning of string ... */
5944 if (!AT_STRINGS_BEG (d))
5946 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5947 #ifdef emacs
5948 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5949 #endif
5950 s1 = SYNTAX (c1);
5952 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5953 returns 0. */
5954 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5955 goto fail;
5958 break;
5960 case wordend:
5961 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5963 /* We FAIL in one of the following cases: */
5965 /* Case 1: D is at the beginning of string. */
5966 if (AT_STRINGS_BEG (d))
5967 goto fail;
5968 else
5970 /* C1 is the character before D, S1 is the syntax of C1, C2
5971 is the character at D, and S2 is the syntax of C2. */
5972 re_wchar_t c1, c2;
5973 int s1, s2;
5974 #ifdef emacs
5975 int offset = PTR_TO_OFFSET (d) - 1;
5976 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5977 UPDATE_SYNTAX_TABLE (charpos);
5978 #endif
5979 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5980 s1 = SYNTAX (c1);
5982 /* Case 2: S1 is not Sword. */
5983 if (s1 != Sword)
5984 goto fail;
5986 /* Case 3: D is not at the end of string ... */
5987 if (!AT_STRINGS_END (d))
5989 PREFETCH_NOLIMIT ();
5990 c2 = RE_STRING_CHAR (d, dend - d);
5991 #ifdef emacs
5992 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5993 #endif
5994 s2 = SYNTAX (c2);
5996 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5997 returns 0. */
5998 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5999 goto fail;
6002 break;
6004 case symbeg:
6005 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6007 /* We FAIL in one of the following cases: */
6009 /* Case 1: D is at the end of string. */
6010 if (AT_STRINGS_END (d))
6011 goto fail;
6012 else
6014 /* C1 is the character before D, S1 is the syntax of C1, C2
6015 is the character at D, and S2 is the syntax of C2. */
6016 re_wchar_t c1, c2;
6017 int s1, s2;
6018 #ifdef emacs
6019 int offset = PTR_TO_OFFSET (d);
6020 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6021 UPDATE_SYNTAX_TABLE (charpos);
6022 #endif
6023 PREFETCH ();
6024 c2 = RE_STRING_CHAR (d, dend - d);
6025 s2 = SYNTAX (c2);
6027 /* Case 2: S2 is neither Sword nor Ssymbol. */
6028 if (s2 != Sword && s2 != Ssymbol)
6029 goto fail;
6031 /* Case 3: D is not at the beginning of string ... */
6032 if (!AT_STRINGS_BEG (d))
6034 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6035 #ifdef emacs
6036 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6037 #endif
6038 s1 = SYNTAX (c1);
6040 /* ... and S1 is Sword or Ssymbol. */
6041 if (s1 == Sword || s1 == Ssymbol)
6042 goto fail;
6045 break;
6047 case symend:
6048 DEBUG_PRINT1 ("EXECUTING symend.\n");
6050 /* We FAIL in one of the following cases: */
6052 /* Case 1: D is at the beginning of string. */
6053 if (AT_STRINGS_BEG (d))
6054 goto fail;
6055 else
6057 /* C1 is the character before D, S1 is the syntax of C1, C2
6058 is the character at D, and S2 is the syntax of C2. */
6059 re_wchar_t c1, c2;
6060 int s1, s2;
6061 #ifdef emacs
6062 int offset = PTR_TO_OFFSET (d) - 1;
6063 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6064 UPDATE_SYNTAX_TABLE (charpos);
6065 #endif
6066 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6067 s1 = SYNTAX (c1);
6069 /* Case 2: S1 is neither Ssymbol nor Sword. */
6070 if (s1 != Sword && s1 != Ssymbol)
6071 goto fail;
6073 /* Case 3: D is not at the end of string ... */
6074 if (!AT_STRINGS_END (d))
6076 PREFETCH_NOLIMIT ();
6077 c2 = RE_STRING_CHAR (d, dend - d);
6078 #ifdef emacs
6079 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
6080 #endif
6081 s2 = SYNTAX (c2);
6083 /* ... and S2 is Sword or Ssymbol. */
6084 if (s2 == Sword || s2 == Ssymbol)
6085 goto fail;
6088 break;
6090 case syntaxspec:
6091 case notsyntaxspec:
6092 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6093 mcnt = *p++;
6094 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
6095 PREFETCH ();
6096 #ifdef emacs
6098 int offset = PTR_TO_OFFSET (d);
6099 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6100 UPDATE_SYNTAX_TABLE (pos1);
6102 #endif
6104 int len;
6105 re_wchar_t c;
6107 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6109 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6110 goto fail;
6111 d += len;
6113 break;
6115 #ifdef emacs
6116 case before_dot:
6117 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6118 if (PTR_BYTE_POS (d) >= PT_BYTE)
6119 goto fail;
6120 break;
6122 case at_dot:
6123 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6124 if (PTR_BYTE_POS (d) != PT_BYTE)
6125 goto fail;
6126 break;
6128 case after_dot:
6129 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6130 if (PTR_BYTE_POS (d) <= PT_BYTE)
6131 goto fail;
6132 break;
6134 case categoryspec:
6135 case notcategoryspec:
6136 not = (re_opcode_t) *(p - 1) == notcategoryspec;
6137 mcnt = *p++;
6138 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
6139 PREFETCH ();
6141 int len;
6142 re_wchar_t c;
6144 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6146 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6147 goto fail;
6148 d += len;
6150 break;
6152 #endif /* emacs */
6154 default:
6155 abort ();
6157 continue; /* Successfully executed one pattern command; keep going. */
6160 /* We goto here if a matching operation fails. */
6161 fail:
6162 IMMEDIATE_QUIT_CHECK;
6163 if (!FAIL_STACK_EMPTY ())
6165 re_char *str, *pat;
6166 /* A restart point is known. Restore to that state. */
6167 DEBUG_PRINT1 ("\nFAIL:\n");
6168 POP_FAILURE_POINT (str, pat);
6169 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6171 case on_failure_keep_string_jump:
6172 assert (str == NULL);
6173 goto continue_failure_jump;
6175 case on_failure_jump_nastyloop:
6176 assert ((re_opcode_t)pat[-2] == no_op);
6177 PUSH_FAILURE_POINT (pat - 2, str);
6178 /* Fallthrough */
6180 case on_failure_jump_loop:
6181 case on_failure_jump:
6182 case succeed_n:
6183 d = str;
6184 continue_failure_jump:
6185 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6186 p = pat + mcnt;
6187 break;
6189 case no_op:
6190 /* A special frame used for nastyloops. */
6191 goto fail;
6193 default:
6194 abort();
6197 assert (p >= bufp->buffer && p <= pend);
6199 if (d >= string1 && d <= end1)
6200 dend = end_match_1;
6202 else
6203 break; /* Matching at this starting point really fails. */
6204 } /* for (;;) */
6206 if (best_regs_set)
6207 goto restore_best_regs;
6209 FREE_VARIABLES ();
6211 return -1; /* Failure to match. */
6212 } /* re_match_2 */
6214 /* Subroutine definitions for re_match_2. */
6216 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6217 bytes; nonzero otherwise. */
6219 static int
6220 bcmp_translate (s1, s2, len, translate, multibyte)
6221 re_char *s1, *s2;
6222 register int len;
6223 RE_TRANSLATE_TYPE translate;
6224 const int multibyte;
6226 register re_char *p1 = s1, *p2 = s2;
6227 re_char *p1_end = s1 + len;
6228 re_char *p2_end = s2 + len;
6230 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6231 different lengths, but relying on a single `len' would break this. -sm */
6232 while (p1 < p1_end && p2 < p2_end)
6234 int p1_charlen, p2_charlen;
6235 re_wchar_t p1_ch, p2_ch;
6237 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6238 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6240 if (RE_TRANSLATE (translate, p1_ch)
6241 != RE_TRANSLATE (translate, p2_ch))
6242 return 1;
6244 p1 += p1_charlen, p2 += p2_charlen;
6247 if (p1 != p1_end || p2 != p2_end)
6248 return 1;
6250 return 0;
6253 /* Entry points for GNU code. */
6255 /* re_compile_pattern is the GNU regular expression compiler: it
6256 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6257 Returns 0 if the pattern was valid, otherwise an error string.
6259 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6260 are set in BUFP on entry.
6262 We call regex_compile to do the actual compilation. */
6264 const char *
6265 re_compile_pattern (pattern, length, bufp)
6266 const char *pattern;
6267 size_t length;
6268 struct re_pattern_buffer *bufp;
6270 reg_errcode_t ret;
6272 #ifdef emacs
6273 gl_state.current_syntax_table = current_buffer->syntax_table;
6274 #endif
6276 /* GNU code is written to assume at least RE_NREGS registers will be set
6277 (and at least one extra will be -1). */
6278 bufp->regs_allocated = REGS_UNALLOCATED;
6280 /* And GNU code determines whether or not to get register information
6281 by passing null for the REGS argument to re_match, etc., not by
6282 setting no_sub. */
6283 bufp->no_sub = 0;
6285 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6287 if (!ret)
6288 return NULL;
6289 return gettext (re_error_msgid[(int) ret]);
6291 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6293 /* Entry points compatible with 4.2 BSD regex library. We don't define
6294 them unless specifically requested. */
6296 #if defined _REGEX_RE_COMP || defined _LIBC
6298 /* BSD has one and only one pattern buffer. */
6299 static struct re_pattern_buffer re_comp_buf;
6301 char *
6302 # ifdef _LIBC
6303 /* Make these definitions weak in libc, so POSIX programs can redefine
6304 these names if they don't use our functions, and still use
6305 regcomp/regexec below without link errors. */
6306 weak_function
6307 # endif
6308 re_comp (s)
6309 const char *s;
6311 reg_errcode_t ret;
6313 if (!s)
6315 if (!re_comp_buf.buffer)
6316 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6317 return (char *) gettext ("No previous regular expression");
6318 return 0;
6321 if (!re_comp_buf.buffer)
6323 re_comp_buf.buffer = (unsigned char *) malloc (200);
6324 if (re_comp_buf.buffer == NULL)
6325 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6326 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6327 re_comp_buf.allocated = 200;
6329 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6330 if (re_comp_buf.fastmap == NULL)
6331 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6332 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6335 /* Since `re_exec' always passes NULL for the `regs' argument, we
6336 don't need to initialize the pattern buffer fields which affect it. */
6338 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6340 if (!ret)
6341 return NULL;
6343 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6344 return (char *) gettext (re_error_msgid[(int) ret]);
6349 # ifdef _LIBC
6350 weak_function
6351 # endif
6352 re_exec (s)
6353 const char *s;
6355 const int len = strlen (s);
6356 return
6357 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6359 #endif /* _REGEX_RE_COMP */
6361 /* POSIX.2 functions. Don't define these for Emacs. */
6363 #ifndef emacs
6365 /* regcomp takes a regular expression as a string and compiles it.
6367 PREG is a regex_t *. We do not expect any fields to be initialized,
6368 since POSIX says we shouldn't. Thus, we set
6370 `buffer' to the compiled pattern;
6371 `used' to the length of the compiled pattern;
6372 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6373 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6374 RE_SYNTAX_POSIX_BASIC;
6375 `fastmap' to an allocated space for the fastmap;
6376 `fastmap_accurate' to zero;
6377 `re_nsub' to the number of subexpressions in PATTERN.
6379 PATTERN is the address of the pattern string.
6381 CFLAGS is a series of bits which affect compilation.
6383 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6384 use POSIX basic syntax.
6386 If REG_NEWLINE is set, then . and [^...] don't match newline.
6387 Also, regexec will try a match beginning after every newline.
6389 If REG_ICASE is set, then we considers upper- and lowercase
6390 versions of letters to be equivalent when matching.
6392 If REG_NOSUB is set, then when PREG is passed to regexec, that
6393 routine will report only success or failure, and nothing about the
6394 registers.
6396 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6397 the return codes and their meanings.) */
6400 regcomp (preg, pattern, cflags)
6401 regex_t *__restrict preg;
6402 const char *__restrict pattern;
6403 int cflags;
6405 reg_errcode_t ret;
6406 reg_syntax_t syntax
6407 = (cflags & REG_EXTENDED) ?
6408 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6410 /* regex_compile will allocate the space for the compiled pattern. */
6411 preg->buffer = 0;
6412 preg->allocated = 0;
6413 preg->used = 0;
6415 /* Try to allocate space for the fastmap. */
6416 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6418 if (cflags & REG_ICASE)
6420 unsigned i;
6422 preg->translate
6423 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6424 * sizeof (*(RE_TRANSLATE_TYPE)0));
6425 if (preg->translate == NULL)
6426 return (int) REG_ESPACE;
6428 /* Map uppercase characters to corresponding lowercase ones. */
6429 for (i = 0; i < CHAR_SET_SIZE; i++)
6430 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6432 else
6433 preg->translate = NULL;
6435 /* If REG_NEWLINE is set, newlines are treated differently. */
6436 if (cflags & REG_NEWLINE)
6437 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6438 syntax &= ~RE_DOT_NEWLINE;
6439 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6441 else
6442 syntax |= RE_NO_NEWLINE_ANCHOR;
6444 preg->no_sub = !!(cflags & REG_NOSUB);
6446 /* POSIX says a null character in the pattern terminates it, so we
6447 can use strlen here in compiling the pattern. */
6448 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6450 /* POSIX doesn't distinguish between an unmatched open-group and an
6451 unmatched close-group: both are REG_EPAREN. */
6452 if (ret == REG_ERPAREN)
6453 ret = REG_EPAREN;
6455 if (ret == REG_NOERROR && preg->fastmap)
6456 { /* Compute the fastmap now, since regexec cannot modify the pattern
6457 buffer. */
6458 re_compile_fastmap (preg);
6459 if (preg->can_be_null)
6460 { /* The fastmap can't be used anyway. */
6461 free (preg->fastmap);
6462 preg->fastmap = NULL;
6465 return (int) ret;
6467 WEAK_ALIAS (__regcomp, regcomp)
6470 /* regexec searches for a given pattern, specified by PREG, in the
6471 string STRING.
6473 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6474 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6475 least NMATCH elements, and we set them to the offsets of the
6476 corresponding matched substrings.
6478 EFLAGS specifies `execution flags' which affect matching: if
6479 REG_NOTBOL is set, then ^ does not match at the beginning of the
6480 string; if REG_NOTEOL is set, then $ does not match at the end.
6482 We return 0 if we find a match and REG_NOMATCH if not. */
6485 regexec (preg, string, nmatch, pmatch, eflags)
6486 const regex_t *__restrict preg;
6487 const char *__restrict string;
6488 size_t nmatch;
6489 regmatch_t pmatch[__restrict_arr];
6490 int eflags;
6492 int ret;
6493 struct re_registers regs;
6494 regex_t private_preg;
6495 int len = strlen (string);
6496 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6498 private_preg = *preg;
6500 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6501 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6503 /* The user has told us exactly how many registers to return
6504 information about, via `nmatch'. We have to pass that on to the
6505 matching routines. */
6506 private_preg.regs_allocated = REGS_FIXED;
6508 if (want_reg_info)
6510 regs.num_regs = nmatch;
6511 regs.start = TALLOC (nmatch * 2, regoff_t);
6512 if (regs.start == NULL)
6513 return (int) REG_NOMATCH;
6514 regs.end = regs.start + nmatch;
6517 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6518 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6519 was a little bit longer but still only matching the real part.
6520 This works because the `endline' will check for a '\n' and will find a
6521 '\0', correctly deciding that this is not the end of a line.
6522 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6523 a convenient '\0' there. For all we know, the string could be preceded
6524 by '\n' which would throw things off. */
6526 /* Perform the searching operation. */
6527 ret = re_search (&private_preg, string, len,
6528 /* start: */ 0, /* range: */ len,
6529 want_reg_info ? &regs : (struct re_registers *) 0);
6531 /* Copy the register information to the POSIX structure. */
6532 if (want_reg_info)
6534 if (ret >= 0)
6536 unsigned r;
6538 for (r = 0; r < nmatch; r++)
6540 pmatch[r].rm_so = regs.start[r];
6541 pmatch[r].rm_eo = regs.end[r];
6545 /* If we needed the temporary register info, free the space now. */
6546 free (regs.start);
6549 /* We want zero return to mean success, unlike `re_search'. */
6550 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6552 WEAK_ALIAS (__regexec, regexec)
6555 /* Returns a message corresponding to an error code, ERR_CODE, returned
6556 from either regcomp or regexec. We don't use PREG here.
6558 ERR_CODE was previously called ERRCODE, but that name causes an
6559 error with msvc8 compiler. */
6561 size_t
6562 regerror (err_code, preg, errbuf, errbuf_size)
6563 int err_code;
6564 const regex_t *preg;
6565 char *errbuf;
6566 size_t errbuf_size;
6568 const char *msg;
6569 size_t msg_size;
6571 if (err_code < 0
6572 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6573 /* Only error codes returned by the rest of the code should be passed
6574 to this routine. If we are given anything else, or if other regex
6575 code generates an invalid error code, then the program has a bug.
6576 Dump core so we can fix it. */
6577 abort ();
6579 msg = gettext (re_error_msgid[err_code]);
6581 msg_size = strlen (msg) + 1; /* Includes the null. */
6583 if (errbuf_size != 0)
6585 if (msg_size > errbuf_size)
6587 strncpy (errbuf, msg, errbuf_size - 1);
6588 errbuf[errbuf_size - 1] = 0;
6590 else
6591 strcpy (errbuf, msg);
6594 return msg_size;
6596 WEAK_ALIAS (__regerror, regerror)
6599 /* Free dynamically allocated space used by PREG. */
6601 void
6602 regfree (preg)
6603 regex_t *preg;
6605 if (preg->buffer != NULL)
6606 free (preg->buffer);
6607 preg->buffer = NULL;
6609 preg->allocated = 0;
6610 preg->used = 0;
6612 if (preg->fastmap != NULL)
6613 free (preg->fastmap);
6614 preg->fastmap = NULL;
6615 preg->fastmap_accurate = 0;
6617 if (preg->translate != NULL)
6618 free (preg->translate);
6619 preg->translate = NULL;
6621 WEAK_ALIAS (__regfree, regfree)
6623 #endif /* not emacs */
6625 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6626 (do not change this comment) */