* m4/lstat.m4: Merge from gnulib (Bug#8878).
[emacs.git] / src / alloc.c
blob00d330c1b6ac71fc00db2d9db593825e49711dfd
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
25 #include <signal.h>
27 #ifdef HAVE_GTK_AND_PTHREAD
28 #include <pthread.h>
29 #endif
31 /* This file is part of the core Lisp implementation, and thus must
32 deal with the real data structures. If the Lisp implementation is
33 replaced, this file likely will not be used. */
35 #undef HIDE_LISP_IMPLEMENTATION
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "character.h"
46 #include "syssignal.h"
47 #include "termhooks.h" /* For struct terminal. */
48 #include <setjmp.h>
50 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
51 memory. Can do this only if using gmalloc.c. */
53 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
54 #undef GC_MALLOC_CHECK
55 #endif
57 #include <unistd.h>
58 #ifndef HAVE_UNISTD_H
59 extern POINTER_TYPE *sbrk ();
60 #endif
62 #include <fcntl.h>
64 #ifdef WINDOWSNT
65 #include "w32.h"
66 #endif
68 #ifdef DOUG_LEA_MALLOC
70 #include <malloc.h>
71 /* malloc.h #defines this as size_t, at least in glibc2. */
72 #ifndef __malloc_size_t
73 #define __malloc_size_t int
74 #endif
76 /* Specify maximum number of areas to mmap. It would be nice to use a
77 value that explicitly means "no limit". */
79 #define MMAP_MAX_AREAS 100000000
81 #else /* not DOUG_LEA_MALLOC */
83 /* The following come from gmalloc.c. */
85 #define __malloc_size_t size_t
86 extern __malloc_size_t _bytes_used;
87 extern __malloc_size_t __malloc_extra_blocks;
89 #endif /* not DOUG_LEA_MALLOC */
91 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
92 #ifdef HAVE_GTK_AND_PTHREAD
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
111 static pthread_mutex_t alloc_mutex;
113 #define BLOCK_INPUT_ALLOC \
114 do \
116 if (pthread_equal (pthread_self (), main_thread)) \
117 BLOCK_INPUT; \
118 pthread_mutex_lock (&alloc_mutex); \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
124 pthread_mutex_unlock (&alloc_mutex); \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 UNBLOCK_INPUT; \
128 while (0)
130 #else /* ! defined HAVE_GTK_AND_PTHREAD */
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
135 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
136 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
138 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
139 to a struct Lisp_String. */
141 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
142 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
143 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
145 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
146 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
147 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
149 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
150 Be careful during GC, because S->size contains the mark bit for
151 strings. */
153 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
155 /* Global variables. */
156 struct emacs_globals globals;
158 /* Number of bytes of consing done since the last gc. */
160 EMACS_INT consing_since_gc;
162 /* Similar minimum, computed from Vgc_cons_percentage. */
164 EMACS_INT gc_relative_threshold;
166 /* Minimum number of bytes of consing since GC before next GC,
167 when memory is full. */
169 EMACS_INT memory_full_cons_threshold;
171 /* Nonzero during GC. */
173 int gc_in_progress;
175 /* Nonzero means abort if try to GC.
176 This is for code which is written on the assumption that
177 no GC will happen, so as to verify that assumption. */
179 int abort_on_gc;
181 /* Number of live and free conses etc. */
183 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
184 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
185 static EMACS_INT total_free_floats, total_floats;
187 /* Points to memory space allocated as "spare", to be freed if we run
188 out of memory. We keep one large block, four cons-blocks, and
189 two string blocks. */
191 static char *spare_memory[7];
193 /* Amount of spare memory to keep in large reserve block, or to see
194 whether this much is available when malloc fails on a larger request. */
196 #define SPARE_MEMORY (1 << 14)
198 /* Number of extra blocks malloc should get when it needs more core. */
200 static int malloc_hysteresis;
202 /* Initialize it to a nonzero value to force it into data space
203 (rather than bss space). That way unexec will remap it into text
204 space (pure), on some systems. We have not implemented the
205 remapping on more recent systems because this is less important
206 nowadays than in the days of small memories and timesharing. */
208 #ifndef VIRT_ADDR_VARIES
209 static
210 #endif
211 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
212 #define PUREBEG (char *) pure
214 /* Pointer to the pure area, and its size. */
216 static char *purebeg;
217 static size_t pure_size;
219 /* Number of bytes of pure storage used before pure storage overflowed.
220 If this is non-zero, this implies that an overflow occurred. */
222 static size_t pure_bytes_used_before_overflow;
224 /* Value is non-zero if P points into pure space. */
226 #define PURE_POINTER_P(P) \
227 (((PNTR_COMPARISON_TYPE) (P) \
228 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
229 && ((PNTR_COMPARISON_TYPE) (P) \
230 >= (PNTR_COMPARISON_TYPE) purebeg))
232 /* Index in pure at which next pure Lisp object will be allocated.. */
234 static EMACS_INT pure_bytes_used_lisp;
236 /* Number of bytes allocated for non-Lisp objects in pure storage. */
238 static EMACS_INT pure_bytes_used_non_lisp;
240 /* If nonzero, this is a warning delivered by malloc and not yet
241 displayed. */
243 const char *pending_malloc_warning;
245 /* Maximum amount of C stack to save when a GC happens. */
247 #ifndef MAX_SAVE_STACK
248 #define MAX_SAVE_STACK 16000
249 #endif
251 /* Buffer in which we save a copy of the C stack at each GC. */
253 #if MAX_SAVE_STACK > 0
254 static char *stack_copy;
255 static size_t stack_copy_size;
256 #endif
258 /* Non-zero means ignore malloc warnings. Set during initialization.
259 Currently not used. */
261 static int ignore_warnings;
263 static Lisp_Object Qgc_cons_threshold;
264 Lisp_Object Qchar_table_extra_slots;
266 /* Hook run after GC has finished. */
268 static Lisp_Object Qpost_gc_hook;
270 static void mark_buffer (Lisp_Object);
271 static void mark_terminals (void);
272 static void gc_sweep (void);
273 static void mark_glyph_matrix (struct glyph_matrix *);
274 static void mark_face_cache (struct face_cache *);
276 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
277 static void refill_memory_reserve (void);
278 #endif
279 static struct Lisp_String *allocate_string (void);
280 static void compact_small_strings (void);
281 static void free_large_strings (void);
282 static void sweep_strings (void);
283 static void free_misc (Lisp_Object);
285 /* When scanning the C stack for live Lisp objects, Emacs keeps track
286 of what memory allocated via lisp_malloc is intended for what
287 purpose. This enumeration specifies the type of memory. */
289 enum mem_type
291 MEM_TYPE_NON_LISP,
292 MEM_TYPE_BUFFER,
293 MEM_TYPE_CONS,
294 MEM_TYPE_STRING,
295 MEM_TYPE_MISC,
296 MEM_TYPE_SYMBOL,
297 MEM_TYPE_FLOAT,
298 /* We used to keep separate mem_types for subtypes of vectors such as
299 process, hash_table, frame, terminal, and window, but we never made
300 use of the distinction, so it only caused source-code complexity
301 and runtime slowdown. Minor but pointless. */
302 MEM_TYPE_VECTORLIKE
305 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
306 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
309 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
311 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
312 #include <stdio.h> /* For fprintf. */
313 #endif
315 /* A unique object in pure space used to make some Lisp objects
316 on free lists recognizable in O(1). */
318 static Lisp_Object Vdead;
320 #ifdef GC_MALLOC_CHECK
322 enum mem_type allocated_mem_type;
323 static int dont_register_blocks;
325 #endif /* GC_MALLOC_CHECK */
327 /* A node in the red-black tree describing allocated memory containing
328 Lisp data. Each such block is recorded with its start and end
329 address when it is allocated, and removed from the tree when it
330 is freed.
332 A red-black tree is a balanced binary tree with the following
333 properties:
335 1. Every node is either red or black.
336 2. Every leaf is black.
337 3. If a node is red, then both of its children are black.
338 4. Every simple path from a node to a descendant leaf contains
339 the same number of black nodes.
340 5. The root is always black.
342 When nodes are inserted into the tree, or deleted from the tree,
343 the tree is "fixed" so that these properties are always true.
345 A red-black tree with N internal nodes has height at most 2
346 log(N+1). Searches, insertions and deletions are done in O(log N).
347 Please see a text book about data structures for a detailed
348 description of red-black trees. Any book worth its salt should
349 describe them. */
351 struct mem_node
353 /* Children of this node. These pointers are never NULL. When there
354 is no child, the value is MEM_NIL, which points to a dummy node. */
355 struct mem_node *left, *right;
357 /* The parent of this node. In the root node, this is NULL. */
358 struct mem_node *parent;
360 /* Start and end of allocated region. */
361 void *start, *end;
363 /* Node color. */
364 enum {MEM_BLACK, MEM_RED} color;
366 /* Memory type. */
367 enum mem_type type;
370 /* Base address of stack. Set in main. */
372 Lisp_Object *stack_base;
374 /* Root of the tree describing allocated Lisp memory. */
376 static struct mem_node *mem_root;
378 /* Lowest and highest known address in the heap. */
380 static void *min_heap_address, *max_heap_address;
382 /* Sentinel node of the tree. */
384 static struct mem_node mem_z;
385 #define MEM_NIL &mem_z
387 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
388 static void lisp_free (POINTER_TYPE *);
389 static void mark_stack (void);
390 static int live_vector_p (struct mem_node *, void *);
391 static int live_buffer_p (struct mem_node *, void *);
392 static int live_string_p (struct mem_node *, void *);
393 static int live_cons_p (struct mem_node *, void *);
394 static int live_symbol_p (struct mem_node *, void *);
395 static int live_float_p (struct mem_node *, void *);
396 static int live_misc_p (struct mem_node *, void *);
397 static void mark_maybe_object (Lisp_Object);
398 static void mark_memory (void *, void *, int);
399 static void mem_init (void);
400 static struct mem_node *mem_insert (void *, void *, enum mem_type);
401 static void mem_insert_fixup (struct mem_node *);
402 static void mem_rotate_left (struct mem_node *);
403 static void mem_rotate_right (struct mem_node *);
404 static void mem_delete (struct mem_node *);
405 static void mem_delete_fixup (struct mem_node *);
406 static inline struct mem_node *mem_find (void *);
409 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
410 static void check_gcpros (void);
411 #endif
413 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
415 /* Recording what needs to be marked for gc. */
417 struct gcpro *gcprolist;
419 /* Addresses of staticpro'd variables. Initialize it to a nonzero
420 value; otherwise some compilers put it into BSS. */
422 #define NSTATICS 0x640
423 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
425 /* Index of next unused slot in staticvec. */
427 static int staticidx = 0;
429 static POINTER_TYPE *pure_alloc (size_t, int);
432 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
433 ALIGNMENT must be a power of 2. */
435 #define ALIGN(ptr, ALIGNMENT) \
436 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
437 & ~((ALIGNMENT) - 1)))
441 /************************************************************************
442 Malloc
443 ************************************************************************/
445 /* Function malloc calls this if it finds we are near exhausting storage. */
447 void
448 malloc_warning (const char *str)
450 pending_malloc_warning = str;
454 /* Display an already-pending malloc warning. */
456 void
457 display_malloc_warning (void)
459 call3 (intern ("display-warning"),
460 intern ("alloc"),
461 build_string (pending_malloc_warning),
462 intern ("emergency"));
463 pending_malloc_warning = 0;
466 /* Called if we can't allocate relocatable space for a buffer. */
468 void
469 buffer_memory_full (EMACS_INT nbytes)
471 /* If buffers use the relocating allocator, no need to free
472 spare_memory, because we may have plenty of malloc space left
473 that we could get, and if we don't, the malloc that fails will
474 itself cause spare_memory to be freed. If buffers don't use the
475 relocating allocator, treat this like any other failing
476 malloc. */
478 #ifndef REL_ALLOC
479 memory_full (nbytes);
480 #endif
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 xsignal (Qnil, Vmemory_signal_data);
488 #ifndef XMALLOC_OVERRUN_CHECK
489 #define XMALLOC_OVERRUN_CHECK_SIZE 0
490 #else
492 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
493 and a 16 byte trailer around each block.
495 The header consists of 12 fixed bytes + a 4 byte integer contaning the
496 original block size, while the trailer consists of 16 fixed bytes.
498 The header is used to detect whether this block has been allocated
499 through these functions -- as it seems that some low-level libc
500 functions may bypass the malloc hooks.
504 #define XMALLOC_OVERRUN_CHECK_SIZE 16
506 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
507 { 0x9a, 0x9b, 0xae, 0xaf,
508 0xbf, 0xbe, 0xce, 0xcf,
509 0xea, 0xeb, 0xec, 0xed };
511 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
512 { 0xaa, 0xab, 0xac, 0xad,
513 0xba, 0xbb, 0xbc, 0xbd,
514 0xca, 0xcb, 0xcc, 0xcd,
515 0xda, 0xdb, 0xdc, 0xdd };
517 /* Macros to insert and extract the block size in the header. */
519 #define XMALLOC_PUT_SIZE(ptr, size) \
520 (ptr[-1] = (size & 0xff), \
521 ptr[-2] = ((size >> 8) & 0xff), \
522 ptr[-3] = ((size >> 16) & 0xff), \
523 ptr[-4] = ((size >> 24) & 0xff))
525 #define XMALLOC_GET_SIZE(ptr) \
526 (size_t)((unsigned)(ptr[-1]) | \
527 ((unsigned)(ptr[-2]) << 8) | \
528 ((unsigned)(ptr[-3]) << 16) | \
529 ((unsigned)(ptr[-4]) << 24))
532 /* The call depth in overrun_check functions. For example, this might happen:
533 xmalloc()
534 overrun_check_malloc()
535 -> malloc -> (via hook)_-> emacs_blocked_malloc
536 -> overrun_check_malloc
537 call malloc (hooks are NULL, so real malloc is called).
538 malloc returns 10000.
539 add overhead, return 10016.
540 <- (back in overrun_check_malloc)
541 add overhead again, return 10032
542 xmalloc returns 10032.
544 (time passes).
546 xfree(10032)
547 overrun_check_free(10032)
548 decrease overhed
549 free(10016) <- crash, because 10000 is the original pointer. */
551 static int check_depth;
553 /* Like malloc, but wraps allocated block with header and trailer. */
555 static POINTER_TYPE *
556 overrun_check_malloc (size_t size)
558 register unsigned char *val;
559 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
561 val = (unsigned char *) malloc (size + overhead);
562 if (val && check_depth == 1)
564 memcpy (val, xmalloc_overrun_check_header,
565 XMALLOC_OVERRUN_CHECK_SIZE - 4);
566 val += XMALLOC_OVERRUN_CHECK_SIZE;
567 XMALLOC_PUT_SIZE(val, size);
568 memcpy (val + size, xmalloc_overrun_check_trailer,
569 XMALLOC_OVERRUN_CHECK_SIZE);
571 --check_depth;
572 return (POINTER_TYPE *)val;
576 /* Like realloc, but checks old block for overrun, and wraps new block
577 with header and trailer. */
579 static POINTER_TYPE *
580 overrun_check_realloc (POINTER_TYPE *block, size_t size)
582 register unsigned char *val = (unsigned char *) block;
583 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
585 if (val
586 && check_depth == 1
587 && memcmp (xmalloc_overrun_check_header,
588 val - XMALLOC_OVERRUN_CHECK_SIZE,
589 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
591 size_t osize = XMALLOC_GET_SIZE (val);
592 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
593 XMALLOC_OVERRUN_CHECK_SIZE))
594 abort ();
595 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
596 val -= XMALLOC_OVERRUN_CHECK_SIZE;
597 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
600 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
602 if (val && check_depth == 1)
604 memcpy (val, xmalloc_overrun_check_header,
605 XMALLOC_OVERRUN_CHECK_SIZE - 4);
606 val += XMALLOC_OVERRUN_CHECK_SIZE;
607 XMALLOC_PUT_SIZE(val, size);
608 memcpy (val + size, xmalloc_overrun_check_trailer,
609 XMALLOC_OVERRUN_CHECK_SIZE);
611 --check_depth;
612 return (POINTER_TYPE *)val;
615 /* Like free, but checks block for overrun. */
617 static void
618 overrun_check_free (POINTER_TYPE *block)
620 unsigned char *val = (unsigned char *) block;
622 ++check_depth;
623 if (val
624 && check_depth == 1
625 && memcmp (xmalloc_overrun_check_header,
626 val - XMALLOC_OVERRUN_CHECK_SIZE,
627 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
629 size_t osize = XMALLOC_GET_SIZE (val);
630 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
631 XMALLOC_OVERRUN_CHECK_SIZE))
632 abort ();
633 #ifdef XMALLOC_CLEAR_FREE_MEMORY
634 val -= XMALLOC_OVERRUN_CHECK_SIZE;
635 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
636 #else
637 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
638 val -= XMALLOC_OVERRUN_CHECK_SIZE;
639 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
640 #endif
643 free (val);
644 --check_depth;
647 #undef malloc
648 #undef realloc
649 #undef free
650 #define malloc overrun_check_malloc
651 #define realloc overrun_check_realloc
652 #define free overrun_check_free
653 #endif
655 #ifdef SYNC_INPUT
656 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
657 there's no need to block input around malloc. */
658 #define MALLOC_BLOCK_INPUT ((void)0)
659 #define MALLOC_UNBLOCK_INPUT ((void)0)
660 #else
661 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
662 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
663 #endif
665 /* Like malloc but check for no memory and block interrupt input.. */
667 POINTER_TYPE *
668 xmalloc (size_t size)
670 register POINTER_TYPE *val;
672 MALLOC_BLOCK_INPUT;
673 val = (POINTER_TYPE *) malloc (size);
674 MALLOC_UNBLOCK_INPUT;
676 if (!val && size)
677 memory_full (size);
678 return val;
682 /* Like realloc but check for no memory and block interrupt input.. */
684 POINTER_TYPE *
685 xrealloc (POINTER_TYPE *block, size_t size)
687 register POINTER_TYPE *val;
689 MALLOC_BLOCK_INPUT;
690 /* We must call malloc explicitly when BLOCK is 0, since some
691 reallocs don't do this. */
692 if (! block)
693 val = (POINTER_TYPE *) malloc (size);
694 else
695 val = (POINTER_TYPE *) realloc (block, size);
696 MALLOC_UNBLOCK_INPUT;
698 if (!val && size)
699 memory_full (size);
700 return val;
704 /* Like free but block interrupt input. */
706 void
707 xfree (POINTER_TYPE *block)
709 if (!block)
710 return;
711 MALLOC_BLOCK_INPUT;
712 free (block);
713 MALLOC_UNBLOCK_INPUT;
714 /* We don't call refill_memory_reserve here
715 because that duplicates doing so in emacs_blocked_free
716 and the criterion should go there. */
720 /* Like strdup, but uses xmalloc. */
722 char *
723 xstrdup (const char *s)
725 size_t len = strlen (s) + 1;
726 char *p = (char *) xmalloc (len);
727 memcpy (p, s, len);
728 return p;
732 /* Unwind for SAFE_ALLOCA */
734 Lisp_Object
735 safe_alloca_unwind (Lisp_Object arg)
737 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
739 p->dogc = 0;
740 xfree (p->pointer);
741 p->pointer = 0;
742 free_misc (arg);
743 return Qnil;
747 /* Like malloc but used for allocating Lisp data. NBYTES is the
748 number of bytes to allocate, TYPE describes the intended use of the
749 allcated memory block (for strings, for conses, ...). */
751 #ifndef USE_LSB_TAG
752 static void *lisp_malloc_loser;
753 #endif
755 static POINTER_TYPE *
756 lisp_malloc (size_t nbytes, enum mem_type type)
758 register void *val;
760 MALLOC_BLOCK_INPUT;
762 #ifdef GC_MALLOC_CHECK
763 allocated_mem_type = type;
764 #endif
766 val = (void *) malloc (nbytes);
768 #ifndef USE_LSB_TAG
769 /* If the memory just allocated cannot be addressed thru a Lisp
770 object's pointer, and it needs to be,
771 that's equivalent to running out of memory. */
772 if (val && type != MEM_TYPE_NON_LISP)
774 Lisp_Object tem;
775 XSETCONS (tem, (char *) val + nbytes - 1);
776 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
778 lisp_malloc_loser = val;
779 free (val);
780 val = 0;
783 #endif
785 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
786 if (val && type != MEM_TYPE_NON_LISP)
787 mem_insert (val, (char *) val + nbytes, type);
788 #endif
790 MALLOC_UNBLOCK_INPUT;
791 if (!val && nbytes)
792 memory_full (nbytes);
793 return val;
796 /* Free BLOCK. This must be called to free memory allocated with a
797 call to lisp_malloc. */
799 static void
800 lisp_free (POINTER_TYPE *block)
802 MALLOC_BLOCK_INPUT;
803 free (block);
804 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
805 mem_delete (mem_find (block));
806 #endif
807 MALLOC_UNBLOCK_INPUT;
810 /* Allocation of aligned blocks of memory to store Lisp data. */
811 /* The entry point is lisp_align_malloc which returns blocks of at most */
812 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
814 /* Use posix_memalloc if the system has it and we're using the system's
815 malloc (because our gmalloc.c routines don't have posix_memalign although
816 its memalloc could be used). */
817 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
818 #define USE_POSIX_MEMALIGN 1
819 #endif
821 /* BLOCK_ALIGN has to be a power of 2. */
822 #define BLOCK_ALIGN (1 << 10)
824 /* Padding to leave at the end of a malloc'd block. This is to give
825 malloc a chance to minimize the amount of memory wasted to alignment.
826 It should be tuned to the particular malloc library used.
827 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
828 posix_memalign on the other hand would ideally prefer a value of 4
829 because otherwise, there's 1020 bytes wasted between each ablocks.
830 In Emacs, testing shows that those 1020 can most of the time be
831 efficiently used by malloc to place other objects, so a value of 0 can
832 still preferable unless you have a lot of aligned blocks and virtually
833 nothing else. */
834 #define BLOCK_PADDING 0
835 #define BLOCK_BYTES \
836 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
838 /* Internal data structures and constants. */
840 #define ABLOCKS_SIZE 16
842 /* An aligned block of memory. */
843 struct ablock
845 union
847 char payload[BLOCK_BYTES];
848 struct ablock *next_free;
849 } x;
850 /* `abase' is the aligned base of the ablocks. */
851 /* It is overloaded to hold the virtual `busy' field that counts
852 the number of used ablock in the parent ablocks.
853 The first ablock has the `busy' field, the others have the `abase'
854 field. To tell the difference, we assume that pointers will have
855 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
856 is used to tell whether the real base of the parent ablocks is `abase'
857 (if not, the word before the first ablock holds a pointer to the
858 real base). */
859 struct ablocks *abase;
860 /* The padding of all but the last ablock is unused. The padding of
861 the last ablock in an ablocks is not allocated. */
862 #if BLOCK_PADDING
863 char padding[BLOCK_PADDING];
864 #endif
867 /* A bunch of consecutive aligned blocks. */
868 struct ablocks
870 struct ablock blocks[ABLOCKS_SIZE];
873 /* Size of the block requested from malloc or memalign. */
874 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
876 #define ABLOCK_ABASE(block) \
877 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
878 ? (struct ablocks *)(block) \
879 : (block)->abase)
881 /* Virtual `busy' field. */
882 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
884 /* Pointer to the (not necessarily aligned) malloc block. */
885 #ifdef USE_POSIX_MEMALIGN
886 #define ABLOCKS_BASE(abase) (abase)
887 #else
888 #define ABLOCKS_BASE(abase) \
889 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
890 #endif
892 /* The list of free ablock. */
893 static struct ablock *free_ablock;
895 /* Allocate an aligned block of nbytes.
896 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
897 smaller or equal to BLOCK_BYTES. */
898 static POINTER_TYPE *
899 lisp_align_malloc (size_t nbytes, enum mem_type type)
901 void *base, *val;
902 struct ablocks *abase;
904 eassert (nbytes <= BLOCK_BYTES);
906 MALLOC_BLOCK_INPUT;
908 #ifdef GC_MALLOC_CHECK
909 allocated_mem_type = type;
910 #endif
912 if (!free_ablock)
914 int i;
915 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
917 #ifdef DOUG_LEA_MALLOC
918 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
919 because mapped region contents are not preserved in
920 a dumped Emacs. */
921 mallopt (M_MMAP_MAX, 0);
922 #endif
924 #ifdef USE_POSIX_MEMALIGN
926 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
927 if (err)
928 base = NULL;
929 abase = base;
931 #else
932 base = malloc (ABLOCKS_BYTES);
933 abase = ALIGN (base, BLOCK_ALIGN);
934 #endif
936 if (base == 0)
938 MALLOC_UNBLOCK_INPUT;
939 memory_full (ABLOCKS_BYTES);
942 aligned = (base == abase);
943 if (!aligned)
944 ((void**)abase)[-1] = base;
946 #ifdef DOUG_LEA_MALLOC
947 /* Back to a reasonable maximum of mmap'ed areas. */
948 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
949 #endif
951 #ifndef USE_LSB_TAG
952 /* If the memory just allocated cannot be addressed thru a Lisp
953 object's pointer, and it needs to be, that's equivalent to
954 running out of memory. */
955 if (type != MEM_TYPE_NON_LISP)
957 Lisp_Object tem;
958 char *end = (char *) base + ABLOCKS_BYTES - 1;
959 XSETCONS (tem, end);
960 if ((char *) XCONS (tem) != end)
962 lisp_malloc_loser = base;
963 free (base);
964 MALLOC_UNBLOCK_INPUT;
965 memory_full (SIZE_MAX);
968 #endif
970 /* Initialize the blocks and put them on the free list.
971 Is `base' was not properly aligned, we can't use the last block. */
972 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
974 abase->blocks[i].abase = abase;
975 abase->blocks[i].x.next_free = free_ablock;
976 free_ablock = &abase->blocks[i];
978 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
980 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
981 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
982 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
983 eassert (ABLOCKS_BASE (abase) == base);
984 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
987 abase = ABLOCK_ABASE (free_ablock);
988 ABLOCKS_BUSY (abase) =
989 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
990 val = free_ablock;
991 free_ablock = free_ablock->x.next_free;
993 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
994 if (type != MEM_TYPE_NON_LISP)
995 mem_insert (val, (char *) val + nbytes, type);
996 #endif
998 MALLOC_UNBLOCK_INPUT;
1000 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1001 return val;
1004 static void
1005 lisp_align_free (POINTER_TYPE *block)
1007 struct ablock *ablock = block;
1008 struct ablocks *abase = ABLOCK_ABASE (ablock);
1010 MALLOC_BLOCK_INPUT;
1011 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1012 mem_delete (mem_find (block));
1013 #endif
1014 /* Put on free list. */
1015 ablock->x.next_free = free_ablock;
1016 free_ablock = ablock;
1017 /* Update busy count. */
1018 ABLOCKS_BUSY (abase) =
1019 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1021 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1022 { /* All the blocks are free. */
1023 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1024 struct ablock **tem = &free_ablock;
1025 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1027 while (*tem)
1029 if (*tem >= (struct ablock *) abase && *tem < atop)
1031 i++;
1032 *tem = (*tem)->x.next_free;
1034 else
1035 tem = &(*tem)->x.next_free;
1037 eassert ((aligned & 1) == aligned);
1038 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1039 #ifdef USE_POSIX_MEMALIGN
1040 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1041 #endif
1042 free (ABLOCKS_BASE (abase));
1044 MALLOC_UNBLOCK_INPUT;
1047 /* Return a new buffer structure allocated from the heap with
1048 a call to lisp_malloc. */
1050 struct buffer *
1051 allocate_buffer (void)
1053 struct buffer *b
1054 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1055 MEM_TYPE_BUFFER);
1056 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1057 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1058 / sizeof (EMACS_INT)));
1059 return b;
1063 #ifndef SYSTEM_MALLOC
1065 /* Arranging to disable input signals while we're in malloc.
1067 This only works with GNU malloc. To help out systems which can't
1068 use GNU malloc, all the calls to malloc, realloc, and free
1069 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1070 pair; unfortunately, we have no idea what C library functions
1071 might call malloc, so we can't really protect them unless you're
1072 using GNU malloc. Fortunately, most of the major operating systems
1073 can use GNU malloc. */
1075 #ifndef SYNC_INPUT
1076 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1077 there's no need to block input around malloc. */
1079 #ifndef DOUG_LEA_MALLOC
1080 extern void * (*__malloc_hook) (size_t, const void *);
1081 extern void * (*__realloc_hook) (void *, size_t, const void *);
1082 extern void (*__free_hook) (void *, const void *);
1083 /* Else declared in malloc.h, perhaps with an extra arg. */
1084 #endif /* DOUG_LEA_MALLOC */
1085 static void * (*old_malloc_hook) (size_t, const void *);
1086 static void * (*old_realloc_hook) (void *, size_t, const void*);
1087 static void (*old_free_hook) (void*, const void*);
1089 #ifdef DOUG_LEA_MALLOC
1090 # define BYTES_USED (mallinfo ().uordblks)
1091 #else
1092 # define BYTES_USED _bytes_used
1093 #endif
1095 static __malloc_size_t bytes_used_when_reconsidered;
1097 /* Value of _bytes_used, when spare_memory was freed. */
1099 static __malloc_size_t bytes_used_when_full;
1101 /* This function is used as the hook for free to call. */
1103 static void
1104 emacs_blocked_free (void *ptr, const void *ptr2)
1106 BLOCK_INPUT_ALLOC;
1108 #ifdef GC_MALLOC_CHECK
1109 if (ptr)
1111 struct mem_node *m;
1113 m = mem_find (ptr);
1114 if (m == MEM_NIL || m->start != ptr)
1116 fprintf (stderr,
1117 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1118 abort ();
1120 else
1122 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1123 mem_delete (m);
1126 #endif /* GC_MALLOC_CHECK */
1128 __free_hook = old_free_hook;
1129 free (ptr);
1131 /* If we released our reserve (due to running out of memory),
1132 and we have a fair amount free once again,
1133 try to set aside another reserve in case we run out once more. */
1134 if (! NILP (Vmemory_full)
1135 /* Verify there is enough space that even with the malloc
1136 hysteresis this call won't run out again.
1137 The code here is correct as long as SPARE_MEMORY
1138 is substantially larger than the block size malloc uses. */
1139 && (bytes_used_when_full
1140 > ((bytes_used_when_reconsidered = BYTES_USED)
1141 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1142 refill_memory_reserve ();
1144 __free_hook = emacs_blocked_free;
1145 UNBLOCK_INPUT_ALLOC;
1149 /* This function is the malloc hook that Emacs uses. */
1151 static void *
1152 emacs_blocked_malloc (size_t size, const void *ptr)
1154 void *value;
1156 BLOCK_INPUT_ALLOC;
1157 __malloc_hook = old_malloc_hook;
1158 #ifdef DOUG_LEA_MALLOC
1159 /* Segfaults on my system. --lorentey */
1160 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1161 #else
1162 __malloc_extra_blocks = malloc_hysteresis;
1163 #endif
1165 value = (void *) malloc (size);
1167 #ifdef GC_MALLOC_CHECK
1169 struct mem_node *m = mem_find (value);
1170 if (m != MEM_NIL)
1172 fprintf (stderr, "Malloc returned %p which is already in use\n",
1173 value);
1174 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1175 m->start, m->end, (char *) m->end - (char *) m->start,
1176 m->type);
1177 abort ();
1180 if (!dont_register_blocks)
1182 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1183 allocated_mem_type = MEM_TYPE_NON_LISP;
1186 #endif /* GC_MALLOC_CHECK */
1188 __malloc_hook = emacs_blocked_malloc;
1189 UNBLOCK_INPUT_ALLOC;
1191 /* fprintf (stderr, "%p malloc\n", value); */
1192 return value;
1196 /* This function is the realloc hook that Emacs uses. */
1198 static void *
1199 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1201 void *value;
1203 BLOCK_INPUT_ALLOC;
1204 __realloc_hook = old_realloc_hook;
1206 #ifdef GC_MALLOC_CHECK
1207 if (ptr)
1209 struct mem_node *m = mem_find (ptr);
1210 if (m == MEM_NIL || m->start != ptr)
1212 fprintf (stderr,
1213 "Realloc of %p which wasn't allocated with malloc\n",
1214 ptr);
1215 abort ();
1218 mem_delete (m);
1221 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1223 /* Prevent malloc from registering blocks. */
1224 dont_register_blocks = 1;
1225 #endif /* GC_MALLOC_CHECK */
1227 value = (void *) realloc (ptr, size);
1229 #ifdef GC_MALLOC_CHECK
1230 dont_register_blocks = 0;
1233 struct mem_node *m = mem_find (value);
1234 if (m != MEM_NIL)
1236 fprintf (stderr, "Realloc returns memory that is already in use\n");
1237 abort ();
1240 /* Can't handle zero size regions in the red-black tree. */
1241 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1244 /* fprintf (stderr, "%p <- realloc\n", value); */
1245 #endif /* GC_MALLOC_CHECK */
1247 __realloc_hook = emacs_blocked_realloc;
1248 UNBLOCK_INPUT_ALLOC;
1250 return value;
1254 #ifdef HAVE_GTK_AND_PTHREAD
1255 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1256 normal malloc. Some thread implementations need this as they call
1257 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1258 calls malloc because it is the first call, and we have an endless loop. */
1260 void
1261 reset_malloc_hooks ()
1263 __free_hook = old_free_hook;
1264 __malloc_hook = old_malloc_hook;
1265 __realloc_hook = old_realloc_hook;
1267 #endif /* HAVE_GTK_AND_PTHREAD */
1270 /* Called from main to set up malloc to use our hooks. */
1272 void
1273 uninterrupt_malloc (void)
1275 #ifdef HAVE_GTK_AND_PTHREAD
1276 #ifdef DOUG_LEA_MALLOC
1277 pthread_mutexattr_t attr;
1279 /* GLIBC has a faster way to do this, but lets keep it portable.
1280 This is according to the Single UNIX Specification. */
1281 pthread_mutexattr_init (&attr);
1282 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1283 pthread_mutex_init (&alloc_mutex, &attr);
1284 #else /* !DOUG_LEA_MALLOC */
1285 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1286 and the bundled gmalloc.c doesn't require it. */
1287 pthread_mutex_init (&alloc_mutex, NULL);
1288 #endif /* !DOUG_LEA_MALLOC */
1289 #endif /* HAVE_GTK_AND_PTHREAD */
1291 if (__free_hook != emacs_blocked_free)
1292 old_free_hook = __free_hook;
1293 __free_hook = emacs_blocked_free;
1295 if (__malloc_hook != emacs_blocked_malloc)
1296 old_malloc_hook = __malloc_hook;
1297 __malloc_hook = emacs_blocked_malloc;
1299 if (__realloc_hook != emacs_blocked_realloc)
1300 old_realloc_hook = __realloc_hook;
1301 __realloc_hook = emacs_blocked_realloc;
1304 #endif /* not SYNC_INPUT */
1305 #endif /* not SYSTEM_MALLOC */
1309 /***********************************************************************
1310 Interval Allocation
1311 ***********************************************************************/
1313 /* Number of intervals allocated in an interval_block structure.
1314 The 1020 is 1024 minus malloc overhead. */
1316 #define INTERVAL_BLOCK_SIZE \
1317 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1319 /* Intervals are allocated in chunks in form of an interval_block
1320 structure. */
1322 struct interval_block
1324 /* Place `intervals' first, to preserve alignment. */
1325 struct interval intervals[INTERVAL_BLOCK_SIZE];
1326 struct interval_block *next;
1329 /* Current interval block. Its `next' pointer points to older
1330 blocks. */
1332 static struct interval_block *interval_block;
1334 /* Index in interval_block above of the next unused interval
1335 structure. */
1337 static int interval_block_index;
1339 /* Number of free and live intervals. */
1341 static EMACS_INT total_free_intervals, total_intervals;
1343 /* List of free intervals. */
1345 static INTERVAL interval_free_list;
1348 /* Initialize interval allocation. */
1350 static void
1351 init_intervals (void)
1353 interval_block = NULL;
1354 interval_block_index = INTERVAL_BLOCK_SIZE;
1355 interval_free_list = 0;
1359 /* Return a new interval. */
1361 INTERVAL
1362 make_interval (void)
1364 INTERVAL val;
1366 /* eassert (!handling_signal); */
1368 MALLOC_BLOCK_INPUT;
1370 if (interval_free_list)
1372 val = interval_free_list;
1373 interval_free_list = INTERVAL_PARENT (interval_free_list);
1375 else
1377 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1379 register struct interval_block *newi;
1381 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1382 MEM_TYPE_NON_LISP);
1384 newi->next = interval_block;
1385 interval_block = newi;
1386 interval_block_index = 0;
1388 val = &interval_block->intervals[interval_block_index++];
1391 MALLOC_UNBLOCK_INPUT;
1393 consing_since_gc += sizeof (struct interval);
1394 intervals_consed++;
1395 RESET_INTERVAL (val);
1396 val->gcmarkbit = 0;
1397 return val;
1401 /* Mark Lisp objects in interval I. */
1403 static void
1404 mark_interval (register INTERVAL i, Lisp_Object dummy)
1406 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1407 i->gcmarkbit = 1;
1408 mark_object (i->plist);
1412 /* Mark the interval tree rooted in TREE. Don't call this directly;
1413 use the macro MARK_INTERVAL_TREE instead. */
1415 static void
1416 mark_interval_tree (register INTERVAL tree)
1418 /* No need to test if this tree has been marked already; this
1419 function is always called through the MARK_INTERVAL_TREE macro,
1420 which takes care of that. */
1422 traverse_intervals_noorder (tree, mark_interval, Qnil);
1426 /* Mark the interval tree rooted in I. */
1428 #define MARK_INTERVAL_TREE(i) \
1429 do { \
1430 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1431 mark_interval_tree (i); \
1432 } while (0)
1435 #define UNMARK_BALANCE_INTERVALS(i) \
1436 do { \
1437 if (! NULL_INTERVAL_P (i)) \
1438 (i) = balance_intervals (i); \
1439 } while (0)
1442 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1443 can't create number objects in macros. */
1444 #ifndef make_number
1445 Lisp_Object
1446 make_number (EMACS_INT n)
1448 Lisp_Object obj;
1449 obj.s.val = n;
1450 obj.s.type = Lisp_Int;
1451 return obj;
1453 #endif
1455 /***********************************************************************
1456 String Allocation
1457 ***********************************************************************/
1459 /* Lisp_Strings are allocated in string_block structures. When a new
1460 string_block is allocated, all the Lisp_Strings it contains are
1461 added to a free-list string_free_list. When a new Lisp_String is
1462 needed, it is taken from that list. During the sweep phase of GC,
1463 string_blocks that are entirely free are freed, except two which
1464 we keep.
1466 String data is allocated from sblock structures. Strings larger
1467 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1468 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1470 Sblocks consist internally of sdata structures, one for each
1471 Lisp_String. The sdata structure points to the Lisp_String it
1472 belongs to. The Lisp_String points back to the `u.data' member of
1473 its sdata structure.
1475 When a Lisp_String is freed during GC, it is put back on
1476 string_free_list, and its `data' member and its sdata's `string'
1477 pointer is set to null. The size of the string is recorded in the
1478 `u.nbytes' member of the sdata. So, sdata structures that are no
1479 longer used, can be easily recognized, and it's easy to compact the
1480 sblocks of small strings which we do in compact_small_strings. */
1482 /* Size in bytes of an sblock structure used for small strings. This
1483 is 8192 minus malloc overhead. */
1485 #define SBLOCK_SIZE 8188
1487 /* Strings larger than this are considered large strings. String data
1488 for large strings is allocated from individual sblocks. */
1490 #define LARGE_STRING_BYTES 1024
1492 /* Structure describing string memory sub-allocated from an sblock.
1493 This is where the contents of Lisp strings are stored. */
1495 struct sdata
1497 /* Back-pointer to the string this sdata belongs to. If null, this
1498 structure is free, and the NBYTES member of the union below
1499 contains the string's byte size (the same value that STRING_BYTES
1500 would return if STRING were non-null). If non-null, STRING_BYTES
1501 (STRING) is the size of the data, and DATA contains the string's
1502 contents. */
1503 struct Lisp_String *string;
1505 #ifdef GC_CHECK_STRING_BYTES
1507 EMACS_INT nbytes;
1508 unsigned char data[1];
1510 #define SDATA_NBYTES(S) (S)->nbytes
1511 #define SDATA_DATA(S) (S)->data
1512 #define SDATA_SELECTOR(member) member
1514 #else /* not GC_CHECK_STRING_BYTES */
1516 union
1518 /* When STRING is non-null. */
1519 unsigned char data[1];
1521 /* When STRING is null. */
1522 EMACS_INT nbytes;
1523 } u;
1525 #define SDATA_NBYTES(S) (S)->u.nbytes
1526 #define SDATA_DATA(S) (S)->u.data
1527 #define SDATA_SELECTOR(member) u.member
1529 #endif /* not GC_CHECK_STRING_BYTES */
1531 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1535 /* Structure describing a block of memory which is sub-allocated to
1536 obtain string data memory for strings. Blocks for small strings
1537 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1538 as large as needed. */
1540 struct sblock
1542 /* Next in list. */
1543 struct sblock *next;
1545 /* Pointer to the next free sdata block. This points past the end
1546 of the sblock if there isn't any space left in this block. */
1547 struct sdata *next_free;
1549 /* Start of data. */
1550 struct sdata first_data;
1553 /* Number of Lisp strings in a string_block structure. The 1020 is
1554 1024 minus malloc overhead. */
1556 #define STRING_BLOCK_SIZE \
1557 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1559 /* Structure describing a block from which Lisp_String structures
1560 are allocated. */
1562 struct string_block
1564 /* Place `strings' first, to preserve alignment. */
1565 struct Lisp_String strings[STRING_BLOCK_SIZE];
1566 struct string_block *next;
1569 /* Head and tail of the list of sblock structures holding Lisp string
1570 data. We always allocate from current_sblock. The NEXT pointers
1571 in the sblock structures go from oldest_sblock to current_sblock. */
1573 static struct sblock *oldest_sblock, *current_sblock;
1575 /* List of sblocks for large strings. */
1577 static struct sblock *large_sblocks;
1579 /* List of string_block structures. */
1581 static struct string_block *string_blocks;
1583 /* Free-list of Lisp_Strings. */
1585 static struct Lisp_String *string_free_list;
1587 /* Number of live and free Lisp_Strings. */
1589 static EMACS_INT total_strings, total_free_strings;
1591 /* Number of bytes used by live strings. */
1593 static EMACS_INT total_string_size;
1595 /* Given a pointer to a Lisp_String S which is on the free-list
1596 string_free_list, return a pointer to its successor in the
1597 free-list. */
1599 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1601 /* Return a pointer to the sdata structure belonging to Lisp string S.
1602 S must be live, i.e. S->data must not be null. S->data is actually
1603 a pointer to the `u.data' member of its sdata structure; the
1604 structure starts at a constant offset in front of that. */
1606 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1609 #ifdef GC_CHECK_STRING_OVERRUN
1611 /* We check for overrun in string data blocks by appending a small
1612 "cookie" after each allocated string data block, and check for the
1613 presence of this cookie during GC. */
1615 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1616 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1617 { '\xde', '\xad', '\xbe', '\xef' };
1619 #else
1620 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1621 #endif
1623 /* Value is the size of an sdata structure large enough to hold NBYTES
1624 bytes of string data. The value returned includes a terminating
1625 NUL byte, the size of the sdata structure, and padding. */
1627 #ifdef GC_CHECK_STRING_BYTES
1629 #define SDATA_SIZE(NBYTES) \
1630 ((SDATA_DATA_OFFSET \
1631 + (NBYTES) + 1 \
1632 + sizeof (EMACS_INT) - 1) \
1633 & ~(sizeof (EMACS_INT) - 1))
1635 #else /* not GC_CHECK_STRING_BYTES */
1637 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1638 less than the size of that member. The 'max' is not needed when
1639 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1640 alignment code reserves enough space. */
1642 #define SDATA_SIZE(NBYTES) \
1643 ((SDATA_DATA_OFFSET \
1644 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1645 ? NBYTES \
1646 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1647 + 1 \
1648 + sizeof (EMACS_INT) - 1) \
1649 & ~(sizeof (EMACS_INT) - 1))
1651 #endif /* not GC_CHECK_STRING_BYTES */
1653 /* Extra bytes to allocate for each string. */
1655 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1657 /* Exact bound on the number of bytes in a string, not counting the
1658 terminating null. A string cannot contain more bytes than
1659 STRING_BYTES_BOUND, nor can it be so long that the size_t
1660 arithmetic in allocate_string_data would overflow while it is
1661 calculating a value to be passed to malloc. */
1662 #define STRING_BYTES_MAX \
1663 min (STRING_BYTES_BOUND, \
1664 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_SIZE - GC_STRING_EXTRA \
1665 - offsetof (struct sblock, first_data) \
1666 - SDATA_DATA_OFFSET) \
1667 & ~(sizeof (EMACS_INT) - 1)))
1669 /* Initialize string allocation. Called from init_alloc_once. */
1671 static void
1672 init_strings (void)
1674 total_strings = total_free_strings = total_string_size = 0;
1675 oldest_sblock = current_sblock = large_sblocks = NULL;
1676 string_blocks = NULL;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1683 #ifdef GC_CHECK_STRING_BYTES
1685 static int check_string_bytes_count;
1687 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1690 /* Like GC_STRING_BYTES, but with debugging check. */
1692 EMACS_INT
1693 string_bytes (struct Lisp_String *s)
1695 EMACS_INT nbytes =
1696 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1698 if (!PURE_POINTER_P (s)
1699 && s->data
1700 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1701 abort ();
1702 return nbytes;
1705 /* Check validity of Lisp strings' string_bytes member in B. */
1707 static void
1708 check_sblock (struct sblock *b)
1710 struct sdata *from, *end, *from_end;
1712 end = b->next_free;
1714 for (from = &b->first_data; from < end; from = from_end)
1716 /* Compute the next FROM here because copying below may
1717 overwrite data we need to compute it. */
1718 EMACS_INT nbytes;
1720 /* Check that the string size recorded in the string is the
1721 same as the one recorded in the sdata structure. */
1722 if (from->string)
1723 CHECK_STRING_BYTES (from->string);
1725 if (from->string)
1726 nbytes = GC_STRING_BYTES (from->string);
1727 else
1728 nbytes = SDATA_NBYTES (from);
1730 nbytes = SDATA_SIZE (nbytes);
1731 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1736 /* Check validity of Lisp strings' string_bytes member. ALL_P
1737 non-zero means check all strings, otherwise check only most
1738 recently allocated strings. Used for hunting a bug. */
1740 static void
1741 check_string_bytes (int all_p)
1743 if (all_p)
1745 struct sblock *b;
1747 for (b = large_sblocks; b; b = b->next)
1749 struct Lisp_String *s = b->first_data.string;
1750 if (s)
1751 CHECK_STRING_BYTES (s);
1754 for (b = oldest_sblock; b; b = b->next)
1755 check_sblock (b);
1757 else
1758 check_sblock (current_sblock);
1761 #endif /* GC_CHECK_STRING_BYTES */
1763 #ifdef GC_CHECK_STRING_FREE_LIST
1765 /* Walk through the string free list looking for bogus next pointers.
1766 This may catch buffer overrun from a previous string. */
1768 static void
1769 check_string_free_list (void)
1771 struct Lisp_String *s;
1773 /* Pop a Lisp_String off the free-list. */
1774 s = string_free_list;
1775 while (s != NULL)
1777 if ((uintptr_t) s < 1024)
1778 abort();
1779 s = NEXT_FREE_LISP_STRING (s);
1782 #else
1783 #define check_string_free_list()
1784 #endif
1786 /* Return a new Lisp_String. */
1788 static struct Lisp_String *
1789 allocate_string (void)
1791 struct Lisp_String *s;
1793 /* eassert (!handling_signal); */
1795 MALLOC_BLOCK_INPUT;
1797 /* If the free-list is empty, allocate a new string_block, and
1798 add all the Lisp_Strings in it to the free-list. */
1799 if (string_free_list == NULL)
1801 struct string_block *b;
1802 int i;
1804 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1805 memset (b, 0, sizeof *b);
1806 b->next = string_blocks;
1807 string_blocks = b;
1809 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1811 s = b->strings + i;
1812 NEXT_FREE_LISP_STRING (s) = string_free_list;
1813 string_free_list = s;
1816 total_free_strings += STRING_BLOCK_SIZE;
1819 check_string_free_list ();
1821 /* Pop a Lisp_String off the free-list. */
1822 s = string_free_list;
1823 string_free_list = NEXT_FREE_LISP_STRING (s);
1825 MALLOC_UNBLOCK_INPUT;
1827 /* Probably not strictly necessary, but play it safe. */
1828 memset (s, 0, sizeof *s);
1830 --total_free_strings;
1831 ++total_strings;
1832 ++strings_consed;
1833 consing_since_gc += sizeof *s;
1835 #ifdef GC_CHECK_STRING_BYTES
1836 if (!noninteractive)
1838 if (++check_string_bytes_count == 200)
1840 check_string_bytes_count = 0;
1841 check_string_bytes (1);
1843 else
1844 check_string_bytes (0);
1846 #endif /* GC_CHECK_STRING_BYTES */
1848 return s;
1852 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1853 plus a NUL byte at the end. Allocate an sdata structure for S, and
1854 set S->data to its `u.data' member. Store a NUL byte at the end of
1855 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1856 S->data if it was initially non-null. */
1858 void
1859 allocate_string_data (struct Lisp_String *s,
1860 EMACS_INT nchars, EMACS_INT nbytes)
1862 struct sdata *data, *old_data;
1863 struct sblock *b;
1864 EMACS_INT needed, old_nbytes;
1866 if (STRING_BYTES_MAX < nbytes)
1867 string_overflow ();
1869 /* Determine the number of bytes needed to store NBYTES bytes
1870 of string data. */
1871 needed = SDATA_SIZE (nbytes);
1872 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1873 old_nbytes = GC_STRING_BYTES (s);
1875 MALLOC_BLOCK_INPUT;
1877 if (nbytes > LARGE_STRING_BYTES)
1879 size_t size = offsetof (struct sblock, first_data) + needed;
1881 #ifdef DOUG_LEA_MALLOC
1882 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1883 because mapped region contents are not preserved in
1884 a dumped Emacs.
1886 In case you think of allowing it in a dumped Emacs at the
1887 cost of not being able to re-dump, there's another reason:
1888 mmap'ed data typically have an address towards the top of the
1889 address space, which won't fit into an EMACS_INT (at least on
1890 32-bit systems with the current tagging scheme). --fx */
1891 mallopt (M_MMAP_MAX, 0);
1892 #endif
1894 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1896 #ifdef DOUG_LEA_MALLOC
1897 /* Back to a reasonable maximum of mmap'ed areas. */
1898 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1899 #endif
1901 b->next_free = &b->first_data;
1902 b->first_data.string = NULL;
1903 b->next = large_sblocks;
1904 large_sblocks = b;
1906 else if (current_sblock == NULL
1907 || (((char *) current_sblock + SBLOCK_SIZE
1908 - (char *) current_sblock->next_free)
1909 < (needed + GC_STRING_EXTRA)))
1911 /* Not enough room in the current sblock. */
1912 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1913 b->next_free = &b->first_data;
1914 b->first_data.string = NULL;
1915 b->next = NULL;
1917 if (current_sblock)
1918 current_sblock->next = b;
1919 else
1920 oldest_sblock = b;
1921 current_sblock = b;
1923 else
1924 b = current_sblock;
1926 data = b->next_free;
1927 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1929 MALLOC_UNBLOCK_INPUT;
1931 data->string = s;
1932 s->data = SDATA_DATA (data);
1933 #ifdef GC_CHECK_STRING_BYTES
1934 SDATA_NBYTES (data) = nbytes;
1935 #endif
1936 s->size = nchars;
1937 s->size_byte = nbytes;
1938 s->data[nbytes] = '\0';
1939 #ifdef GC_CHECK_STRING_OVERRUN
1940 memcpy ((char *) data + needed, string_overrun_cookie,
1941 GC_STRING_OVERRUN_COOKIE_SIZE);
1942 #endif
1944 /* If S had already data assigned, mark that as free by setting its
1945 string back-pointer to null, and recording the size of the data
1946 in it. */
1947 if (old_data)
1949 SDATA_NBYTES (old_data) = old_nbytes;
1950 old_data->string = NULL;
1953 consing_since_gc += needed;
1957 /* Sweep and compact strings. */
1959 static void
1960 sweep_strings (void)
1962 struct string_block *b, *next;
1963 struct string_block *live_blocks = NULL;
1965 string_free_list = NULL;
1966 total_strings = total_free_strings = 0;
1967 total_string_size = 0;
1969 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1970 for (b = string_blocks; b; b = next)
1972 int i, nfree = 0;
1973 struct Lisp_String *free_list_before = string_free_list;
1975 next = b->next;
1977 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1979 struct Lisp_String *s = b->strings + i;
1981 if (s->data)
1983 /* String was not on free-list before. */
1984 if (STRING_MARKED_P (s))
1986 /* String is live; unmark it and its intervals. */
1987 UNMARK_STRING (s);
1989 if (!NULL_INTERVAL_P (s->intervals))
1990 UNMARK_BALANCE_INTERVALS (s->intervals);
1992 ++total_strings;
1993 total_string_size += STRING_BYTES (s);
1995 else
1997 /* String is dead. Put it on the free-list. */
1998 struct sdata *data = SDATA_OF_STRING (s);
2000 /* Save the size of S in its sdata so that we know
2001 how large that is. Reset the sdata's string
2002 back-pointer so that we know it's free. */
2003 #ifdef GC_CHECK_STRING_BYTES
2004 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2005 abort ();
2006 #else
2007 data->u.nbytes = GC_STRING_BYTES (s);
2008 #endif
2009 data->string = NULL;
2011 /* Reset the strings's `data' member so that we
2012 know it's free. */
2013 s->data = NULL;
2015 /* Put the string on the free-list. */
2016 NEXT_FREE_LISP_STRING (s) = string_free_list;
2017 string_free_list = s;
2018 ++nfree;
2021 else
2023 /* S was on the free-list before. Put it there again. */
2024 NEXT_FREE_LISP_STRING (s) = string_free_list;
2025 string_free_list = s;
2026 ++nfree;
2030 /* Free blocks that contain free Lisp_Strings only, except
2031 the first two of them. */
2032 if (nfree == STRING_BLOCK_SIZE
2033 && total_free_strings > STRING_BLOCK_SIZE)
2035 lisp_free (b);
2036 string_free_list = free_list_before;
2038 else
2040 total_free_strings += nfree;
2041 b->next = live_blocks;
2042 live_blocks = b;
2046 check_string_free_list ();
2048 string_blocks = live_blocks;
2049 free_large_strings ();
2050 compact_small_strings ();
2052 check_string_free_list ();
2056 /* Free dead large strings. */
2058 static void
2059 free_large_strings (void)
2061 struct sblock *b, *next;
2062 struct sblock *live_blocks = NULL;
2064 for (b = large_sblocks; b; b = next)
2066 next = b->next;
2068 if (b->first_data.string == NULL)
2069 lisp_free (b);
2070 else
2072 b->next = live_blocks;
2073 live_blocks = b;
2077 large_sblocks = live_blocks;
2081 /* Compact data of small strings. Free sblocks that don't contain
2082 data of live strings after compaction. */
2084 static void
2085 compact_small_strings (void)
2087 struct sblock *b, *tb, *next;
2088 struct sdata *from, *to, *end, *tb_end;
2089 struct sdata *to_end, *from_end;
2091 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2092 to, and TB_END is the end of TB. */
2093 tb = oldest_sblock;
2094 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2095 to = &tb->first_data;
2097 /* Step through the blocks from the oldest to the youngest. We
2098 expect that old blocks will stabilize over time, so that less
2099 copying will happen this way. */
2100 for (b = oldest_sblock; b; b = b->next)
2102 end = b->next_free;
2103 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2105 for (from = &b->first_data; from < end; from = from_end)
2107 /* Compute the next FROM here because copying below may
2108 overwrite data we need to compute it. */
2109 EMACS_INT nbytes;
2111 #ifdef GC_CHECK_STRING_BYTES
2112 /* Check that the string size recorded in the string is the
2113 same as the one recorded in the sdata structure. */
2114 if (from->string
2115 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2116 abort ();
2117 #endif /* GC_CHECK_STRING_BYTES */
2119 if (from->string)
2120 nbytes = GC_STRING_BYTES (from->string);
2121 else
2122 nbytes = SDATA_NBYTES (from);
2124 if (nbytes > LARGE_STRING_BYTES)
2125 abort ();
2127 nbytes = SDATA_SIZE (nbytes);
2128 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2130 #ifdef GC_CHECK_STRING_OVERRUN
2131 if (memcmp (string_overrun_cookie,
2132 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2133 GC_STRING_OVERRUN_COOKIE_SIZE))
2134 abort ();
2135 #endif
2137 /* FROM->string non-null means it's alive. Copy its data. */
2138 if (from->string)
2140 /* If TB is full, proceed with the next sblock. */
2141 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2142 if (to_end > tb_end)
2144 tb->next_free = to;
2145 tb = tb->next;
2146 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2147 to = &tb->first_data;
2148 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2151 /* Copy, and update the string's `data' pointer. */
2152 if (from != to)
2154 xassert (tb != b || to < from);
2155 memmove (to, from, nbytes + GC_STRING_EXTRA);
2156 to->string->data = SDATA_DATA (to);
2159 /* Advance past the sdata we copied to. */
2160 to = to_end;
2165 /* The rest of the sblocks following TB don't contain live data, so
2166 we can free them. */
2167 for (b = tb->next; b; b = next)
2169 next = b->next;
2170 lisp_free (b);
2173 tb->next_free = to;
2174 tb->next = NULL;
2175 current_sblock = tb;
2178 void
2179 string_overflow (void)
2181 error ("Maximum string size exceeded");
2184 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2185 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2186 LENGTH must be an integer.
2187 INIT must be an integer that represents a character. */)
2188 (Lisp_Object length, Lisp_Object init)
2190 register Lisp_Object val;
2191 register unsigned char *p, *end;
2192 int c;
2193 EMACS_INT nbytes;
2195 CHECK_NATNUM (length);
2196 CHECK_CHARACTER (init);
2198 c = XFASTINT (init);
2199 if (ASCII_CHAR_P (c))
2201 nbytes = XINT (length);
2202 val = make_uninit_string (nbytes);
2203 p = SDATA (val);
2204 end = p + SCHARS (val);
2205 while (p != end)
2206 *p++ = c;
2208 else
2210 unsigned char str[MAX_MULTIBYTE_LENGTH];
2211 int len = CHAR_STRING (c, str);
2212 EMACS_INT string_len = XINT (length);
2214 if (string_len > STRING_BYTES_MAX / len)
2215 string_overflow ();
2216 nbytes = len * string_len;
2217 val = make_uninit_multibyte_string (string_len, nbytes);
2218 p = SDATA (val);
2219 end = p + nbytes;
2220 while (p != end)
2222 memcpy (p, str, len);
2223 p += len;
2227 *p = 0;
2228 return val;
2232 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2233 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2234 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2235 (Lisp_Object length, Lisp_Object init)
2237 register Lisp_Object val;
2238 struct Lisp_Bool_Vector *p;
2239 EMACS_INT length_in_chars, length_in_elts;
2240 int bits_per_value;
2242 CHECK_NATNUM (length);
2244 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2246 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2247 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2248 / BOOL_VECTOR_BITS_PER_CHAR);
2250 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2251 slot `size' of the struct Lisp_Bool_Vector. */
2252 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2254 /* No Lisp_Object to trace in there. */
2255 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2257 p = XBOOL_VECTOR (val);
2258 p->size = XFASTINT (length);
2260 memset (p->data, NILP (init) ? 0 : -1, length_in_chars);
2262 /* Clear the extraneous bits in the last byte. */
2263 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2264 p->data[length_in_chars - 1]
2265 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2267 return val;
2271 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2272 of characters from the contents. This string may be unibyte or
2273 multibyte, depending on the contents. */
2275 Lisp_Object
2276 make_string (const char *contents, EMACS_INT nbytes)
2278 register Lisp_Object val;
2279 EMACS_INT nchars, multibyte_nbytes;
2281 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2282 &nchars, &multibyte_nbytes);
2283 if (nbytes == nchars || nbytes != multibyte_nbytes)
2284 /* CONTENTS contains no multibyte sequences or contains an invalid
2285 multibyte sequence. We must make unibyte string. */
2286 val = make_unibyte_string (contents, nbytes);
2287 else
2288 val = make_multibyte_string (contents, nchars, nbytes);
2289 return val;
2293 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2295 Lisp_Object
2296 make_unibyte_string (const char *contents, EMACS_INT length)
2298 register Lisp_Object val;
2299 val = make_uninit_string (length);
2300 memcpy (SDATA (val), contents, length);
2301 return val;
2305 /* Make a multibyte string from NCHARS characters occupying NBYTES
2306 bytes at CONTENTS. */
2308 Lisp_Object
2309 make_multibyte_string (const char *contents,
2310 EMACS_INT nchars, EMACS_INT nbytes)
2312 register Lisp_Object val;
2313 val = make_uninit_multibyte_string (nchars, nbytes);
2314 memcpy (SDATA (val), contents, nbytes);
2315 return val;
2319 /* Make a string from NCHARS characters occupying NBYTES bytes at
2320 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2322 Lisp_Object
2323 make_string_from_bytes (const char *contents,
2324 EMACS_INT nchars, EMACS_INT nbytes)
2326 register Lisp_Object val;
2327 val = make_uninit_multibyte_string (nchars, nbytes);
2328 memcpy (SDATA (val), contents, nbytes);
2329 if (SBYTES (val) == SCHARS (val))
2330 STRING_SET_UNIBYTE (val);
2331 return val;
2335 /* Make a string from NCHARS characters occupying NBYTES bytes at
2336 CONTENTS. The argument MULTIBYTE controls whether to label the
2337 string as multibyte. If NCHARS is negative, it counts the number of
2338 characters by itself. */
2340 Lisp_Object
2341 make_specified_string (const char *contents,
2342 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2344 register Lisp_Object val;
2346 if (nchars < 0)
2348 if (multibyte)
2349 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2350 nbytes);
2351 else
2352 nchars = nbytes;
2354 val = make_uninit_multibyte_string (nchars, nbytes);
2355 memcpy (SDATA (val), contents, nbytes);
2356 if (!multibyte)
2357 STRING_SET_UNIBYTE (val);
2358 return val;
2362 /* Make a string from the data at STR, treating it as multibyte if the
2363 data warrants. */
2365 Lisp_Object
2366 build_string (const char *str)
2368 return make_string (str, strlen (str));
2372 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2373 occupying LENGTH bytes. */
2375 Lisp_Object
2376 make_uninit_string (EMACS_INT length)
2378 Lisp_Object val;
2380 if (!length)
2381 return empty_unibyte_string;
2382 val = make_uninit_multibyte_string (length, length);
2383 STRING_SET_UNIBYTE (val);
2384 return val;
2388 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2389 which occupy NBYTES bytes. */
2391 Lisp_Object
2392 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2394 Lisp_Object string;
2395 struct Lisp_String *s;
2397 if (nchars < 0)
2398 abort ();
2399 if (!nbytes)
2400 return empty_multibyte_string;
2402 s = allocate_string ();
2403 allocate_string_data (s, nchars, nbytes);
2404 XSETSTRING (string, s);
2405 string_chars_consed += nbytes;
2406 return string;
2411 /***********************************************************************
2412 Float Allocation
2413 ***********************************************************************/
2415 /* We store float cells inside of float_blocks, allocating a new
2416 float_block with malloc whenever necessary. Float cells reclaimed
2417 by GC are put on a free list to be reallocated before allocating
2418 any new float cells from the latest float_block. */
2420 #define FLOAT_BLOCK_SIZE \
2421 (((BLOCK_BYTES - sizeof (struct float_block *) \
2422 /* The compiler might add padding at the end. */ \
2423 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2424 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2426 #define GETMARKBIT(block,n) \
2427 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2428 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2429 & 1)
2431 #define SETMARKBIT(block,n) \
2432 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2433 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2435 #define UNSETMARKBIT(block,n) \
2436 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2437 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2439 #define FLOAT_BLOCK(fptr) \
2440 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2442 #define FLOAT_INDEX(fptr) \
2443 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2445 struct float_block
2447 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2448 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2449 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2450 struct float_block *next;
2453 #define FLOAT_MARKED_P(fptr) \
2454 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2456 #define FLOAT_MARK(fptr) \
2457 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2459 #define FLOAT_UNMARK(fptr) \
2460 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2462 /* Current float_block. */
2464 static struct float_block *float_block;
2466 /* Index of first unused Lisp_Float in the current float_block. */
2468 static int float_block_index;
2470 /* Free-list of Lisp_Floats. */
2472 static struct Lisp_Float *float_free_list;
2475 /* Initialize float allocation. */
2477 static void
2478 init_float (void)
2480 float_block = NULL;
2481 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2482 float_free_list = 0;
2486 /* Return a new float object with value FLOAT_VALUE. */
2488 Lisp_Object
2489 make_float (double float_value)
2491 register Lisp_Object val;
2493 /* eassert (!handling_signal); */
2495 MALLOC_BLOCK_INPUT;
2497 if (float_free_list)
2499 /* We use the data field for chaining the free list
2500 so that we won't use the same field that has the mark bit. */
2501 XSETFLOAT (val, float_free_list);
2502 float_free_list = float_free_list->u.chain;
2504 else
2506 if (float_block_index == FLOAT_BLOCK_SIZE)
2508 register struct float_block *new;
2510 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2511 MEM_TYPE_FLOAT);
2512 new->next = float_block;
2513 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2514 float_block = new;
2515 float_block_index = 0;
2517 XSETFLOAT (val, &float_block->floats[float_block_index]);
2518 float_block_index++;
2521 MALLOC_UNBLOCK_INPUT;
2523 XFLOAT_INIT (val, float_value);
2524 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2525 consing_since_gc += sizeof (struct Lisp_Float);
2526 floats_consed++;
2527 return val;
2532 /***********************************************************************
2533 Cons Allocation
2534 ***********************************************************************/
2536 /* We store cons cells inside of cons_blocks, allocating a new
2537 cons_block with malloc whenever necessary. Cons cells reclaimed by
2538 GC are put on a free list to be reallocated before allocating
2539 any new cons cells from the latest cons_block. */
2541 #define CONS_BLOCK_SIZE \
2542 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2543 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2545 #define CONS_BLOCK(fptr) \
2546 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2548 #define CONS_INDEX(fptr) \
2549 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2551 struct cons_block
2553 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2554 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2555 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2556 struct cons_block *next;
2559 #define CONS_MARKED_P(fptr) \
2560 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2562 #define CONS_MARK(fptr) \
2563 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2565 #define CONS_UNMARK(fptr) \
2566 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2568 /* Current cons_block. */
2570 static struct cons_block *cons_block;
2572 /* Index of first unused Lisp_Cons in the current block. */
2574 static int cons_block_index;
2576 /* Free-list of Lisp_Cons structures. */
2578 static struct Lisp_Cons *cons_free_list;
2581 /* Initialize cons allocation. */
2583 static void
2584 init_cons (void)
2586 cons_block = NULL;
2587 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2588 cons_free_list = 0;
2592 /* Explicitly free a cons cell by putting it on the free-list. */
2594 void
2595 free_cons (struct Lisp_Cons *ptr)
2597 ptr->u.chain = cons_free_list;
2598 #if GC_MARK_STACK
2599 ptr->car = Vdead;
2600 #endif
2601 cons_free_list = ptr;
2604 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2605 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2606 (Lisp_Object car, Lisp_Object cdr)
2608 register Lisp_Object val;
2610 /* eassert (!handling_signal); */
2612 MALLOC_BLOCK_INPUT;
2614 if (cons_free_list)
2616 /* We use the cdr for chaining the free list
2617 so that we won't use the same field that has the mark bit. */
2618 XSETCONS (val, cons_free_list);
2619 cons_free_list = cons_free_list->u.chain;
2621 else
2623 if (cons_block_index == CONS_BLOCK_SIZE)
2625 register struct cons_block *new;
2626 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2627 MEM_TYPE_CONS);
2628 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2629 new->next = cons_block;
2630 cons_block = new;
2631 cons_block_index = 0;
2633 XSETCONS (val, &cons_block->conses[cons_block_index]);
2634 cons_block_index++;
2637 MALLOC_UNBLOCK_INPUT;
2639 XSETCAR (val, car);
2640 XSETCDR (val, cdr);
2641 eassert (!CONS_MARKED_P (XCONS (val)));
2642 consing_since_gc += sizeof (struct Lisp_Cons);
2643 cons_cells_consed++;
2644 return val;
2647 #ifdef GC_CHECK_CONS_LIST
2648 /* Get an error now if there's any junk in the cons free list. */
2649 void
2650 check_cons_list (void)
2652 struct Lisp_Cons *tail = cons_free_list;
2654 while (tail)
2655 tail = tail->u.chain;
2657 #endif
2659 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2661 Lisp_Object
2662 list1 (Lisp_Object arg1)
2664 return Fcons (arg1, Qnil);
2667 Lisp_Object
2668 list2 (Lisp_Object arg1, Lisp_Object arg2)
2670 return Fcons (arg1, Fcons (arg2, Qnil));
2674 Lisp_Object
2675 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2677 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2681 Lisp_Object
2682 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2684 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2688 Lisp_Object
2689 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2691 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2692 Fcons (arg5, Qnil)))));
2696 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2697 doc: /* Return a newly created list with specified arguments as elements.
2698 Any number of arguments, even zero arguments, are allowed.
2699 usage: (list &rest OBJECTS) */)
2700 (ptrdiff_t nargs, Lisp_Object *args)
2702 register Lisp_Object val;
2703 val = Qnil;
2705 while (nargs > 0)
2707 nargs--;
2708 val = Fcons (args[nargs], val);
2710 return val;
2714 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2715 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2716 (register Lisp_Object length, Lisp_Object init)
2718 register Lisp_Object val;
2719 register EMACS_INT size;
2721 CHECK_NATNUM (length);
2722 size = XFASTINT (length);
2724 val = Qnil;
2725 while (size > 0)
2727 val = Fcons (init, val);
2728 --size;
2730 if (size > 0)
2732 val = Fcons (init, val);
2733 --size;
2735 if (size > 0)
2737 val = Fcons (init, val);
2738 --size;
2740 if (size > 0)
2742 val = Fcons (init, val);
2743 --size;
2745 if (size > 0)
2747 val = Fcons (init, val);
2748 --size;
2754 QUIT;
2757 return val;
2762 /***********************************************************************
2763 Vector Allocation
2764 ***********************************************************************/
2766 /* Singly-linked list of all vectors. */
2768 static struct Lisp_Vector *all_vectors;
2770 /* Handy constants for vectorlike objects. */
2771 enum
2773 header_size = offsetof (struct Lisp_Vector, contents),
2774 word_size = sizeof (Lisp_Object)
2777 /* Value is a pointer to a newly allocated Lisp_Vector structure
2778 with room for LEN Lisp_Objects. */
2780 static struct Lisp_Vector *
2781 allocate_vectorlike (EMACS_INT len)
2783 struct Lisp_Vector *p;
2784 size_t nbytes;
2786 MALLOC_BLOCK_INPUT;
2788 #ifdef DOUG_LEA_MALLOC
2789 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2790 because mapped region contents are not preserved in
2791 a dumped Emacs. */
2792 mallopt (M_MMAP_MAX, 0);
2793 #endif
2795 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2796 /* eassert (!handling_signal); */
2798 nbytes = header_size + len * word_size;
2799 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2801 #ifdef DOUG_LEA_MALLOC
2802 /* Back to a reasonable maximum of mmap'ed areas. */
2803 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2804 #endif
2806 consing_since_gc += nbytes;
2807 vector_cells_consed += len;
2809 p->header.next.vector = all_vectors;
2810 all_vectors = p;
2812 MALLOC_UNBLOCK_INPUT;
2814 return p;
2818 /* Allocate a vector with LEN slots. */
2820 struct Lisp_Vector *
2821 allocate_vector (EMACS_INT len)
2823 struct Lisp_Vector *v;
2824 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2826 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2827 memory_full (SIZE_MAX);
2828 v = allocate_vectorlike (len);
2829 v->header.size = len;
2830 return v;
2834 /* Allocate other vector-like structures. */
2836 struct Lisp_Vector *
2837 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2839 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2840 int i;
2842 /* Only the first lisplen slots will be traced normally by the GC. */
2843 for (i = 0; i < lisplen; ++i)
2844 v->contents[i] = Qnil;
2846 XSETPVECTYPESIZE (v, tag, lisplen);
2847 return v;
2850 struct Lisp_Hash_Table *
2851 allocate_hash_table (void)
2853 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2857 struct window *
2858 allocate_window (void)
2860 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2864 struct terminal *
2865 allocate_terminal (void)
2867 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2868 next_terminal, PVEC_TERMINAL);
2869 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2870 memset (&t->next_terminal, 0,
2871 (char*) (t + 1) - (char*) &t->next_terminal);
2873 return t;
2876 struct frame *
2877 allocate_frame (void)
2879 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2880 face_cache, PVEC_FRAME);
2881 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2882 memset (&f->face_cache, 0,
2883 (char *) (f + 1) - (char *) &f->face_cache);
2884 return f;
2888 struct Lisp_Process *
2889 allocate_process (void)
2891 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2895 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2896 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2897 See also the function `vector'. */)
2898 (register Lisp_Object length, Lisp_Object init)
2900 Lisp_Object vector;
2901 register EMACS_INT sizei;
2902 register EMACS_INT i;
2903 register struct Lisp_Vector *p;
2905 CHECK_NATNUM (length);
2906 sizei = XFASTINT (length);
2908 p = allocate_vector (sizei);
2909 for (i = 0; i < sizei; i++)
2910 p->contents[i] = init;
2912 XSETVECTOR (vector, p);
2913 return vector;
2917 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2918 doc: /* Return a newly created vector with specified arguments as elements.
2919 Any number of arguments, even zero arguments, are allowed.
2920 usage: (vector &rest OBJECTS) */)
2921 (ptrdiff_t nargs, Lisp_Object *args)
2923 register Lisp_Object len, val;
2924 ptrdiff_t i;
2925 register struct Lisp_Vector *p;
2927 XSETFASTINT (len, nargs);
2928 val = Fmake_vector (len, Qnil);
2929 p = XVECTOR (val);
2930 for (i = 0; i < nargs; i++)
2931 p->contents[i] = args[i];
2932 return val;
2936 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2937 doc: /* Create a byte-code object with specified arguments as elements.
2938 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2939 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2940 and (optional) INTERACTIVE-SPEC.
2941 The first four arguments are required; at most six have any
2942 significance.
2943 The ARGLIST can be either like the one of `lambda', in which case the arguments
2944 will be dynamically bound before executing the byte code, or it can be an
2945 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2946 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2947 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2948 argument to catch the left-over arguments. If such an integer is used, the
2949 arguments will not be dynamically bound but will be instead pushed on the
2950 stack before executing the byte-code.
2951 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2952 (ptrdiff_t nargs, Lisp_Object *args)
2954 register Lisp_Object len, val;
2955 ptrdiff_t i;
2956 register struct Lisp_Vector *p;
2958 XSETFASTINT (len, nargs);
2959 if (!NILP (Vpurify_flag))
2960 val = make_pure_vector (nargs);
2961 else
2962 val = Fmake_vector (len, Qnil);
2964 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2965 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2966 earlier because they produced a raw 8-bit string for byte-code
2967 and now such a byte-code string is loaded as multibyte while
2968 raw 8-bit characters converted to multibyte form. Thus, now we
2969 must convert them back to the original unibyte form. */
2970 args[1] = Fstring_as_unibyte (args[1]);
2972 p = XVECTOR (val);
2973 for (i = 0; i < nargs; i++)
2975 if (!NILP (Vpurify_flag))
2976 args[i] = Fpurecopy (args[i]);
2977 p->contents[i] = args[i];
2979 XSETPVECTYPE (p, PVEC_COMPILED);
2980 XSETCOMPILED (val, p);
2981 return val;
2986 /***********************************************************************
2987 Symbol Allocation
2988 ***********************************************************************/
2990 /* Each symbol_block is just under 1020 bytes long, since malloc
2991 really allocates in units of powers of two and uses 4 bytes for its
2992 own overhead. */
2994 #define SYMBOL_BLOCK_SIZE \
2995 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2997 struct symbol_block
2999 /* Place `symbols' first, to preserve alignment. */
3000 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3001 struct symbol_block *next;
3004 /* Current symbol block and index of first unused Lisp_Symbol
3005 structure in it. */
3007 static struct symbol_block *symbol_block;
3008 static int symbol_block_index;
3010 /* List of free symbols. */
3012 static struct Lisp_Symbol *symbol_free_list;
3015 /* Initialize symbol allocation. */
3017 static void
3018 init_symbol (void)
3020 symbol_block = NULL;
3021 symbol_block_index = SYMBOL_BLOCK_SIZE;
3022 symbol_free_list = 0;
3026 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3027 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3028 Its value and function definition are void, and its property list is nil. */)
3029 (Lisp_Object name)
3031 register Lisp_Object val;
3032 register struct Lisp_Symbol *p;
3034 CHECK_STRING (name);
3036 /* eassert (!handling_signal); */
3038 MALLOC_BLOCK_INPUT;
3040 if (symbol_free_list)
3042 XSETSYMBOL (val, symbol_free_list);
3043 symbol_free_list = symbol_free_list->next;
3045 else
3047 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3049 struct symbol_block *new;
3050 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3051 MEM_TYPE_SYMBOL);
3052 new->next = symbol_block;
3053 symbol_block = new;
3054 symbol_block_index = 0;
3056 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3057 symbol_block_index++;
3060 MALLOC_UNBLOCK_INPUT;
3062 p = XSYMBOL (val);
3063 p->xname = name;
3064 p->plist = Qnil;
3065 p->redirect = SYMBOL_PLAINVAL;
3066 SET_SYMBOL_VAL (p, Qunbound);
3067 p->function = Qunbound;
3068 p->next = NULL;
3069 p->gcmarkbit = 0;
3070 p->interned = SYMBOL_UNINTERNED;
3071 p->constant = 0;
3072 p->declared_special = 0;
3073 consing_since_gc += sizeof (struct Lisp_Symbol);
3074 symbols_consed++;
3075 return val;
3080 /***********************************************************************
3081 Marker (Misc) Allocation
3082 ***********************************************************************/
3084 /* Allocation of markers and other objects that share that structure.
3085 Works like allocation of conses. */
3087 #define MARKER_BLOCK_SIZE \
3088 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3090 struct marker_block
3092 /* Place `markers' first, to preserve alignment. */
3093 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3094 struct marker_block *next;
3097 static struct marker_block *marker_block;
3098 static int marker_block_index;
3100 static union Lisp_Misc *marker_free_list;
3102 static void
3103 init_marker (void)
3105 marker_block = NULL;
3106 marker_block_index = MARKER_BLOCK_SIZE;
3107 marker_free_list = 0;
3110 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3112 Lisp_Object
3113 allocate_misc (void)
3115 Lisp_Object val;
3117 /* eassert (!handling_signal); */
3119 MALLOC_BLOCK_INPUT;
3121 if (marker_free_list)
3123 XSETMISC (val, marker_free_list);
3124 marker_free_list = marker_free_list->u_free.chain;
3126 else
3128 if (marker_block_index == MARKER_BLOCK_SIZE)
3130 struct marker_block *new;
3131 new = (struct marker_block *) lisp_malloc (sizeof *new,
3132 MEM_TYPE_MISC);
3133 new->next = marker_block;
3134 marker_block = new;
3135 marker_block_index = 0;
3136 total_free_markers += MARKER_BLOCK_SIZE;
3138 XSETMISC (val, &marker_block->markers[marker_block_index]);
3139 marker_block_index++;
3142 MALLOC_UNBLOCK_INPUT;
3144 --total_free_markers;
3145 consing_since_gc += sizeof (union Lisp_Misc);
3146 misc_objects_consed++;
3147 XMISCANY (val)->gcmarkbit = 0;
3148 return val;
3151 /* Free a Lisp_Misc object */
3153 static void
3154 free_misc (Lisp_Object misc)
3156 XMISCTYPE (misc) = Lisp_Misc_Free;
3157 XMISC (misc)->u_free.chain = marker_free_list;
3158 marker_free_list = XMISC (misc);
3160 total_free_markers++;
3163 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3164 INTEGER. This is used to package C values to call record_unwind_protect.
3165 The unwind function can get the C values back using XSAVE_VALUE. */
3167 Lisp_Object
3168 make_save_value (void *pointer, ptrdiff_t integer)
3170 register Lisp_Object val;
3171 register struct Lisp_Save_Value *p;
3173 val = allocate_misc ();
3174 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3175 p = XSAVE_VALUE (val);
3176 p->pointer = pointer;
3177 p->integer = integer;
3178 p->dogc = 0;
3179 return val;
3182 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3183 doc: /* Return a newly allocated marker which does not point at any place. */)
3184 (void)
3186 register Lisp_Object val;
3187 register struct Lisp_Marker *p;
3189 val = allocate_misc ();
3190 XMISCTYPE (val) = Lisp_Misc_Marker;
3191 p = XMARKER (val);
3192 p->buffer = 0;
3193 p->bytepos = 0;
3194 p->charpos = 0;
3195 p->next = NULL;
3196 p->insertion_type = 0;
3197 return val;
3200 /* Put MARKER back on the free list after using it temporarily. */
3202 void
3203 free_marker (Lisp_Object marker)
3205 unchain_marker (XMARKER (marker));
3206 free_misc (marker);
3210 /* Return a newly created vector or string with specified arguments as
3211 elements. If all the arguments are characters that can fit
3212 in a string of events, make a string; otherwise, make a vector.
3214 Any number of arguments, even zero arguments, are allowed. */
3216 Lisp_Object
3217 make_event_array (register int nargs, Lisp_Object *args)
3219 int i;
3221 for (i = 0; i < nargs; i++)
3222 /* The things that fit in a string
3223 are characters that are in 0...127,
3224 after discarding the meta bit and all the bits above it. */
3225 if (!INTEGERP (args[i])
3226 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3227 return Fvector (nargs, args);
3229 /* Since the loop exited, we know that all the things in it are
3230 characters, so we can make a string. */
3232 Lisp_Object result;
3234 result = Fmake_string (make_number (nargs), make_number (0));
3235 for (i = 0; i < nargs; i++)
3237 SSET (result, i, XINT (args[i]));
3238 /* Move the meta bit to the right place for a string char. */
3239 if (XINT (args[i]) & CHAR_META)
3240 SSET (result, i, SREF (result, i) | 0x80);
3243 return result;
3249 /************************************************************************
3250 Memory Full Handling
3251 ************************************************************************/
3254 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3255 there may have been size_t overflow so that malloc was never
3256 called, or perhaps malloc was invoked successfully but the
3257 resulting pointer had problems fitting into a tagged EMACS_INT. In
3258 either case this counts as memory being full even though malloc did
3259 not fail. */
3261 void
3262 memory_full (size_t nbytes)
3264 /* Do not go into hysterics merely because a large request failed. */
3265 int enough_free_memory = 0;
3266 if (SPARE_MEMORY < nbytes)
3268 void *p = malloc (SPARE_MEMORY);
3269 if (p)
3271 free (p);
3272 enough_free_memory = 1;
3276 if (! enough_free_memory)
3278 int i;
3280 Vmemory_full = Qt;
3282 memory_full_cons_threshold = sizeof (struct cons_block);
3284 /* The first time we get here, free the spare memory. */
3285 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3286 if (spare_memory[i])
3288 if (i == 0)
3289 free (spare_memory[i]);
3290 else if (i >= 1 && i <= 4)
3291 lisp_align_free (spare_memory[i]);
3292 else
3293 lisp_free (spare_memory[i]);
3294 spare_memory[i] = 0;
3297 /* Record the space now used. When it decreases substantially,
3298 we can refill the memory reserve. */
3299 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3300 bytes_used_when_full = BYTES_USED;
3301 #endif
3304 /* This used to call error, but if we've run out of memory, we could
3305 get infinite recursion trying to build the string. */
3306 xsignal (Qnil, Vmemory_signal_data);
3309 /* If we released our reserve (due to running out of memory),
3310 and we have a fair amount free once again,
3311 try to set aside another reserve in case we run out once more.
3313 This is called when a relocatable block is freed in ralloc.c,
3314 and also directly from this file, in case we're not using ralloc.c. */
3316 void
3317 refill_memory_reserve (void)
3319 #ifndef SYSTEM_MALLOC
3320 if (spare_memory[0] == 0)
3321 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3322 if (spare_memory[1] == 0)
3323 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3324 MEM_TYPE_CONS);
3325 if (spare_memory[2] == 0)
3326 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3327 MEM_TYPE_CONS);
3328 if (spare_memory[3] == 0)
3329 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3330 MEM_TYPE_CONS);
3331 if (spare_memory[4] == 0)
3332 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3333 MEM_TYPE_CONS);
3334 if (spare_memory[5] == 0)
3335 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3336 MEM_TYPE_STRING);
3337 if (spare_memory[6] == 0)
3338 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3339 MEM_TYPE_STRING);
3340 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3341 Vmemory_full = Qnil;
3342 #endif
3345 /************************************************************************
3346 C Stack Marking
3347 ************************************************************************/
3349 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3351 /* Conservative C stack marking requires a method to identify possibly
3352 live Lisp objects given a pointer value. We do this by keeping
3353 track of blocks of Lisp data that are allocated in a red-black tree
3354 (see also the comment of mem_node which is the type of nodes in
3355 that tree). Function lisp_malloc adds information for an allocated
3356 block to the red-black tree with calls to mem_insert, and function
3357 lisp_free removes it with mem_delete. Functions live_string_p etc
3358 call mem_find to lookup information about a given pointer in the
3359 tree, and use that to determine if the pointer points to a Lisp
3360 object or not. */
3362 /* Initialize this part of alloc.c. */
3364 static void
3365 mem_init (void)
3367 mem_z.left = mem_z.right = MEM_NIL;
3368 mem_z.parent = NULL;
3369 mem_z.color = MEM_BLACK;
3370 mem_z.start = mem_z.end = NULL;
3371 mem_root = MEM_NIL;
3375 /* Value is a pointer to the mem_node containing START. Value is
3376 MEM_NIL if there is no node in the tree containing START. */
3378 static inline struct mem_node *
3379 mem_find (void *start)
3381 struct mem_node *p;
3383 if (start < min_heap_address || start > max_heap_address)
3384 return MEM_NIL;
3386 /* Make the search always successful to speed up the loop below. */
3387 mem_z.start = start;
3388 mem_z.end = (char *) start + 1;
3390 p = mem_root;
3391 while (start < p->start || start >= p->end)
3392 p = start < p->start ? p->left : p->right;
3393 return p;
3397 /* Insert a new node into the tree for a block of memory with start
3398 address START, end address END, and type TYPE. Value is a
3399 pointer to the node that was inserted. */
3401 static struct mem_node *
3402 mem_insert (void *start, void *end, enum mem_type type)
3404 struct mem_node *c, *parent, *x;
3406 if (min_heap_address == NULL || start < min_heap_address)
3407 min_heap_address = start;
3408 if (max_heap_address == NULL || end > max_heap_address)
3409 max_heap_address = end;
3411 /* See where in the tree a node for START belongs. In this
3412 particular application, it shouldn't happen that a node is already
3413 present. For debugging purposes, let's check that. */
3414 c = mem_root;
3415 parent = NULL;
3417 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3419 while (c != MEM_NIL)
3421 if (start >= c->start && start < c->end)
3422 abort ();
3423 parent = c;
3424 c = start < c->start ? c->left : c->right;
3427 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3429 while (c != MEM_NIL)
3431 parent = c;
3432 c = start < c->start ? c->left : c->right;
3435 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3437 /* Create a new node. */
3438 #ifdef GC_MALLOC_CHECK
3439 x = (struct mem_node *) _malloc_internal (sizeof *x);
3440 if (x == NULL)
3441 abort ();
3442 #else
3443 x = (struct mem_node *) xmalloc (sizeof *x);
3444 #endif
3445 x->start = start;
3446 x->end = end;
3447 x->type = type;
3448 x->parent = parent;
3449 x->left = x->right = MEM_NIL;
3450 x->color = MEM_RED;
3452 /* Insert it as child of PARENT or install it as root. */
3453 if (parent)
3455 if (start < parent->start)
3456 parent->left = x;
3457 else
3458 parent->right = x;
3460 else
3461 mem_root = x;
3463 /* Re-establish red-black tree properties. */
3464 mem_insert_fixup (x);
3466 return x;
3470 /* Re-establish the red-black properties of the tree, and thereby
3471 balance the tree, after node X has been inserted; X is always red. */
3473 static void
3474 mem_insert_fixup (struct mem_node *x)
3476 while (x != mem_root && x->parent->color == MEM_RED)
3478 /* X is red and its parent is red. This is a violation of
3479 red-black tree property #3. */
3481 if (x->parent == x->parent->parent->left)
3483 /* We're on the left side of our grandparent, and Y is our
3484 "uncle". */
3485 struct mem_node *y = x->parent->parent->right;
3487 if (y->color == MEM_RED)
3489 /* Uncle and parent are red but should be black because
3490 X is red. Change the colors accordingly and proceed
3491 with the grandparent. */
3492 x->parent->color = MEM_BLACK;
3493 y->color = MEM_BLACK;
3494 x->parent->parent->color = MEM_RED;
3495 x = x->parent->parent;
3497 else
3499 /* Parent and uncle have different colors; parent is
3500 red, uncle is black. */
3501 if (x == x->parent->right)
3503 x = x->parent;
3504 mem_rotate_left (x);
3507 x->parent->color = MEM_BLACK;
3508 x->parent->parent->color = MEM_RED;
3509 mem_rotate_right (x->parent->parent);
3512 else
3514 /* This is the symmetrical case of above. */
3515 struct mem_node *y = x->parent->parent->left;
3517 if (y->color == MEM_RED)
3519 x->parent->color = MEM_BLACK;
3520 y->color = MEM_BLACK;
3521 x->parent->parent->color = MEM_RED;
3522 x = x->parent->parent;
3524 else
3526 if (x == x->parent->left)
3528 x = x->parent;
3529 mem_rotate_right (x);
3532 x->parent->color = MEM_BLACK;
3533 x->parent->parent->color = MEM_RED;
3534 mem_rotate_left (x->parent->parent);
3539 /* The root may have been changed to red due to the algorithm. Set
3540 it to black so that property #5 is satisfied. */
3541 mem_root->color = MEM_BLACK;
3545 /* (x) (y)
3546 / \ / \
3547 a (y) ===> (x) c
3548 / \ / \
3549 b c a b */
3551 static void
3552 mem_rotate_left (struct mem_node *x)
3554 struct mem_node *y;
3556 /* Turn y's left sub-tree into x's right sub-tree. */
3557 y = x->right;
3558 x->right = y->left;
3559 if (y->left != MEM_NIL)
3560 y->left->parent = x;
3562 /* Y's parent was x's parent. */
3563 if (y != MEM_NIL)
3564 y->parent = x->parent;
3566 /* Get the parent to point to y instead of x. */
3567 if (x->parent)
3569 if (x == x->parent->left)
3570 x->parent->left = y;
3571 else
3572 x->parent->right = y;
3574 else
3575 mem_root = y;
3577 /* Put x on y's left. */
3578 y->left = x;
3579 if (x != MEM_NIL)
3580 x->parent = y;
3584 /* (x) (Y)
3585 / \ / \
3586 (y) c ===> a (x)
3587 / \ / \
3588 a b b c */
3590 static void
3591 mem_rotate_right (struct mem_node *x)
3593 struct mem_node *y = x->left;
3595 x->left = y->right;
3596 if (y->right != MEM_NIL)
3597 y->right->parent = x;
3599 if (y != MEM_NIL)
3600 y->parent = x->parent;
3601 if (x->parent)
3603 if (x == x->parent->right)
3604 x->parent->right = y;
3605 else
3606 x->parent->left = y;
3608 else
3609 mem_root = y;
3611 y->right = x;
3612 if (x != MEM_NIL)
3613 x->parent = y;
3617 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3619 static void
3620 mem_delete (struct mem_node *z)
3622 struct mem_node *x, *y;
3624 if (!z || z == MEM_NIL)
3625 return;
3627 if (z->left == MEM_NIL || z->right == MEM_NIL)
3628 y = z;
3629 else
3631 y = z->right;
3632 while (y->left != MEM_NIL)
3633 y = y->left;
3636 if (y->left != MEM_NIL)
3637 x = y->left;
3638 else
3639 x = y->right;
3641 x->parent = y->parent;
3642 if (y->parent)
3644 if (y == y->parent->left)
3645 y->parent->left = x;
3646 else
3647 y->parent->right = x;
3649 else
3650 mem_root = x;
3652 if (y != z)
3654 z->start = y->start;
3655 z->end = y->end;
3656 z->type = y->type;
3659 if (y->color == MEM_BLACK)
3660 mem_delete_fixup (x);
3662 #ifdef GC_MALLOC_CHECK
3663 _free_internal (y);
3664 #else
3665 xfree (y);
3666 #endif
3670 /* Re-establish the red-black properties of the tree, after a
3671 deletion. */
3673 static void
3674 mem_delete_fixup (struct mem_node *x)
3676 while (x != mem_root && x->color == MEM_BLACK)
3678 if (x == x->parent->left)
3680 struct mem_node *w = x->parent->right;
3682 if (w->color == MEM_RED)
3684 w->color = MEM_BLACK;
3685 x->parent->color = MEM_RED;
3686 mem_rotate_left (x->parent);
3687 w = x->parent->right;
3690 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3692 w->color = MEM_RED;
3693 x = x->parent;
3695 else
3697 if (w->right->color == MEM_BLACK)
3699 w->left->color = MEM_BLACK;
3700 w->color = MEM_RED;
3701 mem_rotate_right (w);
3702 w = x->parent->right;
3704 w->color = x->parent->color;
3705 x->parent->color = MEM_BLACK;
3706 w->right->color = MEM_BLACK;
3707 mem_rotate_left (x->parent);
3708 x = mem_root;
3711 else
3713 struct mem_node *w = x->parent->left;
3715 if (w->color == MEM_RED)
3717 w->color = MEM_BLACK;
3718 x->parent->color = MEM_RED;
3719 mem_rotate_right (x->parent);
3720 w = x->parent->left;
3723 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3725 w->color = MEM_RED;
3726 x = x->parent;
3728 else
3730 if (w->left->color == MEM_BLACK)
3732 w->right->color = MEM_BLACK;
3733 w->color = MEM_RED;
3734 mem_rotate_left (w);
3735 w = x->parent->left;
3738 w->color = x->parent->color;
3739 x->parent->color = MEM_BLACK;
3740 w->left->color = MEM_BLACK;
3741 mem_rotate_right (x->parent);
3742 x = mem_root;
3747 x->color = MEM_BLACK;
3751 /* Value is non-zero if P is a pointer to a live Lisp string on
3752 the heap. M is a pointer to the mem_block for P. */
3754 static inline int
3755 live_string_p (struct mem_node *m, void *p)
3757 if (m->type == MEM_TYPE_STRING)
3759 struct string_block *b = (struct string_block *) m->start;
3760 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3762 /* P must point to the start of a Lisp_String structure, and it
3763 must not be on the free-list. */
3764 return (offset >= 0
3765 && offset % sizeof b->strings[0] == 0
3766 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3767 && ((struct Lisp_String *) p)->data != NULL);
3769 else
3770 return 0;
3774 /* Value is non-zero if P is a pointer to a live Lisp cons on
3775 the heap. M is a pointer to the mem_block for P. */
3777 static inline int
3778 live_cons_p (struct mem_node *m, void *p)
3780 if (m->type == MEM_TYPE_CONS)
3782 struct cons_block *b = (struct cons_block *) m->start;
3783 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3785 /* P must point to the start of a Lisp_Cons, not be
3786 one of the unused cells in the current cons block,
3787 and not be on the free-list. */
3788 return (offset >= 0
3789 && offset % sizeof b->conses[0] == 0
3790 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3791 && (b != cons_block
3792 || offset / sizeof b->conses[0] < cons_block_index)
3793 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3795 else
3796 return 0;
3800 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3801 the heap. M is a pointer to the mem_block for P. */
3803 static inline int
3804 live_symbol_p (struct mem_node *m, void *p)
3806 if (m->type == MEM_TYPE_SYMBOL)
3808 struct symbol_block *b = (struct symbol_block *) m->start;
3809 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3811 /* P must point to the start of a Lisp_Symbol, not be
3812 one of the unused cells in the current symbol block,
3813 and not be on the free-list. */
3814 return (offset >= 0
3815 && offset % sizeof b->symbols[0] == 0
3816 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3817 && (b != symbol_block
3818 || offset / sizeof b->symbols[0] < symbol_block_index)
3819 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3821 else
3822 return 0;
3826 /* Value is non-zero if P is a pointer to a live Lisp float on
3827 the heap. M is a pointer to the mem_block for P. */
3829 static inline int
3830 live_float_p (struct mem_node *m, void *p)
3832 if (m->type == MEM_TYPE_FLOAT)
3834 struct float_block *b = (struct float_block *) m->start;
3835 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3837 /* P must point to the start of a Lisp_Float and not be
3838 one of the unused cells in the current float block. */
3839 return (offset >= 0
3840 && offset % sizeof b->floats[0] == 0
3841 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3842 && (b != float_block
3843 || offset / sizeof b->floats[0] < float_block_index));
3845 else
3846 return 0;
3850 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3851 the heap. M is a pointer to the mem_block for P. */
3853 static inline int
3854 live_misc_p (struct mem_node *m, void *p)
3856 if (m->type == MEM_TYPE_MISC)
3858 struct marker_block *b = (struct marker_block *) m->start;
3859 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3861 /* P must point to the start of a Lisp_Misc, not be
3862 one of the unused cells in the current misc block,
3863 and not be on the free-list. */
3864 return (offset >= 0
3865 && offset % sizeof b->markers[0] == 0
3866 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3867 && (b != marker_block
3868 || offset / sizeof b->markers[0] < marker_block_index)
3869 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3871 else
3872 return 0;
3876 /* Value is non-zero if P is a pointer to a live vector-like object.
3877 M is a pointer to the mem_block for P. */
3879 static inline int
3880 live_vector_p (struct mem_node *m, void *p)
3882 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3886 /* Value is non-zero if P is a pointer to a live buffer. M is a
3887 pointer to the mem_block for P. */
3889 static inline int
3890 live_buffer_p (struct mem_node *m, void *p)
3892 /* P must point to the start of the block, and the buffer
3893 must not have been killed. */
3894 return (m->type == MEM_TYPE_BUFFER
3895 && p == m->start
3896 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3899 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3901 #if GC_MARK_STACK
3903 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3905 /* Array of objects that are kept alive because the C stack contains
3906 a pattern that looks like a reference to them . */
3908 #define MAX_ZOMBIES 10
3909 static Lisp_Object zombies[MAX_ZOMBIES];
3911 /* Number of zombie objects. */
3913 static EMACS_INT nzombies;
3915 /* Number of garbage collections. */
3917 static EMACS_INT ngcs;
3919 /* Average percentage of zombies per collection. */
3921 static double avg_zombies;
3923 /* Max. number of live and zombie objects. */
3925 static EMACS_INT max_live, max_zombies;
3927 /* Average number of live objects per GC. */
3929 static double avg_live;
3931 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3932 doc: /* Show information about live and zombie objects. */)
3933 (void)
3935 Lisp_Object args[8], zombie_list = Qnil;
3936 EMACS_INT i;
3937 for (i = 0; i < nzombies; i++)
3938 zombie_list = Fcons (zombies[i], zombie_list);
3939 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3940 args[1] = make_number (ngcs);
3941 args[2] = make_float (avg_live);
3942 args[3] = make_float (avg_zombies);
3943 args[4] = make_float (avg_zombies / avg_live / 100);
3944 args[5] = make_number (max_live);
3945 args[6] = make_number (max_zombies);
3946 args[7] = zombie_list;
3947 return Fmessage (8, args);
3950 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3953 /* Mark OBJ if we can prove it's a Lisp_Object. */
3955 static inline void
3956 mark_maybe_object (Lisp_Object obj)
3958 void *po;
3959 struct mem_node *m;
3961 if (INTEGERP (obj))
3962 return;
3964 po = (void *) XPNTR (obj);
3965 m = mem_find (po);
3967 if (m != MEM_NIL)
3969 int mark_p = 0;
3971 switch (XTYPE (obj))
3973 case Lisp_String:
3974 mark_p = (live_string_p (m, po)
3975 && !STRING_MARKED_P ((struct Lisp_String *) po));
3976 break;
3978 case Lisp_Cons:
3979 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3980 break;
3982 case Lisp_Symbol:
3983 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3984 break;
3986 case Lisp_Float:
3987 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3988 break;
3990 case Lisp_Vectorlike:
3991 /* Note: can't check BUFFERP before we know it's a
3992 buffer because checking that dereferences the pointer
3993 PO which might point anywhere. */
3994 if (live_vector_p (m, po))
3995 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3996 else if (live_buffer_p (m, po))
3997 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3998 break;
4000 case Lisp_Misc:
4001 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4002 break;
4004 default:
4005 break;
4008 if (mark_p)
4010 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4011 if (nzombies < MAX_ZOMBIES)
4012 zombies[nzombies] = obj;
4013 ++nzombies;
4014 #endif
4015 mark_object (obj);
4021 /* If P points to Lisp data, mark that as live if it isn't already
4022 marked. */
4024 static inline void
4025 mark_maybe_pointer (void *p)
4027 struct mem_node *m;
4029 /* Quickly rule out some values which can't point to Lisp data. */
4030 if ((intptr_t) p %
4031 #ifdef USE_LSB_TAG
4032 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4033 #else
4034 2 /* We assume that Lisp data is aligned on even addresses. */
4035 #endif
4037 return;
4039 m = mem_find (p);
4040 if (m != MEM_NIL)
4042 Lisp_Object obj = Qnil;
4044 switch (m->type)
4046 case MEM_TYPE_NON_LISP:
4047 /* Nothing to do; not a pointer to Lisp memory. */
4048 break;
4050 case MEM_TYPE_BUFFER:
4051 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4052 XSETVECTOR (obj, p);
4053 break;
4055 case MEM_TYPE_CONS:
4056 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4057 XSETCONS (obj, p);
4058 break;
4060 case MEM_TYPE_STRING:
4061 if (live_string_p (m, p)
4062 && !STRING_MARKED_P ((struct Lisp_String *) p))
4063 XSETSTRING (obj, p);
4064 break;
4066 case MEM_TYPE_MISC:
4067 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4068 XSETMISC (obj, p);
4069 break;
4071 case MEM_TYPE_SYMBOL:
4072 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4073 XSETSYMBOL (obj, p);
4074 break;
4076 case MEM_TYPE_FLOAT:
4077 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4078 XSETFLOAT (obj, p);
4079 break;
4081 case MEM_TYPE_VECTORLIKE:
4082 if (live_vector_p (m, p))
4084 Lisp_Object tem;
4085 XSETVECTOR (tem, p);
4086 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4087 obj = tem;
4089 break;
4091 default:
4092 abort ();
4095 if (!NILP (obj))
4096 mark_object (obj);
4101 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4102 or END+OFFSET..START. */
4104 static void
4105 mark_memory (void *start, void *end, int offset)
4107 Lisp_Object *p;
4108 void **pp;
4110 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4111 nzombies = 0;
4112 #endif
4114 /* Make START the pointer to the start of the memory region,
4115 if it isn't already. */
4116 if (end < start)
4118 void *tem = start;
4119 start = end;
4120 end = tem;
4123 /* Mark Lisp_Objects. */
4124 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4125 mark_maybe_object (*p);
4127 /* Mark Lisp data pointed to. This is necessary because, in some
4128 situations, the C compiler optimizes Lisp objects away, so that
4129 only a pointer to them remains. Example:
4131 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4134 Lisp_Object obj = build_string ("test");
4135 struct Lisp_String *s = XSTRING (obj);
4136 Fgarbage_collect ();
4137 fprintf (stderr, "test `%s'\n", s->data);
4138 return Qnil;
4141 Here, `obj' isn't really used, and the compiler optimizes it
4142 away. The only reference to the life string is through the
4143 pointer `s'. */
4145 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4146 mark_maybe_pointer (*pp);
4149 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4150 the GCC system configuration. In gcc 3.2, the only systems for
4151 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4152 by others?) and ns32k-pc532-min. */
4154 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4156 static int setjmp_tested_p, longjmps_done;
4158 #define SETJMP_WILL_LIKELY_WORK "\
4160 Emacs garbage collector has been changed to use conservative stack\n\
4161 marking. Emacs has determined that the method it uses to do the\n\
4162 marking will likely work on your system, but this isn't sure.\n\
4164 If you are a system-programmer, or can get the help of a local wizard\n\
4165 who is, please take a look at the function mark_stack in alloc.c, and\n\
4166 verify that the methods used are appropriate for your system.\n\
4168 Please mail the result to <emacs-devel@gnu.org>.\n\
4171 #define SETJMP_WILL_NOT_WORK "\
4173 Emacs garbage collector has been changed to use conservative stack\n\
4174 marking. Emacs has determined that the default method it uses to do the\n\
4175 marking will not work on your system. We will need a system-dependent\n\
4176 solution for your system.\n\
4178 Please take a look at the function mark_stack in alloc.c, and\n\
4179 try to find a way to make it work on your system.\n\
4181 Note that you may get false negatives, depending on the compiler.\n\
4182 In particular, you need to use -O with GCC for this test.\n\
4184 Please mail the result to <emacs-devel@gnu.org>.\n\
4188 /* Perform a quick check if it looks like setjmp saves registers in a
4189 jmp_buf. Print a message to stderr saying so. When this test
4190 succeeds, this is _not_ a proof that setjmp is sufficient for
4191 conservative stack marking. Only the sources or a disassembly
4192 can prove that. */
4194 static void
4195 test_setjmp (void)
4197 char buf[10];
4198 register int x;
4199 jmp_buf jbuf;
4200 int result = 0;
4202 /* Arrange for X to be put in a register. */
4203 sprintf (buf, "1");
4204 x = strlen (buf);
4205 x = 2 * x - 1;
4207 setjmp (jbuf);
4208 if (longjmps_done == 1)
4210 /* Came here after the longjmp at the end of the function.
4212 If x == 1, the longjmp has restored the register to its
4213 value before the setjmp, and we can hope that setjmp
4214 saves all such registers in the jmp_buf, although that
4215 isn't sure.
4217 For other values of X, either something really strange is
4218 taking place, or the setjmp just didn't save the register. */
4220 if (x == 1)
4221 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4222 else
4224 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4225 exit (1);
4229 ++longjmps_done;
4230 x = 2;
4231 if (longjmps_done == 1)
4232 longjmp (jbuf, 1);
4235 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4238 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4240 /* Abort if anything GCPRO'd doesn't survive the GC. */
4242 static void
4243 check_gcpros (void)
4245 struct gcpro *p;
4246 ptrdiff_t i;
4248 for (p = gcprolist; p; p = p->next)
4249 for (i = 0; i < p->nvars; ++i)
4250 if (!survives_gc_p (p->var[i]))
4251 /* FIXME: It's not necessarily a bug. It might just be that the
4252 GCPRO is unnecessary or should release the object sooner. */
4253 abort ();
4256 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4258 static void
4259 dump_zombies (void)
4261 int i;
4263 fprintf (stderr, "\nZombies kept alive = %"pI":\n", nzombies);
4264 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4266 fprintf (stderr, " %d = ", i);
4267 debug_print (zombies[i]);
4271 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4274 /* Mark live Lisp objects on the C stack.
4276 There are several system-dependent problems to consider when
4277 porting this to new architectures:
4279 Processor Registers
4281 We have to mark Lisp objects in CPU registers that can hold local
4282 variables or are used to pass parameters.
4284 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4285 something that either saves relevant registers on the stack, or
4286 calls mark_maybe_object passing it each register's contents.
4288 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4289 implementation assumes that calling setjmp saves registers we need
4290 to see in a jmp_buf which itself lies on the stack. This doesn't
4291 have to be true! It must be verified for each system, possibly
4292 by taking a look at the source code of setjmp.
4294 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4295 can use it as a machine independent method to store all registers
4296 to the stack. In this case the macros described in the previous
4297 two paragraphs are not used.
4299 Stack Layout
4301 Architectures differ in the way their processor stack is organized.
4302 For example, the stack might look like this
4304 +----------------+
4305 | Lisp_Object | size = 4
4306 +----------------+
4307 | something else | size = 2
4308 +----------------+
4309 | Lisp_Object | size = 4
4310 +----------------+
4311 | ... |
4313 In such a case, not every Lisp_Object will be aligned equally. To
4314 find all Lisp_Object on the stack it won't be sufficient to walk
4315 the stack in steps of 4 bytes. Instead, two passes will be
4316 necessary, one starting at the start of the stack, and a second
4317 pass starting at the start of the stack + 2. Likewise, if the
4318 minimal alignment of Lisp_Objects on the stack is 1, four passes
4319 would be necessary, each one starting with one byte more offset
4320 from the stack start.
4322 The current code assumes by default that Lisp_Objects are aligned
4323 equally on the stack. */
4325 static void
4326 mark_stack (void)
4328 int i;
4329 void *end;
4331 #ifdef HAVE___BUILTIN_UNWIND_INIT
4332 /* Force callee-saved registers and register windows onto the stack.
4333 This is the preferred method if available, obviating the need for
4334 machine dependent methods. */
4335 __builtin_unwind_init ();
4336 end = &end;
4337 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4338 #ifndef GC_SAVE_REGISTERS_ON_STACK
4339 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4340 union aligned_jmpbuf {
4341 Lisp_Object o;
4342 jmp_buf j;
4343 } j;
4344 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4345 #endif
4346 /* This trick flushes the register windows so that all the state of
4347 the process is contained in the stack. */
4348 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4349 needed on ia64 too. See mach_dep.c, where it also says inline
4350 assembler doesn't work with relevant proprietary compilers. */
4351 #ifdef __sparc__
4352 #if defined (__sparc64__) && defined (__FreeBSD__)
4353 /* FreeBSD does not have a ta 3 handler. */
4354 asm ("flushw");
4355 #else
4356 asm ("ta 3");
4357 #endif
4358 #endif
4360 /* Save registers that we need to see on the stack. We need to see
4361 registers used to hold register variables and registers used to
4362 pass parameters. */
4363 #ifdef GC_SAVE_REGISTERS_ON_STACK
4364 GC_SAVE_REGISTERS_ON_STACK (end);
4365 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4367 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4368 setjmp will definitely work, test it
4369 and print a message with the result
4370 of the test. */
4371 if (!setjmp_tested_p)
4373 setjmp_tested_p = 1;
4374 test_setjmp ();
4376 #endif /* GC_SETJMP_WORKS */
4378 setjmp (j.j);
4379 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4380 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4381 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4383 /* This assumes that the stack is a contiguous region in memory. If
4384 that's not the case, something has to be done here to iterate
4385 over the stack segments. */
4386 #ifndef GC_LISP_OBJECT_ALIGNMENT
4387 #ifdef __GNUC__
4388 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4389 #else
4390 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4391 #endif
4392 #endif
4393 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4394 mark_memory (stack_base, end, i);
4395 /* Allow for marking a secondary stack, like the register stack on the
4396 ia64. */
4397 #ifdef GC_MARK_SECONDARY_STACK
4398 GC_MARK_SECONDARY_STACK ();
4399 #endif
4401 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4402 check_gcpros ();
4403 #endif
4406 #endif /* GC_MARK_STACK != 0 */
4409 /* Determine whether it is safe to access memory at address P. */
4410 static int
4411 valid_pointer_p (void *p)
4413 #ifdef WINDOWSNT
4414 return w32_valid_pointer_p (p, 16);
4415 #else
4416 int fd;
4418 /* Obviously, we cannot just access it (we would SEGV trying), so we
4419 trick the o/s to tell us whether p is a valid pointer.
4420 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4421 not validate p in that case. */
4423 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4425 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4426 emacs_close (fd);
4427 unlink ("__Valid__Lisp__Object__");
4428 return valid;
4431 return -1;
4432 #endif
4435 /* Return 1 if OBJ is a valid lisp object.
4436 Return 0 if OBJ is NOT a valid lisp object.
4437 Return -1 if we cannot validate OBJ.
4438 This function can be quite slow,
4439 so it should only be used in code for manual debugging. */
4442 valid_lisp_object_p (Lisp_Object obj)
4444 void *p;
4445 #if GC_MARK_STACK
4446 struct mem_node *m;
4447 #endif
4449 if (INTEGERP (obj))
4450 return 1;
4452 p = (void *) XPNTR (obj);
4453 if (PURE_POINTER_P (p))
4454 return 1;
4456 #if !GC_MARK_STACK
4457 return valid_pointer_p (p);
4458 #else
4460 m = mem_find (p);
4462 if (m == MEM_NIL)
4464 int valid = valid_pointer_p (p);
4465 if (valid <= 0)
4466 return valid;
4468 if (SUBRP (obj))
4469 return 1;
4471 return 0;
4474 switch (m->type)
4476 case MEM_TYPE_NON_LISP:
4477 return 0;
4479 case MEM_TYPE_BUFFER:
4480 return live_buffer_p (m, p);
4482 case MEM_TYPE_CONS:
4483 return live_cons_p (m, p);
4485 case MEM_TYPE_STRING:
4486 return live_string_p (m, p);
4488 case MEM_TYPE_MISC:
4489 return live_misc_p (m, p);
4491 case MEM_TYPE_SYMBOL:
4492 return live_symbol_p (m, p);
4494 case MEM_TYPE_FLOAT:
4495 return live_float_p (m, p);
4497 case MEM_TYPE_VECTORLIKE:
4498 return live_vector_p (m, p);
4500 default:
4501 break;
4504 return 0;
4505 #endif
4511 /***********************************************************************
4512 Pure Storage Management
4513 ***********************************************************************/
4515 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4516 pointer to it. TYPE is the Lisp type for which the memory is
4517 allocated. TYPE < 0 means it's not used for a Lisp object. */
4519 static POINTER_TYPE *
4520 pure_alloc (size_t size, int type)
4522 POINTER_TYPE *result;
4523 #ifdef USE_LSB_TAG
4524 size_t alignment = (1 << GCTYPEBITS);
4525 #else
4526 size_t alignment = sizeof (EMACS_INT);
4528 /* Give Lisp_Floats an extra alignment. */
4529 if (type == Lisp_Float)
4531 #if defined __GNUC__ && __GNUC__ >= 2
4532 alignment = __alignof (struct Lisp_Float);
4533 #else
4534 alignment = sizeof (struct Lisp_Float);
4535 #endif
4537 #endif
4539 again:
4540 if (type >= 0)
4542 /* Allocate space for a Lisp object from the beginning of the free
4543 space with taking account of alignment. */
4544 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4545 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4547 else
4549 /* Allocate space for a non-Lisp object from the end of the free
4550 space. */
4551 pure_bytes_used_non_lisp += size;
4552 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4554 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4556 if (pure_bytes_used <= pure_size)
4557 return result;
4559 /* Don't allocate a large amount here,
4560 because it might get mmap'd and then its address
4561 might not be usable. */
4562 purebeg = (char *) xmalloc (10000);
4563 pure_size = 10000;
4564 pure_bytes_used_before_overflow += pure_bytes_used - size;
4565 pure_bytes_used = 0;
4566 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4567 goto again;
4571 /* Print a warning if PURESIZE is too small. */
4573 void
4574 check_pure_size (void)
4576 if (pure_bytes_used_before_overflow)
4577 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4578 " bytes needed)"),
4579 pure_bytes_used + pure_bytes_used_before_overflow);
4583 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4584 the non-Lisp data pool of the pure storage, and return its start
4585 address. Return NULL if not found. */
4587 static char *
4588 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4590 int i;
4591 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4592 const unsigned char *p;
4593 char *non_lisp_beg;
4595 if (pure_bytes_used_non_lisp < nbytes + 1)
4596 return NULL;
4598 /* Set up the Boyer-Moore table. */
4599 skip = nbytes + 1;
4600 for (i = 0; i < 256; i++)
4601 bm_skip[i] = skip;
4603 p = (const unsigned char *) data;
4604 while (--skip > 0)
4605 bm_skip[*p++] = skip;
4607 last_char_skip = bm_skip['\0'];
4609 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4610 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4612 /* See the comments in the function `boyer_moore' (search.c) for the
4613 use of `infinity'. */
4614 infinity = pure_bytes_used_non_lisp + 1;
4615 bm_skip['\0'] = infinity;
4617 p = (const unsigned char *) non_lisp_beg + nbytes;
4618 start = 0;
4621 /* Check the last character (== '\0'). */
4624 start += bm_skip[*(p + start)];
4626 while (start <= start_max);
4628 if (start < infinity)
4629 /* Couldn't find the last character. */
4630 return NULL;
4632 /* No less than `infinity' means we could find the last
4633 character at `p[start - infinity]'. */
4634 start -= infinity;
4636 /* Check the remaining characters. */
4637 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4638 /* Found. */
4639 return non_lisp_beg + start;
4641 start += last_char_skip;
4643 while (start <= start_max);
4645 return NULL;
4649 /* Return a string allocated in pure space. DATA is a buffer holding
4650 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4651 non-zero means make the result string multibyte.
4653 Must get an error if pure storage is full, since if it cannot hold
4654 a large string it may be able to hold conses that point to that
4655 string; then the string is not protected from gc. */
4657 Lisp_Object
4658 make_pure_string (const char *data,
4659 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4661 Lisp_Object string;
4662 struct Lisp_String *s;
4664 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4665 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4666 if (s->data == NULL)
4668 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4669 memcpy (s->data, data, nbytes);
4670 s->data[nbytes] = '\0';
4672 s->size = nchars;
4673 s->size_byte = multibyte ? nbytes : -1;
4674 s->intervals = NULL_INTERVAL;
4675 XSETSTRING (string, s);
4676 return string;
4679 /* Return a string a string allocated in pure space. Do not allocate
4680 the string data, just point to DATA. */
4682 Lisp_Object
4683 make_pure_c_string (const char *data)
4685 Lisp_Object string;
4686 struct Lisp_String *s;
4687 EMACS_INT nchars = strlen (data);
4689 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4690 s->size = nchars;
4691 s->size_byte = -1;
4692 s->data = (unsigned char *) data;
4693 s->intervals = NULL_INTERVAL;
4694 XSETSTRING (string, s);
4695 return string;
4698 /* Return a cons allocated from pure space. Give it pure copies
4699 of CAR as car and CDR as cdr. */
4701 Lisp_Object
4702 pure_cons (Lisp_Object car, Lisp_Object cdr)
4704 register Lisp_Object new;
4705 struct Lisp_Cons *p;
4707 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4708 XSETCONS (new, p);
4709 XSETCAR (new, Fpurecopy (car));
4710 XSETCDR (new, Fpurecopy (cdr));
4711 return new;
4715 /* Value is a float object with value NUM allocated from pure space. */
4717 static Lisp_Object
4718 make_pure_float (double num)
4720 register Lisp_Object new;
4721 struct Lisp_Float *p;
4723 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4724 XSETFLOAT (new, p);
4725 XFLOAT_INIT (new, num);
4726 return new;
4730 /* Return a vector with room for LEN Lisp_Objects allocated from
4731 pure space. */
4733 Lisp_Object
4734 make_pure_vector (EMACS_INT len)
4736 Lisp_Object new;
4737 struct Lisp_Vector *p;
4738 size_t size = (offsetof (struct Lisp_Vector, contents)
4739 + len * sizeof (Lisp_Object));
4741 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4742 XSETVECTOR (new, p);
4743 XVECTOR (new)->header.size = len;
4744 return new;
4748 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4749 doc: /* Make a copy of object OBJ in pure storage.
4750 Recursively copies contents of vectors and cons cells.
4751 Does not copy symbols. Copies strings without text properties. */)
4752 (register Lisp_Object obj)
4754 if (NILP (Vpurify_flag))
4755 return obj;
4757 if (PURE_POINTER_P (XPNTR (obj)))
4758 return obj;
4760 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4762 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4763 if (!NILP (tmp))
4764 return tmp;
4767 if (CONSP (obj))
4768 obj = pure_cons (XCAR (obj), XCDR (obj));
4769 else if (FLOATP (obj))
4770 obj = make_pure_float (XFLOAT_DATA (obj));
4771 else if (STRINGP (obj))
4772 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4773 SBYTES (obj),
4774 STRING_MULTIBYTE (obj));
4775 else if (COMPILEDP (obj) || VECTORP (obj))
4777 register struct Lisp_Vector *vec;
4778 register EMACS_INT i;
4779 EMACS_INT size;
4781 size = ASIZE (obj);
4782 if (size & PSEUDOVECTOR_FLAG)
4783 size &= PSEUDOVECTOR_SIZE_MASK;
4784 vec = XVECTOR (make_pure_vector (size));
4785 for (i = 0; i < size; i++)
4786 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4787 if (COMPILEDP (obj))
4789 XSETPVECTYPE (vec, PVEC_COMPILED);
4790 XSETCOMPILED (obj, vec);
4792 else
4793 XSETVECTOR (obj, vec);
4795 else if (MARKERP (obj))
4796 error ("Attempt to copy a marker to pure storage");
4797 else
4798 /* Not purified, don't hash-cons. */
4799 return obj;
4801 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4802 Fputhash (obj, obj, Vpurify_flag);
4804 return obj;
4809 /***********************************************************************
4810 Protection from GC
4811 ***********************************************************************/
4813 /* Put an entry in staticvec, pointing at the variable with address
4814 VARADDRESS. */
4816 void
4817 staticpro (Lisp_Object *varaddress)
4819 staticvec[staticidx++] = varaddress;
4820 if (staticidx >= NSTATICS)
4821 abort ();
4825 /***********************************************************************
4826 Protection from GC
4827 ***********************************************************************/
4829 /* Temporarily prevent garbage collection. */
4832 inhibit_garbage_collection (void)
4834 int count = SPECPDL_INDEX ();
4836 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
4837 return count;
4841 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4842 doc: /* Reclaim storage for Lisp objects no longer needed.
4843 Garbage collection happens automatically if you cons more than
4844 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4845 `garbage-collect' normally returns a list with info on amount of space in use:
4846 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4847 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4848 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4849 (USED-STRINGS . FREE-STRINGS))
4850 However, if there was overflow in pure space, `garbage-collect'
4851 returns nil, because real GC can't be done. */)
4852 (void)
4854 register struct specbinding *bind;
4855 char stack_top_variable;
4856 ptrdiff_t i;
4857 int message_p;
4858 Lisp_Object total[8];
4859 int count = SPECPDL_INDEX ();
4860 EMACS_TIME t1, t2, t3;
4862 if (abort_on_gc)
4863 abort ();
4865 /* Can't GC if pure storage overflowed because we can't determine
4866 if something is a pure object or not. */
4867 if (pure_bytes_used_before_overflow)
4868 return Qnil;
4870 CHECK_CONS_LIST ();
4872 /* Don't keep undo information around forever.
4873 Do this early on, so it is no problem if the user quits. */
4875 register struct buffer *nextb = all_buffers;
4877 while (nextb)
4879 /* If a buffer's undo list is Qt, that means that undo is
4880 turned off in that buffer. Calling truncate_undo_list on
4881 Qt tends to return NULL, which effectively turns undo back on.
4882 So don't call truncate_undo_list if undo_list is Qt. */
4883 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4884 truncate_undo_list (nextb);
4886 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4887 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4888 && ! nextb->text->inhibit_shrinking)
4890 /* If a buffer's gap size is more than 10% of the buffer
4891 size, or larger than 2000 bytes, then shrink it
4892 accordingly. Keep a minimum size of 20 bytes. */
4893 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4895 if (nextb->text->gap_size > size)
4897 struct buffer *save_current = current_buffer;
4898 current_buffer = nextb;
4899 make_gap (-(nextb->text->gap_size - size));
4900 current_buffer = save_current;
4904 nextb = nextb->header.next.buffer;
4908 EMACS_GET_TIME (t1);
4910 /* In case user calls debug_print during GC,
4911 don't let that cause a recursive GC. */
4912 consing_since_gc = 0;
4914 /* Save what's currently displayed in the echo area. */
4915 message_p = push_message ();
4916 record_unwind_protect (pop_message_unwind, Qnil);
4918 /* Save a copy of the contents of the stack, for debugging. */
4919 #if MAX_SAVE_STACK > 0
4920 if (NILP (Vpurify_flag))
4922 char *stack;
4923 size_t stack_size;
4924 if (&stack_top_variable < stack_bottom)
4926 stack = &stack_top_variable;
4927 stack_size = stack_bottom - &stack_top_variable;
4929 else
4931 stack = stack_bottom;
4932 stack_size = &stack_top_variable - stack_bottom;
4934 if (stack_size <= MAX_SAVE_STACK)
4936 if (stack_copy_size < stack_size)
4938 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4939 stack_copy_size = stack_size;
4941 memcpy (stack_copy, stack, stack_size);
4944 #endif /* MAX_SAVE_STACK > 0 */
4946 if (garbage_collection_messages)
4947 message1_nolog ("Garbage collecting...");
4949 BLOCK_INPUT;
4951 shrink_regexp_cache ();
4953 gc_in_progress = 1;
4955 /* clear_marks (); */
4957 /* Mark all the special slots that serve as the roots of accessibility. */
4959 for (i = 0; i < staticidx; i++)
4960 mark_object (*staticvec[i]);
4962 for (bind = specpdl; bind != specpdl_ptr; bind++)
4964 mark_object (bind->symbol);
4965 mark_object (bind->old_value);
4967 mark_terminals ();
4968 mark_kboards ();
4969 mark_ttys ();
4971 #ifdef USE_GTK
4973 extern void xg_mark_data (void);
4974 xg_mark_data ();
4976 #endif
4978 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4979 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4980 mark_stack ();
4981 #else
4983 register struct gcpro *tail;
4984 for (tail = gcprolist; tail; tail = tail->next)
4985 for (i = 0; i < tail->nvars; i++)
4986 mark_object (tail->var[i]);
4988 mark_byte_stack ();
4990 struct catchtag *catch;
4991 struct handler *handler;
4993 for (catch = catchlist; catch; catch = catch->next)
4995 mark_object (catch->tag);
4996 mark_object (catch->val);
4998 for (handler = handlerlist; handler; handler = handler->next)
5000 mark_object (handler->handler);
5001 mark_object (handler->var);
5004 mark_backtrace ();
5005 #endif
5007 #ifdef HAVE_WINDOW_SYSTEM
5008 mark_fringe_data ();
5009 #endif
5011 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5012 mark_stack ();
5013 #endif
5015 /* Everything is now marked, except for the things that require special
5016 finalization, i.e. the undo_list.
5017 Look thru every buffer's undo list
5018 for elements that update markers that were not marked,
5019 and delete them. */
5021 register struct buffer *nextb = all_buffers;
5023 while (nextb)
5025 /* If a buffer's undo list is Qt, that means that undo is
5026 turned off in that buffer. Calling truncate_undo_list on
5027 Qt tends to return NULL, which effectively turns undo back on.
5028 So don't call truncate_undo_list if undo_list is Qt. */
5029 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5031 Lisp_Object tail, prev;
5032 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5033 prev = Qnil;
5034 while (CONSP (tail))
5036 if (CONSP (XCAR (tail))
5037 && MARKERP (XCAR (XCAR (tail)))
5038 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5040 if (NILP (prev))
5041 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5042 else
5044 tail = XCDR (tail);
5045 XSETCDR (prev, tail);
5048 else
5050 prev = tail;
5051 tail = XCDR (tail);
5055 /* Now that we have stripped the elements that need not be in the
5056 undo_list any more, we can finally mark the list. */
5057 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5059 nextb = nextb->header.next.buffer;
5063 gc_sweep ();
5065 /* Clear the mark bits that we set in certain root slots. */
5067 unmark_byte_stack ();
5068 VECTOR_UNMARK (&buffer_defaults);
5069 VECTOR_UNMARK (&buffer_local_symbols);
5071 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5072 dump_zombies ();
5073 #endif
5075 UNBLOCK_INPUT;
5077 CHECK_CONS_LIST ();
5079 /* clear_marks (); */
5080 gc_in_progress = 0;
5082 consing_since_gc = 0;
5083 if (gc_cons_threshold < 10000)
5084 gc_cons_threshold = 10000;
5086 gc_relative_threshold = 0;
5087 if (FLOATP (Vgc_cons_percentage))
5088 { /* Set gc_cons_combined_threshold. */
5089 double tot = 0;
5091 tot += total_conses * sizeof (struct Lisp_Cons);
5092 tot += total_symbols * sizeof (struct Lisp_Symbol);
5093 tot += total_markers * sizeof (union Lisp_Misc);
5094 tot += total_string_size;
5095 tot += total_vector_size * sizeof (Lisp_Object);
5096 tot += total_floats * sizeof (struct Lisp_Float);
5097 tot += total_intervals * sizeof (struct interval);
5098 tot += total_strings * sizeof (struct Lisp_String);
5100 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5101 if (0 < tot)
5103 if (tot < TYPE_MAXIMUM (EMACS_INT))
5104 gc_relative_threshold = tot;
5105 else
5106 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5110 if (garbage_collection_messages)
5112 if (message_p || minibuf_level > 0)
5113 restore_message ();
5114 else
5115 message1_nolog ("Garbage collecting...done");
5118 unbind_to (count, Qnil);
5120 total[0] = Fcons (make_number (total_conses),
5121 make_number (total_free_conses));
5122 total[1] = Fcons (make_number (total_symbols),
5123 make_number (total_free_symbols));
5124 total[2] = Fcons (make_number (total_markers),
5125 make_number (total_free_markers));
5126 total[3] = make_number (total_string_size);
5127 total[4] = make_number (total_vector_size);
5128 total[5] = Fcons (make_number (total_floats),
5129 make_number (total_free_floats));
5130 total[6] = Fcons (make_number (total_intervals),
5131 make_number (total_free_intervals));
5132 total[7] = Fcons (make_number (total_strings),
5133 make_number (total_free_strings));
5135 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5137 /* Compute average percentage of zombies. */
5138 double nlive = 0;
5140 for (i = 0; i < 7; ++i)
5141 if (CONSP (total[i]))
5142 nlive += XFASTINT (XCAR (total[i]));
5144 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5145 max_live = max (nlive, max_live);
5146 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5147 max_zombies = max (nzombies, max_zombies);
5148 ++ngcs;
5150 #endif
5152 if (!NILP (Vpost_gc_hook))
5154 int gc_count = inhibit_garbage_collection ();
5155 safe_run_hooks (Qpost_gc_hook);
5156 unbind_to (gc_count, Qnil);
5159 /* Accumulate statistics. */
5160 EMACS_GET_TIME (t2);
5161 EMACS_SUB_TIME (t3, t2, t1);
5162 if (FLOATP (Vgc_elapsed))
5163 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5164 EMACS_SECS (t3) +
5165 EMACS_USECS (t3) * 1.0e-6);
5166 gcs_done++;
5168 return Flist (sizeof total / sizeof *total, total);
5172 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5173 only interesting objects referenced from glyphs are strings. */
5175 static void
5176 mark_glyph_matrix (struct glyph_matrix *matrix)
5178 struct glyph_row *row = matrix->rows;
5179 struct glyph_row *end = row + matrix->nrows;
5181 for (; row < end; ++row)
5182 if (row->enabled_p)
5184 int area;
5185 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5187 struct glyph *glyph = row->glyphs[area];
5188 struct glyph *end_glyph = glyph + row->used[area];
5190 for (; glyph < end_glyph; ++glyph)
5191 if (STRINGP (glyph->object)
5192 && !STRING_MARKED_P (XSTRING (glyph->object)))
5193 mark_object (glyph->object);
5199 /* Mark Lisp faces in the face cache C. */
5201 static void
5202 mark_face_cache (struct face_cache *c)
5204 if (c)
5206 int i, j;
5207 for (i = 0; i < c->used; ++i)
5209 struct face *face = FACE_FROM_ID (c->f, i);
5211 if (face)
5213 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5214 mark_object (face->lface[j]);
5222 /* Mark reference to a Lisp_Object.
5223 If the object referred to has not been seen yet, recursively mark
5224 all the references contained in it. */
5226 #define LAST_MARKED_SIZE 500
5227 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5228 static int last_marked_index;
5230 /* For debugging--call abort when we cdr down this many
5231 links of a list, in mark_object. In debugging,
5232 the call to abort will hit a breakpoint.
5233 Normally this is zero and the check never goes off. */
5234 static size_t mark_object_loop_halt;
5236 static void
5237 mark_vectorlike (struct Lisp_Vector *ptr)
5239 EMACS_INT size = ptr->header.size;
5240 EMACS_INT i;
5242 eassert (!VECTOR_MARKED_P (ptr));
5243 VECTOR_MARK (ptr); /* Else mark it */
5244 if (size & PSEUDOVECTOR_FLAG)
5245 size &= PSEUDOVECTOR_SIZE_MASK;
5247 /* Note that this size is not the memory-footprint size, but only
5248 the number of Lisp_Object fields that we should trace.
5249 The distinction is used e.g. by Lisp_Process which places extra
5250 non-Lisp_Object fields at the end of the structure. */
5251 for (i = 0; i < size; i++) /* and then mark its elements */
5252 mark_object (ptr->contents[i]);
5255 /* Like mark_vectorlike but optimized for char-tables (and
5256 sub-char-tables) assuming that the contents are mostly integers or
5257 symbols. */
5259 static void
5260 mark_char_table (struct Lisp_Vector *ptr)
5262 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5263 int i;
5265 eassert (!VECTOR_MARKED_P (ptr));
5266 VECTOR_MARK (ptr);
5267 for (i = 0; i < size; i++)
5269 Lisp_Object val = ptr->contents[i];
5271 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5272 continue;
5273 if (SUB_CHAR_TABLE_P (val))
5275 if (! VECTOR_MARKED_P (XVECTOR (val)))
5276 mark_char_table (XVECTOR (val));
5278 else
5279 mark_object (val);
5283 void
5284 mark_object (Lisp_Object arg)
5286 register Lisp_Object obj = arg;
5287 #ifdef GC_CHECK_MARKED_OBJECTS
5288 void *po;
5289 struct mem_node *m;
5290 #endif
5291 size_t cdr_count = 0;
5293 loop:
5295 if (PURE_POINTER_P (XPNTR (obj)))
5296 return;
5298 last_marked[last_marked_index++] = obj;
5299 if (last_marked_index == LAST_MARKED_SIZE)
5300 last_marked_index = 0;
5302 /* Perform some sanity checks on the objects marked here. Abort if
5303 we encounter an object we know is bogus. This increases GC time
5304 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5305 #ifdef GC_CHECK_MARKED_OBJECTS
5307 po = (void *) XPNTR (obj);
5309 /* Check that the object pointed to by PO is known to be a Lisp
5310 structure allocated from the heap. */
5311 #define CHECK_ALLOCATED() \
5312 do { \
5313 m = mem_find (po); \
5314 if (m == MEM_NIL) \
5315 abort (); \
5316 } while (0)
5318 /* Check that the object pointed to by PO is live, using predicate
5319 function LIVEP. */
5320 #define CHECK_LIVE(LIVEP) \
5321 do { \
5322 if (!LIVEP (m, po)) \
5323 abort (); \
5324 } while (0)
5326 /* Check both of the above conditions. */
5327 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5328 do { \
5329 CHECK_ALLOCATED (); \
5330 CHECK_LIVE (LIVEP); \
5331 } while (0) \
5333 #else /* not GC_CHECK_MARKED_OBJECTS */
5335 #define CHECK_LIVE(LIVEP) (void) 0
5336 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5338 #endif /* not GC_CHECK_MARKED_OBJECTS */
5340 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5342 case Lisp_String:
5344 register struct Lisp_String *ptr = XSTRING (obj);
5345 if (STRING_MARKED_P (ptr))
5346 break;
5347 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5348 MARK_INTERVAL_TREE (ptr->intervals);
5349 MARK_STRING (ptr);
5350 #ifdef GC_CHECK_STRING_BYTES
5351 /* Check that the string size recorded in the string is the
5352 same as the one recorded in the sdata structure. */
5353 CHECK_STRING_BYTES (ptr);
5354 #endif /* GC_CHECK_STRING_BYTES */
5356 break;
5358 case Lisp_Vectorlike:
5359 if (VECTOR_MARKED_P (XVECTOR (obj)))
5360 break;
5361 #ifdef GC_CHECK_MARKED_OBJECTS
5362 m = mem_find (po);
5363 if (m == MEM_NIL && !SUBRP (obj)
5364 && po != &buffer_defaults
5365 && po != &buffer_local_symbols)
5366 abort ();
5367 #endif /* GC_CHECK_MARKED_OBJECTS */
5369 if (BUFFERP (obj))
5371 #ifdef GC_CHECK_MARKED_OBJECTS
5372 if (po != &buffer_defaults && po != &buffer_local_symbols)
5374 struct buffer *b;
5375 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5377 if (b == NULL)
5378 abort ();
5380 #endif /* GC_CHECK_MARKED_OBJECTS */
5381 mark_buffer (obj);
5383 else if (SUBRP (obj))
5384 break;
5385 else if (COMPILEDP (obj))
5386 /* We could treat this just like a vector, but it is better to
5387 save the COMPILED_CONSTANTS element for last and avoid
5388 recursion there. */
5390 register struct Lisp_Vector *ptr = XVECTOR (obj);
5391 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5392 int i;
5394 CHECK_LIVE (live_vector_p);
5395 VECTOR_MARK (ptr); /* Else mark it */
5396 for (i = 0; i < size; i++) /* and then mark its elements */
5398 if (i != COMPILED_CONSTANTS)
5399 mark_object (ptr->contents[i]);
5401 obj = ptr->contents[COMPILED_CONSTANTS];
5402 goto loop;
5404 else if (FRAMEP (obj))
5406 register struct frame *ptr = XFRAME (obj);
5407 mark_vectorlike (XVECTOR (obj));
5408 mark_face_cache (ptr->face_cache);
5410 else if (WINDOWP (obj))
5412 register struct Lisp_Vector *ptr = XVECTOR (obj);
5413 struct window *w = XWINDOW (obj);
5414 mark_vectorlike (ptr);
5415 /* Mark glyphs for leaf windows. Marking window matrices is
5416 sufficient because frame matrices use the same glyph
5417 memory. */
5418 if (NILP (w->hchild)
5419 && NILP (w->vchild)
5420 && w->current_matrix)
5422 mark_glyph_matrix (w->current_matrix);
5423 mark_glyph_matrix (w->desired_matrix);
5426 else if (HASH_TABLE_P (obj))
5428 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5429 mark_vectorlike ((struct Lisp_Vector *)h);
5430 /* If hash table is not weak, mark all keys and values.
5431 For weak tables, mark only the vector. */
5432 if (NILP (h->weak))
5433 mark_object (h->key_and_value);
5434 else
5435 VECTOR_MARK (XVECTOR (h->key_and_value));
5437 else if (CHAR_TABLE_P (obj))
5438 mark_char_table (XVECTOR (obj));
5439 else
5440 mark_vectorlike (XVECTOR (obj));
5441 break;
5443 case Lisp_Symbol:
5445 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5446 struct Lisp_Symbol *ptrx;
5448 if (ptr->gcmarkbit)
5449 break;
5450 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5451 ptr->gcmarkbit = 1;
5452 mark_object (ptr->function);
5453 mark_object (ptr->plist);
5454 switch (ptr->redirect)
5456 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5457 case SYMBOL_VARALIAS:
5459 Lisp_Object tem;
5460 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5461 mark_object (tem);
5462 break;
5464 case SYMBOL_LOCALIZED:
5466 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5467 /* If the value is forwarded to a buffer or keyboard field,
5468 these are marked when we see the corresponding object.
5469 And if it's forwarded to a C variable, either it's not
5470 a Lisp_Object var, or it's staticpro'd already. */
5471 mark_object (blv->where);
5472 mark_object (blv->valcell);
5473 mark_object (blv->defcell);
5474 break;
5476 case SYMBOL_FORWARDED:
5477 /* If the value is forwarded to a buffer or keyboard field,
5478 these are marked when we see the corresponding object.
5479 And if it's forwarded to a C variable, either it's not
5480 a Lisp_Object var, or it's staticpro'd already. */
5481 break;
5482 default: abort ();
5484 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5485 MARK_STRING (XSTRING (ptr->xname));
5486 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5488 ptr = ptr->next;
5489 if (ptr)
5491 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5492 XSETSYMBOL (obj, ptrx);
5493 goto loop;
5496 break;
5498 case Lisp_Misc:
5499 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5500 if (XMISCANY (obj)->gcmarkbit)
5501 break;
5502 XMISCANY (obj)->gcmarkbit = 1;
5504 switch (XMISCTYPE (obj))
5507 case Lisp_Misc_Marker:
5508 /* DO NOT mark thru the marker's chain.
5509 The buffer's markers chain does not preserve markers from gc;
5510 instead, markers are removed from the chain when freed by gc. */
5511 break;
5513 case Lisp_Misc_Save_Value:
5514 #if GC_MARK_STACK
5516 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5517 /* If DOGC is set, POINTER is the address of a memory
5518 area containing INTEGER potential Lisp_Objects. */
5519 if (ptr->dogc)
5521 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5522 ptrdiff_t nelt;
5523 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5524 mark_maybe_object (*p);
5527 #endif
5528 break;
5530 case Lisp_Misc_Overlay:
5532 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5533 mark_object (ptr->start);
5534 mark_object (ptr->end);
5535 mark_object (ptr->plist);
5536 if (ptr->next)
5538 XSETMISC (obj, ptr->next);
5539 goto loop;
5542 break;
5544 default:
5545 abort ();
5547 break;
5549 case Lisp_Cons:
5551 register struct Lisp_Cons *ptr = XCONS (obj);
5552 if (CONS_MARKED_P (ptr))
5553 break;
5554 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5555 CONS_MARK (ptr);
5556 /* If the cdr is nil, avoid recursion for the car. */
5557 if (EQ (ptr->u.cdr, Qnil))
5559 obj = ptr->car;
5560 cdr_count = 0;
5561 goto loop;
5563 mark_object (ptr->car);
5564 obj = ptr->u.cdr;
5565 cdr_count++;
5566 if (cdr_count == mark_object_loop_halt)
5567 abort ();
5568 goto loop;
5571 case Lisp_Float:
5572 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5573 FLOAT_MARK (XFLOAT (obj));
5574 break;
5576 case_Lisp_Int:
5577 break;
5579 default:
5580 abort ();
5583 #undef CHECK_LIVE
5584 #undef CHECK_ALLOCATED
5585 #undef CHECK_ALLOCATED_AND_LIVE
5588 /* Mark the pointers in a buffer structure. */
5590 static void
5591 mark_buffer (Lisp_Object buf)
5593 register struct buffer *buffer = XBUFFER (buf);
5594 register Lisp_Object *ptr, tmp;
5595 Lisp_Object base_buffer;
5597 eassert (!VECTOR_MARKED_P (buffer));
5598 VECTOR_MARK (buffer);
5600 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5602 /* For now, we just don't mark the undo_list. It's done later in
5603 a special way just before the sweep phase, and after stripping
5604 some of its elements that are not needed any more. */
5606 if (buffer->overlays_before)
5608 XSETMISC (tmp, buffer->overlays_before);
5609 mark_object (tmp);
5611 if (buffer->overlays_after)
5613 XSETMISC (tmp, buffer->overlays_after);
5614 mark_object (tmp);
5617 /* buffer-local Lisp variables start at `undo_list',
5618 tho only the ones from `name' on are GC'd normally. */
5619 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5620 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5621 ptr++)
5622 mark_object (*ptr);
5624 /* If this is an indirect buffer, mark its base buffer. */
5625 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5627 XSETBUFFER (base_buffer, buffer->base_buffer);
5628 mark_buffer (base_buffer);
5632 /* Mark the Lisp pointers in the terminal objects.
5633 Called by the Fgarbage_collector. */
5635 static void
5636 mark_terminals (void)
5638 struct terminal *t;
5639 for (t = terminal_list; t; t = t->next_terminal)
5641 eassert (t->name != NULL);
5642 #ifdef HAVE_WINDOW_SYSTEM
5643 /* If a terminal object is reachable from a stacpro'ed object,
5644 it might have been marked already. Make sure the image cache
5645 gets marked. */
5646 mark_image_cache (t->image_cache);
5647 #endif /* HAVE_WINDOW_SYSTEM */
5648 if (!VECTOR_MARKED_P (t))
5649 mark_vectorlike ((struct Lisp_Vector *)t);
5655 /* Value is non-zero if OBJ will survive the current GC because it's
5656 either marked or does not need to be marked to survive. */
5659 survives_gc_p (Lisp_Object obj)
5661 int survives_p;
5663 switch (XTYPE (obj))
5665 case_Lisp_Int:
5666 survives_p = 1;
5667 break;
5669 case Lisp_Symbol:
5670 survives_p = XSYMBOL (obj)->gcmarkbit;
5671 break;
5673 case Lisp_Misc:
5674 survives_p = XMISCANY (obj)->gcmarkbit;
5675 break;
5677 case Lisp_String:
5678 survives_p = STRING_MARKED_P (XSTRING (obj));
5679 break;
5681 case Lisp_Vectorlike:
5682 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5683 break;
5685 case Lisp_Cons:
5686 survives_p = CONS_MARKED_P (XCONS (obj));
5687 break;
5689 case Lisp_Float:
5690 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5691 break;
5693 default:
5694 abort ();
5697 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5702 /* Sweep: find all structures not marked, and free them. */
5704 static void
5705 gc_sweep (void)
5707 /* Remove or mark entries in weak hash tables.
5708 This must be done before any object is unmarked. */
5709 sweep_weak_hash_tables ();
5711 sweep_strings ();
5712 #ifdef GC_CHECK_STRING_BYTES
5713 if (!noninteractive)
5714 check_string_bytes (1);
5715 #endif
5717 /* Put all unmarked conses on free list */
5719 register struct cons_block *cblk;
5720 struct cons_block **cprev = &cons_block;
5721 register int lim = cons_block_index;
5722 EMACS_INT num_free = 0, num_used = 0;
5724 cons_free_list = 0;
5726 for (cblk = cons_block; cblk; cblk = *cprev)
5728 register int i = 0;
5729 int this_free = 0;
5730 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5732 /* Scan the mark bits an int at a time. */
5733 for (i = 0; i <= ilim; i++)
5735 if (cblk->gcmarkbits[i] == -1)
5737 /* Fast path - all cons cells for this int are marked. */
5738 cblk->gcmarkbits[i] = 0;
5739 num_used += BITS_PER_INT;
5741 else
5743 /* Some cons cells for this int are not marked.
5744 Find which ones, and free them. */
5745 int start, pos, stop;
5747 start = i * BITS_PER_INT;
5748 stop = lim - start;
5749 if (stop > BITS_PER_INT)
5750 stop = BITS_PER_INT;
5751 stop += start;
5753 for (pos = start; pos < stop; pos++)
5755 if (!CONS_MARKED_P (&cblk->conses[pos]))
5757 this_free++;
5758 cblk->conses[pos].u.chain = cons_free_list;
5759 cons_free_list = &cblk->conses[pos];
5760 #if GC_MARK_STACK
5761 cons_free_list->car = Vdead;
5762 #endif
5764 else
5766 num_used++;
5767 CONS_UNMARK (&cblk->conses[pos]);
5773 lim = CONS_BLOCK_SIZE;
5774 /* If this block contains only free conses and we have already
5775 seen more than two blocks worth of free conses then deallocate
5776 this block. */
5777 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5779 *cprev = cblk->next;
5780 /* Unhook from the free list. */
5781 cons_free_list = cblk->conses[0].u.chain;
5782 lisp_align_free (cblk);
5784 else
5786 num_free += this_free;
5787 cprev = &cblk->next;
5790 total_conses = num_used;
5791 total_free_conses = num_free;
5794 /* Put all unmarked floats on free list */
5796 register struct float_block *fblk;
5797 struct float_block **fprev = &float_block;
5798 register int lim = float_block_index;
5799 EMACS_INT num_free = 0, num_used = 0;
5801 float_free_list = 0;
5803 for (fblk = float_block; fblk; fblk = *fprev)
5805 register int i;
5806 int this_free = 0;
5807 for (i = 0; i < lim; i++)
5808 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5810 this_free++;
5811 fblk->floats[i].u.chain = float_free_list;
5812 float_free_list = &fblk->floats[i];
5814 else
5816 num_used++;
5817 FLOAT_UNMARK (&fblk->floats[i]);
5819 lim = FLOAT_BLOCK_SIZE;
5820 /* If this block contains only free floats and we have already
5821 seen more than two blocks worth of free floats then deallocate
5822 this block. */
5823 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5825 *fprev = fblk->next;
5826 /* Unhook from the free list. */
5827 float_free_list = fblk->floats[0].u.chain;
5828 lisp_align_free (fblk);
5830 else
5832 num_free += this_free;
5833 fprev = &fblk->next;
5836 total_floats = num_used;
5837 total_free_floats = num_free;
5840 /* Put all unmarked intervals on free list */
5842 register struct interval_block *iblk;
5843 struct interval_block **iprev = &interval_block;
5844 register int lim = interval_block_index;
5845 EMACS_INT num_free = 0, num_used = 0;
5847 interval_free_list = 0;
5849 for (iblk = interval_block; iblk; iblk = *iprev)
5851 register int i;
5852 int this_free = 0;
5854 for (i = 0; i < lim; i++)
5856 if (!iblk->intervals[i].gcmarkbit)
5858 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5859 interval_free_list = &iblk->intervals[i];
5860 this_free++;
5862 else
5864 num_used++;
5865 iblk->intervals[i].gcmarkbit = 0;
5868 lim = INTERVAL_BLOCK_SIZE;
5869 /* If this block contains only free intervals and we have already
5870 seen more than two blocks worth of free intervals then
5871 deallocate this block. */
5872 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5874 *iprev = iblk->next;
5875 /* Unhook from the free list. */
5876 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5877 lisp_free (iblk);
5879 else
5881 num_free += this_free;
5882 iprev = &iblk->next;
5885 total_intervals = num_used;
5886 total_free_intervals = num_free;
5889 /* Put all unmarked symbols on free list */
5891 register struct symbol_block *sblk;
5892 struct symbol_block **sprev = &symbol_block;
5893 register int lim = symbol_block_index;
5894 EMACS_INT num_free = 0, num_used = 0;
5896 symbol_free_list = NULL;
5898 for (sblk = symbol_block; sblk; sblk = *sprev)
5900 int this_free = 0;
5901 struct Lisp_Symbol *sym = sblk->symbols;
5902 struct Lisp_Symbol *end = sym + lim;
5904 for (; sym < end; ++sym)
5906 /* Check if the symbol was created during loadup. In such a case
5907 it might be pointed to by pure bytecode which we don't trace,
5908 so we conservatively assume that it is live. */
5909 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5911 if (!sym->gcmarkbit && !pure_p)
5913 if (sym->redirect == SYMBOL_LOCALIZED)
5914 xfree (SYMBOL_BLV (sym));
5915 sym->next = symbol_free_list;
5916 symbol_free_list = sym;
5917 #if GC_MARK_STACK
5918 symbol_free_list->function = Vdead;
5919 #endif
5920 ++this_free;
5922 else
5924 ++num_used;
5925 if (!pure_p)
5926 UNMARK_STRING (XSTRING (sym->xname));
5927 sym->gcmarkbit = 0;
5931 lim = SYMBOL_BLOCK_SIZE;
5932 /* If this block contains only free symbols and we have already
5933 seen more than two blocks worth of free symbols then deallocate
5934 this block. */
5935 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5937 *sprev = sblk->next;
5938 /* Unhook from the free list. */
5939 symbol_free_list = sblk->symbols[0].next;
5940 lisp_free (sblk);
5942 else
5944 num_free += this_free;
5945 sprev = &sblk->next;
5948 total_symbols = num_used;
5949 total_free_symbols = num_free;
5952 /* Put all unmarked misc's on free list.
5953 For a marker, first unchain it from the buffer it points into. */
5955 register struct marker_block *mblk;
5956 struct marker_block **mprev = &marker_block;
5957 register int lim = marker_block_index;
5958 EMACS_INT num_free = 0, num_used = 0;
5960 marker_free_list = 0;
5962 for (mblk = marker_block; mblk; mblk = *mprev)
5964 register int i;
5965 int this_free = 0;
5967 for (i = 0; i < lim; i++)
5969 if (!mblk->markers[i].u_any.gcmarkbit)
5971 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5972 unchain_marker (&mblk->markers[i].u_marker);
5973 /* Set the type of the freed object to Lisp_Misc_Free.
5974 We could leave the type alone, since nobody checks it,
5975 but this might catch bugs faster. */
5976 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5977 mblk->markers[i].u_free.chain = marker_free_list;
5978 marker_free_list = &mblk->markers[i];
5979 this_free++;
5981 else
5983 num_used++;
5984 mblk->markers[i].u_any.gcmarkbit = 0;
5987 lim = MARKER_BLOCK_SIZE;
5988 /* If this block contains only free markers and we have already
5989 seen more than two blocks worth of free markers then deallocate
5990 this block. */
5991 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5993 *mprev = mblk->next;
5994 /* Unhook from the free list. */
5995 marker_free_list = mblk->markers[0].u_free.chain;
5996 lisp_free (mblk);
5998 else
6000 num_free += this_free;
6001 mprev = &mblk->next;
6005 total_markers = num_used;
6006 total_free_markers = num_free;
6009 /* Free all unmarked buffers */
6011 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6013 while (buffer)
6014 if (!VECTOR_MARKED_P (buffer))
6016 if (prev)
6017 prev->header.next = buffer->header.next;
6018 else
6019 all_buffers = buffer->header.next.buffer;
6020 next = buffer->header.next.buffer;
6021 lisp_free (buffer);
6022 buffer = next;
6024 else
6026 VECTOR_UNMARK (buffer);
6027 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6028 prev = buffer, buffer = buffer->header.next.buffer;
6032 /* Free all unmarked vectors */
6034 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6035 total_vector_size = 0;
6037 while (vector)
6038 if (!VECTOR_MARKED_P (vector))
6040 if (prev)
6041 prev->header.next = vector->header.next;
6042 else
6043 all_vectors = vector->header.next.vector;
6044 next = vector->header.next.vector;
6045 lisp_free (vector);
6046 vector = next;
6049 else
6051 VECTOR_UNMARK (vector);
6052 if (vector->header.size & PSEUDOVECTOR_FLAG)
6053 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
6054 else
6055 total_vector_size += vector->header.size;
6056 prev = vector, vector = vector->header.next.vector;
6060 #ifdef GC_CHECK_STRING_BYTES
6061 if (!noninteractive)
6062 check_string_bytes (1);
6063 #endif
6069 /* Debugging aids. */
6071 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6072 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6073 This may be helpful in debugging Emacs's memory usage.
6074 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6075 (void)
6077 Lisp_Object end;
6079 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6081 return end;
6084 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6085 doc: /* Return a list of counters that measure how much consing there has been.
6086 Each of these counters increments for a certain kind of object.
6087 The counters wrap around from the largest positive integer to zero.
6088 Garbage collection does not decrease them.
6089 The elements of the value are as follows:
6090 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6091 All are in units of 1 = one object consed
6092 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6093 objects consed.
6094 MISCS include overlays, markers, and some internal types.
6095 Frames, windows, buffers, and subprocesses count as vectors
6096 (but the contents of a buffer's text do not count here). */)
6097 (void)
6099 Lisp_Object consed[8];
6101 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6102 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6103 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6104 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6105 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6106 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6107 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6108 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6110 return Flist (8, consed);
6113 #ifdef ENABLE_CHECKING
6114 int suppress_checking;
6116 void
6117 die (const char *msg, const char *file, int line)
6119 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6120 file, line, msg);
6121 abort ();
6123 #endif
6125 /* Initialization */
6127 void
6128 init_alloc_once (void)
6130 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6131 purebeg = PUREBEG;
6132 pure_size = PURESIZE;
6133 pure_bytes_used = 0;
6134 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6135 pure_bytes_used_before_overflow = 0;
6137 /* Initialize the list of free aligned blocks. */
6138 free_ablock = NULL;
6140 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6141 mem_init ();
6142 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6143 #endif
6145 all_vectors = 0;
6146 ignore_warnings = 1;
6147 #ifdef DOUG_LEA_MALLOC
6148 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6149 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6150 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6151 #endif
6152 init_strings ();
6153 init_cons ();
6154 init_symbol ();
6155 init_marker ();
6156 init_float ();
6157 init_intervals ();
6158 init_weak_hash_tables ();
6160 #ifdef REL_ALLOC
6161 malloc_hysteresis = 32;
6162 #else
6163 malloc_hysteresis = 0;
6164 #endif
6166 refill_memory_reserve ();
6168 ignore_warnings = 0;
6169 gcprolist = 0;
6170 byte_stack_list = 0;
6171 staticidx = 0;
6172 consing_since_gc = 0;
6173 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6174 gc_relative_threshold = 0;
6177 void
6178 init_alloc (void)
6180 gcprolist = 0;
6181 byte_stack_list = 0;
6182 #if GC_MARK_STACK
6183 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6184 setjmp_tested_p = longjmps_done = 0;
6185 #endif
6186 #endif
6187 Vgc_elapsed = make_float (0.0);
6188 gcs_done = 0;
6191 void
6192 syms_of_alloc (void)
6194 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6195 doc: /* *Number of bytes of consing between garbage collections.
6196 Garbage collection can happen automatically once this many bytes have been
6197 allocated since the last garbage collection. All data types count.
6199 Garbage collection happens automatically only when `eval' is called.
6201 By binding this temporarily to a large number, you can effectively
6202 prevent garbage collection during a part of the program.
6203 See also `gc-cons-percentage'. */);
6205 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6206 doc: /* *Portion of the heap used for allocation.
6207 Garbage collection can happen automatically once this portion of the heap
6208 has been allocated since the last garbage collection.
6209 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6210 Vgc_cons_percentage = make_float (0.1);
6212 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6213 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6215 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6216 doc: /* Number of cons cells that have been consed so far. */);
6218 DEFVAR_INT ("floats-consed", floats_consed,
6219 doc: /* Number of floats that have been consed so far. */);
6221 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6222 doc: /* Number of vector cells that have been consed so far. */);
6224 DEFVAR_INT ("symbols-consed", symbols_consed,
6225 doc: /* Number of symbols that have been consed so far. */);
6227 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6228 doc: /* Number of string characters that have been consed so far. */);
6230 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6231 doc: /* Number of miscellaneous objects that have been consed so far. */);
6233 DEFVAR_INT ("intervals-consed", intervals_consed,
6234 doc: /* Number of intervals that have been consed so far. */);
6236 DEFVAR_INT ("strings-consed", strings_consed,
6237 doc: /* Number of strings that have been consed so far. */);
6239 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6240 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6241 This means that certain objects should be allocated in shared (pure) space.
6242 It can also be set to a hash-table, in which case this table is used to
6243 do hash-consing of the objects allocated to pure space. */);
6245 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6246 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6247 garbage_collection_messages = 0;
6249 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6250 doc: /* Hook run after garbage collection has finished. */);
6251 Vpost_gc_hook = Qnil;
6252 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6253 staticpro (&Qpost_gc_hook);
6255 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6256 doc: /* Precomputed `signal' argument for memory-full error. */);
6257 /* We build this in advance because if we wait until we need it, we might
6258 not be able to allocate the memory to hold it. */
6259 Vmemory_signal_data
6260 = pure_cons (Qerror,
6261 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6263 DEFVAR_LISP ("memory-full", Vmemory_full,
6264 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6265 Vmemory_full = Qnil;
6267 staticpro (&Qgc_cons_threshold);
6268 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6270 staticpro (&Qchar_table_extra_slots);
6271 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6273 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6274 doc: /* Accumulated time elapsed in garbage collections.
6275 The time is in seconds as a floating point value. */);
6276 DEFVAR_INT ("gcs-done", gcs_done,
6277 doc: /* Accumulated number of garbage collections done. */);
6279 defsubr (&Scons);
6280 defsubr (&Slist);
6281 defsubr (&Svector);
6282 defsubr (&Smake_byte_code);
6283 defsubr (&Smake_list);
6284 defsubr (&Smake_vector);
6285 defsubr (&Smake_string);
6286 defsubr (&Smake_bool_vector);
6287 defsubr (&Smake_symbol);
6288 defsubr (&Smake_marker);
6289 defsubr (&Spurecopy);
6290 defsubr (&Sgarbage_collect);
6291 defsubr (&Smemory_limit);
6292 defsubr (&Smemory_use_counts);
6294 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6295 defsubr (&Sgc_status);
6296 #endif