1 /* Code for doing intervals.
2 Copyright (C) 1993, 1994, 1995, 1997, 1998, 2002 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
24 Have to ensure that we can't put symbol nil on a plist, or some
25 functions may work incorrectly.
27 An idea: Have the owner of the tree keep count of splits and/or
28 insertion lengths (in intervals), and balance after every N.
30 Need to call *_left_hook when buffer is killed.
32 Scan for zero-length, or 0-length to see notes about handling
33 zero length interval-markers.
35 There are comments around about freeing intervals. It might be
36 faster to explicitly free them (put them on the free list) than
44 #include "intervals.h"
50 /* Test for membership, allowing for t (actually any non-cons) to mean the
53 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
55 Lisp_Object
merge_properties_sticky ();
56 static INTERVAL reproduce_tree
P_ ((INTERVAL
, INTERVAL
));
57 static INTERVAL reproduce_tree_obj
P_ ((INTERVAL
, Lisp_Object
));
59 /* Utility functions for intervals. */
62 /* Create the root interval of some object, a buffer or string. */
65 create_root_interval (parent
)
70 CHECK_IMPURE (parent
);
72 new = make_interval ();
76 new->total_length
= (BUF_Z (XBUFFER (parent
))
77 - BUF_BEG (XBUFFER (parent
)));
78 BUF_INTERVALS (XBUFFER (parent
)) = new;
81 else if (STRINGP (parent
))
83 new->total_length
= SCHARS (parent
);
84 STRING_SET_INTERVALS (parent
, new);
88 SET_INTERVAL_OBJECT (new, parent
);
93 /* Make the interval TARGET have exactly the properties of SOURCE */
96 copy_properties (source
, target
)
97 register INTERVAL source
, target
;
99 if (DEFAULT_INTERVAL_P (source
) && DEFAULT_INTERVAL_P (target
))
102 COPY_INTERVAL_CACHE (source
, target
);
103 target
->plist
= Fcopy_sequence (source
->plist
);
106 /* Merge the properties of interval SOURCE into the properties
107 of interval TARGET. That is to say, each property in SOURCE
108 is added to TARGET if TARGET has no such property as yet. */
111 merge_properties (source
, target
)
112 register INTERVAL source
, target
;
114 register Lisp_Object o
, sym
, val
;
116 if (DEFAULT_INTERVAL_P (source
) && DEFAULT_INTERVAL_P (target
))
119 MERGE_INTERVAL_CACHE (source
, target
);
122 while (! EQ (o
, Qnil
))
125 val
= Fmemq (sym
, target
->plist
);
131 target
->plist
= Fcons (sym
, Fcons (val
, target
->plist
));
139 /* Return 1 if the two intervals have the same properties,
143 intervals_equal (i0
, i1
)
146 register Lisp_Object i0_cdr
, i0_sym
, i1_val
;
149 if (DEFAULT_INTERVAL_P (i0
) && DEFAULT_INTERVAL_P (i1
))
152 if (DEFAULT_INTERVAL_P (i0
) || DEFAULT_INTERVAL_P (i1
))
155 i1_len
= XFASTINT (Flength (i1
->plist
));
156 if (i1_len
& 0x1) /* Paranoia -- plists are always even */
160 while (!NILP (i0_cdr
))
162 /* Lengths of the two plists were unequal. */
166 i0_sym
= Fcar (i0_cdr
);
167 i1_val
= Fmemq (i0_sym
, i1
->plist
);
169 /* i0 has something i1 doesn't. */
170 if (EQ (i1_val
, Qnil
))
173 /* i0 and i1 both have sym, but it has different values in each. */
174 i0_cdr
= Fcdr (i0_cdr
);
175 if (! EQ (Fcar (Fcdr (i1_val
)), Fcar (i0_cdr
)))
178 i0_cdr
= Fcdr (i0_cdr
);
182 /* Lengths of the two plists were unequal. */
190 /* Traverse an interval tree TREE, performing FUNCTION on each node.
191 No guarantee is made about the order of traversal.
192 Pass FUNCTION two args: an interval, and ARG. */
195 traverse_intervals_noorder (tree
, function
, arg
)
197 void (* function
) P_ ((INTERVAL
, Lisp_Object
));
200 /* Minimize stack usage. */
201 while (!NULL_INTERVAL_P (tree
))
203 (*function
) (tree
, arg
);
204 if (NULL_INTERVAL_P (tree
->right
))
208 traverse_intervals_noorder (tree
->left
, function
, arg
);
214 /* Traverse an interval tree TREE, performing FUNCTION on each node.
215 Pass FUNCTION two args: an interval, and ARG. */
218 traverse_intervals (tree
, position
, function
, arg
)
221 void (* function
) P_ ((INTERVAL
, Lisp_Object
));
224 while (!NULL_INTERVAL_P (tree
))
226 traverse_intervals (tree
->left
, position
, function
, arg
);
227 position
+= LEFT_TOTAL_LENGTH (tree
);
228 tree
->position
= position
;
229 (*function
) (tree
, arg
);
230 position
+= LENGTH (tree
); tree
= tree
->right
;
238 static int zero_length
;
240 /* These functions are temporary, for debugging purposes only. */
242 INTERVAL search_interval
, found_interval
;
245 check_for_interval (i
)
248 if (i
== search_interval
)
256 search_for_interval (i
, tree
)
257 register INTERVAL i
, tree
;
261 found_interval
= NULL_INTERVAL
;
262 traverse_intervals_noorder (tree
, &check_for_interval
, Qnil
);
263 return found_interval
;
267 inc_interval_count (i
)
284 traverse_intervals_noorder (i
, &inc_interval_count
, Qnil
);
290 root_interval (interval
)
293 register INTERVAL i
= interval
;
295 while (! ROOT_INTERVAL_P (i
))
296 i
= INTERVAL_PARENT (i
);
302 /* Assuming that a left child exists, perform the following operation:
311 static INLINE INTERVAL
312 rotate_right (interval
)
316 INTERVAL B
= interval
->left
;
317 int old_total
= interval
->total_length
;
319 /* Deal with any Parent of A; make it point to B. */
320 if (! ROOT_INTERVAL_P (interval
))
322 if (AM_LEFT_CHILD (interval
))
323 INTERVAL_PARENT (interval
)->left
= B
;
325 INTERVAL_PARENT (interval
)->right
= B
;
327 COPY_INTERVAL_PARENT (B
, interval
);
329 /* Make B the parent of A */
332 SET_INTERVAL_PARENT (interval
, B
);
334 /* Make A point to c */
336 if (! NULL_INTERVAL_P (i
))
337 SET_INTERVAL_PARENT (i
, interval
);
339 /* A's total length is decreased by the length of B and its left child. */
340 interval
->total_length
-= B
->total_length
- LEFT_TOTAL_LENGTH (interval
);
342 /* B must have the same total length of A. */
343 B
->total_length
= old_total
;
348 /* Assuming that a right child exists, perform the following operation:
357 static INLINE INTERVAL
358 rotate_left (interval
)
362 INTERVAL B
= interval
->right
;
363 int old_total
= interval
->total_length
;
365 /* Deal with any parent of A; make it point to B. */
366 if (! ROOT_INTERVAL_P (interval
))
368 if (AM_LEFT_CHILD (interval
))
369 INTERVAL_PARENT (interval
)->left
= B
;
371 INTERVAL_PARENT (interval
)->right
= B
;
373 COPY_INTERVAL_PARENT (B
, interval
);
375 /* Make B the parent of A */
378 SET_INTERVAL_PARENT (interval
, B
);
380 /* Make A point to c */
382 if (! NULL_INTERVAL_P (i
))
383 SET_INTERVAL_PARENT (i
, interval
);
385 /* A's total length is decreased by the length of B and its right child. */
386 interval
->total_length
-= B
->total_length
- RIGHT_TOTAL_LENGTH (interval
);
388 /* B must have the same total length of A. */
389 B
->total_length
= old_total
;
394 /* Balance an interval tree with the assumption that the subtrees
395 themselves are already balanced. */
398 balance_an_interval (i
)
401 register int old_diff
, new_diff
;
405 old_diff
= LEFT_TOTAL_LENGTH (i
) - RIGHT_TOTAL_LENGTH (i
);
408 new_diff
= i
->total_length
- i
->left
->total_length
409 + RIGHT_TOTAL_LENGTH (i
->left
) - LEFT_TOTAL_LENGTH (i
->left
);
410 if (abs (new_diff
) >= old_diff
)
412 i
= rotate_right (i
);
413 balance_an_interval (i
->right
);
415 else if (old_diff
< 0)
417 new_diff
= i
->total_length
- i
->right
->total_length
418 + LEFT_TOTAL_LENGTH (i
->right
) - RIGHT_TOTAL_LENGTH (i
->right
);
419 if (abs (new_diff
) >= -old_diff
)
422 balance_an_interval (i
->left
);
430 /* Balance INTERVAL, potentially stuffing it back into its parent
433 static INLINE INTERVAL
434 balance_possible_root_interval (interval
)
435 register INTERVAL interval
;
440 if (!INTERVAL_HAS_OBJECT (interval
) && !INTERVAL_HAS_PARENT (interval
))
443 if (INTERVAL_HAS_OBJECT (interval
))
446 GET_INTERVAL_OBJECT (parent
, interval
);
448 interval
= balance_an_interval (interval
);
452 if (BUFFERP (parent
))
453 BUF_INTERVALS (XBUFFER (parent
)) = interval
;
454 else if (STRINGP (parent
))
455 STRING_SET_INTERVALS (parent
, interval
);
461 /* Balance the interval tree TREE. Balancing is by weight
462 (the amount of text). */
465 balance_intervals_internal (tree
)
466 register INTERVAL tree
;
468 /* Balance within each side. */
470 balance_intervals_internal (tree
->left
);
472 balance_intervals_internal (tree
->right
);
473 return balance_an_interval (tree
);
476 /* Advertised interface to balance intervals. */
479 balance_intervals (tree
)
482 if (tree
== NULL_INTERVAL
)
483 return NULL_INTERVAL
;
485 return balance_intervals_internal (tree
);
488 /* Split INTERVAL into two pieces, starting the second piece at
489 character position OFFSET (counting from 0), relative to INTERVAL.
490 INTERVAL becomes the left-hand piece, and the right-hand piece
491 (second, lexicographically) is returned.
493 The size and position fields of the two intervals are set based upon
494 those of the original interval. The property list of the new interval
495 is reset, thus it is up to the caller to do the right thing with the
498 Note that this does not change the position of INTERVAL; if it is a root,
499 it is still a root after this operation. */
502 split_interval_right (interval
, offset
)
506 INTERVAL
new = make_interval ();
507 int position
= interval
->position
;
508 int new_length
= LENGTH (interval
) - offset
;
510 new->position
= position
+ offset
;
511 SET_INTERVAL_PARENT (new, interval
);
513 if (NULL_RIGHT_CHILD (interval
))
515 interval
->right
= new;
516 new->total_length
= new_length
;
520 /* Insert the new node between INTERVAL and its right child. */
521 new->right
= interval
->right
;
522 SET_INTERVAL_PARENT (interval
->right
, new);
523 interval
->right
= new;
524 new->total_length
= new_length
+ new->right
->total_length
;
525 balance_an_interval (new);
528 balance_possible_root_interval (interval
);
533 /* Split INTERVAL into two pieces, starting the second piece at
534 character position OFFSET (counting from 0), relative to INTERVAL.
535 INTERVAL becomes the right-hand piece, and the left-hand piece
536 (first, lexicographically) is returned.
538 The size and position fields of the two intervals are set based upon
539 those of the original interval. The property list of the new interval
540 is reset, thus it is up to the caller to do the right thing with the
543 Note that this does not change the position of INTERVAL; if it is a root,
544 it is still a root after this operation. */
547 split_interval_left (interval
, offset
)
551 INTERVAL
new = make_interval ();
552 int new_length
= offset
;
554 new->position
= interval
->position
;
555 interval
->position
= interval
->position
+ offset
;
556 SET_INTERVAL_PARENT (new, interval
);
558 if (NULL_LEFT_CHILD (interval
))
560 interval
->left
= new;
561 new->total_length
= new_length
;
565 /* Insert the new node between INTERVAL and its left child. */
566 new->left
= interval
->left
;
567 SET_INTERVAL_PARENT (new->left
, new);
568 interval
->left
= new;
569 new->total_length
= new_length
+ new->left
->total_length
;
570 balance_an_interval (new);
573 balance_possible_root_interval (interval
);
578 /* Return the proper position for the first character
579 described by the interval tree SOURCE.
580 This is 1 if the parent is a buffer,
581 0 if the parent is a string or if there is no parent.
583 Don't use this function on an interval which is the child
584 of another interval! */
587 interval_start_pos (source
)
592 if (NULL_INTERVAL_P (source
))
595 if (! INTERVAL_HAS_OBJECT (source
))
597 GET_INTERVAL_OBJECT (parent
, source
);
598 if (BUFFERP (parent
))
599 return BUF_BEG (XBUFFER (parent
));
603 /* Find the interval containing text position POSITION in the text
604 represented by the interval tree TREE. POSITION is a buffer
605 position (starting from 1) or a string index (starting from 0).
606 If POSITION is at the end of the buffer or string,
607 return the interval containing the last character.
609 The `position' field, which is a cache of an interval's position,
610 is updated in the interval found. Other functions (e.g., next_interval)
611 will update this cache based on the result of find_interval. */
614 find_interval (tree
, position
)
615 register INTERVAL tree
;
616 register int position
;
618 /* The distance from the left edge of the subtree at TREE
620 register int relative_position
;
622 if (NULL_INTERVAL_P (tree
))
623 return NULL_INTERVAL
;
625 relative_position
= position
;
626 if (INTERVAL_HAS_OBJECT (tree
))
629 GET_INTERVAL_OBJECT (parent
, tree
);
630 if (BUFFERP (parent
))
631 relative_position
-= BUF_BEG (XBUFFER (parent
));
634 if (relative_position
> TOTAL_LENGTH (tree
))
635 abort (); /* Paranoia */
637 if (!handling_signal
)
638 tree
= balance_possible_root_interval (tree
);
642 if (relative_position
< LEFT_TOTAL_LENGTH (tree
))
646 else if (! NULL_RIGHT_CHILD (tree
)
647 && relative_position
>= (TOTAL_LENGTH (tree
)
648 - RIGHT_TOTAL_LENGTH (tree
)))
650 relative_position
-= (TOTAL_LENGTH (tree
)
651 - RIGHT_TOTAL_LENGTH (tree
));
657 = (position
- relative_position
/* the left edge of *tree */
658 + LEFT_TOTAL_LENGTH (tree
)); /* the left edge of this interval */
665 /* Find the succeeding interval (lexicographically) to INTERVAL.
666 Sets the `position' field based on that of INTERVAL (see
670 next_interval (interval
)
671 register INTERVAL interval
;
673 register INTERVAL i
= interval
;
674 register int next_position
;
676 if (NULL_INTERVAL_P (i
))
677 return NULL_INTERVAL
;
678 next_position
= interval
->position
+ LENGTH (interval
);
680 if (! NULL_RIGHT_CHILD (i
))
683 while (! NULL_LEFT_CHILD (i
))
686 i
->position
= next_position
;
690 while (! NULL_PARENT (i
))
692 if (AM_LEFT_CHILD (i
))
694 i
= INTERVAL_PARENT (i
);
695 i
->position
= next_position
;
699 i
= INTERVAL_PARENT (i
);
702 return NULL_INTERVAL
;
705 /* Find the preceding interval (lexicographically) to INTERVAL.
706 Sets the `position' field based on that of INTERVAL (see
710 previous_interval (interval
)
711 register INTERVAL interval
;
715 if (NULL_INTERVAL_P (interval
))
716 return NULL_INTERVAL
;
718 if (! NULL_LEFT_CHILD (interval
))
721 while (! NULL_RIGHT_CHILD (i
))
724 i
->position
= interval
->position
- LENGTH (i
);
729 while (! NULL_PARENT (i
))
731 if (AM_RIGHT_CHILD (i
))
733 i
= INTERVAL_PARENT (i
);
735 i
->position
= interval
->position
- LENGTH (i
);
738 i
= INTERVAL_PARENT (i
);
741 return NULL_INTERVAL
;
744 /* Find the interval containing POS given some non-NULL INTERVAL
745 in the same tree. Note that we need to update interval->position
746 if we go down the tree.
747 To speed up the process, we assume that the ->position of
748 I and all its parents is already uptodate. */
750 update_interval (i
, pos
)
754 if (NULL_INTERVAL_P (i
))
755 return NULL_INTERVAL
;
759 if (pos
< i
->position
)
762 if (pos
>= i
->position
- TOTAL_LENGTH (i
->left
))
764 i
->left
->position
= i
->position
- TOTAL_LENGTH (i
->left
)
765 + LEFT_TOTAL_LENGTH (i
->left
);
766 i
= i
->left
; /* Move to the left child */
768 else if (NULL_PARENT (i
))
769 error ("Point before start of properties");
771 i
= INTERVAL_PARENT (i
);
774 else if (pos
>= INTERVAL_LAST_POS (i
))
777 if (pos
< INTERVAL_LAST_POS (i
) + TOTAL_LENGTH (i
->right
))
779 i
->right
->position
= INTERVAL_LAST_POS (i
) +
780 LEFT_TOTAL_LENGTH (i
->right
);
781 i
= i
->right
; /* Move to the right child */
783 else if (NULL_PARENT (i
))
784 error ("Point after end of properties");
786 i
= INTERVAL_PARENT (i
);
796 /* Traverse a path down the interval tree TREE to the interval
797 containing POSITION, adjusting all nodes on the path for
798 an addition of LENGTH characters. Insertion between two intervals
799 (i.e., point == i->position, where i is second interval) means
800 text goes into second interval.
802 Modifications are needed to handle the hungry bits -- after simply
803 finding the interval at position (don't add length going down),
804 if it's the beginning of the interval, get the previous interval
805 and check the hungry bits of both. Then add the length going back up
809 adjust_intervals_for_insertion (tree
, position
, length
)
811 int position
, length
;
813 register int relative_position
;
814 register INTERVAL
this;
816 if (TOTAL_LENGTH (tree
) == 0) /* Paranoia */
819 /* If inserting at point-max of a buffer, that position
820 will be out of range */
821 if (position
> TOTAL_LENGTH (tree
))
822 position
= TOTAL_LENGTH (tree
);
823 relative_position
= position
;
828 if (relative_position
<= LEFT_TOTAL_LENGTH (this))
830 this->total_length
+= length
;
833 else if (relative_position
> (TOTAL_LENGTH (this)
834 - RIGHT_TOTAL_LENGTH (this)))
836 relative_position
-= (TOTAL_LENGTH (this)
837 - RIGHT_TOTAL_LENGTH (this));
838 this->total_length
+= length
;
843 /* If we are to use zero-length intervals as buffer pointers,
844 then this code will have to change. */
845 this->total_length
+= length
;
846 this->position
= LEFT_TOTAL_LENGTH (this)
847 + position
- relative_position
+ 1;
854 /* Effect an adjustment corresponding to the addition of LENGTH characters
855 of text. Do this by finding the interval containing POSITION in the
856 interval tree TREE, and then adjusting all of its ancestors by adding
859 If POSITION is the first character of an interval, meaning that point
860 is actually between the two intervals, make the new text belong to
861 the interval which is "sticky".
863 If both intervals are "sticky", then make them belong to the left-most
864 interval. Another possibility would be to create a new interval for
865 this text, and make it have the merged properties of both ends. */
868 adjust_intervals_for_insertion (tree
, position
, length
)
870 int position
, length
;
873 register INTERVAL temp
;
878 if (TOTAL_LENGTH (tree
) == 0) /* Paranoia */
881 GET_INTERVAL_OBJECT (parent
, tree
);
882 offset
= (BUFFERP (parent
) ? BUF_BEG (XBUFFER (parent
)) : 0);
884 /* If inserting at point-max of a buffer, that position will be out
885 of range. Remember that buffer positions are 1-based. */
886 if (position
>= TOTAL_LENGTH (tree
) + offset
)
888 position
= TOTAL_LENGTH (tree
) + offset
;
892 i
= find_interval (tree
, position
);
894 /* If in middle of an interval which is not sticky either way,
895 we must not just give its properties to the insertion.
896 So split this interval at the insertion point.
898 Originally, the if condition here was this:
899 (! (position == i->position || eobp)
900 && END_NONSTICKY_P (i)
901 && FRONT_NONSTICKY_P (i))
902 But, these macros are now unreliable because of introduction of
903 Vtext_property_default_nonsticky. So, we always check properties
904 one by one if POSITION is in middle of an interval. */
905 if (! (position
== i
->position
|| eobp
))
908 Lisp_Object front
, rear
;
912 /* Properties font-sticky and rear-nonsticky override
913 Vtext_property_default_nonsticky. So, if they are t, we can
914 skip one by one checking of properties. */
915 rear
= textget (i
->plist
, Qrear_nonsticky
);
916 if (! CONSP (rear
) && ! NILP (rear
))
918 /* All properties are nonsticky. We split the interval. */
921 front
= textget (i
->plist
, Qfront_sticky
);
922 if (! CONSP (front
) && ! NILP (front
))
924 /* All properties are sticky. We don't split the interval. */
929 /* Does any actual property pose an actual problem? We break
930 the loop if we find a nonsticky property. */
931 for (; CONSP (tail
); tail
= Fcdr (XCDR (tail
)))
933 Lisp_Object prop
, tmp
;
936 /* Is this particular property front-sticky? */
937 if (CONSP (front
) && ! NILP (Fmemq (prop
, front
)))
940 /* Is this particular property rear-nonsticky? */
941 if (CONSP (rear
) && ! NILP (Fmemq (prop
, rear
)))
944 /* Is this particular property recorded as sticky or
945 nonsticky in Vtext_property_default_nonsticky? */
946 tmp
= Fassq (prop
, Vtext_property_default_nonsticky
);
954 /* By default, a text property is rear-sticky, thus we
955 continue the loop. */
959 /* If any property is a real problem, split the interval. */
962 temp
= split_interval_right (i
, position
- i
->position
);
963 copy_properties (i
, temp
);
968 /* If we are positioned between intervals, check the stickiness of
969 both of them. We have to do this too, if we are at BEG or Z. */
970 if (position
== i
->position
|| eobp
)
972 register INTERVAL prev
;
982 prev
= previous_interval (i
);
984 /* Even if we are positioned between intervals, we default
985 to the left one if it exists. We extend it now and split
986 off a part later, if stickiness demands it. */
987 for (temp
= prev
? prev
: i
; temp
; temp
= INTERVAL_PARENT_OR_NULL (temp
))
989 temp
->total_length
+= length
;
990 temp
= balance_possible_root_interval (temp
);
993 /* If at least one interval has sticky properties,
994 we check the stickiness property by property.
996 Originally, the if condition here was this:
997 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
998 But, these macros are now unreliable because of introduction
999 of Vtext_property_default_nonsticky. So, we always have to
1000 check stickiness of properties one by one. If cache of
1001 stickiness is implemented in the future, we may be able to
1002 use those macros again. */
1005 Lisp_Object pleft
, pright
;
1006 struct interval newi
;
1008 pleft
= NULL_INTERVAL_P (prev
) ? Qnil
: prev
->plist
;
1009 pright
= NULL_INTERVAL_P (i
) ? Qnil
: i
->plist
;
1010 newi
.plist
= merge_properties_sticky (pleft
, pright
);
1012 if (! prev
) /* i.e. position == BEG */
1014 if (! intervals_equal (i
, &newi
))
1016 i
= split_interval_left (i
, length
);
1017 i
->plist
= newi
.plist
;
1020 else if (! intervals_equal (prev
, &newi
))
1022 prev
= split_interval_right (prev
,
1023 position
- prev
->position
);
1024 prev
->plist
= newi
.plist
;
1025 if (! NULL_INTERVAL_P (i
)
1026 && intervals_equal (prev
, i
))
1027 merge_interval_right (prev
);
1030 /* We will need to update the cache here later. */
1032 else if (! prev
&& ! NILP (i
->plist
))
1034 /* Just split off a new interval at the left.
1035 Since I wasn't front-sticky, the empty plist is ok. */
1036 i
= split_interval_left (i
, length
);
1040 /* Otherwise just extend the interval. */
1043 for (temp
= i
; temp
; temp
= INTERVAL_PARENT_OR_NULL (temp
))
1045 temp
->total_length
+= length
;
1046 temp
= balance_possible_root_interval (temp
);
1053 /* Any property might be front-sticky on the left, rear-sticky on the left,
1054 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1055 can be arranged in a matrix with rows denoting the left conditions and
1056 columns denoting the right conditions:
1064 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1065 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1066 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1067 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1068 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1069 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1070 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1071 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1073 We inherit from whoever has a sticky side facing us. If both sides
1074 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1075 non-nil value for the current property. If both sides do, then we take
1078 When we inherit a property, we get its stickiness as well as its value.
1079 So, when we merge the above two lists, we expect to get this:
1081 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1082 rear-nonsticky (p6 pa)
1083 p0 L p1 L p2 L p3 L p6 R p7 R
1084 pa R pb R pc L pd L pe L pf L)
1086 The optimizable special cases are:
1087 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1088 left rear-nonsticky = t, right front-sticky = t (inherit right)
1089 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1093 merge_properties_sticky (pleft
, pright
)
1094 Lisp_Object pleft
, pright
;
1096 register Lisp_Object props
, front
, rear
;
1097 Lisp_Object lfront
, lrear
, rfront
, rrear
;
1098 register Lisp_Object tail1
, tail2
, sym
, lval
, rval
, cat
;
1099 int use_left
, use_right
;
1105 lfront
= textget (pleft
, Qfront_sticky
);
1106 lrear
= textget (pleft
, Qrear_nonsticky
);
1107 rfront
= textget (pright
, Qfront_sticky
);
1108 rrear
= textget (pright
, Qrear_nonsticky
);
1110 /* Go through each element of PRIGHT. */
1111 for (tail1
= pright
; CONSP (tail1
); tail1
= Fcdr (Fcdr (tail1
)))
1117 /* Sticky properties get special treatment. */
1118 if (EQ (sym
, Qrear_nonsticky
) || EQ (sym
, Qfront_sticky
))
1121 rval
= Fcar (Fcdr (tail1
));
1122 for (tail2
= pleft
; CONSP (tail2
); tail2
= Fcdr (Fcdr (tail2
)))
1123 if (EQ (sym
, Fcar (tail2
)))
1126 /* Indicate whether the property is explicitly defined on the left.
1127 (We know it is defined explicitly on the right
1128 because otherwise we don't get here.) */
1129 lpresent
= ! NILP (tail2
);
1130 lval
= (NILP (tail2
) ? Qnil
: Fcar (Fcdr (tail2
)));
1132 /* Even if lrear or rfront say nothing about the stickiness of
1133 SYM, Vtext_property_default_nonsticky may give default
1134 stickiness to SYM. */
1135 tmp
= Fassq (sym
, Vtext_property_default_nonsticky
);
1136 use_left
= (lpresent
1137 && ! (TMEM (sym
, lrear
)
1138 || (CONSP (tmp
) && ! NILP (XCDR (tmp
)))));
1139 use_right
= (TMEM (sym
, rfront
)
1140 || (CONSP (tmp
) && NILP (XCDR (tmp
))));
1141 if (use_left
&& use_right
)
1145 else if (NILP (rval
))
1150 /* We build props as (value sym ...) rather than (sym value ...)
1151 because we plan to nreverse it when we're done. */
1152 props
= Fcons (lval
, Fcons (sym
, props
));
1153 if (TMEM (sym
, lfront
))
1154 front
= Fcons (sym
, front
);
1155 if (TMEM (sym
, lrear
))
1156 rear
= Fcons (sym
, rear
);
1160 props
= Fcons (rval
, Fcons (sym
, props
));
1161 if (TMEM (sym
, rfront
))
1162 front
= Fcons (sym
, front
);
1163 if (TMEM (sym
, rrear
))
1164 rear
= Fcons (sym
, rear
);
1168 /* Now go through each element of PLEFT. */
1169 for (tail2
= pleft
; CONSP (tail2
); tail2
= Fcdr (Fcdr (tail2
)))
1175 /* Sticky properties get special treatment. */
1176 if (EQ (sym
, Qrear_nonsticky
) || EQ (sym
, Qfront_sticky
))
1179 /* If sym is in PRIGHT, we've already considered it. */
1180 for (tail1
= pright
; CONSP (tail1
); tail1
= Fcdr (Fcdr (tail1
)))
1181 if (EQ (sym
, Fcar (tail1
)))
1186 lval
= Fcar (Fcdr (tail2
));
1188 /* Even if lrear or rfront say nothing about the stickiness of
1189 SYM, Vtext_property_default_nonsticky may give default
1190 stickiness to SYM. */
1191 tmp
= Fassq (sym
, Vtext_property_default_nonsticky
);
1193 /* Since rval is known to be nil in this loop, the test simplifies. */
1194 if (! (TMEM (sym
, lrear
) || (CONSP (tmp
) && ! NILP (XCDR (tmp
)))))
1196 props
= Fcons (lval
, Fcons (sym
, props
));
1197 if (TMEM (sym
, lfront
))
1198 front
= Fcons (sym
, front
);
1200 else if (TMEM (sym
, rfront
) || (CONSP (tmp
) && NILP (XCDR (tmp
))))
1202 /* The value is nil, but we still inherit the stickiness
1204 front
= Fcons (sym
, front
);
1205 if (TMEM (sym
, rrear
))
1206 rear
= Fcons (sym
, rear
);
1209 props
= Fnreverse (props
);
1211 props
= Fcons (Qrear_nonsticky
, Fcons (Fnreverse (rear
), props
));
1213 cat
= textget (props
, Qcategory
);
1216 /* If we have inherited a front-stick category property that is t,
1217 we don't need to set up a detailed one. */
1218 ! (! NILP (cat
) && SYMBOLP (cat
)
1219 && EQ (Fget (cat
, Qfront_sticky
), Qt
)))
1220 props
= Fcons (Qfront_sticky
, Fcons (Fnreverse (front
), props
));
1225 /* Delete an node I from its interval tree by merging its subtrees
1226 into one subtree which is then returned. Caller is responsible for
1227 storing the resulting subtree into its parent. */
1231 register INTERVAL i
;
1233 register INTERVAL migrate
, this;
1234 register int migrate_amt
;
1236 if (NULL_INTERVAL_P (i
->left
))
1238 if (NULL_INTERVAL_P (i
->right
))
1242 migrate_amt
= i
->left
->total_length
;
1244 this->total_length
+= migrate_amt
;
1245 while (! NULL_INTERVAL_P (this->left
))
1248 this->total_length
+= migrate_amt
;
1250 this->left
= migrate
;
1251 SET_INTERVAL_PARENT (migrate
, this);
1256 /* Delete interval I from its tree by calling `delete_node'
1257 and properly connecting the resultant subtree.
1259 I is presumed to be empty; that is, no adjustments are made
1260 for the length of I. */
1264 register INTERVAL i
;
1266 register INTERVAL parent
;
1267 int amt
= LENGTH (i
);
1269 if (amt
> 0) /* Only used on zero-length intervals now. */
1272 if (ROOT_INTERVAL_P (i
))
1275 GET_INTERVAL_OBJECT (owner
, i
);
1276 parent
= delete_node (i
);
1277 if (! NULL_INTERVAL_P (parent
))
1278 SET_INTERVAL_OBJECT (parent
, owner
);
1280 if (BUFFERP (owner
))
1281 BUF_INTERVALS (XBUFFER (owner
)) = parent
;
1282 else if (STRINGP (owner
))
1283 STRING_SET_INTERVALS (owner
, parent
);
1290 parent
= INTERVAL_PARENT (i
);
1291 if (AM_LEFT_CHILD (i
))
1293 parent
->left
= delete_node (i
);
1294 if (! NULL_INTERVAL_P (parent
->left
))
1295 SET_INTERVAL_PARENT (parent
->left
, parent
);
1299 parent
->right
= delete_node (i
);
1300 if (! NULL_INTERVAL_P (parent
->right
))
1301 SET_INTERVAL_PARENT (parent
->right
, parent
);
1305 /* Find the interval in TREE corresponding to the relative position
1306 FROM and delete as much as possible of AMOUNT from that interval.
1307 Return the amount actually deleted, and if the interval was
1308 zeroed-out, delete that interval node from the tree.
1310 Note that FROM is actually origin zero, aka relative to the
1311 leftmost edge of tree. This is appropriate since we call ourselves
1312 recursively on subtrees.
1314 Do this by recursing down TREE to the interval in question, and
1315 deleting the appropriate amount of text. */
1318 interval_deletion_adjustment (tree
, from
, amount
)
1319 register INTERVAL tree
;
1320 register int from
, amount
;
1322 register int relative_position
= from
;
1324 if (NULL_INTERVAL_P (tree
))
1328 if (relative_position
< LEFT_TOTAL_LENGTH (tree
))
1330 int subtract
= interval_deletion_adjustment (tree
->left
,
1333 tree
->total_length
-= subtract
;
1337 else if (relative_position
>= (TOTAL_LENGTH (tree
)
1338 - RIGHT_TOTAL_LENGTH (tree
)))
1342 relative_position
-= (tree
->total_length
1343 - RIGHT_TOTAL_LENGTH (tree
));
1344 subtract
= interval_deletion_adjustment (tree
->right
,
1347 tree
->total_length
-= subtract
;
1350 /* Here -- this node. */
1353 /* How much can we delete from this interval? */
1354 int my_amount
= ((tree
->total_length
1355 - RIGHT_TOTAL_LENGTH (tree
))
1356 - relative_position
);
1358 if (amount
> my_amount
)
1361 tree
->total_length
-= amount
;
1362 if (LENGTH (tree
) == 0)
1363 delete_interval (tree
);
1368 /* Never reach here. */
1371 /* Effect the adjustments necessary to the interval tree of BUFFER to
1372 correspond to the deletion of LENGTH characters from that buffer
1373 text. The deletion is effected at position START (which is a
1374 buffer position, i.e. origin 1). */
1377 adjust_intervals_for_deletion (buffer
, start
, length
)
1378 struct buffer
*buffer
;
1381 register int left_to_delete
= length
;
1382 register INTERVAL tree
= BUF_INTERVALS (buffer
);
1386 GET_INTERVAL_OBJECT (parent
, tree
);
1387 offset
= (BUFFERP (parent
) ? BUF_BEG (XBUFFER (parent
)) : 0);
1389 if (NULL_INTERVAL_P (tree
))
1392 if (start
> offset
+ TOTAL_LENGTH (tree
)
1393 || start
+ length
> offset
+ TOTAL_LENGTH (tree
))
1396 if (length
== TOTAL_LENGTH (tree
))
1398 BUF_INTERVALS (buffer
) = NULL_INTERVAL
;
1402 if (ONLY_INTERVAL_P (tree
))
1404 tree
->total_length
-= length
;
1408 if (start
> offset
+ TOTAL_LENGTH (tree
))
1409 start
= offset
+ TOTAL_LENGTH (tree
);
1410 while (left_to_delete
> 0)
1412 left_to_delete
-= interval_deletion_adjustment (tree
, start
- offset
,
1414 tree
= BUF_INTERVALS (buffer
);
1415 if (left_to_delete
== tree
->total_length
)
1417 BUF_INTERVALS (buffer
) = NULL_INTERVAL
;
1423 /* Make the adjustments necessary to the interval tree of BUFFER to
1424 represent an addition or deletion of LENGTH characters starting
1425 at position START. Addition or deletion is indicated by the sign
1429 offset_intervals (buffer
, start
, length
)
1430 struct buffer
*buffer
;
1433 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer
)) || length
== 0)
1437 adjust_intervals_for_insertion (BUF_INTERVALS (buffer
), start
, length
);
1439 adjust_intervals_for_deletion (buffer
, start
, -length
);
1442 /* Merge interval I with its lexicographic successor. The resulting
1443 interval is returned, and has the properties of the original
1444 successor. The properties of I are lost. I is removed from the
1448 The caller must verify that this is not the last (rightmost)
1452 merge_interval_right (i
)
1453 register INTERVAL i
;
1455 register int absorb
= LENGTH (i
);
1456 register INTERVAL successor
;
1458 /* Zero out this interval. */
1459 i
->total_length
-= absorb
;
1461 /* Find the succeeding interval. */
1462 if (! NULL_RIGHT_CHILD (i
)) /* It's below us. Add absorb
1465 successor
= i
->right
;
1466 while (! NULL_LEFT_CHILD (successor
))
1468 successor
->total_length
+= absorb
;
1469 successor
= successor
->left
;
1472 successor
->total_length
+= absorb
;
1473 delete_interval (i
);
1478 while (! NULL_PARENT (successor
)) /* It's above us. Subtract as
1481 if (AM_LEFT_CHILD (successor
))
1483 successor
= INTERVAL_PARENT (successor
);
1484 delete_interval (i
);
1488 successor
= INTERVAL_PARENT (successor
);
1489 successor
->total_length
-= absorb
;
1492 /* This must be the rightmost or last interval and cannot
1493 be merged right. The caller should have known. */
1497 /* Merge interval I with its lexicographic predecessor. The resulting
1498 interval is returned, and has the properties of the original predecessor.
1499 The properties of I are lost. Interval node I is removed from the tree.
1502 The caller must verify that this is not the first (leftmost) interval. */
1505 merge_interval_left (i
)
1506 register INTERVAL i
;
1508 register int absorb
= LENGTH (i
);
1509 register INTERVAL predecessor
;
1511 /* Zero out this interval. */
1512 i
->total_length
-= absorb
;
1514 /* Find the preceding interval. */
1515 if (! NULL_LEFT_CHILD (i
)) /* It's below us. Go down,
1516 adding ABSORB as we go. */
1518 predecessor
= i
->left
;
1519 while (! NULL_RIGHT_CHILD (predecessor
))
1521 predecessor
->total_length
+= absorb
;
1522 predecessor
= predecessor
->right
;
1525 predecessor
->total_length
+= absorb
;
1526 delete_interval (i
);
1531 while (! NULL_PARENT (predecessor
)) /* It's above us. Go up,
1532 subtracting ABSORB. */
1534 if (AM_RIGHT_CHILD (predecessor
))
1536 predecessor
= INTERVAL_PARENT (predecessor
);
1537 delete_interval (i
);
1541 predecessor
= INTERVAL_PARENT (predecessor
);
1542 predecessor
->total_length
-= absorb
;
1545 /* This must be the leftmost or first interval and cannot
1546 be merged left. The caller should have known. */
1550 /* Make an exact copy of interval tree SOURCE which descends from
1551 PARENT. This is done by recursing through SOURCE, copying
1552 the current interval and its properties, and then adjusting
1553 the pointers of the copy. */
1556 reproduce_tree (source
, parent
)
1557 INTERVAL source
, parent
;
1559 register INTERVAL t
= make_interval ();
1561 bcopy (source
, t
, INTERVAL_SIZE
);
1562 copy_properties (source
, t
);
1563 SET_INTERVAL_PARENT (t
, parent
);
1564 if (! NULL_LEFT_CHILD (source
))
1565 t
->left
= reproduce_tree (source
->left
, t
);
1566 if (! NULL_RIGHT_CHILD (source
))
1567 t
->right
= reproduce_tree (source
->right
, t
);
1573 reproduce_tree_obj (source
, parent
)
1577 register INTERVAL t
= make_interval ();
1579 bcopy (source
, t
, INTERVAL_SIZE
);
1580 copy_properties (source
, t
);
1581 SET_INTERVAL_OBJECT (t
, parent
);
1582 if (! NULL_LEFT_CHILD (source
))
1583 t
->left
= reproduce_tree (source
->left
, t
);
1584 if (! NULL_RIGHT_CHILD (source
))
1585 t
->right
= reproduce_tree (source
->right
, t
);
1591 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1593 /* Make a new interval of length LENGTH starting at START in the
1594 group of intervals INTERVALS, which is actually an interval tree.
1595 Returns the new interval.
1597 Generate an error if the new positions would overlap an existing
1601 make_new_interval (intervals
, start
, length
)
1607 slot
= find_interval (intervals
, start
);
1608 if (start
+ length
> slot
->position
+ LENGTH (slot
))
1609 error ("Interval would overlap");
1611 if (start
== slot
->position
&& length
== LENGTH (slot
))
1614 if (slot
->position
== start
)
1616 /* New right node. */
1617 split_interval_right (slot
, length
);
1621 if (slot
->position
+ LENGTH (slot
) == start
+ length
)
1623 /* New left node. */
1624 split_interval_left (slot
, LENGTH (slot
) - length
);
1628 /* Convert interval SLOT into three intervals. */
1629 split_interval_left (slot
, start
- slot
->position
);
1630 split_interval_right (slot
, length
);
1635 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1636 LENGTH is the length of the text in SOURCE.
1638 The `position' field of the SOURCE intervals is assumed to be
1639 consistent with its parent; therefore, SOURCE must be an
1640 interval tree made with copy_interval or must be the whole
1641 tree of a buffer or a string.
1643 This is used in insdel.c when inserting Lisp_Strings into the
1644 buffer. The text corresponding to SOURCE is already in the buffer
1645 when this is called. The intervals of new tree are a copy of those
1646 belonging to the string being inserted; intervals are never
1649 If the inserted text had no intervals associated, and we don't
1650 want to inherit the surrounding text's properties, this function
1651 simply returns -- offset_intervals should handle placing the
1652 text in the correct interval, depending on the sticky bits.
1654 If the inserted text had properties (intervals), then there are two
1655 cases -- either insertion happened in the middle of some interval,
1656 or between two intervals.
1658 If the text goes into the middle of an interval, then new
1659 intervals are created in the middle with only the properties of
1660 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1661 which case the new text has the union of its properties and those
1662 of the text into which it was inserted.
1664 If the text goes between two intervals, then if neither interval
1665 had its appropriate sticky property set (front_sticky, rear_sticky),
1666 the new text has only its properties. If one of the sticky properties
1667 is set, then the new text "sticks" to that region and its properties
1668 depend on merging as above. If both the preceding and succeeding
1669 intervals to the new text are "sticky", then the new text retains
1670 only its properties, as if neither sticky property were set. Perhaps
1671 we should consider merging all three sets of properties onto the new
1675 graft_intervals_into_buffer (source
, position
, length
, buffer
, inherit
)
1677 int position
, length
;
1678 struct buffer
*buffer
;
1681 register INTERVAL under
, over
, this, prev
;
1682 register INTERVAL tree
;
1684 tree
= BUF_INTERVALS (buffer
);
1686 /* If the new text has no properties, then with inheritance it
1687 becomes part of whatever interval it was inserted into.
1688 To prevent inheritance, we must clear out the properties
1689 of the newly inserted text. */
1690 if (NULL_INTERVAL_P (source
))
1693 if (!inherit
&& !NULL_INTERVAL_P (tree
) && length
> 0)
1695 XSETBUFFER (buf
, buffer
);
1696 set_text_properties_1 (make_number (position
),
1697 make_number (position
+ length
),
1700 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer
)))
1701 BUF_INTERVALS (buffer
) = balance_an_interval (BUF_INTERVALS (buffer
));
1705 if (NULL_INTERVAL_P (tree
))
1707 /* The inserted text constitutes the whole buffer, so
1708 simply copy over the interval structure. */
1709 if ((BUF_Z (buffer
) - BUF_BEG (buffer
)) == TOTAL_LENGTH (source
))
1712 XSETBUFFER (buf
, buffer
);
1713 BUF_INTERVALS (buffer
) = reproduce_tree_obj (source
, buf
);
1714 BUF_INTERVALS (buffer
)->position
= 1;
1716 /* Explicitly free the old tree here? */
1721 /* Create an interval tree in which to place a copy
1722 of the intervals of the inserted string. */
1725 XSETBUFFER (buf
, buffer
);
1726 tree
= create_root_interval (buf
);
1729 else if (TOTAL_LENGTH (tree
) == TOTAL_LENGTH (source
))
1730 /* If the buffer contains only the new string, but
1731 there was already some interval tree there, then it may be
1732 some zero length intervals. Eventually, do something clever
1733 about inserting properly. For now, just waste the old intervals. */
1735 BUF_INTERVALS (buffer
) = reproduce_tree (source
, INTERVAL_PARENT (tree
));
1736 BUF_INTERVALS (buffer
)->position
= 1;
1737 /* Explicitly free the old tree here. */
1741 /* Paranoia -- the text has already been added, so this buffer
1742 should be of non-zero length. */
1743 else if (TOTAL_LENGTH (tree
) == 0)
1746 this = under
= find_interval (tree
, position
);
1747 if (NULL_INTERVAL_P (under
)) /* Paranoia */
1749 over
= find_interval (source
, interval_start_pos (source
));
1751 /* Here for insertion in the middle of an interval.
1752 Split off an equivalent interval to the right,
1753 then don't bother with it any more. */
1755 if (position
> under
->position
)
1757 INTERVAL end_unchanged
1758 = split_interval_left (this, position
- under
->position
);
1759 copy_properties (under
, end_unchanged
);
1760 under
->position
= position
;
1764 /* This call may have some effect because previous_interval may
1765 update `position' fields of intervals. Thus, don't ignore it
1766 for the moment. Someone please tell me the truth (K.Handa). */
1767 prev
= previous_interval (under
);
1769 /* But, this code surely has no effect. And, anyway,
1770 END_NONSTICKY_P is unreliable now. */
1771 if (prev
&& !END_NONSTICKY_P (prev
))
1776 /* Insertion is now at beginning of UNDER. */
1778 /* The inserted text "sticks" to the interval `under',
1779 which means it gets those properties.
1780 The properties of under are the result of
1781 adjust_intervals_for_insertion, so stickiness has
1782 already been taken care of. */
1784 while (! NULL_INTERVAL_P (over
))
1786 if (LENGTH (over
) < LENGTH (under
))
1788 this = split_interval_left (under
, LENGTH (over
));
1789 copy_properties (under
, this);
1793 copy_properties (over
, this);
1795 merge_properties (over
, this);
1797 copy_properties (over
, this);
1798 over
= next_interval (over
);
1801 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer
)))
1802 BUF_INTERVALS (buffer
) = balance_an_interval (BUF_INTERVALS (buffer
));
1806 /* Get the value of property PROP from PLIST,
1807 which is the plist of an interval.
1808 We check for direct properties, for categories with property PROP,
1809 and for PROP appearing on the default-text-properties list. */
1812 textget (plist
, prop
)
1814 register Lisp_Object prop
;
1816 return lookup_char_property (plist
, prop
, 1);
1820 lookup_char_property (plist
, prop
, textprop
)
1822 register Lisp_Object prop
;
1825 register Lisp_Object tail
, fallback
= Qnil
;
1827 for (tail
= plist
; CONSP (tail
); tail
= Fcdr (XCDR (tail
)))
1829 register Lisp_Object tem
;
1832 return Fcar (XCDR (tail
));
1833 if (EQ (tem
, Qcategory
))
1835 tem
= Fcar (XCDR (tail
));
1837 fallback
= Fget (tem
, prop
);
1841 if (! NILP (fallback
))
1843 /* Check for alternative properties */
1844 tail
= Fassq (prop
, Vchar_property_alias_alist
);
1848 for (; NILP (fallback
) && CONSP (tail
); tail
= XCDR (tail
))
1849 fallback
= Fplist_get (plist
, XCAR (tail
));
1850 if (textprop
&& NILP (fallback
) && CONSP (Vdefault_text_properties
))
1851 fallback
= Fplist_get (Vdefault_text_properties
, prop
);
1856 /* Set point "temporarily", without checking any text properties. */
1859 temp_set_point (buffer
, charpos
)
1860 struct buffer
*buffer
;
1863 temp_set_point_both (buffer
, charpos
,
1864 buf_charpos_to_bytepos (buffer
, charpos
));
1867 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1868 byte position BYTEPOS. */
1871 temp_set_point_both (buffer
, charpos
, bytepos
)
1872 int charpos
, bytepos
;
1873 struct buffer
*buffer
;
1875 /* In a single-byte buffer, the two positions must be equal. */
1876 if (BUF_ZV (buffer
) == BUF_ZV_BYTE (buffer
)
1877 && charpos
!= bytepos
)
1880 if (charpos
> bytepos
)
1883 if (charpos
> BUF_ZV (buffer
) || charpos
< BUF_BEGV (buffer
))
1886 BUF_PT_BYTE (buffer
) = bytepos
;
1887 BUF_PT (buffer
) = charpos
;
1890 /* Set point in BUFFER to CHARPOS. If the target position is
1891 before an intangible character, move to an ok place. */
1894 set_point (buffer
, charpos
)
1895 register struct buffer
*buffer
;
1896 register int charpos
;
1898 set_point_both (buffer
, charpos
, buf_charpos_to_bytepos (buffer
, charpos
));
1901 /* If there's an invisible character at position POS + TEST_OFFS in the
1902 current buffer, and the invisible property has a `stickiness' such that
1903 inserting a character at position POS would inherit the property it,
1904 return POS + ADJ, otherwise return POS. If TEST_INTANG is non-zero,
1905 then intangibility is required as well as invisibleness.
1907 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1909 Note that `stickiness' is determined by overlay marker insertion types,
1910 if the invisible property comes from an overlay. */
1913 adjust_for_invis_intang (pos
, test_offs
, adj
, test_intang
)
1914 int pos
, test_offs
, adj
, test_intang
;
1916 Lisp_Object invis_propval
, invis_overlay
;
1917 Lisp_Object test_pos
;
1919 if ((adj
< 0 && pos
+ adj
< BEGV
) || (adj
> 0 && pos
+ adj
> ZV
))
1920 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1923 test_pos
= make_number (pos
+ test_offs
);
1926 = get_char_property_and_overlay (test_pos
, Qinvisible
, Qnil
,
1930 || ! NILP (Fget_char_property (test_pos
, Qintangible
, Qnil
)))
1931 && TEXT_PROP_MEANS_INVISIBLE (invis_propval
)
1932 /* This next test is true if the invisible property has a stickiness
1933 such that an insertion at POS would inherit it. */
1934 && (NILP (invis_overlay
)
1935 /* Invisible property is from a text-property. */
1936 ? (text_property_stickiness (Qinvisible
, make_number (pos
))
1937 == (test_offs
== 0 ? 1 : -1))
1938 /* Invisible property is from an overlay. */
1940 ? XMARKER (OVERLAY_START (invis_overlay
))->insertion_type
== 0
1941 : XMARKER (OVERLAY_END (invis_overlay
))->insertion_type
== 1)))
1947 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1948 position BYTEPOS. If the target position is
1949 before an intangible character, move to an ok place. */
1952 set_point_both (buffer
, charpos
, bytepos
)
1953 register struct buffer
*buffer
;
1954 register int charpos
, bytepos
;
1956 register INTERVAL to
, from
, toprev
, fromprev
;
1958 int old_position
= BUF_PT (buffer
);
1959 int backwards
= (charpos
< old_position
? 1 : 0);
1961 int original_position
;
1963 buffer
->point_before_scroll
= Qnil
;
1965 if (charpos
== BUF_PT (buffer
))
1968 /* In a single-byte buffer, the two positions must be equal. */
1969 if (BUF_ZV (buffer
) == BUF_ZV_BYTE (buffer
)
1970 && charpos
!= bytepos
)
1973 /* Check this now, before checking if the buffer has any intervals.
1974 That way, we can catch conditions which break this sanity check
1975 whether or not there are intervals in the buffer. */
1976 if (charpos
> BUF_ZV (buffer
) || charpos
< BUF_BEGV (buffer
))
1979 have_overlays
= (! NILP (buffer
->overlays_before
)
1980 || ! NILP (buffer
->overlays_after
));
1982 /* If we have no text properties and overlays,
1983 then we can do it quickly. */
1984 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer
)) && ! have_overlays
)
1986 temp_set_point_both (buffer
, charpos
, bytepos
);
1990 /* Set TO to the interval containing the char after CHARPOS,
1991 and TOPREV to the interval containing the char before CHARPOS.
1992 Either one may be null. They may be equal. */
1993 to
= find_interval (BUF_INTERVALS (buffer
), charpos
);
1994 if (charpos
== BUF_BEGV (buffer
))
1996 else if (to
&& to
->position
== charpos
)
1997 toprev
= previous_interval (to
);
2001 buffer_point
= (BUF_PT (buffer
) == BUF_ZV (buffer
)
2002 ? BUF_ZV (buffer
) - 1
2005 /* Set FROM to the interval containing the char after PT,
2006 and FROMPREV to the interval containing the char before PT.
2007 Either one may be null. They may be equal. */
2008 /* We could cache this and save time. */
2009 from
= find_interval (BUF_INTERVALS (buffer
), buffer_point
);
2010 if (buffer_point
== BUF_BEGV (buffer
))
2012 else if (from
&& from
->position
== BUF_PT (buffer
))
2013 fromprev
= previous_interval (from
);
2014 else if (buffer_point
!= BUF_PT (buffer
))
2015 fromprev
= from
, from
= 0;
2019 /* Moving within an interval. */
2020 if (to
== from
&& toprev
== fromprev
&& INTERVAL_VISIBLE_P (to
)
2023 temp_set_point_both (buffer
, charpos
, bytepos
);
2027 original_position
= charpos
;
2029 /* If the new position is between two intangible characters
2030 with the same intangible property value,
2031 move forward or backward until a change in that property. */
2032 if (NILP (Vinhibit_point_motion_hooks
)
2033 && ((! NULL_INTERVAL_P (to
) && ! NULL_INTERVAL_P (toprev
))
2035 /* Intangibility never stops us from positioning at the beginning
2036 or end of the buffer, so don't bother checking in that case. */
2037 && charpos
!= BEGV
&& charpos
!= ZV
)
2040 Lisp_Object intangible_propval
;
2044 /* If the preceeding character is both intangible and invisible,
2045 and the invisible property is `rear-sticky', perturb it so
2046 that the search starts one character earlier -- this ensures
2047 that point can never move to the end of an invisible/
2048 intangible/rear-sticky region. */
2049 charpos
= adjust_for_invis_intang (charpos
, -1, -1, 1);
2051 XSETINT (pos
, charpos
);
2053 /* If following char is intangible,
2054 skip back over all chars with matching intangible property. */
2056 intangible_propval
= Fget_char_property (pos
, Qintangible
, Qnil
);
2058 if (! NILP (intangible_propval
))
2060 while (XINT (pos
) > BUF_BEGV (buffer
)
2061 && EQ (Fget_char_property (make_number (XINT (pos
) - 1),
2063 intangible_propval
))
2064 pos
= Fprevious_char_property_change (pos
, Qnil
);
2066 /* Set CHARPOS from POS, and if the final intangible character
2067 that we skipped over is also invisible, and the invisible
2068 property is `front-sticky', perturb it to be one character
2069 earlier -- this ensures that point can never move to the
2070 beginning of an invisible/intangible/front-sticky region. */
2071 charpos
= adjust_for_invis_intang (XINT (pos
), 0, -1, 0);
2076 /* If the following character is both intangible and invisible,
2077 and the invisible property is `front-sticky', perturb it so
2078 that the search starts one character later -- this ensures
2079 that point can never move to the beginning of an
2080 invisible/intangible/front-sticky region. */
2081 charpos
= adjust_for_invis_intang (charpos
, 0, 1, 1);
2083 XSETINT (pos
, charpos
);
2085 /* If preceding char is intangible,
2086 skip forward over all chars with matching intangible property. */
2088 intangible_propval
= Fget_char_property (make_number (charpos
- 1),
2091 if (! NILP (intangible_propval
))
2093 while (XINT (pos
) < BUF_ZV (buffer
)
2094 && EQ (Fget_char_property (pos
, Qintangible
, Qnil
),
2095 intangible_propval
))
2096 pos
= Fnext_char_property_change (pos
, Qnil
);
2098 /* Set CHARPOS from POS, and if the final intangible character
2099 that we skipped over is also invisible, and the invisible
2100 property is `rear-sticky', perturb it to be one character
2101 later -- this ensures that point can never move to the
2102 end of an invisible/intangible/rear-sticky region. */
2103 charpos
= adjust_for_invis_intang (XINT (pos
), -1, 1, 0);
2107 bytepos
= buf_charpos_to_bytepos (buffer
, charpos
);
2110 if (charpos
!= original_position
)
2112 /* Set TO to the interval containing the char after CHARPOS,
2113 and TOPREV to the interval containing the char before CHARPOS.
2114 Either one may be null. They may be equal. */
2115 to
= find_interval (BUF_INTERVALS (buffer
), charpos
);
2116 if (charpos
== BUF_BEGV (buffer
))
2118 else if (to
&& to
->position
== charpos
)
2119 toprev
= previous_interval (to
);
2124 /* Here TO is the interval after the stopping point
2125 and TOPREV is the interval before the stopping point.
2126 One or the other may be null. */
2128 temp_set_point_both (buffer
, charpos
, bytepos
);
2130 /* We run point-left and point-entered hooks here, iff the
2131 two intervals are not equivalent. These hooks take
2132 (old_point, new_point) as arguments. */
2133 if (NILP (Vinhibit_point_motion_hooks
)
2134 && (! intervals_equal (from
, to
)
2135 || ! intervals_equal (fromprev
, toprev
)))
2137 Lisp_Object leave_after
, leave_before
, enter_after
, enter_before
;
2140 leave_after
= textget (fromprev
->plist
, Qpoint_left
);
2144 leave_before
= textget (from
->plist
, Qpoint_left
);
2146 leave_before
= Qnil
;
2149 enter_after
= textget (toprev
->plist
, Qpoint_entered
);
2153 enter_before
= textget (to
->plist
, Qpoint_entered
);
2155 enter_before
= Qnil
;
2157 if (! EQ (leave_before
, enter_before
) && !NILP (leave_before
))
2158 call2 (leave_before
, make_number (old_position
),
2159 make_number (charpos
));
2160 if (! EQ (leave_after
, enter_after
) && !NILP (leave_after
))
2161 call2 (leave_after
, make_number (old_position
),
2162 make_number (charpos
));
2164 if (! EQ (enter_before
, leave_before
) && !NILP (enter_before
))
2165 call2 (enter_before
, make_number (old_position
),
2166 make_number (charpos
));
2167 if (! EQ (enter_after
, leave_after
) && !NILP (enter_after
))
2168 call2 (enter_after
, make_number (old_position
),
2169 make_number (charpos
));
2173 /* Move point to POSITION, unless POSITION is inside an intangible
2174 segment that reaches all the way to point. */
2177 move_if_not_intangible (position
)
2181 Lisp_Object intangible_propval
;
2183 XSETINT (pos
, position
);
2185 if (! NILP (Vinhibit_point_motion_hooks
))
2186 /* If intangible is inhibited, always move point to POSITION. */
2188 else if (PT
< position
&& XINT (pos
) < ZV
)
2190 /* We want to move forward, so check the text before POSITION. */
2192 intangible_propval
= Fget_char_property (pos
,
2195 /* If following char is intangible,
2196 skip back over all chars with matching intangible property. */
2197 if (! NILP (intangible_propval
))
2198 while (XINT (pos
) > BEGV
2199 && EQ (Fget_char_property (make_number (XINT (pos
) - 1),
2201 intangible_propval
))
2202 pos
= Fprevious_char_property_change (pos
, Qnil
);
2204 else if (XINT (pos
) > BEGV
)
2206 /* We want to move backward, so check the text after POSITION. */
2208 intangible_propval
= Fget_char_property (make_number (XINT (pos
) - 1),
2211 /* If following char is intangible,
2212 skip forward over all chars with matching intangible property. */
2213 if (! NILP (intangible_propval
))
2214 while (XINT (pos
) < ZV
2215 && EQ (Fget_char_property (pos
, Qintangible
, Qnil
),
2216 intangible_propval
))
2217 pos
= Fnext_char_property_change (pos
, Qnil
);
2221 /* If the whole stretch between PT and POSITION isn't intangible,
2222 try moving to POSITION (which means we actually move farther
2223 if POSITION is inside of intangible text). */
2225 if (XINT (pos
) != PT
)
2229 /* If text at position POS has property PROP, set *VAL to the property
2230 value, *START and *END to the beginning and end of a region that
2231 has the same property, and return 1. Otherwise return 0.
2233 OBJECT is the string or buffer to look for the property in;
2234 nil means the current buffer. */
2237 get_property_and_range (pos
, prop
, val
, start
, end
, object
)
2239 Lisp_Object prop
, *val
;
2243 INTERVAL i
, prev
, next
;
2246 i
= find_interval (BUF_INTERVALS (current_buffer
), pos
);
2247 else if (BUFFERP (object
))
2248 i
= find_interval (BUF_INTERVALS (XBUFFER (object
)), pos
);
2249 else if (STRINGP (object
))
2250 i
= find_interval (STRING_INTERVALS (object
), pos
);
2254 if (NULL_INTERVAL_P (i
) || (i
->position
+ LENGTH (i
) <= pos
))
2256 *val
= textget (i
->plist
, prop
);
2260 next
= i
; /* remember it in advance */
2261 prev
= previous_interval (i
);
2262 while (! NULL_INTERVAL_P (prev
)
2263 && EQ (*val
, textget (prev
->plist
, prop
)))
2264 i
= prev
, prev
= previous_interval (prev
);
2265 *start
= i
->position
;
2267 next
= next_interval (i
);
2268 while (! NULL_INTERVAL_P (next
)
2269 && EQ (*val
, textget (next
->plist
, prop
)))
2270 i
= next
, next
= next_interval (next
);
2271 *end
= i
->position
+ LENGTH (i
);
2276 /* Return the proper local keymap TYPE for position POSITION in
2277 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2278 specified by the PROP property, if any. Otherwise, if TYPE is
2279 `local-map' use BUFFER's local map. */
2282 get_local_map (position
, buffer
, type
)
2283 register int position
;
2284 register struct buffer
*buffer
;
2287 Lisp_Object prop
, lispy_position
, lispy_buffer
;
2288 int old_begv
, old_zv
, old_begv_byte
, old_zv_byte
;
2290 /* Perhaps we should just change `position' to the limit. */
2291 if (position
> BUF_Z (buffer
) || position
< BUF_BEG (buffer
))
2294 /* Ignore narrowing, so that a local map continues to be valid even if
2295 the visible region contains no characters and hence no properties. */
2296 old_begv
= BUF_BEGV (buffer
);
2297 old_zv
= BUF_ZV (buffer
);
2298 old_begv_byte
= BUF_BEGV_BYTE (buffer
);
2299 old_zv_byte
= BUF_ZV_BYTE (buffer
);
2300 BUF_BEGV (buffer
) = BUF_BEG (buffer
);
2301 BUF_ZV (buffer
) = BUF_Z (buffer
);
2302 BUF_BEGV_BYTE (buffer
) = BUF_BEG_BYTE (buffer
);
2303 BUF_ZV_BYTE (buffer
) = BUF_Z_BYTE (buffer
);
2305 /* There are no properties at the end of the buffer, so in that case
2306 check for a local map on the last character of the buffer instead. */
2307 if (position
== BUF_Z (buffer
) && BUF_Z (buffer
) > BUF_BEG (buffer
))
2309 XSETFASTINT (lispy_position
, position
);
2310 XSETBUFFER (lispy_buffer
, buffer
);
2311 prop
= Fget_char_property (lispy_position
, type
, lispy_buffer
);
2313 BUF_BEGV (buffer
) = old_begv
;
2314 BUF_ZV (buffer
) = old_zv
;
2315 BUF_BEGV_BYTE (buffer
) = old_begv_byte
;
2316 BUF_ZV_BYTE (buffer
) = old_zv_byte
;
2318 /* Use the local map only if it is valid. */
2319 prop
= get_keymap (prop
, 0, 0);
2323 if (EQ (type
, Qkeymap
))
2326 return buffer
->keymap
;
2329 /* Produce an interval tree reflecting the intervals in
2330 TREE from START to START + LENGTH.
2331 The new interval tree has no parent and has a starting-position of 0. */
2334 copy_intervals (tree
, start
, length
)
2338 register INTERVAL i
, new, t
;
2339 register int got
, prevlen
;
2341 if (NULL_INTERVAL_P (tree
) || length
<= 0)
2342 return NULL_INTERVAL
;
2344 i
= find_interval (tree
, start
);
2345 if (NULL_INTERVAL_P (i
) || LENGTH (i
) == 0)
2348 /* If there is only one interval and it's the default, return nil. */
2349 if ((start
- i
->position
+ 1 + length
) < LENGTH (i
)
2350 && DEFAULT_INTERVAL_P (i
))
2351 return NULL_INTERVAL
;
2353 new = make_interval ();
2355 got
= (LENGTH (i
) - (start
- i
->position
));
2356 new->total_length
= length
;
2357 copy_properties (i
, new);
2361 while (got
< length
)
2363 i
= next_interval (i
);
2364 t
= split_interval_right (t
, prevlen
);
2365 copy_properties (i
, t
);
2366 prevlen
= LENGTH (i
);
2370 return balance_an_interval (new);
2373 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2376 copy_intervals_to_string (string
, buffer
, position
, length
)
2378 struct buffer
*buffer
;
2379 int position
, length
;
2381 INTERVAL interval_copy
= copy_intervals (BUF_INTERVALS (buffer
),
2383 if (NULL_INTERVAL_P (interval_copy
))
2386 SET_INTERVAL_OBJECT (interval_copy
, string
);
2387 STRING_SET_INTERVALS (string
, interval_copy
);
2390 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2391 Assume they have identical characters. */
2394 compare_string_intervals (s1
, s2
)
2399 int end
= SCHARS (s1
);
2401 i1
= find_interval (STRING_INTERVALS (s1
), 0);
2402 i2
= find_interval (STRING_INTERVALS (s2
), 0);
2406 /* Determine how far we can go before we reach the end of I1 or I2. */
2407 int len1
= (i1
!= 0 ? INTERVAL_LAST_POS (i1
) : end
) - pos
;
2408 int len2
= (i2
!= 0 ? INTERVAL_LAST_POS (i2
) : end
) - pos
;
2409 int distance
= min (len1
, len2
);
2411 /* If we ever find a mismatch between the strings,
2413 if (! intervals_equal (i1
, i2
))
2416 /* Advance POS till the end of the shorter interval,
2417 and advance one or both interval pointers for the new position. */
2419 if (len1
== distance
)
2420 i1
= next_interval (i1
);
2421 if (len2
== distance
)
2422 i2
= next_interval (i2
);
2427 /* Recursively adjust interval I in the current buffer
2428 for setting enable_multibyte_characters to MULTI_FLAG.
2429 The range of interval I is START ... END in characters,
2430 START_BYTE ... END_BYTE in bytes. */
2433 set_intervals_multibyte_1 (i
, multi_flag
, start
, start_byte
, end
, end_byte
)
2436 int start
, start_byte
, end
, end_byte
;
2438 /* Fix the length of this interval. */
2440 i
->total_length
= end
- start
;
2442 i
->total_length
= end_byte
- start_byte
;
2444 /* Recursively fix the length of the subintervals. */
2447 int left_end
, left_end_byte
;
2451 left_end_byte
= start_byte
+ LEFT_TOTAL_LENGTH (i
);
2452 left_end
= BYTE_TO_CHAR (left_end_byte
);
2456 left_end
= start
+ LEFT_TOTAL_LENGTH (i
);
2457 left_end_byte
= CHAR_TO_BYTE (left_end
);
2460 set_intervals_multibyte_1 (i
->left
, multi_flag
, start
, start_byte
,
2461 left_end
, left_end_byte
);
2465 int right_start_byte
, right_start
;
2469 right_start_byte
= end_byte
- RIGHT_TOTAL_LENGTH (i
);
2470 right_start
= BYTE_TO_CHAR (right_start_byte
);
2474 right_start
= end
- RIGHT_TOTAL_LENGTH (i
);
2475 right_start_byte
= CHAR_TO_BYTE (right_start
);
2478 set_intervals_multibyte_1 (i
->right
, multi_flag
,
2479 right_start
, right_start_byte
,
2484 /* Update the intervals of the current buffer
2485 to fit the contents as multibyte (if MULTI_FLAG is 1)
2486 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2489 set_intervals_multibyte (multi_flag
)
2492 if (BUF_INTERVALS (current_buffer
))
2493 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer
), multi_flag
,
2494 BEG
, BEG_BYTE
, Z
, Z_BYTE
);