(texinfo-mode): Use real chars, so as not to unnecessarily expose
[emacs.git] / man / calc.texi
blobdf92a3f2e9bc950c09b70603c4d1382bd1e7598c
1 \input texinfo                  @c -*-texinfo-*-
2 @comment %**start of header (This is for running Texinfo on a region.)
3 @c smallbook
4 @setfilename ../info/calc
5 @c [title]
6 @settitle GNU Emacs Calc 2.1 Manual
7 @setchapternewpage odd
8 @comment %**end of header (This is for running Texinfo on a region.)
10 @c The following macros are used for conditional output for single lines.
11 @c @texline foo
12 @c    `foo' will appear only in TeX output
13 @c @infoline foo
14 @c    `foo' will appear only in non-TeX output
16 @c @expr{expr} will typeset an expression;
17 @c $x$ in TeX, @samp{x} otherwise.
19 @iftex
20 @macro texline
21 @end macro
22 @alias infoline=comment
23 @alias expr=math
24 @alias tfn=code
25 @alias mathit=expr
26 @macro cpi{}
27 @math{@pi{}}
28 @end macro
29 @macro cpiover{den}
30 @math{@pi/\den\}
31 @end macro
32 @end iftex
34 @ifnottex
35 @alias texline=comment
36 @macro infoline{stuff}
37 \stuff\
38 @end macro
39 @alias expr=samp
40 @alias tfn=t
41 @alias mathit=i
42 @macro cpi{}
43 @expr{pi}
44 @end macro
45 @macro cpiover{den}
46 @expr{pi/\den\}
47 @end macro
48 @end ifnottex
51 @tex
52 % Suggested by Karl Berry <karl@@freefriends.org>
53 \gdef\!{\mskip-\thinmuskip}
54 @end tex
56 @c Fix some other things specifically for this manual.
57 @iftex
58 @finalout
59 @mathcode`@:=`@:  @c Make Calc fractions come out right in math mode
60 @tex
61 \gdef\coloneq{\mathrel{\mathord:\mathord=}}
63 \gdef\beforedisplay{\vskip-10pt}
64 \gdef\afterdisplay{\vskip-5pt}
65 \gdef\beforedisplayh{\vskip-25pt}
66 \gdef\afterdisplayh{\vskip-10pt}
67 @end tex
68 @newdimen@kyvpos @kyvpos=0pt
69 @newdimen@kyhpos @kyhpos=0pt
70 @newcount@calcclubpenalty @calcclubpenalty=1000
71 @ignore
72 @newcount@calcpageno
73 @newtoks@calcoldeverypar @calcoldeverypar=@everypar
74 @everypar={@calceverypar@the@calcoldeverypar}
75 @ifx@turnoffactive@undefinedzzz@def@turnoffactive{}@fi
76 @ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi
77 @catcode`@\=0 \catcode`\@=11
78 \r@ggedbottomtrue
79 \catcode`\@=0 @catcode`@\=@active
80 @end ignore
81 @end iftex
83 @copying
84 This file documents Calc, the GNU Emacs calculator.
86 Copyright (C) 1990, 1991, 2001, 2002, 2003, 2004,
87    2005 Free Software Foundation, Inc.
89 @quotation
90 Permission is granted to copy, distribute and/or modify this document
91 under the terms of the GNU Free Documentation License, Version 1.2 or
92 any later version published by the Free Software Foundation; with the
93 Invariant Sections being just ``GNU GENERAL PUBLIC LICENSE'', with the
94 Front-Cover texts being ``A GNU Manual,'' and with the Back-Cover
95 Texts as in (a) below.
97 (a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify
98 this GNU Manual, like GNU software.  Copies published by the Free
99 Software Foundation raise funds for GNU development.''
100 @end quotation
101 @end copying
103 @dircategory Emacs
104 @direntry
105 * Calc: (calc).         Advanced desk calculator and mathematical tool.
106 @end direntry
108 @titlepage
109 @sp 6
110 @center @titlefont{Calc Manual}
111 @sp 4
112 @center GNU Emacs Calc Version 2.1
113 @c [volume]
114 @sp 1
115 @center March 2005
116 @sp 5
117 @center Dave Gillespie
118 @center daveg@@synaptics.com
119 @page
121 @vskip 0pt plus 1filll
122 Copyright @copyright{} 1990, 1991, 2001, 2002, 2003, 2004,
123    2005 Free Software Foundation, Inc.
124 @insertcopying
125 @end titlepage
127 @c [begin]
128 @ifinfo
129 @node Top, , (dir), (dir)
130 @chapter The GNU Emacs Calculator
132 @noindent
133 @dfn{Calc} is an advanced desk calculator and mathematical tool
134 that runs as part of the GNU Emacs environment.
136 This manual is divided into three major parts: ``Getting Started,''
137 the ``Calc Tutorial,'' and the ``Calc Reference.''  The Tutorial
138 introduces all the major aspects of Calculator use in an easy,
139 hands-on way.  The remainder of the manual is a complete reference to
140 the features of the Calculator.
142 For help in the Emacs Info system (which you are using to read this
143 file), type @kbd{?}.  (You can also type @kbd{h} to run through a
144 longer Info tutorial.)
146 @end ifinfo
147 @menu
148 * Copying::               How you can copy and share Calc.
150 * Getting Started::       General description and overview.
151 * Interactive Tutorial::
152 * Tutorial::              A step-by-step introduction for beginners.
154 * Introduction::          Introduction to the Calc reference manual.
155 * Data Types::            Types of objects manipulated by Calc.
156 * Stack and Trail::       Manipulating the stack and trail buffers.
157 * Mode Settings::         Adjusting display format and other modes.
158 * Arithmetic::            Basic arithmetic functions.
159 * Scientific Functions::  Transcendentals and other scientific functions.
160 * Matrix Functions::      Operations on vectors and matrices.
161 * Algebra::               Manipulating expressions algebraically.
162 * Units::                 Operations on numbers with units.
163 * Store and Recall::      Storing and recalling variables.
164 * Graphics::              Commands for making graphs of data.
165 * Kill and Yank::         Moving data into and out of Calc.
166 * Keypad Mode::           Operating Calc from a keypad.
167 * Embedded Mode::         Working with formulas embedded in a file.
168 * Programming::           Calc as a programmable calculator.
170 * Customizable Variables:: Customizable Variables.
171 * Reporting Bugs::        How to report bugs and make suggestions.
173 * Summary::               Summary of Calc commands and functions.
175 * Key Index::             The standard Calc key sequences.
176 * Command Index::         The interactive Calc commands.
177 * Function Index::        Functions (in algebraic formulas).
178 * Concept Index::         General concepts.
179 * Variable Index::        Variables used by Calc (both user and internal).
180 * Lisp Function Index::   Internal Lisp math functions.
181 @end menu
183 @node Copying, Getting Started, Top, Top
184 @unnumbered GNU GENERAL PUBLIC LICENSE
185 @center Version 2, June 1991
187 @c This file is intended to be included in another file.
189 @display
190 Copyright @copyright{} 1989, 1991 Free Software Foundation, Inc.
191 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
193 Everyone is permitted to copy and distribute verbatim copies
194 of this license document, but changing it is not allowed.
195 @end display
197 @unnumberedsec Preamble
199   The licenses for most software are designed to take away your
200 freedom to share and change it.  By contrast, the GNU General Public
201 License is intended to guarantee your freedom to share and change free
202 software---to make sure the software is free for all its users.  This
203 General Public License applies to most of the Free Software
204 Foundation's software and to any other program whose authors commit to
205 using it.  (Some other Free Software Foundation software is covered by
206 the GNU Library General Public License instead.)  You can apply it to
207 your programs, too.
209   When we speak of free software, we are referring to freedom, not
210 price.  Our General Public Licenses are designed to make sure that you
211 have the freedom to distribute copies of free software (and charge for
212 this service if you wish), that you receive source code or can get it
213 if you want it, that you can change the software or use pieces of it
214 in new free programs; and that you know you can do these things.
216   To protect your rights, we need to make restrictions that forbid
217 anyone to deny you these rights or to ask you to surrender the rights.
218 These restrictions translate to certain responsibilities for you if you
219 distribute copies of the software, or if you modify it.
221   For example, if you distribute copies of such a program, whether
222 gratis or for a fee, you must give the recipients all the rights that
223 you have.  You must make sure that they, too, receive or can get the
224 source code.  And you must show them these terms so they know their
225 rights.
227   We protect your rights with two steps: (1) copyright the software, and
228 (2) offer you this license which gives you legal permission to copy,
229 distribute and/or modify the software.
231   Also, for each author's protection and ours, we want to make certain
232 that everyone understands that there is no warranty for this free
233 software.  If the software is modified by someone else and passed on, we
234 want its recipients to know that what they have is not the original, so
235 that any problems introduced by others will not reflect on the original
236 authors' reputations.
238   Finally, any free program is threatened constantly by software
239 patents.  We wish to avoid the danger that redistributors of a free
240 program will individually obtain patent licenses, in effect making the
241 program proprietary.  To prevent this, we have made it clear that any
242 patent must be licensed for everyone's free use or not licensed at all.
244   The precise terms and conditions for copying, distribution and
245 modification follow.
247 @iftex
248 @unnumberedsec TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
249 @end iftex
250 @ifinfo
251 @center TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
252 @end ifinfo
254 @enumerate 0
255 @item
256 This License applies to any program or other work which contains
257 a notice placed by the copyright holder saying it may be distributed
258 under the terms of this General Public License.  The ``Program'', below,
259 refers to any such program or work, and a ``work based on the Program''
260 means either the Program or any derivative work under copyright law:
261 that is to say, a work containing the Program or a portion of it,
262 either verbatim or with modifications and/or translated into another
263 language.  (Hereinafter, translation is included without limitation in
264 the term ``modification''.)  Each licensee is addressed as ``you''.
266 Activities other than copying, distribution and modification are not
267 covered by this License; they are outside its scope.  The act of
268 running the Program is not restricted, and the output from the Program
269 is covered only if its contents constitute a work based on the
270 Program (independent of having been made by running the Program).
271 Whether that is true depends on what the Program does.
273 @item
274 You may copy and distribute verbatim copies of the Program's
275 source code as you receive it, in any medium, provided that you
276 conspicuously and appropriately publish on each copy an appropriate
277 copyright notice and disclaimer of warranty; keep intact all the
278 notices that refer to this License and to the absence of any warranty;
279 and give any other recipients of the Program a copy of this License
280 along with the Program.
282 You may charge a fee for the physical act of transferring a copy, and
283 you may at your option offer warranty protection in exchange for a fee.
285 @item
286 You may modify your copy or copies of the Program or any portion
287 of it, thus forming a work based on the Program, and copy and
288 distribute such modifications or work under the terms of Section 1
289 above, provided that you also meet all of these conditions:
291 @enumerate a
292 @item
293 You must cause the modified files to carry prominent notices
294 stating that you changed the files and the date of any change.
296 @item
297 You must cause any work that you distribute or publish, that in
298 whole or in part contains or is derived from the Program or any
299 part thereof, to be licensed as a whole at no charge to all third
300 parties under the terms of this License.
302 @item
303 If the modified program normally reads commands interactively
304 when run, you must cause it, when started running for such
305 interactive use in the most ordinary way, to print or display an
306 announcement including an appropriate copyright notice and a
307 notice that there is no warranty (or else, saying that you provide
308 a warranty) and that users may redistribute the program under
309 these conditions, and telling the user how to view a copy of this
310 License.  (Exception: if the Program itself is interactive but
311 does not normally print such an announcement, your work based on
312 the Program is not required to print an announcement.)
313 @end enumerate
315 These requirements apply to the modified work as a whole.  If
316 identifiable sections of that work are not derived from the Program,
317 and can be reasonably considered independent and separate works in
318 themselves, then this License, and its terms, do not apply to those
319 sections when you distribute them as separate works.  But when you
320 distribute the same sections as part of a whole which is a work based
321 on the Program, the distribution of the whole must be on the terms of
322 this License, whose permissions for other licensees extend to the
323 entire whole, and thus to each and every part regardless of who wrote it.
325 Thus, it is not the intent of this section to claim rights or contest
326 your rights to work written entirely by you; rather, the intent is to
327 exercise the right to control the distribution of derivative or
328 collective works based on the Program.
330 In addition, mere aggregation of another work not based on the Program
331 with the Program (or with a work based on the Program) on a volume of
332 a storage or distribution medium does not bring the other work under
333 the scope of this License.
335 @item
336 You may copy and distribute the Program (or a work based on it,
337 under Section 2) in object code or executable form under the terms of
338 Sections 1 and 2 above provided that you also do one of the following:
340 @enumerate a
341 @item
342 Accompany it with the complete corresponding machine-readable
343 source code, which must be distributed under the terms of Sections
344 1 and 2 above on a medium customarily used for software interchange; or,
346 @item
347 Accompany it with a written offer, valid for at least three
348 years, to give any third party, for a charge no more than your
349 cost of physically performing source distribution, a complete
350 machine-readable copy of the corresponding source code, to be
351 distributed under the terms of Sections 1 and 2 above on a medium
352 customarily used for software interchange; or,
354 @item
355 Accompany it with the information you received as to the offer
356 to distribute corresponding source code.  (This alternative is
357 allowed only for noncommercial distribution and only if you
358 received the program in object code or executable form with such
359 an offer, in accord with Subsection b above.)
360 @end enumerate
362 The source code for a work means the preferred form of the work for
363 making modifications to it.  For an executable work, complete source
364 code means all the source code for all modules it contains, plus any
365 associated interface definition files, plus the scripts used to
366 control compilation and installation of the executable.  However, as a
367 special exception, the source code distributed need not include
368 anything that is normally distributed (in either source or binary
369 form) with the major components (compiler, kernel, and so on) of the
370 operating system on which the executable runs, unless that component
371 itself accompanies the executable.
373 If distribution of executable or object code is made by offering
374 access to copy from a designated place, then offering equivalent
375 access to copy the source code from the same place counts as
376 distribution of the source code, even though third parties are not
377 compelled to copy the source along with the object code.
379 @item
380 You may not copy, modify, sublicense, or distribute the Program
381 except as expressly provided under this License.  Any attempt
382 otherwise to copy, modify, sublicense or distribute the Program is
383 void, and will automatically terminate your rights under this License.
384 However, parties who have received copies, or rights, from you under
385 this License will not have their licenses terminated so long as such
386 parties remain in full compliance.
388 @item
389 You are not required to accept this License, since you have not
390 signed it.  However, nothing else grants you permission to modify or
391 distribute the Program or its derivative works.  These actions are
392 prohibited by law if you do not accept this License.  Therefore, by
393 modifying or distributing the Program (or any work based on the
394 Program), you indicate your acceptance of this License to do so, and
395 all its terms and conditions for copying, distributing or modifying
396 the Program or works based on it.
398 @item
399 Each time you redistribute the Program (or any work based on the
400 Program), the recipient automatically receives a license from the
401 original licensor to copy, distribute or modify the Program subject to
402 these terms and conditions.  You may not impose any further
403 restrictions on the recipients' exercise of the rights granted herein.
404 You are not responsible for enforcing compliance by third parties to
405 this License.
407 @item
408 If, as a consequence of a court judgment or allegation of patent
409 infringement or for any other reason (not limited to patent issues),
410 conditions are imposed on you (whether by court order, agreement or
411 otherwise) that contradict the conditions of this License, they do not
412 excuse you from the conditions of this License.  If you cannot
413 distribute so as to satisfy simultaneously your obligations under this
414 License and any other pertinent obligations, then as a consequence you
415 may not distribute the Program at all.  For example, if a patent
416 license would not permit royalty-free redistribution of the Program by
417 all those who receive copies directly or indirectly through you, then
418 the only way you could satisfy both it and this License would be to
419 refrain entirely from distribution of the Program.
421 If any portion of this section is held invalid or unenforceable under
422 any particular circumstance, the balance of the section is intended to
423 apply and the section as a whole is intended to apply in other
424 circumstances.
426 It is not the purpose of this section to induce you to infringe any
427 patents or other property right claims or to contest validity of any
428 such claims; this section has the sole purpose of protecting the
429 integrity of the free software distribution system, which is
430 implemented by public license practices.  Many people have made
431 generous contributions to the wide range of software distributed
432 through that system in reliance on consistent application of that
433 system; it is up to the author/donor to decide if he or she is willing
434 to distribute software through any other system and a licensee cannot
435 impose that choice.
437 This section is intended to make thoroughly clear what is believed to
438 be a consequence of the rest of this License.
440 @item
441 If the distribution and/or use of the Program is restricted in
442 certain countries either by patents or by copyrighted interfaces, the
443 original copyright holder who places the Program under this License
444 may add an explicit geographical distribution limitation excluding
445 those countries, so that distribution is permitted only in or among
446 countries not thus excluded.  In such case, this License incorporates
447 the limitation as if written in the body of this License.
449 @item
450 The Free Software Foundation may publish revised and/or new versions
451 of the General Public License from time to time.  Such new versions will
452 be similar in spirit to the present version, but may differ in detail to
453 address new problems or concerns.
455 Each version is given a distinguishing version number.  If the Program
456 specifies a version number of this License which applies to it and ``any
457 later version'', you have the option of following the terms and conditions
458 either of that version or of any later version published by the Free
459 Software Foundation.  If the Program does not specify a version number of
460 this License, you may choose any version ever published by the Free Software
461 Foundation.
463 @item
464 If you wish to incorporate parts of the Program into other free
465 programs whose distribution conditions are different, write to the author
466 to ask for permission.  For software which is copyrighted by the Free
467 Software Foundation, write to the Free Software Foundation; we sometimes
468 make exceptions for this.  Our decision will be guided by the two goals
469 of preserving the free status of all derivatives of our free software and
470 of promoting the sharing and reuse of software generally.
472 @iftex
473 @heading NO WARRANTY
474 @end iftex
475 @ifinfo
476 @center NO WARRANTY
477 @end ifinfo
479 @item
480 BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
481 FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
482 OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
483 PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
484 OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
485 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
486 TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
487 PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
488 REPAIR OR CORRECTION.
490 @item
491 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
492 WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
493 REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
494 INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
495 OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
496 TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
497 YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
498 PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
499 POSSIBILITY OF SUCH DAMAGES.
500 @end enumerate
502 @iftex
503 @heading END OF TERMS AND CONDITIONS
504 @end iftex
505 @ifinfo
506 @center END OF TERMS AND CONDITIONS
507 @end ifinfo
509 @page
510 @unnumberedsec Appendix: How to Apply These Terms to Your New Programs
512   If you develop a new program, and you want it to be of the greatest
513 possible use to the public, the best way to achieve this is to make it
514 free software which everyone can redistribute and change under these terms.
516   To do so, attach the following notices to the program.  It is safest
517 to attach them to the start of each source file to most effectively
518 convey the exclusion of warranty; and each file should have at least
519 the ``copyright'' line and a pointer to where the full notice is found.
521 @smallexample
522 @var{one line to give the program's name and a brief idea of what it does.}
523 Copyright (C) @var{yyyy}  @var{name of author}
525 This program is free software; you can redistribute it and/or modify
526 it under the terms of the GNU General Public License as published by
527 the Free Software Foundation; either version 2 of the License, or
528 (at your option) any later version.
530 This program is distributed in the hope that it will be useful,
531 but WITHOUT ANY WARRANTY; without even the implied warranty of
532 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
533 GNU General Public License for more details.
535 You should have received a copy of the GNU General Public License
536 along with this program; if not, write to the Free Software
537 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
538 @end smallexample
540 Also add information on how to contact you by electronic and paper mail.
542 If the program is interactive, make it output a short notice like this
543 when it starts in an interactive mode:
545 @smallexample
546 Gnomovision version 69, Copyright (C) 19@var{yy} @var{name of author}
547 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
548 This is free software, and you are welcome to redistribute it
549 under certain conditions; type `show c' for details.
550 @end smallexample
552 The hypothetical commands @samp{show w} and @samp{show c} should show
553 the appropriate parts of the General Public License.  Of course, the
554 commands you use may be called something other than @samp{show w} and
555 @samp{show c}; they could even be mouse-clicks or menu items---whatever
556 suits your program.
558 You should also get your employer (if you work as a programmer) or your
559 school, if any, to sign a ``copyright disclaimer'' for the program, if
560 necessary.  Here is a sample; alter the names:
562 @example
563 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
564 `Gnomovision' (which makes passes at compilers) written by James Hacker.
566 @var{signature of Ty Coon}, 1 April 1989
567 Ty Coon, President of Vice
568 @end example
570 This General Public License does not permit incorporating your program into
571 proprietary programs.  If your program is a subroutine library, you may
572 consider it more useful to permit linking proprietary applications with the
573 library.  If this is what you want to do, use the GNU Library General
574 Public License instead of this License.
576 @node Getting Started, Tutorial, Copying, Top
577 @chapter Getting Started
578 @noindent
579 This chapter provides a general overview of Calc, the GNU Emacs
580 Calculator:  What it is, how to start it and how to exit from it,
581 and what are the various ways that it can be used.
583 @menu
584 * What is Calc::
585 * About This Manual::
586 * Notations Used in This Manual::
587 * Demonstration of Calc::
588 * Using Calc::
589 * History and Acknowledgements::
590 @end menu
592 @node What is Calc, About This Manual, Getting Started, Getting Started
593 @section What is Calc?
595 @noindent
596 @dfn{Calc} is an advanced calculator and mathematical tool that runs as
597 part of the GNU Emacs environment.  Very roughly based on the HP-28/48
598 series of calculators, its many features include:
600 @itemize @bullet
601 @item
602 Choice of algebraic or RPN (stack-based) entry of calculations.
604 @item
605 Arbitrary precision integers and floating-point numbers.
607 @item
608 Arithmetic on rational numbers, complex numbers (rectangular and polar),
609 error forms with standard deviations, open and closed intervals, vectors
610 and matrices, dates and times, infinities, sets, quantities with units,
611 and algebraic formulas.
613 @item
614 Mathematical operations such as logarithms and trigonometric functions.
616 @item
617 Programmer's features (bitwise operations, non-decimal numbers).
619 @item
620 Financial functions such as future value and internal rate of return.
622 @item
623 Number theoretical features such as prime factorization and arithmetic
624 modulo @var{m} for any @var{m}.
626 @item
627 Algebraic manipulation features, including symbolic calculus.
629 @item
630 Moving data to and from regular editing buffers.
632 @item
633 Embedded mode for manipulating Calc formulas and data directly
634 inside any editing buffer.
636 @item
637 Graphics using GNUPLOT, a versatile (and free) plotting program.
639 @item
640 Easy programming using keyboard macros, algebraic formulas,
641 algebraic rewrite rules, or extended Emacs Lisp.
642 @end itemize
644 Calc tries to include a little something for everyone; as a result it is
645 large and might be intimidating to the first-time user.  If you plan to
646 use Calc only as a traditional desk calculator, all you really need to
647 read is the ``Getting Started'' chapter of this manual and possibly the
648 first few sections of the tutorial.  As you become more comfortable with
649 the program you can learn its additional features.  Calc does not
650 have the scope and depth of a fully-functional symbolic math package,
651 but Calc has the advantages of convenience, portability, and freedom.
653 @node About This Manual, Notations Used in This Manual, What is Calc, Getting Started
654 @section About This Manual
656 @noindent
657 This document serves as a complete description of the GNU Emacs
658 Calculator.  It works both as an introduction for novices, and as
659 a reference for experienced users.  While it helps to have some
660 experience with GNU Emacs in order to get the most out of Calc,
661 this manual ought to be readable even if you don't know or use Emacs
662 regularly.
664 @ifinfo
665 The manual is divided into three major parts:@: the ``Getting
666 Started'' chapter you are reading now, the Calc tutorial (chapter 2),
667 and the Calc reference manual (the remaining chapters and appendices).
668 @end ifinfo
669 @iftex
670 The manual is divided into three major parts:@: the ``Getting
671 Started'' chapter you are reading now, the Calc tutorial (chapter 2),
672 and the Calc reference manual (the remaining chapters and appendices).
673 @c [when-split]
674 @c This manual has been printed in two volumes, the @dfn{Tutorial} and the
675 @c @dfn{Reference}.  Both volumes include a copy of the ``Getting Started''
676 @c chapter.
677 @end iftex
679 If you are in a hurry to use Calc, there is a brief ``demonstration''
680 below which illustrates the major features of Calc in just a couple of
681 pages.  If you don't have time to go through the full tutorial, this
682 will show you everything you need to know to begin.
683 @xref{Demonstration of Calc}.
685 The tutorial chapter walks you through the various parts of Calc
686 with lots of hands-on examples and explanations.  If you are new
687 to Calc and you have some time, try going through at least the
688 beginning of the tutorial.  The tutorial includes about 70 exercises
689 with answers.  These exercises give you some guided practice with
690 Calc, as well as pointing out some interesting and unusual ways
691 to use its features.
693 The reference section discusses Calc in complete depth.  You can read
694 the reference from start to finish if you want to learn every aspect
695 of Calc.  Or, you can look in the table of contents or the Concept
696 Index to find the parts of the manual that discuss the things you
697 need to know.
699 @cindex Marginal notes
700 Every Calc keyboard command is listed in the Calc Summary, and also
701 in the Key Index.  Algebraic functions, @kbd{M-x} commands, and
702 variables also have their own indices.  
703 @texline Each
704 @infoline In the printed manual, each
705 paragraph that is referenced in the Key or Function Index is marked
706 in the margin with its index entry.
708 @c [fix-ref Help Commands]
709 You can access this manual on-line at any time within Calc by
710 pressing the @kbd{h i} key sequence.  Outside of the Calc window,
711 you can press @kbd{M-# i} to read the manual on-line.  Also, you
712 can jump directly to the Tutorial by pressing @kbd{h t} or @kbd{M-# t},
713 or to the Summary by pressing @kbd{h s} or @kbd{M-# s}.  Within Calc,
714 you can also go to the part of the manual describing any Calc key,
715 function, or variable using @w{@kbd{h k}}, @kbd{h f}, or @kbd{h v},
716 respectively.  @xref{Help Commands}.
718 The Calc manual can be printed, but because the manual is so large, you
719 should only make a printed copy if you really need it.  To print the
720 manual, you will need the @TeX{} typesetting program (this is a free
721 program by Donald Knuth at Stanford University) as well as the
722 @file{texindex} program and @file{texinfo.tex} file, both of which can
723 be obtained from the FSF as part of the @code{texinfo} package.
724 To print the Calc manual in one huge tome, you will need the
725 source code to this manual, @file{calc.texi}, available as part of the
726 Emacs source.  Once you have this file, type @kbd{texi2dvi calc.texi}.
727 Alternatively, change to the @file{man} subdirectory of the Emacs
728 source distribution, and type @kbd{make calc.dvi}. (Don't worry if you
729 get some ``overfull box'' warnings while @TeX{} runs.)
730 The result will be a device-independent output file called
731 @file{calc.dvi}, which you must print in whatever way is right
732 for your system.  On many systems, the command is
734 @example
735 lpr -d calc.dvi
736 @end example
738 @noindent
741 @example
742 dvips calc.dvi
743 @end example
745 @c Printed copies of this manual are also available from the Free Software
746 @c Foundation.
748 @node Notations Used in This Manual, Demonstration of Calc, About This Manual, Getting Started
749 @section Notations Used in This Manual
751 @noindent
752 This section describes the various notations that are used
753 throughout the Calc manual.
755 In keystroke sequences, uppercase letters mean you must hold down
756 the shift key while typing the letter.  Keys pressed with Control
757 held down are shown as @kbd{C-x}.  Keys pressed with Meta held down
758 are shown as @kbd{M-x}.  Other notations are @key{RET} for the
759 Return key, @key{SPC} for the space bar, @key{TAB} for the Tab key,
760 @key{DEL} for the Delete key, and @key{LFD} for the Line-Feed key.
761 The @key{DEL} key is called Backspace on some keyboards, it is
762 whatever key you would use to correct a simple typing error when
763 regularly using Emacs.
765 (If you don't have the @key{LFD} or @key{TAB} keys on your keyboard,
766 the @kbd{C-j} and @kbd{C-i} keys are equivalent to them, respectively.
767 If you don't have a Meta key, look for Alt or Extend Char.  You can
768 also press @key{ESC} or @kbd{C-[} first to get the same effect, so
769 that @kbd{M-x}, @kbd{@key{ESC} x}, and @kbd{C-[ x} are all equivalent.)
771 Sometimes the @key{RET} key is not shown when it is ``obvious''
772 that you must press @key{RET} to proceed.  For example, the @key{RET}
773 is usually omitted in key sequences like @kbd{M-x calc-keypad @key{RET}}.
775 Commands are generally shown like this:  @kbd{p} (@code{calc-precision})
776 or @kbd{M-# k} (@code{calc-keypad}).  This means that the command is
777 normally used by pressing the @kbd{p} key or @kbd{M-# k} key sequence,
778 but it also has the full-name equivalent shown, e.g., @kbd{M-x calc-precision}.
780 Commands that correspond to functions in algebraic notation
781 are written:  @kbd{C} (@code{calc-cos}) [@code{cos}].  This means
782 the @kbd{C} key is equivalent to @kbd{M-x calc-cos}, and that
783 the corresponding function in an algebraic-style formula would
784 be @samp{cos(@var{x})}.
786 A few commands don't have key equivalents:  @code{calc-sincos}
787 [@code{sincos}].
789 @node Demonstration of Calc, Using Calc, Notations Used in This Manual, Getting Started
790 @section A Demonstration of Calc
792 @noindent
793 @cindex Demonstration of Calc
794 This section will show some typical small problems being solved with
795 Calc.  The focus is more on demonstration than explanation, but
796 everything you see here will be covered more thoroughly in the
797 Tutorial.
799 To begin, start Emacs if necessary (usually the command @code{emacs}
800 does this), and type @kbd{M-# c} (or @kbd{@key{ESC} # c}) to start the
801 Calculator.  (You can also use @kbd{M-x calc} if this doesn't work.
802 @xref{Starting Calc}, for various ways of starting the Calculator.)
804 Be sure to type all the sample input exactly, especially noting the
805 difference between lower-case and upper-case letters.  Remember,
806 @key{RET}, @key{TAB}, @key{DEL}, and @key{SPC} are the Return, Tab,
807 Delete, and Space keys.
809 @strong{RPN calculation.}  In RPN, you type the input number(s) first,
810 then the command to operate on the numbers.
812 @noindent
813 Type @kbd{2 @key{RET} 3 + Q} to compute 
814 @texline @math{\sqrt{2+3} = 2.2360679775}.
815 @infoline the square root of 2+3, which is 2.2360679775.
817 @noindent
818 Type @kbd{P 2 ^} to compute 
819 @texline @math{\pi^2 = 9.86960440109}.
820 @infoline the value of `pi' squared, 9.86960440109.
822 @noindent
823 Type @key{TAB} to exchange the order of these two results.
825 @noindent
826 Type @kbd{- I H S} to subtract these results and compute the Inverse
827 Hyperbolic sine of the difference, 2.72996136574.
829 @noindent
830 Type @key{DEL} to erase this result.
832 @strong{Algebraic calculation.}  You can also enter calculations using
833 conventional ``algebraic'' notation.  To enter an algebraic formula,
834 use the apostrophe key.
836 @noindent
837 Type @kbd{' sqrt(2+3) @key{RET}} to compute 
838 @texline @math{\sqrt{2+3}}.
839 @infoline the square root of 2+3.
841 @noindent
842 Type @kbd{' pi^2 @key{RET}} to enter 
843 @texline @math{\pi^2}.
844 @infoline `pi' squared.  
845 To evaluate this symbolic formula as a number, type @kbd{=}.
847 @noindent
848 Type @kbd{' arcsinh($ - $$) @key{RET}} to subtract the second-most-recent
849 result from the most-recent and compute the Inverse Hyperbolic sine.
851 @strong{Keypad mode.}  If you are using the X window system, press
852 @w{@kbd{M-# k}} to get Keypad mode.  (If you don't use X, skip to
853 the next section.)
855 @noindent
856 Click on the @key{2}, @key{ENTER}, @key{3}, @key{+}, and @key{SQRT}
857 ``buttons'' using your left mouse button.
859 @noindent
860 Click on @key{PI}, @key{2}, and @tfn{y^x}.
862 @noindent
863 Click on @key{INV}, then @key{ENTER} to swap the two results.
865 @noindent
866 Click on @key{-}, @key{INV}, @key{HYP}, and @key{SIN}.
868 @noindent
869 Click on @key{<-} to erase the result, then click @key{OFF} to turn
870 the Keypad Calculator off.
872 @strong{Grabbing data.}  Type @kbd{M-# x} if necessary to exit Calc.
873 Now select the following numbers as an Emacs region:  ``Mark'' the
874 front of the list by typing @kbd{C-@key{SPC}} or @kbd{C-@@} there,
875 then move to the other end of the list.  (Either get this list from
876 the on-line copy of this manual, accessed by @w{@kbd{M-# i}}, or just
877 type these numbers into a scratch file.)  Now type @kbd{M-# g} to
878 ``grab'' these numbers into Calc.
880 @example
881 @group
882 1.23  1.97
883 1.6   2
884 1.19  1.08
885 @end group
886 @end example
888 @noindent
889 The result @samp{[1.23, 1.97, 1.6, 2, 1.19, 1.08]} is a Calc ``vector.''
890 Type @w{@kbd{V R +}} to compute the sum of these numbers.
892 @noindent
893 Type @kbd{U} to Undo this command, then type @kbd{V R *} to compute
894 the product of the numbers.
896 @noindent
897 You can also grab data as a rectangular matrix.  Place the cursor on
898 the upper-leftmost @samp{1} and set the mark, then move to just after
899 the lower-right @samp{8} and press @kbd{M-# r}.
901 @noindent
902 Type @kbd{v t} to transpose this 
903 @texline @math{3\times2}
904 @infoline 3x2 
905 matrix into a 
906 @texline @math{2\times3}
907 @infoline 2x3
908 matrix.  Type @w{@kbd{v u}} to unpack the rows into two separate
909 vectors.  Now type @w{@kbd{V R + @key{TAB} V R +}} to compute the sums
910 of the two original columns. (There is also a special
911 grab-and-sum-columns command, @kbd{M-# :}.)
913 @strong{Units conversion.}  Units are entered algebraically.
914 Type @w{@kbd{' 43 mi/hr @key{RET}}} to enter the quantity 43 miles-per-hour.
915 Type @w{@kbd{u c km/hr @key{RET}}}.  Type @w{@kbd{u c m/s @key{RET}}}.
917 @strong{Date arithmetic.}  Type @kbd{t N} to get the current date and
918 time.  Type @kbd{90 +} to find the date 90 days from now.  Type
919 @kbd{' <25 dec 87> @key{RET}} to enter a date, then @kbd{- 7 /} to see how
920 many weeks have passed since then.
922 @strong{Algebra.}  Algebraic entries can also include formulas
923 or equations involving variables.  Type @kbd{@w{' [x + y} = a, x y = 1] @key{RET}}
924 to enter a pair of equations involving three variables.
925 (Note the leading apostrophe in this example; also, note that the space
926 between @samp{x y} is required.)  Type @w{@kbd{a S x,y @key{RET}}} to solve
927 these equations for the variables @expr{x} and @expr{y}.
929 @noindent
930 Type @kbd{d B} to view the solutions in more readable notation.
931 Type @w{@kbd{d C}} to view them in C language notation, @kbd{d T}
932 to view them in the notation for the @TeX{} typesetting system,
933 and @kbd{d L} to view them in the notation for the La@TeX{} typesetting
934 system.  Type @kbd{d N} to return to normal notation.
936 @noindent
937 Type @kbd{7.5}, then @kbd{s l a @key{RET}} to let @expr{a = 7.5} in these formulas.
938 (That's a letter @kbd{l}, not a numeral @kbd{1}.)
940 @iftex
941 @strong{Help functions.}  You can read about any command in the on-line
942 manual.  Type @kbd{M-# c} to return to Calc after each of these
943 commands: @kbd{h k t N} to read about the @kbd{t N} command,
944 @kbd{h f sqrt @key{RET}} to read about the @code{sqrt} function, and
945 @kbd{h s} to read the Calc summary.
946 @end iftex
947 @ifinfo
948 @strong{Help functions.}  You can read about any command in the on-line
949 manual.  Remember to type the letter @kbd{l}, then @kbd{M-# c}, to
950 return here after each of these commands: @w{@kbd{h k t N}} to read
951 about the @w{@kbd{t N}} command, @kbd{h f sqrt @key{RET}} to read about the
952 @code{sqrt} function, and @kbd{h s} to read the Calc summary.
953 @end ifinfo
955 Press @key{DEL} repeatedly to remove any leftover results from the stack.
956 To exit from Calc, press @kbd{q} or @kbd{M-# c} again.
958 @node Using Calc, History and Acknowledgements, Demonstration of Calc, Getting Started
959 @section Using Calc
961 @noindent
962 Calc has several user interfaces that are specialized for
963 different kinds of tasks.  As well as Calc's standard interface,
964 there are Quick mode, Keypad mode, and Embedded mode.
966 @menu
967 * Starting Calc::
968 * The Standard Interface::
969 * Quick Mode Overview::
970 * Keypad Mode Overview::
971 * Standalone Operation::
972 * Embedded Mode Overview::
973 * Other M-# Commands::
974 @end menu
976 @node Starting Calc, The Standard Interface, Using Calc, Using Calc
977 @subsection Starting Calc
979 @noindent
980 On most systems, you can type @kbd{M-#} to start the Calculator.
981 The notation @kbd{M-#} is short for Meta-@kbd{#}.  On most
982 keyboards this means holding down the Meta (or Alt) and
983 Shift keys while typing @kbd{3}.
985 @cindex META key
986 Once again, if you don't have a Meta key on your keyboard you can type
987 @key{ESC} first, then @kbd{#}, to accomplish the same thing.  If you
988 don't even have an @key{ESC} key, you can fake it by holding down
989 Control or @key{CTRL} while typing a left square bracket
990 (that's @kbd{C-[} in Emacs notation).
992 The key @kbd{M-#} is bound to the command @code{calc-dispatch}, 
993 which can be rebound if convenient.  
994 (@xref{Key Bindings,,Customizing Key Bindings,emacs,
995 The GNU Emacs Manual}.)
997 When you press @kbd{M-#}, Emacs waits for you to press a second key to
998 complete the command.  In this case, you will follow @kbd{M-#} with a
999 letter (upper- or lower-case, it doesn't matter for @kbd{M-#}) that says
1000 which Calc interface you want to use.
1002 To get Calc's standard interface, type @kbd{M-# c}.  To get
1003 Keypad mode, type @kbd{M-# k}.  Type @kbd{M-# ?} to get a brief
1004 list of the available options, and type a second @kbd{?} to get
1005 a complete list.
1007 To ease typing, @kbd{M-# M-#} (or @kbd{M-# #} if that's easier)
1008 also works to start Calc.  It starts the same interface (either
1009 @kbd{M-# c} or @w{@kbd{M-# k}}) that you last used, selecting the
1010 @kbd{M-# c} interface by default.  (If your installation has
1011 a special function key set up to act like @kbd{M-#}, hitting that
1012 function key twice is just like hitting @kbd{M-# M-#}.)
1014 If @kbd{M-#} doesn't work for you, you can always type explicit
1015 commands like @kbd{M-x calc} (for the standard user interface) or
1016 @w{@kbd{M-x calc-keypad}} (for Keypad mode).  First type @kbd{M-x}
1017 (that's Meta with the letter @kbd{x}), then, at the prompt,
1018 type the full command (like @kbd{calc-keypad}) and press Return.
1020 The same commands (like @kbd{M-# c} or @kbd{M-# M-#}) that start
1021 the Calculator also turn it off if it is already on.
1023 @node The Standard Interface, Quick Mode Overview, Starting Calc, Using Calc
1024 @subsection The Standard Calc Interface
1026 @noindent
1027 @cindex Standard user interface
1028 Calc's standard interface acts like a traditional RPN calculator,
1029 operated by the normal Emacs keyboard.  When you type @kbd{M-# c}
1030 to start the Calculator, the Emacs screen splits into two windows
1031 with the file you were editing on top and Calc on the bottom.
1033 @smallexample
1034 @group
1037 --**-Emacs: myfile             (Fundamental)----All----------------------
1038 --- Emacs Calculator Mode ---                   |Emacs Calc Mode v2.1 ...
1039 2:  17.3                                        |    17.3
1040 1:  -5                                          |    3
1041     .                                           |    2
1042                                                 |    4
1043                                                 |  * 8
1044                                                 |  ->-5
1045                                                 |
1046 --%%-Calc: 12 Deg       (Calculator)----All----- --%%-Emacs: *Calc Trail*
1047 @end group
1048 @end smallexample
1050 In this figure, the mode-line for @file{myfile} has moved up and the
1051 ``Calculator'' window has appeared below it.  As you can see, Calc
1052 actually makes two windows side-by-side.  The lefthand one is
1053 called the @dfn{stack window} and the righthand one is called the
1054 @dfn{trail window.}  The stack holds the numbers involved in the
1055 calculation you are currently performing.  The trail holds a complete
1056 record of all calculations you have done.  In a desk calculator with
1057 a printer, the trail corresponds to the paper tape that records what
1058 you do.
1060 In this case, the trail shows that four numbers (17.3, 3, 2, and 4)
1061 were first entered into the Calculator, then the 2 and 4 were
1062 multiplied to get 8, then the 3 and 8 were subtracted to get @mathit{-5}.
1063 (The @samp{>} symbol shows that this was the most recent calculation.)
1064 The net result is the two numbers 17.3 and @mathit{-5} sitting on the stack.
1066 Most Calculator commands deal explicitly with the stack only, but
1067 there is a set of commands that allow you to search back through
1068 the trail and retrieve any previous result.
1070 Calc commands use the digits, letters, and punctuation keys.
1071 Shifted (i.e., upper-case) letters are different from lowercase
1072 letters.  Some letters are @dfn{prefix} keys that begin two-letter
1073 commands.  For example, @kbd{e} means ``enter exponent'' and shifted
1074 @kbd{E} means @expr{e^x}.  With the @kbd{d} (``display modes'') prefix
1075 the letter ``e'' takes on very different meanings:  @kbd{d e} means
1076 ``engineering notation'' and @kbd{d E} means ``@dfn{eqn} language mode.''
1078 There is nothing stopping you from switching out of the Calc
1079 window and back into your editing window, say by using the Emacs
1080 @w{@kbd{C-x o}} (@code{other-window}) command.  When the cursor is
1081 inside a regular window, Emacs acts just like normal.  When the
1082 cursor is in the Calc stack or trail windows, keys are interpreted
1083 as Calc commands.
1085 When you quit by pressing @kbd{M-# c} a second time, the Calculator
1086 windows go away but the actual Stack and Trail are not gone, just
1087 hidden.  When you press @kbd{M-# c} once again you will get the
1088 same stack and trail contents you had when you last used the
1089 Calculator.
1091 The Calculator does not remember its state between Emacs sessions.
1092 Thus if you quit Emacs and start it again, @kbd{M-# c} will give you
1093 a fresh stack and trail.  There is a command (@kbd{m m}) that lets
1094 you save your favorite mode settings between sessions, though.
1095 One of the things it saves is which user interface (standard or
1096 Keypad) you last used; otherwise, a freshly started Emacs will
1097 always treat @kbd{M-# M-#} the same as @kbd{M-# c}.
1099 The @kbd{q} key is another equivalent way to turn the Calculator off.
1101 If you type @kbd{M-# b} first and then @kbd{M-# c}, you get a
1102 full-screen version of Calc (@code{full-calc}) in which the stack and
1103 trail windows are still side-by-side but are now as tall as the whole
1104 Emacs screen.  When you press @kbd{q} or @kbd{M-# c} again to quit,
1105 the file you were editing before reappears.  The @kbd{M-# b} key
1106 switches back and forth between ``big'' full-screen mode and the
1107 normal partial-screen mode.
1109 Finally, @kbd{M-# o} (@code{calc-other-window}) is like @kbd{M-# c}
1110 except that the Calc window is not selected.  The buffer you were
1111 editing before remains selected instead.  @kbd{M-# o} is a handy
1112 way to switch out of Calc momentarily to edit your file; type
1113 @kbd{M-# c} to switch back into Calc when you are done.
1115 @node Quick Mode Overview, Keypad Mode Overview, The Standard Interface, Using Calc
1116 @subsection Quick Mode (Overview)
1118 @noindent
1119 @dfn{Quick mode} is a quick way to use Calc when you don't need the
1120 full complexity of the stack and trail.  To use it, type @kbd{M-# q}
1121 (@code{quick-calc}) in any regular editing buffer.
1123 Quick mode is very simple:  It prompts you to type any formula in
1124 standard algebraic notation (like @samp{4 - 2/3}) and then displays
1125 the result at the bottom of the Emacs screen (@mathit{3.33333333333}
1126 in this case).  You are then back in the same editing buffer you
1127 were in before, ready to continue editing or to type @kbd{M-# q}
1128 again to do another quick calculation.  The result of the calculation
1129 will also be in the Emacs ``kill ring'' so that a @kbd{C-y} command
1130 at this point will yank the result into your editing buffer.
1132 Calc mode settings affect Quick mode, too, though you will have to
1133 go into regular Calc (with @kbd{M-# c}) to change the mode settings.
1135 @c [fix-ref Quick Calculator mode]
1136 @xref{Quick Calculator}, for further information.
1138 @node Keypad Mode Overview, Standalone Operation, Quick Mode Overview, Using Calc
1139 @subsection Keypad Mode (Overview)
1141 @noindent
1142 @dfn{Keypad mode} is a mouse-based interface to the Calculator.
1143 It is designed for use with terminals that support a mouse.  If you
1144 don't have a mouse, you will have to operate Keypad mode with your
1145 arrow keys (which is probably more trouble than it's worth).
1147 Type @kbd{M-# k} to turn Keypad mode on or off.  Once again you
1148 get two new windows, this time on the righthand side of the screen
1149 instead of at the bottom.  The upper window is the familiar Calc
1150 Stack; the lower window is a picture of a typical calculator keypad.
1152 @tex
1153 \dimen0=\pagetotal%
1154 \advance \dimen0 by 24\baselineskip%
1155 \ifdim \dimen0>\pagegoal \vfill\eject \fi%
1156 \medskip
1157 @end tex
1158 @smallexample
1159 @group
1160 |--- Emacs Calculator Mode ---
1161 |2:  17.3
1162 |1:  -5
1163 |    .
1164 |--%%-Calc: 12 Deg       (Calcul
1165 |----+-----Calc 2.1------+----1
1166 |FLR |CEIL|RND |TRNC|CLN2|FLT |
1167 |----+----+----+----+----+----|
1168 | LN |EXP |    |ABS |IDIV|MOD |
1169 |----+----+----+----+----+----|
1170 |SIN |COS |TAN |SQRT|y^x |1/x |
1171 |----+----+----+----+----+----|
1172 |  ENTER  |+/- |EEX |UNDO| <- |
1173 |-----+---+-+--+--+-+---++----|
1174 | INV |  7  |  8  |  9  |  /  |
1175 |-----+-----+-----+-----+-----|
1176 | HYP |  4  |  5  |  6  |  *  |
1177 |-----+-----+-----+-----+-----|
1178 |EXEC |  1  |  2  |  3  |  -  |
1179 |-----+-----+-----+-----+-----|
1180 | OFF |  0  |  .  | PI  |  +  |
1181 |-----+-----+-----+-----+-----+
1182 @end group
1183 @end smallexample
1185 Keypad mode is much easier for beginners to learn, because there
1186 is no need to memorize lots of obscure key sequences.  But not all
1187 commands in regular Calc are available on the Keypad.  You can
1188 always switch the cursor into the Calc stack window to use
1189 standard Calc commands if you need.  Serious Calc users, though,
1190 often find they prefer the standard interface over Keypad mode.
1192 To operate the Calculator, just click on the ``buttons'' of the
1193 keypad using your left mouse button.  To enter the two numbers
1194 shown here you would click @w{@kbd{1 7 .@: 3 ENTER 5 +/- ENTER}}; to
1195 add them together you would then click @kbd{+} (to get 12.3 on
1196 the stack).
1198 If you click the right mouse button, the top three rows of the
1199 keypad change to show other sets of commands, such as advanced
1200 math functions, vector operations, and operations on binary
1201 numbers.
1203 Because Keypad mode doesn't use the regular keyboard, Calc leaves
1204 the cursor in your original editing buffer.  You can type in
1205 this buffer in the usual way while also clicking on the Calculator
1206 keypad.  One advantage of Keypad mode is that you don't need an
1207 explicit command to switch between editing and calculating.
1209 If you press @kbd{M-# b} first, you get a full-screen Keypad mode
1210 (@code{full-calc-keypad}) with three windows:  The keypad in the lower
1211 left, the stack in the lower right, and the trail on top.
1213 @c [fix-ref Keypad Mode]
1214 @xref{Keypad Mode}, for further information.
1216 @node Standalone Operation, Embedded Mode Overview, Keypad Mode Overview, Using Calc
1217 @subsection Standalone Operation
1219 @noindent
1220 @cindex Standalone Operation
1221 If you are not in Emacs at the moment but you wish to use Calc,
1222 you must start Emacs first.  If all you want is to run Calc, you
1223 can give the commands:
1225 @example
1226 emacs -f full-calc
1227 @end example
1229 @noindent
1232 @example
1233 emacs -f full-calc-keypad
1234 @end example
1236 @noindent
1237 which run a full-screen Calculator (as if by @kbd{M-# b M-# c}) or
1238 a full-screen X-based Calculator (as if by @kbd{M-# b M-# k}).
1239 In standalone operation, quitting the Calculator (by pressing
1240 @kbd{q} or clicking on the keypad @key{EXIT} button) quits Emacs
1241 itself.
1243 @node Embedded Mode Overview, Other M-# Commands, Standalone Operation, Using Calc
1244 @subsection Embedded Mode (Overview)
1246 @noindent
1247 @dfn{Embedded mode} is a way to use Calc directly from inside an
1248 editing buffer.  Suppose you have a formula written as part of a
1249 document like this:
1251 @smallexample
1252 @group
1253 The derivative of
1255                                    ln(ln(x))
1258 @end group
1259 @end smallexample
1261 @noindent
1262 and you wish to have Calc compute and format the derivative for
1263 you and store this derivative in the buffer automatically.  To
1264 do this with Embedded mode, first copy the formula down to where
1265 you want the result to be:
1267 @smallexample
1268 @group
1269 The derivative of
1271                                    ln(ln(x))
1275                                    ln(ln(x))
1276 @end group
1277 @end smallexample
1279 Now, move the cursor onto this new formula and press @kbd{M-# e}.
1280 Calc will read the formula (using the surrounding blank lines to
1281 tell how much text to read), then push this formula (invisibly)
1282 onto the Calc stack.  The cursor will stay on the formula in the
1283 editing buffer, but the buffer's mode line will change to look
1284 like the Calc mode line (with mode indicators like @samp{12 Deg}
1285 and so on).  Even though you are still in your editing buffer,
1286 the keyboard now acts like the Calc keyboard, and any new result
1287 you get is copied from the stack back into the buffer.  To take
1288 the derivative, you would type @kbd{a d x @key{RET}}.
1290 @smallexample
1291 @group
1292 The derivative of
1294                                    ln(ln(x))
1298 1 / ln(x) x
1299 @end group
1300 @end smallexample
1302 To make this look nicer, you might want to press @kbd{d =} to center
1303 the formula, and even @kbd{d B} to use Big display mode.
1305 @smallexample
1306 @group
1307 The derivative of
1309                                    ln(ln(x))
1312 % [calc-mode: justify: center]
1313 % [calc-mode: language: big]
1315                                        1
1316                                     -------
1317                                     ln(x) x
1318 @end group
1319 @end smallexample
1321 Calc has added annotations to the file to help it remember the modes
1322 that were used for this formula.  They are formatted like comments
1323 in the @TeX{} typesetting language, just in case you are using @TeX{} or
1324 La@TeX{}. (In this example @TeX{} is not being used, so you might want
1325 to move these comments up to the top of the file or otherwise put them
1326 out of the way.)
1328 As an extra flourish, we can add an equation number using a
1329 righthand label:  Type @kbd{d @} (1) @key{RET}}.
1331 @smallexample
1332 @group
1333 % [calc-mode: justify: center]
1334 % [calc-mode: language: big]
1335 % [calc-mode: right-label: " (1)"]
1337                                        1
1338                                     -------                      (1)
1339                                     ln(x) x
1340 @end group
1341 @end smallexample
1343 To leave Embedded mode, type @kbd{M-# e} again.  The mode line
1344 and keyboard will revert to the way they were before.
1346 The related command @kbd{M-# w} operates on a single word, which
1347 generally means a single number, inside text.  It uses any
1348 non-numeric characters rather than blank lines to delimit the
1349 formula it reads.  Here's an example of its use:
1351 @smallexample
1352 A slope of one-third corresponds to an angle of 1 degrees.
1353 @end smallexample
1355 Place the cursor on the @samp{1}, then type @kbd{M-# w} to enable
1356 Embedded mode on that number.  Now type @kbd{3 /} (to get one-third),
1357 and @kbd{I T} (the Inverse Tangent converts a slope into an angle),
1358 then @w{@kbd{M-# w}} again to exit Embedded mode.
1360 @smallexample
1361 A slope of one-third corresponds to an angle of 18.4349488229 degrees.
1362 @end smallexample
1364 @c [fix-ref Embedded Mode]
1365 @xref{Embedded Mode}, for full details.
1367 @node Other M-# Commands, , Embedded Mode Overview, Using Calc
1368 @subsection Other @kbd{M-#} Commands
1370 @noindent
1371 Two more Calc-related commands are @kbd{M-# g} and @kbd{M-# r},
1372 which ``grab'' data from a selected region of a buffer into the
1373 Calculator.  The region is defined in the usual Emacs way, by
1374 a ``mark'' placed at one end of the region, and the Emacs
1375 cursor or ``point'' placed at the other.
1377 The @kbd{M-# g} command reads the region in the usual left-to-right,
1378 top-to-bottom order.  The result is packaged into a Calc vector
1379 of numbers and placed on the stack.  Calc (in its standard
1380 user interface) is then started.  Type @kbd{v u} if you want
1381 to unpack this vector into separate numbers on the stack.  Also,
1382 @kbd{C-u M-# g} interprets the region as a single number or
1383 formula.
1385 The @kbd{M-# r} command reads a rectangle, with the point and
1386 mark defining opposite corners of the rectangle.  The result
1387 is a matrix of numbers on the Calculator stack.
1389 Complementary to these is @kbd{M-# y}, which ``yanks'' the
1390 value at the top of the Calc stack back into an editing buffer.
1391 If you type @w{@kbd{M-# y}} while in such a buffer, the value is
1392 yanked at the current position.  If you type @kbd{M-# y} while
1393 in the Calc buffer, Calc makes an educated guess as to which
1394 editing buffer you want to use.  The Calc window does not have
1395 to be visible in order to use this command, as long as there
1396 is something on the Calc stack.
1398 Here, for reference, is the complete list of @kbd{M-#} commands.
1399 The shift, control, and meta keys are ignored for the keystroke
1400 following @kbd{M-#}.
1402 @noindent
1403 Commands for turning Calc on and off:
1405 @table @kbd
1406 @item #
1407 Turn Calc on or off, employing the same user interface as last time.
1409 @item C
1410 Turn Calc on or off using its standard bottom-of-the-screen
1411 interface.  If Calc is already turned on but the cursor is not
1412 in the Calc window, move the cursor into the window.
1414 @item O
1415 Same as @kbd{C}, but don't select the new Calc window.  If
1416 Calc is already turned on and the cursor is in the Calc window,
1417 move it out of that window.
1419 @item B
1420 Control whether @kbd{M-# c} and @kbd{M-# k} use the full screen.
1422 @item Q
1423 Use Quick mode for a single short calculation.
1425 @item K
1426 Turn Calc Keypad mode on or off.
1428 @item E
1429 Turn Calc Embedded mode on or off at the current formula.
1431 @item J
1432 Turn Calc Embedded mode on or off, select the interesting part.
1434 @item W
1435 Turn Calc Embedded mode on or off at the current word (number).
1437 @item Z
1438 Turn Calc on in a user-defined way, as defined by a @kbd{Z I} command.
1440 @item X
1441 Quit Calc; turn off standard, Keypad, or Embedded mode if on.
1442 (This is like @kbd{q} or @key{OFF} inside of Calc.)
1443 @end table
1444 @iftex
1445 @sp 2
1446 @end iftex
1448 @noindent
1449 Commands for moving data into and out of the Calculator:
1451 @table @kbd
1452 @item G
1453 Grab the region into the Calculator as a vector.
1455 @item R
1456 Grab the rectangular region into the Calculator as a matrix.
1458 @item :
1459 Grab the rectangular region and compute the sums of its columns.
1461 @item _
1462 Grab the rectangular region and compute the sums of its rows.
1464 @item Y
1465 Yank a value from the Calculator into the current editing buffer.
1466 @end table
1467 @iftex
1468 @sp 2
1469 @end iftex
1471 @noindent
1472 Commands for use with Embedded mode:
1474 @table @kbd
1475 @item A
1476 ``Activate'' the current buffer.  Locate all formulas that
1477 contain @samp{:=} or @samp{=>} symbols and record their locations
1478 so that they can be updated automatically as variables are changed.
1480 @item D
1481 Duplicate the current formula immediately below and select
1482 the duplicate.
1484 @item F
1485 Insert a new formula at the current point.
1487 @item N
1488 Move the cursor to the next active formula in the buffer.
1490 @item P
1491 Move the cursor to the previous active formula in the buffer.
1493 @item U
1494 Update (i.e., as if by the @kbd{=} key) the formula at the current point.
1496 @item `
1497 Edit (as if by @code{calc-edit}) the formula at the current point.
1498 @end table
1499 @iftex
1500 @sp 2
1501 @end iftex
1503 @noindent
1504 Miscellaneous commands:
1506 @table @kbd
1507 @item I
1508 Run the Emacs Info system to read the Calc manual.
1509 (This is the same as @kbd{h i} inside of Calc.)
1511 @item T
1512 Run the Emacs Info system to read the Calc Tutorial.
1514 @item S
1515 Run the Emacs Info system to read the Calc Summary.
1517 @item L
1518 Load Calc entirely into memory.  (Normally the various parts
1519 are loaded only as they are needed.)
1521 @item M
1522 Read a region of written keystroke names (like @kbd{C-n a b c @key{RET}})
1523 and record them as the current keyboard macro.
1525 @item 0
1526 (This is the ``zero'' digit key.)  Reset the Calculator to
1527 its initial state:  Empty stack, and initial mode settings.
1528 @end table
1530 @node History and Acknowledgements, , Using Calc, Getting Started
1531 @section History and Acknowledgements
1533 @noindent
1534 Calc was originally started as a two-week project to occupy a lull
1535 in the author's schedule.  Basically, a friend asked if I remembered
1536 the value of 
1537 @texline @math{2^{32}}.
1538 @infoline @expr{2^32}.  
1539 I didn't offhand, but I said, ``that's easy, just call up an
1540 @code{xcalc}.''  @code{Xcalc} duly reported that the answer to our
1541 question was @samp{4.294967e+09}---with no way to see the full ten
1542 digits even though we knew they were there in the program's memory!  I
1543 was so annoyed, I vowed to write a calculator of my own, once and for
1544 all.
1546 I chose Emacs Lisp, a) because I had always been curious about it
1547 and b) because, being only a text editor extension language after
1548 all, Emacs Lisp would surely reach its limits long before the project
1549 got too far out of hand.
1551 To make a long story short, Emacs Lisp turned out to be a distressingly
1552 solid implementation of Lisp, and the humble task of calculating
1553 turned out to be more open-ended than one might have expected.
1555 Emacs Lisp doesn't have built-in floating point math, so it had to be
1556 simulated in software.  In fact, Emacs integers will only comfortably
1557 fit six decimal digits or so---not enough for a decent calculator.  So
1558 I had to write my own high-precision integer code as well, and once I had
1559 this I figured that arbitrary-size integers were just as easy as large
1560 integers.  Arbitrary floating-point precision was the logical next step.
1561 Also, since the large integer arithmetic was there anyway it seemed only
1562 fair to give the user direct access to it, which in turn made it practical
1563 to support fractions as well as floats.  All these features inspired me
1564 to look around for other data types that might be worth having.
1566 Around this time, my friend Rick Koshi showed me his nifty new HP-28
1567 calculator.  It allowed the user to manipulate formulas as well as
1568 numerical quantities, and it could also operate on matrices.  I
1569 decided that these would be good for Calc to have, too.  And once
1570 things had gone this far, I figured I might as well take a look at
1571 serious algebra systems for further ideas.  Since these systems did
1572 far more than I could ever hope to implement, I decided to focus on
1573 rewrite rules and other programming features so that users could
1574 implement what they needed for themselves.
1576 Rick complained that matrices were hard to read, so I put in code to
1577 format them in a 2D style.  Once these routines were in place, Big mode
1578 was obligatory.  Gee, what other language modes would be useful?
1580 Scott Hemphill and Allen Knutson, two friends with a strong mathematical
1581 bent, contributed ideas and algorithms for a number of Calc features
1582 including modulo forms, primality testing, and float-to-fraction conversion.
1584 Units were added at the eager insistence of Mass Sivilotti.  Later,
1585 Ulrich Mueller at CERN and Przemek Klosowski at NIST provided invaluable
1586 expert assistance with the units table.  As far as I can remember, the
1587 idea of using algebraic formulas and variables to represent units dates
1588 back to an ancient article in Byte magazine about muMath, an early
1589 algebra system for microcomputers.
1591 Many people have contributed to Calc by reporting bugs and suggesting
1592 features, large and small.  A few deserve special mention:  Tim Peters,
1593 who helped develop the ideas that led to the selection commands, rewrite
1594 rules, and many other algebra features; 
1595 @texline Fran\c{c}ois
1596 @infoline Francois
1597 Pinard, who contributed an early prototype of the Calc Summary appendix
1598 as well as providing valuable suggestions in many other areas of Calc;
1599 Carl Witty, whose eagle eyes discovered many typographical and factual
1600 errors in the Calc manual; Tim Kay, who drove the development of
1601 Embedded mode; Ove Ewerlid, who made many suggestions relating to the
1602 algebra commands and contributed some code for polynomial operations;
1603 Randal Schwartz, who suggested the @code{calc-eval} function; Robert
1604 J. Chassell, who suggested the Calc Tutorial and exercises; and Juha
1605 Sarlin, who first worked out how to split Calc into quickly-loading
1606 parts.  Bob Weiner helped immensely with the Lucid Emacs port.
1608 @cindex Bibliography
1609 @cindex Knuth, Art of Computer Programming
1610 @cindex Numerical Recipes
1611 @c Should these be expanded into more complete references?
1612 Among the books used in the development of Calc were Knuth's @emph{Art
1613 of Computer Programming} (especially volume II, @emph{Seminumerical
1614 Algorithms}); @emph{Numerical Recipes} by Press, Flannery, Teukolsky,
1615 and Vetterling; Bevington's @emph{Data Reduction and Error Analysis
1616 for the Physical Sciences}; @emph{Concrete Mathematics} by Graham,
1617 Knuth, and Patashnik; Steele's @emph{Common Lisp, the Language}; the
1618 @emph{CRC Standard Math Tables} (William H. Beyer, ed.); and
1619 Abramowitz and Stegun's venerable @emph{Handbook of Mathematical
1620 Functions}.  Also, of course, Calc could not have been written without
1621 the excellent @emph{GNU Emacs Lisp Reference Manual}, by Bil Lewis and
1622 Dan LaLiberte.
1624 Final thanks go to Richard Stallman, without whose fine implementations
1625 of the Emacs editor, language, and environment, Calc would have been
1626 finished in two weeks.
1628 @c [tutorial]
1630 @ifinfo
1631 @c This node is accessed by the `M-# t' command.
1632 @node Interactive Tutorial, , , Top
1633 @chapter Tutorial
1635 @noindent
1636 Some brief instructions on using the Emacs Info system for this tutorial:
1638 Press the space bar and Delete keys to go forward and backward in a
1639 section by screenfuls (or use the regular Emacs scrolling commands
1640 for this).
1642 Press @kbd{n} or @kbd{p} to go to the Next or Previous section.
1643 If the section has a @dfn{menu}, press a digit key like @kbd{1}
1644 or @kbd{2} to go to a sub-section from the menu.  Press @kbd{u} to
1645 go back up from a sub-section to the menu it is part of.
1647 Exercises in the tutorial all have cross-references to the
1648 appropriate page of the ``answers'' section.  Press @kbd{f}, then
1649 the exercise number, to see the answer to an exercise.  After
1650 you have followed a cross-reference, you can press the letter
1651 @kbd{l} to return to where you were before.
1653 You can press @kbd{?} at any time for a brief summary of Info commands.
1655 Press @kbd{1} now to enter the first section of the Tutorial.
1657 @menu
1658 * Tutorial::
1659 @end menu
1660 @end ifinfo
1662 @node Tutorial, Introduction, Getting Started, Top
1663 @chapter Tutorial
1665 @noindent
1666 This chapter explains how to use Calc and its many features, in
1667 a step-by-step, tutorial way.  You are encouraged to run Calc and
1668 work along with the examples as you read (@pxref{Starting Calc}).
1669 If you are already familiar with advanced calculators, you may wish
1670 @c [not-split]
1671 to skip on to the rest of this manual.
1672 @c [when-split]
1673 @c to skip on to volume II of this manual, the @dfn{Calc Reference}.
1675 @c [fix-ref Embedded Mode]
1676 This tutorial describes the standard user interface of Calc only.
1677 The Quick mode and Keypad mode interfaces are fairly
1678 self-explanatory.  @xref{Embedded Mode}, for a description of
1679 the Embedded mode interface.
1681 @ifinfo
1682 The easiest way to read this tutorial on-line is to have two windows on
1683 your Emacs screen, one with Calc and one with the Info system.  (If you
1684 have a printed copy of the manual you can use that instead.)  Press
1685 @kbd{M-# c} to turn Calc on or to switch into the Calc window, and
1686 press @kbd{M-# i} to start the Info system or to switch into its window.
1687 Or, you may prefer to use the tutorial in printed form.
1688 @end ifinfo
1689 @iftex
1690 The easiest way to read this tutorial on-line is to have two windows on
1691 your Emacs screen, one with Calc and one with the Info system.  (If you
1692 have a printed copy of the manual you can use that instead.)  Press
1693 @kbd{M-# c} to turn Calc on or to switch into the Calc window, and
1694 press @kbd{M-# i} to start the Info system or to switch into its window.
1695 @end iftex
1697 This tutorial is designed to be done in sequence.  But the rest of this
1698 manual does not assume you have gone through the tutorial.  The tutorial
1699 does not cover everything in the Calculator, but it touches on most
1700 general areas.
1702 @ifinfo
1703 You may wish to print out a copy of the Calc Summary and keep notes on
1704 it as you learn Calc.  @xref{About This Manual}, to see how to make a
1705 printed summary.  @xref{Summary}.
1706 @end ifinfo
1707 @iftex
1708 The Calc Summary at the end of the reference manual includes some blank
1709 space for your own use.  You may wish to keep notes there as you learn
1710 Calc.
1711 @end iftex
1713 @menu
1714 * Basic Tutorial::
1715 * Arithmetic Tutorial::
1716 * Vector/Matrix Tutorial::
1717 * Types Tutorial::
1718 * Algebra Tutorial::
1719 * Programming Tutorial::
1721 * Answers to Exercises::
1722 @end menu
1724 @node Basic Tutorial, Arithmetic Tutorial, Tutorial, Tutorial
1725 @section Basic Tutorial
1727 @noindent
1728 In this section, we learn how RPN and algebraic-style calculations
1729 work, how to undo and redo an operation done by mistake, and how
1730 to control various modes of the Calculator.
1732 @menu
1733 * RPN Tutorial::            Basic operations with the stack.
1734 * Algebraic Tutorial::      Algebraic entry; variables.
1735 * Undo Tutorial::           If you make a mistake: Undo and the trail.
1736 * Modes Tutorial::          Common mode-setting commands.
1737 @end menu
1739 @node RPN Tutorial, Algebraic Tutorial, Basic Tutorial, Basic Tutorial
1740 @subsection RPN Calculations and the Stack
1742 @cindex RPN notation
1743 @ifinfo
1744 @noindent
1745 Calc normally uses RPN notation.  You may be familiar with the RPN
1746 system from Hewlett-Packard calculators, FORTH, or PostScript.
1747 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1748 Jan Lukasiewicz.)
1749 @end ifinfo
1750 @tex
1751 \noindent
1752 Calc normally uses RPN notation.  You may be familiar with the RPN
1753 system from Hewlett-Packard calculators, FORTH, or PostScript.
1754 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1755 Jan \L ukasiewicz.)
1756 @end tex
1758 The central component of an RPN calculator is the @dfn{stack}.  A
1759 calculator stack is like a stack of dishes.  New dishes (numbers) are
1760 added at the top of the stack, and numbers are normally only removed
1761 from the top of the stack.
1763 @cindex Operators
1764 @cindex Operands
1765 In an operation like @expr{2+3}, the 2 and 3 are called the @dfn{operands}
1766 and the @expr{+} is the @dfn{operator}.  In an RPN calculator you always
1767 enter the operands first, then the operator.  Each time you type a
1768 number, Calc adds or @dfn{pushes} it onto the top of the Stack.
1769 When you press an operator key like @kbd{+}, Calc @dfn{pops} the appropriate
1770 number of operands from the stack and pushes back the result.
1772 Thus we could add the numbers 2 and 3 in an RPN calculator by typing:
1773 @kbd{2 @key{RET} 3 @key{RET} +}.  (The @key{RET} key, Return, corresponds to
1774 the @key{ENTER} key on traditional RPN calculators.)  Try this now if
1775 you wish; type @kbd{M-# c} to switch into the Calc window (you can type
1776 @kbd{M-# c} again or @kbd{M-# o} to switch back to the Tutorial window).
1777 The first four keystrokes ``push'' the numbers 2 and 3 onto the stack.
1778 The @kbd{+} key ``pops'' the top two numbers from the stack, adds them,
1779 and pushes the result (5) back onto the stack.  Here's how the stack
1780 will look at various points throughout the calculation:
1782 @smallexample
1783 @group
1784     .          1:  2          2:  2          1:  5              .
1785                    .          1:  3              .
1786                                   .
1788   M-# c          2 @key{RET}          3 @key{RET}            +             @key{DEL}
1789 @end group
1790 @end smallexample
1792 The @samp{.} symbol is a marker that represents the top of the stack.
1793 Note that the ``top'' of the stack is really shown at the bottom of
1794 the Stack window.  This may seem backwards, but it turns out to be
1795 less distracting in regular use.
1797 @cindex Stack levels
1798 @cindex Levels of stack
1799 The numbers @samp{1:} and @samp{2:} on the left are @dfn{stack level
1800 numbers}.  Old RPN calculators always had four stack levels called
1801 @expr{x}, @expr{y}, @expr{z}, and @expr{t}.  Calc's stack can grow
1802 as large as you like, so it uses numbers instead of letters.  Some
1803 stack-manipulation commands accept a numeric argument that says
1804 which stack level to work on.  Normal commands like @kbd{+} always
1805 work on the top few levels of the stack.
1807 @c [fix-ref Truncating the Stack]
1808 The Stack buffer is just an Emacs buffer, and you can move around in
1809 it using the regular Emacs motion commands.  But no matter where the
1810 cursor is, even if you have scrolled the @samp{.} marker out of
1811 view, most Calc commands always move the cursor back down to level 1
1812 before doing anything.  It is possible to move the @samp{.} marker
1813 upwards through the stack, temporarily ``hiding'' some numbers from
1814 commands like @kbd{+}.  This is called @dfn{stack truncation} and
1815 we will not cover it in this tutorial; @pxref{Truncating the Stack},
1816 if you are interested.
1818 You don't really need the second @key{RET} in @kbd{2 @key{RET} 3
1819 @key{RET} +}.  That's because if you type any operator name or
1820 other non-numeric key when you are entering a number, the Calculator
1821 automatically enters that number and then does the requested command.
1822 Thus @kbd{2 @key{RET} 3 +} will work just as well.
1824 Examples in this tutorial will often omit @key{RET} even when the
1825 stack displays shown would only happen if you did press @key{RET}:
1827 @smallexample
1828 @group
1829 1:  2          2:  2          1:  5
1830     .          1:  3              .
1831                    .
1833   2 @key{RET}            3              +
1834 @end group
1835 @end smallexample
1837 @noindent
1838 Here, after pressing @kbd{3} the stack would really show @samp{1:  2}
1839 with @samp{Calc:@: 3} in the minibuffer.  In these situations, you can
1840 press the optional @key{RET} to see the stack as the figure shows.
1842 (@bullet{}) @strong{Exercise 1.}  (This tutorial will include exercises
1843 at various points.  Try them if you wish.  Answers to all the exercises
1844 are located at the end of the Tutorial chapter.  Each exercise will
1845 include a cross-reference to its particular answer.  If you are
1846 reading with the Emacs Info system, press @kbd{f} and the
1847 exercise number to go to the answer, then the letter @kbd{l} to
1848 return to where you were.)
1850 @noindent
1851 Here's the first exercise:  What will the keystrokes @kbd{1 @key{RET} 2
1852 @key{RET} 3 @key{RET} 4 + * -} compute?  (@samp{*} is the symbol for
1853 multiplication.)  Figure it out by hand, then try it with Calc to see
1854 if you're right.  @xref{RPN Answer 1, 1}. (@bullet{})
1856 (@bullet{}) @strong{Exercise 2.}  Compute 
1857 @texline @math{(2\times4) + (7\times9.4) + {5\over4}}
1858 @infoline @expr{2*4 + 7*9.5 + 5/4} 
1859 using the stack.  @xref{RPN Answer 2, 2}. (@bullet{})
1861 The @key{DEL} key is called Backspace on some keyboards.  It is
1862 whatever key you would use to correct a simple typing error when
1863 regularly using Emacs.  The @key{DEL} key pops and throws away the
1864 top value on the stack.  (You can still get that value back from
1865 the Trail if you should need it later on.)  There are many places
1866 in this tutorial where we assume you have used @key{DEL} to erase the
1867 results of the previous example at the beginning of a new example.
1868 In the few places where it is really important to use @key{DEL} to
1869 clear away old results, the text will remind you to do so.
1871 (It won't hurt to let things accumulate on the stack, except that
1872 whenever you give a display-mode-changing command Calc will have to
1873 spend a long time reformatting such a large stack.)
1875 Since the @kbd{-} key is also an operator (it subtracts the top two
1876 stack elements), how does one enter a negative number?  Calc uses
1877 the @kbd{_} (underscore) key to act like the minus sign in a number.
1878 So, typing @kbd{-5 @key{RET}} won't work because the @kbd{-} key
1879 will try to do a subtraction, but @kbd{_5 @key{RET}} works just fine.
1881 You can also press @kbd{n}, which means ``change sign.''  It changes
1882 the number at the top of the stack (or the number being entered)
1883 from positive to negative or vice-versa:  @kbd{5 n @key{RET}}.
1885 @cindex Duplicating a stack entry
1886 If you press @key{RET} when you're not entering a number, the effect
1887 is to duplicate the top number on the stack.  Consider this calculation:
1889 @smallexample
1890 @group
1891 1:  3          2:  3          1:  9          2:  9          1:  81
1892     .          1:  3              .          1:  9              .
1893                    .                             .
1895   3 @key{RET}           @key{RET}             *             @key{RET}             *
1896 @end group
1897 @end smallexample
1899 @noindent
1900 (Of course, an easier way to do this would be @kbd{3 @key{RET} 4 ^},
1901 to raise 3 to the fourth power.)
1903 The space-bar key (denoted @key{SPC} here) performs the same function
1904 as @key{RET}; you could replace all three occurrences of @key{RET} in
1905 the above example with @key{SPC} and the effect would be the same.
1907 @cindex Exchanging stack entries
1908 Another stack manipulation key is @key{TAB}.  This exchanges the top
1909 two stack entries.  Suppose you have computed @kbd{2 @key{RET} 3 +}
1910 to get 5, and then you realize what you really wanted to compute
1911 was @expr{20 / (2+3)}.
1913 @smallexample
1914 @group
1915 1:  5          2:  5          2:  20         1:  4
1916     .          1:  20         1:  5              .
1917                    .              .
1919  2 @key{RET} 3 +         20            @key{TAB}             /
1920 @end group
1921 @end smallexample
1923 @noindent
1924 Planning ahead, the calculation would have gone like this:
1926 @smallexample
1927 @group
1928 1:  20         2:  20         3:  20         2:  20         1:  4
1929     .          1:  2          2:  2          1:  5              .
1930                    .          1:  3              .
1931                                   .
1933   20 @key{RET}         2 @key{RET}            3              +              /
1934 @end group
1935 @end smallexample
1937 A related stack command is @kbd{M-@key{TAB}} (hold @key{META} and type
1938 @key{TAB}).  It rotates the top three elements of the stack upward,
1939 bringing the object in level 3 to the top.
1941 @smallexample
1942 @group
1943 1:  10         2:  10         3:  10         3:  20         3:  30
1944     .          1:  20         2:  20         2:  30         2:  10
1945                    .          1:  30         1:  10         1:  20
1946                                   .              .              .
1948   10 @key{RET}         20 @key{RET}         30 @key{RET}         M-@key{TAB}          M-@key{TAB}
1949 @end group
1950 @end smallexample
1952 (@bullet{}) @strong{Exercise 3.} Suppose the numbers 10, 20, and 30 are
1953 on the stack.  Figure out how to add one to the number in level 2
1954 without affecting the rest of the stack.  Also figure out how to add
1955 one to the number in level 3.  @xref{RPN Answer 3, 3}. (@bullet{})
1957 Operations like @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/}, and @kbd{^} pop two
1958 arguments from the stack and push a result.  Operations like @kbd{n} and
1959 @kbd{Q} (square root) pop a single number and push the result.  You can
1960 think of them as simply operating on the top element of the stack.
1962 @smallexample
1963 @group
1964 1:  3          1:  9          2:  9          1:  25         1:  5
1965     .              .          1:  16             .              .
1966                                   .
1968   3 @key{RET}          @key{RET} *        4 @key{RET} @key{RET} *        +              Q
1969 @end group
1970 @end smallexample
1972 @noindent
1973 (Note that capital @kbd{Q} means to hold down the Shift key while
1974 typing @kbd{q}.  Remember, plain unshifted @kbd{q} is the Quit command.)
1976 @cindex Pythagorean Theorem
1977 Here we've used the Pythagorean Theorem to determine the hypotenuse of a
1978 right triangle.  Calc actually has a built-in command for that called
1979 @kbd{f h}, but let's suppose we can't remember the necessary keystrokes.
1980 We can still enter it by its full name using @kbd{M-x} notation:
1982 @smallexample
1983 @group
1984 1:  3          2:  3          1:  5
1985     .          1:  4              .
1986                    .
1988   3 @key{RET}          4 @key{RET}      M-x calc-hypot
1989 @end group
1990 @end smallexample
1992 All Calculator commands begin with the word @samp{calc-}.  Since it
1993 gets tiring to type this, Calc provides an @kbd{x} key which is just
1994 like the regular Emacs @kbd{M-x} key except that it types the @samp{calc-}
1995 prefix for you:
1997 @smallexample
1998 @group
1999 1:  3          2:  3          1:  5
2000     .          1:  4              .
2001                    .
2003   3 @key{RET}          4 @key{RET}         x hypot
2004 @end group
2005 @end smallexample
2007 What happens if you take the square root of a negative number?
2009 @smallexample
2010 @group
2011 1:  4          1:  -4         1:  (0, 2)
2012     .              .              .
2014   4 @key{RET}            n              Q
2015 @end group
2016 @end smallexample
2018 @noindent
2019 The notation @expr{(a, b)} represents a complex number.
2020 Complex numbers are more traditionally written @expr{a + b i};
2021 Calc can display in this format, too, but for now we'll stick to the
2022 @expr{(a, b)} notation.
2024 If you don't know how complex numbers work, you can safely ignore this
2025 feature.  Complex numbers only arise from operations that would be
2026 errors in a calculator that didn't have complex numbers.  (For example,
2027 taking the square root or logarithm of a negative number produces a
2028 complex result.)
2030 Complex numbers are entered in the notation shown.  The @kbd{(} and
2031 @kbd{,} and @kbd{)} keys manipulate ``incomplete complex numbers.''
2033 @smallexample
2034 @group
2035 1:  ( ...      2:  ( ...      1:  (2, ...    1:  (2, ...    1:  (2, 3)
2036     .          1:  2              .              3              .
2037                    .                             .
2039     (              2              ,              3              )
2040 @end group
2041 @end smallexample
2043 You can perform calculations while entering parts of incomplete objects.
2044 However, an incomplete object cannot actually participate in a calculation:
2046 @smallexample
2047 @group
2048 1:  ( ...      2:  ( ...      3:  ( ...      1:  ( ...      1:  ( ...
2049     .          1:  2          2:  2              5              5
2050                    .          1:  3              .              .
2051                                   .
2052                                                              (error)
2053     (             2 @key{RET}           3              +              +
2054 @end group
2055 @end smallexample
2057 @noindent
2058 Adding 5 to an incomplete object makes no sense, so the last command
2059 produces an error message and leaves the stack the same.
2061 Incomplete objects can't participate in arithmetic, but they can be
2062 moved around by the regular stack commands.
2064 @smallexample
2065 @group
2066 2:  2          3:  2          3:  3          1:  ( ...      1:  (2, 3)
2067 1:  3          2:  3          2:  ( ...          2              .
2068     .          1:  ( ...      1:  2              3
2069                    .              .              .
2071 2 @key{RET} 3 @key{RET}        (            M-@key{TAB}          M-@key{TAB}            )
2072 @end group
2073 @end smallexample
2075 @noindent
2076 Note that the @kbd{,} (comma) key did not have to be used here.
2077 When you press @kbd{)} all the stack entries between the incomplete
2078 entry and the top are collected, so there's never really a reason
2079 to use the comma.  It's up to you.
2081 (@bullet{}) @strong{Exercise 4.}  To enter the complex number @expr{(2, 3)},
2082 your friend Joe typed @kbd{( 2 , @key{SPC} 3 )}.  What happened?
2083 (Joe thought of a clever way to correct his mistake in only two
2084 keystrokes, but it didn't quite work.  Try it to find out why.)
2085 @xref{RPN Answer 4, 4}. (@bullet{})
2087 Vectors are entered the same way as complex numbers, but with square
2088 brackets in place of parentheses.  We'll meet vectors again later in
2089 the tutorial.
2091 Any Emacs command can be given a @dfn{numeric prefix argument} by
2092 typing a series of @key{META}-digits beforehand.  If @key{META} is
2093 awkward for you, you can instead type @kbd{C-u} followed by the
2094 necessary digits.  Numeric prefix arguments can be negative, as in
2095 @kbd{M-- M-3 M-5} or @w{@kbd{C-u - 3 5}}.  Calc commands use numeric
2096 prefix arguments in a variety of ways.  For example, a numeric prefix
2097 on the @kbd{+} operator adds any number of stack entries at once:
2099 @smallexample
2100 @group
2101 1:  10         2:  10         3:  10         3:  10         1:  60
2102     .          1:  20         2:  20         2:  20             .
2103                    .          1:  30         1:  30
2104                                   .              .
2106   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u 3            +
2107 @end group
2108 @end smallexample
2110 For stack manipulation commands like @key{RET}, a positive numeric
2111 prefix argument operates on the top @var{n} stack entries at once.  A
2112 negative argument operates on the entry in level @var{n} only.  An
2113 argument of zero operates on the entire stack.  In this example, we copy
2114 the second-to-top element of the stack:
2116 @smallexample
2117 @group
2118 1:  10         2:  10         3:  10         3:  10         4:  10
2119     .          1:  20         2:  20         2:  20         3:  20
2120                    .          1:  30         1:  30         2:  30
2121                                   .              .          1:  20
2122                                                                 .
2124   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u -2          @key{RET}
2125 @end group
2126 @end smallexample
2128 @cindex Clearing the stack
2129 @cindex Emptying the stack
2130 Another common idiom is @kbd{M-0 @key{DEL}}, which clears the stack.
2131 (The @kbd{M-0} numeric prefix tells @key{DEL} to operate on the
2132 entire stack.)
2134 @node Algebraic Tutorial, Undo Tutorial, RPN Tutorial, Basic Tutorial
2135 @subsection Algebraic-Style Calculations
2137 @noindent
2138 If you are not used to RPN notation, you may prefer to operate the
2139 Calculator in Algebraic mode, which is closer to the way
2140 non-RPN calculators work.  In Algebraic mode, you enter formulas
2141 in traditional @expr{2+3} notation.
2143 You don't really need any special ``mode'' to enter algebraic formulas.
2144 You can enter a formula at any time by pressing the apostrophe (@kbd{'})
2145 key.  Answer the prompt with the desired formula, then press @key{RET}.
2146 The formula is evaluated and the result is pushed onto the RPN stack.
2147 If you don't want to think in RPN at all, you can enter your whole
2148 computation as a formula, read the result from the stack, then press
2149 @key{DEL} to delete it from the stack.
2151 Try pressing the apostrophe key, then @kbd{2+3+4}, then @key{RET}.
2152 The result should be the number 9.
2154 Algebraic formulas use the operators @samp{+}, @samp{-}, @samp{*},
2155 @samp{/}, and @samp{^}.  You can use parentheses to make the order
2156 of evaluation clear.  In the absence of parentheses, @samp{^} is
2157 evaluated first, then @samp{*}, then @samp{/}, then finally
2158 @samp{+} and @samp{-}.  For example, the expression
2160 @example
2161 2 + 3*4*5 / 6*7^8 - 9
2162 @end example
2164 @noindent
2165 is equivalent to
2167 @example
2168 2 + ((3*4*5) / (6*(7^8)) - 9
2169 @end example
2171 @noindent
2172 or, in large mathematical notation,
2174 @ifinfo
2175 @example
2176 @group
2177     3 * 4 * 5
2178 2 + --------- - 9
2179           8
2180      6 * 7
2181 @end group
2182 @end example
2183 @end ifinfo
2184 @tex
2185 \turnoffactive
2186 \beforedisplay
2187 $$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$
2188 \afterdisplay
2189 @end tex
2191 @noindent
2192 The result of this expression will be the number @mathit{-6.99999826533}.
2194 Calc's order of evaluation is the same as for most computer languages,
2195 except that @samp{*} binds more strongly than @samp{/}, as the above
2196 example shows.  As in normal mathematical notation, the @samp{*} symbol
2197 can often be omitted:  @samp{2 a} is the same as @samp{2*a}.
2199 Operators at the same level are evaluated from left to right, except
2200 that @samp{^} is evaluated from right to left.  Thus, @samp{2-3-4} is
2201 equivalent to @samp{(2-3)-4} or @mathit{-5}, whereas @samp{2^3^4} is equivalent
2202 to @samp{2^(3^4)} (a very large integer; try it!).
2204 If you tire of typing the apostrophe all the time, there is
2205 Algebraic mode, where Calc automatically senses
2206 when you are about to type an algebraic expression.  To enter this
2207 mode, press the two letters @w{@kbd{m a}}.  (An @samp{Alg} indicator
2208 should appear in the Calc window's mode line.)
2210 Press @kbd{m a}, then @kbd{2+3+4} with no apostrophe, then @key{RET}.
2212 In Algebraic mode, when you press any key that would normally begin
2213 entering a number (such as a digit, a decimal point, or the @kbd{_}
2214 key), or if you press @kbd{(} or @kbd{[}, Calc automatically begins
2215 an algebraic entry.
2217 Functions which do not have operator symbols like @samp{+} and @samp{*}
2218 must be entered in formulas using function-call notation.  For example,
2219 the function name corresponding to the square-root key @kbd{Q} is
2220 @code{sqrt}.  To compute a square root in a formula, you would use
2221 the notation @samp{sqrt(@var{x})}.
2223 Press the apostrophe, then type @kbd{sqrt(5*2) - 3}.  The result should
2224 be @expr{0.16227766017}.
2226 Note that if the formula begins with a function name, you need to use
2227 the apostrophe even if you are in Algebraic mode.  If you type @kbd{arcsin}
2228 out of the blue, the @kbd{a r} will be taken as an Algebraic Rewrite
2229 command, and the @kbd{csin} will be taken as the name of the rewrite
2230 rule to use!
2232 Some people prefer to enter complex numbers and vectors in algebraic
2233 form because they find RPN entry with incomplete objects to be too
2234 distracting, even though they otherwise use Calc as an RPN calculator.
2236 Still in Algebraic mode, type:
2238 @smallexample
2239 @group
2240 1:  (2, 3)     2:  (2, 3)     1:  (8, -1)    2:  (8, -1)    1:  (9, -1)
2241     .          1:  (1, -2)        .          1:  1              .
2242                    .                             .
2244  (2,3) @key{RET}      (1,-2) @key{RET}        *              1 @key{RET}          +
2245 @end group
2246 @end smallexample
2248 Algebraic mode allows us to enter complex numbers without pressing
2249 an apostrophe first, but it also means we need to press @key{RET}
2250 after every entry, even for a simple number like @expr{1}.
2252 (You can type @kbd{C-u m a} to enable a special Incomplete Algebraic
2253 mode in which the @kbd{(} and @kbd{[} keys use algebraic entry even
2254 though regular numeric keys still use RPN numeric entry.  There is also
2255 Total Algebraic mode, started by typing @kbd{m t}, in which all
2256 normal keys begin algebraic entry.  You must then use the @key{META} key
2257 to type Calc commands:  @kbd{M-m t} to get back out of Total Algebraic
2258 mode, @kbd{M-q} to quit, etc.)
2260 If you're still in Algebraic mode, press @kbd{m a} again to turn it off.
2262 Actual non-RPN calculators use a mixture of algebraic and RPN styles.
2263 In general, operators of two numbers (like @kbd{+} and @kbd{*})
2264 use algebraic form, but operators of one number (like @kbd{n} and @kbd{Q})
2265 use RPN form.  Also, a non-RPN calculator allows you to see the
2266 intermediate results of a calculation as you go along.  You can
2267 accomplish this in Calc by performing your calculation as a series
2268 of algebraic entries, using the @kbd{$} sign to tie them together.
2269 In an algebraic formula, @kbd{$} represents the number on the top
2270 of the stack.  Here, we perform the calculation 
2271 @texline @math{\sqrt{2\times4+1}},
2272 @infoline @expr{sqrt(2*4+1)},
2273 which on a traditional calculator would be done by pressing
2274 @kbd{2 * 4 + 1 =} and then the square-root key.
2276 @smallexample
2277 @group
2278 1:  8          1:  9          1:  3
2279     .              .              .
2281   ' 2*4 @key{RET}        $+1 @key{RET}        Q
2282 @end group
2283 @end smallexample
2285 @noindent
2286 Notice that we didn't need to press an apostrophe for the @kbd{$+1},
2287 because the dollar sign always begins an algebraic entry.
2289 (@bullet{}) @strong{Exercise 1.}  How could you get the same effect as
2290 pressing @kbd{Q} but using an algebraic entry instead?  How about
2291 if the @kbd{Q} key on your keyboard were broken?
2292 @xref{Algebraic Answer 1, 1}. (@bullet{})
2294 The notations @kbd{$$}, @kbd{$$$}, and so on stand for higher stack
2295 entries.  For example, @kbd{' $$+$ @key{RET}} is just like typing @kbd{+}.
2297 Algebraic formulas can include @dfn{variables}.  To store in a
2298 variable, press @kbd{s s}, then type the variable name, then press
2299 @key{RET}.  (There are actually two flavors of store command:
2300 @kbd{s s} stores a number in a variable but also leaves the number
2301 on the stack, while @w{@kbd{s t}} removes a number from the stack and
2302 stores it in the variable.)  A variable name should consist of one
2303 or more letters or digits, beginning with a letter.
2305 @smallexample
2306 @group
2307 1:  17             .          1:  a + a^2    1:  306
2308     .                             .              .
2310     17          s t a @key{RET}      ' a+a^2 @key{RET}       =
2311 @end group
2312 @end smallexample
2314 @noindent
2315 The @kbd{=} key @dfn{evaluates} a formula by replacing all its
2316 variables by the values that were stored in them.
2318 For RPN calculations, you can recall a variable's value on the
2319 stack either by entering its name as a formula and pressing @kbd{=},
2320 or by using the @kbd{s r} command.
2322 @smallexample
2323 @group
2324 1:  17         2:  17         3:  17         2:  17         1:  306
2325     .          1:  17         2:  17         1:  289            .
2326                    .          1:  2              .
2327                                   .
2329   s r a @key{RET}     ' a @key{RET} =         2              ^              +
2330 @end group
2331 @end smallexample
2333 If you press a single digit for a variable name (as in @kbd{s t 3}, you
2334 get one of ten @dfn{quick variables} @code{q0} through @code{q9}.
2335 They are ``quick'' simply because you don't have to type the letter
2336 @code{q} or the @key{RET} after their names.  In fact, you can type
2337 simply @kbd{s 3} as a shorthand for @kbd{s s 3}, and likewise for
2338 @kbd{t 3} and @w{@kbd{r 3}}.
2340 Any variables in an algebraic formula for which you have not stored
2341 values are left alone, even when you evaluate the formula.
2343 @smallexample
2344 @group
2345 1:  2 a + 2 b     1:  34 + 2 b
2346     .                 .
2348  ' 2a+2b @key{RET}          =
2349 @end group
2350 @end smallexample
2352 Calls to function names which are undefined in Calc are also left
2353 alone, as are calls for which the value is undefined.
2355 @smallexample
2356 @group
2357 1:  2 + log10(0) + log10(x) + log10(5, 6) + foo(3)
2358     .
2360  ' log10(100) + log10(0) + log10(x) + log10(5,6) + foo(3) @key{RET}
2361 @end group
2362 @end smallexample
2364 @noindent
2365 In this example, the first call to @code{log10} works, but the other
2366 calls are not evaluated.  In the second call, the logarithm is
2367 undefined for that value of the argument; in the third, the argument
2368 is symbolic, and in the fourth, there are too many arguments.  In the
2369 fifth case, there is no function called @code{foo}.  You will see a
2370 ``Wrong number of arguments'' message referring to @samp{log10(5,6)}.
2371 Press the @kbd{w} (``why'') key to see any other messages that may
2372 have arisen from the last calculation.  In this case you will get
2373 ``logarithm of zero,'' then ``number expected: @code{x}''.  Calc
2374 automatically displays the first message only if the message is
2375 sufficiently important; for example, Calc considers ``wrong number
2376 of arguments'' and ``logarithm of zero'' to be important enough to
2377 report automatically, while a message like ``number expected: @code{x}''
2378 will only show up if you explicitly press the @kbd{w} key.
2380 (@bullet{}) @strong{Exercise 2.}  Joe entered the formula @samp{2 x y},
2381 stored 5 in @code{x}, pressed @kbd{=}, and got the expected result,
2382 @samp{10 y}.  He then tried the same for the formula @samp{2 x (1+y)},
2383 expecting @samp{10 (1+y)}, but it didn't work.  Why not?
2384 @xref{Algebraic Answer 2, 2}. (@bullet{})
2386 (@bullet{}) @strong{Exercise 3.}  What result would you expect
2387 @kbd{1 @key{RET} 0 /} to give?  What if you then type @kbd{0 *}?
2388 @xref{Algebraic Answer 3, 3}. (@bullet{})
2390 One interesting way to work with variables is to use the
2391 @dfn{evaluates-to} (@samp{=>}) operator.  It works like this:
2392 Enter a formula algebraically in the usual way, but follow
2393 the formula with an @samp{=>} symbol.  (There is also an @kbd{s =}
2394 command which builds an @samp{=>} formula using the stack.)  On
2395 the stack, you will see two copies of the formula with an @samp{=>}
2396 between them.  The lefthand formula is exactly like you typed it;
2397 the righthand formula has been evaluated as if by typing @kbd{=}.
2399 @smallexample
2400 @group
2401 2:  2 + 3 => 5                     2:  2 + 3 => 5
2402 1:  2 a + 2 b => 34 + 2 b          1:  2 a + 2 b => 20 + 2 b
2403     .                                  .
2405 ' 2+3 => @key{RET}  ' 2a+2b @key{RET} s =          10 s t a @key{RET}
2406 @end group
2407 @end smallexample
2409 @noindent
2410 Notice that the instant we stored a new value in @code{a}, all
2411 @samp{=>} operators already on the stack that referred to @expr{a}
2412 were updated to use the new value.  With @samp{=>}, you can push a
2413 set of formulas on the stack, then change the variables experimentally
2414 to see the effects on the formulas' values.
2416 You can also ``unstore'' a variable when you are through with it:
2418 @smallexample
2419 @group
2420 2:  2 + 5 => 5
2421 1:  2 a + 2 b => 2 a + 2 b
2422     .
2424     s u a @key{RET}
2425 @end group
2426 @end smallexample
2428 We will encounter formulas involving variables and functions again
2429 when we discuss the algebra and calculus features of the Calculator.
2431 @node Undo Tutorial, Modes Tutorial, Algebraic Tutorial, Basic Tutorial
2432 @subsection Undo and Redo
2434 @noindent
2435 If you make a mistake, you can usually correct it by pressing shift-@kbd{U},
2436 the ``undo'' command.  First, clear the stack (@kbd{M-0 @key{DEL}}) and exit
2437 and restart Calc (@kbd{M-# M-# M-# M-#}) to make sure things start off
2438 with a clean slate.  Now:
2440 @smallexample
2441 @group
2442 1:  2          2:  2          1:  8          2:  2          1:  6
2443     .          1:  3              .          1:  3              .
2444                    .                             .
2446    2 @key{RET}           3              ^              U              *
2447 @end group
2448 @end smallexample
2450 You can undo any number of times.  Calc keeps a complete record of
2451 all you have done since you last opened the Calc window.  After the
2452 above example, you could type:
2454 @smallexample
2455 @group
2456 1:  6          2:  2          1:  2              .              .
2457     .          1:  3              .
2458                    .
2459                                                              (error)
2460                    U              U              U              U
2461 @end group
2462 @end smallexample
2464 You can also type @kbd{D} to ``redo'' a command that you have undone
2465 mistakenly.
2467 @smallexample
2468 @group
2469     .          1:  2          2:  2          1:  6          1:  6
2470                    .          1:  3              .              .
2471                                   .
2472                                                              (error)
2473                    D              D              D              D
2474 @end group
2475 @end smallexample
2477 @noindent
2478 It was not possible to redo past the @expr{6}, since that was placed there
2479 by something other than an undo command.
2481 @cindex Time travel
2482 You can think of undo and redo as a sort of ``time machine.''  Press
2483 @kbd{U} to go backward in time, @kbd{D} to go forward.  If you go
2484 backward and do something (like @kbd{*}) then, as any science fiction
2485 reader knows, you have changed your future and you cannot go forward
2486 again.  Thus, the inability to redo past the @expr{6} even though there
2487 was an earlier undo command.
2489 You can always recall an earlier result using the Trail.  We've ignored
2490 the trail so far, but it has been faithfully recording everything we
2491 did since we loaded the Calculator.  If the Trail is not displayed,
2492 press @kbd{t d} now to turn it on.
2494 Let's try grabbing an earlier result.  The @expr{8} we computed was
2495 undone by a @kbd{U} command, and was lost even to Redo when we pressed
2496 @kbd{*}, but it's still there in the trail.  There should be a little
2497 @samp{>} arrow (the @dfn{trail pointer}) resting on the last trail
2498 entry.  If there isn't, press @kbd{t ]} to reset the trail pointer.
2499 Now, press @w{@kbd{t p}} to move the arrow onto the line containing
2500 @expr{8}, and press @w{@kbd{t y}} to ``yank'' that number back onto the
2501 stack.
2503 If you press @kbd{t ]} again, you will see that even our Yank command
2504 went into the trail.
2506 Let's go further back in time.  Earlier in the tutorial we computed
2507 a huge integer using the formula @samp{2^3^4}.  We don't remember
2508 what it was, but the first digits were ``241''.  Press @kbd{t r}
2509 (which stands for trail-search-reverse), then type @kbd{241}.
2510 The trail cursor will jump back to the next previous occurrence of
2511 the string ``241'' in the trail.  This is just a regular Emacs
2512 incremental search; you can now press @kbd{C-s} or @kbd{C-r} to
2513 continue the search forwards or backwards as you like.
2515 To finish the search, press @key{RET}.  This halts the incremental
2516 search and leaves the trail pointer at the thing we found.  Now we
2517 can type @kbd{t y} to yank that number onto the stack.  If we hadn't
2518 remembered the ``241'', we could simply have searched for @kbd{2^3^4},
2519 then pressed @kbd{@key{RET} t n} to halt and then move to the next item.
2521 You may have noticed that all the trail-related commands begin with
2522 the letter @kbd{t}.  (The store-and-recall commands, on the other hand,
2523 all began with @kbd{s}.)  Calc has so many commands that there aren't
2524 enough keys for all of them, so various commands are grouped into
2525 two-letter sequences where the first letter is called the @dfn{prefix}
2526 key.  If you type a prefix key by accident, you can press @kbd{C-g}
2527 to cancel it.  (In fact, you can press @kbd{C-g} to cancel almost
2528 anything in Emacs.)  To get help on a prefix key, press that key
2529 followed by @kbd{?}.  Some prefixes have several lines of help,
2530 so you need to press @kbd{?} repeatedly to see them all.  
2531 You can also type @kbd{h h} to see all the help at once.
2533 Try pressing @kbd{t ?} now.  You will see a line of the form,
2535 @smallexample
2536 trail/time: Display; Fwd, Back; Next, Prev, Here, [, ]; Yank:  [MORE]  t-
2537 @end smallexample
2539 @noindent
2540 The word ``trail'' indicates that the @kbd{t} prefix key contains
2541 trail-related commands.  Each entry on the line shows one command,
2542 with a single capital letter showing which letter you press to get
2543 that command.  We have used @kbd{t n}, @kbd{t p}, @kbd{t ]}, and
2544 @kbd{t y} so far.  The @samp{[MORE]} means you can press @kbd{?}
2545 again to see more @kbd{t}-prefix commands.  Notice that the commands
2546 are roughly divided (by semicolons) into related groups.
2548 When you are in the help display for a prefix key, the prefix is
2549 still active.  If you press another key, like @kbd{y} for example,
2550 it will be interpreted as a @kbd{t y} command.  If all you wanted
2551 was to look at the help messages, press @kbd{C-g} afterwards to cancel
2552 the prefix.
2554 One more way to correct an error is by editing the stack entries.
2555 The actual Stack buffer is marked read-only and must not be edited
2556 directly, but you can press @kbd{`} (the backquote or accent grave)
2557 to edit a stack entry.
2559 Try entering @samp{3.141439} now.  If this is supposed to represent
2560 @cpi{}, it's got several errors.  Press @kbd{`} to edit this number.
2561 Now use the normal Emacs cursor motion and editing keys to change
2562 the second 4 to a 5, and to transpose the 3 and the 9.  When you
2563 press @key{RET}, the number on the stack will be replaced by your
2564 new number.  This works for formulas, vectors, and all other types
2565 of values you can put on the stack.  The @kbd{`} key also works
2566 during entry of a number or algebraic formula.
2568 @node Modes Tutorial, , Undo Tutorial, Basic Tutorial
2569 @subsection Mode-Setting Commands
2571 @noindent
2572 Calc has many types of @dfn{modes} that affect the way it interprets
2573 your commands or the way it displays data.  We have already seen one
2574 mode, namely Algebraic mode.  There are many others, too; we'll
2575 try some of the most common ones here.
2577 Perhaps the most fundamental mode in Calc is the current @dfn{precision}.
2578 Notice the @samp{12} on the Calc window's mode line:
2580 @smallexample
2581 --%%-Calc: 12 Deg       (Calculator)----All------
2582 @end smallexample
2584 @noindent
2585 Most of the symbols there are Emacs things you don't need to worry
2586 about, but the @samp{12} and the @samp{Deg} are mode indicators.
2587 The @samp{12} means that calculations should always be carried to
2588 12 significant figures.  That is why, when we type @kbd{1 @key{RET} 7 /},
2589 we get @expr{0.142857142857} with exactly 12 digits, not counting
2590 leading and trailing zeros.
2592 You can set the precision to anything you like by pressing @kbd{p},
2593 then entering a suitable number.  Try pressing @kbd{p 30 @key{RET}},
2594 then doing @kbd{1 @key{RET} 7 /} again:
2596 @smallexample
2597 @group
2598 1:  0.142857142857
2599 2:  0.142857142857142857142857142857
2600     .
2601 @end group
2602 @end smallexample
2604 Although the precision can be set arbitrarily high, Calc always
2605 has to have @emph{some} value for the current precision.  After
2606 all, the true value @expr{1/7} is an infinitely repeating decimal;
2607 Calc has to stop somewhere.
2609 Of course, calculations are slower the more digits you request.
2610 Press @w{@kbd{p 12}} now to set the precision back down to the default.
2612 Calculations always use the current precision.  For example, even
2613 though we have a 30-digit value for @expr{1/7} on the stack, if
2614 we use it in a calculation in 12-digit mode it will be rounded
2615 down to 12 digits before it is used.  Try it; press @key{RET} to
2616 duplicate the number, then @w{@kbd{1 +}}.  Notice that the @key{RET}
2617 key didn't round the number, because it doesn't do any calculation.
2618 But the instant we pressed @kbd{+}, the number was rounded down.
2620 @smallexample
2621 @group
2622 1:  0.142857142857
2623 2:  0.142857142857142857142857142857
2624 3:  1.14285714286
2625     .
2626 @end group
2627 @end smallexample
2629 @noindent
2630 In fact, since we added a digit on the left, we had to lose one
2631 digit on the right from even the 12-digit value of @expr{1/7}.
2633 How did we get more than 12 digits when we computed @samp{2^3^4}?  The
2634 answer is that Calc makes a distinction between @dfn{integers} and
2635 @dfn{floating-point} numbers, or @dfn{floats}.  An integer is a number
2636 that does not contain a decimal point.  There is no such thing as an
2637 ``infinitely repeating fraction integer,'' so Calc doesn't have to limit
2638 itself.  If you asked for @samp{2^10000} (don't try this!), you would
2639 have to wait a long time but you would eventually get an exact answer.
2640 If you ask for @samp{2.^10000}, you will quickly get an answer which is
2641 correct only to 12 places.  The decimal point tells Calc that it should
2642 use floating-point arithmetic to get the answer, not exact integer
2643 arithmetic.
2645 You can use the @kbd{F} (@code{calc-floor}) command to convert a
2646 floating-point value to an integer, and @kbd{c f} (@code{calc-float})
2647 to convert an integer to floating-point form.
2649 Let's try entering that last calculation:
2651 @smallexample
2652 @group
2653 1:  2.         2:  2.         1:  1.99506311689e3010
2654     .          1:  10000          .
2655                    .
2657   2.0 @key{RET}          10000 @key{RET}      ^
2658 @end group
2659 @end smallexample
2661 @noindent
2662 @cindex Scientific notation, entry of
2663 Notice the letter @samp{e} in there.  It represents ``times ten to the
2664 power of,'' and is used by Calc automatically whenever writing the
2665 number out fully would introduce more extra zeros than you probably
2666 want to see.  You can enter numbers in this notation, too.
2668 @smallexample
2669 @group
2670 1:  2.         2:  2.         1:  1.99506311678e3010
2671     .          1:  10000.         .
2672                    .
2674   2.0 @key{RET}          1e4 @key{RET}        ^
2675 @end group
2676 @end smallexample
2678 @cindex Round-off errors
2679 @noindent
2680 Hey, the answer is different!  Look closely at the middle columns
2681 of the two examples.  In the first, the stack contained the
2682 exact integer @expr{10000}, but in the second it contained
2683 a floating-point value with a decimal point.  When you raise a
2684 number to an integer power, Calc uses repeated squaring and
2685 multiplication to get the answer.  When you use a floating-point
2686 power, Calc uses logarithms and exponentials.  As you can see,
2687 a slight error crept in during one of these methods.  Which
2688 one should we trust?  Let's raise the precision a bit and find
2689 out:
2691 @smallexample
2692 @group
2693     .          1:  2.         2:  2.         1:  1.995063116880828e3010
2694                    .          1:  10000.         .
2695                                   .
2697  p 16 @key{RET}        2. @key{RET}           1e4            ^    p 12 @key{RET}
2698 @end group
2699 @end smallexample
2701 @noindent
2702 @cindex Guard digits
2703 Presumably, it doesn't matter whether we do this higher-precision
2704 calculation using an integer or floating-point power, since we
2705 have added enough ``guard digits'' to trust the first 12 digits
2706 no matter what.  And the verdict is@dots{}  Integer powers were more
2707 accurate; in fact, the result was only off by one unit in the
2708 last place.
2710 @cindex Guard digits
2711 Calc does many of its internal calculations to a slightly higher
2712 precision, but it doesn't always bump the precision up enough.
2713 In each case, Calc added about two digits of precision during
2714 its calculation and then rounded back down to 12 digits
2715 afterward.  In one case, it was enough; in the other, it
2716 wasn't.  If you really need @var{x} digits of precision, it
2717 never hurts to do the calculation with a few extra guard digits.
2719 What if we want guard digits but don't want to look at them?
2720 We can set the @dfn{float format}.  Calc supports four major
2721 formats for floating-point numbers, called @dfn{normal},
2722 @dfn{fixed-point}, @dfn{scientific notation}, and @dfn{engineering
2723 notation}.  You get them by pressing @w{@kbd{d n}}, @kbd{d f},
2724 @kbd{d s}, and @kbd{d e}, respectively.  In each case, you can
2725 supply a numeric prefix argument which says how many digits
2726 should be displayed.  As an example, let's put a few numbers
2727 onto the stack and try some different display modes.  First,
2728 use @kbd{M-0 @key{DEL}} to clear the stack, then enter the four
2729 numbers shown here:
2731 @smallexample
2732 @group
2733 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2734 3:  12345.     3:  12300.     3:  1.2345e4   3:  1.23e4     3:  12345.000
2735 2:  123.45     2:  123.       2:  1.2345e2   2:  1.23e2     2:  123.450
2736 1:  12.345     1:  12.3       1:  1.2345e1   1:  1.23e1     1:  12.345
2737     .              .              .              .              .
2739    d n          M-3 d n          d s          M-3 d s        M-3 d f
2740 @end group
2741 @end smallexample
2743 @noindent
2744 Notice that when we typed @kbd{M-3 d n}, the numbers were rounded down
2745 to three significant digits, but then when we typed @kbd{d s} all
2746 five significant figures reappeared.  The float format does not
2747 affect how numbers are stored, it only affects how they are
2748 displayed.  Only the current precision governs the actual rounding
2749 of numbers in the Calculator's memory.
2751 Engineering notation, not shown here, is like scientific notation
2752 except the exponent (the power-of-ten part) is always adjusted to be
2753 a multiple of three (as in ``kilo,'' ``micro,'' etc.).  As a result
2754 there will be one, two, or three digits before the decimal point.
2756 Whenever you change a display-related mode, Calc redraws everything
2757 in the stack.  This may be slow if there are many things on the stack,
2758 so Calc allows you to type shift-@kbd{H} before any mode command to
2759 prevent it from updating the stack.  Anything Calc displays after the
2760 mode-changing command will appear in the new format.
2762 @smallexample
2763 @group
2764 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2765 3:  12345.000  3:  12345.000  3:  12345.000  3:  1.2345e4   3:  12345.
2766 2:  123.450    2:  123.450    2:  1.2345e1   2:  1.2345e1   2:  123.45
2767 1:  12.345     1:  1.2345e1   1:  1.2345e2   1:  1.2345e2   1:  12.345
2768     .              .              .              .              .
2770     H d s          @key{DEL} U          @key{TAB}            d @key{SPC}          d n
2771 @end group
2772 @end smallexample
2774 @noindent
2775 Here the @kbd{H d s} command changes to scientific notation but without
2776 updating the screen.  Deleting the top stack entry and undoing it back
2777 causes it to show up in the new format; swapping the top two stack
2778 entries reformats both entries.  The @kbd{d @key{SPC}} command refreshes the
2779 whole stack.  The @kbd{d n} command changes back to the normal float
2780 format; since it doesn't have an @kbd{H} prefix, it also updates all
2781 the stack entries to be in @kbd{d n} format.
2783 Notice that the integer @expr{12345} was not affected by any
2784 of the float formats.  Integers are integers, and are always
2785 displayed exactly.
2787 @cindex Large numbers, readability
2788 Large integers have their own problems.  Let's look back at
2789 the result of @kbd{2^3^4}.
2791 @example
2792 2417851639229258349412352
2793 @end example
2795 @noindent
2796 Quick---how many digits does this have?  Try typing @kbd{d g}:
2798 @example
2799 2,417,851,639,229,258,349,412,352
2800 @end example
2802 @noindent
2803 Now how many digits does this have?  It's much easier to tell!
2804 We can actually group digits into clumps of any size.  Some
2805 people prefer @kbd{M-5 d g}:
2807 @example
2808 24178,51639,22925,83494,12352
2809 @end example
2811 Let's see what happens to floating-point numbers when they are grouped.
2812 First, type @kbd{p 25 @key{RET}} to make sure we have enough precision
2813 to get ourselves into trouble.  Now, type @kbd{1e13 /}:
2815 @example
2816 24,17851,63922.9258349412352
2817 @end example
2819 @noindent
2820 The integer part is grouped but the fractional part isn't.  Now try
2821 @kbd{M-- M-5 d g} (that's meta-minus-sign, meta-five):
2823 @example
2824 24,17851,63922.92583,49412,352
2825 @end example
2827 If you find it hard to tell the decimal point from the commas, try
2828 changing the grouping character to a space with @kbd{d , @key{SPC}}:
2830 @example
2831 24 17851 63922.92583 49412 352
2832 @end example
2834 Type @kbd{d , ,} to restore the normal grouping character, then
2835 @kbd{d g} again to turn grouping off.  Also, press @kbd{p 12} to
2836 restore the default precision.
2838 Press @kbd{U} enough times to get the original big integer back.
2839 (Notice that @kbd{U} does not undo each mode-setting command; if
2840 you want to undo a mode-setting command, you have to do it yourself.)
2841 Now, type @kbd{d r 16 @key{RET}}:
2843 @example
2844 16#200000000000000000000
2845 @end example
2847 @noindent
2848 The number is now displayed in @dfn{hexadecimal}, or ``base-16'' form.
2849 Suddenly it looks pretty simple; this should be no surprise, since we
2850 got this number by computing a power of two, and 16 is a power of 2.
2851 In fact, we can use @w{@kbd{d r 2 @key{RET}}} to see it in actual binary
2852 form:
2854 @example
2855 2#1000000000000000000000000000000000000000000000000000000 @dots{}
2856 @end example
2858 @noindent
2859 We don't have enough space here to show all the zeros!  They won't
2860 fit on a typical screen, either, so you will have to use horizontal
2861 scrolling to see them all.  Press @kbd{<} and @kbd{>} to scroll the
2862 stack window left and right by half its width.  Another way to view
2863 something large is to press @kbd{`} (back-quote) to edit the top of
2864 stack in a separate window.  (Press @kbd{C-c C-c} when you are done.)
2866 You can enter non-decimal numbers using the @kbd{#} symbol, too.
2867 Let's see what the hexadecimal number @samp{5FE} looks like in
2868 binary.  Type @kbd{16#5FE} (the letters can be typed in upper or
2869 lower case; they will always appear in upper case).  It will also
2870 help to turn grouping on with @kbd{d g}:
2872 @example
2873 2#101,1111,1110
2874 @end example
2876 Notice that @kbd{d g} groups by fours by default if the display radix
2877 is binary or hexadecimal, but by threes if it is decimal, octal, or any
2878 other radix.
2880 Now let's see that number in decimal; type @kbd{d r 10}:
2882 @example
2883 1,534
2884 @end example
2886 Numbers are not @emph{stored} with any particular radix attached.  They're
2887 just numbers; they can be entered in any radix, and are always displayed
2888 in whatever radix you've chosen with @kbd{d r}.  The current radix applies
2889 to integers, fractions, and floats.
2891 @cindex Roundoff errors, in non-decimal numbers
2892 (@bullet{}) @strong{Exercise 1.}  Your friend Joe tried to enter one-third
2893 as @samp{3#0.1} in @kbd{d r 3} mode with a precision of 12.  He got
2894 @samp{3#0.0222222...} (with 25 2's) in the display.  When he multiplied
2895 that by three, he got @samp{3#0.222222...} instead of the expected
2896 @samp{3#1}.  Next, Joe entered @samp{3#0.2} and, to his great relief,
2897 saw @samp{3#0.2} on the screen.  But when he typed @kbd{2 /}, he got
2898 @samp{3#0.10000001} (some zeros omitted).  What's going on here?
2899 @xref{Modes Answer 1, 1}. (@bullet{})
2901 @cindex Scientific notation, in non-decimal numbers
2902 (@bullet{}) @strong{Exercise 2.}  Scientific notation works in non-decimal
2903 modes in the natural way (the exponent is a power of the radix instead of
2904 a power of ten, although the exponent itself is always written in decimal).
2905 Thus @samp{8#1.23e3 = 8#1230.0}.  Suppose we have the hexadecimal number
2906 @samp{f.e8f} times 16 to the 15th power:  We write @samp{16#f.e8fe15}.
2907 What is wrong with this picture?  What could we write instead that would
2908 work better?  @xref{Modes Answer 2, 2}. (@bullet{})
2910 The @kbd{m} prefix key has another set of modes, relating to the way
2911 Calc interprets your inputs and does computations.  Whereas @kbd{d}-prefix
2912 modes generally affect the way things look, @kbd{m}-prefix modes affect
2913 the way they are actually computed.
2915 The most popular @kbd{m}-prefix mode is the @dfn{angular mode}.  Notice
2916 the @samp{Deg} indicator in the mode line.  This means that if you use
2917 a command that interprets a number as an angle, it will assume the
2918 angle is measured in degrees.  For example,
2920 @smallexample
2921 @group
2922 1:  45         1:  0.707106781187   1:  0.500000000001    1:  0.5
2923     .              .                    .                     .
2925     45             S                    2 ^                   c 1
2926 @end group
2927 @end smallexample
2929 @noindent
2930 The shift-@kbd{S} command computes the sine of an angle.  The sine
2931 of 45 degrees is 
2932 @texline @math{\sqrt{2}/2};
2933 @infoline @expr{sqrt(2)/2}; 
2934 squaring this yields @expr{2/4 = 0.5}.  However, there has been a slight
2935 roundoff error because the representation of 
2936 @texline @math{\sqrt{2}/2}
2937 @infoline @expr{sqrt(2)/2} 
2938 wasn't exact.  The @kbd{c 1} command is a handy way to clean up numbers
2939 in this case; it temporarily reduces the precision by one digit while it
2940 re-rounds the number on the top of the stack.
2942 @cindex Roundoff errors, examples
2943 (@bullet{}) @strong{Exercise 3.}  Your friend Joe computed the sine
2944 of 45 degrees as shown above, then, hoping to avoid an inexact
2945 result, he increased the precision to 16 digits before squaring.
2946 What happened?  @xref{Modes Answer 3, 3}. (@bullet{})
2948 To do this calculation in radians, we would type @kbd{m r} first.
2949 (The indicator changes to @samp{Rad}.)  45 degrees corresponds to
2950 @cpiover{4} radians.  To get @cpi{}, press the @kbd{P} key.  (Once
2951 again, this is a shifted capital @kbd{P}.  Remember, unshifted
2952 @kbd{p} sets the precision.)
2954 @smallexample
2955 @group
2956 1:  3.14159265359   1:  0.785398163398   1:  0.707106781187
2957     .                   .                .
2959     P                   4 /       m r    S
2960 @end group
2961 @end smallexample
2963 Likewise, inverse trigonometric functions generate results in
2964 either radians or degrees, depending on the current angular mode.
2966 @smallexample
2967 @group
2968 1:  0.707106781187   1:  0.785398163398   1:  45.
2969     .                    .                    .
2971     .5 Q        m r      I S        m d       U I S
2972 @end group
2973 @end smallexample
2975 @noindent
2976 Here we compute the Inverse Sine of 
2977 @texline @math{\sqrt{0.5}},
2978 @infoline @expr{sqrt(0.5)}, 
2979 first in radians, then in degrees.
2981 Use @kbd{c d} and @kbd{c r} to convert a number from radians to degrees
2982 and vice-versa.
2984 @smallexample
2985 @group
2986 1:  45         1:  0.785398163397     1:  45.
2987     .              .                      .
2989     45             c r                    c d
2990 @end group
2991 @end smallexample
2993 Another interesting mode is @dfn{Fraction mode}.  Normally,
2994 dividing two integers produces a floating-point result if the
2995 quotient can't be expressed as an exact integer.  Fraction mode
2996 causes integer division to produce a fraction, i.e., a rational
2997 number, instead.
2999 @smallexample
3000 @group
3001 2:  12         1:  1.33333333333    1:  4:3
3002 1:  9              .                    .
3003     .
3005  12 @key{RET} 9          /          m f       U /      m f
3006 @end group
3007 @end smallexample
3009 @noindent
3010 In the first case, we get an approximate floating-point result.
3011 In the second case, we get an exact fractional result (four-thirds).
3013 You can enter a fraction at any time using @kbd{:} notation.
3014 (Calc uses @kbd{:} instead of @kbd{/} as the fraction separator
3015 because @kbd{/} is already used to divide the top two stack
3016 elements.)  Calculations involving fractions will always
3017 produce exact fractional results; Fraction mode only says
3018 what to do when dividing two integers.
3020 @cindex Fractions vs. floats
3021 @cindex Floats vs. fractions
3022 (@bullet{}) @strong{Exercise 4.}  If fractional arithmetic is exact,
3023 why would you ever use floating-point numbers instead?
3024 @xref{Modes Answer 4, 4}. (@bullet{})
3026 Typing @kbd{m f} doesn't change any existing values in the stack.
3027 In the above example, we had to Undo the division and do it over
3028 again when we changed to Fraction mode.  But if you use the
3029 evaluates-to operator you can get commands like @kbd{m f} to
3030 recompute for you.
3032 @smallexample
3033 @group
3034 1:  12 / 9 => 1.33333333333    1:  12 / 9 => 1.333    1:  12 / 9 => 4:3
3035     .                              .                      .
3037    ' 12/9 => @key{RET}                   p 4 @key{RET}                m f
3038 @end group
3039 @end smallexample
3041 @noindent
3042 In this example, the righthand side of the @samp{=>} operator
3043 on the stack is recomputed when we change the precision, then
3044 again when we change to Fraction mode.  All @samp{=>} expressions
3045 on the stack are recomputed every time you change any mode that
3046 might affect their values.
3048 @node Arithmetic Tutorial, Vector/Matrix Tutorial, Basic Tutorial, Tutorial
3049 @section Arithmetic Tutorial
3051 @noindent
3052 In this section, we explore the arithmetic and scientific functions
3053 available in the Calculator.
3055 The standard arithmetic commands are @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/},
3056 and @kbd{^}.  Each normally takes two numbers from the top of the stack
3057 and pushes back a result.  The @kbd{n} and @kbd{&} keys perform
3058 change-sign and reciprocal operations, respectively.
3060 @smallexample
3061 @group
3062 1:  5          1:  0.2        1:  5.         1:  -5.        1:  5.
3063     .              .              .              .              .
3065     5              &              &              n              n
3066 @end group
3067 @end smallexample
3069 @cindex Binary operators
3070 You can apply a ``binary operator'' like @kbd{+} across any number of
3071 stack entries by giving it a numeric prefix.  You can also apply it
3072 pairwise to several stack elements along with the top one if you use
3073 a negative prefix.
3075 @smallexample
3076 @group
3077 3:  2          1:  9          3:  2          4:  2          3:  12
3078 2:  3              .          2:  3          3:  3          2:  13
3079 1:  4                         1:  4          2:  4          1:  14
3080     .                             .          1:  10             .
3081                                                  .
3083 2 @key{RET} 3 @key{RET} 4     M-3 +           U              10          M-- M-3 +
3084 @end group
3085 @end smallexample
3087 @cindex Unary operators
3088 You can apply a ``unary operator'' like @kbd{&} to the top @var{n}
3089 stack entries with a numeric prefix, too.
3091 @smallexample
3092 @group
3093 3:  2          3:  0.5                3:  0.5
3094 2:  3          2:  0.333333333333     2:  3.
3095 1:  4          1:  0.25               1:  4.
3096     .              .                      .
3098 2 @key{RET} 3 @key{RET} 4      M-3 &                  M-2 &
3099 @end group
3100 @end smallexample
3102 Notice that the results here are left in floating-point form.
3103 We can convert them back to integers by pressing @kbd{F}, the
3104 ``floor'' function.  This function rounds down to the next lower
3105 integer.  There is also @kbd{R}, which rounds to the nearest
3106 integer.
3108 @smallexample
3109 @group
3110 7:  2.         7:  2          7:  2
3111 6:  2.4        6:  2          6:  2
3112 5:  2.5        5:  2          5:  3
3113 4:  2.6        4:  2          4:  3
3114 3:  -2.        3:  -2         3:  -2
3115 2:  -2.4       2:  -3         2:  -2
3116 1:  -2.6       1:  -3         1:  -3
3117     .              .              .
3119                   M-7 F        U M-7 R
3120 @end group
3121 @end smallexample
3123 Since dividing-and-flooring (i.e., ``integer quotient'') is such a
3124 common operation, Calc provides a special command for that purpose, the
3125 backslash @kbd{\}.  Another common arithmetic operator is @kbd{%}, which
3126 computes the remainder that would arise from a @kbd{\} operation, i.e.,
3127 the ``modulo'' of two numbers.  For example,
3129 @smallexample
3130 @group
3131 2:  1234       1:  12         2:  1234       1:  34
3132 1:  100            .          1:  100            .
3133     .                             .
3135 1234 @key{RET} 100       \              U              %
3136 @end group
3137 @end smallexample
3139 These commands actually work for any real numbers, not just integers.
3141 @smallexample
3142 @group
3143 2:  3.1415     1:  3          2:  3.1415     1:  0.1415
3144 1:  1              .          1:  1              .
3145     .                             .
3147 3.1415 @key{RET} 1       \              U              %
3148 @end group
3149 @end smallexample
3151 (@bullet{}) @strong{Exercise 1.}  The @kbd{\} command would appear to be a
3152 frill, since you could always do the same thing with @kbd{/ F}.  Think
3153 of a situation where this is not true---@kbd{/ F} would be inadequate.
3154 Now think of a way you could get around the problem if Calc didn't
3155 provide a @kbd{\} command.  @xref{Arithmetic Answer 1, 1}. (@bullet{})
3157 We've already seen the @kbd{Q} (square root) and @kbd{S} (sine)
3158 commands.  Other commands along those lines are @kbd{C} (cosine),
3159 @kbd{T} (tangent), @kbd{E} (@expr{e^x}) and @kbd{L} (natural
3160 logarithm).  These can be modified by the @kbd{I} (inverse) and
3161 @kbd{H} (hyperbolic) prefix keys.
3163 Let's compute the sine and cosine of an angle, and verify the
3164 identity 
3165 @texline @math{\sin^2x + \cos^2x = 1}.
3166 @infoline @expr{sin(x)^2 + cos(x)^2 = 1}.  
3167 We'll arbitrarily pick @mathit{-64} degrees as a good value for @expr{x}.
3168 With the angular mode set to degrees (type @w{@kbd{m d}}), do:
3170 @smallexample
3171 @group
3172 2:  -64        2:  -64        2:  -0.89879   2:  -0.89879   1:  1.
3173 1:  -64        1:  -0.89879   1:  -64        1:  0.43837        .
3174     .              .              .              .
3176  64 n @key{RET} @key{RET}      S              @key{TAB}            C              f h
3177 @end group
3178 @end smallexample
3180 @noindent
3181 (For brevity, we're showing only five digits of the results here.
3182 You can of course do these calculations to any precision you like.)
3184 Remember, @kbd{f h} is the @code{calc-hypot}, or square-root of sum
3185 of squares, command.
3187 Another identity is 
3188 @texline @math{\displaystyle\tan x = {\sin x \over \cos x}}.
3189 @infoline @expr{tan(x) = sin(x) / cos(x)}.
3190 @smallexample
3191 @group
3193 2:  -0.89879   1:  -2.0503    1:  -64.
3194 1:  0.43837        .              .
3195     .
3197     U              /              I T
3198 @end group
3199 @end smallexample
3201 A physical interpretation of this calculation is that if you move
3202 @expr{0.89879} units downward and @expr{0.43837} units to the right,
3203 your direction of motion is @mathit{-64} degrees from horizontal.  Suppose
3204 we move in the opposite direction, up and to the left:
3206 @smallexample
3207 @group
3208 2:  -0.89879   2:  0.89879    1:  -2.0503    1:  -64.
3209 1:  0.43837    1:  -0.43837       .              .
3210     .              .
3212     U U            M-2 n          /              I T
3213 @end group
3214 @end smallexample
3216 @noindent
3217 How can the angle be the same?  The answer is that the @kbd{/} operation
3218 loses information about the signs of its inputs.  Because the quotient
3219 is negative, we know exactly one of the inputs was negative, but we
3220 can't tell which one.  There is an @kbd{f T} [@code{arctan2}] function which
3221 computes the inverse tangent of the quotient of a pair of numbers.
3222 Since you feed it the two original numbers, it has enough information
3223 to give you a full 360-degree answer.
3225 @smallexample
3226 @group
3227 2:  0.89879    1:  116.       3:  116.       2:  116.       1:  180.
3228 1:  -0.43837       .          2:  -0.89879   1:  -64.           .
3229     .                         1:  0.43837        .
3230                                   .
3232     U U            f T         M-@key{RET} M-2 n       f T            -
3233 @end group
3234 @end smallexample
3236 @noindent
3237 The resulting angles differ by 180 degrees; in other words, they
3238 point in opposite directions, just as we would expect.
3240 The @key{META}-@key{RET} we used in the third step is the
3241 ``last-arguments'' command.  It is sort of like Undo, except that it
3242 restores the arguments of the last command to the stack without removing
3243 the command's result.  It is useful in situations like this one,
3244 where we need to do several operations on the same inputs.  We could
3245 have accomplished the same thing by using @kbd{M-2 @key{RET}} to duplicate
3246 the top two stack elements right after the @kbd{U U}, then a pair of
3247 @kbd{M-@key{TAB}} commands to cycle the 116 up around the duplicates.
3249 A similar identity is supposed to hold for hyperbolic sines and cosines,
3250 except that it is the @emph{difference}
3251 @texline @math{\cosh^2x - \sinh^2x}
3252 @infoline @expr{cosh(x)^2 - sinh(x)^2} 
3253 that always equals one.  Let's try to verify this identity.
3255 @smallexample
3256 @group
3257 2:  -64        2:  -64        2:  -64        2:  9.7192e54  2:  9.7192e54
3258 1:  -64        1:  -3.1175e27 1:  9.7192e54  1:  -64        1:  9.7192e54
3259     .              .              .              .              .
3261  64 n @key{RET} @key{RET}      H C            2 ^            @key{TAB}            H S 2 ^
3262 @end group
3263 @end smallexample
3265 @noindent
3266 @cindex Roundoff errors, examples
3267 Something's obviously wrong, because when we subtract these numbers
3268 the answer will clearly be zero!  But if you think about it, if these
3269 numbers @emph{did} differ by one, it would be in the 55th decimal
3270 place.  The difference we seek has been lost entirely to roundoff
3271 error.
3273 We could verify this hypothesis by doing the actual calculation with,
3274 say, 60 decimal places of precision.  This will be slow, but not
3275 enormously so.  Try it if you wish; sure enough, the answer is
3276 0.99999, reasonably close to 1.
3278 Of course, a more reasonable way to verify the identity is to use
3279 a more reasonable value for @expr{x}!
3281 @cindex Common logarithm
3282 Some Calculator commands use the Hyperbolic prefix for other purposes.
3283 The logarithm and exponential functions, for example, work to the base
3284 @expr{e} normally but use base-10 instead if you use the Hyperbolic
3285 prefix.
3287 @smallexample
3288 @group
3289 1:  1000       1:  6.9077     1:  1000       1:  3
3290     .              .              .              .
3292     1000           L              U              H L
3293 @end group
3294 @end smallexample
3296 @noindent
3297 First, we mistakenly compute a natural logarithm.  Then we undo
3298 and compute a common logarithm instead.
3300 The @kbd{B} key computes a general base-@var{b} logarithm for any
3301 value of @var{b}.
3303 @smallexample
3304 @group
3305 2:  1000       1:  3          1:  1000.      2:  1000.      1:  6.9077
3306 1:  10             .              .          1:  2.71828        .
3307     .                                            .
3309  1000 @key{RET} 10       B              H E            H P            B
3310 @end group
3311 @end smallexample
3313 @noindent
3314 Here we first use @kbd{B} to compute the base-10 logarithm, then use
3315 the ``hyperbolic'' exponential as a cheap hack to recover the number
3316 1000, then use @kbd{B} again to compute the natural logarithm.  Note
3317 that @kbd{P} with the hyperbolic prefix pushes the constant @expr{e}
3318 onto the stack.
3320 You may have noticed that both times we took the base-10 logarithm
3321 of 1000, we got an exact integer result.  Calc always tries to give
3322 an exact rational result for calculations involving rational numbers
3323 where possible.  But when we used @kbd{H E}, the result was a
3324 floating-point number for no apparent reason.  In fact, if we had
3325 computed @kbd{10 @key{RET} 3 ^} we @emph{would} have gotten an
3326 exact integer 1000.  But the @kbd{H E} command is rigged to generate
3327 a floating-point result all of the time so that @kbd{1000 H E} will
3328 not waste time computing a thousand-digit integer when all you
3329 probably wanted was @samp{1e1000}.
3331 (@bullet{}) @strong{Exercise 2.}  Find a pair of integer inputs to
3332 the @kbd{B} command for which Calc could find an exact rational
3333 result but doesn't.  @xref{Arithmetic Answer 2, 2}. (@bullet{})
3335 The Calculator also has a set of functions relating to combinatorics
3336 and statistics.  You may be familiar with the @dfn{factorial} function,
3337 which computes the product of all the integers up to a given number.
3339 @smallexample
3340 @group
3341 1:  100        1:  93326215443...    1:  100.       1:  9.3326e157
3342     .              .                     .              .
3344     100            !                     U c f          !
3345 @end group
3346 @end smallexample
3348 @noindent
3349 Recall, the @kbd{c f} command converts the integer or fraction at the
3350 top of the stack to floating-point format.  If you take the factorial
3351 of a floating-point number, you get a floating-point result
3352 accurate to the current precision.  But if you give @kbd{!} an
3353 exact integer, you get an exact integer result (158 digits long
3354 in this case).
3356 If you take the factorial of a non-integer, Calc uses a generalized
3357 factorial function defined in terms of Euler's Gamma function
3358 @texline @math{\Gamma(n)}
3359 @infoline @expr{gamma(n)}
3360 (which is itself available as the @kbd{f g} command).
3362 @smallexample
3363 @group
3364 3:  4.         3:  24.               1:  5.5        1:  52.342777847
3365 2:  4.5        2:  52.3427777847         .              .
3366 1:  5.         1:  120.
3367     .              .
3369                    M-3 !              M-0 @key{DEL} 5.5       f g
3370 @end group
3371 @end smallexample
3373 @noindent
3374 Here we verify the identity 
3375 @texline @math{n! = \Gamma(n+1)}.
3376 @infoline @expr{@var{n}!@: = gamma(@var{n}+1)}.
3378 The binomial coefficient @var{n}-choose-@var{m}
3379 @texline or @math{\displaystyle {n \choose m}}
3380 is defined by
3381 @texline @math{\displaystyle {n! \over m! \, (n-m)!}}
3382 @infoline @expr{n!@: / m!@: (n-m)!}
3383 for all reals @expr{n} and @expr{m}.  The intermediate results in this
3384 formula can become quite large even if the final result is small; the
3385 @kbd{k c} command computes a binomial coefficient in a way that avoids
3386 large intermediate values.
3388 The @kbd{k} prefix key defines several common functions out of
3389 combinatorics and number theory.  Here we compute the binomial
3390 coefficient 30-choose-20, then determine its prime factorization.
3392 @smallexample
3393 @group
3394 2:  30         1:  30045015   1:  [3, 3, 5, 7, 11, 13, 23, 29]
3395 1:  20             .              .
3396     .
3398  30 @key{RET} 20         k c            k f
3399 @end group
3400 @end smallexample
3402 @noindent
3403 You can verify these prime factors by using @kbd{v u} to ``unpack''
3404 this vector into 8 separate stack entries, then @kbd{M-8 *} to
3405 multiply them back together.  The result is the original number,
3406 30045015.
3408 @cindex Hash tables
3409 Suppose a program you are writing needs a hash table with at least
3410 10000 entries.  It's best to use a prime number as the actual size
3411 of a hash table.  Calc can compute the next prime number after 10000:
3413 @smallexample
3414 @group
3415 1:  10000      1:  10007      1:  9973
3416     .              .              .
3418     10000          k n            I k n
3419 @end group
3420 @end smallexample
3422 @noindent
3423 Just for kicks we've also computed the next prime @emph{less} than
3424 10000.
3426 @c [fix-ref Financial Functions]
3427 @xref{Financial Functions}, for a description of the Calculator
3428 commands that deal with business and financial calculations (functions
3429 like @code{pv}, @code{rate}, and @code{sln}).
3431 @c [fix-ref Binary Number Functions]
3432 @xref{Binary Functions}, to read about the commands for operating
3433 on binary numbers (like @code{and}, @code{xor}, and @code{lsh}).
3435 @node Vector/Matrix Tutorial, Types Tutorial, Arithmetic Tutorial, Tutorial
3436 @section Vector/Matrix Tutorial
3438 @noindent
3439 A @dfn{vector} is a list of numbers or other Calc data objects.
3440 Calc provides a large set of commands that operate on vectors.  Some
3441 are familiar operations from vector analysis.  Others simply treat
3442 a vector as a list of objects.
3444 @menu
3445 * Vector Analysis Tutorial::
3446 * Matrix Tutorial::
3447 * List Tutorial::
3448 @end menu
3450 @node Vector Analysis Tutorial, Matrix Tutorial, Vector/Matrix Tutorial, Vector/Matrix Tutorial
3451 @subsection Vector Analysis
3453 @noindent
3454 If you add two vectors, the result is a vector of the sums of the
3455 elements, taken pairwise.
3457 @smallexample
3458 @group
3459 1:  [1, 2, 3]     2:  [1, 2, 3]     1:  [8, 8, 3]
3460     .             1:  [7, 6, 0]         .
3461                       .
3463     [1,2,3]  s 1      [7 6 0]  s 2      +
3464 @end group
3465 @end smallexample
3467 @noindent
3468 Note that we can separate the vector elements with either commas or
3469 spaces.  This is true whether we are using incomplete vectors or
3470 algebraic entry.  The @kbd{s 1} and @kbd{s 2} commands save these
3471 vectors so we can easily reuse them later.
3473 If you multiply two vectors, the result is the sum of the products
3474 of the elements taken pairwise.  This is called the @dfn{dot product}
3475 of the vectors.
3477 @smallexample
3478 @group
3479 2:  [1, 2, 3]     1:  19
3480 1:  [7, 6, 0]         .
3481     .
3483     r 1 r 2           *
3484 @end group
3485 @end smallexample
3487 @cindex Dot product
3488 The dot product of two vectors is equal to the product of their
3489 lengths times the cosine of the angle between them.  (Here the vector
3490 is interpreted as a line from the origin @expr{(0,0,0)} to the
3491 specified point in three-dimensional space.)  The @kbd{A}
3492 (absolute value) command can be used to compute the length of a
3493 vector.
3495 @smallexample
3496 @group
3497 3:  19            3:  19          1:  0.550782    1:  56.579
3498 2:  [1, 2, 3]     2:  3.741657        .               .
3499 1:  [7, 6, 0]     1:  9.219544
3500     .                 .
3502     M-@key{RET}             M-2 A          * /             I C
3503 @end group
3504 @end smallexample
3506 @noindent
3507 First we recall the arguments to the dot product command, then
3508 we compute the absolute values of the top two stack entries to
3509 obtain the lengths of the vectors, then we divide the dot product
3510 by the product of the lengths to get the cosine of the angle.
3511 The inverse cosine finds that the angle between the vectors
3512 is about 56 degrees.
3514 @cindex Cross product
3515 @cindex Perpendicular vectors
3516 The @dfn{cross product} of two vectors is a vector whose length
3517 is the product of the lengths of the inputs times the sine of the
3518 angle between them, and whose direction is perpendicular to both
3519 input vectors.  Unlike the dot product, the cross product is
3520 defined only for three-dimensional vectors.  Let's double-check
3521 our computation of the angle using the cross product.
3523 @smallexample
3524 @group
3525 2:  [1, 2, 3]  3:  [-18, 21, -8]  1:  [-0.52, 0.61, -0.23]  1:  56.579
3526 1:  [7, 6, 0]  2:  [1, 2, 3]          .                         .
3527     .          1:  [7, 6, 0]
3528                    .
3530     r 1 r 2        V C  s 3  M-@key{RET}    M-2 A * /                 A I S
3531 @end group
3532 @end smallexample
3534 @noindent
3535 First we recall the original vectors and compute their cross product,
3536 which we also store for later reference.  Now we divide the vector
3537 by the product of the lengths of the original vectors.  The length of
3538 this vector should be the sine of the angle; sure enough, it is!
3540 @c [fix-ref General Mode Commands]
3541 Vector-related commands generally begin with the @kbd{v} prefix key.
3542 Some are uppercase letters and some are lowercase.  To make it easier
3543 to type these commands, the shift-@kbd{V} prefix key acts the same as
3544 the @kbd{v} key.  (@xref{General Mode Commands}, for a way to make all
3545 prefix keys have this property.)
3547 If we take the dot product of two perpendicular vectors we expect
3548 to get zero, since the cosine of 90 degrees is zero.  Let's check
3549 that the cross product is indeed perpendicular to both inputs:
3551 @smallexample
3552 @group
3553 2:  [1, 2, 3]      1:  0          2:  [7, 6, 0]      1:  0
3554 1:  [-18, 21, -8]      .          1:  [-18, 21, -8]      .
3555     .                                 .
3557     r 1 r 3            *          @key{DEL} r 2 r 3            *
3558 @end group
3559 @end smallexample
3561 @cindex Normalizing a vector
3562 @cindex Unit vectors
3563 (@bullet{}) @strong{Exercise 1.}  Given a vector on the top of the
3564 stack, what keystrokes would you use to @dfn{normalize} the
3565 vector, i.e., to reduce its length to one without changing its
3566 direction?  @xref{Vector Answer 1, 1}. (@bullet{})
3568 (@bullet{}) @strong{Exercise 2.}  Suppose a certain particle can be
3569 at any of several positions along a ruler.  You have a list of
3570 those positions in the form of a vector, and another list of the
3571 probabilities for the particle to be at the corresponding positions.
3572 Find the average position of the particle.
3573 @xref{Vector Answer 2, 2}. (@bullet{})
3575 @node Matrix Tutorial, List Tutorial, Vector Analysis Tutorial, Vector/Matrix Tutorial
3576 @subsection Matrices
3578 @noindent
3579 A @dfn{matrix} is just a vector of vectors, all the same length.
3580 This means you can enter a matrix using nested brackets.  You can
3581 also use the semicolon character to enter a matrix.  We'll show
3582 both methods here:
3584 @smallexample
3585 @group
3586 1:  [ [ 1, 2, 3 ]             1:  [ [ 1, 2, 3 ]
3587       [ 4, 5, 6 ] ]                 [ 4, 5, 6 ] ]
3588     .                             .
3590   [[1 2 3] [4 5 6]]             ' [1 2 3; 4 5 6] @key{RET}
3591 @end group
3592 @end smallexample
3594 @noindent
3595 We'll be using this matrix again, so type @kbd{s 4} to save it now.
3597 Note that semicolons work with incomplete vectors, but they work
3598 better in algebraic entry.  That's why we use the apostrophe in
3599 the second example.
3601 When two matrices are multiplied, the lefthand matrix must have
3602 the same number of columns as the righthand matrix has rows.
3603 Row @expr{i}, column @expr{j} of the result is effectively the
3604 dot product of row @expr{i} of the left matrix by column @expr{j}
3605 of the right matrix.
3607 If we try to duplicate this matrix and multiply it by itself,
3608 the dimensions are wrong and the multiplication cannot take place:
3610 @smallexample
3611 @group
3612 1:  [ [ 1, 2, 3 ]   * [ [ 1, 2, 3 ]
3613       [ 4, 5, 6 ] ]     [ 4, 5, 6 ] ]
3614     .
3616     @key{RET} *
3617 @end group
3618 @end smallexample
3620 @noindent
3621 Though rather hard to read, this is a formula which shows the product
3622 of two matrices.  The @samp{*} function, having invalid arguments, has
3623 been left in symbolic form.
3625 We can multiply the matrices if we @dfn{transpose} one of them first.
3627 @smallexample
3628 @group
3629 2:  [ [ 1, 2, 3 ]       1:  [ [ 14, 32 ]      1:  [ [ 17, 22, 27 ]
3630       [ 4, 5, 6 ] ]           [ 32, 77 ] ]          [ 22, 29, 36 ]
3631 1:  [ [ 1, 4 ]              .                       [ 27, 36, 45 ] ]
3632       [ 2, 5 ]                                    .
3633       [ 3, 6 ] ]
3634     .
3636     U v t                   *                     U @key{TAB} *
3637 @end group
3638 @end smallexample
3640 Matrix multiplication is not commutative; indeed, switching the
3641 order of the operands can even change the dimensions of the result
3642 matrix, as happened here!
3644 If you multiply a plain vector by a matrix, it is treated as a
3645 single row or column depending on which side of the matrix it is
3646 on.  The result is a plain vector which should also be interpreted
3647 as a row or column as appropriate.
3649 @smallexample
3650 @group
3651 2:  [ [ 1, 2, 3 ]      1:  [14, 32]
3652       [ 4, 5, 6 ] ]        .
3653 1:  [1, 2, 3]
3654     .
3656     r 4 r 1                *
3657 @end group
3658 @end smallexample
3660 Multiplying in the other order wouldn't work because the number of
3661 rows in the matrix is different from the number of elements in the
3662 vector.
3664 (@bullet{}) @strong{Exercise 1.}  Use @samp{*} to sum along the rows
3665 of the above 
3666 @texline @math{2\times3}
3667 @infoline 2x3 
3668 matrix to get @expr{[6, 15]}.  Now use @samp{*} to sum along the columns
3669 to get @expr{[5, 7, 9]}. 
3670 @xref{Matrix Answer 1, 1}. (@bullet{})
3672 @cindex Identity matrix
3673 An @dfn{identity matrix} is a square matrix with ones along the
3674 diagonal and zeros elsewhere.  It has the property that multiplication
3675 by an identity matrix, on the left or on the right, always produces
3676 the original matrix.
3678 @smallexample
3679 @group
3680 1:  [ [ 1, 2, 3 ]      2:  [ [ 1, 2, 3 ]      1:  [ [ 1, 2, 3 ]
3681       [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]
3682     .                  1:  [ [ 1, 0, 0 ]          .
3683                              [ 0, 1, 0 ]
3684                              [ 0, 0, 1 ] ]
3685                            .
3687     r 4                    v i 3 @key{RET}              *
3688 @end group
3689 @end smallexample
3691 If a matrix is square, it is often possible to find its @dfn{inverse},
3692 that is, a matrix which, when multiplied by the original matrix, yields
3693 an identity matrix.  The @kbd{&} (reciprocal) key also computes the
3694 inverse of a matrix.
3696 @smallexample
3697 @group
3698 1:  [ [ 1, 2, 3 ]      1:  [ [   -2.4,     1.2,   -0.2 ]
3699       [ 4, 5, 6 ]            [    2.8,    -1.4,    0.4 ]
3700       [ 7, 6, 0 ] ]          [ -0.73333, 0.53333, -0.2 ] ]
3701     .                      .
3703     r 4 r 2 |  s 5         &
3704 @end group
3705 @end smallexample
3707 @noindent
3708 The vertical bar @kbd{|} @dfn{concatenates} numbers, vectors, and
3709 matrices together.  Here we have used it to add a new row onto
3710 our matrix to make it square.
3712 We can multiply these two matrices in either order to get an identity.
3714 @smallexample
3715 @group
3716 1:  [ [ 1., 0., 0. ]      1:  [ [ 1., 0., 0. ]
3717       [ 0., 1., 0. ]            [ 0., 1., 0. ]
3718       [ 0., 0., 1. ] ]          [ 0., 0., 1. ] ]
3719     .                         .
3721     M-@key{RET}  *                  U @key{TAB} *
3722 @end group
3723 @end smallexample
3725 @cindex Systems of linear equations
3726 @cindex Linear equations, systems of
3727 Matrix inverses are related to systems of linear equations in algebra.
3728 Suppose we had the following set of equations:
3730 @ifinfo
3731 @group
3732 @example
3733     a + 2b + 3c = 6
3734    4a + 5b + 6c = 2
3735    7a + 6b      = 3
3736 @end example
3737 @end group
3738 @end ifinfo
3739 @tex
3740 \turnoffactive
3741 \beforedisplayh
3742 $$ \openup1\jot \tabskip=0pt plus1fil
3743 \halign to\displaywidth{\tabskip=0pt
3744    $\hfil#$&$\hfil{}#{}$&
3745    $\hfil#$&$\hfil{}#{}$&
3746    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3747   a&+&2b&+&3c&=6 \cr
3748  4a&+&5b&+&6c&=2 \cr
3749  7a&+&6b& &  &=3 \cr}
3751 \afterdisplayh
3752 @end tex
3754 @noindent
3755 This can be cast into the matrix equation,
3757 @ifinfo
3758 @group
3759 @example
3760    [ [ 1, 2, 3 ]     [ [ a ]     [ [ 6 ]
3761      [ 4, 5, 6 ]   *   [ b ]   =   [ 2 ]
3762      [ 7, 6, 0 ] ]     [ c ] ]     [ 3 ] ]
3763 @end example
3764 @end group
3765 @end ifinfo
3766 @tex
3767 \turnoffactive
3768 \beforedisplay
3769 $$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 }
3770    \times
3771    \pmatrix{ a \cr b \cr c } = \pmatrix{ 6 \cr 2 \cr 3 }
3773 \afterdisplay
3774 @end tex
3776 We can solve this system of equations by multiplying both sides by the
3777 inverse of the matrix.  Calc can do this all in one step:
3779 @smallexample
3780 @group
3781 2:  [6, 2, 3]          1:  [-12.6, 15.2, -3.93333]
3782 1:  [ [ 1, 2, 3 ]          .
3783       [ 4, 5, 6 ]
3784       [ 7, 6, 0 ] ]
3785     .
3787     [6,2,3] r 5            /
3788 @end group
3789 @end smallexample
3791 @noindent
3792 The result is the @expr{[a, b, c]} vector that solves the equations.
3793 (Dividing by a square matrix is equivalent to multiplying by its
3794 inverse.)
3796 Let's verify this solution:
3798 @smallexample
3799 @group
3800 2:  [ [ 1, 2, 3 ]                1:  [6., 2., 3.]
3801       [ 4, 5, 6 ]                    .
3802       [ 7, 6, 0 ] ]
3803 1:  [-12.6, 15.2, -3.93333]
3804     .
3806     r 5  @key{TAB}                         *
3807 @end group
3808 @end smallexample
3810 @noindent
3811 Note that we had to be careful about the order in which we multiplied
3812 the matrix and vector.  If we multiplied in the other order, Calc would
3813 assume the vector was a row vector in order to make the dimensions
3814 come out right, and the answer would be incorrect.  If you
3815 don't feel safe letting Calc take either interpretation of your
3816 vectors, use explicit 
3817 @texline @math{N\times1}
3818 @infoline Nx1
3820 @texline @math{1\times N}
3821 @infoline 1xN
3822 matrices instead.  In this case, you would enter the original column
3823 vector as @samp{[[6], [2], [3]]} or @samp{[6; 2; 3]}.
3825 (@bullet{}) @strong{Exercise 2.}  Algebraic entry allows you to make
3826 vectors and matrices that include variables.  Solve the following
3827 system of equations to get expressions for @expr{x} and @expr{y}
3828 in terms of @expr{a} and @expr{b}.
3830 @ifinfo
3831 @group
3832 @example
3833    x + a y = 6
3834    x + b y = 10
3835 @end example
3836 @end group
3837 @end ifinfo
3838 @tex
3839 \turnoffactive
3840 \beforedisplay
3841 $$ \eqalign{ x &+ a y = 6 \cr
3842              x &+ b y = 10}
3844 \afterdisplay
3845 @end tex
3847 @noindent
3848 @xref{Matrix Answer 2, 2}. (@bullet{})
3850 @cindex Least-squares for over-determined systems
3851 @cindex Over-determined systems of equations
3852 (@bullet{}) @strong{Exercise 3.}  A system of equations is ``over-determined''
3853 if it has more equations than variables.  It is often the case that
3854 there are no values for the variables that will satisfy all the
3855 equations at once, but it is still useful to find a set of values
3856 which ``nearly'' satisfy all the equations.  In terms of matrix equations,
3857 you can't solve @expr{A X = B} directly because the matrix @expr{A}
3858 is not square for an over-determined system.  Matrix inversion works
3859 only for square matrices.  One common trick is to multiply both sides
3860 on the left by the transpose of @expr{A}:
3861 @ifinfo
3862 @samp{trn(A)*A*X = trn(A)*B}.
3863 @end ifinfo
3864 @tex
3865 \turnoffactive
3866 $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}.
3867 @end tex
3868 Now 
3869 @texline @math{A^T A}
3870 @infoline @expr{trn(A)*A} 
3871 is a square matrix so a solution is possible.  It turns out that the
3872 @expr{X} vector you compute in this way will be a ``least-squares''
3873 solution, which can be regarded as the ``closest'' solution to the set
3874 of equations.  Use Calc to solve the following over-determined
3875 system:
3877 @ifinfo
3878 @group
3879 @example
3880     a + 2b + 3c = 6
3881    4a + 5b + 6c = 2
3882    7a + 6b      = 3
3883    2a + 4b + 6c = 11
3884 @end example
3885 @end group
3886 @end ifinfo
3887 @tex
3888 \turnoffactive
3889 \beforedisplayh
3890 $$ \openup1\jot \tabskip=0pt plus1fil
3891 \halign to\displaywidth{\tabskip=0pt
3892    $\hfil#$&$\hfil{}#{}$&
3893    $\hfil#$&$\hfil{}#{}$&
3894    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3895   a&+&2b&+&3c&=6 \cr
3896  4a&+&5b&+&6c&=2 \cr
3897  7a&+&6b& &  &=3 \cr
3898  2a&+&4b&+&6c&=11 \cr}
3900 \afterdisplayh
3901 @end tex
3903 @noindent
3904 @xref{Matrix Answer 3, 3}. (@bullet{})
3906 @node List Tutorial, , Matrix Tutorial, Vector/Matrix Tutorial
3907 @subsection Vectors as Lists
3909 @noindent
3910 @cindex Lists
3911 Although Calc has a number of features for manipulating vectors and
3912 matrices as mathematical objects, you can also treat vectors as
3913 simple lists of values.  For example, we saw that the @kbd{k f}
3914 command returns a vector which is a list of the prime factors of a
3915 number.
3917 You can pack and unpack stack entries into vectors:
3919 @smallexample
3920 @group
3921 3:  10         1:  [10, 20, 30]     3:  10
3922 2:  20             .                2:  20
3923 1:  30                              1:  30
3924     .                                   .
3926                    M-3 v p              v u
3927 @end group
3928 @end smallexample
3930 You can also build vectors out of consecutive integers, or out
3931 of many copies of a given value:
3933 @smallexample
3934 @group
3935 1:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]
3936     .               1:  17              1:  [17, 17, 17, 17]
3937                         .                   .
3939     v x 4 @key{RET}           17                  v b 4 @key{RET}
3940 @end group
3941 @end smallexample
3943 You can apply an operator to every element of a vector using the
3944 @dfn{map} command.
3946 @smallexample
3947 @group
3948 1:  [17, 34, 51, 68]   1:  [289, 1156, 2601, 4624]  1:  [17, 34, 51, 68]
3949     .                      .                            .
3951     V M *                  2 V M ^                      V M Q
3952 @end group
3953 @end smallexample
3955 @noindent
3956 In the first step, we multiply the vector of integers by the vector
3957 of 17's elementwise.  In the second step, we raise each element to
3958 the power two.  (The general rule is that both operands must be
3959 vectors of the same length, or else one must be a vector and the
3960 other a plain number.)  In the final step, we take the square root
3961 of each element.
3963 (@bullet{}) @strong{Exercise 1.}  Compute a vector of powers of two
3964 from 
3965 @texline @math{2^{-4}}
3966 @infoline @expr{2^-4} 
3967 to @expr{2^4}.  @xref{List Answer 1, 1}. (@bullet{})
3969 You can also @dfn{reduce} a binary operator across a vector.
3970 For example, reducing @samp{*} computes the product of all the
3971 elements in the vector:
3973 @smallexample
3974 @group
3975 1:  123123     1:  [3, 7, 11, 13, 41]      1:  123123
3976     .              .                           .
3978     123123         k f                         V R *
3979 @end group
3980 @end smallexample
3982 @noindent
3983 In this example, we decompose 123123 into its prime factors, then
3984 multiply those factors together again to yield the original number.
3986 We could compute a dot product ``by hand'' using mapping and
3987 reduction:
3989 @smallexample
3990 @group
3991 2:  [1, 2, 3]     1:  [7, 12, 0]     1:  19
3992 1:  [7, 6, 0]         .                  .
3993     .
3995     r 1 r 2           V M *              V R +
3996 @end group
3997 @end smallexample
3999 @noindent
4000 Recalling two vectors from the previous section, we compute the
4001 sum of pairwise products of the elements to get the same answer
4002 for the dot product as before.
4004 A slight variant of vector reduction is the @dfn{accumulate} operation,
4005 @kbd{V U}.  This produces a vector of the intermediate results from
4006 a corresponding reduction.  Here we compute a table of factorials:
4008 @smallexample
4009 @group
4010 1:  [1, 2, 3, 4, 5, 6]    1:  [1, 2, 6, 24, 120, 720]
4011     .                         .
4013     v x 6 @key{RET}                 V U *
4014 @end group
4015 @end smallexample
4017 Calc allows vectors to grow as large as you like, although it gets
4018 rather slow if vectors have more than about a hundred elements.
4019 Actually, most of the time is spent formatting these large vectors
4020 for display, not calculating on them.  Try the following experiment
4021 (if your computer is very fast you may need to substitute a larger
4022 vector size).
4024 @smallexample
4025 @group
4026 1:  [1, 2, 3, 4, ...      1:  [2, 3, 4, 5, ...
4027     .                         .
4029     v x 500 @key{RET}               1 V M +
4030 @end group
4031 @end smallexample
4033 Now press @kbd{v .} (the letter @kbd{v}, then a period) and try the
4034 experiment again.  In @kbd{v .} mode, long vectors are displayed
4035 ``abbreviated'' like this:
4037 @smallexample
4038 @group
4039 1:  [1, 2, 3, ..., 500]   1:  [2, 3, 4, ..., 501]
4040     .                         .
4042     v x 500 @key{RET}               1 V M +
4043 @end group
4044 @end smallexample
4046 @noindent
4047 (where now the @samp{...} is actually part of the Calc display).
4048 You will find both operations are now much faster.  But notice that
4049 even in @w{@kbd{v .}} mode, the full vectors are still shown in the Trail.
4050 Type @w{@kbd{t .}} to cause the trail to abbreviate as well, and try the
4051 experiment one more time.  Operations on long vectors are now quite
4052 fast!  (But of course if you use @kbd{t .} you will lose the ability
4053 to get old vectors back using the @kbd{t y} command.)
4055 An easy way to view a full vector when @kbd{v .} mode is active is
4056 to press @kbd{`} (back-quote) to edit the vector; editing always works
4057 with the full, unabbreviated value.
4059 @cindex Least-squares for fitting a straight line
4060 @cindex Fitting data to a line
4061 @cindex Line, fitting data to
4062 @cindex Data, extracting from buffers
4063 @cindex Columns of data, extracting
4064 As a larger example, let's try to fit a straight line to some data,
4065 using the method of least squares.  (Calc has a built-in command for
4066 least-squares curve fitting, but we'll do it by hand here just to
4067 practice working with vectors.)  Suppose we have the following list
4068 of values in a file we have loaded into Emacs:
4070 @smallexample
4071   x        y
4072  ---      ---
4073  1.34    0.234
4074  1.41    0.298
4075  1.49    0.402
4076  1.56    0.412
4077  1.64    0.466
4078  1.73    0.473
4079  1.82    0.601
4080  1.91    0.519
4081  2.01    0.603
4082  2.11    0.637
4083  2.22    0.645
4084  2.33    0.705
4085  2.45    0.917
4086  2.58    1.009
4087  2.71    0.971
4088  2.85    1.062
4089  3.00    1.148
4090  3.15    1.157
4091  3.32    1.354
4092 @end smallexample
4094 @noindent
4095 If you are reading this tutorial in printed form, you will find it
4096 easiest to press @kbd{M-# i} to enter the on-line Info version of
4097 the manual and find this table there.  (Press @kbd{g}, then type
4098 @kbd{List Tutorial}, to jump straight to this section.)
4100 Position the cursor at the upper-left corner of this table, just
4101 to the left of the @expr{1.34}.  Press @kbd{C-@@} to set the mark.
4102 (On your system this may be @kbd{C-2}, @kbd{C-@key{SPC}}, or @kbd{NUL}.)
4103 Now position the cursor to the lower-right, just after the @expr{1.354}.
4104 You have now defined this region as an Emacs ``rectangle.''  Still
4105 in the Info buffer, type @kbd{M-# r}.  This command
4106 (@code{calc-grab-rectangle}) will pop you back into the Calculator, with
4107 the contents of the rectangle you specified in the form of a matrix.
4109 @smallexample
4110 @group
4111 1:  [ [ 1.34, 0.234 ]
4112       [ 1.41, 0.298 ]
4113       @dots{}
4114 @end group
4115 @end smallexample
4117 @noindent
4118 (You may wish to use @kbd{v .} mode to abbreviate the display of this
4119 large matrix.)
4121 We want to treat this as a pair of lists.  The first step is to
4122 transpose this matrix into a pair of rows.  Remember, a matrix is
4123 just a vector of vectors.  So we can unpack the matrix into a pair
4124 of row vectors on the stack.
4126 @smallexample
4127 @group
4128 1:  [ [ 1.34,  1.41,  1.49,  ... ]     2:  [1.34, 1.41, 1.49, ... ]
4129       [ 0.234, 0.298, 0.402, ... ] ]   1:  [0.234, 0.298, 0.402, ... ]
4130     .                                      .
4132     v t                                    v u
4133 @end group
4134 @end smallexample
4136 @noindent
4137 Let's store these in quick variables 1 and 2, respectively.
4139 @smallexample
4140 @group
4141 1:  [1.34, 1.41, 1.49, ... ]        .
4142     .
4144     t 2                             t 1
4145 @end group
4146 @end smallexample
4148 @noindent
4149 (Recall that @kbd{t 2} is a variant of @kbd{s 2} that removes the
4150 stored value from the stack.)
4152 In a least squares fit, the slope @expr{m} is given by the formula
4154 @ifinfo
4155 @example
4156 m = (N sum(x y) - sum(x) sum(y)) / (N sum(x^2) - sum(x)^2)
4157 @end example
4158 @end ifinfo
4159 @tex
4160 \turnoffactive
4161 \beforedisplay
4162 $$ m = {N \sum x y - \sum x \sum y  \over
4163         N \sum x^2 - \left( \sum x \right)^2} $$
4164 \afterdisplay
4165 @end tex
4167 @noindent
4168 where 
4169 @texline @math{\sum x}
4170 @infoline @expr{sum(x)} 
4171 represents the sum of all the values of @expr{x}.  While there is an
4172 actual @code{sum} function in Calc, it's easier to sum a vector using a
4173 simple reduction.  First, let's compute the four different sums that
4174 this formula uses.
4176 @smallexample
4177 @group
4178 1:  41.63                 1:  98.0003
4179     .                         .
4181  r 1 V R +   t 3           r 1 2 V M ^ V R +   t 4
4183 @end group
4184 @end smallexample
4185 @noindent
4186 @smallexample
4187 @group
4188 1:  13.613                1:  33.36554
4189     .                         .
4191  r 2 V R +   t 5           r 1 r 2 V M * V R +   t 6
4192 @end group
4193 @end smallexample
4195 @ifinfo
4196 @noindent
4197 These are @samp{sum(x)}, @samp{sum(x^2)}, @samp{sum(y)}, and @samp{sum(x y)},
4198 respectively.  (We could have used @kbd{*} to compute @samp{sum(x^2)} and
4199 @samp{sum(x y)}.)
4200 @end ifinfo
4201 @tex
4202 \turnoffactive
4203 These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$,
4204 respectively.  (We could have used \kbd{*} to compute $\sum x^2$ and
4205 $\sum x y$.)
4206 @end tex
4208 Finally, we also need @expr{N}, the number of data points.  This is just
4209 the length of either of our lists.
4211 @smallexample
4212 @group
4213 1:  19
4214     .
4216  r 1 v l   t 7
4217 @end group
4218 @end smallexample
4220 @noindent
4221 (That's @kbd{v} followed by a lower-case @kbd{l}.)
4223 Now we grind through the formula:
4225 @smallexample
4226 @group
4227 1:  633.94526  2:  633.94526  1:  67.23607
4228     .          1:  566.70919      .
4229                    .
4231  r 7 r 6 *      r 3 r 5 *         -
4233 @end group
4234 @end smallexample
4235 @noindent
4236 @smallexample
4237 @group
4238 2:  67.23607   3:  67.23607   2:  67.23607   1:  0.52141679
4239 1:  1862.0057  2:  1862.0057  1:  128.9488       .
4240     .          1:  1733.0569      .
4241                    .
4243  r 7 r 4 *      r 3 2 ^           -              /   t 8
4244 @end group
4245 @end smallexample
4247 That gives us the slope @expr{m}.  The y-intercept @expr{b} can now
4248 be found with the simple formula,
4250 @ifinfo
4251 @example
4252 b = (sum(y) - m sum(x)) / N
4253 @end example
4254 @end ifinfo
4255 @tex
4256 \turnoffactive
4257 \beforedisplay
4258 $$ b = {\sum y - m \sum x \over N} $$
4259 \afterdisplay
4260 \vskip10pt
4261 @end tex
4263 @smallexample
4264 @group
4265 1:  13.613     2:  13.613     1:  -8.09358   1:  -0.425978
4266     .          1:  21.70658       .              .
4267                    .
4269    r 5            r 8 r 3 *       -              r 7 /   t 9
4270 @end group
4271 @end smallexample
4273 Let's ``plot'' this straight line approximation, 
4274 @texline @math{y \approx m x + b},
4275 @infoline @expr{m x + b}, 
4276 and compare it with the original data.
4278 @smallexample
4279 @group
4280 1:  [0.699, 0.735, ... ]    1:  [0.273, 0.309, ... ]
4281     .                           .
4283     r 1 r 8 *                   r 9 +    s 0
4284 @end group
4285 @end smallexample
4287 @noindent
4288 Notice that multiplying a vector by a constant, and adding a constant
4289 to a vector, can be done without mapping commands since these are
4290 common operations from vector algebra.  As far as Calc is concerned,
4291 we've just been doing geometry in 19-dimensional space!
4293 We can subtract this vector from our original @expr{y} vector to get
4294 a feel for the error of our fit.  Let's find the maximum error:
4296 @smallexample
4297 @group
4298 1:  [0.0387, 0.0112, ... ]   1:  [0.0387, 0.0112, ... ]   1:  0.0897
4299     .                            .                            .
4301     r 2 -                        V M A                        V R X
4302 @end group
4303 @end smallexample
4305 @noindent
4306 First we compute a vector of differences, then we take the absolute
4307 values of these differences, then we reduce the @code{max} function
4308 across the vector.  (The @code{max} function is on the two-key sequence
4309 @kbd{f x}; because it is so common to use @code{max} in a vector
4310 operation, the letters @kbd{X} and @kbd{N} are also accepted for
4311 @code{max} and @code{min} in this context.  In general, you answer
4312 the @kbd{V M} or @kbd{V R} prompt with the actual key sequence that
4313 invokes the function you want.  You could have typed @kbd{V R f x} or
4314 even @kbd{V R x max @key{RET}} if you had preferred.)
4316 If your system has the GNUPLOT program, you can see graphs of your
4317 data and your straight line to see how well they match.  (If you have
4318 GNUPLOT 3.0 or higher, the following instructions will work regardless
4319 of the kind of display you have.  Some GNUPLOT 2.0, non-X-windows systems
4320 may require additional steps to view the graphs.)
4322 Let's start by plotting the original data.  Recall the ``@var{x}'' and ``@var{y}''
4323 vectors onto the stack and press @kbd{g f}.  This ``fast'' graphing
4324 command does everything you need to do for simple, straightforward
4325 plotting of data.
4327 @smallexample
4328 @group
4329 2:  [1.34, 1.41, 1.49, ... ]
4330 1:  [0.234, 0.298, 0.402, ... ]
4331     .
4333     r 1 r 2    g f
4334 @end group
4335 @end smallexample
4337 If all goes well, you will shortly get a new window containing a graph
4338 of the data.  (If not, contact your GNUPLOT or Calc installer to find
4339 out what went wrong.)  In the X window system, this will be a separate
4340 graphics window.  For other kinds of displays, the default is to
4341 display the graph in Emacs itself using rough character graphics.
4342 Press @kbd{q} when you are done viewing the character graphics.
4344 Next, let's add the line we got from our least-squares fit.
4345 @ifinfo
4346 (If you are reading this tutorial on-line while running Calc, typing
4347 @kbd{g a} may cause the tutorial to disappear from its window and be
4348 replaced by a buffer named @samp{*Gnuplot Commands*}.  The tutorial
4349 will reappear when you terminate GNUPLOT by typing @kbd{g q}.) 
4350 @end ifinfo
4352 @smallexample
4353 @group
4354 2:  [1.34, 1.41, 1.49, ... ]
4355 1:  [0.273, 0.309, 0.351, ... ]
4356     .
4358     @key{DEL} r 0    g a  g p
4359 @end group
4360 @end smallexample
4362 It's not very useful to get symbols to mark the data points on this
4363 second curve; you can type @kbd{g S g p} to remove them.  Type @kbd{g q}
4364 when you are done to remove the X graphics window and terminate GNUPLOT.
4366 (@bullet{}) @strong{Exercise 2.}  An earlier exercise showed how to do
4367 least squares fitting to a general system of equations.  Our 19 data
4368 points are really 19 equations of the form @expr{y_i = m x_i + b} for
4369 different pairs of @expr{(x_i,y_i)}.  Use the matrix-transpose method
4370 to solve for @expr{m} and @expr{b}, duplicating the above result.
4371 @xref{List Answer 2, 2}. (@bullet{})
4373 @cindex Geometric mean
4374 (@bullet{}) @strong{Exercise 3.}  If the input data do not form a
4375 rectangle, you can use @w{@kbd{M-# g}} (@code{calc-grab-region})
4376 to grab the data the way Emacs normally works with regions---it reads
4377 left-to-right, top-to-bottom, treating line breaks the same as spaces.
4378 Use this command to find the geometric mean of the following numbers.
4379 (The geometric mean is the @var{n}th root of the product of @var{n} numbers.)
4381 @example
4382 2.3  6  22  15.1  7
4383   15  14  7.5
4384   2.5
4385 @end example
4387 @noindent
4388 The @kbd{M-# g} command accepts numbers separated by spaces or commas,
4389 with or without surrounding vector brackets.
4390 @xref{List Answer 3, 3}. (@bullet{})
4392 @ifinfo
4393 As another example, a theorem about binomial coefficients tells
4394 us that the alternating sum of binomial coefficients
4395 @var{n}-choose-0 minus @var{n}-choose-1 plus @var{n}-choose-2, and so
4396 on up to @var{n}-choose-@var{n},
4397 always comes out to zero.  Let's verify this
4398 for @expr{n=6}.
4399 @end ifinfo
4400 @tex
4401 As another example, a theorem about binomial coefficients tells
4402 us that the alternating sum of binomial coefficients
4403 ${n \choose 0} - {n \choose 1} + {n \choose 2} - \cdots \pm {n \choose n}$
4404 always comes out to zero.  Let's verify this
4405 for \cite{n=6}.
4406 @end tex
4408 @smallexample
4409 @group
4410 1:  [1, 2, 3, 4, 5, 6, 7]     1:  [0, 1, 2, 3, 4, 5, 6]
4411     .                             .
4413     v x 7 @key{RET}                     1 -
4415 @end group
4416 @end smallexample
4417 @noindent
4418 @smallexample
4419 @group
4420 1:  [1, -6, 15, -20, 15, -6, 1]          1:  0
4421     .                                        .
4423     V M ' (-1)^$ choose(6,$) @key{RET}             V R +
4424 @end group
4425 @end smallexample
4427 The @kbd{V M '} command prompts you to enter any algebraic expression
4428 to define the function to map over the vector.  The symbol @samp{$}
4429 inside this expression represents the argument to the function.
4430 The Calculator applies this formula to each element of the vector,
4431 substituting each element's value for the @samp{$} sign(s) in turn.
4433 To define a two-argument function, use @samp{$$} for the first
4434 argument and @samp{$} for the second:  @kbd{V M ' $$-$ @key{RET}} is
4435 equivalent to @kbd{V M -}.  This is analogous to regular algebraic
4436 entry, where @samp{$$} would refer to the next-to-top stack entry
4437 and @samp{$} would refer to the top stack entry, and @kbd{' $$-$ @key{RET}}
4438 would act exactly like @kbd{-}.
4440 Notice that the @kbd{V M '} command has recorded two things in the
4441 trail:  The result, as usual, and also a funny-looking thing marked
4442 @samp{oper} that represents the operator function you typed in.
4443 The function is enclosed in @samp{< >} brackets, and the argument is
4444 denoted by a @samp{#} sign.  If there were several arguments, they
4445 would be shown as @samp{#1}, @samp{#2}, and so on.  (For example,
4446 @kbd{V M ' $$-$} will put the function @samp{<#1 - #2>} on the
4447 trail.)  This object is a ``nameless function''; you can use nameless
4448 @w{@samp{< >}} notation to answer the @kbd{V M '} prompt if you like.
4449 Nameless function notation has the interesting, occasionally useful
4450 property that a nameless function is not actually evaluated until
4451 it is used.  For example, @kbd{V M ' $+random(2.0)} evaluates
4452 @samp{random(2.0)} once and adds that random number to all elements
4453 of the vector, but @kbd{V M ' <#+random(2.0)>} evaluates the
4454 @samp{random(2.0)} separately for each vector element.
4456 Another group of operators that are often useful with @kbd{V M} are
4457 the relational operators:  @kbd{a =}, for example, compares two numbers
4458 and gives the result 1 if they are equal, or 0 if not.  Similarly,
4459 @w{@kbd{a <}} checks for one number being less than another.
4461 Other useful vector operations include @kbd{v v}, to reverse a
4462 vector end-for-end; @kbd{V S}, to sort the elements of a vector
4463 into increasing order; and @kbd{v r} and @w{@kbd{v c}}, to extract
4464 one row or column of a matrix, or (in both cases) to extract one
4465 element of a plain vector.  With a negative argument, @kbd{v r}
4466 and @kbd{v c} instead delete one row, column, or vector element.
4468 @cindex Divisor functions
4469 (@bullet{}) @strong{Exercise 4.}  The @expr{k}th @dfn{divisor function}
4470 @tex
4471 $\sigma_k(n)$
4472 @end tex
4473 is the sum of the @expr{k}th powers of all the divisors of an
4474 integer @expr{n}.  Figure out a method for computing the divisor
4475 function for reasonably small values of @expr{n}.  As a test,
4476 the 0th and 1st divisor functions of 30 are 8 and 72, respectively.
4477 @xref{List Answer 4, 4}. (@bullet{})
4479 @cindex Square-free numbers
4480 @cindex Duplicate values in a list
4481 (@bullet{}) @strong{Exercise 5.}  The @kbd{k f} command produces a
4482 list of prime factors for a number.  Sometimes it is important to
4483 know that a number is @dfn{square-free}, i.e., that no prime occurs
4484 more than once in its list of prime factors.  Find a sequence of
4485 keystrokes to tell if a number is square-free; your method should
4486 leave 1 on the stack if it is, or 0 if it isn't.
4487 @xref{List Answer 5, 5}. (@bullet{})
4489 @cindex Triangular lists
4490 (@bullet{}) @strong{Exercise 6.}  Build a list of lists that looks
4491 like the following diagram.  (You may wish to use the @kbd{v /}
4492 command to enable multi-line display of vectors.)
4494 @smallexample
4495 @group
4496 1:  [ [1],
4497       [1, 2],
4498       [1, 2, 3],
4499       [1, 2, 3, 4],
4500       [1, 2, 3, 4, 5],
4501       [1, 2, 3, 4, 5, 6] ]
4502 @end group
4503 @end smallexample
4505 @noindent
4506 @xref{List Answer 6, 6}. (@bullet{})
4508 (@bullet{}) @strong{Exercise 7.}  Build the following list of lists.
4510 @smallexample
4511 @group
4512 1:  [ [0],
4513       [1, 2],
4514       [3, 4, 5],
4515       [6, 7, 8, 9],
4516       [10, 11, 12, 13, 14],
4517       [15, 16, 17, 18, 19, 20] ]
4518 @end group
4519 @end smallexample
4521 @noindent
4522 @xref{List Answer 7, 7}. (@bullet{})
4524 @cindex Maximizing a function over a list of values
4525 @c [fix-ref Numerical Solutions]
4526 (@bullet{}) @strong{Exercise 8.}  Compute a list of values of Bessel's
4527 @texline @math{J_1(x)}
4528 @infoline @expr{J1} 
4529 function @samp{besJ(1,x)} for @expr{x} from 0 to 5 in steps of 0.25.
4530 Find the value of @expr{x} (from among the above set of values) for
4531 which @samp{besJ(1,x)} is a maximum.  Use an ``automatic'' method,
4532 i.e., just reading along the list by hand to find the largest value
4533 is not allowed!  (There is an @kbd{a X} command which does this kind
4534 of thing automatically; @pxref{Numerical Solutions}.)
4535 @xref{List Answer 8, 8}. (@bullet{})
4537 @cindex Digits, vectors of
4538 (@bullet{}) @strong{Exercise 9.}  You are given an integer in the range
4539 @texline @math{0 \le N < 10^m}
4540 @infoline @expr{0 <= N < 10^m} 
4541 for @expr{m=12} (i.e., an integer of less than
4542 twelve digits).  Convert this integer into a vector of @expr{m}
4543 digits, each in the range from 0 to 9.  In vector-of-digits notation,
4544 add one to this integer to produce a vector of @expr{m+1} digits
4545 (since there could be a carry out of the most significant digit).
4546 Convert this vector back into a regular integer.  A good integer
4547 to try is 25129925999.  @xref{List Answer 9, 9}. (@bullet{})
4549 (@bullet{}) @strong{Exercise 10.}  Your friend Joe tried to use
4550 @kbd{V R a =} to test if all numbers in a list were equal.  What
4551 happened?  How would you do this test?  @xref{List Answer 10, 10}. (@bullet{})
4553 (@bullet{}) @strong{Exercise 11.}  The area of a circle of radius one
4554 is @cpi{}.  The area of the 
4555 @texline @math{2\times2}
4556 @infoline 2x2
4557 square that encloses that circle is 4.  So if we throw @var{n} darts at
4558 random points in the square, about @cpiover{4} of them will land inside
4559 the circle.  This gives us an entertaining way to estimate the value of 
4560 @cpi{}.  The @w{@kbd{k r}}
4561 command picks a random number between zero and the value on the stack.
4562 We could get a random floating-point number between @mathit{-1} and 1 by typing
4563 @w{@kbd{2.0 k r 1 -}}.  Build a vector of 100 random @expr{(x,y)} points in
4564 this square, then use vector mapping and reduction to count how many
4565 points lie inside the unit circle.  Hint:  Use the @kbd{v b} command.
4566 @xref{List Answer 11, 11}. (@bullet{})
4568 @cindex Matchstick problem
4569 (@bullet{}) @strong{Exercise 12.}  The @dfn{matchstick problem} provides
4570 another way to calculate @cpi{}.  Say you have an infinite field
4571 of vertical lines with a spacing of one inch.  Toss a one-inch matchstick
4572 onto the field.  The probability that the matchstick will land crossing
4573 a line turns out to be 
4574 @texline @math{2/\pi}.
4575 @infoline @expr{2/pi}.  
4576 Toss 100 matchsticks to estimate @cpi{}.  (If you want still more fun,
4577 the probability that the GCD (@w{@kbd{k g}}) of two large integers is
4578 one turns out to be 
4579 @texline @math{6/\pi^2}.
4580 @infoline @expr{6/pi^2}.
4581 That provides yet another way to estimate @cpi{}.)
4582 @xref{List Answer 12, 12}. (@bullet{})
4584 (@bullet{}) @strong{Exercise 13.}  An algebraic entry of a string in
4585 double-quote marks, @samp{"hello"}, creates a vector of the numerical
4586 (ASCII) codes of the characters (here, @expr{[104, 101, 108, 108, 111]}).
4587 Sometimes it is convenient to compute a @dfn{hash code} of a string,
4588 which is just an integer that represents the value of that string.
4589 Two equal strings have the same hash code; two different strings
4590 @dfn{probably} have different hash codes.  (For example, Calc has
4591 over 400 function names, but Emacs can quickly find the definition for
4592 any given name because it has sorted the functions into ``buckets'' by
4593 their hash codes.  Sometimes a few names will hash into the same bucket,
4594 but it is easier to search among a few names than among all the names.)
4595 One popular hash function is computed as follows:  First set @expr{h = 0}.
4596 Then, for each character from the string in turn, set @expr{h = 3h + c_i}
4597 where @expr{c_i} is the character's ASCII code.  If we have 511 buckets,
4598 we then take the hash code modulo 511 to get the bucket number.  Develop a
4599 simple command or commands for converting string vectors into hash codes.
4600 The hash code for @samp{"Testing, 1, 2, 3"} is 1960915098, which modulo
4601 511 is 121.  @xref{List Answer 13, 13}. (@bullet{})
4603 (@bullet{}) @strong{Exercise 14.}  The @kbd{H V R} and @kbd{H V U}
4604 commands do nested function evaluations.  @kbd{H V U} takes a starting
4605 value and a number of steps @var{n} from the stack; it then applies the
4606 function you give to the starting value 0, 1, 2, up to @var{n} times
4607 and returns a vector of the results.  Use this command to create a
4608 ``random walk'' of 50 steps.  Start with the two-dimensional point
4609 @expr{(0,0)}; then take one step a random distance between @mathit{-1} and 1
4610 in both @expr{x} and @expr{y}; then take another step, and so on.  Use the
4611 @kbd{g f} command to display this random walk.  Now modify your random
4612 walk to walk a unit distance, but in a random direction, at each step.
4613 (Hint:  The @code{sincos} function returns a vector of the cosine and
4614 sine of an angle.)  @xref{List Answer 14, 14}. (@bullet{})
4616 @node Types Tutorial, Algebra Tutorial, Vector/Matrix Tutorial, Tutorial
4617 @section Types Tutorial
4619 @noindent
4620 Calc understands a variety of data types as well as simple numbers.
4621 In this section, we'll experiment with each of these types in turn.
4623 The numbers we've been using so far have mainly been either @dfn{integers}
4624 or @dfn{floats}.  We saw that floats are usually a good approximation to
4625 the mathematical concept of real numbers, but they are only approximations
4626 and are susceptible to roundoff error.  Calc also supports @dfn{fractions},
4627 which can exactly represent any rational number.
4629 @smallexample
4630 @group
4631 1:  3628800    2:  3628800    1:  518400:7   1:  518414:7   1:  7:518414
4632     .          1:  49             .              .              .
4633                    .
4635     10 !           49 @key{RET}         :              2 +            &
4636 @end group
4637 @end smallexample
4639 @noindent
4640 The @kbd{:} command divides two integers to get a fraction; @kbd{/}
4641 would normally divide integers to get a floating-point result.
4642 Notice we had to type @key{RET} between the @kbd{49} and the @kbd{:}
4643 since the @kbd{:} would otherwise be interpreted as part of a
4644 fraction beginning with 49.
4646 You can convert between floating-point and fractional format using
4647 @kbd{c f} and @kbd{c F}:
4649 @smallexample
4650 @group
4651 1:  1.35027217629e-5    1:  7:518414
4652     .                       .
4654     c f                     c F
4655 @end group
4656 @end smallexample
4658 The @kbd{c F} command replaces a floating-point number with the
4659 ``simplest'' fraction whose floating-point representation is the
4660 same, to within the current precision.
4662 @smallexample
4663 @group
4664 1:  3.14159265359   1:  1146408:364913   1:  3.1416   1:  355:113
4665     .                   .                    .            .
4667     P                   c F      @key{DEL}       p 5 @key{RET} P      c F
4668 @end group
4669 @end smallexample
4671 (@bullet{}) @strong{Exercise 1.}  A calculation has produced the
4672 result 1.26508260337.  You suspect it is the square root of the
4673 product of @cpi{} and some rational number.  Is it?  (Be sure
4674 to allow for roundoff error!)  @xref{Types Answer 1, 1}. (@bullet{})
4676 @dfn{Complex numbers} can be stored in both rectangular and polar form.
4678 @smallexample
4679 @group
4680 1:  -9     1:  (0, 3)    1:  (3; 90.)   1:  (6; 90.)   1:  (2.4495; 45.)
4681     .          .             .              .              .
4683     9 n        Q             c p            2 *            Q
4684 @end group
4685 @end smallexample
4687 @noindent
4688 The square root of @mathit{-9} is by default rendered in rectangular form
4689 (@w{@expr{0 + 3i}}), but we can convert it to polar form (3 with a
4690 phase angle of 90 degrees).  All the usual arithmetic and scientific
4691 operations are defined on both types of complex numbers.
4693 Another generalized kind of number is @dfn{infinity}.  Infinity
4694 isn't really a number, but it can sometimes be treated like one.
4695 Calc uses the symbol @code{inf} to represent positive infinity,
4696 i.e., a value greater than any real number.  Naturally, you can
4697 also write @samp{-inf} for minus infinity, a value less than any
4698 real number.  The word @code{inf} can only be input using
4699 algebraic entry.
4701 @smallexample
4702 @group
4703 2:  inf        2:  -inf       2:  -inf       2:  -inf       1:  nan
4704 1:  -17        1:  -inf       1:  -inf       1:  inf            .
4705     .              .              .              .
4707 ' inf @key{RET} 17 n     *  @key{RET}         72 +           A              +
4708 @end group
4709 @end smallexample
4711 @noindent
4712 Since infinity is infinitely large, multiplying it by any finite
4713 number (like @mathit{-17}) has no effect, except that since @mathit{-17}
4714 is negative, it changes a plus infinity to a minus infinity.
4715 (``A huge positive number, multiplied by @mathit{-17}, yields a huge
4716 negative number.'')  Adding any finite number to infinity also
4717 leaves it unchanged.  Taking an absolute value gives us plus
4718 infinity again.  Finally, we add this plus infinity to the minus
4719 infinity we had earlier.  If you work it out, you might expect
4720 the answer to be @mathit{-72} for this.  But the 72 has been completely
4721 lost next to the infinities; by the time we compute @w{@samp{inf - inf}}
4722 the finite difference between them, if any, is undetectable.
4723 So we say the result is @dfn{indeterminate}, which Calc writes
4724 with the symbol @code{nan} (for Not A Number).
4726 Dividing by zero is normally treated as an error, but you can get
4727 Calc to write an answer in terms of infinity by pressing @kbd{m i}
4728 to turn on Infinite mode.
4730 @smallexample
4731 @group
4732 3:  nan        2:  nan        2:  nan        2:  nan        1:  nan
4733 2:  1          1:  1 / 0      1:  uinf       1:  uinf           .
4734 1:  0              .              .              .
4735     .
4737   1 @key{RET} 0          /       m i    U /            17 n *         +
4738 @end group
4739 @end smallexample
4741 @noindent
4742 Dividing by zero normally is left unevaluated, but after @kbd{m i}
4743 it instead gives an infinite result.  The answer is actually
4744 @code{uinf}, ``undirected infinity.''  If you look at a graph of
4745 @expr{1 / x} around @w{@expr{x = 0}}, you'll see that it goes toward
4746 plus infinity as you approach zero from above, but toward minus
4747 infinity as you approach from below.  Since we said only @expr{1 / 0},
4748 Calc knows that the answer is infinite but not in which direction.
4749 That's what @code{uinf} means.  Notice that multiplying @code{uinf}
4750 by a negative number still leaves plain @code{uinf}; there's no
4751 point in saying @samp{-uinf} because the sign of @code{uinf} is
4752 unknown anyway.  Finally, we add @code{uinf} to our @code{nan},
4753 yielding @code{nan} again.  It's easy to see that, because
4754 @code{nan} means ``totally unknown'' while @code{uinf} means
4755 ``unknown sign but known to be infinite,'' the more mysterious
4756 @code{nan} wins out when it is combined with @code{uinf}, or, for
4757 that matter, with anything else.
4759 (@bullet{}) @strong{Exercise 2.}  Predict what Calc will answer
4760 for each of these formulas:  @samp{inf / inf}, @samp{exp(inf)},
4761 @samp{exp(-inf)}, @samp{sqrt(-inf)}, @samp{sqrt(uinf)},
4762 @samp{abs(uinf)}, @samp{ln(0)}.
4763 @xref{Types Answer 2, 2}. (@bullet{})
4765 (@bullet{}) @strong{Exercise 3.}  We saw that @samp{inf - inf = nan},
4766 which stands for an unknown value.  Can @code{nan} stand for
4767 a complex number?  Can it stand for infinity?
4768 @xref{Types Answer 3, 3}. (@bullet{})
4770 @dfn{HMS forms} represent a value in terms of hours, minutes, and
4771 seconds.
4773 @smallexample
4774 @group
4775 1:  2@@ 30' 0"     1:  3@@ 30' 0"     2:  3@@ 30' 0"     1:  2.
4776     .                 .             1:  1@@ 45' 0."        .
4777                                         .
4779   2@@ 30' @key{RET}          1 +               @key{RET} 2 /           /
4780 @end group
4781 @end smallexample
4783 HMS forms can also be used to hold angles in degrees, minutes, and
4784 seconds.
4786 @smallexample
4787 @group
4788 1:  0.5        1:  26.56505   1:  26@@ 33' 54.18"    1:  0.44721
4789     .              .              .                     .
4791     0.5            I T            c h                   S
4792 @end group
4793 @end smallexample
4795 @noindent
4796 First we convert the inverse tangent of 0.5 to degrees-minutes-seconds
4797 form, then we take the sine of that angle.  Note that the trigonometric
4798 functions will accept HMS forms directly as input.
4800 @cindex Beatles
4801 (@bullet{}) @strong{Exercise 4.}  The Beatles' @emph{Abbey Road} is
4802 47 minutes and 26 seconds long, and contains 17 songs.  What is the
4803 average length of a song on @emph{Abbey Road}?  If the Extended Disco
4804 Version of @emph{Abbey Road} added 20 seconds to the length of each
4805 song, how long would the album be?  @xref{Types Answer 4, 4}. (@bullet{})
4807 A @dfn{date form} represents a date, or a date and time.  Dates must
4808 be entered using algebraic entry.  Date forms are surrounded by
4809 @samp{< >} symbols; most standard formats for dates are recognized.
4811 @smallexample
4812 @group
4813 2:  <Sun Jan 13, 1991>                    1:  2.25
4814 1:  <6:00pm Thu Jan 10, 1991>                 .
4815     .
4817 ' <13 Jan 1991>, <1/10/91, 6pm> @key{RET}           -
4818 @end group
4819 @end smallexample
4821 @noindent
4822 In this example, we enter two dates, then subtract to find the
4823 number of days between them.  It is also possible to add an
4824 HMS form or a number (of days) to a date form to get another
4825 date form.
4827 @smallexample
4828 @group
4829 1:  <4:45:59pm Mon Jan 14, 1991>     1:  <2:50:59am Thu Jan 17, 1991>
4830     .                                    .
4832     t N                                  2 + 10@@ 5' +
4833 @end group
4834 @end smallexample
4836 @c [fix-ref Date Arithmetic]
4837 @noindent
4838 The @kbd{t N} (``now'') command pushes the current date and time on the
4839 stack; then we add two days, ten hours and five minutes to the date and
4840 time.  Other date-and-time related commands include @kbd{t J}, which
4841 does Julian day conversions, @kbd{t W}, which finds the beginning of
4842 the week in which a date form lies, and @kbd{t I}, which increments a
4843 date by one or several months.  @xref{Date Arithmetic}, for more.
4845 (@bullet{}) @strong{Exercise 5.}  How many days until the next
4846 Friday the 13th?  @xref{Types Answer 5, 5}. (@bullet{})
4848 (@bullet{}) @strong{Exercise 6.}  How many leap years will there be
4849 between now and the year 10001 A.D.?  @xref{Types Answer 6, 6}. (@bullet{})
4851 @cindex Slope and angle of a line
4852 @cindex Angle and slope of a line
4853 An @dfn{error form} represents a mean value with an attached standard
4854 deviation, or error estimate.  Suppose our measurements indicate that
4855 a certain telephone pole is about 30 meters away, with an estimated
4856 error of 1 meter, and 8 meters tall, with an estimated error of 0.2
4857 meters.  What is the slope of a line from here to the top of the
4858 pole, and what is the equivalent angle in degrees?
4860 @smallexample
4861 @group
4862 1:  8 +/- 0.2    2:  8 +/- 0.2   1:  0.266 +/- 0.011   1:  14.93 +/- 0.594
4863     .            1:  30 +/- 1        .                     .
4864                      .
4866     8 p .2 @key{RET}       30 p 1          /                     I T
4867 @end group
4868 @end smallexample
4870 @noindent
4871 This means that the angle is about 15 degrees, and, assuming our
4872 original error estimates were valid standard deviations, there is about
4873 a 60% chance that the result is correct within 0.59 degrees.
4875 @cindex Torus, volume of
4876 (@bullet{}) @strong{Exercise 7.}  The volume of a torus (a donut shape) is
4877 @texline @math{2 \pi^2 R r^2}
4878 @infoline @w{@expr{2 pi^2 R r^2}} 
4879 where @expr{R} is the radius of the circle that
4880 defines the center of the tube and @expr{r} is the radius of the tube
4881 itself.  Suppose @expr{R} is 20 cm and @expr{r} is 4 cm, each known to
4882 within 5 percent.  What is the volume and the relative uncertainty of
4883 the volume?  @xref{Types Answer 7, 7}. (@bullet{})
4885 An @dfn{interval form} represents a range of values.  While an
4886 error form is best for making statistical estimates, intervals give
4887 you exact bounds on an answer.  Suppose we additionally know that
4888 our telephone pole is definitely between 28 and 31 meters away,
4889 and that it is between 7.7 and 8.1 meters tall.
4891 @smallexample
4892 @group
4893 1:  [7.7 .. 8.1]  2:  [7.7 .. 8.1]  1:  [0.24 .. 0.28]  1:  [13.9 .. 16.1]
4894     .             1:  [28 .. 31]        .                   .
4895                       .
4897   [ 7.7 .. 8.1 ]    [ 28 .. 31 ]        /                   I T
4898 @end group
4899 @end smallexample
4901 @noindent
4902 If our bounds were correct, then the angle to the top of the pole
4903 is sure to lie in the range shown.
4905 The square brackets around these intervals indicate that the endpoints
4906 themselves are allowable values.  In other words, the distance to the
4907 telephone pole is between 28 and 31, @emph{inclusive}.  You can also
4908 make an interval that is exclusive of its endpoints by writing
4909 parentheses instead of square brackets.  You can even make an interval
4910 which is inclusive (``closed'') on one end and exclusive (``open'') on
4911 the other.
4913 @smallexample
4914 @group
4915 1:  [1 .. 10)    1:  (0.1 .. 1]   2:  (0.1 .. 1]   1:  (0.2 .. 3)
4916     .                .            1:  [2 .. 3)         .
4917                                       .
4919   [ 1 .. 10 )        &              [ 2 .. 3 )         *
4920 @end group
4921 @end smallexample
4923 @noindent
4924 The Calculator automatically keeps track of which end values should
4925 be open and which should be closed.  You can also make infinite or
4926 semi-infinite intervals by using @samp{-inf} or @samp{inf} for one
4927 or both endpoints.
4929 (@bullet{}) @strong{Exercise 8.}  What answer would you expect from
4930 @samp{@w{1 /} @w{(0 .. 10)}}?  What about @samp{@w{1 /} @w{(-10 .. 0)}}?  What
4931 about @samp{@w{1 /} @w{[0 .. 10]}} (where the interval actually includes
4932 zero)?  What about @samp{@w{1 /} @w{(-10 .. 10)}}?
4933 @xref{Types Answer 8, 8}. (@bullet{})
4935 (@bullet{}) @strong{Exercise 9.}  Two easy ways of squaring a number
4936 are @kbd{@key{RET} *} and @w{@kbd{2 ^}}.  Normally these produce the same
4937 answer.  Would you expect this still to hold true for interval forms?
4938 If not, which of these will result in a larger interval?
4939 @xref{Types Answer 9, 9}. (@bullet{})
4941 A @dfn{modulo form} is used for performing arithmetic modulo @var{m}.
4942 For example, arithmetic involving time is generally done modulo 12
4943 or 24 hours.
4945 @smallexample
4946 @group
4947 1:  17 mod 24    1:  3 mod 24     1:  21 mod 24    1:  9 mod 24
4948     .                .                .                .
4950     17 M 24 @key{RET}      10 +             n                5 /
4951 @end group
4952 @end smallexample
4954 @noindent
4955 In this last step, Calc has divided by 5 modulo 24; i.e., it has found a
4956 new number which, when multiplied by 5 modulo 24, produces the original
4957 number, 21.  If @var{m} is prime and the divisor is not a multiple of
4958 @var{m}, it is always possible to find such a number.  For non-prime
4959 @var{m} like 24, it is only sometimes possible. 
4961 @smallexample
4962 @group
4963 1:  10 mod 24    1:  16 mod 24    1:  1000000...   1:  16
4964     .                .                .                .
4966     10 M 24 @key{RET}      100 ^            10 @key{RET} 100 ^     24 %
4967 @end group
4968 @end smallexample
4970 @noindent
4971 These two calculations get the same answer, but the first one is
4972 much more efficient because it avoids the huge intermediate value
4973 that arises in the second one.
4975 @cindex Fermat, primality test of
4976 (@bullet{}) @strong{Exercise 10.}  A theorem of Pierre de Fermat
4977 says that 
4978 @texline @w{@math{x^{n-1} \bmod n = 1}}
4979 @infoline @expr{x^(n-1) mod n = 1}
4980 if @expr{n} is a prime number and @expr{x} is an integer less than
4981 @expr{n}.  If @expr{n} is @emph{not} a prime number, this will
4982 @emph{not} be true for most values of @expr{x}.  Thus we can test
4983 informally if a number is prime by trying this formula for several
4984 values of @expr{x}.  Use this test to tell whether the following numbers
4985 are prime: 811749613, 15485863.  @xref{Types Answer 10, 10}. (@bullet{})
4987 It is possible to use HMS forms as parts of error forms, intervals,
4988 modulo forms, or as the phase part of a polar complex number.
4989 For example, the @code{calc-time} command pushes the current time
4990 of day on the stack as an HMS/modulo form.
4992 @smallexample
4993 @group
4994 1:  17@@ 34' 45" mod 24@@ 0' 0"     1:  6@@ 22' 15" mod 24@@ 0' 0"
4995     .                                 .
4997     x time @key{RET}                        n
4998 @end group
4999 @end smallexample
5001 @noindent
5002 This calculation tells me it is six hours and 22 minutes until midnight.
5004 (@bullet{}) @strong{Exercise 11.}  A rule of thumb is that one year
5005 is about 
5006 @texline @math{\pi \times 10^7}
5007 @infoline @w{@expr{pi * 10^7}} 
5008 seconds.  What time will it be that many seconds from right now?
5009 @xref{Types Answer 11, 11}. (@bullet{})
5011 (@bullet{}) @strong{Exercise 12.}  You are preparing to order packaging
5012 for the CD release of the Extended Disco Version of @emph{Abbey Road}.
5013 You are told that the songs will actually be anywhere from 20 to 60
5014 seconds longer than the originals.  One CD can hold about 75 minutes
5015 of music.  Should you order single or double packages?
5016 @xref{Types Answer 12, 12}. (@bullet{})
5018 Another kind of data the Calculator can manipulate is numbers with
5019 @dfn{units}.  This isn't strictly a new data type; it's simply an
5020 application of algebraic expressions, where we use variables with
5021 suggestive names like @samp{cm} and @samp{in} to represent units
5022 like centimeters and inches.
5024 @smallexample
5025 @group
5026 1:  2 in        1:  5.08 cm      1:  0.027778 fath   1:  0.0508 m
5027     .               .                .                   .
5029     ' 2in @key{RET}       u c cm @key{RET}       u c fath @key{RET}        u b
5030 @end group
5031 @end smallexample
5033 @noindent
5034 We enter the quantity ``2 inches'' (actually an algebraic expression
5035 which means two times the variable @samp{in}), then we convert it
5036 first to centimeters, then to fathoms, then finally to ``base'' units,
5037 which in this case means meters.
5039 @smallexample
5040 @group
5041 1:  9 acre     1:  3 sqrt(acre)   1:  190.84 m   1:  190.84 m + 30 cm
5042     .              .                  .              .
5044  ' 9 acre @key{RET}      Q                  u s            ' $+30 cm @key{RET}
5046 @end group
5047 @end smallexample
5048 @noindent
5049 @smallexample
5050 @group
5051 1:  191.14 m     1:  36536.3046 m^2    1:  365363046 cm^2
5052     .                .                     .
5054     u s              2 ^                   u c cgs
5055 @end group
5056 @end smallexample
5058 @noindent
5059 Since units expressions are really just formulas, taking the square
5060 root of @samp{acre} is undefined.  After all, @code{acre} might be an
5061 algebraic variable that you will someday assign a value.  We use the
5062 ``units-simplify'' command to simplify the expression with variables
5063 being interpreted as unit names.
5065 In the final step, we have converted not to a particular unit, but to a
5066 units system.  The ``cgs'' system uses centimeters instead of meters
5067 as its standard unit of length.
5069 There is a wide variety of units defined in the Calculator.
5071 @smallexample
5072 @group
5073 1:  55 mph     1:  88.5139 kph   1:   88.5139 km / hr   1:  8.201407e-8 c
5074     .              .                  .                     .
5076  ' 55 mph @key{RET}      u c kph @key{RET}        u c km/hr @key{RET}         u c c @key{RET}
5077 @end group
5078 @end smallexample
5080 @noindent
5081 We express a speed first in miles per hour, then in kilometers per
5082 hour, then again using a slightly more explicit notation, then
5083 finally in terms of fractions of the speed of light.
5085 Temperature conversions are a bit more tricky.  There are two ways to
5086 interpret ``20 degrees Fahrenheit''---it could mean an actual
5087 temperature, or it could mean a change in temperature.  For normal
5088 units there is no difference, but temperature units have an offset
5089 as well as a scale factor and so there must be two explicit commands
5090 for them.
5092 @smallexample
5093 @group
5094 1:  20 degF       1:  11.1111 degC     1:  -20:3 degC    1:  -6.666 degC
5095     .                 .                    .                 .
5097   ' 20 degF @key{RET}       u c degC @key{RET}         U u t degC @key{RET}    c f
5098 @end group
5099 @end smallexample
5101 @noindent
5102 First we convert a change of 20 degrees Fahrenheit into an equivalent
5103 change in degrees Celsius (or Centigrade).  Then, we convert the
5104 absolute temperature 20 degrees Fahrenheit into Celsius.  Since
5105 this comes out as an exact fraction, we then convert to floating-point
5106 for easier comparison with the other result.
5108 For simple unit conversions, you can put a plain number on the stack.
5109 Then @kbd{u c} and @kbd{u t} will prompt for both old and new units.
5110 When you use this method, you're responsible for remembering which
5111 numbers are in which units:
5113 @smallexample
5114 @group
5115 1:  55         1:  88.5139              1:  8.201407e-8
5116     .              .                        .
5118     55             u c mph @key{RET} kph @key{RET}      u c km/hr @key{RET} c @key{RET}
5119 @end group
5120 @end smallexample
5122 To see a complete list of built-in units, type @kbd{u v}.  Press
5123 @w{@kbd{M-# c}} again to re-enter the Calculator when you're done looking
5124 at the units table.
5126 (@bullet{}) @strong{Exercise 13.}  How many seconds are there really
5127 in a year?  @xref{Types Answer 13, 13}. (@bullet{})
5129 @cindex Speed of light
5130 (@bullet{}) @strong{Exercise 14.}  Supercomputer designs are limited by
5131 the speed of light (and of electricity, which is nearly as fast).
5132 Suppose a computer has a 4.1 ns (nanosecond) clock cycle, and its
5133 cabinet is one meter across.  Is speed of light going to be a
5134 significant factor in its design?  @xref{Types Answer 14, 14}. (@bullet{})
5136 (@bullet{}) @strong{Exercise 15.}  Sam the Slug normally travels about
5137 five yards in an hour.  He has obtained a supply of Power Pills; each
5138 Power Pill he eats doubles his speed.  How many Power Pills can he
5139 swallow and still travel legally on most US highways?
5140 @xref{Types Answer 15, 15}. (@bullet{})
5142 @node Algebra Tutorial, Programming Tutorial, Types Tutorial, Tutorial
5143 @section Algebra and Calculus Tutorial
5145 @noindent
5146 This section shows how to use Calc's algebra facilities to solve
5147 equations, do simple calculus problems, and manipulate algebraic
5148 formulas.
5150 @menu
5151 * Basic Algebra Tutorial::
5152 * Rewrites Tutorial::
5153 @end menu
5155 @node Basic Algebra Tutorial, Rewrites Tutorial, Algebra Tutorial, Algebra Tutorial
5156 @subsection Basic Algebra
5158 @noindent
5159 If you enter a formula in Algebraic mode that refers to variables,
5160 the formula itself is pushed onto the stack.  You can manipulate
5161 formulas as regular data objects.
5163 @smallexample
5164 @group
5165 1:  2 x^2 - 6       1:  6 - 2 x^2       1:  (6 - 2 x^2) (3 x^2 + y)
5166     .                   .                   .
5168     ' 2x^2-6 @key{RET}        n                   ' 3x^2+y @key{RET} *
5169 @end group
5170 @end smallexample
5172 (@bullet{}) @strong{Exercise 1.}  Do @kbd{' x @key{RET} Q 2 ^} and
5173 @kbd{' x @key{RET} 2 ^ Q} both wind up with the same result (@samp{x})?
5174 Why or why not?  @xref{Algebra Answer 1, 1}. (@bullet{})
5176 There are also commands for doing common algebraic operations on
5177 formulas.  Continuing with the formula from the last example,
5179 @smallexample
5180 @group
5181 1:  18 x^2 + 6 y - 6 x^4 - 2 x^2 y    1:  (18 - 2 y) x^2 - 6 x^4 + 6 y
5182     .                                     .
5184     a x                                   a c x @key{RET}
5185 @end group
5186 @end smallexample
5188 @noindent
5189 First we ``expand'' using the distributive law, then we ``collect''
5190 terms involving like powers of @expr{x}.
5192 Let's find the value of this expression when @expr{x} is 2 and @expr{y}
5193 is one-half.
5195 @smallexample
5196 @group
5197 1:  17 x^2 - 6 x^4 + 3      1:  -25
5198     .                           .
5200     1:2 s l y @key{RET}               2 s l x @key{RET}
5201 @end group
5202 @end smallexample
5204 @noindent
5205 The @kbd{s l} command means ``let''; it takes a number from the top of
5206 the stack and temporarily assigns it as the value of the variable
5207 you specify.  It then evaluates (as if by the @kbd{=} key) the
5208 next expression on the stack.  After this command, the variable goes
5209 back to its original value, if any.
5211 (An earlier exercise in this tutorial involved storing a value in the
5212 variable @code{x}; if this value is still there, you will have to
5213 unstore it with @kbd{s u x @key{RET}} before the above example will work
5214 properly.)
5216 @cindex Maximum of a function using Calculus
5217 Let's find the maximum value of our original expression when @expr{y}
5218 is one-half and @expr{x} ranges over all possible values.  We can
5219 do this by taking the derivative with respect to @expr{x} and examining
5220 values of @expr{x} for which the derivative is zero.  If the second
5221 derivative of the function at that value of @expr{x} is negative,
5222 the function has a local maximum there.
5224 @smallexample
5225 @group
5226 1:  17 x^2 - 6 x^4 + 3      1:  34 x - 24 x^3
5227     .                           .
5229     U @key{DEL}  s 1                  a d x @key{RET}   s 2
5230 @end group
5231 @end smallexample
5233 @noindent
5234 Well, the derivative is clearly zero when @expr{x} is zero.  To find
5235 the other root(s), let's divide through by @expr{x} and then solve:
5237 @smallexample
5238 @group
5239 1:  (34 x - 24 x^3) / x    1:  34 x / x - 24 x^3 / x    1:  34 - 24 x^2
5240     .                          .                            .
5242     ' x @key{RET} /                  a x                          a s
5244 @end group
5245 @end smallexample
5246 @noindent
5247 @smallexample
5248 @group
5249 1:  34 - 24 x^2 = 0        1:  x = 1.19023
5250     .                          .
5252     0 a =  s 3                 a S x @key{RET}
5253 @end group
5254 @end smallexample
5256 @noindent
5257 Notice the use of @kbd{a s} to ``simplify'' the formula.  When the
5258 default algebraic simplifications don't do enough, you can use
5259 @kbd{a s} to tell Calc to spend more time on the job.
5261 Now we compute the second derivative and plug in our values of @expr{x}:
5263 @smallexample
5264 @group
5265 1:  1.19023        2:  1.19023         2:  1.19023
5266     .              1:  34 x - 24 x^3   1:  34 - 72 x^2
5267                        .                   .
5269     a .                r 2                 a d x @key{RET} s 4
5270 @end group
5271 @end smallexample
5273 @noindent
5274 (The @kbd{a .} command extracts just the righthand side of an equation.
5275 Another method would have been to use @kbd{v u} to unpack the equation
5276 @w{@samp{x = 1.19}} to @samp{x} and @samp{1.19}, then use @kbd{M-- M-2 @key{DEL}}
5277 to delete the @samp{x}.)
5279 @smallexample
5280 @group
5281 2:  34 - 72 x^2   1:  -68.         2:  34 - 72 x^2     1:  34
5282 1:  1.19023           .            1:  0                   .
5283     .                                  .
5285     @key{TAB}               s l x @key{RET}        U @key{DEL} 0             s l x @key{RET}
5286 @end group
5287 @end smallexample
5289 @noindent
5290 The first of these second derivatives is negative, so we know the function
5291 has a maximum value at @expr{x = 1.19023}.  (The function also has a
5292 local @emph{minimum} at @expr{x = 0}.)
5294 When we solved for @expr{x}, we got only one value even though
5295 @expr{34 - 24 x^2 = 0} is a quadratic equation that ought to have
5296 two solutions.  The reason is that @w{@kbd{a S}} normally returns a
5297 single ``principal'' solution.  If it needs to come up with an
5298 arbitrary sign (as occurs in the quadratic formula) it picks @expr{+}.
5299 If it needs an arbitrary integer, it picks zero.  We can get a full
5300 solution by pressing @kbd{H} (the Hyperbolic flag) before @kbd{a S}.
5302 @smallexample
5303 @group
5304 1:  34 - 24 x^2 = 0    1:  x = 1.19023 s1      1:  x = -1.19023
5305     .                      .                       .
5307     r 3                    H a S x @key{RET}  s 5        1 n  s l s1 @key{RET}
5308 @end group
5309 @end smallexample
5311 @noindent
5312 Calc has invented the variable @samp{s1} to represent an unknown sign;
5313 it is supposed to be either @mathit{+1} or @mathit{-1}.  Here we have used
5314 the ``let'' command to evaluate the expression when the sign is negative.
5315 If we plugged this into our second derivative we would get the same,
5316 negative, answer, so @expr{x = -1.19023} is also a maximum.
5318 To find the actual maximum value, we must plug our two values of @expr{x}
5319 into the original formula.
5321 @smallexample
5322 @group
5323 2:  17 x^2 - 6 x^4 + 3    1:  24.08333 s1^2 - 12.04166 s1^4 + 3
5324 1:  x = 1.19023 s1            .
5325     .
5327     r 1 r 5                   s l @key{RET}
5328 @end group
5329 @end smallexample
5331 @noindent
5332 (Here we see another way to use @kbd{s l}; if its input is an equation
5333 with a variable on the lefthand side, then @kbd{s l} treats the equation
5334 like an assignment to that variable if you don't give a variable name.)
5336 It's clear that this will have the same value for either sign of
5337 @code{s1}, but let's work it out anyway, just for the exercise:
5339 @smallexample
5340 @group
5341 2:  [-1, 1]              1:  [15.04166, 15.04166]
5342 1:  24.08333 s1^2 ...        .
5343     .
5345   [ 1 n , 1 ] @key{TAB}            V M $ @key{RET}
5346 @end group
5347 @end smallexample
5349 @noindent
5350 Here we have used a vector mapping operation to evaluate the function
5351 at several values of @samp{s1} at once.  @kbd{V M $} is like @kbd{V M '}
5352 except that it takes the formula from the top of the stack.  The
5353 formula is interpreted as a function to apply across the vector at the
5354 next-to-top stack level.  Since a formula on the stack can't contain
5355 @samp{$} signs, Calc assumes the variables in the formula stand for
5356 different arguments.  It prompts you for an @dfn{argument list}, giving
5357 the list of all variables in the formula in alphabetical order as the
5358 default list.  In this case the default is @samp{(s1)}, which is just
5359 what we want so we simply press @key{RET} at the prompt.
5361 If there had been several different values, we could have used
5362 @w{@kbd{V R X}} to find the global maximum.
5364 Calc has a built-in @kbd{a P} command that solves an equation using
5365 @w{@kbd{H a S}} and returns a vector of all the solutions.  It simply
5366 automates the job we just did by hand.  Applied to our original
5367 cubic polynomial, it would produce the vector of solutions
5368 @expr{[1.19023, -1.19023, 0]}.  (There is also an @kbd{a X} command
5369 which finds a local maximum of a function.  It uses a numerical search
5370 method rather than examining the derivatives, and thus requires you
5371 to provide some kind of initial guess to show it where to look.)
5373 (@bullet{}) @strong{Exercise 2.}  Given a vector of the roots of a
5374 polynomial (such as the output of an @kbd{a P} command), what
5375 sequence of commands would you use to reconstruct the original
5376 polynomial?  (The answer will be unique to within a constant
5377 multiple; choose the solution where the leading coefficient is one.)
5378 @xref{Algebra Answer 2, 2}. (@bullet{})
5380 The @kbd{m s} command enables Symbolic mode, in which formulas
5381 like @samp{sqrt(5)} that can't be evaluated exactly are left in
5382 symbolic form rather than giving a floating-point approximate answer.
5383 Fraction mode (@kbd{m f}) is also useful when doing algebra.
5385 @smallexample
5386 @group
5387 2:  34 x - 24 x^3        2:  34 x - 24 x^3
5388 1:  34 x - 24 x^3        1:  [sqrt(51) / 6, sqrt(51) / -6, 0]
5389     .                        .
5391     r 2  @key{RET}     m s  m f    a P x @key{RET}
5392 @end group
5393 @end smallexample
5395 One more mode that makes reading formulas easier is Big mode.
5397 @smallexample
5398 @group
5399                3
5400 2:  34 x - 24 x
5402       ____   ____
5403      V 51   V 51
5404 1:  [-----, -----, 0]
5405        6     -6
5407     .
5409     d B
5410 @end group
5411 @end smallexample
5413 Here things like powers, square roots, and quotients and fractions
5414 are displayed in a two-dimensional pictorial form.  Calc has other
5415 language modes as well, such as C mode, FORTRAN mode, @TeX{} mode
5416 and La@TeX{} mode.
5418 @smallexample
5419 @group
5420 2:  34*x - 24*pow(x, 3)               2:  34*x - 24*x**3
5421 1:  @{sqrt(51) / 6, sqrt(51) / -6, 0@}  1:  /sqrt(51) / 6, sqrt(51) / -6, 0/
5422     .                                     .
5424     d C                                   d F
5426 @end group
5427 @end smallexample
5428 @noindent
5429 @smallexample
5430 @group
5431 3:  34 x - 24 x^3
5432 2:  [@{\sqrt@{51@} \over 6@}, @{\sqrt@{51@} \over -6@}, 0]
5433 1:  @{2 \over 3@} \sqrt@{5@}
5434     .
5436     d T   ' 2 \sqrt@{5@} \over 3 @key{RET}
5437 @end group
5438 @end smallexample
5440 @noindent
5441 As you can see, language modes affect both entry and display of
5442 formulas.  They affect such things as the names used for built-in
5443 functions, the set of arithmetic operators and their precedences,
5444 and notations for vectors and matrices.
5446 Notice that @samp{sqrt(51)} may cause problems with older
5447 implementations of C and FORTRAN, which would require something more
5448 like @samp{sqrt(51.0)}.  It is always wise to check over the formulas
5449 produced by the various language modes to make sure they are fully
5450 correct.
5452 Type @kbd{m s}, @kbd{m f}, and @kbd{d N} to reset these modes.  (You
5453 may prefer to remain in Big mode, but all the examples in the tutorial
5454 are shown in normal mode.)
5456 @cindex Area under a curve
5457 What is the area under the portion of this curve from @expr{x = 1} to @expr{2}?
5458 This is simply the integral of the function:
5460 @smallexample
5461 @group
5462 1:  17 x^2 - 6 x^4 + 3     1:  5.6666 x^3 - 1.2 x^5 + 3 x
5463     .                          .
5465     r 1                        a i x
5466 @end group
5467 @end smallexample
5469 @noindent
5470 We want to evaluate this at our two values for @expr{x} and subtract.
5471 One way to do it is again with vector mapping and reduction:
5473 @smallexample
5474 @group
5475 2:  [2, 1]            1:  [12.93333, 7.46666]    1:  5.46666
5476 1:  5.6666 x^3 ...        .                          .
5478    [ 2 , 1 ] @key{TAB}          V M $ @key{RET}                  V R -
5479 @end group
5480 @end smallexample
5482 (@bullet{}) @strong{Exercise 3.}  Find the integral from 1 to @expr{y}
5483 of 
5484 @texline @math{x \sin \pi x}
5485 @infoline @w{@expr{x sin(pi x)}} 
5486 (where the sine is calculated in radians).  Find the values of the
5487 integral for integers @expr{y} from 1 to 5.  @xref{Algebra Answer 3,
5488 3}. (@bullet{})
5490 Calc's integrator can do many simple integrals symbolically, but many
5491 others are beyond its capabilities.  Suppose we wish to find the area
5492 under the curve 
5493 @texline @math{\sin x \ln x}
5494 @infoline @expr{sin(x) ln(x)} 
5495 over the same range of @expr{x}.  If you entered this formula and typed
5496 @kbd{a i x @key{RET}} (don't bother to try this), Calc would work for a
5497 long time but would be unable to find a solution.  In fact, there is no
5498 closed-form solution to this integral.  Now what do we do?
5500 @cindex Integration, numerical
5501 @cindex Numerical integration
5502 One approach would be to do the integral numerically.  It is not hard
5503 to do this by hand using vector mapping and reduction.  It is rather
5504 slow, though, since the sine and logarithm functions take a long time.
5505 We can save some time by reducing the working precision.
5507 @smallexample
5508 @group
5509 3:  10                  1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9]
5510 2:  1                       .
5511 1:  0.1
5512     .
5514  10 @key{RET} 1 @key{RET} .1 @key{RET}        C-u v x
5515 @end group
5516 @end smallexample
5518 @noindent
5519 (Note that we have used the extended version of @kbd{v x}; we could
5520 also have used plain @kbd{v x} as follows:  @kbd{v x 10 @key{RET} 9 + .1 *}.)
5522 @smallexample
5523 @group
5524 2:  [1, 1.1, ... ]              1:  [0., 0.084941, 0.16993, ... ]
5525 1:  sin(x) ln(x)                    .
5526     .
5528     ' sin(x) ln(x) @key{RET}  s 1    m r  p 5 @key{RET}   V M $ @key{RET}
5530 @end group
5531 @end smallexample
5532 @noindent
5533 @smallexample
5534 @group
5535 1:  3.4195     0.34195
5536     .          .
5538     V R +      0.1 *
5539 @end group
5540 @end smallexample
5542 @noindent
5543 (If you got wildly different results, did you remember to switch
5544 to Radians mode?)
5546 Here we have divided the curve into ten segments of equal width;
5547 approximating these segments as rectangular boxes (i.e., assuming
5548 the curve is nearly flat at that resolution), we compute the areas
5549 of the boxes (height times width), then sum the areas.  (It is
5550 faster to sum first, then multiply by the width, since the width
5551 is the same for every box.)
5553 The true value of this integral turns out to be about 0.374, so
5554 we're not doing too well.  Let's try another approach.
5556 @smallexample
5557 @group
5558 1:  sin(x) ln(x)    1:  0.84147 x - 0.84147 + 0.11957 (x - 1)^2 - ...
5559     .                   .
5561     r 1                 a t x=1 @key{RET} 4 @key{RET}
5562 @end group
5563 @end smallexample
5565 @noindent
5566 Here we have computed the Taylor series expansion of the function
5567 about the point @expr{x=1}.  We can now integrate this polynomial
5568 approximation, since polynomials are easy to integrate.
5570 @smallexample
5571 @group
5572 1:  0.42074 x^2 + ...    1:  [-0.0446, -0.42073]      1:  0.3761
5573     .                        .                            .
5575     a i x @key{RET}            [ 2 , 1 ] @key{TAB}  V M $ @key{RET}         V R -
5576 @end group
5577 @end smallexample
5579 @noindent
5580 Better!  By increasing the precision and/or asking for more terms
5581 in the Taylor series, we can get a result as accurate as we like.
5582 (Taylor series converge better away from singularities in the
5583 function such as the one at @code{ln(0)}, so it would also help to
5584 expand the series about the points @expr{x=2} or @expr{x=1.5} instead
5585 of @expr{x=1}.)
5587 @cindex Simpson's rule
5588 @cindex Integration by Simpson's rule
5589 (@bullet{}) @strong{Exercise 4.}  Our first method approximated the
5590 curve by stairsteps of width 0.1; the total area was then the sum
5591 of the areas of the rectangles under these stairsteps.  Our second
5592 method approximated the function by a polynomial, which turned out
5593 to be a better approximation than stairsteps.  A third method is
5594 @dfn{Simpson's rule}, which is like the stairstep method except
5595 that the steps are not required to be flat.  Simpson's rule boils
5596 down to the formula,
5598 @ifinfo
5599 @example
5600 (h/3) * (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + ...
5601               + 2 f(a+(n-2)*h) + 4 f(a+(n-1)*h) + f(a+n*h))
5602 @end example
5603 @end ifinfo
5604 @tex
5605 \turnoffactive
5606 \beforedisplay
5607 $$ \displaylines{
5608       \qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots
5609    \hfill \cr \hfill    {} + 2 f(a+(n-2)h) + 4 f(a+(n-1)h) + f(a+n h)) \qquad
5610 } $$
5611 \afterdisplay
5612 @end tex
5614 @noindent
5615 where @expr{n} (which must be even) is the number of slices and @expr{h}
5616 is the width of each slice.  These are 10 and 0.1 in our example.
5617 For reference, here is the corresponding formula for the stairstep
5618 method:
5620 @ifinfo
5621 @example
5622 h * (f(a) + f(a+h) + f(a+2h) + f(a+3h) + ...
5623           + f(a+(n-2)*h) + f(a+(n-1)*h))
5624 @end example
5625 @end ifinfo
5626 @tex
5627 \turnoffactive
5628 \beforedisplay
5629 $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots
5630            + f(a+(n-2)h) + f(a+(n-1)h)) $$
5631 \afterdisplay
5632 @end tex
5634 Compute the integral from 1 to 2 of 
5635 @texline @math{\sin x \ln x}
5636 @infoline @expr{sin(x) ln(x)} 
5637 using Simpson's rule with 10 slices.  
5638 @xref{Algebra Answer 4, 4}. (@bullet{})
5640 Calc has a built-in @kbd{a I} command for doing numerical integration.
5641 It uses @dfn{Romberg's method}, which is a more sophisticated cousin
5642 of Simpson's rule.  In particular, it knows how to keep refining the
5643 result until the current precision is satisfied.
5645 @c [fix-ref Selecting Sub-Formulas]
5646 Aside from the commands we've seen so far, Calc also provides a
5647 large set of commands for operating on parts of formulas.  You
5648 indicate the desired sub-formula by placing the cursor on any part
5649 of the formula before giving a @dfn{selection} command.  Selections won't
5650 be covered in the tutorial; @pxref{Selecting Subformulas}, for
5651 details and examples.
5653 @c hard exercise: simplify (2^(n r) - 2^(r*(n - 1))) / (2^r - 1) 2^(n - 1)
5654 @c                to 2^((n-1)*(r-1)).
5656 @node Rewrites Tutorial, , Basic Algebra Tutorial, Algebra Tutorial
5657 @subsection Rewrite Rules
5659 @noindent
5660 No matter how many built-in commands Calc provided for doing algebra,
5661 there would always be something you wanted to do that Calc didn't have
5662 in its repertoire.  So Calc also provides a @dfn{rewrite rule} system
5663 that you can use to define your own algebraic manipulations.
5665 Suppose we want to simplify this trigonometric formula:
5667 @smallexample
5668 @group
5669 1:  1 / cos(x) - sin(x) tan(x)
5670     .
5672     ' 1/cos(x) - sin(x) tan(x) @key{RET}   s 1
5673 @end group
5674 @end smallexample
5676 @noindent
5677 If we were simplifying this by hand, we'd probably replace the
5678 @samp{tan} with a @samp{sin/cos} first, then combine over a common
5679 denominator.  There is no Calc command to do the former; the @kbd{a n}
5680 algebra command will do the latter but we'll do both with rewrite
5681 rules just for practice.
5683 Rewrite rules are written with the @samp{:=} symbol.
5685 @smallexample
5686 @group
5687 1:  1 / cos(x) - sin(x)^2 / cos(x)
5688     .
5690     a r tan(a) := sin(a)/cos(a) @key{RET}
5691 @end group
5692 @end smallexample
5694 @noindent
5695 (The ``assignment operator'' @samp{:=} has several uses in Calc.  All
5696 by itself the formula @samp{tan(a) := sin(a)/cos(a)} doesn't do anything,
5697 but when it is given to the @kbd{a r} command, that command interprets
5698 it as a rewrite rule.)
5700 The lefthand side, @samp{tan(a)}, is called the @dfn{pattern} of the
5701 rewrite rule.  Calc searches the formula on the stack for parts that
5702 match the pattern.  Variables in a rewrite pattern are called
5703 @dfn{meta-variables}, and when matching the pattern each meta-variable
5704 can match any sub-formula.  Here, the meta-variable @samp{a} matched
5705 the actual variable @samp{x}.
5707 When the pattern part of a rewrite rule matches a part of the formula,
5708 that part is replaced by the righthand side with all the meta-variables
5709 substituted with the things they matched.  So the result is
5710 @samp{sin(x) / cos(x)}.  Calc's normal algebraic simplifications then
5711 mix this in with the rest of the original formula.
5713 To merge over a common denominator, we can use another simple rule:
5715 @smallexample
5716 @group
5717 1:  (1 - sin(x)^2) / cos(x)
5718     .
5720     a r a/x + b/x := (a+b)/x @key{RET}
5721 @end group
5722 @end smallexample
5724 This rule points out several interesting features of rewrite patterns.
5725 First, if a meta-variable appears several times in a pattern, it must
5726 match the same thing everywhere.  This rule detects common denominators
5727 because the same meta-variable @samp{x} is used in both of the
5728 denominators.
5730 Second, meta-variable names are independent from variables in the
5731 target formula.  Notice that the meta-variable @samp{x} here matches
5732 the subformula @samp{cos(x)}; Calc never confuses the two meanings of
5733 @samp{x}.
5735 And third, rewrite patterns know a little bit about the algebraic
5736 properties of formulas.  The pattern called for a sum of two quotients;
5737 Calc was able to match a difference of two quotients by matching
5738 @samp{a = 1}, @samp{b = -sin(x)^2}, and @samp{x = cos(x)}.
5740 @c [fix-ref Algebraic Properties of Rewrite Rules]
5741 We could just as easily have written @samp{a/x - b/x := (a-b)/x} for
5742 the rule.  It would have worked just the same in all cases.  (If we
5743 really wanted the rule to apply only to @samp{+} or only to @samp{-},
5744 we could have used the @code{plain} symbol.  @xref{Algebraic Properties
5745 of Rewrite Rules}, for some examples of this.)
5747 One more rewrite will complete the job.  We want to use the identity
5748 @samp{sin(x)^2 + cos(x)^2 = 1}, but of course we must first rearrange
5749 the identity in a way that matches our formula.  The obvious rule
5750 would be @samp{@w{1 - sin(x)^2} := cos(x)^2}, but a little thought shows
5751 that the rule @samp{sin(x)^2 := 1 - cos(x)^2} will also work.  The
5752 latter rule has a more general pattern so it will work in many other
5753 situations, too.
5755 @smallexample
5756 @group
5757 1:  (1 + cos(x)^2 - 1) / cos(x)           1:  cos(x)
5758     .                                         .
5760     a r sin(x)^2 := 1 - cos(x)^2 @key{RET}          a s
5761 @end group
5762 @end smallexample
5764 You may ask, what's the point of using the most general rule if you
5765 have to type it in every time anyway?  The answer is that Calc allows
5766 you to store a rewrite rule in a variable, then give the variable
5767 name in the @kbd{a r} command.  In fact, this is the preferred way to
5768 use rewrites.  For one, if you need a rule once you'll most likely
5769 need it again later.  Also, if the rule doesn't work quite right you
5770 can simply Undo, edit the variable, and run the rule again without
5771 having to retype it.
5773 @smallexample
5774 @group
5775 ' tan(x) := sin(x)/cos(x) @key{RET}      s t tsc @key{RET}
5776 ' a/x + b/x := (a+b)/x @key{RET}         s t merge @key{RET}
5777 ' sin(x)^2 := 1 - cos(x)^2 @key{RET}     s t sinsqr @key{RET}
5779 1:  1 / cos(x) - sin(x) tan(x)     1:  cos(x)
5780     .                                  .
5782     r 1                a r tsc @key{RET}  a r merge @key{RET}  a r sinsqr @key{RET}  a s
5783 @end group
5784 @end smallexample
5786 To edit a variable, type @kbd{s e} and the variable name, use regular
5787 Emacs editing commands as necessary, then type @kbd{C-c C-c} to store
5788 the edited value back into the variable. 
5789 You can also use @w{@kbd{s e}} to create a new variable if you wish.
5791 Notice that the first time you use each rule, Calc puts up a ``compiling''
5792 message briefly.  The pattern matcher converts rules into a special
5793 optimized pattern-matching language rather than using them directly.
5794 This allows @kbd{a r} to apply even rather complicated rules very
5795 efficiently.  If the rule is stored in a variable, Calc compiles it
5796 only once and stores the compiled form along with the variable.  That's
5797 another good reason to store your rules in variables rather than
5798 entering them on the fly.
5800 (@bullet{}) @strong{Exercise 1.}  Type @kbd{m s} to get Symbolic
5801 mode, then enter the formula @samp{@w{(2 + sqrt(2))} / @w{(1 + sqrt(2))}}.
5802 Using a rewrite rule, simplify this formula by multiplying the top and
5803 bottom by the conjugate @w{@samp{1 - sqrt(2)}}.  The result will have
5804 to be expanded by the distributive law; do this with another
5805 rewrite.  @xref{Rewrites Answer 1, 1}. (@bullet{})
5807 The @kbd{a r} command can also accept a vector of rewrite rules, or
5808 a variable containing a vector of rules.
5810 @smallexample
5811 @group
5812 1:  [tsc, merge, sinsqr]          1:  [tan(x) := sin(x) / cos(x), ... ]
5813     .                                 .
5815     ' [tsc,merge,sinsqr] @key{RET}          =
5817 @end group
5818 @end smallexample
5819 @noindent
5820 @smallexample
5821 @group
5822 1:  1 / cos(x) - sin(x) tan(x)    1:  cos(x)
5823     .                                 .
5825     s t trig @key{RET}  r 1                 a r trig @key{RET}  a s
5826 @end group
5827 @end smallexample
5829 @c [fix-ref Nested Formulas with Rewrite Rules]
5830 Calc tries all the rules you give against all parts of the formula,
5831 repeating until no further change is possible.  (The exact order in
5832 which things are tried is rather complex, but for simple rules like
5833 the ones we've used here the order doesn't really matter.
5834 @xref{Nested Formulas with Rewrite Rules}.)
5836 Calc actually repeats only up to 100 times, just in case your rule set
5837 has gotten into an infinite loop.  You can give a numeric prefix argument
5838 to @kbd{a r} to specify any limit.  In particular, @kbd{M-1 a r} does
5839 only one rewrite at a time.
5841 @smallexample
5842 @group
5843 1:  1 / cos(x) - sin(x)^2 / cos(x)    1:  (1 - sin(x)^2) / cos(x)
5844     .                                     .
5846     r 1  M-1 a r trig @key{RET}                 M-1 a r trig @key{RET}
5847 @end group
5848 @end smallexample
5850 You can type @kbd{M-0 a r} if you want no limit at all on the number
5851 of rewrites that occur.
5853 Rewrite rules can also be @dfn{conditional}.  Simply follow the rule
5854 with a @samp{::} symbol and the desired condition.  For example,
5856 @smallexample
5857 @group
5858 1:  exp(2 pi i) + exp(3 pi i) + exp(4 pi i)
5859     .
5861     ' exp(2 pi i) + exp(3 pi i) + exp(4 pi i) @key{RET}
5863 @end group
5864 @end smallexample
5865 @noindent
5866 @smallexample
5867 @group
5868 1:  1 + exp(3 pi i) + 1
5869     .
5871     a r exp(k pi i) := 1 :: k % 2 = 0 @key{RET}
5872 @end group
5873 @end smallexample
5875 @noindent
5876 (Recall, @samp{k % 2} is the remainder from dividing @samp{k} by 2,
5877 which will be zero only when @samp{k} is an even integer.)
5879 An interesting point is that the variables @samp{pi} and @samp{i}
5880 were matched literally rather than acting as meta-variables.
5881 This is because they are special-constant variables.  The special
5882 constants @samp{e}, @samp{phi}, and so on also match literally.
5883 A common error with rewrite
5884 rules is to write, say, @samp{f(a,b,c,d,e) := g(a+b+c+d+e)}, expecting
5885 to match any @samp{f} with five arguments but in fact matching
5886 only when the fifth argument is literally @samp{e}!
5888 @cindex Fibonacci numbers
5889 @ignore
5890 @starindex
5891 @end ignore
5892 @tindex fib
5893 Rewrite rules provide an interesting way to define your own functions.
5894 Suppose we want to define @samp{fib(n)} to produce the @var{n}th
5895 Fibonacci number.  The first two Fibonacci numbers are each 1;
5896 later numbers are formed by summing the two preceding numbers in
5897 the sequence.  This is easy to express in a set of three rules:
5899 @smallexample
5900 @group
5901 ' [fib(1) := 1, fib(2) := 1, fib(n) := fib(n-1) + fib(n-2)] @key{RET}  s t fib
5903 1:  fib(7)               1:  13
5904     .                        .
5906     ' fib(7) @key{RET}             a r fib @key{RET}
5907 @end group
5908 @end smallexample
5910 One thing that is guaranteed about the order that rewrites are tried
5911 is that, for any given subformula, earlier rules in the rule set will
5912 be tried for that subformula before later ones.  So even though the
5913 first and third rules both match @samp{fib(1)}, we know the first will
5914 be used preferentially.
5916 This rule set has one dangerous bug:  Suppose we apply it to the
5917 formula @samp{fib(x)}?  (Don't actually try this.)  The third rule
5918 will match @samp{fib(x)} and replace it with @w{@samp{fib(x-1) + fib(x-2)}}.
5919 Each of these will then be replaced to get @samp{fib(x-2) + 2 fib(x-3) +
5920 fib(x-4)}, and so on, expanding forever.  What we really want is to apply
5921 the third rule only when @samp{n} is an integer greater than two.  Type
5922 @w{@kbd{s e fib @key{RET}}}, then edit the third rule to:
5924 @smallexample
5925 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2
5926 @end smallexample
5928 @noindent
5929 Now:
5931 @smallexample
5932 @group
5933 1:  fib(6) + fib(x) + fib(0)      1:  8 + fib(x) + fib(0)
5934     .                                 .
5936     ' fib(6)+fib(x)+fib(0) @key{RET}        a r fib @key{RET}
5937 @end group
5938 @end smallexample
5940 @noindent
5941 We've created a new function, @code{fib}, and a new command,
5942 @w{@kbd{a r fib @key{RET}}}, which means ``evaluate all @code{fib} calls in
5943 this formula.''  To make things easier still, we can tell Calc to
5944 apply these rules automatically by storing them in the special
5945 variable @code{EvalRules}.
5947 @smallexample
5948 @group
5949 1:  [fib(1) := ...]    .                1:  [8, 13]
5950     .                                       .
5952     s r fib @key{RET}        s t EvalRules @key{RET}    ' [fib(6), fib(7)] @key{RET}
5953 @end group
5954 @end smallexample
5956 It turns out that this rule set has the problem that it does far
5957 more work than it needs to when @samp{n} is large.  Consider the
5958 first few steps of the computation of @samp{fib(6)}:
5960 @smallexample
5961 @group
5962 fib(6) =
5963 fib(5)              +               fib(4) =
5964 fib(4)     +      fib(3)     +      fib(3)     +      fib(2) =
5965 fib(3) + fib(2) + fib(2) + fib(1) + fib(2) + fib(1) + 1 = ...
5966 @end group
5967 @end smallexample
5969 @noindent
5970 Note that @samp{fib(3)} appears three times here.  Unless Calc's
5971 algebraic simplifier notices the multiple @samp{fib(3)}s and combines
5972 them (and, as it happens, it doesn't), this rule set does lots of
5973 needless recomputation.  To cure the problem, type @code{s e EvalRules}
5974 to edit the rules (or just @kbd{s E}, a shorthand command for editing
5975 @code{EvalRules}) and add another condition:
5977 @smallexample
5978 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2 :: remember
5979 @end smallexample
5981 @noindent
5982 If a @samp{:: remember} condition appears anywhere in a rule, then if
5983 that rule succeeds Calc will add another rule that describes that match
5984 to the front of the rule set.  (Remembering works in any rule set, but
5985 for technical reasons it is most effective in @code{EvalRules}.)  For
5986 example, if the rule rewrites @samp{fib(7)} to something that evaluates
5987 to 13, then the rule @samp{fib(7) := 13} will be added to the rule set.
5989 Type @kbd{' fib(8) @key{RET}} to compute the eighth Fibonacci number, then
5990 type @kbd{s E} again to see what has happened to the rule set.
5992 With the @code{remember} feature, our rule set can now compute
5993 @samp{fib(@var{n})} in just @var{n} steps.  In the process it builds
5994 up a table of all Fibonacci numbers up to @var{n}.  After we have
5995 computed the result for a particular @var{n}, we can get it back
5996 (and the results for all smaller @var{n}) later in just one step.
5998 All Calc operations will run somewhat slower whenever @code{EvalRules}
5999 contains any rules.  You should type @kbd{s u EvalRules @key{RET}} now to
6000 un-store the variable.
6002 (@bullet{}) @strong{Exercise 2.}  Sometimes it is possible to reformulate
6003 a problem to reduce the amount of recursion necessary to solve it.
6004 Create a rule that, in about @var{n} simple steps and without recourse
6005 to the @code{remember} option, replaces @samp{fib(@var{n}, 1, 1)} with
6006 @samp{fib(1, @var{x}, @var{y})} where @var{x} and @var{y} are the
6007 @var{n}th and @var{n+1}st Fibonacci numbers, respectively.  This rule is
6008 rather clunky to use, so add a couple more rules to make the ``user
6009 interface'' the same as for our first version: enter @samp{fib(@var{n})},
6010 get back a plain number.  @xref{Rewrites Answer 2, 2}. (@bullet{})
6012 There are many more things that rewrites can do.  For example, there
6013 are @samp{&&&} and @samp{|||} pattern operators that create ``and''
6014 and ``or'' combinations of rules.  As one really simple example, we
6015 could combine our first two Fibonacci rules thusly:
6017 @example
6018 [fib(1 ||| 2) := 1, fib(n) := ... ]
6019 @end example
6021 @noindent
6022 That means ``@code{fib} of something matching either 1 or 2 rewrites
6023 to 1.''
6025 You can also make meta-variables optional by enclosing them in @code{opt}.
6026 For example, the pattern @samp{a + b x} matches @samp{2 + 3 x} but not
6027 @samp{2 + x} or @samp{3 x} or @samp{x}.  The pattern @samp{opt(a) + opt(b) x}
6028 matches all of these forms, filling in a default of zero for @samp{a}
6029 and one for @samp{b}.
6031 (@bullet{}) @strong{Exercise 3.}  Your friend Joe had @samp{2 + 3 x}
6032 on the stack and tried to use the rule
6033 @samp{opt(a) + opt(b) x := f(a, b, x)}.  What happened?
6034 @xref{Rewrites Answer 3, 3}. (@bullet{})
6036 (@bullet{}) @strong{Exercise 4.}  Starting with a positive integer @expr{a},
6037 divide @expr{a} by two if it is even, otherwise compute @expr{3 a + 1}.
6038 Now repeat this step over and over.  A famous unproved conjecture
6039 is that for any starting @expr{a}, the sequence always eventually
6040 reaches 1.  Given the formula @samp{seq(@var{a}, 0)}, write a set of
6041 rules that convert this into @samp{seq(1, @var{n})} where @var{n}
6042 is the number of steps it took the sequence to reach the value 1.
6043 Now enhance the rules to accept @samp{seq(@var{a})} as a starting
6044 configuration, and to stop with just the number @var{n} by itself.
6045 Now make the result be a vector of values in the sequence, from @var{a}
6046 to 1.  (The formula @samp{@var{x}|@var{y}} appends the vectors @var{x}
6047 and @var{y}.)  For example, rewriting @samp{seq(6)} should yield the
6048 vector @expr{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
6049 @xref{Rewrites Answer 4, 4}. (@bullet{})
6051 (@bullet{}) @strong{Exercise 5.}  Define, using rewrite rules, a function
6052 @samp{nterms(@var{x})} that returns the number of terms in the sum
6053 @var{x}, or 1 if @var{x} is not a sum.  (A @dfn{sum} for our purposes
6054 is one or more non-sum terms separated by @samp{+} or @samp{-} signs,
6055 so that @expr{2 - 3 (x + y) + x y} is a sum of three terms.)
6056 @xref{Rewrites Answer 5, 5}. (@bullet{})
6058 (@bullet{}) @strong{Exercise 6.}  A Taylor series for a function is an
6059 infinite series that exactly equals the value of that function at
6060 values of @expr{x} near zero.
6062 @ifinfo
6063 @example
6064 cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...
6065 @end example
6066 @end ifinfo
6067 @tex
6068 \turnoffactive
6069 \beforedisplay
6070 $$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$
6071 \afterdisplay
6072 @end tex
6074 The @kbd{a t} command produces a @dfn{truncated Taylor series} which
6075 is obtained by dropping all the terms higher than, say, @expr{x^2}.
6076 Calc represents the truncated Taylor series as a polynomial in @expr{x}.
6077 Mathematicians often write a truncated series using a ``big-O'' notation
6078 that records what was the lowest term that was truncated.
6080 @ifinfo
6081 @example
6082 cos(x) = 1 - x^2 / 2! + O(x^3)
6083 @end example
6084 @end ifinfo
6085 @tex
6086 \turnoffactive
6087 \beforedisplay
6088 $$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$
6089 \afterdisplay
6090 @end tex
6092 @noindent
6093 The meaning of @expr{O(x^3)} is ``a quantity which is negligibly small
6094 if @expr{x^3} is considered negligibly small as @expr{x} goes to zero.''
6096 The exercise is to create rewrite rules that simplify sums and products of
6097 power series represented as @samp{@var{polynomial} + O(@var{var}^@var{n})}.
6098 For example, given @samp{1 - x^2 / 2 + O(x^3)} and @samp{x - x^3 / 6 + O(x^4)}
6099 on the stack, we want to be able to type @kbd{*} and get the result
6100 @samp{x - 2:3 x^3 + O(x^4)}.  Don't worry if the terms of the sum are
6101 rearranged or if @kbd{a s} needs to be typed after rewriting.  (This one
6102 is rather tricky; the solution at the end of this chapter uses 6 rewrite
6103 rules.  Hint:  The @samp{constant(x)} condition tests whether @samp{x} is
6104 a number.)  @xref{Rewrites Answer 6, 6}. (@bullet{})
6106 Just for kicks, try adding the rule @code{2+3 := 6} to @code{EvalRules}.
6107 What happens?  (Be sure to remove this rule afterward, or you might get
6108 a nasty surprise when you use Calc to balance your checkbook!)
6110 @xref{Rewrite Rules}, for the whole story on rewrite rules.
6112 @node Programming Tutorial, Answers to Exercises, Algebra Tutorial, Tutorial
6113 @section Programming Tutorial
6115 @noindent
6116 The Calculator is written entirely in Emacs Lisp, a highly extensible
6117 language.  If you know Lisp, you can program the Calculator to do
6118 anything you like.  Rewrite rules also work as a powerful programming
6119 system.  But Lisp and rewrite rules take a while to master, and often
6120 all you want to do is define a new function or repeat a command a few
6121 times.  Calc has features that allow you to do these things easily.
6123 One very limited form of programming is defining your own functions.
6124 Calc's @kbd{Z F} command allows you to define a function name and
6125 key sequence to correspond to any formula.  Programming commands use
6126 the shift-@kbd{Z} prefix; the user commands they create use the lower
6127 case @kbd{z} prefix.
6129 @smallexample
6130 @group
6131 1:  1 + x + x^2 / 2 + x^3 / 6         1:  1 + x + x^2 / 2 + x^3 / 6
6132     .                                     .
6134     ' 1 + x + x^2/2! + x^3/3! @key{RET}         Z F e myexp @key{RET} @key{RET} @key{RET} y
6135 @end group
6136 @end smallexample
6138 This polynomial is a Taylor series approximation to @samp{exp(x)}.
6139 The @kbd{Z F} command asks a number of questions.  The above answers
6140 say that the key sequence for our function should be @kbd{z e}; the
6141 @kbd{M-x} equivalent should be @code{calc-myexp}; the name of the
6142 function in algebraic formulas should also be @code{myexp}; the
6143 default argument list @samp{(x)} is acceptable; and finally @kbd{y}
6144 answers the question ``leave it in symbolic form for non-constant
6145 arguments?''
6147 @smallexample
6148 @group
6149 1:  1.3495     2:  1.3495     3:  1.3495
6150     .          1:  1.34986    2:  1.34986
6151                    .          1:  myexp(a + 1)
6152                                   .
6154     .3 z e         .3 E           ' a+1 @key{RET} z e
6155 @end group
6156 @end smallexample
6158 @noindent
6159 First we call our new @code{exp} approximation with 0.3 as an
6160 argument, and compare it with the true @code{exp} function.  Then
6161 we note that, as requested, if we try to give @kbd{z e} an
6162 argument that isn't a plain number, it leaves the @code{myexp}
6163 function call in symbolic form.  If we had answered @kbd{n} to the
6164 final question, @samp{myexp(a + 1)} would have evaluated by plugging
6165 in @samp{a + 1} for @samp{x} in the defining formula.
6167 @cindex Sine integral Si(x)
6168 @ignore
6169 @starindex
6170 @end ignore
6171 @tindex Si
6172 (@bullet{}) @strong{Exercise 1.}  The ``sine integral'' function
6173 @texline @math{{\rm Si}(x)}
6174 @infoline @expr{Si(x)} 
6175 is defined as the integral of @samp{sin(t)/t} for
6176 @expr{t = 0} to @expr{x} in radians.  (It was invented because this
6177 integral has no solution in terms of basic functions; if you give it
6178 to Calc's @kbd{a i} command, it will ponder it for a long time and then
6179 give up.)  We can use the numerical integration command, however,
6180 which in algebraic notation is written like @samp{ninteg(f(t), t, 0, x)}
6181 with any integrand @samp{f(t)}.  Define a @kbd{z s} command and
6182 @code{Si} function that implement this.  You will need to edit the
6183 default argument list a bit.  As a test, @samp{Si(1)} should return
6184 0.946083. (If you don't get this answer, you might want to check that
6185 Calc is in Radians mode.  Also, @code{ninteg} will run a lot faster if
6186 you reduce the precision to, say, six digits beforehand.)
6187 @xref{Programming Answer 1, 1}. (@bullet{})
6189 The simplest way to do real ``programming'' of Emacs is to define a
6190 @dfn{keyboard macro}.  A keyboard macro is simply a sequence of
6191 keystrokes which Emacs has stored away and can play back on demand.
6192 For example, if you find yourself typing @kbd{H a S x @key{RET}} often,
6193 you may wish to program a keyboard macro to type this for you.
6195 @smallexample
6196 @group
6197 1:  y = sqrt(x)          1:  x = y^2
6198     .                        .
6200     ' y=sqrt(x) @key{RET}       C-x ( H a S x @key{RET} C-x )
6202 1:  y = cos(x)           1:  x = s1 arccos(y) + 2 pi n1
6203     .                        .
6205     ' y=cos(x) @key{RET}           X
6206 @end group
6207 @end smallexample
6209 @noindent
6210 When you type @kbd{C-x (}, Emacs begins recording.  But it is also
6211 still ready to execute your keystrokes, so you're really ``training''
6212 Emacs by walking it through the procedure once.  When you type
6213 @w{@kbd{C-x )}}, the macro is recorded.  You can now type @kbd{X} to
6214 re-execute the same keystrokes.
6216 You can give a name to your macro by typing @kbd{Z K}.
6218 @smallexample
6219 @group
6220 1:  .              1:  y = x^4         1:  x = s2 sqrt(s1 sqrt(y))
6221                        .                   .
6223   Z K x @key{RET}            ' y=x^4 @key{RET}         z x
6224 @end group
6225 @end smallexample
6227 @noindent
6228 Notice that we use shift-@kbd{Z} to define the command, and lower-case
6229 @kbd{z} to call it up.
6231 Keyboard macros can call other macros.
6233 @smallexample
6234 @group
6235 1:  abs(x)        1:  x = s1 y                1:  2 / x    1:  x = 2 / y
6236     .                 .                           .            .
6238  ' abs(x) @key{RET}   C-x ( ' y @key{RET} a = z x C-x )    ' 2/x @key{RET}       X
6239 @end group
6240 @end smallexample
6242 (@bullet{}) @strong{Exercise 2.}  Define a keyboard macro to negate
6243 the item in level 3 of the stack, without disturbing the rest of
6244 the stack.  @xref{Programming Answer 2, 2}. (@bullet{})
6246 (@bullet{}) @strong{Exercise 3.}  Define keyboard macros to compute
6247 the following functions:
6249 @enumerate
6250 @item
6251 Compute 
6252 @texline @math{\displaystyle{\sin x \over x}},
6253 @infoline @expr{sin(x) / x}, 
6254 where @expr{x} is the number on the top of the stack.
6256 @item
6257 Compute the base-@expr{b} logarithm, just like the @kbd{B} key except
6258 the arguments are taken in the opposite order.
6260 @item
6261 Produce a vector of integers from 1 to the integer on the top of
6262 the stack.
6263 @end enumerate
6264 @noindent
6265 @xref{Programming Answer 3, 3}. (@bullet{})
6267 (@bullet{}) @strong{Exercise 4.}  Define a keyboard macro to compute
6268 the average (mean) value of a list of numbers.
6269 @xref{Programming Answer 4, 4}. (@bullet{})
6271 In many programs, some of the steps must execute several times.
6272 Calc has @dfn{looping} commands that allow this.  Loops are useful
6273 inside keyboard macros, but actually work at any time.
6275 @smallexample
6276 @group
6277 1:  x^6          2:  x^6        1: 360 x^2
6278     .            1:  4             .
6279                      .
6281   ' x^6 @key{RET}          4         Z < a d x @key{RET} Z >
6282 @end group
6283 @end smallexample
6285 @noindent
6286 Here we have computed the fourth derivative of @expr{x^6} by
6287 enclosing a derivative command in a ``repeat loop'' structure.
6288 This structure pops a repeat count from the stack, then
6289 executes the body of the loop that many times.
6291 If you make a mistake while entering the body of the loop,
6292 type @w{@kbd{Z C-g}} to cancel the loop command.
6294 @cindex Fibonacci numbers
6295 Here's another example:
6297 @smallexample
6298 @group
6299 3:  1               2:  10946
6300 2:  1               1:  17711
6301 1:  20                  .
6302     .
6304 1 @key{RET} @key{RET} 20       Z < @key{TAB} C-j + Z >
6305 @end group
6306 @end smallexample
6308 @noindent
6309 The numbers in levels 2 and 1 should be the 21st and 22nd Fibonacci
6310 numbers, respectively.  (To see what's going on, try a few repetitions
6311 of the loop body by hand; @kbd{C-j}, also on the Line-Feed or @key{LFD}
6312 key if you have one, makes a copy of the number in level 2.)
6314 @cindex Golden ratio
6315 @cindex Phi, golden ratio
6316 A fascinating property of the Fibonacci numbers is that the @expr{n}th
6317 Fibonacci number can be found directly by computing 
6318 @texline @math{\phi^n / \sqrt{5}}
6319 @infoline @expr{phi^n / sqrt(5)}
6320 and then rounding to the nearest integer, where 
6321 @texline @math{\phi} (``phi''),
6322 @infoline @expr{phi}, 
6323 the ``golden ratio,'' is 
6324 @texline @math{(1 + \sqrt{5}) / 2}.
6325 @infoline @expr{(1 + sqrt(5)) / 2}. 
6326 (For convenience, this constant is available from the @code{phi}
6327 variable, or the @kbd{I H P} command.)
6329 @smallexample
6330 @group
6331 1:  1.61803         1:  24476.0000409    1:  10945.9999817    1:  10946
6332     .                   .                    .                    .
6334     I H P               21 ^                 5 Q /                R
6335 @end group
6336 @end smallexample
6338 @cindex Continued fractions
6339 (@bullet{}) @strong{Exercise 5.}  The @dfn{continued fraction}
6340 representation of 
6341 @texline @math{\phi}
6342 @infoline @expr{phi} 
6343 is 
6344 @texline @math{1 + 1/(1 + 1/(1 + 1/( \ldots )))}.
6345 @infoline @expr{1 + 1/(1 + 1/(1 + 1/( ...@: )))}.
6346 We can compute an approximate value by carrying this however far
6347 and then replacing the innermost 
6348 @texline @math{1/( \ldots )}
6349 @infoline @expr{1/( ...@: )} 
6350 by 1.  Approximate
6351 @texline @math{\phi}
6352 @infoline @expr{phi} 
6353 using a twenty-term continued fraction.
6354 @xref{Programming Answer 5, 5}. (@bullet{})
6356 (@bullet{}) @strong{Exercise 6.}  Linear recurrences like the one for
6357 Fibonacci numbers can be expressed in terms of matrices.  Given a
6358 vector @w{@expr{[a, b]}} determine a matrix which, when multiplied by this
6359 vector, produces the vector @expr{[b, c]}, where @expr{a}, @expr{b} and
6360 @expr{c} are three successive Fibonacci numbers.  Now write a program
6361 that, given an integer @expr{n}, computes the @expr{n}th Fibonacci number
6362 using matrix arithmetic.  @xref{Programming Answer 6, 6}. (@bullet{})
6364 @cindex Harmonic numbers
6365 A more sophisticated kind of loop is the @dfn{for} loop.  Suppose
6366 we wish to compute the 20th ``harmonic'' number, which is equal to
6367 the sum of the reciprocals of the integers from 1 to 20.
6369 @smallexample
6370 @group
6371 3:  0               1:  3.597739
6372 2:  1                   .
6373 1:  20
6374     .
6376 0 @key{RET} 1 @key{RET} 20         Z ( & + 1 Z )
6377 @end group
6378 @end smallexample
6380 @noindent
6381 The ``for'' loop pops two numbers, the lower and upper limits, then
6382 repeats the body of the loop as an internal counter increases from
6383 the lower limit to the upper one.  Just before executing the loop
6384 body, it pushes the current loop counter.  When the loop body
6385 finishes, it pops the ``step,'' i.e., the amount by which to
6386 increment the loop counter.  As you can see, our loop always
6387 uses a step of one.
6389 This harmonic number function uses the stack to hold the running
6390 total as well as for the various loop housekeeping functions.  If
6391 you find this disorienting, you can sum in a variable instead:
6393 @smallexample
6394 @group
6395 1:  0         2:  1                  .            1:  3.597739
6396     .         1:  20                                  .
6397                   .
6399     0 t 7       1 @key{RET} 20      Z ( & s + 7 1 Z )       r 7
6400 @end group
6401 @end smallexample
6403 @noindent
6404 The @kbd{s +} command adds the top-of-stack into the value in a
6405 variable (and removes that value from the stack).
6407 It's worth noting that many jobs that call for a ``for'' loop can
6408 also be done more easily by Calc's high-level operations.  Two
6409 other ways to compute harmonic numbers are to use vector mapping
6410 and reduction (@kbd{v x 20}, then @w{@kbd{V M &}}, then @kbd{V R +}),
6411 or to use the summation command @kbd{a +}.  Both of these are
6412 probably easier than using loops.  However, there are some
6413 situations where loops really are the way to go:
6415 (@bullet{}) @strong{Exercise 7.}  Use a ``for'' loop to find the first
6416 harmonic number which is greater than 4.0.
6417 @xref{Programming Answer 7, 7}. (@bullet{})
6419 Of course, if we're going to be using variables in our programs,
6420 we have to worry about the programs clobbering values that the
6421 caller was keeping in those same variables.  This is easy to
6422 fix, though:
6424 @smallexample
6425 @group
6426     .        1:  0.6667       1:  0.6667     3:  0.6667
6427                  .                .          2:  3.597739
6428                                              1:  0.6667
6429                                                  .
6431    Z `    p 4 @key{RET} 2 @key{RET} 3 /   s 7 s s a @key{RET}    Z '  r 7 s r a @key{RET}
6432 @end group
6433 @end smallexample
6435 @noindent
6436 When we type @kbd{Z `} (that's a back-quote character), Calc saves
6437 its mode settings and the contents of the ten ``quick variables''
6438 for later reference.  When we type @kbd{Z '} (that's an apostrophe
6439 now), Calc restores those saved values.  Thus the @kbd{p 4} and
6440 @kbd{s 7} commands have no effect outside this sequence.  Wrapping
6441 this around the body of a keyboard macro ensures that it doesn't
6442 interfere with what the user of the macro was doing.  Notice that
6443 the contents of the stack, and the values of named variables,
6444 survive past the @kbd{Z '} command.
6446 @cindex Bernoulli numbers, approximate
6447 The @dfn{Bernoulli numbers} are a sequence with the interesting
6448 property that all of the odd Bernoulli numbers are zero, and the
6449 even ones, while difficult to compute, can be roughly approximated
6450 by the formula 
6451 @texline @math{\displaystyle{2 n! \over (2 \pi)^n}}.
6452 @infoline @expr{2 n!@: / (2 pi)^n}.  
6453 Let's write a keyboard macro to compute (approximate) Bernoulli numbers.
6454 (Calc has a command, @kbd{k b}, to compute exact Bernoulli numbers, but
6455 this command is very slow for large @expr{n} since the higher Bernoulli
6456 numbers are very large fractions.)
6458 @smallexample
6459 @group
6460 1:  10               1:  0.0756823
6461     .                    .
6463     10     C-x ( @key{RET} 2 % Z [ @key{DEL} 0 Z : ' 2 $! / (2 pi)^$ @key{RET} = Z ] C-x )
6464 @end group
6465 @end smallexample
6467 @noindent
6468 You can read @kbd{Z [} as ``then,'' @kbd{Z :} as ``else,'' and
6469 @kbd{Z ]} as ``end-if.''  There is no need for an explicit ``if''
6470 command.  For the purposes of @w{@kbd{Z [}}, the condition is ``true''
6471 if the value it pops from the stack is a nonzero number, or ``false''
6472 if it pops zero or something that is not a number (like a formula).
6473 Here we take our integer argument modulo 2; this will be nonzero
6474 if we're asking for an odd Bernoulli number.
6476 The actual tenth Bernoulli number is @expr{5/66}.
6478 @smallexample
6479 @group
6480 3:  0.0756823    1:  0          1:  0.25305    1:  0          1:  1.16659
6481 2:  5:66             .              .              .              .
6482 1:  0.0757575
6483     .
6485 10 k b @key{RET} c f   M-0 @key{DEL} 11 X   @key{DEL} 12 X       @key{DEL} 13 X       @key{DEL} 14 X
6486 @end group
6487 @end smallexample
6489 Just to exercise loops a bit more, let's compute a table of even
6490 Bernoulli numbers.
6492 @smallexample
6493 @group
6494 3:  []             1:  [0.10132, 0.03079, 0.02340, 0.033197, ...]
6495 2:  2                  .
6496 1:  30
6497     .
6499  [ ] 2 @key{RET} 30          Z ( X | 2 Z )
6500 @end group
6501 @end smallexample
6503 @noindent
6504 The vertical-bar @kbd{|} is the vector-concatenation command.  When
6505 we execute it, the list we are building will be in stack level 2
6506 (initially this is an empty list), and the next Bernoulli number
6507 will be in level 1.  The effect is to append the Bernoulli number
6508 onto the end of the list.  (To create a table of exact fractional
6509 Bernoulli numbers, just replace @kbd{X} with @kbd{k b} in the above
6510 sequence of keystrokes.)
6512 With loops and conditionals, you can program essentially anything
6513 in Calc.  One other command that makes looping easier is @kbd{Z /},
6514 which takes a condition from the stack and breaks out of the enclosing
6515 loop if the condition is true (non-zero).  You can use this to make
6516 ``while'' and ``until'' style loops.
6518 If you make a mistake when entering a keyboard macro, you can edit
6519 it using @kbd{Z E}.  First, you must attach it to a key with @kbd{Z K}.
6520 One technique is to enter a throwaway dummy definition for the macro,
6521 then enter the real one in the edit command.
6523 @smallexample
6524 @group
6525 1:  3                   1:  3           Calc Macro Edit Mode.
6526     .                       .           Original keys: 1 <return> 2 +
6528                                         1                          ;; calc digits
6529                                         RET                        ;; calc-enter
6530                                         2                          ;; calc digits
6531                                         +                          ;; calc-plus
6533 C-x ( 1 @key{RET} 2 + C-x )    Z K h @key{RET}      Z E h
6534 @end group
6535 @end smallexample
6537 @noindent
6538 A keyboard macro is stored as a pure keystroke sequence.  The
6539 @file{edmacro} package (invoked by @kbd{Z E}) scans along the
6540 macro and tries to decode it back into human-readable steps.
6541 Descriptions of the keystrokes are given as comments, which begin with
6542 @samp{;;}, and which are ignored when the edited macro is saved.
6543 Spaces and line breaks are also ignored when the edited macro is saved.
6544 To enter a space into the macro, type @code{SPC}.  All the special
6545 characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC}, @code{DEL},
6546 and @code{NUL} must be written in all uppercase, as must the prefixes
6547 @code{C-} and @code{M-}.
6549 Let's edit in a new definition, for computing harmonic numbers.
6550 First, erase the four lines of the old definition.  Then, type
6551 in the new definition (or use Emacs @kbd{M-w} and @kbd{C-y} commands
6552 to copy it from this page of the Info file; you can of course skip
6553 typing the comments, which begin with @samp{;;}).
6555 @smallexample
6556 Z`                      ;; calc-kbd-push     (Save local values)
6557 0                       ;; calc digits       (Push a zero onto the stack)
6558 st                      ;; calc-store-into   (Store it in the following variable)
6559 1                       ;; calc quick variable  (Quick variable q1)
6560 1                       ;; calc digits       (Initial value for the loop) 
6561 TAB                     ;; calc-roll-down    (Swap initial and final)
6562 Z(                      ;; calc-kbd-for      (Begin the "for" loop)
6563 &                       ;; calc-inv          (Take the reciprocal)
6564 s+                      ;; calc-store-plus   (Add to the following variable)
6565 1                       ;; calc quick variable  (Quick variable q1)
6566 1                       ;; calc digits       (The loop step is 1)
6567 Z)                      ;; calc-kbd-end-for  (End the "for" loop)
6568 sr                      ;; calc-recall       (Recall the final accumulated value)
6569 1                       ;; calc quick variable (Quick variable q1)
6570 Z'                      ;; calc-kbd-pop      (Restore values)
6571 @end smallexample
6573 @noindent
6574 Press @kbd{C-c C-c} to finish editing and return to the Calculator.
6576 @smallexample
6577 @group
6578 1:  20         1:  3.597739
6579     .              .
6581     20             z h
6582 @end group
6583 @end smallexample
6585 The @file{edmacro} package defines a handy @code{read-kbd-macro} command
6586 which reads the current region of the current buffer as a sequence of
6587 keystroke names, and defines that sequence on the @kbd{X} 
6588 (and @kbd{C-x e}) key.  Because this is so useful, Calc puts this
6589 command on the @kbd{M-# m} key.  Try reading in this macro in the
6590 following form:  Press @kbd{C-@@} (or @kbd{C-@key{SPC}}) at 
6591 one end of the text below, then type @kbd{M-# m} at the other.
6593 @example
6594 @group
6595 Z ` 0 t 1
6596     1 TAB
6597     Z (  & s + 1  1 Z )
6598     r 1
6599 Z '
6600 @end group
6601 @end example
6603 (@bullet{}) @strong{Exercise 8.}  A general algorithm for solving
6604 equations numerically is @dfn{Newton's Method}.  Given the equation
6605 @expr{f(x) = 0} for any function @expr{f}, and an initial guess
6606 @expr{x_0} which is reasonably close to the desired solution, apply
6607 this formula over and over:
6609 @ifinfo
6610 @example
6611 new_x = x - f(x)/f'(x)
6612 @end example
6613 @end ifinfo
6614 @tex
6615 \beforedisplay
6616 $$ x_{\rm new} = x - {f(x) \over f'(x)} $$
6617 \afterdisplay
6618 @end tex
6620 @noindent
6621 where @expr{f'(x)} is the derivative of @expr{f}.  The @expr{x}
6622 values will quickly converge to a solution, i.e., eventually
6623 @texline @math{x_{\rm new}}
6624 @infoline @expr{new_x} 
6625 and @expr{x} will be equal to within the limits
6626 of the current precision.  Write a program which takes a formula
6627 involving the variable @expr{x}, and an initial guess @expr{x_0},
6628 on the stack, and produces a value of @expr{x} for which the formula
6629 is zero.  Use it to find a solution of 
6630 @texline @math{\sin(\cos x) = 0.5}
6631 @infoline @expr{sin(cos(x)) = 0.5}
6632 near @expr{x = 4.5}.  (Use angles measured in radians.)  Note that
6633 the built-in @w{@kbd{a R}} (@code{calc-find-root}) command uses Newton's
6634 method when it is able.  @xref{Programming Answer 8, 8}. (@bullet{})
6636 @cindex Digamma function
6637 @cindex Gamma constant, Euler's
6638 @cindex Euler's gamma constant
6639 (@bullet{}) @strong{Exercise 9.}  The @dfn{digamma} function 
6640 @texline @math{\psi(z) (``psi'')}
6641 @infoline @expr{psi(z)}
6642 is defined as the derivative of 
6643 @texline @math{\ln \Gamma(z)}.
6644 @infoline @expr{ln(gamma(z))}.  
6645 For large values of @expr{z}, it can be approximated by the infinite sum
6647 @ifinfo
6648 @example
6649 psi(z) ~= ln(z) - 1/2z - sum(bern(2 n) / 2 n z^(2 n), n, 1, inf)
6650 @end example
6651 @end ifinfo
6652 @tex
6653 \beforedisplay
6654 $$ \psi(z) \approx \ln z - {1\over2z} -
6655    \sum_{n=1}^\infty {\code{bern}(2 n) \over 2 n z^{2n}}
6657 \afterdisplay
6658 @end tex
6660 @noindent
6661 where 
6662 @texline @math{\sum}
6663 @infoline @expr{sum} 
6664 represents the sum over @expr{n} from 1 to infinity
6665 (or to some limit high enough to give the desired accuracy), and
6666 the @code{bern} function produces (exact) Bernoulli numbers.
6667 While this sum is not guaranteed to converge, in practice it is safe.
6668 An interesting mathematical constant is Euler's gamma, which is equal
6669 to about 0.5772.  One way to compute it is by the formula,
6670 @texline @math{\gamma = -\psi(1)}.
6671 @infoline @expr{gamma = -psi(1)}.  
6672 Unfortunately, 1 isn't a large enough argument
6673 for the above formula to work (5 is a much safer value for @expr{z}).
6674 Fortunately, we can compute 
6675 @texline @math{\psi(1)}
6676 @infoline @expr{psi(1)} 
6677 from 
6678 @texline @math{\psi(5)}
6679 @infoline @expr{psi(5)} 
6680 using the recurrence 
6681 @texline @math{\psi(z+1) = \psi(z) + {1 \over z}}.
6682 @infoline @expr{psi(z+1) = psi(z) + 1/z}.  
6683 Your task:  Develop a program to compute 
6684 @texline @math{\psi(z)};
6685 @infoline @expr{psi(z)}; 
6686 it should ``pump up'' @expr{z}
6687 if necessary to be greater than 5, then use the above summation
6688 formula.  Use looping commands to compute the sum.  Use your function
6689 to compute 
6690 @texline @math{\gamma}
6691 @infoline @expr{gamma} 
6692 to twelve decimal places.  (Calc has a built-in command
6693 for Euler's constant, @kbd{I P}, which you can use to check your answer.)
6694 @xref{Programming Answer 9, 9}. (@bullet{})
6696 @cindex Polynomial, list of coefficients
6697 (@bullet{}) @strong{Exercise 10.}  Given a polynomial in @expr{x} and
6698 a number @expr{m} on the stack, where the polynomial is of degree
6699 @expr{m} or less (i.e., does not have any terms higher than @expr{x^m}),
6700 write a program to convert the polynomial into a list-of-coefficients
6701 notation.  For example, @expr{5 x^4 + (x + 1)^2} with @expr{m = 6}
6702 should produce the list @expr{[1, 2, 1, 0, 5, 0, 0]}.  Also develop
6703 a way to convert from this form back to the standard algebraic form.
6704 @xref{Programming Answer 10, 10}. (@bullet{})
6706 @cindex Recursion
6707 (@bullet{}) @strong{Exercise 11.}  The @dfn{Stirling numbers of the
6708 first kind} are defined by the recurrences,
6710 @ifinfo
6711 @example
6712 s(n,n) = 1   for n >= 0,
6713 s(n,0) = 0   for n > 0,
6714 s(n+1,m) = s(n,m-1) - n s(n,m)   for n >= m >= 1.
6715 @end example
6716 @end ifinfo
6717 @tex
6718 \turnoffactive
6719 \beforedisplay
6720 $$ \eqalign{ s(n,n)   &= 1 \qquad \hbox{for } n \ge 0,  \cr
6721              s(n,0)   &= 0 \qquad \hbox{for } n > 0, \cr
6722              s(n+1,m) &= s(n,m-1) - n \, s(n,m) \qquad
6723                           \hbox{for } n \ge m \ge 1.}
6725 \afterdisplay
6726 \vskip5pt
6727 (These numbers are also sometimes written $\displaystyle{n \brack m}$.)
6728 @end tex
6730 This can be implemented using a @dfn{recursive} program in Calc; the
6731 program must invoke itself in order to calculate the two righthand
6732 terms in the general formula.  Since it always invokes itself with
6733 ``simpler'' arguments, it's easy to see that it must eventually finish
6734 the computation.  Recursion is a little difficult with Emacs keyboard
6735 macros since the macro is executed before its definition is complete.
6736 So here's the recommended strategy:  Create a ``dummy macro'' and assign
6737 it to a key with, e.g., @kbd{Z K s}.  Now enter the true definition,
6738 using the @kbd{z s} command to call itself recursively, then assign it
6739 to the same key with @kbd{Z K s}.  Now the @kbd{z s} command will run
6740 the complete recursive program.  (Another way is to use @w{@kbd{Z E}}
6741 or @kbd{M-# m} (@code{read-kbd-macro}) to read the whole macro at once,
6742 thus avoiding the ``training'' phase.)  The task:  Write a program
6743 that computes Stirling numbers of the first kind, given @expr{n} and
6744 @expr{m} on the stack.  Test it with @emph{small} inputs like
6745 @expr{s(4,2)}.  (There is a built-in command for Stirling numbers,
6746 @kbd{k s}, which you can use to check your answers.)
6747 @xref{Programming Answer 11, 11}. (@bullet{})
6749 The programming commands we've seen in this part of the tutorial
6750 are low-level, general-purpose operations.  Often you will find
6751 that a higher-level function, such as vector mapping or rewrite
6752 rules, will do the job much more easily than a detailed, step-by-step
6753 program can:
6755 (@bullet{}) @strong{Exercise 12.}  Write another program for
6756 computing Stirling numbers of the first kind, this time using
6757 rewrite rules.  Once again, @expr{n} and @expr{m} should be taken
6758 from the stack.  @xref{Programming Answer 12, 12}. (@bullet{})
6760 @example
6762 @end example
6763 This ends the tutorial section of the Calc manual.  Now you know enough
6764 about Calc to use it effectively for many kinds of calculations.  But
6765 Calc has many features that were not even touched upon in this tutorial.
6766 @c [not-split]
6767 The rest of this manual tells the whole story.
6768 @c [when-split]
6769 @c Volume II of this manual, the @dfn{Calc Reference}, tells the whole story.
6771 @page
6772 @node Answers to Exercises, , Programming Tutorial, Tutorial
6773 @section Answers to Exercises
6775 @noindent
6776 This section includes answers to all the exercises in the Calc tutorial.
6778 @menu
6779 * RPN Answer 1::           1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -
6780 * RPN Answer 2::           2*4 + 7*9.5 + 5/4
6781 * RPN Answer 3::           Operating on levels 2 and 3
6782 * RPN Answer 4::           Joe's complex problems
6783 * Algebraic Answer 1::     Simulating Q command
6784 * Algebraic Answer 2::     Joe's algebraic woes
6785 * Algebraic Answer 3::     1 / 0
6786 * Modes Answer 1::         3#0.1 = 3#0.0222222?
6787 * Modes Answer 2::         16#f.e8fe15
6788 * Modes Answer 3::         Joe's rounding bug
6789 * Modes Answer 4::         Why floating point?
6790 * Arithmetic Answer 1::    Why the \ command?
6791 * Arithmetic Answer 2::    Tripping up the B command
6792 * Vector Answer 1::        Normalizing a vector
6793 * Vector Answer 2::        Average position
6794 * Matrix Answer 1::        Row and column sums
6795 * Matrix Answer 2::        Symbolic system of equations
6796 * Matrix Answer 3::        Over-determined system
6797 * List Answer 1::          Powers of two
6798 * List Answer 2::          Least-squares fit with matrices
6799 * List Answer 3::          Geometric mean
6800 * List Answer 4::          Divisor function
6801 * List Answer 5::          Duplicate factors
6802 * List Answer 6::          Triangular list
6803 * List Answer 7::          Another triangular list
6804 * List Answer 8::          Maximum of Bessel function
6805 * List Answer 9::          Integers the hard way
6806 * List Answer 10::         All elements equal
6807 * List Answer 11::         Estimating pi with darts
6808 * List Answer 12::         Estimating pi with matchsticks
6809 * List Answer 13::         Hash codes
6810 * List Answer 14::         Random walk
6811 * Types Answer 1::         Square root of pi times rational
6812 * Types Answer 2::         Infinities
6813 * Types Answer 3::         What can "nan" be?
6814 * Types Answer 4::         Abbey Road
6815 * Types Answer 5::         Friday the 13th
6816 * Types Answer 6::         Leap years
6817 * Types Answer 7::         Erroneous donut
6818 * Types Answer 8::         Dividing intervals
6819 * Types Answer 9::         Squaring intervals
6820 * Types Answer 10::        Fermat's primality test
6821 * Types Answer 11::        pi * 10^7 seconds
6822 * Types Answer 12::        Abbey Road on CD
6823 * Types Answer 13::        Not quite pi * 10^7 seconds
6824 * Types Answer 14::        Supercomputers and c
6825 * Types Answer 15::        Sam the Slug
6826 * Algebra Answer 1::       Squares and square roots
6827 * Algebra Answer 2::       Building polynomial from roots
6828 * Algebra Answer 3::       Integral of x sin(pi x)
6829 * Algebra Answer 4::       Simpson's rule
6830 * Rewrites Answer 1::      Multiplying by conjugate
6831 * Rewrites Answer 2::      Alternative fib rule
6832 * Rewrites Answer 3::      Rewriting opt(a) + opt(b) x
6833 * Rewrites Answer 4::      Sequence of integers
6834 * Rewrites Answer 5::      Number of terms in sum
6835 * Rewrites Answer 6::      Truncated Taylor series
6836 * Programming Answer 1::   Fresnel's C(x)
6837 * Programming Answer 2::   Negate third stack element
6838 * Programming Answer 3::   Compute sin(x) / x, etc.
6839 * Programming Answer 4::   Average value of a list
6840 * Programming Answer 5::   Continued fraction phi
6841 * Programming Answer 6::   Matrix Fibonacci numbers
6842 * Programming Answer 7::   Harmonic number greater than 4
6843 * Programming Answer 8::   Newton's method
6844 * Programming Answer 9::   Digamma function
6845 * Programming Answer 10::  Unpacking a polynomial
6846 * Programming Answer 11::  Recursive Stirling numbers
6847 * Programming Answer 12::  Stirling numbers with rewrites
6848 @end menu
6850 @c The following kludgery prevents the individual answers from
6851 @c being entered on the table of contents.
6852 @tex
6853 \global\let\oldwrite=\write
6854 \gdef\skipwrite#1#2{\let\write=\oldwrite}
6855 \global\let\oldchapternofonts=\chapternofonts
6856 \gdef\chapternofonts{\let\write=\skipwrite\oldchapternofonts}
6857 @end tex
6859 @node RPN Answer 1, RPN Answer 2, Answers to Exercises, Answers to Exercises
6860 @subsection RPN Tutorial Exercise 1
6862 @noindent
6863 @kbd{1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -}
6865 The result is 
6866 @texline @math{1 - (2 \times (3 + 4)) = -13}.
6867 @infoline @expr{1 - (2 * (3 + 4)) = -13}.
6869 @node RPN Answer 2, RPN Answer 3, RPN Answer 1, Answers to Exercises
6870 @subsection RPN Tutorial Exercise 2
6872 @noindent
6873 @texline @math{2\times4 + 7\times9.5 + {5\over4} = 75.75}
6874 @infoline @expr{2*4 + 7*9.5 + 5/4 = 75.75}
6876 After computing the intermediate term 
6877 @texline @math{2\times4 = 8},
6878 @infoline @expr{2*4 = 8}, 
6879 you can leave that result on the stack while you compute the second
6880 term.  With both of these results waiting on the stack you can then
6881 compute the final term, then press @kbd{+ +} to add everything up.
6883 @smallexample
6884 @group
6885 2:  2          1:  8          3:  8          2:  8
6886 1:  4              .          2:  7          1:  66.5
6887     .                         1:  9.5            .
6888                                   .
6890   2 @key{RET} 4          *          7 @key{RET} 9.5          *
6892 @end group
6893 @end smallexample
6894 @noindent
6895 @smallexample
6896 @group
6897 4:  8          3:  8          2:  8          1:  75.75
6898 3:  66.5       2:  66.5       1:  67.75          .
6899 2:  5          1:  1.25           .
6900 1:  4              .
6901     .
6903   5 @key{RET} 4          /              +              +
6904 @end group
6905 @end smallexample
6907 Alternatively, you could add the first two terms before going on
6908 with the third term.
6910 @smallexample
6911 @group
6912 2:  8          1:  74.5       3:  74.5       2:  74.5       1:  75.75
6913 1:  66.5           .          2:  5          1:  1.25           .
6914     .                         1:  4              .
6915                                   .
6917    ...             +            5 @key{RET} 4          /              +
6918 @end group
6919 @end smallexample
6921 On an old-style RPN calculator this second method would have the
6922 advantage of using only three stack levels.  But since Calc's stack
6923 can grow arbitrarily large this isn't really an issue.  Which method
6924 you choose is purely a matter of taste.
6926 @node RPN Answer 3, RPN Answer 4, RPN Answer 2, Answers to Exercises
6927 @subsection RPN Tutorial Exercise 3
6929 @noindent
6930 The @key{TAB} key provides a way to operate on the number in level 2.
6932 @smallexample
6933 @group
6934 3:  10         3:  10         4:  10         3:  10         3:  10
6935 2:  20         2:  30         3:  30         2:  30         2:  21
6936 1:  30         1:  20         2:  20         1:  21         1:  30
6937     .              .          1:  1              .              .
6938                                   .
6940                   @key{TAB}             1              +             @key{TAB}
6941 @end group
6942 @end smallexample
6944 Similarly, @kbd{M-@key{TAB}} gives you access to the number in level 3.
6946 @smallexample
6947 @group
6948 3:  10         3:  21         3:  21         3:  30         3:  11
6949 2:  21         2:  30         2:  30         2:  11         2:  21
6950 1:  30         1:  10         1:  11         1:  21         1:  30
6951     .              .              .              .              .
6953                   M-@key{TAB}           1 +           M-@key{TAB}          M-@key{TAB}
6954 @end group
6955 @end smallexample
6957 @node RPN Answer 4, Algebraic Answer 1, RPN Answer 3, Answers to Exercises
6958 @subsection RPN Tutorial Exercise 4
6960 @noindent
6961 Either @kbd{( 2 , 3 )} or @kbd{( 2 @key{SPC} 3 )} would have worked,
6962 but using both the comma and the space at once yields:
6964 @smallexample
6965 @group
6966 1:  ( ...      2:  ( ...      1:  (2, ...    2:  (2, ...    2:  (2, ...
6967     .          1:  2              .          1:  (2, ...    1:  (2, 3)
6968                    .                             .              .
6970     (              2              ,             @key{SPC}            3 )
6971 @end group
6972 @end smallexample
6974 Joe probably tried to type @kbd{@key{TAB} @key{DEL}} to swap the
6975 extra incomplete object to the top of the stack and delete it.
6976 But a feature of Calc is that @key{DEL} on an incomplete object
6977 deletes just one component out of that object, so he had to press
6978 @key{DEL} twice to finish the job.
6980 @smallexample
6981 @group
6982 2:  (2, ...    2:  (2, 3)     2:  (2, 3)     1:  (2, 3)
6983 1:  (2, 3)     1:  (2, ...    1:  ( ...          .
6984     .              .              .
6986                   @key{TAB}            @key{DEL}            @key{DEL}
6987 @end group
6988 @end smallexample
6990 (As it turns out, deleting the second-to-top stack entry happens often
6991 enough that Calc provides a special key, @kbd{M-@key{DEL}}, to do just that.
6992 @kbd{M-@key{DEL}} is just like @kbd{@key{TAB} @key{DEL}}, except that it doesn't exhibit
6993 the ``feature'' that tripped poor Joe.)
6995 @node Algebraic Answer 1, Algebraic Answer 2, RPN Answer 4, Answers to Exercises
6996 @subsection Algebraic Entry Tutorial Exercise 1
6998 @noindent
6999 Type @kbd{' sqrt($) @key{RET}}.
7001 If the @kbd{Q} key is broken, you could use @kbd{' $^0.5 @key{RET}}.
7002 Or, RPN style, @kbd{0.5 ^}.
7004 (Actually, @samp{$^1:2}, using the fraction one-half as the power, is
7005 a closer equivalent, since @samp{9^0.5} yields @expr{3.0} whereas
7006 @samp{sqrt(9)} and @samp{9^1:2} yield the exact integer @expr{3}.)
7008 @node Algebraic Answer 2, Algebraic Answer 3, Algebraic Answer 1, Answers to Exercises
7009 @subsection Algebraic Entry Tutorial Exercise 2
7011 @noindent
7012 In the formula @samp{2 x (1+y)}, @samp{x} was interpreted as a function
7013 name with @samp{1+y} as its argument.  Assigning a value to a variable
7014 has no relation to a function by the same name.  Joe needed to use an
7015 explicit @samp{*} symbol here:  @samp{2 x*(1+y)}.
7017 @node Algebraic Answer 3, Modes Answer 1, Algebraic Answer 2, Answers to Exercises
7018 @subsection Algebraic Entry Tutorial Exercise 3
7020 @noindent
7021 The result from @kbd{1 @key{RET} 0 /} will be the formula @expr{1 / 0}.
7022 The ``function'' @samp{/} cannot be evaluated when its second argument
7023 is zero, so it is left in symbolic form.  When you now type @kbd{0 *},
7024 the result will be zero because Calc uses the general rule that ``zero
7025 times anything is zero.''
7027 @c [fix-ref Infinities]
7028 The @kbd{m i} command enables an @dfn{Infinite mode} in which @expr{1 / 0}
7029 results in a special symbol that represents ``infinity.''  If you
7030 multiply infinity by zero, Calc uses another special new symbol to
7031 show that the answer is ``indeterminate.''  @xref{Infinities}, for
7032 further discussion of infinite and indeterminate values.
7034 @node Modes Answer 1, Modes Answer 2, Algebraic Answer 3, Answers to Exercises
7035 @subsection Modes Tutorial Exercise 1
7037 @noindent
7038 Calc always stores its numbers in decimal, so even though one-third has
7039 an exact base-3 representation (@samp{3#0.1}), it is still stored as
7040 0.3333333 (chopped off after 12 or however many decimal digits) inside
7041 the calculator's memory.  When this inexact number is converted back
7042 to base 3 for display, it may still be slightly inexact.  When we
7043 multiply this number by 3, we get 0.999999, also an inexact value.
7045 When Calc displays a number in base 3, it has to decide how many digits
7046 to show.  If the current precision is 12 (decimal) digits, that corresponds
7047 to @samp{12 / log10(3) = 25.15} base-3 digits.  Because 25.15 is not an
7048 exact integer, Calc shows only 25 digits, with the result that stored
7049 numbers carry a little bit of extra information that may not show up on
7050 the screen.  When Joe entered @samp{3#0.2}, the stored number 0.666666
7051 happened to round to a pleasing value when it lost that last 0.15 of a
7052 digit, but it was still inexact in Calc's memory.  When he divided by 2,
7053 he still got the dreaded inexact value 0.333333.  (Actually, he divided
7054 0.666667 by 2 to get 0.333334, which is why he got something a little
7055 higher than @code{3#0.1} instead of a little lower.)
7057 If Joe didn't want to be bothered with all this, he could have typed
7058 @kbd{M-24 d n} to display with one less digit than the default.  (If
7059 you give @kbd{d n} a negative argument, it uses default-minus-that,
7060 so @kbd{M-- d n} would be an easier way to get the same effect.)  Those
7061 inexact results would still be lurking there, but they would now be
7062 rounded to nice, natural-looking values for display purposes.  (Remember,
7063 @samp{0.022222} in base 3 is like @samp{0.099999} in base 10; rounding
7064 off one digit will round the number up to @samp{0.1}.)  Depending on the
7065 nature of your work, this hiding of the inexactness may be a benefit or
7066 a danger.  With the @kbd{d n} command, Calc gives you the choice.
7068 Incidentally, another consequence of all this is that if you type
7069 @kbd{M-30 d n} to display more digits than are ``really there,''
7070 you'll see garbage digits at the end of the number.  (In decimal
7071 display mode, with decimally-stored numbers, these garbage digits are
7072 always zero so they vanish and you don't notice them.)  Because Calc
7073 rounds off that 0.15 digit, there is the danger that two numbers could
7074 be slightly different internally but still look the same.  If you feel
7075 uneasy about this, set the @kbd{d n} precision to be a little higher
7076 than normal; you'll get ugly garbage digits, but you'll always be able
7077 to tell two distinct numbers apart.
7079 An interesting side note is that most computers store their
7080 floating-point numbers in binary, and convert to decimal for display.
7081 Thus everyday programs have the same problem:  Decimal 0.1 cannot be
7082 represented exactly in binary (try it: @kbd{0.1 d 2}), so @samp{0.1 * 10}
7083 comes out as an inexact approximation to 1 on some machines (though
7084 they generally arrange to hide it from you by rounding off one digit as
7085 we did above).  Because Calc works in decimal instead of binary, you can
7086 be sure that numbers that look exact @emph{are} exact as long as you stay
7087 in decimal display mode.
7089 It's not hard to show that any number that can be represented exactly
7090 in binary, octal, or hexadecimal is also exact in decimal, so the kinds
7091 of problems we saw in this exercise are likely to be severe only when
7092 you use a relatively unusual radix like 3.
7094 @node Modes Answer 2, Modes Answer 3, Modes Answer 1, Answers to Exercises
7095 @subsection Modes Tutorial Exercise 2
7097 If the radix is 15 or higher, we can't use the letter @samp{e} to mark
7098 the exponent because @samp{e} is interpreted as a digit.  When Calc
7099 needs to display scientific notation in a high radix, it writes
7100 @samp{16#F.E8F*16.^15}.  You can enter a number like this as an
7101 algebraic entry.  Also, pressing @kbd{e} without any digits before it
7102 normally types @kbd{1e}, but in a high radix it types @kbd{16.^} and
7103 puts you in algebraic entry:  @kbd{16#f.e8f @key{RET} e 15 @key{RET} *} is another
7104 way to enter this number.
7106 The reason Calc puts a decimal point in the @samp{16.^} is to prevent
7107 huge integers from being generated if the exponent is large (consider
7108 @samp{16#1.23*16^1000}, where we compute @samp{16^1000} as a giant
7109 exact integer and then throw away most of the digits when we multiply
7110 it by the floating-point @samp{16#1.23}).  While this wouldn't normally
7111 matter for display purposes, it could give you a nasty surprise if you
7112 copied that number into a file and later moved it back into Calc.
7114 @node Modes Answer 3, Modes Answer 4, Modes Answer 2, Answers to Exercises
7115 @subsection Modes Tutorial Exercise 3
7117 @noindent
7118 The answer he got was @expr{0.5000000000006399}.
7120 The problem is not that the square operation is inexact, but that the
7121 sine of 45 that was already on the stack was accurate to only 12 places.
7122 Arbitrary-precision calculations still only give answers as good as
7123 their inputs.
7125 The real problem is that there is no 12-digit number which, when
7126 squared, comes out to 0.5 exactly.  The @kbd{f [} and @kbd{f ]}
7127 commands decrease or increase a number by one unit in the last
7128 place (according to the current precision).  They are useful for
7129 determining facts like this.
7131 @smallexample
7132 @group
7133 1:  0.707106781187      1:  0.500000000001
7134     .                       .
7136     45 S                    2 ^
7138 @end group
7139 @end smallexample
7140 @noindent
7141 @smallexample
7142 @group
7143 1:  0.707106781187      1:  0.707106781186      1:  0.499999999999
7144     .                       .                       .
7146     U  @key{DEL}                  f [                     2 ^
7147 @end group
7148 @end smallexample
7150 A high-precision calculation must be carried out in high precision
7151 all the way.  The only number in the original problem which was known
7152 exactly was the quantity 45 degrees, so the precision must be raised
7153 before anything is done after the number 45 has been entered in order
7154 for the higher precision to be meaningful.
7156 @node Modes Answer 4, Arithmetic Answer 1, Modes Answer 3, Answers to Exercises
7157 @subsection Modes Tutorial Exercise 4
7159 @noindent
7160 Many calculations involve real-world quantities, like the width and
7161 height of a piece of wood or the volume of a jar.  Such quantities
7162 can't be measured exactly anyway, and if the data that is input to
7163 a calculation is inexact, doing exact arithmetic on it is a waste
7164 of time.
7166 Fractions become unwieldy after too many calculations have been
7167 done with them.  For example, the sum of the reciprocals of the
7168 integers from 1 to 10 is 7381:2520.  The sum from 1 to 30 is
7169 9304682830147:2329089562800.  After a point it will take a long
7170 time to add even one more term to this sum, but a floating-point
7171 calculation of the sum will not have this problem.
7173 Also, rational numbers cannot express the results of all calculations.
7174 There is no fractional form for the square root of two, so if you type
7175 @w{@kbd{2 Q}}, Calc has no choice but to give you a floating-point answer.
7177 @node Arithmetic Answer 1, Arithmetic Answer 2, Modes Answer 4, Answers to Exercises
7178 @subsection Arithmetic Tutorial Exercise 1
7180 @noindent
7181 Dividing two integers that are larger than the current precision may
7182 give a floating-point result that is inaccurate even when rounded
7183 down to an integer.  Consider @expr{123456789 / 2} when the current
7184 precision is 6 digits.  The true answer is @expr{61728394.5}, but
7185 with a precision of 6 this will be rounded to 
7186 @texline @math{12345700.0/2.0 = 61728500.0}.
7187 @infoline @expr{12345700.@: / 2.@: = 61728500.}.
7188 The result, when converted to an integer, will be off by 106.
7190 Here are two solutions:  Raise the precision enough that the
7191 floating-point round-off error is strictly to the right of the
7192 decimal point.  Or, convert to Fraction mode so that @expr{123456789 / 2}
7193 produces the exact fraction @expr{123456789:2}, which can be rounded
7194 down by the @kbd{F} command without ever switching to floating-point
7195 format.
7197 @node Arithmetic Answer 2, Vector Answer 1, Arithmetic Answer 1, Answers to Exercises
7198 @subsection Arithmetic Tutorial Exercise 2
7200 @noindent
7201 @kbd{27 @key{RET} 9 B} could give the exact result @expr{3:2}, but it
7202 does a floating-point calculation instead and produces @expr{1.5}.
7204 Calc will find an exact result for a logarithm if the result is an integer
7205 or (when in Fraction mode) the reciprocal of an integer.  But there is
7206 no efficient way to search the space of all possible rational numbers
7207 for an exact answer, so Calc doesn't try.
7209 @node Vector Answer 1, Vector Answer 2, Arithmetic Answer 2, Answers to Exercises
7210 @subsection Vector Tutorial Exercise 1
7212 @noindent
7213 Duplicate the vector, compute its length, then divide the vector
7214 by its length:  @kbd{@key{RET} A /}.
7216 @smallexample
7217 @group
7218 1:  [1, 2, 3]  2:  [1, 2, 3]      1:  [0.27, 0.53, 0.80]  1:  1.
7219     .          1:  3.74165738677      .                       .
7220                    .
7222     r 1            @key{RET} A              /                       A
7223 @end group
7224 @end smallexample
7226 The final @kbd{A} command shows that the normalized vector does
7227 indeed have unit length.
7229 @node Vector Answer 2, Matrix Answer 1, Vector Answer 1, Answers to Exercises
7230 @subsection Vector Tutorial Exercise 2
7232 @noindent
7233 The average position is equal to the sum of the products of the
7234 positions times their corresponding probabilities.  This is the
7235 definition of the dot product operation.  So all you need to do
7236 is to put the two vectors on the stack and press @kbd{*}.
7238 @node Matrix Answer 1, Matrix Answer 2, Vector Answer 2, Answers to Exercises
7239 @subsection Matrix Tutorial Exercise 1
7241 @noindent
7242 The trick is to multiply by a vector of ones.  Use @kbd{r 4 [1 1 1] *} to
7243 get the row sum.  Similarly, use @kbd{[1 1] r 4 *} to get the column sum.
7245 @node Matrix Answer 2, Matrix Answer 3, Matrix Answer 1, Answers to Exercises
7246 @subsection Matrix Tutorial Exercise 2
7248 @ifinfo
7249 @example
7250 @group
7251    x + a y = 6
7252    x + b y = 10
7253 @end group
7254 @end example
7255 @end ifinfo
7256 @tex
7257 \turnoffactive
7258 \beforedisplay
7259 $$ \eqalign{ x &+ a y = 6 \cr
7260              x &+ b y = 10}
7262 \afterdisplay
7263 @end tex
7265 Just enter the righthand side vector, then divide by the lefthand side
7266 matrix as usual.
7268 @smallexample
7269 @group
7270 1:  [6, 10]    2:  [6, 10]         1:  [6 - 4 a / (b - a), 4 / (b - a) ]
7271     .          1:  [ [ 1, a ]          .
7272                      [ 1, b ] ]
7273                    .
7275 ' [6 10] @key{RET}     ' [1 a; 1 b] @key{RET}      /
7276 @end group
7277 @end smallexample
7279 This can be made more readable using @kbd{d B} to enable Big display
7280 mode:
7282 @smallexample
7283 @group
7284           4 a     4
7285 1:  [6 - -----, -----]
7286          b - a  b - a
7287 @end group
7288 @end smallexample
7290 Type @kbd{d N} to return to Normal display mode afterwards.
7292 @node Matrix Answer 3, List Answer 1, Matrix Answer 2, Answers to Exercises
7293 @subsection Matrix Tutorial Exercise 3
7295 @noindent
7296 To solve 
7297 @texline @math{A^T A \, X = A^T B},
7298 @infoline @expr{trn(A) * A * X = trn(A) * B}, 
7299 first we compute
7300 @texline @math{A' = A^T A}
7301 @infoline @expr{A2 = trn(A) * A} 
7302 and 
7303 @texline @math{B' = A^T B};
7304 @infoline @expr{B2 = trn(A) * B}; 
7305 now, we have a system 
7306 @texline @math{A' X = B'}
7307 @infoline @expr{A2 * X = B2} 
7308 which we can solve using Calc's @samp{/} command.
7310 @ifinfo
7311 @example
7312 @group
7313     a + 2b + 3c = 6
7314    4a + 5b + 6c = 2
7315    7a + 6b      = 3
7316    2a + 4b + 6c = 11
7317 @end group
7318 @end example
7319 @end ifinfo
7320 @tex
7321 \turnoffactive
7322 \beforedisplayh
7323 $$ \openup1\jot \tabskip=0pt plus1fil
7324 \halign to\displaywidth{\tabskip=0pt
7325    $\hfil#$&$\hfil{}#{}$&
7326    $\hfil#$&$\hfil{}#{}$&
7327    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
7328   a&+&2b&+&3c&=6 \cr
7329  4a&+&5b&+&6c&=2 \cr
7330  7a&+&6b& &  &=3 \cr
7331  2a&+&4b&+&6c&=11 \cr}
7333 \afterdisplayh
7334 @end tex
7336 The first step is to enter the coefficient matrix.  We'll store it in
7337 quick variable number 7 for later reference.  Next, we compute the
7338 @texline @math{B'}
7339 @infoline @expr{B2} 
7340 vector.
7342 @smallexample
7343 @group
7344 1:  [ [ 1, 2, 3 ]             2:  [ [ 1, 4, 7, 2 ]     1:  [57, 84, 96]
7345       [ 4, 5, 6 ]                   [ 2, 5, 6, 4 ]         .
7346       [ 7, 6, 0 ]                   [ 3, 6, 0, 6 ] ]
7347       [ 2, 4, 6 ] ]           1:  [6, 2, 3, 11]
7348     .                             .
7350 ' [1 2 3; 4 5 6; 7 6 0; 2 4 6] @key{RET}  s 7  v t  [6 2 3 11]   *
7351 @end group
7352 @end smallexample
7354 @noindent
7355 Now we compute the matrix 
7356 @texline @math{A'}
7357 @infoline @expr{A2} 
7358 and divide.
7360 @smallexample
7361 @group
7362 2:  [57, 84, 96]          1:  [-11.64, 14.08, -3.64]
7363 1:  [ [ 70, 72, 39 ]          .
7364       [ 72, 81, 60 ]
7365       [ 39, 60, 81 ] ]
7366     .
7368     r 7 v t r 7 *             /
7369 @end group
7370 @end smallexample
7372 @noindent
7373 (The actual computed answer will be slightly inexact due to
7374 round-off error.)
7376 Notice that the answers are similar to those for the 
7377 @texline @math{3\times3}
7378 @infoline 3x3
7379 system solved in the text.  That's because the fourth equation that was 
7380 added to the system is almost identical to the first one multiplied
7381 by two.  (If it were identical, we would have gotten the exact same
7382 answer since the 
7383 @texline @math{4\times3}
7384 @infoline 4x3
7385 system would be equivalent to the original 
7386 @texline @math{3\times3}
7387 @infoline 3x3
7388 system.)
7390 Since the first and fourth equations aren't quite equivalent, they
7391 can't both be satisfied at once.  Let's plug our answers back into
7392 the original system of equations to see how well they match.
7394 @smallexample
7395 @group
7396 2:  [-11.64, 14.08, -3.64]     1:  [5.6, 2., 3., 11.2]
7397 1:  [ [ 1, 2, 3 ]                  .
7398       [ 4, 5, 6 ]
7399       [ 7, 6, 0 ]
7400       [ 2, 4, 6 ] ]
7401     .
7403     r 7                            @key{TAB} *
7404 @end group
7405 @end smallexample
7407 @noindent
7408 This is reasonably close to our original @expr{B} vector,
7409 @expr{[6, 2, 3, 11]}.
7411 @node List Answer 1, List Answer 2, Matrix Answer 3, Answers to Exercises
7412 @subsection List Tutorial Exercise 1
7414 @noindent
7415 We can use @kbd{v x} to build a vector of integers.  This needs to be
7416 adjusted to get the range of integers we desire.  Mapping @samp{-}
7417 across the vector will accomplish this, although it turns out the
7418 plain @samp{-} key will work just as well.
7420 @smallexample
7421 @group
7422 2:  2                              2:  2
7423 1:  [1, 2, 3, 4, 5, 6, 7, 8, 9]    1:  [-4, -3, -2, -1, 0, 1, 2, 3, 4]
7424     .                                  .
7426     2  v x 9 @key{RET}                       5 V M -   or   5 -
7427 @end group
7428 @end smallexample
7430 @noindent
7431 Now we use @kbd{V M ^} to map the exponentiation operator across the
7432 vector.
7434 @smallexample
7435 @group
7436 1:  [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
7437     .
7439     V M ^
7440 @end group
7441 @end smallexample
7443 @node List Answer 2, List Answer 3, List Answer 1, Answers to Exercises
7444 @subsection List Tutorial Exercise 2
7446 @noindent
7447 Given @expr{x} and @expr{y} vectors in quick variables 1 and 2 as before,
7448 the first job is to form the matrix that describes the problem.
7450 @ifinfo
7451 @example
7452    m*x + b*1 = y
7453 @end example
7454 @end ifinfo
7455 @tex
7456 \turnoffactive
7457 \beforedisplay
7458 $$ m \times x + b \times 1 = y $$
7459 \afterdisplay
7460 @end tex
7462 Thus we want a 
7463 @texline @math{19\times2}
7464 @infoline 19x2
7465 matrix with our @expr{x} vector as one column and
7466 ones as the other column.  So, first we build the column of ones, then
7467 we combine the two columns to form our @expr{A} matrix.
7469 @smallexample
7470 @group
7471 2:  [1.34, 1.41, 1.49, ... ]    1:  [ [ 1.34, 1 ]
7472 1:  [1, 1, 1, ...]                    [ 1.41, 1 ]
7473     .                                 [ 1.49, 1 ]
7474                                       @dots{}
7476     r 1 1 v b 19 @key{RET}                M-2 v p v t   s 3
7477 @end group
7478 @end smallexample
7480 @noindent
7481 Now we compute 
7482 @texline @math{A^T y}
7483 @infoline @expr{trn(A) * y} 
7484 and 
7485 @texline @math{A^T A}
7486 @infoline @expr{trn(A) * A} 
7487 and divide.
7489 @smallexample
7490 @group
7491 1:  [33.36554, 13.613]    2:  [33.36554, 13.613]
7492     .                     1:  [ [ 98.0003, 41.63 ]
7493                                 [  41.63,   19   ] ]
7494                               .
7496  v t r 2 *                    r 3 v t r 3 *
7497 @end group
7498 @end smallexample
7500 @noindent
7501 (Hey, those numbers look familiar!)
7503 @smallexample
7504 @group
7505 1:  [0.52141679, -0.425978]
7506     .
7508     /
7509 @end group
7510 @end smallexample
7512 Since we were solving equations of the form 
7513 @texline @math{m \times x + b \times 1 = y},
7514 @infoline @expr{m*x + b*1 = y}, 
7515 these numbers should be @expr{m} and @expr{b}, respectively.  Sure
7516 enough, they agree exactly with the result computed using @kbd{V M} and
7517 @kbd{V R}!
7519 The moral of this story:  @kbd{V M} and @kbd{V R} will probably solve
7520 your problem, but there is often an easier way using the higher-level
7521 arithmetic functions!
7523 @c [fix-ref Curve Fitting]
7524 In fact, there is a built-in @kbd{a F} command that does least-squares
7525 fits.  @xref{Curve Fitting}.
7527 @node List Answer 3, List Answer 4, List Answer 2, Answers to Exercises
7528 @subsection List Tutorial Exercise 3
7530 @noindent
7531 Move to one end of the list and press @kbd{C-@@} (or @kbd{C-@key{SPC}} or
7532 whatever) to set the mark, then move to the other end of the list
7533 and type @w{@kbd{M-# g}}.
7535 @smallexample
7536 @group
7537 1:  [2.3, 6, 22, 15.1, 7, 15, 14, 7.5, 2.5]
7538     .
7539 @end group
7540 @end smallexample
7542 To make things interesting, let's assume we don't know at a glance
7543 how many numbers are in this list.  Then we could type:
7545 @smallexample
7546 @group
7547 2:  [2.3, 6, 22, ... ]     2:  [2.3, 6, 22, ... ]
7548 1:  [2.3, 6, 22, ... ]     1:  126356422.5
7549     .                          .
7551     @key{RET}                        V R *
7553 @end group
7554 @end smallexample
7555 @noindent
7556 @smallexample
7557 @group
7558 2:  126356422.5            2:  126356422.5     1:  7.94652913734
7559 1:  [2.3, 6, 22, ... ]     1:  9                   .
7560     .                          .
7562     @key{TAB}                        v l                 I ^
7563 @end group
7564 @end smallexample
7566 @noindent
7567 (The @kbd{I ^} command computes the @var{n}th root of a number.
7568 You could also type @kbd{& ^} to take the reciprocal of 9 and
7569 then raise the number to that power.)
7571 @node List Answer 4, List Answer 5, List Answer 3, Answers to Exercises
7572 @subsection List Tutorial Exercise 4
7574 @noindent
7575 A number @expr{j} is a divisor of @expr{n} if 
7576 @texline @math{n \mathbin{\hbox{\code{\%}}} j = 0}.
7577 @infoline @samp{n % j = 0}.  
7578 The first step is to get a vector that identifies the divisors.
7580 @smallexample
7581 @group
7582 2:  30                  2:  [0, 0, 0, 2, ...]    1:  [1, 1, 1, 0, ...]
7583 1:  [1, 2, 3, 4, ...]   1:  0                        .
7584     .                       .
7586  30 @key{RET} v x 30 @key{RET}   s 1    V M %  0                 V M a =  s 2
7587 @end group
7588 @end smallexample
7590 @noindent
7591 This vector has 1's marking divisors of 30 and 0's marking non-divisors.
7593 The zeroth divisor function is just the total number of divisors.
7594 The first divisor function is the sum of the divisors.
7596 @smallexample
7597 @group
7598 1:  8      3:  8                    2:  8                    2:  8
7599            2:  [1, 2, 3, 4, ...]    1:  [1, 2, 3, 0, ...]    1:  72
7600            1:  [1, 1, 1, 0, ...]        .                        .
7601                .
7603    V R +       r 1 r 2                  V M *                  V R +
7604 @end group
7605 @end smallexample
7607 @noindent
7608 Once again, the last two steps just compute a dot product for which
7609 a simple @kbd{*} would have worked equally well.
7611 @node List Answer 5, List Answer 6, List Answer 4, Answers to Exercises
7612 @subsection List Tutorial Exercise 5
7614 @noindent
7615 The obvious first step is to obtain the list of factors with @kbd{k f}.
7616 This list will always be in sorted order, so if there are duplicates
7617 they will be right next to each other.  A suitable method is to compare
7618 the list with a copy of itself shifted over by one.
7620 @smallexample
7621 @group
7622 1:  [3, 7, 7, 7, 19]   2:  [3, 7, 7, 7, 19]     2:  [3, 7, 7, 7, 19, 0]
7623     .                  1:  [3, 7, 7, 7, 19, 0]  1:  [0, 3, 7, 7, 7, 19]
7624                            .                        .
7626     19551 k f              @key{RET} 0 |                  @key{TAB} 0 @key{TAB} |
7628 @end group
7629 @end smallexample
7630 @noindent
7631 @smallexample
7632 @group
7633 1:  [0, 0, 1, 1, 0, 0]   1:  2          1:  0
7634     .                        .              .
7636     V M a =                  V R +          0 a =
7637 @end group
7638 @end smallexample
7640 @noindent
7641 Note that we have to arrange for both vectors to have the same length
7642 so that the mapping operation works; no prime factor will ever be
7643 zero, so adding zeros on the left and right is safe.  From then on
7644 the job is pretty straightforward.
7646 Incidentally, Calc provides the 
7647 @texline @dfn{M@"obius} @math{\mu}
7648 @infoline @dfn{Moebius mu} 
7649 function which is zero if and only if its argument is square-free.  It
7650 would be a much more convenient way to do the above test in practice.
7652 @node List Answer 6, List Answer 7, List Answer 5, Answers to Exercises
7653 @subsection List Tutorial Exercise 6
7655 @noindent
7656 First use @kbd{v x 6 @key{RET}} to get a list of integers, then @kbd{V M v x}
7657 to get a list of lists of integers!
7659 @node List Answer 7, List Answer 8, List Answer 6, Answers to Exercises
7660 @subsection List Tutorial Exercise 7
7662 @noindent
7663 Here's one solution.  First, compute the triangular list from the previous
7664 exercise and type @kbd{1 -} to subtract one from all the elements.
7666 @smallexample
7667 @group
7668 1:  [ [0],
7669       [0, 1],
7670       [0, 1, 2],
7671       @dots{}
7673     1 -
7674 @end group
7675 @end smallexample
7677 The numbers down the lefthand edge of the list we desire are called
7678 the ``triangular numbers'' (now you know why!).  The @expr{n}th
7679 triangular number is the sum of the integers from 1 to @expr{n}, and
7680 can be computed directly by the formula 
7681 @texline @math{n (n+1) \over 2}.
7682 @infoline @expr{n * (n+1) / 2}.
7684 @smallexample
7685 @group
7686 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7687 1:  [0, 1, 2, 3, 4, 5]      1:  [0, 1, 3, 6, 10, 15]
7688     .                           .
7690     v x 6 @key{RET} 1 -               V M ' $ ($+1)/2 @key{RET}
7691 @end group
7692 @end smallexample
7694 @noindent
7695 Adding this list to the above list of lists produces the desired
7696 result:
7698 @smallexample
7699 @group
7700 1:  [ [0],
7701       [1, 2],
7702       [3, 4, 5],
7703       [6, 7, 8, 9],
7704       [10, 11, 12, 13, 14],
7705       [15, 16, 17, 18, 19, 20] ]
7706       .
7708       V M +
7709 @end group
7710 @end smallexample
7712 If we did not know the formula for triangular numbers, we could have
7713 computed them using a @kbd{V U +} command.  We could also have
7714 gotten them the hard way by mapping a reduction across the original
7715 triangular list.
7717 @smallexample
7718 @group
7719 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7720 1:  [ [0], [0, 1], ... ]    1:  [0, 1, 3, 6, 10, 15]
7721     .                           .
7723     @key{RET}                         V M V R +
7724 @end group
7725 @end smallexample
7727 @noindent
7728 (This means ``map a @kbd{V R +} command across the vector,'' and
7729 since each element of the main vector is itself a small vector,
7730 @kbd{V R +} computes the sum of its elements.)
7732 @node List Answer 8, List Answer 9, List Answer 7, Answers to Exercises
7733 @subsection List Tutorial Exercise 8
7735 @noindent
7736 The first step is to build a list of values of @expr{x}.
7738 @smallexample
7739 @group
7740 1:  [1, 2, 3, ..., 21]  1:  [0, 1, 2, ..., 20]  1:  [0, 0.25, 0.5, ..., 5]
7741     .                       .                       .
7743     v x 21 @key{RET}              1 -                     4 /  s 1
7744 @end group
7745 @end smallexample
7747 Next, we compute the Bessel function values.
7749 @smallexample
7750 @group
7751 1:  [0., 0.124, 0.242, ..., -0.328]
7752     .
7754     V M ' besJ(1,$) @key{RET}
7755 @end group
7756 @end smallexample
7758 @noindent
7759 (Another way to do this would be @kbd{1 @key{TAB} V M f j}.)
7761 A way to isolate the maximum value is to compute the maximum using
7762 @kbd{V R X}, then compare all the Bessel values with that maximum.
7764 @smallexample
7765 @group
7766 2:  [0., 0.124, 0.242, ... ]   1:  [0, 0, 0, ... ]    2:  [0, 0, 0, ... ]
7767 1:  0.5801562                      .                  1:  1
7768     .                                                     .
7770     @key{RET} V R X                      V M a =                @key{RET} V R +    @key{DEL}
7771 @end group
7772 @end smallexample
7774 @noindent
7775 It's a good idea to verify, as in the last step above, that only
7776 one value is equal to the maximum.  (After all, a plot of 
7777 @texline @math{\sin x}
7778 @infoline @expr{sin(x)}
7779 might have many points all equal to the maximum value, 1.)
7781 The vector we have now has a single 1 in the position that indicates
7782 the maximum value of @expr{x}.  Now it is a simple matter to convert
7783 this back into the corresponding value itself.
7785 @smallexample
7786 @group
7787 2:  [0, 0, 0, ... ]         1:  [0, 0., 0., ... ]    1:  1.75
7788 1:  [0, 0.25, 0.5, ... ]        .                        .
7789     .
7791     r 1                         V M *                    V R +
7792 @end group
7793 @end smallexample
7795 If @kbd{a =} had produced more than one @expr{1} value, this method
7796 would have given the sum of all maximum @expr{x} values; not very
7797 useful!  In this case we could have used @kbd{v m} (@code{calc-mask-vector})
7798 instead.  This command deletes all elements of a ``data'' vector that
7799 correspond to zeros in a ``mask'' vector, leaving us with, in this
7800 example, a vector of maximum @expr{x} values.
7802 The built-in @kbd{a X} command maximizes a function using more
7803 efficient methods.  Just for illustration, let's use @kbd{a X}
7804 to maximize @samp{besJ(1,x)} over this same interval.
7806 @smallexample
7807 @group
7808 2:  besJ(1, x)                 1:  [1.84115, 0.581865]
7809 1:  [0 .. 5]                       .
7810     .
7812 ' besJ(1,x), [0..5] @key{RET}            a X x @key{RET}
7813 @end group
7814 @end smallexample
7816 @noindent
7817 The output from @kbd{a X} is a vector containing the value of @expr{x}
7818 that maximizes the function, and the function's value at that maximum.
7819 As you can see, our simple search got quite close to the right answer.
7821 @node List Answer 9, List Answer 10, List Answer 8, Answers to Exercises
7822 @subsection List Tutorial Exercise 9
7824 @noindent
7825 Step one is to convert our integer into vector notation.
7827 @smallexample
7828 @group
7829 1:  25129925999           3:  25129925999
7830     .                     2:  10
7831                           1:  [11, 10, 9, ..., 1, 0]
7832                               .
7834     25129925999 @key{RET}           10 @key{RET} 12 @key{RET} v x 12 @key{RET} -
7836 @end group
7837 @end smallexample
7838 @noindent
7839 @smallexample
7840 @group
7841 1:  25129925999              1:  [0, 2, 25, 251, 2512, ... ]
7842 2:  [100000000000, ... ]         .
7843     .
7845     V M ^   s 1                  V M \
7846 @end group
7847 @end smallexample
7849 @noindent
7850 (Recall, the @kbd{\} command computes an integer quotient.)
7852 @smallexample
7853 @group
7854 1:  [0, 2, 5, 1, 2, 9, 9, 2, 5, 9, 9, 9]
7855     .
7857     10 V M %   s 2
7858 @end group
7859 @end smallexample
7861 Next we must increment this number.  This involves adding one to
7862 the last digit, plus handling carries.  There is a carry to the
7863 left out of a digit if that digit is a nine and all the digits to
7864 the right of it are nines.
7866 @smallexample
7867 @group
7868 1:  [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1]   1:  [1, 1, 1, 0, 0, 1, ... ]
7869     .                                          .
7871     9 V M a =                                  v v
7873 @end group
7874 @end smallexample
7875 @noindent
7876 @smallexample
7877 @group
7878 1:  [1, 1, 1, 0, 0, 0, ... ]   1:  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
7879     .                              .
7881     V U *                          v v 1 |
7882 @end group
7883 @end smallexample
7885 @noindent
7886 Accumulating @kbd{*} across a vector of ones and zeros will preserve
7887 only the initial run of ones.  These are the carries into all digits
7888 except the rightmost digit.  Concatenating a one on the right takes
7889 care of aligning the carries properly, and also adding one to the
7890 rightmost digit.
7892 @smallexample
7893 @group
7894 2:  [0, 0, 0, 0, ... ]     1:  [0, 0, 2, 5, 1, 2, 9, 9, 2, 6, 0, 0, 0]
7895 1:  [0, 0, 2, 5, ... ]         .
7896     .
7898     0 r 2 |                    V M +  10 V M %
7899 @end group
7900 @end smallexample
7902 @noindent
7903 Here we have concatenated 0 to the @emph{left} of the original number;
7904 this takes care of shifting the carries by one with respect to the
7905 digits that generated them.
7907 Finally, we must convert this list back into an integer.
7909 @smallexample
7910 @group
7911 3:  [0, 0, 2, 5, ... ]        2:  [0, 0, 2, 5, ... ]
7912 2:  1000000000000             1:  [1000000000000, 100000000000, ... ]
7913 1:  [100000000000, ... ]          .
7914     .
7916     10 @key{RET} 12 ^  r 1              |
7918 @end group
7919 @end smallexample
7920 @noindent
7921 @smallexample
7922 @group
7923 1:  [0, 0, 20000000000, 5000000000, ... ]    1:  25129926000
7924     .                                            .
7926     V M *                                        V R +
7927 @end group
7928 @end smallexample
7930 @noindent
7931 Another way to do this final step would be to reduce the formula
7932 @w{@samp{10 $$ + $}} across the vector of digits.
7934 @smallexample
7935 @group
7936 1:  [0, 0, 2, 5, ... ]        1:  25129926000
7937     .                             .
7939                                   V R ' 10 $$ + $ @key{RET}
7940 @end group
7941 @end smallexample
7943 @node List Answer 10, List Answer 11, List Answer 9, Answers to Exercises
7944 @subsection List Tutorial Exercise 10
7946 @noindent
7947 For the list @expr{[a, b, c, d]}, the result is @expr{((a = b) = c) = d},
7948 which will compare @expr{a} and @expr{b} to produce a 1 or 0, which is
7949 then compared with @expr{c} to produce another 1 or 0, which is then
7950 compared with @expr{d}.  This is not at all what Joe wanted.
7952 Here's a more correct method:
7954 @smallexample
7955 @group
7956 1:  [7, 7, 7, 8, 7]      2:  [7, 7, 7, 8, 7]
7957     .                    1:  7
7958                              .
7960   ' [7,7,7,8,7] @key{RET}          @key{RET} v r 1 @key{RET}
7962 @end group
7963 @end smallexample
7964 @noindent
7965 @smallexample
7966 @group
7967 1:  [1, 1, 1, 0, 1]      1:  0
7968     .                        .
7970     V M a =                  V R *
7971 @end group
7972 @end smallexample
7974 @node List Answer 11, List Answer 12, List Answer 10, Answers to Exercises
7975 @subsection List Tutorial Exercise 11
7977 @noindent
7978 The circle of unit radius consists of those points @expr{(x,y)} for which
7979 @expr{x^2 + y^2 < 1}.  We start by generating a vector of @expr{x^2}
7980 and a vector of @expr{y^2}.
7982 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7983 commands.
7985 @smallexample
7986 @group
7987 2:  [2., 2., ..., 2.]          2:  [2., 2., ..., 2.]
7988 1:  [2., 2., ..., 2.]          1:  [1.16, 1.98, ..., 0.81]
7989     .                              .
7991  v . t .  2. v b 100 @key{RET} @key{RET}       V M k r
7993 @end group
7994 @end smallexample
7995 @noindent
7996 @smallexample
7997 @group
7998 2:  [2., 2., ..., 2.]          1:  [0.026, 0.96, ..., 0.036]
7999 1:  [0.026, 0.96, ..., 0.036]  2:  [0.53, 0.81, ..., 0.094]
8000     .                              .
8002     1 -  2 V M ^                   @key{TAB}  V M k r  1 -  2 V M ^
8003 @end group
8004 @end smallexample
8006 Now we sum the @expr{x^2} and @expr{y^2} values, compare with 1 to
8007 get a vector of 1/0 truth values, then sum the truth values.
8009 @smallexample
8010 @group
8011 1:  [0.56, 1.78, ..., 0.13]    1:  [1, 0, ..., 1]    1:  84
8012     .                              .                     .
8014     +                              1 V M a <             V R +
8015 @end group
8016 @end smallexample
8018 @noindent
8019 The ratio @expr{84/100} should approximate the ratio @cpiover{4}.
8021 @smallexample
8022 @group
8023 1:  0.84       1:  3.36       2:  3.36       1:  1.0695
8024     .              .          1:  3.14159        .
8026     100 /          4 *            P              /
8027 @end group
8028 @end smallexample
8030 @noindent
8031 Our estimate, 3.36, is off by about 7%.  We could get a better estimate
8032 by taking more points (say, 1000), but it's clear that this method is
8033 not very efficient!
8035 (Naturally, since this example uses random numbers your own answer
8036 will be slightly different from the one shown here!)
8038 If you typed @kbd{v .} and @kbd{t .} before, type them again to
8039 return to full-sized display of vectors.
8041 @node List Answer 12, List Answer 13, List Answer 11, Answers to Exercises
8042 @subsection List Tutorial Exercise 12
8044 @noindent
8045 This problem can be made a lot easier by taking advantage of some
8046 symmetries.  First of all, after some thought it's clear that the
8047 @expr{y} axis can be ignored altogether.  Just pick a random @expr{x}
8048 component for one end of the match, pick a random direction 
8049 @texline @math{\theta},
8050 @infoline @expr{theta},
8051 and see if @expr{x} and 
8052 @texline @math{x + \cos \theta}
8053 @infoline @expr{x + cos(theta)} 
8054 (which is the @expr{x} coordinate of the other endpoint) cross a line.
8055 The lines are at integer coordinates, so this happens when the two
8056 numbers surround an integer.
8058 Since the two endpoints are equivalent, we may as well choose the leftmost
8059 of the two endpoints as @expr{x}.  Then @expr{theta} is an angle pointing
8060 to the right, in the range -90 to 90 degrees.  (We could use radians, but
8061 it would feel like cheating to refer to @cpiover{2} radians while trying
8062 to estimate @cpi{}!)
8064 In fact, since the field of lines is infinite we can choose the
8065 coordinates 0 and 1 for the lines on either side of the leftmost
8066 endpoint.  The rightmost endpoint will be between 0 and 1 if the
8067 match does not cross a line, or between 1 and 2 if it does.  So:
8068 Pick random @expr{x} and 
8069 @texline @math{\theta},
8070 @infoline @expr{theta}, 
8071 compute
8072 @texline @math{x + \cos \theta},
8073 @infoline @expr{x + cos(theta)},
8074 and count how many of the results are greater than one.  Simple!
8076 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
8077 commands.
8079 @smallexample
8080 @group
8081 1:  [0.52, 0.71, ..., 0.72]    2:  [0.52, 0.71, ..., 0.72]
8082     .                          1:  [78.4, 64.5, ..., -42.9]
8083                                    .
8085 v . t . 1. v b 100 @key{RET}  V M k r    180. v b 100 @key{RET}  V M k r  90 -
8086 @end group
8087 @end smallexample
8089 @noindent
8090 (The next step may be slow, depending on the speed of your computer.)
8092 @smallexample
8093 @group
8094 2:  [0.52, 0.71, ..., 0.72]    1:  [0.72, 1.14, ..., 1.45]
8095 1:  [0.20, 0.43, ..., 0.73]        .
8096     .
8098     m d  V M C                     +
8100 @end group
8101 @end smallexample
8102 @noindent
8103 @smallexample
8104 @group
8105 1:  [0, 1, ..., 1]       1:  0.64            1:  3.125
8106     .                        .                   .
8108     1 V M a >                V R + 100 /         2 @key{TAB} /
8109 @end group
8110 @end smallexample
8112 Let's try the third method, too.  We'll use random integers up to
8113 one million.  The @kbd{k r} command with an integer argument picks
8114 a random integer.
8116 @smallexample
8117 @group
8118 2:  [1000000, 1000000, ..., 1000000]   2:  [78489, 527587, ..., 814975]
8119 1:  [1000000, 1000000, ..., 1000000]   1:  [324014, 358783, ..., 955450]
8120     .                                      .
8122     1000000 v b 100 @key{RET} @key{RET}                V M k r  @key{TAB}  V M k r
8124 @end group
8125 @end smallexample
8126 @noindent
8127 @smallexample
8128 @group
8129 1:  [1, 1, ..., 25]      1:  [1, 1, ..., 0]     1:  0.56
8130     .                        .                      .
8132     V M k g                  1 V M a =              V R + 100 /
8134 @end group
8135 @end smallexample
8136 @noindent
8137 @smallexample
8138 @group
8139 1:  10.714        1:  3.273
8140     .                 .
8142     6 @key{TAB} /           Q
8143 @end group
8144 @end smallexample
8146 For a proof of this property of the GCD function, see section 4.5.2,
8147 exercise 10, of Knuth's @emph{Art of Computer Programming}, volume II.
8149 If you typed @kbd{v .} and @kbd{t .} before, type them again to
8150 return to full-sized display of vectors.
8152 @node List Answer 13, List Answer 14, List Answer 12, Answers to Exercises
8153 @subsection List Tutorial Exercise 13
8155 @noindent
8156 First, we put the string on the stack as a vector of ASCII codes.
8158 @smallexample
8159 @group
8160 1:  [84, 101, 115, ..., 51]
8161     .
8163     "Testing, 1, 2, 3 @key{RET}
8164 @end group
8165 @end smallexample
8167 @noindent
8168 Note that the @kbd{"} key, like @kbd{$}, initiates algebraic entry so
8169 there was no need to type an apostrophe.  Also, Calc didn't mind that
8170 we omitted the closing @kbd{"}.  (The same goes for all closing delimiters
8171 like @kbd{)} and @kbd{]} at the end of a formula.
8173 We'll show two different approaches here.  In the first, we note that
8174 if the input vector is @expr{[a, b, c, d]}, then the hash code is
8175 @expr{3 (3 (3a + b) + c) + d = 27a + 9b + 3c + d}.  In other words,
8176 it's a sum of descending powers of three times the ASCII codes.
8178 @smallexample
8179 @group
8180 2:  [84, 101, 115, ..., 51]    2:  [84, 101, 115, ..., 51]
8181 1:  16                         1:  [15, 14, 13, ..., 0]
8182     .                              .
8184     @key{RET} v l                        v x 16 @key{RET} -
8186 @end group
8187 @end smallexample
8188 @noindent
8189 @smallexample
8190 @group
8191 2:  [84, 101, 115, ..., 51]    1:  1960915098    1:  121
8192 1:  [14348907, ..., 1]             .                 .
8193     .
8195     3 @key{TAB} V M ^                    *                 511 %
8196 @end group
8197 @end smallexample
8199 @noindent
8200 Once again, @kbd{*} elegantly summarizes most of the computation.
8201 But there's an even more elegant approach:  Reduce the formula
8202 @kbd{3 $$ + $} across the vector.  Recall that this represents a
8203 function of two arguments that computes its first argument times three
8204 plus its second argument.
8206 @smallexample
8207 @group
8208 1:  [84, 101, 115, ..., 51]    1:  1960915098
8209     .                              .
8211     "Testing, 1, 2, 3 @key{RET}          V R ' 3$$+$ @key{RET}
8212 @end group
8213 @end smallexample
8215 @noindent
8216 If you did the decimal arithmetic exercise, this will be familiar.
8217 Basically, we're turning a base-3 vector of digits into an integer,
8218 except that our ``digits'' are much larger than real digits.
8220 Instead of typing @kbd{511 %} again to reduce the result, we can be
8221 cleverer still and notice that rather than computing a huge integer
8222 and taking the modulo at the end, we can take the modulo at each step
8223 without affecting the result.  While this means there are more
8224 arithmetic operations, the numbers we operate on remain small so
8225 the operations are faster.
8227 @smallexample
8228 @group
8229 1:  [84, 101, 115, ..., 51]    1:  121
8230     .                              .
8232     "Testing, 1, 2, 3 @key{RET}          V R ' (3$$+$)%511 @key{RET}
8233 @end group
8234 @end smallexample
8236 Why does this work?  Think about a two-step computation:
8237 @w{@expr{3 (3a + b) + c}}.  Taking a result modulo 511 basically means
8238 subtracting off enough 511's to put the result in the desired range.
8239 So the result when we take the modulo after every step is,
8241 @ifinfo
8242 @example
8243 3 (3 a + b - 511 m) + c - 511 n
8244 @end example
8245 @end ifinfo
8246 @tex
8247 \turnoffactive
8248 \beforedisplay
8249 $$ 3 (3 a + b - 511 m) + c - 511 n $$
8250 \afterdisplay
8251 @end tex
8253 @noindent
8254 for some suitable integers @expr{m} and @expr{n}.  Expanding out by
8255 the distributive law yields
8257 @ifinfo
8258 @example
8259 9 a + 3 b + c - 511*3 m - 511 n
8260 @end example
8261 @end ifinfo
8262 @tex
8263 \turnoffactive
8264 \beforedisplay
8265 $$ 9 a + 3 b + c - 511\times3 m - 511 n $$
8266 \afterdisplay
8267 @end tex
8269 @noindent
8270 The @expr{m} term in the latter formula is redundant because any
8271 contribution it makes could just as easily be made by the @expr{n}
8272 term.  So we can take it out to get an equivalent formula with
8273 @expr{n' = 3m + n},
8275 @ifinfo
8276 @example
8277 9 a + 3 b + c - 511 n'
8278 @end example
8279 @end ifinfo
8280 @tex
8281 \turnoffactive
8282 \beforedisplay
8283 $$ 9 a + 3 b + c - 511 n' $$
8284 \afterdisplay
8285 @end tex
8287 @noindent
8288 which is just the formula for taking the modulo only at the end of
8289 the calculation.  Therefore the two methods are essentially the same.
8291 Later in the tutorial we will encounter @dfn{modulo forms}, which
8292 basically automate the idea of reducing every intermediate result
8293 modulo some value @var{m}.
8295 @node List Answer 14, Types Answer 1, List Answer 13, Answers to Exercises
8296 @subsection List Tutorial Exercise 14
8298 We want to use @kbd{H V U} to nest a function which adds a random
8299 step to an @expr{(x,y)} coordinate.  The function is a bit long, but
8300 otherwise the problem is quite straightforward.
8302 @smallexample
8303 @group
8304 2:  [0, 0]     1:  [ [    0,       0    ]
8305 1:  50               [  0.4288, -0.1695 ]
8306     .                [ -0.4787, -0.9027 ]
8307                      ...
8309     [0,0] 50       H V U ' <# + [random(2.0)-1, random(2.0)-1]> @key{RET}
8310 @end group
8311 @end smallexample
8313 Just as the text recommended, we used @samp{< >} nameless function
8314 notation to keep the two @code{random} calls from being evaluated
8315 before nesting even begins.
8317 We now have a vector of @expr{[x, y]} sub-vectors, which by Calc's
8318 rules acts like a matrix.  We can transpose this matrix and unpack
8319 to get a pair of vectors, @expr{x} and @expr{y}, suitable for graphing.
8321 @smallexample
8322 @group
8323 2:  [ 0, 0.4288, -0.4787, ... ]
8324 1:  [ 0, -0.1696, -0.9027, ... ]
8325     .
8327     v t  v u  g f
8328 @end group
8329 @end smallexample
8331 Incidentally, because the @expr{x} and @expr{y} are completely
8332 independent in this case, we could have done two separate commands
8333 to create our @expr{x} and @expr{y} vectors of numbers directly.
8335 To make a random walk of unit steps, we note that @code{sincos} of
8336 a random direction exactly gives us an @expr{[x, y]} step of unit
8337 length; in fact, the new nesting function is even briefer, though
8338 we might want to lower the precision a bit for it.
8340 @smallexample
8341 @group
8342 2:  [0, 0]     1:  [ [    0,      0    ]
8343 1:  50               [  0.1318, 0.9912 ]
8344     .                [ -0.5965, 0.3061 ]
8345                      ...
8347     [0,0] 50   m d  p 6 @key{RET}   H V U ' <# + sincos(random(360.0))> @key{RET}
8348 @end group
8349 @end smallexample
8351 Another @kbd{v t v u g f} sequence will graph this new random walk.
8353 An interesting twist on these random walk functions would be to use
8354 complex numbers instead of 2-vectors to represent points on the plane.
8355 In the first example, we'd use something like @samp{random + random*(0,1)},
8356 and in the second we could use polar complex numbers with random phase
8357 angles.  (This exercise was first suggested in this form by Randal
8358 Schwartz.)
8360 @node Types Answer 1, Types Answer 2, List Answer 14, Answers to Exercises
8361 @subsection Types Tutorial Exercise 1
8363 @noindent
8364 If the number is the square root of @cpi{} times a rational number,
8365 then its square, divided by @cpi{}, should be a rational number.
8367 @smallexample
8368 @group
8369 1:  1.26508260337    1:  0.509433962268   1:  2486645810:4881193627
8370     .                    .                    .
8372                          2 ^ P /              c F
8373 @end group
8374 @end smallexample
8376 @noindent
8377 Technically speaking this is a rational number, but not one that is
8378 likely to have arisen in the original problem.  More likely, it just
8379 happens to be the fraction which most closely represents some
8380 irrational number to within 12 digits.
8382 But perhaps our result was not quite exact.  Let's reduce the
8383 precision slightly and try again:
8385 @smallexample
8386 @group
8387 1:  0.509433962268     1:  27:53
8388     .                      .
8390     U p 10 @key{RET}             c F
8391 @end group
8392 @end smallexample
8394 @noindent
8395 Aha!  It's unlikely that an irrational number would equal a fraction
8396 this simple to within ten digits, so our original number was probably
8397 @texline @math{\sqrt{27 \pi / 53}}.
8398 @infoline @expr{sqrt(27 pi / 53)}.
8400 Notice that we didn't need to re-round the number when we reduced the
8401 precision.  Remember, arithmetic operations always round their inputs
8402 to the current precision before they begin.
8404 @node Types Answer 2, Types Answer 3, Types Answer 1, Answers to Exercises
8405 @subsection Types Tutorial Exercise 2
8407 @noindent
8408 @samp{inf / inf = nan}.  Perhaps @samp{1} is the ``obvious'' answer.
8409 But if @w{@samp{17 inf = inf}}, then @samp{17 inf / inf = inf / inf = 17}, too.
8411 @samp{exp(inf) = inf}.  It's tempting to say that the exponential
8412 of infinity must be ``bigger'' than ``regular'' infinity, but as
8413 far as Calc is concerned all infinities are as just as big.
8414 In other words, as @expr{x} goes to infinity, @expr{e^x} also goes
8415 to infinity, but the fact the @expr{e^x} grows much faster than
8416 @expr{x} is not relevant here.
8418 @samp{exp(-inf) = 0}.  Here we have a finite answer even though
8419 the input is infinite.
8421 @samp{sqrt(-inf) = (0, 1) inf}.  Remember that @expr{(0, 1)}
8422 represents the imaginary number @expr{i}.  Here's a derivation:
8423 @samp{sqrt(-inf) = @w{sqrt((-1) * inf)} = sqrt(-1) * sqrt(inf)}.
8424 The first part is, by definition, @expr{i}; the second is @code{inf}
8425 because, once again, all infinities are the same size.
8427 @samp{sqrt(uinf) = uinf}.  In fact, we do know something about the
8428 direction because @code{sqrt} is defined to return a value in the
8429 right half of the complex plane.  But Calc has no notation for this,
8430 so it settles for the conservative answer @code{uinf}.
8432 @samp{abs(uinf) = inf}.  No matter which direction @expr{x} points,
8433 @samp{abs(x)} always points along the positive real axis.
8435 @samp{ln(0) = -inf}.  Here we have an infinite answer to a finite
8436 input.  As in the @expr{1 / 0} case, Calc will only use infinities
8437 here if you have turned on Infinite mode.  Otherwise, it will
8438 treat @samp{ln(0)} as an error.
8440 @node Types Answer 3, Types Answer 4, Types Answer 2, Answers to Exercises
8441 @subsection Types Tutorial Exercise 3
8443 @noindent
8444 We can make @samp{inf - inf} be any real number we like, say,
8445 @expr{a}, just by claiming that we added @expr{a} to the first
8446 infinity but not to the second.  This is just as true for complex
8447 values of @expr{a}, so @code{nan} can stand for a complex number.
8448 (And, similarly, @code{uinf} can stand for an infinity that points
8449 in any direction in the complex plane, such as @samp{(0, 1) inf}).
8451 In fact, we can multiply the first @code{inf} by two.  Surely
8452 @w{@samp{2 inf - inf = inf}}, but also @samp{2 inf - inf = inf - inf = nan}.
8453 So @code{nan} can even stand for infinity.  Obviously it's just
8454 as easy to make it stand for minus infinity as for plus infinity.
8456 The moral of this story is that ``infinity'' is a slippery fish
8457 indeed, and Calc tries to handle it by having a very simple model
8458 for infinities (only the direction counts, not the ``size''); but
8459 Calc is careful to write @code{nan} any time this simple model is
8460 unable to tell what the true answer is.
8462 @node Types Answer 4, Types Answer 5, Types Answer 3, Answers to Exercises
8463 @subsection Types Tutorial Exercise 4
8465 @smallexample
8466 @group
8467 2:  0@@ 47' 26"              1:  0@@ 2' 47.411765"
8468 1:  17                          .
8469     .
8471     0@@ 47' 26" @key{RET} 17           /
8472 @end group
8473 @end smallexample
8475 @noindent
8476 The average song length is two minutes and 47.4 seconds.
8478 @smallexample
8479 @group
8480 2:  0@@ 2' 47.411765"     1:  0@@ 3' 7.411765"    1:  0@@ 53' 6.000005"
8481 1:  0@@ 0' 20"                .                      .
8482     .
8484     20"                      +                      17 *
8485 @end group
8486 @end smallexample
8488 @noindent
8489 The album would be 53 minutes and 6 seconds long.
8491 @node Types Answer 5, Types Answer 6, Types Answer 4, Answers to Exercises
8492 @subsection Types Tutorial Exercise 5
8494 @noindent
8495 Let's suppose it's January 14, 1991.  The easiest thing to do is
8496 to keep trying 13ths of months until Calc reports a Friday.
8497 We can do this by manually entering dates, or by using @kbd{t I}:
8499 @smallexample
8500 @group
8501 1:  <Wed Feb 13, 1991>    1:  <Wed Mar 13, 1991>   1:  <Sat Apr 13, 1991>
8502     .                         .                        .
8504     ' <2/13> @key{RET}       @key{DEL}    ' <3/13> @key{RET}             t I
8505 @end group
8506 @end smallexample
8508 @noindent
8509 (Calc assumes the current year if you don't say otherwise.)
8511 This is getting tedious---we can keep advancing the date by typing
8512 @kbd{t I} over and over again, but let's automate the job by using
8513 vector mapping.  The @kbd{t I} command actually takes a second
8514 ``how-many-months'' argument, which defaults to one.  This
8515 argument is exactly what we want to map over:
8517 @smallexample
8518 @group
8519 2:  <Sat Apr 13, 1991>     1:  [<Mon May 13, 1991>, <Thu Jun 13, 1991>,
8520 1:  [1, 2, 3, 4, 5, 6]          <Sat Jul 13, 1991>, <Tue Aug 13, 1991>,
8521     .                           <Fri Sep 13, 1991>, <Sun Oct 13, 1991>]
8522                                .
8524     v x 6 @key{RET}                  V M t I
8525 @end group
8526 @end smallexample
8528 @noindent
8529 Et voil@`a, September 13, 1991 is a Friday.
8531 @smallexample
8532 @group
8533 1:  242
8534     .
8536 ' <sep 13> - <jan 14> @key{RET}
8537 @end group
8538 @end smallexample
8540 @noindent
8541 And the answer to our original question:  242 days to go.
8543 @node Types Answer 6, Types Answer 7, Types Answer 5, Answers to Exercises
8544 @subsection Types Tutorial Exercise 6
8546 @noindent
8547 The full rule for leap years is that they occur in every year divisible
8548 by four, except that they don't occur in years divisible by 100, except
8549 that they @emph{do} in years divisible by 400.  We could work out the
8550 answer by carefully counting the years divisible by four and the
8551 exceptions, but there is a much simpler way that works even if we
8552 don't know the leap year rule.
8554 Let's assume the present year is 1991.  Years have 365 days, except
8555 that leap years (whenever they occur) have 366 days.  So let's count
8556 the number of days between now and then, and compare that to the
8557 number of years times 365.  The number of extra days we find must be
8558 equal to the number of leap years there were.
8560 @smallexample
8561 @group
8562 1:  <Mon Jan 1, 10001>     2:  <Mon Jan 1, 10001>     1:  2925593
8563     .                      1:  <Tue Jan 1, 1991>          .
8564                                .
8566   ' <jan 1 10001> @key{RET}         ' <jan 1 1991> @key{RET}          -
8568 @end group
8569 @end smallexample
8570 @noindent
8571 @smallexample
8572 @group
8573 3:  2925593       2:  2925593     2:  2925593     1:  1943
8574 2:  10001         1:  8010        1:  2923650         .
8575 1:  1991              .               .
8576     .
8578   10001 @key{RET} 1991      -               365 *           -
8579 @end group
8580 @end smallexample
8582 @c [fix-ref Date Forms]
8583 @noindent
8584 There will be 1943 leap years before the year 10001.  (Assuming,
8585 of course, that the algorithm for computing leap years remains
8586 unchanged for that long.  @xref{Date Forms}, for some interesting
8587 background information in that regard.)
8589 @node Types Answer 7, Types Answer 8, Types Answer 6, Answers to Exercises
8590 @subsection Types Tutorial Exercise 7
8592 @noindent
8593 The relative errors must be converted to absolute errors so that
8594 @samp{+/-} notation may be used.
8596 @smallexample
8597 @group
8598 1:  1.              2:  1.
8599     .               1:  0.2
8600                         .
8602     20 @key{RET} .05 *        4 @key{RET} .05 *
8603 @end group
8604 @end smallexample
8606 Now we simply chug through the formula.
8608 @smallexample
8609 @group
8610 1:  19.7392088022    1:  394.78 +/- 19.739    1:  6316.5 +/- 706.21
8611     .                    .                        .
8613     2 P 2 ^ *            20 p 1 *                 4 p .2 @key{RET} 2 ^ *
8614 @end group
8615 @end smallexample
8617 It turns out the @kbd{v u} command will unpack an error form as
8618 well as a vector.  This saves us some retyping of numbers.
8620 @smallexample
8621 @group
8622 3:  6316.5 +/- 706.21     2:  6316.5 +/- 706.21
8623 2:  6316.5                1:  0.1118
8624 1:  706.21                    .
8625     .
8627     @key{RET} v u                   @key{TAB} /
8628 @end group
8629 @end smallexample
8631 @noindent
8632 Thus the volume is 6316 cubic centimeters, within about 11 percent.
8634 @node Types Answer 8, Types Answer 9, Types Answer 7, Answers to Exercises
8635 @subsection Types Tutorial Exercise 8
8637 @noindent
8638 The first answer is pretty simple:  @samp{1 / (0 .. 10) = (0.1 .. inf)}.
8639 Since a number in the interval @samp{(0 .. 10)} can get arbitrarily
8640 close to zero, its reciprocal can get arbitrarily large, so the answer
8641 is an interval that effectively means, ``any number greater than 0.1''
8642 but with no upper bound.
8644 The second answer, similarly, is @samp{1 / (-10 .. 0) = (-inf .. -0.1)}.
8646 Calc normally treats division by zero as an error, so that the formula
8647 @w{@samp{1 / 0}} is left unsimplified.  Our third problem,
8648 @w{@samp{1 / [0 .. 10]}}, also (potentially) divides by zero because zero
8649 is now a member of the interval.  So Calc leaves this one unevaluated, too.
8651 If you turn on Infinite mode by pressing @kbd{m i}, you will
8652 instead get the answer @samp{[0.1 .. inf]}, which includes infinity
8653 as a possible value.
8655 The fourth calculation, @samp{1 / (-10 .. 10)}, has the same problem.
8656 Zero is buried inside the interval, but it's still a possible value.
8657 It's not hard to see that the actual result of @samp{1 / (-10 .. 10)}
8658 will be either greater than @mathit{0.1}, or less than @mathit{-0.1}.  Thus
8659 the interval goes from minus infinity to plus infinity, with a ``hole''
8660 in it from @mathit{-0.1} to @mathit{0.1}.  Calc doesn't have any way to
8661 represent this, so it just reports @samp{[-inf .. inf]} as the answer.
8662 It may be disappointing to hear ``the answer lies somewhere between
8663 minus infinity and plus infinity, inclusive,'' but that's the best
8664 that interval arithmetic can do in this case.
8666 @node Types Answer 9, Types Answer 10, Types Answer 8, Answers to Exercises
8667 @subsection Types Tutorial Exercise 9
8669 @smallexample
8670 @group
8671 1:  [-3 .. 3]       2:  [-3 .. 3]     2:  [0 .. 9]
8672     .               1:  [0 .. 9]      1:  [-9 .. 9]
8673                         .                 .
8675     [ 3 n .. 3 ]        @key{RET} 2 ^           @key{TAB} @key{RET} *
8676 @end group
8677 @end smallexample
8679 @noindent
8680 In the first case the result says, ``if a number is between @mathit{-3} and
8681 3, its square is between 0 and 9.''  The second case says, ``the product
8682 of two numbers each between @mathit{-3} and 3 is between @mathit{-9} and 9.''
8684 An interval form is not a number; it is a symbol that can stand for
8685 many different numbers.  Two identical-looking interval forms can stand
8686 for different numbers.
8688 The same issue arises when you try to square an error form.
8690 @node Types Answer 10, Types Answer 11, Types Answer 9, Answers to Exercises
8691 @subsection Types Tutorial Exercise 10
8693 @noindent
8694 Testing the first number, we might arbitrarily choose 17 for @expr{x}.
8696 @smallexample
8697 @group
8698 1:  17 mod 811749613   2:  17 mod 811749613   1:  533694123 mod 811749613
8699     .                      811749612              .
8700                            .
8702     17 M 811749613 @key{RET}     811749612              ^
8703 @end group
8704 @end smallexample
8706 @noindent
8707 Since 533694123 is (considerably) different from 1, the number 811749613
8708 must not be prime.
8710 It's awkward to type the number in twice as we did above.  There are
8711 various ways to avoid this, and algebraic entry is one.  In fact, using
8712 a vector mapping operation we can perform several tests at once.  Let's
8713 use this method to test the second number.
8715 @smallexample
8716 @group
8717 2:  [17, 42, 100000]               1:  [1 mod 15485863, 1 mod ... ]
8718 1:  15485863                           .
8719     .
8721  [17 42 100000] 15485863 @key{RET}           V M ' ($$ mod $)^($-1) @key{RET}
8722 @end group
8723 @end smallexample
8725 @noindent
8726 The result is three ones (modulo @expr{n}), so it's very probable that
8727 15485863 is prime.  (In fact, this number is the millionth prime.)
8729 Note that the functions @samp{($$^($-1)) mod $} or @samp{$$^($-1) % $}
8730 would have been hopelessly inefficient, since they would have calculated
8731 the power using full integer arithmetic.
8733 Calc has a @kbd{k p} command that does primality testing.  For small
8734 numbers it does an exact test; for large numbers it uses a variant
8735 of the Fermat test we used here.  You can use @kbd{k p} repeatedly
8736 to prove that a large integer is prime with any desired probability.
8738 @node Types Answer 11, Types Answer 12, Types Answer 10, Answers to Exercises
8739 @subsection Types Tutorial Exercise 11
8741 @noindent
8742 There are several ways to insert a calculated number into an HMS form.
8743 One way to convert a number of seconds to an HMS form is simply to
8744 multiply the number by an HMS form representing one second:
8746 @smallexample
8747 @group
8748 1:  31415926.5359     2:  31415926.5359     1:  8726@@ 38' 46.5359"
8749     .                 1:  0@@ 0' 1"              .
8750                           .
8752     P 1e7 *               0@@ 0' 1"              *
8754 @end group
8755 @end smallexample
8756 @noindent
8757 @smallexample
8758 @group
8759 2:  8726@@ 38' 46.5359"             1:  6@@ 6' 2.5359" mod 24@@ 0' 0"
8760 1:  15@@ 27' 16" mod 24@@ 0' 0"          .
8761     .
8763     x time @key{RET}                         +
8764 @end group
8765 @end smallexample
8767 @noindent
8768 It will be just after six in the morning.
8770 The algebraic @code{hms} function can also be used to build an
8771 HMS form:
8773 @smallexample
8774 @group
8775 1:  hms(0, 0, 10000000. pi)       1:  8726@@ 38' 46.5359"
8776     .                                 .
8778   ' hms(0, 0, 1e7 pi) @key{RET}             =
8779 @end group
8780 @end smallexample
8782 @noindent
8783 The @kbd{=} key is necessary to evaluate the symbol @samp{pi} to
8784 the actual number 3.14159...
8786 @node Types Answer 12, Types Answer 13, Types Answer 11, Answers to Exercises
8787 @subsection Types Tutorial Exercise 12
8789 @noindent
8790 As we recall, there are 17 songs of about 2 minutes and 47 seconds
8791 each.
8793 @smallexample
8794 @group
8795 2:  0@@ 2' 47"                    1:  [0@@ 3' 7" .. 0@@ 3' 47"]
8796 1:  [0@@ 0' 20" .. 0@@ 1' 0"]          .
8797     .
8799     [ 0@@ 20" .. 0@@ 1' ]              +
8801 @end group
8802 @end smallexample
8803 @noindent
8804 @smallexample
8805 @group
8806 1:  [0@@ 52' 59." .. 1@@ 4' 19."]
8807     .
8809     17 *
8810 @end group
8811 @end smallexample
8813 @noindent
8814 No matter how long it is, the album will fit nicely on one CD.
8816 @node Types Answer 13, Types Answer 14, Types Answer 12, Answers to Exercises
8817 @subsection Types Tutorial Exercise 13
8819 @noindent
8820 Type @kbd{' 1 yr @key{RET} u c s @key{RET}}.  The answer is 31557600 seconds.
8822 @node Types Answer 14, Types Answer 15, Types Answer 13, Answers to Exercises
8823 @subsection Types Tutorial Exercise 14
8825 @noindent
8826 How long will it take for a signal to get from one end of the computer
8827 to the other?
8829 @smallexample
8830 @group
8831 1:  m / c         1:  3.3356 ns
8832     .                 .
8834  ' 1 m / c @key{RET}        u c ns @key{RET}
8835 @end group
8836 @end smallexample
8838 @noindent
8839 (Recall, @samp{c} is a ``unit'' corresponding to the speed of light.)
8841 @smallexample
8842 @group
8843 1:  3.3356 ns     1:  0.81356 ns / ns     1:  0.81356
8844 2:  4.1 ns            .                       .
8845     .
8847   ' 4.1 ns @key{RET}        /                       u s
8848 @end group
8849 @end smallexample
8851 @noindent
8852 Thus a signal could take up to 81 percent of a clock cycle just to
8853 go from one place to another inside the computer, assuming the signal
8854 could actually attain the full speed of light.  Pretty tight!
8856 @node Types Answer 15, Algebra Answer 1, Types Answer 14, Answers to Exercises
8857 @subsection Types Tutorial Exercise 15
8859 @noindent
8860 The speed limit is 55 miles per hour on most highways.  We want to
8861 find the ratio of Sam's speed to the US speed limit.
8863 @smallexample
8864 @group
8865 1:  55 mph         2:  55 mph           3:  11 hr mph / yd
8866     .              1:  5 yd / hr            .
8867                        .
8869   ' 55 mph @key{RET}       ' 5 yd/hr @key{RET}          /
8870 @end group
8871 @end smallexample
8873 The @kbd{u s} command cancels out these units to get a plain
8874 number.  Now we take the logarithm base two to find the final
8875 answer, assuming that each successive pill doubles his speed.
8877 @smallexample
8878 @group
8879 1:  19360.       2:  19360.       1:  14.24
8880     .            1:  2                .
8881                      .
8883     u s              2                B
8884 @end group
8885 @end smallexample
8887 @noindent
8888 Thus Sam can take up to 14 pills without a worry.
8890 @node Algebra Answer 1, Algebra Answer 2, Types Answer 15, Answers to Exercises
8891 @subsection Algebra Tutorial Exercise 1
8893 @noindent
8894 @c [fix-ref Declarations]
8895 The result @samp{sqrt(x)^2} is simplified back to @expr{x} by the
8896 Calculator, but @samp{sqrt(x^2)} is not.  (Consider what happens
8897 if @w{@expr{x = -4}}.)  If @expr{x} is real, this formula could be
8898 simplified to @samp{abs(x)}, but for general complex arguments even
8899 that is not safe.  (@xref{Declarations}, for a way to tell Calc
8900 that @expr{x} is known to be real.)
8902 @node Algebra Answer 2, Algebra Answer 3, Algebra Answer 1, Answers to Exercises
8903 @subsection Algebra Tutorial Exercise 2
8905 @noindent
8906 Suppose our roots are @expr{[a, b, c]}.  We want a polynomial which
8907 is zero when @expr{x} is any of these values.  The trivial polynomial
8908 @expr{x-a} is zero when @expr{x=a}, so the product @expr{(x-a)(x-b)(x-c)}
8909 will do the job.  We can use @kbd{a c x} to write this in a more
8910 familiar form.
8912 @smallexample
8913 @group
8914 1:  34 x - 24 x^3          1:  [1.19023, -1.19023, 0]
8915     .                          .
8917     r 2                        a P x @key{RET}
8919 @end group
8920 @end smallexample
8921 @noindent
8922 @smallexample
8923 @group
8924 1:  [x - 1.19023, x + 1.19023, x]     1:  (x - 1.19023) (x + 1.19023) x
8925     .                                     .
8927     V M ' x-$ @key{RET}                         V R *
8929 @end group
8930 @end smallexample
8931 @noindent
8932 @smallexample
8933 @group
8934 1:  x^3 - 1.41666 x        1:  34 x - 24 x^3
8935     .                          .
8937     a c x @key{RET}                  24 n *  a x
8938 @end group
8939 @end smallexample
8941 @noindent
8942 Sure enough, our answer (multiplied by a suitable constant) is the
8943 same as the original polynomial.
8945 @node Algebra Answer 3, Algebra Answer 4, Algebra Answer 2, Answers to Exercises
8946 @subsection Algebra Tutorial Exercise 3
8948 @smallexample
8949 @group
8950 1:  x sin(pi x)         1:  (sin(pi x) - pi x cos(pi x)) / pi^2
8951     .                       .
8953   ' x sin(pi x) @key{RET}   m r   a i x @key{RET}
8955 @end group
8956 @end smallexample
8957 @noindent
8958 @smallexample
8959 @group
8960 1:  [y, 1]
8961 2:  (sin(pi x) - pi x cos(pi x)) / pi^2
8962     .
8964   ' [y,1] @key{RET} @key{TAB}
8966 @end group
8967 @end smallexample
8968 @noindent
8969 @smallexample
8970 @group
8971 1:  [(sin(pi y) - pi y cos(pi y)) / pi^2, (sin(pi) - pi cos(pi)) / pi^2]
8972     .
8974     V M $ @key{RET}
8976 @end group
8977 @end smallexample
8978 @noindent
8979 @smallexample
8980 @group
8981 1:  (sin(pi y) - pi y cos(pi y)) / pi^2 + (pi cos(pi) - sin(pi)) / pi^2
8982     .
8984     V R -
8986 @end group
8987 @end smallexample
8988 @noindent
8989 @smallexample
8990 @group
8991 1:  (sin(3.14159 y) - 3.14159 y cos(3.14159 y)) / 9.8696 - 0.3183
8992     .
8994     =
8996 @end group
8997 @end smallexample
8998 @noindent
8999 @smallexample
9000 @group
9001 1:  [0., -0.95493, 0.63662, -1.5915, 1.2732]
9002     .
9004     v x 5 @key{RET}  @key{TAB}  V M $ @key{RET}
9005 @end group
9006 @end smallexample
9008 @node Algebra Answer 4, Rewrites Answer 1, Algebra Answer 3, Answers to Exercises
9009 @subsection Algebra Tutorial Exercise 4
9011 @noindent
9012 The hard part is that @kbd{V R +} is no longer sufficient to add up all
9013 the contributions from the slices, since the slices have varying
9014 coefficients.  So first we must come up with a vector of these
9015 coefficients.  Here's one way:
9017 @smallexample
9018 @group
9019 2:  -1                 2:  3                    1:  [4, 2, ..., 4]
9020 1:  [1, 2, ..., 9]     1:  [-1, 1, ..., -1]         .
9021     .                      .
9023     1 n v x 9 @key{RET}          V M ^  3 @key{TAB}             -
9025 @end group
9026 @end smallexample
9027 @noindent
9028 @smallexample
9029 @group
9030 1:  [4, 2, ..., 4, 1]      1:  [1, 4, 2, ..., 4, 1]
9031     .                          .
9033     1 |                        1 @key{TAB} |
9034 @end group
9035 @end smallexample
9037 @noindent
9038 Now we compute the function values.  Note that for this method we need
9039 eleven values, including both endpoints of the desired interval.
9041 @smallexample
9042 @group
9043 2:  [1, 4, 2, ..., 4, 1]
9044 1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9, 2.]
9045     .
9047  11 @key{RET} 1 @key{RET} .1 @key{RET}  C-u v x
9049 @end group
9050 @end smallexample
9051 @noindent
9052 @smallexample
9053 @group
9054 2:  [1, 4, 2, ..., 4, 1]
9055 1:  [0., 0.084941, 0.16993, ... ]
9056     .
9058     ' sin(x) ln(x) @key{RET}   m r  p 5 @key{RET}   V M $ @key{RET}
9059 @end group
9060 @end smallexample
9062 @noindent
9063 Once again this calls for @kbd{V M * V R +}; a simple @kbd{*} does the
9064 same thing.
9066 @smallexample
9067 @group
9068 1:  11.22      1:  1.122      1:  0.374
9069     .              .              .
9071     *              .1 *           3 /
9072 @end group
9073 @end smallexample
9075 @noindent
9076 Wow!  That's even better than the result from the Taylor series method.
9078 @node Rewrites Answer 1, Rewrites Answer 2, Algebra Answer 4, Answers to Exercises
9079 @subsection Rewrites Tutorial Exercise 1
9081 @noindent
9082 We'll use Big mode to make the formulas more readable.
9084 @smallexample
9085 @group
9086                                                ___
9087                                           2 + V 2
9088 1:  (2 + sqrt(2)) / (1 + sqrt(2))     1:  --------
9089     .                                          ___
9090                                           1 + V 2
9092                                           .
9094   ' (2+sqrt(2)) / (1+sqrt(2)) @key{RET}         d B
9095 @end group
9096 @end smallexample
9098 @noindent
9099 Multiplying by the conjugate helps because @expr{(a+b) (a-b) = a^2 - b^2}.
9101 @smallexample
9102 @group
9103           ___    ___
9104 1:  (2 + V 2 ) (V 2  - 1)
9105     .
9107   a r a/(b+c) := a*(b-c) / (b^2-c^2) @key{RET}
9109 @end group
9110 @end smallexample
9111 @noindent
9112 @smallexample
9113 @group
9114          ___                         ___
9115 1:  2 + V 2  - 2                1:  V 2
9116     .                               .
9118   a r a*(b+c) := a*b + a*c          a s
9119 @end group
9120 @end smallexample
9122 @noindent
9123 (We could have used @kbd{a x} instead of a rewrite rule for the
9124 second step.)
9126 The multiply-by-conjugate rule turns out to be useful in many
9127 different circumstances, such as when the denominator involves
9128 sines and cosines or the imaginary constant @code{i}.
9130 @node Rewrites Answer 2, Rewrites Answer 3, Rewrites Answer 1, Answers to Exercises
9131 @subsection Rewrites Tutorial Exercise 2
9133 @noindent
9134 Here is the rule set:
9136 @smallexample
9137 @group
9138 [ fib(n) := fib(n, 1, 1) :: integer(n) :: n >= 1,
9139   fib(1, x, y) := x,
9140   fib(n, x, y) := fib(n-1, y, x+y) ]
9141 @end group
9142 @end smallexample
9144 @noindent
9145 The first rule turns a one-argument @code{fib} that people like to write
9146 into a three-argument @code{fib} that makes computation easier.  The
9147 second rule converts back from three-argument form once the computation
9148 is done.  The third rule does the computation itself.  It basically
9149 says that if @expr{x} and @expr{y} are two consecutive Fibonacci numbers,
9150 then @expr{y} and @expr{x+y} are the next (overlapping) pair of Fibonacci
9151 numbers.
9153 Notice that because the number @expr{n} was ``validated'' by the
9154 conditions on the first rule, there is no need to put conditions on
9155 the other rules because the rule set would never get that far unless
9156 the input were valid.  That further speeds computation, since no
9157 extra conditions need to be checked at every step.
9159 Actually, a user with a nasty sense of humor could enter a bad
9160 three-argument @code{fib} call directly, say, @samp{fib(0, 1, 1)},
9161 which would get the rules into an infinite loop.  One thing that would
9162 help keep this from happening by accident would be to use something like
9163 @samp{ZzFib} instead of @code{fib} as the name of the three-argument
9164 function.
9166 @node Rewrites Answer 3, Rewrites Answer 4, Rewrites Answer 2, Answers to Exercises
9167 @subsection Rewrites Tutorial Exercise 3
9169 @noindent
9170 He got an infinite loop.  First, Calc did as expected and rewrote
9171 @w{@samp{2 + 3 x}} to @samp{f(2, 3, x)}.  Then it looked for ways to
9172 apply the rule again, and found that @samp{f(2, 3, x)} looks like
9173 @samp{a + b x} with @w{@samp{a = 0}} and @samp{b = 1}, so it rewrote to
9174 @samp{f(0, 1, f(2, 3, x))}.  It then wrapped another @samp{f(0, 1, ...)}
9175 around that, and so on, ad infinitum.  Joe should have used @kbd{M-1 a r}
9176 to make sure the rule applied only once.
9178 (Actually, even the first step didn't work as he expected.  What Calc
9179 really gives for @kbd{M-1 a r} in this situation is @samp{f(3 x, 1, 2)},
9180 treating 2 as the ``variable,'' and @samp{3 x} as a constant being added
9181 to it.  While this may seem odd, it's just as valid a solution as the
9182 ``obvious'' one.  One way to fix this would be to add the condition
9183 @samp{:: variable(x)} to the rule, to make sure the thing that matches
9184 @samp{x} is indeed a variable, or to change @samp{x} to @samp{quote(x)}
9185 on the lefthand side, so that the rule matches the actual variable
9186 @samp{x} rather than letting @samp{x} stand for something else.)
9188 @node Rewrites Answer 4, Rewrites Answer 5, Rewrites Answer 3, Answers to Exercises
9189 @subsection Rewrites Tutorial Exercise 4
9191 @noindent
9192 @ignore
9193 @starindex
9194 @end ignore
9195 @tindex seq
9196 Here is a suitable set of rules to solve the first part of the problem:
9198 @smallexample
9199 @group
9200 [ seq(n, c) := seq(n/2,  c+1) :: n%2 = 0,
9201   seq(n, c) := seq(3n+1, c+1) :: n%2 = 1 :: n > 1 ]
9202 @end group
9203 @end smallexample
9205 Given the initial formula @samp{seq(6, 0)}, application of these
9206 rules produces the following sequence of formulas:
9208 @example
9209 seq( 3, 1)
9210 seq(10, 2)
9211 seq( 5, 3)
9212 seq(16, 4)
9213 seq( 8, 5)
9214 seq( 4, 6)
9215 seq( 2, 7)
9216 seq( 1, 8)
9217 @end example
9219 @noindent
9220 whereupon neither of the rules match, and rewriting stops.
9222 We can pretty this up a bit with a couple more rules:
9224 @smallexample
9225 @group
9226 [ seq(n) := seq(n, 0),
9227   seq(1, c) := c,
9228   ... ]
9229 @end group
9230 @end smallexample
9232 @noindent
9233 Now, given @samp{seq(6)} as the starting configuration, we get 8
9234 as the result.
9236 The change to return a vector is quite simple:
9238 @smallexample
9239 @group
9240 [ seq(n) := seq(n, []) :: integer(n) :: n > 0,
9241   seq(1, v) := v | 1,
9242   seq(n, v) := seq(n/2,  v | n) :: n%2 = 0,
9243   seq(n, v) := seq(3n+1, v | n) :: n%2 = 1 ]
9244 @end group
9245 @end smallexample
9247 @noindent
9248 Given @samp{seq(6)}, the result is @samp{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
9250 Notice that the @expr{n > 1} guard is no longer necessary on the last
9251 rule since the @expr{n = 1} case is now detected by another rule.
9252 But a guard has been added to the initial rule to make sure the
9253 initial value is suitable before the computation begins.
9255 While still a good idea, this guard is not as vitally important as it
9256 was for the @code{fib} function, since calling, say, @samp{seq(x, [])}
9257 will not get into an infinite loop.  Calc will not be able to prove
9258 the symbol @samp{x} is either even or odd, so none of the rules will
9259 apply and the rewrites will stop right away.
9261 @node Rewrites Answer 5, Rewrites Answer 6, Rewrites Answer 4, Answers to Exercises
9262 @subsection Rewrites Tutorial Exercise 5
9264 @noindent
9265 @ignore
9266 @starindex
9267 @end ignore
9268 @tindex nterms
9269 If @expr{x} is the sum @expr{a + b}, then `@tfn{nterms(}@var{x}@tfn{)}' must
9270 be `@tfn{nterms(}@var{a}@tfn{)}' plus `@tfn{nterms(}@var{b}@tfn{)}'.  If @expr{x}
9271 is not a sum, then `@tfn{nterms(}@var{x}@tfn{)}' = 1.
9273 @smallexample
9274 @group
9275 [ nterms(a + b) := nterms(a) + nterms(b),
9276   nterms(x)     := 1 ]
9277 @end group
9278 @end smallexample
9280 @noindent
9281 Here we have taken advantage of the fact that earlier rules always
9282 match before later rules; @samp{nterms(x)} will only be tried if we
9283 already know that @samp{x} is not a sum.
9285 @node Rewrites Answer 6, Programming Answer 1, Rewrites Answer 5, Answers to Exercises
9286 @subsection Rewrites Tutorial Exercise 6
9288 @noindent
9289 Here is a rule set that will do the job:
9291 @smallexample
9292 @group
9293 [ a*(b + c) := a*b + a*c,
9294   opt(a) O(x^n) + opt(b) O(x^m) := O(x^n) :: n <= m
9295      :: constant(a) :: constant(b),
9296   opt(a) O(x^n) + opt(b) x^m := O(x^n) :: n <= m
9297      :: constant(a) :: constant(b),
9298   a O(x^n) := O(x^n) :: constant(a),
9299   x^opt(m) O(x^n) := O(x^(n+m)),
9300   O(x^n) O(x^m) := O(x^(n+m)) ]
9301 @end group
9302 @end smallexample
9304 If we really want the @kbd{+} and @kbd{*} keys to operate naturally
9305 on power series, we should put these rules in @code{EvalRules}.  For
9306 testing purposes, it is better to put them in a different variable,
9307 say, @code{O}, first.
9309 The first rule just expands products of sums so that the rest of the
9310 rules can assume they have an expanded-out polynomial to work with.
9311 Note that this rule does not mention @samp{O} at all, so it will
9312 apply to any product-of-sum it encounters---this rule may surprise
9313 you if you put it into @code{EvalRules}!
9315 In the second rule, the sum of two O's is changed to the smaller O.
9316 The optional constant coefficients are there mostly so that
9317 @samp{O(x^2) - O(x^3)} and @samp{O(x^3) - O(x^2)} are handled
9318 as well as @samp{O(x^2) + O(x^3)}.
9320 The third rule absorbs higher powers of @samp{x} into O's.
9322 The fourth rule says that a constant times a negligible quantity
9323 is still negligible.  (This rule will also match @samp{O(x^3) / 4},
9324 with @samp{a = 1/4}.)
9326 The fifth rule rewrites, for example, @samp{x^2 O(x^3)} to @samp{O(x^5)}.
9327 (It is easy to see that if one of these forms is negligible, the other
9328 is, too.)  Notice the @samp{x^opt(m)} to pick up terms like
9329 @w{@samp{x O(x^3)}}.  Optional powers will match @samp{x} as @samp{x^1}
9330 but not 1 as @samp{x^0}.  This turns out to be exactly what we want here.
9332 The sixth rule is the corresponding rule for products of two O's.
9334 Another way to solve this problem would be to create a new ``data type''
9335 that represents truncated power series.  We might represent these as
9336 function calls @samp{series(@var{coefs}, @var{x})} where @var{coefs} is
9337 a vector of coefficients for @expr{x^0}, @expr{x^1}, @expr{x^2}, and so
9338 on.  Rules would exist for sums and products of such @code{series}
9339 objects, and as an optional convenience could also know how to combine a
9340 @code{series} object with a normal polynomial.  (With this, and with a
9341 rule that rewrites @samp{O(x^n)} to the equivalent @code{series} form,
9342 you could still enter power series in exactly the same notation as
9343 before.)  Operations on such objects would probably be more efficient,
9344 although the objects would be a bit harder to read.
9346 @c [fix-ref Compositions]
9347 Some other symbolic math programs provide a power series data type
9348 similar to this.  Mathematica, for example, has an object that looks
9349 like @samp{PowerSeries[@var{x}, @var{x0}, @var{coefs}, @var{nmin},
9350 @var{nmax}, @var{den}]}, where @var{x0} is the point about which the
9351 power series is taken (we've been assuming this was always zero),
9352 and @var{nmin}, @var{nmax}, and @var{den} allow pseudo-power-series
9353 with fractional or negative powers.  Also, the @code{PowerSeries}
9354 objects have a special display format that makes them look like
9355 @samp{2 x^2 + O(x^4)} when they are printed out.  (@xref{Compositions},
9356 for a way to do this in Calc, although for something as involved as
9357 this it would probably be better to write the formatting routine
9358 in Lisp.)
9360 @node Programming Answer 1, Programming Answer 2, Rewrites Answer 6, Answers to Exercises
9361 @subsection Programming Tutorial Exercise 1
9363 @noindent
9364 Just enter the formula @samp{ninteg(sin(t)/t, t, 0, x)}, type
9365 @kbd{Z F}, and answer the questions.  Since this formula contains two
9366 variables, the default argument list will be @samp{(t x)}.  We want to
9367 change this to @samp{(x)} since @expr{t} is really a dummy variable
9368 to be used within @code{ninteg}.
9370 The exact keystrokes are @kbd{Z F s Si @key{RET} @key{RET} C-b C-b @key{DEL} @key{DEL} @key{RET} y}.
9371 (The @kbd{C-b C-b @key{DEL} @key{DEL}} are what fix the argument list.)
9373 @node Programming Answer 2, Programming Answer 3, Programming Answer 1, Answers to Exercises
9374 @subsection Programming Tutorial Exercise 2
9376 @noindent
9377 One way is to move the number to the top of the stack, operate on
9378 it, then move it back:  @kbd{C-x ( M-@key{TAB} n M-@key{TAB} M-@key{TAB} C-x )}.
9380 Another way is to negate the top three stack entries, then negate
9381 again the top two stack entries:  @kbd{C-x ( M-3 n M-2 n C-x )}.
9383 Finally, it turns out that a negative prefix argument causes a
9384 command like @kbd{n} to operate on the specified stack entry only,
9385 which is just what we want:  @kbd{C-x ( M-- 3 n C-x )}.
9387 Just for kicks, let's also do it algebraically:
9388 @w{@kbd{C-x ( ' -$$$, $$, $ @key{RET} C-x )}}.
9390 @node Programming Answer 3, Programming Answer 4, Programming Answer 2, Answers to Exercises
9391 @subsection Programming Tutorial Exercise 3
9393 @noindent
9394 Each of these functions can be computed using the stack, or using
9395 algebraic entry, whichever way you prefer:
9397 @noindent
9398 Computing 
9399 @texline @math{\displaystyle{\sin x \over x}}:
9400 @infoline @expr{sin(x) / x}:
9402 Using the stack:  @kbd{C-x (  @key{RET} S @key{TAB} /  C-x )}.
9404 Using algebraic entry:  @kbd{C-x (  ' sin($)/$ @key{RET}  C-x )}.
9406 @noindent
9407 Computing the logarithm:
9409 Using the stack:  @kbd{C-x (  @key{TAB} B  C-x )}
9411 Using algebraic entry:  @kbd{C-x (  ' log($,$$) @key{RET}  C-x )}.
9413 @noindent
9414 Computing the vector of integers:
9416 Using the stack:  @kbd{C-x (  1 @key{RET} 1  C-u v x  C-x )}.  (Recall that
9417 @kbd{C-u v x} takes the vector size, starting value, and increment
9418 from the stack.)
9420 Alternatively:  @kbd{C-x (  ~ v x  C-x )}.  (The @kbd{~} key pops a
9421 number from the stack and uses it as the prefix argument for the
9422 next command.)
9424 Using algebraic entry:  @kbd{C-x (  ' index($) @key{RET}  C-x )}.
9426 @node Programming Answer 4, Programming Answer 5, Programming Answer 3, Answers to Exercises
9427 @subsection Programming Tutorial Exercise 4
9429 @noindent
9430 Here's one way:  @kbd{C-x ( @key{RET} V R + @key{TAB} v l / C-x )}.
9432 @node Programming Answer 5, Programming Answer 6, Programming Answer 4, Answers to Exercises
9433 @subsection Programming Tutorial Exercise 5
9435 @smallexample
9436 @group
9437 2:  1              1:  1.61803398502         2:  1.61803398502
9438 1:  20                 .                     1:  1.61803398875
9439     .                                            .
9441    1 @key{RET} 20         Z < & 1 + Z >                I H P
9442 @end group
9443 @end smallexample
9445 @noindent
9446 This answer is quite accurate.
9448 @node Programming Answer 6, Programming Answer 7, Programming Answer 5, Answers to Exercises
9449 @subsection Programming Tutorial Exercise 6
9451 @noindent
9452 Here is the matrix:
9454 @example
9455 [ [ 0, 1 ]   * [a, b] = [b, a + b]
9456   [ 1, 1 ] ]
9457 @end example
9459 @noindent
9460 Thus @samp{[0, 1; 1, 1]^n * [1, 1]} computes Fibonacci numbers @expr{n+1}
9461 and @expr{n+2}.  Here's one program that does the job:
9463 @example
9464 C-x ( ' [0, 1; 1, 1] ^ ($-1) * [1, 1] @key{RET} v u @key{DEL} C-x )
9465 @end example
9467 @noindent
9468 This program is quite efficient because Calc knows how to raise a
9469 matrix (or other value) to the power @expr{n} in only 
9470 @texline @math{\log_2 n}
9471 @infoline @expr{log(n,2)}
9472 steps.  For example, this program can compute the 1000th Fibonacci
9473 number (a 209-digit integer!) in about 10 steps; even though the
9474 @kbd{Z < ... Z >} solution had much simpler steps, it would have
9475 required so many steps that it would not have been practical.
9477 @node Programming Answer 7, Programming Answer 8, Programming Answer 6, Answers to Exercises
9478 @subsection Programming Tutorial Exercise 7
9480 @noindent
9481 The trick here is to compute the harmonic numbers differently, so that
9482 the loop counter itself accumulates the sum of reciprocals.  We use
9483 a separate variable to hold the integer counter.
9485 @smallexample
9486 @group
9487 1:  1          2:  1       1:  .
9488     .          1:  4
9489                    .
9491     1 t 1       1 @key{RET} 4      Z ( t 2 r 1 1 + s 1 & Z )
9492 @end group
9493 @end smallexample
9495 @noindent
9496 The body of the loop goes as follows:  First save the harmonic sum
9497 so far in variable 2.  Then delete it from the stack; the for loop
9498 itself will take care of remembering it for us.  Next, recall the
9499 count from variable 1, add one to it, and feed its reciprocal to
9500 the for loop to use as the step value.  The for loop will increase
9501 the ``loop counter'' by that amount and keep going until the
9502 loop counter exceeds 4.
9504 @smallexample
9505 @group
9506 2:  31                  3:  31
9507 1:  3.99498713092       2:  3.99498713092
9508     .                   1:  4.02724519544
9509                             .
9511     r 1 r 2                 @key{RET} 31 & +
9512 @end group
9513 @end smallexample
9515 Thus we find that the 30th harmonic number is 3.99, and the 31st
9516 harmonic number is 4.02.
9518 @node Programming Answer 8, Programming Answer 9, Programming Answer 7, Answers to Exercises
9519 @subsection Programming Tutorial Exercise 8
9521 @noindent
9522 The first step is to compute the derivative @expr{f'(x)} and thus
9523 the formula 
9524 @texline @math{\displaystyle{x - {f(x) \over f'(x)}}}.
9525 @infoline @expr{x - f(x)/f'(x)}.
9527 (Because this definition is long, it will be repeated in concise form
9528 below.  You can use @w{@kbd{M-# m}} to load it from there.  While you are
9529 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9530 keystrokes without executing them.  In the following diagrams we'll
9531 pretend Calc actually executed the keystrokes as you typed them,
9532 just for purposes of illustration.)
9534 @smallexample
9535 @group
9536 2:  sin(cos(x)) - 0.5            3:  4.5
9537 1:  4.5                          2:  sin(cos(x)) - 0.5
9538     .                            1:  -(sin(x) cos(cos(x)))
9539                                      .
9541 ' sin(cos(x))-0.5 @key{RET} 4.5  m r  C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}
9543 @end group
9544 @end smallexample
9545 @noindent
9546 @smallexample
9547 @group
9548 2:  4.5
9549 1:  x + (sin(cos(x)) - 0.5) / sin(x) cos(cos(x))
9550     .
9552     /  ' x @key{RET} @key{TAB} -   t 1
9553 @end group
9554 @end smallexample
9556 Now, we enter the loop.  We'll use a repeat loop with a 20-repetition
9557 limit just in case the method fails to converge for some reason.
9558 (Normally, the @w{@kbd{Z /}} command will stop the loop before all 20
9559 repetitions are done.)
9561 @smallexample
9562 @group
9563 1:  4.5         3:  4.5                     2:  4.5
9564     .           2:  x + (sin(cos(x)) ...    1:  5.24196456928
9565                 1:  4.5                         .
9566                     .
9568   20 Z <          @key{RET} r 1 @key{TAB}                 s l x @key{RET}
9569 @end group
9570 @end smallexample
9572 This is the new guess for @expr{x}.  Now we compare it with the
9573 old one to see if we've converged.
9575 @smallexample
9576 @group
9577 3:  5.24196     2:  5.24196     1:  5.24196     1:  5.26345856348
9578 2:  5.24196     1:  0               .               .
9579 1:  4.5             .
9580     .
9582   @key{RET} M-@key{TAB}         a =             Z /             Z > Z ' C-x )
9583 @end group
9584 @end smallexample
9586 The loop converges in just a few steps to this value.  To check
9587 the result, we can simply substitute it back into the equation.
9589 @smallexample
9590 @group
9591 2:  5.26345856348
9592 1:  0.499999999997
9593     .
9595  @key{RET} ' sin(cos($)) @key{RET}
9596 @end group
9597 @end smallexample
9599 Let's test the new definition again:
9601 @smallexample
9602 @group
9603 2:  x^2 - 9           1:  3.
9604 1:  1                     .
9605     .
9607   ' x^2-9 @key{RET} 1           X
9608 @end group
9609 @end smallexample
9611 Once again, here's the full Newton's Method definition:
9613 @example
9614 @group
9615 C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}  /  ' x @key{RET} @key{TAB} -  t 1
9616            20 Z <  @key{RET} r 1 @key{TAB}  s l x @key{RET}
9617                    @key{RET} M-@key{TAB}  a =  Z /
9618               Z >
9619       Z '
9620 C-x )
9621 @end group
9622 @end example
9624 @c [fix-ref Nesting and Fixed Points]
9625 It turns out that Calc has a built-in command for applying a formula
9626 repeatedly until it converges to a number.  @xref{Nesting and Fixed Points},
9627 to see how to use it.
9629 @c [fix-ref Root Finding]
9630 Also, of course, @kbd{a R} is a built-in command that uses Newton's
9631 method (among others) to look for numerical solutions to any equation.
9632 @xref{Root Finding}.
9634 @node Programming Answer 9, Programming Answer 10, Programming Answer 8, Answers to Exercises
9635 @subsection Programming Tutorial Exercise 9
9637 @noindent
9638 The first step is to adjust @expr{z} to be greater than 5.  A simple
9639 ``for'' loop will do the job here.  If @expr{z} is less than 5, we
9640 reduce the problem using 
9641 @texline @math{\psi(z) = \psi(z+1) - 1/z}.
9642 @infoline @expr{psi(z) = psi(z+1) - 1/z}.  We go
9643 on to compute 
9644 @texline @math{\psi(z+1)},
9645 @infoline @expr{psi(z+1)}, 
9646 and remember to add back a factor of @expr{-1/z} when we're done.  This
9647 step is repeated until @expr{z > 5}.
9649 (Because this definition is long, it will be repeated in concise form
9650 below.  You can use @w{@kbd{M-# m}} to load it from there.  While you are
9651 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9652 keystrokes without executing them.  In the following diagrams we'll
9653 pretend Calc actually executed the keystrokes as you typed them,
9654 just for purposes of illustration.)
9656 @smallexample
9657 @group
9658 1:  1.             1:  1.
9659     .                  .
9661  1.0 @key{RET}       C-x ( Z `  s 1  0 t 2
9662 @end group
9663 @end smallexample
9665 Here, variable 1 holds @expr{z} and variable 2 holds the adjustment
9666 factor.  If @expr{z < 5}, we use a loop to increase it.
9668 (By the way, we started with @samp{1.0} instead of the integer 1 because
9669 otherwise the calculation below will try to do exact fractional arithmetic,
9670 and will never converge because fractions compare equal only if they
9671 are exactly equal, not just equal to within the current precision.)
9673 @smallexample
9674 @group
9675 3:  1.      2:  1.       1:  6.
9676 2:  1.      1:  1            .
9677 1:  5           .
9678     .
9680   @key{RET} 5        a <    Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9681 @end group
9682 @end smallexample
9684 Now we compute the initial part of the sum:  
9685 @texline @math{\ln z - {1 \over 2z}}
9686 @infoline @expr{ln(z) - 1/2z}
9687 minus the adjustment factor.
9689 @smallexample
9690 @group
9691 2:  1.79175946923      2:  1.7084261359      1:  -0.57490719743
9692 1:  0.0833333333333    1:  2.28333333333         .
9693     .                      .
9695     L  r 1 2 * &           -  r 2                -
9696 @end group
9697 @end smallexample
9699 Now we evaluate the series.  We'll use another ``for'' loop counting
9700 up the value of @expr{2 n}.  (Calc does have a summation command,
9701 @kbd{a +}, but we'll use loops just to get more practice with them.)
9703 @smallexample
9704 @group
9705 3:  -0.5749       3:  -0.5749        4:  -0.5749      2:  -0.5749
9706 2:  2             2:  1:6            3:  1:6          1:  2.3148e-3
9707 1:  40            1:  2              2:  2                .
9708     .                 .              1:  36.
9709                                          .
9711    2 @key{RET} 40        Z ( @key{RET} k b @key{TAB}     @key{RET} r 1 @key{TAB} ^      * /
9713 @end group
9714 @end smallexample
9715 @noindent
9716 @smallexample
9717 @group
9718 3:  -0.5749       3:  -0.5772      2:  -0.5772     1:  -0.577215664892
9719 2:  -0.5749       2:  -0.5772      1:  0               .
9720 1:  2.3148e-3     1:  -0.5749          .
9721     .                 .
9723   @key{TAB} @key{RET} M-@key{TAB}       - @key{RET} M-@key{TAB}      a =     Z /    2  Z )  Z ' C-x )
9724 @end group
9725 @end smallexample
9727 This is the value of 
9728 @texline @math{-\gamma},
9729 @infoline @expr{- gamma}, 
9730 with a slight bit of roundoff error.  To get a full 12 digits, let's use
9731 a higher precision:
9733 @smallexample
9734 @group
9735 2:  -0.577215664892      2:  -0.577215664892
9736 1:  1.                   1:  -0.577215664901532
9738     1. @key{RET}                   p 16 @key{RET} X
9739 @end group
9740 @end smallexample
9742 Here's the complete sequence of keystrokes:
9744 @example
9745 @group
9746 C-x ( Z `  s 1  0 t 2
9747            @key{RET} 5 a <  Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9748            L r 1 2 * & - r 2 -
9749            2 @key{RET} 40  Z (  @key{RET} k b @key{TAB} @key{RET} r 1 @key{TAB} ^ * /
9750                           @key{TAB} @key{RET} M-@key{TAB} - @key{RET} M-@key{TAB} a = Z /
9751                   2  Z )
9752       Z '
9753 C-x )
9754 @end group
9755 @end example
9757 @node Programming Answer 10, Programming Answer 11, Programming Answer 9, Answers to Exercises
9758 @subsection Programming Tutorial Exercise 10
9760 @noindent
9761 Taking the derivative of a term of the form @expr{x^n} will produce
9762 a term like 
9763 @texline @math{n x^{n-1}}.
9764 @infoline @expr{n x^(n-1)}.  
9765 Taking the derivative of a constant
9766 produces zero.  From this it is easy to see that the @expr{n}th
9767 derivative of a polynomial, evaluated at @expr{x = 0}, will equal the
9768 coefficient on the @expr{x^n} term times @expr{n!}.
9770 (Because this definition is long, it will be repeated in concise form
9771 below.  You can use @w{@kbd{M-# m}} to load it from there.  While you are
9772 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9773 keystrokes without executing them.  In the following diagrams we'll
9774 pretend Calc actually executed the keystrokes as you typed them,
9775 just for purposes of illustration.)
9777 @smallexample
9778 @group
9779 2:  5 x^4 + (x + 1)^2          3:  5 x^4 + (x + 1)^2
9780 1:  6                          2:  0
9781     .                          1:  6
9782                                    .
9784   ' 5 x^4 + (x+1)^2 @key{RET} 6        C-x ( Z `  [ ] t 1  0 @key{TAB}
9785 @end group
9786 @end smallexample
9788 @noindent
9789 Variable 1 will accumulate the vector of coefficients.
9791 @smallexample
9792 @group
9793 2:  0              3:  0                  2:  5 x^4 + ...
9794 1:  5 x^4 + ...    2:  5 x^4 + ...        1:  1
9795     .              1:  1                      .
9796                        .
9798    Z ( @key{TAB}         @key{RET} 0 s l x @key{RET}            M-@key{TAB} ! /  s | 1
9799 @end group
9800 @end smallexample
9802 @noindent
9803 Note that @kbd{s | 1} appends the top-of-stack value to the vector
9804 in a variable; it is completely analogous to @kbd{s + 1}.  We could
9805 have written instead, @kbd{r 1 @key{TAB} | t 1}.
9807 @smallexample
9808 @group
9809 1:  20 x^3 + 2 x + 2      1:  0         1:  [1, 2, 1, 0, 5, 0, 0]
9810     .                         .             .
9812     a d x @key{RET}                 1 Z )         @key{DEL} r 1  Z ' C-x )
9813 @end group
9814 @end smallexample
9816 To convert back, a simple method is just to map the coefficients
9817 against a table of powers of @expr{x}.
9819 @smallexample
9820 @group
9821 2:  [1, 2, 1, 0, 5, 0, 0]    2:  [1, 2, 1, 0, 5, 0, 0]
9822 1:  6                        1:  [0, 1, 2, 3, 4, 5, 6]
9823     .                            .
9825     6 @key{RET}                        1 + 0 @key{RET} 1 C-u v x
9827 @end group
9828 @end smallexample
9829 @noindent
9830 @smallexample
9831 @group
9832 2:  [1, 2, 1, 0, 5, 0, 0]    2:  1 + 2 x + x^2 + 5 x^4
9833 1:  [1, x, x^2, x^3, ... ]       .
9834     .
9836     ' x @key{RET} @key{TAB} V M ^            *
9837 @end group
9838 @end smallexample
9840 Once again, here are the whole polynomial to/from vector programs:
9842 @example
9843 @group
9844 C-x ( Z `  [ ] t 1  0 @key{TAB}
9845            Z (  @key{TAB} @key{RET} 0 s l x @key{RET} M-@key{TAB} ! /  s | 1
9846                 a d x @key{RET}
9847          1 Z ) r 1
9848       Z '
9849 C-x )
9851 C-x (  1 + 0 @key{RET} 1 C-u v x ' x @key{RET} @key{TAB} V M ^ *  C-x )
9852 @end group
9853 @end example
9855 @node Programming Answer 11, Programming Answer 12, Programming Answer 10, Answers to Exercises
9856 @subsection Programming Tutorial Exercise 11
9858 @noindent
9859 First we define a dummy program to go on the @kbd{z s} key.  The true
9860 @w{@kbd{z s}} key is supposed to take two numbers from the stack and
9861 return one number, so @key{DEL} as a dummy definition will make
9862 sure the stack comes out right.
9864 @smallexample
9865 @group
9866 2:  4          1:  4                         2:  4
9867 1:  2              .                         1:  2
9868     .                                            .
9870   4 @key{RET} 2       C-x ( @key{DEL} C-x )  Z K s @key{RET}       2
9871 @end group
9872 @end smallexample
9874 The last step replaces the 2 that was eaten during the creation
9875 of the dummy @kbd{z s} command.  Now we move on to the real
9876 definition.  The recurrence needs to be rewritten slightly,
9877 to the form @expr{s(n,m) = s(n-1,m-1) - (n-1) s(n-1,m)}.
9879 (Because this definition is long, it will be repeated in concise form
9880 below.  You can use @kbd{M-# m} to load it from there.)
9882 @smallexample
9883 @group
9884 2:  4        4:  4       3:  4       2:  4
9885 1:  2        3:  2       2:  2       1:  2
9886     .        2:  4       1:  0           .
9887              1:  2           .
9888                  .
9890   C-x (       M-2 @key{RET}        a =         Z [  @key{DEL} @key{DEL} 1  Z :
9892 @end group
9893 @end smallexample
9894 @noindent
9895 @smallexample
9896 @group
9897 4:  4       2:  4                     2:  3      4:  3    4:  3    3:  3
9898 3:  2       1:  2                     1:  2      3:  2    3:  2    2:  2
9899 2:  2           .                         .      2:  3    2:  3    1:  3
9900 1:  0                                            1:  2    1:  1        .
9901     .                                                .        .
9903   @key{RET} 0   a = Z [  @key{DEL} @key{DEL} 0  Z :  @key{TAB} 1 - @key{TAB}   M-2 @key{RET}     1 -      z s
9904 @end group
9905 @end smallexample
9907 @noindent
9908 (Note that the value 3 that our dummy @kbd{z s} produces is not correct;
9909 it is merely a placeholder that will do just as well for now.)
9911 @smallexample
9912 @group
9913 3:  3               4:  3           3:  3       2:  3      1:  -6
9914 2:  3               3:  3           2:  3       1:  9          .
9915 1:  2               2:  3           1:  3           .
9916     .               1:  2               .
9917                         .
9919  M-@key{TAB} M-@key{TAB}     @key{TAB} @key{RET} M-@key{TAB}         z s          *          -
9921 @end group
9922 @end smallexample
9923 @noindent
9924 @smallexample
9925 @group
9926 1:  -6                          2:  4          1:  11      2:  11
9927     .                           1:  2              .       1:  11
9928                                     .                          .
9930   Z ] Z ] C-x )   Z K s @key{RET}      @key{DEL} 4 @key{RET} 2       z s      M-@key{RET} k s
9931 @end group
9932 @end smallexample
9934 Even though the result that we got during the definition was highly
9935 bogus, once the definition is complete the @kbd{z s} command gets
9936 the right answers.
9938 Here's the full program once again:
9940 @example
9941 @group
9942 C-x (  M-2 @key{RET} a =
9943        Z [  @key{DEL} @key{DEL} 1
9944        Z :  @key{RET} 0 a =
9945             Z [  @key{DEL} @key{DEL} 0
9946             Z :  @key{TAB} 1 - @key{TAB} M-2 @key{RET} 1 - z s
9947                  M-@key{TAB} M-@key{TAB} @key{TAB} @key{RET} M-@key{TAB} z s * -
9948             Z ]
9949        Z ]
9950 C-x )
9951 @end group
9952 @end example
9954 You can read this definition using @kbd{M-# m} (@code{read-kbd-macro})
9955 followed by @kbd{Z K s}, without having to make a dummy definition
9956 first, because @code{read-kbd-macro} doesn't need to execute the
9957 definition as it reads it in.  For this reason, @code{M-# m} is often
9958 the easiest way to create recursive programs in Calc.
9960 @node Programming Answer 12, , Programming Answer 11, Answers to Exercises
9961 @subsection Programming Tutorial Exercise 12
9963 @noindent
9964 This turns out to be a much easier way to solve the problem.  Let's
9965 denote Stirling numbers as calls of the function @samp{s}.
9967 First, we store the rewrite rules corresponding to the definition of
9968 Stirling numbers in a convenient variable:
9970 @smallexample
9971 s e StirlingRules @key{RET}
9972 [ s(n,n) := 1  :: n >= 0,
9973   s(n,0) := 0  :: n > 0,
9974   s(n,m) := s(n-1,m-1) - (n-1) s(n-1,m) :: n >= m :: m >= 1 ]
9975 C-c C-c
9976 @end smallexample
9978 Now, it's just a matter of applying the rules:
9980 @smallexample
9981 @group
9982 2:  4          1:  s(4, 2)              1:  11
9983 1:  2              .                        .
9984     .
9986   4 @key{RET} 2       C-x (  ' s($$,$) @key{RET}     a r StirlingRules @key{RET}  C-x )
9987 @end group
9988 @end smallexample
9990 As in the case of the @code{fib} rules, it would be useful to put these
9991 rules in @code{EvalRules} and to add a @samp{:: remember} condition to
9992 the last rule.
9994 @c This ends the table-of-contents kludge from above:
9995 @tex
9996 \global\let\chapternofonts=\oldchapternofonts
9997 @end tex
9999 @c [reference]
10001 @node Introduction, Data Types, Tutorial, Top
10002 @chapter Introduction
10004 @noindent
10005 This chapter is the beginning of the Calc reference manual.
10006 It covers basic concepts such as the stack, algebraic and
10007 numeric entry, undo, numeric prefix arguments, etc.
10009 @c [when-split]
10010 @c (Chapter 2, the Tutorial, has been printed in a separate volume.)
10012 @menu
10013 * Basic Commands::
10014 * Help Commands::
10015 * Stack Basics::
10016 * Numeric Entry::
10017 * Algebraic Entry::
10018 * Quick Calculator::
10019 * Prefix Arguments::
10020 * Undo::
10021 * Error Messages::
10022 * Multiple Calculators::
10023 * Troubleshooting Commands::
10024 @end menu
10026 @node Basic Commands, Help Commands, Introduction, Introduction
10027 @section Basic Commands
10029 @noindent
10030 @pindex calc
10031 @pindex calc-mode
10032 @cindex Starting the Calculator
10033 @cindex Running the Calculator
10034 To start the Calculator in its standard interface, type @kbd{M-x calc}.
10035 By default this creates a pair of small windows, @samp{*Calculator*}
10036 and @samp{*Calc Trail*}.  The former displays the contents of the
10037 Calculator stack and is manipulated exclusively through Calc commands.
10038 It is possible (though not usually necessary) to create several Calc
10039 mode buffers each of which has an independent stack, undo list, and
10040 mode settings.  There is exactly one Calc Trail buffer; it records a
10041 list of the results of all calculations that have been done.  The
10042 Calc Trail buffer uses a variant of Calc mode, so Calculator commands
10043 still work when the trail buffer's window is selected.  It is possible
10044 to turn the trail window off, but the @samp{*Calc Trail*} buffer itself
10045 still exists and is updated silently.  @xref{Trail Commands}.
10047 @kindex M-# c
10048 @kindex M-# M-#
10049 @ignore
10050 @mindex @null
10051 @end ignore
10052 @kindex M-# #
10053 In most installations, the @kbd{M-# c} key sequence is a more
10054 convenient way to start the Calculator.  Also, @kbd{M-# M-#} and
10055 @kbd{M-# #} are synonyms for @kbd{M-# c} unless you last used Calc
10056 in its Keypad mode.
10058 @kindex x
10059 @kindex M-x
10060 @pindex calc-execute-extended-command
10061 Most Calc commands use one or two keystrokes.  Lower- and upper-case
10062 letters are distinct.  Commands may also be entered in full @kbd{M-x} form;
10063 for some commands this is the only form.  As a convenience, the @kbd{x}
10064 key (@code{calc-execute-extended-command})
10065 is like @kbd{M-x} except that it enters the initial string @samp{calc-}
10066 for you.  For example, the following key sequences are equivalent:
10067 @kbd{S}, @kbd{M-x calc-sin @key{RET}}, @kbd{x sin @key{RET}}.
10069 @cindex Extensions module
10070 @cindex @file{calc-ext} module
10071 The Calculator exists in many parts.  When you type @kbd{M-# c}, the
10072 Emacs ``auto-load'' mechanism will bring in only the first part, which
10073 contains the basic arithmetic functions.  The other parts will be
10074 auto-loaded the first time you use the more advanced commands like trig
10075 functions or matrix operations.  This is done to improve the response time
10076 of the Calculator in the common case when all you need to do is a
10077 little arithmetic.  If for some reason the Calculator fails to load an
10078 extension module automatically, you can force it to load all the
10079 extensions by using the @kbd{M-# L} (@code{calc-load-everything})
10080 command.  @xref{Mode Settings}.
10082 If you type @kbd{M-x calc} or @kbd{M-# c} with any numeric prefix argument,
10083 the Calculator is loaded if necessary, but it is not actually started.
10084 If the argument is positive, the @file{calc-ext} extensions are also
10085 loaded if necessary.  User-written Lisp code that wishes to make use
10086 of Calc's arithmetic routines can use @samp{(calc 0)} or @samp{(calc 1)}
10087 to auto-load the Calculator.
10089 @kindex M-# b
10090 @pindex full-calc
10091 If you type @kbd{M-# b}, then next time you use @kbd{M-# c} you
10092 will get a Calculator that uses the full height of the Emacs screen.
10093 When full-screen mode is on, @kbd{M-# c} runs the @code{full-calc}
10094 command instead of @code{calc}.  From the Unix shell you can type
10095 @samp{emacs -f full-calc} to start a new Emacs specifically for use
10096 as a calculator.  When Calc is started from the Emacs command line
10097 like this, Calc's normal ``quit'' commands actually quit Emacs itself.
10099 @kindex M-# o
10100 @pindex calc-other-window
10101 The @kbd{M-# o} command is like @kbd{M-# c} except that the Calc
10102 window is not actually selected.  If you are already in the Calc
10103 window, @kbd{M-# o} switches you out of it.  (The regular Emacs
10104 @kbd{C-x o} command would also work for this, but it has a
10105 tendency to drop you into the Calc Trail window instead, which
10106 @kbd{M-# o} takes care not to do.)
10108 @ignore
10109 @mindex M-# q
10110 @end ignore
10111 For one quick calculation, you can type @kbd{M-# q} (@code{quick-calc})
10112 which prompts you for a formula (like @samp{2+3/4}).  The result is
10113 displayed at the bottom of the Emacs screen without ever creating
10114 any special Calculator windows.  @xref{Quick Calculator}.
10116 @ignore
10117 @mindex M-# k
10118 @end ignore
10119 Finally, if you are using the X window system you may want to try
10120 @kbd{M-# k} (@code{calc-keypad}) which runs Calc with a
10121 ``calculator keypad'' picture as well as a stack display.  Click on
10122 the keys with the mouse to operate the calculator.  @xref{Keypad Mode}.
10124 @kindex q
10125 @pindex calc-quit
10126 @cindex Quitting the Calculator
10127 @cindex Exiting the Calculator
10128 The @kbd{q} key (@code{calc-quit}) exits Calc mode and closes the
10129 Calculator's window(s).  It does not delete the Calculator buffers.
10130 If you type @kbd{M-x calc} again, the Calculator will reappear with the
10131 contents of the stack intact.  Typing @kbd{M-# c} or @kbd{M-# M-#}
10132 again from inside the Calculator buffer is equivalent to executing
10133 @code{calc-quit}; you can think of @kbd{M-# M-#} as toggling the
10134 Calculator on and off.
10136 @kindex M-# x
10137 The @kbd{M-# x} command also turns the Calculator off, no matter which
10138 user interface (standard, Keypad, or Embedded) is currently active.
10139 It also cancels @code{calc-edit} mode if used from there.
10141 @kindex d @key{SPC}
10142 @pindex calc-refresh
10143 @cindex Refreshing a garbled display
10144 @cindex Garbled displays, refreshing
10145 The @kbd{d @key{SPC}} key sequence (@code{calc-refresh}) redraws the contents
10146 of the Calculator buffer from memory.  Use this if the contents of the
10147 buffer have been damaged somehow.
10149 @ignore
10150 @mindex o
10151 @end ignore
10152 The @kbd{o} key (@code{calc-realign}) moves the cursor back to its
10153 ``home'' position at the bottom of the Calculator buffer.
10155 @kindex <
10156 @kindex >
10157 @pindex calc-scroll-left
10158 @pindex calc-scroll-right
10159 @cindex Horizontal scrolling
10160 @cindex Scrolling
10161 @cindex Wide text, scrolling
10162 The @kbd{<} and @kbd{>} keys are bound to @code{calc-scroll-left} and
10163 @code{calc-scroll-right}.  These are just like the normal horizontal
10164 scrolling commands except that they scroll one half-screen at a time by
10165 default.  (Calc formats its output to fit within the bounds of the
10166 window whenever it can.)
10168 @kindex @{
10169 @kindex @}
10170 @pindex calc-scroll-down
10171 @pindex calc-scroll-up
10172 @cindex Vertical scrolling
10173 The @kbd{@{} and @kbd{@}} keys are bound to @code{calc-scroll-down}
10174 and @code{calc-scroll-up}.  They scroll up or down by one-half the
10175 height of the Calc window.
10177 @kindex M-# 0
10178 @pindex calc-reset
10179 The @kbd{M-# 0} command (@code{calc-reset}; that's @kbd{M-#} followed
10180 by a zero) resets the Calculator to its initial state.  This clears
10181 the stack, resets all the modes to their initial values (the values
10182 that were saved with @kbd{m m} (@code{calc-save-modes})), clears the
10183 caches (@pxref{Caches}), and so on.  (It does @emph{not} erase the
10184 values of any variables.) With an argument of 0, Calc will be reset to
10185 its default state; namely, the modes will be given their default values.
10186 With a positive prefix argument, @kbd{M-# 0} preserves the contents of
10187 the stack but resets everything else to its initial state; with a
10188 negative prefix argument, @kbd{M-# 0} preserves the contents of the
10189 stack but resets everything else to its default state.
10191 @pindex calc-version
10192 The @kbd{M-x calc-version} command displays the current version number
10193 of Calc and the name of the person who installed it on your system.
10194 (This information is also present in the @samp{*Calc Trail*} buffer,
10195 and in the output of the @kbd{h h} command.)
10197 @node Help Commands, Stack Basics, Basic Commands, Introduction
10198 @section Help Commands
10200 @noindent
10201 @cindex Help commands
10202 @kindex ?
10203 @pindex calc-help
10204 The @kbd{?} key (@code{calc-help}) displays a series of brief help messages.
10205 Some keys (such as @kbd{b} and @kbd{d}) are prefix keys, like Emacs'
10206 @key{ESC} and @kbd{C-x} prefixes.  You can type
10207 @kbd{?} after a prefix to see a list of commands beginning with that
10208 prefix.  (If the message includes @samp{[MORE]}, press @kbd{?} again
10209 to see additional commands for that prefix.)
10211 @kindex h h
10212 @pindex calc-full-help
10213 The @kbd{h h} (@code{calc-full-help}) command displays all the @kbd{?}
10214 responses at once.  When printed, this makes a nice, compact (three pages)
10215 summary of Calc keystrokes.
10217 In general, the @kbd{h} key prefix introduces various commands that
10218 provide help within Calc.  Many of the @kbd{h} key functions are
10219 Calc-specific analogues to the @kbd{C-h} functions for Emacs help.
10221 @kindex h i
10222 @kindex M-# i
10223 @kindex i
10224 @pindex calc-info
10225 The @kbd{h i} (@code{calc-info}) command runs the Emacs Info system
10226 to read this manual on-line.  This is basically the same as typing
10227 @kbd{C-h i} (the regular way to run the Info system), then, if Info
10228 is not already in the Calc manual, selecting the beginning of the
10229 manual.  The @kbd{M-# i} command is another way to read the Calc
10230 manual; it is different from @kbd{h i} in that it works any time,
10231 not just inside Calc.  The plain @kbd{i} key is also equivalent to
10232 @kbd{h i}, though this key is obsolete and may be replaced with a
10233 different command in a future version of Calc.
10235 @kindex h t
10236 @kindex M-# t
10237 @pindex calc-tutorial
10238 The @kbd{h t} (@code{calc-tutorial}) command runs the Info system on
10239 the Tutorial section of the Calc manual.  It is like @kbd{h i},
10240 except that it selects the starting node of the tutorial rather
10241 than the beginning of the whole manual.  (It actually selects the
10242 node ``Interactive Tutorial'' which tells a few things about
10243 using the Info system before going on to the actual tutorial.)
10244 The @kbd{M-# t} key is equivalent to @kbd{h t} (but it works at
10245 all times).
10247 @kindex h s
10248 @kindex M-# s
10249 @pindex calc-info-summary
10250 The @kbd{h s} (@code{calc-info-summary}) command runs the Info system
10251 on the Summary node of the Calc manual.  @xref{Summary}.  The @kbd{M-# s}
10252 key is equivalent to @kbd{h s}.
10254 @kindex h k
10255 @pindex calc-describe-key
10256 The @kbd{h k} (@code{calc-describe-key}) command looks up a key
10257 sequence in the Calc manual.  For example, @kbd{h k H a S} looks
10258 up the documentation on the @kbd{H a S} (@code{calc-solve-for})
10259 command.  This works by looking up the textual description of
10260 the key(s) in the Key Index of the manual, then jumping to the
10261 node indicated by the index.
10263 Most Calc commands do not have traditional Emacs documentation
10264 strings, since the @kbd{h k} command is both more convenient and
10265 more instructive.  This means the regular Emacs @kbd{C-h k}
10266 (@code{describe-key}) command will not be useful for Calc keystrokes.
10268 @kindex h c
10269 @pindex calc-describe-key-briefly
10270 The @kbd{h c} (@code{calc-describe-key-briefly}) command reads a
10271 key sequence and displays a brief one-line description of it at
10272 the bottom of the screen.  It looks for the key sequence in the
10273 Summary node of the Calc manual; if it doesn't find the sequence
10274 there, it acts just like its regular Emacs counterpart @kbd{C-h c}
10275 (@code{describe-key-briefly}).  For example, @kbd{h c H a S}
10276 gives the description:
10278 @smallexample
10279 H a S runs calc-solve-for:  a `H a S' v  => fsolve(a,v)  (?=notes)
10280 @end smallexample
10282 @noindent
10283 which means the command @kbd{H a S} or @kbd{H M-x calc-solve-for}
10284 takes a value @expr{a} from the stack, prompts for a value @expr{v},
10285 then applies the algebraic function @code{fsolve} to these values.
10286 The @samp{?=notes} message means you can now type @kbd{?} to see
10287 additional notes from the summary that apply to this command.
10289 @kindex h f
10290 @pindex calc-describe-function
10291 The @kbd{h f} (@code{calc-describe-function}) command looks up an
10292 algebraic function or a command name in the Calc manual.  Enter an
10293 algebraic function name to look up that function in the Function
10294 Index or enter a command name beginning with @samp{calc-} to look it 
10295 up in the Command Index.  This command will also look up operator
10296 symbols that can appear in algebraic formulas, like @samp{%} and 
10297 @samp{=>}.
10299 @kindex h v
10300 @pindex calc-describe-variable
10301 The @kbd{h v} (@code{calc-describe-variable}) command looks up a
10302 variable in the Calc manual.  Enter a variable name like @code{pi} or
10303 @code{PlotRejects}.
10305 @kindex h b
10306 @pindex describe-bindings
10307 The @kbd{h b} (@code{calc-describe-bindings}) command is just like
10308 @kbd{C-h b}, except that only local (Calc-related) key bindings are
10309 listed.
10311 @kindex h n
10312 The @kbd{h n} or @kbd{h C-n} (@code{calc-view-news}) command displays
10313 the ``news'' or change history of Calc.  This is kept in the file
10314 @file{README}, which Calc looks for in the same directory as the Calc
10315 source files.
10317 @kindex h C-c
10318 @kindex h C-d
10319 @kindex h C-w
10320 The @kbd{h C-c}, @kbd{h C-d}, and @kbd{h C-w} keys display copying,
10321 distribution, and warranty information about Calc.  These work by
10322 pulling up the appropriate parts of the ``Copying'' or ``Reporting
10323 Bugs'' sections of the manual.
10325 @node Stack Basics, Numeric Entry, Help Commands, Introduction
10326 @section Stack Basics
10328 @noindent
10329 @cindex Stack basics
10330 @c [fix-tut RPN Calculations and the Stack]
10331 Calc uses RPN notation.  If you are not familiar with RPN, @pxref{RPN
10332 Tutorial}.
10334 To add the numbers 1 and 2 in Calc you would type the keys:
10335 @kbd{1 @key{RET} 2 +}.
10336 (@key{RET} corresponds to the @key{ENTER} key on most calculators.)
10337 The first three keystrokes ``push'' the numbers 1 and 2 onto the stack.  The
10338 @kbd{+} key always ``pops'' the top two numbers from the stack, adds them,
10339 and pushes the result (3) back onto the stack.  This number is ready for
10340 further calculations:  @kbd{5 -} pushes 5 onto the stack, then pops the
10341 3 and 5, subtracts them, and pushes the result (@mathit{-2}).
10343 Note that the ``top'' of the stack actually appears at the @emph{bottom}
10344 of the buffer.  A line containing a single @samp{.} character signifies
10345 the end of the buffer; Calculator commands operate on the number(s)
10346 directly above this line.  The @kbd{d t} (@code{calc-truncate-stack})
10347 command allows you to move the @samp{.} marker up and down in the stack;
10348 @pxref{Truncating the Stack}.
10350 @kindex d l
10351 @pindex calc-line-numbering
10352 Stack elements are numbered consecutively, with number 1 being the top of
10353 the stack.  These line numbers are ordinarily displayed on the lefthand side
10354 of the window.  The @kbd{d l} (@code{calc-line-numbering}) command controls
10355 whether these numbers appear.  (Line numbers may be turned off since they
10356 slow the Calculator down a bit and also clutter the display.)
10358 @kindex o
10359 @pindex calc-realign
10360 The unshifted letter @kbd{o} (@code{calc-realign}) command repositions
10361 the cursor to its top-of-stack ``home'' position.  It also undoes any
10362 horizontal scrolling in the window.  If you give it a numeric prefix
10363 argument, it instead moves the cursor to the specified stack element.
10365 The @key{RET} (or equivalent @key{SPC}) key is only required to separate
10366 two consecutive numbers.
10367 (After all, if you typed @kbd{1 2} by themselves the Calculator
10368 would enter the number 12.)  If you press @key{RET} or @key{SPC} @emph{not}
10369 right after typing a number, the key duplicates the number on the top of
10370 the stack.  @kbd{@key{RET} *} is thus a handy way to square a number.
10372 The @key{DEL} key pops and throws away the top number on the stack.
10373 The @key{TAB} key swaps the top two objects on the stack.
10374 @xref{Stack and Trail}, for descriptions of these and other stack-related
10375 commands.
10377 @node Numeric Entry, Algebraic Entry, Stack Basics, Introduction
10378 @section Numeric Entry
10380 @noindent
10381 @kindex 0-9
10382 @kindex .
10383 @kindex e
10384 @cindex Numeric entry
10385 @cindex Entering numbers
10386 Pressing a digit or other numeric key begins numeric entry using the
10387 minibuffer.  The number is pushed on the stack when you press the @key{RET}
10388 or @key{SPC} keys.  If you press any other non-numeric key, the number is
10389 pushed onto the stack and the appropriate operation is performed.  If
10390 you press a numeric key which is not valid, the key is ignored.
10392 @cindex Minus signs
10393 @cindex Negative numbers, entering
10394 @kindex _
10395 There are three different concepts corresponding to the word ``minus,''
10396 typified by @expr{a-b} (subtraction), @expr{-x}
10397 (change-sign), and @expr{-5} (negative number).  Calc uses three
10398 different keys for these operations, respectively:
10399 @kbd{-}, @kbd{n}, and @kbd{_} (the underscore).  The @kbd{-} key subtracts
10400 the two numbers on the top of the stack.  The @kbd{n} key changes the sign
10401 of the number on the top of the stack or the number currently being entered.
10402 The @kbd{_} key begins entry of a negative number or changes the sign of
10403 the number currently being entered.  The following sequences all enter the
10404 number @mathit{-5} onto the stack:  @kbd{0 @key{RET} 5 -}, @kbd{5 n @key{RET}},
10405 @kbd{5 @key{RET} n}, @kbd{_ 5 @key{RET}}, @kbd{5 _ @key{RET}}.
10407 Some other keys are active during numeric entry, such as @kbd{#} for
10408 non-decimal numbers, @kbd{:} for fractions, and @kbd{@@} for HMS forms.
10409 These notations are described later in this manual with the corresponding
10410 data types.  @xref{Data Types}.
10412 During numeric entry, the only editing key available is @key{DEL}.
10414 @node Algebraic Entry, Quick Calculator, Numeric Entry, Introduction
10415 @section Algebraic Entry
10417 @noindent
10418 @kindex '
10419 @pindex calc-algebraic-entry
10420 @cindex Algebraic notation
10421 @cindex Formulas, entering
10422 Calculations can also be entered in algebraic form.  This is accomplished
10423 by typing the apostrophe key, @kbd{'}, followed by the expression in
10424 standard format:  @kbd{@key{'} 2+3*4 @key{RET}} computes
10425 @texline @math{2+(3\times4) = 14}
10426 @infoline @expr{2+(3*4) = 14} 
10427 and pushes that on the stack.  If you wish you can
10428 ignore the RPN aspect of Calc altogether and simply enter algebraic
10429 expressions in this way.  You may want to use @key{DEL} every so often to
10430 clear previous results off the stack.
10432 You can press the apostrophe key during normal numeric entry to switch
10433 the half-entered number into Algebraic entry mode.  One reason to do this
10434 would be to use the full Emacs cursor motion and editing keys, which are
10435 available during algebraic entry but not during numeric entry.
10437 In the same vein, during either numeric or algebraic entry you can
10438 press @kbd{`} (backquote) to switch to @code{calc-edit} mode, where
10439 you complete your half-finished entry in a separate buffer.
10440 @xref{Editing Stack Entries}.
10442 @kindex m a
10443 @pindex calc-algebraic-mode
10444 @cindex Algebraic Mode
10445 If you prefer algebraic entry, you can use the command @kbd{m a}
10446 (@code{calc-algebraic-mode}) to set Algebraic mode.  In this mode,
10447 digits and other keys that would normally start numeric entry instead
10448 start full algebraic entry; as long as your formula begins with a digit
10449 you can omit the apostrophe.  Open parentheses and square brackets also
10450 begin algebraic entry.  You can still do RPN calculations in this mode,
10451 but you will have to press @key{RET} to terminate every number:
10452 @kbd{2 @key{RET} 3 @key{RET} * 4 @key{RET} +} would accomplish the same
10453 thing as @kbd{2*3+4 @key{RET}}.
10455 @cindex Incomplete Algebraic Mode
10456 If you give a numeric prefix argument like @kbd{C-u} to the @kbd{m a}
10457 command, it enables Incomplete Algebraic mode; this is like regular
10458 Algebraic mode except that it applies to the @kbd{(} and @kbd{[} keys
10459 only.  Numeric keys still begin a numeric entry in this mode.
10461 @kindex m t
10462 @pindex calc-total-algebraic-mode
10463 @cindex Total Algebraic Mode
10464 The @kbd{m t} (@code{calc-total-algebraic-mode}) gives you an even
10465 stronger algebraic-entry mode, in which @emph{all} regular letter and
10466 punctuation keys begin algebraic entry.  Use this if you prefer typing
10467 @w{@kbd{sqrt( )}} instead of @kbd{Q}, @w{@kbd{factor( )}} instead of
10468 @kbd{a f}, and so on.  To type regular Calc commands when you are in
10469 Total Algebraic mode, hold down the @key{META} key.  Thus @kbd{M-q}
10470 is the command to quit Calc, @kbd{M-p} sets the precision, and
10471 @kbd{M-m t} (or @kbd{M-m M-t}, if you prefer) turns Total Algebraic
10472 mode back off again.  Meta keys also terminate algebraic entry, so
10473 that @kbd{2+3 M-S} is equivalent to @kbd{2+3 @key{RET} M-S}.  The symbol
10474 @samp{Alg*} will appear in the mode line whenever you are in this mode.
10476 Pressing @kbd{'} (the apostrophe) a second time re-enters the previous
10477 algebraic formula.  You can then use the normal Emacs editing keys to
10478 modify this formula to your liking before pressing @key{RET}.
10480 @kindex $
10481 @cindex Formulas, referring to stack
10482 Within a formula entered from the keyboard, the symbol @kbd{$}
10483 represents the number on the top of the stack.  If an entered formula
10484 contains any @kbd{$} characters, the Calculator replaces the top of
10485 stack with that formula rather than simply pushing the formula onto the
10486 stack.  Thus, @kbd{' 1+2 @key{RET}} pushes 3 on the stack, and @kbd{$*2
10487 @key{RET}} replaces it with 6.  Note that the @kbd{$} key always
10488 initiates algebraic entry; the @kbd{'} is unnecessary if @kbd{$} is the
10489 first character in the new formula.
10491 Higher stack elements can be accessed from an entered formula with the
10492 symbols @kbd{$$}, @kbd{$$$}, and so on.  The number of stack elements
10493 removed (to be replaced by the entered values) equals the number of dollar
10494 signs in the longest such symbol in the formula.  For example, @samp{$$+$$$}
10495 adds the second and third stack elements, replacing the top three elements
10496 with the answer.  (All information about the top stack element is thus lost
10497 since no single @samp{$} appears in this formula.)
10499 A slightly different way to refer to stack elements is with a dollar
10500 sign followed by a number:  @samp{$1}, @samp{$2}, and so on are much
10501 like @samp{$}, @samp{$$}, etc., except that stack entries referred
10502 to numerically are not replaced by the algebraic entry.  That is, while
10503 @samp{$+1} replaces 5 on the stack with 6, @samp{$1+1} leaves the 5
10504 on the stack and pushes an additional 6.
10506 If a sequence of formulas are entered separated by commas, each formula
10507 is pushed onto the stack in turn.  For example, @samp{1,2,3} pushes
10508 those three numbers onto the stack (leaving the 3 at the top), and
10509 @samp{$+1,$-1} replaces a 5 on the stack with 4 followed by 6.  Also,
10510 @samp{$,$$} exchanges the top two elements of the stack, just like the
10511 @key{TAB} key.
10513 You can finish an algebraic entry with @kbd{M-=} or @kbd{M-@key{RET}} instead
10514 of @key{RET}.  This uses @kbd{=} to evaluate the variables in each
10515 formula that goes onto the stack.  (Thus @kbd{' pi @key{RET}} pushes
10516 the variable @samp{pi}, but @kbd{' pi M-@key{RET}} pushes 3.1415.)
10518 If you finish your algebraic entry by pressing @key{LFD} (or @kbd{C-j})
10519 instead of @key{RET}, Calc disables the default simplifications
10520 (as if by @kbd{m O}; @pxref{Simplification Modes}) while the entry
10521 is being pushed on the stack.  Thus @kbd{' 1+2 @key{RET}} pushes 3
10522 on the stack, but @kbd{' 1+2 @key{LFD}} pushes the formula @expr{1+2};
10523 you might then press @kbd{=} when it is time to evaluate this formula.
10525 @node Quick Calculator, Prefix Arguments, Algebraic Entry, Introduction
10526 @section ``Quick Calculator'' Mode
10528 @noindent
10529 @kindex M-# q
10530 @pindex quick-calc
10531 @cindex Quick Calculator
10532 There is another way to invoke the Calculator if all you need to do
10533 is make one or two quick calculations.  Type @kbd{M-# q} (or
10534 @kbd{M-x quick-calc}), then type any formula as an algebraic entry.
10535 The Calculator will compute the result and display it in the echo
10536 area, without ever actually putting up a Calc window.
10538 You can use the @kbd{$} character in a Quick Calculator formula to
10539 refer to the previous Quick Calculator result.  Older results are
10540 not retained; the Quick Calculator has no effect on the full
10541 Calculator's stack or trail.  If you compute a result and then
10542 forget what it was, just run @code{M-# q} again and enter
10543 @samp{$} as the formula.
10545 If this is the first time you have used the Calculator in this Emacs
10546 session, the @kbd{M-# q} command will create the @code{*Calculator*}
10547 buffer and perform all the usual initializations; it simply will
10548 refrain from putting that buffer up in a new window.  The Quick
10549 Calculator refers to the @code{*Calculator*} buffer for all mode
10550 settings.  Thus, for example, to set the precision that the Quick
10551 Calculator uses, simply run the full Calculator momentarily and use
10552 the regular @kbd{p} command.
10554 If you use @code{M-# q} from inside the Calculator buffer, the
10555 effect is the same as pressing the apostrophe key (algebraic entry).
10557 The result of a Quick calculation is placed in the Emacs ``kill ring''
10558 as well as being displayed.  A subsequent @kbd{C-y} command will
10559 yank the result into the editing buffer.  You can also use this
10560 to yank the result into the next @kbd{M-# q} input line as a more
10561 explicit alternative to @kbd{$} notation, or to yank the result
10562 into the Calculator stack after typing @kbd{M-# c}.
10564 If you finish your formula by typing @key{LFD} (or @kbd{C-j}) instead
10565 of @key{RET}, the result is inserted immediately into the current
10566 buffer rather than going into the kill ring.
10568 Quick Calculator results are actually evaluated as if by the @kbd{=}
10569 key (which replaces variable names by their stored values, if any).
10570 If the formula you enter is an assignment to a variable using the
10571 @samp{:=} operator, say, @samp{foo := 2 + 3} or @samp{foo := foo + 1},
10572 then the result of the evaluation is stored in that Calc variable.
10573 @xref{Store and Recall}.
10575 If the result is an integer and the current display radix is decimal,
10576 the number will also be displayed in hex and octal formats.  If the
10577 integer is in the range from 1 to 126, it will also be displayed as
10578 an ASCII character.
10580 For example, the quoted character @samp{"x"} produces the vector
10581 result @samp{[120]} (because 120 is the ASCII code of the lower-case
10582 `x'; @pxref{Strings}).  Since this is a vector, not an integer, it
10583 is displayed only according to the current mode settings.  But
10584 running Quick Calc again and entering @samp{120} will produce the
10585 result @samp{120 (16#78, 8#170, x)} which shows the number in its
10586 decimal, hexadecimal, octal, and ASCII forms.
10588 Please note that the Quick Calculator is not any faster at loading
10589 or computing the answer than the full Calculator; the name ``quick''
10590 merely refers to the fact that it's much less hassle to use for
10591 small calculations.
10593 @node Prefix Arguments, Undo, Quick Calculator, Introduction
10594 @section Numeric Prefix Arguments
10596 @noindent
10597 Many Calculator commands use numeric prefix arguments.  Some, such as
10598 @kbd{d s} (@code{calc-sci-notation}), set a parameter to the value of
10599 the prefix argument or use a default if you don't use a prefix.
10600 Others (like @kbd{d f} (@code{calc-fix-notation})) require an argument
10601 and prompt for a number if you don't give one as a prefix.
10603 As a rule, stack-manipulation commands accept a numeric prefix argument
10604 which is interpreted as an index into the stack.  A positive argument
10605 operates on the top @var{n} stack entries; a negative argument operates
10606 on the @var{n}th stack entry in isolation; and a zero argument operates
10607 on the entire stack.
10609 Most commands that perform computations (such as the arithmetic and
10610 scientific functions) accept a numeric prefix argument that allows the
10611 operation to be applied across many stack elements.  For unary operations
10612 (that is, functions of one argument like absolute value or complex
10613 conjugate), a positive prefix argument applies that function to the top
10614 @var{n} stack entries simultaneously, and a negative argument applies it
10615 to the @var{n}th stack entry only.  For binary operations (functions of
10616 two arguments like addition, GCD, and vector concatenation), a positive
10617 prefix argument ``reduces'' the function across the top @var{n}
10618 stack elements (for example, @kbd{C-u 5 +} sums the top 5 stack entries;
10619 @pxref{Reducing and Mapping}), and a negative argument maps the next-to-top
10620 @var{n} stack elements with the top stack element as a second argument
10621 (for example, @kbd{7 c-u -5 +} adds 7 to the top 5 stack elements).
10622 This feature is not available for operations which use the numeric prefix
10623 argument for some other purpose.
10625 Numeric prefixes are specified the same way as always in Emacs:  Press
10626 a sequence of @key{META}-digits, or press @key{ESC} followed by digits,
10627 or press @kbd{C-u} followed by digits.  Some commands treat plain
10628 @kbd{C-u} (without any actual digits) specially.
10630 @kindex ~
10631 @pindex calc-num-prefix
10632 You can type @kbd{~} (@code{calc-num-prefix}) to pop an integer from the
10633 top of the stack and enter it as the numeric prefix for the next command.
10634 For example, @kbd{C-u 16 p} sets the precision to 16 digits; an alternate
10635 (silly) way to do this would be @kbd{2 @key{RET} 4 ^ ~ p}, i.e., compute 2
10636 to the fourth power and set the precision to that value.
10638 Conversely, if you have typed a numeric prefix argument the @kbd{~} key
10639 pushes it onto the stack in the form of an integer.
10641 @node Undo, Error Messages, Prefix Arguments, Introduction
10642 @section Undoing Mistakes
10644 @noindent
10645 @kindex U
10646 @kindex C-_
10647 @pindex calc-undo
10648 @cindex Mistakes, undoing
10649 @cindex Undoing mistakes
10650 @cindex Errors, undoing
10651 The shift-@kbd{U} key (@code{calc-undo}) undoes the most recent operation.
10652 If that operation added or dropped objects from the stack, those objects
10653 are removed or restored.  If it was a ``store'' operation, you are
10654 queried whether or not to restore the variable to its original value.
10655 The @kbd{U} key may be pressed any number of times to undo successively
10656 farther back in time; with a numeric prefix argument it undoes a
10657 specified number of operations.  The undo history is cleared only by the
10658 @kbd{q} (@code{calc-quit}) command.  (Recall that @kbd{M-# c} is
10659 synonymous with @code{calc-quit} while inside the Calculator; this
10660 also clears the undo history.)
10662 Currently the mode-setting commands (like @code{calc-precision}) are not
10663 undoable.  You can undo past a point where you changed a mode, but you
10664 will need to reset the mode yourself.
10666 @kindex D
10667 @pindex calc-redo
10668 @cindex Redoing after an Undo
10669 The shift-@kbd{D} key (@code{calc-redo}) redoes an operation that was
10670 mistakenly undone.  Pressing @kbd{U} with a negative prefix argument is
10671 equivalent to executing @code{calc-redo}.  You can redo any number of
10672 times, up to the number of recent consecutive undo commands.  Redo
10673 information is cleared whenever you give any command that adds new undo
10674 information, i.e., if you undo, then enter a number on the stack or make
10675 any other change, then it will be too late to redo.
10677 @kindex M-@key{RET}
10678 @pindex calc-last-args
10679 @cindex Last-arguments feature
10680 @cindex Arguments, restoring
10681 The @kbd{M-@key{RET}} key (@code{calc-last-args}) is like undo in that
10682 it restores the arguments of the most recent command onto the stack;
10683 however, it does not remove the result of that command.  Given a numeric
10684 prefix argument, this command applies to the @expr{n}th most recent
10685 command which removed items from the stack; it pushes those items back
10686 onto the stack.
10688 The @kbd{K} (@code{calc-keep-args}) command provides a related function
10689 to @kbd{M-@key{RET}}.  @xref{Stack and Trail}.
10691 It is also possible to recall previous results or inputs using the trail.
10692 @xref{Trail Commands}.
10694 The standard Emacs @kbd{C-_} undo key is recognized as a synonym for @kbd{U}.
10696 @node Error Messages, Multiple Calculators, Undo, Introduction
10697 @section Error Messages
10699 @noindent
10700 @kindex w
10701 @pindex calc-why
10702 @cindex Errors, messages
10703 @cindex Why did an error occur?
10704 Many situations that would produce an error message in other calculators
10705 simply create unsimplified formulas in the Emacs Calculator.  For example,
10706 @kbd{1 @key{RET} 0 /} pushes the formula @expr{1 / 0}; @w{@kbd{0 L}} pushes
10707 the formula @samp{ln(0)}.  Floating-point overflow and underflow are also
10708 reasons for this to happen.
10710 When a function call must be left in symbolic form, Calc usually
10711 produces a message explaining why.  Messages that are probably
10712 surprising or indicative of user errors are displayed automatically.
10713 Other messages are simply kept in Calc's memory and are displayed only
10714 if you type @kbd{w} (@code{calc-why}).  You can also press @kbd{w} if
10715 the same computation results in several messages.  (The first message
10716 will end with @samp{[w=more]} in this case.)
10718 @kindex d w
10719 @pindex calc-auto-why
10720 The @kbd{d w} (@code{calc-auto-why}) command controls when error messages
10721 are displayed automatically.  (Calc effectively presses @kbd{w} for you
10722 after your computation finishes.)  By default, this occurs only for
10723 ``important'' messages.  The other possible modes are to report
10724 @emph{all} messages automatically, or to report none automatically (so
10725 that you must always press @kbd{w} yourself to see the messages).
10727 @node Multiple Calculators, Troubleshooting Commands, Error Messages, Introduction
10728 @section Multiple Calculators
10730 @noindent
10731 @pindex another-calc
10732 It is possible to have any number of Calc mode buffers at once.
10733 Usually this is done by executing @kbd{M-x another-calc}, which
10734 is similar to @kbd{M-# c} except that if a @samp{*Calculator*}
10735 buffer already exists, a new, independent one with a name of the
10736 form @samp{*Calculator*<@var{n}>} is created.  You can also use the
10737 command @code{calc-mode} to put any buffer into Calculator mode, but
10738 this would ordinarily never be done.
10740 The @kbd{q} (@code{calc-quit}) command does not destroy a Calculator buffer;
10741 it only closes its window.  Use @kbd{M-x kill-buffer} to destroy a
10742 Calculator buffer.
10744 Each Calculator buffer keeps its own stack, undo list, and mode settings
10745 such as precision, angular mode, and display formats.  In Emacs terms,
10746 variables such as @code{calc-stack} are buffer-local variables.  The
10747 global default values of these variables are used only when a new
10748 Calculator buffer is created.  The @code{calc-quit} command saves
10749 the stack and mode settings of the buffer being quit as the new defaults.
10751 There is only one trail buffer, @samp{*Calc Trail*}, used by all
10752 Calculator buffers.
10754 @node Troubleshooting Commands, , Multiple Calculators, Introduction
10755 @section Troubleshooting Commands
10757 @noindent
10758 This section describes commands you can use in case a computation
10759 incorrectly fails or gives the wrong answer.
10761 @xref{Reporting Bugs}, if you find a problem that appears to be due
10762 to a bug or deficiency in Calc.
10764 @menu
10765 * Autoloading Problems::
10766 * Recursion Depth::
10767 * Caches::
10768 * Debugging Calc::
10769 @end menu
10771 @node Autoloading Problems, Recursion Depth, Troubleshooting Commands, Troubleshooting Commands
10772 @subsection Autoloading Problems
10774 @noindent
10775 The Calc program is split into many component files; components are
10776 loaded automatically as you use various commands that require them.
10777 Occasionally Calc may lose track of when a certain component is
10778 necessary; typically this means you will type a command and it won't
10779 work because some function you've never heard of was undefined.
10781 @kindex M-# L
10782 @pindex calc-load-everything
10783 If this happens, the easiest workaround is to type @kbd{M-# L}
10784 (@code{calc-load-everything}) to force all the parts of Calc to be
10785 loaded right away.  This will cause Emacs to take up a lot more
10786 memory than it would otherwise, but it's guaranteed to fix the problem.
10788 @node Recursion Depth, Caches, Autoloading Problems, Troubleshooting Commands
10789 @subsection Recursion Depth
10791 @noindent
10792 @kindex M
10793 @kindex I M
10794 @pindex calc-more-recursion-depth
10795 @pindex calc-less-recursion-depth
10796 @cindex Recursion depth
10797 @cindex ``Computation got stuck'' message
10798 @cindex @code{max-lisp-eval-depth}
10799 @cindex @code{max-specpdl-size}
10800 Calc uses recursion in many of its calculations.  Emacs Lisp keeps a
10801 variable @code{max-lisp-eval-depth} which limits the amount of recursion
10802 possible in an attempt to recover from program bugs.  If a calculation
10803 ever halts incorrectly with the message ``Computation got stuck or
10804 ran too long,'' use the @kbd{M} command (@code{calc-more-recursion-depth})
10805 to increase this limit.  (Of course, this will not help if the
10806 calculation really did get stuck due to some problem inside Calc.)
10808 The limit is always increased (multiplied) by a factor of two.  There
10809 is also an @kbd{I M} (@code{calc-less-recursion-depth}) command which
10810 decreases this limit by a factor of two, down to a minimum value of 200.
10811 The default value is 1000.
10813 These commands also double or halve @code{max-specpdl-size}, another
10814 internal Lisp recursion limit.  The minimum value for this limit is 600.
10816 @node Caches, Debugging Calc, Recursion Depth, Troubleshooting Commands
10817 @subsection Caches
10819 @noindent
10820 @cindex Caches
10821 @cindex Flushing caches
10822 Calc saves certain values after they have been computed once.  For
10823 example, the @kbd{P} (@code{calc-pi}) command initially ``knows'' the
10824 constant @cpi{} to about 20 decimal places; if the current precision
10825 is greater than this, it will recompute @cpi{} using a series
10826 approximation.  This value will not need to be recomputed ever again
10827 unless you raise the precision still further.  Many operations such as
10828 logarithms and sines make use of similarly cached values such as
10829 @cpiover{4} and 
10830 @texline @math{\ln 2}.
10831 @infoline @expr{ln(2)}.  
10832 The visible effect of caching is that
10833 high-precision computations may seem to do extra work the first time.
10834 Other things cached include powers of two (for the binary arithmetic
10835 functions), matrix inverses and determinants, symbolic integrals, and
10836 data points computed by the graphing commands.
10838 @pindex calc-flush-caches
10839 If you suspect a Calculator cache has become corrupt, you can use the
10840 @code{calc-flush-caches} command to reset all caches to the empty state.
10841 (This should only be necessary in the event of bugs in the Calculator.)
10842 The @kbd{M-# 0} (with the zero key) command also resets caches along
10843 with all other aspects of the Calculator's state.
10845 @node Debugging Calc, , Caches, Troubleshooting Commands
10846 @subsection Debugging Calc
10848 @noindent
10849 A few commands exist to help in the debugging of Calc commands.
10850 @xref{Programming}, to see the various ways that you can write
10851 your own Calc commands.
10853 @kindex Z T
10854 @pindex calc-timing
10855 The @kbd{Z T} (@code{calc-timing}) command turns on and off a mode
10856 in which the timing of slow commands is reported in the Trail.
10857 Any Calc command that takes two seconds or longer writes a line
10858 to the Trail showing how many seconds it took.  This value is
10859 accurate only to within one second.
10861 All steps of executing a command are included; in particular, time
10862 taken to format the result for display in the stack and trail is
10863 counted.  Some prompts also count time taken waiting for them to
10864 be answered, while others do not; this depends on the exact
10865 implementation of the command.  For best results, if you are timing
10866 a sequence that includes prompts or multiple commands, define a
10867 keyboard macro to run the whole sequence at once.  Calc's @kbd{X}
10868 command (@pxref{Keyboard Macros}) will then report the time taken
10869 to execute the whole macro.
10871 Another advantage of the @kbd{X} command is that while it is
10872 executing, the stack and trail are not updated from step to step.
10873 So if you expect the output of your test sequence to leave a result
10874 that may take a long time to format and you don't wish to count
10875 this formatting time, end your sequence with a @key{DEL} keystroke
10876 to clear the result from the stack.  When you run the sequence with
10877 @kbd{X}, Calc will never bother to format the large result.
10879 Another thing @kbd{Z T} does is to increase the Emacs variable
10880 @code{gc-cons-threshold} to a much higher value (two million; the
10881 usual default in Calc is 250,000) for the duration of each command.
10882 This generally prevents garbage collection during the timing of
10883 the command, though it may cause your Emacs process to grow
10884 abnormally large.  (Garbage collection time is a major unpredictable
10885 factor in the timing of Emacs operations.)
10887 Another command that is useful when debugging your own Lisp
10888 extensions to Calc is @kbd{M-x calc-pass-errors}, which disables
10889 the error handler that changes the ``@code{max-lisp-eval-depth}
10890 exceeded'' message to the much more friendly ``Computation got
10891 stuck or ran too long.''  This handler interferes with the Emacs
10892 Lisp debugger's @code{debug-on-error} mode.  Errors are reported
10893 in the handler itself rather than at the true location of the
10894 error.  After you have executed @code{calc-pass-errors}, Lisp
10895 errors will be reported correctly but the user-friendly message
10896 will be lost.
10898 @node Data Types, Stack and Trail, Introduction, Top
10899 @chapter Data Types
10901 @noindent
10902 This chapter discusses the various types of objects that can be placed
10903 on the Calculator stack, how they are displayed, and how they are
10904 entered.  (@xref{Data Type Formats}, for information on how these data
10905 types are represented as underlying Lisp objects.)
10907 Integers, fractions, and floats are various ways of describing real
10908 numbers.  HMS forms also for many purposes act as real numbers.  These
10909 types can be combined to form complex numbers, modulo forms, error forms,
10910 or interval forms.  (But these last four types cannot be combined
10911 arbitrarily:@: error forms may not contain modulo forms, for example.)
10912 Finally, all these types of numbers may be combined into vectors,
10913 matrices, or algebraic formulas.
10915 @menu
10916 * Integers::                The most basic data type.
10917 * Fractions::               This and above are called @dfn{rationals}.
10918 * Floats::                  This and above are called @dfn{reals}.
10919 * Complex Numbers::         This and above are called @dfn{numbers}.
10920 * Infinities::
10921 * Vectors and Matrices::
10922 * Strings::
10923 * HMS Forms::
10924 * Date Forms::
10925 * Modulo Forms::
10926 * Error Forms::
10927 * Interval Forms::
10928 * Incomplete Objects::
10929 * Variables::
10930 * Formulas::
10931 @end menu
10933 @node Integers, Fractions, Data Types, Data Types
10934 @section Integers
10936 @noindent
10937 @cindex Integers
10938 The Calculator stores integers to arbitrary precision.  Addition,
10939 subtraction, and multiplication of integers always yields an exact
10940 integer result.  (If the result of a division or exponentiation of
10941 integers is not an integer, it is expressed in fractional or
10942 floating-point form according to the current Fraction mode.
10943 @xref{Fraction Mode}.)
10945 A decimal integer is represented as an optional sign followed by a
10946 sequence of digits.  Grouping (@pxref{Grouping Digits}) can be used to
10947 insert a comma at every third digit for display purposes, but you
10948 must not type commas during the entry of numbers.
10950 @kindex #
10951 A non-decimal integer is represented as an optional sign, a radix
10952 between 2 and 36, a @samp{#} symbol, and one or more digits.  For radix 11
10953 and above, the letters A through Z (upper- or lower-case) count as
10954 digits and do not terminate numeric entry mode.  @xref{Radix Modes}, for how
10955 to set the default radix for display of integers.  Numbers of any radix
10956 may be entered at any time.  If you press @kbd{#} at the beginning of a
10957 number, the current display radix is used.
10959 @node Fractions, Floats, Integers, Data Types
10960 @section Fractions
10962 @noindent
10963 @cindex Fractions
10964 A @dfn{fraction} is a ratio of two integers.  Fractions are traditionally
10965 written ``2/3'' but Calc uses the notation @samp{2:3}.  (The @kbd{/} key
10966 performs RPN division; the following two sequences push the number
10967 @samp{2:3} on the stack:  @kbd{2 :@: 3 @key{RET}}, or @kbd{2 @key{RET} 3 /}
10968 assuming Fraction mode has been enabled.)
10969 When the Calculator produces a fractional result it always reduces it to
10970 simplest form, which may in fact be an integer.
10972 Fractions may also be entered in a three-part form, where @samp{2:3:4}
10973 represents two-and-three-quarters.  @xref{Fraction Formats}, for fraction
10974 display formats.
10976 Non-decimal fractions are entered and displayed as
10977 @samp{@var{radix}#@var{num}:@var{denom}} (or in the analogous three-part
10978 form).  The numerator and denominator always use the same radix.
10980 @node Floats, Complex Numbers, Fractions, Data Types
10981 @section Floats
10983 @noindent
10984 @cindex Floating-point numbers
10985 A floating-point number or @dfn{float} is a number stored in scientific
10986 notation.  The number of significant digits in the fractional part is
10987 governed by the current floating precision (@pxref{Precision}).  The
10988 range of acceptable values is from 
10989 @texline @math{10^{-3999999}}
10990 @infoline @expr{10^-3999999} 
10991 (inclusive) to 
10992 @texline @math{10^{4000000}}
10993 @infoline @expr{10^4000000}
10994 (exclusive), plus the corresponding negative values and zero.
10996 Calculations that would exceed the allowable range of values (such
10997 as @samp{exp(exp(20))}) are left in symbolic form by Calc.  The
10998 messages ``floating-point overflow'' or ``floating-point underflow''
10999 indicate that during the calculation a number would have been produced
11000 that was too large or too close to zero, respectively, to be represented
11001 by Calc.  This does not necessarily mean the final result would have
11002 overflowed, just that an overflow occurred while computing the result.
11003 (In fact, it could report an underflow even though the final result
11004 would have overflowed!)
11006 If a rational number and a float are mixed in a calculation, the result
11007 will in general be expressed as a float.  Commands that require an integer
11008 value (such as @kbd{k g} [@code{gcd}]) will also accept integer-valued
11009 floats, i.e., floating-point numbers with nothing after the decimal point.
11011 Floats are identified by the presence of a decimal point and/or an
11012 exponent.  In general a float consists of an optional sign, digits
11013 including an optional decimal point, and an optional exponent consisting
11014 of an @samp{e}, an optional sign, and up to seven exponent digits.
11015 For example, @samp{23.5e-2} is 23.5 times ten to the minus-second power,
11016 or 0.235.
11018 Floating-point numbers are normally displayed in decimal notation with
11019 all significant figures shown.  Exceedingly large or small numbers are
11020 displayed in scientific notation.  Various other display options are
11021 available.  @xref{Float Formats}.
11023 @cindex Accuracy of calculations
11024 Floating-point numbers are stored in decimal, not binary.  The result
11025 of each operation is rounded to the nearest value representable in the
11026 number of significant digits specified by the current precision,
11027 rounding away from zero in the case of a tie.  Thus (in the default
11028 display mode) what you see is exactly what you get.  Some operations such
11029 as square roots and transcendental functions are performed with several
11030 digits of extra precision and then rounded down, in an effort to make the
11031 final result accurate to the full requested precision.  However,
11032 accuracy is not rigorously guaranteed.  If you suspect the validity of a
11033 result, try doing the same calculation in a higher precision.  The
11034 Calculator's arithmetic is not intended to be IEEE-conformant in any
11035 way.
11037 While floats are always @emph{stored} in decimal, they can be entered
11038 and displayed in any radix just like integers and fractions.  The
11039 notation @samp{@var{radix}#@var{ddd}.@var{ddd}} is a floating-point
11040 number whose digits are in the specified radix.  Note that the @samp{.}
11041 is more aptly referred to as a ``radix point'' than as a decimal
11042 point in this case.  The number @samp{8#123.4567} is defined as
11043 @samp{8#1234567 * 8^-4}.  If the radix is 14 or less, you can use
11044 @samp{e} notation to write a non-decimal number in scientific notation.
11045 The exponent is written in decimal, and is considered to be a power
11046 of the radix: @samp{8#1234567e-4}.  If the radix is 15 or above, the
11047 letter @samp{e} is a digit, so scientific notation must be written
11048 out, e.g., @samp{16#123.4567*16^2}.  The first two exercises of the
11049 Modes Tutorial explore some of the properties of non-decimal floats.
11051 @node Complex Numbers, Infinities, Floats, Data Types
11052 @section Complex Numbers
11054 @noindent
11055 @cindex Complex numbers
11056 There are two supported formats for complex numbers: rectangular and
11057 polar.  The default format is rectangular, displayed in the form
11058 @samp{(@var{real},@var{imag})} where @var{real} is the real part and
11059 @var{imag} is the imaginary part, each of which may be any real number.
11060 Rectangular complex numbers can also be displayed in @samp{@var{a}+@var{b}i}
11061 notation; @pxref{Complex Formats}.
11063 Polar complex numbers are displayed in the form 
11064 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'
11065 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'
11066 where @var{r} is the nonnegative magnitude and 
11067 @texline @math{\theta}
11068 @infoline @var{theta} 
11069 is the argument or phase angle.  The range of 
11070 @texline @math{\theta}
11071 @infoline @var{theta} 
11072 depends on the current angular mode (@pxref{Angular Modes}); it is
11073 generally between @mathit{-180} and @mathit{+180} degrees or the equivalent range
11074 in radians. 
11076 Complex numbers are entered in stages using incomplete objects.
11077 @xref{Incomplete Objects}.
11079 Operations on rectangular complex numbers yield rectangular complex
11080 results, and similarly for polar complex numbers.  Where the two types
11081 are mixed, or where new complex numbers arise (as for the square root of
11082 a negative real), the current @dfn{Polar mode} is used to determine the
11083 type.  @xref{Polar Mode}.
11085 A complex result in which the imaginary part is zero (or the phase angle
11086 is 0 or 180 degrees or @cpi{} radians) is automatically converted to a real
11087 number.
11089 @node Infinities, Vectors and Matrices, Complex Numbers, Data Types
11090 @section Infinities
11092 @noindent
11093 @cindex Infinity
11094 @cindex @code{inf} variable
11095 @cindex @code{uinf} variable
11096 @cindex @code{nan} variable
11097 @vindex inf
11098 @vindex uinf
11099 @vindex nan
11100 The word @code{inf} represents the mathematical concept of @dfn{infinity}.
11101 Calc actually has three slightly different infinity-like values:
11102 @code{inf}, @code{uinf}, and @code{nan}.  These are just regular
11103 variable names (@pxref{Variables}); you should avoid using these
11104 names for your own variables because Calc gives them special
11105 treatment.  Infinities, like all variable names, are normally
11106 entered using algebraic entry.
11108 Mathematically speaking, it is not rigorously correct to treat
11109 ``infinity'' as if it were a number, but mathematicians often do
11110 so informally.  When they say that @samp{1 / inf = 0}, what they
11111 really mean is that @expr{1 / x}, as @expr{x} becomes larger and
11112 larger, becomes arbitrarily close to zero.  So you can imagine
11113 that if @expr{x} got ``all the way to infinity,'' then @expr{1 / x}
11114 would go all the way to zero.  Similarly, when they say that
11115 @samp{exp(inf) = inf}, they mean that 
11116 @texline @math{e^x}
11117 @infoline @expr{exp(x)} 
11118 grows without bound as @expr{x} grows.  The symbol @samp{-inf} likewise
11119 stands for an infinitely negative real value; for example, we say that
11120 @samp{exp(-inf) = 0}.  You can have an infinity pointing in any
11121 direction on the complex plane:  @samp{sqrt(-inf) = i inf}.
11123 The same concept of limits can be used to define @expr{1 / 0}.  We
11124 really want the value that @expr{1 / x} approaches as @expr{x}
11125 approaches zero.  But if all we have is @expr{1 / 0}, we can't
11126 tell which direction @expr{x} was coming from.  If @expr{x} was
11127 positive and decreasing toward zero, then we should say that
11128 @samp{1 / 0 = inf}.  But if @expr{x} was negative and increasing
11129 toward zero, the answer is @samp{1 / 0 = -inf}.  In fact, @expr{x}
11130 could be an imaginary number, giving the answer @samp{i inf} or
11131 @samp{-i inf}.  Calc uses the special symbol @samp{uinf} to mean
11132 @dfn{undirected infinity}, i.e., a value which is infinitely
11133 large but with an unknown sign (or direction on the complex plane).
11135 Calc actually has three modes that say how infinities are handled.
11136 Normally, infinities never arise from calculations that didn't
11137 already have them.  Thus, @expr{1 / 0} is treated simply as an
11138 error and left unevaluated.  The @kbd{m i} (@code{calc-infinite-mode})
11139 command (@pxref{Infinite Mode}) enables a mode in which
11140 @expr{1 / 0} evaluates to @code{uinf} instead.  There is also
11141 an alternative type of infinite mode which says to treat zeros
11142 as if they were positive, so that @samp{1 / 0 = inf}.  While this
11143 is less mathematically correct, it may be the answer you want in
11144 some cases.
11146 Since all infinities are ``as large'' as all others, Calc simplifies,
11147 e.g., @samp{5 inf} to @samp{inf}.  Another example is
11148 @samp{5 - inf = -inf}, where the @samp{-inf} is so large that
11149 adding a finite number like five to it does not affect it.
11150 Note that @samp{a - inf} also results in @samp{-inf}; Calc assumes
11151 that variables like @code{a} always stand for finite quantities.
11152 Just to show that infinities really are all the same size,
11153 note that @samp{sqrt(inf) = inf^2 = exp(inf) = inf} in Calc's
11154 notation.
11156 It's not so easy to define certain formulas like @samp{0 * inf} and
11157 @samp{inf / inf}.  Depending on where these zeros and infinities
11158 came from, the answer could be literally anything.  The latter
11159 formula could be the limit of @expr{x / x} (giving a result of one),
11160 or @expr{2 x / x} (giving two), or @expr{x^2 / x} (giving @code{inf}),
11161 or @expr{x / x^2} (giving zero).  Calc uses the symbol @code{nan}
11162 to represent such an @dfn{indeterminate} value.  (The name ``nan''
11163 comes from analogy with the ``NAN'' concept of IEEE standard
11164 arithmetic; it stands for ``Not A Number.''  This is somewhat of a
11165 misnomer, since @code{nan} @emph{does} stand for some number or
11166 infinity, it's just that @emph{which} number it stands for
11167 cannot be determined.)  In Calc's notation, @samp{0 * inf = nan}
11168 and @samp{inf / inf = nan}.  A few other common indeterminate
11169 expressions are @samp{inf - inf} and @samp{inf ^ 0}.  Also,
11170 @samp{0 / 0 = nan} if you have turned on Infinite mode
11171 (as described above).
11173 Infinities are especially useful as parts of @dfn{intervals}.
11174 @xref{Interval Forms}.
11176 @node Vectors and Matrices, Strings, Infinities, Data Types
11177 @section Vectors and Matrices
11179 @noindent
11180 @cindex Vectors
11181 @cindex Plain vectors
11182 @cindex Matrices
11183 The @dfn{vector} data type is flexible and general.  A vector is simply a
11184 list of zero or more data objects.  When these objects are numbers, the
11185 whole is a vector in the mathematical sense.  When these objects are
11186 themselves vectors of equal (nonzero) length, the whole is a @dfn{matrix}.
11187 A vector which is not a matrix is referred to here as a @dfn{plain vector}.
11189 A vector is displayed as a list of values separated by commas and enclosed
11190 in square brackets:  @samp{[1, 2, 3]}.  Thus the following is a 2 row by
11191 3 column matrix:  @samp{[[1, 2, 3], [4, 5, 6]]}.  Vectors, like complex
11192 numbers, are entered as incomplete objects.  @xref{Incomplete Objects}.
11193 During algebraic entry, vectors are entered all at once in the usual
11194 brackets-and-commas form.  Matrices may be entered algebraically as nested
11195 vectors, or using the shortcut notation @w{@samp{[1, 2, 3; 4, 5, 6]}},
11196 with rows separated by semicolons.  The commas may usually be omitted
11197 when entering vectors:  @samp{[1 2 3]}.  Curly braces may be used in
11198 place of brackets: @samp{@{1, 2, 3@}}, but the commas are required in
11199 this case.
11201 Traditional vector and matrix arithmetic is also supported;
11202 @pxref{Basic Arithmetic} and @pxref{Matrix Functions}.
11203 Many other operations are applied to vectors element-wise.  For example,
11204 the complex conjugate of a vector is a vector of the complex conjugates
11205 of its elements.
11207 @ignore
11208 @starindex
11209 @end ignore
11210 @tindex vec
11211 Algebraic functions for building vectors include @samp{vec(a, b, c)}
11212 to build @samp{[a, b, c]}, @samp{cvec(a, n, m)} to build an 
11213 @texline @math{n\times m}
11214 @infoline @var{n}x@var{m}
11215 matrix of @samp{a}s, and @samp{index(n)} to build a vector of integers
11216 from 1 to @samp{n}.
11218 @node Strings, HMS Forms, Vectors and Matrices, Data Types
11219 @section Strings
11221 @noindent
11222 @kindex "
11223 @cindex Strings
11224 @cindex Character strings
11225 Character strings are not a special data type in the Calculator.
11226 Rather, a string is represented simply as a vector all of whose
11227 elements are integers in the range 0 to 255 (ASCII codes).  You can
11228 enter a string at any time by pressing the @kbd{"} key.  Quotation
11229 marks and backslashes are written @samp{\"} and @samp{\\}, respectively,
11230 inside strings.  Other notations introduced by backslashes are:
11232 @example
11233 @group
11234 \a     7          \^@@    0
11235 \b     8          \^a-z  1-26
11236 \e     27         \^[    27
11237 \f     12         \^\\   28
11238 \n     10         \^]    29
11239 \r     13         \^^    30
11240 \t     9          \^_    31
11241                   \^?    127
11242 @end group
11243 @end example
11245 @noindent
11246 Finally, a backslash followed by three octal digits produces any
11247 character from its ASCII code.
11249 @kindex d "
11250 @pindex calc-display-strings
11251 Strings are normally displayed in vector-of-integers form.  The
11252 @w{@kbd{d "}} (@code{calc-display-strings}) command toggles a mode in
11253 which any vectors of small integers are displayed as quoted strings
11254 instead.
11256 The backslash notations shown above are also used for displaying
11257 strings.  Characters 128 and above are not translated by Calc; unless
11258 you have an Emacs modified for 8-bit fonts, these will show up in
11259 backslash-octal-digits notation.  For characters below 32, and
11260 for character 127, Calc uses the backslash-letter combination if
11261 there is one, or otherwise uses a @samp{\^} sequence.
11263 The only Calc feature that uses strings is @dfn{compositions};
11264 @pxref{Compositions}.  Strings also provide a convenient
11265 way to do conversions between ASCII characters and integers.
11267 @ignore
11268 @starindex
11269 @end ignore
11270 @tindex string
11271 There is a @code{string} function which provides a different display
11272 format for strings.  Basically, @samp{string(@var{s})}, where @var{s}
11273 is a vector of integers in the proper range, is displayed as the
11274 corresponding string of characters with no surrounding quotation
11275 marks or other modifications.  Thus @samp{string("ABC")} (or
11276 @samp{string([65 66 67])}) will look like @samp{ABC} on the stack.
11277 This happens regardless of whether @w{@kbd{d "}} has been used.  The
11278 only way to turn it off is to use @kbd{d U} (unformatted language
11279 mode) which will display @samp{string("ABC")} instead.
11281 Control characters are displayed somewhat differently by @code{string}.
11282 Characters below 32, and character 127, are shown using @samp{^} notation
11283 (same as shown above, but without the backslash).  The quote and
11284 backslash characters are left alone, as are characters 128 and above.
11286 @ignore
11287 @starindex
11288 @end ignore
11289 @tindex bstring
11290 The @code{bstring} function is just like @code{string} except that
11291 the resulting string is breakable across multiple lines if it doesn't
11292 fit all on one line.  Potential break points occur at every space
11293 character in the string.
11295 @node HMS Forms, Date Forms, Strings, Data Types
11296 @section HMS Forms
11298 @noindent
11299 @cindex Hours-minutes-seconds forms
11300 @cindex Degrees-minutes-seconds forms
11301 @dfn{HMS} stands for Hours-Minutes-Seconds; when used as an angular
11302 argument, the interpretation is Degrees-Minutes-Seconds.  All functions
11303 that operate on angles accept HMS forms.  These are interpreted as
11304 degrees regardless of the current angular mode.  It is also possible to
11305 use HMS as the angular mode so that calculated angles are expressed in
11306 degrees, minutes, and seconds.
11308 @kindex @@
11309 @ignore
11310 @mindex @null
11311 @end ignore
11312 @kindex ' (HMS forms)
11313 @ignore
11314 @mindex @null
11315 @end ignore
11316 @kindex " (HMS forms)
11317 @ignore
11318 @mindex @null
11319 @end ignore
11320 @kindex h (HMS forms)
11321 @ignore
11322 @mindex @null
11323 @end ignore
11324 @kindex o (HMS forms)
11325 @ignore
11326 @mindex @null
11327 @end ignore
11328 @kindex m (HMS forms)
11329 @ignore
11330 @mindex @null
11331 @end ignore
11332 @kindex s (HMS forms)
11333 The default format for HMS values is
11334 @samp{@var{hours}@@ @var{mins}' @var{secs}"}.  During entry, the letters
11335 @samp{h} (for ``hours'') or
11336 @samp{o} (approximating the ``degrees'' symbol) are accepted as well as
11337 @samp{@@}, @samp{m} is accepted in place of @samp{'}, and @samp{s} is
11338 accepted in place of @samp{"}.
11339 The @var{hours} value is an integer (or integer-valued float).
11340 The @var{mins} value is an integer or integer-valued float between 0 and 59.
11341 The @var{secs} value is a real number between 0 (inclusive) and 60
11342 (exclusive).  A positive HMS form is interpreted as @var{hours} +
11343 @var{mins}/60 + @var{secs}/3600.  A negative HMS form is interpreted
11344 as @mathit{- @var{hours}} @mathit{-} @var{mins}/60 @mathit{-} @var{secs}/3600.
11345 Display format for HMS forms is quite flexible.  @xref{HMS Formats}.
11347 HMS forms can be added and subtracted.  When they are added to numbers,
11348 the numbers are interpreted according to the current angular mode.  HMS
11349 forms can also be multiplied and divided by real numbers.  Dividing
11350 two HMS forms produces a real-valued ratio of the two angles.
11352 @pindex calc-time
11353 @cindex Time of day
11354 Just for kicks, @kbd{M-x calc-time} pushes the current time of day on
11355 the stack as an HMS form.
11357 @node Date Forms, Modulo Forms, HMS Forms, Data Types
11358 @section Date Forms
11360 @noindent
11361 @cindex Date forms
11362 A @dfn{date form} represents a date and possibly an associated time.
11363 Simple date arithmetic is supported:  Adding a number to a date
11364 produces a new date shifted by that many days; adding an HMS form to
11365 a date shifts it by that many hours.  Subtracting two date forms
11366 computes the number of days between them (represented as a simple
11367 number).  Many other operations, such as multiplying two date forms,
11368 are nonsensical and are not allowed by Calc.
11370 Date forms are entered and displayed enclosed in @samp{< >} brackets.
11371 The default format is, e.g., @samp{<Wed Jan 9, 1991>} for dates,
11372 or @samp{<3:32:20pm Wed Jan 9, 1991>} for dates with times.
11373 Input is flexible; date forms can be entered in any of the usual
11374 notations for dates and times.  @xref{Date Formats}.
11376 Date forms are stored internally as numbers, specifically the number
11377 of days since midnight on the morning of January 1 of the year 1 AD.
11378 If the internal number is an integer, the form represents a date only;
11379 if the internal number is a fraction or float, the form represents
11380 a date and time.  For example, @samp{<6:00am Wed Jan 9, 1991>}
11381 is represented by the number 726842.25.  The standard precision of
11382 12 decimal digits is enough to ensure that a (reasonable) date and
11383 time can be stored without roundoff error.
11385 If the current precision is greater than 12, date forms will keep
11386 additional digits in the seconds position.  For example, if the
11387 precision is 15, the seconds will keep three digits after the
11388 decimal point.  Decreasing the precision below 12 may cause the
11389 time part of a date form to become inaccurate.  This can also happen
11390 if astronomically high years are used, though this will not be an
11391 issue in everyday (or even everymillennium) use.  Note that date
11392 forms without times are stored as exact integers, so roundoff is
11393 never an issue for them.
11395 You can use the @kbd{v p} (@code{calc-pack}) and @kbd{v u}
11396 (@code{calc-unpack}) commands to get at the numerical representation
11397 of a date form.  @xref{Packing and Unpacking}.
11399 Date forms can go arbitrarily far into the future or past.  Negative
11400 year numbers represent years BC.  Calc uses a combination of the
11401 Gregorian and Julian calendars, following the history of Great
11402 Britain and the British colonies.  This is the same calendar that
11403 is used by the @code{cal} program in most Unix implementations.
11405 @cindex Julian calendar
11406 @cindex Gregorian calendar
11407 Some historical background:  The Julian calendar was created by
11408 Julius Caesar in the year 46 BC as an attempt to fix the gradual
11409 drift caused by the lack of leap years in the calendar used
11410 until that time.  The Julian calendar introduced an extra day in
11411 all years divisible by four.  After some initial confusion, the
11412 calendar was adopted around the year we call 8 AD.  Some centuries
11413 later it became apparent that the Julian year of 365.25 days was
11414 itself not quite right.  In 1582 Pope Gregory XIII introduced the
11415 Gregorian calendar, which added the new rule that years divisible
11416 by 100, but not by 400, were not to be considered leap years
11417 despite being divisible by four.  Many countries delayed adoption
11418 of the Gregorian calendar because of religious differences;
11419 in Britain it was put off until the year 1752, by which time
11420 the Julian calendar had fallen eleven days behind the true
11421 seasons.  So the switch to the Gregorian calendar in early
11422 September 1752 introduced a discontinuity:  The day after
11423 Sep 2, 1752 is Sep 14, 1752.  Calc follows this convention.
11424 To take another example, Russia waited until 1918 before
11425 adopting the new calendar, and thus needed to remove thirteen
11426 days (between Feb 1, 1918 and Feb 14, 1918).  This means that
11427 Calc's reckoning will be inconsistent with Russian history between
11428 1752 and 1918, and similarly for various other countries.
11430 Today's timekeepers introduce an occasional ``leap second'' as
11431 well, but Calc does not take these minor effects into account.
11432 (If it did, it would have to report a non-integer number of days
11433 between, say, @samp{<12:00am Mon Jan 1, 1900>} and
11434 @samp{<12:00am Sat Jan 1, 2000>}.)
11436 Calc uses the Julian calendar for all dates before the year 1752,
11437 including dates BC when the Julian calendar technically had not
11438 yet been invented.  Thus the claim that day number @mathit{-10000} is
11439 called ``August 16, 28 BC'' should be taken with a grain of salt.
11441 Please note that there is no ``year 0''; the day before
11442 @samp{<Sat Jan 1, +1>} is @samp{<Fri Dec 31, -1>}.  These are
11443 days 0 and @mathit{-1} respectively in Calc's internal numbering scheme.
11445 @cindex Julian day counting
11446 Another day counting system in common use is, confusingly, also
11447 called ``Julian.''  It was invented in 1583 by Joseph Justus
11448 Scaliger, who named it in honor of his father Julius Caesar
11449 Scaliger.  For obscure reasons he chose to start his day
11450 numbering on Jan 1, 4713 BC at noon, which in Calc's scheme
11451 is @mathit{-1721423.5} (recall that Calc starts at midnight instead
11452 of noon).  Thus to convert a Calc date code obtained by
11453 unpacking a date form into a Julian day number, simply add
11454 1721423.5.  The Julian code for @samp{6:00am Jan 9, 1991}
11455 is 2448265.75.  The built-in @kbd{t J} command performs
11456 this conversion for you.
11458 @cindex Unix time format
11459 The Unix operating system measures time as an integer number of
11460 seconds since midnight, Jan 1, 1970.  To convert a Calc date
11461 value into a Unix time stamp, first subtract 719164 (the code
11462 for @samp{<Jan 1, 1970>}), then multiply by 86400 (the number of
11463 seconds in a day) and press @kbd{R} to round to the nearest
11464 integer.  If you have a date form, you can simply subtract the
11465 day @samp{<Jan 1, 1970>} instead of unpacking and subtracting
11466 719164.  Likewise, divide by 86400 and add @samp{<Jan 1, 1970>}
11467 to convert from Unix time to a Calc date form.  (Note that
11468 Unix normally maintains the time in the GMT time zone; you may
11469 need to subtract five hours to get New York time, or eight hours
11470 for California time.  The same is usually true of Julian day
11471 counts.)  The built-in @kbd{t U} command performs these
11472 conversions.
11474 @node Modulo Forms, Error Forms, Date Forms, Data Types
11475 @section Modulo Forms
11477 @noindent
11478 @cindex Modulo forms
11479 A @dfn{modulo form} is a real number which is taken modulo (i.e., within
11480 an integer multiple of) some value @var{M}.  Arithmetic modulo @var{M}
11481 often arises in number theory.  Modulo forms are written
11482 `@var{a} @tfn{mod} @var{M}',
11483 where @var{a} and @var{M} are real numbers or HMS forms, and
11484 @texline @math{0 \le a < M}.
11485 @infoline @expr{0 <= a < @var{M}}.
11486 In many applications @expr{a} and @expr{M} will be
11487 integers but this is not required.
11489 @ignore
11490 @mindex M
11491 @end ignore
11492 @kindex M (modulo forms)
11493 @ignore
11494 @mindex mod
11495 @end ignore
11496 @tindex mod (operator)
11497 To create a modulo form during numeric entry, press the shift-@kbd{M}
11498 key to enter the word @samp{mod}.  As a special convenience, pressing
11499 shift-@kbd{M} a second time automatically enters the value of @expr{M}
11500 that was most recently used before.  During algebraic entry, either
11501 type @samp{mod} by hand or press @kbd{M-m} (that's @kbd{@key{META}-m}).
11502 Once again, pressing this a second time enters the current modulo.
11504 Modulo forms are not to be confused with the modulo operator @samp{%}.
11505 The expression @samp{27 % 10} means to compute 27 modulo 10 to produce
11506 the result 7.  Further computations treat this 7 as just a regular integer.
11507 The expression @samp{27 mod 10} produces the result @samp{7 mod 10};
11508 further computations with this value are again reduced modulo 10 so that
11509 the result always lies in the desired range.
11511 When two modulo forms with identical @expr{M}'s are added or multiplied,
11512 the Calculator simply adds or multiplies the values, then reduces modulo
11513 @expr{M}.  If one argument is a modulo form and the other a plain number,
11514 the plain number is treated like a compatible modulo form.  It is also
11515 possible to raise modulo forms to powers; the result is the value raised
11516 to the power, then reduced modulo @expr{M}.  (When all values involved
11517 are integers, this calculation is done much more efficiently than
11518 actually computing the power and then reducing.)
11520 @cindex Modulo division
11521 Two modulo forms `@var{a} @tfn{mod} @var{M}' and `@var{b} @tfn{mod} @var{M}'
11522 can be divided if @expr{a}, @expr{b}, and @expr{M} are all
11523 integers.  The result is the modulo form which, when multiplied by
11524 `@var{b} @tfn{mod} @var{M}', produces `@var{a} @tfn{mod} @var{M}'.  If
11525 there is no solution to this equation (which can happen only when
11526 @expr{M} is non-prime), or if any of the arguments are non-integers, the
11527 division is left in symbolic form.  Other operations, such as square
11528 roots, are not yet supported for modulo forms.  (Note that, although
11529 @w{`@tfn{(}@var{a} @tfn{mod} @var{M}@tfn{)^.5}'} will compute a ``modulo square root''
11530 in the sense of reducing 
11531 @texline @math{\sqrt a}
11532 @infoline @expr{sqrt(a)} 
11533 modulo @expr{M}, this is not a useful definition from the
11534 number-theoretical point of view.)
11536 It is possible to mix HMS forms and modulo forms.  For example, an
11537 HMS form modulo 24 could be used to manipulate clock times; an HMS
11538 form modulo 360 would be suitable for angles.  Making the modulo @expr{M}
11539 also be an HMS form eliminates troubles that would arise if the angular
11540 mode were inadvertently set to Radians, in which case
11541 @w{@samp{2@@ 0' 0" mod 24}} would be interpreted as two degrees modulo
11542 24 radians!
11544 Modulo forms cannot have variables or formulas for components.  If you
11545 enter the formula @samp{(x + 2) mod 5}, Calc propagates the modulus
11546 to each of the coefficients:  @samp{(1 mod 5) x + (2 mod 5)}.
11548 You can use @kbd{v p} and @kbd{%} to modify modulo forms.
11549 @xref{Packing and Unpacking}.  @xref{Basic Arithmetic}.
11551 @ignore
11552 @starindex
11553 @end ignore
11554 @tindex makemod
11555 The algebraic function @samp{makemod(a, m)} builds the modulo form
11556 @w{@samp{a mod m}}.
11558 @node Error Forms, Interval Forms, Modulo Forms, Data Types
11559 @section Error Forms
11561 @noindent
11562 @cindex Error forms
11563 @cindex Standard deviations
11564 An @dfn{error form} is a number with an associated standard
11565 deviation, as in @samp{2.3 +/- 0.12}.  The notation
11566 @texline `@var{x} @tfn{+/-} @math{\sigma}' 
11567 @infoline `@var{x} @tfn{+/-} sigma' 
11568 stands for an uncertain value which follows
11569 a normal or Gaussian distribution of mean @expr{x} and standard
11570 deviation or ``error'' 
11571 @texline @math{\sigma}.
11572 @infoline @expr{sigma}.
11573 Both the mean and the error can be either numbers or
11574 formulas.  Generally these are real numbers but the mean may also be
11575 complex.  If the error is negative or complex, it is changed to its
11576 absolute value.  An error form with zero error is converted to a
11577 regular number by the Calculator.
11579 All arithmetic and transcendental functions accept error forms as input.
11580 Operations on the mean-value part work just like operations on regular
11581 numbers.  The error part for any function @expr{f(x)} (such as 
11582 @texline @math{\sin x}
11583 @infoline @expr{sin(x)})
11584 is defined by the error of @expr{x} times the derivative of @expr{f}
11585 evaluated at the mean value of @expr{x}.  For a two-argument function
11586 @expr{f(x,y)} (such as addition) the error is the square root of the sum
11587 of the squares of the errors due to @expr{x} and @expr{y}.
11588 @tex
11589 $$ \eqalign{
11590   f(x \hbox{\code{ +/- }} \sigma)
11591     &= f(x) \hbox{\code{ +/- }} \sigma \left| {df(x) \over dx} \right| \cr
11592   f(x \hbox{\code{ +/- }} \sigma_x, y \hbox{\code{ +/- }} \sigma_y)
11593     &= f(x,y) \hbox{\code{ +/- }}
11594         \sqrt{\left(\sigma_x \left| {\partial f(x,y) \over \partial x}
11595                              \right| \right)^2
11596              +\left(\sigma_y \left| {\partial f(x,y) \over \partial y}
11597                              \right| \right)^2 } \cr
11598 } $$
11599 @end tex
11600 Note that this
11601 definition assumes the errors in @expr{x} and @expr{y} are uncorrelated.
11602 A side effect of this definition is that @samp{(2 +/- 1) * (2 +/- 1)}
11603 is not the same as @samp{(2 +/- 1)^2}; the former represents the product
11604 of two independent values which happen to have the same probability
11605 distributions, and the latter is the product of one random value with itself.
11606 The former will produce an answer with less error, since on the average
11607 the two independent errors can be expected to cancel out.
11609 Consult a good text on error analysis for a discussion of the proper use
11610 of standard deviations.  Actual errors often are neither Gaussian-distributed
11611 nor uncorrelated, and the above formulas are valid only when errors
11612 are small.  As an example, the error arising from
11613 @texline `@tfn{sin(}@var{x} @tfn{+/-} @math{\sigma}@tfn{)}' 
11614 @infoline `@tfn{sin(}@var{x} @tfn{+/-} @var{sigma}@tfn{)}' 
11615 is 
11616 @texline `@math{\sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.  
11617 @infoline `@var{sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.  
11618 When @expr{x} is close to zero,
11619 @texline @math{\cos x}
11620 @infoline @expr{cos(x)} 
11621 is close to one so the error in the sine is close to 
11622 @texline @math{\sigma};
11623 @infoline @expr{sigma};
11624 this makes sense, since 
11625 @texline @math{\sin x}
11626 @infoline @expr{sin(x)} 
11627 is approximately @expr{x} near zero, so a given error in @expr{x} will
11628 produce about the same error in the sine.  Likewise, near 90 degrees
11629 @texline @math{\cos x}
11630 @infoline @expr{cos(x)} 
11631 is nearly zero and so the computed error is
11632 small:  The sine curve is nearly flat in that region, so an error in @expr{x}
11633 has relatively little effect on the value of 
11634 @texline @math{\sin x}.
11635 @infoline @expr{sin(x)}.  
11636 However, consider @samp{sin(90 +/- 1000)}.  The cosine of 90 is zero, so
11637 Calc will report zero error!  We get an obviously wrong result because
11638 we have violated the small-error approximation underlying the error
11639 analysis.  If the error in @expr{x} had been small, the error in
11640 @texline @math{\sin x}
11641 @infoline @expr{sin(x)} 
11642 would indeed have been negligible.
11644 @ignore
11645 @mindex p
11646 @end ignore
11647 @kindex p (error forms)
11648 @tindex +/-
11649 To enter an error form during regular numeric entry, use the @kbd{p}
11650 (``plus-or-minus'') key to type the @samp{+/-} symbol.  (If you try actually
11651 typing @samp{+/-} the @kbd{+} key will be interpreted as the Calculator's
11652 @kbd{+} command!)  Within an algebraic formula, you can press @kbd{M-p} to
11653 type the @samp{+/-} symbol, or type it out by hand.
11655 Error forms and complex numbers can be mixed; the formulas shown above
11656 are used for complex numbers, too; note that if the error part evaluates
11657 to a complex number its absolute value (or the square root of the sum of
11658 the squares of the absolute values of the two error contributions) is
11659 used.  Mathematically, this corresponds to a radially symmetric Gaussian
11660 distribution of numbers on the complex plane.  However, note that Calc
11661 considers an error form with real components to represent a real number,
11662 not a complex distribution around a real mean.
11664 Error forms may also be composed of HMS forms.  For best results, both
11665 the mean and the error should be HMS forms if either one is.
11667 @ignore
11668 @starindex
11669 @end ignore
11670 @tindex sdev
11671 The algebraic function @samp{sdev(a, b)} builds the error form @samp{a +/- b}.
11673 @node Interval Forms, Incomplete Objects, Error Forms, Data Types
11674 @section Interval Forms
11676 @noindent
11677 @cindex Interval forms
11678 An @dfn{interval} is a subset of consecutive real numbers.  For example,
11679 the interval @samp{[2 ..@: 4]} represents all the numbers from 2 to 4,
11680 inclusive.  If you multiply it by the interval @samp{[0.5 ..@: 2]} you
11681 obtain @samp{[1 ..@: 8]}.  This calculation represents the fact that if
11682 you multiply some number in the range @samp{[2 ..@: 4]} by some other
11683 number in the range @samp{[0.5 ..@: 2]}, your result will lie in the range
11684 from 1 to 8.  Interval arithmetic is used to get a worst-case estimate
11685 of the possible range of values a computation will produce, given the
11686 set of possible values of the input.
11688 @ifinfo
11689 Calc supports several varieties of intervals, including @dfn{closed}
11690 intervals of the type shown above, @dfn{open} intervals such as
11691 @samp{(2 ..@: 4)}, which represents the range of numbers from 2 to 4
11692 @emph{exclusive}, and @dfn{semi-open} intervals in which one end
11693 uses a round parenthesis and the other a square bracket.  In mathematical
11694 terms,
11695 @samp{[2 ..@: 4]} means @expr{2 <= x <= 4}, whereas
11696 @samp{[2 ..@: 4)} represents @expr{2 <= x < 4},
11697 @samp{(2 ..@: 4]} represents @expr{2 < x <= 4}, and
11698 @samp{(2 ..@: 4)} represents @expr{2 < x < 4}.
11699 @end ifinfo
11700 @tex
11701 Calc supports several varieties of intervals, including \dfn{closed}
11702 intervals of the type shown above, \dfn{open} intervals such as
11703 \samp{(2 ..\: 4)}, which represents the range of numbers from 2 to 4
11704 \emph{exclusive}, and \dfn{semi-open} intervals in which one end
11705 uses a round parenthesis and the other a square bracket.  In mathematical
11706 terms,
11707 $$ \eqalign{
11708    [2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2 \le x \le 4  \cr
11709    [2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2 \le x  <  4  \cr
11710    (2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2  <  x \le 4  \cr
11711    (2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2  <  x  <  4  \cr
11712 } $$
11713 @end tex
11715 The lower and upper limits of an interval must be either real numbers
11716 (or HMS or date forms), or symbolic expressions which are assumed to be
11717 real-valued, or @samp{-inf} and @samp{inf}.  In general the lower limit
11718 must be less than the upper limit.  A closed interval containing only
11719 one value, @samp{[3 ..@: 3]}, is converted to a plain number (3)
11720 automatically.  An interval containing no values at all (such as
11721 @samp{[3 ..@: 2]} or @samp{[2 ..@: 2)}) can be represented but is not
11722 guaranteed to behave well when used in arithmetic.  Note that the
11723 interval @samp{[3 .. inf)} represents all real numbers greater than
11724 or equal to 3, and @samp{(-inf .. inf)} represents all real numbers.
11725 In fact, @samp{[-inf .. inf]} represents all real numbers including
11726 the real infinities.
11728 Intervals are entered in the notation shown here, either as algebraic
11729 formulas, or using incomplete forms.  (@xref{Incomplete Objects}.)
11730 In algebraic formulas, multiple periods in a row are collected from
11731 left to right, so that @samp{1...1e2} is interpreted as @samp{1.0 ..@: 1e2}
11732 rather than @samp{1 ..@: 0.1e2}.  Add spaces or zeros if you want to
11733 get the other interpretation.  If you omit the lower or upper limit,
11734 a default of @samp{-inf} or @samp{inf} (respectively) is furnished.
11736 Infinite mode also affects operations on intervals
11737 (@pxref{Infinities}).  Calc will always introduce an open infinity,
11738 as in @samp{1 / (0 .. 2] = [0.5 .. inf)}.  But closed infinities,
11739 @w{@samp{1 / [0 .. 2] = [0.5 .. inf]}}, arise only in Infinite mode;
11740 otherwise they are left unevaluated.  Note that the ``direction'' of
11741 a zero is not an issue in this case since the zero is always assumed
11742 to be continuous with the rest of the interval.  For intervals that
11743 contain zero inside them Calc is forced to give the result,
11744 @samp{1 / (-2 .. 2) = [-inf .. inf]}.
11746 While it may seem that intervals and error forms are similar, they are
11747 based on entirely different concepts of inexact quantities.  An error
11748 form 
11749 @texline `@var{x} @tfn{+/-} @math{\sigma}' 
11750 @infoline `@var{x} @tfn{+/-} @var{sigma}' 
11751 means a variable is random, and its value could
11752 be anything but is ``probably'' within one 
11753 @texline @math{\sigma} 
11754 @infoline @var{sigma} 
11755 of the mean value @expr{x}. An interval 
11756 `@tfn{[}@var{a} @tfn{..@:} @var{b}@tfn{]}' means a
11757 variable's value is unknown, but guaranteed to lie in the specified
11758 range.  Error forms are statistical or ``average case'' approximations;
11759 interval arithmetic tends to produce ``worst case'' bounds on an
11760 answer.
11762 Intervals may not contain complex numbers, but they may contain
11763 HMS forms or date forms.
11765 @xref{Set Operations}, for commands that interpret interval forms
11766 as subsets of the set of real numbers.
11768 @ignore
11769 @starindex
11770 @end ignore
11771 @tindex intv
11772 The algebraic function @samp{intv(n, a, b)} builds an interval form
11773 from @samp{a} to @samp{b}; @samp{n} is an integer code which must
11774 be 0 for @samp{(..)}, 1 for @samp{(..]}, 2 for @samp{[..)}, or
11775 3 for @samp{[..]}.
11777 Please note that in fully rigorous interval arithmetic, care would be
11778 taken to make sure that the computation of the lower bound rounds toward
11779 minus infinity, while upper bound computations round toward plus
11780 infinity.  Calc's arithmetic always uses a round-to-nearest mode,
11781 which means that roundoff errors could creep into an interval
11782 calculation to produce intervals slightly smaller than they ought to
11783 be.  For example, entering @samp{[1..2]} and pressing @kbd{Q 2 ^}
11784 should yield the interval @samp{[1..2]} again, but in fact it yields the
11785 (slightly too small) interval @samp{[1..1.9999999]} due to roundoff
11786 error.
11788 @node Incomplete Objects, Variables, Interval Forms, Data Types
11789 @section Incomplete Objects
11791 @noindent
11792 @ignore
11793 @mindex [ ]
11794 @end ignore
11795 @kindex [
11796 @ignore
11797 @mindex ( )
11798 @end ignore
11799 @kindex (
11800 @kindex ,
11801 @ignore
11802 @mindex @null
11803 @end ignore
11804 @kindex ]
11805 @ignore
11806 @mindex @null
11807 @end ignore
11808 @kindex )
11809 @cindex Incomplete vectors
11810 @cindex Incomplete complex numbers
11811 @cindex Incomplete interval forms
11812 When @kbd{(} or @kbd{[} is typed to begin entering a complex number or
11813 vector, respectively, the effect is to push an @dfn{incomplete} complex
11814 number or vector onto the stack.  The @kbd{,} key adds the value(s) at
11815 the top of the stack onto the current incomplete object.  The @kbd{)}
11816 and @kbd{]} keys ``close'' the incomplete object after adding any values
11817 on the top of the stack in front of the incomplete object.
11819 As a result, the sequence of keystrokes @kbd{[ 2 , 3 @key{RET} 2 * , 9 ]}
11820 pushes the vector @samp{[2, 6, 9]} onto the stack.  Likewise, @kbd{( 1 , 2 Q )}
11821 pushes the complex number @samp{(1, 1.414)} (approximately).
11823 If several values lie on the stack in front of the incomplete object,
11824 all are collected and appended to the object.  Thus the @kbd{,} key
11825 is redundant:  @kbd{[ 2 @key{RET} 3 @key{RET} 2 * 9 ]}.  Some people
11826 prefer the equivalent @key{SPC} key to @key{RET}.
11828 As a special case, typing @kbd{,} immediately after @kbd{(}, @kbd{[}, or
11829 @kbd{,} adds a zero or duplicates the preceding value in the list being
11830 formed.  Typing @key{DEL} during incomplete entry removes the last item
11831 from the list.
11833 @kindex ;
11834 The @kbd{;} key is used in the same way as @kbd{,} to create polar complex
11835 numbers:  @kbd{( 1 ; 2 )}.  When entering a vector, @kbd{;} is useful for
11836 creating a matrix.  In particular, @kbd{[ [ 1 , 2 ; 3 , 4 ; 5 , 6 ] ]} is
11837 equivalent to @kbd{[ [ 1 , 2 ] , [ 3 , 4 ] , [ 5 , 6 ] ]}.
11839 @kindex ..
11840 @pindex calc-dots
11841 Incomplete entry is also used to enter intervals.  For example,
11842 @kbd{[ 2 ..@: 4 )} enters a semi-open interval.  Note that when you type
11843 the first period, it will be interpreted as a decimal point, but when
11844 you type a second period immediately afterward, it is re-interpreted as
11845 part of the interval symbol.  Typing @kbd{..} corresponds to executing
11846 the @code{calc-dots} command.
11848 If you find incomplete entry distracting, you may wish to enter vectors
11849 and complex numbers as algebraic formulas by pressing the apostrophe key.
11851 @node Variables, Formulas, Incomplete Objects, Data Types
11852 @section Variables
11854 @noindent
11855 @cindex Variables, in formulas
11856 A @dfn{variable} is somewhere between a storage register on a conventional
11857 calculator, and a variable in a programming language.  (In fact, a Calc
11858 variable is really just an Emacs Lisp variable that contains a Calc number
11859 or formula.)  A variable's name is normally composed of letters and digits.
11860 Calc also allows apostrophes and @code{#} signs in variable names.
11861 (The Calc variable @code{foo} corresponds to the Emacs Lisp variable
11862 @code{var-foo}, but unless you access the variable from within Emacs
11863 Lisp, you don't need to worry about it.  Variable names in algebraic
11864 formulas implicitly have @samp{var-} prefixed to their names.  The
11865 @samp{#} character in variable names used in algebraic formulas
11866 corresponds to a dash @samp{-} in the Lisp variable name.  If the name
11867 contains any dashes, the prefix @samp{var-} is @emph{not} automatically
11868 added.  Thus the two formulas @samp{foo + 1} and @samp{var#foo + 1} both
11869 refer to the same variable.)
11871 In a command that takes a variable name, you can either type the full
11872 name of a variable, or type a single digit to use one of the special
11873 convenience variables @code{q0} through @code{q9}.  For example,
11874 @kbd{3 s s 2} stores the number 3 in variable @code{q2}, and
11875 @w{@kbd{3 s s foo @key{RET}}} stores that number in variable
11876 @code{foo}.
11878 To push a variable itself (as opposed to the variable's value) on the
11879 stack, enter its name as an algebraic expression using the apostrophe
11880 (@key{'}) key.
11882 @kindex =
11883 @pindex calc-evaluate
11884 @cindex Evaluation of variables in a formula
11885 @cindex Variables, evaluation
11886 @cindex Formulas, evaluation
11887 The @kbd{=} (@code{calc-evaluate}) key ``evaluates'' a formula by
11888 replacing all variables in the formula which have been given values by a
11889 @code{calc-store} or @code{calc-let} command by their stored values.
11890 Other variables are left alone.  Thus a variable that has not been
11891 stored acts like an abstract variable in algebra; a variable that has
11892 been stored acts more like a register in a traditional calculator.
11893 With a positive numeric prefix argument, @kbd{=} evaluates the top
11894 @var{n} stack entries; with a negative argument, @kbd{=} evaluates
11895 the @var{n}th stack entry.
11897 @cindex @code{e} variable
11898 @cindex @code{pi} variable
11899 @cindex @code{i} variable
11900 @cindex @code{phi} variable
11901 @cindex @code{gamma} variable
11902 @vindex e
11903 @vindex pi
11904 @vindex i
11905 @vindex phi
11906 @vindex gamma
11907 A few variables are called @dfn{special constants}.  Their names are
11908 @samp{e}, @samp{pi}, @samp{i}, @samp{phi}, and @samp{gamma}.
11909 (@xref{Scientific Functions}.)  When they are evaluated with @kbd{=},
11910 their values are calculated if necessary according to the current precision
11911 or complex polar mode.  If you wish to use these symbols for other purposes,
11912 simply undefine or redefine them using @code{calc-store}.
11914 The variables @samp{inf}, @samp{uinf}, and @samp{nan} stand for
11915 infinite or indeterminate values.  It's best not to use them as
11916 regular variables, since Calc uses special algebraic rules when
11917 it manipulates them.  Calc displays a warning message if you store
11918 a value into any of these special variables.
11920 @xref{Store and Recall}, for a discussion of commands dealing with variables.
11922 @node Formulas, , Variables, Data Types
11923 @section Formulas
11925 @noindent
11926 @cindex Formulas
11927 @cindex Expressions
11928 @cindex Operators in formulas
11929 @cindex Precedence of operators
11930 When you press the apostrophe key you may enter any expression or formula
11931 in algebraic form.  (Calc uses the terms ``expression'' and ``formula''
11932 interchangeably.)  An expression is built up of numbers, variable names,
11933 and function calls, combined with various arithmetic operators.
11934 Parentheses may
11935 be used to indicate grouping.  Spaces are ignored within formulas, except
11936 that spaces are not permitted within variable names or numbers.
11937 Arithmetic operators, in order from highest to lowest precedence, and
11938 with their equivalent function names, are:
11940 @samp{_} [@code{subscr}] (subscripts);
11942 postfix @samp{%} [@code{percent}] (as in @samp{25% = 0.25});
11944 prefix @samp{+} and @samp{-} [@code{neg}] (as in @samp{-x})
11945 and prefix @samp{!} [@code{lnot}] (logical ``not,'' as in @samp{!x});
11947 @samp{+/-} [@code{sdev}] (the standard deviation symbol) and
11948 @samp{mod} [@code{makemod}] (the symbol for modulo forms);
11950 postfix @samp{!} [@code{fact}] (factorial, as in @samp{n!})
11951 and postfix @samp{!!} [@code{dfact}] (double factorial);
11953 @samp{^} [@code{pow}] (raised-to-the-power-of);
11955 @samp{*} [@code{mul}];
11957 @samp{/} [@code{div}], @samp{%} [@code{mod}] (modulo), and
11958 @samp{\} [@code{idiv}] (integer division);
11960 infix @samp{+} [@code{add}] and @samp{-} [@code{sub}] (as in @samp{x-y});
11962 @samp{|} [@code{vconcat}] (vector concatenation);
11964 relations @samp{=} [@code{eq}], @samp{!=} [@code{neq}], @samp{<} [@code{lt}],
11965 @samp{>} [@code{gt}], @samp{<=} [@code{leq}], and @samp{>=} [@code{geq}];
11967 @samp{&&} [@code{land}] (logical ``and'');
11969 @samp{||} [@code{lor}] (logical ``or'');
11971 the C-style ``if'' operator @samp{a?b:c} [@code{if}];
11973 @samp{!!!} [@code{pnot}] (rewrite pattern ``not'');
11975 @samp{&&&} [@code{pand}] (rewrite pattern ``and'');
11977 @samp{|||} [@code{por}] (rewrite pattern ``or'');
11979 @samp{:=} [@code{assign}] (for assignments and rewrite rules);
11981 @samp{::} [@code{condition}] (rewrite pattern condition);
11983 @samp{=>} [@code{evalto}].
11985 Note that, unlike in usual computer notation, multiplication binds more
11986 strongly than division:  @samp{a*b/c*d} is equivalent to 
11987 @texline @math{a b \over c d}.
11988 @infoline @expr{(a*b)/(c*d)}.
11990 @cindex Multiplication, implicit
11991 @cindex Implicit multiplication
11992 The multiplication sign @samp{*} may be omitted in many cases.  In particular,
11993 if the righthand side is a number, variable name, or parenthesized
11994 expression, the @samp{*} may be omitted.  Implicit multiplication has the
11995 same precedence as the explicit @samp{*} operator.  The one exception to
11996 the rule is that a variable name followed by a parenthesized expression,
11997 as in @samp{f(x)},
11998 is interpreted as a function call, not an implicit @samp{*}.  In many
11999 cases you must use a space if you omit the @samp{*}:  @samp{2a} is the
12000 same as @samp{2*a}, and @samp{a b} is the same as @samp{a*b}, but @samp{ab}
12001 is a variable called @code{ab}, @emph{not} the product of @samp{a} and
12002 @samp{b}!  Also note that @samp{f (x)} is still a function call.
12004 @cindex Implicit comma in vectors
12005 The rules are slightly different for vectors written with square brackets.
12006 In vectors, the space character is interpreted (like the comma) as a
12007 separator of elements of the vector.  Thus @w{@samp{[ 2a b+c d ]}} is
12008 equivalent to @samp{[2*a, b+c, d]}, whereas @samp{2a b+c d} is equivalent
12009 to @samp{2*a*b + c*d}.
12010 Note that spaces around the brackets, and around explicit commas, are
12011 ignored.  To force spaces to be interpreted as multiplication you can
12012 enclose a formula in parentheses as in @samp{[(a b) 2(c d)]}, which is
12013 interpreted as @samp{[a*b, 2*c*d]}.  An implicit comma is also inserted
12014 between @samp{][}, as in the matrix @samp{[[1 2][3 4]]}.
12016 Vectors that contain commas (not embedded within nested parentheses or
12017 brackets) do not treat spaces specially:  @samp{[a b, 2 c d]} is a vector
12018 of two elements.  Also, if it would be an error to treat spaces as
12019 separators, but not otherwise, then Calc will ignore spaces:
12020 @w{@samp{[a - b]}} is a vector of one element, but @w{@samp{[a -b]}} is
12021 a vector of two elements.  Finally, vectors entered with curly braces
12022 instead of square brackets do not give spaces any special treatment.
12023 When Calc displays a vector that does not contain any commas, it will
12024 insert parentheses if necessary to make the meaning clear:
12025 @w{@samp{[(a b)]}}.
12027 The expression @samp{5%-2} is ambiguous; is this five-percent minus two,
12028 or five modulo minus-two?  Calc always interprets the leftmost symbol as
12029 an infix operator preferentially (modulo, in this case), so you would
12030 need to write @samp{(5%)-2} to get the former interpretation.
12032 @cindex Function call notation
12033 A function call is, e.g., @samp{sin(1+x)}.  (The Calc algebraic function
12034 @code{foo} corresponds to the Emacs Lisp function @code{calcFunc-foo},
12035 but unless you access the function from within Emacs Lisp, you don't
12036 need to worry about it.)  Most mathematical Calculator commands like
12037 @code{calc-sin} have function equivalents like @code{sin}.
12038 If no Lisp function is defined for a function called by a formula, the
12039 call is left as it is during algebraic manipulation: @samp{f(x+y)} is
12040 left alone.  Beware that many innocent-looking short names like @code{in}
12041 and @code{re} have predefined meanings which could surprise you; however,
12042 single letters or single letters followed by digits are always safe to
12043 use for your own function names.  @xref{Function Index}.
12045 In the documentation for particular commands, the notation @kbd{H S}
12046 (@code{calc-sinh}) [@code{sinh}] means that the key sequence @kbd{H S}, the
12047 command @kbd{M-x calc-sinh}, and the algebraic function @code{sinh(x)} all
12048 represent the same operation.
12050 Commands that interpret (``parse'') text as algebraic formulas include
12051 algebraic entry (@kbd{'}), editing commands like @kbd{`} which parse
12052 the contents of the editing buffer when you finish, the @kbd{M-# g}
12053 and @w{@kbd{M-# r}} commands, the @kbd{C-y} command, the X window system
12054 ``paste'' mouse operation, and Embedded mode.  All of these operations
12055 use the same rules for parsing formulas; in particular, language modes
12056 (@pxref{Language Modes}) affect them all in the same way.
12058 When you read a large amount of text into the Calculator (say a vector
12059 which represents a big set of rewrite rules; @pxref{Rewrite Rules}),
12060 you may wish to include comments in the text.  Calc's formula parser
12061 ignores the symbol @samp{%%} and anything following it on a line:
12063 @example
12064 [ a + b,   %% the sum of "a" and "b"
12065   c + d,
12066   %% last line is coming up:
12067   e + f ]
12068 @end example
12070 @noindent
12071 This is parsed exactly the same as @samp{[ a + b, c + d, e + f ]}.
12073 @xref{Syntax Tables}, for a way to create your own operators and other
12074 input notations.  @xref{Compositions}, for a way to create new display
12075 formats.
12077 @xref{Algebra}, for commands for manipulating formulas symbolically.
12079 @node Stack and Trail, Mode Settings, Data Types, Top
12080 @chapter Stack and Trail Commands
12082 @noindent
12083 This chapter describes the Calc commands for manipulating objects on the
12084 stack and in the trail buffer.  (These commands operate on objects of any
12085 type, such as numbers, vectors, formulas, and incomplete objects.)
12087 @menu
12088 * Stack Manipulation::
12089 * Editing Stack Entries::
12090 * Trail Commands::
12091 * Keep Arguments::
12092 @end menu
12094 @node Stack Manipulation, Editing Stack Entries, Stack and Trail, Stack and Trail
12095 @section Stack Manipulation Commands
12097 @noindent
12098 @kindex @key{RET}
12099 @kindex @key{SPC}
12100 @pindex calc-enter
12101 @cindex Duplicating stack entries
12102 To duplicate the top object on the stack, press @key{RET} or @key{SPC}
12103 (two equivalent keys for the @code{calc-enter} command).
12104 Given a positive numeric prefix argument, these commands duplicate
12105 several elements at the top of the stack.
12106 Given a negative argument,
12107 these commands duplicate the specified element of the stack.
12108 Given an argument of zero, they duplicate the entire stack.
12109 For example, with @samp{10 20 30} on the stack,
12110 @key{RET} creates @samp{10 20 30 30},
12111 @kbd{C-u 2 @key{RET}} creates @samp{10 20 30 20 30},
12112 @kbd{C-u - 2 @key{RET}} creates @samp{10 20 30 20}, and
12113 @kbd{C-u 0 @key{RET}} creates @samp{10 20 30 10 20 30}.
12115 @kindex @key{LFD}
12116 @pindex calc-over
12117 The @key{LFD} (@code{calc-over}) command (on a key marked Line-Feed if you
12118 have it, else on @kbd{C-j}) is like @code{calc-enter}
12119 except that the sign of the numeric prefix argument is interpreted
12120 oppositely.  Also, with no prefix argument the default argument is 2.
12121 Thus with @samp{10 20 30} on the stack, @key{LFD} and @kbd{C-u 2 @key{LFD}}
12122 are both equivalent to @kbd{C-u - 2 @key{RET}}, producing
12123 @samp{10 20 30 20}.
12125 @kindex @key{DEL}
12126 @kindex C-d
12127 @pindex calc-pop
12128 @cindex Removing stack entries
12129 @cindex Deleting stack entries
12130 To remove the top element from the stack, press @key{DEL} (@code{calc-pop}).
12131 The @kbd{C-d} key is a synonym for @key{DEL}.
12132 (If the top element is an incomplete object with at least one element, the
12133 last element is removed from it.)  Given a positive numeric prefix argument,
12134 several elements are removed.  Given a negative argument, the specified
12135 element of the stack is deleted.  Given an argument of zero, the entire
12136 stack is emptied.
12137 For example, with @samp{10 20 30} on the stack,
12138 @key{DEL} leaves @samp{10 20},
12139 @kbd{C-u 2 @key{DEL}} leaves @samp{10},
12140 @kbd{C-u - 2 @key{DEL}} leaves @samp{10 30}, and
12141 @kbd{C-u 0 @key{DEL}} leaves an empty stack.
12143 @kindex M-@key{DEL}
12144 @pindex calc-pop-above
12145 The @kbd{M-@key{DEL}} (@code{calc-pop-above}) command is to @key{DEL} what
12146 @key{LFD} is to @key{RET}:  It interprets the sign of the numeric
12147 prefix argument in the opposite way, and the default argument is 2.
12148 Thus @kbd{M-@key{DEL}} by itself removes the second-from-top stack element,
12149 leaving the first, third, fourth, and so on; @kbd{M-3 M-@key{DEL}} deletes
12150 the third stack element.
12152 @kindex @key{TAB}
12153 @pindex calc-roll-down
12154 To exchange the top two elements of the stack, press @key{TAB}
12155 (@code{calc-roll-down}).  Given a positive numeric prefix argument, the
12156 specified number of elements at the top of the stack are rotated downward.
12157 Given a negative argument, the entire stack is rotated downward the specified
12158 number of times.  Given an argument of zero, the entire stack is reversed
12159 top-for-bottom.
12160 For example, with @samp{10 20 30 40 50} on the stack,
12161 @key{TAB} creates @samp{10 20 30 50 40},
12162 @kbd{C-u 3 @key{TAB}} creates @samp{10 20 50 30 40},
12163 @kbd{C-u - 2 @key{TAB}} creates @samp{40 50 10 20 30}, and
12164 @kbd{C-u 0 @key{TAB}} creates @samp{50 40 30 20 10}.
12166 @kindex M-@key{TAB}
12167 @pindex calc-roll-up
12168 The command @kbd{M-@key{TAB}} (@code{calc-roll-up}) is analogous to @key{TAB}
12169 except that it rotates upward instead of downward.  Also, the default
12170 with no prefix argument is to rotate the top 3 elements.
12171 For example, with @samp{10 20 30 40 50} on the stack,
12172 @kbd{M-@key{TAB}} creates @samp{10 20 40 50 30},
12173 @kbd{C-u 4 M-@key{TAB}} creates @samp{10 30 40 50 20},
12174 @kbd{C-u - 2 M-@key{TAB}} creates @samp{30 40 50 10 20}, and
12175 @kbd{C-u 0 M-@key{TAB}} creates @samp{50 40 30 20 10}.
12177 A good way to view the operation of @key{TAB} and @kbd{M-@key{TAB}} is in
12178 terms of moving a particular element to a new position in the stack.
12179 With a positive argument @var{n}, @key{TAB} moves the top stack
12180 element down to level @var{n}, making room for it by pulling all the
12181 intervening stack elements toward the top.  @kbd{M-@key{TAB}} moves the
12182 element at level @var{n} up to the top.  (Compare with @key{LFD},
12183 which copies instead of moving the element in level @var{n}.)
12185 With a negative argument @mathit{-@var{n}}, @key{TAB} rotates the stack
12186 to move the object in level @var{n} to the deepest place in the
12187 stack, and the object in level @mathit{@var{n}+1} to the top.  @kbd{M-@key{TAB}}
12188 rotates the deepest stack element to be in level @mathit{n}, also
12189 putting the top stack element in level @mathit{@var{n}+1}.
12191 @xref{Selecting Subformulas}, for a way to apply these commands to
12192 any portion of a vector or formula on the stack.
12194 @node Editing Stack Entries, Trail Commands, Stack Manipulation, Stack and Trail
12195 @section Editing Stack Entries
12197 @noindent
12198 @kindex `
12199 @pindex calc-edit
12200 @pindex calc-edit-finish
12201 @cindex Editing the stack with Emacs
12202 The backquote, @kbd{`} (@code{calc-edit}) command creates a temporary
12203 buffer (@samp{*Calc Edit*}) for editing the top-of-stack value using
12204 regular Emacs commands.  With a numeric prefix argument, it edits the
12205 specified number of stack entries at once.  (An argument of zero edits
12206 the entire stack; a negative argument edits one specific stack entry.)
12208 When you are done editing, press @kbd{C-c C-c} to finish and return
12209 to Calc.  The @key{RET} and @key{LFD} keys also work to finish most
12210 sorts of editing, though in some cases Calc leaves @key{RET} with its
12211 usual meaning (``insert a newline'') if it's a situation where you
12212 might want to insert new lines into the editing buffer.
12214 When you finish editing, the Calculator parses the lines of text in
12215 the @samp{*Calc Edit*} buffer as numbers or formulas, replaces the
12216 original stack elements in the original buffer with these new values,
12217 then kills the @samp{*Calc Edit*} buffer.  The original Calculator buffer
12218 continues to exist during editing, but for best results you should be
12219 careful not to change it until you have finished the edit.  You can
12220 also cancel the edit by killing the buffer with @kbd{C-x k}.
12222 The formula is normally reevaluated as it is put onto the stack.
12223 For example, editing @samp{a + 2} to @samp{3 + 2} and pressing
12224 @kbd{C-c C-c} will push 5 on the stack.  If you use @key{LFD} to
12225 finish, Calc will put the result on the stack without evaluating it.
12227 If you give a prefix argument to @kbd{C-c C-c},
12228 Calc will not kill the @samp{*Calc Edit*} buffer.  You can switch
12229 back to that buffer and continue editing if you wish.  However, you
12230 should understand that if you initiated the edit with @kbd{`}, the
12231 @kbd{C-c C-c} operation will be programmed to replace the top of the
12232 stack with the new edited value, and it will do this even if you have
12233 rearranged the stack in the meanwhile.  This is not so much of a problem
12234 with other editing commands, though, such as @kbd{s e}
12235 (@code{calc-edit-variable}; @pxref{Operations on Variables}).
12237 If the @code{calc-edit} command involves more than one stack entry,
12238 each line of the @samp{*Calc Edit*} buffer is interpreted as a
12239 separate formula.  Otherwise, the entire buffer is interpreted as
12240 one formula, with line breaks ignored.  (You can use @kbd{C-o} or
12241 @kbd{C-q C-j} to insert a newline in the buffer without pressing @key{RET}.)
12243 The @kbd{`} key also works during numeric or algebraic entry.  The
12244 text entered so far is moved to the @code{*Calc Edit*} buffer for
12245 more extensive editing than is convenient in the minibuffer.
12247 @node Trail Commands, Keep Arguments, Editing Stack Entries, Stack and Trail
12248 @section Trail Commands
12250 @noindent
12251 @cindex Trail buffer
12252 The commands for manipulating the Calc Trail buffer are two-key sequences
12253 beginning with the @kbd{t} prefix.
12255 @kindex t d
12256 @pindex calc-trail-display
12257 The @kbd{t d} (@code{calc-trail-display}) command turns display of the
12258 trail on and off.  Normally the trail display is toggled on if it was off,
12259 off if it was on.  With a numeric prefix of zero, this command always
12260 turns the trail off; with a prefix of one, it always turns the trail on.
12261 The other trail-manipulation commands described here automatically turn
12262 the trail on.  Note that when the trail is off values are still recorded
12263 there; they are simply not displayed.  To set Emacs to turn the trail
12264 off by default, type @kbd{t d} and then save the mode settings with
12265 @kbd{m m} (@code{calc-save-modes}).
12267 @kindex t i
12268 @pindex calc-trail-in
12269 @kindex t o
12270 @pindex calc-trail-out
12271 The @kbd{t i} (@code{calc-trail-in}) and @kbd{t o}
12272 (@code{calc-trail-out}) commands switch the cursor into and out of the
12273 Calc Trail window.  In practice they are rarely used, since the commands
12274 shown below are a more convenient way to move around in the
12275 trail, and they work ``by remote control'' when the cursor is still
12276 in the Calculator window.
12278 @cindex Trail pointer
12279 There is a @dfn{trail pointer} which selects some entry of the trail at
12280 any given time.  The trail pointer looks like a @samp{>} symbol right
12281 before the selected number.  The following commands operate on the
12282 trail pointer in various ways.
12284 @kindex t y
12285 @pindex calc-trail-yank
12286 @cindex Retrieving previous results
12287 The @kbd{t y} (@code{calc-trail-yank}) command reads the selected value in
12288 the trail and pushes it onto the Calculator stack.  It allows you to
12289 re-use any previously computed value without retyping.  With a numeric
12290 prefix argument @var{n}, it yanks the value @var{n} lines above the current
12291 trail pointer.
12293 @kindex t <
12294 @pindex calc-trail-scroll-left
12295 @kindex t >
12296 @pindex calc-trail-scroll-right
12297 The @kbd{t <} (@code{calc-trail-scroll-left}) and @kbd{t >}
12298 (@code{calc-trail-scroll-right}) commands horizontally scroll the trail
12299 window left or right by one half of its width.
12301 @kindex t n
12302 @pindex calc-trail-next
12303 @kindex t p
12304 @pindex calc-trail-previous
12305 @kindex t f
12306 @pindex calc-trail-forward
12307 @kindex t b
12308 @pindex calc-trail-backward
12309 The @kbd{t n} (@code{calc-trail-next}) and @kbd{t p}
12310 (@code{calc-trail-previous)} commands move the trail pointer down or up
12311 one line.  The @kbd{t f} (@code{calc-trail-forward}) and @kbd{t b}
12312 (@code{calc-trail-backward}) commands move the trail pointer down or up
12313 one screenful at a time.  All of these commands accept numeric prefix
12314 arguments to move several lines or screenfuls at a time.
12316 @kindex t [
12317 @pindex calc-trail-first
12318 @kindex t ]
12319 @pindex calc-trail-last
12320 @kindex t h
12321 @pindex calc-trail-here
12322 The @kbd{t [} (@code{calc-trail-first}) and @kbd{t ]}
12323 (@code{calc-trail-last}) commands move the trail pointer to the first or
12324 last line of the trail.  The @kbd{t h} (@code{calc-trail-here}) command
12325 moves the trail pointer to the cursor position; unlike the other trail
12326 commands, @kbd{t h} works only when Calc Trail is the selected window.
12328 @kindex t s
12329 @pindex calc-trail-isearch-forward
12330 @kindex t r
12331 @pindex calc-trail-isearch-backward
12332 @ifinfo
12333 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
12334 (@code{calc-trail-isearch-backward}) commands perform an incremental
12335 search forward or backward through the trail.  You can press @key{RET}
12336 to terminate the search; the trail pointer moves to the current line.
12337 If you cancel the search with @kbd{C-g}, the trail pointer stays where
12338 it was when the search began.
12339 @end ifinfo
12340 @tex
12341 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
12342 (@code{calc-trail-isearch-backward}) com\-mands perform an incremental
12343 search forward or backward through the trail.  You can press @key{RET}
12344 to terminate the search; the trail pointer moves to the current line.
12345 If you cancel the search with @kbd{C-g}, the trail pointer stays where
12346 it was when the search began.
12347 @end tex
12349 @kindex t m
12350 @pindex calc-trail-marker
12351 The @kbd{t m} (@code{calc-trail-marker}) command allows you to enter a
12352 line of text of your own choosing into the trail.  The text is inserted
12353 after the line containing the trail pointer; this usually means it is
12354 added to the end of the trail.  Trail markers are useful mainly as the
12355 targets for later incremental searches in the trail.
12357 @kindex t k
12358 @pindex calc-trail-kill
12359 The @kbd{t k} (@code{calc-trail-kill}) command removes the selected line
12360 from the trail.  The line is saved in the Emacs kill ring suitable for
12361 yanking into another buffer, but it is not easy to yank the text back
12362 into the trail buffer.  With a numeric prefix argument, this command
12363 kills the @var{n} lines below or above the selected one.
12365 The @kbd{t .} (@code{calc-full-trail-vectors}) command is described
12366 elsewhere; @pxref{Vector and Matrix Formats}.
12368 @node Keep Arguments, , Trail Commands, Stack and Trail
12369 @section Keep Arguments
12371 @noindent
12372 @kindex K
12373 @pindex calc-keep-args
12374 The @kbd{K} (@code{calc-keep-args}) command acts like a prefix for
12375 the following command.  It prevents that command from removing its
12376 arguments from the stack.  For example, after @kbd{2 @key{RET} 3 +},
12377 the stack contains the sole number 5, but after @kbd{2 @key{RET} 3 K +},
12378 the stack contains the arguments and the result: @samp{2 3 5}.
12380 With the exception of keyboard macros, this works for all commands that
12381 take arguments off the stack. (To avoid potentially unpleasant behavior,
12382 a @kbd{K} prefix before a keyboard macro will be ignored.  A @kbd{K}
12383 prefix called @emph{within} the keyboard macro will still take effect.)  
12384 As another example, @kbd{K a s} simplifies a formula, pushing the
12385 simplified version of the formula onto the stack after the original
12386 formula (rather than replacing the original formula).  Note that you
12387 could get the same effect by typing @kbd{@key{RET} a s}, copying the
12388 formula and then simplifying the copy. One difference is that for a very
12389 large formula the time taken to format the intermediate copy in
12390 @kbd{@key{RET} a s} could be noticeable; @kbd{K a s} would avoid this
12391 extra work. 
12393 Even stack manipulation commands are affected.  @key{TAB} works by
12394 popping two values and pushing them back in the opposite order,
12395 so @kbd{2 @key{RET} 3 K @key{TAB}} produces @samp{2 3 3 2}.
12397 A few Calc commands provide other ways of doing the same thing.
12398 For example, @kbd{' sin($)} replaces the number on the stack with
12399 its sine using algebraic entry; to push the sine and keep the
12400 original argument you could use either @kbd{' sin($1)} or
12401 @kbd{K ' sin($)}.  @xref{Algebraic Entry}.  Also, the @kbd{s s}
12402 command is effectively the same as @kbd{K s t}.  @xref{Storing Variables}.
12404 If you execute a command and then decide you really wanted to keep
12405 the argument, you can press @kbd{M-@key{RET}} (@code{calc-last-args}).
12406 This command pushes the last arguments that were popped by any command
12407 onto the stack.  Note that the order of things on the stack will be
12408 different than with @kbd{K}:  @kbd{2 @key{RET} 3 + M-@key{RET}} leaves
12409 @samp{5 2 3} on the stack instead of @samp{2 3 5}.  @xref{Undo}.
12411 @node Mode Settings, Arithmetic, Stack and Trail, Top
12412 @chapter Mode Settings
12414 @noindent
12415 This chapter describes commands that set modes in the Calculator.
12416 They do not affect the contents of the stack, although they may change
12417 the @emph{appearance} or @emph{interpretation} of the stack's contents.
12419 @menu
12420 * General Mode Commands::
12421 * Precision::
12422 * Inverse and Hyperbolic::
12423 * Calculation Modes::
12424 * Simplification Modes::
12425 * Declarations::
12426 * Display Modes::
12427 * Language Modes::
12428 * Modes Variable::
12429 * Calc Mode Line::
12430 @end menu
12432 @node General Mode Commands, Precision, Mode Settings, Mode Settings
12433 @section General Mode Commands
12435 @noindent
12436 @kindex m m
12437 @pindex calc-save-modes
12438 @cindex Continuous memory
12439 @cindex Saving mode settings
12440 @cindex Permanent mode settings
12441 @cindex Calc init file, mode settings
12442 You can save all of the current mode settings in your Calc init file 
12443 (the file given by the variable @code{calc-settings-file}, typically
12444 @file{~/.calc.el}) with the @kbd{m m} (@code{calc-save-modes}) command.
12445 This will cause Emacs to reestablish these modes each time it starts up.
12446 The modes saved in the file include everything controlled by the @kbd{m}
12447 and @kbd{d} prefix keys, the current precision and binary word size,
12448 whether or not the trail is displayed, the current height of the Calc
12449 window, and more.  The current interface (used when you type @kbd{M-#
12450 M-#}) is also saved.  If there were already saved mode settings in the
12451 file, they are replaced.  Otherwise, the new mode information is
12452 appended to the end of the file.
12454 @kindex m R
12455 @pindex calc-mode-record-mode
12456 The @kbd{m R} (@code{calc-mode-record-mode}) command tells Calc to
12457 record all the mode settings (as if by pressing @kbd{m m}) every
12458 time a mode setting changes.  If the modes are saved this way, then this
12459 ``automatic mode recording'' mode is also saved.
12460 Type @kbd{m R} again to disable this method of recording the mode
12461 settings.  To turn it off permanently, the @kbd{m m} command will also be
12462 necessary.   (If Embedded mode is enabled, other options for recording
12463 the modes are available; @pxref{Mode Settings in Embedded Mode}.)
12465 @kindex m F
12466 @pindex calc-settings-file-name
12467 The @kbd{m F} (@code{calc-settings-file-name}) command allows you to
12468 choose a different file than the current value of @code{calc-settings-file}
12469 for @kbd{m m}, @kbd{Z P}, and similar commands to save permanent information.
12470 You are prompted for a file name.  All Calc modes are then reset to
12471 their default values, then settings from the file you named are loaded
12472 if this file exists, and this file becomes the one that Calc will
12473 use in the future for commands like @kbd{m m}.  The default settings
12474 file name is @file{~/.calc.el}.  You can see the current file name by
12475 giving a blank response to the @kbd{m F} prompt.  See also the
12476 discussion of the @code{calc-settings-file} variable; @pxref{Customizable Variables}.
12478 If the file name you give is your user init file (typically
12479 @file{~/.emacs}), @kbd{m F} will not automatically load the new file.  This
12480 is because your user init file may contain other things you don't want
12481 to reread.  You can give 
12482 a numeric prefix argument of 1 to @kbd{m F} to force it to read the
12483 file no matter what.  Conversely, an argument of @mathit{-1} tells
12484 @kbd{m F} @emph{not} to read the new file.  An argument of 2 or @mathit{-2}
12485 tells @kbd{m F} not to reset the modes to their defaults beforehand,
12486 which is useful if you intend your new file to have a variant of the
12487 modes present in the file you were using before.
12489 @kindex m x
12490 @pindex calc-always-load-extensions
12491 The @kbd{m x} (@code{calc-always-load-extensions}) command enables a mode
12492 in which the first use of Calc loads the entire program, including all
12493 extensions modules.  Otherwise, the extensions modules will not be loaded
12494 until the various advanced Calc features are used.  Since this mode only
12495 has effect when Calc is first loaded, @kbd{m x} is usually followed by
12496 @kbd{m m} to make the mode-setting permanent.  To load all of Calc just
12497 once, rather than always in the future, you can press @kbd{M-# L}.
12499 @kindex m S
12500 @pindex calc-shift-prefix
12501 The @kbd{m S} (@code{calc-shift-prefix}) command enables a mode in which
12502 all of Calc's letter prefix keys may be typed shifted as well as unshifted.
12503 If you are typing, say, @kbd{a S} (@code{calc-solve-for}) quite often
12504 you might find it easier to turn this mode on so that you can type
12505 @kbd{A S} instead.  When this mode is enabled, the commands that used to
12506 be on those single shifted letters (e.g., @kbd{A} (@code{calc-abs})) can
12507 now be invoked by pressing the shifted letter twice: @kbd{A A}.  Note
12508 that the @kbd{v} prefix key always works both shifted and unshifted, and
12509 the @kbd{z} and @kbd{Z} prefix keys are always distinct.  Also, the @kbd{h}
12510 prefix is not affected by this mode.  Press @kbd{m S} again to disable
12511 shifted-prefix mode.
12513 @node Precision, Inverse and Hyperbolic, General Mode Commands, Mode Settings
12514 @section Precision
12516 @noindent
12517 @kindex p
12518 @pindex calc-precision
12519 @cindex Precision of calculations
12520 The @kbd{p} (@code{calc-precision}) command controls the precision to
12521 which floating-point calculations are carried.  The precision must be
12522 at least 3 digits and may be arbitrarily high, within the limits of
12523 memory and time.  This affects only floats:  Integer and rational
12524 calculations are always carried out with as many digits as necessary.
12526 The @kbd{p} key prompts for the current precision.  If you wish you
12527 can instead give the precision as a numeric prefix argument.
12529 Many internal calculations are carried to one or two digits higher
12530 precision than normal.  Results are rounded down afterward to the
12531 current precision.  Unless a special display mode has been selected,
12532 floats are always displayed with their full stored precision, i.e.,
12533 what you see is what you get.  Reducing the current precision does not
12534 round values already on the stack, but those values will be rounded
12535 down before being used in any calculation.  The @kbd{c 0} through
12536 @kbd{c 9} commands (@pxref{Conversions}) can be used to round an
12537 existing value to a new precision.
12539 @cindex Accuracy of calculations
12540 It is important to distinguish the concepts of @dfn{precision} and
12541 @dfn{accuracy}.  In the normal usage of these words, the number
12542 123.4567 has a precision of 7 digits but an accuracy of 4 digits.
12543 The precision is the total number of digits not counting leading
12544 or trailing zeros (regardless of the position of the decimal point).
12545 The accuracy is simply the number of digits after the decimal point
12546 (again not counting trailing zeros).  In Calc you control the precision,
12547 not the accuracy of computations.  If you were to set the accuracy
12548 instead, then calculations like @samp{exp(100)} would generate many
12549 more digits than you would typically need, while @samp{exp(-100)} would
12550 probably round to zero!  In Calc, both these computations give you
12551 exactly 12 (or the requested number of) significant digits.
12553 The only Calc features that deal with accuracy instead of precision
12554 are fixed-point display mode for floats (@kbd{d f}; @pxref{Float Formats}),
12555 and the rounding functions like @code{floor} and @code{round}
12556 (@pxref{Integer Truncation}).  Also, @kbd{c 0} through @kbd{c 9}
12557 deal with both precision and accuracy depending on the magnitudes
12558 of the numbers involved.
12560 If you need to work with a particular fixed accuracy (say, dollars and
12561 cents with two digits after the decimal point), one solution is to work
12562 with integers and an ``implied'' decimal point.  For example, $8.99
12563 divided by 6 would be entered @kbd{899 @key{RET} 6 /}, yielding 149.833
12564 (actually $1.49833 with our implied decimal point); pressing @kbd{R}
12565 would round this to 150 cents, i.e., $1.50.
12567 @xref{Floats}, for still more on floating-point precision and related
12568 issues.
12570 @node Inverse and Hyperbolic, Calculation Modes, Precision, Mode Settings
12571 @section Inverse and Hyperbolic Flags
12573 @noindent
12574 @kindex I
12575 @pindex calc-inverse
12576 There is no single-key equivalent to the @code{calc-arcsin} function.
12577 Instead, you must first press @kbd{I} (@code{calc-inverse}) to set
12578 the @dfn{Inverse Flag}, then press @kbd{S} (@code{calc-sin}).
12579 The @kbd{I} key actually toggles the Inverse Flag.  When this flag
12580 is set, the word @samp{Inv} appears in the mode line.
12582 @kindex H
12583 @pindex calc-hyperbolic
12584 Likewise, the @kbd{H} key (@code{calc-hyperbolic}) sets or clears the
12585 Hyperbolic Flag, which transforms @code{calc-sin} into @code{calc-sinh}.
12586 If both of these flags are set at once, the effect will be
12587 @code{calc-arcsinh}.  (The Hyperbolic flag is also used by some
12588 non-trigonometric commands; for example @kbd{H L} computes a base-10,
12589 instead of base-@mathit{e}, logarithm.)
12591 Command names like @code{calc-arcsin} are provided for completeness, and
12592 may be executed with @kbd{x} or @kbd{M-x}.  Their effect is simply to
12593 toggle the Inverse and/or Hyperbolic flags and then execute the
12594 corresponding base command (@code{calc-sin} in this case).
12596 The Inverse and Hyperbolic flags apply only to the next Calculator
12597 command, after which they are automatically cleared.  (They are also
12598 cleared if the next keystroke is not a Calc command.)  Digits you
12599 type after @kbd{I} or @kbd{H} (or @kbd{K}) are treated as prefix
12600 arguments for the next command, not as numeric entries.  The same
12601 is true of @kbd{C-u}, but not of the minus sign (@kbd{K -} means to
12602 subtract and keep arguments).
12604 The third Calc prefix flag, @kbd{K} (keep-arguments), is discussed
12605 elsewhere.  @xref{Keep Arguments}.
12607 @node Calculation Modes, Simplification Modes, Inverse and Hyperbolic, Mode Settings
12608 @section Calculation Modes
12610 @noindent
12611 The commands in this section are two-key sequences beginning with
12612 the @kbd{m} prefix.  (That's the letter @kbd{m}, not the @key{META} key.)
12613 The @samp{m a} (@code{calc-algebraic-mode}) command is described elsewhere
12614 (@pxref{Algebraic Entry}).
12616 @menu
12617 * Angular Modes::
12618 * Polar Mode::
12619 * Fraction Mode::
12620 * Infinite Mode::
12621 * Symbolic Mode::
12622 * Matrix Mode::
12623 * Automatic Recomputation::
12624 * Working Message::
12625 @end menu
12627 @node Angular Modes, Polar Mode, Calculation Modes, Calculation Modes
12628 @subsection Angular Modes
12630 @noindent
12631 @cindex Angular mode
12632 The Calculator supports three notations for angles: radians, degrees,
12633 and degrees-minutes-seconds.  When a number is presented to a function
12634 like @code{sin} that requires an angle, the current angular mode is
12635 used to interpret the number as either radians or degrees.  If an HMS
12636 form is presented to @code{sin}, it is always interpreted as
12637 degrees-minutes-seconds.
12639 Functions that compute angles produce a number in radians, a number in
12640 degrees, or an HMS form depending on the current angular mode.  If the
12641 result is a complex number and the current mode is HMS, the number is
12642 instead expressed in degrees.  (Complex-number calculations would
12643 normally be done in Radians mode, though.  Complex numbers are converted
12644 to degrees by calculating the complex result in radians and then
12645 multiplying by 180 over @cpi{}.)
12647 @kindex m r
12648 @pindex calc-radians-mode
12649 @kindex m d
12650 @pindex calc-degrees-mode
12651 @kindex m h
12652 @pindex calc-hms-mode
12653 The @kbd{m r} (@code{calc-radians-mode}), @kbd{m d} (@code{calc-degrees-mode}),
12654 and @kbd{m h} (@code{calc-hms-mode}) commands control the angular mode.
12655 The current angular mode is displayed on the Emacs mode line.
12656 The default angular mode is Degrees.
12658 @node Polar Mode, Fraction Mode, Angular Modes, Calculation Modes
12659 @subsection Polar Mode
12661 @noindent
12662 @cindex Polar mode
12663 The Calculator normally ``prefers'' rectangular complex numbers in the
12664 sense that rectangular form is used when the proper form can not be
12665 decided from the input.  This might happen by multiplying a rectangular
12666 number by a polar one, by taking the square root of a negative real
12667 number, or by entering @kbd{( 2 @key{SPC} 3 )}.
12669 @kindex m p
12670 @pindex calc-polar-mode
12671 The @kbd{m p} (@code{calc-polar-mode}) command toggles complex-number
12672 preference between rectangular and polar forms.  In Polar mode, all
12673 of the above example situations would produce polar complex numbers.
12675 @node Fraction Mode, Infinite Mode, Polar Mode, Calculation Modes
12676 @subsection Fraction Mode
12678 @noindent
12679 @cindex Fraction mode
12680 @cindex Division of integers
12681 Division of two integers normally yields a floating-point number if the
12682 result cannot be expressed as an integer.  In some cases you would
12683 rather get an exact fractional answer.  One way to accomplish this is
12684 to use the @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command, which
12685 divides the two integers on the top of the stack to produce a fraction:
12686 @kbd{6 @key{RET} 4 :} produces @expr{3:2} even though 
12687 @kbd{6 @key{RET} 4 /} produces @expr{1.5}.
12689 @kindex m f
12690 @pindex calc-frac-mode
12691 To set the Calculator to produce fractional results for normal integer
12692 divisions, use the @kbd{m f} (@code{calc-frac-mode}) command.
12693 For example, @expr{8/4} produces @expr{2} in either mode,
12694 but @expr{6/4} produces @expr{3:2} in Fraction mode, @expr{1.5} in
12695 Float mode.
12697 At any time you can use @kbd{c f} (@code{calc-float}) to convert a
12698 fraction to a float, or @kbd{c F} (@code{calc-fraction}) to convert a
12699 float to a fraction.  @xref{Conversions}.
12701 @node Infinite Mode, Symbolic Mode, Fraction Mode, Calculation Modes
12702 @subsection Infinite Mode
12704 @noindent
12705 @cindex Infinite mode
12706 The Calculator normally treats results like @expr{1 / 0} as errors;
12707 formulas like this are left in unsimplified form.  But Calc can be
12708 put into a mode where such calculations instead produce ``infinite''
12709 results.
12711 @kindex m i
12712 @pindex calc-infinite-mode
12713 The @kbd{m i} (@code{calc-infinite-mode}) command turns this mode
12714 on and off.  When the mode is off, infinities do not arise except
12715 in calculations that already had infinities as inputs.  (One exception
12716 is that infinite open intervals like @samp{[0 .. inf)} can be
12717 generated; however, intervals closed at infinity (@samp{[0 .. inf]})
12718 will not be generated when Infinite mode is off.)
12720 With Infinite mode turned on, @samp{1 / 0} will generate @code{uinf},
12721 an undirected infinity.  @xref{Infinities}, for a discussion of the
12722 difference between @code{inf} and @code{uinf}.  Also, @expr{0 / 0}
12723 evaluates to @code{nan}, the ``indeterminate'' symbol.  Various other
12724 functions can also return infinities in this mode; for example,
12725 @samp{ln(0) = -inf}, and @samp{gamma(-7) = uinf}.  Once again,
12726 note that @samp{exp(inf) = inf} regardless of Infinite mode because
12727 this calculation has infinity as an input.
12729 @cindex Positive Infinite mode
12730 The @kbd{m i} command with a numeric prefix argument of zero,
12731 i.e., @kbd{C-u 0 m i}, turns on a Positive Infinite mode in
12732 which zero is treated as positive instead of being directionless.
12733 Thus, @samp{1 / 0 = inf} and @samp{-1 / 0 = -inf} in this mode.
12734 Note that zero never actually has a sign in Calc; there are no
12735 separate representations for @mathit{+0} and @mathit{-0}.  Positive
12736 Infinite mode merely changes the interpretation given to the
12737 single symbol, @samp{0}.  One consequence of this is that, while
12738 you might expect @samp{1 / -0 = -inf}, actually @samp{1 / -0}
12739 is equivalent to @samp{1 / 0}, which is equal to positive @code{inf}.
12741 @node Symbolic Mode, Matrix Mode, Infinite Mode, Calculation Modes
12742 @subsection Symbolic Mode
12744 @noindent
12745 @cindex Symbolic mode
12746 @cindex Inexact results
12747 Calculations are normally performed numerically wherever possible.
12748 For example, the @code{calc-sqrt} command, or @code{sqrt} function in an
12749 algebraic expression, produces a numeric answer if the argument is a
12750 number or a symbolic expression if the argument is an expression:
12751 @kbd{2 Q} pushes 1.4142 but @kbd{@key{'} x+1 @key{RET} Q} pushes @samp{sqrt(x+1)}.
12753 @kindex m s
12754 @pindex calc-symbolic-mode
12755 In @dfn{Symbolic mode}, controlled by the @kbd{m s} (@code{calc-symbolic-mode})
12756 command, functions which would produce inexact, irrational results are
12757 left in symbolic form.  Thus @kbd{16 Q} pushes 4, but @kbd{2 Q} pushes
12758 @samp{sqrt(2)}.
12760 @kindex N
12761 @pindex calc-eval-num
12762 The shift-@kbd{N} (@code{calc-eval-num}) command evaluates numerically
12763 the expression at the top of the stack, by temporarily disabling
12764 @code{calc-symbolic-mode} and executing @kbd{=} (@code{calc-evaluate}).
12765 Given a numeric prefix argument, it also
12766 sets the floating-point precision to the specified value for the duration
12767 of the command.
12769 To evaluate a formula numerically without expanding the variables it
12770 contains, you can use the key sequence @kbd{m s a v m s} (this uses
12771 @code{calc-alg-evaluate}, which resimplifies but doesn't evaluate
12772 variables.)
12774 @node Matrix Mode, Automatic Recomputation, Symbolic Mode, Calculation Modes
12775 @subsection Matrix and Scalar Modes
12777 @noindent
12778 @cindex Matrix mode
12779 @cindex Scalar mode
12780 Calc sometimes makes assumptions during algebraic manipulation that
12781 are awkward or incorrect when vectors and matrices are involved.
12782 Calc has two modes, @dfn{Matrix mode} and @dfn{Scalar mode}, which
12783 modify its behavior around vectors in useful ways.
12785 @kindex m v
12786 @pindex calc-matrix-mode
12787 Press @kbd{m v} (@code{calc-matrix-mode}) once to enter Matrix mode.
12788 In this mode, all objects are assumed to be matrices unless provably
12789 otherwise.  One major effect is that Calc will no longer consider
12790 multiplication to be commutative.  (Recall that in matrix arithmetic,
12791 @samp{A*B} is not the same as @samp{B*A}.)  This assumption affects
12792 rewrite rules and algebraic simplification.  Another effect of this
12793 mode is that calculations that would normally produce constants like
12794 0 and 1 (e.g., @expr{a - a} and @expr{a / a}, respectively) will now
12795 produce function calls that represent ``generic'' zero or identity
12796 matrices: @samp{idn(0)}, @samp{idn(1)}.  The @code{idn} function
12797 @samp{idn(@var{a},@var{n})} returns @var{a} times an @var{n}x@var{n}
12798 identity matrix; if @var{n} is omitted, it doesn't know what
12799 dimension to use and so the @code{idn} call remains in symbolic
12800 form.  However, if this generic identity matrix is later combined
12801 with a matrix whose size is known, it will be converted into
12802 a true identity matrix of the appropriate size.  On the other hand,
12803 if it is combined with a scalar (as in @samp{idn(1) + 2}), Calc
12804 will assume it really was a scalar after all and produce, e.g., 3.
12806 Press @kbd{m v} a second time to get Scalar mode.  Here, objects are
12807 assumed @emph{not} to be vectors or matrices unless provably so.
12808 For example, normally adding a variable to a vector, as in
12809 @samp{[x, y, z] + a}, will leave the sum in symbolic form because
12810 as far as Calc knows, @samp{a} could represent either a number or
12811 another 3-vector.  In Scalar mode, @samp{a} is assumed to be a
12812 non-vector, and the addition is evaluated to @samp{[x+a, y+a, z+a]}.
12814 Press @kbd{m v} a third time to return to the normal mode of operation.
12816 If you press @kbd{m v} with a numeric prefix argument @var{n}, you
12817 get a special ``dimensioned'' Matrix mode in which matrices of
12818 unknown size are assumed to be @var{n}x@var{n} square matrices.
12819 Then, the function call @samp{idn(1)} will expand into an actual
12820 matrix rather than representing a ``generic'' matrix.  Simply typing
12821 @kbd{C-u m v} will get you a square Matrix mode, in which matrices of
12822 unknown size are assumed to be square matrices of unspecified size.
12824 @cindex Declaring scalar variables
12825 Of course these modes are approximations to the true state of
12826 affairs, which is probably that some quantities will be matrices
12827 and others will be scalars.  One solution is to ``declare''
12828 certain variables or functions to be scalar-valued.
12829 @xref{Declarations}, to see how to make declarations in Calc.
12831 There is nothing stopping you from declaring a variable to be
12832 scalar and then storing a matrix in it; however, if you do, the
12833 results you get from Calc may not be valid.  Suppose you let Calc
12834 get the result @samp{[x+a, y+a, z+a]} shown above, and then stored
12835 @samp{[1, 2, 3]} in @samp{a}.  The result would not be the same as
12836 for @samp{[x, y, z] + [1, 2, 3]}, but that's because you have broken
12837 your earlier promise to Calc that @samp{a} would be scalar.
12839 Another way to mix scalars and matrices is to use selections
12840 (@pxref{Selecting Subformulas}).  Use Matrix mode when operating on
12841 your formula normally; then, to apply Scalar mode to a certain part
12842 of the formula without affecting the rest just select that part,
12843 change into Scalar mode and press @kbd{=} to resimplify the part
12844 under this mode, then change back to Matrix mode before deselecting.
12846 @node Automatic Recomputation, Working Message, Matrix Mode, Calculation Modes
12847 @subsection Automatic Recomputation
12849 @noindent
12850 The @dfn{evaluates-to} operator, @samp{=>}, has the special
12851 property that any @samp{=>} formulas on the stack are recomputed
12852 whenever variable values or mode settings that might affect them
12853 are changed.  @xref{Evaluates-To Operator}.
12855 @kindex m C
12856 @pindex calc-auto-recompute
12857 The @kbd{m C} (@code{calc-auto-recompute}) command turns this
12858 automatic recomputation on and off.  If you turn it off, Calc will
12859 not update @samp{=>} operators on the stack (nor those in the
12860 attached Embedded mode buffer, if there is one).  They will not
12861 be updated unless you explicitly do so by pressing @kbd{=} or until
12862 you press @kbd{m C} to turn recomputation back on.  (While automatic
12863 recomputation is off, you can think of @kbd{m C m C} as a command
12864 to update all @samp{=>} operators while leaving recomputation off.)
12866 To update @samp{=>} operators in an Embedded buffer while
12867 automatic recomputation is off, use @w{@kbd{M-# u}}.
12868 @xref{Embedded Mode}.
12870 @node Working Message, , Automatic Recomputation, Calculation Modes
12871 @subsection Working Messages
12873 @noindent
12874 @cindex Performance
12875 @cindex Working messages
12876 Since the Calculator is written entirely in Emacs Lisp, which is not
12877 designed for heavy numerical work, many operations are quite slow.
12878 The Calculator normally displays the message @samp{Working...} in the
12879 echo area during any command that may be slow.  In addition, iterative
12880 operations such as square roots and trigonometric functions display the
12881 intermediate result at each step.  Both of these types of messages can
12882 be disabled if you find them distracting.
12884 @kindex m w
12885 @pindex calc-working
12886 Type @kbd{m w} (@code{calc-working}) with a numeric prefix of 0 to
12887 disable all ``working'' messages.  Use a numeric prefix of 1 to enable
12888 only the plain @samp{Working...} message.  Use a numeric prefix of 2 to
12889 see intermediate results as well.  With no numeric prefix this displays
12890 the current mode.
12892 While it may seem that the ``working'' messages will slow Calc down
12893 considerably, experiments have shown that their impact is actually
12894 quite small.  But if your terminal is slow you may find that it helps
12895 to turn the messages off.
12897 @node Simplification Modes, Declarations, Calculation Modes, Mode Settings
12898 @section Simplification Modes
12900 @noindent
12901 The current @dfn{simplification mode} controls how numbers and formulas
12902 are ``normalized'' when being taken from or pushed onto the stack.
12903 Some normalizations are unavoidable, such as rounding floating-point
12904 results to the current precision, and reducing fractions to simplest
12905 form.  Others, such as simplifying a formula like @expr{a+a} (or @expr{2+3}),
12906 are done by default but can be turned off when necessary.
12908 When you press a key like @kbd{+} when @expr{2} and @expr{3} are on the
12909 stack, Calc pops these numbers, normalizes them, creates the formula
12910 @expr{2+3}, normalizes it, and pushes the result.  Of course the standard
12911 rules for normalizing @expr{2+3} will produce the result @expr{5}.
12913 Simplification mode commands consist of the lower-case @kbd{m} prefix key
12914 followed by a shifted letter.
12916 @kindex m O
12917 @pindex calc-no-simplify-mode
12918 The @kbd{m O} (@code{calc-no-simplify-mode}) command turns off all optional
12919 simplifications.  These would leave a formula like @expr{2+3} alone.  In
12920 fact, nothing except simple numbers are ever affected by normalization
12921 in this mode.
12923 @kindex m N
12924 @pindex calc-num-simplify-mode
12925 The @kbd{m N} (@code{calc-num-simplify-mode}) command turns off simplification
12926 of any formulas except those for which all arguments are constants.  For
12927 example, @expr{1+2} is simplified to @expr{3}, and @expr{a+(2-2)} is
12928 simplified to @expr{a+0} but no further, since one argument of the sum
12929 is not a constant.  Unfortunately, @expr{(a+2)-2} is @emph{not} simplified
12930 because the top-level @samp{-} operator's arguments are not both
12931 constant numbers (one of them is the formula @expr{a+2}).
12932 A constant is a number or other numeric object (such as a constant
12933 error form or modulo form), or a vector all of whose
12934 elements are constant.
12936 @kindex m D
12937 @pindex calc-default-simplify-mode
12938 The @kbd{m D} (@code{calc-default-simplify-mode}) command restores the
12939 default simplifications for all formulas.  This includes many easy and
12940 fast algebraic simplifications such as @expr{a+0} to @expr{a}, and
12941 @expr{a + 2 a} to @expr{3 a}, as well as evaluating functions like
12942 @expr{@tfn{deriv}(x^2, x)} to @expr{2 x}.
12944 @kindex m B
12945 @pindex calc-bin-simplify-mode
12946 The @kbd{m B} (@code{calc-bin-simplify-mode}) mode applies the default
12947 simplifications to a result and then, if the result is an integer,
12948 uses the @kbd{b c} (@code{calc-clip}) command to clip the integer according
12949 to the current binary word size.  @xref{Binary Functions}.  Real numbers
12950 are rounded to the nearest integer and then clipped; other kinds of
12951 results (after the default simplifications) are left alone.
12953 @kindex m A
12954 @pindex calc-alg-simplify-mode
12955 The @kbd{m A} (@code{calc-alg-simplify-mode}) mode does algebraic
12956 simplification; it applies all the default simplifications, and also
12957 the more powerful (and slower) simplifications made by @kbd{a s}
12958 (@code{calc-simplify}).  @xref{Algebraic Simplifications}.
12960 @kindex m E
12961 @pindex calc-ext-simplify-mode
12962 The @kbd{m E} (@code{calc-ext-simplify-mode}) mode does ``extended''
12963 algebraic simplification, as by the @kbd{a e} (@code{calc-simplify-extended})
12964 command.  @xref{Unsafe Simplifications}.
12966 @kindex m U
12967 @pindex calc-units-simplify-mode
12968 The @kbd{m U} (@code{calc-units-simplify-mode}) mode does units
12969 simplification; it applies the command @kbd{u s}
12970 (@code{calc-simplify-units}), which in turn
12971 is a superset of @kbd{a s}.  In this mode, variable names which
12972 are identifiable as unit names (like @samp{mm} for ``millimeters'')
12973 are simplified with their unit definitions in mind.
12975 A common technique is to set the simplification mode down to the lowest
12976 amount of simplification you will allow to be applied automatically, then
12977 use manual commands like @kbd{a s} and @kbd{c c} (@code{calc-clean}) to
12978 perform higher types of simplifications on demand.  @xref{Algebraic
12979 Definitions}, for another sample use of No-Simplification mode.
12981 @node Declarations, Display Modes, Simplification Modes, Mode Settings
12982 @section Declarations
12984 @noindent
12985 A @dfn{declaration} is a statement you make that promises you will
12986 use a certain variable or function in a restricted way.  This may
12987 give Calc the freedom to do things that it couldn't do if it had to
12988 take the fully general situation into account.
12990 @menu
12991 * Declaration Basics::
12992 * Kinds of Declarations::
12993 * Functions for Declarations::
12994 @end menu
12996 @node Declaration Basics, Kinds of Declarations, Declarations, Declarations
12997 @subsection Declaration Basics
12999 @noindent
13000 @kindex s d
13001 @pindex calc-declare-variable
13002 The @kbd{s d} (@code{calc-declare-variable}) command is the easiest
13003 way to make a declaration for a variable.  This command prompts for
13004 the variable name, then prompts for the declaration.  The default
13005 at the declaration prompt is the previous declaration, if any.
13006 You can edit this declaration, or press @kbd{C-k} to erase it and
13007 type a new declaration.  (Or, erase it and press @key{RET} to clear
13008 the declaration, effectively ``undeclaring'' the variable.)
13010 A declaration is in general a vector of @dfn{type symbols} and
13011 @dfn{range} values.  If there is only one type symbol or range value,
13012 you can write it directly rather than enclosing it in a vector.
13013 For example, @kbd{s d foo @key{RET} real @key{RET}} declares @code{foo} to
13014 be a real number, and @kbd{s d bar @key{RET} [int, const, [1..6]] @key{RET}}
13015 declares @code{bar} to be a constant integer between 1 and 6.
13016 (Actually, you can omit the outermost brackets and Calc will
13017 provide them for you: @kbd{s d bar @key{RET} int, const, [1..6] @key{RET}}.)
13019 @cindex @code{Decls} variable
13020 @vindex Decls
13021 Declarations in Calc are kept in a special variable called @code{Decls}.
13022 This variable encodes the set of all outstanding declarations in
13023 the form of a matrix.  Each row has two elements:  A variable or
13024 vector of variables declared by that row, and the declaration
13025 specifier as described above.  You can use the @kbd{s D} command to
13026 edit this variable if you wish to see all the declarations at once.
13027 @xref{Operations on Variables}, for a description of this command
13028 and the @kbd{s p} command that allows you to save your declarations
13029 permanently if you wish.
13031 Items being declared can also be function calls.  The arguments in
13032 the call are ignored; the effect is to say that this function returns
13033 values of the declared type for any valid arguments.  The @kbd{s d}
13034 command declares only variables, so if you wish to make a function
13035 declaration you will have to edit the @code{Decls} matrix yourself.
13037 For example, the declaration matrix
13039 @smallexample
13040 @group
13041 [ [ foo,       real       ]
13042   [ [j, k, n], int        ]
13043   [ f(1,2,3),  [0 .. inf) ] ]
13044 @end group
13045 @end smallexample
13047 @noindent
13048 declares that @code{foo} represents a real number, @code{j}, @code{k}
13049 and @code{n} represent integers, and the function @code{f} always
13050 returns a real number in the interval shown.
13052 @vindex All
13053 If there is a declaration for the variable @code{All}, then that
13054 declaration applies to all variables that are not otherwise declared.
13055 It does not apply to function names.  For example, using the row
13056 @samp{[All, real]} says that all your variables are real unless they
13057 are explicitly declared without @code{real} in some other row.
13058 The @kbd{s d} command declares @code{All} if you give a blank
13059 response to the variable-name prompt.
13061 @node Kinds of Declarations, Functions for Declarations, Declaration Basics, Declarations
13062 @subsection Kinds of Declarations
13064 @noindent
13065 The type-specifier part of a declaration (that is, the second prompt
13066 in the @kbd{s d} command) can be a type symbol, an interval, or a
13067 vector consisting of zero or more type symbols followed by zero or
13068 more intervals or numbers that represent the set of possible values
13069 for the variable.
13071 @smallexample
13072 @group
13073 [ [ a, [1, 2, 3, 4, 5] ]
13074   [ b, [1 .. 5]        ]
13075   [ c, [int, 1 .. 5]   ] ]
13076 @end group
13077 @end smallexample
13079 Here @code{a} is declared to contain one of the five integers shown;
13080 @code{b} is any number in the interval from 1 to 5 (any real number
13081 since we haven't specified), and @code{c} is any integer in that
13082 interval.  Thus the declarations for @code{a} and @code{c} are
13083 nearly equivalent (see below).
13085 The type-specifier can be the empty vector @samp{[]} to say that
13086 nothing is known about a given variable's value.  This is the same
13087 as not declaring the variable at all except that it overrides any
13088 @code{All} declaration which would otherwise apply.
13090 The initial value of @code{Decls} is the empty vector @samp{[]}.
13091 If @code{Decls} has no stored value or if the value stored in it
13092 is not valid, it is ignored and there are no declarations as far
13093 as Calc is concerned.  (The @kbd{s d} command will replace such a
13094 malformed value with a fresh empty matrix, @samp{[]}, before recording
13095 the new declaration.)  Unrecognized type symbols are ignored.
13097 The following type symbols describe what sorts of numbers will be
13098 stored in a variable:
13100 @table @code
13101 @item int
13102 Integers.
13103 @item numint
13104 Numerical integers.  (Integers or integer-valued floats.)
13105 @item frac
13106 Fractions.  (Rational numbers which are not integers.)
13107 @item rat
13108 Rational numbers.  (Either integers or fractions.)
13109 @item float
13110 Floating-point numbers.
13111 @item real
13112 Real numbers.  (Integers, fractions, or floats.  Actually,
13113 intervals and error forms with real components also count as
13114 reals here.)
13115 @item pos
13116 Positive real numbers.  (Strictly greater than zero.)
13117 @item nonneg
13118 Nonnegative real numbers.  (Greater than or equal to zero.)
13119 @item number
13120 Numbers.  (Real or complex.)
13121 @end table
13123 Calc uses this information to determine when certain simplifications
13124 of formulas are safe.  For example, @samp{(x^y)^z} cannot be
13125 simplified to @samp{x^(y z)} in general; for example,
13126 @samp{((-3)^2)^1:2} is 3, but @samp{(-3)^(2*1:2) = (-3)^1} is @mathit{-3}.
13127 However, this simplification @emph{is} safe if @code{z} is known
13128 to be an integer, or if @code{x} is known to be a nonnegative
13129 real number.  If you have given declarations that allow Calc to
13130 deduce either of these facts, Calc will perform this simplification
13131 of the formula.
13133 Calc can apply a certain amount of logic when using declarations.
13134 For example, @samp{(x^y)^(2n+1)} will be simplified if @code{n}
13135 has been declared @code{int}; Calc knows that an integer times an
13136 integer, plus an integer, must always be an integer.  (In fact,
13137 Calc would simplify @samp{(-x)^(2n+1)} to @samp{-(x^(2n+1))} since
13138 it is able to determine that @samp{2n+1} must be an odd integer.)
13140 Similarly, @samp{(abs(x)^y)^z} will be simplified to @samp{abs(x)^(y z)}
13141 because Calc knows that the @code{abs} function always returns a
13142 nonnegative real.  If you had a @code{myabs} function that also had
13143 this property, you could get Calc to recognize it by adding the row
13144 @samp{[myabs(), nonneg]} to the @code{Decls} matrix.
13146 One instance of this simplification is @samp{sqrt(x^2)} (since the
13147 @code{sqrt} function is effectively a one-half power).  Normally
13148 Calc leaves this formula alone.  After the command
13149 @kbd{s d x @key{RET} real @key{RET}}, however, it can simplify the formula to
13150 @samp{abs(x)}.  And after @kbd{s d x @key{RET} nonneg @key{RET}}, Calc can
13151 simplify this formula all the way to @samp{x}.
13153 If there are any intervals or real numbers in the type specifier,
13154 they comprise the set of possible values that the variable or
13155 function being declared can have.  In particular, the type symbol
13156 @code{real} is effectively the same as the range @samp{[-inf .. inf]}
13157 (note that infinity is included in the range of possible values);
13158 @code{pos} is the same as @samp{(0 .. inf]}, and @code{nonneg} is
13159 the same as @samp{[0 .. inf]}.  Saying @samp{[real, [-5 .. 5]]} is
13160 redundant because the fact that the variable is real can be
13161 deduced just from the interval, but @samp{[int, [-5 .. 5]]} and
13162 @samp{[rat, [-5 .. 5]]} are useful combinations.
13164 Note that the vector of intervals or numbers is in the same format
13165 used by Calc's set-manipulation commands.  @xref{Set Operations}.
13167 The type specifier @samp{[1, 2, 3]} is equivalent to
13168 @samp{[numint, 1, 2, 3]}, @emph{not} to @samp{[int, 1, 2, 3]}.
13169 In other words, the range of possible values means only that
13170 the variable's value must be numerically equal to a number in
13171 that range, but not that it must be equal in type as well.
13172 Calc's set operations act the same way; @samp{in(2, [1., 2., 3.])}
13173 and @samp{in(1.5, [1:2, 3:2, 5:2])} both report ``true.''
13175 If you use a conflicting combination of type specifiers, the
13176 results are unpredictable.  An example is @samp{[pos, [0 .. 5]]},
13177 where the interval does not lie in the range described by the
13178 type symbol.
13180 ``Real'' declarations mostly affect simplifications involving powers
13181 like the one described above.  Another case where they are used
13182 is in the @kbd{a P} command which returns a list of all roots of a
13183 polynomial; if the variable has been declared real, only the real
13184 roots (if any) will be included in the list.
13186 ``Integer'' declarations are used for simplifications which are valid
13187 only when certain values are integers (such as @samp{(x^y)^z}
13188 shown above).
13190 Another command that makes use of declarations is @kbd{a s}, when
13191 simplifying equations and inequalities.  It will cancel @code{x}
13192 from both sides of @samp{a x = b x} only if it is sure @code{x}
13193 is non-zero, say, because it has a @code{pos} declaration.
13194 To declare specifically that @code{x} is real and non-zero,
13195 use @samp{[[-inf .. 0), (0 .. inf]]}.  (There is no way in the
13196 current notation to say that @code{x} is nonzero but not necessarily
13197 real.)  The @kbd{a e} command does ``unsafe'' simplifications,
13198 including cancelling @samp{x} from the equation when @samp{x} is
13199 not known to be nonzero.
13201 Another set of type symbols distinguish between scalars and vectors.
13203 @table @code
13204 @item scalar
13205 The value is not a vector.
13206 @item vector
13207 The value is a vector.
13208 @item matrix
13209 The value is a matrix (a rectangular vector of vectors).
13210 @item sqmatrix
13211 The value is a square matrix.
13212 @end table
13214 These type symbols can be combined with the other type symbols
13215 described above; @samp{[int, matrix]} describes an object which
13216 is a matrix of integers.
13218 Scalar/vector declarations are used to determine whether certain
13219 algebraic operations are safe.  For example, @samp{[a, b, c] + x}
13220 is normally not simplified to @samp{[a + x, b + x, c + x]}, but
13221 it will be if @code{x} has been declared @code{scalar}.  On the
13222 other hand, multiplication is usually assumed to be commutative,
13223 but the terms in @samp{x y} will never be exchanged if both @code{x}
13224 and @code{y} are known to be vectors or matrices.  (Calc currently
13225 never distinguishes between @code{vector} and @code{matrix}
13226 declarations.)
13228 @xref{Matrix Mode}, for a discussion of Matrix mode and
13229 Scalar mode, which are similar to declaring @samp{[All, matrix]}
13230 or @samp{[All, scalar]} but much more convenient.
13232 One more type symbol that is recognized is used with the @kbd{H a d}
13233 command for taking total derivatives of a formula.  @xref{Calculus}.
13235 @table @code
13236 @item const
13237 The value is a constant with respect to other variables.
13238 @end table
13240 Calc does not check the declarations for a variable when you store
13241 a value in it.  However, storing @mathit{-3.5} in a variable that has
13242 been declared @code{pos}, @code{int}, or @code{matrix} may have
13243 unexpected effects; Calc may evaluate @samp{sqrt(x^2)} to @expr{3.5}
13244 if it substitutes the value first, or to @expr{-3.5} if @code{x}
13245 was declared @code{pos} and the formula @samp{sqrt(x^2)} is
13246 simplified to @samp{x} before the value is substituted.  Before
13247 using a variable for a new purpose, it is best to use @kbd{s d}
13248 or @kbd{s D} to check to make sure you don't still have an old
13249 declaration for the variable that will conflict with its new meaning.
13251 @node Functions for Declarations, , Kinds of Declarations, Declarations
13252 @subsection Functions for Declarations
13254 @noindent
13255 Calc has a set of functions for accessing the current declarations
13256 in a convenient manner.  These functions return 1 if the argument
13257 can be shown to have the specified property, or 0 if the argument
13258 can be shown @emph{not} to have that property; otherwise they are
13259 left unevaluated.  These functions are suitable for use with rewrite
13260 rules (@pxref{Conditional Rewrite Rules}) or programming constructs
13261 (@pxref{Conditionals in Macros}).  They can be entered only using
13262 algebraic notation.  @xref{Logical Operations}, for functions
13263 that perform other tests not related to declarations.
13265 For example, @samp{dint(17)} returns 1 because 17 is an integer, as
13266 do @samp{dint(n)} and @samp{dint(2 n - 3)} if @code{n} has been declared
13267 @code{int}, but @samp{dint(2.5)} and @samp{dint(n + 0.5)} return 0.
13268 Calc consults knowledge of its own built-in functions as well as your
13269 own declarations: @samp{dint(floor(x))} returns 1.
13271 @ignore
13272 @starindex
13273 @end ignore
13274 @tindex dint
13275 @ignore
13276 @starindex
13277 @end ignore
13278 @tindex dnumint
13279 @ignore
13280 @starindex
13281 @end ignore
13282 @tindex dnatnum
13283 The @code{dint} function checks if its argument is an integer.
13284 The @code{dnatnum} function checks if its argument is a natural
13285 number, i.e., a nonnegative integer.  The @code{dnumint} function
13286 checks if its argument is numerically an integer, i.e., either an
13287 integer or an integer-valued float.  Note that these and the other
13288 data type functions also accept vectors or matrices composed of
13289 suitable elements, and that real infinities @samp{inf} and @samp{-inf}
13290 are considered to be integers for the purposes of these functions.
13292 @ignore
13293 @starindex
13294 @end ignore
13295 @tindex drat
13296 The @code{drat} function checks if its argument is rational, i.e.,
13297 an integer or fraction.  Infinities count as rational, but intervals
13298 and error forms do not.
13300 @ignore
13301 @starindex
13302 @end ignore
13303 @tindex dreal
13304 The @code{dreal} function checks if its argument is real.  This
13305 includes integers, fractions, floats, real error forms, and intervals.
13307 @ignore
13308 @starindex
13309 @end ignore
13310 @tindex dimag
13311 The @code{dimag} function checks if its argument is imaginary,
13312 i.e., is mathematically equal to a real number times @expr{i}.
13314 @ignore
13315 @starindex
13316 @end ignore
13317 @tindex dpos
13318 @ignore
13319 @starindex
13320 @end ignore
13321 @tindex dneg
13322 @ignore
13323 @starindex
13324 @end ignore
13325 @tindex dnonneg
13326 The @code{dpos} function checks for positive (but nonzero) reals.
13327 The @code{dneg} function checks for negative reals.  The @code{dnonneg}
13328 function checks for nonnegative reals, i.e., reals greater than or
13329 equal to zero.  Note that the @kbd{a s} command can simplify an
13330 expression like @expr{x > 0} to 1 or 0 using @code{dpos}, and that
13331 @kbd{a s} is effectively applied to all conditions in rewrite rules,
13332 so the actual functions @code{dpos}, @code{dneg}, and @code{dnonneg}
13333 are rarely necessary.
13335 @ignore
13336 @starindex
13337 @end ignore
13338 @tindex dnonzero
13339 The @code{dnonzero} function checks that its argument is nonzero.
13340 This includes all nonzero real or complex numbers, all intervals that
13341 do not include zero, all nonzero modulo forms, vectors all of whose
13342 elements are nonzero, and variables or formulas whose values can be
13343 deduced to be nonzero.  It does not include error forms, since they
13344 represent values which could be anything including zero.  (This is
13345 also the set of objects considered ``true'' in conditional contexts.)
13347 @ignore
13348 @starindex
13349 @end ignore
13350 @tindex deven
13351 @ignore
13352 @starindex
13353 @end ignore
13354 @tindex dodd
13355 The @code{deven} function returns 1 if its argument is known to be
13356 an even integer (or integer-valued float); it returns 0 if its argument
13357 is known not to be even (because it is known to be odd or a non-integer).
13358 The @kbd{a s} command uses this to simplify a test of the form
13359 @samp{x % 2 = 0}.  There is also an analogous @code{dodd} function.
13361 @ignore
13362 @starindex
13363 @end ignore
13364 @tindex drange
13365 The @code{drange} function returns a set (an interval or a vector
13366 of intervals and/or numbers; @pxref{Set Operations}) that describes
13367 the set of possible values of its argument.  If the argument is
13368 a variable or a function with a declaration, the range is copied
13369 from the declaration.  Otherwise, the possible signs of the
13370 expression are determined using a method similar to @code{dpos},
13371 etc., and a suitable set like @samp{[0 .. inf]} is returned.  If
13372 the expression is not provably real, the @code{drange} function
13373 remains unevaluated.
13375 @ignore
13376 @starindex
13377 @end ignore
13378 @tindex dscalar
13379 The @code{dscalar} function returns 1 if its argument is provably
13380 scalar, or 0 if its argument is provably non-scalar.  It is left
13381 unevaluated if this cannot be determined.  (If Matrix mode or Scalar
13382 mode is in effect, this function returns 1 or 0, respectively,
13383 if it has no other information.)  When Calc interprets a condition
13384 (say, in a rewrite rule) it considers an unevaluated formula to be
13385 ``false.''  Thus, @samp{dscalar(a)} is ``true'' only if @code{a} is
13386 provably scalar, and @samp{!dscalar(a)} is ``true'' only if @code{a}
13387 is provably non-scalar; both are ``false'' if there is insufficient
13388 information to tell.
13390 @node Display Modes, Language Modes, Declarations, Mode Settings
13391 @section Display Modes
13393 @noindent
13394 The commands in this section are two-key sequences beginning with the
13395 @kbd{d} prefix.  The @kbd{d l} (@code{calc-line-numbering}) and @kbd{d b}
13396 (@code{calc-line-breaking}) commands are described elsewhere;
13397 @pxref{Stack Basics} and @pxref{Normal Language Modes}, respectively.
13398 Display formats for vectors and matrices are also covered elsewhere;
13399 @pxref{Vector and Matrix Formats}.
13401 One thing all display modes have in common is their treatment of the
13402 @kbd{H} prefix.  This prefix causes any mode command that would normally
13403 refresh the stack to leave the stack display alone.  The word ``Dirty''
13404 will appear in the mode line when Calc thinks the stack display may not
13405 reflect the latest mode settings.
13407 @kindex d @key{RET}
13408 @pindex calc-refresh-top
13409 The @kbd{d @key{RET}} (@code{calc-refresh-top}) command reformats the
13410 top stack entry according to all the current modes.  Positive prefix
13411 arguments reformat the top @var{n} entries; negative prefix arguments
13412 reformat the specified entry, and a prefix of zero is equivalent to
13413 @kbd{d @key{SPC}} (@code{calc-refresh}), which reformats the entire stack.
13414 For example, @kbd{H d s M-2 d @key{RET}} changes to scientific notation
13415 but reformats only the top two stack entries in the new mode.
13417 The @kbd{I} prefix has another effect on the display modes.  The mode
13418 is set only temporarily; the top stack entry is reformatted according
13419 to that mode, then the original mode setting is restored.  In other
13420 words, @kbd{I d s} is equivalent to @kbd{H d s d @key{RET} H d (@var{old mode})}.
13422 @menu
13423 * Radix Modes::
13424 * Grouping Digits::
13425 * Float Formats::
13426 * Complex Formats::
13427 * Fraction Formats::
13428 * HMS Formats::
13429 * Date Formats::
13430 * Truncating the Stack::
13431 * Justification::
13432 * Labels::
13433 @end menu
13435 @node Radix Modes, Grouping Digits, Display Modes, Display Modes
13436 @subsection Radix Modes
13438 @noindent
13439 @cindex Radix display
13440 @cindex Non-decimal numbers
13441 @cindex Decimal and non-decimal numbers
13442 Calc normally displays numbers in decimal (@dfn{base-10} or @dfn{radix-10})
13443 notation.  Calc can actually display in any radix from two (binary) to 36.
13444 When the radix is above 10, the letters @code{A} to @code{Z} are used as
13445 digits.  When entering such a number, letter keys are interpreted as
13446 potential digits rather than terminating numeric entry mode.
13448 @kindex d 2
13449 @kindex d 8
13450 @kindex d 6
13451 @kindex d 0
13452 @cindex Hexadecimal integers
13453 @cindex Octal integers
13454 The key sequences @kbd{d 2}, @kbd{d 8}, @kbd{d 6}, and @kbd{d 0} select
13455 binary, octal, hexadecimal, and decimal as the current display radix,
13456 respectively.  Numbers can always be entered in any radix, though the
13457 current radix is used as a default if you press @kbd{#} without any initial
13458 digits.  A number entered without a @kbd{#} is @emph{always} interpreted
13459 as decimal.
13461 @kindex d r
13462 @pindex calc-radix
13463 To set the radix generally, use @kbd{d r} (@code{calc-radix}) and enter
13464 an integer from 2 to 36.  You can specify the radix as a numeric prefix
13465 argument; otherwise you will be prompted for it.
13467 @kindex d z
13468 @pindex calc-leading-zeros
13469 @cindex Leading zeros
13470 Integers normally are displayed with however many digits are necessary to
13471 represent the integer and no more.  The @kbd{d z} (@code{calc-leading-zeros})
13472 command causes integers to be padded out with leading zeros according to the
13473 current binary word size.  (@xref{Binary Functions}, for a discussion of
13474 word size.)  If the absolute value of the word size is @expr{w}, all integers
13475 are displayed with at least enough digits to represent 
13476 @texline @math{2^w-1}
13477 @infoline @expr{(2^w)-1} 
13478 in the current radix.  (Larger integers will still be displayed in their
13479 entirety.) 
13481 @node Grouping Digits, Float Formats, Radix Modes, Display Modes
13482 @subsection Grouping Digits
13484 @noindent
13485 @kindex d g
13486 @pindex calc-group-digits
13487 @cindex Grouping digits
13488 @cindex Digit grouping
13489 Long numbers can be hard to read if they have too many digits.  For
13490 example, the factorial of 30 is 33 digits long!  Press @kbd{d g}
13491 (@code{calc-group-digits}) to enable @dfn{Grouping} mode, in which digits
13492 are displayed in clumps of 3 or 4 (depending on the current radix)
13493 separated by commas.
13495 The @kbd{d g} command toggles grouping on and off.
13496 With a numeric prefix of 0, this command displays the current state of
13497 the grouping flag; with an argument of minus one it disables grouping;
13498 with a positive argument @expr{N} it enables grouping on every @expr{N}
13499 digits.  For floating-point numbers, grouping normally occurs only
13500 before the decimal point.  A negative prefix argument @expr{-N} enables
13501 grouping every @expr{N} digits both before and after the decimal point.
13503 @kindex d ,
13504 @pindex calc-group-char
13505 The @kbd{d ,} (@code{calc-group-char}) command allows you to choose any
13506 character as the grouping separator.  The default is the comma character.
13507 If you find it difficult to read vectors of large integers grouped with
13508 commas, you may wish to use spaces or some other character instead.
13509 This command takes the next character you type, whatever it is, and
13510 uses it as the digit separator.  As a special case, @kbd{d , \} selects
13511 @samp{\,} (@TeX{}'s thin-space symbol) as the digit separator.
13513 Please note that grouped numbers will not generally be parsed correctly
13514 if re-read in textual form, say by the use of @kbd{M-# y} and @kbd{M-# g}.
13515 (@xref{Kill and Yank}, for details on these commands.)  One exception is
13516 the @samp{\,} separator, which doesn't interfere with parsing because it
13517 is ignored by @TeX{} language mode.
13519 @node Float Formats, Complex Formats, Grouping Digits, Display Modes
13520 @subsection Float Formats
13522 @noindent
13523 Floating-point quantities are normally displayed in standard decimal
13524 form, with scientific notation used if the exponent is especially high
13525 or low.  All significant digits are normally displayed.  The commands
13526 in this section allow you to choose among several alternative display
13527 formats for floats.
13529 @kindex d n
13530 @pindex calc-normal-notation
13531 The @kbd{d n} (@code{calc-normal-notation}) command selects the normal
13532 display format.  All significant figures in a number are displayed.
13533 With a positive numeric prefix, numbers are rounded if necessary to
13534 that number of significant digits.  With a negative numerix prefix,
13535 the specified number of significant digits less than the current
13536 precision is used.  (Thus @kbd{C-u -2 d n} displays 10 digits if the
13537 current precision is 12.)
13539 @kindex d f
13540 @pindex calc-fix-notation
13541 The @kbd{d f} (@code{calc-fix-notation}) command selects fixed-point
13542 notation.  The numeric argument is the number of digits after the
13543 decimal point, zero or more.  This format will relax into scientific
13544 notation if a nonzero number would otherwise have been rounded all the
13545 way to zero.  Specifying a negative number of digits is the same as
13546 for a positive number, except that small nonzero numbers will be rounded
13547 to zero rather than switching to scientific notation.
13549 @kindex d s
13550 @pindex calc-sci-notation
13551 @cindex Scientific notation, display of
13552 The @kbd{d s} (@code{calc-sci-notation}) command selects scientific
13553 notation.  A positive argument sets the number of significant figures
13554 displayed, of which one will be before and the rest after the decimal
13555 point.  A negative argument works the same as for @kbd{d n} format.
13556 The default is to display all significant digits.
13558 @kindex d e
13559 @pindex calc-eng-notation
13560 @cindex Engineering notation, display of
13561 The @kbd{d e} (@code{calc-eng-notation}) command selects engineering
13562 notation.  This is similar to scientific notation except that the
13563 exponent is rounded down to a multiple of three, with from one to three
13564 digits before the decimal point.  An optional numeric prefix sets the
13565 number of significant digits to display, as for @kbd{d s}.
13567 It is important to distinguish between the current @emph{precision} and
13568 the current @emph{display format}.  After the commands @kbd{C-u 10 p}
13569 and @kbd{C-u 6 d n} the Calculator computes all results to ten
13570 significant figures but displays only six.  (In fact, intermediate
13571 calculations are often carried to one or two more significant figures,
13572 but values placed on the stack will be rounded down to ten figures.)
13573 Numbers are never actually rounded to the display precision for storage,
13574 except by commands like @kbd{C-k} and @kbd{M-# y} which operate on the
13575 actual displayed text in the Calculator buffer.
13577 @kindex d .
13578 @pindex calc-point-char
13579 The @kbd{d .} (@code{calc-point-char}) command selects the character used
13580 as a decimal point.  Normally this is a period; users in some countries
13581 may wish to change this to a comma.  Note that this is only a display
13582 style; on entry, periods must always be used to denote floating-point
13583 numbers, and commas to separate elements in a list.
13585 @node Complex Formats, Fraction Formats, Float Formats, Display Modes
13586 @subsection Complex Formats
13588 @noindent
13589 @kindex d c
13590 @pindex calc-complex-notation
13591 There are three supported notations for complex numbers in rectangular
13592 form.  The default is as a pair of real numbers enclosed in parentheses
13593 and separated by a comma: @samp{(a,b)}.  The @kbd{d c}
13594 (@code{calc-complex-notation}) command selects this style.
13596 @kindex d i
13597 @pindex calc-i-notation
13598 @kindex d j
13599 @pindex calc-j-notation
13600 The other notations are @kbd{d i} (@code{calc-i-notation}), in which
13601 numbers are displayed in @samp{a+bi} form, and @kbd{d j}
13602 (@code{calc-j-notation}) which displays the form @samp{a+bj} preferred
13603 in some disciplines.
13605 @cindex @code{i} variable
13606 @vindex i
13607 Complex numbers are normally entered in @samp{(a,b)} format.
13608 If you enter @samp{2+3i} as an algebraic formula, it will be stored as
13609 the formula @samp{2 + 3 * i}.  However, if you use @kbd{=} to evaluate
13610 this formula and you have not changed the variable @samp{i}, the @samp{i}
13611 will be interpreted as @samp{(0,1)} and the formula will be simplified
13612 to @samp{(2,3)}.  Other commands (like @code{calc-sin}) will @emph{not}
13613 interpret the formula @samp{2 + 3 * i} as a complex number.
13614 @xref{Variables}, under ``special constants.''
13616 @node Fraction Formats, HMS Formats, Complex Formats, Display Modes
13617 @subsection Fraction Formats
13619 @noindent
13620 @kindex d o
13621 @pindex calc-over-notation
13622 Display of fractional numbers is controlled by the @kbd{d o}
13623 (@code{calc-over-notation}) command.  By default, a number like
13624 eight thirds is displayed in the form @samp{8:3}.  The @kbd{d o} command
13625 prompts for a one- or two-character format.  If you give one character,
13626 that character is used as the fraction separator.  Common separators are
13627 @samp{:} and @samp{/}.  (During input of numbers, the @kbd{:} key must be
13628 used regardless of the display format; in particular, the @kbd{/} is used
13629 for RPN-style division, @emph{not} for entering fractions.)
13631 If you give two characters, fractions use ``integer-plus-fractional-part''
13632 notation.  For example, the format @samp{+/} would display eight thirds
13633 as @samp{2+2/3}.  If two colons are present in a number being entered,
13634 the number is interpreted in this form (so that the entries @kbd{2:2:3}
13635 and @kbd{8:3} are equivalent).
13637 It is also possible to follow the one- or two-character format with
13638 a number.  For example:  @samp{:10} or @samp{+/3}.  In this case,
13639 Calc adjusts all fractions that are displayed to have the specified
13640 denominator, if possible.  Otherwise it adjusts the denominator to
13641 be a multiple of the specified value.  For example, in @samp{:6} mode
13642 the fraction @expr{1:6} will be unaffected, but @expr{2:3} will be
13643 displayed as @expr{4:6}, @expr{1:2} will be displayed as @expr{3:6},
13644 and @expr{1:8} will be displayed as @expr{3:24}.  Integers are also
13645 affected by this mode:  3 is displayed as @expr{18:6}.  Note that the
13646 format @samp{:1} writes fractions the same as @samp{:}, but it writes
13647 integers as @expr{n:1}.
13649 The fraction format does not affect the way fractions or integers are
13650 stored, only the way they appear on the screen.  The fraction format
13651 never affects floats.
13653 @node HMS Formats, Date Formats, Fraction Formats, Display Modes
13654 @subsection HMS Formats
13656 @noindent
13657 @kindex d h
13658 @pindex calc-hms-notation
13659 The @kbd{d h} (@code{calc-hms-notation}) command controls the display of
13660 HMS (hours-minutes-seconds) forms.  It prompts for a string which
13661 consists basically of an ``hours'' marker, optional punctuation, a
13662 ``minutes'' marker, more optional punctuation, and a ``seconds'' marker.
13663 Punctuation is zero or more spaces, commas, or semicolons.  The hours
13664 marker is one or more non-punctuation characters.  The minutes and
13665 seconds markers must be single non-punctuation characters.
13667 The default HMS format is @samp{@@ ' "}, producing HMS values of the form
13668 @samp{23@@ 30' 15.75"}.  The format @samp{deg, ms} would display this same
13669 value as @samp{23deg, 30m15.75s}.  During numeric entry, the @kbd{h} or @kbd{o}
13670 keys are recognized as synonyms for @kbd{@@} regardless of display format.
13671 The @kbd{m} and @kbd{s} keys are recognized as synonyms for @kbd{'} and
13672 @kbd{"}, respectively, but only if an @kbd{@@} (or @kbd{h} or @kbd{o}) has
13673 already been typed; otherwise, they have their usual meanings
13674 (@kbd{m-} prefix and @kbd{s-} prefix).  Thus, @kbd{5 "}, @kbd{0 @@ 5 "}, and
13675 @kbd{0 h 5 s} are some of the ways to enter the quantity ``five seconds.''
13676 The @kbd{'} key is recognized as ``minutes'' only if @kbd{@@} (or @kbd{h} or
13677 @kbd{o}) has already been pressed; otherwise it means to switch to algebraic
13678 entry.
13680 @node Date Formats, Truncating the Stack, HMS Formats, Display Modes
13681 @subsection Date Formats
13683 @noindent
13684 @kindex d d
13685 @pindex calc-date-notation
13686 The @kbd{d d} (@code{calc-date-notation}) command controls the display
13687 of date forms (@pxref{Date Forms}).  It prompts for a string which
13688 contains letters that represent the various parts of a date and time.
13689 To show which parts should be omitted when the form represents a pure
13690 date with no time, parts of the string can be enclosed in @samp{< >}
13691 marks.  If you don't include @samp{< >} markers in the format, Calc
13692 guesses at which parts, if any, should be omitted when formatting
13693 pure dates.
13695 The default format is:  @samp{<H:mm:SSpp >Www Mmm D, YYYY}.
13696 An example string in this format is @samp{3:32pm Wed Jan 9, 1991}.
13697 If you enter a blank format string, this default format is
13698 reestablished.
13700 Calc uses @samp{< >} notation for nameless functions as well as for
13701 dates.  @xref{Specifying Operators}.  To avoid confusion with nameless
13702 functions, your date formats should avoid using the @samp{#} character.
13704 @menu
13705 * Date Formatting Codes::
13706 * Free-Form Dates::
13707 * Standard Date Formats::
13708 @end menu
13710 @node Date Formatting Codes, Free-Form Dates, Date Formats, Date Formats
13711 @subsubsection Date Formatting Codes
13713 @noindent
13714 When displaying a date, the current date format is used.  All
13715 characters except for letters and @samp{<} and @samp{>} are
13716 copied literally when dates are formatted.  The portion between
13717 @samp{< >} markers is omitted for pure dates, or included for
13718 date/time forms.  Letters are interpreted according to the table
13719 below.
13721 When dates are read in during algebraic entry, Calc first tries to
13722 match the input string to the current format either with or without
13723 the time part.  The punctuation characters (including spaces) must
13724 match exactly; letter fields must correspond to suitable text in
13725 the input.  If this doesn't work, Calc checks if the input is a
13726 simple number; if so, the number is interpreted as a number of days
13727 since Jan 1, 1 AD.  Otherwise, Calc tries a much more relaxed and
13728 flexible algorithm which is described in the next section.
13730 Weekday names are ignored during reading.
13732 Two-digit year numbers are interpreted as lying in the range
13733 from 1941 to 2039.  Years outside that range are always
13734 entered and displayed in full.  Year numbers with a leading
13735 @samp{+} sign are always interpreted exactly, allowing the
13736 entry and display of the years 1 through 99 AD.
13738 Here is a complete list of the formatting codes for dates:
13740 @table @asis
13741 @item Y
13742 Year:  ``91'' for 1991, ``7'' for 2007, ``+23'' for 23 AD.
13743 @item YY
13744 Year:  ``91'' for 1991, ``07'' for 2007, ``+23'' for 23 AD.
13745 @item BY
13746 Year:  ``91'' for 1991, `` 7'' for 2007, ``+23'' for 23 AD.
13747 @item YYY
13748 Year:  ``1991'' for 1991, ``23'' for 23 AD.
13749 @item YYYY
13750 Year:  ``1991'' for 1991, ``+23'' for 23 AD.
13751 @item aa
13752 Year:  ``ad'' or blank.
13753 @item AA
13754 Year:  ``AD'' or blank.
13755 @item aaa
13756 Year:  ``ad '' or blank.  (Note trailing space.)
13757 @item AAA
13758 Year:  ``AD '' or blank.
13759 @item aaaa
13760 Year:  ``a.d.'' or blank.
13761 @item AAAA
13762 Year:  ``A.D.'' or blank.
13763 @item bb
13764 Year:  ``bc'' or blank.
13765 @item BB
13766 Year:  ``BC'' or blank.
13767 @item bbb
13768 Year:  `` bc'' or blank.  (Note leading space.)
13769 @item BBB
13770 Year:  `` BC'' or blank.
13771 @item bbbb
13772 Year:  ``b.c.'' or blank.
13773 @item BBBB
13774 Year:  ``B.C.'' or blank.
13775 @item M
13776 Month:  ``8'' for August.
13777 @item MM
13778 Month:  ``08'' for August.
13779 @item BM
13780 Month:  `` 8'' for August.
13781 @item MMM
13782 Month:  ``AUG'' for August.
13783 @item Mmm
13784 Month:  ``Aug'' for August.
13785 @item mmm
13786 Month:  ``aug'' for August.
13787 @item MMMM
13788 Month:  ``AUGUST'' for August.
13789 @item Mmmm
13790 Month:  ``August'' for August.
13791 @item D
13792 Day:  ``7'' for 7th day of month.
13793 @item DD
13794 Day:  ``07'' for 7th day of month.
13795 @item BD
13796 Day:  `` 7'' for 7th day of month.
13797 @item W
13798 Weekday:  ``0'' for Sunday, ``6'' for Saturday.
13799 @item WWW
13800 Weekday:  ``SUN'' for Sunday.
13801 @item Www
13802 Weekday:  ``Sun'' for Sunday.
13803 @item www
13804 Weekday:  ``sun'' for Sunday.
13805 @item WWWW
13806 Weekday:  ``SUNDAY'' for Sunday.
13807 @item Wwww
13808 Weekday:  ``Sunday'' for Sunday.
13809 @item d
13810 Day of year:  ``34'' for Feb. 3.
13811 @item ddd
13812 Day of year:  ``034'' for Feb. 3.
13813 @item bdd
13814 Day of year:  `` 34'' for Feb. 3.
13815 @item h
13816 Hour:  ``5'' for 5 AM; ``17'' for 5 PM.
13817 @item hh
13818 Hour:  ``05'' for 5 AM; ``17'' for 5 PM.
13819 @item bh
13820 Hour:  `` 5'' for 5 AM; ``17'' for 5 PM.
13821 @item H
13822 Hour:  ``5'' for 5 AM and 5 PM.
13823 @item HH
13824 Hour:  ``05'' for 5 AM and 5 PM.
13825 @item BH
13826 Hour:  `` 5'' for 5 AM and 5 PM.
13827 @item p
13828 AM/PM:  ``a'' or ``p''.
13829 @item P
13830 AM/PM:  ``A'' or ``P''.
13831 @item pp
13832 AM/PM:  ``am'' or ``pm''.
13833 @item PP
13834 AM/PM:  ``AM'' or ``PM''.
13835 @item pppp
13836 AM/PM:  ``a.m.'' or ``p.m.''.
13837 @item PPPP
13838 AM/PM:  ``A.M.'' or ``P.M.''.
13839 @item m
13840 Minutes:  ``7'' for 7.
13841 @item mm
13842 Minutes:  ``07'' for 7.
13843 @item bm
13844 Minutes:  `` 7'' for 7.
13845 @item s
13846 Seconds:  ``7'' for 7;  ``7.23'' for 7.23.
13847 @item ss
13848 Seconds:  ``07'' for 7;  ``07.23'' for 7.23.
13849 @item bs
13850 Seconds:  `` 7'' for 7;  `` 7.23'' for 7.23.
13851 @item SS
13852 Optional seconds:  ``07'' for 7;  blank for 0.
13853 @item BS
13854 Optional seconds:  `` 7'' for 7;  blank for 0.
13855 @item N
13856 Numeric date/time:  ``726842.25'' for 6:00am Wed Jan 9, 1991.
13857 @item n
13858 Numeric date:  ``726842'' for any time on Wed Jan 9, 1991.
13859 @item J
13860 Julian date/time:  ``2448265.75'' for 6:00am Wed Jan 9, 1991.
13861 @item j
13862 Julian date:  ``2448266'' for any time on Wed Jan 9, 1991.
13863 @item U
13864 Unix time:  ``663400800'' for 6:00am Wed Jan 9, 1991.
13865 @item X
13866 Brackets suppression.  An ``X'' at the front of the format
13867 causes the surrounding @w{@samp{< >}} delimiters to be omitted
13868 when formatting dates.  Note that the brackets are still
13869 required for algebraic entry.
13870 @end table
13872 If ``SS'' or ``BS'' (optional seconds) is preceded by a colon, the
13873 colon is also omitted if the seconds part is zero.
13875 If ``bb,'' ``bbb'' or ``bbbb'' or their upper-case equivalents
13876 appear in the format, then negative year numbers are displayed
13877 without a minus sign.  Note that ``aa'' and ``bb'' are mutually
13878 exclusive.  Some typical usages would be @samp{YYYY AABB};
13879 @samp{AAAYYYYBBB}; @samp{YYYYBBB}.
13881 The formats ``YY,'' ``YYYY,'' ``MM,'' ``DD,'' ``ddd,'' ``hh,'' ``HH,''
13882 ``mm,'' ``ss,'' and ``SS'' actually match any number of digits during
13883 reading unless several of these codes are strung together with no
13884 punctuation in between, in which case the input must have exactly as
13885 many digits as there are letters in the format.
13887 The ``j,'' ``J,'' and ``U'' formats do not make any time zone
13888 adjustment.  They effectively use @samp{julian(x,0)} and
13889 @samp{unixtime(x,0)} to make the conversion; @pxref{Date Arithmetic}.
13891 @node Free-Form Dates, Standard Date Formats, Date Formatting Codes, Date Formats
13892 @subsubsection Free-Form Dates
13894 @noindent
13895 When reading a date form during algebraic entry, Calc falls back
13896 on the algorithm described here if the input does not exactly
13897 match the current date format.  This algorithm generally
13898 ``does the right thing'' and you don't have to worry about it,
13899 but it is described here in full detail for the curious.
13901 Calc does not distinguish between upper- and lower-case letters
13902 while interpreting dates.
13904 First, the time portion, if present, is located somewhere in the
13905 text and then removed.  The remaining text is then interpreted as
13906 the date.
13908 A time is of the form @samp{hh:mm:ss}, possibly with the seconds
13909 part omitted and possibly with an AM/PM indicator added to indicate
13910 12-hour time.  If the AM/PM is present, the minutes may also be
13911 omitted.  The AM/PM part may be any of the words @samp{am},
13912 @samp{pm}, @samp{noon}, or @samp{midnight}; each of these may be
13913 abbreviated to one letter, and the alternate forms @samp{a.m.},
13914 @samp{p.m.}, and @samp{mid} are also understood.  Obviously
13915 @samp{noon} and @samp{midnight} are allowed only on 12:00:00.
13916 The words @samp{noon}, @samp{mid}, and @samp{midnight} are also
13917 recognized with no number attached.
13919 If there is no AM/PM indicator, the time is interpreted in 24-hour
13920 format.
13922 To read the date portion, all words and numbers are isolated
13923 from the string; other characters are ignored.  All words must
13924 be either month names or day-of-week names (the latter of which
13925 are ignored).  Names can be written in full or as three-letter
13926 abbreviations.
13928 Large numbers, or numbers with @samp{+} or @samp{-} signs,
13929 are interpreted as years.  If one of the other numbers is
13930 greater than 12, then that must be the day and the remaining
13931 number in the input is therefore the month.  Otherwise, Calc
13932 assumes the month, day and year are in the same order that they
13933 appear in the current date format.  If the year is omitted, the
13934 current year is taken from the system clock.
13936 If there are too many or too few numbers, or any unrecognizable
13937 words, then the input is rejected.
13939 If there are any large numbers (of five digits or more) other than
13940 the year, they are ignored on the assumption that they are something
13941 like Julian dates that were included along with the traditional
13942 date components when the date was formatted.
13944 One of the words @samp{ad}, @samp{a.d.}, @samp{bc}, or @samp{b.c.}
13945 may optionally be used; the latter two are equivalent to a
13946 minus sign on the year value.
13948 If you always enter a four-digit year, and use a name instead
13949 of a number for the month, there is no danger of ambiguity.
13951 @node Standard Date Formats, , Free-Form Dates, Date Formats
13952 @subsubsection Standard Date Formats
13954 @noindent
13955 There are actually ten standard date formats, numbered 0 through 9.
13956 Entering a blank line at the @kbd{d d} command's prompt gives
13957 you format number 1, Calc's usual format.  You can enter any digit
13958 to select the other formats.
13960 To create your own standard date formats, give a numeric prefix
13961 argument from 0 to 9 to the @w{@kbd{d d}} command.  The format you
13962 enter will be recorded as the new standard format of that
13963 number, as well as becoming the new current date format.
13964 You can save your formats permanently with the @w{@kbd{m m}}
13965 command (@pxref{Mode Settings}).
13967 @table @asis
13968 @item 0
13969 @samp{N}  (Numerical format)
13970 @item 1
13971 @samp{<H:mm:SSpp >Www Mmm D, YYYY}  (American format)
13972 @item 2
13973 @samp{D Mmm YYYY<, h:mm:SS>}  (European format)
13974 @item 3
13975 @samp{Www Mmm BD< hh:mm:ss> YYYY}  (Unix written date format)
13976 @item 4
13977 @samp{M/D/Y< H:mm:SSpp>}  (American slashed format)
13978 @item 5
13979 @samp{D.M.Y< h:mm:SS>}  (European dotted format)
13980 @item 6
13981 @samp{M-D-Y< H:mm:SSpp>}  (American dashed format)
13982 @item 7
13983 @samp{D-M-Y< h:mm:SS>}  (European dashed format)
13984 @item 8
13985 @samp{j<, h:mm:ss>}  (Julian day plus time)
13986 @item 9
13987 @samp{YYddd< hh:mm:ss>}  (Year-day format)
13988 @end table
13990 @node Truncating the Stack, Justification, Date Formats, Display Modes
13991 @subsection Truncating the Stack
13993 @noindent
13994 @kindex d t
13995 @pindex calc-truncate-stack
13996 @cindex Truncating the stack
13997 @cindex Narrowing the stack
13998 The @kbd{d t} (@code{calc-truncate-stack}) command moves the @samp{.}@:
13999 line that marks the top-of-stack up or down in the Calculator buffer.
14000 The number right above that line is considered to the be at the top of
14001 the stack.  Any numbers below that line are ``hidden'' from all stack
14002 operations (although still visible to the user).  This is similar to the
14003 Emacs ``narrowing'' feature, except that the values below the @samp{.}
14004 are @emph{visible}, just temporarily frozen.  This feature allows you to
14005 keep several independent calculations running at once in different parts
14006 of the stack, or to apply a certain command to an element buried deep in
14007 the stack.
14009 Pressing @kbd{d t} by itself moves the @samp{.} to the line the cursor
14010 is on.  Thus, this line and all those below it become hidden.  To un-hide
14011 these lines, move down to the end of the buffer and press @w{@kbd{d t}}.
14012 With a positive numeric prefix argument @expr{n}, @kbd{d t} hides the
14013 bottom @expr{n} values in the buffer.  With a negative argument, it hides
14014 all but the top @expr{n} values.  With an argument of zero, it hides zero
14015 values, i.e., moves the @samp{.} all the way down to the bottom.
14017 @kindex d [
14018 @pindex calc-truncate-up
14019 @kindex d ]
14020 @pindex calc-truncate-down
14021 The @kbd{d [} (@code{calc-truncate-up}) and @kbd{d ]}
14022 (@code{calc-truncate-down}) commands move the @samp{.} up or down one
14023 line at a time (or several lines with a prefix argument).
14025 @node Justification, Labels, Truncating the Stack, Display Modes
14026 @subsection Justification
14028 @noindent
14029 @kindex d <
14030 @pindex calc-left-justify
14031 @kindex d =
14032 @pindex calc-center-justify
14033 @kindex d >
14034 @pindex calc-right-justify
14035 Values on the stack are normally left-justified in the window.  You can
14036 control this arrangement by typing @kbd{d <} (@code{calc-left-justify}),
14037 @kbd{d >} (@code{calc-right-justify}), or @kbd{d =}
14038 (@code{calc-center-justify}).  For example, in Right-Justification mode,
14039 stack entries are displayed flush-right against the right edge of the
14040 window.
14042 If you change the width of the Calculator window you may have to type
14043 @kbd{d @key{SPC}} (@code{calc-refresh}) to re-align right-justified or centered
14044 text.
14046 Right-justification is especially useful together with fixed-point
14047 notation (see @code{d f}; @code{calc-fix-notation}).  With these modes
14048 together, the decimal points on numbers will always line up.
14050 With a numeric prefix argument, the justification commands give you
14051 a little extra control over the display.  The argument specifies the
14052 horizontal ``origin'' of a display line.  It is also possible to
14053 specify a maximum line width using the @kbd{d b} command (@pxref{Normal
14054 Language Modes}).  For reference, the precise rules for formatting and
14055 breaking lines are given below.  Notice that the interaction between
14056 origin and line width is slightly different in each justification
14057 mode.
14059 In Left-Justified mode, the line is indented by a number of spaces
14060 given by the origin (default zero).  If the result is longer than the
14061 maximum line width, if given, or too wide to fit in the Calc window
14062 otherwise, then it is broken into lines which will fit; each broken
14063 line is indented to the origin.
14065 In Right-Justified mode, lines are shifted right so that the rightmost
14066 character is just before the origin, or just before the current
14067 window width if no origin was specified.  If the line is too long
14068 for this, then it is broken; the current line width is used, if
14069 specified, or else the origin is used as a width if that is
14070 specified, or else the line is broken to fit in the window.
14072 In Centering mode, the origin is the column number of the center of
14073 each stack entry.  If a line width is specified, lines will not be
14074 allowed to go past that width; Calc will either indent less or
14075 break the lines if necessary.  If no origin is specified, half the
14076 line width or Calc window width is used.
14078 Note that, in each case, if line numbering is enabled the display
14079 is indented an additional four spaces to make room for the line
14080 number.  The width of the line number is taken into account when
14081 positioning according to the current Calc window width, but not
14082 when positioning by explicit origins and widths.  In the latter
14083 case, the display is formatted as specified, and then uniformly
14084 shifted over four spaces to fit the line numbers.
14086 @node Labels, , Justification, Display Modes
14087 @subsection Labels
14089 @noindent
14090 @kindex d @{
14091 @pindex calc-left-label
14092 The @kbd{d @{} (@code{calc-left-label}) command prompts for a string,
14093 then displays that string to the left of every stack entry.  If the
14094 entries are left-justified (@pxref{Justification}), then they will
14095 appear immediately after the label (unless you specified an origin
14096 greater than the length of the label).  If the entries are centered
14097 or right-justified, the label appears on the far left and does not
14098 affect the horizontal position of the stack entry.
14100 Give a blank string (with @kbd{d @{ @key{RET}}) to turn the label off.
14102 @kindex d @}
14103 @pindex calc-right-label
14104 The @kbd{d @}} (@code{calc-right-label}) command similarly adds a
14105 label on the righthand side.  It does not affect positioning of
14106 the stack entries unless they are right-justified.  Also, if both
14107 a line width and an origin are given in Right-Justified mode, the
14108 stack entry is justified to the origin and the righthand label is
14109 justified to the line width.
14111 One application of labels would be to add equation numbers to
14112 formulas you are manipulating in Calc and then copying into a
14113 document (possibly using Embedded mode).  The equations would
14114 typically be centered, and the equation numbers would be on the
14115 left or right as you prefer.
14117 @node Language Modes, Modes Variable, Display Modes, Mode Settings
14118 @section Language Modes
14120 @noindent
14121 The commands in this section change Calc to use a different notation for
14122 entry and display of formulas, corresponding to the conventions of some
14123 other common language such as Pascal or La@TeX{}.  Objects displayed on the
14124 stack or yanked from the Calculator to an editing buffer will be formatted
14125 in the current language; objects entered in algebraic entry or yanked from
14126 another buffer will be interpreted according to the current language.
14128 The current language has no effect on things written to or read from the
14129 trail buffer, nor does it affect numeric entry.  Only algebraic entry is
14130 affected.  You can make even algebraic entry ignore the current language
14131 and use the standard notation by giving a numeric prefix, e.g., @kbd{C-u '}.
14133 For example, suppose the formula @samp{2*a[1] + atan(a[2])} occurs in a C
14134 program; elsewhere in the program you need the derivatives of this formula
14135 with respect to @samp{a[1]} and @samp{a[2]}.  First, type @kbd{d C}
14136 to switch to C notation.  Now use @code{C-u M-# g} to grab the formula
14137 into the Calculator, @kbd{a d a[1] @key{RET}} to differentiate with respect
14138 to the first variable, and @kbd{M-# y} to yank the formula for the derivative
14139 back into your C program.  Press @kbd{U} to undo the differentiation and
14140 repeat with @kbd{a d a[2] @key{RET}} for the other derivative.
14142 Without being switched into C mode first, Calc would have misinterpreted
14143 the brackets in @samp{a[1]} and @samp{a[2]}, would not have known that
14144 @code{atan} was equivalent to Calc's built-in @code{arctan} function,
14145 and would have written the formula back with notations (like implicit
14146 multiplication) which would not have been valid for a C program.
14148 As another example, suppose you are maintaining a C program and a La@TeX{}
14149 document, each of which needs a copy of the same formula.  You can grab the
14150 formula from the program in C mode, switch to La@TeX{} mode, and yank the
14151 formula into the document in La@TeX{} math-mode format.
14153 Language modes are selected by typing the letter @kbd{d} followed by a
14154 shifted letter key.
14156 @menu
14157 * Normal Language Modes::
14158 * C FORTRAN Pascal::
14159 * TeX and LaTeX Language Modes::
14160 * Eqn Language Mode::
14161 * Mathematica Language Mode::
14162 * Maple Language Mode::
14163 * Compositions::
14164 * Syntax Tables::
14165 @end menu
14167 @node Normal Language Modes, C FORTRAN Pascal, Language Modes, Language Modes
14168 @subsection Normal Language Modes
14170 @noindent
14171 @kindex d N
14172 @pindex calc-normal-language
14173 The @kbd{d N} (@code{calc-normal-language}) command selects the usual
14174 notation for Calc formulas, as described in the rest of this manual.
14175 Matrices are displayed in a multi-line tabular format, but all other
14176 objects are written in linear form, as they would be typed from the
14177 keyboard.
14179 @kindex d O
14180 @pindex calc-flat-language
14181 @cindex Matrix display
14182 The @kbd{d O} (@code{calc-flat-language}) command selects a language
14183 identical with the normal one, except that matrices are written in
14184 one-line form along with everything else.  In some applications this
14185 form may be more suitable for yanking data into other buffers.
14187 @kindex d b
14188 @pindex calc-line-breaking
14189 @cindex Line breaking
14190 @cindex Breaking up long lines
14191 Even in one-line mode, long formulas or vectors will still be split
14192 across multiple lines if they exceed the width of the Calculator window.
14193 The @kbd{d b} (@code{calc-line-breaking}) command turns this line-breaking
14194 feature on and off.  (It works independently of the current language.)
14195 If you give a numeric prefix argument of five or greater to the @kbd{d b}
14196 command, that argument will specify the line width used when breaking
14197 long lines.
14199 @kindex d B
14200 @pindex calc-big-language
14201 The @kbd{d B} (@code{calc-big-language}) command selects a language
14202 which uses textual approximations to various mathematical notations,
14203 such as powers, quotients, and square roots:
14205 @example
14206   ____________
14207  | a + 1    2
14208  | ----- + c
14209 \|   b
14210 @end example
14212 @noindent
14213 in place of @samp{sqrt((a+1)/b + c^2)}.
14215 Subscripts like @samp{a_i} are displayed as actual subscripts in Big
14216 mode.  Double subscripts, @samp{a_i_j} (@samp{subscr(subscr(a, i), j)})
14217 are displayed as @samp{a} with subscripts separated by commas:
14218 @samp{i, j}.  They must still be entered in the usual underscore
14219 notation.
14221 One slight ambiguity of Big notation is that
14223 @example
14224   3
14225 - -
14226   4
14227 @end example
14229 @noindent
14230 can represent either the negative rational number @expr{-3:4}, or the
14231 actual expression @samp{-(3/4)}; but the latter formula would normally
14232 never be displayed because it would immediately be evaluated to
14233 @expr{-3:4} or @expr{-0.75}, so this ambiguity is not a problem in
14234 typical use.
14236 Non-decimal numbers are displayed with subscripts.  Thus there is no
14237 way to tell the difference between @samp{16#C2} and @samp{C2_16},
14238 though generally you will know which interpretation is correct.
14239 Logarithms @samp{log(x,b)} and @samp{log10(x)} also use subscripts
14240 in Big mode.
14242 In Big mode, stack entries often take up several lines.  To aid
14243 readability, stack entries are separated by a blank line in this mode.
14244 You may find it useful to expand the Calc window's height using
14245 @kbd{C-x ^} (@code{enlarge-window}) or to make the Calc window the only
14246 one on the screen with @kbd{C-x 1} (@code{delete-other-windows}).
14248 Long lines are currently not rearranged to fit the window width in
14249 Big mode, so you may need to use the @kbd{<} and @kbd{>} keys
14250 to scroll across a wide formula.  For really big formulas, you may
14251 even need to use @kbd{@{} and @kbd{@}} to scroll up and down.
14253 @kindex d U
14254 @pindex calc-unformatted-language
14255 The @kbd{d U} (@code{calc-unformatted-language}) command altogether disables
14256 the use of operator notation in formulas.  In this mode, the formula
14257 shown above would be displayed:
14259 @example
14260 sqrt(add(div(add(a, 1), b), pow(c, 2)))
14261 @end example
14263 These four modes differ only in display format, not in the format
14264 expected for algebraic entry.  The standard Calc operators work in
14265 all four modes, and unformatted notation works in any language mode
14266 (except that Mathematica mode expects square brackets instead of
14267 parentheses).
14269 @node C FORTRAN Pascal, TeX and LaTeX Language Modes, Normal Language Modes, Language Modes
14270 @subsection C, FORTRAN, and Pascal Modes
14272 @noindent
14273 @kindex d C
14274 @pindex calc-c-language
14275 @cindex C language
14276 The @kbd{d C} (@code{calc-c-language}) command selects the conventions
14277 of the C language for display and entry of formulas.  This differs from
14278 the normal language mode in a variety of (mostly minor) ways.  In
14279 particular, C language operators and operator precedences are used in
14280 place of Calc's usual ones.  For example, @samp{a^b} means @samp{xor(a,b)}
14281 in C mode; a value raised to a power is written as a function call,
14282 @samp{pow(a,b)}.
14284 In C mode, vectors and matrices use curly braces instead of brackets.
14285 Octal and hexadecimal values are written with leading @samp{0} or @samp{0x}
14286 rather than using the @samp{#} symbol.  Array subscripting is
14287 translated into @code{subscr} calls, so that @samp{a[i]} in C
14288 mode is the same as @samp{a_i} in Normal mode.  Assignments
14289 turn into the @code{assign} function, which Calc normally displays
14290 using the @samp{:=} symbol.
14292 The variables @code{pi} and @code{e} would be displayed @samp{pi}
14293 and @samp{e} in Normal mode, but in C mode they are displayed as
14294 @samp{M_PI} and @samp{M_E}, corresponding to the names of constants
14295 typically provided in the @file{<math.h>} header.  Functions whose
14296 names are different in C are translated automatically for entry and
14297 display purposes.  For example, entering @samp{asin(x)} will push the
14298 formula @samp{arcsin(x)} onto the stack; this formula will be displayed
14299 as @samp{asin(x)} as long as C mode is in effect.
14301 @kindex d P
14302 @pindex calc-pascal-language
14303 @cindex Pascal language
14304 The @kbd{d P} (@code{calc-pascal-language}) command selects Pascal
14305 conventions.  Like C mode, Pascal mode interprets array brackets and uses
14306 a different table of operators.  Hexadecimal numbers are entered and
14307 displayed with a preceding dollar sign.  (Thus the regular meaning of
14308 @kbd{$2} during algebraic entry does not work in Pascal mode, though
14309 @kbd{$} (and @kbd{$$}, etc.) not followed by digits works the same as
14310 always.)  No special provisions are made for other non-decimal numbers,
14311 vectors, and so on, since there is no universally accepted standard way
14312 of handling these in Pascal.
14314 @kindex d F
14315 @pindex calc-fortran-language
14316 @cindex FORTRAN language
14317 The @kbd{d F} (@code{calc-fortran-language}) command selects FORTRAN
14318 conventions.  Various function names are transformed into FORTRAN
14319 equivalents.  Vectors are written as @samp{/1, 2, 3/}, and may be
14320 entered this way or using square brackets.  Since FORTRAN uses round
14321 parentheses for both function calls and array subscripts, Calc displays
14322 both in the same way; @samp{a(i)} is interpreted as a function call
14323 upon reading, and subscripts must be entered as @samp{subscr(a, i)}.
14324 Also, if the variable @code{a} has been declared to have type
14325 @code{vector} or @code{matrix} then @samp{a(i)} will be parsed as a
14326 subscript.  (@xref{Declarations}.)  Usually it doesn't matter, though;
14327 if you enter the subscript expression @samp{a(i)} and Calc interprets
14328 it as a function call, you'll never know the difference unless you
14329 switch to another language mode or replace @code{a} with an actual
14330 vector (or unless @code{a} happens to be the name of a built-in
14331 function!).
14333 Underscores are allowed in variable and function names in all of these
14334 language modes.  The underscore here is equivalent to the @samp{#} in
14335 Normal mode, or to hyphens in the underlying Emacs Lisp variable names.
14337 FORTRAN and Pascal modes normally do not adjust the case of letters in
14338 formulas.  Most built-in Calc names use lower-case letters.  If you use a
14339 positive numeric prefix argument with @kbd{d P} or @kbd{d F}, these
14340 modes will use upper-case letters exclusively for display, and will
14341 convert to lower-case on input.  With a negative prefix, these modes
14342 convert to lower-case for display and input.
14344 @node TeX and LaTeX Language Modes, Eqn Language Mode, C FORTRAN Pascal, Language Modes
14345 @subsection @TeX{} and La@TeX{} Language Modes
14347 @noindent
14348 @kindex d T
14349 @pindex calc-tex-language
14350 @cindex TeX language
14351 @kindex d L
14352 @pindex calc-latex-language
14353 @cindex LaTeX language
14354 The @kbd{d T} (@code{calc-tex-language}) command selects the conventions
14355 of ``math mode'' in Donald Knuth's @TeX{} typesetting language,
14356 and the @kbd{d L} (@code{calc-latex-language}) command selects the
14357 conventions of ``math mode'' in La@TeX{}, a typesetting language that
14358 uses @TeX{} as its formatting engine.  Calc's La@TeX{} language mode can
14359 read any formula that the @TeX{} language mode can, although La@TeX{}
14360 mode may display it differently.
14362 Formulas are entered and displayed in the appropriate notation;
14363 @texline @math{\sin(a/b)}
14364 @infoline @expr{sin(a/b)}
14365 will appear as @samp{\sin\left( a \over b \right)} in @TeX{} mode and
14366 @samp{\sin\left(\frac@{a@}@{b@}\right)} in La@TeX{} mode.
14367 Math formulas are often enclosed by @samp{$ $} signs in @TeX{} and
14368 La@TeX{}; these should be omitted when interfacing with Calc.  To Calc,
14369 the @samp{$} sign has the same meaning it always does in algebraic
14370 formulas (a reference to an existing entry on the stack).
14372 Complex numbers are displayed as in @samp{3 + 4i}.  Fractions and
14373 quotients are written using @code{\over} in @TeX{} mode (as in 
14374 @code{@{a \over b@}}) and @code{\frac} in La@TeX{} mode (as in
14375 @code{\frac@{a@}@{b@}});  binomial coefficients are written with
14376 @code{\choose} in @TeX{} mode (as in @code{@{a \choose b@}}) and
14377 @code{\binom} in La@TeX{} mode (as in @code{\binom@{a@}@{b@}}).
14378 Interval forms are written with @code{\ldots}, and error forms are
14379 written with @code{\pm}. Absolute values are written as in 
14380 @samp{|x + 1|}, and the floor and ceiling functions are written with
14381 @code{\lfloor}, @code{\rfloor}, etc. The words @code{\left} and
14382 @code{\right} are ignored when reading formulas in @TeX{} and La@TeX{}
14383 modes.  Both @code{inf} and @code{uinf} are written as @code{\infty};
14384 when read, @code{\infty} always translates to @code{inf}.
14386 Function calls are written the usual way, with the function name followed
14387 by the arguments in parentheses.  However, functions for which @TeX{}
14388 and La@TeX{} have special names (like @code{\sin}) will use curly braces
14389 instead of parentheses for very simple arguments.  During input, curly
14390 braces and parentheses work equally well for grouping, but when the
14391 document is formatted the curly braces will be invisible.  Thus the
14392 printed result is 
14393 @texline @math{\sin{2 x}}
14394 @infoline @expr{sin 2x} 
14395 but 
14396 @texline @math{\sin(2 + x)}.
14397 @infoline @expr{sin(2 + x)}.
14399 Function and variable names not treated specially by @TeX{} and La@TeX{}
14400 are simply written out as-is, which will cause them to come out in
14401 italic letters in the printed document.  If you invoke @kbd{d T} or
14402 @kbd{d L} with a positive numeric prefix argument, names of more than
14403 one character will instead be enclosed in a protective commands that
14404 will prevent them from being typeset in the math italics; they will be
14405 written @samp{\hbox@{@var{name}@}} in @TeX{} mode and 
14406 @samp{\text@{@var{name}@}} in La@TeX{} mode.  The
14407 @samp{\hbox@{ @}} and @samp{\text@{ @}} notations are ignored during
14408 reading.  If you use a negative prefix argument, such function names are
14409 written @samp{\@var{name}}, and function names that begin with @code{\} during
14410 reading have the @code{\} removed.  (Note that in this mode, long
14411 variable names are still written with @code{\hbox} or @code{\text}.
14412 However, you can always make an actual variable name like @code{\bar} in
14413 any @TeX{} mode.)
14415 During reading, text of the form @samp{\matrix@{ ...@: @}} is replaced
14416 by @samp{[ ...@: ]}.  The same also applies to @code{\pmatrix} and
14417 @code{\bmatrix}.  In La@TeX{} mode this also applies to 
14418 @samp{\begin@{matrix@} ... \end@{matrix@}},
14419 @samp{\begin@{bmatrix@} ... \end@{bmatrix@}},
14420 @samp{\begin@{pmatrix@} ... \end@{pmatrix@}}, as well as
14421 @samp{\begin@{smallmatrix@} ... \end@{smallmatrix@}}.
14422 The symbol @samp{&} is interpreted as a comma,
14423 and the symbols @samp{\cr} and @samp{\\} are interpreted as semicolons.
14424 During output, matrices are displayed in @samp{\matrix@{ a & b \\ c & d@}}
14425 format in @TeX{} mode and in 
14426 @samp{\begin@{pmatrix@} a & b \\ c & d \end@{pmatrix@}} format in
14427 La@TeX{} mode; you may need to edit this afterwards to change to your
14428 preferred matrix form.  If you invoke @kbd{d T} or @kbd{d L} with an
14429 argument of 2 or -2, then matrices will be displayed in two-dimensional
14430 form, such as 
14432 @example
14433 \begin@{pmatrix@}
14434 a & b \\
14435 c & d
14436 \end@{pmatrix@}
14437 @end example
14439 @noindent
14440 This may be convenient for isolated matrices, but could lead to
14441 expressions being displayed like
14443 @example
14444 \begin@{pmatrix@} \times x
14445 a & b \\
14446 c & d
14447 \end@{pmatrix@}
14448 @end example
14450 @noindent
14451 While this wouldn't bother Calc, it is incorrect La@TeX{}.
14452 (Similarly for @TeX{}.)
14454 Accents like @code{\tilde} and @code{\bar} translate into function
14455 calls internally (@samp{tilde(x)}, @samp{bar(x)}).  The @code{\underline}
14456 sequence is treated as an accent.  The @code{\vec} accent corresponds
14457 to the function name @code{Vec}, because @code{vec} is the name of
14458 a built-in Calc function.  The following table shows the accents
14459 in Calc, @TeX{}, La@TeX{} and @dfn{eqn} (described in the next section):
14461 @iftex
14462 @begingroup
14463 @let@calcindexershow=@calcindexernoshow  @c Suppress marginal notes
14464 @let@calcindexersh=@calcindexernoshow
14465 @end iftex
14466 @ignore
14467 @starindex
14468 @end ignore
14469 @tindex acute
14470 @ignore
14471 @starindex
14472 @end ignore
14473 @tindex Acute
14474 @ignore
14475 @starindex
14476 @end ignore
14477 @tindex bar
14478 @ignore
14479 @starindex
14480 @end ignore
14481 @tindex Bar
14482 @ignore
14483 @starindex
14484 @end ignore
14485 @tindex breve
14486 @ignore
14487 @starindex
14488 @end ignore
14489 @tindex Breve
14490 @ignore
14491 @starindex
14492 @end ignore
14493 @tindex check
14494 @ignore
14495 @starindex
14496 @end ignore
14497 @tindex Check
14498 @ignore
14499 @starindex
14500 @end ignore
14501 @tindex dddot
14502 @ignore
14503 @starindex
14504 @end ignore
14505 @tindex ddddot
14506 @ignore
14507 @starindex
14508 @end ignore
14509 @tindex dot
14510 @ignore
14511 @starindex
14512 @end ignore
14513 @tindex Dot
14514 @ignore
14515 @starindex
14516 @end ignore
14517 @tindex dotdot
14518 @ignore
14519 @starindex
14520 @end ignore
14521 @tindex DotDot
14522 @ignore
14523 @starindex
14524 @end ignore
14525 @tindex dyad
14526 @ignore
14527 @starindex
14528 @end ignore
14529 @tindex grave
14530 @ignore
14531 @starindex
14532 @end ignore
14533 @tindex Grave
14534 @ignore
14535 @starindex
14536 @end ignore
14537 @tindex hat
14538 @ignore
14539 @starindex
14540 @end ignore
14541 @tindex Hat
14542 @ignore
14543 @starindex
14544 @end ignore
14545 @tindex Prime
14546 @ignore
14547 @starindex
14548 @end ignore
14549 @tindex tilde
14550 @ignore
14551 @starindex
14552 @end ignore
14553 @tindex Tilde
14554 @ignore
14555 @starindex
14556 @end ignore
14557 @tindex under
14558 @ignore
14559 @starindex
14560 @end ignore
14561 @tindex Vec
14562 @ignore
14563 @starindex
14564 @end ignore
14565 @tindex VEC
14566 @iftex
14567 @endgroup
14568 @end iftex
14569 @example
14570 Calc      TeX           LaTeX         eqn
14571 ----      ---           -----         ---
14572 acute     \acute        \acute        
14573 Acute                   \Acute        
14574 bar       \bar          \bar          bar
14575 Bar                     \Bar
14576 breve     \breve        \breve        
14577 Breve                   \Breve        
14578 check     \check        \check        
14579 Check                   \Check        
14580 dddot                   \dddot
14581 ddddot                  \ddddot
14582 dot       \dot          \dot          dot
14583 Dot                     \Dot
14584 dotdot    \ddot         \ddot         dotdot
14585 DotDot                  \Ddot         
14586 dyad                                  dyad
14587 grave     \grave        \grave        
14588 Grave                   \Grave        
14589 hat       \hat          \hat          hat
14590 Hat                     \Hat          
14591 Prime                                 prime
14592 tilde     \tilde        \tilde        tilde
14593 Tilde                   \Tilde
14594 under     \underline    \underline    under
14595 Vec       \vec          \vec          vec
14596 VEC                     \Vec
14597 @end example
14599 The @samp{=>} (evaluates-to) operator appears as a @code{\to} symbol:
14600 @samp{@{@var{a} \to @var{b}@}}.  @TeX{} defines @code{\to} as an
14601 alias for @code{\rightarrow}.  However, if the @samp{=>} is the
14602 top-level expression being formatted, a slightly different notation
14603 is used:  @samp{\evalto @var{a} \to @var{b}}.  The @code{\evalto}
14604 word is ignored by Calc's input routines, and is undefined in @TeX{}.
14605 You will typically want to include one of the following definitions
14606 at the top of a @TeX{} file that uses @code{\evalto}:
14608 @example
14609 \def\evalto@{@}
14610 \def\evalto#1\to@{@}
14611 @end example
14613 The first definition formats evaluates-to operators in the usual
14614 way.  The second causes only the @var{b} part to appear in the
14615 printed document; the @var{a} part and the arrow are hidden.
14616 Another definition you may wish to use is @samp{\let\to=\Rightarrow}
14617 which causes @code{\to} to appear more like Calc's @samp{=>} symbol.
14618 @xref{Evaluates-To Operator}, for a discussion of @code{evalto}.
14620 The complete set of @TeX{} control sequences that are ignored during
14621 reading is:
14623 @example
14624 \hbox  \mbox  \text  \left  \right
14625 \,  \>  \:  \;  \!  \quad  \qquad  \hfil  \hfill
14626 \displaystyle  \textstyle  \dsize  \tsize
14627 \scriptstyle  \scriptscriptstyle  \ssize  \ssize
14628 \rm  \bf  \it  \sl  \roman  \bold  \italic  \slanted
14629 \cal  \mit  \Cal  \Bbb  \frak  \goth
14630 \evalto
14631 @end example
14633 Note that, because these symbols are ignored, reading a @TeX{} or
14634 La@TeX{} formula into Calc and writing it back out may lose spacing and
14635 font information. 
14637 Also, the ``discretionary multiplication sign'' @samp{\*} is read
14638 the same as @samp{*}.
14640 @ifinfo
14641 The @TeX{} version of this manual includes some printed examples at the
14642 end of this section.
14643 @end ifinfo
14644 @iftex
14645 Here are some examples of how various Calc formulas are formatted in @TeX{}:
14647 @example
14648 @group
14649 sin(a^2 / b_i)
14650 \sin\left( {a^2 \over b_i} \right)
14651 @end group
14652 @end example
14653 @tex
14654 $$ \sin\left( a^2 \over b_i \right) $$
14655 @end tex
14656 @sp 1
14658 @example
14659 @group
14660 [(3, 4), 3:4, 3 +/- 4, [3 .. inf)]
14661 [3 + 4i, @{3 \over 4@}, 3 \pm 4, [3 \ldots \infty)]
14662 @end group
14663 @end example
14664 @tex
14665 \turnoffactive
14666 $$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$
14667 @end tex
14668 @sp 1
14670 @example
14671 @group
14672 [abs(a), abs(a / b), floor(a), ceil(a / b)]
14673 [|a|, \left| a \over b \right|,
14674  \lfloor a \rfloor, \left\lceil a \over b \right\rceil]
14675 @end group
14676 @end example
14677 @tex
14678 $$ [|a|, \left| a \over b \right|,
14679     \lfloor a \rfloor, \left\lceil a \over b \right\rceil] $$
14680 @end tex
14681 @sp 1
14683 @example
14684 @group
14685 [sin(a), sin(2 a), sin(2 + a), sin(a / b)]
14686 [\sin@{a@}, \sin@{2 a@}, \sin(2 + a),
14687  \sin\left( @{a \over b@} \right)]
14688 @end group
14689 @end example
14690 @tex
14691 \turnoffactive
14692 $$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$
14693 @end tex
14694 @sp 2
14696 First with plain @kbd{d T}, then with @kbd{C-u d T}, then finally with
14697 @kbd{C-u - d T} (using the example definition
14698 @samp{\def\foo#1@{\tilde F(#1)@}}:
14700 @example
14701 @group
14702 [f(a), foo(bar), sin(pi)]
14703 [f(a), foo(bar), \sin{\pi}]
14704 [f(a), \hbox@{foo@}(\hbox@{bar@}), \sin@{\pi@}]
14705 [f(a), \foo@{\hbox@{bar@}@}, \sin@{\pi@}]
14706 @end group
14707 @end example
14708 @tex
14709 $$ [f(a), foo(bar), \sin{\pi}] $$
14710 $$ [f(a), \hbox{foo}(\hbox{bar}), \sin{\pi}] $$
14711 $$ [f(a), \tilde F(\hbox{bar}), \sin{\pi}] $$
14712 @end tex
14713 @sp 2
14715 First with @samp{\def\evalto@{@}}, then with @samp{\def\evalto#1\to@{@}}:
14717 @example
14718 @group
14719 2 + 3 => 5
14720 \evalto 2 + 3 \to 5
14721 @end group
14722 @end example
14723 @tex
14724 \turnoffactive
14725 $$ 2 + 3 \to 5 $$
14726 $$ 5 $$
14727 @end tex
14728 @sp 2
14730 First with standard @code{\to}, then with @samp{\let\to\Rightarrow}:
14732 @example
14733 @group
14734 [2 + 3 => 5, a / 2 => (b + c) / 2]
14735 [@{2 + 3 \to 5@}, @{@{a \over 2@} \to @{b + c \over 2@}@}]
14736 @end group
14737 @end example
14738 @tex
14739 \turnoffactive
14740 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$
14741 {\let\to\Rightarrow
14742 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$}
14743 @end tex
14744 @sp 2
14746 Matrices normally, then changing @code{\matrix} to @code{\pmatrix}:
14748 @example
14749 @group
14750 [ [ a / b, 0 ], [ 0, 2^(x + 1) ] ]
14751 \matrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14752 \pmatrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14753 @end group
14754 @end example
14755 @tex
14756 \turnoffactive
14757 $$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14758 $$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14759 @end tex
14760 @sp 2
14761 @end iftex
14763 @node Eqn Language Mode, Mathematica Language Mode, TeX and LaTeX Language Modes, Language Modes
14764 @subsection Eqn Language Mode
14766 @noindent
14767 @kindex d E
14768 @pindex calc-eqn-language
14769 @dfn{Eqn} is another popular formatter for math formulas.  It is
14770 designed for use with the TROFF text formatter, and comes standard
14771 with many versions of Unix.  The @kbd{d E} (@code{calc-eqn-language})
14772 command selects @dfn{eqn} notation.
14774 The @dfn{eqn} language's main idiosyncrasy is that whitespace plays
14775 a significant part in the parsing of the language.  For example,
14776 @samp{sqrt x+1 + y} treats @samp{x+1} as the argument of the
14777 @code{sqrt} operator.  @dfn{Eqn} also understands more conventional
14778 grouping using curly braces:  @samp{sqrt@{x+1@} + y}.  Braces are
14779 required only when the argument contains spaces.
14781 In Calc's @dfn{eqn} mode, however, curly braces are required to
14782 delimit arguments of operators like @code{sqrt}.  The first of the
14783 above examples would treat only the @samp{x} as the argument of
14784 @code{sqrt}, and in fact @samp{sin x+1} would be interpreted as
14785 @samp{sin * x + 1}, because @code{sin} is not a special operator
14786 in the @dfn{eqn} language.  If you always surround the argument
14787 with curly braces, Calc will never misunderstand.
14789 Calc also understands parentheses as grouping characters.  Another
14790 peculiarity of @dfn{eqn}'s syntax makes it advisable to separate
14791 words with spaces from any surrounding characters that aren't curly
14792 braces, so Calc writes @samp{sin ( x + y )} in @dfn{eqn} mode.
14793 (The spaces around @code{sin} are important to make @dfn{eqn}
14794 recognize that @code{sin} should be typeset in a roman font, and
14795 the spaces around @code{x} and @code{y} are a good idea just in
14796 case the @dfn{eqn} document has defined special meanings for these
14797 names, too.)
14799 Powers and subscripts are written with the @code{sub} and @code{sup}
14800 operators, respectively.  Note that the caret symbol @samp{^} is
14801 treated the same as a space in @dfn{eqn} mode, as is the @samp{~}
14802 symbol (these are used to introduce spaces of various widths into
14803 the typeset output of @dfn{eqn}).
14805 As in La@TeX{} mode, Calc's formatter omits parentheses around the
14806 arguments of functions like @code{ln} and @code{sin} if they are
14807 ``simple-looking''; in this case Calc surrounds the argument with
14808 braces, separated by a @samp{~} from the function name: @samp{sin~@{x@}}.
14810 Font change codes (like @samp{roman @var{x}}) and positioning codes
14811 (like @samp{~} and @samp{down @var{n} @var{x}}) are ignored by the
14812 @dfn{eqn} reader.  Also ignored are the words @code{left}, @code{right},
14813 @code{mark}, and @code{lineup}.  Quotation marks in @dfn{eqn} mode input
14814 are treated the same as curly braces: @samp{sqrt "1+x"} is equivalent to
14815 @samp{sqrt @{1+x@}}; this is only an approximation to the true meaning
14816 of quotes in @dfn{eqn}, but it is good enough for most uses.
14818 Accent codes (@samp{@var{x} dot}) are handled by treating them as
14819 function calls (@samp{dot(@var{x})}) internally.  
14820 @xref{TeX and LaTeX Language Modes}, for a table of these accent
14821 functions.  The @code{prime} accent is treated specially if it occurs on
14822 a variable or function name: @samp{f prime prime @w{( x prime )}} is
14823 stored internally as @samp{f'@w{'}(x')}.  For example, taking the
14824 derivative of @samp{f(2 x)} with @kbd{a d x} will produce @samp{2 f'(2
14825 x)}, which @dfn{eqn} mode will display as @samp{2 f prime ( 2 x )}.
14827 Assignments are written with the @samp{<-} (left-arrow) symbol,
14828 and @code{evalto} operators are written with @samp{->} or
14829 @samp{evalto ... ->} (@pxref{TeX and LaTeX Language Modes}, for a discussion
14830 of this).  The regular Calc symbols @samp{:=} and @samp{=>} are also
14831 recognized for these operators during reading.
14833 Vectors in @dfn{eqn} mode use regular Calc square brackets, but
14834 matrices are formatted as @samp{matrix @{ ccol @{ a above b @} ... @}}.
14835 The words @code{lcol} and @code{rcol} are recognized as synonyms
14836 for @code{ccol} during input, and are generated instead of @code{ccol}
14837 if the matrix justification mode so specifies.
14839 @node Mathematica Language Mode, Maple Language Mode, Eqn Language Mode, Language Modes
14840 @subsection Mathematica Language Mode
14842 @noindent
14843 @kindex d M
14844 @pindex calc-mathematica-language
14845 @cindex Mathematica language
14846 The @kbd{d M} (@code{calc-mathematica-language}) command selects the
14847 conventions of Mathematica.  Notable differences in Mathematica mode
14848 are that the names of built-in functions are capitalized, and function
14849 calls use square brackets instead of parentheses.  Thus the Calc
14850 formula @samp{sin(2 x)} is entered and displayed @w{@samp{Sin[2 x]}} in
14851 Mathematica mode.
14853 Vectors and matrices use curly braces in Mathematica.  Complex numbers
14854 are written @samp{3 + 4 I}.  The standard special constants in Calc are
14855 written @code{Pi}, @code{E}, @code{I}, @code{GoldenRatio}, @code{EulerGamma},
14856 @code{Infinity}, @code{ComplexInfinity}, and @code{Indeterminate} in
14857 Mathematica mode.
14858 Non-decimal numbers are written, e.g., @samp{16^^7fff}.  Floating-point
14859 numbers in scientific notation are written @samp{1.23*10.^3}.
14860 Subscripts use double square brackets: @samp{a[[i]]}.
14862 @node Maple Language Mode, Compositions, Mathematica Language Mode, Language Modes
14863 @subsection Maple Language Mode
14865 @noindent
14866 @kindex d W
14867 @pindex calc-maple-language
14868 @cindex Maple language
14869 The @kbd{d W} (@code{calc-maple-language}) command selects the
14870 conventions of Maple.
14872 Maple's language is much like C.  Underscores are allowed in symbol
14873 names; square brackets are used for subscripts; explicit @samp{*}s for
14874 multiplications are required.  Use either @samp{^} or @samp{**} to
14875 denote powers.
14877 Maple uses square brackets for lists and curly braces for sets.  Calc
14878 interprets both notations as vectors, and displays vectors with square
14879 brackets.  This means Maple sets will be converted to lists when they
14880 pass through Calc.  As a special case, matrices are written as calls
14881 to the function @code{matrix}, given a list of lists as the argument,
14882 and can be read in this form or with all-capitals @code{MATRIX}.
14884 The Maple interval notation @samp{2 .. 3} has no surrounding brackets;
14885 Calc reads @samp{2 .. 3} as the closed interval @samp{[2 .. 3]}, and
14886 writes any kind of interval as @samp{2 .. 3}.  This means you cannot
14887 see the difference between an open and a closed interval while in
14888 Maple display mode.
14890 Maple writes complex numbers as @samp{3 + 4*I}.  Its special constants
14891 are @code{Pi}, @code{E}, @code{I}, and @code{infinity} (all three of
14892 @code{inf}, @code{uinf}, and @code{nan} display as @code{infinity}).
14893 Floating-point numbers are written @samp{1.23*10.^3}.
14895 Among things not currently handled by Calc's Maple mode are the
14896 various quote symbols, procedures and functional operators, and
14897 inert (@samp{&}) operators.
14899 @node Compositions, Syntax Tables, Maple Language Mode, Language Modes
14900 @subsection Compositions
14902 @noindent
14903 @cindex Compositions
14904 There are several @dfn{composition functions} which allow you to get
14905 displays in a variety of formats similar to those in Big language
14906 mode.  Most of these functions do not evaluate to anything; they are
14907 placeholders which are left in symbolic form by Calc's evaluator but
14908 are recognized by Calc's display formatting routines.
14910 Two of these, @code{string} and @code{bstring}, are described elsewhere.
14911 @xref{Strings}.  For example, @samp{string("ABC")} is displayed as
14912 @samp{ABC}.  When viewed on the stack it will be indistinguishable from
14913 the variable @code{ABC}, but internally it will be stored as
14914 @samp{string([65, 66, 67])} and can still be manipulated this way; for
14915 example, the selection and vector commands @kbd{j 1 v v j u} would
14916 select the vector portion of this object and reverse the elements, then
14917 deselect to reveal a string whose characters had been reversed.
14919 The composition functions do the same thing in all language modes
14920 (although their components will of course be formatted in the current
14921 language mode).  The one exception is Unformatted mode (@kbd{d U}),
14922 which does not give the composition functions any special treatment.
14923 The functions are discussed here because of their relationship to
14924 the language modes.
14926 @menu
14927 * Composition Basics::
14928 * Horizontal Compositions::
14929 * Vertical Compositions::
14930 * Other Compositions::
14931 * Information about Compositions::
14932 * User-Defined Compositions::
14933 @end menu
14935 @node Composition Basics, Horizontal Compositions, Compositions, Compositions
14936 @subsubsection Composition Basics
14938 @noindent
14939 Compositions are generally formed by stacking formulas together
14940 horizontally or vertically in various ways.  Those formulas are
14941 themselves compositions.  @TeX{} users will find this analogous
14942 to @TeX{}'s ``boxes.''  Each multi-line composition has a
14943 @dfn{baseline}; horizontal compositions use the baselines to
14944 decide how formulas should be positioned relative to one another.
14945 For example, in the Big mode formula
14947 @example
14948 @group
14949           2
14950      a + b
14951 17 + ------
14952        c
14953 @end group
14954 @end example
14956 @noindent
14957 the second term of the sum is four lines tall and has line three as
14958 its baseline.  Thus when the term is combined with 17, line three
14959 is placed on the same level as the baseline of 17.
14961 @tex
14962 \bigskip
14963 @end tex
14965 Another important composition concept is @dfn{precedence}.  This is
14966 an integer that represents the binding strength of various operators.
14967 For example, @samp{*} has higher precedence (195) than @samp{+} (180),
14968 which means that @samp{(a * b) + c} will be formatted without the
14969 parentheses, but @samp{a * (b + c)} will keep the parentheses.
14971 The operator table used by normal and Big language modes has the
14972 following precedences:
14974 @example
14975 _     1200   @r{(subscripts)}
14976 %     1100   @r{(as in n}%@r{)}
14977 -     1000   @r{(as in }-@r{n)}
14978 !     1000   @r{(as in }!@r{n)}
14979 mod    400
14980 +/-    300
14981 !!     210    @r{(as in n}!!@r{)}
14982 !      210    @r{(as in n}!@r{)}
14983 ^      200
14984 *      195    @r{(or implicit multiplication)}
14985 / % \  190
14986 + -    180    @r{(as in a}+@r{b)}
14987 |      170
14988 < =    160    @r{(and other relations)}
14989 &&     110
14990 ||     100
14991 ? :     90
14992 !!!     85
14993 &&&     80
14994 |||     75
14995 :=      50
14996 ::      45
14997 =>      40
14998 @end example
15000 The general rule is that if an operator with precedence @expr{n}
15001 occurs as an argument to an operator with precedence @expr{m}, then
15002 the argument is enclosed in parentheses if @expr{n < m}.  Top-level
15003 expressions and expressions which are function arguments, vector
15004 components, etc., are formatted with precedence zero (so that they
15005 normally never get additional parentheses).
15007 For binary left-associative operators like @samp{+}, the righthand
15008 argument is actually formatted with one-higher precedence than shown
15009 in the table.  This makes sure @samp{(a + b) + c} omits the parentheses,
15010 but the unnatural form @samp{a + (b + c)} keeps its parentheses.
15011 Right-associative operators like @samp{^} format the lefthand argument
15012 with one-higher precedence.
15014 @ignore
15015 @starindex
15016 @end ignore
15017 @tindex cprec
15018 The @code{cprec} function formats an expression with an arbitrary
15019 precedence.  For example, @samp{cprec(abc, 185)} will combine into
15020 sums and products as follows:  @samp{7 + abc}, @samp{7 (abc)} (because
15021 this @code{cprec} form has higher precedence than addition, but lower
15022 precedence than multiplication).
15024 @tex
15025 \bigskip
15026 @end tex
15028 A final composition issue is @dfn{line breaking}.  Calc uses two
15029 different strategies for ``flat'' and ``non-flat'' compositions.
15030 A non-flat composition is anything that appears on multiple lines
15031 (not counting line breaking).  Examples would be matrices and Big
15032 mode powers and quotients.  Non-flat compositions are displayed
15033 exactly as specified.  If they come out wider than the current
15034 window, you must use horizontal scrolling (@kbd{<} and @kbd{>}) to
15035 view them.
15037 Flat compositions, on the other hand, will be broken across several
15038 lines if they are too wide to fit the window.  Certain points in a
15039 composition are noted internally as @dfn{break points}.  Calc's
15040 general strategy is to fill each line as much as possible, then to
15041 move down to the next line starting at the first break point that
15042 didn't fit.  However, the line breaker understands the hierarchical
15043 structure of formulas.  It will not break an ``inner'' formula if
15044 it can use an earlier break point from an ``outer'' formula instead.
15045 For example, a vector of sums might be formatted as:
15047 @example
15048 @group
15049 [ a + b + c, d + e + f,
15050   g + h + i, j + k + l, m ]
15051 @end group
15052 @end example
15054 @noindent
15055 If the @samp{m} can fit, then so, it seems, could the @samp{g}.
15056 But Calc prefers to break at the comma since the comma is part
15057 of a ``more outer'' formula.  Calc would break at a plus sign
15058 only if it had to, say, if the very first sum in the vector had
15059 itself been too large to fit.
15061 Of the composition functions described below, only @code{choriz}
15062 generates break points.  The @code{bstring} function (@pxref{Strings})
15063 also generates breakable items:  A break point is added after every
15064 space (or group of spaces) except for spaces at the very beginning or
15065 end of the string.
15067 Composition functions themselves count as levels in the formula
15068 hierarchy, so a @code{choriz} that is a component of a larger
15069 @code{choriz} will be less likely to be broken.  As a special case,
15070 if a @code{bstring} occurs as a component of a @code{choriz} or
15071 @code{choriz}-like object (such as a vector or a list of arguments
15072 in a function call), then the break points in that @code{bstring}
15073 will be on the same level as the break points of the surrounding
15074 object.
15076 @node Horizontal Compositions, Vertical Compositions, Composition Basics, Compositions
15077 @subsubsection Horizontal Compositions
15079 @noindent
15080 @ignore
15081 @starindex
15082 @end ignore
15083 @tindex choriz
15084 The @code{choriz} function takes a vector of objects and composes
15085 them horizontally.  For example, @samp{choriz([17, a b/c, d])} formats
15086 as @w{@samp{17a b / cd}} in Normal language mode, or as
15088 @example
15089 @group
15090   a b
15091 17---d
15092    c
15093 @end group
15094 @end example
15096 @noindent
15097 in Big language mode.  This is actually one case of the general
15098 function @samp{choriz(@var{vec}, @var{sep}, @var{prec})}, where
15099 either or both of @var{sep} and @var{prec} may be omitted.
15100 @var{Prec} gives the @dfn{precedence} to use when formatting
15101 each of the components of @var{vec}.  The default precedence is
15102 the precedence from the surrounding environment.
15104 @var{Sep} is a string (i.e., a vector of character codes as might
15105 be entered with @code{" "} notation) which should separate components
15106 of the composition.  Also, if @var{sep} is given, the line breaker
15107 will allow lines to be broken after each occurrence of @var{sep}.
15108 If @var{sep} is omitted, the composition will not be breakable
15109 (unless any of its component compositions are breakable).
15111 For example, @samp{2 choriz([a, b c, d = e], " + ", 180)} is
15112 formatted as @samp{2 a + b c + (d = e)}.  To get the @code{choriz}
15113 to have precedence 180 ``outwards'' as well as ``inwards,''
15114 enclose it in a @code{cprec} form:  @samp{2 cprec(choriz(...), 180)}
15115 formats as @samp{2 (a + b c + (d = e))}.
15117 The baseline of a horizontal composition is the same as the
15118 baselines of the component compositions, which are all aligned.
15120 @node Vertical Compositions, Other Compositions, Horizontal Compositions, Compositions
15121 @subsubsection Vertical Compositions
15123 @noindent
15124 @ignore
15125 @starindex
15126 @end ignore
15127 @tindex cvert
15128 The @code{cvert} function makes a vertical composition.  Each
15129 component of the vector is centered in a column.  The baseline of
15130 the result is by default the top line of the resulting composition.
15131 For example, @samp{f(cvert([a, bb, ccc]), cvert([a^2 + 1, b^2]))}
15132 formats in Big mode as
15134 @example
15135 @group
15136 f( a ,  2    )
15137   bb   a  + 1
15138   ccc     2
15139          b
15140 @end group
15141 @end example
15143 @ignore
15144 @starindex
15145 @end ignore
15146 @tindex cbase
15147 There are several special composition functions that work only as
15148 components of a vertical composition.  The @code{cbase} function
15149 controls the baseline of the vertical composition; the baseline
15150 will be the same as the baseline of whatever component is enclosed
15151 in @code{cbase}.  Thus @samp{f(cvert([a, cbase(bb), ccc]),
15152 cvert([a^2 + 1, cbase(b^2)]))} displays as
15154 @example
15155 @group
15156         2
15157        a  + 1
15158    a      2
15159 f(bb ,   b   )
15160   ccc
15161 @end group
15162 @end example
15164 @ignore
15165 @starindex
15166 @end ignore
15167 @tindex ctbase
15168 @ignore
15169 @starindex
15170 @end ignore
15171 @tindex cbbase
15172 There are also @code{ctbase} and @code{cbbase} functions which
15173 make the baseline of the vertical composition equal to the top
15174 or bottom line (rather than the baseline) of that component.
15175 Thus @samp{cvert([cbase(a / b)]) + cvert([ctbase(a / b)]) +
15176 cvert([cbbase(a / b)])} gives
15178 @example
15179 @group
15180         a
15181 a       -
15182 - + a + b
15183 b   -
15184     b
15185 @end group
15186 @end example
15188 There should be only one @code{cbase}, @code{ctbase}, or @code{cbbase}
15189 function in a given vertical composition.  These functions can also
15190 be written with no arguments:  @samp{ctbase()} is a zero-height object
15191 which means the baseline is the top line of the following item, and
15192 @samp{cbbase()} means the baseline is the bottom line of the preceding
15193 item.
15195 @ignore
15196 @starindex
15197 @end ignore
15198 @tindex crule
15199 The @code{crule} function builds a ``rule,'' or horizontal line,
15200 across a vertical composition.  By itself @samp{crule()} uses @samp{-}
15201 characters to build the rule.  You can specify any other character,
15202 e.g., @samp{crule("=")}.  The argument must be a character code or
15203 vector of exactly one character code.  It is repeated to match the
15204 width of the widest item in the stack.  For example, a quotient
15205 with a thick line is @samp{cvert([a + 1, cbase(crule("=")), b^2])}:
15207 @example
15208 @group
15209 a + 1
15210 =====
15211   2
15213 @end group
15214 @end example
15216 @ignore
15217 @starindex
15218 @end ignore
15219 @tindex clvert
15220 @ignore
15221 @starindex
15222 @end ignore
15223 @tindex crvert
15224 Finally, the functions @code{clvert} and @code{crvert} act exactly
15225 like @code{cvert} except that the items are left- or right-justified
15226 in the stack.  Thus @samp{clvert([a, bb, ccc]) + crvert([a, bb, ccc])}
15227 gives:
15229 @example
15230 @group
15231 a   +   a
15232 bb     bb
15233 ccc   ccc
15234 @end group
15235 @end example
15237 Like @code{choriz}, the vertical compositions accept a second argument
15238 which gives the precedence to use when formatting the components.
15239 Vertical compositions do not support separator strings.
15241 @node Other Compositions, Information about Compositions, Vertical Compositions, Compositions
15242 @subsubsection Other Compositions
15244 @noindent
15245 @ignore
15246 @starindex
15247 @end ignore
15248 @tindex csup
15249 The @code{csup} function builds a superscripted expression.  For
15250 example, @samp{csup(a, b)} looks the same as @samp{a^b} does in Big
15251 language mode.  This is essentially a horizontal composition of
15252 @samp{a} and @samp{b}, where @samp{b} is shifted up so that its
15253 bottom line is one above the baseline.
15255 @ignore
15256 @starindex
15257 @end ignore
15258 @tindex csub
15259 Likewise, the @code{csub} function builds a subscripted expression.
15260 This shifts @samp{b} down so that its top line is one below the
15261 bottom line of @samp{a} (note that this is not quite analogous to
15262 @code{csup}).  Other arrangements can be obtained by using
15263 @code{choriz} and @code{cvert} directly.
15265 @ignore
15266 @starindex
15267 @end ignore
15268 @tindex cflat
15269 The @code{cflat} function formats its argument in ``flat'' mode,
15270 as obtained by @samp{d O}, if the current language mode is normal
15271 or Big.  It has no effect in other language modes.  For example,
15272 @samp{a^(b/c)} is formatted by Big mode like @samp{csup(a, cflat(b/c))}
15273 to improve its readability.
15275 @ignore
15276 @starindex
15277 @end ignore
15278 @tindex cspace
15279 The @code{cspace} function creates horizontal space.  For example,
15280 @samp{cspace(4)} is effectively the same as @samp{string("    ")}.
15281 A second string (i.e., vector of characters) argument is repeated
15282 instead of the space character.  For example, @samp{cspace(4, "ab")}
15283 looks like @samp{abababab}.  If the second argument is not a string,
15284 it is formatted in the normal way and then several copies of that
15285 are composed together:  @samp{cspace(4, a^2)} yields
15287 @example
15288 @group
15289  2 2 2 2
15290 a a a a
15291 @end group
15292 @end example
15294 @noindent
15295 If the number argument is zero, this is a zero-width object.
15297 @ignore
15298 @starindex
15299 @end ignore
15300 @tindex cvspace
15301 The @code{cvspace} function creates vertical space, or a vertical
15302 stack of copies of a certain string or formatted object.  The
15303 baseline is the center line of the resulting stack.  A numerical
15304 argument of zero will produce an object which contributes zero
15305 height if used in a vertical composition.
15307 @ignore
15308 @starindex
15309 @end ignore
15310 @tindex ctspace
15311 @ignore
15312 @starindex
15313 @end ignore
15314 @tindex cbspace
15315 There are also @code{ctspace} and @code{cbspace} functions which
15316 create vertical space with the baseline the same as the baseline
15317 of the top or bottom copy, respectively, of the second argument.
15318 Thus @samp{cvspace(2, a/b) + ctspace(2, a/b) + cbspace(2, a/b)}
15319 displays as:
15321 @example
15322 @group
15323         a
15324         -
15325 a       b
15326 -   a   a
15327 b + - + -
15328 a   b   b
15329 -   a
15330 b   -
15331     b
15332 @end group
15333 @end example
15335 @node Information about Compositions, User-Defined Compositions, Other Compositions, Compositions
15336 @subsubsection Information about Compositions
15338 @noindent
15339 The functions in this section are actual functions; they compose their
15340 arguments according to the current language and other display modes,
15341 then return a certain measurement of the composition as an integer.
15343 @ignore
15344 @starindex
15345 @end ignore
15346 @tindex cwidth
15347 The @code{cwidth} function measures the width, in characters, of a
15348 composition.  For example, @samp{cwidth(a + b)} is 5, and
15349 @samp{cwidth(a / b)} is 5 in Normal mode, 1 in Big mode, and 11 in
15350 @TeX{} mode (for @samp{@{a \over b@}}).  The argument may involve
15351 the composition functions described in this section.
15353 @ignore
15354 @starindex
15355 @end ignore
15356 @tindex cheight
15357 The @code{cheight} function measures the height of a composition.
15358 This is the total number of lines in the argument's printed form.
15360 @ignore
15361 @starindex
15362 @end ignore
15363 @tindex cascent
15364 @ignore
15365 @starindex
15366 @end ignore
15367 @tindex cdescent
15368 The functions @code{cascent} and @code{cdescent} measure the amount
15369 of the height that is above (and including) the baseline, or below
15370 the baseline, respectively.  Thus @samp{cascent(@var{x}) + cdescent(@var{x})}
15371 always equals @samp{cheight(@var{x})}.  For a one-line formula like
15372 @samp{a + b}, @code{cascent} returns 1 and @code{cdescent} returns 0.
15373 For @samp{a / b} in Big mode, @code{cascent} returns 2 and @code{cdescent}
15374 returns 1.  The only formula for which @code{cascent} will return zero
15375 is @samp{cvspace(0)} or equivalents.
15377 @node User-Defined Compositions, , Information about Compositions, Compositions
15378 @subsubsection User-Defined Compositions
15380 @noindent
15381 @kindex Z C
15382 @pindex calc-user-define-composition
15383 The @kbd{Z C} (@code{calc-user-define-composition}) command lets you
15384 define the display format for any algebraic function.  You provide a
15385 formula containing a certain number of argument variables on the stack.
15386 Any time Calc formats a call to the specified function in the current
15387 language mode and with that number of arguments, Calc effectively
15388 replaces the function call with that formula with the arguments
15389 replaced.
15391 Calc builds the default argument list by sorting all the variable names
15392 that appear in the formula into alphabetical order.  You can edit this
15393 argument list before pressing @key{RET} if you wish.  Any variables in
15394 the formula that do not appear in the argument list will be displayed
15395 literally; any arguments that do not appear in the formula will not
15396 affect the display at all.
15398 You can define formats for built-in functions, for functions you have
15399 defined with @kbd{Z F} (@pxref{Algebraic Definitions}), or for functions
15400 which have no definitions but are being used as purely syntactic objects.
15401 You can define different formats for each language mode, and for each
15402 number of arguments, using a succession of @kbd{Z C} commands.  When
15403 Calc formats a function call, it first searches for a format defined
15404 for the current language mode (and number of arguments); if there is
15405 none, it uses the format defined for the Normal language mode.  If
15406 neither format exists, Calc uses its built-in standard format for that
15407 function (usually just @samp{@var{func}(@var{args})}).
15409 If you execute @kbd{Z C} with the number 0 on the stack instead of a
15410 formula, any defined formats for the function in the current language
15411 mode will be removed.  The function will revert to its standard format.
15413 For example, the default format for the binomial coefficient function
15414 @samp{choose(n, m)} in the Big language mode is
15416 @example
15417 @group
15419 ( )
15421 @end group
15422 @end example
15424 @noindent
15425 You might prefer the notation,
15427 @example
15428 @group
15430 n m
15431 @end group
15432 @end example
15434 @noindent
15435 To define this notation, first make sure you are in Big mode,
15436 then put the formula
15438 @smallexample
15439 choriz([cvert([cvspace(1), n]), C, cvert([cvspace(1), m])])
15440 @end smallexample
15442 @noindent
15443 on the stack and type @kbd{Z C}.  Answer the first prompt with
15444 @code{choose}.  The second prompt will be the default argument list
15445 of @samp{(C m n)}.  Edit this list to be @samp{(n m)} and press
15446 @key{RET}.  Now, try it out:  For example, turn simplification
15447 off with @kbd{m O} and enter @samp{choose(a,b) + choose(7,3)}
15448 as an algebraic entry.
15450 @example
15451 @group
15452  C  +  C
15453 a b   7 3
15454 @end group
15455 @end example
15457 As another example, let's define the usual notation for Stirling
15458 numbers of the first kind, @samp{stir1(n, m)}.  This is just like
15459 the regular format for binomial coefficients but with square brackets
15460 instead of parentheses.
15462 @smallexample
15463 choriz([string("["), cvert([n, cbase(cvspace(1)), m]), string("]")])
15464 @end smallexample
15466 Now type @kbd{Z C stir1 @key{RET}}, edit the argument list to
15467 @samp{(n m)}, and type @key{RET}.
15469 The formula provided to @kbd{Z C} usually will involve composition
15470 functions, but it doesn't have to.  Putting the formula @samp{a + b + c}
15471 onto the stack and typing @kbd{Z C foo @key{RET} @key{RET}} would define
15472 the function @samp{foo(x,y,z)} to display like @samp{x + y + z}.
15473 This ``sum'' will act exactly like a real sum for all formatting
15474 purposes (it will be parenthesized the same, and so on).  However
15475 it will be computationally unrelated to a sum.  For example, the
15476 formula @samp{2 * foo(1, 2, 3)} will display as @samp{2 (1 + 2 + 3)}.
15477 Operator precedences have caused the ``sum'' to be written in
15478 parentheses, but the arguments have not actually been summed.
15479 (Generally a display format like this would be undesirable, since
15480 it can easily be confused with a real sum.)
15482 The special function @code{eval} can be used inside a @kbd{Z C}
15483 composition formula to cause all or part of the formula to be
15484 evaluated at display time.  For example, if the formula is
15485 @samp{a + eval(b + c)}, then @samp{foo(1, 2, 3)} will be displayed
15486 as @samp{1 + 5}.  Evaluation will use the default simplifications,
15487 regardless of the current simplification mode.  There are also
15488 @code{evalsimp} and @code{evalextsimp} which simplify as if by
15489 @kbd{a s} and @kbd{a e} (respectively).  Note that these ``functions''
15490 operate only in the context of composition formulas (and also in
15491 rewrite rules, where they serve a similar purpose; @pxref{Rewrite
15492 Rules}).  On the stack, a call to @code{eval} will be left in
15493 symbolic form.
15495 It is not a good idea to use @code{eval} except as a last resort.
15496 It can cause the display of formulas to be extremely slow.  For
15497 example, while @samp{eval(a + b)} might seem quite fast and simple,
15498 there are several situations where it could be slow.  For example,
15499 @samp{a} and/or @samp{b} could be polar complex numbers, in which
15500 case doing the sum requires trigonometry.  Or, @samp{a} could be
15501 the factorial @samp{fact(100)} which is unevaluated because you
15502 have typed @kbd{m O}; @code{eval} will evaluate it anyway to
15503 produce a large, unwieldy integer.
15505 You can save your display formats permanently using the @kbd{Z P}
15506 command (@pxref{Creating User Keys}).
15508 @node Syntax Tables, , Compositions, Language Modes
15509 @subsection Syntax Tables
15511 @noindent
15512 @cindex Syntax tables
15513 @cindex Parsing formulas, customized
15514 Syntax tables do for input what compositions do for output:  They
15515 allow you to teach custom notations to Calc's formula parser.
15516 Calc keeps a separate syntax table for each language mode.
15518 (Note that the Calc ``syntax tables'' discussed here are completely
15519 unrelated to the syntax tables described in the Emacs manual.)
15521 @kindex Z S
15522 @pindex calc-edit-user-syntax
15523 The @kbd{Z S} (@code{calc-edit-user-syntax}) command edits the
15524 syntax table for the current language mode.  If you want your
15525 syntax to work in any language, define it in the Normal language
15526 mode.  Type @kbd{C-c C-c} to finish editing the syntax table, or
15527 @kbd{C-x k} to cancel the edit.  The @kbd{m m} command saves all
15528 the syntax tables along with the other mode settings;
15529 @pxref{General Mode Commands}.
15531 @menu
15532 * Syntax Table Basics::
15533 * Precedence in Syntax Tables::
15534 * Advanced Syntax Patterns::
15535 * Conditional Syntax Rules::
15536 @end menu
15538 @node Syntax Table Basics, Precedence in Syntax Tables, Syntax Tables, Syntax Tables
15539 @subsubsection Syntax Table Basics
15541 @noindent
15542 @dfn{Parsing} is the process of converting a raw string of characters,
15543 such as you would type in during algebraic entry, into a Calc formula.
15544 Calc's parser works in two stages.  First, the input is broken down
15545 into @dfn{tokens}, such as words, numbers, and punctuation symbols
15546 like @samp{+}, @samp{:=}, and @samp{+/-}.  Space between tokens is
15547 ignored (except when it serves to separate adjacent words).  Next,
15548 the parser matches this string of tokens against various built-in
15549 syntactic patterns, such as ``an expression followed by @samp{+}
15550 followed by another expression'' or ``a name followed by @samp{(},
15551 zero or more expressions separated by commas, and @samp{)}.''
15553 A @dfn{syntax table} is a list of user-defined @dfn{syntax rules},
15554 which allow you to specify new patterns to define your own
15555 favorite input notations.  Calc's parser always checks the syntax
15556 table for the current language mode, then the table for the Normal
15557 language mode, before it uses its built-in rules to parse an
15558 algebraic formula you have entered.  Each syntax rule should go on
15559 its own line; it consists of a @dfn{pattern}, a @samp{:=} symbol,
15560 and a Calc formula with an optional @dfn{condition}.  (Syntax rules
15561 resemble algebraic rewrite rules, but the notation for patterns is
15562 completely different.)
15564 A syntax pattern is a list of tokens, separated by spaces.
15565 Except for a few special symbols, tokens in syntax patterns are
15566 matched literally, from left to right.  For example, the rule,
15568 @example
15569 foo ( ) := 2+3
15570 @end example
15572 @noindent
15573 would cause Calc to parse the formula @samp{4+foo()*5} as if it
15574 were @samp{4+(2+3)*5}.  Notice that the parentheses were written
15575 as two separate tokens in the rule.  As a result, the rule works
15576 for both @samp{foo()} and @w{@samp{foo (  )}}.  If we had written
15577 the rule as @samp{foo () := 2+3}, then Calc would treat @samp{()}
15578 as a single, indivisible token, so that @w{@samp{foo( )}} would
15579 not be recognized by the rule.  (It would be parsed as a regular
15580 zero-argument function call instead.)  In fact, this rule would
15581 also make trouble for the rest of Calc's parser:  An unrelated
15582 formula like @samp{bar()} would now be tokenized into @samp{bar ()}
15583 instead of @samp{bar ( )}, so that the standard parser for function
15584 calls would no longer recognize it!
15586 While it is possible to make a token with a mixture of letters
15587 and punctuation symbols, this is not recommended.  It is better to
15588 break it into several tokens, as we did with @samp{foo()} above.
15590 The symbol @samp{#} in a syntax pattern matches any Calc expression.
15591 On the righthand side, the things that matched the @samp{#}s can
15592 be referred to as @samp{#1}, @samp{#2}, and so on (where @samp{#1}
15593 matches the leftmost @samp{#} in the pattern).  For example, these
15594 rules match a user-defined function, prefix operator, infix operator,
15595 and postfix operator, respectively:
15597 @example
15598 foo ( # ) := myfunc(#1)
15599 foo # := myprefix(#1)
15600 # foo # := myinfix(#1,#2)
15601 # foo := mypostfix(#1)
15602 @end example
15604 Thus @samp{foo(3)} will parse as @samp{myfunc(3)}, and @samp{2+3 foo}
15605 will parse as @samp{mypostfix(2+3)}.
15607 It is important to write the first two rules in the order shown,
15608 because Calc tries rules in order from first to last.  If the
15609 pattern @samp{foo #} came first, it would match anything that could
15610 match the @samp{foo ( # )} rule, since an expression in parentheses
15611 is itself a valid expression.  Thus the @w{@samp{foo ( # )}} rule would
15612 never get to match anything.  Likewise, the last two rules must be
15613 written in the order shown or else @samp{3 foo 4} will be parsed as
15614 @samp{mypostfix(3) * 4}.  (Of course, the best way to avoid these
15615 ambiguities is not to use the same symbol in more than one way at
15616 the same time!  In case you're not convinced, try the following
15617 exercise:  How will the above rules parse the input @samp{foo(3,4)},
15618 if at all?  Work it out for yourself, then try it in Calc and see.)
15620 Calc is quite flexible about what sorts of patterns are allowed.
15621 The only rule is that every pattern must begin with a literal
15622 token (like @samp{foo} in the first two patterns above), or with
15623 a @samp{#} followed by a literal token (as in the last two
15624 patterns).  After that, any mixture is allowed, although putting
15625 two @samp{#}s in a row will not be very useful since two
15626 expressions with nothing between them will be parsed as one
15627 expression that uses implicit multiplication.
15629 As a more practical example, Maple uses the notation
15630 @samp{sum(a(i), i=1..10)} for sums, which Calc's Maple mode doesn't
15631 recognize at present.  To handle this syntax, we simply add the
15632 rule,
15634 @example
15635 sum ( # , # = # .. # ) := sum(#1,#2,#3,#4)
15636 @end example
15638 @noindent
15639 to the Maple mode syntax table.  As another example, C mode can't
15640 read assignment operators like @samp{++} and @samp{*=}.  We can
15641 define these operators quite easily:
15643 @example
15644 # *= # := muleq(#1,#2)
15645 # ++ := postinc(#1)
15646 ++ # := preinc(#1)
15647 @end example
15649 @noindent
15650 To complete the job, we would use corresponding composition functions
15651 and @kbd{Z C} to cause these functions to display in their respective
15652 Maple and C notations.  (Note that the C example ignores issues of
15653 operator precedence, which are discussed in the next section.)
15655 You can enclose any token in quotes to prevent its usual
15656 interpretation in syntax patterns:
15658 @example
15659 # ":=" # := becomes(#1,#2)
15660 @end example
15662 Quotes also allow you to include spaces in a token, although once
15663 again it is generally better to use two tokens than one token with
15664 an embedded space.  To include an actual quotation mark in a quoted
15665 token, precede it with a backslash.  (This also works to include
15666 backslashes in tokens.)
15668 @example
15669 # "bad token" # "/\"\\" # := silly(#1,#2,#3)
15670 @end example
15672 @noindent
15673 This will parse @samp{3 bad token 4 /"\ 5} to @samp{silly(3,4,5)}.
15675 The token @kbd{#} has a predefined meaning in Calc's formula parser;
15676 it is not valid to use @samp{"#"} in a syntax rule.  However, longer
15677 tokens that include the @samp{#} character are allowed.  Also, while
15678 @samp{"$"} and @samp{"\""} are allowed as tokens, their presence in
15679 the syntax table will prevent those characters from working in their
15680 usual ways (referring to stack entries and quoting strings,
15681 respectively).
15683 Finally, the notation @samp{%%} anywhere in a syntax table causes
15684 the rest of the line to be ignored as a comment.
15686 @node Precedence in Syntax Tables, Advanced Syntax Patterns, Syntax Table Basics, Syntax Tables
15687 @subsubsection Precedence
15689 @noindent
15690 Different operators are generally assigned different @dfn{precedences}.
15691 By default, an operator defined by a rule like
15693 @example
15694 # foo # := foo(#1,#2)
15695 @end example
15697 @noindent
15698 will have an extremely low precedence, so that @samp{2*3+4 foo 5 == 6}
15699 will be parsed as @samp{(2*3+4) foo (5 == 6)}.  To change the
15700 precedence of an operator, use the notation @samp{#/@var{p}} in
15701 place of @samp{#}, where @var{p} is an integer precedence level.
15702 For example, 185 lies between the precedences for @samp{+} and
15703 @samp{*}, so if we change this rule to
15705 @example
15706 #/185 foo #/186 := foo(#1,#2)
15707 @end example
15709 @noindent
15710 then @samp{2+3 foo 4*5} will be parsed as @samp{2+(3 foo (4*5))}.
15711 Also, because we've given the righthand expression slightly higher
15712 precedence, our new operator will be left-associative:
15713 @samp{1 foo 2 foo 3} will be parsed as @samp{(1 foo 2) foo 3}.
15714 By raising the precedence of the lefthand expression instead, we
15715 can create a right-associative operator.
15717 @xref{Composition Basics}, for a table of precedences of the
15718 standard Calc operators.  For the precedences of operators in other
15719 language modes, look in the Calc source file @file{calc-lang.el}.
15721 @node Advanced Syntax Patterns, Conditional Syntax Rules, Precedence in Syntax Tables, Syntax Tables
15722 @subsubsection Advanced Syntax Patterns
15724 @noindent
15725 To match a function with a variable number of arguments, you could
15726 write
15728 @example
15729 foo ( # ) := myfunc(#1)
15730 foo ( # , # ) := myfunc(#1,#2)
15731 foo ( # , # , # ) := myfunc(#1,#2,#3)
15732 @end example
15734 @noindent
15735 but this isn't very elegant.  To match variable numbers of items,
15736 Calc uses some notations inspired regular expressions and the
15737 ``extended BNF'' style used by some language designers.
15739 @example
15740 foo ( @{ # @}*, ) := apply(myfunc,#1)
15741 @end example
15743 The token @samp{@{} introduces a repeated or optional portion.
15744 One of the three tokens @samp{@}*}, @samp{@}+}, or @samp{@}?}
15745 ends the portion.  These will match zero or more, one or more,
15746 or zero or one copies of the enclosed pattern, respectively.
15747 In addition, @samp{@}*} and @samp{@}+} can be followed by a
15748 separator token (with no space in between, as shown above).
15749 Thus @samp{@{ # @}*,} matches nothing, or one expression, or
15750 several expressions separated by commas.
15752 A complete @samp{@{ ... @}} item matches as a vector of the
15753 items that matched inside it.  For example, the above rule will
15754 match @samp{foo(1,2,3)} to get @samp{apply(myfunc,[1,2,3])}.
15755 The Calc @code{apply} function takes a function name and a vector
15756 of arguments and builds a call to the function with those
15757 arguments, so the net result is the formula @samp{myfunc(1,2,3)}.
15759 If the body of a @samp{@{ ... @}} contains several @samp{#}s
15760 (or nested @samp{@{ ... @}} constructs), then the items will be
15761 strung together into the resulting vector.  If the body
15762 does not contain anything but literal tokens, the result will
15763 always be an empty vector.
15765 @example
15766 foo ( @{ # , # @}+, ) := bar(#1)
15767 foo ( @{ @{ # @}*, @}*; ) := matrix(#1)
15768 @end example
15770 @noindent
15771 will parse @samp{foo(1, 2, 3, 4)} as @samp{bar([1, 2, 3, 4])}, and
15772 @samp{foo(1, 2; 3, 4)} as @samp{matrix([[1, 2], [3, 4]])}.  Also, after
15773 some thought it's easy to see how this pair of rules will parse
15774 @samp{foo(1, 2, 3)} as @samp{matrix([[1, 2, 3]])}, since the first
15775 rule will only match an even number of arguments.  The rule
15777 @example
15778 foo ( # @{ , # , # @}? ) := bar(#1,#2)
15779 @end example
15781 @noindent
15782 will parse @samp{foo(2,3,4)} as @samp{bar(2,[3,4])}, and
15783 @samp{foo(2)} as @samp{bar(2,[])}.
15785 The notation @samp{@{ ... @}?.} (note the trailing period) works
15786 just the same as regular @samp{@{ ... @}?}, except that it does not
15787 count as an argument; the following two rules are equivalent:
15789 @example
15790 foo ( # , @{ also @}? # ) := bar(#1,#3)
15791 foo ( # , @{ also @}?. # ) := bar(#1,#2)
15792 @end example
15794 @noindent
15795 Note that in the first case the optional text counts as @samp{#2},
15796 which will always be an empty vector, but in the second case no
15797 empty vector is produced.
15799 Another variant is @samp{@{ ... @}?$}, which means the body is
15800 optional only at the end of the input formula.  All built-in syntax
15801 rules in Calc use this for closing delimiters, so that during
15802 algebraic entry you can type @kbd{[sqrt(2), sqrt(3 @key{RET}}, omitting
15803 the closing parenthesis and bracket.  Calc does this automatically
15804 for trailing @samp{)}, @samp{]}, and @samp{>} tokens in syntax
15805 rules, but you can use @samp{@{ ... @}?$} explicitly to get
15806 this effect with any token (such as @samp{"@}"} or @samp{end}).
15807 Like @samp{@{ ... @}?.}, this notation does not count as an
15808 argument.  Conversely, you can use quotes, as in @samp{")"}, to
15809 prevent a closing-delimiter token from being automatically treated
15810 as optional.
15812 Calc's parser does not have full backtracking, which means some
15813 patterns will not work as you might expect:
15815 @example
15816 foo ( @{ # , @}? # , # ) := bar(#1,#2,#3)
15817 @end example
15819 @noindent
15820 Here we are trying to make the first argument optional, so that
15821 @samp{foo(2,3)} parses as @samp{bar([],2,3)}.  Unfortunately, Calc
15822 first tries to match @samp{2,} against the optional part of the
15823 pattern, finds a match, and so goes ahead to match the rest of the
15824 pattern.  Later on it will fail to match the second comma, but it
15825 doesn't know how to go back and try the other alternative at that
15826 point.  One way to get around this would be to use two rules:
15828 @example
15829 foo ( # , # , # ) := bar([#1],#2,#3)
15830 foo ( # , # ) := bar([],#1,#2)
15831 @end example
15833 More precisely, when Calc wants to match an optional or repeated
15834 part of a pattern, it scans forward attempting to match that part.
15835 If it reaches the end of the optional part without failing, it
15836 ``finalizes'' its choice and proceeds.  If it fails, though, it
15837 backs up and tries the other alternative.  Thus Calc has ``partial''
15838 backtracking.  A fully backtracking parser would go on to make sure
15839 the rest of the pattern matched before finalizing the choice.
15841 @node Conditional Syntax Rules, , Advanced Syntax Patterns, Syntax Tables
15842 @subsubsection Conditional Syntax Rules
15844 @noindent
15845 It is possible to attach a @dfn{condition} to a syntax rule.  For
15846 example, the rules
15848 @example
15849 foo ( # ) := ifoo(#1) :: integer(#1)
15850 foo ( # ) := gfoo(#1)
15851 @end example
15853 @noindent
15854 will parse @samp{foo(3)} as @samp{ifoo(3)}, but will parse
15855 @samp{foo(3.5)} and @samp{foo(x)} as calls to @code{gfoo}.  Any
15856 number of conditions may be attached; all must be true for the
15857 rule to succeed.  A condition is ``true'' if it evaluates to a
15858 nonzero number.  @xref{Logical Operations}, for a list of Calc
15859 functions like @code{integer} that perform logical tests.
15861 The exact sequence of events is as follows:  When Calc tries a
15862 rule, it first matches the pattern as usual.  It then substitutes
15863 @samp{#1}, @samp{#2}, etc., in the conditions, if any.  Next, the
15864 conditions are simplified and evaluated in order from left to right,
15865 as if by the @w{@kbd{a s}} algebra command (@pxref{Simplifying Formulas}).
15866 Each result is true if it is a nonzero number, or an expression
15867 that can be proven to be nonzero (@pxref{Declarations}).  If the
15868 results of all conditions are true, the expression (such as
15869 @samp{ifoo(#1)}) has its @samp{#}s substituted, and that is the
15870 result of the parse.  If the result of any condition is false, Calc
15871 goes on to try the next rule in the syntax table.
15873 Syntax rules also support @code{let} conditions, which operate in
15874 exactly the same way as they do in algebraic rewrite rules.
15875 @xref{Other Features of Rewrite Rules}, for details.  A @code{let}
15876 condition is always true, but as a side effect it defines a
15877 variable which can be used in later conditions, and also in the
15878 expression after the @samp{:=} sign:
15880 @example
15881 foo ( # ) := hifoo(x) :: let(x := #1 + 0.5) :: dnumint(x)
15882 @end example
15884 @noindent
15885 The @code{dnumint} function tests if a value is numerically an
15886 integer, i.e., either a true integer or an integer-valued float.
15887 This rule will parse @code{foo} with a half-integer argument,
15888 like @samp{foo(3.5)}, to a call like @samp{hifoo(4.)}.
15890 The lefthand side of a syntax rule @code{let} must be a simple
15891 variable, not the arbitrary pattern that is allowed in rewrite
15892 rules.
15894 The @code{matches} function is also treated specially in syntax
15895 rule conditions (again, in the same way as in rewrite rules).
15896 @xref{Matching Commands}.  If the matching pattern contains
15897 meta-variables, then those meta-variables may be used in later
15898 conditions and in the result expression.  The arguments to
15899 @code{matches} are not evaluated in this situation.
15901 @example
15902 sum ( # , # ) := sum(#1,a,b,c) :: matches(#2, a=[b..c])
15903 @end example
15905 @noindent
15906 This is another way to implement the Maple mode @code{sum} notation.
15907 In this approach, we allow @samp{#2} to equal the whole expression
15908 @samp{i=1..10}.  Then, we use @code{matches} to break it apart into
15909 its components.  If the expression turns out not to match the pattern,
15910 the syntax rule will fail.  Note that @kbd{Z S} always uses Calc's
15911 Normal language mode for editing expressions in syntax rules, so we
15912 must use regular Calc notation for the interval @samp{[b..c]} that
15913 will correspond to the Maple mode interval @samp{1..10}.
15915 @node Modes Variable, Calc Mode Line, Language Modes, Mode Settings
15916 @section The @code{Modes} Variable
15918 @noindent
15919 @kindex m g
15920 @pindex calc-get-modes
15921 The @kbd{m g} (@code{calc-get-modes}) command pushes onto the stack
15922 a vector of numbers that describes the various mode settings that
15923 are in effect.  With a numeric prefix argument, it pushes only the
15924 @var{n}th mode, i.e., the @var{n}th element of this vector.  Keyboard
15925 macros can use the @kbd{m g} command to modify their behavior based
15926 on the current mode settings.
15928 @cindex @code{Modes} variable
15929 @vindex Modes
15930 The modes vector is also available in the special variable
15931 @code{Modes}.  In other words, @kbd{m g} is like @kbd{s r Modes @key{RET}}.
15932 It will not work to store into this variable; in fact, if you do,
15933 @code{Modes} will cease to track the current modes.  (The @kbd{m g}
15934 command will continue to work, however.)
15936 In general, each number in this vector is suitable as a numeric
15937 prefix argument to the associated mode-setting command.  (Recall
15938 that the @kbd{~} key takes a number from the stack and gives it as
15939 a numeric prefix to the next command.)
15941 The elements of the modes vector are as follows:
15943 @enumerate
15944 @item
15945 Current precision.  Default is 12; associated command is @kbd{p}.
15947 @item
15948 Binary word size.  Default is 32; associated command is @kbd{b w}.
15950 @item
15951 Stack size (not counting the value about to be pushed by @kbd{m g}).
15952 This is zero if @kbd{m g} is executed with an empty stack.
15954 @item
15955 Number radix.  Default is 10; command is @kbd{d r}.
15957 @item
15958 Floating-point format.  This is the number of digits, plus the
15959 constant 0 for normal notation, 10000 for scientific notation,
15960 20000 for engineering notation, or 30000 for fixed-point notation.
15961 These codes are acceptable as prefix arguments to the @kbd{d n}
15962 command, but note that this may lose information:  For example,
15963 @kbd{d s} and @kbd{C-u 12 d s} have similar (but not quite
15964 identical) effects if the current precision is 12, but they both
15965 produce a code of 10012, which will be treated by @kbd{d n} as
15966 @kbd{C-u 12 d s}.  If the precision then changes, the float format
15967 will still be frozen at 12 significant figures.
15969 @item
15970 Angular mode.  Default is 1 (degrees).  Other values are 2 (radians)
15971 and 3 (HMS).  The @kbd{m d} command accepts these prefixes.
15973 @item
15974 Symbolic mode.  Value is 0 or 1; default is 0.  Command is @kbd{m s}.
15976 @item
15977 Fraction mode.  Value is 0 or 1; default is 0.  Command is @kbd{m f}.
15979 @item
15980 Polar mode.  Value is 0 (rectangular) or 1 (polar); default is 0.
15981 Command is @kbd{m p}.
15983 @item
15984 Matrix/Scalar mode.  Default value is @mathit{-1}.  Value is 0 for Scalar
15985 mode, @mathit{-2} for Matrix mode, @mathit{-3} for square Matrix mode,
15986 or @var{N} for  
15987 @texline @math{N\times N}
15988 @infoline @var{N}x@var{N} 
15989 Matrix mode.  Command is @kbd{m v}.
15991 @item
15992 Simplification mode.  Default is 1.  Value is @mathit{-1} for off (@kbd{m O}),
15993 0 for @kbd{m N}, 2 for @kbd{m B}, 3 for @kbd{m A}, 4 for @kbd{m E},
15994 or 5 for @w{@kbd{m U}}.  The @kbd{m D} command accepts these prefixes.
15996 @item
15997 Infinite mode.  Default is @mathit{-1} (off).  Value is 1 if the mode is on,
15998 or 0 if the mode is on with positive zeros.  Command is @kbd{m i}.
15999 @end enumerate
16001 For example, the sequence @kbd{M-1 m g @key{RET} 2 + ~ p} increases the
16002 precision by two, leaving a copy of the old precision on the stack.
16003 Later, @kbd{~ p} will restore the original precision using that
16004 stack value.  (This sequence might be especially useful inside a
16005 keyboard macro.)
16007 As another example, @kbd{M-3 m g 1 - ~ @key{DEL}} deletes all but the
16008 oldest (bottommost) stack entry.
16010 Yet another example:  The HP-48 ``round'' command rounds a number
16011 to the current displayed precision.  You could roughly emulate this
16012 in Calc with the sequence @kbd{M-5 m g 10000 % ~ c c}.  (This
16013 would not work for fixed-point mode, but it wouldn't be hard to
16014 do a full emulation with the help of the @kbd{Z [} and @kbd{Z ]}
16015 programming commands.  @xref{Conditionals in Macros}.)
16017 @node Calc Mode Line, , Modes Variable, Mode Settings
16018 @section The Calc Mode Line
16020 @noindent
16021 @cindex Mode line indicators
16022 This section is a summary of all symbols that can appear on the
16023 Calc mode line, the highlighted bar that appears under the Calc
16024 stack window (or under an editing window in Embedded mode).
16026 The basic mode line format is:
16028 @example
16029 --%%-Calc: 12 Deg @var{other modes}       (Calculator)
16030 @end example
16032 The @samp{%%} is the Emacs symbol for ``read-only''; it shows that
16033 regular Emacs commands are not allowed to edit the stack buffer
16034 as if it were text.
16036 The word @samp{Calc:} changes to @samp{CalcEmbed:} if Embedded mode
16037 is enabled.  The words after this describe the various Calc modes
16038 that are in effect.
16040 The first mode is always the current precision, an integer.
16041 The second mode is always the angular mode, either @code{Deg},
16042 @code{Rad}, or @code{Hms}.
16044 Here is a complete list of the remaining symbols that can appear
16045 on the mode line:
16047 @table @code
16048 @item Alg
16049 Algebraic mode (@kbd{m a}; @pxref{Algebraic Entry}).
16051 @item Alg[(
16052 Incomplete algebraic mode (@kbd{C-u m a}).
16054 @item Alg*
16055 Total algebraic mode (@kbd{m t}).
16057 @item Symb
16058 Symbolic mode (@kbd{m s}; @pxref{Symbolic Mode}).
16060 @item Matrix
16061 Matrix mode (@kbd{m v}; @pxref{Matrix Mode}).
16063 @item Matrix@var{n}
16064 Dimensioned Matrix mode (@kbd{C-u @var{n} m v}; @pxref{Matrix Mode}).
16066 @item SqMatrix
16067 Square Matrix mode (@kbd{C-u m v}; @pxref{Matrix Mode}).
16069 @item Scalar
16070 Scalar mode (@kbd{m v}; @pxref{Matrix Mode}).
16072 @item Polar
16073 Polar complex mode (@kbd{m p}; @pxref{Polar Mode}).
16075 @item Frac
16076 Fraction mode (@kbd{m f}; @pxref{Fraction Mode}).
16078 @item Inf
16079 Infinite mode (@kbd{m i}; @pxref{Infinite Mode}).
16081 @item +Inf
16082 Positive Infinite mode (@kbd{C-u 0 m i}).
16084 @item NoSimp
16085 Default simplifications off (@kbd{m O}; @pxref{Simplification Modes}).
16087 @item NumSimp
16088 Default simplifications for numeric arguments only (@kbd{m N}).
16090 @item BinSimp@var{w}
16091 Binary-integer simplification mode; word size @var{w} (@kbd{m B}, @kbd{b w}).
16093 @item AlgSimp
16094 Algebraic simplification mode (@kbd{m A}).
16096 @item ExtSimp
16097 Extended algebraic simplification mode (@kbd{m E}).
16099 @item UnitSimp
16100 Units simplification mode (@kbd{m U}).
16102 @item Bin
16103 Current radix is 2 (@kbd{d 2}; @pxref{Radix Modes}).
16105 @item Oct
16106 Current radix is 8 (@kbd{d 8}).
16108 @item Hex
16109 Current radix is 16 (@kbd{d 6}).
16111 @item Radix@var{n}
16112 Current radix is @var{n} (@kbd{d r}).
16114 @item Zero
16115 Leading zeros (@kbd{d z}; @pxref{Radix Modes}).
16117 @item Big
16118 Big language mode (@kbd{d B}; @pxref{Normal Language Modes}).
16120 @item Flat
16121 One-line normal language mode (@kbd{d O}).
16123 @item Unform
16124 Unformatted language mode (@kbd{d U}).
16126 @item C
16127 C language mode (@kbd{d C}; @pxref{C FORTRAN Pascal}).
16129 @item Pascal
16130 Pascal language mode (@kbd{d P}).
16132 @item Fortran
16133 FORTRAN language mode (@kbd{d F}).
16135 @item TeX
16136 @TeX{} language mode (@kbd{d T}; @pxref{TeX and LaTeX Language Modes}).
16138 @item LaTeX
16139 La@TeX{} language mode (@kbd{d L}; @pxref{TeX and LaTeX Language Modes}).
16141 @item Eqn
16142 @dfn{Eqn} language mode (@kbd{d E}; @pxref{Eqn Language Mode}).
16144 @item Math
16145 Mathematica language mode (@kbd{d M}; @pxref{Mathematica Language Mode}).
16147 @item Maple
16148 Maple language mode (@kbd{d W}; @pxref{Maple Language Mode}).
16150 @item Norm@var{n}
16151 Normal float mode with @var{n} digits (@kbd{d n}; @pxref{Float Formats}).
16153 @item Fix@var{n}
16154 Fixed point mode with @var{n} digits after the point (@kbd{d f}).
16156 @item Sci
16157 Scientific notation mode (@kbd{d s}).
16159 @item Sci@var{n}
16160 Scientific notation with @var{n} digits (@kbd{d s}).
16162 @item Eng
16163 Engineering notation mode (@kbd{d e}).
16165 @item Eng@var{n}
16166 Engineering notation with @var{n} digits (@kbd{d e}).
16168 @item Left@var{n}
16169 Left-justified display indented by @var{n} (@kbd{d <}; @pxref{Justification}).
16171 @item Right
16172 Right-justified display (@kbd{d >}).
16174 @item Right@var{n}
16175 Right-justified display with width @var{n} (@kbd{d >}).
16177 @item Center
16178 Centered display (@kbd{d =}).
16180 @item Center@var{n}
16181 Centered display with center column @var{n} (@kbd{d =}).
16183 @item Wid@var{n}
16184 Line breaking with width @var{n} (@kbd{d b}; @pxref{Normal Language Modes}).
16186 @item Wide
16187 No line breaking (@kbd{d b}).
16189 @item Break
16190 Selections show deep structure (@kbd{j b}; @pxref{Making Selections}).
16192 @item Save
16193 Record modes in @file{~/.calc.el} (@kbd{m R}; @pxref{General Mode Commands}).
16195 @item Local
16196 Record modes in Embedded buffer (@kbd{m R}).
16198 @item LocEdit
16199 Record modes as editing-only in Embedded buffer (@kbd{m R}).
16201 @item LocPerm
16202 Record modes as permanent-only in Embedded buffer (@kbd{m R}).
16204 @item Global
16205 Record modes as global in Embedded buffer (@kbd{m R}).
16207 @item Manual
16208 Automatic recomputation turned off (@kbd{m C}; @pxref{Automatic
16209 Recomputation}).
16211 @item Graph
16212 GNUPLOT process is alive in background (@pxref{Graphics}).
16214 @item Sel
16215 Top-of-stack has a selection (Embedded only; @pxref{Making Selections}).
16217 @item Dirty
16218 The stack display may not be up-to-date (@pxref{Display Modes}).
16220 @item Inv
16221 ``Inverse'' prefix was pressed (@kbd{I}; @pxref{Inverse and Hyperbolic}).
16223 @item Hyp
16224 ``Hyperbolic'' prefix was pressed (@kbd{H}).
16226 @item Keep
16227 ``Keep-arguments'' prefix was pressed (@kbd{K}).
16229 @item Narrow
16230 Stack is truncated (@kbd{d t}; @pxref{Truncating the Stack}).
16231 @end table
16233 In addition, the symbols @code{Active} and @code{~Active} can appear
16234 as minor modes on an Embedded buffer's mode line.  @xref{Embedded Mode}.
16236 @node Arithmetic, Scientific Functions, Mode Settings, Top
16237 @chapter Arithmetic Functions
16239 @noindent
16240 This chapter describes the Calc commands for doing simple calculations
16241 on numbers, such as addition, absolute value, and square roots.  These
16242 commands work by removing the top one or two values from the stack,
16243 performing the desired operation, and pushing the result back onto the
16244 stack.  If the operation cannot be performed, the result pushed is a
16245 formula instead of a number, such as @samp{2/0} (because division by zero
16246 is invalid) or @samp{sqrt(x)} (because the argument @samp{x} is a formula).
16248 Most of the commands described here can be invoked by a single keystroke.
16249 Some of the more obscure ones are two-letter sequences beginning with
16250 the @kbd{f} (``functions'') prefix key.
16252 @xref{Prefix Arguments}, for a discussion of the effect of numeric
16253 prefix arguments on commands in this chapter which do not otherwise
16254 interpret a prefix argument.
16256 @menu
16257 * Basic Arithmetic::
16258 * Integer Truncation::
16259 * Complex Number Functions::
16260 * Conversions::
16261 * Date Arithmetic::
16262 * Financial Functions::
16263 * Binary Functions::
16264 @end menu
16266 @node Basic Arithmetic, Integer Truncation, Arithmetic, Arithmetic
16267 @section Basic Arithmetic
16269 @noindent
16270 @kindex +
16271 @pindex calc-plus
16272 @ignore
16273 @mindex @null
16274 @end ignore
16275 @tindex +
16276 The @kbd{+} (@code{calc-plus}) command adds two numbers.  The numbers may
16277 be any of the standard Calc data types.  The resulting sum is pushed back
16278 onto the stack.
16280 If both arguments of @kbd{+} are vectors or matrices (of matching dimensions),
16281 the result is a vector or matrix sum.  If one argument is a vector and the
16282 other a scalar (i.e., a non-vector), the scalar is added to each of the
16283 elements of the vector to form a new vector.  If the scalar is not a
16284 number, the operation is left in symbolic form:  Suppose you added @samp{x}
16285 to the vector @samp{[1,2]}.  You may want the result @samp{[1+x,2+x]}, or
16286 you may plan to substitute a 2-vector for @samp{x} in the future.  Since
16287 the Calculator can't tell which interpretation you want, it makes the
16288 safest assumption.  @xref{Reducing and Mapping}, for a way to add @samp{x}
16289 to every element of a vector.
16291 If either argument of @kbd{+} is a complex number, the result will in general
16292 be complex.  If one argument is in rectangular form and the other polar,
16293 the current Polar mode determines the form of the result.  If Symbolic
16294 mode is enabled, the sum may be left as a formula if the necessary
16295 conversions for polar addition are non-trivial.
16297 If both arguments of @kbd{+} are HMS forms, the forms are added according to
16298 the usual conventions of hours-minutes-seconds notation.  If one argument
16299 is an HMS form and the other is a number, that number is converted from
16300 degrees or radians (depending on the current Angular mode) to HMS format
16301 and then the two HMS forms are added.
16303 If one argument of @kbd{+} is a date form, the other can be either a
16304 real number, which advances the date by a certain number of days, or
16305 an HMS form, which advances the date by a certain amount of time.
16306 Subtracting two date forms yields the number of days between them.
16307 Adding two date forms is meaningless, but Calc interprets it as the
16308 subtraction of one date form and the negative of the other.  (The
16309 negative of a date form can be understood by remembering that dates
16310 are stored as the number of days before or after Jan 1, 1 AD.)
16312 If both arguments of @kbd{+} are error forms, the result is an error form
16313 with an appropriately computed standard deviation.  If one argument is an
16314 error form and the other is a number, the number is taken to have zero error.
16315 Error forms may have symbolic formulas as their mean and/or error parts;
16316 adding these will produce a symbolic error form result.  However, adding an
16317 error form to a plain symbolic formula (as in @samp{(a +/- b) + c}) will not
16318 work, for the same reasons just mentioned for vectors.  Instead you must
16319 write @samp{(a +/- b) + (c +/- 0)}.
16321 If both arguments of @kbd{+} are modulo forms with equal values of @expr{M},
16322 or if one argument is a modulo form and the other a plain number, the
16323 result is a modulo form which represents the sum, modulo @expr{M}, of
16324 the two values.
16326 If both arguments of @kbd{+} are intervals, the result is an interval
16327 which describes all possible sums of the possible input values.  If
16328 one argument is a plain number, it is treated as the interval
16329 @w{@samp{[x ..@: x]}}.
16331 If one argument of @kbd{+} is an infinity and the other is not, the
16332 result is that same infinity.  If both arguments are infinite and in
16333 the same direction, the result is the same infinity, but if they are
16334 infinite in different directions the result is @code{nan}.
16336 @kindex -
16337 @pindex calc-minus
16338 @ignore
16339 @mindex @null
16340 @end ignore
16341 @tindex -
16342 The @kbd{-} (@code{calc-minus}) command subtracts two values.  The top
16343 number on the stack is subtracted from the one behind it, so that the
16344 computation @kbd{5 @key{RET} 2 -} produces 3, not @mathit{-3}.  All options
16345 available for @kbd{+} are available for @kbd{-} as well.
16347 @kindex *
16348 @pindex calc-times
16349 @ignore
16350 @mindex @null
16351 @end ignore
16352 @tindex *
16353 The @kbd{*} (@code{calc-times}) command multiplies two numbers.  If one
16354 argument is a vector and the other a scalar, the scalar is multiplied by
16355 the elements of the vector to produce a new vector.  If both arguments
16356 are vectors, the interpretation depends on the dimensions of the
16357 vectors:  If both arguments are matrices, a matrix multiplication is
16358 done.  If one argument is a matrix and the other a plain vector, the
16359 vector is interpreted as a row vector or column vector, whichever is
16360 dimensionally correct.  If both arguments are plain vectors, the result
16361 is a single scalar number which is the dot product of the two vectors.
16363 If one argument of @kbd{*} is an HMS form and the other a number, the
16364 HMS form is multiplied by that amount.  It is an error to multiply two
16365 HMS forms together, or to attempt any multiplication involving date
16366 forms.  Error forms, modulo forms, and intervals can be multiplied;
16367 see the comments for addition of those forms.  When two error forms
16368 or intervals are multiplied they are considered to be statistically
16369 independent; thus, @samp{[-2 ..@: 3] * [-2 ..@: 3]} is @samp{[-6 ..@: 9]},
16370 whereas @w{@samp{[-2 ..@: 3] ^ 2}} is @samp{[0 ..@: 9]}.
16372 @kindex /
16373 @pindex calc-divide
16374 @ignore
16375 @mindex @null
16376 @end ignore
16377 @tindex /
16378 The @kbd{/} (@code{calc-divide}) command divides two numbers.  When
16379 dividing a scalar @expr{B} by a square matrix @expr{A}, the computation
16380 performed is @expr{B} times the inverse of @expr{A}.  This also occurs
16381 if @expr{B} is itself a vector or matrix, in which case the effect is
16382 to solve the set of linear equations represented by @expr{B}.  If @expr{B}
16383 is a matrix with the same number of rows as @expr{A}, or a plain vector
16384 (which is interpreted here as a column vector), then the equation
16385 @expr{A X = B} is solved for the vector or matrix @expr{X}.  Otherwise,
16386 if @expr{B} is a non-square matrix with the same number of @emph{columns}
16387 as @expr{A}, the equation @expr{X A = B} is solved.  If you wish a vector
16388 @expr{B} to be interpreted as a row vector to be solved as @expr{X A = B},
16389 make it into a one-row matrix with @kbd{C-u 1 v p} first.  To force a
16390 left-handed solution with a square matrix @expr{B}, transpose @expr{A} and
16391 @expr{B} before dividing, then transpose the result.
16393 HMS forms can be divided by real numbers or by other HMS forms.  Error
16394 forms can be divided in any combination of ways.  Modulo forms where both
16395 values and the modulo are integers can be divided to get an integer modulo
16396 form result.  Intervals can be divided; dividing by an interval that
16397 encompasses zero or has zero as a limit will result in an infinite
16398 interval.
16400 @kindex ^
16401 @pindex calc-power
16402 @ignore
16403 @mindex @null
16404 @end ignore
16405 @tindex ^
16406 The @kbd{^} (@code{calc-power}) command raises a number to a power.  If
16407 the power is an integer, an exact result is computed using repeated
16408 multiplications.  For non-integer powers, Calc uses Newton's method or
16409 logarithms and exponentials.  Square matrices can be raised to integer
16410 powers.  If either argument is an error (or interval or modulo) form,
16411 the result is also an error (or interval or modulo) form.
16413 @kindex I ^
16414 @tindex nroot
16415 If you press the @kbd{I} (inverse) key first, the @kbd{I ^} command
16416 computes an Nth root:  @kbd{125 @key{RET} 3 I ^} computes the number 5.
16417 (This is entirely equivalent to @kbd{125 @key{RET} 1:3 ^}.)
16419 @kindex \
16420 @pindex calc-idiv
16421 @tindex idiv
16422 @ignore
16423 @mindex @null
16424 @end ignore
16425 @tindex \
16426 The @kbd{\} (@code{calc-idiv}) command divides two numbers on the stack
16427 to produce an integer result.  It is equivalent to dividing with
16428 @key{/}, then rounding down with @kbd{F} (@code{calc-floor}), only a bit
16429 more convenient and efficient.  Also, since it is an all-integer
16430 operation when the arguments are integers, it avoids problems that
16431 @kbd{/ F} would have with floating-point roundoff.
16433 @kindex %
16434 @pindex calc-mod
16435 @ignore
16436 @mindex @null
16437 @end ignore
16438 @tindex %
16439 The @kbd{%} (@code{calc-mod}) command performs a ``modulo'' (or ``remainder'')
16440 operation.  Mathematically, @samp{a%b = a - (a\b)*b}, and is defined
16441 for all real numbers @expr{a} and @expr{b} (except @expr{b=0}).  For
16442 positive @expr{b}, the result will always be between 0 (inclusive) and
16443 @expr{b} (exclusive).  Modulo does not work for HMS forms and error forms.
16444 If @expr{a} is a modulo form, its modulo is changed to @expr{b}, which
16445 must be positive real number.
16447 @kindex :
16448 @pindex calc-fdiv
16449 @tindex fdiv
16450 The @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command
16451 divides the two integers on the top of the stack to produce a fractional
16452 result.  This is a convenient shorthand for enabling Fraction mode (with
16453 @kbd{m f}) temporarily and using @samp{/}.  Note that during numeric entry
16454 the @kbd{:} key is interpreted as a fraction separator, so to divide 8 by 6
16455 you would have to type @kbd{8 @key{RET} 6 @key{RET} :}.  (Of course, in
16456 this case, it would be much easier simply to enter the fraction directly
16457 as @kbd{8:6 @key{RET}}!)
16459 @kindex n
16460 @pindex calc-change-sign
16461 The @kbd{n} (@code{calc-change-sign}) command negates the number on the top
16462 of the stack.  It works on numbers, vectors and matrices, HMS forms, date
16463 forms, error forms, intervals, and modulo forms.
16465 @kindex A
16466 @pindex calc-abs
16467 @tindex abs
16468 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the absolute
16469 value of a number.  The result of @code{abs} is always a nonnegative
16470 real number:  With a complex argument, it computes the complex magnitude.
16471 With a vector or matrix argument, it computes the Frobenius norm, i.e.,
16472 the square root of the sum of the squares of the absolute values of the
16473 elements.  The absolute value of an error form is defined by replacing
16474 the mean part with its absolute value and leaving the error part the same.
16475 The absolute value of a modulo form is undefined.  The absolute value of
16476 an interval is defined in the obvious way.
16478 @kindex f A
16479 @pindex calc-abssqr
16480 @tindex abssqr
16481 The @kbd{f A} (@code{calc-abssqr}) [@code{abssqr}] command computes the
16482 absolute value squared of a number, vector or matrix, or error form.
16484 @kindex f s
16485 @pindex calc-sign
16486 @tindex sign
16487 The @kbd{f s} (@code{calc-sign}) [@code{sign}] command returns 1 if its
16488 argument is positive, @mathit{-1} if its argument is negative, or 0 if its
16489 argument is zero.  In algebraic form, you can also write @samp{sign(a,x)}
16490 which evaluates to @samp{x * sign(a)}, i.e., either @samp{x}, @samp{-x}, or
16491 zero depending on the sign of @samp{a}.
16493 @kindex &
16494 @pindex calc-inv
16495 @tindex inv
16496 @cindex Reciprocal
16497 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
16498 reciprocal of a number, i.e., @expr{1 / x}.  Operating on a square
16499 matrix, it computes the inverse of that matrix.
16501 @kindex Q
16502 @pindex calc-sqrt
16503 @tindex sqrt
16504 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] command computes the square
16505 root of a number.  For a negative real argument, the result will be a
16506 complex number whose form is determined by the current Polar mode.
16508 @kindex f h
16509 @pindex calc-hypot
16510 @tindex hypot
16511 The @kbd{f h} (@code{calc-hypot}) [@code{hypot}] command computes the square
16512 root of the sum of the squares of two numbers.  That is, @samp{hypot(a,b)}
16513 is the length of the hypotenuse of a right triangle with sides @expr{a}
16514 and @expr{b}.  If the arguments are complex numbers, their squared
16515 magnitudes are used.
16517 @kindex f Q
16518 @pindex calc-isqrt
16519 @tindex isqrt
16520 The @kbd{f Q} (@code{calc-isqrt}) [@code{isqrt}] command computes the
16521 integer square root of an integer.  This is the true square root of the
16522 number, rounded down to an integer.  For example, @samp{isqrt(10)}
16523 produces 3.  Note that, like @kbd{\} [@code{idiv}], this uses exact
16524 integer arithmetic throughout to avoid roundoff problems.  If the input
16525 is a floating-point number or other non-integer value, this is exactly
16526 the same as @samp{floor(sqrt(x))}.
16528 @kindex f n
16529 @kindex f x
16530 @pindex calc-min
16531 @tindex min
16532 @pindex calc-max
16533 @tindex max
16534 The @kbd{f n} (@code{calc-min}) [@code{min}] and @kbd{f x} (@code{calc-max})
16535 [@code{max}] commands take the minimum or maximum of two real numbers,
16536 respectively.  These commands also work on HMS forms, date forms,
16537 intervals, and infinities.  (In algebraic expressions, these functions
16538 take any number of arguments and return the maximum or minimum among
16539 all the arguments.)
16541 @kindex f M
16542 @kindex f X
16543 @pindex calc-mant-part
16544 @tindex mant
16545 @pindex calc-xpon-part
16546 @tindex xpon
16547 The @kbd{f M} (@code{calc-mant-part}) [@code{mant}] function extracts
16548 the ``mantissa'' part @expr{m} of its floating-point argument; @kbd{f X}
16549 (@code{calc-xpon-part}) [@code{xpon}] extracts the ``exponent'' part
16550 @expr{e}.  The original number is equal to 
16551 @texline @math{m \times 10^e},
16552 @infoline @expr{m * 10^e},
16553 where @expr{m} is in the interval @samp{[1.0 ..@: 10.0)} except that
16554 @expr{m=e=0} if the original number is zero.  For integers
16555 and fractions, @code{mant} returns the number unchanged and @code{xpon}
16556 returns zero.  The @kbd{v u} (@code{calc-unpack}) command can also be
16557 used to ``unpack'' a floating-point number; this produces an integer
16558 mantissa and exponent, with the constraint that the mantissa is not
16559 a multiple of ten (again except for the @expr{m=e=0} case).
16561 @kindex f S
16562 @pindex calc-scale-float
16563 @tindex scf
16564 The @kbd{f S} (@code{calc-scale-float}) [@code{scf}] function scales a number
16565 by a given power of ten.  Thus, @samp{scf(mant(x), xpon(x)) = x} for any
16566 real @samp{x}.  The second argument must be an integer, but the first
16567 may actually be any numeric value.  For example, @samp{scf(5,-2) = 0.05}
16568 or @samp{1:20} depending on the current Fraction mode.
16570 @kindex f [
16571 @kindex f ]
16572 @pindex calc-decrement
16573 @pindex calc-increment
16574 @tindex decr
16575 @tindex incr
16576 The @kbd{f [} (@code{calc-decrement}) [@code{decr}] and @kbd{f ]}
16577 (@code{calc-increment}) [@code{incr}] functions decrease or increase
16578 a number by one unit.  For integers, the effect is obvious.  For
16579 floating-point numbers, the change is by one unit in the last place.
16580 For example, incrementing @samp{12.3456} when the current precision
16581 is 6 digits yields @samp{12.3457}.  If the current precision had been
16582 8 digits, the result would have been @samp{12.345601}.  Incrementing
16583 @samp{0.0} produces 
16584 @texline @math{10^{-p}},
16585 @infoline @expr{10^-p}, 
16586 where @expr{p} is the current
16587 precision.  These operations are defined only on integers and floats.
16588 With numeric prefix arguments, they change the number by @expr{n} units.
16590 Note that incrementing followed by decrementing, or vice-versa, will
16591 almost but not quite always cancel out.  Suppose the precision is
16592 6 digits and the number @samp{9.99999} is on the stack.  Incrementing
16593 will produce @samp{10.0000}; decrementing will produce @samp{9.9999}.
16594 One digit has been dropped.  This is an unavoidable consequence of the
16595 way floating-point numbers work.
16597 Incrementing a date/time form adjusts it by a certain number of seconds.
16598 Incrementing a pure date form adjusts it by a certain number of days.
16600 @node Integer Truncation, Complex Number Functions, Basic Arithmetic, Arithmetic
16601 @section Integer Truncation
16603 @noindent
16604 There are four commands for truncating a real number to an integer,
16605 differing mainly in their treatment of negative numbers.  All of these
16606 commands have the property that if the argument is an integer, the result
16607 is the same integer.  An integer-valued floating-point argument is converted
16608 to integer form.
16610 If you press @kbd{H} (@code{calc-hyperbolic}) first, the result will be
16611 expressed as an integer-valued floating-point number.
16613 @cindex Integer part of a number
16614 @kindex F
16615 @pindex calc-floor
16616 @tindex floor
16617 @tindex ffloor
16618 @ignore
16619 @mindex @null
16620 @end ignore
16621 @kindex H F
16622 The @kbd{F} (@code{calc-floor}) [@code{floor} or @code{ffloor}] command
16623 truncates a real number to the next lower integer, i.e., toward minus
16624 infinity.  Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces
16625 @mathit{-4}.
16627 @kindex I F
16628 @pindex calc-ceiling
16629 @tindex ceil
16630 @tindex fceil
16631 @ignore
16632 @mindex @null
16633 @end ignore
16634 @kindex H I F
16635 The @kbd{I F} (@code{calc-ceiling}) [@code{ceil} or @code{fceil}]
16636 command truncates toward positive infinity.  Thus @kbd{3.6 I F} produces
16637 4, and @kbd{_3.6 I F} produces @mathit{-3}.
16639 @kindex R
16640 @pindex calc-round
16641 @tindex round
16642 @tindex fround
16643 @ignore
16644 @mindex @null
16645 @end ignore
16646 @kindex H R
16647 The @kbd{R} (@code{calc-round}) [@code{round} or @code{fround}] command
16648 rounds to the nearest integer.  When the fractional part is .5 exactly,
16649 this command rounds away from zero.  (All other rounding in the
16650 Calculator uses this convention as well.)  Thus @kbd{3.5 R} produces 4
16651 but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @mathit{-4}.
16653 @kindex I R
16654 @pindex calc-trunc
16655 @tindex trunc
16656 @tindex ftrunc
16657 @ignore
16658 @mindex @null
16659 @end ignore
16660 @kindex H I R
16661 The @kbd{I R} (@code{calc-trunc}) [@code{trunc} or @code{ftrunc}]
16662 command truncates toward zero.  In other words, it ``chops off''
16663 everything after the decimal point.  Thus @kbd{3.6 I R} produces 3 and
16664 @kbd{_3.6 I R} produces @mathit{-3}.
16666 These functions may not be applied meaningfully to error forms, but they
16667 do work for intervals.  As a convenience, applying @code{floor} to a
16668 modulo form floors the value part of the form.  Applied to a vector,
16669 these functions operate on all elements of the vector one by one.
16670 Applied to a date form, they operate on the internal numerical
16671 representation of dates, converting a date/time form into a pure date.
16673 @ignore
16674 @starindex
16675 @end ignore
16676 @tindex rounde
16677 @ignore
16678 @starindex
16679 @end ignore
16680 @tindex roundu
16681 @ignore
16682 @starindex
16683 @end ignore
16684 @tindex frounde
16685 @ignore
16686 @starindex
16687 @end ignore
16688 @tindex froundu
16689 There are two more rounding functions which can only be entered in
16690 algebraic notation.  The @code{roundu} function is like @code{round}
16691 except that it rounds up, toward plus infinity, when the fractional
16692 part is .5.  This distinction matters only for negative arguments.
16693 Also, @code{rounde} rounds to an even number in the case of a tie,
16694 rounding up or down as necessary.  For example, @samp{rounde(3.5)} and
16695 @samp{rounde(4.5)} both return 4, but @samp{rounde(5.5)} returns 6.
16696 The advantage of round-to-even is that the net error due to rounding
16697 after a long calculation tends to cancel out to zero.  An important
16698 subtle point here is that the number being fed to @code{rounde} will
16699 already have been rounded to the current precision before @code{rounde}
16700 begins.  For example, @samp{rounde(2.500001)} with a current precision
16701 of 6 will incorrectly, or at least surprisingly, yield 2 because the
16702 argument will first have been rounded down to @expr{2.5} (which
16703 @code{rounde} sees as an exact tie between 2 and 3).
16705 Each of these functions, when written in algebraic formulas, allows
16706 a second argument which specifies the number of digits after the
16707 decimal point to keep.  For example, @samp{round(123.4567, 2)} will
16708 produce the answer 123.46, and @samp{round(123.4567, -1)} will
16709 produce 120 (i.e., the cutoff is one digit to the @emph{left} of
16710 the decimal point).  A second argument of zero is equivalent to
16711 no second argument at all.
16713 @cindex Fractional part of a number
16714 To compute the fractional part of a number (i.e., the amount which, when
16715 added to `@tfn{floor(}@var{n}@tfn{)}', will produce @var{n}) just take @var{n}
16716 modulo 1 using the @code{%} command.
16718 Note also the @kbd{\} (integer quotient), @kbd{f I} (integer logarithm),
16719 and @kbd{f Q} (integer square root) commands, which are analogous to
16720 @kbd{/}, @kbd{B}, and @kbd{Q}, respectively, except that they take integer
16721 arguments and return the result rounded down to an integer.
16723 @node Complex Number Functions, Conversions, Integer Truncation, Arithmetic
16724 @section Complex Number Functions
16726 @noindent
16727 @kindex J
16728 @pindex calc-conj
16729 @tindex conj
16730 The @kbd{J} (@code{calc-conj}) [@code{conj}] command computes the
16731 complex conjugate of a number.  For complex number @expr{a+bi}, the
16732 complex conjugate is @expr{a-bi}.  If the argument is a real number,
16733 this command leaves it the same.  If the argument is a vector or matrix,
16734 this command replaces each element by its complex conjugate.
16736 @kindex G
16737 @pindex calc-argument
16738 @tindex arg
16739 The @kbd{G} (@code{calc-argument}) [@code{arg}] command computes the
16740 ``argument'' or polar angle of a complex number.  For a number in polar
16741 notation, this is simply the second component of the pair
16742 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'.
16743 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'.
16744 The result is expressed according to the current angular mode and will
16745 be in the range @mathit{-180} degrees (exclusive) to @mathit{+180} degrees
16746 (inclusive), or the equivalent range in radians.
16748 @pindex calc-imaginary
16749 The @code{calc-imaginary} command multiplies the number on the
16750 top of the stack by the imaginary number @expr{i = (0,1)}.  This
16751 command is not normally bound to a key in Calc, but it is available
16752 on the @key{IMAG} button in Keypad mode.
16754 @kindex f r
16755 @pindex calc-re
16756 @tindex re
16757 The @kbd{f r} (@code{calc-re}) [@code{re}] command replaces a complex number
16758 by its real part.  This command has no effect on real numbers.  (As an
16759 added convenience, @code{re} applied to a modulo form extracts
16760 the value part.)
16762 @kindex f i
16763 @pindex calc-im
16764 @tindex im
16765 The @kbd{f i} (@code{calc-im}) [@code{im}] command replaces a complex number
16766 by its imaginary part; real numbers are converted to zero.  With a vector
16767 or matrix argument, these functions operate element-wise.
16769 @ignore
16770 @mindex v p
16771 @end ignore
16772 @kindex v p (complex)
16773 @pindex calc-pack
16774 The @kbd{v p} (@code{calc-pack}) command can pack the top two numbers on
16775 the stack into a composite object such as a complex number.  With
16776 a prefix argument of @mathit{-1}, it produces a rectangular complex number;
16777 with an argument of @mathit{-2}, it produces a polar complex number.
16778 (Also, @pxref{Building Vectors}.)
16780 @ignore
16781 @mindex v u
16782 @end ignore
16783 @kindex v u (complex)
16784 @pindex calc-unpack
16785 The @kbd{v u} (@code{calc-unpack}) command takes the complex number
16786 (or other composite object) on the top of the stack and unpacks it
16787 into its separate components.
16789 @node Conversions, Date Arithmetic, Complex Number Functions, Arithmetic
16790 @section Conversions
16792 @noindent
16793 The commands described in this section convert numbers from one form
16794 to another; they are two-key sequences beginning with the letter @kbd{c}.
16796 @kindex c f
16797 @pindex calc-float
16798 @tindex pfloat
16799 The @kbd{c f} (@code{calc-float}) [@code{pfloat}] command converts the
16800 number on the top of the stack to floating-point form.  For example,
16801 @expr{23} is converted to @expr{23.0}, @expr{3:2} is converted to
16802 @expr{1.5}, and @expr{2.3} is left the same.  If the value is a composite
16803 object such as a complex number or vector, each of the components is
16804 converted to floating-point.  If the value is a formula, all numbers
16805 in the formula are converted to floating-point.  Note that depending
16806 on the current floating-point precision, conversion to floating-point
16807 format may lose information.
16809 As a special exception, integers which appear as powers or subscripts
16810 are not floated by @kbd{c f}.  If you really want to float a power,
16811 you can use a @kbd{j s} command to select the power followed by @kbd{c f}.
16812 Because @kbd{c f} cannot examine the formula outside of the selection,
16813 it does not notice that the thing being floated is a power.
16814 @xref{Selecting Subformulas}.
16816 The normal @kbd{c f} command is ``pervasive'' in the sense that it
16817 applies to all numbers throughout the formula.  The @code{pfloat}
16818 algebraic function never stays around in a formula; @samp{pfloat(a + 1)}
16819 changes to @samp{a + 1.0} as soon as it is evaluated.
16821 @kindex H c f
16822 @tindex float
16823 With the Hyperbolic flag, @kbd{H c f} [@code{float}] operates
16824 only on the number or vector of numbers at the top level of its
16825 argument.  Thus, @samp{float(1)} is 1.0, but @samp{float(a + 1)}
16826 is left unevaluated because its argument is not a number.
16828 You should use @kbd{H c f} if you wish to guarantee that the final
16829 value, once all the variables have been assigned, is a float; you
16830 would use @kbd{c f} if you wish to do the conversion on the numbers
16831 that appear right now.
16833 @kindex c F
16834 @pindex calc-fraction
16835 @tindex pfrac
16836 The @kbd{c F} (@code{calc-fraction}) [@code{pfrac}] command converts a
16837 floating-point number into a fractional approximation.  By default, it
16838 produces a fraction whose decimal representation is the same as the
16839 input number, to within the current precision.  You can also give a
16840 numeric prefix argument to specify a tolerance, either directly, or,
16841 if the prefix argument is zero, by using the number on top of the stack
16842 as the tolerance.  If the tolerance is a positive integer, the fraction
16843 is correct to within that many significant figures.  If the tolerance is
16844 a non-positive integer, it specifies how many digits fewer than the current
16845 precision to use.  If the tolerance is a floating-point number, the
16846 fraction is correct to within that absolute amount.
16848 @kindex H c F
16849 @tindex frac
16850 The @code{pfrac} function is pervasive, like @code{pfloat}.
16851 There is also a non-pervasive version, @kbd{H c F} [@code{frac}],
16852 which is analogous to @kbd{H c f} discussed above.
16854 @kindex c d
16855 @pindex calc-to-degrees
16856 @tindex deg
16857 The @kbd{c d} (@code{calc-to-degrees}) [@code{deg}] command converts a
16858 number into degrees form.  The value on the top of the stack may be an
16859 HMS form (interpreted as degrees-minutes-seconds), or a real number which
16860 will be interpreted in radians regardless of the current angular mode.
16862 @kindex c r
16863 @pindex calc-to-radians
16864 @tindex rad
16865 The @kbd{c r} (@code{calc-to-radians}) [@code{rad}] command converts an
16866 HMS form or angle in degrees into an angle in radians.
16868 @kindex c h
16869 @pindex calc-to-hms
16870 @tindex hms
16871 The @kbd{c h} (@code{calc-to-hms}) [@code{hms}] command converts a real
16872 number, interpreted according to the current angular mode, to an HMS
16873 form describing the same angle.  In algebraic notation, the @code{hms}
16874 function also accepts three arguments: @samp{hms(@var{h}, @var{m}, @var{s})}.
16875 (The three-argument version is independent of the current angular mode.)
16877 @pindex calc-from-hms
16878 The @code{calc-from-hms} command converts the HMS form on the top of the
16879 stack into a real number according to the current angular mode.
16881 @kindex c p
16882 @kindex I c p
16883 @pindex calc-polar
16884 @tindex polar
16885 @tindex rect
16886 The @kbd{c p} (@code{calc-polar}) command converts the complex number on
16887 the top of the stack from polar to rectangular form, or from rectangular
16888 to polar form, whichever is appropriate.  Real numbers are left the same.
16889 This command is equivalent to the @code{rect} or @code{polar}
16890 functions in algebraic formulas, depending on the direction of
16891 conversion.  (It uses @code{polar}, except that if the argument is
16892 already a polar complex number, it uses @code{rect} instead.  The
16893 @kbd{I c p} command always uses @code{rect}.)
16895 @kindex c c
16896 @pindex calc-clean
16897 @tindex pclean
16898 The @kbd{c c} (@code{calc-clean}) [@code{pclean}] command ``cleans'' the
16899 number on the top of the stack.  Floating point numbers are re-rounded
16900 according to the current precision.  Polar numbers whose angular
16901 components have strayed from the @mathit{-180} to @mathit{+180} degree range
16902 are normalized.  (Note that results will be undesirable if the current
16903 angular mode is different from the one under which the number was
16904 produced!)  Integers and fractions are generally unaffected by this
16905 operation.  Vectors and formulas are cleaned by cleaning each component
16906 number (i.e., pervasively).
16908 If the simplification mode is set below the default level, it is raised
16909 to the default level for the purposes of this command.  Thus, @kbd{c c}
16910 applies the default simplifications even if their automatic application
16911 is disabled.  @xref{Simplification Modes}.
16913 @cindex Roundoff errors, correcting
16914 A numeric prefix argument to @kbd{c c} sets the floating-point precision
16915 to that value for the duration of the command.  A positive prefix (of at
16916 least 3) sets the precision to the specified value; a negative or zero
16917 prefix decreases the precision by the specified amount.
16919 @kindex c 0-9
16920 @pindex calc-clean-num
16921 The keystroke sequences @kbd{c 0} through @kbd{c 9} are equivalent
16922 to @kbd{c c} with the corresponding negative prefix argument.  If roundoff
16923 errors have changed 2.0 into 1.999999, typing @kbd{c 1} to clip off one
16924 decimal place often conveniently does the trick.
16926 The @kbd{c c} command with a numeric prefix argument, and the @kbd{c 0}
16927 through @kbd{c 9} commands, also ``clip'' very small floating-point
16928 numbers to zero.  If the exponent is less than or equal to the negative
16929 of the specified precision, the number is changed to 0.0.  For example,
16930 if the current precision is 12, then @kbd{c 2} changes the vector
16931 @samp{[1e-8, 1e-9, 1e-10, 1e-11]} to @samp{[1e-8, 1e-9, 0, 0]}.
16932 Numbers this small generally arise from roundoff noise.
16934 If the numbers you are using really are legitimately this small,
16935 you should avoid using the @kbd{c 0} through @kbd{c 9} commands.
16936 (The plain @kbd{c c} command rounds to the current precision but
16937 does not clip small numbers.)
16939 One more property of @kbd{c 0} through @kbd{c 9}, and of @kbd{c c} with
16940 a prefix argument, is that integer-valued floats are converted to
16941 plain integers, so that @kbd{c 1} on @samp{[1., 1.5, 2., 2.5, 3.]}
16942 produces @samp{[1, 1.5, 2, 2.5, 3]}.  This is not done for huge
16943 numbers (@samp{1e100} is technically an integer-valued float, but
16944 you wouldn't want it automatically converted to a 100-digit integer).
16946 @kindex H c 0-9
16947 @kindex H c c
16948 @tindex clean
16949 With the Hyperbolic flag, @kbd{H c c} and @kbd{H c 0} through @kbd{H c 9}
16950 operate non-pervasively [@code{clean}].
16952 @node Date Arithmetic, Financial Functions, Conversions, Arithmetic
16953 @section Date Arithmetic
16955 @noindent
16956 @cindex Date arithmetic, additional functions
16957 The commands described in this section perform various conversions
16958 and calculations involving date forms (@pxref{Date Forms}).  They
16959 use the @kbd{t} (for time/date) prefix key followed by shifted
16960 letters.
16962 The simplest date arithmetic is done using the regular @kbd{+} and @kbd{-}
16963 commands.  In particular, adding a number to a date form advances the
16964 date form by a certain number of days; adding an HMS form to a date
16965 form advances the date by a certain amount of time; and subtracting two
16966 date forms produces a difference measured in days.  The commands
16967 described here provide additional, more specialized operations on dates.
16969 Many of these commands accept a numeric prefix argument; if you give
16970 plain @kbd{C-u} as the prefix, these commands will instead take the
16971 additional argument from the top of the stack.
16973 @menu
16974 * Date Conversions::
16975 * Date Functions::
16976 * Time Zones::
16977 * Business Days::
16978 @end menu
16980 @node Date Conversions, Date Functions, Date Arithmetic, Date Arithmetic
16981 @subsection Date Conversions
16983 @noindent
16984 @kindex t D
16985 @pindex calc-date
16986 @tindex date
16987 The @kbd{t D} (@code{calc-date}) [@code{date}] command converts a
16988 date form into a number, measured in days since Jan 1, 1 AD.  The
16989 result will be an integer if @var{date} is a pure date form, or a
16990 fraction or float if @var{date} is a date/time form.  Or, if its
16991 argument is a number, it converts this number into a date form.
16993 With a numeric prefix argument, @kbd{t D} takes that many objects
16994 (up to six) from the top of the stack and interprets them in one
16995 of the following ways:
16997 The @samp{date(@var{year}, @var{month}, @var{day})} function
16998 builds a pure date form out of the specified year, month, and
16999 day, which must all be integers.  @var{Year} is a year number,
17000 such as 1991 (@emph{not} the same as 91!).  @var{Month} must be
17001 an integer in the range 1 to 12; @var{day} must be in the range
17002 1 to 31.  If the specified month has fewer than 31 days and
17003 @var{day} is too large, the equivalent day in the following
17004 month will be used.
17006 The @samp{date(@var{month}, @var{day})} function builds a
17007 pure date form using the current year, as determined by the
17008 real-time clock.
17010 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hms})}
17011 function builds a date/time form using an @var{hms} form.
17013 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hour},
17014 @var{minute}, @var{second})} function builds a date/time form.
17015 @var{hour} should be an integer in the range 0 to 23;
17016 @var{minute} should be an integer in the range 0 to 59;
17017 @var{second} should be any real number in the range @samp{[0 .. 60)}.
17018 The last two arguments default to zero if omitted.
17020 @kindex t J
17021 @pindex calc-julian
17022 @tindex julian
17023 @cindex Julian day counts, conversions
17024 The @kbd{t J} (@code{calc-julian}) [@code{julian}] command converts
17025 a date form into a Julian day count, which is the number of days
17026 since noon on Jan 1, 4713 BC.  A pure date is converted to an integer
17027 Julian count representing noon of that day.  A date/time form is
17028 converted to an exact floating-point Julian count, adjusted to
17029 interpret the date form in the current time zone but the Julian
17030 day count in Greenwich Mean Time.  A numeric prefix argument allows
17031 you to specify the time zone; @pxref{Time Zones}.  Use a prefix of
17032 zero to suppress the time zone adjustment.  Note that pure date forms
17033 are never time-zone adjusted.
17035 This command can also do the opposite conversion, from a Julian day
17036 count (either an integer day, or a floating-point day and time in
17037 the GMT zone), into a pure date form or a date/time form in the
17038 current or specified time zone.
17040 @kindex t U
17041 @pindex calc-unix-time
17042 @tindex unixtime
17043 @cindex Unix time format, conversions
17044 The @kbd{t U} (@code{calc-unix-time}) [@code{unixtime}] command
17045 converts a date form into a Unix time value, which is the number of
17046 seconds since midnight on Jan 1, 1970, or vice-versa.  The numeric result
17047 will be an integer if the current precision is 12 or less; for higher
17048 precisions, the result may be a float with (@var{precision}@minus{}12)
17049 digits after the decimal.  Just as for @kbd{t J}, the numeric time
17050 is interpreted in the GMT time zone and the date form is interpreted
17051 in the current or specified zone.  Some systems use Unix-like
17052 numbering but with the local time zone; give a prefix of zero to
17053 suppress the adjustment if so.
17055 @kindex t C
17056 @pindex calc-convert-time-zones
17057 @tindex tzconv
17058 @cindex Time Zones, converting between
17059 The @kbd{t C} (@code{calc-convert-time-zones}) [@code{tzconv}]
17060 command converts a date form from one time zone to another.  You
17061 are prompted for each time zone name in turn; you can answer with
17062 any suitable Calc time zone expression (@pxref{Time Zones}).
17063 If you answer either prompt with a blank line, the local time
17064 zone is used for that prompt.  You can also answer the first
17065 prompt with @kbd{$} to take the two time zone names from the
17066 stack (and the date to be converted from the third stack level).
17068 @node Date Functions, Business Days, Date Conversions, Date Arithmetic
17069 @subsection Date Functions
17071 @noindent
17072 @kindex t N
17073 @pindex calc-now
17074 @tindex now
17075 The @kbd{t N} (@code{calc-now}) [@code{now}] command pushes the
17076 current date and time on the stack as a date form.  The time is
17077 reported in terms of the specified time zone; with no numeric prefix
17078 argument, @kbd{t N} reports for the current time zone.
17080 @kindex t P
17081 @pindex calc-date-part
17082 The @kbd{t P} (@code{calc-date-part}) command extracts one part
17083 of a date form.  The prefix argument specifies the part; with no
17084 argument, this command prompts for a part code from 1 to 9.
17085 The various part codes are described in the following paragraphs.
17087 @tindex year
17088 The @kbd{M-1 t P} [@code{year}] function extracts the year number
17089 from a date form as an integer, e.g., 1991.  This and the
17090 following functions will also accept a real number for an
17091 argument, which is interpreted as a standard Calc day number.
17092 Note that this function will never return zero, since the year
17093 1 BC immediately precedes the year 1 AD.
17095 @tindex month
17096 The @kbd{M-2 t P} [@code{month}] function extracts the month number
17097 from a date form as an integer in the range 1 to 12.
17099 @tindex day
17100 The @kbd{M-3 t P} [@code{day}] function extracts the day number
17101 from a date form as an integer in the range 1 to 31.
17103 @tindex hour
17104 The @kbd{M-4 t P} [@code{hour}] function extracts the hour from
17105 a date form as an integer in the range 0 (midnight) to 23.  Note
17106 that 24-hour time is always used.  This returns zero for a pure
17107 date form.  This function (and the following two) also accept
17108 HMS forms as input.
17110 @tindex minute
17111 The @kbd{M-5 t P} [@code{minute}] function extracts the minute
17112 from a date form as an integer in the range 0 to 59.
17114 @tindex second
17115 The @kbd{M-6 t P} [@code{second}] function extracts the second
17116 from a date form.  If the current precision is 12 or less,
17117 the result is an integer in the range 0 to 59.  For higher
17118 precisions, the result may instead be a floating-point number.
17120 @tindex weekday
17121 The @kbd{M-7 t P} [@code{weekday}] function extracts the weekday
17122 number from a date form as an integer in the range 0 (Sunday)
17123 to 6 (Saturday).
17125 @tindex yearday
17126 The @kbd{M-8 t P} [@code{yearday}] function extracts the day-of-year
17127 number from a date form as an integer in the range 1 (January 1)
17128 to 366 (December 31 of a leap year).
17130 @tindex time
17131 The @kbd{M-9 t P} [@code{time}] function extracts the time portion
17132 of a date form as an HMS form.  This returns @samp{0@@ 0' 0"}
17133 for a pure date form.
17135 @kindex t M
17136 @pindex calc-new-month
17137 @tindex newmonth
17138 The @kbd{t M} (@code{calc-new-month}) [@code{newmonth}] command
17139 computes a new date form that represents the first day of the month
17140 specified by the input date.  The result is always a pure date
17141 form; only the year and month numbers of the input are retained.
17142 With a numeric prefix argument @var{n} in the range from 1 to 31,
17143 @kbd{t M} computes the @var{n}th day of the month.  (If @var{n}
17144 is greater than the actual number of days in the month, or if
17145 @var{n} is zero, the last day of the month is used.)
17147 @kindex t Y
17148 @pindex calc-new-year
17149 @tindex newyear
17150 The @kbd{t Y} (@code{calc-new-year}) [@code{newyear}] command
17151 computes a new pure date form that represents the first day of
17152 the year specified by the input.  The month, day, and time
17153 of the input date form are lost.  With a numeric prefix argument
17154 @var{n} in the range from 1 to 366, @kbd{t Y} computes the
17155 @var{n}th day of the year (366 is treated as 365 in non-leap
17156 years).  A prefix argument of 0 computes the last day of the
17157 year (December 31).  A negative prefix argument from @mathit{-1} to
17158 @mathit{-12} computes the first day of the @var{n}th month of the year.
17160 @kindex t W
17161 @pindex calc-new-week
17162 @tindex newweek
17163 The @kbd{t W} (@code{calc-new-week}) [@code{newweek}] command
17164 computes a new pure date form that represents the Sunday on or before
17165 the input date.  With a numeric prefix argument, it can be made to
17166 use any day of the week as the starting day; the argument must be in
17167 the range from 0 (Sunday) to 6 (Saturday).  This function always
17168 subtracts between 0 and 6 days from the input date.
17170 Here's an example use of @code{newweek}:  Find the date of the next
17171 Wednesday after a given date.  Using @kbd{M-3 t W} or @samp{newweek(d, 3)}
17172 will give you the @emph{preceding} Wednesday, so @samp{newweek(d+7, 3)}
17173 will give you the following Wednesday.  A further look at the definition
17174 of @code{newweek} shows that if the input date is itself a Wednesday,
17175 this formula will return the Wednesday one week in the future.  An
17176 exercise for the reader is to modify this formula to yield the same day
17177 if the input is already a Wednesday.  Another interesting exercise is
17178 to preserve the time-of-day portion of the input (@code{newweek} resets
17179 the time to midnight; hint:@: how can @code{newweek} be defined in terms
17180 of the @code{weekday} function?).
17182 @ignore
17183 @starindex
17184 @end ignore
17185 @tindex pwday
17186 The @samp{pwday(@var{date})} function (not on any key) computes the
17187 day-of-month number of the Sunday on or before @var{date}.  With
17188 two arguments, @samp{pwday(@var{date}, @var{day})} computes the day
17189 number of the Sunday on or before day number @var{day} of the month
17190 specified by @var{date}.  The @var{day} must be in the range from
17191 7 to 31; if the day number is greater than the actual number of days
17192 in the month, the true number of days is used instead.  Thus
17193 @samp{pwday(@var{date}, 7)} finds the first Sunday of the month, and
17194 @samp{pwday(@var{date}, 31)} finds the last Sunday of the month.
17195 With a third @var{weekday} argument, @code{pwday} can be made to look
17196 for any day of the week instead of Sunday.
17198 @kindex t I
17199 @pindex calc-inc-month
17200 @tindex incmonth
17201 The @kbd{t I} (@code{calc-inc-month}) [@code{incmonth}] command
17202 increases a date form by one month, or by an arbitrary number of
17203 months specified by a numeric prefix argument.  The time portion,
17204 if any, of the date form stays the same.  The day also stays the
17205 same, except that if the new month has fewer days the day
17206 number may be reduced to lie in the valid range.  For example,
17207 @samp{incmonth(<Jan 31, 1991>)} produces @samp{<Feb 28, 1991>}.
17208 Because of this, @kbd{t I t I} and @kbd{M-2 t I} do not always give
17209 the same results (@samp{<Mar 28, 1991>} versus @samp{<Mar 31, 1991>}
17210 in this case).
17212 @ignore
17213 @starindex
17214 @end ignore
17215 @tindex incyear
17216 The @samp{incyear(@var{date}, @var{step})} function increases
17217 a date form by the specified number of years, which may be
17218 any positive or negative integer.  Note that @samp{incyear(d, n)}
17219 is equivalent to @w{@samp{incmonth(d, 12*n)}}, but these do not have
17220 simple equivalents in terms of day arithmetic because
17221 months and years have varying lengths.  If the @var{step}
17222 argument is omitted, 1 year is assumed.  There is no keyboard
17223 command for this function; use @kbd{C-u 12 t I} instead.
17225 There is no @code{newday} function at all because @kbd{F} [@code{floor}]
17226 serves this purpose.  Similarly, instead of @code{incday} and
17227 @code{incweek} simply use @expr{d + n} or @expr{d + 7 n}.
17229 @xref{Basic Arithmetic}, for the @kbd{f ]} [@code{incr}] command
17230 which can adjust a date/time form by a certain number of seconds.
17232 @node Business Days, Time Zones, Date Functions, Date Arithmetic
17233 @subsection Business Days
17235 @noindent
17236 Often time is measured in ``business days'' or ``working days,''
17237 where weekends and holidays are skipped.  Calc's normal date
17238 arithmetic functions use calendar days, so that subtracting two
17239 consecutive Mondays will yield a difference of 7 days.  By contrast,
17240 subtracting two consecutive Mondays would yield 5 business days
17241 (assuming two-day weekends and the absence of holidays).
17243 @kindex t +
17244 @kindex t -
17245 @tindex badd
17246 @tindex bsub
17247 @pindex calc-business-days-plus
17248 @pindex calc-business-days-minus
17249 The @kbd{t +} (@code{calc-business-days-plus}) [@code{badd}]
17250 and @kbd{t -} (@code{calc-business-days-minus}) [@code{bsub}]
17251 commands perform arithmetic using business days.  For @kbd{t +},
17252 one argument must be a date form and the other must be a real
17253 number (positive or negative).  If the number is not an integer,
17254 then a certain amount of time is added as well as a number of
17255 days; for example, adding 0.5 business days to a time in Friday
17256 evening will produce a time in Monday morning.  It is also
17257 possible to add an HMS form; adding @samp{12@@ 0' 0"} also adds
17258 half a business day.  For @kbd{t -}, the arguments are either a
17259 date form and a number or HMS form, or two date forms, in which
17260 case the result is the number of business days between the two
17261 dates.
17263 @cindex @code{Holidays} variable
17264 @vindex Holidays
17265 By default, Calc considers any day that is not a Saturday or
17266 Sunday to be a business day.  You can define any number of
17267 additional holidays by editing the variable @code{Holidays}.
17268 (There is an @w{@kbd{s H}} convenience command for editing this
17269 variable.)  Initially, @code{Holidays} contains the vector
17270 @samp{[sat, sun]}.  Entries in the @code{Holidays} vector may
17271 be any of the following kinds of objects:
17273 @itemize @bullet
17274 @item
17275 Date forms (pure dates, not date/time forms).  These specify
17276 particular days which are to be treated as holidays.
17278 @item
17279 Intervals of date forms.  These specify a range of days, all of
17280 which are holidays (e.g., Christmas week).  @xref{Interval Forms}.
17282 @item
17283 Nested vectors of date forms.  Each date form in the vector is
17284 considered to be a holiday.
17286 @item
17287 Any Calc formula which evaluates to one of the above three things.
17288 If the formula involves the variable @expr{y}, it stands for a
17289 yearly repeating holiday; @expr{y} will take on various year
17290 numbers like 1992.  For example, @samp{date(y, 12, 25)} specifies
17291 Christmas day, and @samp{newweek(date(y, 11, 7), 4) + 21} specifies
17292 Thanksgiving (which is held on the fourth Thursday of November).
17293 If the formula involves the variable @expr{m}, that variable
17294 takes on month numbers from 1 to 12:  @samp{date(y, m, 15)} is
17295 a holiday that takes place on the 15th of every month.
17297 @item
17298 A weekday name, such as @code{sat} or @code{sun}.  This is really
17299 a variable whose name is a three-letter, lower-case day name.
17301 @item
17302 An interval of year numbers (integers).  This specifies the span of
17303 years over which this holiday list is to be considered valid.  Any
17304 business-day arithmetic that goes outside this range will result
17305 in an error message.  Use this if you are including an explicit
17306 list of holidays, rather than a formula to generate them, and you
17307 want to make sure you don't accidentally go beyond the last point
17308 where the holidays you entered are complete.  If there is no
17309 limiting interval in the @code{Holidays} vector, the default
17310 @samp{[1 .. 2737]} is used.  (This is the absolute range of years
17311 for which Calc's business-day algorithms will operate.)
17313 @item
17314 An interval of HMS forms.  This specifies the span of hours that
17315 are to be considered one business day.  For example, if this
17316 range is @samp{[9@@ 0' 0" .. 17@@ 0' 0"]} (i.e., 9am to 5pm), then
17317 the business day is only eight hours long, so that @kbd{1.5 t +}
17318 on @samp{<4:00pm Fri Dec 13, 1991>} will add one business day and
17319 four business hours to produce @samp{<12:00pm Tue Dec 17, 1991>}.
17320 Likewise, @kbd{t -} will now express differences in time as
17321 fractions of an eight-hour day.  Times before 9am will be treated
17322 as 9am by business date arithmetic, and times at or after 5pm will
17323 be treated as 4:59:59pm.  If there is no HMS interval in @code{Holidays},
17324 the full 24-hour day @samp{[0@ 0' 0" .. 24@ 0' 0"]} is assumed.
17325 (Regardless of the type of bounds you specify, the interval is
17326 treated as inclusive on the low end and exclusive on the high end,
17327 so that the work day goes from 9am up to, but not including, 5pm.)
17328 @end itemize
17330 If the @code{Holidays} vector is empty, then @kbd{t +} and
17331 @kbd{t -} will act just like @kbd{+} and @kbd{-} because there will
17332 then be no difference between business days and calendar days.
17334 Calc expands the intervals and formulas you give into a complete
17335 list of holidays for internal use.  This is done mainly to make
17336 sure it can detect multiple holidays.  (For example,
17337 @samp{<Jan 1, 1989>} is both New Year's Day and a Sunday, but
17338 Calc's algorithms take care to count it only once when figuring
17339 the number of holidays between two dates.)
17341 Since the complete list of holidays for all the years from 1 to
17342 2737 would be huge, Calc actually computes only the part of the
17343 list between the smallest and largest years that have been involved
17344 in business-day calculations so far.  Normally, you won't have to
17345 worry about this.  Keep in mind, however, that if you do one
17346 calculation for 1992, and another for 1792, even if both involve
17347 only a small range of years, Calc will still work out all the
17348 holidays that fall in that 200-year span.
17350 If you add a (positive) number of days to a date form that falls on a
17351 weekend or holiday, the date form is treated as if it were the most
17352 recent business day.  (Thus adding one business day to a Friday,
17353 Saturday, or Sunday will all yield the following Monday.)  If you
17354 subtract a number of days from a weekend or holiday, the date is
17355 effectively on the following business day.  (So subtracting one business
17356 day from Saturday, Sunday, or Monday yields the preceding Friday.)  The
17357 difference between two dates one or both of which fall on holidays
17358 equals the number of actual business days between them.  These
17359 conventions are consistent in the sense that, if you add @var{n}
17360 business days to any date, the difference between the result and the
17361 original date will come out to @var{n} business days.  (It can't be
17362 completely consistent though; a subtraction followed by an addition
17363 might come out a bit differently, since @kbd{t +} is incapable of
17364 producing a date that falls on a weekend or holiday.)
17366 @ignore
17367 @starindex
17368 @end ignore
17369 @tindex holiday
17370 There is a @code{holiday} function, not on any keys, that takes
17371 any date form and returns 1 if that date falls on a weekend or
17372 holiday, as defined in @code{Holidays}, or 0 if the date is a
17373 business day.
17375 @node Time Zones, , Business Days, Date Arithmetic
17376 @subsection Time Zones
17378 @noindent
17379 @cindex Time zones
17380 @cindex Daylight savings time
17381 Time zones and daylight savings time are a complicated business.
17382 The conversions to and from Julian and Unix-style dates automatically
17383 compute the correct time zone and daylight savings adjustment to use,
17384 provided they can figure out this information.  This section describes
17385 Calc's time zone adjustment algorithm in detail, in case you want to
17386 do conversions in different time zones or in case Calc's algorithms
17387 can't determine the right correction to use.
17389 Adjustments for time zones and daylight savings time are done by
17390 @kbd{t U}, @kbd{t J}, @kbd{t N}, and @kbd{t C}, but not by any other
17391 commands.  In particular, @samp{<may 1 1991> - <apr 1 1991>} evaluates
17392 to exactly 30 days even though there is a daylight-savings
17393 transition in between.  This is also true for Julian pure dates:
17394 @samp{julian(<may 1 1991>) - julian(<apr 1 1991>)}.  But Julian
17395 and Unix date/times will adjust for daylight savings time:
17396 @samp{julian(<12am may 1 1991>) - julian(<12am apr 1 1991>)}
17397 evaluates to @samp{29.95834} (that's 29 days and 23 hours)
17398 because one hour was lost when daylight savings commenced on
17399 April 7, 1991.
17401 In brief, the idiom @samp{julian(@var{date1}) - julian(@var{date2})}
17402 computes the actual number of 24-hour periods between two dates, whereas
17403 @samp{@var{date1} - @var{date2}} computes the number of calendar
17404 days between two dates without taking daylight savings into account.
17406 @pindex calc-time-zone
17407 @ignore
17408 @starindex
17409 @end ignore
17410 @tindex tzone
17411 The @code{calc-time-zone} [@code{tzone}] command converts the time
17412 zone specified by its numeric prefix argument into a number of
17413 seconds difference from Greenwich mean time (GMT).  If the argument
17414 is a number, the result is simply that value multiplied by 3600.
17415 Typical arguments for North America are 5 (Eastern) or 8 (Pacific).  If
17416 Daylight Savings time is in effect, one hour should be subtracted from
17417 the normal difference.
17419 If you give a prefix of plain @kbd{C-u}, @code{calc-time-zone} (like other
17420 date arithmetic commands that include a time zone argument) takes the
17421 zone argument from the top of the stack.  (In the case of @kbd{t J}
17422 and @kbd{t U}, the normal argument is then taken from the second-to-top
17423 stack position.)  This allows you to give a non-integer time zone
17424 adjustment.  The time-zone argument can also be an HMS form, or
17425 it can be a variable which is a time zone name in upper- or lower-case.
17426 For example @samp{tzone(PST) = tzone(8)} and @samp{tzone(pdt) = tzone(7)}
17427 (for Pacific standard and daylight savings times, respectively).
17429 North American and European time zone names are defined as follows;
17430 note that for each time zone there is one name for standard time,
17431 another for daylight savings time, and a third for ``generalized'' time
17432 in which the daylight savings adjustment is computed from context.
17434 @smallexample
17435 @group
17436 YST  PST  MST  CST  EST  AST    NST    GMT   WET     MET    MEZ
17437  9    8    7    6    5    4     3.5     0     -1      -2     -2
17439 YDT  PDT  MDT  CDT  EDT  ADT    NDT    BST  WETDST  METDST  MESZ
17440  8    7    6    5    4    3     2.5     -1    -2      -3     -3
17442 YGT  PGT  MGT  CGT  EGT  AGT    NGT    BGT   WEGT    MEGT   MEGZ
17443 9/8  8/7  7/6  6/5  5/4  4/3  3.5/2.5  0/-1 -1/-2   -2/-3  -2/-3
17444 @end group
17445 @end smallexample
17447 @vindex math-tzone-names
17448 To define time zone names that do not appear in the above table,
17449 you must modify the Lisp variable @code{math-tzone-names}.  This
17450 is a list of lists describing the different time zone names; its
17451 structure is best explained by an example.  The three entries for
17452 Pacific Time look like this:
17454 @smallexample
17455 @group
17456 ( ( "PST" 8 0 )    ; Name as an upper-case string, then standard
17457   ( "PDT" 8 -1 )   ; adjustment, then daylight savings adjustment.
17458   ( "PGT" 8 "PST" "PDT" ) )   ; Generalized time zone.
17459 @end group
17460 @end smallexample
17462 @cindex @code{TimeZone} variable
17463 @vindex TimeZone
17464 With no arguments, @code{calc-time-zone} or @samp{tzone()} obtains an
17465 argument from the Calc variable @code{TimeZone} if a value has been
17466 stored for that variable.  If not, Calc runs the Unix @samp{date}
17467 command and looks for one of the above time zone names in the output;
17468 if this does not succeed, @samp{tzone()} leaves itself unevaluated.
17469 The time zone name in the @samp{date} output may be followed by a signed
17470 adjustment, e.g., @samp{GMT+5} or @samp{GMT+0500} which specifies a
17471 number of hours and minutes to be added to the base time zone.
17472 Calc stores the time zone it finds into @code{TimeZone} to speed
17473 later calls to @samp{tzone()}.
17475 The special time zone name @code{local} is equivalent to no argument,
17476 i.e., it uses the local time zone as obtained from the @code{date}
17477 command.
17479 If the time zone name found is one of the standard or daylight
17480 savings zone names from the above table, and Calc's internal
17481 daylight savings algorithm says that time and zone are consistent
17482 (e.g., @code{PDT} accompanies a date that Calc's algorithm would also
17483 consider to be daylight savings, or @code{PST} accompanies a date
17484 that Calc would consider to be standard time), then Calc substitutes
17485 the corresponding generalized time zone (like @code{PGT}).
17487 If your system does not have a suitable @samp{date} command, you
17488 may wish to put a @samp{(setq var-TimeZone ...)} in your Emacs
17489 initialization file to set the time zone.  (Since you are interacting
17490 with the variable @code{TimeZone} directly from Emacs Lisp, the
17491 @code{var-} prefix needs to be present.)  The easiest way to do
17492 this is to edit the @code{TimeZone} variable using Calc's @kbd{s T}
17493 command, then use the @kbd{s p} (@code{calc-permanent-variable})
17494 command to save the value of @code{TimeZone} permanently.
17496 The @kbd{t J} and @code{t U} commands with no numeric prefix
17497 arguments do the same thing as @samp{tzone()}.  If the current
17498 time zone is a generalized time zone, e.g., @code{EGT}, Calc
17499 examines the date being converted to tell whether to use standard
17500 or daylight savings time.  But if the current time zone is explicit,
17501 e.g., @code{EST} or @code{EDT}, then that adjustment is used exactly
17502 and Calc's daylight savings algorithm is not consulted.
17504 Some places don't follow the usual rules for daylight savings time.
17505 The state of Arizona, for example, does not observe daylight savings
17506 time.  If you run Calc during the winter season in Arizona, the
17507 Unix @code{date} command will report @code{MST} time zone, which
17508 Calc will change to @code{MGT}.  If you then convert a time that
17509 lies in the summer months, Calc will apply an incorrect daylight
17510 savings time adjustment.  To avoid this, set your @code{TimeZone}
17511 variable explicitly to @code{MST} to force the use of standard,
17512 non-daylight-savings time.
17514 @vindex math-daylight-savings-hook
17515 @findex math-std-daylight-savings
17516 By default Calc always considers daylight savings time to begin at
17517 2 a.m.@: on the first Sunday of April, and to end at 2 a.m.@: on the
17518 last Sunday of October.  This is the rule that has been in effect
17519 in North America since 1987.  If you are in a country that uses
17520 different rules for computing daylight savings time, you have two
17521 choices:  Write your own daylight savings hook, or control time
17522 zones explicitly by setting the @code{TimeZone} variable and/or
17523 always giving a time-zone argument for the conversion functions.
17525 The Lisp variable @code{math-daylight-savings-hook} holds the
17526 name of a function that is used to compute the daylight savings
17527 adjustment for a given date.  The default is
17528 @code{math-std-daylight-savings}, which computes an adjustment
17529 (either 0 or @mathit{-1}) using the North American rules given above.
17531 The daylight savings hook function is called with four arguments:
17532 The date, as a floating-point number in standard Calc format;
17533 a six-element list of the date decomposed into year, month, day,
17534 hour, minute, and second, respectively; a string which contains
17535 the generalized time zone name in upper-case, e.g., @code{"WEGT"};
17536 and a special adjustment to be applied to the hour value when
17537 converting into a generalized time zone (see below).
17539 @findex math-prev-weekday-in-month
17540 The Lisp function @code{math-prev-weekday-in-month} is useful for
17541 daylight savings computations.  This is an internal version of
17542 the user-level @code{pwday} function described in the previous
17543 section. It takes four arguments:  The floating-point date value,
17544 the corresponding six-element date list, the day-of-month number,
17545 and the weekday number (0-6).
17547 The default daylight savings hook ignores the time zone name, but a
17548 more sophisticated hook could use different algorithms for different
17549 time zones.  It would also be possible to use different algorithms
17550 depending on the year number, but the default hook always uses the
17551 algorithm for 1987 and later.  Here is a listing of the default
17552 daylight savings hook:
17554 @smallexample
17555 (defun math-std-daylight-savings (date dt zone bump)
17556   (cond ((< (nth 1 dt) 4) 0)
17557         ((= (nth 1 dt) 4)
17558          (let ((sunday (math-prev-weekday-in-month date dt 7 0)))
17559            (cond ((< (nth 2 dt) sunday) 0)
17560                  ((= (nth 2 dt) sunday)
17561                   (if (>= (nth 3 dt) (+ 3 bump)) -1 0))
17562                  (t -1))))
17563         ((< (nth 1 dt) 10) -1)
17564         ((= (nth 1 dt) 10)
17565          (let ((sunday (math-prev-weekday-in-month date dt 31 0)))
17566            (cond ((< (nth 2 dt) sunday) -1)
17567                  ((= (nth 2 dt) sunday)
17568                   (if (>= (nth 3 dt) (+ 2 bump)) 0 -1))
17569                  (t 0))))
17570         (t 0))
17572 @end smallexample
17574 @noindent
17575 The @code{bump} parameter is equal to zero when Calc is converting
17576 from a date form in a generalized time zone into a GMT date value.
17577 It is @mathit{-1} when Calc is converting in the other direction.  The
17578 adjustments shown above ensure that the conversion behaves correctly
17579 and reasonably around the 2 a.m.@: transition in each direction.
17581 There is a ``missing'' hour between 2 a.m.@: and 3 a.m.@: at the
17582 beginning of daylight savings time; converting a date/time form that
17583 falls in this hour results in a time value for the following hour,
17584 from 3 a.m.@: to 4 a.m.  At the end of daylight savings time, the
17585 hour from 1 a.m.@: to 2 a.m.@: repeats itself; converting a date/time
17586 form that falls in this hour results in a time value for the first
17587 manifestation of that time (@emph{not} the one that occurs one hour later).
17589 If @code{math-daylight-savings-hook} is @code{nil}, then the
17590 daylight savings adjustment is always taken to be zero.
17592 In algebraic formulas, @samp{tzone(@var{zone}, @var{date})}
17593 computes the time zone adjustment for a given zone name at a
17594 given date.  The @var{date} is ignored unless @var{zone} is a
17595 generalized time zone.  If @var{date} is a date form, the
17596 daylight savings computation is applied to it as it appears.
17597 If @var{date} is a numeric date value, it is adjusted for the
17598 daylight-savings version of @var{zone} before being given to
17599 the daylight savings hook.  This odd-sounding rule ensures
17600 that the daylight-savings computation is always done in
17601 local time, not in the GMT time that a numeric @var{date}
17602 is typically represented in.
17604 @ignore
17605 @starindex
17606 @end ignore
17607 @tindex dsadj
17608 The @samp{dsadj(@var{date}, @var{zone})} function computes the
17609 daylight savings adjustment that is appropriate for @var{date} in
17610 time zone @var{zone}.  If @var{zone} is explicitly in or not in
17611 daylight savings time (e.g., @code{PDT} or @code{PST}) the
17612 @var{date} is ignored.  If @var{zone} is a generalized time zone,
17613 the algorithms described above are used.  If @var{zone} is omitted,
17614 the computation is done for the current time zone.
17616 @xref{Reporting Bugs}, for the address of Calc's author, if you
17617 should wish to contribute your improved versions of
17618 @code{math-tzone-names} and @code{math-daylight-savings-hook}
17619 to the Calc distribution.
17621 @node Financial Functions, Binary Functions, Date Arithmetic, Arithmetic
17622 @section Financial Functions
17624 @noindent
17625 Calc's financial or business functions use the @kbd{b} prefix
17626 key followed by a shifted letter.  (The @kbd{b} prefix followed by
17627 a lower-case letter is used for operations on binary numbers.)
17629 Note that the rate and the number of intervals given to these
17630 functions must be on the same time scale, e.g., both months or
17631 both years.  Mixing an annual interest rate with a time expressed
17632 in months will give you very wrong answers!
17634 It is wise to compute these functions to a higher precision than
17635 you really need, just to make sure your answer is correct to the
17636 last penny; also, you may wish to check the definitions at the end
17637 of this section to make sure the functions have the meaning you expect.
17639 @menu
17640 * Percentages::
17641 * Future Value::
17642 * Present Value::
17643 * Related Financial Functions::
17644 * Depreciation Functions::
17645 * Definitions of Financial Functions::
17646 @end menu
17648 @node Percentages, Future Value, Financial Functions, Financial Functions
17649 @subsection Percentages
17651 @kindex M-%
17652 @pindex calc-percent
17653 @tindex %
17654 @tindex percent
17655 The @kbd{M-%} (@code{calc-percent}) command takes a percentage value,
17656 say 5.4, and converts it to an equivalent actual number.  For example,
17657 @kbd{5.4 M-%} enters 0.054 on the stack.  (That's the @key{META} or
17658 @key{ESC} key combined with @kbd{%}.)
17660 Actually, @kbd{M-%} creates a formula of the form @samp{5.4%}.
17661 You can enter @samp{5.4%} yourself during algebraic entry.  The
17662 @samp{%} operator simply means, ``the preceding value divided by
17663 100.''  The @samp{%} operator has very high precedence, so that
17664 @samp{1+8%} is interpreted as @samp{1+(8%)}, not as @samp{(1+8)%}.
17665 (The @samp{%} operator is just a postfix notation for the
17666 @code{percent} function, just like @samp{20!} is the notation for
17667 @samp{fact(20)}, or twenty-factorial.)
17669 The formula @samp{5.4%} would normally evaluate immediately to
17670 0.054, but the @kbd{M-%} command suppresses evaluation as it puts
17671 the formula onto the stack.  However, the next Calc command that
17672 uses the formula @samp{5.4%} will evaluate it as its first step.
17673 The net effect is that you get to look at @samp{5.4%} on the stack,
17674 but Calc commands see it as @samp{0.054}, which is what they expect.
17676 In particular, @samp{5.4%} and @samp{0.054} are suitable values
17677 for the @var{rate} arguments of the various financial functions,
17678 but the number @samp{5.4} is probably @emph{not} suitable---it
17679 represents a rate of 540 percent!
17681 The key sequence @kbd{M-% *} effectively means ``percent-of.''
17682 For example, @kbd{68 @key{RET} 25 M-% *} computes 17, which is 25% of
17683 68 (and also 68% of 25, which comes out to the same thing).
17685 @kindex c %
17686 @pindex calc-convert-percent
17687 The @kbd{c %} (@code{calc-convert-percent}) command converts the
17688 value on the top of the stack from numeric to percentage form.
17689 For example, if 0.08 is on the stack, @kbd{c %} converts it to
17690 @samp{8%}.  The quantity is the same, it's just represented
17691 differently.  (Contrast this with @kbd{M-%}, which would convert
17692 this number to @samp{0.08%}.)  The @kbd{=} key is a convenient way
17693 to convert a formula like @samp{8%} back to numeric form, 0.08.
17695 To compute what percentage one quantity is of another quantity,
17696 use @kbd{/ c %}.  For example, @w{@kbd{17 @key{RET} 68 / c %}} displays
17697 @samp{25%}.
17699 @kindex b %
17700 @pindex calc-percent-change
17701 @tindex relch
17702 The @kbd{b %} (@code{calc-percent-change}) [@code{relch}] command
17703 calculates the percentage change from one number to another.
17704 For example, @kbd{40 @key{RET} 50 b %} produces the answer @samp{25%},
17705 since 50 is 25% larger than 40.  A negative result represents a
17706 decrease:  @kbd{50 @key{RET} 40 b %} produces @samp{-20%}, since 40 is
17707 20% smaller than 50.  (The answers are different in magnitude
17708 because, in the first case, we're increasing by 25% of 40, but
17709 in the second case, we're decreasing by 20% of 50.)  The effect
17710 of @kbd{40 @key{RET} 50 b %} is to compute @expr{(50-40)/40}, converting
17711 the answer to percentage form as if by @kbd{c %}.
17713 @node Future Value, Present Value, Percentages, Financial Functions
17714 @subsection Future Value
17716 @noindent
17717 @kindex b F
17718 @pindex calc-fin-fv
17719 @tindex fv
17720 The @kbd{b F} (@code{calc-fin-fv}) [@code{fv}] command computes
17721 the future value of an investment.  It takes three arguments
17722 from the stack:  @samp{fv(@var{rate}, @var{n}, @var{payment})}.
17723 If you give payments of @var{payment} every year for @var{n}
17724 years, and the money you have paid earns interest at @var{rate} per
17725 year, then this function tells you what your investment would be
17726 worth at the end of the period.  (The actual interval doesn't
17727 have to be years, as long as @var{n} and @var{rate} are expressed
17728 in terms of the same intervals.)  This function assumes payments
17729 occur at the @emph{end} of each interval.
17731 @kindex I b F
17732 @tindex fvb
17733 The @kbd{I b F} [@code{fvb}] command does the same computation,
17734 but assuming your payments are at the beginning of each interval.
17735 Suppose you plan to deposit $1000 per year in a savings account
17736 earning 5.4% interest, starting right now.  How much will be
17737 in the account after five years?  @code{fvb(5.4%, 5, 1000) = 5870.73}.
17738 Thus you will have earned $870 worth of interest over the years.
17739 Using the stack, this calculation would have been
17740 @kbd{5.4 M-% 5 @key{RET} 1000 I b F}.  Note that the rate is expressed
17741 as a number between 0 and 1, @emph{not} as a percentage.
17743 @kindex H b F
17744 @tindex fvl
17745 The @kbd{H b F} [@code{fvl}] command computes the future value
17746 of an initial lump sum investment.  Suppose you could deposit
17747 those five thousand dollars in the bank right now; how much would
17748 they be worth in five years?  @code{fvl(5.4%, 5, 5000) = 6503.89}.
17750 The algebraic functions @code{fv} and @code{fvb} accept an optional
17751 fourth argument, which is used as an initial lump sum in the sense
17752 of @code{fvl}.  In other words, @code{fv(@var{rate}, @var{n},
17753 @var{payment}, @var{initial}) = fv(@var{rate}, @var{n}, @var{payment})
17754 + fvl(@var{rate}, @var{n}, @var{initial})}.
17756 To illustrate the relationships between these functions, we could
17757 do the @code{fvb} calculation ``by hand'' using @code{fvl}.  The
17758 final balance will be the sum of the contributions of our five
17759 deposits at various times.  The first deposit earns interest for
17760 five years:  @code{fvl(5.4%, 5, 1000) = 1300.78}.  The second
17761 deposit only earns interest for four years:  @code{fvl(5.4%, 4, 1000) =
17762 1234.13}.  And so on down to the last deposit, which earns one
17763 year's interest:  @code{fvl(5.4%, 1, 1000) = 1054.00}.  The sum of
17764 these five values is, sure enough, $5870.73, just as was computed
17765 by @code{fvb} directly.
17767 What does @code{fv(5.4%, 5, 1000) = 5569.96} mean?  The payments
17768 are now at the ends of the periods.  The end of one year is the same
17769 as the beginning of the next, so what this really means is that we've
17770 lost the payment at year zero (which contributed $1300.78), but we're
17771 now counting the payment at year five (which, since it didn't have
17772 a chance to earn interest, counts as $1000).  Indeed, @expr{5569.96 =
17773 5870.73 - 1300.78 + 1000} (give or take a bit of roundoff error).
17775 @node Present Value, Related Financial Functions, Future Value, Financial Functions
17776 @subsection Present Value
17778 @noindent
17779 @kindex b P
17780 @pindex calc-fin-pv
17781 @tindex pv
17782 The @kbd{b P} (@code{calc-fin-pv}) [@code{pv}] command computes
17783 the present value of an investment.  Like @code{fv}, it takes
17784 three arguments:  @code{pv(@var{rate}, @var{n}, @var{payment})}.
17785 It computes the present value of a series of regular payments.
17786 Suppose you have the chance to make an investment that will
17787 pay $2000 per year over the next four years; as you receive
17788 these payments you can put them in the bank at 9% interest.
17789 You want to know whether it is better to make the investment, or
17790 to keep the money in the bank where it earns 9% interest right
17791 from the start.  The calculation @code{pv(9%, 4, 2000)} gives the
17792 result 6479.44.  If your initial investment must be less than this,
17793 say, $6000, then the investment is worthwhile.  But if you had to
17794 put up $7000, then it would be better just to leave it in the bank.
17796 Here is the interpretation of the result of @code{pv}:  You are
17797 trying to compare the return from the investment you are
17798 considering, which is @code{fv(9%, 4, 2000) = 9146.26}, with
17799 the return from leaving the money in the bank, which is
17800 @code{fvl(9%, 4, @var{x})} where @var{x} is the amount of money
17801 you would have to put up in advance.  The @code{pv} function
17802 finds the break-even point, @expr{x = 6479.44}, at which
17803 @code{fvl(9%, 4, 6479.44)} is also equal to 9146.26.  This is
17804 the largest amount you should be willing to invest.
17806 @kindex I b P
17807 @tindex pvb
17808 The @kbd{I b P} [@code{pvb}] command solves the same problem,
17809 but with payments occurring at the beginning of each interval.
17810 It has the same relationship to @code{fvb} as @code{pv} has
17811 to @code{fv}.  For example @code{pvb(9%, 4, 2000) = 7062.59},
17812 a larger number than @code{pv} produced because we get to start
17813 earning interest on the return from our investment sooner.
17815 @kindex H b P
17816 @tindex pvl
17817 The @kbd{H b P} [@code{pvl}] command computes the present value of
17818 an investment that will pay off in one lump sum at the end of the
17819 period.  For example, if we get our $8000 all at the end of the
17820 four years, @code{pvl(9%, 4, 8000) = 5667.40}.  This is much
17821 less than @code{pv} reported, because we don't earn any interest
17822 on the return from this investment.  Note that @code{pvl} and
17823 @code{fvl} are simple inverses:  @code{fvl(9%, 4, 5667.40) = 8000}.
17825 You can give an optional fourth lump-sum argument to @code{pv}
17826 and @code{pvb}; this is handled in exactly the same way as the
17827 fourth argument for @code{fv} and @code{fvb}.
17829 @kindex b N
17830 @pindex calc-fin-npv
17831 @tindex npv
17832 The @kbd{b N} (@code{calc-fin-npv}) [@code{npv}] command computes
17833 the net present value of a series of irregular investments.
17834 The first argument is the interest rate.  The second argument is
17835 a vector which represents the expected return from the investment
17836 at the end of each interval.  For example, if the rate represents
17837 a yearly interest rate, then the vector elements are the return
17838 from the first year, second year, and so on.
17840 Thus, @code{npv(9%, [2000,2000,2000,2000]) = pv(9%, 4, 2000) = 6479.44}.
17841 Obviously this function is more interesting when the payments are
17842 not all the same!
17844 The @code{npv} function can actually have two or more arguments.
17845 Multiple arguments are interpreted in the same way as for the
17846 vector statistical functions like @code{vsum}.
17847 @xref{Single-Variable Statistics}.  Basically, if there are several
17848 payment arguments, each either a vector or a plain number, all these
17849 values are collected left-to-right into the complete list of payments.
17850 A numeric prefix argument on the @kbd{b N} command says how many
17851 payment values or vectors to take from the stack.
17853 @kindex I b N
17854 @tindex npvb
17855 The @kbd{I b N} [@code{npvb}] command computes the net present
17856 value where payments occur at the beginning of each interval
17857 rather than at the end.
17859 @node Related Financial Functions, Depreciation Functions, Present Value, Financial Functions
17860 @subsection Related Financial Functions
17862 @noindent
17863 The functions in this section are basically inverses of the
17864 present value functions with respect to the various arguments.
17866 @kindex b M
17867 @pindex calc-fin-pmt
17868 @tindex pmt
17869 The @kbd{b M} (@code{calc-fin-pmt}) [@code{pmt}] command computes
17870 the amount of periodic payment necessary to amortize a loan.
17871 Thus @code{pmt(@var{rate}, @var{n}, @var{amount})} equals the
17872 value of @var{payment} such that @code{pv(@var{rate}, @var{n},
17873 @var{payment}) = @var{amount}}.
17875 @kindex I b M
17876 @tindex pmtb
17877 The @kbd{I b M} [@code{pmtb}] command does the same computation
17878 but using @code{pvb} instead of @code{pv}.  Like @code{pv} and
17879 @code{pvb}, these functions can also take a fourth argument which
17880 represents an initial lump-sum investment.
17882 @kindex H b M
17883 The @kbd{H b M} key just invokes the @code{fvl} function, which is
17884 the inverse of @code{pvl}.  There is no explicit @code{pmtl} function.
17886 @kindex b #
17887 @pindex calc-fin-nper
17888 @tindex nper
17889 The @kbd{b #} (@code{calc-fin-nper}) [@code{nper}] command computes
17890 the number of regular payments necessary to amortize a loan.
17891 Thus @code{nper(@var{rate}, @var{payment}, @var{amount})} equals
17892 the value of @var{n} such that @code{pv(@var{rate}, @var{n},
17893 @var{payment}) = @var{amount}}.  If @var{payment} is too small
17894 ever to amortize a loan for @var{amount} at interest rate @var{rate},
17895 the @code{nper} function is left in symbolic form.
17897 @kindex I b #
17898 @tindex nperb
17899 The @kbd{I b #} [@code{nperb}] command does the same computation
17900 but using @code{pvb} instead of @code{pv}.  You can give a fourth
17901 lump-sum argument to these functions, but the computation will be
17902 rather slow in the four-argument case.
17904 @kindex H b #
17905 @tindex nperl
17906 The @kbd{H b #} [@code{nperl}] command does the same computation
17907 using @code{pvl}.  By exchanging @var{payment} and @var{amount} you
17908 can also get the solution for @code{fvl}.  For example,
17909 @code{nperl(8%, 2000, 1000) = 9.006}, so if you place $1000 in a
17910 bank account earning 8%, it will take nine years to grow to $2000.
17912 @kindex b T
17913 @pindex calc-fin-rate
17914 @tindex rate
17915 The @kbd{b T} (@code{calc-fin-rate}) [@code{rate}] command computes
17916 the rate of return on an investment.  This is also an inverse of @code{pv}:
17917 @code{rate(@var{n}, @var{payment}, @var{amount})} computes the value of
17918 @var{rate} such that @code{pv(@var{rate}, @var{n}, @var{payment}) =
17919 @var{amount}}.  The result is expressed as a formula like @samp{6.3%}.
17921 @kindex I b T
17922 @kindex H b T
17923 @tindex rateb
17924 @tindex ratel
17925 The @kbd{I b T} [@code{rateb}] and @kbd{H b T} [@code{ratel}]
17926 commands solve the analogous equations with @code{pvb} or @code{pvl}
17927 in place of @code{pv}.  Also, @code{rate} and @code{rateb} can
17928 accept an optional fourth argument just like @code{pv} and @code{pvb}.
17929 To redo the above example from a different perspective,
17930 @code{ratel(9, 2000, 1000) = 8.00597%}, which says you will need an
17931 interest rate of 8% in order to double your account in nine years.
17933 @kindex b I
17934 @pindex calc-fin-irr
17935 @tindex irr
17936 The @kbd{b I} (@code{calc-fin-irr}) [@code{irr}] command is the
17937 analogous function to @code{rate} but for net present value.
17938 Its argument is a vector of payments.  Thus @code{irr(@var{payments})}
17939 computes the @var{rate} such that @code{npv(@var{rate}, @var{payments}) = 0};
17940 this rate is known as the @dfn{internal rate of return}.
17942 @kindex I b I
17943 @tindex irrb
17944 The @kbd{I b I} [@code{irrb}] command computes the internal rate of
17945 return assuming payments occur at the beginning of each period.
17947 @node Depreciation Functions, Definitions of Financial Functions, Related Financial Functions, Financial Functions
17948 @subsection Depreciation Functions
17950 @noindent
17951 The functions in this section calculate @dfn{depreciation}, which is
17952 the amount of value that a possession loses over time.  These functions
17953 are characterized by three parameters:  @var{cost}, the original cost
17954 of the asset; @var{salvage}, the value the asset will have at the end
17955 of its expected ``useful life''; and @var{life}, the number of years
17956 (or other periods) of the expected useful life.
17958 There are several methods for calculating depreciation that differ in
17959 the way they spread the depreciation over the lifetime of the asset.
17961 @kindex b S
17962 @pindex calc-fin-sln
17963 @tindex sln
17964 The @kbd{b S} (@code{calc-fin-sln}) [@code{sln}] command computes the
17965 ``straight-line'' depreciation.  In this method, the asset depreciates
17966 by the same amount every year (or period).  For example,
17967 @samp{sln(12000, 2000, 5)} returns 2000.  The asset costs $12000
17968 initially and will be worth $2000 after five years; it loses $2000
17969 per year.
17971 @kindex b Y
17972 @pindex calc-fin-syd
17973 @tindex syd
17974 The @kbd{b Y} (@code{calc-fin-syd}) [@code{syd}] command computes the
17975 accelerated ``sum-of-years'-digits'' depreciation.  Here the depreciation
17976 is higher during the early years of the asset's life.  Since the
17977 depreciation is different each year, @kbd{b Y} takes a fourth @var{period}
17978 parameter which specifies which year is requested, from 1 to @var{life}.
17979 If @var{period} is outside this range, the @code{syd} function will
17980 return zero.
17982 @kindex b D
17983 @pindex calc-fin-ddb
17984 @tindex ddb
17985 The @kbd{b D} (@code{calc-fin-ddb}) [@code{ddb}] command computes an
17986 accelerated depreciation using the double-declining balance method.
17987 It also takes a fourth @var{period} parameter.
17989 For symmetry, the @code{sln} function will accept a @var{period}
17990 parameter as well, although it will ignore its value except that the
17991 return value will as usual be zero if @var{period} is out of range.
17993 For example, pushing the vector @expr{[1,2,3,4,5]} (perhaps with @kbd{v x 5})
17994 and then mapping @kbd{V M ' [sln(12000,2000,5,$), syd(12000,2000,5,$),
17995 ddb(12000,2000,5,$)] @key{RET}} produces a matrix that allows us to compare
17996 the three depreciation methods:
17998 @example
17999 @group
18000 [ [ 2000, 3333, 4800 ]
18001   [ 2000, 2667, 2880 ]
18002   [ 2000, 2000, 1728 ]
18003   [ 2000, 1333,  592 ]
18004   [ 2000,  667,   0  ] ]
18005 @end group
18006 @end example
18008 @noindent
18009 (Values have been rounded to nearest integers in this figure.)
18010 We see that @code{sln} depreciates by the same amount each year,
18011 @kbd{syd} depreciates more at the beginning and less at the end,
18012 and @kbd{ddb} weights the depreciation even more toward the beginning.
18014 Summing columns with @kbd{V R : +} yields @expr{[10000, 10000, 10000]};
18015 the total depreciation in any method is (by definition) the
18016 difference between the cost and the salvage value.
18018 @node Definitions of Financial Functions, , Depreciation Functions, Financial Functions
18019 @subsection Definitions
18021 @noindent
18022 For your reference, here are the actual formulas used to compute
18023 Calc's financial functions.
18025 Calc will not evaluate a financial function unless the @var{rate} or
18026 @var{n} argument is known.  However, @var{payment} or @var{amount} can
18027 be a variable.  Calc expands these functions according to the
18028 formulas below for symbolic arguments only when you use the @kbd{a "}
18029 (@code{calc-expand-formula}) command, or when taking derivatives or
18030 integrals or solving equations involving the functions.
18032 @ifinfo
18033 These formulas are shown using the conventions of Big display
18034 mode (@kbd{d B}); for example, the formula for @code{fv} written
18035 linearly is @samp{pmt * ((1 + rate)^n) - 1) / rate}.
18037 @example
18038                                         n
18039                               (1 + rate)  - 1
18040 fv(rate, n, pmt) =      pmt * ---------------
18041                                    rate
18043                                          n
18044                               ((1 + rate)  - 1) (1 + rate)
18045 fvb(rate, n, pmt) =     pmt * ----------------------------
18046                                          rate
18048                                         n
18049 fvl(rate, n, pmt) =     pmt * (1 + rate)
18051                                             -n
18052                               1 - (1 + rate)
18053 pv(rate, n, pmt) =      pmt * ----------------
18054                                     rate
18056                                              -n
18057                               (1 - (1 + rate)  ) (1 + rate)
18058 pvb(rate, n, pmt) =     pmt * -----------------------------
18059                                          rate
18061                                         -n
18062 pvl(rate, n, pmt) =     pmt * (1 + rate)
18064                                     -1               -2               -3
18065 npv(rate, [a, b, c]) =  a*(1 + rate)   + b*(1 + rate)   + c*(1 + rate)
18067                                         -1               -2
18068 npvb(rate, [a, b, c]) = a + b*(1 + rate)   + c*(1 + rate)
18070                                              -n
18071                         (amt - x * (1 + rate)  ) * rate
18072 pmt(rate, n, amt, x) =  -------------------------------
18073                                              -n
18074                                1 - (1 + rate)
18076                                              -n
18077                         (amt - x * (1 + rate)  ) * rate
18078 pmtb(rate, n, amt, x) = -------------------------------
18079                                         -n
18080                          (1 - (1 + rate)  ) (1 + rate)
18082                                    amt * rate
18083 nper(rate, pmt, amt) =  - log(1 - ------------, 1 + rate)
18084                                       pmt
18086                                     amt * rate
18087 nperb(rate, pmt, amt) = - log(1 - ---------------, 1 + rate)
18088                                   pmt * (1 + rate)
18090                               amt
18091 nperl(rate, pmt, amt) = - log(---, 1 + rate)
18092                               pmt
18094                            1/n
18095                         pmt
18096 ratel(n, pmt, amt) =    ------ - 1
18097                            1/n
18098                         amt
18100                         cost - salv
18101 sln(cost, salv, life) = -----------
18102                            life
18104                              (cost - salv) * (life - per + 1)
18105 syd(cost, salv, life, per) = --------------------------------
18106                                   life * (life + 1) / 2
18108                              book * 2
18109 ddb(cost, salv, life, per) = --------,  book = cost - depreciation so far
18110                                life
18111 @end example
18112 @end ifinfo
18113 @tex
18114 \turnoffactive
18115 $$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$
18116 $$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$
18117 $$ \code{fvl}(r, n, p) = p (1 + r)^n $$
18118 $$ \code{pv}(r, n, p) = p { 1 - (1 + r)^{-n} \over r } $$
18119 $$ \code{pvb}(r, n, p) = p { (1 - (1 + r)^{-n}) (1 + r) \over r } $$
18120 $$ \code{pvl}(r, n, p) = p (1 + r)^{-n} $$
18121 $$ \code{npv}(r, [a,b,c]) = a (1 + r)^{-1} + b (1 + r)^{-2} + c (1 + r)^{-3} $$
18122 $$ \code{npvb}(r, [a,b,c]) = a + b (1 + r)^{-1} + c (1 + r)^{-2} $$
18123 $$ \code{pmt}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over 1 - (1 + r)^{-n} }$$
18124 $$ \code{pmtb}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over
18125                                (1 - (1 + r)^{-n}) (1 + r) } $$
18126 $$ \code{nper}(r, p, a) = -\code{log}(1 - { a r \over p }, 1 + r) $$
18127 $$ \code{nperb}(r, p, a) = -\code{log}(1 - { a r \over p (1 + r) }, 1 + r) $$
18128 $$ \code{nperl}(r, p, a) = -\code{log}({a \over p}, 1 + r) $$
18129 $$ \code{ratel}(n, p, a) = { p^{1/n} \over a^{1/n} } - 1 $$
18130 $$ \code{sln}(c, s, l) = { c - s \over l } $$
18131 $$ \code{syd}(c, s, l, p) = { (c - s) (l - p + 1) \over l (l+1) / 2 } $$
18132 $$ \code{ddb}(c, s, l, p) = { 2 (c - \hbox{depreciation so far}) \over l } $$
18133 @end tex
18135 @noindent
18136 In @code{pmt} and @code{pmtb}, @expr{x=0} if omitted.
18138 These functions accept any numeric objects, including error forms,
18139 intervals, and even (though not very usefully) complex numbers.  The
18140 above formulas specify exactly the behavior of these functions with
18141 all sorts of inputs.
18143 Note that if the first argument to the @code{log} in @code{nper} is
18144 negative, @code{nper} leaves itself in symbolic form rather than
18145 returning a (financially meaningless) complex number.
18147 @samp{rate(num, pmt, amt)} solves the equation
18148 @samp{pv(rate, num, pmt) = amt} for @samp{rate} using @kbd{H a R}
18149 (@code{calc-find-root}), with the interval @samp{[.01% .. 100%]}
18150 for an initial guess.  The @code{rateb} function is the same except
18151 that it uses @code{pvb}.  Note that @code{ratel} can be solved
18152 directly; its formula is shown in the above list.
18154 Similarly, @samp{irr(pmts)} solves the equation @samp{npv(rate, pmts) = 0}
18155 for @samp{rate}.
18157 If you give a fourth argument to @code{nper} or @code{nperb}, Calc
18158 will also use @kbd{H a R} to solve the equation using an initial
18159 guess interval of @samp{[0 .. 100]}.
18161 A fourth argument to @code{fv} simply sums the two components
18162 calculated from the above formulas for @code{fv} and @code{fvl}.
18163 The same is true of @code{fvb}, @code{pv}, and @code{pvb}.
18165 The @kbd{ddb} function is computed iteratively; the ``book'' value
18166 starts out equal to @var{cost}, and decreases according to the above
18167 formula for the specified number of periods.  If the book value
18168 would decrease below @var{salvage}, it only decreases to @var{salvage}
18169 and the depreciation is zero for all subsequent periods.  The @code{ddb}
18170 function returns the amount the book value decreased in the specified
18171 period.
18173 @node Binary Functions, , Financial Functions, Arithmetic
18174 @section Binary Number Functions
18176 @noindent
18177 The commands in this chapter all use two-letter sequences beginning with
18178 the @kbd{b} prefix.
18180 @cindex Binary numbers
18181 The ``binary'' operations actually work regardless of the currently
18182 displayed radix, although their results make the most sense in a radix
18183 like 2, 8, or 16 (as obtained by the @kbd{d 2}, @kbd{d 8}, or @w{@kbd{d 6}}
18184 commands, respectively).  You may also wish to enable display of leading
18185 zeros with @kbd{d z}.  @xref{Radix Modes}.
18187 @cindex Word size for binary operations
18188 The Calculator maintains a current @dfn{word size} @expr{w}, an
18189 arbitrary positive or negative integer.  For a positive word size, all
18190 of the binary operations described here operate modulo @expr{2^w}.  In
18191 particular, negative arguments are converted to positive integers modulo
18192 @expr{2^w} by all binary functions.
18194 If the word size is negative, binary operations produce 2's complement
18195 integers from 
18196 @texline @math{-2^{-w-1}}
18197 @infoline @expr{-(2^(-w-1))} 
18198 to 
18199 @texline @math{2^{-w-1}-1}
18200 @infoline @expr{2^(-w-1)-1} 
18201 inclusive.  Either mode accepts inputs in any range; the sign of
18202 @expr{w} affects only the results produced.
18204 @kindex b c
18205 @pindex calc-clip
18206 @tindex clip
18207 The @kbd{b c} (@code{calc-clip})
18208 [@code{clip}] command can be used to clip a number by reducing it modulo
18209 @expr{2^w}.  The commands described in this chapter automatically clip
18210 their results to the current word size.  Note that other operations like
18211 addition do not use the current word size, since integer addition
18212 generally is not ``binary.''  (However, @pxref{Simplification Modes},
18213 @code{calc-bin-simplify-mode}.)  For example, with a word size of 8
18214 bits @kbd{b c} converts a number to the range 0 to 255; with a word
18215 size of @mathit{-8} @kbd{b c} converts to the range @mathit{-128} to 127.
18217 @kindex b w
18218 @pindex calc-word-size
18219 The default word size is 32 bits.  All operations except the shifts and
18220 rotates allow you to specify a different word size for that one
18221 operation by giving a numeric prefix argument:  @kbd{C-u 8 b c} clips the
18222 top of stack to the range 0 to 255 regardless of the current word size.
18223 To set the word size permanently, use @kbd{b w} (@code{calc-word-size}).
18224 This command displays a prompt with the current word size; press @key{RET}
18225 immediately to keep this word size, or type a new word size at the prompt.
18227 When the binary operations are written in symbolic form, they take an
18228 optional second (or third) word-size parameter.  When a formula like
18229 @samp{and(a,b)} is finally evaluated, the word size current at that time
18230 will be used, but when @samp{and(a,b,-8)} is evaluated, a word size of
18231 @mathit{-8} will always be used.  A symbolic binary function will be left
18232 in symbolic form unless the all of its argument(s) are integers or
18233 integer-valued floats.
18235 If either or both arguments are modulo forms for which @expr{M} is a
18236 power of two, that power of two is taken as the word size unless a
18237 numeric prefix argument overrides it.  The current word size is never
18238 consulted when modulo-power-of-two forms are involved.
18240 @kindex b a
18241 @pindex calc-and
18242 @tindex and
18243 The @kbd{b a} (@code{calc-and}) [@code{and}] command computes the bitwise
18244 AND of the two numbers on the top of the stack.  In other words, for each
18245 of the @expr{w} binary digits of the two numbers (pairwise), the corresponding
18246 bit of the result is 1 if and only if both input bits are 1:
18247 @samp{and(2#1100, 2#1010) = 2#1000}.
18249 @kindex b o
18250 @pindex calc-or
18251 @tindex or
18252 The @kbd{b o} (@code{calc-or}) [@code{or}] command computes the bitwise
18253 inclusive OR of two numbers.  A bit is 1 if either of the input bits, or
18254 both, are 1:  @samp{or(2#1100, 2#1010) = 2#1110}.
18256 @kindex b x
18257 @pindex calc-xor
18258 @tindex xor
18259 The @kbd{b x} (@code{calc-xor}) [@code{xor}] command computes the bitwise
18260 exclusive OR of two numbers.  A bit is 1 if exactly one of the input bits
18261 is 1:  @samp{xor(2#1100, 2#1010) = 2#0110}.
18263 @kindex b d
18264 @pindex calc-diff
18265 @tindex diff
18266 The @kbd{b d} (@code{calc-diff}) [@code{diff}] command computes the bitwise
18267 difference of two numbers; this is defined by @samp{diff(a,b) = and(a,not(b))},
18268 so that @samp{diff(2#1100, 2#1010) = 2#0100}.
18270 @kindex b n
18271 @pindex calc-not
18272 @tindex not
18273 The @kbd{b n} (@code{calc-not}) [@code{not}] command computes the bitwise
18274 NOT of a number.  A bit is 1 if the input bit is 0 and vice-versa.
18276 @kindex b l
18277 @pindex calc-lshift-binary
18278 @tindex lsh
18279 The @kbd{b l} (@code{calc-lshift-binary}) [@code{lsh}] command shifts a
18280 number left by one bit, or by the number of bits specified in the numeric
18281 prefix argument.  A negative prefix argument performs a logical right shift,
18282 in which zeros are shifted in on the left.  In symbolic form, @samp{lsh(a)}
18283 is short for @samp{lsh(a,1)}, which in turn is short for @samp{lsh(a,n,w)}.
18284 Bits shifted ``off the end,'' according to the current word size, are lost.
18286 @kindex H b l
18287 @kindex H b r
18288 @ignore
18289 @mindex @idots
18290 @end ignore
18291 @kindex H b L
18292 @ignore
18293 @mindex @null
18294 @end ignore
18295 @kindex H b R
18296 @ignore
18297 @mindex @null
18298 @end ignore
18299 @kindex H b t
18300 The @kbd{H b l} command also does a left shift, but it takes two arguments
18301 from the stack (the value to shift, and, at top-of-stack, the number of
18302 bits to shift).  This version interprets the prefix argument just like
18303 the regular binary operations, i.e., as a word size.  The Hyperbolic flag
18304 has a similar effect on the rest of the binary shift and rotate commands.
18306 @kindex b r
18307 @pindex calc-rshift-binary
18308 @tindex rsh
18309 The @kbd{b r} (@code{calc-rshift-binary}) [@code{rsh}] command shifts a
18310 number right by one bit, or by the number of bits specified in the numeric
18311 prefix argument:  @samp{rsh(a,n) = lsh(a,-n)}.
18313 @kindex b L
18314 @pindex calc-lshift-arith
18315 @tindex ash
18316 The @kbd{b L} (@code{calc-lshift-arith}) [@code{ash}] command shifts a
18317 number left.  It is analogous to @code{lsh}, except that if the shift
18318 is rightward (the prefix argument is negative), an arithmetic shift
18319 is performed as described below.
18321 @kindex b R
18322 @pindex calc-rshift-arith
18323 @tindex rash
18324 The @kbd{b R} (@code{calc-rshift-arith}) [@code{rash}] command performs
18325 an ``arithmetic'' shift to the right, in which the leftmost bit (according
18326 to the current word size) is duplicated rather than shifting in zeros.
18327 This corresponds to dividing by a power of two where the input is interpreted
18328 as a signed, twos-complement number.  (The distinction between the @samp{rsh}
18329 and @samp{rash} operations is totally independent from whether the word
18330 size is positive or negative.)  With a negative prefix argument, this
18331 performs a standard left shift.
18333 @kindex b t
18334 @pindex calc-rotate-binary
18335 @tindex rot
18336 The @kbd{b t} (@code{calc-rotate-binary}) [@code{rot}] command rotates a
18337 number one bit to the left.  The leftmost bit (according to the current
18338 word size) is dropped off the left and shifted in on the right.  With a
18339 numeric prefix argument, the number is rotated that many bits to the left
18340 or right.
18342 @xref{Set Operations}, for the @kbd{b p} and @kbd{b u} commands that
18343 pack and unpack binary integers into sets.  (For example, @kbd{b u}
18344 unpacks the number @samp{2#11001} to the set of bit-numbers
18345 @samp{[0, 3, 4]}.)  Type @kbd{b u V #} to count the number of ``1''
18346 bits in a binary integer.
18348 Another interesting use of the set representation of binary integers
18349 is to reverse the bits in, say, a 32-bit integer.  Type @kbd{b u} to
18350 unpack; type @kbd{31 @key{TAB} -} to replace each bit-number in the set
18351 with 31 minus that bit-number; type @kbd{b p} to pack the set back
18352 into a binary integer.
18354 @node Scientific Functions, Matrix Functions, Arithmetic, Top
18355 @chapter Scientific Functions
18357 @noindent
18358 The functions described here perform trigonometric and other transcendental
18359 calculations.  They generally produce floating-point answers correct to the
18360 full current precision.  The @kbd{H} (Hyperbolic) and @kbd{I} (Inverse)
18361 flag keys must be used to get some of these functions from the keyboard.
18363 @kindex P
18364 @pindex calc-pi
18365 @cindex @code{pi} variable
18366 @vindex pi
18367 @kindex H P
18368 @cindex @code{e} variable
18369 @vindex e
18370 @kindex I P
18371 @cindex @code{gamma} variable
18372 @vindex gamma
18373 @cindex Gamma constant, Euler's
18374 @cindex Euler's gamma constant
18375 @kindex H I P
18376 @cindex @code{phi} variable
18377 @cindex Phi, golden ratio
18378 @cindex Golden ratio
18379 One miscellaneous command is shift-@kbd{P} (@code{calc-pi}), which pushes
18380 the value of @cpi{} (at the current precision) onto the stack.  With the
18381 Hyperbolic flag, it pushes the value @expr{e}, the base of natural logarithms.
18382 With the Inverse flag, it pushes Euler's constant 
18383 @texline @math{\gamma}
18384 @infoline @expr{gamma} 
18385 (about 0.5772).  With both Inverse and Hyperbolic, it
18386 pushes the ``golden ratio'' 
18387 @texline @math{\phi}
18388 @infoline @expr{phi} 
18389 (about 1.618).  (At present, Euler's constant is not available
18390 to unlimited precision; Calc knows only the first 100 digits.)
18391 In Symbolic mode, these commands push the
18392 actual variables @samp{pi}, @samp{e}, @samp{gamma}, and @samp{phi},
18393 respectively, instead of their values; @pxref{Symbolic Mode}.
18395 @ignore
18396 @mindex Q
18397 @end ignore
18398 @ignore
18399 @mindex I Q
18400 @end ignore
18401 @kindex I Q
18402 @tindex sqr
18403 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] function is described elsewhere;
18404 @pxref{Basic Arithmetic}.  With the Inverse flag [@code{sqr}], this command
18405 computes the square of the argument.
18407 @xref{Prefix Arguments}, for a discussion of the effect of numeric
18408 prefix arguments on commands in this chapter which do not otherwise
18409 interpret a prefix argument.
18411 @menu
18412 * Logarithmic Functions::
18413 * Trigonometric and Hyperbolic Functions::
18414 * Advanced Math Functions::
18415 * Branch Cuts::
18416 * Random Numbers::
18417 * Combinatorial Functions::
18418 * Probability Distribution Functions::
18419 @end menu
18421 @node Logarithmic Functions, Trigonometric and Hyperbolic Functions, Scientific Functions, Scientific Functions
18422 @section Logarithmic Functions
18424 @noindent
18425 @kindex L
18426 @pindex calc-ln
18427 @tindex ln
18428 @ignore
18429 @mindex @null
18430 @end ignore
18431 @kindex I E
18432 The shift-@kbd{L} (@code{calc-ln}) [@code{ln}] command computes the natural
18433 logarithm of the real or complex number on the top of the stack.  With
18434 the Inverse flag it computes the exponential function instead, although
18435 this is redundant with the @kbd{E} command.
18437 @kindex E
18438 @pindex calc-exp
18439 @tindex exp
18440 @ignore
18441 @mindex @null
18442 @end ignore
18443 @kindex I L
18444 The shift-@kbd{E} (@code{calc-exp}) [@code{exp}] command computes the
18445 exponential, i.e., @expr{e} raised to the power of the number on the stack.
18446 The meanings of the Inverse and Hyperbolic flags follow from those for
18447 the @code{calc-ln} command.
18449 @kindex H L
18450 @kindex H E
18451 @pindex calc-log10
18452 @tindex log10
18453 @tindex exp10
18454 @ignore
18455 @mindex @null
18456 @end ignore
18457 @kindex H I L
18458 @ignore
18459 @mindex @null
18460 @end ignore
18461 @kindex H I E
18462 The @kbd{H L} (@code{calc-log10}) [@code{log10}] command computes the common
18463 (base-10) logarithm of a number.  (With the Inverse flag [@code{exp10}],
18464 it raises ten to a given power.)  Note that the common logarithm of a
18465 complex number is computed by taking the natural logarithm and dividing
18466 by 
18467 @texline @math{\ln10}.
18468 @infoline @expr{ln(10)}.
18470 @kindex B
18471 @kindex I B
18472 @pindex calc-log
18473 @tindex log
18474 @tindex alog
18475 The @kbd{B} (@code{calc-log}) [@code{log}] command computes a logarithm
18476 to any base.  For example, @kbd{1024 @key{RET} 2 B} produces 10, since
18477 @texline @math{2^{10} = 1024}.
18478 @infoline @expr{2^10 = 1024}.  
18479 In certain cases like @samp{log(3,9)}, the result
18480 will be either @expr{1:2} or @expr{0.5} depending on the current Fraction
18481 mode setting.  With the Inverse flag [@code{alog}], this command is
18482 similar to @kbd{^} except that the order of the arguments is reversed.
18484 @kindex f I
18485 @pindex calc-ilog
18486 @tindex ilog
18487 The @kbd{f I} (@code{calc-ilog}) [@code{ilog}] command computes the
18488 integer logarithm of a number to any base.  The number and the base must
18489 themselves be positive integers.  This is the true logarithm, rounded
18490 down to an integer.  Thus @kbd{ilog(x,10)} is 3 for all @expr{x} in the
18491 range from 1000 to 9999.  If both arguments are positive integers, exact
18492 integer arithmetic is used; otherwise, this is equivalent to
18493 @samp{floor(log(x,b))}.
18495 @kindex f E
18496 @pindex calc-expm1
18497 @tindex expm1
18498 The @kbd{f E} (@code{calc-expm1}) [@code{expm1}] command computes
18499 @texline @math{e^x - 1},
18500 @infoline @expr{exp(x)-1}, 
18501 but using an algorithm that produces a more accurate
18502 answer when the result is close to zero, i.e., when 
18503 @texline @math{e^x}
18504 @infoline @expr{exp(x)} 
18505 is close to one.
18507 @kindex f L
18508 @pindex calc-lnp1
18509 @tindex lnp1
18510 The @kbd{f L} (@code{calc-lnp1}) [@code{lnp1}] command computes
18511 @texline @math{\ln(x+1)},
18512 @infoline @expr{ln(x+1)}, 
18513 producing a more accurate answer when @expr{x} is close to zero.
18515 @node Trigonometric and Hyperbolic Functions, Advanced Math Functions, Logarithmic Functions, Scientific Functions
18516 @section Trigonometric/Hyperbolic Functions
18518 @noindent
18519 @kindex S
18520 @pindex calc-sin
18521 @tindex sin
18522 The shift-@kbd{S} (@code{calc-sin}) [@code{sin}] command computes the sine
18523 of an angle or complex number.  If the input is an HMS form, it is interpreted
18524 as degrees-minutes-seconds; otherwise, the input is interpreted according
18525 to the current angular mode.  It is best to use Radians mode when operating
18526 on complex numbers.
18528 Calc's ``units'' mechanism includes angular units like @code{deg},
18529 @code{rad}, and @code{grad}.  While @samp{sin(45 deg)} is not evaluated
18530 all the time, the @kbd{u s} (@code{calc-simplify-units}) command will
18531 simplify @samp{sin(45 deg)} by taking the sine of 45 degrees, regardless
18532 of the current angular mode.  @xref{Basic Operations on Units}.
18534 Also, the symbolic variable @code{pi} is not ordinarily recognized in
18535 arguments to trigonometric functions, as in @samp{sin(3 pi / 4)}, but
18536 the @kbd{a s} (@code{calc-simplify}) command recognizes many such
18537 formulas when the current angular mode is Radians @emph{and} Symbolic
18538 mode is enabled; this example would be replaced by @samp{sqrt(2) / 2}.
18539 @xref{Symbolic Mode}.  Beware, this simplification occurs even if you
18540 have stored a different value in the variable @samp{pi}; this is one
18541 reason why changing built-in variables is a bad idea.  Arguments of
18542 the form @expr{x} plus a multiple of @cpiover{2} are also simplified.
18543 Calc includes similar formulas for @code{cos} and @code{tan}.
18545 The @kbd{a s} command knows all angles which are integer multiples of
18546 @cpiover{12}, @cpiover{10}, or @cpiover{8} radians.  In Degrees mode,
18547 analogous simplifications occur for integer multiples of 15 or 18
18548 degrees, and for arguments plus multiples of 90 degrees.
18550 @kindex I S
18551 @pindex calc-arcsin
18552 @tindex arcsin
18553 With the Inverse flag, @code{calc-sin} computes an arcsine.  This is also
18554 available as the @code{calc-arcsin} command or @code{arcsin} algebraic
18555 function.  The returned argument is converted to degrees, radians, or HMS
18556 notation depending on the current angular mode.
18558 @kindex H S
18559 @pindex calc-sinh
18560 @tindex sinh
18561 @kindex H I S
18562 @pindex calc-arcsinh
18563 @tindex arcsinh
18564 With the Hyperbolic flag, @code{calc-sin} computes the hyperbolic
18565 sine, also available as @code{calc-sinh} [@code{sinh}].  With the
18566 Hyperbolic and Inverse flags, it computes the hyperbolic arcsine
18567 (@code{calc-arcsinh}) [@code{arcsinh}].
18569 @kindex C
18570 @pindex calc-cos
18571 @tindex cos
18572 @ignore
18573 @mindex @idots
18574 @end ignore
18575 @kindex I C
18576 @pindex calc-arccos
18577 @ignore
18578 @mindex @null
18579 @end ignore
18580 @tindex arccos
18581 @ignore
18582 @mindex @null
18583 @end ignore
18584 @kindex H C
18585 @pindex calc-cosh
18586 @ignore
18587 @mindex @null
18588 @end ignore
18589 @tindex cosh
18590 @ignore
18591 @mindex @null
18592 @end ignore
18593 @kindex H I C
18594 @pindex calc-arccosh
18595 @ignore
18596 @mindex @null
18597 @end ignore
18598 @tindex arccosh
18599 @ignore
18600 @mindex @null
18601 @end ignore
18602 @kindex T
18603 @pindex calc-tan
18604 @ignore
18605 @mindex @null
18606 @end ignore
18607 @tindex tan
18608 @ignore
18609 @mindex @null
18610 @end ignore
18611 @kindex I T
18612 @pindex calc-arctan
18613 @ignore
18614 @mindex @null
18615 @end ignore
18616 @tindex arctan
18617 @ignore
18618 @mindex @null
18619 @end ignore
18620 @kindex H T
18621 @pindex calc-tanh
18622 @ignore
18623 @mindex @null
18624 @end ignore
18625 @tindex tanh
18626 @ignore
18627 @mindex @null
18628 @end ignore
18629 @kindex H I T
18630 @pindex calc-arctanh
18631 @ignore
18632 @mindex @null
18633 @end ignore
18634 @tindex arctanh
18635 The shift-@kbd{C} (@code{calc-cos}) [@code{cos}] command computes the cosine
18636 of an angle or complex number, and shift-@kbd{T} (@code{calc-tan}) [@code{tan}]
18637 computes the tangent, along with all the various inverse and hyperbolic
18638 variants of these functions.
18640 @kindex f T
18641 @pindex calc-arctan2
18642 @tindex arctan2
18643 The @kbd{f T} (@code{calc-arctan2}) [@code{arctan2}] command takes two
18644 numbers from the stack and computes the arc tangent of their ratio.  The
18645 result is in the full range from @mathit{-180} (exclusive) to @mathit{+180}
18646 (inclusive) degrees, or the analogous range in radians.  A similar
18647 result would be obtained with @kbd{/} followed by @kbd{I T}, but the
18648 value would only be in the range from @mathit{-90} to @mathit{+90} degrees
18649 since the division loses information about the signs of the two
18650 components, and an error might result from an explicit division by zero
18651 which @code{arctan2} would avoid.  By (arbitrary) definition,
18652 @samp{arctan2(0,0)=0}.
18654 @pindex calc-sincos
18655 @ignore
18656 @starindex
18657 @end ignore
18658 @tindex sincos
18659 @ignore
18660 @starindex
18661 @end ignore
18662 @ignore
18663 @mindex arc@idots
18664 @end ignore
18665 @tindex arcsincos
18666 The @code{calc-sincos} [@code{sincos}] command computes the sine and
18667 cosine of a number, returning them as a vector of the form
18668 @samp{[@var{cos}, @var{sin}]}.
18669 With the Inverse flag [@code{arcsincos}], this command takes a two-element
18670 vector as an argument and computes @code{arctan2} of the elements.
18671 (This command does not accept the Hyperbolic flag.)
18673 @pindex calc-sec
18674 @tindex sec
18675 @pindex calc-csc
18676 @tindex csc
18677 @pindex calc-cot
18678 @tindex cot
18679 @pindex calc-sech
18680 @tindex sech
18681 @pindex calc-csch
18682 @tindex csch
18683 @pindex calc-coth
18684 @tindex coth
18685 The remaining trigonometric functions, @code{calc-sec} [@code{sec}],
18686 @code{calc-csc} [@code{csc}] and @code{calc-sec} [@code{sec}], are also
18687 available.  With the Hyperbolic flag, these compute their hyperbolic
18688 counterparts, which are also available separately as @code{calc-sech}
18689 [@code{sech}], @code{calc-csch} [@code{csch}] and @code{calc-sech}
18690 [@code{sech}].  (These commmands do not accept the Inverse flag.)
18692 @node Advanced Math Functions, Branch Cuts, Trigonometric and Hyperbolic Functions, Scientific Functions
18693 @section Advanced Mathematical Functions
18695 @noindent
18696 Calc can compute a variety of less common functions that arise in
18697 various branches of mathematics.  All of the functions described in
18698 this section allow arbitrary complex arguments and, except as noted,
18699 will work to arbitrarily large precisions.  They can not at present
18700 handle error forms or intervals as arguments.
18702 NOTE:  These functions are still experimental.  In particular, their
18703 accuracy is not guaranteed in all domains.  It is advisable to set the
18704 current precision comfortably higher than you actually need when
18705 using these functions.  Also, these functions may be impractically
18706 slow for some values of the arguments.
18708 @kindex f g
18709 @pindex calc-gamma
18710 @tindex gamma
18711 The @kbd{f g} (@code{calc-gamma}) [@code{gamma}] command computes the Euler
18712 gamma function.  For positive integer arguments, this is related to the
18713 factorial function:  @samp{gamma(n+1) = fact(n)}.  For general complex
18714 arguments the gamma function can be defined by the following definite
18715 integral:  
18716 @texline @math{\Gamma(a) = \int_0^\infty t^{a-1} e^t dt}.
18717 @infoline @expr{gamma(a) = integ(t^(a-1) exp(t), t, 0, inf)}.  
18718 (The actual implementation uses far more efficient computational methods.)
18720 @kindex f G
18721 @tindex gammaP
18722 @ignore
18723 @mindex @idots
18724 @end ignore
18725 @kindex I f G
18726 @ignore
18727 @mindex @null
18728 @end ignore
18729 @kindex H f G
18730 @ignore
18731 @mindex @null
18732 @end ignore
18733 @kindex H I f G
18734 @pindex calc-inc-gamma
18735 @ignore
18736 @mindex @null
18737 @end ignore
18738 @tindex gammaQ
18739 @ignore
18740 @mindex @null
18741 @end ignore
18742 @tindex gammag
18743 @ignore
18744 @mindex @null
18745 @end ignore
18746 @tindex gammaG
18747 The @kbd{f G} (@code{calc-inc-gamma}) [@code{gammaP}] command computes
18748 the incomplete gamma function, denoted @samp{P(a,x)}.  This is defined by
18749 the integral, 
18750 @texline @math{P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)}.
18751 @infoline @expr{gammaP(a,x) = integ(t^(a-1) exp(t), t, 0, x) / gamma(a)}.
18752 This implies that @samp{gammaP(a,inf) = 1} for any @expr{a} (see the
18753 definition of the normal gamma function).
18755 Several other varieties of incomplete gamma function are defined.
18756 The complement of @expr{P(a,x)}, called @expr{Q(a,x) = 1-P(a,x)} by
18757 some authors, is computed by the @kbd{I f G} [@code{gammaQ}] command.
18758 You can think of this as taking the other half of the integral, from
18759 @expr{x} to infinity.
18761 @ifinfo
18762 The functions corresponding to the integrals that define @expr{P(a,x)}
18763 and @expr{Q(a,x)} but without the normalizing @expr{1/gamma(a)}
18764 factor are called @expr{g(a,x)} and @expr{G(a,x)}, respectively
18765 (where @expr{g} and @expr{G} represent the lower- and upper-case Greek
18766 letter gamma).  You can obtain these using the @kbd{H f G} [@code{gammag}]
18767 and @kbd{H I f G} [@code{gammaG}] commands.
18768 @end ifinfo
18769 @tex
18770 \turnoffactive
18771 The functions corresponding to the integrals that define $P(a,x)$
18772 and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$
18773 factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively.
18774 You can obtain these using the \kbd{H f G} [\code{gammag}] and
18775 \kbd{I H f G} [\code{gammaG}] commands.
18776 @end tex
18778 @kindex f b
18779 @pindex calc-beta
18780 @tindex beta
18781 The @kbd{f b} (@code{calc-beta}) [@code{beta}] command computes the
18782 Euler beta function, which is defined in terms of the gamma function as
18783 @texline @math{B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)},
18784 @infoline @expr{beta(a,b) = gamma(a) gamma(b) / gamma(a+b)}, 
18785 or by
18786 @texline @math{B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt}.
18787 @infoline @expr{beta(a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, 1)}.
18789 @kindex f B
18790 @kindex H f B
18791 @pindex calc-inc-beta
18792 @tindex betaI
18793 @tindex betaB
18794 The @kbd{f B} (@code{calc-inc-beta}) [@code{betaI}] command computes
18795 the incomplete beta function @expr{I(x,a,b)}.  It is defined by
18796 @texline @math{I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)}.
18797 @infoline @expr{betaI(x,a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, x) / beta(a,b)}.
18798 Once again, the @kbd{H} (hyperbolic) prefix gives the corresponding
18799 un-normalized version [@code{betaB}].
18801 @kindex f e
18802 @kindex I f e
18803 @pindex calc-erf
18804 @tindex erf
18805 @tindex erfc
18806 The @kbd{f e} (@code{calc-erf}) [@code{erf}] command computes the
18807 error function 
18808 @texline @math{\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt}.
18809 @infoline @expr{erf(x) = 2 integ(exp(-(t^2)), t, 0, x) / sqrt(pi)}.
18810 The complementary error function @kbd{I f e} (@code{calc-erfc}) [@code{erfc}]
18811 is the corresponding integral from @samp{x} to infinity; the sum
18812 @texline @math{\hbox{erf}(x) + \hbox{erfc}(x) = 1}.
18813 @infoline @expr{erf(x) + erfc(x) = 1}.
18815 @kindex f j
18816 @kindex f y
18817 @pindex calc-bessel-J
18818 @pindex calc-bessel-Y
18819 @tindex besJ
18820 @tindex besY
18821 The @kbd{f j} (@code{calc-bessel-J}) [@code{besJ}] and @kbd{f y}
18822 (@code{calc-bessel-Y}) [@code{besY}] commands compute the Bessel
18823 functions of the first and second kinds, respectively.
18824 In @samp{besJ(n,x)} and @samp{besY(n,x)} the ``order'' parameter
18825 @expr{n} is often an integer, but is not required to be one.
18826 Calc's implementation of the Bessel functions currently limits the
18827 precision to 8 digits, and may not be exact even to that precision.
18828 Use with care!
18830 @node Branch Cuts, Random Numbers, Advanced Math Functions, Scientific Functions
18831 @section Branch Cuts and Principal Values
18833 @noindent
18834 @cindex Branch cuts
18835 @cindex Principal values
18836 All of the logarithmic, trigonometric, and other scientific functions are
18837 defined for complex numbers as well as for reals.
18838 This section describes the values
18839 returned in cases where the general result is a family of possible values.
18840 Calc follows section 12.5.3 of Steele's @dfn{Common Lisp, the Language},
18841 second edition, in these matters.  This section will describe each
18842 function briefly; for a more detailed discussion (including some nifty
18843 diagrams), consult Steele's book.
18845 Note that the branch cuts for @code{arctan} and @code{arctanh} were
18846 changed between the first and second editions of Steele.  Versions of
18847 Calc starting with 2.00 follow the second edition.
18849 The new branch cuts exactly match those of the HP-28/48 calculators.
18850 They also match those of Mathematica 1.2, except that Mathematica's
18851 @code{arctan} cut is always in the right half of the complex plane,
18852 and its @code{arctanh} cut is always in the top half of the plane.
18853 Calc's cuts are continuous with quadrants I and III for @code{arctan},
18854 or II and IV for @code{arctanh}.
18856 Note:  The current implementations of these functions with complex arguments
18857 are designed with proper behavior around the branch cuts in mind, @emph{not}
18858 efficiency or accuracy.  You may need to increase the floating precision
18859 and wait a while to get suitable answers from them.
18861 For @samp{sqrt(a+bi)}:  When @expr{a<0} and @expr{b} is small but positive
18862 or zero, the result is close to the @expr{+i} axis.  For @expr{b} small and
18863 negative, the result is close to the @expr{-i} axis.  The result always lies
18864 in the right half of the complex plane.
18866 For @samp{ln(a+bi)}:  The real part is defined as @samp{ln(abs(a+bi))}.
18867 The imaginary part is defined as @samp{arg(a+bi) = arctan2(b,a)}.
18868 Thus the branch cuts for @code{sqrt} and @code{ln} both lie on the
18869 negative real axis.
18871 The following table describes these branch cuts in another way.
18872 If the real and imaginary parts of @expr{z} are as shown, then
18873 the real and imaginary parts of @expr{f(z)} will be as shown.
18874 Here @code{eps} stands for a small positive value; each
18875 occurrence of @code{eps} may stand for a different small value.
18877 @smallexample
18878      z           sqrt(z)       ln(z)
18879 ----------------------------------------
18880    +,   0         +,  0       any, 0
18881    -,   0         0,  +       any, pi
18882    -, +eps      +eps, +      +eps, +
18883    -, -eps      +eps, -      +eps, -
18884 @end smallexample
18886 For @samp{z1^z2}:  This is defined by @samp{exp(ln(z1)*z2)}.
18887 One interesting consequence of this is that @samp{(-8)^1:3} does
18888 not evaluate to @mathit{-2} as you might expect, but to the complex
18889 number @expr{(1., 1.732)}.  Both of these are valid cube roots
18890 of @mathit{-8} (as is @expr{(1., -1.732)}); Calc chooses a perhaps
18891 less-obvious root for the sake of mathematical consistency.
18893 For @samp{arcsin(z)}:  This is defined by @samp{-i*ln(i*z + sqrt(1-z^2))}.
18894 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18896 For @samp{arccos(z)}:  This is defined by @samp{-i*ln(z + i*sqrt(1-z^2))},
18897 or equivalently by @samp{pi/2 - arcsin(z)}.  The branch cuts are on
18898 the real axis, less than @mathit{-1} and greater than 1.
18900 For @samp{arctan(z)}:  This is defined by
18901 @samp{(ln(1+i*z) - ln(1-i*z)) / (2*i)}.  The branch cuts are on the
18902 imaginary axis, below @expr{-i} and above @expr{i}.
18904 For @samp{arcsinh(z)}:  This is defined by @samp{ln(z + sqrt(1+z^2))}.
18905 The branch cuts are on the imaginary axis, below @expr{-i} and
18906 above @expr{i}.
18908 For @samp{arccosh(z)}:  This is defined by
18909 @samp{ln(z + (z+1)*sqrt((z-1)/(z+1)))}.  The branch cut is on the
18910 real axis less than 1.
18912 For @samp{arctanh(z)}:  This is defined by @samp{(ln(1+z) - ln(1-z)) / 2}.
18913 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18915 The following tables for @code{arcsin}, @code{arccos}, and
18916 @code{arctan} assume the current angular mode is Radians.  The
18917 hyperbolic functions operate independently of the angular mode.
18919 @smallexample
18920        z             arcsin(z)            arccos(z)
18921 -------------------------------------------------------
18922  (-1..1),  0      (-pi/2..pi/2), 0       (0..pi), 0
18923  (-1..1), +eps    (-pi/2..pi/2), +eps    (0..pi), -eps
18924  (-1..1), -eps    (-pi/2..pi/2), -eps    (0..pi), +eps
18925    <-1,    0          -pi/2,     +         pi,    -
18926    <-1,  +eps      -pi/2 + eps,  +      pi - eps, -
18927    <-1,  -eps      -pi/2 + eps,  -      pi - eps, +
18928     >1,    0           pi/2,     -          0,    +
18929     >1,  +eps       pi/2 - eps,  +        +eps,   -
18930     >1,  -eps       pi/2 - eps,  -        +eps,   +
18931 @end smallexample
18933 @smallexample
18934        z            arccosh(z)         arctanh(z)
18935 -----------------------------------------------------
18936  (-1..1),  0        0,  (0..pi)       any,     0
18937  (-1..1), +eps    +eps, (0..pi)       any,    +eps
18938  (-1..1), -eps    +eps, (-pi..0)      any,    -eps
18939    <-1,    0        +,    pi           -,     pi/2
18940    <-1,  +eps       +,  pi - eps       -,  pi/2 - eps
18941    <-1,  -eps       +, -pi + eps       -, -pi/2 + eps
18942     >1,    0        +,     0           +,    -pi/2
18943     >1,  +eps       +,   +eps          +,  pi/2 - eps
18944     >1,  -eps       +,   -eps          +, -pi/2 + eps
18945 @end smallexample
18947 @smallexample
18948        z           arcsinh(z)           arctan(z)
18949 -----------------------------------------------------
18950    0, (-1..1)    0, (-pi/2..pi/2)         0,     any
18951    0,   <-1      -,    -pi/2            -pi/2,    -
18952  +eps,  <-1      +, -pi/2 + eps       pi/2 - eps, -
18953  -eps,  <-1      -, -pi/2 + eps      -pi/2 + eps, -
18954    0,    >1      +,     pi/2             pi/2,    +
18955  +eps,   >1      +,  pi/2 - eps       pi/2 - eps, +
18956  -eps,   >1      -,  pi/2 - eps      -pi/2 + eps, +
18957 @end smallexample
18959 Finally, the following identities help to illustrate the relationship
18960 between the complex trigonometric and hyperbolic functions.  They
18961 are valid everywhere, including on the branch cuts.
18963 @smallexample
18964 sin(i*z)  = i*sinh(z)       arcsin(i*z)  = i*arcsinh(z)
18965 cos(i*z)  =   cosh(z)       arcsinh(i*z) = i*arcsin(z)
18966 tan(i*z)  = i*tanh(z)       arctan(i*z)  = i*arctanh(z)
18967 sinh(i*z) = i*sin(z)        cosh(i*z)    =   cos(z)
18968 @end smallexample
18970 The ``advanced math'' functions (gamma, Bessel, etc.@:) are also defined
18971 for general complex arguments, but their branch cuts and principal values
18972 are not rigorously specified at present.
18974 @node Random Numbers, Combinatorial Functions, Branch Cuts, Scientific Functions
18975 @section Random Numbers
18977 @noindent
18978 @kindex k r
18979 @pindex calc-random
18980 @tindex random
18981 The @kbd{k r} (@code{calc-random}) [@code{random}] command produces
18982 random numbers of various sorts.
18984 Given a positive numeric prefix argument @expr{M}, it produces a random
18985 integer @expr{N} in the range 
18986 @texline @math{0 \le N < M}.
18987 @infoline @expr{0 <= N < M}.  
18988 Each of the @expr{M} values appears with equal probability.
18990 With no numeric prefix argument, the @kbd{k r} command takes its argument
18991 from the stack instead.  Once again, if this is a positive integer @expr{M}
18992 the result is a random integer less than @expr{M}.  However, note that
18993 while numeric prefix arguments are limited to six digits or so, an @expr{M}
18994 taken from the stack can be arbitrarily large.  If @expr{M} is negative,
18995 the result is a random integer in the range 
18996 @texline @math{M < N \le 0}.
18997 @infoline @expr{M < N <= 0}.
18999 If the value on the stack is a floating-point number @expr{M}, the result
19000 is a random floating-point number @expr{N} in the range 
19001 @texline @math{0 \le N < M}
19002 @infoline @expr{0 <= N < M}
19003 or 
19004 @texline @math{M < N \le 0},
19005 @infoline @expr{M < N <= 0}, 
19006 according to the sign of @expr{M}.
19008 If @expr{M} is zero, the result is a Gaussian-distributed random real
19009 number; the distribution has a mean of zero and a standard deviation
19010 of one.  The algorithm used generates random numbers in pairs; thus,
19011 every other call to this function will be especially fast.
19013 If @expr{M} is an error form 
19014 @texline @math{m} @code{+/-} @math{\sigma}
19015 @infoline @samp{m +/- s} 
19016 where @var{m} and 
19017 @texline @math{\sigma}
19018 @infoline @var{s} 
19019 are both real numbers, the result uses a Gaussian distribution with mean
19020 @var{m} and standard deviation 
19021 @texline @math{\sigma}.
19022 @infoline @var{s}.
19024 If @expr{M} is an interval form, the lower and upper bounds specify the
19025 acceptable limits of the random numbers.  If both bounds are integers,
19026 the result is a random integer in the specified range.  If either bound
19027 is floating-point, the result is a random real number in the specified
19028 range.  If the interval is open at either end, the result will be sure
19029 not to equal that end value.  (This makes a big difference for integer
19030 intervals, but for floating-point intervals it's relatively minor:
19031 with a precision of 6, @samp{random([1.0..2.0))} will return any of one
19032 million numbers from 1.00000 to 1.99999; @samp{random([1.0..2.0])} may
19033 additionally return 2.00000, but the probability of this happening is
19034 extremely small.)
19036 If @expr{M} is a vector, the result is one element taken at random from
19037 the vector.  All elements of the vector are given equal probabilities.
19039 @vindex RandSeed
19040 The sequence of numbers produced by @kbd{k r} is completely random by
19041 default, i.e., the sequence is seeded each time you start Calc using
19042 the current time and other information.  You can get a reproducible
19043 sequence by storing a particular ``seed value'' in the Calc variable
19044 @code{RandSeed}.  Any integer will do for a seed; integers of from 1
19045 to 12 digits are good.  If you later store a different integer into
19046 @code{RandSeed}, Calc will switch to a different pseudo-random
19047 sequence.  If you ``unstore'' @code{RandSeed}, Calc will re-seed itself
19048 from the current time.  If you store the same integer that you used
19049 before back into @code{RandSeed}, you will get the exact same sequence
19050 of random numbers as before.
19052 @pindex calc-rrandom
19053 The @code{calc-rrandom} command (not on any key) produces a random real
19054 number between zero and one.  It is equivalent to @samp{random(1.0)}.
19056 @kindex k a
19057 @pindex calc-random-again
19058 The @kbd{k a} (@code{calc-random-again}) command produces another random
19059 number, re-using the most recent value of @expr{M}.  With a numeric
19060 prefix argument @var{n}, it produces @var{n} more random numbers using
19061 that value of @expr{M}.
19063 @kindex k h
19064 @pindex calc-shuffle
19065 @tindex shuffle
19066 The @kbd{k h} (@code{calc-shuffle}) command produces a vector of several
19067 random values with no duplicates.  The value on the top of the stack
19068 specifies the set from which the random values are drawn, and may be any
19069 of the @expr{M} formats described above.  The numeric prefix argument
19070 gives the length of the desired list.  (If you do not provide a numeric
19071 prefix argument, the length of the list is taken from the top of the
19072 stack, and @expr{M} from second-to-top.)
19074 If @expr{M} is a floating-point number, zero, or an error form (so
19075 that the random values are being drawn from the set of real numbers)
19076 there is little practical difference between using @kbd{k h} and using
19077 @kbd{k r} several times.  But if the set of possible values consists
19078 of just a few integers, or the elements of a vector, then there is
19079 a very real chance that multiple @kbd{k r}'s will produce the same
19080 number more than once.  The @kbd{k h} command produces a vector whose
19081 elements are always distinct.  (Actually, there is a slight exception:
19082 If @expr{M} is a vector, no given vector element will be drawn more
19083 than once, but if several elements of @expr{M} are equal, they may
19084 each make it into the result vector.)
19086 One use of @kbd{k h} is to rearrange a list at random.  This happens
19087 if the prefix argument is equal to the number of values in the list:
19088 @kbd{[1, 1.5, 2, 2.5, 3] 5 k h} might produce the permuted list
19089 @samp{[2.5, 1, 1.5, 3, 2]}.  As a convenient feature, if the argument
19090 @var{n} is negative it is replaced by the size of the set represented
19091 by @expr{M}.  Naturally, this is allowed only when @expr{M} specifies
19092 a small discrete set of possibilities.
19094 To do the equivalent of @kbd{k h} but with duplications allowed,
19095 given @expr{M} on the stack and with @var{n} just entered as a numeric
19096 prefix, use @kbd{v b} to build a vector of copies of @expr{M}, then use
19097 @kbd{V M k r} to ``map'' the normal @kbd{k r} function over the
19098 elements of this vector.  @xref{Matrix Functions}.
19100 @menu
19101 * Random Number Generator::     (Complete description of Calc's algorithm)
19102 @end menu
19104 @node Random Number Generator, , Random Numbers, Random Numbers
19105 @subsection Random Number Generator
19107 Calc's random number generator uses several methods to ensure that
19108 the numbers it produces are highly random.  Knuth's @emph{Art of
19109 Computer Programming}, Volume II, contains a thorough description
19110 of the theory of random number generators and their measurement and
19111 characterization.
19113 If @code{RandSeed} has no stored value, Calc calls Emacs' built-in
19114 @code{random} function to get a stream of random numbers, which it
19115 then treats in various ways to avoid problems inherent in the simple
19116 random number generators that many systems use to implement @code{random}.
19118 When Calc's random number generator is first invoked, it ``seeds''
19119 the low-level random sequence using the time of day, so that the
19120 random number sequence will be different every time you use Calc.
19122 Since Emacs Lisp doesn't specify the range of values that will be
19123 returned by its @code{random} function, Calc exercises the function
19124 several times to estimate the range.  When Calc subsequently uses
19125 the @code{random} function, it takes only 10 bits of the result
19126 near the most-significant end.  (It avoids at least the bottom
19127 four bits, preferably more, and also tries to avoid the top two
19128 bits.)  This strategy works well with the linear congruential
19129 generators that are typically used to implement @code{random}.
19131 If @code{RandSeed} contains an integer, Calc uses this integer to
19132 seed an ``additive congruential'' method (Knuth's algorithm 3.2.2A,
19133 computing 
19134 @texline @math{X_{n-55} - X_{n-24}}.
19135 @infoline @expr{X_n-55 - X_n-24}).  
19136 This method expands the seed
19137 value into a large table which is maintained internally; the variable
19138 @code{RandSeed} is changed from, e.g., 42 to the vector @expr{[42]}
19139 to indicate that the seed has been absorbed into this table.  When
19140 @code{RandSeed} contains a vector, @kbd{k r} and related commands
19141 continue to use the same internal table as last time.  There is no
19142 way to extract the complete state of the random number generator
19143 so that you can restart it from any point; you can only restart it
19144 from the same initial seed value.  A simple way to restart from the
19145 same seed is to type @kbd{s r RandSeed} to get the seed vector,
19146 @kbd{v u} to unpack it back into a number, then @kbd{s t RandSeed}
19147 to reseed the generator with that number.
19149 Calc uses a ``shuffling'' method as described in algorithm 3.2.2B
19150 of Knuth.  It fills a table with 13 random 10-bit numbers.  Then,
19151 to generate a new random number, it uses the previous number to
19152 index into the table, picks the value it finds there as the new
19153 random number, then replaces that table entry with a new value
19154 obtained from a call to the base random number generator (either
19155 the additive congruential generator or the @code{random} function
19156 supplied by the system).  If there are any flaws in the base
19157 generator, shuffling will tend to even them out.  But if the system
19158 provides an excellent @code{random} function, shuffling will not
19159 damage its randomness.
19161 To create a random integer of a certain number of digits, Calc
19162 builds the integer three decimal digits at a time.  For each group
19163 of three digits, Calc calls its 10-bit shuffling random number generator
19164 (which returns a value from 0 to 1023); if the random value is 1000
19165 or more, Calc throws it out and tries again until it gets a suitable
19166 value.
19168 To create a random floating-point number with precision @var{p}, Calc
19169 simply creates a random @var{p}-digit integer and multiplies by
19170 @texline @math{10^{-p}}.
19171 @infoline @expr{10^-p}.  
19172 The resulting random numbers should be very clean, but note
19173 that relatively small numbers will have few significant random digits.
19174 In other words, with a precision of 12, you will occasionally get
19175 numbers on the order of 
19176 @texline @math{10^{-9}}
19177 @infoline @expr{10^-9} 
19178 or 
19179 @texline @math{10^{-10}},
19180 @infoline @expr{10^-10}, 
19181 but those numbers will only have two or three random digits since they
19182 correspond to small integers times 
19183 @texline @math{10^{-12}}.
19184 @infoline @expr{10^-12}.
19186 To create a random integer in the interval @samp{[0 .. @var{m})}, Calc
19187 counts the digits in @var{m}, creates a random integer with three
19188 additional digits, then reduces modulo @var{m}.  Unless @var{m} is a
19189 power of ten the resulting values will be very slightly biased toward
19190 the lower numbers, but this bias will be less than 0.1%.  (For example,
19191 if @var{m} is 42, Calc will reduce a random integer less than 100000
19192 modulo 42 to get a result less than 42.  It is easy to show that the
19193 numbers 40 and 41 will be only 2380/2381 as likely to result from this
19194 modulo operation as numbers 39 and below.)  If @var{m} is a power of
19195 ten, however, the numbers should be completely unbiased.
19197 The Gaussian random numbers generated by @samp{random(0.0)} use the
19198 ``polar'' method described in Knuth section 3.4.1C.  This method
19199 generates a pair of Gaussian random numbers at a time, so only every
19200 other call to @samp{random(0.0)} will require significant calculations.
19202 @node Combinatorial Functions, Probability Distribution Functions, Random Numbers, Scientific Functions
19203 @section Combinatorial Functions
19205 @noindent
19206 Commands relating to combinatorics and number theory begin with the
19207 @kbd{k} key prefix.
19209 @kindex k g
19210 @pindex calc-gcd
19211 @tindex gcd
19212 The @kbd{k g} (@code{calc-gcd}) [@code{gcd}] command computes the
19213 Greatest Common Divisor of two integers.  It also accepts fractions;
19214 the GCD of two fractions is defined by taking the GCD of the
19215 numerators, and the LCM of the denominators.  This definition is
19216 consistent with the idea that @samp{a / gcd(a,x)} should yield an
19217 integer for any @samp{a} and @samp{x}.  For other types of arguments,
19218 the operation is left in symbolic form.
19220 @kindex k l
19221 @pindex calc-lcm
19222 @tindex lcm
19223 The @kbd{k l} (@code{calc-lcm}) [@code{lcm}] command computes the
19224 Least Common Multiple of two integers or fractions.  The product of
19225 the LCM and GCD of two numbers is equal to the product of the
19226 numbers.
19228 @kindex k E
19229 @pindex calc-extended-gcd
19230 @tindex egcd
19231 The @kbd{k E} (@code{calc-extended-gcd}) [@code{egcd}] command computes
19232 the GCD of two integers @expr{x} and @expr{y} and returns a vector
19233 @expr{[g, a, b]} where 
19234 @texline @math{g = \gcd(x,y) = a x + b y}.
19235 @infoline @expr{g = gcd(x,y) = a x + b y}.
19237 @kindex !
19238 @pindex calc-factorial
19239 @tindex fact
19240 @ignore
19241 @mindex @null
19242 @end ignore
19243 @tindex !
19244 The @kbd{!} (@code{calc-factorial}) [@code{fact}] command computes the
19245 factorial of the number at the top of the stack.  If the number is an
19246 integer, the result is an exact integer.  If the number is an
19247 integer-valued float, the result is a floating-point approximation.  If
19248 the number is a non-integral real number, the generalized factorial is used,
19249 as defined by the Euler Gamma function.  Please note that computation of
19250 large factorials can be slow; using floating-point format will help
19251 since fewer digits must be maintained.  The same is true of many of
19252 the commands in this section.
19254 @kindex k d
19255 @pindex calc-double-factorial
19256 @tindex dfact
19257 @ignore
19258 @mindex @null
19259 @end ignore
19260 @tindex !!
19261 The @kbd{k d} (@code{calc-double-factorial}) [@code{dfact}] command
19262 computes the ``double factorial'' of an integer.  For an even integer,
19263 this is the product of even integers from 2 to @expr{N}.  For an odd
19264 integer, this is the product of odd integers from 3 to @expr{N}.  If
19265 the argument is an integer-valued float, the result is a floating-point
19266 approximation.  This function is undefined for negative even integers.
19267 The notation @expr{N!!} is also recognized for double factorials.
19269 @kindex k c
19270 @pindex calc-choose
19271 @tindex choose
19272 The @kbd{k c} (@code{calc-choose}) [@code{choose}] command computes the
19273 binomial coefficient @expr{N}-choose-@expr{M}, where @expr{M} is the number
19274 on the top of the stack and @expr{N} is second-to-top.  If both arguments
19275 are integers, the result is an exact integer.  Otherwise, the result is a
19276 floating-point approximation.  The binomial coefficient is defined for all
19277 real numbers by
19278 @texline @math{N! \over M! (N-M)!\,}.
19279 @infoline @expr{N! / M! (N-M)!}.
19281 @kindex H k c
19282 @pindex calc-perm
19283 @tindex perm
19284 @ifinfo
19285 The @kbd{H k c} (@code{calc-perm}) [@code{perm}] command computes the
19286 number-of-permutations function @expr{N! / (N-M)!}.
19287 @end ifinfo
19288 @tex
19289 The \kbd{H k c} (\code{calc-perm}) [\code{perm}] command computes the
19290 number-of-perm\-utations function $N! \over (N-M)!\,$.
19291 @end tex
19293 @kindex k b
19294 @kindex H k b
19295 @pindex calc-bernoulli-number
19296 @tindex bern
19297 The @kbd{k b} (@code{calc-bernoulli-number}) [@code{bern}] command
19298 computes a given Bernoulli number.  The value at the top of the stack
19299 is a nonnegative integer @expr{n} that specifies which Bernoulli number
19300 is desired.  The @kbd{H k b} command computes a Bernoulli polynomial,
19301 taking @expr{n} from the second-to-top position and @expr{x} from the
19302 top of the stack.  If @expr{x} is a variable or formula the result is
19303 a polynomial in @expr{x}; if @expr{x} is a number the result is a number.
19305 @kindex k e
19306 @kindex H k e
19307 @pindex calc-euler-number
19308 @tindex euler
19309 The @kbd{k e} (@code{calc-euler-number}) [@code{euler}] command similarly
19310 computes an Euler number, and @w{@kbd{H k e}} computes an Euler polynomial.
19311 Bernoulli and Euler numbers occur in the Taylor expansions of several
19312 functions.
19314 @kindex k s
19315 @kindex H k s
19316 @pindex calc-stirling-number
19317 @tindex stir1
19318 @tindex stir2
19319 The @kbd{k s} (@code{calc-stirling-number}) [@code{stir1}] command
19320 computes a Stirling number of the first 
19321 @texline kind@tie{}@math{n \brack m},
19322 @infoline kind,
19323 given two integers @expr{n} and @expr{m} on the stack.  The @kbd{H k s}
19324 [@code{stir2}] command computes a Stirling number of the second 
19325 @texline kind@tie{}@math{n \brace m}.
19326 @infoline kind.
19327 These are the number of @expr{m}-cycle permutations of @expr{n} objects,
19328 and the number of ways to partition @expr{n} objects into @expr{m}
19329 non-empty sets, respectively.
19331 @kindex k p
19332 @pindex calc-prime-test
19333 @cindex Primes
19334 The @kbd{k p} (@code{calc-prime-test}) command checks if the integer on
19335 the top of the stack is prime.  For integers less than eight million, the
19336 answer is always exact and reasonably fast.  For larger integers, a
19337 probabilistic method is used (see Knuth vol. II, section 4.5.4, algorithm P).
19338 The number is first checked against small prime factors (up to 13).  Then,
19339 any number of iterations of the algorithm are performed.  Each step either
19340 discovers that the number is non-prime, or substantially increases the
19341 certainty that the number is prime.  After a few steps, the chance that
19342 a number was mistakenly described as prime will be less than one percent.
19343 (Indeed, this is a worst-case estimate of the probability; in practice
19344 even a single iteration is quite reliable.)  After the @kbd{k p} command,
19345 the number will be reported as definitely prime or non-prime if possible,
19346 or otherwise ``probably'' prime with a certain probability of error.
19348 @ignore
19349 @starindex
19350 @end ignore
19351 @tindex prime
19352 The normal @kbd{k p} command performs one iteration of the primality
19353 test.  Pressing @kbd{k p} repeatedly for the same integer will perform
19354 additional iterations.  Also, @kbd{k p} with a numeric prefix performs
19355 the specified number of iterations.  There is also an algebraic function
19356 @samp{prime(n)} or @samp{prime(n,iters)} which returns 1 if @expr{n}
19357 is (probably) prime and 0 if not.
19359 @kindex k f
19360 @pindex calc-prime-factors
19361 @tindex prfac
19362 The @kbd{k f} (@code{calc-prime-factors}) [@code{prfac}] command
19363 attempts to decompose an integer into its prime factors.  For numbers up
19364 to 25 million, the answer is exact although it may take some time.  The
19365 result is a vector of the prime factors in increasing order.  For larger
19366 inputs, prime factors above 5000 may not be found, in which case the
19367 last number in the vector will be an unfactored integer greater than 25
19368 million (with a warning message).  For negative integers, the first
19369 element of the list will be @mathit{-1}.  For inputs @mathit{-1}, @mathit{0}, and
19370 @mathit{1}, the result is a list of the same number.
19372 @kindex k n
19373 @pindex calc-next-prime
19374 @ignore
19375 @mindex nextpr@idots
19376 @end ignore
19377 @tindex nextprime
19378 The @kbd{k n} (@code{calc-next-prime}) [@code{nextprime}] command finds
19379 the next prime above a given number.  Essentially, it searches by calling
19380 @code{calc-prime-test} on successive integers until it finds one that
19381 passes the test.  This is quite fast for integers less than eight million,
19382 but once the probabilistic test comes into play the search may be rather
19383 slow.  Ordinarily this command stops for any prime that passes one iteration
19384 of the primality test.  With a numeric prefix argument, a number must pass
19385 the specified number of iterations before the search stops.  (This only
19386 matters when searching above eight million.)  You can always use additional
19387 @kbd{k p} commands to increase your certainty that the number is indeed
19388 prime.
19390 @kindex I k n
19391 @pindex calc-prev-prime
19392 @ignore
19393 @mindex prevpr@idots
19394 @end ignore
19395 @tindex prevprime
19396 The @kbd{I k n} (@code{calc-prev-prime}) [@code{prevprime}] command
19397 analogously finds the next prime less than a given number.
19399 @kindex k t
19400 @pindex calc-totient
19401 @tindex totient
19402 The @kbd{k t} (@code{calc-totient}) [@code{totient}] command computes the
19403 Euler ``totient'' 
19404 @texline function@tie{}@math{\phi(n)},
19405 @infoline function,
19406 the number of integers less than @expr{n} which
19407 are relatively prime to @expr{n}.
19409 @kindex k m
19410 @pindex calc-moebius
19411 @tindex moebius
19412 The @kbd{k m} (@code{calc-moebius}) [@code{moebius}] command computes the
19413 @texline M@"obius @math{\mu}
19414 @infoline Moebius ``mu''
19415 function.  If the input number is a product of @expr{k}
19416 distinct factors, this is @expr{(-1)^k}.  If the input number has any
19417 duplicate factors (i.e., can be divided by the same prime more than once),
19418 the result is zero.
19420 @node Probability Distribution Functions, , Combinatorial Functions, Scientific Functions
19421 @section Probability Distribution Functions
19423 @noindent
19424 The functions in this section compute various probability distributions.
19425 For continuous distributions, this is the integral of the probability
19426 density function from @expr{x} to infinity.  (These are the ``upper
19427 tail'' distribution functions; there are also corresponding ``lower
19428 tail'' functions which integrate from minus infinity to @expr{x}.)
19429 For discrete distributions, the upper tail function gives the sum
19430 from @expr{x} to infinity; the lower tail function gives the sum
19431 from minus infinity up to, but not including,@w{ }@expr{x}.
19433 To integrate from @expr{x} to @expr{y}, just use the distribution
19434 function twice and subtract.  For example, the probability that a
19435 Gaussian random variable with mean 2 and standard deviation 1 will
19436 lie in the range from 2.5 to 2.8 is @samp{utpn(2.5,2,1) - utpn(2.8,2,1)}
19437 (``the probability that it is greater than 2.5, but not greater than 2.8''),
19438 or equivalently @samp{ltpn(2.8,2,1) - ltpn(2.5,2,1)}.
19440 @kindex k B
19441 @kindex I k B
19442 @pindex calc-utpb
19443 @tindex utpb
19444 @tindex ltpb
19445 The @kbd{k B} (@code{calc-utpb}) [@code{utpb}] function uses the
19446 binomial distribution.  Push the parameters @var{n}, @var{p}, and
19447 then @var{x} onto the stack; the result (@samp{utpb(x,n,p)}) is the
19448 probability that an event will occur @var{x} or more times out
19449 of @var{n} trials, if its probability of occurring in any given
19450 trial is @var{p}.  The @kbd{I k B} [@code{ltpb}] function is
19451 the probability that the event will occur fewer than @var{x} times.
19453 The other probability distribution functions similarly take the
19454 form @kbd{k @var{X}} (@code{calc-utp@var{x}}) [@code{utp@var{x}}]
19455 and @kbd{I k @var{X}} [@code{ltp@var{x}}], for various letters
19456 @var{x}.  The arguments to the algebraic functions are the value of
19457 the random variable first, then whatever other parameters define the
19458 distribution.  Note these are among the few Calc functions where the
19459 order of the arguments in algebraic form differs from the order of
19460 arguments as found on the stack.  (The random variable comes last on
19461 the stack, so that you can type, e.g., @kbd{2 @key{RET} 1 @key{RET} 2.5
19462 k N M-@key{RET} @key{DEL} 2.8 k N -}, using @kbd{M-@key{RET} @key{DEL}} to
19463 recover the original arguments but substitute a new value for @expr{x}.)
19465 @kindex k C
19466 @pindex calc-utpc
19467 @tindex utpc
19468 @ignore
19469 @mindex @idots
19470 @end ignore
19471 @kindex I k C
19472 @ignore
19473 @mindex @null
19474 @end ignore
19475 @tindex ltpc
19476 The @samp{utpc(x,v)} function uses the chi-square distribution with
19477 @texline @math{\nu}
19478 @infoline @expr{v} 
19479 degrees of freedom.  It is the probability that a model is
19480 correct if its chi-square statistic is @expr{x}.
19482 @kindex k F
19483 @pindex calc-utpf
19484 @tindex utpf
19485 @ignore
19486 @mindex @idots
19487 @end ignore
19488 @kindex I k F
19489 @ignore
19490 @mindex @null
19491 @end ignore
19492 @tindex ltpf
19493 The @samp{utpf(F,v1,v2)} function uses the F distribution, used in
19494 various statistical tests.  The parameters 
19495 @texline @math{\nu_1}
19496 @infoline @expr{v1} 
19497 and 
19498 @texline @math{\nu_2}
19499 @infoline @expr{v2}
19500 are the degrees of freedom in the numerator and denominator,
19501 respectively, used in computing the statistic @expr{F}.
19503 @kindex k N
19504 @pindex calc-utpn
19505 @tindex utpn
19506 @ignore
19507 @mindex @idots
19508 @end ignore
19509 @kindex I k N
19510 @ignore
19511 @mindex @null
19512 @end ignore
19513 @tindex ltpn
19514 The @samp{utpn(x,m,s)} function uses a normal (Gaussian) distribution
19515 with mean @expr{m} and standard deviation 
19516 @texline @math{\sigma}.
19517 @infoline @expr{s}.  
19518 It is the probability that such a normal-distributed random variable
19519 would exceed @expr{x}.
19521 @kindex k P
19522 @pindex calc-utpp
19523 @tindex utpp
19524 @ignore
19525 @mindex @idots
19526 @end ignore
19527 @kindex I k P
19528 @ignore
19529 @mindex @null
19530 @end ignore
19531 @tindex ltpp
19532 The @samp{utpp(n,x)} function uses a Poisson distribution with
19533 mean @expr{x}.  It is the probability that @expr{n} or more such
19534 Poisson random events will occur.
19536 @kindex k T
19537 @pindex calc-ltpt
19538 @tindex utpt
19539 @ignore
19540 @mindex @idots
19541 @end ignore
19542 @kindex I k T
19543 @ignore
19544 @mindex @null
19545 @end ignore
19546 @tindex ltpt
19547 The @samp{utpt(t,v)} function uses the Student's ``t'' distribution
19548 with 
19549 @texline @math{\nu}
19550 @infoline @expr{v} 
19551 degrees of freedom.  It is the probability that a
19552 t-distributed random variable will be greater than @expr{t}.
19553 (Note:  This computes the distribution function 
19554 @texline @math{A(t|\nu)}
19555 @infoline @expr{A(t|v)}
19556 where 
19557 @texline @math{A(0|\nu) = 1}
19558 @infoline @expr{A(0|v) = 1} 
19559 and 
19560 @texline @math{A(\infty|\nu) \to 0}.
19561 @infoline @expr{A(inf|v) -> 0}.  
19562 The @code{UTPT} operation on the HP-48 uses a different definition which
19563 returns half of Calc's value:  @samp{UTPT(t,v) = .5*utpt(t,v)}.)
19565 While Calc does not provide inverses of the probability distribution
19566 functions, the @kbd{a R} command can be used to solve for the inverse.
19567 Since the distribution functions are monotonic, @kbd{a R} is guaranteed
19568 to be able to find a solution given any initial guess.
19569 @xref{Numerical Solutions}.
19571 @node Matrix Functions, Algebra, Scientific Functions, Top
19572 @chapter Vector/Matrix Functions
19574 @noindent
19575 Many of the commands described here begin with the @kbd{v} prefix.
19576 (For convenience, the shift-@kbd{V} prefix is equivalent to @kbd{v}.)
19577 The commands usually apply to both plain vectors and matrices; some
19578 apply only to matrices or only to square matrices.  If the argument
19579 has the wrong dimensions the operation is left in symbolic form.
19581 Vectors are entered and displayed using @samp{[a,b,c]} notation.
19582 Matrices are vectors of which all elements are vectors of equal length.
19583 (Though none of the standard Calc commands use this concept, a
19584 three-dimensional matrix or rank-3 tensor could be defined as a
19585 vector of matrices, and so on.)
19587 @menu
19588 * Packing and Unpacking::
19589 * Building Vectors::
19590 * Extracting Elements::
19591 * Manipulating Vectors::
19592 * Vector and Matrix Arithmetic::
19593 * Set Operations::
19594 * Statistical Operations::
19595 * Reducing and Mapping::
19596 * Vector and Matrix Formats::
19597 @end menu
19599 @node Packing and Unpacking, Building Vectors, Matrix Functions, Matrix Functions
19600 @section Packing and Unpacking
19602 @noindent
19603 Calc's ``pack'' and ``unpack'' commands collect stack entries to build
19604 composite objects such as vectors and complex numbers.  They are
19605 described in this chapter because they are most often used to build
19606 vectors.
19608 @kindex v p
19609 @pindex calc-pack
19610 The @kbd{v p} (@code{calc-pack}) [@code{pack}] command collects several
19611 elements from the stack into a matrix, complex number, HMS form, error
19612 form, etc.  It uses a numeric prefix argument to specify the kind of
19613 object to be built; this argument is referred to as the ``packing mode.''
19614 If the packing mode is a nonnegative integer, a vector of that
19615 length is created.  For example, @kbd{C-u 5 v p} will pop the top
19616 five stack elements and push back a single vector of those five
19617 elements.  (@kbd{C-u 0 v p} simply creates an empty vector.)
19619 The same effect can be had by pressing @kbd{[} to push an incomplete
19620 vector on the stack, using @key{TAB} (@code{calc-roll-down}) to sneak
19621 the incomplete object up past a certain number of elements, and
19622 then pressing @kbd{]} to complete the vector.
19624 Negative packing modes create other kinds of composite objects:
19626 @table @cite
19627 @item -1
19628 Two values are collected to build a complex number.  For example,
19629 @kbd{5 @key{RET} 7 C-u -1 v p} creates the complex number
19630 @expr{(5, 7)}.  The result is always a rectangular complex
19631 number.  The two input values must both be real numbers,
19632 i.e., integers, fractions, or floats.  If they are not, Calc
19633 will instead build a formula like @samp{a + (0, 1) b}.  (The
19634 other packing modes also create a symbolic answer if the
19635 components are not suitable.)
19637 @item -2
19638 Two values are collected to build a polar complex number.
19639 The first is the magnitude; the second is the phase expressed
19640 in either degrees or radians according to the current angular
19641 mode.
19643 @item -3
19644 Three values are collected into an HMS form.  The first
19645 two values (hours and minutes) must be integers or
19646 integer-valued floats.  The third value may be any real
19647 number.
19649 @item -4
19650 Two values are collected into an error form.  The inputs
19651 may be real numbers or formulas.
19653 @item -5
19654 Two values are collected into a modulo form.  The inputs
19655 must be real numbers.
19657 @item -6
19658 Two values are collected into the interval @samp{[a .. b]}.
19659 The inputs may be real numbers, HMS or date forms, or formulas.
19661 @item -7
19662 Two values are collected into the interval @samp{[a .. b)}.
19664 @item -8
19665 Two values are collected into the interval @samp{(a .. b]}.
19667 @item -9
19668 Two values are collected into the interval @samp{(a .. b)}.
19670 @item -10
19671 Two integer values are collected into a fraction.
19673 @item -11
19674 Two values are collected into a floating-point number.
19675 The first is the mantissa; the second, which must be an
19676 integer, is the exponent.  The result is the mantissa
19677 times ten to the power of the exponent.
19679 @item -12
19680 This is treated the same as @mathit{-11} by the @kbd{v p} command.
19681 When unpacking, @mathit{-12} specifies that a floating-point mantissa
19682 is desired.
19684 @item -13
19685 A real number is converted into a date form.
19687 @item -14
19688 Three numbers (year, month, day) are packed into a pure date form.
19690 @item -15
19691 Six numbers are packed into a date/time form.
19692 @end table
19694 With any of the two-input negative packing modes, either or both
19695 of the inputs may be vectors.  If both are vectors of the same
19696 length, the result is another vector made by packing corresponding
19697 elements of the input vectors.  If one input is a vector and the
19698 other is a plain number, the number is packed along with each vector
19699 element to produce a new vector.  For example, @kbd{C-u -4 v p}
19700 could be used to convert a vector of numbers and a vector of errors
19701 into a single vector of error forms; @kbd{C-u -5 v p} could convert
19702 a vector of numbers and a single number @var{M} into a vector of
19703 numbers modulo @var{M}.
19705 If you don't give a prefix argument to @kbd{v p}, it takes
19706 the packing mode from the top of the stack.  The elements to
19707 be packed then begin at stack level 2.  Thus
19708 @kbd{1 @key{RET} 2 @key{RET} 4 n v p} is another way to
19709 enter the error form @samp{1 +/- 2}.
19711 If the packing mode taken from the stack is a vector, the result is a
19712 matrix with the dimensions specified by the elements of the vector,
19713 which must each be integers.  For example, if the packing mode is
19714 @samp{[2, 3]}, then six numbers will be taken from the stack and
19715 returned in the form @samp{[@w{[a, b, c]}, [d, e, f]]}.
19717 If any elements of the vector are negative, other kinds of
19718 packing are done at that level as described above.  For
19719 example, @samp{[2, 3, -4]} takes 12 objects and creates a
19720 @texline @math{2\times3}
19721 @infoline 2x3
19722 matrix of error forms: @samp{[[a +/- b, c +/- d ... ]]}.
19723 Also, @samp{[-4, -10]} will convert four integers into an
19724 error form consisting of two fractions:  @samp{a:b +/- c:d}.
19726 @ignore
19727 @starindex
19728 @end ignore
19729 @tindex pack
19730 There is an equivalent algebraic function,
19731 @samp{pack(@var{mode}, @var{items})} where @var{mode} is a
19732 packing mode (an integer or a vector of integers) and @var{items}
19733 is a vector of objects to be packed (re-packed, really) according
19734 to that mode.  For example, @samp{pack([3, -4], [a,b,c,d,e,f])}
19735 yields @samp{[a +/- b, @w{c +/- d}, e +/- f]}.  The function is
19736 left in symbolic form if the packing mode is invalid, or if the
19737 number of data items does not match the number of items required
19738 by the mode.
19740 @kindex v u
19741 @pindex calc-unpack
19742 The @kbd{v u} (@code{calc-unpack}) command takes the vector, complex
19743 number, HMS form, or other composite object on the top of the stack and
19744 ``unpacks'' it, pushing each of its elements onto the stack as separate
19745 objects.  Thus, it is the ``inverse'' of @kbd{v p}.  If the value
19746 at the top of the stack is a formula, @kbd{v u} unpacks it by pushing
19747 each of the arguments of the top-level operator onto the stack.
19749 You can optionally give a numeric prefix argument to @kbd{v u}
19750 to specify an explicit (un)packing mode.  If the packing mode is
19751 negative and the input is actually a vector or matrix, the result
19752 will be two or more similar vectors or matrices of the elements.
19753 For example, given the vector @samp{[@w{a +/- b}, c^2, d +/- 7]},
19754 the result of @kbd{C-u -4 v u} will be the two vectors
19755 @samp{[a, c^2, d]} and @w{@samp{[b, 0, 7]}}.
19757 Note that the prefix argument can have an effect even when the input is
19758 not a vector.  For example, if the input is the number @mathit{-5}, then
19759 @kbd{c-u -1 v u} yields @mathit{-5} and 0 (the components of @mathit{-5}
19760 when viewed as a rectangular complex number); @kbd{C-u -2 v u} yields 5
19761 and 180 (assuming Degrees mode); and @kbd{C-u -10 v u} yields @mathit{-5}
19762 and 1 (the numerator and denominator of @mathit{-5}, viewed as a rational
19763 number).  Plain @kbd{v u} with this input would complain that the input
19764 is not a composite object.
19766 Unpacking mode @mathit{-11} converts a float into an integer mantissa and
19767 an integer exponent, where the mantissa is not divisible by 10
19768 (except that 0.0 is represented by a mantissa and exponent of 0).
19769 Unpacking mode @mathit{-12} converts a float into a floating-point mantissa
19770 and integer exponent, where the mantissa (for non-zero numbers)
19771 is guaranteed to lie in the range [1 .. 10).  In both cases,
19772 the mantissa is shifted left or right (and the exponent adjusted
19773 to compensate) in order to satisfy these constraints.
19775 Positive unpacking modes are treated differently than for @kbd{v p}.
19776 A mode of 1 is much like plain @kbd{v u} with no prefix argument,
19777 except that in addition to the components of the input object,
19778 a suitable packing mode to re-pack the object is also pushed.
19779 Thus, @kbd{C-u 1 v u} followed by @kbd{v p} will re-build the
19780 original object.
19782 A mode of 2 unpacks two levels of the object; the resulting
19783 re-packing mode will be a vector of length 2.  This might be used
19784 to unpack a matrix, say, or a vector of error forms.  Higher
19785 unpacking modes unpack the input even more deeply.
19787 @ignore
19788 @starindex
19789 @end ignore
19790 @tindex unpack
19791 There are two algebraic functions analogous to @kbd{v u}.
19792 The @samp{unpack(@var{mode}, @var{item})} function unpacks the
19793 @var{item} using the given @var{mode}, returning the result as
19794 a vector of components.  Here the @var{mode} must be an
19795 integer, not a vector.  For example, @samp{unpack(-4, a +/- b)}
19796 returns @samp{[a, b]}, as does @samp{unpack(1, a +/- b)}.
19798 @ignore
19799 @starindex
19800 @end ignore
19801 @tindex unpackt
19802 The @code{unpackt} function is like @code{unpack} but instead
19803 of returning a simple vector of items, it returns a vector of
19804 two things:  The mode, and the vector of items.  For example,
19805 @samp{unpackt(1, 2:3 +/- 1:4)} returns @samp{[-4, [2:3, 1:4]]},
19806 and @samp{unpackt(2, 2:3 +/- 1:4)} returns @samp{[[-4, -10], [2, 3, 1, 4]]}.
19807 The identity for re-building the original object is
19808 @samp{apply(pack, unpackt(@var{n}, @var{x})) = @var{x}}.  (The
19809 @code{apply} function builds a function call given the function
19810 name and a vector of arguments.)
19812 @cindex Numerator of a fraction, extracting
19813 Subscript notation is a useful way to extract a particular part
19814 of an object.  For example, to get the numerator of a rational
19815 number, you can use @samp{unpack(-10, @var{x})_1}.
19817 @node Building Vectors, Extracting Elements, Packing and Unpacking, Matrix Functions
19818 @section Building Vectors
19820 @noindent
19821 Vectors and matrices can be added,
19822 subtracted, multiplied, and divided; @pxref{Basic Arithmetic}.
19824 @kindex |
19825 @pindex calc-concat
19826 @ignore
19827 @mindex @null
19828 @end ignore
19829 @tindex |
19830 The @kbd{|} (@code{calc-concat}) [@code{vconcat}] command ``concatenates'' two vectors
19831 into one.  For example, after @kbd{@w{[ 1 , 2 ]} [ 3 , 4 ] |}, the stack
19832 will contain the single vector @samp{[1, 2, 3, 4]}.  If the arguments
19833 are matrices, the rows of the first matrix are concatenated with the
19834 rows of the second.  (In other words, two matrices are just two vectors
19835 of row-vectors as far as @kbd{|} is concerned.)
19837 If either argument to @kbd{|} is a scalar (a non-vector), it is treated
19838 like a one-element vector for purposes of concatenation:  @kbd{1 [ 2 , 3 ] |}
19839 produces the vector @samp{[1, 2, 3]}.  Likewise, if one argument is a
19840 matrix and the other is a plain vector, the vector is treated as a
19841 one-row matrix.
19843 @kindex H |
19844 @tindex append
19845 The @kbd{H |} (@code{calc-append}) [@code{append}] command concatenates
19846 two vectors without any special cases.  Both inputs must be vectors.
19847 Whether or not they are matrices is not taken into account.  If either
19848 argument is a scalar, the @code{append} function is left in symbolic form.
19849 See also @code{cons} and @code{rcons} below.
19851 @kindex I |
19852 @kindex H I |
19853 The @kbd{I |} and @kbd{H I |} commands are similar, but they use their
19854 two stack arguments in the opposite order.  Thus @kbd{I |} is equivalent
19855 to @kbd{@key{TAB} |}, but possibly more convenient and also a bit faster.
19857 @kindex v d
19858 @pindex calc-diag
19859 @tindex diag
19860 The @kbd{v d} (@code{calc-diag}) [@code{diag}] function builds a diagonal
19861 square matrix.  The optional numeric prefix gives the number of rows
19862 and columns in the matrix.  If the value at the top of the stack is a
19863 vector, the elements of the vector are used as the diagonal elements; the
19864 prefix, if specified, must match the size of the vector.  If the value on
19865 the stack is a scalar, it is used for each element on the diagonal, and
19866 the prefix argument is required.
19868 To build a constant square matrix, e.g., a 
19869 @texline @math{3\times3}
19870 @infoline 3x3
19871 matrix filled with ones, use @kbd{0 M-3 v d 1 +}, i.e., build a zero
19872 matrix first and then add a constant value to that matrix.  (Another
19873 alternative would be to use @kbd{v b} and @kbd{v a}; see below.)
19875 @kindex v i
19876 @pindex calc-ident
19877 @tindex idn
19878 The @kbd{v i} (@code{calc-ident}) [@code{idn}] function builds an identity
19879 matrix of the specified size.  It is a convenient form of @kbd{v d}
19880 where the diagonal element is always one.  If no prefix argument is given,
19881 this command prompts for one.
19883 In algebraic notation, @samp{idn(a,n)} acts much like @samp{diag(a,n)},
19884 except that @expr{a} is required to be a scalar (non-vector) quantity.
19885 If @expr{n} is omitted, @samp{idn(a)} represents @expr{a} times an
19886 identity matrix of unknown size.  Calc can operate algebraically on
19887 such generic identity matrices, and if one is combined with a matrix
19888 whose size is known, it is converted automatically to an identity
19889 matrix of a suitable matching size.  The @kbd{v i} command with an
19890 argument of zero creates a generic identity matrix, @samp{idn(1)}.
19891 Note that in dimensioned Matrix mode (@pxref{Matrix Mode}), generic
19892 identity matrices are immediately expanded to the current default
19893 dimensions.
19895 @kindex v x
19896 @pindex calc-index
19897 @tindex index
19898 The @kbd{v x} (@code{calc-index}) [@code{index}] function builds a vector
19899 of consecutive integers from 1 to @var{n}, where @var{n} is the numeric
19900 prefix argument.  If you do not provide a prefix argument, you will be
19901 prompted to enter a suitable number.  If @var{n} is negative, the result
19902 is a vector of negative integers from @var{n} to @mathit{-1}.
19904 With a prefix argument of just @kbd{C-u}, the @kbd{v x} command takes
19905 three values from the stack: @var{n}, @var{start}, and @var{incr} (with
19906 @var{incr} at top-of-stack).  Counting starts at @var{start} and increases
19907 by @var{incr} for successive vector elements.  If @var{start} or @var{n}
19908 is in floating-point format, the resulting vector elements will also be
19909 floats.  Note that @var{start} and @var{incr} may in fact be any kind
19910 of numbers or formulas.
19912 When @var{start} and @var{incr} are specified, a negative @var{n} has a
19913 different interpretation:  It causes a geometric instead of arithmetic
19914 sequence to be generated.  For example, @samp{index(-3, a, b)} produces
19915 @samp{[a, a b, a b^2]}.  If you omit @var{incr} in the algebraic form,
19916 @samp{index(@var{n}, @var{start})}, the default value for @var{incr}
19917 is one for positive @var{n} or two for negative @var{n}.
19919 @kindex v b
19920 @pindex calc-build-vector
19921 @tindex cvec
19922 The @kbd{v b} (@code{calc-build-vector}) [@code{cvec}] function builds a
19923 vector of @var{n} copies of the value on the top of the stack, where @var{n}
19924 is the numeric prefix argument.  In algebraic formulas, @samp{cvec(x,n,m)}
19925 can also be used to build an @var{n}-by-@var{m} matrix of copies of @var{x}.
19926 (Interactively, just use @kbd{v b} twice: once to build a row, then again
19927 to build a matrix of copies of that row.)
19929 @kindex v h
19930 @kindex I v h
19931 @pindex calc-head
19932 @pindex calc-tail
19933 @tindex head
19934 @tindex tail
19935 The @kbd{v h} (@code{calc-head}) [@code{head}] function returns the first
19936 element of a vector.  The @kbd{I v h} (@code{calc-tail}) [@code{tail}]
19937 function returns the vector with its first element removed.  In both
19938 cases, the argument must be a non-empty vector.
19940 @kindex v k
19941 @pindex calc-cons
19942 @tindex cons
19943 The @kbd{v k} (@code{calc-cons}) [@code{cons}] function takes a value @var{h}
19944 and a vector @var{t} from the stack, and produces the vector whose head is
19945 @var{h} and whose tail is @var{t}.  This is similar to @kbd{|}, except
19946 if @var{h} is itself a vector, @kbd{|} will concatenate the two vectors
19947 whereas @code{cons} will insert @var{h} at the front of the vector @var{t}.
19949 @kindex H v h
19950 @tindex rhead
19951 @ignore
19952 @mindex @idots
19953 @end ignore
19954 @kindex H I v h
19955 @ignore
19956 @mindex @null
19957 @end ignore
19958 @kindex H v k
19959 @ignore
19960 @mindex @null
19961 @end ignore
19962 @tindex rtail
19963 @ignore
19964 @mindex @null
19965 @end ignore
19966 @tindex rcons
19967 Each of these three functions also accepts the Hyperbolic flag [@code{rhead},
19968 @code{rtail}, @code{rcons}] in which case @var{t} instead represents
19969 the @emph{last} single element of the vector, with @var{h}
19970 representing the remainder of the vector.  Thus the vector
19971 @samp{[a, b, c, d] = cons(a, [b, c, d]) = rcons([a, b, c], d)}.
19972 Also, @samp{head([a, b, c, d]) = a}, @samp{tail([a, b, c, d]) = [b, c, d]},
19973 @samp{rhead([a, b, c, d]) = [a, b, c]}, and @samp{rtail([a, b, c, d]) = d}.
19975 @node Extracting Elements, Manipulating Vectors, Building Vectors, Matrix Functions
19976 @section Extracting Vector Elements
19978 @noindent
19979 @kindex v r
19980 @pindex calc-mrow
19981 @tindex mrow
19982 The @kbd{v r} (@code{calc-mrow}) [@code{mrow}] command extracts one row of
19983 the matrix on the top of the stack, or one element of the plain vector on
19984 the top of the stack.  The row or element is specified by the numeric
19985 prefix argument; the default is to prompt for the row or element number.
19986 The matrix or vector is replaced by the specified row or element in the
19987 form of a vector or scalar, respectively.
19989 @cindex Permutations, applying
19990 With a prefix argument of @kbd{C-u} only, @kbd{v r} takes the index of
19991 the element or row from the top of the stack, and the vector or matrix
19992 from the second-to-top position.  If the index is itself a vector of
19993 integers, the result is a vector of the corresponding elements of the
19994 input vector, or a matrix of the corresponding rows of the input matrix.
19995 This command can be used to obtain any permutation of a vector.
19997 With @kbd{C-u}, if the index is an interval form with integer components,
19998 it is interpreted as a range of indices and the corresponding subvector or
19999 submatrix is returned.
20001 @cindex Subscript notation
20002 @kindex a _
20003 @pindex calc-subscript
20004 @tindex subscr
20005 @tindex _
20006 Subscript notation in algebraic formulas (@samp{a_b}) stands for the
20007 Calc function @code{subscr}, which is synonymous with @code{mrow}.
20008 Thus, @samp{[x, y, z]_k} produces @expr{x}, @expr{y}, or @expr{z} if
20009 @expr{k} is one, two, or three, respectively.  A double subscript
20010 (@samp{M_i_j}, equivalent to @samp{subscr(subscr(M, i), j)}) will
20011 access the element at row @expr{i}, column @expr{j} of a matrix.
20012 The @kbd{a _} (@code{calc-subscript}) command creates a subscript
20013 formula @samp{a_b} out of two stack entries.  (It is on the @kbd{a}
20014 ``algebra'' prefix because subscripted variables are often used
20015 purely as an algebraic notation.)
20017 @tindex mrrow
20018 Given a negative prefix argument, @kbd{v r} instead deletes one row or
20019 element from the matrix or vector on the top of the stack.  Thus
20020 @kbd{C-u 2 v r} replaces a matrix with its second row, but @kbd{C-u -2 v r}
20021 replaces the matrix with the same matrix with its second row removed.
20022 In algebraic form this function is called @code{mrrow}.
20024 @tindex getdiag
20025 Given a prefix argument of zero, @kbd{v r} extracts the diagonal elements
20026 of a square matrix in the form of a vector.  In algebraic form this
20027 function is called @code{getdiag}.
20029 @kindex v c
20030 @pindex calc-mcol
20031 @tindex mcol
20032 @tindex mrcol
20033 The @kbd{v c} (@code{calc-mcol}) [@code{mcol} or @code{mrcol}] command is
20034 the analogous operation on columns of a matrix.  Given a plain vector
20035 it extracts (or removes) one element, just like @kbd{v r}.  If the
20036 index in @kbd{C-u v c} is an interval or vector and the argument is a
20037 matrix, the result is a submatrix with only the specified columns
20038 retained (and possibly permuted in the case of a vector index).
20040 To extract a matrix element at a given row and column, use @kbd{v r} to
20041 extract the row as a vector, then @kbd{v c} to extract the column element
20042 from that vector.  In algebraic formulas, it is often more convenient to
20043 use subscript notation:  @samp{m_i_j} gives row @expr{i}, column @expr{j}
20044 of matrix @expr{m}.
20046 @kindex v s
20047 @pindex calc-subvector
20048 @tindex subvec
20049 The @kbd{v s} (@code{calc-subvector}) [@code{subvec}] command extracts
20050 a subvector of a vector.  The arguments are the vector, the starting
20051 index, and the ending index, with the ending index in the top-of-stack
20052 position.  The starting index indicates the first element of the vector
20053 to take.  The ending index indicates the first element @emph{past} the
20054 range to be taken.  Thus, @samp{subvec([a, b, c, d, e], 2, 4)} produces
20055 the subvector @samp{[b, c]}.  You could get the same result using
20056 @samp{mrow([a, b, c, d, e], @w{[2 .. 4)})}.
20058 If either the start or the end index is zero or negative, it is
20059 interpreted as relative to the end of the vector.  Thus
20060 @samp{subvec([a, b, c, d, e], 2, -2)} also produces @samp{[b, c]}.  In
20061 the algebraic form, the end index can be omitted in which case it
20062 is taken as zero, i.e., elements from the starting element to the
20063 end of the vector are used.  The infinity symbol, @code{inf}, also
20064 has this effect when used as the ending index.
20066 @kindex I v s
20067 @tindex rsubvec
20068 With the Inverse flag, @kbd{I v s} [@code{rsubvec}] removes a subvector
20069 from a vector.  The arguments are interpreted the same as for the
20070 normal @kbd{v s} command.  Thus, @samp{rsubvec([a, b, c, d, e], 2, 4)}
20071 produces @samp{[a, d, e]}.  It is always true that @code{subvec} and
20072 @code{rsubvec} return complementary parts of the input vector.
20074 @xref{Selecting Subformulas}, for an alternative way to operate on
20075 vectors one element at a time.
20077 @node Manipulating Vectors, Vector and Matrix Arithmetic, Extracting Elements, Matrix Functions
20078 @section Manipulating Vectors
20080 @noindent
20081 @kindex v l
20082 @pindex calc-vlength
20083 @tindex vlen
20084 The @kbd{v l} (@code{calc-vlength}) [@code{vlen}] command computes the
20085 length of a vector.  The length of a non-vector is considered to be zero.
20086 Note that matrices are just vectors of vectors for the purposes of this
20087 command.
20089 @kindex H v l
20090 @tindex mdims
20091 With the Hyperbolic flag, @kbd{H v l} [@code{mdims}] computes a vector
20092 of the dimensions of a vector, matrix, or higher-order object.  For
20093 example, @samp{mdims([[a,b,c],[d,e,f]])} returns @samp{[2, 3]} since
20094 its argument is a 
20095 @texline @math{2\times3}
20096 @infoline 2x3
20097 matrix.
20099 @kindex v f
20100 @pindex calc-vector-find
20101 @tindex find
20102 The @kbd{v f} (@code{calc-vector-find}) [@code{find}] command searches
20103 along a vector for the first element equal to a given target.  The target
20104 is on the top of the stack; the vector is in the second-to-top position.
20105 If a match is found, the result is the index of the matching element.
20106 Otherwise, the result is zero.  The numeric prefix argument, if given,
20107 allows you to select any starting index for the search.
20109 @kindex v a
20110 @pindex calc-arrange-vector
20111 @tindex arrange
20112 @cindex Arranging a matrix
20113 @cindex Reshaping a matrix
20114 @cindex Flattening a matrix
20115 The @kbd{v a} (@code{calc-arrange-vector}) [@code{arrange}] command
20116 rearranges a vector to have a certain number of columns and rows.  The
20117 numeric prefix argument specifies the number of columns; if you do not
20118 provide an argument, you will be prompted for the number of columns.
20119 The vector or matrix on the top of the stack is @dfn{flattened} into a
20120 plain vector.  If the number of columns is nonzero, this vector is
20121 then formed into a matrix by taking successive groups of @var{n} elements.
20122 If the number of columns does not evenly divide the number of elements
20123 in the vector, the last row will be short and the result will not be
20124 suitable for use as a matrix.  For example, with the matrix
20125 @samp{[[1, 2], @w{[3, 4]}]} on the stack, @kbd{v a 4} produces
20126 @samp{[[1, 2, 3, 4]]} (a 
20127 @texline @math{1\times4}
20128 @infoline 1x4
20129 matrix), @kbd{v a 1} produces @samp{[[1], [2], [3], [4]]} (a 
20130 @texline @math{4\times1}
20131 @infoline 4x1
20132 matrix), @kbd{v a 2} produces @samp{[[1, 2], [3, 4]]} (the original 
20133 @texline @math{2\times2}
20134 @infoline 2x2
20135 matrix), @w{@kbd{v a 3}} produces @samp{[[1, 2, 3], [4]]} (not a
20136 matrix), and @kbd{v a 0} produces the flattened list 
20137 @samp{[1, 2, @w{3, 4}]}.
20139 @cindex Sorting data
20140 @kindex V S
20141 @kindex I V S
20142 @pindex calc-sort
20143 @tindex sort
20144 @tindex rsort
20145 The @kbd{V S} (@code{calc-sort}) [@code{sort}] command sorts the elements of
20146 a vector into increasing order.  Real numbers, real infinities, and
20147 constant interval forms come first in this ordering; next come other
20148 kinds of numbers, then variables (in alphabetical order), then finally
20149 come formulas and other kinds of objects; these are sorted according
20150 to a kind of lexicographic ordering with the useful property that
20151 one vector is less or greater than another if the first corresponding
20152 unequal elements are less or greater, respectively.  Since quoted strings
20153 are stored by Calc internally as vectors of ASCII character codes
20154 (@pxref{Strings}), this means vectors of strings are also sorted into
20155 alphabetical order by this command.
20157 The @kbd{I V S} [@code{rsort}] command sorts a vector into decreasing order.
20159 @cindex Permutation, inverse of
20160 @cindex Inverse of permutation
20161 @cindex Index tables
20162 @cindex Rank tables
20163 @kindex V G
20164 @kindex I V G
20165 @pindex calc-grade
20166 @tindex grade
20167 @tindex rgrade
20168 The @kbd{V G} (@code{calc-grade}) [@code{grade}, @code{rgrade}] command
20169 produces an index table or permutation vector which, if applied to the
20170 input vector (as the index of @kbd{C-u v r}, say), would sort the vector.
20171 A permutation vector is just a vector of integers from 1 to @var{n}, where
20172 each integer occurs exactly once.  One application of this is to sort a
20173 matrix of data rows using one column as the sort key; extract that column,
20174 grade it with @kbd{V G}, then use the result to reorder the original matrix
20175 with @kbd{C-u v r}.  Another interesting property of the @code{V G} command
20176 is that, if the input is itself a permutation vector, the result will
20177 be the inverse of the permutation.  The inverse of an index table is
20178 a rank table, whose @var{k}th element says where the @var{k}th original
20179 vector element will rest when the vector is sorted.  To get a rank
20180 table, just use @kbd{V G V G}.
20182 With the Inverse flag, @kbd{I V G} produces an index table that would
20183 sort the input into decreasing order.  Note that @kbd{V S} and @kbd{V G}
20184 use a ``stable'' sorting algorithm, i.e., any two elements which are equal
20185 will not be moved out of their original order.  Generally there is no way
20186 to tell with @kbd{V S}, since two elements which are equal look the same,
20187 but with @kbd{V G} this can be an important issue.  In the matrix-of-rows
20188 example, suppose you have names and telephone numbers as two columns and
20189 you wish to sort by phone number primarily, and by name when the numbers
20190 are equal.  You can sort the data matrix by names first, and then again
20191 by phone numbers.  Because the sort is stable, any two rows with equal
20192 phone numbers will remain sorted by name even after the second sort.
20194 @cindex Histograms
20195 @kindex V H
20196 @pindex calc-histogram
20197 @ignore
20198 @mindex histo@idots
20199 @end ignore
20200 @tindex histogram
20201 The @kbd{V H} (@code{calc-histogram}) [@code{histogram}] command builds a
20202 histogram of a vector of numbers.  Vector elements are assumed to be
20203 integers or real numbers in the range [0..@var{n}) for some ``number of
20204 bins'' @var{n}, which is the numeric prefix argument given to the
20205 command.  The result is a vector of @var{n} counts of how many times
20206 each value appeared in the original vector.  Non-integers in the input
20207 are rounded down to integers.  Any vector elements outside the specified
20208 range are ignored.  (You can tell if elements have been ignored by noting
20209 that the counts in the result vector don't add up to the length of the
20210 input vector.)
20212 @kindex H V H
20213 With the Hyperbolic flag, @kbd{H V H} pulls two vectors from the stack.
20214 The second-to-top vector is the list of numbers as before.  The top
20215 vector is an equal-sized list of ``weights'' to attach to the elements
20216 of the data vector.  For example, if the first data element is 4.2 and
20217 the first weight is 10, then 10 will be added to bin 4 of the result
20218 vector.  Without the hyperbolic flag, every element has a weight of one.
20220 @kindex v t
20221 @pindex calc-transpose
20222 @tindex trn
20223 The @kbd{v t} (@code{calc-transpose}) [@code{trn}] command computes
20224 the transpose of the matrix at the top of the stack.  If the argument
20225 is a plain vector, it is treated as a row vector and transposed into
20226 a one-column matrix.
20228 @kindex v v
20229 @pindex calc-reverse-vector
20230 @tindex rev
20231 The @kbd{v v} (@code{calc-reverse-vector}) [@code{rev}] command reverses
20232 a vector end-for-end.  Given a matrix, it reverses the order of the rows.
20233 (To reverse the columns instead, just use @kbd{v t v v v t}.  The same
20234 principle can be used to apply other vector commands to the columns of
20235 a matrix.)
20237 @kindex v m
20238 @pindex calc-mask-vector
20239 @tindex vmask
20240 The @kbd{v m} (@code{calc-mask-vector}) [@code{vmask}] command uses
20241 one vector as a mask to extract elements of another vector.  The mask
20242 is in the second-to-top position; the target vector is on the top of
20243 the stack.  These vectors must have the same length.  The result is
20244 the same as the target vector, but with all elements which correspond
20245 to zeros in the mask vector deleted.  Thus, for example,
20246 @samp{vmask([1, 0, 1, 0, 1], [a, b, c, d, e])} produces @samp{[a, c, e]}.
20247 @xref{Logical Operations}.
20249 @kindex v e
20250 @pindex calc-expand-vector
20251 @tindex vexp
20252 The @kbd{v e} (@code{calc-expand-vector}) [@code{vexp}] command
20253 expands a vector according to another mask vector.  The result is a
20254 vector the same length as the mask, but with nonzero elements replaced
20255 by successive elements from the target vector.  The length of the target
20256 vector is normally the number of nonzero elements in the mask.  If the
20257 target vector is longer, its last few elements are lost.  If the target
20258 vector is shorter, the last few nonzero mask elements are left
20259 unreplaced in the result.  Thus @samp{vexp([2, 0, 3, 0, 7], [a, b])}
20260 produces @samp{[a, 0, b, 0, 7]}.
20262 @kindex H v e
20263 With the Hyperbolic flag, @kbd{H v e} takes a filler value from the
20264 top of the stack; the mask and target vectors come from the third and
20265 second elements of the stack.  This filler is used where the mask is
20266 zero:  @samp{vexp([2, 0, 3, 0, 7], [a, b], z)} produces
20267 @samp{[a, z, c, z, 7]}.  If the filler value is itself a vector,
20268 then successive values are taken from it, so that the effect is to
20269 interleave two vectors according to the mask:
20270 @samp{vexp([2, 0, 3, 7, 0, 0], [a, b], [x, y])} produces
20271 @samp{[a, x, b, 7, y, 0]}.
20273 Another variation on the masking idea is to combine @samp{[a, b, c, d, e]}
20274 with the mask @samp{[1, 0, 1, 0, 1]} to produce @samp{[a, 0, c, 0, e]}.
20275 You can accomplish this with @kbd{V M a &}, mapping the logical ``and''
20276 operation across the two vectors.  @xref{Logical Operations}.  Note that
20277 the @code{? :} operation also discussed there allows other types of
20278 masking using vectors.
20280 @node Vector and Matrix Arithmetic, Set Operations, Manipulating Vectors, Matrix Functions
20281 @section Vector and Matrix Arithmetic
20283 @noindent
20284 Basic arithmetic operations like addition and multiplication are defined
20285 for vectors and matrices as well as for numbers.  Division of matrices, in
20286 the sense of multiplying by the inverse, is supported.  (Division by a
20287 matrix actually uses LU-decomposition for greater accuracy and speed.)
20288 @xref{Basic Arithmetic}.
20290 The following functions are applied element-wise if their arguments are
20291 vectors or matrices: @code{change-sign}, @code{conj}, @code{arg},
20292 @code{re}, @code{im}, @code{polar}, @code{rect}, @code{clean},
20293 @code{float}, @code{frac}.  @xref{Function Index}.
20295 @kindex V J
20296 @pindex calc-conj-transpose
20297 @tindex ctrn
20298 The @kbd{V J} (@code{calc-conj-transpose}) [@code{ctrn}] command computes
20299 the conjugate transpose of its argument, i.e., @samp{conj(trn(x))}.
20301 @ignore
20302 @mindex A
20303 @end ignore
20304 @kindex A (vectors)
20305 @pindex calc-abs (vectors)
20306 @ignore
20307 @mindex abs
20308 @end ignore
20309 @tindex abs (vectors)
20310 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the
20311 Frobenius norm of a vector or matrix argument.  This is the square
20312 root of the sum of the squares of the absolute values of the
20313 elements of the vector or matrix.  If the vector is interpreted as
20314 a point in two- or three-dimensional space, this is the distance
20315 from that point to the origin.
20317 @kindex v n
20318 @pindex calc-rnorm
20319 @tindex rnorm
20320 The @kbd{v n} (@code{calc-rnorm}) [@code{rnorm}] command computes
20321 the row norm, or infinity-norm, of a vector or matrix.  For a plain
20322 vector, this is the maximum of the absolute values of the elements.
20323 For a matrix, this is the maximum of the row-absolute-value-sums,
20324 i.e., of the sums of the absolute values of the elements along the
20325 various rows.
20327 @kindex V N
20328 @pindex calc-cnorm
20329 @tindex cnorm
20330 The @kbd{V N} (@code{calc-cnorm}) [@code{cnorm}] command computes
20331 the column norm, or one-norm, of a vector or matrix.  For a plain
20332 vector, this is the sum of the absolute values of the elements.
20333 For a matrix, this is the maximum of the column-absolute-value-sums.
20334 General @expr{k}-norms for @expr{k} other than one or infinity are
20335 not provided.
20337 @kindex V C
20338 @pindex calc-cross
20339 @tindex cross
20340 The @kbd{V C} (@code{calc-cross}) [@code{cross}] command computes the
20341 right-handed cross product of two vectors, each of which must have
20342 exactly three elements.
20344 @ignore
20345 @mindex &
20346 @end ignore
20347 @kindex & (matrices)
20348 @pindex calc-inv (matrices)
20349 @ignore
20350 @mindex inv
20351 @end ignore
20352 @tindex inv (matrices)
20353 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
20354 inverse of a square matrix.  If the matrix is singular, the inverse
20355 operation is left in symbolic form.  Matrix inverses are recorded so
20356 that once an inverse (or determinant) of a particular matrix has been
20357 computed, the inverse and determinant of the matrix can be recomputed
20358 quickly in the future.
20360 If the argument to @kbd{&} is a plain number @expr{x}, this
20361 command simply computes @expr{1/x}.  This is okay, because the
20362 @samp{/} operator also does a matrix inversion when dividing one
20363 by a matrix.
20365 @kindex V D
20366 @pindex calc-mdet
20367 @tindex det
20368 The @kbd{V D} (@code{calc-mdet}) [@code{det}] command computes the
20369 determinant of a square matrix.
20371 @kindex V L
20372 @pindex calc-mlud
20373 @tindex lud
20374 The @kbd{V L} (@code{calc-mlud}) [@code{lud}] command computes the
20375 LU decomposition of a matrix.  The result is a list of three matrices
20376 which, when multiplied together left-to-right, form the original matrix.
20377 The first is a permutation matrix that arises from pivoting in the
20378 algorithm, the second is lower-triangular with ones on the diagonal,
20379 and the third is upper-triangular.
20381 @kindex V T
20382 @pindex calc-mtrace
20383 @tindex tr
20384 The @kbd{V T} (@code{calc-mtrace}) [@code{tr}] command computes the
20385 trace of a square matrix.  This is defined as the sum of the diagonal
20386 elements of the matrix.
20388 @node Set Operations, Statistical Operations, Vector and Matrix Arithmetic, Matrix Functions
20389 @section Set Operations using Vectors
20391 @noindent
20392 @cindex Sets, as vectors
20393 Calc includes several commands which interpret vectors as @dfn{sets} of
20394 objects.  A set is a collection of objects; any given object can appear
20395 only once in the set.  Calc stores sets as vectors of objects in
20396 sorted order.  Objects in a Calc set can be any of the usual things,
20397 such as numbers, variables, or formulas.  Two set elements are considered
20398 equal if they are identical, except that numerically equal numbers like
20399 the integer 4 and the float 4.0 are considered equal even though they
20400 are not ``identical.''  Variables are treated like plain symbols without
20401 attached values by the set operations; subtracting the set @samp{[b]}
20402 from @samp{[a, b]} always yields the set @samp{[a]} even though if
20403 the variables @samp{a} and @samp{b} both equaled 17, you might
20404 expect the answer @samp{[]}.
20406 If a set contains interval forms, then it is assumed to be a set of
20407 real numbers.  In this case, all set operations require the elements
20408 of the set to be only things that are allowed in intervals:  Real
20409 numbers, plus and minus infinity, HMS forms, and date forms.  If
20410 there are variables or other non-real objects present in a real set,
20411 all set operations on it will be left in unevaluated form.
20413 If the input to a set operation is a plain number or interval form
20414 @var{a}, it is treated like the one-element vector @samp{[@var{a}]}.
20415 The result is always a vector, except that if the set consists of a
20416 single interval, the interval itself is returned instead.
20418 @xref{Logical Operations}, for the @code{in} function which tests if
20419 a certain value is a member of a given set.  To test if the set @expr{A}
20420 is a subset of the set @expr{B}, use @samp{vdiff(A, B) = []}.
20422 @kindex V +
20423 @pindex calc-remove-duplicates
20424 @tindex rdup
20425 The @kbd{V +} (@code{calc-remove-duplicates}) [@code{rdup}] command
20426 converts an arbitrary vector into set notation.  It works by sorting
20427 the vector as if by @kbd{V S}, then removing duplicates.  (For example,
20428 @kbd{[a, 5, 4, a, 4.0]} is sorted to @samp{[4, 4.0, 5, a, a]} and then
20429 reduced to @samp{[4, 5, a]}).  Overlapping intervals are merged as
20430 necessary.  You rarely need to use @kbd{V +} explicitly, since all the
20431 other set-based commands apply @kbd{V +} to their inputs before using
20432 them.
20434 @kindex V V
20435 @pindex calc-set-union
20436 @tindex vunion
20437 The @kbd{V V} (@code{calc-set-union}) [@code{vunion}] command computes
20438 the union of two sets.  An object is in the union of two sets if and
20439 only if it is in either (or both) of the input sets.  (You could
20440 accomplish the same thing by concatenating the sets with @kbd{|},
20441 then using @kbd{V +}.)
20443 @kindex V ^
20444 @pindex calc-set-intersect
20445 @tindex vint
20446 The @kbd{V ^} (@code{calc-set-intersect}) [@code{vint}] command computes
20447 the intersection of two sets.  An object is in the intersection if
20448 and only if it is in both of the input sets.  Thus if the input
20449 sets are disjoint, i.e., if they share no common elements, the result
20450 will be the empty vector @samp{[]}.  Note that the characters @kbd{V}
20451 and @kbd{^} were chosen to be close to the conventional mathematical
20452 notation for set 
20453 @texline union@tie{}(@math{A \cup B})
20454 @infoline union
20455 and 
20456 @texline intersection@tie{}(@math{A \cap B}).
20457 @infoline intersection.
20459 @kindex V -
20460 @pindex calc-set-difference
20461 @tindex vdiff
20462 The @kbd{V -} (@code{calc-set-difference}) [@code{vdiff}] command computes
20463 the difference between two sets.  An object is in the difference
20464 @expr{A - B} if and only if it is in @expr{A} but not in @expr{B}.
20465 Thus subtracting @samp{[y,z]} from a set will remove the elements
20466 @samp{y} and @samp{z} if they are present.  You can also think of this
20467 as a general @dfn{set complement} operator; if @expr{A} is the set of
20468 all possible values, then @expr{A - B} is the ``complement'' of @expr{B}.
20469 Obviously this is only practical if the set of all possible values in
20470 your problem is small enough to list in a Calc vector (or simple
20471 enough to express in a few intervals).
20473 @kindex V X
20474 @pindex calc-set-xor
20475 @tindex vxor
20476 The @kbd{V X} (@code{calc-set-xor}) [@code{vxor}] command computes
20477 the ``exclusive-or,'' or ``symmetric difference'' of two sets.
20478 An object is in the symmetric difference of two sets if and only
20479 if it is in one, but @emph{not} both, of the sets.  Objects that
20480 occur in both sets ``cancel out.''
20482 @kindex V ~
20483 @pindex calc-set-complement
20484 @tindex vcompl
20485 The @kbd{V ~} (@code{calc-set-complement}) [@code{vcompl}] command
20486 computes the complement of a set with respect to the real numbers.
20487 Thus @samp{vcompl(x)} is equivalent to @samp{vdiff([-inf .. inf], x)}.
20488 For example, @samp{vcompl([2, (3 .. 4]])} evaluates to
20489 @samp{[[-inf .. 2), (2 .. 3], (4 .. inf]]}.
20491 @kindex V F
20492 @pindex calc-set-floor
20493 @tindex vfloor
20494 The @kbd{V F} (@code{calc-set-floor}) [@code{vfloor}] command
20495 reinterprets a set as a set of integers.  Any non-integer values,
20496 and intervals that do not enclose any integers, are removed.  Open
20497 intervals are converted to equivalent closed intervals.  Successive
20498 integers are converted into intervals of integers.  For example, the
20499 complement of the set @samp{[2, 6, 7, 8]} is messy, but if you wanted
20500 the complement with respect to the set of integers you could type
20501 @kbd{V ~ V F} to get @samp{[[-inf .. 1], [3 .. 5], [9 .. inf]]}.
20503 @kindex V E
20504 @pindex calc-set-enumerate
20505 @tindex venum
20506 The @kbd{V E} (@code{calc-set-enumerate}) [@code{venum}] command
20507 converts a set of integers into an explicit vector.  Intervals in
20508 the set are expanded out to lists of all integers encompassed by
20509 the intervals.  This only works for finite sets (i.e., sets which
20510 do not involve @samp{-inf} or @samp{inf}).
20512 @kindex V :
20513 @pindex calc-set-span
20514 @tindex vspan
20515 The @kbd{V :} (@code{calc-set-span}) [@code{vspan}] command converts any
20516 set of reals into an interval form that encompasses all its elements.
20517 The lower limit will be the smallest element in the set; the upper
20518 limit will be the largest element.  For an empty set, @samp{vspan([])}
20519 returns the empty interval @w{@samp{[0 .. 0)}}.
20521 @kindex V #
20522 @pindex calc-set-cardinality
20523 @tindex vcard
20524 The @kbd{V #} (@code{calc-set-cardinality}) [@code{vcard}] command counts
20525 the number of integers in a set.  The result is the length of the vector
20526 that would be produced by @kbd{V E}, although the computation is much
20527 more efficient than actually producing that vector.
20529 @cindex Sets, as binary numbers
20530 Another representation for sets that may be more appropriate in some
20531 cases is binary numbers.  If you are dealing with sets of integers
20532 in the range 0 to 49, you can use a 50-bit binary number where a
20533 particular bit is 1 if the corresponding element is in the set.
20534 @xref{Binary Functions}, for a list of commands that operate on
20535 binary numbers.  Note that many of the above set operations have
20536 direct equivalents in binary arithmetic:  @kbd{b o} (@code{calc-or}),
20537 @kbd{b a} (@code{calc-and}), @kbd{b d} (@code{calc-diff}),
20538 @kbd{b x} (@code{calc-xor}), and @kbd{b n} (@code{calc-not}),
20539 respectively.  You can use whatever representation for sets is most
20540 convenient to you.
20542 @kindex b p
20543 @kindex b u
20544 @pindex calc-pack-bits
20545 @pindex calc-unpack-bits
20546 @tindex vpack
20547 @tindex vunpack
20548 The @kbd{b u} (@code{calc-unpack-bits}) [@code{vunpack}] command
20549 converts an integer that represents a set in binary into a set
20550 in vector/interval notation.  For example, @samp{vunpack(67)}
20551 returns @samp{[[0 .. 1], 6]}.  If the input is negative, the set
20552 it represents is semi-infinite: @samp{vunpack(-4) = [2 .. inf)}.
20553 Use @kbd{V E} afterwards to expand intervals to individual
20554 values if you wish.  Note that this command uses the @kbd{b}
20555 (binary) prefix key.
20557 The @kbd{b p} (@code{calc-pack-bits}) [@code{vpack}] command
20558 converts the other way, from a vector or interval representing
20559 a set of nonnegative integers into a binary integer describing
20560 the same set.  The set may include positive infinity, but must
20561 not include any negative numbers.  The input is interpreted as a
20562 set of integers in the sense of @kbd{V F} (@code{vfloor}).  Beware
20563 that a simple input like @samp{[100]} can result in a huge integer
20564 representation 
20565 @texline (@math{2^{100}}, a 31-digit integer, in this case).
20566 @infoline (@expr{2^100}, a 31-digit integer, in this case).
20568 @node Statistical Operations, Reducing and Mapping, Set Operations, Matrix Functions
20569 @section Statistical Operations on Vectors
20571 @noindent
20572 @cindex Statistical functions
20573 The commands in this section take vectors as arguments and compute
20574 various statistical measures on the data stored in the vectors.  The
20575 references used in the definitions of these functions are Bevington's
20576 @emph{Data Reduction and Error Analysis for the Physical Sciences},
20577 and @emph{Numerical Recipes} by Press, Flannery, Teukolsky and
20578 Vetterling.
20580 The statistical commands use the @kbd{u} prefix key followed by
20581 a shifted letter or other character.
20583 @xref{Manipulating Vectors}, for a description of @kbd{V H}
20584 (@code{calc-histogram}).
20586 @xref{Curve Fitting}, for the @kbd{a F} command for doing
20587 least-squares fits to statistical data.
20589 @xref{Probability Distribution Functions}, for several common
20590 probability distribution functions.
20592 @menu
20593 * Single-Variable Statistics::
20594 * Paired-Sample Statistics::
20595 @end menu
20597 @node Single-Variable Statistics, Paired-Sample Statistics, Statistical Operations, Statistical Operations
20598 @subsection Single-Variable Statistics
20600 @noindent
20601 These functions do various statistical computations on single
20602 vectors.  Given a numeric prefix argument, they actually pop
20603 @var{n} objects from the stack and combine them into a data
20604 vector.  Each object may be either a number or a vector; if a
20605 vector, any sub-vectors inside it are ``flattened'' as if by
20606 @kbd{v a 0}; @pxref{Manipulating Vectors}.  By default one object
20607 is popped, which (in order to be useful) is usually a vector.
20609 If an argument is a variable name, and the value stored in that
20610 variable is a vector, then the stored vector is used.  This method
20611 has the advantage that if your data vector is large, you can avoid
20612 the slow process of manipulating it directly on the stack.
20614 These functions are left in symbolic form if any of their arguments
20615 are not numbers or vectors, e.g., if an argument is a formula, or
20616 a non-vector variable.  However, formulas embedded within vector
20617 arguments are accepted; the result is a symbolic representation
20618 of the computation, based on the assumption that the formula does
20619 not itself represent a vector.  All varieties of numbers such as
20620 error forms and interval forms are acceptable.
20622 Some of the functions in this section also accept a single error form
20623 or interval as an argument.  They then describe a property of the
20624 normal or uniform (respectively) statistical distribution described
20625 by the argument.  The arguments are interpreted in the same way as
20626 the @var{M} argument of the random number function @kbd{k r}.  In
20627 particular, an interval with integer limits is considered an integer
20628 distribution, so that @samp{[2 .. 6)} is the same as @samp{[2 .. 5]}.
20629 An interval with at least one floating-point limit is a continuous
20630 distribution:  @samp{[2.0 .. 6.0)} is @emph{not} the same as
20631 @samp{[2.0 .. 5.0]}!
20633 @kindex u #
20634 @pindex calc-vector-count
20635 @tindex vcount
20636 The @kbd{u #} (@code{calc-vector-count}) [@code{vcount}] command
20637 computes the number of data values represented by the inputs.
20638 For example, @samp{vcount(1, [2, 3], [[4, 5], [], x, y])} returns 7.
20639 If the argument is a single vector with no sub-vectors, this
20640 simply computes the length of the vector.
20642 @kindex u +
20643 @kindex u *
20644 @pindex calc-vector-sum
20645 @pindex calc-vector-prod
20646 @tindex vsum
20647 @tindex vprod
20648 @cindex Summations (statistical)
20649 The @kbd{u +} (@code{calc-vector-sum}) [@code{vsum}] command
20650 computes the sum of the data values.  The @kbd{u *}
20651 (@code{calc-vector-prod}) [@code{vprod}] command computes the
20652 product of the data values.  If the input is a single flat vector,
20653 these are the same as @kbd{V R +} and @kbd{V R *}
20654 (@pxref{Reducing and Mapping}).
20656 @kindex u X
20657 @kindex u N
20658 @pindex calc-vector-max
20659 @pindex calc-vector-min
20660 @tindex vmax
20661 @tindex vmin
20662 The @kbd{u X} (@code{calc-vector-max}) [@code{vmax}] command
20663 computes the maximum of the data values, and the @kbd{u N}
20664 (@code{calc-vector-min}) [@code{vmin}] command computes the minimum.
20665 If the argument is an interval, this finds the minimum or maximum
20666 value in the interval.  (Note that @samp{vmax([2..6)) = 5} as
20667 described above.)  If the argument is an error form, this returns
20668 plus or minus infinity.
20670 @kindex u M
20671 @pindex calc-vector-mean
20672 @tindex vmean
20673 @cindex Mean of data values
20674 The @kbd{u M} (@code{calc-vector-mean}) [@code{vmean}] command
20675 computes the average (arithmetic mean) of the data values.
20676 If the inputs are error forms 
20677 @texline @math{x \pm \sigma},
20678 @infoline @samp{x +/- s}, 
20679 this is the weighted mean of the @expr{x} values with weights 
20680 @texline @math{1 /\sigma^2}.
20681 @infoline @expr{1 / s^2}.
20682 @tex
20683 \turnoffactive
20684 $$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over
20685            \displaystyle \sum { 1 \over \sigma_i^2 } } $$
20686 @end tex
20687 If the inputs are not error forms, this is simply the sum of the
20688 values divided by the count of the values.
20690 Note that a plain number can be considered an error form with
20691 error 
20692 @texline @math{\sigma = 0}.
20693 @infoline @expr{s = 0}.  
20694 If the input to @kbd{u M} is a mixture of
20695 plain numbers and error forms, the result is the mean of the
20696 plain numbers, ignoring all values with non-zero errors.  (By the
20697 above definitions it's clear that a plain number effectively
20698 has an infinite weight, next to which an error form with a finite
20699 weight is completely negligible.)
20701 This function also works for distributions (error forms or
20702 intervals).  The mean of an error form `@var{a} @tfn{+/-} @var{b}' is simply
20703 @expr{a}.  The mean of an interval is the mean of the minimum
20704 and maximum values of the interval.
20706 @kindex I u M
20707 @pindex calc-vector-mean-error
20708 @tindex vmeane
20709 The @kbd{I u M} (@code{calc-vector-mean-error}) [@code{vmeane}]
20710 command computes the mean of the data points expressed as an
20711 error form.  This includes the estimated error associated with
20712 the mean.  If the inputs are error forms, the error is the square
20713 root of the reciprocal of the sum of the reciprocals of the squares
20714 of the input errors.  (I.e., the variance is the reciprocal of the
20715 sum of the reciprocals of the variances.)
20716 @tex
20717 \turnoffactive
20718 $$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$
20719 @end tex
20720 If the inputs are plain
20721 numbers, the error is equal to the standard deviation of the values
20722 divided by the square root of the number of values.  (This works
20723 out to be equivalent to calculating the standard deviation and
20724 then assuming each value's error is equal to this standard
20725 deviation.)
20726 @tex
20727 \turnoffactive
20728 $$ \sigma_\mu^2 = {\sigma^2 \over N} $$
20729 @end tex
20731 @kindex H u M
20732 @pindex calc-vector-median
20733 @tindex vmedian
20734 @cindex Median of data values
20735 The @kbd{H u M} (@code{calc-vector-median}) [@code{vmedian}]
20736 command computes the median of the data values.  The values are
20737 first sorted into numerical order; the median is the middle
20738 value after sorting.  (If the number of data values is even,
20739 the median is taken to be the average of the two middle values.)
20740 The median function is different from the other functions in
20741 this section in that the arguments must all be real numbers;
20742 variables are not accepted even when nested inside vectors.
20743 (Otherwise it is not possible to sort the data values.)  If
20744 any of the input values are error forms, their error parts are
20745 ignored.
20747 The median function also accepts distributions.  For both normal
20748 (error form) and uniform (interval) distributions, the median is
20749 the same as the mean.
20751 @kindex H I u M
20752 @pindex calc-vector-harmonic-mean
20753 @tindex vhmean
20754 @cindex Harmonic mean
20755 The @kbd{H I u M} (@code{calc-vector-harmonic-mean}) [@code{vhmean}]
20756 command computes the harmonic mean of the data values.  This is
20757 defined as the reciprocal of the arithmetic mean of the reciprocals
20758 of the values.
20759 @tex
20760 \turnoffactive
20761 $$ { N \over \displaystyle \sum {1 \over x_i} } $$
20762 @end tex
20764 @kindex u G
20765 @pindex calc-vector-geometric-mean
20766 @tindex vgmean
20767 @cindex Geometric mean
20768 The @kbd{u G} (@code{calc-vector-geometric-mean}) [@code{vgmean}]
20769 command computes the geometric mean of the data values.  This
20770 is the @var{n}th root of the product of the values.  This is also
20771 equal to the @code{exp} of the arithmetic mean of the logarithms
20772 of the data values.
20773 @tex
20774 \turnoffactive
20775 $$ \exp \left ( \sum { \ln x_i } \right ) =
20776    \left ( \prod { x_i } \right)^{1 / N} $$
20777 @end tex
20779 @kindex H u G
20780 @tindex agmean
20781 The @kbd{H u G} [@code{agmean}] command computes the ``arithmetic-geometric
20782 mean'' of two numbers taken from the stack.  This is computed by
20783 replacing the two numbers with their arithmetic mean and geometric
20784 mean, then repeating until the two values converge.
20785 @tex
20786 \turnoffactive
20787 $$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$
20788 @end tex
20790 @cindex Root-mean-square
20791 Another commonly used mean, the RMS (root-mean-square), can be computed
20792 for a vector of numbers simply by using the @kbd{A} command.
20794 @kindex u S
20795 @pindex calc-vector-sdev
20796 @tindex vsdev
20797 @cindex Standard deviation
20798 @cindex Sample statistics
20799 The @kbd{u S} (@code{calc-vector-sdev}) [@code{vsdev}] command
20800 computes the standard 
20801 @texline deviation@tie{}@math{\sigma}
20802 @infoline deviation
20803 of the data values.  If the values are error forms, the errors are used
20804 as weights just as for @kbd{u M}.  This is the @emph{sample} standard
20805 deviation, whose value is the square root of the sum of the squares of
20806 the differences between the values and the mean of the @expr{N} values,
20807 divided by @expr{N-1}.
20808 @tex
20809 \turnoffactive
20810 $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$
20811 @end tex
20813 This function also applies to distributions.  The standard deviation
20814 of a single error form is simply the error part.  The standard deviation
20815 of a continuous interval happens to equal the difference between the
20816 limits, divided by 
20817 @texline @math{\sqrt{12}}.
20818 @infoline @expr{sqrt(12)}.  
20819 The standard deviation of an integer interval is the same as the
20820 standard deviation of a vector of those integers.
20822 @kindex I u S
20823 @pindex calc-vector-pop-sdev
20824 @tindex vpsdev
20825 @cindex Population statistics
20826 The @kbd{I u S} (@code{calc-vector-pop-sdev}) [@code{vpsdev}]
20827 command computes the @emph{population} standard deviation.
20828 It is defined by the same formula as above but dividing
20829 by @expr{N} instead of by @expr{N-1}.  The population standard
20830 deviation is used when the input represents the entire set of
20831 data values in the distribution; the sample standard deviation
20832 is used when the input represents a sample of the set of all
20833 data values, so that the mean computed from the input is itself
20834 only an estimate of the true mean.
20835 @tex
20836 \turnoffactive
20837 $$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$
20838 @end tex
20840 For error forms and continuous intervals, @code{vpsdev} works
20841 exactly like @code{vsdev}.  For integer intervals, it computes the
20842 population standard deviation of the equivalent vector of integers.
20844 @kindex H u S
20845 @kindex H I u S
20846 @pindex calc-vector-variance
20847 @pindex calc-vector-pop-variance
20848 @tindex vvar
20849 @tindex vpvar
20850 @cindex Variance of data values
20851 The @kbd{H u S} (@code{calc-vector-variance}) [@code{vvar}] and
20852 @kbd{H I u S} (@code{calc-vector-pop-variance}) [@code{vpvar}]
20853 commands compute the variance of the data values.  The variance
20854 is the 
20855 @texline square@tie{}@math{\sigma^2}
20856 @infoline square
20857 of the standard deviation, i.e., the sum of the
20858 squares of the deviations of the data values from the mean.
20859 (This definition also applies when the argument is a distribution.)
20861 @ignore
20862 @starindex
20863 @end ignore
20864 @tindex vflat
20865 The @code{vflat} algebraic function returns a vector of its
20866 arguments, interpreted in the same way as the other functions
20867 in this section.  For example, @samp{vflat(1, [2, [3, 4]], 5)}
20868 returns @samp{[1, 2, 3, 4, 5]}.
20870 @node Paired-Sample Statistics, , Single-Variable Statistics, Statistical Operations
20871 @subsection Paired-Sample Statistics
20873 @noindent
20874 The functions in this section take two arguments, which must be
20875 vectors of equal size.  The vectors are each flattened in the same
20876 way as by the single-variable statistical functions.  Given a numeric
20877 prefix argument of 1, these functions instead take one object from
20878 the stack, which must be an 
20879 @texline @math{N\times2}
20880 @infoline Nx2
20881 matrix of data values.  Once again, variable names can be used in place
20882 of actual vectors and matrices.
20884 @kindex u C
20885 @pindex calc-vector-covariance
20886 @tindex vcov
20887 @cindex Covariance
20888 The @kbd{u C} (@code{calc-vector-covariance}) [@code{vcov}] command
20889 computes the sample covariance of two vectors.  The covariance
20890 of vectors @var{x} and @var{y} is the sum of the products of the
20891 differences between the elements of @var{x} and the mean of @var{x}
20892 times the differences between the corresponding elements of @var{y}
20893 and the mean of @var{y}, all divided by @expr{N-1}.  Note that
20894 the variance of a vector is just the covariance of the vector
20895 with itself.  Once again, if the inputs are error forms the
20896 errors are used as weight factors.  If both @var{x} and @var{y}
20897 are composed of error forms, the error for a given data point
20898 is taken as the square root of the sum of the squares of the two
20899 input errors.
20900 @tex
20901 \turnoffactive
20902 $$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$
20903 $$ \sigma_{x\!y}^2 =
20904     {\displaystyle {1 \over N-1}
20905                    \sum {(x_i - \mu_x) (y_i - \mu_y) \over \sigma_i^2}
20906      \over \displaystyle {1 \over N} \sum {1 \over \sigma_i^2}}
20908 @end tex
20910 @kindex I u C
20911 @pindex calc-vector-pop-covariance
20912 @tindex vpcov
20913 The @kbd{I u C} (@code{calc-vector-pop-covariance}) [@code{vpcov}]
20914 command computes the population covariance, which is the same as the
20915 sample covariance computed by @kbd{u C} except dividing by @expr{N}
20916 instead of @expr{N-1}.
20918 @kindex H u C
20919 @pindex calc-vector-correlation
20920 @tindex vcorr
20921 @cindex Correlation coefficient
20922 @cindex Linear correlation
20923 The @kbd{H u C} (@code{calc-vector-correlation}) [@code{vcorr}]
20924 command computes the linear correlation coefficient of two vectors.
20925 This is defined by the covariance of the vectors divided by the
20926 product of their standard deviations.  (There is no difference
20927 between sample or population statistics here.)
20928 @tex
20929 \turnoffactive
20930 $$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$
20931 @end tex
20933 @node Reducing and Mapping, Vector and Matrix Formats, Statistical Operations, Matrix Functions
20934 @section Reducing and Mapping Vectors
20936 @noindent
20937 The commands in this section allow for more general operations on the
20938 elements of vectors.
20940 @kindex V A
20941 @pindex calc-apply
20942 @tindex apply
20943 The simplest of these operations is @kbd{V A} (@code{calc-apply})
20944 [@code{apply}], which applies a given operator to the elements of a vector.
20945 For example, applying the hypothetical function @code{f} to the vector
20946 @w{@samp{[1, 2, 3]}} would produce the function call @samp{f(1, 2, 3)}.
20947 Applying the @code{+} function to the vector @samp{[a, b]} gives
20948 @samp{a + b}.  Applying @code{+} to the vector @samp{[a, b, c]} is an
20949 error, since the @code{+} function expects exactly two arguments.
20951 While @kbd{V A} is useful in some cases, you will usually find that either
20952 @kbd{V R} or @kbd{V M}, described below, is closer to what you want.
20954 @menu
20955 * Specifying Operators::
20956 * Mapping::
20957 * Reducing::
20958 * Nesting and Fixed Points::
20959 * Generalized Products::
20960 @end menu
20962 @node Specifying Operators, Mapping, Reducing and Mapping, Reducing and Mapping
20963 @subsection Specifying Operators
20965 @noindent
20966 Commands in this section (like @kbd{V A}) prompt you to press the key
20967 corresponding to the desired operator.  Press @kbd{?} for a partial
20968 list of the available operators.  Generally, an operator is any key or
20969 sequence of keys that would normally take one or more arguments from
20970 the stack and replace them with a result.  For example, @kbd{V A H C}
20971 uses the hyperbolic cosine operator, @code{cosh}.  (Since @code{cosh}
20972 expects one argument, @kbd{V A H C} requires a vector with a single
20973 element as its argument.)
20975 You can press @kbd{x} at the operator prompt to select any algebraic
20976 function by name to use as the operator.  This includes functions you
20977 have defined yourself using the @kbd{Z F} command.  (@xref{Algebraic
20978 Definitions}.)  If you give a name for which no function has been
20979 defined, the result is left in symbolic form, as in @samp{f(1, 2, 3)}.
20980 Calc will prompt for the number of arguments the function takes if it
20981 can't figure it out on its own (say, because you named a function that
20982 is currently undefined).  It is also possible to type a digit key before
20983 the function name to specify the number of arguments, e.g.,
20984 @kbd{V M 3 x f @key{RET}} calls @code{f} with three arguments even if it
20985 looks like it ought to have only two.  This technique may be necessary
20986 if the function allows a variable number of arguments.  For example,
20987 the @kbd{v e} [@code{vexp}] function accepts two or three arguments;
20988 if you want to map with the three-argument version, you will have to
20989 type @kbd{V M 3 v e}.
20991 It is also possible to apply any formula to a vector by treating that
20992 formula as a function.  When prompted for the operator to use, press
20993 @kbd{'} (the apostrophe) and type your formula as an algebraic entry.
20994 You will then be prompted for the argument list, which defaults to a
20995 list of all variables that appear in the formula, sorted into alphabetic
20996 order.  For example, suppose you enter the formula @w{@samp{x + 2y^x}}.
20997 The default argument list would be @samp{(x y)}, which means that if
20998 this function is applied to the arguments @samp{[3, 10]} the result will
20999 be @samp{3 + 2*10^3}.  (If you plan to use a certain formula in this
21000 way often, you might consider defining it as a function with @kbd{Z F}.)
21002 Another way to specify the arguments to the formula you enter is with
21003 @kbd{$}, @kbd{$$}, and so on.  For example, @kbd{V A ' $$ + 2$^$$}
21004 has the same effect as the previous example.  The argument list is
21005 automatically taken to be @samp{($$ $)}.  (The order of the arguments
21006 may seem backwards, but it is analogous to the way normal algebraic
21007 entry interacts with the stack.)
21009 If you press @kbd{$} at the operator prompt, the effect is similar to
21010 the apostrophe except that the relevant formula is taken from top-of-stack
21011 instead.  The actual vector arguments of the @kbd{V A $} or related command
21012 then start at the second-to-top stack position.  You will still be
21013 prompted for an argument list.
21015 @cindex Nameless functions
21016 @cindex Generic functions
21017 A function can be written without a name using the notation @samp{<#1 - #2>},
21018 which means ``a function of two arguments that computes the first
21019 argument minus the second argument.''  The symbols @samp{#1} and @samp{#2}
21020 are placeholders for the arguments.  You can use any names for these
21021 placeholders if you wish, by including an argument list followed by a
21022 colon:  @samp{<x, y : x - y>}.  When you type @kbd{V A ' $$ + 2$^$$ @key{RET}},
21023 Calc builds the nameless function @samp{<#1 + 2 #2^#1>} as the function
21024 to map across the vectors.  When you type @kbd{V A ' x + 2y^x @key{RET} @key{RET}},
21025 Calc builds the nameless function @w{@samp{<x, y : x + 2 y^x>}}.  In both
21026 cases, Calc also writes the nameless function to the Trail so that you
21027 can get it back later if you wish.
21029 If there is only one argument, you can write @samp{#} in place of @samp{#1}.
21030 (Note that @samp{< >} notation is also used for date forms.  Calc tells
21031 that @samp{<@var{stuff}>} is a nameless function by the presence of
21032 @samp{#} signs inside @var{stuff}, or by the fact that @var{stuff}
21033 begins with a list of variables followed by a colon.)
21035 You can type a nameless function directly to @kbd{V A '}, or put one on
21036 the stack and use it with @w{@kbd{V A $}}.  Calc will not prompt for an
21037 argument list in this case, since the nameless function specifies the
21038 argument list as well as the function itself.  In @kbd{V A '}, you can
21039 omit the @samp{< >} marks if you use @samp{#} notation for the arguments,
21040 so that @kbd{V A ' #1+#2 @key{RET}} is the same as @kbd{V A ' <#1+#2> @key{RET}},
21041 which in turn is the same as @kbd{V A ' $$+$ @key{RET}}.
21043 @cindex Lambda expressions
21044 @ignore
21045 @starindex
21046 @end ignore
21047 @tindex lambda
21048 The internal format for @samp{<x, y : x + y>} is @samp{lambda(x, y, x + y)}.
21049 (The word @code{lambda} derives from Lisp notation and the theory of
21050 functions.)  The internal format for @samp{<#1 + #2>} is @samp{lambda(ArgA,
21051 ArgB, ArgA + ArgB)}.  Note that there is no actual Calc function called
21052 @code{lambda}; the whole point is that the @code{lambda} expression is
21053 used in its symbolic form, not evaluated for an answer until it is applied
21054 to specific arguments by a command like @kbd{V A} or @kbd{V M}.
21056 (Actually, @code{lambda} does have one special property:  Its arguments
21057 are never evaluated; for example, putting @samp{<(2/3) #>} on the stack
21058 will not simplify the @samp{2/3} until the nameless function is actually
21059 called.)
21061 @tindex add
21062 @tindex sub
21063 @ignore
21064 @mindex @idots
21065 @end ignore
21066 @tindex mul
21067 @ignore
21068 @mindex @null
21069 @end ignore
21070 @tindex div
21071 @ignore
21072 @mindex @null
21073 @end ignore
21074 @tindex pow
21075 @ignore
21076 @mindex @null
21077 @end ignore
21078 @tindex neg
21079 @ignore
21080 @mindex @null
21081 @end ignore
21082 @tindex mod
21083 @ignore
21084 @mindex @null
21085 @end ignore
21086 @tindex vconcat
21087 As usual, commands like @kbd{V A} have algebraic function name equivalents.
21088 For example, @kbd{V A k g} with an argument of @samp{v} is equivalent to
21089 @samp{apply(gcd, v)}.  The first argument specifies the operator name,
21090 and is either a variable whose name is the same as the function name,
21091 or a nameless function like @samp{<#^3+1>}.  Operators that are normally
21092 written as algebraic symbols have the names @code{add}, @code{sub},
21093 @code{mul}, @code{div}, @code{pow}, @code{neg}, @code{mod}, and
21094 @code{vconcat}.
21096 @ignore
21097 @starindex
21098 @end ignore
21099 @tindex call
21100 The @code{call} function builds a function call out of several arguments:
21101 @samp{call(gcd, x, y)} is the same as @samp{apply(gcd, [x, y])}, which
21102 in turn is the same as @samp{gcd(x, y)}.  The first argument of @code{call},
21103 like the other functions described here, may be either a variable naming a
21104 function, or a nameless function (@samp{call(<#1+2#2>, x, y)} is the same
21105 as @samp{x + 2y}).
21107 (Experts will notice that it's not quite proper to use a variable to name
21108 a function, since the name @code{gcd} corresponds to the Lisp variable
21109 @code{var-gcd} but to the Lisp function @code{calcFunc-gcd}.  Calc
21110 automatically makes this translation, so you don't have to worry
21111 about it.)
21113 @node Mapping, Reducing, Specifying Operators, Reducing and Mapping
21114 @subsection Mapping
21116 @noindent
21117 @kindex V M
21118 @pindex calc-map
21119 @tindex map
21120 The @kbd{V M} (@code{calc-map}) [@code{map}] command applies a given
21121 operator elementwise to one or more vectors.  For example, mapping
21122 @code{A} [@code{abs}] produces a vector of the absolute values of the
21123 elements in the input vector.  Mapping @code{+} pops two vectors from
21124 the stack, which must be of equal length, and produces a vector of the
21125 pairwise sums of the elements.  If either argument is a non-vector, it
21126 is duplicated for each element of the other vector.  For example,
21127 @kbd{[1,2,3] 2 V M ^} squares the elements of the specified vector.
21128 With the 2 listed first, it would have computed a vector of powers of
21129 two.  Mapping a user-defined function pops as many arguments from the
21130 stack as the function requires.  If you give an undefined name, you will
21131 be prompted for the number of arguments to use.
21133 If any argument to @kbd{V M} is a matrix, the operator is normally mapped
21134 across all elements of the matrix.  For example, given the matrix
21135 @expr{[[1, -2, 3], [-4, 5, -6]]}, @kbd{V M A} takes six absolute values to
21136 produce another 
21137 @texline @math{3\times2}
21138 @infoline 3x2
21139 matrix, @expr{[[1, 2, 3], [4, 5, 6]]}.
21141 @tindex mapr
21142 The command @kbd{V M _} [@code{mapr}] (i.e., type an underscore at the
21143 operator prompt) maps by rows instead.  For example, @kbd{V M _ A} views
21144 the above matrix as a vector of two 3-element row vectors.  It produces
21145 a new vector which contains the absolute values of those row vectors,
21146 namely @expr{[3.74, 8.77]}.  (Recall, the absolute value of a vector is
21147 defined as the square root of the sum of the squares of the elements.)
21148 Some operators accept vectors and return new vectors; for example,
21149 @kbd{v v} reverses a vector, so @kbd{V M _ v v} would reverse each row
21150 of the matrix to get a new matrix, @expr{[[3, -2, 1], [-6, 5, -4]]}.
21152 Sometimes a vector of vectors (representing, say, strings, sets, or lists)
21153 happens to look like a matrix.  If so, remember to use @kbd{V M _} if you
21154 want to map a function across the whole strings or sets rather than across
21155 their individual elements.
21157 @tindex mapc
21158 The command @kbd{V M :} [@code{mapc}] maps by columns.  Basically, it
21159 transposes the input matrix, maps by rows, and then, if the result is a
21160 matrix, transposes again.  For example, @kbd{V M : A} takes the absolute
21161 values of the three columns of the matrix, treating each as a 2-vector,
21162 and @kbd{V M : v v} reverses the columns to get the matrix
21163 @expr{[[-4, 5, -6], [1, -2, 3]]}.
21165 (The symbols @kbd{_} and @kbd{:} were chosen because they had row-like
21166 and column-like appearances, and were not already taken by useful
21167 operators.  Also, they appear shifted on most keyboards so they are easy
21168 to type after @kbd{V M}.)
21170 The @kbd{_} and @kbd{:} modifiers have no effect on arguments that are
21171 not matrices (so if none of the arguments are matrices, they have no
21172 effect at all).  If some of the arguments are matrices and others are
21173 plain numbers, the plain numbers are held constant for all rows of the
21174 matrix (so that @kbd{2 V M _ ^} squares every row of a matrix; squaring
21175 a vector takes a dot product of the vector with itself).
21177 If some of the arguments are vectors with the same lengths as the
21178 rows (for @kbd{V M _}) or columns (for @kbd{V M :}) of the matrix
21179 arguments, those vectors are also held constant for every row or
21180 column.
21182 Sometimes it is useful to specify another mapping command as the operator
21183 to use with @kbd{V M}.  For example, @kbd{V M _ V A +} applies @kbd{V A +}
21184 to each row of the input matrix, which in turn adds the two values on that
21185 row.  If you give another vector-operator command as the operator for
21186 @kbd{V M}, it automatically uses map-by-rows mode if you don't specify
21187 otherwise; thus @kbd{V M V A +} is equivalent to @kbd{V M _ V A +}.  (If
21188 you really want to map-by-elements another mapping command, you can use
21189 a triple-nested mapping command:  @kbd{V M V M V A +} means to map
21190 @kbd{V M V A +} over the rows of the matrix; in turn, @kbd{V A +} is
21191 mapped over the elements of each row.)
21193 @tindex mapa
21194 @tindex mapd
21195 Previous versions of Calc had ``map across'' and ``map down'' modes
21196 that are now considered obsolete; the old ``map across'' is now simply
21197 @kbd{V M V A}, and ``map down'' is now @kbd{V M : V A}.  The algebraic
21198 functions @code{mapa} and @code{mapd} are still supported, though.
21199 Note also that, while the old mapping modes were persistent (once you
21200 set the mode, it would apply to later mapping commands until you reset
21201 it), the new @kbd{:} and @kbd{_} modifiers apply only to the current
21202 mapping command.  The default @kbd{V M} always means map-by-elements.
21204 @xref{Algebraic Manipulation}, for the @kbd{a M} command, which is like
21205 @kbd{V M} but for equations and inequalities instead of vectors.
21206 @xref{Storing Variables}, for the @kbd{s m} command which modifies a
21207 variable's stored value using a @kbd{V M}-like operator.
21209 @node Reducing, Nesting and Fixed Points, Mapping, Reducing and Mapping
21210 @subsection Reducing
21212 @noindent
21213 @kindex V R
21214 @pindex calc-reduce
21215 @tindex reduce
21216 The @kbd{V R} (@code{calc-reduce}) [@code{reduce}] command applies a given
21217 binary operator across all the elements of a vector.  A binary operator is
21218 a function such as @code{+} or @code{max} which takes two arguments.  For
21219 example, reducing @code{+} over a vector computes the sum of the elements
21220 of the vector.  Reducing @code{-} computes the first element minus each of
21221 the remaining elements.  Reducing @code{max} computes the maximum element
21222 and so on.  In general, reducing @code{f} over the vector @samp{[a, b, c, d]}
21223 produces @samp{f(f(f(a, b), c), d)}.
21225 @kindex I V R
21226 @tindex rreduce
21227 The @kbd{I V R} [@code{rreduce}] command is similar to @kbd{V R} except
21228 that works from right to left through the vector.  For example, plain
21229 @kbd{V R -} on the vector @samp{[a, b, c, d]} produces @samp{a - b - c - d}
21230 but @kbd{I V R -} on the same vector produces @samp{a - (b - (c - d))},
21231 or @samp{a - b + c - d}.  This ``alternating sum'' occurs frequently
21232 in power series expansions.
21234 @kindex V U
21235 @tindex accum
21236 The @kbd{V U} (@code{calc-accumulate}) [@code{accum}] command does an
21237 accumulation operation.  Here Calc does the corresponding reduction
21238 operation, but instead of producing only the final result, it produces
21239 a vector of all the intermediate results.  Accumulating @code{+} over
21240 the vector @samp{[a, b, c, d]} produces the vector
21241 @samp{[a, a + b, a + b + c, a + b + c + d]}.
21243 @kindex I V U
21244 @tindex raccum
21245 The @kbd{I V U} [@code{raccum}] command does a right-to-left accumulation.
21246 For example, @kbd{I V U -} on the vector @samp{[a, b, c, d]} produces the
21247 vector @samp{[a - b + c - d, b - c + d, c - d, d]}.
21249 @tindex reducea
21250 @tindex rreducea
21251 @tindex reduced
21252 @tindex rreduced
21253 As for @kbd{V M}, @kbd{V R} normally reduces a matrix elementwise.  For
21254 example, given the matrix @expr{[[a, b, c], [d, e, f]]}, @kbd{V R +} will
21255 compute @expr{a + b + c + d + e + f}.  You can type @kbd{V R _} or
21256 @kbd{V R :} to modify this behavior.  The @kbd{V R _} [@code{reducea}]
21257 command reduces ``across'' the matrix; it reduces each row of the matrix
21258 as a vector, then collects the results.  Thus @kbd{V R _ +} of this
21259 matrix would produce @expr{[a + b + c, d + e + f]}.  Similarly, @kbd{V R :}
21260 [@code{reduced}] reduces down; @kbd{V R : +} would produce @expr{[a + d,
21261 b + e, c + f]}.
21263 @tindex reducer
21264 @tindex rreducer
21265 There is a third ``by rows'' mode for reduction that is occasionally
21266 useful; @kbd{V R =} [@code{reducer}] simply reduces the operator over
21267 the rows of the matrix themselves.  Thus @kbd{V R = +} on the above
21268 matrix would get the same result as @kbd{V R : +}, since adding two
21269 row vectors is equivalent to adding their elements.  But @kbd{V R = *}
21270 would multiply the two rows (to get a single number, their dot product),
21271 while @kbd{V R : *} would produce a vector of the products of the columns.
21273 These three matrix reduction modes work with @kbd{V R} and @kbd{I V R},
21274 but they are not currently supported with @kbd{V U} or @kbd{I V U}.
21276 @tindex reducec
21277 @tindex rreducec
21278 The obsolete reduce-by-columns function, @code{reducec}, is still
21279 supported but there is no way to get it through the @kbd{V R} command.
21281 The commands @kbd{M-# :} and @kbd{M-# _} are equivalent to typing
21282 @kbd{M-# r} to grab a rectangle of data into Calc, and then typing
21283 @kbd{V R : +} or @kbd{V R _ +}, respectively, to sum the columns or
21284 rows of the matrix.  @xref{Grabbing From Buffers}.
21286 @node Nesting and Fixed Points, Generalized Products, Reducing, Reducing and Mapping
21287 @subsection Nesting and Fixed Points
21289 @noindent
21290 @kindex H V R
21291 @tindex nest
21292 The @kbd{H V R} [@code{nest}] command applies a function to a given
21293 argument repeatedly.  It takes two values, @samp{a} and @samp{n}, from
21294 the stack, where @samp{n} must be an integer.  It then applies the
21295 function nested @samp{n} times; if the function is @samp{f} and @samp{n}
21296 is 3, the result is @samp{f(f(f(a)))}.  The number @samp{n} may be
21297 negative if Calc knows an inverse for the function @samp{f}; for
21298 example, @samp{nest(sin, a, -2)} returns @samp{arcsin(arcsin(a))}.
21300 @kindex H V U
21301 @tindex anest
21302 The @kbd{H V U} [@code{anest}] command is an accumulating version of
21303 @code{nest}:  It returns a vector of @samp{n+1} values, e.g.,
21304 @samp{[a, f(a), f(f(a)), f(f(f(a)))]}.  If @samp{n} is negative and
21305 @samp{F} is the inverse of @samp{f}, then the result is of the
21306 form @samp{[a, F(a), F(F(a)), F(F(F(a)))]}.
21308 @kindex H I V R
21309 @tindex fixp
21310 @cindex Fixed points
21311 The @kbd{H I V R} [@code{fixp}] command is like @kbd{H V R}, except
21312 that it takes only an @samp{a} value from the stack; the function is
21313 applied until it reaches a ``fixed point,'' i.e., until the result
21314 no longer changes.
21316 @kindex H I V U
21317 @tindex afixp
21318 The @kbd{H I V U} [@code{afixp}] command is an accumulating @code{fixp}.
21319 The first element of the return vector will be the initial value @samp{a};
21320 the last element will be the final result that would have been returned
21321 by @code{fixp}.
21323 For example, 0.739085 is a fixed point of the cosine function (in radians):
21324 @samp{cos(0.739085) = 0.739085}.  You can find this value by putting, say,
21325 1.0 on the stack and typing @kbd{H I V U C}.  (We use the accumulating
21326 version so we can see the intermediate results:  @samp{[1, 0.540302, 0.857553,
21327 0.65329, ...]}.  With a precision of six, this command will take 36 steps
21328 to converge to 0.739085.)
21330 Newton's method for finding roots is a classic example of iteration
21331 to a fixed point.  To find the square root of five starting with an
21332 initial guess, Newton's method would look for a fixed point of the
21333 function @samp{(x + 5/x) / 2}.  Putting a guess of 1 on the stack
21334 and typing @kbd{H I V R ' ($ + 5/$)/2 @key{RET}} quickly yields the result
21335 2.23607.  This is equivalent to using the @kbd{a R} (@code{calc-find-root})
21336 command to find a root of the equation @samp{x^2 = 5}.
21338 These examples used numbers for @samp{a} values.  Calc keeps applying
21339 the function until two successive results are equal to within the
21340 current precision.  For complex numbers, both the real parts and the
21341 imaginary parts must be equal to within the current precision.  If
21342 @samp{a} is a formula (say, a variable name), then the function is
21343 applied until two successive results are exactly the same formula.
21344 It is up to you to ensure that the function will eventually converge;
21345 if it doesn't, you may have to press @kbd{C-g} to stop the Calculator.
21347 The algebraic @code{fixp} function takes two optional arguments, @samp{n}
21348 and @samp{tol}.  The first is the maximum number of steps to be allowed,
21349 and must be either an integer or the symbol @samp{inf} (infinity, the
21350 default).  The second is a convergence tolerance.  If a tolerance is
21351 specified, all results during the calculation must be numbers, not
21352 formulas, and the iteration stops when the magnitude of the difference
21353 between two successive results is less than or equal to the tolerance.
21354 (This implies that a tolerance of zero iterates until the results are
21355 exactly equal.)
21357 Putting it all together, @samp{fixp(<(# + A/#)/2>, B, 20, 1e-10)}
21358 computes the square root of @samp{A} given the initial guess @samp{B},
21359 stopping when the result is correct within the specified tolerance, or
21360 when 20 steps have been taken, whichever is sooner.
21362 @node Generalized Products, , Nesting and Fixed Points, Reducing and Mapping
21363 @subsection Generalized Products
21365 @kindex V O
21366 @pindex calc-outer-product
21367 @tindex outer
21368 The @kbd{V O} (@code{calc-outer-product}) [@code{outer}] command applies
21369 a given binary operator to all possible pairs of elements from two
21370 vectors, to produce a matrix.  For example, @kbd{V O *} with @samp{[a, b]}
21371 and @samp{[x, y, z]} on the stack produces a multiplication table:
21372 @samp{[[a x, a y, a z], [b x, b y, b z]]}.  Element @var{r},@var{c} of
21373 the result matrix is obtained by applying the operator to element @var{r}
21374 of the lefthand vector and element @var{c} of the righthand vector.
21376 @kindex V I
21377 @pindex calc-inner-product
21378 @tindex inner
21379 The @kbd{V I} (@code{calc-inner-product}) [@code{inner}] command computes
21380 the generalized inner product of two vectors or matrices, given a
21381 ``multiplicative'' operator and an ``additive'' operator.  These can each
21382 actually be any binary operators; if they are @samp{*} and @samp{+},
21383 respectively, the result is a standard matrix multiplication.  Element
21384 @var{r},@var{c} of the result matrix is obtained by mapping the
21385 multiplicative operator across row @var{r} of the lefthand matrix and
21386 column @var{c} of the righthand matrix, and then reducing with the additive
21387 operator.  Just as for the standard @kbd{*} command, this can also do a
21388 vector-matrix or matrix-vector inner product, or a vector-vector
21389 generalized dot product.
21391 Since @kbd{V I} requires two operators, it prompts twice.  In each case,
21392 you can use any of the usual methods for entering the operator.  If you
21393 use @kbd{$} twice to take both operator formulas from the stack, the
21394 first (multiplicative) operator is taken from the top of the stack
21395 and the second (additive) operator is taken from second-to-top.
21397 @node Vector and Matrix Formats, , Reducing and Mapping, Matrix Functions
21398 @section Vector and Matrix Display Formats
21400 @noindent
21401 Commands for controlling vector and matrix display use the @kbd{v} prefix
21402 instead of the usual @kbd{d} prefix.  But they are display modes; in
21403 particular, they are influenced by the @kbd{I} and @kbd{H} prefix keys
21404 in the same way (@pxref{Display Modes}).  Matrix display is also
21405 influenced by the @kbd{d O} (@code{calc-flat-language}) mode;
21406 @pxref{Normal Language Modes}.
21408 @kindex V <
21409 @pindex calc-matrix-left-justify
21410 @kindex V =
21411 @pindex calc-matrix-center-justify
21412 @kindex V >
21413 @pindex calc-matrix-right-justify
21414 The commands @kbd{v <} (@code{calc-matrix-left-justify}), @kbd{v >}
21415 (@code{calc-matrix-right-justify}), and @w{@kbd{v =}}
21416 (@code{calc-matrix-center-justify}) control whether matrix elements
21417 are justified to the left, right, or center of their columns.
21419 @kindex V [
21420 @pindex calc-vector-brackets
21421 @kindex V @{
21422 @pindex calc-vector-braces
21423 @kindex V (
21424 @pindex calc-vector-parens
21425 The @kbd{v [} (@code{calc-vector-brackets}) command turns the square
21426 brackets that surround vectors and matrices displayed in the stack on
21427 and off.  The @kbd{v @{} (@code{calc-vector-braces}) and @kbd{v (}
21428 (@code{calc-vector-parens}) commands use curly braces or parentheses,
21429 respectively, instead of square brackets.  For example, @kbd{v @{} might
21430 be used in preparation for yanking a matrix into a buffer running
21431 Mathematica.  (In fact, the Mathematica language mode uses this mode;
21432 @pxref{Mathematica Language Mode}.)  Note that, regardless of the
21433 display mode, either brackets or braces may be used to enter vectors,
21434 and parentheses may never be used for this purpose.
21436 @kindex V ]
21437 @pindex calc-matrix-brackets
21438 The @kbd{v ]} (@code{calc-matrix-brackets}) command controls the
21439 ``big'' style display of matrices.  It prompts for a string of code
21440 letters; currently implemented letters are @code{R}, which enables
21441 brackets on each row of the matrix; @code{O}, which enables outer
21442 brackets in opposite corners of the matrix; and @code{C}, which
21443 enables commas or semicolons at the ends of all rows but the last.
21444 The default format is @samp{RO}.  (Before Calc 2.00, the format
21445 was fixed at @samp{ROC}.)  Here are some example matrices:
21447 @example
21448 @group
21449 [ [ 123,  0,   0  ]       [ [ 123,  0,   0  ],
21450   [  0,  123,  0  ]         [  0,  123,  0  ],
21451   [  0,   0,  123 ] ]       [  0,   0,  123 ] ]
21453          RO                        ROC
21455 @end group
21456 @end example
21457 @noindent
21458 @example
21459 @group
21460   [ 123,  0,   0            [ 123,  0,   0 ;
21461      0,  123,  0               0,  123,  0 ;
21462      0,   0,  123 ]            0,   0,  123 ]
21464           O                        OC
21466 @end group
21467 @end example
21468 @noindent
21469 @example
21470 @group
21471   [ 123,  0,   0  ]           123,  0,   0
21472   [  0,  123,  0  ]            0,  123,  0
21473   [  0,   0,  123 ]            0,   0,  123
21475           R                       @r{blank}
21476 @end group
21477 @end example
21479 @noindent
21480 Note that of the formats shown here, @samp{RO}, @samp{ROC}, and
21481 @samp{OC} are all recognized as matrices during reading, while
21482 the others are useful for display only.
21484 @kindex V ,
21485 @pindex calc-vector-commas
21486 The @kbd{v ,} (@code{calc-vector-commas}) command turns commas on and
21487 off in vector and matrix display.
21489 In vectors of length one, and in all vectors when commas have been
21490 turned off, Calc adds extra parentheses around formulas that might
21491 otherwise be ambiguous.  For example, @samp{[a b]} could be a vector
21492 of the one formula @samp{a b}, or it could be a vector of two
21493 variables with commas turned off.  Calc will display the former
21494 case as @samp{[(a b)]}.  You can disable these extra parentheses
21495 (to make the output less cluttered at the expense of allowing some
21496 ambiguity) by adding the letter @code{P} to the control string you
21497 give to @kbd{v ]} (as described above).
21499 @kindex V .
21500 @pindex calc-full-vectors
21501 The @kbd{v .} (@code{calc-full-vectors}) command turns abbreviated
21502 display of long vectors on and off.  In this mode, vectors of six
21503 or more elements, or matrices of six or more rows or columns, will
21504 be displayed in an abbreviated form that displays only the first
21505 three elements and the last element:  @samp{[a, b, c, ..., z]}.
21506 When very large vectors are involved this will substantially
21507 improve Calc's display speed.
21509 @kindex t .
21510 @pindex calc-full-trail-vectors
21511 The @kbd{t .} (@code{calc-full-trail-vectors}) command controls a
21512 similar mode for recording vectors in the Trail.  If you turn on
21513 this mode, vectors of six or more elements and matrices of six or
21514 more rows or columns will be abbreviated when they are put in the
21515 Trail.  The @kbd{t y} (@code{calc-trail-yank}) command will be
21516 unable to recover those vectors.  If you are working with very
21517 large vectors, this mode will improve the speed of all operations
21518 that involve the trail.
21520 @kindex V /
21521 @pindex calc-break-vectors
21522 The @kbd{v /} (@code{calc-break-vectors}) command turns multi-line
21523 vector display on and off.  Normally, matrices are displayed with one
21524 row per line but all other types of vectors are displayed in a single
21525 line.  This mode causes all vectors, whether matrices or not, to be
21526 displayed with a single element per line.  Sub-vectors within the
21527 vectors will still use the normal linear form.
21529 @node Algebra, Units, Matrix Functions, Top
21530 @chapter Algebra
21532 @noindent
21533 This section covers the Calc features that help you work with
21534 algebraic formulas.  First, the general sub-formula selection
21535 mechanism is described; this works in conjunction with any Calc
21536 commands.  Then, commands for specific algebraic operations are
21537 described.  Finally, the flexible @dfn{rewrite rule} mechanism
21538 is discussed.
21540 The algebraic commands use the @kbd{a} key prefix; selection
21541 commands use the @kbd{j} (for ``just a letter that wasn't used
21542 for anything else'') prefix.
21544 @xref{Editing Stack Entries}, to see how to manipulate formulas
21545 using regular Emacs editing commands.
21547 When doing algebraic work, you may find several of the Calculator's
21548 modes to be helpful, including Algebraic Simplification mode (@kbd{m A})
21549 or No-Simplification mode (@kbd{m O}),
21550 Algebraic entry mode (@kbd{m a}), Fraction mode (@kbd{m f}), and
21551 Symbolic mode (@kbd{m s}).  @xref{Mode Settings}, for discussions
21552 of these modes.  You may also wish to select Big display mode (@kbd{d B}).
21553 @xref{Normal Language Modes}.
21555 @menu
21556 * Selecting Subformulas::
21557 * Algebraic Manipulation::
21558 * Simplifying Formulas::
21559 * Polynomials::
21560 * Calculus::
21561 * Solving Equations::
21562 * Numerical Solutions::
21563 * Curve Fitting::
21564 * Summations::
21565 * Logical Operations::
21566 * Rewrite Rules::
21567 @end menu
21569 @node Selecting Subformulas, Algebraic Manipulation, Algebra, Algebra
21570 @section Selecting Sub-Formulas
21572 @noindent
21573 @cindex Selections
21574 @cindex Sub-formulas
21575 @cindex Parts of formulas
21576 When working with an algebraic formula it is often necessary to
21577 manipulate a portion of the formula rather than the formula as a
21578 whole.  Calc allows you to ``select'' a portion of any formula on
21579 the stack.  Commands which would normally operate on that stack
21580 entry will now operate only on the sub-formula, leaving the
21581 surrounding part of the stack entry alone.
21583 One common non-algebraic use for selection involves vectors.  To work
21584 on one element of a vector in-place, simply select that element as a
21585 ``sub-formula'' of the vector.
21587 @menu
21588 * Making Selections::
21589 * Changing Selections::
21590 * Displaying Selections::
21591 * Operating on Selections::
21592 * Rearranging with Selections::
21593 @end menu
21595 @node Making Selections, Changing Selections, Selecting Subformulas, Selecting Subformulas
21596 @subsection Making Selections
21598 @noindent
21599 @kindex j s
21600 @pindex calc-select-here
21601 To select a sub-formula, move the Emacs cursor to any character in that
21602 sub-formula, and press @w{@kbd{j s}} (@code{calc-select-here}).  Calc will
21603 highlight the smallest portion of the formula that contains that
21604 character.  By default the sub-formula is highlighted by blanking out
21605 all of the rest of the formula with dots.  Selection works in any
21606 display mode but is perhaps easiest in Big mode (@kbd{d B}).
21607 Suppose you enter the following formula:
21609 @smallexample
21610 @group
21611            3    ___
21612     (a + b)  + V c
21613 1:  ---------------
21614         2 x + 1
21615 @end group
21616 @end smallexample
21618 @noindent
21619 (by typing @kbd{' ((a+b)^3 + sqrt(c)) / (2x+1)}).  If you move the
21620 cursor to the letter @samp{b} and press @w{@kbd{j s}}, the display changes
21623 @smallexample
21624 @group
21625            .    ...
21626     .. . b.  . . .
21627 1*  ...............
21628         . . . .
21629 @end group
21630 @end smallexample
21632 @noindent
21633 Every character not part of the sub-formula @samp{b} has been changed
21634 to a dot.  The @samp{*} next to the line number is to remind you that
21635 the formula has a portion of it selected.  (In this case, it's very
21636 obvious, but it might not always be.  If Embedded mode is enabled,
21637 the word @samp{Sel} also appears in the mode line because the stack
21638 may not be visible.  @pxref{Embedded Mode}.)
21640 If you had instead placed the cursor on the parenthesis immediately to
21641 the right of the @samp{b}, the selection would have been:
21643 @smallexample
21644 @group
21645            .    ...
21646     (a + b)  . . .
21647 1*  ...............
21648         . . . .
21649 @end group
21650 @end smallexample
21652 @noindent
21653 The portion selected is always large enough to be considered a complete
21654 formula all by itself, so selecting the parenthesis selects the whole
21655 formula that it encloses.  Putting the cursor on the @samp{+} sign
21656 would have had the same effect.
21658 (Strictly speaking, the Emacs cursor is really the manifestation of
21659 the Emacs ``point,'' which is a position @emph{between} two characters
21660 in the buffer.  So purists would say that Calc selects the smallest
21661 sub-formula which contains the character to the right of ``point.'')
21663 If you supply a numeric prefix argument @var{n}, the selection is
21664 expanded to the @var{n}th enclosing sub-formula.  Thus, positioning
21665 the cursor on the @samp{b} and typing @kbd{C-u 1 j s} will select
21666 @samp{a + b}; typing @kbd{C-u 2 j s} will select @samp{(a + b)^3},
21667 and so on.
21669 If the cursor is not on any part of the formula, or if you give a
21670 numeric prefix that is too large, the entire formula is selected.
21672 If the cursor is on the @samp{.} line that marks the top of the stack
21673 (i.e., its normal ``rest position''), this command selects the entire
21674 formula at stack level 1.  Most selection commands similarly operate
21675 on the formula at the top of the stack if you haven't positioned the
21676 cursor on any stack entry.
21678 @kindex j a
21679 @pindex calc-select-additional
21680 The @kbd{j a} (@code{calc-select-additional}) command enlarges the
21681 current selection to encompass the cursor.  To select the smallest
21682 sub-formula defined by two different points, move to the first and
21683 press @kbd{j s}, then move to the other and press @kbd{j a}.  This
21684 is roughly analogous to using @kbd{C-@@} (@code{set-mark-command}) to
21685 select the two ends of a region of text during normal Emacs editing.
21687 @kindex j o
21688 @pindex calc-select-once
21689 The @kbd{j o} (@code{calc-select-once}) command selects a formula in
21690 exactly the same way as @kbd{j s}, except that the selection will
21691 last only as long as the next command that uses it.  For example,
21692 @kbd{j o 1 +} is a handy way to add one to the sub-formula indicated
21693 by the cursor.
21695 (A somewhat more precise definition: The @kbd{j o} command sets a flag
21696 such that the next command involving selected stack entries will clear
21697 the selections on those stack entries afterwards.  All other selection
21698 commands except @kbd{j a} and @kbd{j O} clear this flag.)
21700 @kindex j S
21701 @kindex j O
21702 @pindex calc-select-here-maybe
21703 @pindex calc-select-once-maybe
21704 The @kbd{j S} (@code{calc-select-here-maybe}) and @kbd{j O}
21705 (@code{calc-select-once-maybe}) commands are equivalent to @kbd{j s}
21706 and @kbd{j o}, respectively, except that if the formula already
21707 has a selection they have no effect.  This is analogous to the
21708 behavior of some commands such as @kbd{j r} (@code{calc-rewrite-selection};
21709 @pxref{Selections with Rewrite Rules}) and is mainly intended to be
21710 used in keyboard macros that implement your own selection-oriented
21711 commands.
21713 Selection of sub-formulas normally treats associative terms like
21714 @samp{a + b - c + d} and @samp{x * y * z} as single levels of the formula.
21715 If you place the cursor anywhere inside @samp{a + b - c + d} except
21716 on one of the variable names and use @kbd{j s}, you will select the
21717 entire four-term sum.
21719 @kindex j b
21720 @pindex calc-break-selections
21721 The @kbd{j b} (@code{calc-break-selections}) command controls a mode
21722 in which the ``deep structure'' of these associative formulas shows
21723 through.  Calc actually stores the above formulas as @samp{((a + b) - c) + d}
21724 and @samp{x * (y * z)}.  (Note that for certain obscure reasons, Calc
21725 treats multiplication as right-associative.)  Once you have enabled
21726 @kbd{j b} mode, selecting with the cursor on the @samp{-} sign would
21727 only select the @samp{a + b - c} portion, which makes sense when the
21728 deep structure of the sum is considered.  There is no way to select
21729 the @samp{b - c + d} portion; although this might initially look
21730 like just as legitimate a sub-formula as @samp{a + b - c}, the deep
21731 structure shows that it isn't.  The @kbd{d U} command can be used
21732 to view the deep structure of any formula (@pxref{Normal Language Modes}).
21734 When @kbd{j b} mode has not been enabled, the deep structure is
21735 generally hidden by the selection commands---what you see is what
21736 you get.
21738 @kindex j u
21739 @pindex calc-unselect
21740 The @kbd{j u} (@code{calc-unselect}) command unselects the formula
21741 that the cursor is on.  If there was no selection in the formula,
21742 this command has no effect.  With a numeric prefix argument, it
21743 unselects the @var{n}th stack element rather than using the cursor
21744 position.
21746 @kindex j c
21747 @pindex calc-clear-selections
21748 The @kbd{j c} (@code{calc-clear-selections}) command unselects all
21749 stack elements.
21751 @node Changing Selections, Displaying Selections, Making Selections, Selecting Subformulas
21752 @subsection Changing Selections
21754 @noindent
21755 @kindex j m
21756 @pindex calc-select-more
21757 Once you have selected a sub-formula, you can expand it using the
21758 @w{@kbd{j m}} (@code{calc-select-more}) command.  If @samp{a + b} is
21759 selected, pressing @w{@kbd{j m}} repeatedly works as follows:
21761 @smallexample
21762 @group
21763            3    ...                3    ___                3    ___
21764     (a + b)  . . .          (a + b)  + V c          (a + b)  + V c
21765 1*  ...............     1*  ...............     1*  ---------------
21766         . . . .                 . . . .                 2 x + 1
21767 @end group
21768 @end smallexample
21770 @noindent
21771 In the last example, the entire formula is selected.  This is roughly
21772 the same as having no selection at all, but because there are subtle
21773 differences the @samp{*} character is still there on the line number.
21775 With a numeric prefix argument @var{n}, @kbd{j m} expands @var{n}
21776 times (or until the entire formula is selected).  Note that @kbd{j s}
21777 with argument @var{n} is equivalent to plain @kbd{j s} followed by
21778 @kbd{j m} with argument @var{n}.  If @w{@kbd{j m}} is used when there
21779 is no current selection, it is equivalent to @w{@kbd{j s}}.
21781 Even though @kbd{j m} does not explicitly use the location of the
21782 cursor within the formula, it nevertheless uses the cursor to determine
21783 which stack element to operate on.  As usual, @kbd{j m} when the cursor
21784 is not on any stack element operates on the top stack element.
21786 @kindex j l
21787 @pindex calc-select-less
21788 The @kbd{j l} (@code{calc-select-less}) command reduces the current
21789 selection around the cursor position.  That is, it selects the
21790 immediate sub-formula of the current selection which contains the
21791 cursor, the opposite of @kbd{j m}.  If the cursor is not inside the
21792 current selection, the command de-selects the formula.
21794 @kindex j 1-9
21795 @pindex calc-select-part
21796 The @kbd{j 1} through @kbd{j 9} (@code{calc-select-part}) commands
21797 select the @var{n}th sub-formula of the current selection.  They are
21798 like @kbd{j l} (@code{calc-select-less}) except they use counting
21799 rather than the cursor position to decide which sub-formula to select.
21800 For example, if the current selection is @kbd{a + b + c} or
21801 @kbd{f(a, b, c)} or @kbd{[a, b, c]}, then @kbd{j 1} selects @samp{a},
21802 @kbd{j 2} selects @samp{b}, and @kbd{j 3} selects @samp{c}; in each of
21803 these cases, @kbd{j 4} through @kbd{j 9} would be errors.
21805 If there is no current selection, @kbd{j 1} through @kbd{j 9} select
21806 the @var{n}th top-level sub-formula.  (In other words, they act as if
21807 the entire stack entry were selected first.)  To select the @var{n}th
21808 sub-formula where @var{n} is greater than nine, you must instead invoke
21809 @w{@kbd{j 1}} with @var{n} as a numeric prefix argument.
21811 @kindex j n
21812 @kindex j p
21813 @pindex calc-select-next
21814 @pindex calc-select-previous
21815 The @kbd{j n} (@code{calc-select-next}) and @kbd{j p}
21816 (@code{calc-select-previous}) commands change the current selection
21817 to the next or previous sub-formula at the same level.  For example,
21818 if @samp{b} is selected in @w{@samp{2 + a*b*c + x}}, then @kbd{j n}
21819 selects @samp{c}.  Further @kbd{j n} commands would be in error because,
21820 even though there is something to the right of @samp{c} (namely, @samp{x}),
21821 it is not at the same level; in this case, it is not a term of the
21822 same product as @samp{b} and @samp{c}.  However, @kbd{j m} (to select
21823 the whole product @samp{a*b*c} as a term of the sum) followed by
21824 @w{@kbd{j n}} would successfully select the @samp{x}.
21826 Similarly, @kbd{j p} moves the selection from the @samp{b} in this
21827 sample formula to the @samp{a}.  Both commands accept numeric prefix
21828 arguments to move several steps at a time.
21830 It is interesting to compare Calc's selection commands with the
21831 Emacs Info system's commands for navigating through hierarchically
21832 organized documentation.  Calc's @kbd{j n} command is completely
21833 analogous to Info's @kbd{n} command.  Likewise, @kbd{j p} maps to
21834 @kbd{p}, @kbd{j 2} maps to @kbd{2}, and Info's @kbd{u} is like @kbd{j m}.
21835 (Note that @kbd{j u} stands for @code{calc-unselect}, not ``up''.)
21836 The Info @kbd{m} command is somewhat similar to Calc's @kbd{j s} and
21837 @kbd{j l}; in each case, you can jump directly to a sub-component
21838 of the hierarchy simply by pointing to it with the cursor.
21840 @node Displaying Selections, Operating on Selections, Changing Selections, Selecting Subformulas
21841 @subsection Displaying Selections
21843 @noindent
21844 @kindex j d
21845 @pindex calc-show-selections
21846 The @kbd{j d} (@code{calc-show-selections}) command controls how
21847 selected sub-formulas are displayed.  One of the alternatives is
21848 illustrated in the above examples; if we press @kbd{j d} we switch
21849 to the other style in which the selected portion itself is obscured
21850 by @samp{#} signs:
21852 @smallexample
21853 @group
21854            3    ...                  #    ___
21855     (a + b)  . . .            ## # ##  + V c
21856 1*  ...............       1*  ---------------
21857         . . . .                   2 x + 1
21858 @end group
21859 @end smallexample
21861 @node Operating on Selections, Rearranging with Selections, Displaying Selections, Selecting Subformulas
21862 @subsection Operating on Selections
21864 @noindent
21865 Once a selection is made, all Calc commands that manipulate items
21866 on the stack will operate on the selected portions of the items
21867 instead.  (Note that several stack elements may have selections
21868 at once, though there can be only one selection at a time in any
21869 given stack element.)
21871 @kindex j e
21872 @pindex calc-enable-selections
21873 The @kbd{j e} (@code{calc-enable-selections}) command disables the
21874 effect that selections have on Calc commands.  The current selections
21875 still exist, but Calc commands operate on whole stack elements anyway.
21876 This mode can be identified by the fact that the @samp{*} markers on
21877 the line numbers are gone, even though selections are visible.  To
21878 reactivate the selections, press @kbd{j e} again.
21880 To extract a sub-formula as a new formula, simply select the
21881 sub-formula and press @key{RET}.  This normally duplicates the top
21882 stack element; here it duplicates only the selected portion of that
21883 element.
21885 To replace a sub-formula with something different, you can enter the
21886 new value onto the stack and press @key{TAB}.  This normally exchanges
21887 the top two stack elements; here it swaps the value you entered into
21888 the selected portion of the formula, returning the old selected
21889 portion to the top of the stack.
21891 @smallexample
21892 @group
21893            3    ...                    ...                    ___
21894     (a + b)  . . .           17 x y . . .           17 x y + V c
21895 2*  ...............      2*  .............      2:  -------------
21896         . . . .                 . . . .                2 x + 1
21898                                     3                      3
21899 1:  17 x y               1:  (a + b)            1:  (a + b)
21900 @end group
21901 @end smallexample
21903 In this example we select a sub-formula of our original example,
21904 enter a new formula, @key{TAB} it into place, then deselect to see
21905 the complete, edited formula.
21907 If you want to swap whole formulas around even though they contain
21908 selections, just use @kbd{j e} before and after.
21910 @kindex j '
21911 @pindex calc-enter-selection
21912 The @kbd{j '} (@code{calc-enter-selection}) command is another way
21913 to replace a selected sub-formula.  This command does an algebraic
21914 entry just like the regular @kbd{'} key.  When you press @key{RET},
21915 the formula you type replaces the original selection.  You can use
21916 the @samp{$} symbol in the formula to refer to the original
21917 selection.  If there is no selection in the formula under the cursor,
21918 the cursor is used to make a temporary selection for the purposes of
21919 the command.  Thus, to change a term of a formula, all you have to
21920 do is move the Emacs cursor to that term and press @kbd{j '}.
21922 @kindex j `
21923 @pindex calc-edit-selection
21924 The @kbd{j `} (@code{calc-edit-selection}) command is a similar
21925 analogue of the @kbd{`} (@code{calc-edit}) command.  It edits the
21926 selected sub-formula in a separate buffer.  If there is no
21927 selection, it edits the sub-formula indicated by the cursor.
21929 To delete a sub-formula, press @key{DEL}.  This generally replaces
21930 the sub-formula with the constant zero, but in a few suitable contexts
21931 it uses the constant one instead.  The @key{DEL} key automatically
21932 deselects and re-simplifies the entire formula afterwards.  Thus:
21934 @smallexample
21935 @group
21936               ###
21937     17 x y + # #          17 x y         17 # y          17 y
21938 1*  -------------     1:  -------    1*  -------    1:  -------
21939        2 x + 1            2 x + 1        2 x + 1        2 x + 1
21940 @end group
21941 @end smallexample
21943 In this example, we first delete the @samp{sqrt(c)} term; Calc
21944 accomplishes this by replacing @samp{sqrt(c)} with zero and
21945 resimplifying.  We then delete the @kbd{x} in the numerator;
21946 since this is part of a product, Calc replaces it with @samp{1}
21947 and resimplifies.
21949 If you select an element of a vector and press @key{DEL}, that
21950 element is deleted from the vector.  If you delete one side of
21951 an equation or inequality, only the opposite side remains.
21953 @kindex j @key{DEL}
21954 @pindex calc-del-selection
21955 The @kbd{j @key{DEL}} (@code{calc-del-selection}) command is like
21956 @key{DEL} but with the auto-selecting behavior of @kbd{j '} and
21957 @kbd{j `}.  It deletes the selected portion of the formula
21958 indicated by the cursor, or, in the absence of a selection, it
21959 deletes the sub-formula indicated by the cursor position.
21961 @kindex j @key{RET}
21962 @pindex calc-grab-selection
21963 (There is also an auto-selecting @kbd{j @key{RET}} (@code{calc-copy-selection})
21964 command.)
21966 Normal arithmetic operations also apply to sub-formulas.  Here we
21967 select the denominator, press @kbd{5 -} to subtract five from the
21968 denominator, press @kbd{n} to negate the denominator, then
21969 press @kbd{Q} to take the square root.
21971 @smallexample
21972 @group
21973      .. .           .. .           .. .             .. .
21974 1*  .......    1*  .......    1*  .......    1*  ..........
21975     2 x + 1        2 x - 4        4 - 2 x         _________
21976                                                  V 4 - 2 x
21977 @end group
21978 @end smallexample
21980 Certain types of operations on selections are not allowed.  For
21981 example, for an arithmetic function like @kbd{-} no more than one of
21982 the arguments may be a selected sub-formula.  (As the above example
21983 shows, the result of the subtraction is spliced back into the argument
21984 which had the selection; if there were more than one selection involved,
21985 this would not be well-defined.)  If you try to subtract two selections,
21986 the command will abort with an error message.
21988 Operations on sub-formulas sometimes leave the formula as a whole
21989 in an ``un-natural'' state.  Consider negating the @samp{2 x} term
21990 of our sample formula by selecting it and pressing @kbd{n}
21991 (@code{calc-change-sign}).
21993 @smallexample
21994 @group
21995        .. .                .. .
21996 1*  ..........      1*  ...........
21997      .........           ..........
21998     . . . 2 x           . . . -2 x
21999 @end group
22000 @end smallexample
22002 Unselecting the sub-formula reveals that the minus sign, which would
22003 normally have cancelled out with the subtraction automatically, has
22004 not been able to do so because the subtraction was not part of the
22005 selected portion.  Pressing @kbd{=} (@code{calc-evaluate}) or doing
22006 any other mathematical operation on the whole formula will cause it
22007 to be simplified.
22009 @smallexample
22010 @group
22011        17 y                17 y
22012 1:  -----------     1:  ----------
22013      __________          _________
22014     V 4 - -2 x          V 4 + 2 x
22015 @end group
22016 @end smallexample
22018 @node Rearranging with Selections, , Operating on Selections, Selecting Subformulas
22019 @subsection Rearranging Formulas using Selections
22021 @noindent
22022 @kindex j R
22023 @pindex calc-commute-right
22024 The @kbd{j R} (@code{calc-commute-right}) command moves the selected
22025 sub-formula to the right in its surrounding formula.  Generally the
22026 selection is one term of a sum or product; the sum or product is
22027 rearranged according to the commutative laws of algebra.
22029 As with @kbd{j '} and @kbd{j @key{DEL}}, the term under the cursor is used
22030 if there is no selection in the current formula.  All commands described
22031 in this section share this property.  In this example, we place the
22032 cursor on the @samp{a} and type @kbd{j R}, then repeat.
22034 @smallexample
22035 1:  a + b - c          1:  b + a - c          1:  b - c + a
22036 @end smallexample
22038 @noindent
22039 Note that in the final step above, the @samp{a} is switched with
22040 the @samp{c} but the signs are adjusted accordingly.  When moving
22041 terms of sums and products, @kbd{j R} will never change the
22042 mathematical meaning of the formula.
22044 The selected term may also be an element of a vector or an argument
22045 of a function.  The term is exchanged with the one to its right.
22046 In this case, the ``meaning'' of the vector or function may of
22047 course be drastically changed.
22049 @smallexample
22050 1:  [a, b, c]          1:  [b, a, c]          1:  [b, c, a]
22052 1:  f(a, b, c)         1:  f(b, a, c)         1:  f(b, c, a)
22053 @end smallexample
22055 @kindex j L
22056 @pindex calc-commute-left
22057 The @kbd{j L} (@code{calc-commute-left}) command is like @kbd{j R}
22058 except that it swaps the selected term with the one to its left.
22060 With numeric prefix arguments, these commands move the selected
22061 term several steps at a time.  It is an error to try to move a
22062 term left or right past the end of its enclosing formula.
22063 With numeric prefix arguments of zero, these commands move the
22064 selected term as far as possible in the given direction.
22066 @kindex j D
22067 @pindex calc-sel-distribute
22068 The @kbd{j D} (@code{calc-sel-distribute}) command mixes the selected
22069 sum or product into the surrounding formula using the distributive
22070 law.  For example, in @samp{a * (b - c)} with the @samp{b - c}
22071 selected, the result is @samp{a b - a c}.  This also distributes
22072 products or quotients into surrounding powers, and can also do
22073 transformations like @samp{exp(a + b)} to @samp{exp(a) exp(b)},
22074 where @samp{a + b} is the selected term, and @samp{ln(a ^ b)}
22075 to @samp{ln(a) b}, where @samp{a ^ b} is the selected term.
22077 For multiple-term sums or products, @kbd{j D} takes off one term
22078 at a time:  @samp{a * (b + c - d)} goes to @samp{a * (c - d) + a b}
22079 with the @samp{c - d} selected so that you can type @kbd{j D}
22080 repeatedly to expand completely.  The @kbd{j D} command allows a
22081 numeric prefix argument which specifies the maximum number of
22082 times to expand at once; the default is one time only.
22084 @vindex DistribRules
22085 The @kbd{j D} command is implemented using rewrite rules.
22086 @xref{Selections with Rewrite Rules}.  The rules are stored in
22087 the Calc variable @code{DistribRules}.  A convenient way to view
22088 these rules is to use @kbd{s e} (@code{calc-edit-variable}) which
22089 displays and edits the stored value of a variable.  Press @kbd{C-c C-c}
22090 to return from editing mode; be careful not to make any actual changes
22091 or else you will affect the behavior of future @kbd{j D} commands!
22093 To extend @kbd{j D} to handle new cases, just edit @code{DistribRules}
22094 as described above.  You can then use the @kbd{s p} command to save
22095 this variable's value permanently for future Calc sessions.
22096 @xref{Operations on Variables}.
22098 @kindex j M
22099 @pindex calc-sel-merge
22100 @vindex MergeRules
22101 The @kbd{j M} (@code{calc-sel-merge}) command is the complement
22102 of @kbd{j D}; given @samp{a b - a c} with either @samp{a b} or
22103 @samp{a c} selected, the result is @samp{a * (b - c)}.  Once
22104 again, @kbd{j M} can also merge calls to functions like @code{exp}
22105 and @code{ln}; examine the variable @code{MergeRules} to see all
22106 the relevant rules.
22108 @kindex j C
22109 @pindex calc-sel-commute
22110 @vindex CommuteRules
22111 The @kbd{j C} (@code{calc-sel-commute}) command swaps the arguments
22112 of the selected sum, product, or equation.  It always behaves as
22113 if @kbd{j b} mode were in effect, i.e., the sum @samp{a + b + c} is
22114 treated as the nested sums @samp{(a + b) + c} by this command.
22115 If you put the cursor on the first @samp{+}, the result is
22116 @samp{(b + a) + c}; if you put the cursor on the second @samp{+}, the
22117 result is @samp{c + (a + b)} (which the default simplifications
22118 will rearrange to @samp{(c + a) + b}).  The relevant rules are stored
22119 in the variable @code{CommuteRules}.
22121 You may need to turn default simplifications off (with the @kbd{m O}
22122 command) in order to get the full benefit of @kbd{j C}.  For example,
22123 commuting @samp{a - b} produces @samp{-b + a}, but the default
22124 simplifications will ``simplify'' this right back to @samp{a - b} if
22125 you don't turn them off.  The same is true of some of the other
22126 manipulations described in this section.
22128 @kindex j N
22129 @pindex calc-sel-negate
22130 @vindex NegateRules
22131 The @kbd{j N} (@code{calc-sel-negate}) command replaces the selected
22132 term with the negative of that term, then adjusts the surrounding
22133 formula in order to preserve the meaning.  For example, given
22134 @samp{exp(a - b)} where @samp{a - b} is selected, the result is
22135 @samp{1 / exp(b - a)}.  By contrast, selecting a term and using the
22136 regular @kbd{n} (@code{calc-change-sign}) command negates the
22137 term without adjusting the surroundings, thus changing the meaning
22138 of the formula as a whole.  The rules variable is @code{NegateRules}.
22140 @kindex j &
22141 @pindex calc-sel-invert
22142 @vindex InvertRules
22143 The @kbd{j &} (@code{calc-sel-invert}) command is similar to @kbd{j N}
22144 except it takes the reciprocal of the selected term.  For example,
22145 given @samp{a - ln(b)} with @samp{b} selected, the result is
22146 @samp{a + ln(1/b)}.  The rules variable is @code{InvertRules}.
22148 @kindex j E
22149 @pindex calc-sel-jump-equals
22150 @vindex JumpRules
22151 The @kbd{j E} (@code{calc-sel-jump-equals}) command moves the
22152 selected term from one side of an equation to the other.  Given
22153 @samp{a + b = c + d} with @samp{c} selected, the result is
22154 @samp{a + b - c = d}.  This command also works if the selected
22155 term is part of a @samp{*}, @samp{/}, or @samp{^} formula.  The
22156 relevant rules variable is @code{JumpRules}.
22158 @kindex j I
22159 @kindex H j I
22160 @pindex calc-sel-isolate
22161 The @kbd{j I} (@code{calc-sel-isolate}) command isolates the
22162 selected term on its side of an equation.  It uses the @kbd{a S}
22163 (@code{calc-solve-for}) command to solve the equation, and the
22164 Hyperbolic flag affects it in the same way.  @xref{Solving Equations}.
22165 When it applies, @kbd{j I} is often easier to use than @kbd{j E}.
22166 It understands more rules of algebra, and works for inequalities
22167 as well as equations.
22169 @kindex j *
22170 @kindex j /
22171 @pindex calc-sel-mult-both-sides
22172 @pindex calc-sel-div-both-sides
22173 The @kbd{j *} (@code{calc-sel-mult-both-sides}) command prompts for a
22174 formula using algebraic entry, then multiplies both sides of the
22175 selected quotient or equation by that formula.  It simplifies each
22176 side with @kbd{a s} (@code{calc-simplify}) before re-forming the
22177 quotient or equation.  You can suppress this simplification by
22178 providing any numeric prefix argument.  There is also a @kbd{j /}
22179 (@code{calc-sel-div-both-sides}) which is similar to @kbd{j *} but
22180 dividing instead of multiplying by the factor you enter.
22182 As a special feature, if the numerator of the quotient is 1, then
22183 the denominator is expanded at the top level using the distributive
22184 law (i.e., using the @kbd{C-u -1 a x} command).  Suppose the
22185 formula on the stack is @samp{1 / (sqrt(a) + 1)}, and you wish
22186 to eliminate the square root in the denominator by multiplying both
22187 sides by @samp{sqrt(a) - 1}.  Calc's default simplifications would
22188 change the result @samp{(sqrt(a) - 1) / (sqrt(a) - 1) (sqrt(a) + 1)}
22189 right back to the original form by cancellation; Calc expands the
22190 denominator to @samp{sqrt(a) (sqrt(a) - 1) + sqrt(a) - 1} to prevent
22191 this.  (You would now want to use an @kbd{a x} command to expand
22192 the rest of the way, whereupon the denominator would cancel out to
22193 the desired form, @samp{a - 1}.)  When the numerator is not 1, this
22194 initial expansion is not necessary because Calc's default
22195 simplifications will not notice the potential cancellation.
22197 If the selection is an inequality, @kbd{j *} and @kbd{j /} will
22198 accept any factor, but will warn unless they can prove the factor
22199 is either positive or negative.  (In the latter case the direction
22200 of the inequality will be switched appropriately.)  @xref{Declarations},
22201 for ways to inform Calc that a given variable is positive or
22202 negative.  If Calc can't tell for sure what the sign of the factor
22203 will be, it will assume it is positive and display a warning
22204 message.
22206 For selections that are not quotients, equations, or inequalities,
22207 these commands pull out a multiplicative factor:  They divide (or
22208 multiply) by the entered formula, simplify, then multiply (or divide)
22209 back by the formula.
22211 @kindex j +
22212 @kindex j -
22213 @pindex calc-sel-add-both-sides
22214 @pindex calc-sel-sub-both-sides
22215 The @kbd{j +} (@code{calc-sel-add-both-sides}) and @kbd{j -}
22216 (@code{calc-sel-sub-both-sides}) commands analogously add to or
22217 subtract from both sides of an equation or inequality.  For other
22218 types of selections, they extract an additive factor.  A numeric
22219 prefix argument suppresses simplification of the intermediate
22220 results.
22222 @kindex j U
22223 @pindex calc-sel-unpack
22224 The @kbd{j U} (@code{calc-sel-unpack}) command replaces the
22225 selected function call with its argument.  For example, given
22226 @samp{a + sin(x^2)} with @samp{sin(x^2)} selected, the result
22227 is @samp{a + x^2}.  (The @samp{x^2} will remain selected; if you
22228 wanted to change the @code{sin} to @code{cos}, just press @kbd{C}
22229 now to take the cosine of the selected part.)
22231 @kindex j v
22232 @pindex calc-sel-evaluate
22233 The @kbd{j v} (@code{calc-sel-evaluate}) command performs the
22234 normal default simplifications on the selected sub-formula.
22235 These are the simplifications that are normally done automatically
22236 on all results, but which may have been partially inhibited by
22237 previous selection-related operations, or turned off altogether
22238 by the @kbd{m O} command.  This command is just an auto-selecting
22239 version of the @w{@kbd{a v}} command (@pxref{Algebraic Manipulation}).
22241 With a numeric prefix argument of 2, @kbd{C-u 2 j v} applies
22242 the @kbd{a s} (@code{calc-simplify}) command to the selected
22243 sub-formula.  With a prefix argument of 3 or more, e.g., @kbd{C-u j v}
22244 applies the @kbd{a e} (@code{calc-simplify-extended}) command.
22245 @xref{Simplifying Formulas}.  With a negative prefix argument
22246 it simplifies at the top level only, just as with @kbd{a v}.
22247 Here the ``top'' level refers to the top level of the selected
22248 sub-formula.
22250 @kindex j "
22251 @pindex calc-sel-expand-formula
22252 The @kbd{j "} (@code{calc-sel-expand-formula}) command is to @kbd{a "}
22253 (@pxref{Algebraic Manipulation}) what @kbd{j v} is to @kbd{a v}.
22255 You can use the @kbd{j r} (@code{calc-rewrite-selection}) command
22256 to define other algebraic operations on sub-formulas.  @xref{Rewrite Rules}.
22258 @node Algebraic Manipulation, Simplifying Formulas, Selecting Subformulas, Algebra
22259 @section Algebraic Manipulation
22261 @noindent
22262 The commands in this section perform general-purpose algebraic
22263 manipulations.  They work on the whole formula at the top of the
22264 stack (unless, of course, you have made a selection in that
22265 formula).
22267 Many algebra commands prompt for a variable name or formula.  If you
22268 answer the prompt with a blank line, the variable or formula is taken
22269 from top-of-stack, and the normal argument for the command is taken
22270 from the second-to-top stack level.
22272 @kindex a v
22273 @pindex calc-alg-evaluate
22274 The @kbd{a v} (@code{calc-alg-evaluate}) command performs the normal
22275 default simplifications on a formula; for example, @samp{a - -b} is
22276 changed to @samp{a + b}.  These simplifications are normally done
22277 automatically on all Calc results, so this command is useful only if
22278 you have turned default simplifications off with an @kbd{m O}
22279 command.  @xref{Simplification Modes}.
22281 It is often more convenient to type @kbd{=}, which is like @kbd{a v}
22282 but which also substitutes stored values for variables in the formula.
22283 Use @kbd{a v} if you want the variables to ignore their stored values.
22285 If you give a numeric prefix argument of 2 to @kbd{a v}, it simplifies
22286 as if in Algebraic Simplification mode.  This is equivalent to typing
22287 @kbd{a s}; @pxref{Simplifying Formulas}.  If you give a numeric prefix
22288 of 3 or more, it uses Extended Simplification mode (@kbd{a e}).
22290 If you give a negative prefix argument @mathit{-1}, @mathit{-2}, or @mathit{-3},
22291 it simplifies in the corresponding mode but only works on the top-level
22292 function call of the formula.  For example, @samp{(2 + 3) * (2 + 3)} will
22293 simplify to @samp{(2 + 3)^2}, without simplifying the sub-formulas
22294 @samp{2 + 3}.  As another example, typing @kbd{V R +} to sum the vector
22295 @samp{[1, 2, 3, 4]} produces the formula @samp{reduce(add, [1, 2, 3, 4])}
22296 in No-Simplify mode.  Using @kbd{a v} will evaluate this all the way to
22297 10; using @kbd{C-u - a v} will evaluate it only to @samp{1 + 2 + 3 + 4}.
22298 (@xref{Reducing and Mapping}.)
22300 @tindex evalv
22301 @tindex evalvn
22302 The @kbd{=} command corresponds to the @code{evalv} function, and
22303 the related @kbd{N} command, which is like @kbd{=} but temporarily
22304 disables Symbolic mode (@kbd{m s}) during the evaluation, corresponds
22305 to the @code{evalvn} function.  (These commands interpret their prefix
22306 arguments differently than @kbd{a v}; @kbd{=} treats the prefix as
22307 the number of stack elements to evaluate at once, and @kbd{N} treats
22308 it as a temporary different working precision.)
22310 The @code{evalvn} function can take an alternate working precision
22311 as an optional second argument.  This argument can be either an
22312 integer, to set the precision absolutely, or a vector containing
22313 a single integer, to adjust the precision relative to the current
22314 precision.  Note that @code{evalvn} with a larger than current
22315 precision will do the calculation at this higher precision, but the
22316 result will as usual be rounded back down to the current precision
22317 afterward.  For example, @samp{evalvn(pi - 3.1415)} at a precision
22318 of 12 will return @samp{9.265359e-5}; @samp{evalvn(pi - 3.1415, 30)}
22319 will return @samp{9.26535897932e-5} (computing a 25-digit result which
22320 is then rounded down to 12); and @samp{evalvn(pi - 3.1415, [-2])}
22321 will return @samp{9.2654e-5}.
22323 @kindex a "
22324 @pindex calc-expand-formula
22325 The @kbd{a "} (@code{calc-expand-formula}) command expands functions
22326 into their defining formulas wherever possible.  For example,
22327 @samp{deg(x^2)} is changed to @samp{180 x^2 / pi}.  Most functions,
22328 like @code{sin} and @code{gcd}, are not defined by simple formulas
22329 and so are unaffected by this command.  One important class of
22330 functions which @emph{can} be expanded is the user-defined functions
22331 created by the @kbd{Z F} command.  @xref{Algebraic Definitions}.
22332 Other functions which @kbd{a "} can expand include the probability
22333 distribution functions, most of the financial functions, and the
22334 hyperbolic and inverse hyperbolic functions.  A numeric prefix argument
22335 affects @kbd{a "} in the same way as it does @kbd{a v}:  A positive
22336 argument expands all functions in the formula and then simplifies in
22337 various ways; a negative argument expands and simplifies only the
22338 top-level function call.
22340 @kindex a M
22341 @pindex calc-map-equation
22342 @tindex mapeq
22343 The @kbd{a M} (@code{calc-map-equation}) [@code{mapeq}] command applies
22344 a given function or operator to one or more equations.  It is analogous
22345 to @kbd{V M}, which operates on vectors instead of equations.
22346 @pxref{Reducing and Mapping}.  For example, @kbd{a M S} changes
22347 @samp{x = y+1} to @samp{sin(x) = sin(y+1)}, and @kbd{a M +} with
22348 @samp{x = y+1} and @expr{6} on the stack produces @samp{x+6 = y+7}.
22349 With two equations on the stack, @kbd{a M +} would add the lefthand
22350 sides together and the righthand sides together to get the two
22351 respective sides of a new equation.
22353 Mapping also works on inequalities.  Mapping two similar inequalities
22354 produces another inequality of the same type.  Mapping an inequality
22355 with an equation produces an inequality of the same type.  Mapping a
22356 @samp{<=} with a @samp{<} or @samp{!=} (not-equal) produces a @samp{<}.
22357 If inequalities with opposite direction (e.g., @samp{<} and @samp{>})
22358 are mapped, the direction of the second inequality is reversed to
22359 match the first:  Using @kbd{a M +} on @samp{a < b} and @samp{a > 2}
22360 reverses the latter to get @samp{2 < a}, which then allows the
22361 combination @samp{a + 2 < b + a}, which the @kbd{a s} command can
22362 then simplify to get @samp{2 < b}.
22364 Using @kbd{a M *}, @kbd{a M /}, @kbd{a M n}, or @kbd{a M &} to negate
22365 or invert an inequality will reverse the direction of the inequality.
22366 Other adjustments to inequalities are @emph{not} done automatically;
22367 @kbd{a M S} will change @w{@samp{x < y}} to @samp{sin(x) < sin(y)} even
22368 though this is not true for all values of the variables.
22370 @kindex H a M
22371 @tindex mapeqp
22372 With the Hyperbolic flag, @kbd{H a M} [@code{mapeqp}] does a plain
22373 mapping operation without reversing the direction of any inequalities.
22374 Thus, @kbd{H a M &} would change @kbd{x > 2} to @kbd{1/x > 0.5}.
22375 (This change is mathematically incorrect, but perhaps you were
22376 fixing an inequality which was already incorrect.)
22378 @kindex I a M
22379 @tindex mapeqr
22380 With the Inverse flag, @kbd{I a M} [@code{mapeqr}] always reverses
22381 the direction of the inequality.  You might use @kbd{I a M C} to
22382 change @samp{x < y} to @samp{cos(x) > cos(y)} if you know you are
22383 working with small positive angles.
22385 @kindex a b
22386 @pindex calc-substitute
22387 @tindex subst
22388 The @kbd{a b} (@code{calc-substitute}) [@code{subst}] command substitutes
22389 all occurrences
22390 of some variable or sub-expression of an expression with a new
22391 sub-expression.  For example, substituting @samp{sin(x)} with @samp{cos(y)}
22392 in @samp{2 sin(x)^2 + x sin(x) + sin(2 x)} produces
22393 @samp{2 cos(y)^2 + x cos(y) + @w{sin(2 x)}}.
22394 Note that this is a purely structural substitution; the lone @samp{x} and
22395 the @samp{sin(2 x)} stayed the same because they did not look like
22396 @samp{sin(x)}.  @xref{Rewrite Rules}, for a more general method for
22397 doing substitutions.
22399 The @kbd{a b} command normally prompts for two formulas, the old
22400 one and the new one.  If you enter a blank line for the first
22401 prompt, all three arguments are taken from the stack (new, then old,
22402 then target expression).  If you type an old formula but then enter a
22403 blank line for the new one, the new formula is taken from top-of-stack
22404 and the target from second-to-top.  If you answer both prompts, the
22405 target is taken from top-of-stack as usual.
22407 Note that @kbd{a b} has no understanding of commutativity or
22408 associativity.  The pattern @samp{x+y} will not match the formula
22409 @samp{y+x}.  Also, @samp{y+z} will not match inside the formula @samp{x+y+z}
22410 because the @samp{+} operator is left-associative, so the ``deep
22411 structure'' of that formula is @samp{(x+y) + z}.  Use @kbd{d U}
22412 (@code{calc-unformatted-language}) mode to see the true structure of
22413 a formula.  The rewrite rule mechanism, discussed later, does not have
22414 these limitations.
22416 As an algebraic function, @code{subst} takes three arguments:
22417 Target expression, old, new.  Note that @code{subst} is always
22418 evaluated immediately, even if its arguments are variables, so if
22419 you wish to put a call to @code{subst} onto the stack you must
22420 turn the default simplifications off first (with @kbd{m O}).
22422 @node Simplifying Formulas, Polynomials, Algebraic Manipulation, Algebra
22423 @section Simplifying Formulas
22425 @noindent
22426 @kindex a s
22427 @pindex calc-simplify
22428 @tindex simplify
22429 The @kbd{a s} (@code{calc-simplify}) [@code{simplify}] command applies
22430 various algebraic rules to simplify a formula.  This includes rules which
22431 are not part of the default simplifications because they may be too slow
22432 to apply all the time, or may not be desirable all of the time.  For
22433 example, non-adjacent terms of sums are combined, as in @samp{a + b + 2 a}
22434 to @samp{b + 3 a}, and some formulas like @samp{sin(arcsin(x))} are
22435 simplified to @samp{x}.
22437 The sections below describe all the various kinds of algebraic
22438 simplifications Calc provides in full detail.  None of Calc's
22439 simplification commands are designed to pull rabbits out of hats;
22440 they simply apply certain specific rules to put formulas into
22441 less redundant or more pleasing forms.  Serious algebra in Calc
22442 must be done manually, usually with a combination of selections
22443 and rewrite rules.  @xref{Rearranging with Selections}.
22444 @xref{Rewrite Rules}.
22446 @xref{Simplification Modes}, for commands to control what level of
22447 simplification occurs automatically.  Normally only the ``default
22448 simplifications'' occur.
22450 @menu
22451 * Default Simplifications::
22452 * Algebraic Simplifications::
22453 * Unsafe Simplifications::
22454 * Simplification of Units::
22455 @end menu
22457 @node Default Simplifications, Algebraic Simplifications, Simplifying Formulas, Simplifying Formulas
22458 @subsection Default Simplifications
22460 @noindent
22461 @cindex Default simplifications
22462 This section describes the ``default simplifications,'' those which are
22463 normally applied to all results.  For example, if you enter the variable
22464 @expr{x} on the stack twice and push @kbd{+}, Calc's default
22465 simplifications automatically change @expr{x + x} to @expr{2 x}.
22467 The @kbd{m O} command turns off the default simplifications, so that
22468 @expr{x + x} will remain in this form unless you give an explicit
22469 ``simplify'' command like @kbd{=} or @kbd{a v}.  @xref{Algebraic
22470 Manipulation}.  The @kbd{m D} command turns the default simplifications
22471 back on.
22473 The most basic default simplification is the evaluation of functions.
22474 For example, @expr{2 + 3} is evaluated to @expr{5}, and @expr{@tfn{sqrt}(9)}
22475 is evaluated to @expr{3}.  Evaluation does not occur if the arguments
22476 to a function are somehow of the wrong type @expr{@tfn{tan}([2,3,4])}),
22477 range (@expr{@tfn{tan}(90)}), or number (@expr{@tfn{tan}(3,5)}), 
22478 or if the function name is not recognized (@expr{@tfn{f}(5)}), or if
22479 Symbolic mode (@pxref{Symbolic Mode}) prevents evaluation
22480 (@expr{@tfn{sqrt}(2)}).
22482 Calc simplifies (evaluates) the arguments to a function before it
22483 simplifies the function itself.  Thus @expr{@tfn{sqrt}(5+4)} is
22484 simplified to @expr{@tfn{sqrt}(9)} before the @code{sqrt} function
22485 itself is applied.  There are very few exceptions to this rule:
22486 @code{quote}, @code{lambda}, and @code{condition} (the @code{::}
22487 operator) do not evaluate their arguments, @code{if} (the @code{? :}
22488 operator) does not evaluate all of its arguments, and @code{evalto}
22489 does not evaluate its lefthand argument.
22491 Most commands apply the default simplifications to all arguments they
22492 take from the stack, perform a particular operation, then simplify
22493 the result before pushing it back on the stack.  In the common special
22494 case of regular arithmetic commands like @kbd{+} and @kbd{Q} [@code{sqrt}],
22495 the arguments are simply popped from the stack and collected into a
22496 suitable function call, which is then simplified (the arguments being
22497 simplified first as part of the process, as described above).
22499 The default simplifications are too numerous to describe completely
22500 here, but this section will describe the ones that apply to the
22501 major arithmetic operators.  This list will be rather technical in
22502 nature, and will probably be interesting to you only if you are
22503 a serious user of Calc's algebra facilities.
22505 @tex
22506 \bigskip
22507 @end tex
22509 As well as the simplifications described here, if you have stored
22510 any rewrite rules in the variable @code{EvalRules} then these rules
22511 will also be applied before any built-in default simplifications.
22512 @xref{Automatic Rewrites}, for details.
22514 @tex
22515 \bigskip
22516 @end tex
22518 And now, on with the default simplifications:
22520 Arithmetic operators like @kbd{+} and @kbd{*} always take two
22521 arguments in Calc's internal form.  Sums and products of three or
22522 more terms are arranged by the associative law of algebra into
22523 a left-associative form for sums, @expr{((a + b) + c) + d}, and
22524 a right-associative form for products, @expr{a * (b * (c * d))}.
22525 Formulas like @expr{(a + b) + (c + d)} are rearranged to
22526 left-associative form, though this rarely matters since Calc's
22527 algebra commands are designed to hide the inner structure of
22528 sums and products as much as possible.  Sums and products in
22529 their proper associative form will be written without parentheses
22530 in the examples below.
22532 Sums and products are @emph{not} rearranged according to the
22533 commutative law (@expr{a + b} to @expr{b + a}) except in a few
22534 special cases described below.  Some algebra programs always
22535 rearrange terms into a canonical order, which enables them to
22536 see that @expr{a b + b a} can be simplified to @expr{2 a b}.
22537 Calc assumes you have put the terms into the order you want
22538 and generally leaves that order alone, with the consequence
22539 that formulas like the above will only be simplified if you
22540 explicitly give the @kbd{a s} command.  @xref{Algebraic
22541 Simplifications}.
22543 Differences @expr{a - b} are treated like sums @expr{a + (-b)}
22544 for purposes of simplification; one of the default simplifications
22545 is to rewrite @expr{a + (-b)} or @expr{(-b) + a}, where @expr{-b}
22546 represents a ``negative-looking'' term, into @expr{a - b} form.
22547 ``Negative-looking'' means negative numbers, negated formulas like
22548 @expr{-x}, and products or quotients in which either term is
22549 negative-looking.
22551 Other simplifications involving negation are @expr{-(-x)} to @expr{x};
22552 @expr{-(a b)} or @expr{-(a/b)} where either @expr{a} or @expr{b} is
22553 negative-looking, simplified by negating that term, or else where
22554 @expr{a} or @expr{b} is any number, by negating that number;
22555 @expr{-(a + b)} to @expr{-a - b}, and @expr{-(b - a)} to @expr{a - b}.
22556 (This, and rewriting @expr{(-b) + a} to @expr{a - b}, are the only
22557 cases where the order of terms in a sum is changed by the default
22558 simplifications.)
22560 The distributive law is used to simplify sums in some cases:
22561 @expr{a x + b x} to @expr{(a + b) x}, where @expr{a} represents
22562 a number or an implicit 1 or @mathit{-1} (as in @expr{x} or @expr{-x})
22563 and similarly for @expr{b}.  Use the @kbd{a c}, @w{@kbd{a f}}, or
22564 @kbd{j M} commands to merge sums with non-numeric coefficients
22565 using the distributive law.
22567 The distributive law is only used for sums of two terms, or
22568 for adjacent terms in a larger sum.  Thus @expr{a + b + b + c}
22569 is simplified to @expr{a + 2 b + c}, but @expr{a + b + c + b}
22570 is not simplified.  The reason is that comparing all terms of a
22571 sum with one another would require time proportional to the
22572 square of the number of terms; Calc relegates potentially slow
22573 operations like this to commands that have to be invoked
22574 explicitly, like @kbd{a s}.
22576 Finally, @expr{a + 0} and @expr{0 + a} are simplified to @expr{a}.
22577 A consequence of the above rules is that @expr{0 - a} is simplified
22578 to @expr{-a}.
22580 @tex
22581 \bigskip
22582 @end tex
22584 The products @expr{1 a} and @expr{a 1} are simplified to @expr{a};
22585 @expr{(-1) a} and @expr{a (-1)} are simplified to @expr{-a};
22586 @expr{0 a} and @expr{a 0} are simplified to @expr{0}, except that
22587 in Matrix mode where @expr{a} is not provably scalar the result
22588 is the generic zero matrix @samp{idn(0)}, and that if @expr{a} is
22589 infinite the result is @samp{nan}.
22591 Also, @expr{(-a) b} and @expr{a (-b)} are simplified to @expr{-(a b)},
22592 where this occurs for negated formulas but not for regular negative
22593 numbers.
22595 Products are commuted only to move numbers to the front:
22596 @expr{a b 2} is commuted to @expr{2 a b}.
22598 The product @expr{a (b + c)} is distributed over the sum only if
22599 @expr{a} and at least one of @expr{b} and @expr{c} are numbers:
22600 @expr{2 (x + 3)} goes to @expr{2 x + 6}.  The formula
22601 @expr{(-a) (b - c)}, where @expr{-a} is a negative number, is
22602 rewritten to @expr{a (c - b)}.
22604 The distributive law of products and powers is used for adjacent
22605 terms of the product: @expr{x^a x^b} goes to 
22606 @texline @math{x^{a+b}}
22607 @infoline @expr{x^(a+b)}
22608 where @expr{a} is a number, or an implicit 1 (as in @expr{x}),
22609 or the implicit one-half of @expr{@tfn{sqrt}(x)}, and similarly for
22610 @expr{b}.  The result is written using @samp{sqrt} or @samp{1/sqrt}
22611 if the sum of the powers is @expr{1/2} or @expr{-1/2}, respectively.
22612 If the sum of the powers is zero, the product is simplified to
22613 @expr{1} or to @samp{idn(1)} if Matrix mode is enabled.
22615 The product of a negative power times anything but another negative
22616 power is changed to use division:  
22617 @texline @math{x^{-2} y}
22618 @infoline @expr{x^(-2) y} 
22619 goes to @expr{y / x^2} unless Matrix mode is
22620 in effect and neither @expr{x} nor @expr{y} are scalar (in which
22621 case it is considered unsafe to rearrange the order of the terms).
22623 Finally, @expr{a (b/c)} is rewritten to @expr{(a b)/c}, and also
22624 @expr{(a/b) c} is changed to @expr{(a c)/b} unless in Matrix mode.
22626 @tex
22627 \bigskip
22628 @end tex
22630 Simplifications for quotients are analogous to those for products.
22631 The quotient @expr{0 / x} is simplified to @expr{0}, with the same
22632 exceptions that were noted for @expr{0 x}.  Likewise, @expr{x / 1}
22633 and @expr{x / (-1)} are simplified to @expr{x} and @expr{-x},
22634 respectively.
22636 The quotient @expr{x / 0} is left unsimplified or changed to an
22637 infinite quantity, as directed by the current infinite mode.
22638 @xref{Infinite Mode}.
22640 The expression 
22641 @texline @math{a / b^{-c}}
22642 @infoline @expr{a / b^(-c)} 
22643 is changed to @expr{a b^c}, where @expr{-c} is any negative-looking
22644 power.  Also, @expr{1 / b^c} is changed to 
22645 @texline @math{b^{-c}}
22646 @infoline @expr{b^(-c)} 
22647 for any power @expr{c}.
22649 Also, @expr{(-a) / b} and @expr{a / (-b)} go to @expr{-(a/b)};
22650 @expr{(a/b) / c} goes to @expr{a / (b c)}; and @expr{a / (b/c)}
22651 goes to @expr{(a c) / b} unless Matrix mode prevents this
22652 rearrangement.  Similarly, @expr{a / (b:c)} is simplified to
22653 @expr{(c:b) a} for any fraction @expr{b:c}.
22655 The distributive law is applied to @expr{(a + b) / c} only if
22656 @expr{c} and at least one of @expr{a} and @expr{b} are numbers.
22657 Quotients of powers and square roots are distributed just as
22658 described for multiplication.
22660 Quotients of products cancel only in the leading terms of the
22661 numerator and denominator.  In other words, @expr{a x b / a y b}
22662 is cancelled to @expr{x b / y b} but not to @expr{x / y}.  Once
22663 again this is because full cancellation can be slow; use @kbd{a s}
22664 to cancel all terms of the quotient.
22666 Quotients of negative-looking values are simplified according
22667 to @expr{(-a) / (-b)} to @expr{a / b}, @expr{(-a) / (b - c)}
22668 to @expr{a / (c - b)}, and @expr{(a - b) / (-c)} to @expr{(b - a) / c}.
22670 @tex
22671 \bigskip
22672 @end tex
22674 The formula @expr{x^0} is simplified to @expr{1}, or to @samp{idn(1)}
22675 in Matrix mode.  The formula @expr{0^x} is simplified to @expr{0}
22676 unless @expr{x} is a negative number, complex number or zero.
22677 If @expr{x} is negative, complex or @expr{0.0}, @expr{0^x} is an
22678 infinity or an unsimplified formula according to the current infinite
22679 mode.  The expression @expr{0^0} is simplified to @expr{1}.
22681 Powers of products or quotients @expr{(a b)^c}, @expr{(a/b)^c}
22682 are distributed to @expr{a^c b^c}, @expr{a^c / b^c} only if @expr{c}
22683 is an integer, or if either @expr{a} or @expr{b} are nonnegative
22684 real numbers.  Powers of powers @expr{(a^b)^c} are simplified to
22685 @texline @math{a^{b c}}
22686 @infoline @expr{a^(b c)} 
22687 only when @expr{c} is an integer and @expr{b c} also
22688 evaluates to an integer.  Without these restrictions these simplifications
22689 would not be safe because of problems with principal values.
22690 (In other words, 
22691 @texline @math{((-3)^{1/2})^2}
22692 @infoline @expr{((-3)^1:2)^2} 
22693 is safe to simplify, but
22694 @texline @math{((-3)^2)^{1/2}}
22695 @infoline @expr{((-3)^2)^1:2} 
22696 is not.)  @xref{Declarations}, for ways to inform Calc that your
22697 variables satisfy these requirements.
22699 As a special case of this rule, @expr{@tfn{sqrt}(x)^n} is simplified to
22700 @texline @math{x^{n/2}}
22701 @infoline @expr{x^(n/2)} 
22702 only for even integers @expr{n}.
22704 If @expr{a} is known to be real, @expr{b} is an even integer, and
22705 @expr{c} is a half- or quarter-integer, then @expr{(a^b)^c} is
22706 simplified to @expr{@tfn{abs}(a^(b c))}.
22708 Also, @expr{(-a)^b} is simplified to @expr{a^b} if @expr{b} is an
22709 even integer, or to @expr{-(a^b)} if @expr{b} is an odd integer,
22710 for any negative-looking expression @expr{-a}.
22712 Square roots @expr{@tfn{sqrt}(x)} generally act like one-half powers
22713 @texline @math{x^{1:2}}
22714 @infoline @expr{x^1:2} 
22715 for the purposes of the above-listed simplifications.
22717 Also, note that 
22718 @texline @math{1 / x^{1:2}}
22719 @infoline @expr{1 / x^1:2} 
22720 is changed to 
22721 @texline @math{x^{-1:2}},
22722 @infoline @expr{x^(-1:2)},
22723 but @expr{1 / @tfn{sqrt}(x)} is left alone.
22725 @tex
22726 \bigskip
22727 @end tex
22729 Generic identity matrices (@pxref{Matrix Mode}) are simplified by the
22730 following rules:  @expr{@tfn{idn}(a) + b} to @expr{a + b} if @expr{b}
22731 is provably scalar, or expanded out if @expr{b} is a matrix;
22732 @expr{@tfn{idn}(a) + @tfn{idn}(b)} to @expr{@tfn{idn}(a + b)}; 
22733 @expr{-@tfn{idn}(a)} to @expr{@tfn{idn}(-a)}; @expr{a @tfn{idn}(b)} to 
22734 @expr{@tfn{idn}(a b)} if @expr{a} is provably scalar, or to @expr{a b} 
22735 if @expr{a} is provably non-scalar;  @expr{@tfn{idn}(a) @tfn{idn}(b)} to
22736 @expr{@tfn{idn}(a b)}; analogous simplifications for quotients involving
22737 @code{idn}; and @expr{@tfn{idn}(a)^n} to @expr{@tfn{idn}(a^n)} where
22738 @expr{n} is an integer.
22740 @tex
22741 \bigskip
22742 @end tex
22744 The @code{floor} function and other integer truncation functions
22745 vanish if the argument is provably integer-valued, so that
22746 @expr{@tfn{floor}(@tfn{round}(x))} simplifies to @expr{@tfn{round}(x)}.
22747 Also, combinations of @code{float}, @code{floor} and its friends,
22748 and @code{ffloor} and its friends, are simplified in appropriate
22749 ways.  @xref{Integer Truncation}.
22751 The expression @expr{@tfn{abs}(-x)} changes to @expr{@tfn{abs}(x)}.
22752 The expression @expr{@tfn{abs}(@tfn{abs}(x))} changes to
22753 @expr{@tfn{abs}(x)};  in fact, @expr{@tfn{abs}(x)} changes to @expr{x} or
22754 @expr{-x} if @expr{x} is provably nonnegative or nonpositive
22755 (@pxref{Declarations}). 
22757 While most functions do not recognize the variable @code{i} as an
22758 imaginary number, the @code{arg} function does handle the two cases
22759 @expr{@tfn{arg}(@tfn{i})} and @expr{@tfn{arg}(-@tfn{i})} just for convenience.
22761 The expression @expr{@tfn{conj}(@tfn{conj}(x))} simplifies to @expr{x}.
22762 Various other expressions involving @code{conj}, @code{re}, and
22763 @code{im} are simplified, especially if some of the arguments are
22764 provably real or involve the constant @code{i}.  For example,
22765 @expr{@tfn{conj}(a + b i)} is changed to 
22766 @expr{@tfn{conj}(a) - @tfn{conj}(b) i},  or to @expr{a - b i} if @expr{a}
22767 and @expr{b} are known to be real.
22769 Functions like @code{sin} and @code{arctan} generally don't have
22770 any default simplifications beyond simply evaluating the functions
22771 for suitable numeric arguments and infinity.  The @kbd{a s} command
22772 described in the next section does provide some simplifications for
22773 these functions, though.
22775 One important simplification that does occur is that
22776 @expr{@tfn{ln}(@tfn{e})} is simplified to 1, and @expr{@tfn{ln}(@tfn{e}^x)} is
22777 simplified to @expr{x} for any @expr{x}.  This occurs even if you have
22778 stored a different value in the Calc variable @samp{e}; but this would
22779 be a bad idea in any case if you were also using natural logarithms!
22781 Among the logical functions, @tfn{!(@var{a} <= @var{b})} changes to
22782 @tfn{@var{a} > @var{b}} and so on.  Equations and inequalities where both sides
22783 are either negative-looking or zero are simplified by negating both sides
22784 and reversing the inequality.  While it might seem reasonable to simplify
22785 @expr{!!x} to @expr{x}, this would not be valid in general because
22786 @expr{!!2} is 1, not 2.
22788 Most other Calc functions have few if any default simplifications
22789 defined, aside of course from evaluation when the arguments are
22790 suitable numbers.
22792 @node Algebraic Simplifications, Unsafe Simplifications, Default Simplifications, Simplifying Formulas
22793 @subsection Algebraic Simplifications
22795 @noindent
22796 @cindex Algebraic simplifications
22797 The @kbd{a s} command makes simplifications that may be too slow to
22798 do all the time, or that may not be desirable all of the time.
22799 If you find these simplifications are worthwhile, you can type
22800 @kbd{m A} to have Calc apply them automatically.
22802 This section describes all simplifications that are performed by
22803 the @kbd{a s} command.  Note that these occur in addition to the
22804 default simplifications; even if the default simplifications have
22805 been turned off by an @kbd{m O} command, @kbd{a s} will turn them
22806 back on temporarily while it simplifies the formula.
22808 There is a variable, @code{AlgSimpRules}, in which you can put rewrites
22809 to be applied by @kbd{a s}.  Its use is analogous to @code{EvalRules},
22810 but without the special restrictions.  Basically, the simplifier does
22811 @samp{@w{a r} AlgSimpRules} with an infinite repeat count on the whole
22812 expression being simplified, then it traverses the expression applying
22813 the built-in rules described below.  If the result is different from
22814 the original expression, the process repeats with the default
22815 simplifications (including @code{EvalRules}), then @code{AlgSimpRules},
22816 then the built-in simplifications, and so on.
22818 @tex
22819 \bigskip
22820 @end tex
22822 Sums are simplified in two ways.  Constant terms are commuted to the
22823 end of the sum, so that @expr{a + 2 + b} changes to @expr{a + b + 2}.
22824 The only exception is that a constant will not be commuted away
22825 from the first position of a difference, i.e., @expr{2 - x} is not
22826 commuted to @expr{-x + 2}.
22828 Also, terms of sums are combined by the distributive law, as in
22829 @expr{x + y + 2 x} to @expr{y + 3 x}.  This always occurs for
22830 adjacent terms, but @kbd{a s} compares all pairs of terms including
22831 non-adjacent ones.
22833 @tex
22834 \bigskip
22835 @end tex
22837 Products are sorted into a canonical order using the commutative
22838 law.  For example, @expr{b c a} is commuted to @expr{a b c}.
22839 This allows easier comparison of products; for example, the default
22840 simplifications will not change @expr{x y + y x} to @expr{2 x y},
22841 but @kbd{a s} will; it first rewrites the sum to @expr{x y + x y},
22842 and then the default simplifications are able to recognize a sum
22843 of identical terms.
22845 The canonical ordering used to sort terms of products has the
22846 property that real-valued numbers, interval forms and infinities
22847 come first, and are sorted into increasing order.  The @kbd{V S}
22848 command uses the same ordering when sorting a vector.
22850 Sorting of terms of products is inhibited when Matrix mode is
22851 turned on; in this case, Calc will never exchange the order of
22852 two terms unless it knows at least one of the terms is a scalar.
22854 Products of powers are distributed by comparing all pairs of
22855 terms, using the same method that the default simplifications
22856 use for adjacent terms of products.
22858 Even though sums are not sorted, the commutative law is still
22859 taken into account when terms of a product are being compared.
22860 Thus @expr{(x + y) (y + x)} will be simplified to @expr{(x + y)^2}.
22861 A subtle point is that @expr{(x - y) (y - x)} will @emph{not}
22862 be simplified to @expr{-(x - y)^2}; Calc does not notice that
22863 one term can be written as a constant times the other, even if
22864 that constant is @mathit{-1}.
22866 A fraction times any expression, @expr{(a:b) x}, is changed to
22867 a quotient involving integers:  @expr{a x / b}.  This is not
22868 done for floating-point numbers like @expr{0.5}, however.  This
22869 is one reason why you may find it convenient to turn Fraction mode
22870 on while doing algebra; @pxref{Fraction Mode}.
22872 @tex
22873 \bigskip
22874 @end tex
22876 Quotients are simplified by comparing all terms in the numerator
22877 with all terms in the denominator for possible cancellation using
22878 the distributive law.  For example, @expr{a x^2 b / c x^3 d} will
22879 cancel @expr{x^2} from the top and bottom to get @expr{a b / c x d}.
22880 (The terms in the denominator will then be rearranged to @expr{c d x}
22881 as described above.)  If there is any common integer or fractional
22882 factor in the numerator and denominator, it is cancelled out;
22883 for example, @expr{(4 x + 6) / 8 x} simplifies to @expr{(2 x + 3) / 4 x}.
22885 Non-constant common factors are not found even by @kbd{a s}.  To
22886 cancel the factor @expr{a} in @expr{(a x + a) / a^2} you could first
22887 use @kbd{j M} on the product @expr{a x} to Merge the numerator to
22888 @expr{a (1+x)}, which can then be simplified successfully.
22890 @tex
22891 \bigskip
22892 @end tex
22894 Integer powers of the variable @code{i} are simplified according
22895 to the identity @expr{i^2 = -1}.  If you store a new value other
22896 than the complex number @expr{(0,1)} in @code{i}, this simplification
22897 will no longer occur.  This is done by @kbd{a s} instead of by default
22898 in case someone (unwisely) uses the name @code{i} for a variable
22899 unrelated to complex numbers; it would be unfortunate if Calc
22900 quietly and automatically changed this formula for reasons the
22901 user might not have been thinking of.
22903 Square roots of integer or rational arguments are simplified in
22904 several ways.  (Note that these will be left unevaluated only in
22905 Symbolic mode.)  First, square integer or rational factors are
22906 pulled out so that @expr{@tfn{sqrt}(8)} is rewritten as
22907 @texline @math{2\,@tfn{sqrt}(2)}.
22908 @infoline @expr{2 sqrt(2)}.  
22909 Conceptually speaking this implies factoring the argument into primes
22910 and moving pairs of primes out of the square root, but for reasons of
22911 efficiency Calc only looks for primes up to 29.
22913 Square roots in the denominator of a quotient are moved to the
22914 numerator:  @expr{1 / @tfn{sqrt}(3)} changes to @expr{@tfn{sqrt}(3) / 3}.
22915 The same effect occurs for the square root of a fraction:
22916 @expr{@tfn{sqrt}(2:3)} changes to @expr{@tfn{sqrt}(6) / 3}.
22918 @tex
22919 \bigskip
22920 @end tex
22922 The @code{%} (modulo) operator is simplified in several ways
22923 when the modulus @expr{M} is a positive real number.  First, if
22924 the argument is of the form @expr{x + n} for some real number
22925 @expr{n}, then @expr{n} is itself reduced modulo @expr{M}.  For
22926 example, @samp{(x - 23) % 10} is simplified to @samp{(x + 7) % 10}.
22928 If the argument is multiplied by a constant, and this constant
22929 has a common integer divisor with the modulus, then this factor is
22930 cancelled out.  For example, @samp{12 x % 15} is changed to
22931 @samp{3 (4 x % 5)} by factoring out 3.  Also, @samp{(12 x + 1) % 15}
22932 is changed to @samp{3 ((4 x + 1:3) % 5)}.  While these forms may
22933 not seem ``simpler,'' they allow Calc to discover useful information
22934 about modulo forms in the presence of declarations.
22936 If the modulus is 1, then Calc can use @code{int} declarations to
22937 evaluate the expression.  For example, the idiom @samp{x % 2} is
22938 often used to check whether a number is odd or even.  As described
22939 above, @w{@samp{2 n % 2}} and @samp{(2 n + 1) % 2} are simplified to
22940 @samp{2 (n % 1)} and @samp{2 ((n + 1:2) % 1)}, respectively; Calc
22941 can simplify these to 0 and 1 (respectively) if @code{n} has been
22942 declared to be an integer.
22944 @tex
22945 \bigskip
22946 @end tex
22948 Trigonometric functions are simplified in several ways.  Whenever a
22949 products of two trigonometric functions can be replaced by a single
22950 function, the replacement is made; for example,
22951 @expr{@tfn{tan}(x) @tfn{cos}(x)} is simplified to @expr{@tfn{sin}(x)}. 
22952 Reciprocals of trigonometric functions are replaced by their reciprocal
22953 function; for example, @expr{1/@tfn{sec}(x)} is simplified to
22954 @expr{@tfn{cos}(x)}.  The corresponding simplifications for the
22955 hyperbolic functions are also handled.
22957 Trigonometric functions of their inverse functions are
22958 simplified. The expression @expr{@tfn{sin}(@tfn{arcsin}(x))} is
22959 simplified to @expr{x}, and similarly for @code{cos} and @code{tan}.  
22960 Trigonometric functions of inverses of different trigonometric
22961 functions can also be simplified, as in @expr{@tfn{sin}(@tfn{arccos}(x))}
22962 to @expr{@tfn{sqrt}(1 - x^2)}.
22964 If the argument to @code{sin} is negative-looking, it is simplified to
22965 @expr{-@tfn{sin}(x)}, and similarly for @code{cos} and @code{tan}.
22966 Finally, certain special values of the argument are recognized;
22967 @pxref{Trigonometric and Hyperbolic Functions}.
22969 Hyperbolic functions of their inverses and of negative-looking
22970 arguments are also handled, as are exponentials of inverse
22971 hyperbolic functions.
22973 No simplifications for inverse trigonometric and hyperbolic
22974 functions are known, except for negative arguments of @code{arcsin},
22975 @code{arctan}, @code{arcsinh}, and @code{arctanh}.  Note that
22976 @expr{@tfn{arcsin}(@tfn{sin}(x))} can @emph{not} safely change to
22977 @expr{x}, since this only correct within an integer multiple of 
22978 @texline @math{2 \pi}
22979 @infoline @expr{2 pi} 
22980 radians or 360 degrees.  However, @expr{@tfn{arcsinh}(@tfn{sinh}(x))} is
22981 simplified to @expr{x} if @expr{x} is known to be real.
22983 Several simplifications that apply to logarithms and exponentials
22984 are that @expr{@tfn{exp}(@tfn{ln}(x))}, 
22985 @texline @tfn{e}@math{^{\ln(x)}},
22986 @infoline @expr{e^@tfn{ln}(x)}, 
22988 @texline @math{10^{{\rm log10}(x)}}
22989 @infoline @expr{10^@tfn{log10}(x)} 
22990 all reduce to @expr{x}.  Also, @expr{@tfn{ln}(@tfn{exp}(x))}, etc., can
22991 reduce to @expr{x} if @expr{x} is provably real.  The form
22992 @expr{@tfn{exp}(x)^y} is simplified to @expr{@tfn{exp}(x y)}.  If @expr{x}
22993 is a suitable multiple of 
22994 @texline @math{\pi i} 
22995 @infoline @expr{pi i}
22996 (as described above for the trigonometric functions), then
22997 @expr{@tfn{exp}(x)} or @expr{e^x} will be expanded.  Finally,
22998 @expr{@tfn{ln}(x)} is simplified to a form involving @code{pi} and
22999 @code{i} where @expr{x} is provably negative, positive imaginary, or
23000 negative imaginary. 
23002 The error functions @code{erf} and @code{erfc} are simplified when
23003 their arguments are negative-looking or are calls to the @code{conj}
23004 function.
23006 @tex
23007 \bigskip
23008 @end tex
23010 Equations and inequalities are simplified by cancelling factors
23011 of products, quotients, or sums on both sides.  Inequalities
23012 change sign if a negative multiplicative factor is cancelled.
23013 Non-constant multiplicative factors as in @expr{a b = a c} are
23014 cancelled from equations only if they are provably nonzero (generally
23015 because they were declared so; @pxref{Declarations}).  Factors
23016 are cancelled from inequalities only if they are nonzero and their
23017 sign is known.
23019 Simplification also replaces an equation or inequality with
23020 1 or 0 (``true'' or ``false'') if it can through the use of
23021 declarations.  If @expr{x} is declared to be an integer greater
23022 than 5, then @expr{x < 3}, @expr{x = 3}, and @expr{x = 7.5} are
23023 all simplified to 0, but @expr{x > 3} is simplified to 1.
23024 By a similar analysis, @expr{abs(x) >= 0} is simplified to 1,
23025 as is @expr{x^2 >= 0} if @expr{x} is known to be real.
23027 @node Unsafe Simplifications, Simplification of Units, Algebraic Simplifications, Simplifying Formulas
23028 @subsection ``Unsafe'' Simplifications
23030 @noindent
23031 @cindex Unsafe simplifications
23032 @cindex Extended simplification
23033 @kindex a e
23034 @pindex calc-simplify-extended
23035 @ignore
23036 @mindex esimpl@idots
23037 @end ignore
23038 @tindex esimplify
23039 The @kbd{a e} (@code{calc-simplify-extended}) [@code{esimplify}] command
23040 is like @kbd{a s}
23041 except that it applies some additional simplifications which are not
23042 ``safe'' in all cases.  Use this only if you know the values in your
23043 formula lie in the restricted ranges for which these simplifications
23044 are valid.  The symbolic integrator uses @kbd{a e};
23045 one effect of this is that the integrator's results must be used with
23046 caution.  Where an integral table will often attach conditions like
23047 ``for positive @expr{a} only,'' Calc (like most other symbolic
23048 integration programs) will simply produce an unqualified result.
23050 Because @kbd{a e}'s simplifications are unsafe, it is sometimes better
23051 to type @kbd{C-u -3 a v}, which does extended simplification only
23052 on the top level of the formula without affecting the sub-formulas.
23053 In fact, @kbd{C-u -3 j v} allows you to target extended simplification
23054 to any specific part of a formula.
23056 The variable @code{ExtSimpRules} contains rewrites to be applied by
23057 the @kbd{a e} command.  These are applied in addition to
23058 @code{EvalRules} and @code{AlgSimpRules}.  (The @kbd{a r AlgSimpRules}
23059 step described above is simply followed by an @kbd{a r ExtSimpRules} step.)
23061 Following is a complete list of ``unsafe'' simplifications performed
23062 by @kbd{a e}.
23064 @tex
23065 \bigskip
23066 @end tex
23068 Inverse trigonometric or hyperbolic functions, called with their
23069 corresponding non-inverse functions as arguments, are simplified
23070 by @kbd{a e}.  For example, @expr{@tfn{arcsin}(@tfn{sin}(x))} changes
23071 to @expr{x}.  Also, @expr{@tfn{arcsin}(@tfn{cos}(x))} and
23072 @expr{@tfn{arccos}(@tfn{sin}(x))} both change to @expr{@tfn{pi}/2 - x}.
23073 These simplifications are unsafe because they are valid only for
23074 values of @expr{x} in a certain range; outside that range, values
23075 are folded down to the 360-degree range that the inverse trigonometric
23076 functions always produce.
23078 Powers of powers @expr{(x^a)^b} are simplified to 
23079 @texline @math{x^{a b}}
23080 @infoline @expr{x^(a b)}
23081 for all @expr{a} and @expr{b}.  These results will be valid only
23082 in a restricted range of @expr{x}; for example, in 
23083 @texline @math{(x^2)^{1:2}}
23084 @infoline @expr{(x^2)^1:2}
23085 the powers cancel to get @expr{x}, which is valid for positive values
23086 of @expr{x} but not for negative or complex values.
23088 Similarly, @expr{@tfn{sqrt}(x^a)} and @expr{@tfn{sqrt}(x)^a} are both
23089 simplified (possibly unsafely) to 
23090 @texline @math{x^{a/2}}.
23091 @infoline @expr{x^(a/2)}.
23093 Forms like @expr{@tfn{sqrt}(1 - sin(x)^2)} are simplified to, e.g.,
23094 @expr{@tfn{cos}(x)}.  Calc has identities of this sort for @code{sin},
23095 @code{cos}, @code{tan}, @code{sinh}, and @code{cosh}.
23097 Arguments of square roots are partially factored to look for
23098 squared terms that can be extracted.  For example,
23099 @expr{@tfn{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to 
23100 @expr{a b @tfn{sqrt}(a+b)}.
23102 The simplifications of @expr{@tfn{ln}(@tfn{exp}(x))},
23103 @expr{@tfn{ln}(@tfn{e}^x)}, and @expr{@tfn{log10}(10^x)} to @expr{x} are also
23104 unsafe because of problems with principal values (although these
23105 simplifications are safe if @expr{x} is known to be real).
23107 Common factors are cancelled from products on both sides of an
23108 equation, even if those factors may be zero:  @expr{a x / b x}
23109 to @expr{a / b}.  Such factors are never cancelled from
23110 inequalities:  Even @kbd{a e} is not bold enough to reduce
23111 @expr{a x < b x} to @expr{a < b} (or @expr{a > b}, depending
23112 on whether you believe @expr{x} is positive or negative).
23113 The @kbd{a M /} command can be used to divide a factor out of
23114 both sides of an inequality.
23116 @node Simplification of Units, , Unsafe Simplifications, Simplifying Formulas
23117 @subsection Simplification of Units
23119 @noindent
23120 The simplifications described in this section are applied by the
23121 @kbd{u s} (@code{calc-simplify-units}) command.  These are in addition
23122 to the regular @kbd{a s} (but not @kbd{a e}) simplifications described
23123 earlier.  @xref{Basic Operations on Units}.
23125 The variable @code{UnitSimpRules} contains rewrites to be applied by
23126 the @kbd{u s} command.  These are applied in addition to @code{EvalRules}
23127 and @code{AlgSimpRules}.
23129 Scalar mode is automatically put into effect when simplifying units.
23130 @xref{Matrix Mode}.
23132 Sums @expr{a + b} involving units are simplified by extracting the
23133 units of @expr{a} as if by the @kbd{u x} command (call the result
23134 @expr{u_a}), then simplifying the expression @expr{b / u_a}
23135 using @kbd{u b} and @kbd{u s}.  If the result has units then the sum
23136 is inconsistent and is left alone.  Otherwise, it is rewritten
23137 in terms of the units @expr{u_a}.
23139 If units auto-ranging mode is enabled, products or quotients in
23140 which the first argument is a number which is out of range for the
23141 leading unit are modified accordingly.
23143 When cancelling and combining units in products and quotients,
23144 Calc accounts for unit names that differ only in the prefix letter.
23145 For example, @samp{2 km m} is simplified to @samp{2000 m^2}.
23146 However, compatible but different units like @code{ft} and @code{in}
23147 are not combined in this way.
23149 Quotients @expr{a / b} are simplified in three additional ways.  First,
23150 if @expr{b} is a number or a product beginning with a number, Calc
23151 computes the reciprocal of this number and moves it to the numerator.
23153 Second, for each pair of unit names from the numerator and denominator
23154 of a quotient, if the units are compatible (e.g., they are both
23155 units of area) then they are replaced by the ratio between those
23156 units.  For example, in @samp{3 s in N / kg cm} the units
23157 @samp{in / cm} will be replaced by @expr{2.54}.
23159 Third, if the units in the quotient exactly cancel out, so that
23160 a @kbd{u b} command on the quotient would produce a dimensionless
23161 number for an answer, then the quotient simplifies to that number.
23163 For powers and square roots, the ``unsafe'' simplifications
23164 @expr{(a b)^c} to @expr{a^c b^c}, @expr{(a/b)^c} to @expr{a^c / b^c},
23165 and @expr{(a^b)^c} to 
23166 @texline @math{a^{b c}}
23167 @infoline @expr{a^(b c)} 
23168 are done if the powers are real numbers.  (These are safe in the context
23169 of units because all numbers involved can reasonably be assumed to be
23170 real.)
23172 Also, if a unit name is raised to a fractional power, and the
23173 base units in that unit name all occur to powers which are a
23174 multiple of the denominator of the power, then the unit name
23175 is expanded out into its base units, which can then be simplified
23176 according to the previous paragraph.  For example, @samp{acre^1.5}
23177 is simplified by noting that @expr{1.5 = 3:2}, that @samp{acre}
23178 is defined in terms of @samp{m^2}, and that the 2 in the power of
23179 @code{m} is a multiple of 2 in @expr{3:2}.  Thus, @code{acre^1.5} is
23180 replaced by approximately 
23181 @texline @math{(4046 m^2)^{1.5}}
23182 @infoline @expr{(4046 m^2)^1.5}, 
23183 which is then changed to 
23184 @texline @math{4046^{1.5} \, (m^2)^{1.5}},
23185 @infoline @expr{4046^1.5 (m^2)^1.5}, 
23186 then to @expr{257440 m^3}.
23188 The functions @code{float}, @code{frac}, @code{clean}, @code{abs},
23189 as well as @code{floor} and the other integer truncation functions,
23190 applied to unit names or products or quotients involving units, are
23191 simplified.  For example, @samp{round(1.6 in)} is changed to
23192 @samp{round(1.6) round(in)}; the lefthand term evaluates to 2,
23193 and the righthand term simplifies to @code{in}.
23195 The functions @code{sin}, @code{cos}, and @code{tan} with arguments
23196 that have angular units like @code{rad} or @code{arcmin} are
23197 simplified by converting to base units (radians), then evaluating
23198 with the angular mode temporarily set to radians.
23200 @node Polynomials, Calculus, Simplifying Formulas, Algebra
23201 @section Polynomials
23203 A @dfn{polynomial} is a sum of terms which are coefficients times
23204 various powers of a ``base'' variable.  For example, @expr{2 x^2 + 3 x - 4}
23205 is a polynomial in @expr{x}.  Some formulas can be considered
23206 polynomials in several different variables:  @expr{1 + 2 x + 3 y + 4 x y^2}
23207 is a polynomial in both @expr{x} and @expr{y}.  Polynomial coefficients
23208 are often numbers, but they may in general be any formulas not
23209 involving the base variable.
23211 @kindex a f
23212 @pindex calc-factor
23213 @tindex factor
23214 The @kbd{a f} (@code{calc-factor}) [@code{factor}] command factors a
23215 polynomial into a product of terms.  For example, the polynomial
23216 @expr{x^3 + 2 x^2 + x} is factored into @samp{x*(x+1)^2}.  As another
23217 example, @expr{a c + b d + b c + a d} is factored into the product
23218 @expr{(a + b) (c + d)}.
23220 Calc currently has three algorithms for factoring.  Formulas which are
23221 linear in several variables, such as the second example above, are
23222 merged according to the distributive law.  Formulas which are
23223 polynomials in a single variable, with constant integer or fractional
23224 coefficients, are factored into irreducible linear and/or quadratic
23225 terms.  The first example above factors into three linear terms
23226 (@expr{x}, @expr{x+1}, and @expr{x+1} again).  Finally, formulas
23227 which do not fit the above criteria are handled by the algebraic
23228 rewrite mechanism.
23230 Calc's polynomial factorization algorithm works by using the general
23231 root-finding command (@w{@kbd{a P}}) to solve for the roots of the
23232 polynomial.  It then looks for roots which are rational numbers
23233 or complex-conjugate pairs, and converts these into linear and
23234 quadratic terms, respectively.  Because it uses floating-point
23235 arithmetic, it may be unable to find terms that involve large
23236 integers (whose number of digits approaches the current precision).
23237 Also, irreducible factors of degree higher than quadratic are not
23238 found, and polynomials in more than one variable are not treated.
23239 (A more robust factorization algorithm may be included in a future
23240 version of Calc.)
23242 @vindex FactorRules
23243 @ignore
23244 @starindex
23245 @end ignore
23246 @tindex thecoefs
23247 @ignore
23248 @starindex
23249 @end ignore
23250 @ignore
23251 @mindex @idots
23252 @end ignore
23253 @tindex thefactors
23254 The rewrite-based factorization method uses rules stored in the variable
23255 @code{FactorRules}.  @xref{Rewrite Rules}, for a discussion of the
23256 operation of rewrite rules.  The default @code{FactorRules} are able
23257 to factor quadratic forms symbolically into two linear terms,
23258 @expr{(a x + b) (c x + d)}.  You can edit these rules to include other
23259 cases if you wish.  To use the rules, Calc builds the formula
23260 @samp{thecoefs(x, [a, b, c, ...])} where @code{x} is the polynomial
23261 base variable and @code{a}, @code{b}, etc., are polynomial coefficients
23262 (which may be numbers or formulas).  The constant term is written first,
23263 i.e., in the @code{a} position.  When the rules complete, they should have
23264 changed the formula into the form @samp{thefactors(x, [f1, f2, f3, ...])}
23265 where each @code{fi} should be a factored term, e.g., @samp{x - ai}.
23266 Calc then multiplies these terms together to get the complete
23267 factored form of the polynomial.  If the rules do not change the
23268 @code{thecoefs} call to a @code{thefactors} call, @kbd{a f} leaves the
23269 polynomial alone on the assumption that it is unfactorable.  (Note that
23270 the function names @code{thecoefs} and @code{thefactors} are used only
23271 as placeholders; there are no actual Calc functions by those names.)
23273 @kindex H a f
23274 @tindex factors
23275 The @kbd{H a f} [@code{factors}] command also factors a polynomial,
23276 but it returns a list of factors instead of an expression which is the
23277 product of the factors.  Each factor is represented by a sub-vector
23278 of the factor, and the power with which it appears.  For example,
23279 @expr{x^5 + x^4 - 33 x^3 + 63 x^2} factors to @expr{(x + 7) x^2 (x - 3)^2}
23280 in @kbd{a f}, or to @expr{[ [x, 2], [x+7, 1], [x-3, 2] ]} in @kbd{H a f}.
23281 If there is an overall numeric factor, it always comes first in the list.
23282 The functions @code{factor} and @code{factors} allow a second argument
23283 when written in algebraic form; @samp{factor(x,v)} factors @expr{x} with
23284 respect to the specific variable @expr{v}.  The default is to factor with
23285 respect to all the variables that appear in @expr{x}.
23287 @kindex a c
23288 @pindex calc-collect
23289 @tindex collect
23290 The @kbd{a c} (@code{calc-collect}) [@code{collect}] command rearranges a
23291 formula as a
23292 polynomial in a given variable, ordered in decreasing powers of that
23293 variable.  For example, given @expr{1 + 2 x + 3 y + 4 x y^2} on
23294 the stack, @kbd{a c x} would produce @expr{(2 + 4 y^2) x + (1 + 3 y)},
23295 and @kbd{a c y} would produce @expr{(4 x) y^2 + 3 y + (1 + 2 x)}.
23296 The polynomial will be expanded out using the distributive law as
23297 necessary:  Collecting @expr{x} in @expr{(x - 1)^3} produces
23298 @expr{x^3 - 3 x^2 + 3 x - 1}.  Terms not involving @expr{x} will
23299 not be expanded.
23301 The ``variable'' you specify at the prompt can actually be any
23302 expression: @kbd{a c ln(x+1)} will collect together all terms multiplied
23303 by @samp{ln(x+1)} or integer powers thereof.  If @samp{x} also appears
23304 in the formula in a context other than @samp{ln(x+1)}, @kbd{a c} will
23305 treat those occurrences as unrelated to @samp{ln(x+1)}, i.e., as constants.
23307 @kindex a x
23308 @pindex calc-expand
23309 @tindex expand
23310 The @kbd{a x} (@code{calc-expand}) [@code{expand}] command expands an
23311 expression by applying the distributive law everywhere.  It applies to
23312 products, quotients, and powers involving sums.  By default, it fully
23313 distributes all parts of the expression.  With a numeric prefix argument,
23314 the distributive law is applied only the specified number of times, then
23315 the partially expanded expression is left on the stack.
23317 The @kbd{a x} and @kbd{j D} commands are somewhat redundant.  Use
23318 @kbd{a x} if you want to expand all products of sums in your formula.
23319 Use @kbd{j D} if you want to expand a particular specified term of
23320 the formula.  There is an exactly analogous correspondence between
23321 @kbd{a f} and @kbd{j M}.  (The @kbd{j D} and @kbd{j M} commands
23322 also know many other kinds of expansions, such as
23323 @samp{exp(a + b) = exp(a) exp(b)}, which @kbd{a x} and @kbd{a f}
23324 do not do.)
23326 Calc's automatic simplifications will sometimes reverse a partial
23327 expansion.  For example, the first step in expanding @expr{(x+1)^3} is
23328 to write @expr{(x+1) (x+1)^2}.  If @kbd{a x} stops there and tries
23329 to put this formula onto the stack, though, Calc will automatically
23330 simplify it back to @expr{(x+1)^3} form.  The solution is to turn
23331 simplification off first (@pxref{Simplification Modes}), or to run
23332 @kbd{a x} without a numeric prefix argument so that it expands all
23333 the way in one step.
23335 @kindex a a
23336 @pindex calc-apart
23337 @tindex apart
23338 The @kbd{a a} (@code{calc-apart}) [@code{apart}] command expands a
23339 rational function by partial fractions.  A rational function is the
23340 quotient of two polynomials; @code{apart} pulls this apart into a
23341 sum of rational functions with simple denominators.  In algebraic
23342 notation, the @code{apart} function allows a second argument that
23343 specifies which variable to use as the ``base''; by default, Calc
23344 chooses the base variable automatically.
23346 @kindex a n
23347 @pindex calc-normalize-rat
23348 @tindex nrat
23349 The @kbd{a n} (@code{calc-normalize-rat}) [@code{nrat}] command
23350 attempts to arrange a formula into a quotient of two polynomials.
23351 For example, given @expr{1 + (a + b/c) / d}, the result would be
23352 @expr{(b + a c + c d) / c d}.  The quotient is reduced, so that
23353 @kbd{a n} will simplify @expr{(x^2 + 2x + 1) / (x^2 - 1)} by dividing
23354 out the common factor @expr{x + 1}, yielding @expr{(x + 1) / (x - 1)}.
23356 @kindex a \
23357 @pindex calc-poly-div
23358 @tindex pdiv
23359 The @kbd{a \} (@code{calc-poly-div}) [@code{pdiv}] command divides
23360 two polynomials @expr{u} and @expr{v}, yielding a new polynomial
23361 @expr{q}.  If several variables occur in the inputs, the inputs are
23362 considered multivariate polynomials.  (Calc divides by the variable
23363 with the largest power in @expr{u} first, or, in the case of equal
23364 powers, chooses the variables in alphabetical order.)  For example,
23365 dividing @expr{x^2 + 3 x + 2} by @expr{x + 2} yields @expr{x + 1}.
23366 The remainder from the division, if any, is reported at the bottom
23367 of the screen and is also placed in the Trail along with the quotient.
23369 Using @code{pdiv} in algebraic notation, you can specify the particular
23370 variable to be used as the base: @code{pdiv(@var{a},@var{b},@var{x})}.
23371 If @code{pdiv} is given only two arguments (as is always the case with
23372 the @kbd{a \} command), then it does a multivariate division as outlined
23373 above.
23375 @kindex a %
23376 @pindex calc-poly-rem
23377 @tindex prem
23378 The @kbd{a %} (@code{calc-poly-rem}) [@code{prem}] command divides
23379 two polynomials and keeps the remainder @expr{r}.  The quotient
23380 @expr{q} is discarded.  For any formulas @expr{a} and @expr{b}, the
23381 results of @kbd{a \} and @kbd{a %} satisfy @expr{a = q b + r}.
23382 (This is analogous to plain @kbd{\} and @kbd{%}, which compute the
23383 integer quotient and remainder from dividing two numbers.)
23385 @kindex a /
23386 @kindex H a /
23387 @pindex calc-poly-div-rem
23388 @tindex pdivrem
23389 @tindex pdivide
23390 The @kbd{a /} (@code{calc-poly-div-rem}) [@code{pdivrem}] command
23391 divides two polynomials and reports both the quotient and the
23392 remainder as a vector @expr{[q, r]}.  The @kbd{H a /} [@code{pdivide}]
23393 command divides two polynomials and constructs the formula
23394 @expr{q + r/b} on the stack.  (Naturally if the remainder is zero,
23395 this will immediately simplify to @expr{q}.)
23397 @kindex a g
23398 @pindex calc-poly-gcd
23399 @tindex pgcd
23400 The @kbd{a g} (@code{calc-poly-gcd}) [@code{pgcd}] command computes
23401 the greatest common divisor of two polynomials.  (The GCD actually
23402 is unique only to within a constant multiplier; Calc attempts to
23403 choose a GCD which will be unsurprising.)  For example, the @kbd{a n}
23404 command uses @kbd{a g} to take the GCD of the numerator and denominator
23405 of a quotient, then divides each by the result using @kbd{a \}.  (The
23406 definition of GCD ensures that this division can take place without
23407 leaving a remainder.)
23409 While the polynomials used in operations like @kbd{a /} and @kbd{a g}
23410 often have integer coefficients, this is not required.  Calc can also
23411 deal with polynomials over the rationals or floating-point reals.
23412 Polynomials with modulo-form coefficients are also useful in many
23413 applications; if you enter @samp{(x^2 + 3 x - 1) mod 5}, Calc
23414 automatically transforms this into a polynomial over the field of
23415 integers mod 5:  @samp{(1 mod 5) x^2 + (3 mod 5) x + (4 mod 5)}.
23417 Congratulations and thanks go to Ove Ewerlid
23418 (@code{ewerlid@@mizar.DoCS.UU.SE}), who contributed many of the
23419 polynomial routines used in the above commands.
23421 @xref{Decomposing Polynomials}, for several useful functions for
23422 extracting the individual coefficients of a polynomial.
23424 @node Calculus, Solving Equations, Polynomials, Algebra
23425 @section Calculus
23427 @noindent
23428 The following calculus commands do not automatically simplify their
23429 inputs or outputs using @code{calc-simplify}.  You may find it helps
23430 to do this by hand by typing @kbd{a s} or @kbd{a e}.  It may also help
23431 to use @kbd{a x} and/or @kbd{a c} to arrange a result in the most
23432 readable way.
23434 @menu
23435 * Differentiation::
23436 * Integration::
23437 * Customizing the Integrator::
23438 * Numerical Integration::
23439 * Taylor Series::
23440 @end menu
23442 @node Differentiation, Integration, Calculus, Calculus
23443 @subsection Differentiation
23445 @noindent
23446 @kindex a d
23447 @kindex H a d
23448 @pindex calc-derivative
23449 @tindex deriv
23450 @tindex tderiv
23451 The @kbd{a d} (@code{calc-derivative}) [@code{deriv}] command computes
23452 the derivative of the expression on the top of the stack with respect to
23453 some variable, which it will prompt you to enter.  Normally, variables
23454 in the formula other than the specified differentiation variable are
23455 considered constant, i.e., @samp{deriv(y,x)} is reduced to zero.  With
23456 the Hyperbolic flag, the @code{tderiv} (total derivative) operation is used
23457 instead, in which derivatives of variables are not reduced to zero
23458 unless those variables are known to be ``constant,'' i.e., independent
23459 of any other variables.  (The built-in special variables like @code{pi}
23460 are considered constant, as are variables that have been declared
23461 @code{const}; @pxref{Declarations}.)
23463 With a numeric prefix argument @var{n}, this command computes the
23464 @var{n}th derivative.
23466 When working with trigonometric functions, it is best to switch to
23467 Radians mode first (with @w{@kbd{m r}}).  The derivative of @samp{sin(x)}
23468 in degrees is @samp{(pi/180) cos(x)}, probably not the expected
23469 answer!
23471 If you use the @code{deriv} function directly in an algebraic formula,
23472 you can write @samp{deriv(f,x,x0)} which represents the derivative
23473 of @expr{f} with respect to @expr{x}, evaluated at the point 
23474 @texline @math{x=x_0}.
23475 @infoline @expr{x=x0}.
23477 If the formula being differentiated contains functions which Calc does
23478 not know, the derivatives of those functions are produced by adding
23479 primes (apostrophe characters).  For example, @samp{deriv(f(2x), x)}
23480 produces @samp{2 f'(2 x)}, where the function @code{f'} represents the
23481 derivative of @code{f}.
23483 For functions you have defined with the @kbd{Z F} command, Calc expands
23484 the functions according to their defining formulas unless you have
23485 also defined @code{f'} suitably.  For example, suppose we define
23486 @samp{sinc(x) = sin(x)/x} using @kbd{Z F}.  If we then differentiate
23487 the formula @samp{sinc(2 x)}, the formula will be expanded to
23488 @samp{sin(2 x) / (2 x)} and differentiated.  However, if we also
23489 define @samp{sinc'(x) = dsinc(x)}, say, then Calc will write the
23490 result as @samp{2 dsinc(2 x)}.  @xref{Algebraic Definitions}.
23492 For multi-argument functions @samp{f(x,y,z)}, the derivative with respect
23493 to the first argument is written @samp{f'(x,y,z)}; derivatives with
23494 respect to the other arguments are @samp{f'2(x,y,z)} and @samp{f'3(x,y,z)}.
23495 Various higher-order derivatives can be formed in the obvious way, e.g.,
23496 @samp{f'@var{}'(x)} (the second derivative of @code{f}) or
23497 @samp{f'@var{}'2'3(x,y,z)} (@code{f} differentiated with respect to each
23498 argument once).
23500 @node Integration, Customizing the Integrator, Differentiation, Calculus
23501 @subsection Integration
23503 @noindent
23504 @kindex a i
23505 @pindex calc-integral
23506 @tindex integ
23507 The @kbd{a i} (@code{calc-integral}) [@code{integ}] command computes the
23508 indefinite integral of the expression on the top of the stack with
23509 respect to a prompted-for variable.  The integrator is not guaranteed to
23510 work for all integrable functions, but it is able to integrate several
23511 large classes of formulas.  In particular, any polynomial or rational
23512 function (a polynomial divided by a polynomial) is acceptable.
23513 (Rational functions don't have to be in explicit quotient form, however; 
23514 @texline @math{x/(1+x^{-2})}
23515 @infoline @expr{x/(1+x^-2)}
23516 is not strictly a quotient of polynomials, but it is equivalent to
23517 @expr{x^3/(x^2+1)}, which is.)  Also, square roots of terms involving
23518 @expr{x} and @expr{x^2} may appear in rational functions being
23519 integrated.  Finally, rational functions involving trigonometric or
23520 hyperbolic functions can be integrated.
23522 With an argument (@kbd{C-u a i}), this command will compute the definite
23523 integral of the expression on top of the stack.  In this case, the
23524 command will again prompt for an integration variable, then prompt for a
23525 lower limit and an upper limit.
23527 @ifinfo
23528 If you use the @code{integ} function directly in an algebraic formula,
23529 you can also write @samp{integ(f,x,v)} which expresses the resulting
23530 indefinite integral in terms of variable @code{v} instead of @code{x}.
23531 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23532 integral from @code{a} to @code{b}.
23533 @end ifinfo
23534 @tex
23535 If you use the @code{integ} function directly in an algebraic formula,
23536 you can also write @samp{integ(f,x,v)} which expresses the resulting
23537 indefinite integral in terms of variable @code{v} instead of @code{x}.
23538 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23539 integral $\int_a^b f(x) \, dx$.
23540 @end tex
23542 Please note that the current implementation of Calc's integrator sometimes
23543 produces results that are significantly more complex than they need to
23544 be.  For example, the integral Calc finds for 
23545 @texline @math{1/(x+\sqrt{x^2+1})}
23546 @infoline @expr{1/(x+sqrt(x^2+1))}
23547 is several times more complicated than the answer Mathematica
23548 returns for the same input, although the two forms are numerically
23549 equivalent.  Also, any indefinite integral should be considered to have
23550 an arbitrary constant of integration added to it, although Calc does not
23551 write an explicit constant of integration in its result.  For example,
23552 Calc's solution for 
23553 @texline @math{1/(1+\tan x)}
23554 @infoline @expr{1/(1+tan(x))} 
23555 differs from the solution given in the @emph{CRC Math Tables} by a
23556 constant factor of  
23557 @texline @math{\pi i / 2}
23558 @infoline @expr{pi i / 2},
23559 due to a different choice of constant of integration.
23561 The Calculator remembers all the integrals it has done.  If conditions
23562 change in a way that would invalidate the old integrals, say, a switch
23563 from Degrees to Radians mode, then they will be thrown out.  If you
23564 suspect this is not happening when it should, use the
23565 @code{calc-flush-caches} command; @pxref{Caches}.
23567 @vindex IntegLimit
23568 Calc normally will pursue integration by substitution or integration by
23569 parts up to 3 nested times before abandoning an approach as fruitless.
23570 If the integrator is taking too long, you can lower this limit by storing
23571 a number (like 2) in the variable @code{IntegLimit}.  (The @kbd{s I}
23572 command is a convenient way to edit @code{IntegLimit}.)  If this variable
23573 has no stored value or does not contain a nonnegative integer, a limit
23574 of 3 is used.  The lower this limit is, the greater the chance that Calc
23575 will be unable to integrate a function it could otherwise handle.  Raising
23576 this limit allows the Calculator to solve more integrals, though the time
23577 it takes may grow exponentially.  You can monitor the integrator's actions
23578 by creating an Emacs buffer called @code{*Trace*}.  If such a buffer
23579 exists, the @kbd{a i} command will write a log of its actions there.
23581 If you want to manipulate integrals in a purely symbolic way, you can
23582 set the integration nesting limit to 0 to prevent all but fast
23583 table-lookup solutions of integrals.  You might then wish to define
23584 rewrite rules for integration by parts, various kinds of substitutions,
23585 and so on.  @xref{Rewrite Rules}.
23587 @node Customizing the Integrator, Numerical Integration, Integration, Calculus
23588 @subsection Customizing the Integrator
23590 @noindent
23591 @vindex IntegRules
23592 Calc has two built-in rewrite rules called @code{IntegRules} and
23593 @code{IntegAfterRules} which you can edit to define new integration
23594 methods.  @xref{Rewrite Rules}.  At each step of the integration process,
23595 Calc wraps the current integrand in a call to the fictitious function
23596 @samp{integtry(@var{expr},@var{var})}, where @var{expr} is the
23597 integrand and @var{var} is the integration variable.  If your rules
23598 rewrite this to be a plain formula (not a call to @code{integtry}), then
23599 Calc will use this formula as the integral of @var{expr}.  For example,
23600 the rule @samp{integtry(mysin(x),x) := -mycos(x)} would define a rule to
23601 integrate a function @code{mysin} that acts like the sine function.
23602 Then, putting @samp{4 mysin(2y+1)} on the stack and typing @kbd{a i y}
23603 will produce the integral @samp{-2 mycos(2y+1)}.  Note that Calc has
23604 automatically made various transformations on the integral to allow it
23605 to use your rule; integral tables generally give rules for
23606 @samp{mysin(a x + b)}, but you don't need to use this much generality
23607 in your @code{IntegRules}.
23609 @cindex Exponential integral Ei(x)
23610 @ignore
23611 @starindex
23612 @end ignore
23613 @tindex Ei
23614 As a more serious example, the expression @samp{exp(x)/x} cannot be
23615 integrated in terms of the standard functions, so the ``exponential
23616 integral'' function 
23617 @texline @math{{\rm Ei}(x)}
23618 @infoline @expr{Ei(x)} 
23619 was invented to describe it.
23620 We can get Calc to do this integral in terms of a made-up @code{Ei}
23621 function by adding the rule @samp{[integtry(exp(x)/x, x) := Ei(x)]}
23622 to @code{IntegRules}.  Now entering @samp{exp(2x)/x} on the stack
23623 and typing @kbd{a i x} yields @samp{Ei(2 x)}.  This new rule will
23624 work with Calc's various built-in integration methods (such as
23625 integration by substitution) to solve a variety of other problems
23626 involving @code{Ei}:  For example, now Calc will also be able to
23627 integrate @samp{exp(exp(x))} and @samp{ln(ln(x))} (to get @samp{Ei(exp(x))}
23628 and @samp{x ln(ln(x)) - Ei(ln(x))}, respectively).
23630 Your rule may do further integration by calling @code{integ}.  For
23631 example, @samp{integtry(twice(u),x) := twice(integ(u))} allows Calc
23632 to integrate @samp{twice(sin(x))} to get @samp{twice(-cos(x))}.
23633 Note that @code{integ} was called with only one argument.  This notation
23634 is allowed only within @code{IntegRules}; it means ``integrate this
23635 with respect to the same integration variable.''  If Calc is unable
23636 to integrate @code{u}, the integration that invoked @code{IntegRules}
23637 also fails.  Thus integrating @samp{twice(f(x))} fails, returning the
23638 unevaluated integral @samp{integ(twice(f(x)), x)}.  It is still valid
23639 to call @code{integ} with two or more arguments, however; in this case,
23640 if @code{u} is not integrable, @code{twice} itself will still be
23641 integrated:  If the above rule is changed to @samp{... := twice(integ(u,x))},
23642 then integrating @samp{twice(f(x))} will yield @samp{twice(integ(f(x),x))}.
23644 If a rule instead produces the formula @samp{integsubst(@var{sexpr},
23645 @var{svar})}, either replacing the top-level @code{integtry} call or
23646 nested anywhere inside the expression, then Calc will apply the
23647 substitution @samp{@var{u} = @var{sexpr}(@var{svar})} to try to
23648 integrate the original @var{expr}.  For example, the rule
23649 @samp{sqrt(a) := integsubst(sqrt(x),x)} says that if Calc ever finds
23650 a square root in the integrand, it should attempt the substitution
23651 @samp{u = sqrt(x)}.  (This particular rule is unnecessary because
23652 Calc always tries ``obvious'' substitutions where @var{sexpr} actually
23653 appears in the integrand.)  The variable @var{svar} may be the same
23654 as the @var{var} that appeared in the call to @code{integtry}, but
23655 it need not be.
23657 When integrating according to an @code{integsubst}, Calc uses the
23658 equation solver to find the inverse of @var{sexpr} (if the integrand
23659 refers to @var{var} anywhere except in subexpressions that exactly
23660 match @var{sexpr}).  It uses the differentiator to find the derivative
23661 of @var{sexpr} and/or its inverse (it has two methods that use one
23662 derivative or the other).  You can also specify these items by adding
23663 extra arguments to the @code{integsubst} your rules construct; the
23664 general form is @samp{integsubst(@var{sexpr}, @var{svar}, @var{sinv},
23665 @var{sprime})}, where @var{sinv} is the inverse of @var{sexpr} (still
23666 written as a function of @var{svar}), and @var{sprime} is the
23667 derivative of @var{sexpr} with respect to @var{svar}.  If you don't
23668 specify these things, and Calc is not able to work them out on its
23669 own with the information it knows, then your substitution rule will
23670 work only in very specific, simple cases.
23672 Calc applies @code{IntegRules} as if by @kbd{C-u 1 a r IntegRules};
23673 in other words, Calc stops rewriting as soon as any rule in your rule
23674 set succeeds.  (If it weren't for this, the @samp{integsubst(sqrt(x),x)}
23675 example above would keep on adding layers of @code{integsubst} calls
23676 forever!)
23678 @vindex IntegSimpRules
23679 Another set of rules, stored in @code{IntegSimpRules}, are applied
23680 every time the integrator uses @kbd{a s} to simplify an intermediate
23681 result.  For example, putting the rule @samp{twice(x) := 2 x} into
23682 @code{IntegSimpRules} would tell Calc to convert the @code{twice}
23683 function into a form it knows whenever integration is attempted.
23685 One more way to influence the integrator is to define a function with
23686 the @kbd{Z F} command (@pxref{Algebraic Definitions}).  Calc's
23687 integrator automatically expands such functions according to their
23688 defining formulas, even if you originally asked for the function to
23689 be left unevaluated for symbolic arguments.  (Certain other Calc
23690 systems, such as the differentiator and the equation solver, also
23691 do this.)
23693 @vindex IntegAfterRules
23694 Sometimes Calc is able to find a solution to your integral, but it
23695 expresses the result in a way that is unnecessarily complicated.  If
23696 this happens, you can either use @code{integsubst} as described
23697 above to try to hint at a more direct path to the desired result, or
23698 you can use @code{IntegAfterRules}.  This is an extra rule set that
23699 runs after the main integrator returns its result; basically, Calc does
23700 an @kbd{a r IntegAfterRules} on the result before showing it to you.
23701 (It also does an @kbd{a s}, without @code{IntegSimpRules}, after that
23702 to further simplify the result.)  For example, Calc's integrator
23703 sometimes produces expressions of the form @samp{ln(1+x) - ln(1-x)};
23704 the default @code{IntegAfterRules} rewrite this into the more readable
23705 form @samp{2 arctanh(x)}.  Note that, unlike @code{IntegRules},
23706 @code{IntegSimpRules} and @code{IntegAfterRules} are applied any number
23707 of times until no further changes are possible.  Rewriting by
23708 @code{IntegAfterRules} occurs only after the main integrator has
23709 finished, not at every step as for @code{IntegRules} and
23710 @code{IntegSimpRules}.
23712 @node Numerical Integration, Taylor Series, Customizing the Integrator, Calculus
23713 @subsection Numerical Integration
23715 @noindent
23716 @kindex a I
23717 @pindex calc-num-integral
23718 @tindex ninteg
23719 If you want a purely numerical answer to an integration problem, you can
23720 use the @kbd{a I} (@code{calc-num-integral}) [@code{ninteg}] command.  This
23721 command prompts for an integration variable, a lower limit, and an
23722 upper limit.  Except for the integration variable, all other variables
23723 that appear in the integrand formula must have stored values.  (A stored
23724 value, if any, for the integration variable itself is ignored.)
23726 Numerical integration works by evaluating your formula at many points in
23727 the specified interval.  Calc uses an ``open Romberg'' method; this means
23728 that it does not evaluate the formula actually at the endpoints (so that
23729 it is safe to integrate @samp{sin(x)/x} from zero, for example).  Also,
23730 the Romberg method works especially well when the function being
23731 integrated is fairly smooth.  If the function is not smooth, Calc will
23732 have to evaluate it at quite a few points before it can accurately
23733 determine the value of the integral.
23735 Integration is much faster when the current precision is small.  It is
23736 best to set the precision to the smallest acceptable number of digits
23737 before you use @kbd{a I}.  If Calc appears to be taking too long, press
23738 @kbd{C-g} to halt it and try a lower precision.  If Calc still appears
23739 to need hundreds of evaluations, check to make sure your function is
23740 well-behaved in the specified interval.
23742 It is possible for the lower integration limit to be @samp{-inf} (minus
23743 infinity).  Likewise, the upper limit may be plus infinity.  Calc
23744 internally transforms the integral into an equivalent one with finite
23745 limits.  However, integration to or across singularities is not supported:
23746 The integral of @samp{1/sqrt(x)} from 0 to 1 exists (it can be found
23747 by Calc's symbolic integrator, for example), but @kbd{a I} will fail
23748 because the integrand goes to infinity at one of the endpoints.
23750 @node Taylor Series, , Numerical Integration, Calculus
23751 @subsection Taylor Series
23753 @noindent
23754 @kindex a t
23755 @pindex calc-taylor
23756 @tindex taylor
23757 The @kbd{a t} (@code{calc-taylor}) [@code{taylor}] command computes a
23758 power series expansion or Taylor series of a function.  You specify the
23759 variable and the desired number of terms.  You may give an expression of
23760 the form @samp{@var{var} = @var{a}} or @samp{@var{var} - @var{a}} instead
23761 of just a variable to produce a Taylor expansion about the point @var{a}.
23762 You may specify the number of terms with a numeric prefix argument;
23763 otherwise the command will prompt you for the number of terms.  Note that
23764 many series expansions have coefficients of zero for some terms, so you
23765 may appear to get fewer terms than you asked for.
23767 If the @kbd{a i} command is unable to find a symbolic integral for a
23768 function, you can get an approximation by integrating the function's
23769 Taylor series.
23771 @node Solving Equations, Numerical Solutions, Calculus, Algebra
23772 @section Solving Equations
23774 @noindent
23775 @kindex a S
23776 @pindex calc-solve-for
23777 @tindex solve
23778 @cindex Equations, solving
23779 @cindex Solving equations
23780 The @kbd{a S} (@code{calc-solve-for}) [@code{solve}] command rearranges
23781 an equation to solve for a specific variable.  An equation is an
23782 expression of the form @expr{L = R}.  For example, the command @kbd{a S x}
23783 will rearrange @expr{y = 3x + 6} to the form, @expr{x = y/3 - 2}.  If the
23784 input is not an equation, it is treated like an equation of the
23785 form @expr{X = 0}.
23787 This command also works for inequalities, as in @expr{y < 3x + 6}.
23788 Some inequalities cannot be solved where the analogous equation could
23789 be; for example, solving 
23790 @texline @math{a < b \, c}
23791 @infoline @expr{a < b c} 
23792 for @expr{b} is impossible
23793 without knowing the sign of @expr{c}.  In this case, @kbd{a S} will
23794 produce the result 
23795 @texline @math{b \mathbin{\hbox{\code{!=}}} a/c}
23796 @infoline @expr{b != a/c} 
23797 (using the not-equal-to operator) to signify that the direction of the
23798 inequality is now unknown.  The inequality 
23799 @texline @math{a \le b \, c}
23800 @infoline @expr{a <= b c} 
23801 is not even partially solved.  @xref{Declarations}, for a way to tell
23802 Calc that the signs of the variables in a formula are in fact known.
23804 Two useful commands for working with the result of @kbd{a S} are
23805 @kbd{a .} (@pxref{Logical Operations}), which converts @expr{x = y/3 - 2}
23806 to @expr{y/3 - 2}, and @kbd{s l} (@pxref{Let Command}) which evaluates
23807 another formula with @expr{x} set equal to @expr{y/3 - 2}.
23809 @menu
23810 * Multiple Solutions::
23811 * Solving Systems of Equations::
23812 * Decomposing Polynomials::
23813 @end menu
23815 @node Multiple Solutions, Solving Systems of Equations, Solving Equations, Solving Equations
23816 @subsection Multiple Solutions
23818 @noindent
23819 @kindex H a S
23820 @tindex fsolve
23821 Some equations have more than one solution.  The Hyperbolic flag
23822 (@code{H a S}) [@code{fsolve}] tells the solver to report the fully
23823 general family of solutions.  It will invent variables @code{n1},
23824 @code{n2}, @dots{}, which represent independent arbitrary integers, and
23825 @code{s1}, @code{s2}, @dots{}, which represent independent arbitrary
23826 signs (either @mathit{+1} or @mathit{-1}).  If you don't use the Hyperbolic
23827 flag, Calc will use zero in place of all arbitrary integers, and plus
23828 one in place of all arbitrary signs.  Note that variables like @code{n1}
23829 and @code{s1} are not given any special interpretation in Calc except by
23830 the equation solver itself.  As usual, you can use the @w{@kbd{s l}}
23831 (@code{calc-let}) command to obtain solutions for various actual values
23832 of these variables.
23834 For example, @kbd{' x^2 = y @key{RET} H a S x @key{RET}} solves to
23835 get @samp{x = s1 sqrt(y)}, indicating that the two solutions to the
23836 equation are @samp{sqrt(y)} and @samp{-sqrt(y)}.  Another way to
23837 think about it is that the square-root operation is really a
23838 two-valued function; since every Calc function must return a
23839 single result, @code{sqrt} chooses to return the positive result.
23840 Then @kbd{H a S} doctors this result using @code{s1} to indicate
23841 the full set of possible values of the mathematical square-root.
23843 There is a similar phenomenon going the other direction:  Suppose
23844 we solve @samp{sqrt(y) = x} for @code{y}.  Calc squares both sides
23845 to get @samp{y = x^2}.  This is correct, except that it introduces
23846 some dubious solutions.  Consider solving @samp{sqrt(y) = -3}:
23847 Calc will report @expr{y = 9} as a valid solution, which is true
23848 in the mathematical sense of square-root, but false (there is no
23849 solution) for the actual Calc positive-valued @code{sqrt}.  This
23850 happens for both @kbd{a S} and @kbd{H a S}.
23852 @cindex @code{GenCount} variable
23853 @vindex GenCount
23854 @ignore
23855 @starindex
23856 @end ignore
23857 @tindex an
23858 @ignore
23859 @starindex
23860 @end ignore
23861 @tindex as
23862 If you store a positive integer in the Calc variable @code{GenCount},
23863 then Calc will generate formulas of the form @samp{as(@var{n})} for
23864 arbitrary signs, and @samp{an(@var{n})} for arbitrary integers,
23865 where @var{n} represents successive values taken by incrementing
23866 @code{GenCount} by one.  While the normal arbitrary sign and
23867 integer symbols start over at @code{s1} and @code{n1} with each
23868 new Calc command, the @code{GenCount} approach will give each
23869 arbitrary value a name that is unique throughout the entire Calc
23870 session.  Also, the arbitrary values are function calls instead
23871 of variables, which is advantageous in some cases.  For example,
23872 you can make a rewrite rule that recognizes all arbitrary signs
23873 using a pattern like @samp{as(n)}.  The @kbd{s l} command only works
23874 on variables, but you can use the @kbd{a b} (@code{calc-substitute})
23875 command to substitute actual values for function calls like @samp{as(3)}.
23877 The @kbd{s G} (@code{calc-edit-GenCount}) command is a convenient
23878 way to create or edit this variable.  Press @kbd{C-c C-c} to finish.
23880 If you have not stored a value in @code{GenCount}, or if the value
23881 in that variable is not a positive integer, the regular
23882 @code{s1}/@code{n1} notation is used.
23884 @kindex I a S
23885 @kindex H I a S
23886 @tindex finv
23887 @tindex ffinv
23888 With the Inverse flag, @kbd{I a S} [@code{finv}] treats the expression
23889 on top of the stack as a function of the specified variable and solves
23890 to find the inverse function, written in terms of the same variable.
23891 For example, @kbd{I a S x} inverts @expr{2x + 6} to @expr{x/2 - 3}.
23892 You can use both Inverse and Hyperbolic [@code{ffinv}] to obtain a
23893 fully general inverse, as described above.
23895 @kindex a P
23896 @pindex calc-poly-roots
23897 @tindex roots
23898 Some equations, specifically polynomials, have a known, finite number
23899 of solutions.  The @kbd{a P} (@code{calc-poly-roots}) [@code{roots}]
23900 command uses @kbd{H a S} to solve an equation in general form, then, for
23901 all arbitrary-sign variables like @code{s1}, and all arbitrary-integer
23902 variables like @code{n1} for which @code{n1} only usefully varies over
23903 a finite range, it expands these variables out to all their possible
23904 values.  The results are collected into a vector, which is returned.
23905 For example, @samp{roots(x^4 = 1, x)} returns the four solutions
23906 @samp{[1, -1, (0, 1), (0, -1)]}.  Generally an @var{n}th degree
23907 polynomial will always have @var{n} roots on the complex plane.
23908 (If you have given a @code{real} declaration for the solution
23909 variable, then only the real-valued solutions, if any, will be
23910 reported; @pxref{Declarations}.)
23912 Note that because @kbd{a P} uses @kbd{H a S}, it is able to deliver
23913 symbolic solutions if the polynomial has symbolic coefficients.  Also
23914 note that Calc's solver is not able to get exact symbolic solutions
23915 to all polynomials.  Polynomials containing powers up to @expr{x^4}
23916 can always be solved exactly; polynomials of higher degree sometimes
23917 can be:  @expr{x^6 + x^3 + 1} is converted to @expr{(x^3)^2 + (x^3) + 1},
23918 which can be solved for @expr{x^3} using the quadratic equation, and then
23919 for @expr{x} by taking cube roots.  But in many cases, like
23920 @expr{x^6 + x + 1}, Calc does not know how to rewrite the polynomial
23921 into a form it can solve.  The @kbd{a P} command can still deliver a
23922 list of numerical roots, however, provided that Symbolic mode (@kbd{m s})
23923 is not turned on.  (If you work with Symbolic mode on, recall that the
23924 @kbd{N} (@code{calc-eval-num}) key is a handy way to reevaluate the
23925 formula on the stack with Symbolic mode temporarily off.)  Naturally,
23926 @kbd{a P} can only provide numerical roots if the polynomial coefficients
23927 are all numbers (real or complex).
23929 @node Solving Systems of Equations, Decomposing Polynomials, Multiple Solutions, Solving Equations
23930 @subsection Solving Systems of Equations
23932 @noindent
23933 @cindex Systems of equations, symbolic
23934 You can also use the commands described above to solve systems of
23935 simultaneous equations.  Just create a vector of equations, then
23936 specify a vector of variables for which to solve.  (You can omit
23937 the surrounding brackets when entering the vector of variables
23938 at the prompt.)
23940 For example, putting @samp{[x + y = a, x - y = b]} on the stack
23941 and typing @kbd{a S x,y @key{RET}} produces the vector of solutions
23942 @samp{[x = a - (a-b)/2, y = (a-b)/2]}.  The result vector will
23943 have the same length as the variables vector, and the variables
23944 will be listed in the same order there.  Note that the solutions
23945 are not always simplified as far as possible; the solution for
23946 @expr{x} here could be improved by an application of the @kbd{a n}
23947 command.
23949 Calc's algorithm works by trying to eliminate one variable at a
23950 time by solving one of the equations for that variable and then
23951 substituting into the other equations.  Calc will try all the
23952 possibilities, but you can speed things up by noting that Calc
23953 first tries to eliminate the first variable with the first
23954 equation, then the second variable with the second equation,
23955 and so on.  It also helps to put the simpler (e.g., more linear)
23956 equations toward the front of the list.  Calc's algorithm will
23957 solve any system of linear equations, and also many kinds of
23958 nonlinear systems.
23960 @ignore
23961 @starindex
23962 @end ignore
23963 @tindex elim
23964 Normally there will be as many variables as equations.  If you
23965 give fewer variables than equations (an ``over-determined'' system
23966 of equations), Calc will find a partial solution.  For example,
23967 typing @kbd{a S y @key{RET}} with the above system of equations
23968 would produce @samp{[y = a - x]}.  There are now several ways to
23969 express this solution in terms of the original variables; Calc uses
23970 the first one that it finds.  You can control the choice by adding
23971 variable specifiers of the form @samp{elim(@var{v})} to the
23972 variables list.  This says that @var{v} should be eliminated from
23973 the equations; the variable will not appear at all in the solution.
23974 For example, typing @kbd{a S y,elim(x)} would yield
23975 @samp{[y = a - (b+a)/2]}.
23977 If the variables list contains only @code{elim} specifiers,
23978 Calc simply eliminates those variables from the equations
23979 and then returns the resulting set of equations.  For example,
23980 @kbd{a S elim(x)} produces @samp{[a - 2 y = b]}.  Every variable
23981 eliminated will reduce the number of equations in the system
23982 by one.
23984 Again, @kbd{a S} gives you one solution to the system of
23985 equations.  If there are several solutions, you can use @kbd{H a S}
23986 to get a general family of solutions, or, if there is a finite
23987 number of solutions, you can use @kbd{a P} to get a list.  (In
23988 the latter case, the result will take the form of a matrix where
23989 the rows are different solutions and the columns correspond to the
23990 variables you requested.)
23992 Another way to deal with certain kinds of overdetermined systems of
23993 equations is the @kbd{a F} command, which does least-squares fitting
23994 to satisfy the equations.  @xref{Curve Fitting}.
23996 @node Decomposing Polynomials, , Solving Systems of Equations, Solving Equations
23997 @subsection Decomposing Polynomials
23999 @noindent
24000 @ignore
24001 @starindex
24002 @end ignore
24003 @tindex poly
24004 The @code{poly} function takes a polynomial and a variable as
24005 arguments, and returns a vector of polynomial coefficients (constant
24006 coefficient first).  For example, @samp{poly(x^3 + 2 x, x)} returns
24007 @expr{[0, 2, 0, 1]}.  If the input is not a polynomial in @expr{x},
24008 the call to @code{poly} is left in symbolic form.  If the input does
24009 not involve the variable @expr{x}, the input is returned in a list
24010 of length one, representing a polynomial with only a constant
24011 coefficient.  The call @samp{poly(x, x)} returns the vector @expr{[0, 1]}.
24012 The last element of the returned vector is guaranteed to be nonzero;
24013 note that @samp{poly(0, x)} returns the empty vector @expr{[]}.
24014 Note also that @expr{x} may actually be any formula; for example,
24015 @samp{poly(sin(x)^2 - sin(x) + 3, sin(x))} returns @expr{[3, -1, 1]}.
24017 @cindex Coefficients of polynomial
24018 @cindex Degree of polynomial
24019 To get the @expr{x^k} coefficient of polynomial @expr{p}, use
24020 @samp{poly(p, x)_(k+1)}.  To get the degree of polynomial @expr{p},
24021 use @samp{vlen(poly(p, x)) - 1}.  For example, @samp{poly((x+1)^4, x)}
24022 returns @samp{[1, 4, 6, 4, 1]}, so @samp{poly((x+1)^4, x)_(2+1)}
24023 gives the @expr{x^2} coefficient of this polynomial, 6.
24025 @ignore
24026 @starindex
24027 @end ignore
24028 @tindex gpoly
24029 One important feature of the solver is its ability to recognize
24030 formulas which are ``essentially'' polynomials.  This ability is
24031 made available to the user through the @code{gpoly} function, which
24032 is used just like @code{poly}:  @samp{gpoly(@var{expr}, @var{var})}.
24033 If @var{expr} is a polynomial in some term which includes @var{var}, then
24034 this function will return a vector @samp{[@var{x}, @var{c}, @var{a}]}
24035 where @var{x} is the term that depends on @var{var}, @var{c} is a
24036 vector of polynomial coefficients (like the one returned by @code{poly}),
24037 and @var{a} is a multiplier which is usually 1.  Basically,
24038 @samp{@var{expr} = @var{a}*(@var{c}_1 + @var{c}_2 @var{x} +
24039 @var{c}_3 @var{x}^2 + ...)}.  The last element of @var{c} is
24040 guaranteed to be non-zero, and @var{c} will not equal @samp{[1]}
24041 (i.e., the trivial decomposition @var{expr} = @var{x} is not
24042 considered a polynomial).  One side effect is that @samp{gpoly(x, x)}
24043 and @samp{gpoly(6, x)}, both of which might be expected to recognize
24044 their arguments as polynomials, will not because the decomposition
24045 is considered trivial.
24047 For example, @samp{gpoly((x-2)^2, x)} returns @samp{[x, [4, -4, 1], 1]},
24048 since the expanded form of this polynomial is @expr{4 - 4 x + x^2}.
24050 The term @var{x} may itself be a polynomial in @var{var}.  This is
24051 done to reduce the size of the @var{c} vector.  For example,
24052 @samp{gpoly(x^4 + x^2 - 1, x)} returns @samp{[x^2, [-1, 1, 1], 1]},
24053 since a quadratic polynomial in @expr{x^2} is easier to solve than
24054 a quartic polynomial in @expr{x}.
24056 A few more examples of the kinds of polynomials @code{gpoly} can
24057 discover:
24059 @smallexample
24060 sin(x) - 1               [sin(x), [-1, 1], 1]
24061 x + 1/x - 1              [x, [1, -1, 1], 1/x]
24062 x + 1/x                  [x^2, [1, 1], 1/x]
24063 x^3 + 2 x                [x^2, [2, 1], x]
24064 x + x^2:3 + sqrt(x)      [x^1:6, [1, 1, 0, 1], x^1:2]
24065 x^(2a) + 2 x^a + 5       [x^a, [5, 2, 1], 1]
24066 (exp(-x) + exp(x)) / 2   [e^(2 x), [0.5, 0.5], e^-x]
24067 @end smallexample
24069 The @code{poly} and @code{gpoly} functions accept a third integer argument
24070 which specifies the largest degree of polynomial that is acceptable.
24071 If this is @expr{n}, then only @var{c} vectors of length @expr{n+1}
24072 or less will be returned.  Otherwise, the @code{poly} or @code{gpoly}
24073 call will remain in symbolic form.  For example, the equation solver
24074 can handle quartics and smaller polynomials, so it calls
24075 @samp{gpoly(@var{expr}, @var{var}, 4)} to discover whether @var{expr}
24076 can be treated by its linear, quadratic, cubic, or quartic formulas.
24078 @ignore
24079 @starindex
24080 @end ignore
24081 @tindex pdeg
24082 The @code{pdeg} function computes the degree of a polynomial;
24083 @samp{pdeg(p,x)} is the highest power of @code{x} that appears in
24084 @code{p}.  This is the same as @samp{vlen(poly(p,x))-1}, but is
24085 much more efficient.  If @code{p} is constant with respect to @code{x},
24086 then @samp{pdeg(p,x) = 0}.  If @code{p} is not a polynomial in @code{x}
24087 (e.g., @samp{pdeg(2 cos(x), x)}, the function remains unevaluated.
24088 It is possible to omit the second argument @code{x}, in which case
24089 @samp{pdeg(p)} returns the highest total degree of any term of the
24090 polynomial, counting all variables that appear in @code{p}.  Note
24091 that @code{pdeg(c) = pdeg(c,x) = 0} for any nonzero constant @code{c};
24092 the degree of the constant zero is considered to be @code{-inf}
24093 (minus infinity).
24095 @ignore
24096 @starindex
24097 @end ignore
24098 @tindex plead
24099 The @code{plead} function finds the leading term of a polynomial.
24100 Thus @samp{plead(p,x)} is equivalent to @samp{poly(p,x)_vlen(poly(p,x))},
24101 though again more efficient.  In particular, @samp{plead((2x+1)^10, x)}
24102 returns 1024 without expanding out the list of coefficients.  The
24103 value of @code{plead(p,x)} will be zero only if @expr{p = 0}.
24105 @ignore
24106 @starindex
24107 @end ignore
24108 @tindex pcont
24109 The @code{pcont} function finds the @dfn{content} of a polynomial.  This
24110 is the greatest common divisor of all the coefficients of the polynomial.
24111 With two arguments, @code{pcont(p,x)} effectively uses @samp{poly(p,x)}
24112 to get a list of coefficients, then uses @code{pgcd} (the polynomial
24113 GCD function) to combine these into an answer.  For example,
24114 @samp{pcont(4 x y^2 + 6 x^2 y, x)} is @samp{2 y}.  The content is
24115 basically the ``biggest'' polynomial that can be divided into @code{p}
24116 exactly.  The sign of the content is the same as the sign of the leading
24117 coefficient.
24119 With only one argument, @samp{pcont(p)} computes the numerical
24120 content of the polynomial, i.e., the @code{gcd} of the numerical
24121 coefficients of all the terms in the formula.  Note that @code{gcd}
24122 is defined on rational numbers as well as integers; it computes
24123 the @code{gcd} of the numerators and the @code{lcm} of the
24124 denominators.  Thus @samp{pcont(4:3 x y^2 + 6 x^2 y)} returns 2:3.
24125 Dividing the polynomial by this number will clear all the
24126 denominators, as well as dividing by any common content in the
24127 numerators.  The numerical content of a polynomial is negative only
24128 if all the coefficients in the polynomial are negative.
24130 @ignore
24131 @starindex
24132 @end ignore
24133 @tindex pprim
24134 The @code{pprim} function finds the @dfn{primitive part} of a
24135 polynomial, which is simply the polynomial divided (using @code{pdiv}
24136 if necessary) by its content.  If the input polynomial has rational
24137 coefficients, the result will have integer coefficients in simplest
24138 terms.
24140 @node Numerical Solutions, Curve Fitting, Solving Equations, Algebra
24141 @section Numerical Solutions
24143 @noindent
24144 Not all equations can be solved symbolically.  The commands in this
24145 section use numerical algorithms that can find a solution to a specific
24146 instance of an equation to any desired accuracy.  Note that the
24147 numerical commands are slower than their algebraic cousins; it is a
24148 good idea to try @kbd{a S} before resorting to these commands.
24150 (@xref{Curve Fitting}, for some other, more specialized, operations
24151 on numerical data.)
24153 @menu
24154 * Root Finding::
24155 * Minimization::
24156 * Numerical Systems of Equations::
24157 @end menu
24159 @node Root Finding, Minimization, Numerical Solutions, Numerical Solutions
24160 @subsection Root Finding
24162 @noindent
24163 @kindex a R
24164 @pindex calc-find-root
24165 @tindex root
24166 @cindex Newton's method
24167 @cindex Roots of equations
24168 @cindex Numerical root-finding
24169 The @kbd{a R} (@code{calc-find-root}) [@code{root}] command finds a
24170 numerical solution (or @dfn{root}) of an equation.  (This command treats
24171 inequalities the same as equations.  If the input is any other kind
24172 of formula, it is interpreted as an equation of the form @expr{X = 0}.)
24174 The @kbd{a R} command requires an initial guess on the top of the
24175 stack, and a formula in the second-to-top position.  It prompts for a
24176 solution variable, which must appear in the formula.  All other variables
24177 that appear in the formula must have assigned values, i.e., when
24178 a value is assigned to the solution variable and the formula is
24179 evaluated with @kbd{=}, it should evaluate to a number.  Any assigned
24180 value for the solution variable itself is ignored and unaffected by
24181 this command.
24183 When the command completes, the initial guess is replaced on the stack
24184 by a vector of two numbers:  The value of the solution variable that
24185 solves the equation, and the difference between the lefthand and
24186 righthand sides of the equation at that value.  Ordinarily, the second
24187 number will be zero or very nearly zero.  (Note that Calc uses a
24188 slightly higher precision while finding the root, and thus the second
24189 number may be slightly different from the value you would compute from
24190 the equation yourself.)
24192 The @kbd{v h} (@code{calc-head}) command is a handy way to extract
24193 the first element of the result vector, discarding the error term.
24195 The initial guess can be a real number, in which case Calc searches
24196 for a real solution near that number, or a complex number, in which
24197 case Calc searches the whole complex plane near that number for a
24198 solution, or it can be an interval form which restricts the search
24199 to real numbers inside that interval.
24201 Calc tries to use @kbd{a d} to take the derivative of the equation.
24202 If this succeeds, it uses Newton's method.  If the equation is not
24203 differentiable Calc uses a bisection method.  (If Newton's method
24204 appears to be going astray, Calc switches over to bisection if it
24205 can, or otherwise gives up.  In this case it may help to try again
24206 with a slightly different initial guess.)  If the initial guess is a
24207 complex number, the function must be differentiable.
24209 If the formula (or the difference between the sides of an equation)
24210 is negative at one end of the interval you specify and positive at
24211 the other end, the root finder is guaranteed to find a root.
24212 Otherwise, Calc subdivides the interval into small parts looking for
24213 positive and negative values to bracket the root.  When your guess is
24214 an interval, Calc will not look outside that interval for a root.
24216 @kindex H a R
24217 @tindex wroot
24218 The @kbd{H a R} [@code{wroot}] command is similar to @kbd{a R}, except
24219 that if the initial guess is an interval for which the function has
24220 the same sign at both ends, then rather than subdividing the interval
24221 Calc attempts to widen it to enclose a root.  Use this mode if
24222 you are not sure if the function has a root in your interval.
24224 If the function is not differentiable, and you give a simple number
24225 instead of an interval as your initial guess, Calc uses this widening
24226 process even if you did not type the Hyperbolic flag.  (If the function
24227 @emph{is} differentiable, Calc uses Newton's method which does not
24228 require a bounding interval in order to work.)
24230 If Calc leaves the @code{root} or @code{wroot} function in symbolic
24231 form on the stack, it will normally display an explanation for why
24232 no root was found.  If you miss this explanation, press @kbd{w}
24233 (@code{calc-why}) to get it back.
24235 @node Minimization, Numerical Systems of Equations, Root Finding, Numerical Solutions
24236 @subsection Minimization
24238 @noindent
24239 @kindex a N
24240 @kindex H a N
24241 @kindex a X
24242 @kindex H a X
24243 @pindex calc-find-minimum
24244 @pindex calc-find-maximum
24245 @tindex minimize
24246 @tindex maximize
24247 @cindex Minimization, numerical
24248 The @kbd{a N} (@code{calc-find-minimum}) [@code{minimize}] command
24249 finds a minimum value for a formula.  It is very similar in operation
24250 to @kbd{a R} (@code{calc-find-root}):  You give the formula and an initial
24251 guess on the stack, and are prompted for the name of a variable.  The guess
24252 may be either a number near the desired minimum, or an interval enclosing
24253 the desired minimum.  The function returns a vector containing the
24254 value of the variable which minimizes the formula's value, along
24255 with the minimum value itself.
24257 Note that this command looks for a @emph{local} minimum.  Many functions
24258 have more than one minimum; some, like 
24259 @texline @math{x \sin x},
24260 @infoline @expr{x sin(x)}, 
24261 have infinitely many.  In fact, there is no easy way to define the
24262 ``global'' minimum of 
24263 @texline @math{x \sin x}
24264 @infoline @expr{x sin(x)} 
24265 but Calc can still locate any particular local minimum
24266 for you.  Calc basically goes downhill from the initial guess until it
24267 finds a point at which the function's value is greater both to the left
24268 and to the right.  Calc does not use derivatives when minimizing a function.
24270 If your initial guess is an interval and it looks like the minimum
24271 occurs at one or the other endpoint of the interval, Calc will return
24272 that endpoint only if that endpoint is closed; thus, minimizing @expr{17 x}
24273 over @expr{[2..3]} will return @expr{[2, 38]}, but minimizing over
24274 @expr{(2..3]} would report no minimum found.  In general, you should
24275 use closed intervals to find literally the minimum value in that
24276 range of @expr{x}, or open intervals to find the local minimum, if
24277 any, that happens to lie in that range.
24279 Most functions are smooth and flat near their minimum values.  Because
24280 of this flatness, if the current precision is, say, 12 digits, the
24281 variable can only be determined meaningfully to about six digits.  Thus
24282 you should set the precision to twice as many digits as you need in your
24283 answer.
24285 @ignore
24286 @mindex wmin@idots
24287 @end ignore
24288 @tindex wminimize
24289 @ignore
24290 @mindex wmax@idots
24291 @end ignore
24292 @tindex wmaximize
24293 The @kbd{H a N} [@code{wminimize}] command, analogously to @kbd{H a R},
24294 expands the guess interval to enclose a minimum rather than requiring
24295 that the minimum lie inside the interval you supply.
24297 The @kbd{a X} (@code{calc-find-maximum}) [@code{maximize}] and
24298 @kbd{H a X} [@code{wmaximize}] commands effectively minimize the
24299 negative of the formula you supply.
24301 The formula must evaluate to a real number at all points inside the
24302 interval (or near the initial guess if the guess is a number).  If
24303 the initial guess is a complex number the variable will be minimized
24304 over the complex numbers; if it is real or an interval it will
24305 be minimized over the reals.
24307 @node Numerical Systems of Equations, , Minimization, Numerical Solutions
24308 @subsection Systems of Equations
24310 @noindent
24311 @cindex Systems of equations, numerical
24312 The @kbd{a R} command can also solve systems of equations.  In this
24313 case, the equation should instead be a vector of equations, the
24314 guess should instead be a vector of numbers (intervals are not
24315 supported), and the variable should be a vector of variables.  You
24316 can omit the brackets while entering the list of variables.  Each
24317 equation must be differentiable by each variable for this mode to
24318 work.  The result will be a vector of two vectors:  The variable
24319 values that solved the system of equations, and the differences
24320 between the sides of the equations with those variable values.
24321 There must be the same number of equations as variables.  Since
24322 only plain numbers are allowed as guesses, the Hyperbolic flag has
24323 no effect when solving a system of equations.
24325 It is also possible to minimize over many variables with @kbd{a N}
24326 (or maximize with @kbd{a X}).  Once again the variable name should
24327 be replaced by a vector of variables, and the initial guess should
24328 be an equal-sized vector of initial guesses.  But, unlike the case of
24329 multidimensional @kbd{a R}, the formula being minimized should
24330 still be a single formula, @emph{not} a vector.  Beware that
24331 multidimensional minimization is currently @emph{very} slow.
24333 @node Curve Fitting, Summations, Numerical Solutions, Algebra
24334 @section Curve Fitting
24336 @noindent
24337 The @kbd{a F} command fits a set of data to a @dfn{model formula},
24338 such as @expr{y = m x + b} where @expr{m} and @expr{b} are parameters
24339 to be determined.  For a typical set of measured data there will be
24340 no single @expr{m} and @expr{b} that exactly fit the data; in this
24341 case, Calc chooses values of the parameters that provide the closest
24342 possible fit.
24344 @menu
24345 * Linear Fits::
24346 * Polynomial and Multilinear Fits::
24347 * Error Estimates for Fits::
24348 * Standard Nonlinear Models::
24349 * Curve Fitting Details::
24350 * Interpolation::
24351 @end menu
24353 @node Linear Fits, Polynomial and Multilinear Fits, Curve Fitting, Curve Fitting
24354 @subsection Linear Fits
24356 @noindent
24357 @kindex a F
24358 @pindex calc-curve-fit
24359 @tindex fit
24360 @cindex Linear regression
24361 @cindex Least-squares fits
24362 The @kbd{a F} (@code{calc-curve-fit}) [@code{fit}] command attempts
24363 to fit a set of data (@expr{x} and @expr{y} vectors of numbers) to a
24364 straight line, polynomial, or other function of @expr{x}.  For the
24365 moment we will consider only the case of fitting to a line, and we
24366 will ignore the issue of whether or not the model was in fact a good
24367 fit for the data.
24369 In a standard linear least-squares fit, we have a set of @expr{(x,y)}
24370 data points that we wish to fit to the model @expr{y = m x + b}
24371 by adjusting the parameters @expr{m} and @expr{b} to make the @expr{y}
24372 values calculated from the formula be as close as possible to the actual
24373 @expr{y} values in the data set.  (In a polynomial fit, the model is
24374 instead, say, @expr{y = a x^3 + b x^2 + c x + d}.  In a multilinear fit,
24375 we have data points of the form @expr{(x_1,x_2,x_3,y)} and our model is
24376 @expr{y = a x_1 + b x_2 + c x_3 + d}.  These will be discussed later.)
24378 In the model formula, variables like @expr{x} and @expr{x_2} are called
24379 the @dfn{independent variables}, and @expr{y} is the @dfn{dependent
24380 variable}.  Variables like @expr{m}, @expr{a}, and @expr{b} are called
24381 the @dfn{parameters} of the model.
24383 The @kbd{a F} command takes the data set to be fitted from the stack.
24384 By default, it expects the data in the form of a matrix.  For example,
24385 for a linear or polynomial fit, this would be a 
24386 @texline @math{2\times N}
24387 @infoline 2xN
24388 matrix where the first row is a list of @expr{x} values and the second
24389 row has the corresponding @expr{y} values.  For the multilinear fit
24390 shown above, the matrix would have four rows (@expr{x_1}, @expr{x_2},
24391 @expr{x_3}, and @expr{y}, respectively).
24393 If you happen to have an 
24394 @texline @math{N\times2}
24395 @infoline Nx2
24396 matrix instead of a 
24397 @texline @math{2\times N}
24398 @infoline 2xN
24399 matrix, just press @kbd{v t} first to transpose the matrix.
24401 After you type @kbd{a F}, Calc prompts you to select a model.  For a
24402 linear fit, press the digit @kbd{1}.
24404 Calc then prompts for you to name the variables.  By default it chooses
24405 high letters like @expr{x} and @expr{y} for independent variables and
24406 low letters like @expr{a} and @expr{b} for parameters.  (The dependent
24407 variable doesn't need a name.)  The two kinds of variables are separated
24408 by a semicolon.  Since you generally care more about the names of the
24409 independent variables than of the parameters, Calc also allows you to
24410 name only those and let the parameters use default names.
24412 For example, suppose the data matrix
24414 @ifinfo
24415 @example
24416 @group
24417 [ [ 1, 2, 3, 4,  5  ]
24418   [ 5, 7, 9, 11, 13 ] ]
24419 @end group
24420 @end example
24421 @end ifinfo
24422 @tex
24423 \turnoffactive
24424 \turnoffactive
24425 \beforedisplay
24426 $$ \pmatrix{ 1 & 2 & 3 & 4  & 5  \cr
24427              5 & 7 & 9 & 11 & 13 }
24429 \afterdisplay
24430 @end tex
24432 @noindent
24433 is on the stack and we wish to do a simple linear fit.  Type
24434 @kbd{a F}, then @kbd{1} for the model, then @key{RET} to use
24435 the default names.  The result will be the formula @expr{3 + 2 x}
24436 on the stack.  Calc has created the model expression @kbd{a + b x},
24437 then found the optimal values of @expr{a} and @expr{b} to fit the
24438 data.  (In this case, it was able to find an exact fit.)  Calc then
24439 substituted those values for @expr{a} and @expr{b} in the model
24440 formula.
24442 The @kbd{a F} command puts two entries in the trail.  One is, as
24443 always, a copy of the result that went to the stack; the other is
24444 a vector of the actual parameter values, written as equations:
24445 @expr{[a = 3, b = 2]}, in case you'd rather read them in a list
24446 than pick them out of the formula.  (You can type @kbd{t y}
24447 to move this vector to the stack; see @ref{Trail Commands}.
24449 Specifying a different independent variable name will affect the
24450 resulting formula: @kbd{a F 1 k @key{RET}} produces @kbd{3 + 2 k}.
24451 Changing the parameter names (say, @kbd{a F 1 k;b,m @key{RET}}) will affect
24452 the equations that go into the trail.
24454 @tex
24455 \bigskip
24456 @end tex
24458 To see what happens when the fit is not exact, we could change
24459 the number 13 in the data matrix to 14 and try the fit again.
24460 The result is:
24462 @example
24463 2.6 + 2.2 x
24464 @end example
24466 Evaluating this formula, say with @kbd{v x 5 @key{RET} @key{TAB} V M $ @key{RET}}, shows
24467 a reasonably close match to the y-values in the data.
24469 @example
24470 [4.8, 7., 9.2, 11.4, 13.6]
24471 @end example
24473 Since there is no line which passes through all the @var{n} data points,
24474 Calc has chosen a line that best approximates the data points using
24475 the method of least squares.  The idea is to define the @dfn{chi-square}
24476 error measure
24478 @ifinfo
24479 @example
24480 chi^2 = sum((y_i - (a + b x_i))^2, i, 1, N)
24481 @end example
24482 @end ifinfo
24483 @tex
24484 \turnoffactive
24485 \beforedisplay
24486 $$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$
24487 \afterdisplay
24488 @end tex
24490 @noindent
24491 which is clearly zero if @expr{a + b x} exactly fits all data points,
24492 and increases as various @expr{a + b x_i} values fail to match the
24493 corresponding @expr{y_i} values.  There are several reasons why the
24494 summand is squared, one of them being to ensure that 
24495 @texline @math{\chi^2 \ge 0}.
24496 @infoline @expr{chi^2 >= 0}.
24497 Least-squares fitting simply chooses the values of @expr{a} and @expr{b}
24498 for which the error 
24499 @texline @math{\chi^2}
24500 @infoline @expr{chi^2} 
24501 is as small as possible.
24503 Other kinds of models do the same thing but with a different model
24504 formula in place of @expr{a + b x_i}.
24506 @tex
24507 \bigskip
24508 @end tex
24510 A numeric prefix argument causes the @kbd{a F} command to take the
24511 data in some other form than one big matrix.  A positive argument @var{n}
24512 will take @var{N} items from the stack, corresponding to the @var{n} rows
24513 of a data matrix.  In the linear case, @var{n} must be 2 since there
24514 is always one independent variable and one dependent variable.
24516 A prefix of zero or plain @kbd{C-u} is a compromise; Calc takes two
24517 items from the stack, an @var{n}-row matrix of @expr{x} values, and a
24518 vector of @expr{y} values.  If there is only one independent variable,
24519 the @expr{x} values can be either a one-row matrix or a plain vector,
24520 in which case the @kbd{C-u} prefix is the same as a @w{@kbd{C-u 2}} prefix.
24522 @node Polynomial and Multilinear Fits, Error Estimates for Fits, Linear Fits, Curve Fitting
24523 @subsection Polynomial and Multilinear Fits
24525 @noindent
24526 To fit the data to higher-order polynomials, just type one of the
24527 digits @kbd{2} through @kbd{9} when prompted for a model.  For example,
24528 we could fit the original data matrix from the previous section
24529 (with 13, not 14) to a parabola instead of a line by typing
24530 @kbd{a F 2 @key{RET}}.
24532 @example
24533 2.00000000001 x - 1.5e-12 x^2 + 2.99999999999
24534 @end example
24536 Note that since the constant and linear terms are enough to fit the
24537 data exactly, it's no surprise that Calc chose a tiny contribution
24538 for @expr{x^2}.  (The fact that it's not exactly zero is due only
24539 to roundoff error.  Since our data are exact integers, we could get
24540 an exact answer by typing @kbd{m f} first to get Fraction mode.
24541 Then the @expr{x^2} term would vanish altogether.  Usually, though,
24542 the data being fitted will be approximate floats so Fraction mode
24543 won't help.)
24545 Doing the @kbd{a F 2} fit on the data set with 14 instead of 13
24546 gives a much larger @expr{x^2} contribution, as Calc bends the
24547 line slightly to improve the fit.
24549 @example
24550 0.142857142855 x^2 + 1.34285714287 x + 3.59999999998
24551 @end example
24553 An important result from the theory of polynomial fitting is that it
24554 is always possible to fit @var{n} data points exactly using a polynomial
24555 of degree @mathit{@var{n}-1}, sometimes called an @dfn{interpolating polynomial}.
24556 Using the modified (14) data matrix, a model number of 4 gives
24557 a polynomial that exactly matches all five data points:
24559 @example
24560 0.04167 x^4 - 0.4167 x^3 + 1.458 x^2 - 0.08333 x + 4.
24561 @end example
24563 The actual coefficients we get with a precision of 12, like
24564 @expr{0.0416666663588}, clearly suffer from loss of precision.
24565 It is a good idea to increase the working precision to several
24566 digits beyond what you need when you do a fitting operation.
24567 Or, if your data are exact, use Fraction mode to get exact
24568 results.
24570 You can type @kbd{i} instead of a digit at the model prompt to fit
24571 the data exactly to a polynomial.  This just counts the number of
24572 columns of the data matrix to choose the degree of the polynomial
24573 automatically.
24575 Fitting data ``exactly'' to high-degree polynomials is not always
24576 a good idea, though.  High-degree polynomials have a tendency to
24577 wiggle uncontrollably in between the fitting data points.  Also,
24578 if the exact-fit polynomial is going to be used to interpolate or
24579 extrapolate the data, it is numerically better to use the @kbd{a p}
24580 command described below.  @xref{Interpolation}.
24582 @tex
24583 \bigskip
24584 @end tex
24586 Another generalization of the linear model is to assume the
24587 @expr{y} values are a sum of linear contributions from several
24588 @expr{x} values.  This is a @dfn{multilinear} fit, and it is also
24589 selected by the @kbd{1} digit key.  (Calc decides whether the fit
24590 is linear or multilinear by counting the rows in the data matrix.)
24592 Given the data matrix,
24594 @example
24595 @group
24596 [ [  1,   2,   3,    4,   5  ]
24597   [  7,   2,   3,    5,   2  ]
24598   [ 14.5, 15, 18.5, 22.5, 24 ] ]
24599 @end group
24600 @end example
24602 @noindent
24603 the command @kbd{a F 1 @key{RET}} will call the first row @expr{x} and the
24604 second row @expr{y}, and will fit the values in the third row to the
24605 model @expr{a + b x + c y}.
24607 @example
24608 8. + 3. x + 0.5 y
24609 @end example
24611 Calc can do multilinear fits with any number of independent variables
24612 (i.e., with any number of data rows).
24614 @tex
24615 \bigskip
24616 @end tex
24618 Yet another variation is @dfn{homogeneous} linear models, in which
24619 the constant term is known to be zero.  In the linear case, this
24620 means the model formula is simply @expr{a x}; in the multilinear
24621 case, the model might be @expr{a x + b y + c z}; and in the polynomial
24622 case, the model could be @expr{a x + b x^2 + c x^3}.  You can get
24623 a homogeneous linear or multilinear model by pressing the letter
24624 @kbd{h} followed by a regular model key, like @kbd{1} or @kbd{2}.
24626 It is certainly possible to have other constrained linear models,
24627 like @expr{2.3 + a x} or @expr{a - 4 x}.  While there is no single
24628 key to select models like these, a later section shows how to enter
24629 any desired model by hand.  In the first case, for example, you
24630 would enter @kbd{a F ' 2.3 + a x}.
24632 Another class of models that will work but must be entered by hand
24633 are multinomial fits, e.g., @expr{a + b x + c y + d x^2 + e y^2 + f x y}.
24635 @node Error Estimates for Fits, Standard Nonlinear Models, Polynomial and Multilinear Fits, Curve Fitting
24636 @subsection Error Estimates for Fits
24638 @noindent
24639 @kindex H a F
24640 @tindex efit
24641 With the Hyperbolic flag, @kbd{H a F} [@code{efit}] performs the same
24642 fitting operation as @kbd{a F}, but reports the coefficients as error
24643 forms instead of plain numbers.  Fitting our two data matrices (first
24644 with 13, then with 14) to a line with @kbd{H a F} gives the results,
24646 @example
24647 3. + 2. x
24648 2.6 +/- 0.382970843103 + 2.2 +/- 0.115470053838 x
24649 @end example
24651 In the first case the estimated errors are zero because the linear
24652 fit is perfect.  In the second case, the errors are nonzero but
24653 moderately small, because the data are still very close to linear.
24655 It is also possible for the @emph{input} to a fitting operation to
24656 contain error forms.  The data values must either all include errors
24657 or all be plain numbers.  Error forms can go anywhere but generally
24658 go on the numbers in the last row of the data matrix.  If the last
24659 row contains error forms
24660 @texline `@var{y_i}@w{ @tfn{+/-} }@math{\sigma_i}', 
24661 @infoline `@var{y_i}@w{ @tfn{+/-} }@var{sigma_i}', 
24662 then the 
24663 @texline @math{\chi^2}
24664 @infoline @expr{chi^2}
24665 statistic is now,
24667 @ifinfo
24668 @example
24669 chi^2 = sum(((y_i - (a + b x_i)) / sigma_i)^2, i, 1, N)
24670 @end example
24671 @end ifinfo
24672 @tex
24673 \turnoffactive
24674 \beforedisplay
24675 $$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$
24676 \afterdisplay
24677 @end tex
24679 @noindent
24680 so that data points with larger error estimates contribute less to
24681 the fitting operation.
24683 If there are error forms on other rows of the data matrix, all the
24684 errors for a given data point are combined; the square root of the
24685 sum of the squares of the errors forms the 
24686 @texline @math{\sigma_i}
24687 @infoline @expr{sigma_i} 
24688 used for the data point.
24690 Both @kbd{a F} and @kbd{H a F} can accept error forms in the input
24691 matrix, although if you are concerned about error analysis you will
24692 probably use @kbd{H a F} so that the output also contains error
24693 estimates.
24695 If the input contains error forms but all the 
24696 @texline @math{\sigma_i}
24697 @infoline @expr{sigma_i} 
24698 values are the same, it is easy to see that the resulting fitted model
24699 will be the same as if the input did not have error forms at all 
24700 @texline (@math{\chi^2}
24701 @infoline (@expr{chi^2}
24702 is simply scaled uniformly by 
24703 @texline @math{1 / \sigma^2},
24704 @infoline @expr{1 / sigma^2}, 
24705 which doesn't affect where it has a minimum).  But there @emph{will} be
24706 a difference in the estimated errors of the coefficients reported by
24707 @kbd{H a F}. 
24709 Consult any text on statistical modeling of data for a discussion
24710 of where these error estimates come from and how they should be
24711 interpreted.
24713 @tex
24714 \bigskip
24715 @end tex
24717 @kindex I a F
24718 @tindex xfit
24719 With the Inverse flag, @kbd{I a F} [@code{xfit}] produces even more
24720 information.  The result is a vector of six items:
24722 @enumerate
24723 @item
24724 The model formula with error forms for its coefficients or
24725 parameters.  This is the result that @kbd{H a F} would have
24726 produced.
24728 @item
24729 A vector of ``raw'' parameter values for the model.  These are the
24730 polynomial coefficients or other parameters as plain numbers, in the
24731 same order as the parameters appeared in the final prompt of the
24732 @kbd{I a F} command.  For polynomials of degree @expr{d}, this vector
24733 will have length @expr{M = d+1} with the constant term first.
24735 @item
24736 The covariance matrix @expr{C} computed from the fit.  This is
24737 an @var{m}x@var{m} symmetric matrix; the diagonal elements
24738 @texline @math{C_{jj}}
24739 @infoline @expr{C_j_j} 
24740 are the variances 
24741 @texline @math{\sigma_j^2}
24742 @infoline @expr{sigma_j^2} 
24743 of the parameters.  The other elements are covariances
24744 @texline @math{\sigma_{ij}^2} 
24745 @infoline @expr{sigma_i_j^2} 
24746 that describe the correlation between pairs of parameters.  (A related
24747 set of numbers, the @dfn{linear correlation coefficients} 
24748 @texline @math{r_{ij}},
24749 @infoline @expr{r_i_j},
24750 are defined as 
24751 @texline @math{\sigma_{ij}^2 / \sigma_i \, \sigma_j}.)
24752 @infoline @expr{sigma_i_j^2 / sigma_i sigma_j}.)
24754 @item
24755 A vector of @expr{M} ``parameter filter'' functions whose
24756 meanings are described below.  If no filters are necessary this
24757 will instead be an empty vector; this is always the case for the
24758 polynomial and multilinear fits described so far.
24760 @item
24761 The value of 
24762 @texline @math{\chi^2}
24763 @infoline @expr{chi^2} 
24764 for the fit, calculated by the formulas shown above.  This gives a
24765 measure of the quality of the fit; statisticians consider
24766 @texline @math{\chi^2 \approx N - M}
24767 @infoline @expr{chi^2 = N - M} 
24768 to indicate a moderately good fit (where again @expr{N} is the number of
24769 data points and @expr{M} is the number of parameters).
24771 @item
24772 A measure of goodness of fit expressed as a probability @expr{Q}.
24773 This is computed from the @code{utpc} probability distribution
24774 function using 
24775 @texline @math{\chi^2}
24776 @infoline @expr{chi^2} 
24777 with @expr{N - M} degrees of freedom.  A
24778 value of 0.5 implies a good fit; some texts recommend that often
24779 @expr{Q = 0.1} or even 0.001 can signify an acceptable fit.  In
24780 particular, 
24781 @texline @math{\chi^2}
24782 @infoline @expr{chi^2} 
24783 statistics assume the errors in your inputs
24784 follow a normal (Gaussian) distribution; if they don't, you may
24785 have to accept smaller values of @expr{Q}.
24787 The @expr{Q} value is computed only if the input included error
24788 estimates.  Otherwise, Calc will report the symbol @code{nan}
24789 for @expr{Q}.  The reason is that in this case the 
24790 @texline @math{\chi^2}
24791 @infoline @expr{chi^2}
24792 value has effectively been used to estimate the original errors
24793 in the input, and thus there is no redundant information left
24794 over to use for a confidence test.
24795 @end enumerate
24797 @node Standard Nonlinear Models, Curve Fitting Details, Error Estimates for Fits, Curve Fitting
24798 @subsection Standard Nonlinear Models
24800 @noindent
24801 The @kbd{a F} command also accepts other kinds of models besides
24802 lines and polynomials.  Some common models have quick single-key
24803 abbreviations; others must be entered by hand as algebraic formulas.
24805 Here is a complete list of the standard models recognized by @kbd{a F}:
24807 @table @kbd
24808 @item 1
24809 Linear or multilinear.  @mathit{a + b x + c y + d z}.
24810 @item 2-9
24811 Polynomials.  @mathit{a + b x + c x^2 + d x^3}.
24812 @item e
24813 Exponential.  @mathit{a} @tfn{exp}@mathit{(b x)} @tfn{exp}@mathit{(c y)}.
24814 @item E
24815 Base-10 exponential.  @mathit{a} @tfn{10^}@mathit{(b x)} @tfn{10^}@mathit{(c y)}.
24816 @item x
24817 Exponential (alternate notation).  @tfn{exp}@mathit{(a + b x + c y)}.
24818 @item X
24819 Base-10 exponential (alternate).  @tfn{10^}@mathit{(a + b x + c y)}.
24820 @item l
24821 Logarithmic.  @mathit{a + b} @tfn{ln}@mathit{(x) + c} @tfn{ln}@mathit{(y)}.
24822 @item L
24823 Base-10 logarithmic.  @mathit{a + b} @tfn{log10}@mathit{(x) + c} @tfn{log10}@mathit{(y)}.
24824 @item ^
24825 General exponential.  @mathit{a b^x c^y}.
24826 @item p
24827 Power law.  @mathit{a x^b y^c}.
24828 @item q
24829 Quadratic.  @mathit{a + b (x-c)^2 + d (x-e)^2}.
24830 @item g
24831 Gaussian.  
24832 @texline @math{{a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)}.
24833 @infoline @mathit{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}.
24834 @end table
24836 All of these models are used in the usual way; just press the appropriate
24837 letter at the model prompt, and choose variable names if you wish.  The
24838 result will be a formula as shown in the above table, with the best-fit
24839 values of the parameters substituted.  (You may find it easier to read
24840 the parameter values from the vector that is placed in the trail.)
24842 All models except Gaussian and polynomials can generalize as shown to any
24843 number of independent variables.  Also, all the built-in models have an
24844 additive or multiplicative parameter shown as @expr{a} in the above table
24845 which can be replaced by zero or one, as appropriate, by typing @kbd{h}
24846 before the model key.
24848 Note that many of these models are essentially equivalent, but express
24849 the parameters slightly differently.  For example, @expr{a b^x} and
24850 the other two exponential models are all algebraic rearrangements of
24851 each other.  Also, the ``quadratic'' model is just a degree-2 polynomial
24852 with the parameters expressed differently.  Use whichever form best
24853 matches the problem.
24855 The HP-28/48 calculators support four different models for curve
24856 fitting, called @code{LIN}, @code{LOG}, @code{EXP}, and @code{PWR}.
24857 These correspond to Calc models @samp{a + b x}, @samp{a + b ln(x)},
24858 @samp{a exp(b x)}, and @samp{a x^b}, respectively.  In each case,
24859 @expr{a} is what the HP-48 identifies as the ``intercept,'' and
24860 @expr{b} is what it calls the ``slope.''
24862 @tex
24863 \bigskip
24864 @end tex
24866 If the model you want doesn't appear on this list, press @kbd{'}
24867 (the apostrophe key) at the model prompt to enter any algebraic
24868 formula, such as @kbd{m x - b}, as the model.  (Not all models
24869 will work, though---see the next section for details.)
24871 The model can also be an equation like @expr{y = m x + b}.
24872 In this case, Calc thinks of all the rows of the data matrix on
24873 equal terms; this model effectively has two parameters
24874 (@expr{m} and @expr{b}) and two independent variables (@expr{x}
24875 and @expr{y}), with no ``dependent'' variables.  Model equations
24876 do not need to take this @expr{y =} form.  For example, the
24877 implicit line equation @expr{a x + b y = 1} works fine as a
24878 model.
24880 When you enter a model, Calc makes an alphabetical list of all
24881 the variables that appear in the model.  These are used for the
24882 default parameters, independent variables, and dependent variable
24883 (in that order).  If you enter a plain formula (not an equation),
24884 Calc assumes the dependent variable does not appear in the formula
24885 and thus does not need a name.
24887 For example, if the model formula has the variables @expr{a,mu,sigma,t,x},
24888 and the data matrix has three rows (meaning two independent variables),
24889 Calc will use @expr{a,mu,sigma} as the default parameters, and the
24890 data rows will be named @expr{t} and @expr{x}, respectively.  If you
24891 enter an equation instead of a plain formula, Calc will use @expr{a,mu}
24892 as the parameters, and @expr{sigma,t,x} as the three independent
24893 variables.
24895 You can, of course, override these choices by entering something
24896 different at the prompt.  If you leave some variables out of the list,
24897 those variables must have stored values and those stored values will
24898 be used as constants in the model.  (Stored values for the parameters
24899 and independent variables are ignored by the @kbd{a F} command.)
24900 If you list only independent variables, all the remaining variables
24901 in the model formula will become parameters.
24903 If there are @kbd{$} signs in the model you type, they will stand
24904 for parameters and all other variables (in alphabetical order)
24905 will be independent.  Use @kbd{$} for one parameter, @kbd{$$} for
24906 another, and so on.  Thus @kbd{$ x + $$} is another way to describe
24907 a linear model.
24909 If you type a @kbd{$} instead of @kbd{'} at the model prompt itself,
24910 Calc will take the model formula from the stack.  (The data must then
24911 appear at the second stack level.)  The same conventions are used to
24912 choose which variables in the formula are independent by default and
24913 which are parameters.
24915 Models taken from the stack can also be expressed as vectors of
24916 two or three elements, @expr{[@var{model}, @var{vars}]} or
24917 @expr{[@var{model}, @var{vars}, @var{params}]}.  Each of @var{vars}
24918 and @var{params} may be either a variable or a vector of variables.
24919 (If @var{params} is omitted, all variables in @var{model} except
24920 those listed as @var{vars} are parameters.)
24922 When you enter a model manually with @kbd{'}, Calc puts a 3-vector
24923 describing the model in the trail so you can get it back if you wish.
24925 @tex
24926 \bigskip
24927 @end tex
24929 @vindex Model1
24930 @vindex Model2
24931 Finally, you can store a model in one of the Calc variables
24932 @code{Model1} or @code{Model2}, then use this model by typing
24933 @kbd{a F u} or @kbd{a F U} (respectively).  The value stored in
24934 the variable can be any of the formats that @kbd{a F $} would
24935 accept for a model on the stack.
24937 @tex
24938 \bigskip
24939 @end tex
24941 Calc uses the principal values of inverse functions like @code{ln}
24942 and @code{arcsin} when doing fits.  For example, when you enter
24943 the model @samp{y = sin(a t + b)} Calc actually uses the easier
24944 form @samp{arcsin(y) = a t + b}.  The @code{arcsin} function always
24945 returns results in the range from @mathit{-90} to 90 degrees (or the
24946 equivalent range in radians).  Suppose you had data that you
24947 believed to represent roughly three oscillations of a sine wave,
24948 so that the argument of the sine might go from zero to 
24949 @texline @math{3\times360}
24950 @infoline @mathit{3*360} 
24951 degrees.
24952 The above model would appear to be a good way to determine the
24953 true frequency and phase of the sine wave, but in practice it
24954 would fail utterly.  The righthand side of the actual model
24955 @samp{arcsin(y) = a t + b} will grow smoothly with @expr{t}, but
24956 the lefthand side will bounce back and forth between @mathit{-90} and 90.
24957 No values of @expr{a} and @expr{b} can make the two sides match,
24958 even approximately.
24960 There is no good solution to this problem at present.  You could
24961 restrict your data to small enough ranges so that the above problem
24962 doesn't occur (i.e., not straddling any peaks in the sine wave).
24963 Or, in this case, you could use a totally different method such as
24964 Fourier analysis, which is beyond the scope of the @kbd{a F} command.
24965 (Unfortunately, Calc does not currently have any facilities for
24966 taking Fourier and related transforms.)
24968 @node Curve Fitting Details, Interpolation, Standard Nonlinear Models, Curve Fitting
24969 @subsection Curve Fitting Details
24971 @noindent
24972 Calc's internal least-squares fitter can only handle multilinear
24973 models.  More precisely, it can handle any model of the form
24974 @expr{a f(x,y,z) + b g(x,y,z) + c h(x,y,z)}, where @expr{a,b,c}
24975 are the parameters and @expr{x,y,z} are the independent variables
24976 (of course there can be any number of each, not just three).
24978 In a simple multilinear or polynomial fit, it is easy to see how
24979 to convert the model into this form.  For example, if the model
24980 is @expr{a + b x + c x^2}, then @expr{f(x) = 1}, @expr{g(x) = x},
24981 and @expr{h(x) = x^2} are suitable functions.
24983 For other models, Calc uses a variety of algebraic manipulations
24984 to try to put the problem into the form
24986 @smallexample
24987 Y(x,y,z) = A(a,b,c) F(x,y,z) + B(a,b,c) G(x,y,z) + C(a,b,c) H(x,y,z)
24988 @end smallexample
24990 @noindent
24991 where @expr{Y,A,B,C,F,G,H} are arbitrary functions.  It computes
24992 @expr{Y}, @expr{F}, @expr{G}, and @expr{H} for all the data points,
24993 does a standard linear fit to find the values of @expr{A}, @expr{B},
24994 and @expr{C}, then uses the equation solver to solve for @expr{a,b,c}
24995 in terms of @expr{A,B,C}.
24997 A remarkable number of models can be cast into this general form.
24998 We'll look at two examples here to see how it works.  The power-law
24999 model @expr{y = a x^b} with two independent variables and two parameters
25000 can be rewritten as follows:
25002 @example
25003 y = a x^b
25004 y = a exp(b ln(x))
25005 y = exp(ln(a) + b ln(x))
25006 ln(y) = ln(a) + b ln(x)
25007 @end example
25009 @noindent
25010 which matches the desired form with 
25011 @texline @math{Y = \ln(y)},
25012 @infoline @expr{Y = ln(y)}, 
25013 @texline @math{A = \ln(a)},
25014 @infoline @expr{A = ln(a)},
25015 @expr{F = 1}, @expr{B = b}, and 
25016 @texline @math{G = \ln(x)}.
25017 @infoline @expr{G = ln(x)}.  
25018 Calc thus computes the logarithms of your @expr{y} and @expr{x} values,
25019 does a linear fit for @expr{A} and @expr{B}, then solves to get 
25020 @texline @math{a = \exp(A)} 
25021 @infoline @expr{a = exp(A)} 
25022 and @expr{b = B}.
25024 Another interesting example is the ``quadratic'' model, which can
25025 be handled by expanding according to the distributive law.
25027 @example
25028 y = a + b*(x - c)^2
25029 y = a + b c^2 - 2 b c x + b x^2
25030 @end example
25032 @noindent
25033 which matches with @expr{Y = y}, @expr{A = a + b c^2}, @expr{F = 1},
25034 @expr{B = -2 b c}, @expr{G = x} (the @mathit{-2} factor could just as easily
25035 have been put into @expr{G} instead of @expr{B}), @expr{C = b}, and
25036 @expr{H = x^2}.
25038 The Gaussian model looks quite complicated, but a closer examination
25039 shows that it's actually similar to the quadratic model but with an
25040 exponential that can be brought to the top and moved into @expr{Y}.
25042 An example of a model that cannot be put into general linear
25043 form is a Gaussian with a constant background added on, i.e.,
25044 @expr{d} + the regular Gaussian formula.  If you have a model like
25045 this, your best bet is to replace enough of your parameters with
25046 constants to make the model linearizable, then adjust the constants
25047 manually by doing a series of fits.  You can compare the fits by
25048 graphing them, by examining the goodness-of-fit measures returned by
25049 @kbd{I a F}, or by some other method suitable to your application.
25050 Note that some models can be linearized in several ways.  The
25051 Gaussian-plus-@var{d} model can be linearized by setting @expr{d}
25052 (the background) to a constant, or by setting @expr{b} (the standard
25053 deviation) and @expr{c} (the mean) to constants.
25055 To fit a model with constants substituted for some parameters, just
25056 store suitable values in those parameter variables, then omit them
25057 from the list of parameters when you answer the variables prompt.
25059 @tex
25060 \bigskip
25061 @end tex
25063 A last desperate step would be to use the general-purpose
25064 @code{minimize} function rather than @code{fit}.  After all, both
25065 functions solve the problem of minimizing an expression (the 
25066 @texline @math{\chi^2}
25067 @infoline @expr{chi^2}
25068 sum) by adjusting certain parameters in the expression.  The @kbd{a F}
25069 command is able to use a vastly more efficient algorithm due to its
25070 special knowledge about linear chi-square sums, but the @kbd{a N}
25071 command can do the same thing by brute force.
25073 A compromise would be to pick out a few parameters without which the
25074 fit is linearizable, and use @code{minimize} on a call to @code{fit}
25075 which efficiently takes care of the rest of the parameters.  The thing
25076 to be minimized would be the value of 
25077 @texline @math{\chi^2}
25078 @infoline @expr{chi^2} 
25079 returned as the fifth result of the @code{xfit} function:
25081 @smallexample
25082 minimize(xfit(gaus(a,b,c,d,x), x, [a,b,c], data)_5, d, guess)
25083 @end smallexample
25085 @noindent
25086 where @code{gaus} represents the Gaussian model with background,
25087 @code{data} represents the data matrix, and @code{guess} represents
25088 the initial guess for @expr{d} that @code{minimize} requires.
25089 This operation will only be, shall we say, extraordinarily slow
25090 rather than astronomically slow (as would be the case if @code{minimize}
25091 were used by itself to solve the problem).
25093 @tex
25094 \bigskip
25095 @end tex
25097 The @kbd{I a F} [@code{xfit}] command is somewhat trickier when
25098 nonlinear models are used.  The second item in the result is the
25099 vector of ``raw'' parameters @expr{A}, @expr{B}, @expr{C}.  The
25100 covariance matrix is written in terms of those raw parameters.
25101 The fifth item is a vector of @dfn{filter} expressions.  This
25102 is the empty vector @samp{[]} if the raw parameters were the same
25103 as the requested parameters, i.e., if @expr{A = a}, @expr{B = b},
25104 and so on (which is always true if the model is already linear
25105 in the parameters as written, e.g., for polynomial fits).  If the
25106 parameters had to be rearranged, the fifth item is instead a vector
25107 of one formula per parameter in the original model.  The raw
25108 parameters are expressed in these ``filter'' formulas as
25109 @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)} for @expr{B},
25110 and so on.
25112 When Calc needs to modify the model to return the result, it replaces
25113 @samp{fitdummy(1)} in all the filters with the first item in the raw
25114 parameters list, and so on for the other raw parameters, then
25115 evaluates the resulting filter formulas to get the actual parameter
25116 values to be substituted into the original model.  In the case of
25117 @kbd{H a F} and @kbd{I a F} where the parameters must be error forms,
25118 Calc uses the square roots of the diagonal entries of the covariance
25119 matrix as error values for the raw parameters, then lets Calc's
25120 standard error-form arithmetic take it from there.
25122 If you use @kbd{I a F} with a nonlinear model, be sure to remember
25123 that the covariance matrix is in terms of the raw parameters,
25124 @emph{not} the actual requested parameters.  It's up to you to
25125 figure out how to interpret the covariances in the presence of
25126 nontrivial filter functions.
25128 Things are also complicated when the input contains error forms.
25129 Suppose there are three independent and dependent variables, @expr{x},
25130 @expr{y}, and @expr{z}, one or more of which are error forms in the
25131 data.  Calc combines all the error values by taking the square root
25132 of the sum of the squares of the errors.  It then changes @expr{x}
25133 and @expr{y} to be plain numbers, and makes @expr{z} into an error
25134 form with this combined error.  The @expr{Y(x,y,z)} part of the
25135 linearized model is evaluated, and the result should be an error
25136 form.  The error part of that result is used for 
25137 @texline @math{\sigma_i}
25138 @infoline @expr{sigma_i} 
25139 for the data point.  If for some reason @expr{Y(x,y,z)} does not return 
25140 an error form, the combined error from @expr{z} is used directly for 
25141 @texline @math{\sigma_i}.
25142 @infoline @expr{sigma_i}.  
25143 Finally, @expr{z} is also stripped of its error
25144 for use in computing @expr{F(x,y,z)}, @expr{G(x,y,z)} and so on;
25145 the righthand side of the linearized model is computed in regular
25146 arithmetic with no error forms.
25148 (While these rules may seem complicated, they are designed to do
25149 the most reasonable thing in the typical case that @expr{Y(x,y,z)}
25150 depends only on the dependent variable @expr{z}, and in fact is
25151 often simply equal to @expr{z}.  For common cases like polynomials
25152 and multilinear models, the combined error is simply used as the
25153 @texline @math{\sigma}
25154 @infoline @expr{sigma} 
25155 for the data point with no further ado.)
25157 @tex
25158 \bigskip
25159 @end tex
25161 @vindex FitRules
25162 It may be the case that the model you wish to use is linearizable,
25163 but Calc's built-in rules are unable to figure it out.  Calc uses
25164 its algebraic rewrite mechanism to linearize a model.  The rewrite
25165 rules are kept in the variable @code{FitRules}.  You can edit this
25166 variable using the @kbd{s e FitRules} command; in fact, there is
25167 a special @kbd{s F} command just for editing @code{FitRules}.
25168 @xref{Operations on Variables}.
25170 @xref{Rewrite Rules}, for a discussion of rewrite rules.
25172 @ignore
25173 @starindex
25174 @end ignore
25175 @tindex fitvar
25176 @ignore
25177 @starindex
25178 @end ignore
25179 @ignore
25180 @mindex @idots
25181 @end ignore
25182 @tindex fitparam
25183 @ignore
25184 @starindex
25185 @end ignore
25186 @ignore
25187 @mindex @null
25188 @end ignore
25189 @tindex fitmodel
25190 @ignore
25191 @starindex
25192 @end ignore
25193 @ignore
25194 @mindex @null
25195 @end ignore
25196 @tindex fitsystem
25197 @ignore
25198 @starindex
25199 @end ignore
25200 @ignore
25201 @mindex @null
25202 @end ignore
25203 @tindex fitdummy
25204 Calc uses @code{FitRules} as follows.  First, it converts the model
25205 to an equation if necessary and encloses the model equation in a
25206 call to the function @code{fitmodel} (which is not actually a defined
25207 function in Calc; it is only used as a placeholder by the rewrite rules).
25208 Parameter variables are renamed to function calls @samp{fitparam(1)},
25209 @samp{fitparam(2)}, and so on, and independent variables are renamed
25210 to @samp{fitvar(1)}, @samp{fitvar(2)}, etc.  The dependent variable
25211 is the highest-numbered @code{fitvar}.  For example, the power law
25212 model @expr{a x^b} is converted to @expr{y = a x^b}, then to
25214 @smallexample
25215 @group
25216 fitmodel(fitvar(2) = fitparam(1) fitvar(1)^fitparam(2))
25217 @end group
25218 @end smallexample
25220 Calc then applies the rewrites as if by @samp{C-u 0 a r FitRules}.
25221 (The zero prefix means that rewriting should continue until no further
25222 changes are possible.)
25224 When rewriting is complete, the @code{fitmodel} call should have
25225 been replaced by a @code{fitsystem} call that looks like this:
25227 @example
25228 fitsystem(@var{Y}, @var{FGH}, @var{abc})
25229 @end example
25231 @noindent
25232 where @var{Y} is a formula that describes the function @expr{Y(x,y,z)},
25233 @var{FGH} is the vector of formulas @expr{[F(x,y,z), G(x,y,z), H(x,y,z)]},
25234 and @var{abc} is the vector of parameter filters which refer to the
25235 raw parameters as @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)}
25236 for @expr{B}, etc.  While the number of raw parameters (the length of
25237 the @var{FGH} vector) is usually the same as the number of original
25238 parameters (the length of the @var{abc} vector), this is not required.
25240 The power law model eventually boils down to
25242 @smallexample
25243 @group
25244 fitsystem(ln(fitvar(2)),
25245           [1, ln(fitvar(1))],
25246           [exp(fitdummy(1)), fitdummy(2)])
25247 @end group
25248 @end smallexample
25250 The actual implementation of @code{FitRules} is complicated; it
25251 proceeds in four phases.  First, common rearrangements are done
25252 to try to bring linear terms together and to isolate functions like
25253 @code{exp} and @code{ln} either all the way ``out'' (so that they
25254 can be put into @var{Y}) or all the way ``in'' (so that they can
25255 be put into @var{abc} or @var{FGH}).  In particular, all
25256 non-constant powers are converted to logs-and-exponentials form,
25257 and the distributive law is used to expand products of sums.
25258 Quotients are rewritten to use the @samp{fitinv} function, where
25259 @samp{fitinv(x)} represents @expr{1/x} while the @code{FitRules}
25260 are operating.  (The use of @code{fitinv} makes recognition of
25261 linear-looking forms easier.)  If you modify @code{FitRules}, you
25262 will probably only need to modify the rules for this phase.
25264 Phase two, whose rules can actually also apply during phases one
25265 and three, first rewrites @code{fitmodel} to a two-argument
25266 form @samp{fitmodel(@var{Y}, @var{model})}, where @var{Y} is
25267 initially zero and @var{model} has been changed from @expr{a=b}
25268 to @expr{a-b} form.  It then tries to peel off invertible functions
25269 from the outside of @var{model} and put them into @var{Y} instead,
25270 calling the equation solver to invert the functions.  Finally, when
25271 this is no longer possible, the @code{fitmodel} is changed to a
25272 four-argument @code{fitsystem}, where the fourth argument is
25273 @var{model} and the @var{FGH} and @var{abc} vectors are initially
25274 empty.  (The last vector is really @var{ABC}, corresponding to
25275 raw parameters, for now.)
25277 Phase three converts a sum of items in the @var{model} to a sum
25278 of @samp{fitpart(@var{a}, @var{b}, @var{c})} terms which represent
25279 terms @samp{@var{a}*@var{b}*@var{c}} of the sum, where @var{a}
25280 is all factors that do not involve any variables, @var{b} is all
25281 factors that involve only parameters, and @var{c} is the factors
25282 that involve only independent variables.  (If this decomposition
25283 is not possible, the rule set will not complete and Calc will
25284 complain that the model is too complex.)  Then @code{fitpart}s
25285 with equal @var{b} or @var{c} components are merged back together
25286 using the distributive law in order to minimize the number of
25287 raw parameters needed.
25289 Phase four moves the @code{fitpart} terms into the @var{FGH} and
25290 @var{ABC} vectors.  Also, some of the algebraic expansions that
25291 were done in phase 1 are undone now to make the formulas more
25292 computationally efficient.  Finally, it calls the solver one more
25293 time to convert the @var{ABC} vector to an @var{abc} vector, and
25294 removes the fourth @var{model} argument (which by now will be zero)
25295 to obtain the three-argument @code{fitsystem} that the linear
25296 least-squares solver wants to see.
25298 @ignore
25299 @starindex
25300 @end ignore
25301 @ignore
25302 @mindex hasfit@idots
25303 @end ignore
25304 @tindex hasfitparams
25305 @ignore
25306 @starindex
25307 @end ignore
25308 @ignore
25309 @mindex @null
25310 @end ignore
25311 @tindex hasfitvars
25312 Two functions which are useful in connection with @code{FitRules}
25313 are @samp{hasfitparams(x)} and @samp{hasfitvars(x)}, which check
25314 whether @expr{x} refers to any parameters or independent variables,
25315 respectively.  Specifically, these functions return ``true'' if the
25316 argument contains any @code{fitparam} (or @code{fitvar}) function
25317 calls, and ``false'' otherwise.  (Recall that ``true'' means a
25318 nonzero number, and ``false'' means zero.  The actual nonzero number
25319 returned is the largest @var{n} from all the @samp{fitparam(@var{n})}s
25320 or @samp{fitvar(@var{n})}s, respectively, that appear in the formula.)
25322 @tex
25323 \bigskip
25324 @end tex
25326 The @code{fit} function in algebraic notation normally takes four
25327 arguments, @samp{fit(@var{model}, @var{vars}, @var{params}, @var{data})},
25328 where @var{model} is the model formula as it would be typed after
25329 @kbd{a F '}, @var{vars} is the independent variable or a vector of
25330 independent variables, @var{params} likewise gives the parameter(s),
25331 and @var{data} is the data matrix.  Note that the length of @var{vars}
25332 must be equal to the number of rows in @var{data} if @var{model} is
25333 an equation, or one less than the number of rows if @var{model} is
25334 a plain formula.  (Actually, a name for the dependent variable is
25335 allowed but will be ignored in the plain-formula case.)
25337 If @var{params} is omitted, the parameters are all variables in
25338 @var{model} except those that appear in @var{vars}.  If @var{vars}
25339 is also omitted, Calc sorts all the variables that appear in
25340 @var{model} alphabetically and uses the higher ones for @var{vars}
25341 and the lower ones for @var{params}.
25343 Alternatively, @samp{fit(@var{modelvec}, @var{data})} is allowed
25344 where @var{modelvec} is a 2- or 3-vector describing the model
25345 and variables, as discussed previously.
25347 If Calc is unable to do the fit, the @code{fit} function is left
25348 in symbolic form, ordinarily with an explanatory message.  The
25349 message will be ``Model expression is too complex'' if the
25350 linearizer was unable to put the model into the required form.
25352 The @code{efit} (corresponding to @kbd{H a F}) and @code{xfit}
25353 (for @kbd{I a F}) functions are completely analogous.
25355 @node Interpolation, ,  Curve Fitting Details, Curve Fitting
25356 @subsection Polynomial Interpolation
25358 @kindex a p
25359 @pindex calc-poly-interp
25360 @tindex polint
25361 The @kbd{a p} (@code{calc-poly-interp}) [@code{polint}] command does
25362 a polynomial interpolation at a particular @expr{x} value.  It takes
25363 two arguments from the stack:  A data matrix of the sort used by
25364 @kbd{a F}, and a single number which represents the desired @expr{x}
25365 value.  Calc effectively does an exact polynomial fit as if by @kbd{a F i},
25366 then substitutes the @expr{x} value into the result in order to get an
25367 approximate @expr{y} value based on the fit.  (Calc does not actually
25368 use @kbd{a F i}, however; it uses a direct method which is both more
25369 efficient and more numerically stable.)
25371 The result of @kbd{a p} is actually a vector of two values:  The @expr{y}
25372 value approximation, and an error measure @expr{dy} that reflects Calc's
25373 estimation of the probable error of the approximation at that value of
25374 @expr{x}.  If the input @expr{x} is equal to any of the @expr{x} values
25375 in the data matrix, the output @expr{y} will be the corresponding @expr{y}
25376 value from the matrix, and the output @expr{dy} will be exactly zero.
25378 A prefix argument of 2 causes @kbd{a p} to take separate x- and
25379 y-vectors from the stack instead of one data matrix.
25381 If @expr{x} is a vector of numbers, @kbd{a p} will return a matrix of
25382 interpolated results for each of those @expr{x} values.  (The matrix will
25383 have two columns, the @expr{y} values and the @expr{dy} values.)
25384 If @expr{x} is a formula instead of a number, the @code{polint} function
25385 remains in symbolic form; use the @kbd{a "} command to expand it out to
25386 a formula that describes the fit in symbolic terms.
25388 In all cases, the @kbd{a p} command leaves the data vectors or matrix
25389 on the stack.  Only the @expr{x} value is replaced by the result.
25391 @kindex H a p
25392 @tindex ratint
25393 The @kbd{H a p} [@code{ratint}] command does a rational function
25394 interpolation.  It is used exactly like @kbd{a p}, except that it
25395 uses as its model the quotient of two polynomials.  If there are
25396 @expr{N} data points, the numerator and denominator polynomials will
25397 each have degree @expr{N/2} (if @expr{N} is odd, the denominator will
25398 have degree one higher than the numerator).
25400 Rational approximations have the advantage that they can accurately
25401 describe functions that have poles (points at which the function's value
25402 goes to infinity, so that the denominator polynomial of the approximation
25403 goes to zero).  If @expr{x} corresponds to a pole of the fitted rational
25404 function, then the result will be a division by zero.  If Infinite mode
25405 is enabled, the result will be @samp{[uinf, uinf]}.
25407 There is no way to get the actual coefficients of the rational function
25408 used by @kbd{H a p}.  (The algorithm never generates these coefficients
25409 explicitly, and quotients of polynomials are beyond @w{@kbd{a F}}'s
25410 capabilities to fit.)
25412 @node Summations, Logical Operations, Curve Fitting, Algebra
25413 @section Summations
25415 @noindent
25416 @cindex Summation of a series
25417 @kindex a +
25418 @pindex calc-summation
25419 @tindex sum
25420 The @kbd{a +} (@code{calc-summation}) [@code{sum}] command computes
25421 the sum of a formula over a certain range of index values.  The formula
25422 is taken from the top of the stack; the command prompts for the
25423 name of the summation index variable, the lower limit of the
25424 sum (any formula), and the upper limit of the sum.  If you
25425 enter a blank line at any of these prompts, that prompt and
25426 any later ones are answered by reading additional elements from
25427 the stack.  Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}}
25428 produces the result 55.
25429 @tex
25430 \turnoffactive
25431 $$ \sum_{k=1}^5 k^2 = 55 $$
25432 @end tex
25434 The choice of index variable is arbitrary, but it's best not to
25435 use a variable with a stored value.  In particular, while
25436 @code{i} is often a favorite index variable, it should be avoided
25437 in Calc because @code{i} has the imaginary constant @expr{(0, 1)}
25438 as a value.  If you pressed @kbd{=} on a sum over @code{i}, it would
25439 be changed to a nonsensical sum over the ``variable'' @expr{(0, 1)}!
25440 If you really want to use @code{i} as an index variable, use
25441 @w{@kbd{s u i @key{RET}}} first to ``unstore'' this variable.
25442 (@xref{Storing Variables}.)
25444 A numeric prefix argument steps the index by that amount rather
25445 than by one.  Thus @kbd{' a_k @key{RET} C-u -2 a + k @key{RET} 10 @key{RET} 0 @key{RET}}
25446 yields @samp{a_10 + a_8 + a_6 + a_4 + a_2 + a_0}.  A prefix
25447 argument of plain @kbd{C-u} causes @kbd{a +} to prompt for the
25448 step value, in which case you can enter any formula or enter
25449 a blank line to take the step value from the stack.  With the
25450 @kbd{C-u} prefix, @kbd{a +} can take up to five arguments from
25451 the stack:  The formula, the variable, the lower limit, the
25452 upper limit, and (at the top of the stack), the step value.
25454 Calc knows how to do certain sums in closed form.  For example,
25455 @samp{sum(6 k^2, k, 1, n) = @w{2 n^3} + 3 n^2 + n}.  In particular,
25456 this is possible if the formula being summed is polynomial or
25457 exponential in the index variable.  Sums of logarithms are
25458 transformed into logarithms of products.  Sums of trigonometric
25459 and hyperbolic functions are transformed to sums of exponentials
25460 and then done in closed form.  Also, of course, sums in which the
25461 lower and upper limits are both numbers can always be evaluated
25462 just by grinding them out, although Calc will use closed forms
25463 whenever it can for the sake of efficiency.
25465 The notation for sums in algebraic formulas is
25466 @samp{sum(@var{expr}, @var{var}, @var{low}, @var{high}, @var{step})}.
25467 If @var{step} is omitted, it defaults to one.  If @var{high} is
25468 omitted, @var{low} is actually the upper limit and the lower limit
25469 is one.  If @var{low} is also omitted, the limits are @samp{-inf}
25470 and @samp{inf}, respectively.
25472 Infinite sums can sometimes be evaluated:  @samp{sum(.5^k, k, 1, inf)}
25473 returns @expr{1}.  This is done by evaluating the sum in closed
25474 form (to @samp{1. - 0.5^n} in this case), then evaluating this
25475 formula with @code{n} set to @code{inf}.  Calc's usual rules
25476 for ``infinite'' arithmetic can find the answer from there.  If
25477 infinite arithmetic yields a @samp{nan}, or if the sum cannot be
25478 solved in closed form, Calc leaves the @code{sum} function in
25479 symbolic form.  @xref{Infinities}.
25481 As a special feature, if the limits are infinite (or omitted, as
25482 described above) but the formula includes vectors subscripted by
25483 expressions that involve the iteration variable, Calc narrows
25484 the limits to include only the range of integers which result in
25485 valid subscripts for the vector.  For example, the sum
25486 @samp{sum(k [a,b,c,d,e,f,g]_(2k),k)} evaluates to @samp{b + 2 d + 3 f}.
25488 The limits of a sum do not need to be integers.  For example,
25489 @samp{sum(a_k, k, 0, 2 n, n)} produces @samp{a_0 + a_n + a_(2 n)}.
25490 Calc computes the number of iterations using the formula
25491 @samp{1 + (@var{high} - @var{low}) / @var{step}}, which must,
25492 after simplification as if by @kbd{a s}, evaluate to an integer.
25494 If the number of iterations according to the above formula does
25495 not come out to an integer, the sum is invalid and will be left
25496 in symbolic form.  However, closed forms are still supplied, and
25497 you are on your honor not to misuse the resulting formulas by
25498 substituting mismatched bounds into them.  For example,
25499 @samp{sum(k, k, 1, 10, 2)} is invalid, but Calc will go ahead and
25500 evaluate the closed form solution for the limits 1 and 10 to get
25501 the rather dubious answer, 29.25.
25503 If the lower limit is greater than the upper limit (assuming a
25504 positive step size), the result is generally zero.  However,
25505 Calc only guarantees a zero result when the upper limit is
25506 exactly one step less than the lower limit, i.e., if the number
25507 of iterations is @mathit{-1}.  Thus @samp{sum(f(k), k, n, n-1)} is zero
25508 but the sum from @samp{n} to @samp{n-2} may report a nonzero value
25509 if Calc used a closed form solution.
25511 Calc's logical predicates like @expr{a < b} return 1 for ``true''
25512 and 0 for ``false.''  @xref{Logical Operations}.  This can be
25513 used to advantage for building conditional sums.  For example,
25514 @samp{sum(prime(k)*k^2, k, 1, 20)} is the sum of the squares of all
25515 prime numbers from 1 to 20; the @code{prime} predicate returns 1 if
25516 its argument is prime and 0 otherwise.  You can read this expression
25517 as ``the sum of @expr{k^2}, where @expr{k} is prime.''  Indeed,
25518 @samp{sum(prime(k)*k^2, k)} would represent the sum of @emph{all} primes
25519 squared, since the limits default to plus and minus infinity, but
25520 there are no such sums that Calc's built-in rules can do in
25521 closed form.
25523 As another example, @samp{sum((k != k_0) * f(k), k, 1, n)} is the
25524 sum of @expr{f(k)} for all @expr{k} from 1 to @expr{n}, excluding
25525 one value @expr{k_0}.  Slightly more tricky is the summand
25526 @samp{(k != k_0) / (k - k_0)}, which is an attempt to describe
25527 the sum of all @expr{1/(k-k_0)} except at @expr{k = k_0}, where
25528 this would be a division by zero.  But at @expr{k = k_0}, this
25529 formula works out to the indeterminate form @expr{0 / 0}, which
25530 Calc will not assume is zero.  Better would be to use
25531 @samp{(k != k_0) ? 1/(k-k_0) : 0}; the @samp{? :} operator does
25532 an ``if-then-else'' test:  This expression says, ``if 
25533 @texline @math{k \ne k_0},
25534 @infoline @expr{k != k_0},
25535 then @expr{1/(k-k_0)}, else zero.''  Now the formula @expr{1/(k-k_0)}
25536 will not even be evaluated by Calc when @expr{k = k_0}.
25538 @cindex Alternating sums
25539 @kindex a -
25540 @pindex calc-alt-summation
25541 @tindex asum
25542 The @kbd{a -} (@code{calc-alt-summation}) [@code{asum}] command
25543 computes an alternating sum.  Successive terms of the sequence
25544 are given alternating signs, with the first term (corresponding
25545 to the lower index value) being positive.  Alternating sums
25546 are converted to normal sums with an extra term of the form
25547 @samp{(-1)^(k-@var{low})}.  This formula is adjusted appropriately
25548 if the step value is other than one.  For example, the Taylor
25549 series for the sine function is @samp{asum(x^k / k!, k, 1, inf, 2)}.
25550 (Calc cannot evaluate this infinite series, but it can approximate
25551 it if you replace @code{inf} with any particular odd number.)
25552 Calc converts this series to a regular sum with a step of one,
25553 namely @samp{sum((-1)^k x^(2k+1) / (2k+1)!, k, 0, inf)}.
25555 @cindex Product of a sequence
25556 @kindex a *
25557 @pindex calc-product
25558 @tindex prod
25559 The @kbd{a *} (@code{calc-product}) [@code{prod}] command is
25560 the analogous way to take a product of many terms.  Calc also knows
25561 some closed forms for products, such as @samp{prod(k, k, 1, n) = n!}.
25562 Conditional products can be written @samp{prod(k^prime(k), k, 1, n)}
25563 or @samp{prod(prime(k) ? k : 1, k, 1, n)}.
25565 @kindex a T
25566 @pindex calc-tabulate
25567 @tindex table
25568 The @kbd{a T} (@code{calc-tabulate}) [@code{table}] command
25569 evaluates a formula at a series of iterated index values, just
25570 like @code{sum} and @code{prod}, but its result is simply a
25571 vector of the results.  For example, @samp{table(a_i, i, 1, 7, 2)}
25572 produces @samp{[a_1, a_3, a_5, a_7]}.
25574 @node Logical Operations, Rewrite Rules, Summations, Algebra
25575 @section Logical Operations
25577 @noindent
25578 The following commands and algebraic functions return true/false values,
25579 where 1 represents ``true'' and 0 represents ``false.''  In cases where
25580 a truth value is required (such as for the condition part of a rewrite
25581 rule, or as the condition for a @w{@kbd{Z [ Z ]}} control structure), any
25582 nonzero value is accepted to mean ``true.''  (Specifically, anything
25583 for which @code{dnonzero} returns 1 is ``true,'' and anything for
25584 which @code{dnonzero} returns 0 or cannot decide is assumed ``false.''
25585 Note that this means that @w{@kbd{Z [ Z ]}} will execute the ``then''
25586 portion if its condition is provably true, but it will execute the
25587 ``else'' portion for any condition like @expr{a = b} that is not
25588 provably true, even if it might be true.  Algebraic functions that
25589 have conditions as arguments, like @code{? :} and @code{&&}, remain
25590 unevaluated if the condition is neither provably true nor provably
25591 false.  @xref{Declarations}.)
25593 @kindex a =
25594 @pindex calc-equal-to
25595 @tindex eq
25596 @tindex =
25597 @tindex ==
25598 The @kbd{a =} (@code{calc-equal-to}) command, or @samp{eq(a,b)} function
25599 (which can also be written @samp{a = b} or @samp{a == b} in an algebraic
25600 formula) is true if @expr{a} and @expr{b} are equal, either because they
25601 are identical expressions, or because they are numbers which are
25602 numerically equal.  (Thus the integer 1 is considered equal to the float
25603 1.0.)  If the equality of @expr{a} and @expr{b} cannot be determined,
25604 the comparison is left in symbolic form.  Note that as a command, this
25605 operation pops two values from the stack and pushes back either a 1 or
25606 a 0, or a formula @samp{a = b} if the values' equality cannot be determined.
25608 Many Calc commands use @samp{=} formulas to represent @dfn{equations}.
25609 For example, the @kbd{a S} (@code{calc-solve-for}) command rearranges
25610 an equation to solve for a given variable.  The @kbd{a M}
25611 (@code{calc-map-equation}) command can be used to apply any
25612 function to both sides of an equation; for example, @kbd{2 a M *}
25613 multiplies both sides of the equation by two.  Note that just
25614 @kbd{2 *} would not do the same thing; it would produce the formula
25615 @samp{2 (a = b)} which represents 2 if the equality is true or
25616 zero if not.
25618 The @code{eq} function with more than two arguments (e.g., @kbd{C-u 3 a =}
25619 or @samp{a = b = c}) tests if all of its arguments are equal.  In
25620 algebraic notation, the @samp{=} operator is unusual in that it is
25621 neither left- nor right-associative:  @samp{a = b = c} is not the
25622 same as @samp{(a = b) = c} or @samp{a = (b = c)} (which each compare
25623 one variable with the 1 or 0 that results from comparing two other
25624 variables).
25626 @kindex a #
25627 @pindex calc-not-equal-to
25628 @tindex neq
25629 @tindex !=
25630 The @kbd{a #} (@code{calc-not-equal-to}) command, or @samp{neq(a,b)} or
25631 @samp{a != b} function, is true if @expr{a} and @expr{b} are not equal.
25632 This also works with more than two arguments; @samp{a != b != c != d}
25633 tests that all four of @expr{a}, @expr{b}, @expr{c}, and @expr{d} are
25634 distinct numbers.
25636 @kindex a <
25637 @tindex lt
25638 @ignore
25639 @mindex @idots
25640 @end ignore
25641 @kindex a >
25642 @ignore
25643 @mindex @null
25644 @end ignore
25645 @kindex a [
25646 @ignore
25647 @mindex @null
25648 @end ignore
25649 @kindex a ]
25650 @pindex calc-less-than
25651 @pindex calc-greater-than
25652 @pindex calc-less-equal
25653 @pindex calc-greater-equal
25654 @ignore
25655 @mindex @null
25656 @end ignore
25657 @tindex gt
25658 @ignore
25659 @mindex @null
25660 @end ignore
25661 @tindex leq
25662 @ignore
25663 @mindex @null
25664 @end ignore
25665 @tindex geq
25666 @ignore
25667 @mindex @null
25668 @end ignore
25669 @tindex <
25670 @ignore
25671 @mindex @null
25672 @end ignore
25673 @tindex >
25674 @ignore
25675 @mindex @null
25676 @end ignore
25677 @tindex <=
25678 @ignore
25679 @mindex @null
25680 @end ignore
25681 @tindex >=
25682 The @kbd{a <} (@code{calc-less-than}) [@samp{lt(a,b)} or @samp{a < b}]
25683 operation is true if @expr{a} is less than @expr{b}.  Similar functions
25684 are @kbd{a >} (@code{calc-greater-than}) [@samp{gt(a,b)} or @samp{a > b}],
25685 @kbd{a [} (@code{calc-less-equal}) [@samp{leq(a,b)} or @samp{a <= b}], and
25686 @kbd{a ]} (@code{calc-greater-equal}) [@samp{geq(a,b)} or @samp{a >= b}].
25688 While the inequality functions like @code{lt} do not accept more
25689 than two arguments, the syntax @w{@samp{a <= b < c}} is translated to an
25690 equivalent expression involving intervals: @samp{b in [a .. c)}.
25691 (See the description of @code{in} below.)  All four combinations
25692 of @samp{<} and @samp{<=} are allowed, or any of the four combinations
25693 of @samp{>} and @samp{>=}.  Four-argument constructions like
25694 @samp{a < b < c < d}, and mixtures like @w{@samp{a < b = c}} that
25695 involve both equalities and inequalities, are not allowed.
25697 @kindex a .
25698 @pindex calc-remove-equal
25699 @tindex rmeq
25700 The @kbd{a .} (@code{calc-remove-equal}) [@code{rmeq}] command extracts
25701 the righthand side of the equation or inequality on the top of the
25702 stack.  It also works elementwise on vectors.  For example, if
25703 @samp{[x = 2.34, y = z / 2]} is on the stack, then @kbd{a .} produces
25704 @samp{[2.34, z / 2]}.  As a special case, if the righthand side is a
25705 variable and the lefthand side is a number (as in @samp{2.34 = x}), then
25706 Calc keeps the lefthand side instead.  Finally, this command works with
25707 assignments @samp{x := 2.34} as well as equations, always taking the
25708 righthand side, and for @samp{=>} (evaluates-to) operators, always
25709 taking the lefthand side.
25711 @kindex a &
25712 @pindex calc-logical-and
25713 @tindex land
25714 @tindex &&
25715 The @kbd{a &} (@code{calc-logical-and}) [@samp{land(a,b)} or @samp{a && b}]
25716 function is true if both of its arguments are true, i.e., are
25717 non-zero numbers.  In this case, the result will be either @expr{a} or
25718 @expr{b}, chosen arbitrarily.  If either argument is zero, the result is
25719 zero.  Otherwise, the formula is left in symbolic form.
25721 @kindex a |
25722 @pindex calc-logical-or
25723 @tindex lor
25724 @tindex ||
25725 The @kbd{a |} (@code{calc-logical-or}) [@samp{lor(a,b)} or @samp{a || b}]
25726 function is true if either or both of its arguments are true (nonzero).
25727 The result is whichever argument was nonzero, choosing arbitrarily if both
25728 are nonzero.  If both @expr{a} and @expr{b} are zero, the result is
25729 zero.
25731 @kindex a !
25732 @pindex calc-logical-not
25733 @tindex lnot
25734 @tindex !
25735 The @kbd{a !} (@code{calc-logical-not}) [@samp{lnot(a)} or @samp{!@: a}]
25736 function is true if @expr{a} is false (zero), or false if @expr{a} is
25737 true (nonzero).  It is left in symbolic form if @expr{a} is not a
25738 number.
25740 @kindex a :
25741 @pindex calc-logical-if
25742 @tindex if
25743 @ignore
25744 @mindex ? :
25745 @end ignore
25746 @tindex ?
25747 @ignore
25748 @mindex @null
25749 @end ignore
25750 @tindex :
25751 @cindex Arguments, not evaluated
25752 The @kbd{a :} (@code{calc-logical-if}) [@samp{if(a,b,c)} or @samp{a ? b :@: c}]
25753 function is equal to either @expr{b} or @expr{c} if @expr{a} is a nonzero
25754 number or zero, respectively.  If @expr{a} is not a number, the test is
25755 left in symbolic form and neither @expr{b} nor @expr{c} is evaluated in
25756 any way.  In algebraic formulas, this is one of the few Calc functions
25757 whose arguments are not automatically evaluated when the function itself
25758 is evaluated.  The others are @code{lambda}, @code{quote}, and
25759 @code{condition}.
25761 One minor surprise to watch out for is that the formula @samp{a?3:4}
25762 will not work because the @samp{3:4} is parsed as a fraction instead of
25763 as three separate symbols.  Type something like @samp{a ? 3 : 4} or
25764 @samp{a?(3):4} instead.
25766 As a special case, if @expr{a} evaluates to a vector, then both @expr{b}
25767 and @expr{c} are evaluated; the result is a vector of the same length
25768 as @expr{a} whose elements are chosen from corresponding elements of
25769 @expr{b} and @expr{c} according to whether each element of @expr{a}
25770 is zero or nonzero.  Each of @expr{b} and @expr{c} must be either a
25771 vector of the same length as @expr{a}, or a non-vector which is matched
25772 with all elements of @expr{a}.
25774 @kindex a @{
25775 @pindex calc-in-set
25776 @tindex in
25777 The @kbd{a @{} (@code{calc-in-set}) [@samp{in(a,b)}] function is true if
25778 the number @expr{a} is in the set of numbers represented by @expr{b}.
25779 If @expr{b} is an interval form, @expr{a} must be one of the values
25780 encompassed by the interval.  If @expr{b} is a vector, @expr{a} must be
25781 equal to one of the elements of the vector.  (If any vector elements are
25782 intervals, @expr{a} must be in any of the intervals.)  If @expr{b} is a
25783 plain number, @expr{a} must be numerically equal to @expr{b}.
25784 @xref{Set Operations}, for a group of commands that manipulate sets
25785 of this sort.
25787 @ignore
25788 @starindex
25789 @end ignore
25790 @tindex typeof
25791 The @samp{typeof(a)} function produces an integer or variable which
25792 characterizes @expr{a}.  If @expr{a} is a number, vector, or variable,
25793 the result will be one of the following numbers:
25795 @example
25796  1   Integer
25797  2   Fraction
25798  3   Floating-point number
25799  4   HMS form
25800  5   Rectangular complex number
25801  6   Polar complex number
25802  7   Error form
25803  8   Interval form
25804  9   Modulo form
25805 10   Date-only form
25806 11   Date/time form
25807 12   Infinity (inf, uinf, or nan)
25808 100  Variable
25809 101  Vector (but not a matrix)
25810 102  Matrix
25811 @end example
25813 Otherwise, @expr{a} is a formula, and the result is a variable which
25814 represents the name of the top-level function call.
25816 @ignore
25817 @starindex
25818 @end ignore
25819 @tindex integer
25820 @ignore
25821 @starindex
25822 @end ignore
25823 @tindex real
25824 @ignore
25825 @starindex
25826 @end ignore
25827 @tindex constant
25828 The @samp{integer(a)} function returns true if @expr{a} is an integer.
25829 The @samp{real(a)} function
25830 is true if @expr{a} is a real number, either integer, fraction, or
25831 float.  The @samp{constant(a)} function returns true if @expr{a} is
25832 any of the objects for which @code{typeof} would produce an integer
25833 code result except for variables, and provided that the components of
25834 an object like a vector or error form are themselves constant.
25835 Note that infinities do not satisfy any of these tests, nor do
25836 special constants like @code{pi} and @code{e}.
25838 @xref{Declarations}, for a set of similar functions that recognize
25839 formulas as well as actual numbers.  For example, @samp{dint(floor(x))}
25840 is true because @samp{floor(x)} is provably integer-valued, but
25841 @samp{integer(floor(x))} does not because @samp{floor(x)} is not
25842 literally an integer constant.
25844 @ignore
25845 @starindex
25846 @end ignore
25847 @tindex refers
25848 The @samp{refers(a,b)} function is true if the variable (or sub-expression)
25849 @expr{b} appears in @expr{a}, or false otherwise.  Unlike the other
25850 tests described here, this function returns a definite ``no'' answer
25851 even if its arguments are still in symbolic form.  The only case where
25852 @code{refers} will be left unevaluated is if @expr{a} is a plain
25853 variable (different from @expr{b}).
25855 @ignore
25856 @starindex
25857 @end ignore
25858 @tindex negative
25859 The @samp{negative(a)} function returns true if @expr{a} ``looks'' negative,
25860 because it is a negative number, because it is of the form @expr{-x},
25861 or because it is a product or quotient with a term that looks negative.
25862 This is most useful in rewrite rules.  Beware that @samp{negative(a)}
25863 evaluates to 1 or 0 for @emph{any} argument @expr{a}, so it can only
25864 be stored in a formula if the default simplifications are turned off
25865 first with @kbd{m O} (or if it appears in an unevaluated context such
25866 as a rewrite rule condition).
25868 @ignore
25869 @starindex
25870 @end ignore
25871 @tindex variable
25872 The @samp{variable(a)} function is true if @expr{a} is a variable,
25873 or false if not.  If @expr{a} is a function call, this test is left
25874 in symbolic form.  Built-in variables like @code{pi} and @code{inf}
25875 are considered variables like any others by this test.
25877 @ignore
25878 @starindex
25879 @end ignore
25880 @tindex nonvar
25881 The @samp{nonvar(a)} function is true if @expr{a} is a non-variable.
25882 If its argument is a variable it is left unsimplified; it never
25883 actually returns zero.  However, since Calc's condition-testing
25884 commands consider ``false'' anything not provably true, this is
25885 often good enough.
25887 @ignore
25888 @starindex
25889 @end ignore
25890 @tindex lin
25891 @ignore
25892 @starindex
25893 @end ignore
25894 @tindex linnt
25895 @ignore
25896 @starindex
25897 @end ignore
25898 @tindex islin
25899 @ignore
25900 @starindex
25901 @end ignore
25902 @tindex islinnt
25903 @cindex Linearity testing
25904 The functions @code{lin}, @code{linnt}, @code{islin}, and @code{islinnt}
25905 check if an expression is ``linear,'' i.e., can be written in the form
25906 @expr{a + b x} for some constants @expr{a} and @expr{b}, and some
25907 variable or subformula @expr{x}.  The function @samp{islin(f,x)} checks
25908 if formula @expr{f} is linear in @expr{x}, returning 1 if so.  For
25909 example, @samp{islin(x,x)}, @samp{islin(-x,x)}, @samp{islin(3,x)}, and
25910 @samp{islin(x y / 3 - 2, x)} all return 1.  The @samp{lin(f,x)} function
25911 is similar, except that instead of returning 1 it returns the vector
25912 @expr{[a, b, x]}.  For the above examples, this vector would be
25913 @expr{[0, 1, x]}, @expr{[0, -1, x]}, @expr{[3, 0, x]}, and
25914 @expr{[-2, y/3, x]}, respectively.  Both @code{lin} and @code{islin}
25915 generally remain unevaluated for expressions which are not linear,
25916 e.g., @samp{lin(2 x^2, x)} and @samp{lin(sin(x), x)}.  The second
25917 argument can also be a formula; @samp{islin(2 + 3 sin(x), sin(x))}
25918 returns true.
25920 The @code{linnt} and @code{islinnt} functions perform a similar check,
25921 but require a ``non-trivial'' linear form, which means that the
25922 @expr{b} coefficient must be non-zero.  For example, @samp{lin(2,x)}
25923 returns @expr{[2, 0, x]} and @samp{lin(y,x)} returns @expr{[y, 0, x]},
25924 but @samp{linnt(2,x)} and @samp{linnt(y,x)} are left unevaluated
25925 (in other words, these formulas are considered to be only ``trivially''
25926 linear in @expr{x}).
25928 All four linearity-testing functions allow you to omit the second
25929 argument, in which case the input may be linear in any non-constant
25930 formula.  Here, the @expr{a=0}, @expr{b=1} case is also considered
25931 trivial, and only constant values for @expr{a} and @expr{b} are
25932 recognized.  Thus, @samp{lin(2 x y)} returns @expr{[0, 2, x y]},
25933 @samp{lin(2 - x y)} returns @expr{[2, -1, x y]}, and @samp{lin(x y)}
25934 returns @expr{[0, 1, x y]}.  The @code{linnt} function would allow the
25935 first two cases but not the third.  Also, neither @code{lin} nor
25936 @code{linnt} accept plain constants as linear in the one-argument
25937 case: @samp{islin(2,x)} is true, but @samp{islin(2)} is false.
25939 @ignore
25940 @starindex
25941 @end ignore
25942 @tindex istrue
25943 The @samp{istrue(a)} function returns 1 if @expr{a} is a nonzero
25944 number or provably nonzero formula, or 0 if @expr{a} is anything else.
25945 Calls to @code{istrue} can only be manipulated if @kbd{m O} mode is
25946 used to make sure they are not evaluated prematurely.  (Note that
25947 declarations are used when deciding whether a formula is true;
25948 @code{istrue} returns 1 when @code{dnonzero} would return 1, and
25949 it returns 0 when @code{dnonzero} would return 0 or leave itself
25950 in symbolic form.)
25952 @node Rewrite Rules, , Logical Operations, Algebra
25953 @section Rewrite Rules
25955 @noindent
25956 @cindex Rewrite rules
25957 @cindex Transformations
25958 @cindex Pattern matching
25959 @kindex a r
25960 @pindex calc-rewrite
25961 @tindex rewrite
25962 The @kbd{a r} (@code{calc-rewrite}) [@code{rewrite}] command makes
25963 substitutions in a formula according to a specified pattern or patterns
25964 known as @dfn{rewrite rules}.  Whereas @kbd{a b} (@code{calc-substitute})
25965 matches literally, so that substituting @samp{sin(x)} with @samp{cos(x)}
25966 matches only the @code{sin} function applied to the variable @code{x},
25967 rewrite rules match general kinds of formulas; rewriting using the rule
25968 @samp{sin(x) := cos(x)} matches @code{sin} of any argument and replaces
25969 it with @code{cos} of that same argument.  The only significance of the
25970 name @code{x} is that the same name is used on both sides of the rule.
25972 Rewrite rules rearrange formulas already in Calc's memory.
25973 @xref{Syntax Tables}, to read about @dfn{syntax rules}, which are
25974 similar to algebraic rewrite rules but operate when new algebraic
25975 entries are being parsed, converting strings of characters into
25976 Calc formulas.
25978 @menu
25979 * Entering Rewrite Rules::
25980 * Basic Rewrite Rules::
25981 * Conditional Rewrite Rules::
25982 * Algebraic Properties of Rewrite Rules::
25983 * Other Features of Rewrite Rules::
25984 * Composing Patterns in Rewrite Rules::
25985 * Nested Formulas with Rewrite Rules::
25986 * Multi-Phase Rewrite Rules::
25987 * Selections with Rewrite Rules::
25988 * Matching Commands::
25989 * Automatic Rewrites::
25990 * Debugging Rewrites::
25991 * Examples of Rewrite Rules::
25992 @end menu
25994 @node Entering Rewrite Rules, Basic Rewrite Rules, Rewrite Rules, Rewrite Rules
25995 @subsection Entering Rewrite Rules
25997 @noindent
25998 Rewrite rules normally use the ``assignment'' operator
25999 @samp{@var{old} := @var{new}}.
26000 This operator is equivalent to the function call @samp{assign(old, new)}.
26001 The @code{assign} function is undefined by itself in Calc, so an
26002 assignment formula such as a rewrite rule will be left alone by ordinary
26003 Calc commands.  But certain commands, like the rewrite system, interpret
26004 assignments in special ways.
26006 For example, the rule @samp{sin(x)^2 := 1-cos(x)^2} says to replace
26007 every occurrence of the sine of something, squared, with one minus the
26008 square of the cosine of that same thing.  All by itself as a formula
26009 on the stack it does nothing, but when given to the @kbd{a r} command
26010 it turns that command into a sine-squared-to-cosine-squared converter.
26012 To specify a set of rules to be applied all at once, make a vector of
26013 rules.
26015 When @kbd{a r} prompts you to enter the rewrite rules, you can answer
26016 in several ways:
26018 @enumerate
26019 @item
26020 With a rule:  @kbd{f(x) := g(x) @key{RET}}.
26021 @item
26022 With a vector of rules:  @kbd{[f1(x) := g1(x), f2(x) := g2(x)] @key{RET}}.
26023 (You can omit the enclosing square brackets if you wish.)
26024 @item
26025 With the name of a variable that contains the rule or rules vector:
26026 @kbd{myrules @key{RET}}.
26027 @item
26028 With any formula except a rule, a vector, or a variable name; this
26029 will be interpreted as the @var{old} half of a rewrite rule,
26030 and you will be prompted a second time for the @var{new} half:
26031 @kbd{f(x) @key{RET} g(x) @key{RET}}.
26032 @item
26033 With a blank line, in which case the rule, rules vector, or variable
26034 will be taken from the top of the stack (and the formula to be
26035 rewritten will come from the second-to-top position).
26036 @end enumerate
26038 If you enter the rules directly (as opposed to using rules stored
26039 in a variable), those rules will be put into the Trail so that you
26040 can retrieve them later.  @xref{Trail Commands}.
26042 It is most convenient to store rules you use often in a variable and
26043 invoke them by giving the variable name.  The @kbd{s e}
26044 (@code{calc-edit-variable}) command is an easy way to create or edit a
26045 rule set stored in a variable.  You may also wish to use @kbd{s p}
26046 (@code{calc-permanent-variable}) to save your rules permanently;
26047 @pxref{Operations on Variables}.
26049 Rewrite rules are compiled into a special internal form for faster
26050 matching.  If you enter a rule set directly it must be recompiled
26051 every time.  If you store the rules in a variable and refer to them
26052 through that variable, they will be compiled once and saved away
26053 along with the variable for later reference.  This is another good
26054 reason to store your rules in a variable.
26056 Calc also accepts an obsolete notation for rules, as vectors
26057 @samp{[@var{old}, @var{new}]}.  But because it is easily confused with a
26058 vector of two rules, the use of this notation is no longer recommended.
26060 @node Basic Rewrite Rules, Conditional Rewrite Rules, Entering Rewrite Rules, Rewrite Rules
26061 @subsection Basic Rewrite Rules
26063 @noindent
26064 To match a particular formula @expr{x} with a particular rewrite rule
26065 @samp{@var{old} := @var{new}}, Calc compares the structure of @expr{x} with
26066 the structure of @var{old}.  Variables that appear in @var{old} are
26067 treated as @dfn{meta-variables}; the corresponding positions in @expr{x}
26068 may contain any sub-formulas.  For example, the pattern @samp{f(x,y)}
26069 would match the expression @samp{f(12, a+1)} with the meta-variable
26070 @samp{x} corresponding to 12 and with @samp{y} corresponding to
26071 @samp{a+1}.  However, this pattern would not match @samp{f(12)} or
26072 @samp{g(12, a+1)}, since there is no assignment of the meta-variables
26073 that will make the pattern match these expressions.  Notice that if
26074 the pattern is a single meta-variable, it will match any expression.
26076 If a given meta-variable appears more than once in @var{old}, the
26077 corresponding sub-formulas of @expr{x} must be identical.  Thus
26078 the pattern @samp{f(x,x)} would match @samp{f(12, 12)} and
26079 @samp{f(a+1, a+1)} but not @samp{f(12, a+1)} or @samp{f(a+b, b+a)}.
26080 (@xref{Conditional Rewrite Rules}, for a way to match the latter.)
26082 Things other than variables must match exactly between the pattern
26083 and the target formula.  To match a particular variable exactly, use
26084 the pseudo-function @samp{quote(v)} in the pattern.  For example, the
26085 pattern @samp{x+quote(y)} matches @samp{x+y}, @samp{2+y}, or
26086 @samp{sin(a)+y}.
26088 The special variable names @samp{e}, @samp{pi}, @samp{i}, @samp{phi},
26089 @samp{gamma}, @samp{inf}, @samp{uinf}, and @samp{nan} always match
26090 literally.  Thus the pattern @samp{sin(d + e + f)} acts exactly like
26091 @samp{sin(d + quote(e) + f)}.
26093 If the @var{old} pattern is found to match a given formula, that
26094 formula is replaced by @var{new}, where any occurrences in @var{new}
26095 of meta-variables from the pattern are replaced with the sub-formulas
26096 that they matched.  Thus, applying the rule @samp{f(x,y) := g(y+x,x)}
26097 to @samp{f(12, a+1)} would produce @samp{g(a+13, 12)}.
26099 The normal @kbd{a r} command applies rewrite rules over and over
26100 throughout the target formula until no further changes are possible
26101 (up to a limit of 100 times).  Use @kbd{C-u 1 a r} to make only one
26102 change at a time.
26104 @node Conditional Rewrite Rules, Algebraic Properties of Rewrite Rules, Basic Rewrite Rules, Rewrite Rules
26105 @subsection Conditional Rewrite Rules
26107 @noindent
26108 A rewrite rule can also be @dfn{conditional}, written in the form
26109 @samp{@var{old} := @var{new} :: @var{cond}}.  (There is also the obsolete
26110 form @samp{[@var{old}, @var{new}, @var{cond}]}.)  If a @var{cond} part
26111 is present in the
26112 rule, this is an additional condition that must be satisfied before
26113 the rule is accepted.  Once @var{old} has been successfully matched
26114 to the target expression, @var{cond} is evaluated (with all the
26115 meta-variables substituted for the values they matched) and simplified
26116 with @kbd{a s} (@code{calc-simplify}).  If the result is a nonzero
26117 number or any other object known to be nonzero (@pxref{Declarations}),
26118 the rule is accepted.  If the result is zero or if it is a symbolic
26119 formula that is not known to be nonzero, the rule is rejected.
26120 @xref{Logical Operations}, for a number of functions that return
26121 1 or 0 according to the results of various tests.
26123 For example, the formula @samp{n > 0} simplifies to 1 or 0 if @expr{n}
26124 is replaced by a positive or nonpositive number, respectively (or if
26125 @expr{n} has been declared to be positive or nonpositive).  Thus,
26126 the rule @samp{f(x,y) := g(y+x,x) :: x+y > 0} would apply to
26127 @samp{f(0, 4)} but not to @samp{f(-3, 2)} or @samp{f(12, a+1)}
26128 (assuming no outstanding declarations for @expr{a}).  In the case of
26129 @samp{f(-3, 2)}, the condition can be shown not to be satisfied; in
26130 the case of @samp{f(12, a+1)}, the condition merely cannot be shown
26131 to be satisfied, but that is enough to reject the rule.
26133 While Calc will use declarations to reason about variables in the
26134 formula being rewritten, declarations do not apply to meta-variables.
26135 For example, the rule @samp{f(a) := g(a+1)} will match for any values
26136 of @samp{a}, such as complex numbers, vectors, or formulas, even if
26137 @samp{a} has been declared to be real or scalar.  If you want the
26138 meta-variable @samp{a} to match only literal real numbers, use
26139 @samp{f(a) := g(a+1) :: real(a)}.  If you want @samp{a} to match only
26140 reals and formulas which are provably real, use @samp{dreal(a)} as
26141 the condition.
26143 The @samp{::} operator is a shorthand for the @code{condition}
26144 function; @samp{@var{old} := @var{new} :: @var{cond}} is equivalent to
26145 the formula @samp{condition(assign(@var{old}, @var{new}), @var{cond})}.
26147 If you have several conditions, you can use @samp{... :: c1 :: c2 :: c3}
26148 or @samp{... :: c1 && c2 && c3}.  The two are entirely equivalent.
26150 It is also possible to embed conditions inside the pattern:
26151 @samp{f(x :: x>0, y) := g(y+x, x)}.  This is purely a notational
26152 convenience, though; where a condition appears in a rule has no
26153 effect on when it is tested.  The rewrite-rule compiler automatically
26154 decides when it is best to test each condition while a rule is being
26155 matched.
26157 Certain conditions are handled as special cases by the rewrite rule
26158 system and are tested very efficiently:  Where @expr{x} is any
26159 meta-variable, these conditions are @samp{integer(x)}, @samp{real(x)},
26160 @samp{constant(x)}, @samp{negative(x)}, @samp{x >= y} where @expr{y}
26161 is either a constant or another meta-variable and @samp{>=} may be
26162 replaced by any of the six relational operators, and @samp{x % a = b}
26163 where @expr{a} and @expr{b} are constants.  Other conditions, like
26164 @samp{x >= y+1} or @samp{dreal(x)}, will be less efficient to check
26165 since Calc must bring the whole evaluator and simplifier into play.
26167 An interesting property of @samp{::} is that neither of its arguments
26168 will be touched by Calc's default simplifications.  This is important
26169 because conditions often are expressions that cannot safely be
26170 evaluated early.  For example, the @code{typeof} function never
26171 remains in symbolic form; entering @samp{typeof(a)} will put the
26172 number 100 (the type code for variables like @samp{a}) on the stack.
26173 But putting the condition @samp{... :: typeof(a) = 6} on the stack
26174 is safe since @samp{::} prevents the @code{typeof} from being
26175 evaluated until the condition is actually used by the rewrite system.
26177 Since @samp{::} protects its lefthand side, too, you can use a dummy
26178 condition to protect a rule that must itself not evaluate early.
26179 For example, it's not safe to put @samp{a(f,x) := apply(f, [x])} on
26180 the stack because it will immediately evaluate to @samp{a(f,x) := f(x)},
26181 where the meta-variable-ness of @code{f} on the righthand side has been
26182 lost.  But @samp{a(f,x) := apply(f, [x]) :: 1} is safe, and of course
26183 the condition @samp{1} is always true (nonzero) so it has no effect on
26184 the functioning of the rule.  (The rewrite compiler will ensure that
26185 it doesn't even impact the speed of matching the rule.)
26187 @node Algebraic Properties of Rewrite Rules, Other Features of Rewrite Rules, Conditional Rewrite Rules, Rewrite Rules
26188 @subsection Algebraic Properties of Rewrite Rules
26190 @noindent
26191 The rewrite mechanism understands the algebraic properties of functions
26192 like @samp{+} and @samp{*}.  In particular, pattern matching takes
26193 the associativity and commutativity of the following functions into
26194 account:
26196 @smallexample
26197 + - *  = !=  && ||  and or xor  vint vunion vxor  gcd lcm  max min  beta
26198 @end smallexample
26200 For example, the rewrite rule:
26202 @example
26203 a x + b x  :=  (a + b) x
26204 @end example
26206 @noindent
26207 will match formulas of the form,
26209 @example
26210 a x + b x,  x a + x b,  a x + x b,  x a + b x
26211 @end example
26213 Rewrites also understand the relationship between the @samp{+} and @samp{-}
26214 operators.  The above rewrite rule will also match the formulas,
26216 @example
26217 a x - b x,  x a - x b,  a x - x b,  x a - b x
26218 @end example
26220 @noindent
26221 by matching @samp{b} in the pattern to @samp{-b} from the formula.
26223 Applied to a sum of many terms like @samp{r + a x + s + b x + t}, this
26224 pattern will check all pairs of terms for possible matches.  The rewrite
26225 will take whichever suitable pair it discovers first.
26227 In general, a pattern using an associative operator like @samp{a + b}
26228 will try @var{2 n} different ways to match a sum of @var{n} terms
26229 like @samp{x + y + z - w}.  First, @samp{a} is matched against each
26230 of @samp{x}, @samp{y}, @samp{z}, and @samp{-w} in turn, with @samp{b}
26231 being matched to the remainders @samp{y + z - w}, @samp{x + z - w}, etc.
26232 If none of these succeed, then @samp{b} is matched against each of the
26233 four terms with @samp{a} matching the remainder.  Half-and-half matches,
26234 like @samp{(x + y) + (z - w)}, are not tried.
26236 Note that @samp{*} is not commutative when applied to matrices, but
26237 rewrite rules pretend that it is.  If you type @kbd{m v} to enable
26238 Matrix mode (@pxref{Matrix Mode}), rewrite rules will match @samp{*}
26239 literally, ignoring its usual commutativity property.  (In the
26240 current implementation, the associativity also vanishes---it is as
26241 if the pattern had been enclosed in a @code{plain} marker; see below.)
26242 If you are applying rewrites to formulas with matrices, it's best to
26243 enable Matrix mode first to prevent algebraically incorrect rewrites
26244 from occurring.
26246 The pattern @samp{-x} will actually match any expression.  For example,
26247 the rule
26249 @example
26250 f(-x)  :=  -f(x)
26251 @end example
26253 @noindent
26254 will rewrite @samp{f(a)} to @samp{-f(-a)}.  To avoid this, either use
26255 a @code{plain} marker as described below, or add a @samp{negative(x)}
26256 condition.  The @code{negative} function is true if its argument
26257 ``looks'' negative, for example, because it is a negative number or
26258 because it is a formula like @samp{-x}.  The new rule using this
26259 condition is:
26261 @example
26262 f(x)  :=  -f(-x)  :: negative(x)    @r{or, equivalently,}
26263 f(-x)  :=  -f(x)  :: negative(-x)
26264 @end example
26266 In the same way, the pattern @samp{x - y} will match the sum @samp{a + b}
26267 by matching @samp{y} to @samp{-b}.
26269 The pattern @samp{a b} will also match the formula @samp{x/y} if
26270 @samp{y} is a number.  Thus the rule @samp{a x + @w{b x} := (a+b) x}
26271 will also convert @samp{a x + x / 2} to @samp{(a + 0.5) x} (or
26272 @samp{(a + 1:2) x}, depending on the current fraction mode).
26274 Calc will @emph{not} take other liberties with @samp{*}, @samp{/}, and
26275 @samp{^}.  For example, the pattern @samp{f(a b)} will not match
26276 @samp{f(x^2)}, and @samp{f(a + b)} will not match @samp{f(2 x)}, even
26277 though conceivably these patterns could match with @samp{a = b = x}.
26278 Nor will @samp{f(a b)} match @samp{f(x / y)} if @samp{y} is not a
26279 constant, even though it could be considered to match with @samp{a = x}
26280 and @samp{b = 1/y}.  The reasons are partly for efficiency, and partly
26281 because while few mathematical operations are substantively different
26282 for addition and subtraction, often it is preferable to treat the cases
26283 of multiplication, division, and integer powers separately.
26285 Even more subtle is the rule set
26287 @example
26288 [ f(a) + f(b) := f(a + b),  -f(a) := f(-a) ]
26289 @end example
26291 @noindent
26292 attempting to match @samp{f(x) - f(y)}.  You might think that Calc
26293 will view this subtraction as @samp{f(x) + (-f(y))} and then apply
26294 the above two rules in turn, but actually this will not work because
26295 Calc only does this when considering rules for @samp{+} (like the
26296 first rule in this set).  So it will see first that @samp{f(x) + (-f(y))}
26297 does not match @samp{f(a) + f(b)} for any assignments of the
26298 meta-variables, and then it will see that @samp{f(x) - f(y)} does
26299 not match @samp{-f(a)} for any assignment of @samp{a}.  Because Calc
26300 tries only one rule at a time, it will not be able to rewrite
26301 @samp{f(x) - f(y)} with this rule set.  An explicit @samp{f(a) - f(b)}
26302 rule will have to be added.
26304 Another thing patterns will @emph{not} do is break up complex numbers.
26305 The pattern @samp{myconj(a + @w{b i)} := a - b i} will work for formulas
26306 involving the special constant @samp{i} (such as @samp{3 - 4 i}), but
26307 it will not match actual complex numbers like @samp{(3, -4)}.  A version
26308 of the above rule for complex numbers would be
26310 @example
26311 myconj(a)  :=  re(a) - im(a) (0,1)  :: im(a) != 0
26312 @end example
26314 @noindent
26315 (Because the @code{re} and @code{im} functions understand the properties
26316 of the special constant @samp{i}, this rule will also work for
26317 @samp{3 - 4 i}.  In fact, this particular rule would probably be better
26318 without the @samp{im(a) != 0} condition, since if @samp{im(a) = 0} the
26319 righthand side of the rule will still give the correct answer for the
26320 conjugate of a real number.)
26322 It is also possible to specify optional arguments in patterns.  The rule
26324 @example
26325 opt(a) x + opt(b) (x^opt(c) + opt(d))  :=  f(a, b, c, d)
26326 @end example
26328 @noindent
26329 will match the formula
26331 @example
26332 5 (x^2 - 4) + 3 x
26333 @end example
26335 @noindent
26336 in a fairly straightforward manner, but it will also match reduced
26337 formulas like
26339 @example
26340 x + x^2,    2(x + 1) - x,    x + x
26341 @end example
26343 @noindent
26344 producing, respectively,
26346 @example
26347 f(1, 1, 2, 0),   f(-1, 2, 1, 1),   f(1, 1, 1, 0)
26348 @end example
26350 (The latter two formulas can be entered only if default simplifications
26351 have been turned off with @kbd{m O}.)
26353 The default value for a term of a sum is zero.  The default value
26354 for a part of a product, for a power, or for the denominator of a
26355 quotient, is one.  Also, @samp{-x} matches the pattern @samp{opt(a) b}
26356 with @samp{a = -1}.
26358 In particular, the distributive-law rule can be refined to
26360 @example
26361 opt(a) x + opt(b) x  :=  (a + b) x
26362 @end example
26364 @noindent
26365 so that it will convert, e.g., @samp{a x - x}, to @samp{(a - 1) x}.
26367 The pattern @samp{opt(a) + opt(b) x} matches almost any formulas which
26368 are linear in @samp{x}.  You can also use the @code{lin} and @code{islin}
26369 functions with rewrite conditions to test for this; @pxref{Logical
26370 Operations}.  These functions are not as convenient to use in rewrite
26371 rules, but they recognize more kinds of formulas as linear:
26372 @samp{x/z} is considered linear with @expr{b = 1/z} by @code{lin},
26373 but it will not match the above pattern because that pattern calls
26374 for a multiplication, not a division.
26376 As another example, the obvious rule to replace @samp{sin(x)^2 + cos(x)^2}
26377 by 1,
26379 @example
26380 sin(x)^2 + cos(x)^2  :=  1
26381 @end example
26383 @noindent
26384 misses many cases because the sine and cosine may both be multiplied by
26385 an equal factor.  Here's a more successful rule:
26387 @example
26388 opt(a) sin(x)^2 + opt(a) cos(x)^2  :=  a
26389 @end example
26391 Note that this rule will @emph{not} match @samp{sin(x)^2 + 6 cos(x)^2}
26392 because one @expr{a} would have ``matched'' 1 while the other matched 6.
26394 Calc automatically converts a rule like
26396 @example
26397 f(x-1, x)  :=  g(x)
26398 @end example
26400 @noindent
26401 into the form
26403 @example
26404 f(temp, x)  :=  g(x)  :: temp = x-1
26405 @end example
26407 @noindent
26408 (where @code{temp} stands for a new, invented meta-variable that
26409 doesn't actually have a name).  This modified rule will successfully
26410 match @samp{f(6, 7)}, binding @samp{temp} and @samp{x} to 6 and 7,
26411 respectively, then verifying that they differ by one even though
26412 @samp{6} does not superficially look like @samp{x-1}.
26414 However, Calc does not solve equations to interpret a rule.  The
26415 following rule,
26417 @example
26418 f(x-1, x+1)  :=  g(x)
26419 @end example
26421 @noindent
26422 will not work.  That is, it will match @samp{f(a - 1 + b, a + 1 + b)}
26423 but not @samp{f(6, 8)}.  Calc always interprets at least one occurrence
26424 of a variable by literal matching.  If the variable appears ``isolated''
26425 then Calc is smart enough to use it for literal matching.  But in this
26426 last example, Calc is forced to rewrite the rule to @samp{f(x-1, temp)
26427 := g(x) :: temp = x+1} where the @samp{x-1} term must correspond to an
26428 actual ``something-minus-one'' in the target formula.
26430 A successful way to write this would be @samp{f(x, x+2) := g(x+1)}.
26431 You could make this resemble the original form more closely by using
26432 @code{let} notation, which is described in the next section:
26434 @example
26435 f(xm1, x+1)  :=  g(x)  :: let(x := xm1+1)
26436 @end example
26438 Calc does this rewriting or ``conditionalizing'' for any sub-pattern
26439 which involves only the functions in the following list, operating
26440 only on constants and meta-variables which have already been matched
26441 elsewhere in the pattern.  When matching a function call, Calc is
26442 careful to match arguments which are plain variables before arguments
26443 which are calls to any of the functions below, so that a pattern like
26444 @samp{f(x-1, x)} can be conditionalized even though the isolated
26445 @samp{x} comes after the @samp{x-1}.
26447 @smallexample
26448 + - * / \ % ^  abs sign  round rounde roundu trunc floor ceil
26449 max min  re im conj arg
26450 @end smallexample
26452 You can suppress all of the special treatments described in this
26453 section by surrounding a function call with a @code{plain} marker.
26454 This marker causes the function call which is its argument to be
26455 matched literally, without regard to commutativity, associativity,
26456 negation, or conditionalization.  When you use @code{plain}, the
26457 ``deep structure'' of the formula being matched can show through.
26458 For example,
26460 @example
26461 plain(a - a b)  :=  f(a, b)
26462 @end example
26464 @noindent
26465 will match only literal subtractions.  However, the @code{plain}
26466 marker does not affect its arguments' arguments.  In this case,
26467 commutativity and associativity is still considered while matching
26468 the @w{@samp{a b}} sub-pattern, so the whole pattern will match
26469 @samp{x - y x} as well as @samp{x - x y}.  We could go still
26470 further and use
26472 @example
26473 plain(a - plain(a b))  :=  f(a, b)
26474 @end example
26476 @noindent
26477 which would do a completely strict match for the pattern.
26479 By contrast, the @code{quote} marker means that not only the
26480 function name but also the arguments must be literally the same.
26481 The above pattern will match @samp{x - x y} but
26483 @example
26484 quote(a - a b)  :=  f(a, b)
26485 @end example
26487 @noindent
26488 will match only the single formula @samp{a - a b}.  Also,
26490 @example
26491 quote(a - quote(a b))  :=  f(a, b)
26492 @end example
26494 @noindent
26495 will match only @samp{a - quote(a b)}---probably not the desired
26496 effect!
26498 A certain amount of algebra is also done when substituting the
26499 meta-variables on the righthand side of a rule.  For example,
26500 in the rule
26502 @example
26503 a + f(b)  :=  f(a + b)
26504 @end example
26506 @noindent
26507 matching @samp{f(x) - y} would produce @samp{f((-y) + x)} if
26508 taken literally, but the rewrite mechanism will simplify the
26509 righthand side to @samp{f(x - y)} automatically.  (Of course,
26510 the default simplifications would do this anyway, so this
26511 special simplification is only noticeable if you have turned the
26512 default simplifications off.)  This rewriting is done only when
26513 a meta-variable expands to a ``negative-looking'' expression.
26514 If this simplification is not desirable, you can use a @code{plain}
26515 marker on the righthand side:
26517 @example
26518 a + f(b)  :=  f(plain(a + b))
26519 @end example
26521 @noindent
26522 In this example, we are still allowing the pattern-matcher to
26523 use all the algebra it can muster, but the righthand side will
26524 always simplify to a literal addition like @samp{f((-y) + x)}.
26526 @node Other Features of Rewrite Rules, Composing Patterns in Rewrite Rules, Algebraic Properties of Rewrite Rules, Rewrite Rules
26527 @subsection Other Features of Rewrite Rules
26529 @noindent
26530 Certain ``function names'' serve as markers in rewrite rules.
26531 Here is a complete list of these markers.  First are listed the
26532 markers that work inside a pattern; then come the markers that
26533 work in the righthand side of a rule.
26535 @ignore
26536 @starindex
26537 @end ignore
26538 @tindex import
26539 One kind of marker, @samp{import(x)}, takes the place of a whole
26540 rule.  Here @expr{x} is the name of a variable containing another
26541 rule set; those rules are ``spliced into'' the rule set that
26542 imports them.  For example, if @samp{[f(a+b) := f(a) + f(b),
26543 f(a b) := a f(b) :: real(a)]} is stored in variable @samp{linearF},
26544 then the rule set @samp{[f(0) := 0, import(linearF)]} will apply
26545 all three rules.  It is possible to modify the imported rules
26546 slightly:  @samp{import(x, v1, x1, v2, x2, @dots{})} imports
26547 the rule set @expr{x} with all occurrences of 
26548 @texline @math{v_1},
26549 @infoline @expr{v1}, 
26550 as either a variable name or a function name, replaced with 
26551 @texline @math{x_1}
26552 @infoline @expr{x1} 
26553 and so on.  (If 
26554 @texline @math{v_1}
26555 @infoline @expr{v1} 
26556 is used as a function name, then 
26557 @texline @math{x_1}
26558 @infoline @expr{x1}
26559 must be either a function name itself or a @w{@samp{< >}} nameless
26560 function; @pxref{Specifying Operators}.)  For example, @samp{[g(0) := 0,
26561 import(linearF, f, g)]} applies the linearity rules to the function
26562 @samp{g} instead of @samp{f}.  Imports can be nested, but the
26563 import-with-renaming feature may fail to rename sub-imports properly.
26565 The special functions allowed in patterns are:
26567 @table @samp
26568 @item quote(x)
26569 @ignore
26570 @starindex
26571 @end ignore
26572 @tindex quote
26573 This pattern matches exactly @expr{x}; variable names in @expr{x} are
26574 not interpreted as meta-variables.  The only flexibility is that
26575 numbers are compared for numeric equality, so that the pattern
26576 @samp{f(quote(12))} will match both @samp{f(12)} and @samp{f(12.0)}.
26577 (Numbers are always treated this way by the rewrite mechanism:
26578 The rule @samp{f(x,x) := g(x)} will match @samp{f(12, 12.0)}.
26579 The rewrite may produce either @samp{g(12)} or @samp{g(12.0)}
26580 as a result in this case.)
26582 @item plain(x)
26583 @ignore
26584 @starindex
26585 @end ignore
26586 @tindex plain
26587 Here @expr{x} must be a function call @samp{f(x1,x2,@dots{})}.  This
26588 pattern matches a call to function @expr{f} with the specified
26589 argument patterns.  No special knowledge of the properties of the
26590 function @expr{f} is used in this case; @samp{+} is not commutative or
26591 associative.  Unlike @code{quote}, the arguments @samp{x1,x2,@dots{}}
26592 are treated as patterns.  If you wish them to be treated ``plainly''
26593 as well, you must enclose them with more @code{plain} markers:
26594 @samp{plain(plain(@w{-a}) + plain(b c))}.
26596 @item opt(x,def)
26597 @ignore
26598 @starindex
26599 @end ignore
26600 @tindex opt
26601 Here @expr{x} must be a variable name.  This must appear as an
26602 argument to a function or an element of a vector; it specifies that
26603 the argument or element is optional.
26604 As an argument to @samp{+}, @samp{-}, @samp{*}, @samp{&&}, or @samp{||},
26605 or as the second argument to @samp{/} or @samp{^}, the value @var{def}
26606 may be omitted.  The pattern @samp{x + opt(y)} matches a sum by
26607 binding one summand to @expr{x} and the other to @expr{y}, and it
26608 matches anything else by binding the whole expression to @expr{x} and
26609 zero to @expr{y}.  The other operators above work similarly.
26611 For general miscellaneous functions, the default value @code{def}
26612 must be specified.  Optional arguments are dropped starting with
26613 the rightmost one during matching.  For example, the pattern
26614 @samp{f(opt(a,0), b, opt(c,b))} will match @samp{f(b)}, @samp{f(a,b)},
26615 or @samp{f(a,b,c)}.  Default values of zero and @expr{b} are
26616 supplied in this example for the omitted arguments.  Note that
26617 the literal variable @expr{b} will be the default in the latter
26618 case, @emph{not} the value that matched the meta-variable @expr{b}.
26619 In other words, the default @var{def} is effectively quoted.
26621 @item condition(x,c)
26622 @ignore
26623 @starindex
26624 @end ignore
26625 @tindex condition
26626 @tindex ::
26627 This matches the pattern @expr{x}, with the attached condition
26628 @expr{c}.  It is the same as @samp{x :: c}.
26630 @item pand(x,y)
26631 @ignore
26632 @starindex
26633 @end ignore
26634 @tindex pand
26635 @tindex &&&
26636 This matches anything that matches both pattern @expr{x} and
26637 pattern @expr{y}.  It is the same as @samp{x &&& y}.
26638 @pxref{Composing Patterns in Rewrite Rules}.
26640 @item por(x,y)
26641 @ignore
26642 @starindex
26643 @end ignore
26644 @tindex por
26645 @tindex |||
26646 This matches anything that matches either pattern @expr{x} or
26647 pattern @expr{y}.  It is the same as @w{@samp{x ||| y}}.
26649 @item pnot(x)
26650 @ignore
26651 @starindex
26652 @end ignore
26653 @tindex pnot
26654 @tindex !!!
26655 This matches anything that does not match pattern @expr{x}.
26656 It is the same as @samp{!!! x}.
26658 @item cons(h,t)
26659 @ignore
26660 @mindex cons
26661 @end ignore
26662 @tindex cons (rewrites)
26663 This matches any vector of one or more elements.  The first
26664 element is matched to @expr{h}; a vector of the remaining
26665 elements is matched to @expr{t}.  Note that vectors of fixed
26666 length can also be matched as actual vectors:  The rule
26667 @samp{cons(a,cons(b,[])) := cons(a+b,[])} is equivalent
26668 to the rule @samp{[a,b] := [a+b]}.
26670 @item rcons(t,h)
26671 @ignore
26672 @mindex rcons
26673 @end ignore
26674 @tindex rcons (rewrites)
26675 This is like @code{cons}, except that the @emph{last} element
26676 is matched to @expr{h}, with the remaining elements matched
26677 to @expr{t}.
26679 @item apply(f,args)
26680 @ignore
26681 @mindex apply
26682 @end ignore
26683 @tindex apply (rewrites)
26684 This matches any function call.  The name of the function, in
26685 the form of a variable, is matched to @expr{f}.  The arguments
26686 of the function, as a vector of zero or more objects, are
26687 matched to @samp{args}.  Constants, variables, and vectors
26688 do @emph{not} match an @code{apply} pattern.  For example,
26689 @samp{apply(f,x)} matches any function call, @samp{apply(quote(f),x)}
26690 matches any call to the function @samp{f}, @samp{apply(f,[a,b])}
26691 matches any function call with exactly two arguments, and
26692 @samp{apply(quote(f), cons(a,cons(b,x)))} matches any call
26693 to the function @samp{f} with two or more arguments.  Another
26694 way to implement the latter, if the rest of the rule does not
26695 need to refer to the first two arguments of @samp{f} by name,
26696 would be @samp{apply(quote(f), x :: vlen(x) >= 2)}.
26697 Here's a more interesting sample use of @code{apply}:
26699 @example
26700 apply(f,[x+n])  :=  n + apply(f,[x])
26701    :: in(f, [floor,ceil,round,trunc]) :: integer(n)
26702 @end example
26704 Note, however, that this will be slower to match than a rule
26705 set with four separate rules.  The reason is that Calc sorts
26706 the rules of a rule set according to top-level function name;
26707 if the top-level function is @code{apply}, Calc must try the
26708 rule for every single formula and sub-formula.  If the top-level
26709 function in the pattern is, say, @code{floor}, then Calc invokes
26710 the rule only for sub-formulas which are calls to @code{floor}.
26712 Formulas normally written with operators like @code{+} are still
26713 considered function calls:  @code{apply(f,x)} matches @samp{a+b}
26714 with @samp{f = add}, @samp{x = [a,b]}.
26716 You must use @code{apply} for meta-variables with function names
26717 on both sides of a rewrite rule:  @samp{apply(f, [x]) := f(x+1)}
26718 is @emph{not} correct, because it rewrites @samp{spam(6)} into
26719 @samp{f(7)}.  The righthand side should be @samp{apply(f, [x+1])}.
26720 Also note that you will have to use No-Simplify mode (@kbd{m O})
26721 when entering this rule so that the @code{apply} isn't
26722 evaluated immediately to get the new rule @samp{f(x) := f(x+1)}.
26723 Or, use @kbd{s e} to enter the rule without going through the stack,
26724 or enter the rule as @samp{apply(f, [x]) := apply(f, [x+1]) @w{:: 1}}.
26725 @xref{Conditional Rewrite Rules}.
26727 @item select(x)
26728 @ignore
26729 @starindex
26730 @end ignore
26731 @tindex select
26732 This is used for applying rules to formulas with selections;
26733 @pxref{Selections with Rewrite Rules}.
26734 @end table
26736 Special functions for the righthand sides of rules are:
26738 @table @samp
26739 @item quote(x)
26740 The notation @samp{quote(x)} is changed to @samp{x} when the
26741 righthand side is used.  As far as the rewrite rule is concerned,
26742 @code{quote} is invisible.  However, @code{quote} has the special
26743 property in Calc that its argument is not evaluated.  Thus,
26744 while it will not work to put the rule @samp{t(a) := typeof(a)}
26745 on the stack because @samp{typeof(a)} is evaluated immediately
26746 to produce @samp{t(a) := 100}, you can use @code{quote} to
26747 protect the righthand side:  @samp{t(a) := quote(typeof(a))}.
26748 (@xref{Conditional Rewrite Rules}, for another trick for
26749 protecting rules from evaluation.)
26751 @item plain(x)
26752 Special properties of and simplifications for the function call
26753 @expr{x} are not used.  One interesting case where @code{plain}
26754 is useful is the rule, @samp{q(x) := quote(x)}, trying to expand a
26755 shorthand notation for the @code{quote} function.  This rule will
26756 not work as shown; instead of replacing @samp{q(foo)} with
26757 @samp{quote(foo)}, it will replace it with @samp{foo}!  The correct
26758 rule would be @samp{q(x) := plain(quote(x))}.
26760 @item cons(h,t)
26761 Where @expr{t} is a vector, this is converted into an expanded
26762 vector during rewrite processing.  Note that @code{cons} is a regular
26763 Calc function which normally does this anyway; the only way @code{cons}
26764 is treated specially by rewrites is that @code{cons} on the righthand
26765 side of a rule will be evaluated even if default simplifications
26766 have been turned off.
26768 @item rcons(t,h)
26769 Analogous to @code{cons} except putting @expr{h} at the @emph{end} of
26770 the vector @expr{t}.
26772 @item apply(f,args)
26773 Where @expr{f} is a variable and @var{args} is a vector, this
26774 is converted to a function call.  Once again, note that @code{apply}
26775 is also a regular Calc function.
26777 @item eval(x)
26778 @ignore
26779 @starindex
26780 @end ignore
26781 @tindex eval
26782 The formula @expr{x} is handled in the usual way, then the
26783 default simplifications are applied to it even if they have
26784 been turned off normally.  This allows you to treat any function
26785 similarly to the way @code{cons} and @code{apply} are always
26786 treated.  However, there is a slight difference:  @samp{cons(2+3, [])}
26787 with default simplifications off will be converted to @samp{[2+3]},
26788 whereas @samp{eval(cons(2+3, []))} will be converted to @samp{[5]}.
26790 @item evalsimp(x)
26791 @ignore
26792 @starindex
26793 @end ignore
26794 @tindex evalsimp
26795 The formula @expr{x} has meta-variables substituted in the usual
26796 way, then algebraically simplified as if by the @kbd{a s} command.
26798 @item evalextsimp(x)
26799 @ignore
26800 @starindex
26801 @end ignore
26802 @tindex evalextsimp
26803 The formula @expr{x} has meta-variables substituted in the normal
26804 way, then ``extendedly'' simplified as if by the @kbd{a e} command.
26806 @item select(x)
26807 @xref{Selections with Rewrite Rules}.
26808 @end table
26810 There are also some special functions you can use in conditions.
26812 @table @samp
26813 @item let(v := x)
26814 @ignore
26815 @starindex
26816 @end ignore
26817 @tindex let
26818 The expression @expr{x} is evaluated with meta-variables substituted.
26819 The @kbd{a s} command's simplifications are @emph{not} applied by
26820 default, but @expr{x} can include calls to @code{evalsimp} or
26821 @code{evalextsimp} as described above to invoke higher levels
26822 of simplification.  The
26823 result of @expr{x} is then bound to the meta-variable @expr{v}.  As
26824 usual, if this meta-variable has already been matched to something
26825 else the two values must be equal; if the meta-variable is new then
26826 it is bound to the result of the expression.  This variable can then
26827 appear in later conditions, and on the righthand side of the rule.
26828 In fact, @expr{v} may be any pattern in which case the result of
26829 evaluating @expr{x} is matched to that pattern, binding any
26830 meta-variables that appear in that pattern.  Note that @code{let}
26831 can only appear by itself as a condition, or as one term of an
26832 @samp{&&} which is a whole condition:  It cannot be inside
26833 an @samp{||} term or otherwise buried.
26835 The alternate, equivalent form @samp{let(v, x)} is also recognized.
26836 Note that the use of @samp{:=} by @code{let}, while still being
26837 assignment-like in character, is unrelated to the use of @samp{:=}
26838 in the main part of a rewrite rule.
26840 As an example, @samp{f(a) := g(ia) :: let(ia := 1/a) :: constant(ia)}
26841 replaces @samp{f(a)} with @samp{g} of the inverse of @samp{a}, if
26842 that inverse exists and is constant.  For example, if @samp{a} is a
26843 singular matrix the operation @samp{1/a} is left unsimplified and
26844 @samp{constant(ia)} fails, but if @samp{a} is an invertible matrix
26845 then the rule succeeds.  Without @code{let} there would be no way
26846 to express this rule that didn't have to invert the matrix twice.
26847 Note that, because the meta-variable @samp{ia} is otherwise unbound
26848 in this rule, the @code{let} condition itself always ``succeeds''
26849 because no matter what @samp{1/a} evaluates to, it can successfully
26850 be bound to @code{ia}.
26852 Here's another example, for integrating cosines of linear
26853 terms:  @samp{myint(cos(y),x) := sin(y)/b :: let([a,b,x] := lin(y,x))}.
26854 The @code{lin} function returns a 3-vector if its argument is linear,
26855 or leaves itself unevaluated if not.  But an unevaluated @code{lin}
26856 call will not match the 3-vector on the lefthand side of the @code{let},
26857 so this @code{let} both verifies that @code{y} is linear, and binds
26858 the coefficients @code{a} and @code{b} for use elsewhere in the rule.
26859 (It would have been possible to use @samp{sin(a x + b)/b} for the
26860 righthand side instead, but using @samp{sin(y)/b} avoids gratuitous
26861 rearrangement of the argument of the sine.)
26863 @ignore
26864 @starindex
26865 @end ignore
26866 @tindex ierf
26867 Similarly, here is a rule that implements an inverse-@code{erf}
26868 function.  It uses @code{root} to search for a solution.  If
26869 @code{root} succeeds, it will return a vector of two numbers
26870 where the first number is the desired solution.  If no solution
26871 is found, @code{root} remains in symbolic form.  So we use
26872 @code{let} to check that the result was indeed a vector.
26874 @example
26875 ierf(x)  :=  y  :: let([y,z] := root(erf(a) = x, a, .5))
26876 @end example
26878 @item matches(v,p)
26879 The meta-variable @var{v}, which must already have been matched
26880 to something elsewhere in the rule, is compared against pattern
26881 @var{p}.  Since @code{matches} is a standard Calc function, it
26882 can appear anywhere in a condition.  But if it appears alone or
26883 as a term of a top-level @samp{&&}, then you get the special
26884 extra feature that meta-variables which are bound to things
26885 inside @var{p} can be used elsewhere in the surrounding rewrite
26886 rule.
26888 The only real difference between @samp{let(p := v)} and
26889 @samp{matches(v, p)} is that the former evaluates @samp{v} using
26890 the default simplifications, while the latter does not.
26892 @item remember
26893 @vindex remember
26894 This is actually a variable, not a function.  If @code{remember}
26895 appears as a condition in a rule, then when that rule succeeds
26896 the original expression and rewritten expression are added to the
26897 front of the rule set that contained the rule.  If the rule set
26898 was not stored in a variable, @code{remember} is ignored.  The
26899 lefthand side is enclosed in @code{quote} in the added rule if it
26900 contains any variables.
26902 For example, the rule @samp{f(n) := n f(n-1) :: remember} applied
26903 to @samp{f(7)} will add the rule @samp{f(7) := 7 f(6)} to the front
26904 of the rule set.  The rule set @code{EvalRules} works slightly
26905 differently:  There, the evaluation of @samp{f(6)} will complete before
26906 the result is added to the rule set, in this case as @samp{f(7) := 5040}.
26907 Thus @code{remember} is most useful inside @code{EvalRules}.
26909 It is up to you to ensure that the optimization performed by
26910 @code{remember} is safe.  For example, the rule @samp{foo(n) := n
26911 :: evalv(eatfoo) > 0 :: remember} is a bad idea (@code{evalv} is
26912 the function equivalent of the @kbd{=} command); if the variable
26913 @code{eatfoo} ever contains 1, rules like @samp{foo(7) := 7} will
26914 be added to the rule set and will continue to operate even if
26915 @code{eatfoo} is later changed to 0.
26917 @item remember(c)
26918 @ignore
26919 @starindex
26920 @end ignore
26921 @tindex remember
26922 Remember the match as described above, but only if condition @expr{c}
26923 is true.  For example, @samp{remember(n % 4 = 0)} in the above factorial
26924 rule remembers only every fourth result.  Note that @samp{remember(1)}
26925 is equivalent to @samp{remember}, and @samp{remember(0)} has no effect.
26926 @end table
26928 @node Composing Patterns in Rewrite Rules, Nested Formulas with Rewrite Rules, Other Features of Rewrite Rules, Rewrite Rules
26929 @subsection Composing Patterns in Rewrite Rules
26931 @noindent
26932 There are three operators, @samp{&&&}, @samp{|||}, and @samp{!!!},
26933 that combine rewrite patterns to make larger patterns.  The
26934 combinations are ``and,'' ``or,'' and ``not,'' respectively, and
26935 these operators are the pattern equivalents of @samp{&&}, @samp{||}
26936 and @samp{!} (which operate on zero-or-nonzero logical values).
26938 Note that @samp{&&&}, @samp{|||}, and @samp{!!!} are left in symbolic
26939 form by all regular Calc features; they have special meaning only in
26940 the context of rewrite rule patterns.
26942 The pattern @samp{@var{p1} &&& @var{p2}} matches anything that
26943 matches both @var{p1} and @var{p2}.  One especially useful case is
26944 when one of @var{p1} or @var{p2} is a meta-variable.  For example,
26945 here is a rule that operates on error forms:
26947 @example
26948 f(x &&& a +/- b, x)  :=  g(x)
26949 @end example
26951 This does the same thing, but is arguably simpler than, the rule
26953 @example
26954 f(a +/- b, a +/- b)  :=  g(a +/- b)
26955 @end example
26957 @ignore
26958 @starindex
26959 @end ignore
26960 @tindex ends
26961 Here's another interesting example:
26963 @example
26964 ends(cons(a, x) &&& rcons(y, b))  :=  [a, b]
26965 @end example
26967 @noindent
26968 which effectively clips out the middle of a vector leaving just
26969 the first and last elements.  This rule will change a one-element
26970 vector @samp{[a]} to @samp{[a, a]}.  The similar rule
26972 @example
26973 ends(cons(a, rcons(y, b)))  :=  [a, b]
26974 @end example
26976 @noindent
26977 would do the same thing except that it would fail to match a
26978 one-element vector.
26980 @tex
26981 \bigskip
26982 @end tex
26984 The pattern @samp{@var{p1} ||| @var{p2}} matches anything that
26985 matches either @var{p1} or @var{p2}.  Calc first tries matching
26986 against @var{p1}; if that fails, it goes on to try @var{p2}.
26988 @ignore
26989 @starindex
26990 @end ignore
26991 @tindex curve
26992 A simple example of @samp{|||} is
26994 @example
26995 curve(inf ||| -inf)  :=  0
26996 @end example
26998 @noindent
26999 which converts both @samp{curve(inf)} and @samp{curve(-inf)} to zero.
27001 Here is a larger example:
27003 @example
27004 log(a, b) ||| (ln(a) :: let(b := e))  :=  mylog(a, b)
27005 @end example
27007 This matches both generalized and natural logarithms in a single rule.
27008 Note that the @samp{::} term must be enclosed in parentheses because
27009 that operator has lower precedence than @samp{|||} or @samp{:=}.
27011 (In practice this rule would probably include a third alternative,
27012 omitted here for brevity, to take care of @code{log10}.)
27014 While Calc generally treats interior conditions exactly the same as
27015 conditions on the outside of a rule, it does guarantee that if all the
27016 variables in the condition are special names like @code{e}, or already
27017 bound in the pattern to which the condition is attached (say, if
27018 @samp{a} had appeared in this condition), then Calc will process this
27019 condition right after matching the pattern to the left of the @samp{::}.
27020 Thus, we know that @samp{b} will be bound to @samp{e} only if the
27021 @code{ln} branch of the @samp{|||} was taken.
27023 Note that this rule was careful to bind the same set of meta-variables
27024 on both sides of the @samp{|||}.  Calc does not check this, but if
27025 you bind a certain meta-variable only in one branch and then use that
27026 meta-variable elsewhere in the rule, results are unpredictable:
27028 @example
27029 f(a,b) ||| g(b)  :=  h(a,b)
27030 @end example
27032 Here if the pattern matches @samp{g(17)}, Calc makes no promises about
27033 the value that will be substituted for @samp{a} on the righthand side.
27035 @tex
27036 \bigskip
27037 @end tex
27039 The pattern @samp{!!! @var{pat}} matches anything that does not
27040 match @var{pat}.  Any meta-variables that are bound while matching
27041 @var{pat} remain unbound outside of @var{pat}.
27043 For example,
27045 @example
27046 f(x &&& !!! a +/- b, !!![])  :=  g(x)
27047 @end example
27049 @noindent
27050 converts @code{f} whose first argument is anything @emph{except} an
27051 error form, and whose second argument is not the empty vector, into
27052 a similar call to @code{g} (but without the second argument).
27054 If we know that the second argument will be a vector (empty or not),
27055 then an equivalent rule would be:
27057 @example
27058 f(x, y)  :=  g(x)  :: typeof(x) != 7 :: vlen(y) > 0
27059 @end example
27061 @noindent
27062 where of course 7 is the @code{typeof} code for error forms.
27063 Another final condition, that works for any kind of @samp{y},
27064 would be @samp{!istrue(y == [])}.  (The @code{istrue} function
27065 returns an explicit 0 if its argument was left in symbolic form;
27066 plain @samp{!(y == [])} or @samp{y != []} would not work to replace
27067 @samp{!!![]} since these would be left unsimplified, and thus cause
27068 the rule to fail, if @samp{y} was something like a variable name.)
27070 It is possible for a @samp{!!!} to refer to meta-variables bound
27071 elsewhere in the pattern.  For example,
27073 @example
27074 f(a, !!!a)  :=  g(a)
27075 @end example
27077 @noindent
27078 matches any call to @code{f} with different arguments, changing
27079 this to @code{g} with only the first argument.
27081 If a function call is to be matched and one of the argument patterns
27082 contains a @samp{!!!} somewhere inside it, that argument will be
27083 matched last.  Thus
27085 @example
27086 f(!!!a, a)  :=  g(a)
27087 @end example
27089 @noindent
27090 will be careful to bind @samp{a} to the second argument of @code{f}
27091 before testing the first argument.  If Calc had tried to match the
27092 first argument of @code{f} first, the results would have been
27093 disastrous: since @code{a} was unbound so far, the pattern @samp{a}
27094 would have matched anything at all, and the pattern @samp{!!!a}
27095 therefore would @emph{not} have matched anything at all!
27097 @node Nested Formulas with Rewrite Rules, Multi-Phase Rewrite Rules, Composing Patterns in Rewrite Rules, Rewrite Rules
27098 @subsection Nested Formulas with Rewrite Rules
27100 @noindent
27101 When @kbd{a r} (@code{calc-rewrite}) is used, it takes an expression from
27102 the top of the stack and attempts to match any of the specified rules
27103 to any part of the expression, starting with the whole expression
27104 and then, if that fails, trying deeper and deeper sub-expressions.
27105 For each part of the expression, the rules are tried in the order
27106 they appear in the rules vector.  The first rule to match the first
27107 sub-expression wins; it replaces the matched sub-expression according
27108 to the @var{new} part of the rule.
27110 Often, the rule set will match and change the formula several times.
27111 The top-level formula is first matched and substituted repeatedly until
27112 it no longer matches the pattern; then, sub-formulas are tried, and
27113 so on.  Once every part of the formula has gotten its chance, the
27114 rewrite mechanism starts over again with the top-level formula
27115 (in case a substitution of one of its arguments has caused it again
27116 to match).  This continues until no further matches can be made
27117 anywhere in the formula.
27119 It is possible for a rule set to get into an infinite loop.  The
27120 most obvious case, replacing a formula with itself, is not a problem
27121 because a rule is not considered to ``succeed'' unless the righthand
27122 side actually comes out to something different than the original
27123 formula or sub-formula that was matched.  But if you accidentally
27124 had both @samp{ln(a b) := ln(a) + ln(b)} and the reverse
27125 @samp{ln(a) + ln(b) := ln(a b)} in your rule set, Calc would
27126 run forever switching a formula back and forth between the two
27127 forms.
27129 To avoid disaster, Calc normally stops after 100 changes have been
27130 made to the formula.  This will be enough for most multiple rewrites,
27131 but it will keep an endless loop of rewrites from locking up the
27132 computer forever.  (On most systems, you can also type @kbd{C-g} to
27133 halt any Emacs command prematurely.)
27135 To change this limit, give a positive numeric prefix argument.
27136 In particular, @kbd{M-1 a r} applies only one rewrite at a time,
27137 useful when you are first testing your rule (or just if repeated
27138 rewriting is not what is called for by your application).
27140 @ignore
27141 @starindex
27142 @end ignore
27143 @ignore
27144 @mindex iter@idots
27145 @end ignore
27146 @tindex iterations
27147 You can also put a ``function call'' @samp{iterations(@var{n})}
27148 in place of a rule anywhere in your rules vector (but usually at
27149 the top).  Then, @var{n} will be used instead of 100 as the default
27150 number of iterations for this rule set.  You can use
27151 @samp{iterations(inf)} if you want no iteration limit by default.
27152 A prefix argument will override the @code{iterations} limit in the
27153 rule set.
27155 @example
27156 [ iterations(1),
27157   f(x) := f(x+1) ]
27158 @end example
27160 More precisely, the limit controls the number of ``iterations,''
27161 where each iteration is a successful matching of a rule pattern whose
27162 righthand side, after substituting meta-variables and applying the
27163 default simplifications, is different from the original sub-formula
27164 that was matched.
27166 A prefix argument of zero sets the limit to infinity.  Use with caution!
27168 Given a negative numeric prefix argument, @kbd{a r} will match and
27169 substitute the top-level expression up to that many times, but
27170 will not attempt to match the rules to any sub-expressions.
27172 In a formula, @code{rewrite(@var{expr}, @var{rules}, @var{n})}
27173 does a rewriting operation.  Here @var{expr} is the expression
27174 being rewritten, @var{rules} is the rule, vector of rules, or
27175 variable containing the rules, and @var{n} is the optional
27176 iteration limit, which may be a positive integer, a negative
27177 integer, or @samp{inf} or @samp{-inf}.  If @var{n} is omitted
27178 the @code{iterations} value from the rule set is used; if both
27179 are omitted, 100 is used.
27181 @node Multi-Phase Rewrite Rules, Selections with Rewrite Rules, Nested Formulas with Rewrite Rules, Rewrite Rules
27182 @subsection Multi-Phase Rewrite Rules
27184 @noindent
27185 It is possible to separate a rewrite rule set into several @dfn{phases}.
27186 During each phase, certain rules will be enabled while certain others
27187 will be disabled.  A @dfn{phase schedule} controls the order in which
27188 phases occur during the rewriting process.
27190 @ignore
27191 @starindex
27192 @end ignore
27193 @tindex phase
27194 @vindex all
27195 If a call to the marker function @code{phase} appears in the rules
27196 vector in place of a rule, all rules following that point will be
27197 members of the phase(s) identified in the arguments to @code{phase}.
27198 Phases are given integer numbers.  The markers @samp{phase()} and
27199 @samp{phase(all)} both mean the following rules belong to all phases;
27200 this is the default at the start of the rule set.
27202 If you do not explicitly schedule the phases, Calc sorts all phase
27203 numbers that appear in the rule set and executes the phases in
27204 ascending order.  For example, the rule set
27206 @example
27207 @group
27208 [ f0(x) := g0(x),
27209   phase(1),
27210   f1(x) := g1(x),
27211   phase(2),
27212   f2(x) := g2(x),
27213   phase(3),
27214   f3(x) := g3(x),
27215   phase(1,2),
27216   f4(x) := g4(x) ]
27217 @end group
27218 @end example
27220 @noindent
27221 has three phases, 1 through 3.  Phase 1 consists of the @code{f0},
27222 @code{f1}, and @code{f4} rules (in that order).  Phase 2 consists of
27223 @code{f0}, @code{f2}, and @code{f4}.  Phase 3 consists of @code{f0}
27224 and @code{f3}.
27226 When Calc rewrites a formula using this rule set, it first rewrites
27227 the formula using only the phase 1 rules until no further changes are
27228 possible.  Then it switches to the phase 2 rule set and continues
27229 until no further changes occur, then finally rewrites with phase 3.
27230 When no more phase 3 rules apply, rewriting finishes.  (This is
27231 assuming @kbd{a r} with a large enough prefix argument to allow the
27232 rewriting to run to completion; the sequence just described stops
27233 early if the number of iterations specified in the prefix argument,
27234 100 by default, is reached.)
27236 During each phase, Calc descends through the nested levels of the
27237 formula as described previously.  (@xref{Nested Formulas with Rewrite
27238 Rules}.)  Rewriting starts at the top of the formula, then works its
27239 way down to the parts, then goes back to the top and works down again.
27240 The phase 2 rules do not begin until no phase 1 rules apply anywhere
27241 in the formula.
27243 @ignore
27244 @starindex
27245 @end ignore
27246 @tindex schedule
27247 A @code{schedule} marker appearing in the rule set (anywhere, but
27248 conventionally at the top) changes the default schedule of phases.
27249 In the simplest case, @code{schedule} has a sequence of phase numbers
27250 for arguments; each phase number is invoked in turn until the
27251 arguments to @code{schedule} are exhausted.  Thus adding
27252 @samp{schedule(3,2,1)} at the top of the above rule set would
27253 reverse the order of the phases; @samp{schedule(1,2,3)} would have
27254 no effect since this is the default schedule; and @samp{schedule(1,2,1,3)}
27255 would give phase 1 a second chance after phase 2 has completed, before
27256 moving on to phase 3.
27258 Any argument to @code{schedule} can instead be a vector of phase
27259 numbers (or even of sub-vectors).  Then the sub-sequence of phases
27260 described by the vector are tried repeatedly until no change occurs
27261 in any phase in the sequence.  For example, @samp{schedule([1, 2], 3)}
27262 tries phase 1, then phase 2, then, if either phase made any changes
27263 to the formula, repeats these two phases until they can make no
27264 further progress.  Finally, it goes on to phase 3 for finishing
27265 touches.
27267 Also, items in @code{schedule} can be variable names as well as
27268 numbers.  A variable name is interpreted as the name of a function
27269 to call on the whole formula.  For example, @samp{schedule(1, simplify)}
27270 says to apply the phase-1 rules (presumably, all of them), then to
27271 call @code{simplify} which is the function name equivalent of @kbd{a s}.
27272 Likewise, @samp{schedule([1, simplify])} says to alternate between
27273 phase 1 and @kbd{a s} until no further changes occur.
27275 Phases can be used purely to improve efficiency; if it is known that
27276 a certain group of rules will apply only at the beginning of rewriting,
27277 and a certain other group will apply only at the end, then rewriting
27278 will be faster if these groups are identified as separate phases.
27279 Once the phase 1 rules are done, Calc can put them aside and no longer
27280 spend any time on them while it works on phase 2.
27282 There are also some problems that can only be solved with several
27283 rewrite phases.  For a real-world example of a multi-phase rule set,
27284 examine the set @code{FitRules}, which is used by the curve-fitting
27285 command to convert a model expression to linear form.
27286 @xref{Curve Fitting Details}.  This set is divided into four phases.
27287 The first phase rewrites certain kinds of expressions to be more
27288 easily linearizable, but less computationally efficient.  After the
27289 linear components have been picked out, the final phase includes the
27290 opposite rewrites to put each component back into an efficient form.
27291 If both sets of rules were included in one big phase, Calc could get
27292 into an infinite loop going back and forth between the two forms.
27294 Elsewhere in @code{FitRules}, the components are first isolated,
27295 then recombined where possible to reduce the complexity of the linear
27296 fit, then finally packaged one component at a time into vectors.
27297 If the packaging rules were allowed to begin before the recombining
27298 rules were finished, some components might be put away into vectors
27299 before they had a chance to recombine.  By putting these rules in
27300 two separate phases, this problem is neatly avoided.
27302 @node Selections with Rewrite Rules, Matching Commands, Multi-Phase Rewrite Rules, Rewrite Rules
27303 @subsection Selections with Rewrite Rules
27305 @noindent
27306 If a sub-formula of the current formula is selected (as by @kbd{j s};
27307 @pxref{Selecting Subformulas}), the @kbd{a r} (@code{calc-rewrite})
27308 command applies only to that sub-formula.  Together with a negative
27309 prefix argument, you can use this fact to apply a rewrite to one
27310 specific part of a formula without affecting any other parts.
27312 @kindex j r
27313 @pindex calc-rewrite-selection
27314 The @kbd{j r} (@code{calc-rewrite-selection}) command allows more
27315 sophisticated operations on selections.  This command prompts for
27316 the rules in the same way as @kbd{a r}, but it then applies those
27317 rules to the whole formula in question even though a sub-formula
27318 of it has been selected.  However, the selected sub-formula will
27319 first have been surrounded by a @samp{select( )} function call.
27320 (Calc's evaluator does not understand the function name @code{select};
27321 this is only a tag used by the @kbd{j r} command.)
27323 For example, suppose the formula on the stack is @samp{2 (a + b)^2}
27324 and the sub-formula @samp{a + b} is selected.  This formula will
27325 be rewritten to @samp{2 select(a + b)^2} and then the rewrite
27326 rules will be applied in the usual way.  The rewrite rules can
27327 include references to @code{select} to tell where in the pattern
27328 the selected sub-formula should appear.
27330 If there is still exactly one @samp{select( )} function call in
27331 the formula after rewriting is done, it indicates which part of
27332 the formula should be selected afterwards.  Otherwise, the
27333 formula will be unselected.
27335 You can make @kbd{j r} act much like @kbd{a r} by enclosing both parts
27336 of the rewrite rule with @samp{select()}.  However, @kbd{j r}
27337 allows you to use the current selection in more flexible ways.
27338 Suppose you wished to make a rule which removed the exponent from
27339 the selected term; the rule @samp{select(a)^x := select(a)} would
27340 work.  In the above example, it would rewrite @samp{2 select(a + b)^2}
27341 to @samp{2 select(a + b)}.  This would then be returned to the
27342 stack as @samp{2 (a + b)} with the @samp{a + b} selected.
27344 The @kbd{j r} command uses one iteration by default, unlike
27345 @kbd{a r} which defaults to 100 iterations.  A numeric prefix
27346 argument affects @kbd{j r} in the same way as @kbd{a r}.
27347 @xref{Nested Formulas with Rewrite Rules}.
27349 As with other selection commands, @kbd{j r} operates on the stack
27350 entry that contains the cursor.  (If the cursor is on the top-of-stack
27351 @samp{.} marker, it works as if the cursor were on the formula
27352 at stack level 1.)
27354 If you don't specify a set of rules, the rules are taken from the
27355 top of the stack, just as with @kbd{a r}.  In this case, the
27356 cursor must indicate stack entry 2 or above as the formula to be
27357 rewritten (otherwise the same formula would be used as both the
27358 target and the rewrite rules).
27360 If the indicated formula has no selection, the cursor position within
27361 the formula temporarily selects a sub-formula for the purposes of this
27362 command.  If the cursor is not on any sub-formula (e.g., it is in
27363 the line-number area to the left of the formula), the @samp{select( )}
27364 markers are ignored by the rewrite mechanism and the rules are allowed
27365 to apply anywhere in the formula.
27367 As a special feature, the normal @kbd{a r} command also ignores
27368 @samp{select( )} calls in rewrite rules.  For example, if you used the
27369 above rule @samp{select(a)^x := select(a)} with @kbd{a r}, it would apply
27370 the rule as if it were @samp{a^x := a}.  Thus, you can write general
27371 purpose rules with @samp{select( )} hints inside them so that they
27372 will ``do the right thing'' in both @kbd{a r} and @kbd{j r},
27373 both with and without selections.
27375 @node Matching Commands, Automatic Rewrites, Selections with Rewrite Rules, Rewrite Rules
27376 @subsection Matching Commands
27378 @noindent
27379 @kindex a m
27380 @pindex calc-match
27381 @tindex match
27382 The @kbd{a m} (@code{calc-match}) [@code{match}] function takes a
27383 vector of formulas and a rewrite-rule-style pattern, and produces
27384 a vector of all formulas which match the pattern.  The command
27385 prompts you to enter the pattern; as for @kbd{a r}, you can enter
27386 a single pattern (i.e., a formula with meta-variables), or a
27387 vector of patterns, or a variable which contains patterns, or
27388 you can give a blank response in which case the patterns are taken
27389 from the top of the stack.  The pattern set will be compiled once
27390 and saved if it is stored in a variable.  If there are several
27391 patterns in the set, vector elements are kept if they match any
27392 of the patterns.
27394 For example, @samp{match(a+b, [x, x+y, x-y, 7, x+y+z])}
27395 will return @samp{[x+y, x-y, x+y+z]}.
27397 The @code{import} mechanism is not available for pattern sets.
27399 The @kbd{a m} command can also be used to extract all vector elements
27400 which satisfy any condition:  The pattern @samp{x :: x>0} will select
27401 all the positive vector elements.
27403 @kindex I a m
27404 @tindex matchnot
27405 With the Inverse flag [@code{matchnot}], this command extracts all
27406 vector elements which do @emph{not} match the given pattern.
27408 @ignore
27409 @starindex
27410 @end ignore
27411 @tindex matches
27412 There is also a function @samp{matches(@var{x}, @var{p})} which
27413 evaluates to 1 if expression @var{x} matches pattern @var{p}, or
27414 to 0 otherwise.  This is sometimes useful for including into the
27415 conditional clauses of other rewrite rules.
27417 @ignore
27418 @starindex
27419 @end ignore
27420 @tindex vmatches
27421 The function @code{vmatches} is just like @code{matches}, except
27422 that if the match succeeds it returns a vector of assignments to
27423 the meta-variables instead of the number 1.  For example,
27424 @samp{vmatches(f(1,2), f(a,b))} returns @samp{[a := 1, b := 2]}.
27425 If the match fails, the function returns the number 0.
27427 @node Automatic Rewrites, Debugging Rewrites, Matching Commands, Rewrite Rules
27428 @subsection Automatic Rewrites
27430 @noindent
27431 @cindex @code{EvalRules} variable
27432 @vindex EvalRules
27433 It is possible to get Calc to apply a set of rewrite rules on all
27434 results, effectively adding to the built-in set of default
27435 simplifications.  To do this, simply store your rule set in the
27436 variable @code{EvalRules}.  There is a convenient @kbd{s E} command
27437 for editing @code{EvalRules}; @pxref{Operations on Variables}.
27439 For example, suppose you want @samp{sin(a + b)} to be expanded out
27440 to @samp{sin(b) cos(a) + cos(b) sin(a)} wherever it appears, and
27441 similarly for @samp{cos(a + b)}.  The corresponding rewrite rule
27442 set would be,
27444 @smallexample
27445 @group
27446 [ sin(a + b)  :=  cos(a) sin(b) + sin(a) cos(b),
27447   cos(a + b)  :=  cos(a) cos(b) - sin(a) sin(b) ]
27448 @end group
27449 @end smallexample
27451 To apply these manually, you could put them in a variable called
27452 @code{trigexp} and then use @kbd{a r trigexp} every time you wanted
27453 to expand trig functions.  But if instead you store them in the
27454 variable @code{EvalRules}, they will automatically be applied to all
27455 sines and cosines of sums.  Then, with @samp{2 x} and @samp{45} on
27456 the stack, typing @kbd{+ S} will (assuming Degrees mode) result in
27457 @samp{0.7071 sin(2 x) + 0.7071 cos(2 x)} automatically.
27459 As each level of a formula is evaluated, the rules from
27460 @code{EvalRules} are applied before the default simplifications.
27461 Rewriting continues until no further @code{EvalRules} apply.
27462 Note that this is different from the usual order of application of
27463 rewrite rules:  @code{EvalRules} works from the bottom up, simplifying
27464 the arguments to a function before the function itself, while @kbd{a r}
27465 applies rules from the top down.
27467 Because the @code{EvalRules} are tried first, you can use them to
27468 override the normal behavior of any built-in Calc function.
27470 It is important not to write a rule that will get into an infinite
27471 loop.  For example, the rule set @samp{[f(0) := 1, f(n) := n f(n-1)]}
27472 appears to be a good definition of a factorial function, but it is
27473 unsafe.  Imagine what happens if @samp{f(2.5)} is simplified.  Calc
27474 will continue to subtract 1 from this argument forever without reaching
27475 zero.  A safer second rule would be @samp{f(n) := n f(n-1) :: n>0}.
27476 Another dangerous rule is @samp{g(x, y) := g(y, x)}.  Rewriting
27477 @samp{g(2, 4)}, this would bounce back and forth between that and
27478 @samp{g(4, 2)} forever.  If an infinite loop in @code{EvalRules}
27479 occurs, Emacs will eventually stop with a ``Computation got stuck
27480 or ran too long'' message.
27482 Another subtle difference between @code{EvalRules} and regular rewrites
27483 concerns rules that rewrite a formula into an identical formula.  For
27484 example, @samp{f(n) := f(floor(n))} ``fails to match'' when @expr{n} is
27485 already an integer.  But in @code{EvalRules} this case is detected only
27486 if the righthand side literally becomes the original formula before any
27487 further simplification.  This means that @samp{f(n) := f(floor(n))} will
27488 get into an infinite loop if it occurs in @code{EvalRules}.  Calc will
27489 replace @samp{f(6)} with @samp{f(floor(6))}, which is different from
27490 @samp{f(6)}, so it will consider the rule to have matched and will
27491 continue simplifying that formula; first the argument is simplified
27492 to get @samp{f(6)}, then the rule matches again to get @samp{f(floor(6))}
27493 again, ad infinitum.  A much safer rule would check its argument first,
27494 say, with @samp{f(n) := f(floor(n)) :: !dint(n)}.
27496 (What really happens is that the rewrite mechanism substitutes the
27497 meta-variables in the righthand side of a rule, compares to see if the
27498 result is the same as the original formula and fails if so, then uses
27499 the default simplifications to simplify the result and compares again
27500 (and again fails if the formula has simplified back to its original
27501 form).  The only special wrinkle for the @code{EvalRules} is that the
27502 same rules will come back into play when the default simplifications
27503 are used.  What Calc wants to do is build @samp{f(floor(6))}, see that
27504 this is different from the original formula, simplify to @samp{f(6)},
27505 see that this is the same as the original formula, and thus halt the
27506 rewriting.  But while simplifying, @samp{f(6)} will again trigger
27507 the same @code{EvalRules} rule and Calc will get into a loop inside
27508 the rewrite mechanism itself.)
27510 The @code{phase}, @code{schedule}, and @code{iterations} markers do
27511 not work in @code{EvalRules}.  If the rule set is divided into phases,
27512 only the phase 1 rules are applied, and the schedule is ignored.
27513 The rules are always repeated as many times as possible.
27515 The @code{EvalRules} are applied to all function calls in a formula,
27516 but not to numbers (and other number-like objects like error forms),
27517 nor to vectors or individual variable names.  (Though they will apply
27518 to @emph{components} of vectors and error forms when appropriate.)  You
27519 might try to make a variable @code{phihat} which automatically expands
27520 to its definition without the need to press @kbd{=} by writing the
27521 rule @samp{quote(phihat) := (1-sqrt(5))/2}, but unfortunately this rule
27522 will not work as part of @code{EvalRules}.
27524 Finally, another limitation is that Calc sometimes calls its built-in
27525 functions directly rather than going through the default simplifications.
27526 When it does this, @code{EvalRules} will not be able to override those
27527 functions.  For example, when you take the absolute value of the complex
27528 number @expr{(2, 3)}, Calc computes @samp{sqrt(2*2 + 3*3)} by calling
27529 the multiplication, addition, and square root functions directly rather
27530 than applying the default simplifications to this formula.  So an
27531 @code{EvalRules} rule that (perversely) rewrites @samp{sqrt(13) := 6}
27532 would not apply.  (However, if you put Calc into Symbolic mode so that
27533 @samp{sqrt(13)} will be left in symbolic form by the built-in square
27534 root function, your rule will be able to apply.  But if the complex
27535 number were @expr{(3,4)}, so that @samp{sqrt(25)} must be calculated,
27536 then Symbolic mode will not help because @samp{sqrt(25)} can be
27537 evaluated exactly to 5.)
27539 One subtle restriction that normally only manifests itself with
27540 @code{EvalRules} is that while a given rewrite rule is in the process
27541 of being checked, that same rule cannot be recursively applied.  Calc
27542 effectively removes the rule from its rule set while checking the rule,
27543 then puts it back once the match succeeds or fails.  (The technical
27544 reason for this is that compiled pattern programs are not reentrant.)
27545 For example, consider the rule @samp{foo(x) := x :: foo(x/2) > 0}
27546 attempting to match @samp{foo(8)}.  This rule will be inactive while
27547 the condition @samp{foo(4) > 0} is checked, even though it might be
27548 an integral part of evaluating that condition.  Note that this is not
27549 a problem for the more usual recursive type of rule, such as
27550 @samp{foo(x) := foo(x/2)}, because there the rule has succeeded and
27551 been reactivated by the time the righthand side is evaluated.
27553 If @code{EvalRules} has no stored value (its default state), or if
27554 anything but a vector is stored in it, then it is ignored.
27556 Even though Calc's rewrite mechanism is designed to compare rewrite
27557 rules to formulas as quickly as possible, storing rules in
27558 @code{EvalRules} may make Calc run substantially slower.  This is
27559 particularly true of rules where the top-level call is a commonly used
27560 function, or is not fixed.  The rule @samp{f(n) := n f(n-1) :: n>0} will
27561 only activate the rewrite mechanism for calls to the function @code{f},
27562 but @samp{lg(n) + lg(m) := lg(n m)} will check every @samp{+} operator.
27564 @smallexample
27565 apply(f, [a*b]) := apply(f, [a]) + apply(f, [b]) :: in(f, [ln, log10])
27566 @end smallexample
27568 @noindent
27569 may seem more ``efficient'' than two separate rules for @code{ln} and
27570 @code{log10}, but actually it is vastly less efficient because rules
27571 with @code{apply} as the top-level pattern must be tested against
27572 @emph{every} function call that is simplified.
27574 @cindex @code{AlgSimpRules} variable
27575 @vindex AlgSimpRules
27576 Suppose you want @samp{sin(a + b)} to be expanded out not all the time,
27577 but only when @kbd{a s} is used to simplify the formula.  The variable
27578 @code{AlgSimpRules} holds rules for this purpose.  The @kbd{a s} command
27579 will apply @code{EvalRules} and @code{AlgSimpRules} to the formula, as
27580 well as all of its built-in simplifications.
27582 Most of the special limitations for @code{EvalRules} don't apply to
27583 @code{AlgSimpRules}.  Calc simply does an @kbd{a r AlgSimpRules}
27584 command with an infinite repeat count as the first step of @kbd{a s}.
27585 It then applies its own built-in simplifications throughout the
27586 formula, and then repeats these two steps (along with applying the
27587 default simplifications) until no further changes are possible.
27589 @cindex @code{ExtSimpRules} variable
27590 @cindex @code{UnitSimpRules} variable
27591 @vindex ExtSimpRules
27592 @vindex UnitSimpRules
27593 There are also @code{ExtSimpRules} and @code{UnitSimpRules} variables
27594 that are used by @kbd{a e} and @kbd{u s}, respectively; these commands
27595 also apply @code{EvalRules} and @code{AlgSimpRules}.  The variable
27596 @code{IntegSimpRules} contains simplification rules that are used
27597 only during integration by @kbd{a i}.
27599 @node Debugging Rewrites, Examples of Rewrite Rules, Automatic Rewrites, Rewrite Rules
27600 @subsection Debugging Rewrites
27602 @noindent
27603 If a buffer named @samp{*Trace*} exists, the rewrite mechanism will
27604 record some useful information there as it operates.  The original
27605 formula is written there, as is the result of each successful rewrite,
27606 and the final result of the rewriting.  All phase changes are also
27607 noted.
27609 Calc always appends to @samp{*Trace*}.  You must empty this buffer
27610 yourself periodically if it is in danger of growing unwieldy.
27612 Note that the rewriting mechanism is substantially slower when the
27613 @samp{*Trace*} buffer exists, even if the buffer is not visible on
27614 the screen.  Once you are done, you will probably want to kill this
27615 buffer (with @kbd{C-x k *Trace* @key{RET}}).  If you leave it in
27616 existence and forget about it, all your future rewrite commands will
27617 be needlessly slow.
27619 @node Examples of Rewrite Rules, , Debugging Rewrites, Rewrite Rules
27620 @subsection Examples of Rewrite Rules
27622 @noindent
27623 Returning to the example of substituting the pattern
27624 @samp{sin(x)^2 + cos(x)^2} with 1, we saw that the rule
27625 @samp{opt(a) sin(x)^2 + opt(a) cos(x)^2 := a} does a good job of
27626 finding suitable cases.  Another solution would be to use the rule
27627 @samp{cos(x)^2 := 1 - sin(x)^2}, followed by algebraic simplification
27628 if necessary.  This rule will be the most effective way to do the job,
27629 but at the expense of making some changes that you might not desire.
27631 Another algebraic rewrite rule is @samp{exp(x+y) := exp(x) exp(y)}.
27632 To make this work with the @w{@kbd{j r}} command so that it can be
27633 easily targeted to a particular exponential in a large formula,
27634 you might wish to write the rule as @samp{select(exp(x+y)) :=
27635 select(exp(x) exp(y))}.  The @samp{select} markers will be
27636 ignored by the regular @kbd{a r} command
27637 (@pxref{Selections with Rewrite Rules}).
27639 A surprisingly useful rewrite rule is @samp{a/(b-c) := a*(b+c)/(b^2-c^2)}.
27640 This will simplify the formula whenever @expr{b} and/or @expr{c} can
27641 be made simpler by squaring.  For example, applying this rule to
27642 @samp{2 / (sqrt(2) + 3)} yields @samp{6:7 - 2:7 sqrt(2)} (assuming
27643 Symbolic mode has been enabled to keep the square root from being
27644 evaluated to a floating-point approximation).  This rule is also
27645 useful when working with symbolic complex numbers, e.g.,
27646 @samp{(a + b i) / (c + d i)}.
27648 As another example, we could define our own ``triangular numbers'' function
27649 with the rules @samp{[tri(0) := 0, tri(n) := n + tri(n-1) :: n>0]}.  Enter
27650 this vector and store it in a variable:  @kbd{@w{s t} trirules}.  Now, given
27651 a suitable formula like @samp{tri(5)} on the stack, type @samp{a r trirules}
27652 to apply these rules repeatedly.  After six applications, @kbd{a r} will
27653 stop with 15 on the stack.  Once these rules are debugged, it would probably
27654 be most useful to add them to @code{EvalRules} so that Calc will evaluate
27655 the new @code{tri} function automatically.  We could then use @kbd{Z K} on
27656 the keyboard macro @kbd{' tri($) @key{RET}} to make a command that applies
27657 @code{tri} to the value on the top of the stack.  @xref{Programming}.
27659 @cindex Quaternions
27660 The following rule set, contributed by 
27661 @texline Fran\c cois
27662 @infoline Francois
27663 Pinard, implements @dfn{quaternions}, a generalization of the concept of
27664 complex numbers.  Quaternions have four components, and are here
27665 represented by function calls @samp{quat(@var{w}, [@var{x}, @var{y},
27666 @var{z}])} with ``real part'' @var{w} and the three ``imaginary'' parts
27667 collected into a vector.  Various arithmetical operations on quaternions
27668 are supported.  To use these rules, either add them to @code{EvalRules},
27669 or create a command based on @kbd{a r} for simplifying quaternion
27670 formulas.  A convenient way to enter quaternions would be a command
27671 defined by a keyboard macro containing: @kbd{' quat($$$$, [$$$, $$, $])
27672 @key{RET}}.
27674 @smallexample
27675 [ quat(w, x, y, z) := quat(w, [x, y, z]),
27676   quat(w, [0, 0, 0]) := w,
27677   abs(quat(w, v)) := hypot(w, v),
27678   -quat(w, v) := quat(-w, -v),
27679   r + quat(w, v) := quat(r + w, v) :: real(r),
27680   r - quat(w, v) := quat(r - w, -v) :: real(r),
27681   quat(w1, v1) + quat(w2, v2) := quat(w1 + w2, v1 + v2),
27682   r * quat(w, v) := quat(r * w, r * v) :: real(r),
27683   plain(quat(w1, v1) * quat(w2, v2))
27684      := quat(w1 * w2 - v1 * v2, w1 * v2 + w2 * v1 + cross(v1, v2)),
27685   quat(w1, v1) / r := quat(w1 / r, v1 / r) :: real(r),
27686   z / quat(w, v) := z * quatinv(quat(w, v)),
27687   quatinv(quat(w, v)) := quat(w, -v) / (w^2 + v^2),
27688   quatsqr(quat(w, v)) := quat(w^2 - v^2, 2 * w * v),
27689   quat(w, v)^k := quatsqr(quat(w, v)^(k / 2))
27690                :: integer(k) :: k > 0 :: k % 2 = 0,
27691   quat(w, v)^k := quatsqr(quat(w, v)^((k - 1) / 2)) * quat(w, v)
27692                :: integer(k) :: k > 2,
27693   quat(w, v)^-k := quatinv(quat(w, v)^k) :: integer(k) :: k > 0 ]
27694 @end smallexample
27696 Quaternions, like matrices, have non-commutative multiplication.
27697 In other words, @expr{q1 * q2 = q2 * q1} is not necessarily true if
27698 @expr{q1} and @expr{q2} are @code{quat} forms.  The @samp{quat*quat}
27699 rule above uses @code{plain} to prevent Calc from rearranging the
27700 product.  It may also be wise to add the line @samp{[quat(), matrix]}
27701 to the @code{Decls} matrix, to ensure that Calc's other algebraic
27702 operations will not rearrange a quaternion product.  @xref{Declarations}.
27704 These rules also accept a four-argument @code{quat} form, converting
27705 it to the preferred form in the first rule.  If you would rather see
27706 results in the four-argument form, just append the two items
27707 @samp{phase(2), quat(w, [x, y, z]) := quat(w, x, y, z)} to the end
27708 of the rule set.  (But remember that multi-phase rule sets don't work
27709 in @code{EvalRules}.)
27711 @node Units, Store and Recall, Algebra, Top
27712 @chapter Operating on Units
27714 @noindent
27715 One special interpretation of algebraic formulas is as numbers with units.
27716 For example, the formula @samp{5 m / s^2} can be read ``five meters
27717 per second squared.''  The commands in this chapter help you
27718 manipulate units expressions in this form.  Units-related commands
27719 begin with the @kbd{u} prefix key.
27721 @menu
27722 * Basic Operations on Units::
27723 * The Units Table::
27724 * Predefined Units::
27725 * User-Defined Units::
27726 @end menu
27728 @node Basic Operations on Units, The Units Table, Units, Units
27729 @section Basic Operations on Units
27731 @noindent
27732 A @dfn{units expression} is a formula which is basically a number
27733 multiplied and/or divided by one or more @dfn{unit names}, which may
27734 optionally be raised to integer powers.  Actually, the value part need not
27735 be a number; any product or quotient involving unit names is a units
27736 expression.  Many of the units commands will also accept any formula,
27737 where the command applies to all units expressions which appear in the
27738 formula.
27740 A unit name is a variable whose name appears in the @dfn{unit table},
27741 or a variable whose name is a prefix character like @samp{k} (for ``kilo'')
27742 or @samp{u} (for ``micro'') followed by a name in the unit table.
27743 A substantial table of built-in units is provided with Calc;
27744 @pxref{Predefined Units}.  You can also define your own unit names;
27745 @pxref{User-Defined Units}.
27747 Note that if the value part of a units expression is exactly @samp{1},
27748 it will be removed by the Calculator's automatic algebra routines:  The
27749 formula @samp{1 mm} is ``simplified'' to @samp{mm}.  This is only a
27750 display anomaly, however; @samp{mm} will work just fine as a
27751 representation of one millimeter.
27753 You may find that Algebraic mode (@pxref{Algebraic Entry}) makes working
27754 with units expressions easier.  Otherwise, you will have to remember
27755 to hit the apostrophe key every time you wish to enter units.
27757 @kindex u s
27758 @pindex calc-simplify-units
27759 @ignore
27760 @mindex usimpl@idots
27761 @end ignore
27762 @tindex usimplify
27763 The @kbd{u s} (@code{calc-simplify-units}) [@code{usimplify}] command
27764 simplifies a units
27765 expression.  It uses @kbd{a s} (@code{calc-simplify}) to simplify the
27766 expression first as a regular algebraic formula; it then looks for
27767 features that can be further simplified by converting one object's units
27768 to be compatible with another's.  For example, @samp{5 m + 23 mm} will
27769 simplify to @samp{5.023 m}.  When different but compatible units are
27770 added, the righthand term's units are converted to match those of the
27771 lefthand term.  @xref{Simplification Modes}, for a way to have this done
27772 automatically at all times.
27774 Units simplification also handles quotients of two units with the same
27775 dimensionality, as in @w{@samp{2 in s/L cm}} to @samp{5.08 s/L}; fractional
27776 powers of unit expressions, as in @samp{sqrt(9 mm^2)} to @samp{3 mm} and
27777 @samp{sqrt(9 acre)} to a quantity in meters; and @code{floor},
27778 @code{ceil}, @code{round}, @code{rounde}, @code{roundu}, @code{trunc},
27779 @code{float}, @code{frac}, @code{abs}, and @code{clean}
27780 applied to units expressions, in which case
27781 the operation in question is applied only to the numeric part of the
27782 expression.  Finally, trigonometric functions of quantities with units
27783 of angle are evaluated, regardless of the current angular mode.
27785 @kindex u c
27786 @pindex calc-convert-units
27787 The @kbd{u c} (@code{calc-convert-units}) command converts a units
27788 expression to new, compatible units.  For example, given the units
27789 expression @samp{55 mph}, typing @kbd{u c m/s @key{RET}} produces
27790 @samp{24.5872 m/s}.  If the units you request are inconsistent with
27791 the original units, the number will be converted into your units
27792 times whatever ``remainder'' units are left over.  For example,
27793 converting @samp{55 mph} into acres produces @samp{6.08e-3 acre / m s}.
27794 (Recall that multiplication binds more strongly than division in Calc
27795 formulas, so the units here are acres per meter-second.)  Remainder
27796 units are expressed in terms of ``fundamental'' units like @samp{m} and
27797 @samp{s}, regardless of the input units.
27799 One special exception is that if you specify a single unit name, and
27800 a compatible unit appears somewhere in the units expression, then
27801 that compatible unit will be converted to the new unit and the
27802 remaining units in the expression will be left alone.  For example,
27803 given the input @samp{980 cm/s^2}, the command @kbd{u c ms} will
27804 change the @samp{s} to @samp{ms} to get @samp{9.8e-4 cm/ms^2}.
27805 The ``remainder unit'' @samp{cm} is left alone rather than being
27806 changed to the base unit @samp{m}.
27808 You can use explicit unit conversion instead of the @kbd{u s} command
27809 to gain more control over the units of the result of an expression.
27810 For example, given @samp{5 m + 23 mm}, you can type @kbd{u c m} or
27811 @kbd{u c mm} to express the result in either meters or millimeters.
27812 (For that matter, you could type @kbd{u c fath} to express the result
27813 in fathoms, if you preferred!)
27815 In place of a specific set of units, you can also enter one of the
27816 units system names @code{si}, @code{mks} (equivalent), or @code{cgs}.
27817 For example, @kbd{u c si @key{RET}} converts the expression into
27818 International System of Units (SI) base units.  Also, @kbd{u c base}
27819 converts to Calc's base units, which are the same as @code{si} units
27820 except that @code{base} uses @samp{g} as the fundamental unit of mass
27821 whereas @code{si} uses @samp{kg}.
27823 @cindex Composite units
27824 The @kbd{u c} command also accepts @dfn{composite units}, which
27825 are expressed as the sum of several compatible unit names.  For
27826 example, converting @samp{30.5 in} to units @samp{mi+ft+in} (miles,
27827 feet, and inches) produces @samp{2 ft + 6.5 in}.  Calc first
27828 sorts the unit names into order of decreasing relative size.
27829 It then accounts for as much of the input quantity as it can
27830 using an integer number times the largest unit, then moves on
27831 to the next smaller unit, and so on.  Only the smallest unit
27832 may have a non-integer amount attached in the result.  A few
27833 standard unit names exist for common combinations, such as
27834 @code{mfi} for @samp{mi+ft+in}, and @code{tpo} for @samp{ton+lb+oz}.
27835 Composite units are expanded as if by @kbd{a x}, so that
27836 @samp{(ft+in)/hr} is first converted to @samp{ft/hr+in/hr}.
27838 If the value on the stack does not contain any units, @kbd{u c} will
27839 prompt first for the old units which this value should be considered
27840 to have, then for the new units.  Assuming the old and new units you
27841 give are consistent with each other, the result also will not contain
27842 any units.  For example, @kbd{@w{u c} cm @key{RET} in @key{RET}} converts the number
27843 2 on the stack to 5.08.
27845 @kindex u b
27846 @pindex calc-base-units
27847 The @kbd{u b} (@code{calc-base-units}) command is shorthand for
27848 @kbd{u c base}; it converts the units expression on the top of the
27849 stack into @code{base} units.  If @kbd{u s} does not simplify a
27850 units expression as far as you would like, try @kbd{u b}.
27852 The @kbd{u c} and @kbd{u b} commands treat temperature units (like
27853 @samp{degC} and @samp{K}) as relative temperatures.  For example,
27854 @kbd{u c} converts @samp{10 degC} to @samp{18 degF}: A change of 10
27855 degrees Celsius corresponds to a change of 18 degrees Fahrenheit.
27857 @kindex u t
27858 @pindex calc-convert-temperature
27859 @cindex Temperature conversion
27860 The @kbd{u t} (@code{calc-convert-temperature}) command converts
27861 absolute temperatures.  The value on the stack must be a simple units
27862 expression with units of temperature only.  This command would convert
27863 @samp{10 degC} to @samp{50 degF}, the equivalent temperature on the
27864 Fahrenheit scale.
27866 @kindex u r
27867 @pindex calc-remove-units
27868 @kindex u x
27869 @pindex calc-extract-units
27870 The @kbd{u r} (@code{calc-remove-units}) command removes units from the
27871 formula at the top of the stack.  The @kbd{u x}
27872 (@code{calc-extract-units}) command extracts only the units portion of a
27873 formula.  These commands essentially replace every term of the formula
27874 that does or doesn't (respectively) look like a unit name by the
27875 constant 1, then resimplify the formula.
27877 @kindex u a
27878 @pindex calc-autorange-units
27879 The @kbd{u a} (@code{calc-autorange-units}) command turns on and off a
27880 mode in which unit prefixes like @code{k} (``kilo'') are automatically
27881 applied to keep the numeric part of a units expression in a reasonable
27882 range.  This mode affects @kbd{u s} and all units conversion commands
27883 except @kbd{u b}.  For example, with autoranging on, @samp{12345 Hz}
27884 will be simplified to @samp{12.345 kHz}.  Autoranging is useful for
27885 some kinds of units (like @code{Hz} and @code{m}), but is probably
27886 undesirable for non-metric units like @code{ft} and @code{tbsp}.
27887 (Composite units are more appropriate for those; see above.)
27889 Autoranging always applies the prefix to the leftmost unit name.
27890 Calc chooses the largest prefix that causes the number to be greater
27891 than or equal to 1.0.  Thus an increasing sequence of adjusted times
27892 would be @samp{1 ms, 10 ms, 100 ms, 1 s, 10 s, 100 s, 1 ks}.
27893 Generally the rule of thumb is that the number will be adjusted
27894 to be in the interval @samp{[1 .. 1000)}, although there are several
27895 exceptions to this rule.  First, if the unit has a power then this
27896 is not possible; @samp{0.1 s^2} simplifies to @samp{100000 ms^2}.
27897 Second, the ``centi-'' prefix is allowed to form @code{cm} (centimeters),
27898 but will not apply to other units.  The ``deci-,'' ``deka-,'' and
27899 ``hecto-'' prefixes are never used.  Thus the allowable interval is
27900 @samp{[1 .. 10)} for millimeters and @samp{[1 .. 100)} for centimeters.
27901 Finally, a prefix will not be added to a unit if the resulting name
27902 is also the actual name of another unit; @samp{1e-15 t} would normally
27903 be considered a ``femto-ton,'' but it is written as @samp{1000 at}
27904 (1000 atto-tons) instead because @code{ft} would be confused with feet.
27906 @node The Units Table, Predefined Units, Basic Operations on Units, Units
27907 @section The Units Table
27909 @noindent
27910 @kindex u v
27911 @pindex calc-enter-units-table
27912 The @kbd{u v} (@code{calc-enter-units-table}) command displays the units table
27913 in another buffer called @code{*Units Table*}.  Each entry in this table
27914 gives the unit name as it would appear in an expression, the definition
27915 of the unit in terms of simpler units, and a full name or description of
27916 the unit.  Fundamental units are defined as themselves; these are the
27917 units produced by the @kbd{u b} command.  The fundamental units are
27918 meters, seconds, grams, kelvins, amperes, candelas, moles, radians,
27919 and steradians.
27921 The Units Table buffer also displays the Unit Prefix Table.  Note that
27922 two prefixes, ``kilo'' and ``hecto,'' accept either upper- or lower-case
27923 prefix letters.  @samp{Meg} is also accepted as a synonym for the @samp{M}
27924 prefix.  Whenever a unit name can be interpreted as either a built-in name
27925 or a prefix followed by another built-in name, the former interpretation
27926 wins.  For example, @samp{2 pt} means two pints, not two pico-tons.
27928 The Units Table buffer, once created, is not rebuilt unless you define
27929 new units.  To force the buffer to be rebuilt, give any numeric prefix
27930 argument to @kbd{u v}.
27932 @kindex u V
27933 @pindex calc-view-units-table
27934 The @kbd{u V} (@code{calc-view-units-table}) command is like @kbd{u v} except
27935 that the cursor is not moved into the Units Table buffer.  You can
27936 type @kbd{u V} again to remove the Units Table from the display.  To
27937 return from the Units Table buffer after a @kbd{u v}, type @kbd{M-# c}
27938 again or use the regular Emacs @w{@kbd{C-x o}} (@code{other-window})
27939 command.  You can also kill the buffer with @kbd{C-x k} if you wish;
27940 the actual units table is safely stored inside the Calculator.
27942 @kindex u g
27943 @pindex calc-get-unit-definition
27944 The @kbd{u g} (@code{calc-get-unit-definition}) command retrieves a unit's
27945 defining expression and pushes it onto the Calculator stack.  For example,
27946 @kbd{u g in} will produce the expression @samp{2.54 cm}.  This is the
27947 same definition for the unit that would appear in the Units Table buffer.
27948 Note that this command works only for actual unit names; @kbd{u g km}
27949 will report that no such unit exists, for example, because @code{km} is
27950 really the unit @code{m} with a @code{k} (``kilo'') prefix.  To see a
27951 definition of a unit in terms of base units, it is easier to push the
27952 unit name on the stack and then reduce it to base units with @kbd{u b}.
27954 @kindex u e
27955 @pindex calc-explain-units
27956 The @kbd{u e} (@code{calc-explain-units}) command displays an English
27957 description of the units of the expression on the stack.  For example,
27958 for the expression @samp{62 km^2 g / s^2 mol K}, the description is
27959 ``Square-Kilometer Gram per (Second-squared Mole Degree-Kelvin).''  This
27960 command uses the English descriptions that appear in the righthand
27961 column of the Units Table.
27963 @node Predefined Units, User-Defined Units, The Units Table, Units
27964 @section Predefined Units
27966 @noindent
27967 Since the exact definitions of many kinds of units have evolved over the
27968 years, and since certain countries sometimes have local differences in
27969 their definitions, it is a good idea to examine Calc's definition of a
27970 unit before depending on its exact value.  For example, there are three
27971 different units for gallons, corresponding to the US (@code{gal}),
27972 Canadian (@code{galC}), and British (@code{galUK}) definitions.  Also,
27973 note that @code{oz} is a standard ounce of mass, @code{ozt} is a Troy
27974 ounce, and @code{ozfl} is a fluid ounce.
27976 The temperature units corresponding to degrees Kelvin and Centigrade
27977 (Celsius) are the same in this table, since most units commands treat
27978 temperatures as being relative.  The @code{calc-convert-temperature}
27979 command has special rules for handling the different absolute magnitudes
27980 of the various temperature scales.
27982 The unit of volume ``liters'' can be referred to by either the lower-case
27983 @code{l} or the upper-case @code{L}.
27985 The unit @code{A} stands for Amperes; the name @code{Ang} is used
27986 @tex
27987 for \AA ngstroms.
27988 @end tex
27989 @ifinfo
27990 for Angstroms.
27991 @end ifinfo
27993 The unit @code{pt} stands for pints; the name @code{point} stands for
27994 a typographical point, defined by @samp{72 point = 1 in}.  There is
27995 also @code{tpt}, which stands for a printer's point as defined by the
27996 @TeX{} typesetting system:  @samp{72.27 tpt = 1 in}.
27998 The unit @code{e} stands for the elementary (electron) unit of charge;
27999 because algebra command could mistake this for the special constant
28000 @expr{e}, Calc provides the alternate unit name @code{ech} which is
28001 preferable to @code{e}.
28003 The name @code{g} stands for one gram of mass; there is also @code{gf},
28004 one gram of force.  (Likewise for @kbd{lb}, pounds, and @kbd{lbf}.)
28005 Meanwhile, one ``@expr{g}'' of acceleration is denoted @code{ga}.
28007 The unit @code{ton} is a U.S. ton of @samp{2000 lb}, and @code{t} is
28008 a metric ton of @samp{1000 kg}.
28010 The names @code{s} (or @code{sec}) and @code{min} refer to units of
28011 time; @code{arcsec} and @code{arcmin} are units of angle.
28013 Some ``units'' are really physical constants; for example, @code{c}
28014 represents the speed of light, and @code{h} represents Planck's
28015 constant.  You can use these just like other units: converting
28016 @samp{.5 c} to @samp{m/s} expresses one-half the speed of light in
28017 meters per second.  You can also use this merely as a handy reference;
28018 the @kbd{u g} command gets the definition of one of these constants
28019 in its normal terms, and @kbd{u b} expresses the definition in base
28020 units.
28022 Two units, @code{pi} and @code{alpha} (the fine structure constant,
28023 approximately @mathit{1/137}) are dimensionless.  The units simplification
28024 commands simply treat these names as equivalent to their corresponding
28025 values.  However you can, for example, use @kbd{u c} to convert a pure
28026 number into multiples of the fine structure constant, or @kbd{u b} to
28027 convert this back into a pure number.  (When @kbd{u c} prompts for the
28028 ``old units,'' just enter a blank line to signify that the value
28029 really is unitless.)
28031 @c Describe angular units, luminosity vs. steradians problem.
28033 @node User-Defined Units, , Predefined Units, Units
28034 @section User-Defined Units
28036 @noindent
28037 Calc provides ways to get quick access to your selected ``favorite''
28038 units, as well as ways to define your own new units.
28040 @kindex u 0-9
28041 @pindex calc-quick-units
28042 @vindex Units
28043 @cindex @code{Units} variable
28044 @cindex Quick units
28045 To select your favorite units, store a vector of unit names or
28046 expressions in the Calc variable @code{Units}.  The @kbd{u 1}
28047 through @kbd{u 9} commands (@code{calc-quick-units}) provide access
28048 to these units.  If the value on the top of the stack is a plain
28049 number (with no units attached), then @kbd{u 1} gives it the
28050 specified units.  (Basically, it multiplies the number by the
28051 first item in the @code{Units} vector.)  If the number on the
28052 stack @emph{does} have units, then @kbd{u 1} converts that number
28053 to the new units.  For example, suppose the vector @samp{[in, ft]}
28054 is stored in @code{Units}.  Then @kbd{30 u 1} will create the
28055 expression @samp{30 in}, and @kbd{u 2} will convert that expression
28056 to @samp{2.5 ft}.
28058 The @kbd{u 0} command accesses the tenth element of @code{Units}.
28059 Only ten quick units may be defined at a time.  If the @code{Units}
28060 variable has no stored value (the default), or if its value is not
28061 a vector, then the quick-units commands will not function.  The
28062 @kbd{s U} command is a convenient way to edit the @code{Units}
28063 variable; @pxref{Operations on Variables}.
28065 @kindex u d
28066 @pindex calc-define-unit
28067 @cindex User-defined units
28068 The @kbd{u d} (@code{calc-define-unit}) command records the units
28069 expression on the top of the stack as the definition for a new,
28070 user-defined unit.  For example, putting @samp{16.5 ft} on the stack and
28071 typing @kbd{u d rod} defines the new unit @samp{rod} to be equivalent to
28072 16.5 feet.  The unit conversion and simplification commands will now
28073 treat @code{rod} just like any other unit of length.  You will also be
28074 prompted for an optional English description of the unit, which will
28075 appear in the Units Table.
28077 @kindex u u
28078 @pindex calc-undefine-unit
28079 The @kbd{u u} (@code{calc-undefine-unit}) command removes a user-defined
28080 unit.  It is not possible to remove one of the predefined units,
28081 however.
28083 If you define a unit with an existing unit name, your new definition
28084 will replace the original definition of that unit.  If the unit was a
28085 predefined unit, the old definition will not be replaced, only
28086 ``shadowed.''  The built-in definition will reappear if you later use
28087 @kbd{u u} to remove the shadowing definition.
28089 To create a new fundamental unit, use either 1 or the unit name itself
28090 as the defining expression.  Otherwise the expression can involve any
28091 other units that you like (except for composite units like @samp{mfi}).
28092 You can create a new composite unit with a sum of other units as the
28093 defining expression.  The next unit operation like @kbd{u c} or @kbd{u v}
28094 will rebuild the internal unit table incorporating your modifications.
28095 Note that erroneous definitions (such as two units defined in terms of
28096 each other) will not be detected until the unit table is next rebuilt;
28097 @kbd{u v} is a convenient way to force this to happen.
28099 Temperature units are treated specially inside the Calculator; it is not
28100 possible to create user-defined temperature units.
28102 @kindex u p
28103 @pindex calc-permanent-units
28104 @cindex Calc init file, user-defined units
28105 The @kbd{u p} (@code{calc-permanent-units}) command stores the user-defined
28106 units in your Calc init file (the file given by the variable
28107 @code{calc-settings-file}, typically @file{~/.calc.el}), so that the
28108 units will still be available in subsequent Emacs sessions.  If there
28109 was already a set of user-defined units in your Calc init file, it
28110 is replaced by the new set.  (@xref{General Mode Commands}, for a way to
28111 tell Calc to use a different file for the Calc init file.)
28113 @node Store and Recall, Graphics, Units, Top
28114 @chapter Storing and Recalling
28116 @noindent
28117 Calculator variables are really just Lisp variables that contain numbers
28118 or formulas in a form that Calc can understand.  The commands in this
28119 section allow you to manipulate variables conveniently.  Commands related
28120 to variables use the @kbd{s} prefix key.
28122 @menu
28123 * Storing Variables::
28124 * Recalling Variables::
28125 * Operations on Variables::
28126 * Let Command::
28127 * Evaluates-To Operator::
28128 @end menu
28130 @node Storing Variables, Recalling Variables, Store and Recall, Store and Recall
28131 @section Storing Variables
28133 @noindent
28134 @kindex s s
28135 @pindex calc-store
28136 @cindex Storing variables
28137 @cindex Quick variables
28138 @vindex q0
28139 @vindex q9
28140 The @kbd{s s} (@code{calc-store}) command stores the value at the top of
28141 the stack into a specified variable.  It prompts you to enter the
28142 name of the variable.  If you press a single digit, the value is stored
28143 immediately in one of the ``quick'' variables @code{q0} through
28144 @code{q9}.  Or you can enter any variable name.  
28146 @kindex s t
28147 @pindex calc-store-into
28148 The @kbd{s s} command leaves the stored value on the stack.  There is
28149 also an @kbd{s t} (@code{calc-store-into}) command, which removes a
28150 value from the stack and stores it in a variable.
28152 If the top of stack value is an equation @samp{a = 7} or assignment
28153 @samp{a := 7} with a variable on the lefthand side, then Calc will
28154 assign that variable with that value by default, i.e., if you type
28155 @kbd{s s @key{RET}} or @kbd{s t @key{RET}}.  In this example, the
28156 value 7 would be stored in the variable @samp{a}.  (If you do type
28157 a variable name at the prompt, the top-of-stack value is stored in
28158 its entirety, even if it is an equation:  @samp{s s b @key{RET}}
28159 with @samp{a := 7} on the stack stores @samp{a := 7} in @code{b}.)
28161 In fact, the top of stack value can be a vector of equations or
28162 assignments with different variables on their lefthand sides; the
28163 default will be to store all the variables with their corresponding
28164 righthand sides simultaneously.
28166 It is also possible to type an equation or assignment directly at
28167 the prompt for the @kbd{s s} or @kbd{s t} command:  @kbd{s s foo = 7}.
28168 In this case the expression to the right of the @kbd{=} or @kbd{:=}
28169 symbol is evaluated as if by the @kbd{=} command, and that value is
28170 stored in the variable.  No value is taken from the stack; @kbd{s s}
28171 and @kbd{s t} are equivalent when used in this way.
28173 @kindex s 0-9
28174 @kindex t 0-9
28175 The prefix keys @kbd{s} and @kbd{t} may be followed immediately by a
28176 digit; @kbd{s 9} is equivalent to @kbd{s s 9}, and @kbd{t 9} is
28177 equivalent to @kbd{s t 9}.  (The @kbd{t} prefix is otherwise used
28178 for trail and time/date commands.)
28180 @kindex s +
28181 @kindex s -
28182 @ignore
28183 @mindex @idots
28184 @end ignore
28185 @kindex s *
28186 @ignore
28187 @mindex @null
28188 @end ignore
28189 @kindex s /
28190 @ignore
28191 @mindex @null
28192 @end ignore
28193 @kindex s ^
28194 @ignore
28195 @mindex @null
28196 @end ignore
28197 @kindex s |
28198 @ignore
28199 @mindex @null
28200 @end ignore
28201 @kindex s n
28202 @ignore
28203 @mindex @null
28204 @end ignore
28205 @kindex s &
28206 @ignore
28207 @mindex @null
28208 @end ignore
28209 @kindex s [
28210 @ignore
28211 @mindex @null
28212 @end ignore
28213 @kindex s ]
28214 @pindex calc-store-plus
28215 @pindex calc-store-minus
28216 @pindex calc-store-times
28217 @pindex calc-store-div
28218 @pindex calc-store-power
28219 @pindex calc-store-concat
28220 @pindex calc-store-neg
28221 @pindex calc-store-inv
28222 @pindex calc-store-decr
28223 @pindex calc-store-incr
28224 There are also several ``arithmetic store'' commands.  For example,
28225 @kbd{s +} removes a value from the stack and adds it to the specified
28226 variable.  The other arithmetic stores are @kbd{s -}, @kbd{s *}, @kbd{s /},
28227 @kbd{s ^}, and @w{@kbd{s |}} (vector concatenation), plus @kbd{s n} and
28228 @kbd{s &} which negate or invert the value in a variable, and @w{@kbd{s [}}
28229 and @kbd{s ]} which decrease or increase a variable by one.
28231 All the arithmetic stores accept the Inverse prefix to reverse the
28232 order of the operands.  If @expr{v} represents the contents of the
28233 variable, and @expr{a} is the value drawn from the stack, then regular
28234 @w{@kbd{s -}} assigns 
28235 @texline @math{v \coloneq v - a},
28236 @infoline @expr{v := v - a}, 
28237 but @kbd{I s -} assigns
28238 @texline @math{v \coloneq a - v}.
28239 @infoline @expr{v := a - v}.  
28240 While @kbd{I s *} might seem pointless, it is
28241 useful if matrix multiplication is involved.  Actually, all the
28242 arithmetic stores use formulas designed to behave usefully both
28243 forwards and backwards:
28245 @example
28246 @group
28247 s +        v := v + a          v := a + v
28248 s -        v := v - a          v := a - v
28249 s *        v := v * a          v := a * v
28250 s /        v := v / a          v := a / v
28251 s ^        v := v ^ a          v := a ^ v
28252 s |        v := v | a          v := a | v
28253 s n        v := v / (-1)       v := (-1) / v
28254 s &        v := v ^ (-1)       v := (-1) ^ v
28255 s [        v := v - 1          v := 1 - v
28256 s ]        v := v - (-1)       v := (-1) - v
28257 @end group
28258 @end example
28260 In the last four cases, a numeric prefix argument will be used in
28261 place of the number one.  (For example, @kbd{M-2 s ]} increases
28262 a variable by 2, and @kbd{M-2 I s ]} replaces a variable by
28263 minus-two minus the variable.
28265 The first six arithmetic stores can also be typed @kbd{s t +}, @kbd{s t -},
28266 etc.  The commands @kbd{s s +}, @kbd{s s -}, and so on are analogous
28267 arithmetic stores that don't remove the value @expr{a} from the stack.
28269 All arithmetic stores report the new value of the variable in the
28270 Trail for your information.  They signal an error if the variable
28271 previously had no stored value.  If default simplifications have been
28272 turned off, the arithmetic stores temporarily turn them on for numeric
28273 arguments only (i.e., they temporarily do an @kbd{m N} command).
28274 @xref{Simplification Modes}.  Large vectors put in the trail by
28275 these commands always use abbreviated (@kbd{t .}) mode.
28277 @kindex s m
28278 @pindex calc-store-map
28279 The @kbd{s m} command is a general way to adjust a variable's value
28280 using any Calc function.  It is a ``mapping'' command analogous to
28281 @kbd{V M}, @kbd{V R}, etc.  @xref{Reducing and Mapping}, to see
28282 how to specify a function for a mapping command.  Basically,
28283 all you do is type the Calc command key that would invoke that
28284 function normally.  For example, @kbd{s m n} applies the @kbd{n}
28285 key to negate the contents of the variable, so @kbd{s m n} is
28286 equivalent to @kbd{s n}.  Also, @kbd{s m Q} takes the square root
28287 of the value stored in a variable, @kbd{s m v v} uses @kbd{v v} to
28288 reverse the vector stored in the variable, and @kbd{s m H I S}
28289 takes the hyperbolic arcsine of the variable contents.
28291 If the mapping function takes two or more arguments, the additional
28292 arguments are taken from the stack; the old value of the variable
28293 is provided as the first argument.  Thus @kbd{s m -} with @expr{a}
28294 on the stack computes @expr{v - a}, just like @kbd{s -}.  With the
28295 Inverse prefix, the variable's original value becomes the @emph{last}
28296 argument instead of the first.  Thus @kbd{I s m -} is also
28297 equivalent to @kbd{I s -}.
28299 @kindex s x
28300 @pindex calc-store-exchange
28301 The @kbd{s x} (@code{calc-store-exchange}) command exchanges the value
28302 of a variable with the value on the top of the stack.  Naturally, the
28303 variable must already have a stored value for this to work.
28305 You can type an equation or assignment at the @kbd{s x} prompt.  The
28306 command @kbd{s x a=6} takes no values from the stack; instead, it
28307 pushes the old value of @samp{a} on the stack and stores @samp{a = 6}.
28309 @kindex s u
28310 @pindex calc-unstore
28311 @cindex Void variables
28312 @cindex Un-storing variables
28313 Until you store something in them, most variables are ``void,'' that is,
28314 they contain no value at all.  If they appear in an algebraic formula
28315 they will be left alone even if you press @kbd{=} (@code{calc-evaluate}).
28316 The @kbd{s u} (@code{calc-unstore}) command returns a variable to the
28317 void state.
28319 @kindex s c
28320 @pindex calc-copy-variable
28321 The @kbd{s c} (@code{calc-copy-variable}) command copies the stored
28322 value of one variable to another.  One way it differs from a simple
28323 @kbd{s r} followed by an @kbd{s t} (aside from saving keystrokes) is
28324 that the value never goes on the stack and thus is never rounded,
28325 evaluated, or simplified in any way; it is not even rounded down to the
28326 current precision.
28328 The only variables with predefined values are the ``special constants''
28329 @code{pi}, @code{e}, @code{i}, @code{phi}, and @code{gamma}.  You are free
28330 to unstore these variables or to store new values into them if you like,
28331 although some of the algebraic-manipulation functions may assume these
28332 variables represent their standard values.  Calc displays a warning if
28333 you change the value of one of these variables, or of one of the other
28334 special variables @code{inf}, @code{uinf}, and @code{nan} (which are
28335 normally void).
28337 Note that @code{pi} doesn't actually have 3.14159265359 stored in it,
28338 but rather a special magic value that evaluates to @cpi{} at the current
28339 precision.  Likewise @code{e}, @code{i}, and @code{phi} evaluate
28340 according to the current precision or polar mode.  If you recall a value
28341 from @code{pi} and store it back, this magic property will be lost.  The
28342 magic property is preserved, however, when a variable is copied with
28343 @kbd{s c}.
28345 @kindex s k
28346 @pindex calc-copy-special-constant
28347 If one of the ``special constants'' is redefined (or undefined) so that
28348 it no longer has its magic property, the property can be restored with 
28349 @kbd{s k} (@code{calc-copy-special-constant}).  This command will prompt
28350 for a special constant and a variable to store it in, and so a special
28351 constant can be stored in any variable.  Here, the special constant that
28352 you enter doesn't depend on the value of the corresponding variable;
28353 @code{pi} will represent 3.14159@dots{} regardless of what is currently
28354 stored in the Calc variable @code{pi}.  If one of the other special
28355 variables, @code{inf}, @code{uinf} or @code{nan}, is given a value, its
28356 original behavior can be restored by voiding it with @kbd{s u}.
28358 @node Recalling Variables, Operations on Variables, Storing Variables, Store and Recall
28359 @section Recalling Variables
28361 @noindent
28362 @kindex s r
28363 @pindex calc-recall
28364 @cindex Recalling variables
28365 The most straightforward way to extract the stored value from a variable
28366 is to use the @kbd{s r} (@code{calc-recall}) command.  This command prompts
28367 for a variable name (similarly to @code{calc-store}), looks up the value
28368 of the specified variable, and pushes that value onto the stack.  It is
28369 an error to try to recall a void variable.
28371 It is also possible to recall the value from a variable by evaluating a
28372 formula containing that variable.  For example, @kbd{' a @key{RET} =} is
28373 the same as @kbd{s r a @key{RET}} except that if the variable is void, the
28374 former will simply leave the formula @samp{a} on the stack whereas the
28375 latter will produce an error message.
28377 @kindex r 0-9
28378 The @kbd{r} prefix may be followed by a digit, so that @kbd{r 9} is
28379 equivalent to @kbd{s r 9}.  (The @kbd{r} prefix is otherwise unused
28380 in the current version of Calc.)
28382 @node Operations on Variables, Let Command, Recalling Variables, Store and Recall
28383 @section Other Operations on Variables
28385 @noindent
28386 @kindex s e
28387 @pindex calc-edit-variable
28388 The @kbd{s e} (@code{calc-edit-variable}) command edits the stored
28389 value of a variable without ever putting that value on the stack
28390 or simplifying or evaluating the value.  It prompts for the name of
28391 the variable to edit.  If the variable has no stored value, the
28392 editing buffer will start out empty.  If the editing buffer is
28393 empty when you press @kbd{C-c C-c} to finish, the variable will
28394 be made void.  @xref{Editing Stack Entries}, for a general
28395 description of editing.
28397 The @kbd{s e} command is especially useful for creating and editing
28398 rewrite rules which are stored in variables.  Sometimes these rules
28399 contain formulas which must not be evaluated until the rules are
28400 actually used.  (For example, they may refer to @samp{deriv(x,y)},
28401 where @code{x} will someday become some expression involving @code{y};
28402 if you let Calc evaluate the rule while you are defining it, Calc will
28403 replace @samp{deriv(x,y)} with 0 because the formula @code{x} does
28404 not itself refer to @code{y}.)  By contrast, recalling the variable,
28405 editing with @kbd{`}, and storing will evaluate the variable's value
28406 as a side effect of putting the value on the stack.
28408 @kindex s A
28409 @kindex s D
28410 @ignore
28411 @mindex @idots
28412 @end ignore
28413 @kindex s E
28414 @ignore
28415 @mindex @null
28416 @end ignore
28417 @kindex s F
28418 @ignore
28419 @mindex @null
28420 @end ignore
28421 @kindex s G
28422 @ignore
28423 @mindex @null
28424 @end ignore
28425 @kindex s H
28426 @ignore
28427 @mindex @null
28428 @end ignore
28429 @kindex s I
28430 @ignore
28431 @mindex @null
28432 @end ignore
28433 @kindex s L
28434 @ignore
28435 @mindex @null
28436 @end ignore
28437 @kindex s P
28438 @ignore
28439 @mindex @null
28440 @end ignore
28441 @kindex s R
28442 @ignore
28443 @mindex @null
28444 @end ignore
28445 @kindex s T
28446 @ignore
28447 @mindex @null
28448 @end ignore
28449 @kindex s U
28450 @ignore
28451 @mindex @null
28452 @end ignore
28453 @kindex s X
28454 @pindex calc-store-AlgSimpRules
28455 @pindex calc-store-Decls
28456 @pindex calc-store-EvalRules
28457 @pindex calc-store-FitRules
28458 @pindex calc-store-GenCount
28459 @pindex calc-store-Holidays
28460 @pindex calc-store-IntegLimit
28461 @pindex calc-store-LineStyles
28462 @pindex calc-store-PointStyles
28463 @pindex calc-store-PlotRejects
28464 @pindex calc-store-TimeZone
28465 @pindex calc-store-Units
28466 @pindex calc-store-ExtSimpRules
28467 There are several special-purpose variable-editing commands that
28468 use the @kbd{s} prefix followed by a shifted letter:
28470 @table @kbd
28471 @item s A
28472 Edit @code{AlgSimpRules}.  @xref{Algebraic Simplifications}.
28473 @item s D
28474 Edit @code{Decls}.  @xref{Declarations}.
28475 @item s E
28476 Edit @code{EvalRules}.  @xref{Default Simplifications}.
28477 @item s F
28478 Edit @code{FitRules}.  @xref{Curve Fitting}.
28479 @item s G
28480 Edit @code{GenCount}.  @xref{Solving Equations}.
28481 @item s H
28482 Edit @code{Holidays}.  @xref{Business Days}.
28483 @item s I
28484 Edit @code{IntegLimit}.  @xref{Calculus}.
28485 @item s L
28486 Edit @code{LineStyles}.  @xref{Graphics}.
28487 @item s P
28488 Edit @code{PointStyles}.  @xref{Graphics}.
28489 @item s R
28490 Edit @code{PlotRejects}.  @xref{Graphics}.
28491 @item s T
28492 Edit @code{TimeZone}.  @xref{Time Zones}.
28493 @item s U
28494 Edit @code{Units}.  @xref{User-Defined Units}.
28495 @item s X
28496 Edit @code{ExtSimpRules}.  @xref{Unsafe Simplifications}.
28497 @end table
28499 These commands are just versions of @kbd{s e} that use fixed variable
28500 names rather than prompting for the variable name.
28502 @kindex s p
28503 @pindex calc-permanent-variable
28504 @cindex Storing variables
28505 @cindex Permanent variables
28506 @cindex Calc init file, variables
28507 The @kbd{s p} (@code{calc-permanent-variable}) command saves a
28508 variable's value permanently in your Calc init file (the file given by
28509 the variable @code{calc-settings-file}, typically @file{~/.calc.el}), so
28510 that its value will still be available in future Emacs sessions.  You
28511 can re-execute @w{@kbd{s p}} later on to update the saved value, but the
28512 only way to remove a saved variable is to edit your calc init file
28513 by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
28514 use a different file for the Calc init file.)
28516 If you do not specify the name of a variable to save (i.e.,
28517 @kbd{s p @key{RET}}), all Calc variables with defined values
28518 are saved except for the special constants @code{pi}, @code{e},
28519 @code{i}, @code{phi}, and @code{gamma}; the variables @code{TimeZone}
28520 and @code{PlotRejects};
28521 @code{FitRules}, @code{DistribRules}, and other built-in rewrite
28522 rules; and @code{PlotData@var{n}} variables generated
28523 by the graphics commands.  (You can still save these variables by
28524 explicitly naming them in an @kbd{s p} command.)
28526 @kindex s i
28527 @pindex calc-insert-variables
28528 The @kbd{s i} (@code{calc-insert-variables}) command writes
28529 the values of all Calc variables into a specified buffer.
28530 The variables are written with the prefix @code{var-} in the form of
28531 Lisp @code{setq} commands 
28532 which store the values in string form.  You can place these commands
28533 in your Calc init file (or @file{.emacs}) if you wish, though in this case it
28534 would be easier to use @kbd{s p @key{RET}}.  (Note that @kbd{s i}
28535 omits the same set of variables as @w{@kbd{s p @key{RET}}}; the difference
28536 is that @kbd{s i} will store the variables in any buffer, and it also
28537 stores in a more human-readable format.)
28539 @node Let Command, Evaluates-To Operator, Operations on Variables, Store and Recall
28540 @section The Let Command
28542 @noindent
28543 @kindex s l
28544 @pindex calc-let
28545 @cindex Variables, temporary assignment
28546 @cindex Temporary assignment to variables
28547 If you have an expression like @samp{a+b^2} on the stack and you wish to
28548 compute its value where @expr{b=3}, you can simply store 3 in @expr{b} and
28549 then press @kbd{=} to reevaluate the formula.  This has the side-effect
28550 of leaving the stored value of 3 in @expr{b} for future operations.
28552 The @kbd{s l} (@code{calc-let}) command evaluates a formula under a
28553 @emph{temporary} assignment of a variable.  It stores the value on the
28554 top of the stack into the specified variable, then evaluates the
28555 second-to-top stack entry, then restores the original value (or lack of one)
28556 in the variable.  Thus after @kbd{'@w{ }a+b^2 @key{RET} 3 s l b @key{RET}},
28557 the stack will contain the formula @samp{a + 9}.  The subsequent command
28558 @kbd{@w{5 s l a} @key{RET}} will replace this formula with the number 14.
28559 The variables @samp{a} and @samp{b} are not permanently affected in any way
28560 by these commands.
28562 The value on the top of the stack may be an equation or assignment, or
28563 a vector of equations or assignments, in which case the default will be
28564 analogous to the case of @kbd{s t @key{RET}}.  @xref{Storing Variables}.
28566 Also, you can answer the variable-name prompt with an equation or
28567 assignment:  @kbd{s l b=3 @key{RET}} is the same as storing 3 on the stack
28568 and typing @kbd{s l b @key{RET}}.
28570 The @kbd{a b} (@code{calc-substitute}) command is another way to substitute
28571 a variable with a value in a formula.  It does an actual substitution
28572 rather than temporarily assigning the variable and evaluating.  For
28573 example, letting @expr{n=2} in @samp{f(n pi)} with @kbd{a b} will
28574 produce @samp{f(2 pi)}, whereas @kbd{s l} would give @samp{f(6.28)}
28575 since the evaluation step will also evaluate @code{pi}.
28577 @node Evaluates-To Operator, , Let Command, Store and Recall
28578 @section The Evaluates-To Operator
28580 @noindent
28581 @tindex evalto
28582 @tindex =>
28583 @cindex Evaluates-to operator
28584 @cindex @samp{=>} operator
28585 The special algebraic symbol @samp{=>} is known as the @dfn{evaluates-to
28586 operator}.  (It will show up as an @code{evalto} function call in
28587 other language modes like Pascal and La@TeX{}.)  This is a binary
28588 operator, that is, it has a lefthand and a righthand argument,
28589 although it can be entered with the righthand argument omitted.
28591 A formula like @samp{@var{a} => @var{b}} is evaluated by Calc as
28592 follows:  First, @var{a} is not simplified or modified in any
28593 way.  The previous value of argument @var{b} is thrown away; the
28594 formula @var{a} is then copied and evaluated as if by the @kbd{=}
28595 command according to all current modes and stored variable values,
28596 and the result is installed as the new value of @var{b}.
28598 For example, suppose you enter the algebraic formula @samp{2 + 3 => 17}.
28599 The number 17 is ignored, and the lefthand argument is left in its
28600 unevaluated form; the result is the formula @samp{2 + 3 => 5}.
28602 @kindex s =
28603 @pindex calc-evalto
28604 You can enter an @samp{=>} formula either directly using algebraic
28605 entry (in which case the righthand side may be omitted since it is
28606 going to be replaced right away anyhow), or by using the @kbd{s =}
28607 (@code{calc-evalto}) command, which takes @var{a} from the stack
28608 and replaces it with @samp{@var{a} => @var{b}}.
28610 Calc keeps track of all @samp{=>} operators on the stack, and
28611 recomputes them whenever anything changes that might affect their
28612 values, i.e., a mode setting or variable value.  This occurs only
28613 if the @samp{=>} operator is at the top level of the formula, or
28614 if it is part of a top-level vector.  In other words, pushing
28615 @samp{2 + (a => 17)} will change the 17 to the actual value of
28616 @samp{a} when you enter the formula, but the result will not be
28617 dynamically updated when @samp{a} is changed later because the
28618 @samp{=>} operator is buried inside a sum.  However, a vector
28619 of @samp{=>} operators will be recomputed, since it is convenient
28620 to push a vector like @samp{[a =>, b =>, c =>]} on the stack to
28621 make a concise display of all the variables in your problem.
28622 (Another way to do this would be to use @samp{[a, b, c] =>},
28623 which provides a slightly different format of display.  You
28624 can use whichever you find easiest to read.)
28626 @kindex m C
28627 @pindex calc-auto-recompute
28628 The @kbd{m C} (@code{calc-auto-recompute}) command allows you to
28629 turn this automatic recomputation on or off.  If you turn
28630 recomputation off, you must explicitly recompute an @samp{=>}
28631 operator on the stack in one of the usual ways, such as by
28632 pressing @kbd{=}.  Turning recomputation off temporarily can save
28633 a lot of time if you will be changing several modes or variables
28634 before you look at the @samp{=>} entries again.
28636 Most commands are not especially useful with @samp{=>} operators
28637 as arguments.  For example, given @samp{x + 2 => 17}, it won't
28638 work to type @kbd{1 +} to get @samp{x + 3 => 18}.  If you want
28639 to operate on the lefthand side of the @samp{=>} operator on
28640 the top of the stack, type @kbd{j 1} (that's the digit ``one'')
28641 to select the lefthand side, execute your commands, then type
28642 @kbd{j u} to unselect.
28644 All current modes apply when an @samp{=>} operator is computed,
28645 including the current simplification mode.  Recall that the
28646 formula @samp{x + y + x} is not handled by Calc's default
28647 simplifications, but the @kbd{a s} command will reduce it to
28648 the simpler form @samp{y + 2 x}.  You can also type @kbd{m A}
28649 to enable an Algebraic Simplification mode in which the
28650 equivalent of @kbd{a s} is used on all of Calc's results.
28651 If you enter @samp{x + y + x =>} normally, the result will
28652 be @samp{x + y + x => x + y + x}.  If you change to
28653 Algebraic Simplification mode, the result will be
28654 @samp{x + y + x => y + 2 x}.  However, just pressing @kbd{a s}
28655 once will have no effect on @samp{x + y + x => x + y + x},
28656 because the righthand side depends only on the lefthand side
28657 and the current mode settings, and the lefthand side is not
28658 affected by commands like @kbd{a s}.
28660 The ``let'' command (@kbd{s l}) has an interesting interaction
28661 with the @samp{=>} operator.  The @kbd{s l} command evaluates the
28662 second-to-top stack entry with the top stack entry supplying
28663 a temporary value for a given variable.  As you might expect,
28664 if that stack entry is an @samp{=>} operator its righthand
28665 side will temporarily show this value for the variable.  In
28666 fact, all @samp{=>}s on the stack will be updated if they refer
28667 to that variable.  But this change is temporary in the sense
28668 that the next command that causes Calc to look at those stack
28669 entries will make them revert to the old variable value.
28671 @smallexample
28672 @group
28673 2:  a => a             2:  a => 17         2:  a => a
28674 1:  a + 1 => a + 1     1:  a + 1 => 18     1:  a + 1 => a + 1
28675     .                      .                   .
28677                            17 s l a @key{RET}        p 8 @key{RET}
28678 @end group
28679 @end smallexample
28681 Here the @kbd{p 8} command changes the current precision,
28682 thus causing the @samp{=>} forms to be recomputed after the
28683 influence of the ``let'' is gone.  The @kbd{d @key{SPC}} command
28684 (@code{calc-refresh}) is a handy way to force the @samp{=>}
28685 operators on the stack to be recomputed without any other
28686 side effects.
28688 @kindex s :
28689 @pindex calc-assign
28690 @tindex assign
28691 @tindex :=
28692 Embedded mode also uses @samp{=>} operators.  In Embedded mode,
28693 the lefthand side of an @samp{=>} operator can refer to variables
28694 assigned elsewhere in the file by @samp{:=} operators.  The
28695 assignment operator @samp{a := 17} does not actually do anything
28696 by itself.  But Embedded mode recognizes it and marks it as a sort
28697 of file-local definition of the variable.  You can enter @samp{:=}
28698 operators in Algebraic mode, or by using the @kbd{s :}
28699 (@code{calc-assign}) [@code{assign}] command which takes a variable
28700 and value from the stack and replaces them with an assignment.
28702 @xref{TeX and LaTeX Language Modes}, for the way @samp{=>} appears in
28703 @TeX{} language output.  The @dfn{eqn} mode gives similar
28704 treatment to @samp{=>}.
28706 @node Graphics, Kill and Yank, Store and Recall, Top
28707 @chapter Graphics
28709 @noindent
28710 The commands for graphing data begin with the @kbd{g} prefix key.  Calc
28711 uses GNUPLOT 2.0 or later to do graphics.  These commands will only work
28712 if GNUPLOT is available on your system.  (While GNUPLOT sounds like
28713 a relative of GNU Emacs, it is actually completely unrelated.
28714 However, it is free software.   It can be obtained from
28715 @samp{http://www.gnuplot.info}.)
28717 @vindex calc-gnuplot-name
28718 If you have GNUPLOT installed on your system but Calc is unable to
28719 find it, you may need to set the @code{calc-gnuplot-name} variable
28720 in your Calc init file or @file{.emacs}.  You may also need to set some Lisp
28721 variables to show Calc how to run GNUPLOT on your system; these
28722 are described under @kbd{g D} and @kbd{g O} below.  If you are
28723 using the X window system, Calc will configure GNUPLOT for you
28724 automatically.  If you have GNUPLOT 3.0 or later and you are not using X,
28725 Calc will configure GNUPLOT to display graphs using simple character
28726 graphics that will work on any terminal.
28728 @menu
28729 * Basic Graphics::
28730 * Three Dimensional Graphics::
28731 * Managing Curves::
28732 * Graphics Options::
28733 * Devices::
28734 @end menu
28736 @node Basic Graphics, Three Dimensional Graphics, Graphics, Graphics
28737 @section Basic Graphics
28739 @noindent
28740 @kindex g f
28741 @pindex calc-graph-fast
28742 The easiest graphics command is @kbd{g f} (@code{calc-graph-fast}).
28743 This command takes two vectors of equal length from the stack.
28744 The vector at the top of the stack represents the ``y'' values of
28745 the various data points.  The vector in the second-to-top position
28746 represents the corresponding ``x'' values.  This command runs
28747 GNUPLOT (if it has not already been started by previous graphing
28748 commands) and displays the set of data points.  The points will
28749 be connected by lines, and there will also be some kind of symbol
28750 to indicate the points themselves.
28752 The ``x'' entry may instead be an interval form, in which case suitable
28753 ``x'' values are interpolated between the minimum and maximum values of
28754 the interval (whether the interval is open or closed is ignored).
28756 The ``x'' entry may also be a number, in which case Calc uses the
28757 sequence of ``x'' values @expr{x}, @expr{x+1}, @expr{x+2}, etc.
28758 (Generally the number 0 or 1 would be used for @expr{x} in this case.)
28760 The ``y'' entry may be any formula instead of a vector.  Calc effectively
28761 uses @kbd{N} (@code{calc-eval-num}) to evaluate variables in the formula;
28762 the result of this must be a formula in a single (unassigned) variable.
28763 The formula is plotted with this variable taking on the various ``x''
28764 values.  Graphs of formulas by default use lines without symbols at the
28765 computed data points.  Note that if neither ``x'' nor ``y'' is a vector,
28766 Calc guesses at a reasonable number of data points to use.  See the
28767 @kbd{g N} command below.  (The ``x'' values must be either a vector
28768 or an interval if ``y'' is a formula.)
28770 @ignore
28771 @starindex
28772 @end ignore
28773 @tindex xy
28774 If ``y'' is (or evaluates to) a formula of the form
28775 @samp{xy(@var{x}, @var{y})} then the result is a
28776 parametric plot.  The two arguments of the fictitious @code{xy} function
28777 are used as the ``x'' and ``y'' coordinates of the curve, respectively.
28778 In this case the ``x'' vector or interval you specified is not directly
28779 visible in the graph.  For example, if ``x'' is the interval @samp{[0..360]}
28780 and ``y'' is the formula @samp{xy(sin(t), cos(t))}, the resulting graph
28781 will be a circle.
28783 Also, ``x'' and ``y'' may each be variable names, in which case Calc
28784 looks for suitable vectors, intervals, or formulas stored in those
28785 variables.
28787 The ``x'' and ``y'' values for the data points (as pulled from the vectors,
28788 calculated from the formulas, or interpolated from the intervals) should
28789 be real numbers (integers, fractions, or floats).  If either the ``x''
28790 value or the ``y'' value of a given data point is not a real number, that
28791 data point will be omitted from the graph.  The points on either side
28792 of the invalid point will @emph{not} be connected by a line.
28794 See the documentation for @kbd{g a} below for a description of the way
28795 numeric prefix arguments affect @kbd{g f}.
28797 @cindex @code{PlotRejects} variable
28798 @vindex PlotRejects
28799 If you store an empty vector in the variable @code{PlotRejects}
28800 (i.e., @kbd{[ ] s t PlotRejects}), Calc will append information to
28801 this vector for every data point which was rejected because its
28802 ``x'' or ``y'' values were not real numbers.  The result will be
28803 a matrix where each row holds the curve number, data point number,
28804 ``x'' value, and ``y'' value for a rejected data point.
28805 @xref{Evaluates-To Operator}, for a handy way to keep tabs on the
28806 current value of @code{PlotRejects}.  @xref{Operations on Variables},
28807 for the @kbd{s R} command which is another easy way to examine
28808 @code{PlotRejects}.
28810 @kindex g c
28811 @pindex calc-graph-clear
28812 To clear the graphics display, type @kbd{g c} (@code{calc-graph-clear}).
28813 If the GNUPLOT output device is an X window, the window will go away.
28814 Effects on other kinds of output devices will vary.  You don't need
28815 to use @kbd{g c} if you don't want to---if you give another @kbd{g f}
28816 or @kbd{g p} command later on, it will reuse the existing graphics
28817 window if there is one.
28819 @node Three Dimensional Graphics, Managing Curves, Basic Graphics, Graphics
28820 @section Three-Dimensional Graphics
28822 @kindex g F
28823 @pindex calc-graph-fast-3d
28824 The @kbd{g F} (@code{calc-graph-fast-3d}) command makes a three-dimensional
28825 graph.  It works only if you have GNUPLOT 3.0 or later; with GNUPLOT 2.0,
28826 you will see a GNUPLOT error message if you try this command.
28828 The @kbd{g F} command takes three values from the stack, called ``x'',
28829 ``y'', and ``z'', respectively.  As was the case for 2D graphs, there
28830 are several options for these values.
28832 In the first case, ``x'' and ``y'' are each vectors (not necessarily of
28833 the same length); either or both may instead be interval forms.  The
28834 ``z'' value must be a matrix with the same number of rows as elements
28835 in ``x'', and the same number of columns as elements in ``y''.  The
28836 result is a surface plot where 
28837 @texline @math{z_{ij}}
28838 @infoline @expr{z_ij} 
28839 is the height of the point
28840 at coordinate @expr{(x_i, y_j)} on the surface.  The 3D graph will
28841 be displayed from a certain default viewpoint; you can change this
28842 viewpoint by adding a @samp{set view} to the @samp{*Gnuplot Commands*}
28843 buffer as described later.  See the GNUPLOT documentation for a
28844 description of the @samp{set view} command.
28846 Each point in the matrix will be displayed as a dot in the graph,
28847 and these points will be connected by a grid of lines (@dfn{isolines}).
28849 In the second case, ``x'', ``y'', and ``z'' are all vectors of equal
28850 length.  The resulting graph displays a 3D line instead of a surface,
28851 where the coordinates of points along the line are successive triplets
28852 of values from the input vectors.
28854 In the third case, ``x'' and ``y'' are vectors or interval forms, and
28855 ``z'' is any formula involving two variables (not counting variables
28856 with assigned values).  These variables are sorted into alphabetical
28857 order; the first takes on values from ``x'' and the second takes on
28858 values from ``y'' to form a matrix of results that are graphed as a
28859 3D surface.
28861 @ignore
28862 @starindex
28863 @end ignore
28864 @tindex xyz
28865 If the ``z'' formula evaluates to a call to the fictitious function
28866 @samp{xyz(@var{x}, @var{y}, @var{z})}, then the result is a
28867 ``parametric surface.''  In this case, the axes of the graph are
28868 taken from the @var{x} and @var{y} values in these calls, and the
28869 ``x'' and ``y'' values from the input vectors or intervals are used only
28870 to specify the range of inputs to the formula.  For example, plotting
28871 @samp{[0..360], [0..180], xyz(sin(x)*sin(y), cos(x)*sin(y), cos(y))}
28872 will draw a sphere.  (Since the default resolution for 3D plots is
28873 5 steps in each of ``x'' and ``y'', this will draw a very crude
28874 sphere.  You could use the @kbd{g N} command, described below, to
28875 increase this resolution, or specify the ``x'' and ``y'' values as
28876 vectors with more than 5 elements.
28878 It is also possible to have a function in a regular @kbd{g f} plot
28879 evaluate to an @code{xyz} call.  Since @kbd{g f} plots a line, not
28880 a surface, the result will be a 3D parametric line.  For example,
28881 @samp{[[0..720], xyz(sin(x), cos(x), x)]} will plot two turns of a
28882 helix (a three-dimensional spiral).
28884 As for @kbd{g f}, each of ``x'', ``y'', and ``z'' may instead be
28885 variables containing the relevant data.
28887 @node Managing Curves, Graphics Options, Three Dimensional Graphics, Graphics
28888 @section Managing Curves
28890 @noindent
28891 The @kbd{g f} command is really shorthand for the following commands:
28892 @kbd{C-u g d  g a  g p}.  Likewise, @w{@kbd{g F}} is shorthand for
28893 @kbd{C-u g d  g A  g p}.  You can gain more control over your graph
28894 by using these commands directly.
28896 @kindex g a
28897 @pindex calc-graph-add
28898 The @kbd{g a} (@code{calc-graph-add}) command adds the ``curve''
28899 represented by the two values on the top of the stack to the current
28900 graph.  You can have any number of curves in the same graph.  When
28901 you give the @kbd{g p} command, all the curves will be drawn superimposed
28902 on the same axes.
28904 The @kbd{g a} command (and many others that affect the current graph)
28905 will cause a special buffer, @samp{*Gnuplot Commands*}, to be displayed
28906 in another window.  This buffer is a template of the commands that will
28907 be sent to GNUPLOT when it is time to draw the graph.  The first
28908 @kbd{g a} command adds a @code{plot} command to this buffer.  Succeeding
28909 @kbd{g a} commands add extra curves onto that @code{plot} command.
28910 Other graph-related commands put other GNUPLOT commands into this
28911 buffer.  In normal usage you never need to work with this buffer
28912 directly, but you can if you wish.  The only constraint is that there
28913 must be only one @code{plot} command, and it must be the last command
28914 in the buffer.  If you want to save and later restore a complete graph
28915 configuration, you can use regular Emacs commands to save and restore
28916 the contents of the @samp{*Gnuplot Commands*} buffer.
28918 @vindex PlotData1
28919 @vindex PlotData2
28920 If the values on the stack are not variable names, @kbd{g a} will invent
28921 variable names for them (of the form @samp{PlotData@var{n}}) and store
28922 the values in those variables.  The ``x'' and ``y'' variables are what
28923 go into the @code{plot} command in the template.  If you add a curve
28924 that uses a certain variable and then later change that variable, you
28925 can replot the graph without having to delete and re-add the curve.
28926 That's because the variable name, not the vector, interval or formula
28927 itself, is what was added by @kbd{g a}.
28929 A numeric prefix argument on @kbd{g a} or @kbd{g f} changes the way
28930 stack entries are interpreted as curves.  With a positive prefix
28931 argument @expr{n}, the top @expr{n} stack entries are ``y'' values
28932 for @expr{n} different curves which share a common ``x'' value in
28933 the @expr{n+1}st stack entry.  (Thus @kbd{g a} with no prefix
28934 argument is equivalent to @kbd{C-u 1 g a}.)
28936 A prefix of zero or plain @kbd{C-u} means to take two stack entries,
28937 ``x'' and ``y'' as usual, but to interpret ``y'' as a vector of
28938 ``y'' values for several curves that share a common ``x''.
28940 A negative prefix argument tells Calc to read @expr{n} vectors from
28941 the stack; each vector @expr{[x, y]} describes an independent curve.
28942 This is the only form of @kbd{g a} that creates several curves at once
28943 that don't have common ``x'' values.  (Of course, the range of ``x''
28944 values covered by all the curves ought to be roughly the same if
28945 they are to look nice on the same graph.)
28947 For example, to plot 
28948 @texline @math{\sin n x}
28949 @infoline @expr{sin(n x)} 
28950 for integers @expr{n}
28951 from 1 to 5, you could use @kbd{v x} to create a vector of integers
28952 (@expr{n}), then @kbd{V M '} or @kbd{V M $} to map @samp{sin(n x)}
28953 across this vector.  The resulting vector of formulas is suitable
28954 for use as the ``y'' argument to a @kbd{C-u g a} or @kbd{C-u g f}
28955 command.
28957 @kindex g A
28958 @pindex calc-graph-add-3d
28959 The @kbd{g A} (@code{calc-graph-add-3d}) command adds a 3D curve
28960 to the graph.  It is not valid to intermix 2D and 3D curves in a
28961 single graph.  This command takes three arguments, ``x'', ``y'',
28962 and ``z'', from the stack.  With a positive prefix @expr{n}, it
28963 takes @expr{n+2} arguments (common ``x'' and ``y'', plus @expr{n}
28964 separate ``z''s).  With a zero prefix, it takes three stack entries
28965 but the ``z'' entry is a vector of curve values.  With a negative
28966 prefix @expr{-n}, it takes @expr{n} vectors of the form @expr{[x, y, z]}.
28967 The @kbd{g A} command works by adding a @code{splot} (surface-plot)
28968 command to the @samp{*Gnuplot Commands*} buffer.
28970 (Although @kbd{g a} adds a 2D @code{plot} command to the
28971 @samp{*Gnuplot Commands*} buffer, Calc changes this to @code{splot}
28972 before sending it to GNUPLOT if it notices that the data points are
28973 evaluating to @code{xyz} calls.  It will not work to mix 2D and 3D
28974 @kbd{g a} curves in a single graph, although Calc does not currently
28975 check for this.)
28977 @kindex g d
28978 @pindex calc-graph-delete
28979 The @kbd{g d} (@code{calc-graph-delete}) command deletes the most
28980 recently added curve from the graph.  It has no effect if there are
28981 no curves in the graph.  With a numeric prefix argument of any kind,
28982 it deletes all of the curves from the graph.
28984 @kindex g H
28985 @pindex calc-graph-hide
28986 The @kbd{g H} (@code{calc-graph-hide}) command ``hides'' or ``unhides''
28987 the most recently added curve.  A hidden curve will not appear in
28988 the actual plot, but information about it such as its name and line and
28989 point styles will be retained.
28991 @kindex g j
28992 @pindex calc-graph-juggle
28993 The @kbd{g j} (@code{calc-graph-juggle}) command moves the curve
28994 at the end of the list (the ``most recently added curve'') to the
28995 front of the list.  The next-most-recent curve is thus exposed for
28996 @w{@kbd{g d}} or similar commands to use.  With @kbd{g j} you can work
28997 with any curve in the graph even though curve-related commands only
28998 affect the last curve in the list.
29000 @kindex g p
29001 @pindex calc-graph-plot
29002 The @kbd{g p} (@code{calc-graph-plot}) command uses GNUPLOT to draw
29003 the graph described in the @samp{*Gnuplot Commands*} buffer.  Any
29004 GNUPLOT parameters which are not defined by commands in this buffer
29005 are reset to their default values.  The variables named in the @code{plot}
29006 command are written to a temporary data file and the variable names
29007 are then replaced by the file name in the template.  The resulting
29008 plotting commands are fed to the GNUPLOT program.  See the documentation
29009 for the GNUPLOT program for more specific information.  All temporary
29010 files are removed when Emacs or GNUPLOT exits.
29012 If you give a formula for ``y'', Calc will remember all the values that
29013 it calculates for the formula so that later plots can reuse these values.
29014 Calc throws out these saved values when you change any circumstances
29015 that may affect the data, such as switching from Degrees to Radians
29016 mode, or changing the value of a parameter in the formula.  You can
29017 force Calc to recompute the data from scratch by giving a negative
29018 numeric prefix argument to @kbd{g p}.
29020 Calc uses a fairly rough step size when graphing formulas over intervals.
29021 This is to ensure quick response.  You can ``refine'' a plot by giving
29022 a positive numeric prefix argument to @kbd{g p}.  Calc goes through
29023 the data points it has computed and saved from previous plots of the
29024 function, and computes and inserts a new data point midway between
29025 each of the existing points.  You can refine a plot any number of times,
29026 but beware that the amount of calculation involved doubles each time.
29028 Calc does not remember computed values for 3D graphs.  This means the
29029 numerix prefix argument, if any, to @kbd{g p} is effectively ignored if
29030 the current graph is three-dimensional.
29032 @kindex g P
29033 @pindex calc-graph-print
29034 The @kbd{g P} (@code{calc-graph-print}) command is like @kbd{g p},
29035 except that it sends the output to a printer instead of to the
29036 screen.  More precisely, @kbd{g p} looks for @samp{set terminal}
29037 or @samp{set output} commands in the @samp{*Gnuplot Commands*} buffer;
29038 lacking these it uses the default settings.  However, @kbd{g P}
29039 ignores @samp{set terminal} and @samp{set output} commands and
29040 uses a different set of default values.  All of these values are
29041 controlled by the @kbd{g D} and @kbd{g O} commands discussed below.
29042 Provided everything is set up properly, @kbd{g p} will plot to
29043 the screen unless you have specified otherwise and @kbd{g P} will
29044 always plot to the printer.
29046 @node Graphics Options, Devices, Managing Curves, Graphics
29047 @section Graphics Options
29049 @noindent
29050 @kindex g g
29051 @pindex calc-graph-grid
29052 The @kbd{g g} (@code{calc-graph-grid}) command turns the ``grid''
29053 on and off.  It is off by default; tick marks appear only at the
29054 edges of the graph.  With the grid turned on, dotted lines appear
29055 across the graph at each tick mark.  Note that this command only
29056 changes the setting in @samp{*Gnuplot Commands*}; to see the effects
29057 of the change you must give another @kbd{g p} command.
29059 @kindex g b
29060 @pindex calc-graph-border
29061 The @kbd{g b} (@code{calc-graph-border}) command turns the border
29062 (the box that surrounds the graph) on and off.  It is on by default.
29063 This command will only work with GNUPLOT 3.0 and later versions.
29065 @kindex g k
29066 @pindex calc-graph-key
29067 The @kbd{g k} (@code{calc-graph-key}) command turns the ``key''
29068 on and off.  The key is a chart in the corner of the graph that
29069 shows the correspondence between curves and line styles.  It is
29070 off by default, and is only really useful if you have several
29071 curves on the same graph.
29073 @kindex g N
29074 @pindex calc-graph-num-points
29075 The @kbd{g N} (@code{calc-graph-num-points}) command allows you
29076 to select the number of data points in the graph.  This only affects
29077 curves where neither ``x'' nor ``y'' is specified as a vector.
29078 Enter a blank line to revert to the default value (initially 15).
29079 With no prefix argument, this command affects only the current graph.
29080 With a positive prefix argument this command changes or, if you enter
29081 a blank line, displays the default number of points used for all
29082 graphs created by @kbd{g a} that don't specify the resolution explicitly.
29083 With a negative prefix argument, this command changes or displays
29084 the default value (initially 5) used for 3D graphs created by @kbd{g A}.
29085 Note that a 3D setting of 5 means that a total of @expr{5^2 = 25} points
29086 will be computed for the surface.
29088 Data values in the graph of a function are normally computed to a
29089 precision of five digits, regardless of the current precision at the
29090 time. This is usually more than adequate, but there are cases where
29091 it will not be.  For example, plotting @expr{1 + x} with @expr{x} in the
29092 interval @samp{[0 ..@: 1e-6]} will round all the data points down
29093 to 1.0!  Putting the command @samp{set precision @var{n}} in the
29094 @samp{*Gnuplot Commands*} buffer will cause the data to be computed
29095 at precision @var{n} instead of 5.  Since this is such a rare case,
29096 there is no keystroke-based command to set the precision.
29098 @kindex g h
29099 @pindex calc-graph-header
29100 The @kbd{g h} (@code{calc-graph-header}) command sets the title
29101 for the graph.  This will show up centered above the graph.
29102 The default title is blank (no title).
29104 @kindex g n
29105 @pindex calc-graph-name
29106 The @kbd{g n} (@code{calc-graph-name}) command sets the title of an
29107 individual curve.  Like the other curve-manipulating commands, it
29108 affects the most recently added curve, i.e., the last curve on the
29109 list in the @samp{*Gnuplot Commands*} buffer.  To set the title of
29110 the other curves you must first juggle them to the end of the list
29111 with @kbd{g j}, or edit the @samp{*Gnuplot Commands*} buffer by hand.
29112 Curve titles appear in the key; if the key is turned off they are
29113 not used.
29115 @kindex g t
29116 @kindex g T
29117 @pindex calc-graph-title-x
29118 @pindex calc-graph-title-y
29119 The @kbd{g t} (@code{calc-graph-title-x}) and @kbd{g T}
29120 (@code{calc-graph-title-y}) commands set the titles on the ``x''
29121 and ``y'' axes, respectively.  These titles appear next to the
29122 tick marks on the left and bottom edges of the graph, respectively.
29123 Calc does not have commands to control the tick marks themselves,
29124 but you can edit them into the @samp{*Gnuplot Commands*} buffer if
29125 you wish.  See the GNUPLOT documentation for details.
29127 @kindex g r
29128 @kindex g R
29129 @pindex calc-graph-range-x
29130 @pindex calc-graph-range-y
29131 The @kbd{g r} (@code{calc-graph-range-x}) and @kbd{g R}
29132 (@code{calc-graph-range-y}) commands set the range of values on the
29133 ``x'' and ``y'' axes, respectively.  You are prompted to enter a
29134 suitable range.  This should be either a pair of numbers of the
29135 form, @samp{@var{min}:@var{max}}, or a blank line to revert to the
29136 default behavior of setting the range based on the range of values
29137 in the data, or @samp{$} to take the range from the top of the stack.
29138 Ranges on the stack can be represented as either interval forms or
29139 vectors:  @samp{[@var{min} ..@: @var{max}]} or @samp{[@var{min}, @var{max}]}.
29141 @kindex g l
29142 @kindex g L
29143 @pindex calc-graph-log-x
29144 @pindex calc-graph-log-y
29145 The @kbd{g l} (@code{calc-graph-log-x}) and @kbd{g L} (@code{calc-graph-log-y})
29146 commands allow you to set either or both of the axes of the graph to
29147 be logarithmic instead of linear.
29149 @kindex g C-l
29150 @kindex g C-r
29151 @kindex g C-t
29152 @pindex calc-graph-log-z
29153 @pindex calc-graph-range-z
29154 @pindex calc-graph-title-z
29155 For 3D plots, @kbd{g C-t}, @kbd{g C-r}, and @kbd{g C-l} (those are
29156 letters with the Control key held down) are the corresponding commands
29157 for the ``z'' axis.
29159 @kindex g z
29160 @kindex g Z
29161 @pindex calc-graph-zero-x
29162 @pindex calc-graph-zero-y
29163 The @kbd{g z} (@code{calc-graph-zero-x}) and @kbd{g Z}
29164 (@code{calc-graph-zero-y}) commands control whether a dotted line is
29165 drawn to indicate the ``x'' and/or ``y'' zero axes.  (These are the same
29166 dotted lines that would be drawn there anyway if you used @kbd{g g} to
29167 turn the ``grid'' feature on.)  Zero-axis lines are on by default, and
29168 may be turned off only in GNUPLOT 3.0 and later versions.  They are
29169 not available for 3D plots.
29171 @kindex g s
29172 @pindex calc-graph-line-style
29173 The @kbd{g s} (@code{calc-graph-line-style}) command turns the connecting
29174 lines on or off for the most recently added curve, and optionally selects
29175 the style of lines to be used for that curve.  Plain @kbd{g s} simply
29176 toggles the lines on and off.  With a numeric prefix argument, @kbd{g s}
29177 turns lines on and sets a particular line style.  Line style numbers
29178 start at one and their meanings vary depending on the output device.
29179 GNUPLOT guarantees that there will be at least six different line styles
29180 available for any device.
29182 @kindex g S
29183 @pindex calc-graph-point-style
29184 The @kbd{g S} (@code{calc-graph-point-style}) command similarly turns
29185 the symbols at the data points on or off, or sets the point style.
29186 If you turn both lines and points off, the data points will show as
29187 tiny dots.
29189 @cindex @code{LineStyles} variable
29190 @cindex @code{PointStyles} variable
29191 @vindex LineStyles
29192 @vindex PointStyles
29193 Another way to specify curve styles is with the @code{LineStyles} and
29194 @code{PointStyles} variables.  These variables initially have no stored
29195 values, but if you store a vector of integers in one of these variables,
29196 the @kbd{g a} and @kbd{g f} commands will use those style numbers
29197 instead of the defaults for new curves that are added to the graph.
29198 An entry should be a positive integer for a specific style, or 0 to let
29199 the style be chosen automatically, or @mathit{-1} to turn off lines or points
29200 altogether.  If there are more curves than elements in the vector, the
29201 last few curves will continue to have the default styles.  Of course,
29202 you can later use @kbd{g s} and @kbd{g S} to change any of these styles.
29204 For example, @kbd{'[2 -1 3] @key{RET} s t LineStyles} causes the first curve
29205 to have lines in style number 2, the second curve to have no connecting
29206 lines, and the third curve to have lines in style 3.  Point styles will
29207 still be assigned automatically, but you could store another vector in
29208 @code{PointStyles} to define them, too.
29210 @node Devices, , Graphics Options, Graphics
29211 @section Graphical Devices
29213 @noindent
29214 @kindex g D
29215 @pindex calc-graph-device
29216 The @kbd{g D} (@code{calc-graph-device}) command sets the device name
29217 (or ``terminal name'' in GNUPLOT lingo) to be used by @kbd{g p} commands
29218 on this graph.  It does not affect the permanent default device name.
29219 If you enter a blank name, the device name reverts to the default.
29220 Enter @samp{?} to see a list of supported devices.
29222 With a positive numeric prefix argument, @kbd{g D} instead sets
29223 the default device name, used by all plots in the future which do
29224 not override it with a plain @kbd{g D} command.  If you enter a
29225 blank line this command shows you the current default.  The special
29226 name @code{default} signifies that Calc should choose @code{x11} if
29227 the X window system is in use (as indicated by the presence of a
29228 @code{DISPLAY} environment variable), or otherwise @code{dumb} under
29229 GNUPLOT 3.0 and later, or @code{postscript} under GNUPLOT 2.0.
29230 This is the initial default value.
29232 The @code{dumb} device is an interface to ``dumb terminals,'' i.e.,
29233 terminals with no special graphics facilities.  It writes a crude
29234 picture of the graph composed of characters like @code{-} and @code{|}
29235 to a buffer called @samp{*Gnuplot Trail*}, which Calc then displays.
29236 The graph is made the same size as the Emacs screen, which on most
29237 dumb terminals will be 
29238 @texline @math{80\times24}
29239 @infoline 80x24
29240 characters.  The graph is displayed in
29241 an Emacs ``recursive edit''; type @kbd{q} or @kbd{C-c C-c} to exit
29242 the recursive edit and return to Calc.  Note that the @code{dumb}
29243 device is present only in GNUPLOT 3.0 and later versions.
29245 The word @code{dumb} may be followed by two numbers separated by
29246 spaces.  These are the desired width and height of the graph in
29247 characters.  Also, the device name @code{big} is like @code{dumb}
29248 but creates a graph four times the width and height of the Emacs
29249 screen.  You will then have to scroll around to view the entire
29250 graph.  In the @samp{*Gnuplot Trail*} buffer, @key{SPC}, @key{DEL},
29251 @kbd{<}, and @kbd{>} are defined to scroll by one screenful in each
29252 of the four directions.
29254 With a negative numeric prefix argument, @kbd{g D} sets or displays
29255 the device name used by @kbd{g P} (@code{calc-graph-print}).  This
29256 is initially @code{postscript}.  If you don't have a PostScript
29257 printer, you may decide once again to use @code{dumb} to create a
29258 plot on any text-only printer.
29260 @kindex g O
29261 @pindex calc-graph-output
29262 The @kbd{g O} (@code{calc-graph-output}) command sets the name of
29263 the output file used by GNUPLOT.  For some devices, notably @code{x11},
29264 there is no output file and this information is not used.  Many other
29265 ``devices'' are really file formats like @code{postscript}; in these
29266 cases the output in the desired format goes into the file you name
29267 with @kbd{g O}.  Type @kbd{g O stdout @key{RET}} to set GNUPLOT to write
29268 to its standard output stream, i.e., to @samp{*Gnuplot Trail*}.
29269 This is the default setting.
29271 Another special output name is @code{tty}, which means that GNUPLOT
29272 is going to write graphics commands directly to its standard output,
29273 which you wish Emacs to pass through to your terminal.  Tektronix
29274 graphics terminals, among other devices, operate this way.  Calc does
29275 this by telling GNUPLOT to write to a temporary file, then running a
29276 sub-shell executing the command @samp{cat tempfile >/dev/tty}.  On
29277 typical Unix systems, this will copy the temporary file directly to
29278 the terminal, bypassing Emacs entirely.  You will have to type @kbd{C-l}
29279 to Emacs afterwards to refresh the screen.
29281 Once again, @kbd{g O} with a positive or negative prefix argument
29282 sets the default or printer output file names, respectively.  In each
29283 case you can specify @code{auto}, which causes Calc to invent a temporary
29284 file name for each @kbd{g p} (or @kbd{g P}) command.  This temporary file
29285 will be deleted once it has been displayed or printed.  If the output file
29286 name is not @code{auto}, the file is not automatically deleted.
29288 The default and printer devices and output files can be saved
29289 permanently by the @kbd{m m} (@code{calc-save-modes}) command.  The
29290 default number of data points (see @kbd{g N}) and the X geometry
29291 (see @kbd{g X}) are also saved.  Other graph information is @emph{not}
29292 saved; you can save a graph's configuration simply by saving the contents
29293 of the @samp{*Gnuplot Commands*} buffer.
29295 @vindex calc-gnuplot-plot-command
29296 @vindex calc-gnuplot-default-device
29297 @vindex calc-gnuplot-default-output
29298 @vindex calc-gnuplot-print-command
29299 @vindex calc-gnuplot-print-device
29300 @vindex calc-gnuplot-print-output
29301 You may wish to configure the default and
29302 printer devices and output files for the whole system.  The relevant
29303 Lisp variables are @code{calc-gnuplot-default-device} and @code{-output},
29304 and @code{calc-gnuplot-print-device} and @code{-output}.  The output
29305 file names must be either strings as described above, or Lisp
29306 expressions which are evaluated on the fly to get the output file names.
29308 Other important Lisp variables are @code{calc-gnuplot-plot-command} and
29309 @code{calc-gnuplot-print-command}, which give the system commands to
29310 display or print the output of GNUPLOT, respectively.  These may be
29311 @code{nil} if no command is necessary, or strings which can include
29312 @samp{%s} to signify the name of the file to be displayed or printed.
29313 Or, these variables may contain Lisp expressions which are evaluated
29314 to display or print the output.  These variables are customizable
29315 (@pxref{Customizable Variables}).
29317 @kindex g x
29318 @pindex calc-graph-display
29319 The @kbd{g x} (@code{calc-graph-display}) command lets you specify
29320 on which X window system display your graphs should be drawn.  Enter
29321 a blank line to see the current display name.  This command has no
29322 effect unless the current device is @code{x11}.
29324 @kindex g X
29325 @pindex calc-graph-geometry
29326 The @kbd{g X} (@code{calc-graph-geometry}) command is a similar
29327 command for specifying the position and size of the X window.
29328 The normal value is @code{default}, which generally means your
29329 window manager will let you place the window interactively.
29330 Entering @samp{800x500+0+0} would create an 800-by-500 pixel
29331 window in the upper-left corner of the screen.
29333 The buffer called @samp{*Gnuplot Trail*} holds a transcript of the
29334 session with GNUPLOT.  This shows the commands Calc has ``typed'' to
29335 GNUPLOT and the responses it has received.  Calc tries to notice when an
29336 error message has appeared here and display the buffer for you when
29337 this happens.  You can check this buffer yourself if you suspect
29338 something has gone wrong.
29340 @kindex g C
29341 @pindex calc-graph-command
29342 The @kbd{g C} (@code{calc-graph-command}) command prompts you to
29343 enter any line of text, then simply sends that line to the current
29344 GNUPLOT process.  The @samp{*Gnuplot Trail*} buffer looks deceptively
29345 like a Shell buffer but you can't type commands in it yourself.
29346 Instead, you must use @kbd{g C} for this purpose.
29348 @kindex g v
29349 @kindex g V
29350 @pindex calc-graph-view-commands
29351 @pindex calc-graph-view-trail
29352 The @kbd{g v} (@code{calc-graph-view-commands}) and @kbd{g V}
29353 (@code{calc-graph-view-trail}) commands display the @samp{*Gnuplot Commands*}
29354 and @samp{*Gnuplot Trail*} buffers, respectively, in another window.
29355 This happens automatically when Calc thinks there is something you
29356 will want to see in either of these buffers.  If you type @kbd{g v}
29357 or @kbd{g V} when the relevant buffer is already displayed, the
29358 buffer is hidden again.
29360 One reason to use @kbd{g v} is to add your own commands to the
29361 @samp{*Gnuplot Commands*} buffer.  Press @kbd{g v}, then use
29362 @kbd{C-x o} to switch into that window.  For example, GNUPLOT has
29363 @samp{set label} and @samp{set arrow} commands that allow you to
29364 annotate your plots.  Since Calc doesn't understand these commands,
29365 you have to add them to the @samp{*Gnuplot Commands*} buffer
29366 yourself, then use @w{@kbd{g p}} to replot using these new commands.  Note
29367 that your commands must appear @emph{before} the @code{plot} command.
29368 To get help on any GNUPLOT feature, type, e.g., @kbd{g C help set label}.
29369 You may have to type @kbd{g C @key{RET}} a few times to clear the
29370 ``press return for more'' or ``subtopic of @dots{}'' requests.
29371 Note that Calc always sends commands (like @samp{set nolabel}) to
29372 reset all plotting parameters to the defaults before each plot, so
29373 to delete a label all you need to do is delete the @samp{set label}
29374 line you added (or comment it out with @samp{#}) and then replot
29375 with @kbd{g p}.
29377 @kindex g q
29378 @pindex calc-graph-quit
29379 You can use @kbd{g q} (@code{calc-graph-quit}) to kill the GNUPLOT
29380 process that is running.  The next graphing command you give will
29381 start a fresh GNUPLOT process.  The word @samp{Graph} appears in
29382 the Calc window's mode line whenever a GNUPLOT process is currently
29383 running.  The GNUPLOT process is automatically killed when you
29384 exit Emacs if you haven't killed it manually by then.
29386 @kindex g K
29387 @pindex calc-graph-kill
29388 The @kbd{g K} (@code{calc-graph-kill}) command is like @kbd{g q}
29389 except that it also views the @samp{*Gnuplot Trail*} buffer so that
29390 you can see the process being killed.  This is better if you are
29391 killing GNUPLOT because you think it has gotten stuck.
29393 @node Kill and Yank, Keypad Mode, Graphics, Top
29394 @chapter Kill and Yank Functions
29396 @noindent
29397 The commands in this chapter move information between the Calculator and
29398 other Emacs editing buffers.
29400 In many cases Embedded mode is an easier and more natural way to
29401 work with Calc from a regular editing buffer.  @xref{Embedded Mode}.
29403 @menu
29404 * Killing From Stack::
29405 * Yanking Into Stack::
29406 * Grabbing From Buffers::
29407 * Yanking Into Buffers::
29408 * X Cut and Paste::
29409 @end menu
29411 @node Killing From Stack, Yanking Into Stack, Kill and Yank, Kill and Yank
29412 @section Killing from the Stack
29414 @noindent
29415 @kindex C-k
29416 @pindex calc-kill
29417 @kindex M-k
29418 @pindex calc-copy-as-kill
29419 @kindex C-w
29420 @pindex calc-kill-region
29421 @kindex M-w
29422 @pindex calc-copy-region-as-kill
29423 @cindex Kill ring
29424 @dfn{Kill} commands are Emacs commands that insert text into the
29425 ``kill ring,'' from which it can later be ``yanked'' by a @kbd{C-y}
29426 command.  Three common kill commands in normal Emacs are @kbd{C-k}, which
29427 kills one line, @kbd{C-w}, which kills the region between mark and point,
29428 and @kbd{M-w}, which puts the region into the kill ring without actually
29429 deleting it.  All of these commands work in the Calculator, too.  Also,
29430 @kbd{M-k} has been provided to complete the set; it puts the current line
29431 into the kill ring without deleting anything.
29433 The kill commands are unusual in that they pay attention to the location
29434 of the cursor in the Calculator buffer.  If the cursor is on or below the
29435 bottom line, the kill commands operate on the top of the stack.  Otherwise,
29436 they operate on whatever stack element the cursor is on.  Calc's kill
29437 commands always operate on whole stack entries.  (They act the same as their
29438 standard Emacs cousins except they ``round up'' the specified region to
29439 encompass full lines.)  The text is copied into the kill ring exactly as
29440 it appears on the screen, including line numbers if they are enabled.
29442 A numeric prefix argument to @kbd{C-k} or @kbd{M-k} affects the number
29443 of lines killed.  A positive argument kills the current line and @expr{n-1}
29444 lines below it.  A negative argument kills the @expr{-n} lines above the
29445 current line.  Again this mirrors the behavior of the standard Emacs
29446 @kbd{C-k} command.  Although a whole line is always deleted, @kbd{C-k}
29447 with no argument copies only the number itself into the kill ring, whereas
29448 @kbd{C-k} with a prefix argument of 1 copies the number with its trailing
29449 newline.
29451 @node Yanking Into Stack, Grabbing From Buffers, Killing From Stack, Kill and Yank
29452 @section Yanking into the Stack
29454 @noindent
29455 @kindex C-y
29456 @pindex calc-yank
29457 The @kbd{C-y} command yanks the most recently killed text back into the
29458 Calculator.  It pushes this value onto the top of the stack regardless of
29459 the cursor position.  In general it re-parses the killed text as a number
29460 or formula (or a list of these separated by commas or newlines).  However if
29461 the thing being yanked is something that was just killed from the Calculator
29462 itself, its full internal structure is yanked.  For example, if you have
29463 set the floating-point display mode to show only four significant digits,
29464 then killing and re-yanking 3.14159 (which displays as 3.142) will yank the
29465 full 3.14159, even though yanking it into any other buffer would yank the
29466 number in its displayed form, 3.142.  (Since the default display modes
29467 show all objects to their full precision, this feature normally makes no
29468 difference.)
29470 @node Grabbing From Buffers, Yanking Into Buffers, Yanking Into Stack, Kill and Yank
29471 @section Grabbing from Other Buffers
29473 @noindent
29474 @kindex M-# g
29475 @pindex calc-grab-region
29476 The @kbd{M-# g} (@code{calc-grab-region}) command takes the text between
29477 point and mark in the current buffer and attempts to parse it as a
29478 vector of values.  Basically, it wraps the text in vector brackets
29479 @samp{[ ]} unless the text already is enclosed in vector brackets,
29480 then reads the text as if it were an algebraic entry.  The contents
29481 of the vector may be numbers, formulas, or any other Calc objects.
29482 If the @kbd{M-# g} command works successfully, it does an automatic
29483 @kbd{M-# c} to enter the Calculator buffer.
29485 A numeric prefix argument grabs the specified number of lines around
29486 point, ignoring the mark.  A positive prefix grabs from point to the
29487 @expr{n}th following newline (so that @kbd{M-1 M-# g} grabs from point
29488 to the end of the current line); a negative prefix grabs from point
29489 back to the @expr{n+1}st preceding newline.  In these cases the text
29490 that is grabbed is exactly the same as the text that @kbd{C-k} would
29491 delete given that prefix argument.
29493 A prefix of zero grabs the current line; point may be anywhere on the
29494 line.
29496 A plain @kbd{C-u} prefix interprets the region between point and mark
29497 as a single number or formula rather than a vector.  For example,
29498 @kbd{M-# g} on the text @samp{2 a b} produces the vector of three
29499 values @samp{[2, a, b]}, but @kbd{C-u M-# g} on the same region
29500 reads a formula which is a product of three things:  @samp{2 a b}.
29501 (The text @samp{a + b}, on the other hand, will be grabbed as a
29502 vector of one element by plain @kbd{M-# g} because the interpretation
29503 @samp{[a, +, b]} would be a syntax error.)
29505 If a different language has been specified (@pxref{Language Modes}),
29506 the grabbed text will be interpreted according to that language.
29508 @kindex M-# r
29509 @pindex calc-grab-rectangle
29510 The @kbd{M-# r} (@code{calc-grab-rectangle}) command takes the text between
29511 point and mark and attempts to parse it as a matrix.  If point and mark
29512 are both in the leftmost column, the lines in between are parsed in their
29513 entirety.  Otherwise, point and mark define the corners of a rectangle
29514 whose contents are parsed.
29516 Each line of the grabbed area becomes a row of the matrix.  The result
29517 will actually be a vector of vectors, which Calc will treat as a matrix
29518 only if every row contains the same number of values.
29520 If a line contains a portion surrounded by square brackets (or curly
29521 braces), that portion is interpreted as a vector which becomes a row
29522 of the matrix.  Any text surrounding the bracketed portion on the line
29523 is ignored.
29525 Otherwise, the entire line is interpreted as a row vector as if it
29526 were surrounded by square brackets.  Leading line numbers (in the
29527 format used in the Calc stack buffer) are ignored.  If you wish to
29528 force this interpretation (even if the line contains bracketed
29529 portions), give a negative numeric prefix argument to the
29530 @kbd{M-# r} command.
29532 If you give a numeric prefix argument of zero or plain @kbd{C-u}, each
29533 line is instead interpreted as a single formula which is converted into
29534 a one-element vector.  Thus the result of @kbd{C-u M-# r} will be a
29535 one-column matrix.  For example, suppose one line of the data is the
29536 expression @samp{2 a}.  A plain @w{@kbd{M-# r}} will interpret this as
29537 @samp{[2 a]}, which in turn is read as a two-element vector that forms
29538 one row of the matrix.  But a @kbd{C-u M-# r} will interpret this row
29539 as @samp{[2*a]}.
29541 If you give a positive numeric prefix argument @var{n}, then each line
29542 will be split up into columns of width @var{n}; each column is parsed
29543 separately as a matrix element.  If a line contained
29544 @w{@samp{2 +/- 3 4 +/- 5}}, then grabbing with a prefix argument of 8
29545 would correctly split the line into two error forms.
29547 @xref{Matrix Functions}, to see how to pull the matrix apart into its
29548 constituent rows and columns.  (If it is a 
29549 @texline @math{1\times1}
29550 @infoline 1x1
29551 matrix, just hit @kbd{v u} (@code{calc-unpack}) twice.)
29553 @kindex M-# :
29554 @kindex M-# _
29555 @pindex calc-grab-sum-across
29556 @pindex calc-grab-sum-down
29557 @cindex Summing rows and columns of data
29558 The @kbd{M-# :} (@code{calc-grab-sum-down}) command is a handy way to
29559 grab a rectangle of data and sum its columns.  It is equivalent to
29560 typing @kbd{M-# r}, followed by @kbd{V R : +} (the vector reduction
29561 command that sums the columns of a matrix; @pxref{Reducing}).  The
29562 result of the command will be a vector of numbers, one for each column
29563 in the input data.  The @kbd{M-# _} (@code{calc-grab-sum-across}) command
29564 similarly grabs a rectangle and sums its rows by executing @w{@kbd{V R _ +}}.
29566 As well as being more convenient, @kbd{M-# :} and @kbd{M-# _} are also
29567 much faster because they don't actually place the grabbed vector on
29568 the stack.  In a @kbd{M-# r V R : +} sequence, formatting the vector
29569 for display on the stack takes a large fraction of the total time
29570 (unless you have planned ahead and used @kbd{v .} and @kbd{t .} modes).
29572 For example, suppose we have a column of numbers in a file which we
29573 wish to sum.  Go to one corner of the column and press @kbd{C-@@} to
29574 set the mark; go to the other corner and type @kbd{M-# :}.  Since there
29575 is only one column, the result will be a vector of one number, the sum.
29576 (You can type @kbd{v u} to unpack this vector into a plain number if
29577 you want to do further arithmetic with it.)
29579 To compute the product of the column of numbers, we would have to do
29580 it ``by hand'' since there's no special grab-and-multiply command.
29581 Use @kbd{M-# r} to grab the column of numbers into the calculator in
29582 the form of a column matrix.  The statistics command @kbd{u *} is a
29583 handy way to find the product of a vector or matrix of numbers.
29584 @xref{Statistical Operations}.  Another approach would be to use
29585 an explicit column reduction command, @kbd{V R : *}.
29587 @node Yanking Into Buffers, X Cut and Paste, Grabbing From Buffers, Kill and Yank
29588 @section Yanking into Other Buffers
29590 @noindent
29591 @kindex y
29592 @pindex calc-copy-to-buffer
29593 The plain @kbd{y} (@code{calc-copy-to-buffer}) command inserts the number
29594 at the top of the stack into the most recently used normal editing buffer.
29595 (More specifically, this is the most recently used buffer which is displayed
29596 in a window and whose name does not begin with @samp{*}.  If there is no
29597 such buffer, this is the most recently used buffer except for Calculator
29598 and Calc Trail buffers.)  The number is inserted exactly as it appears and
29599 without a newline.  (If line-numbering is enabled, the line number is
29600 normally not included.)  The number is @emph{not} removed from the stack.
29602 With a prefix argument, @kbd{y} inserts several numbers, one per line.
29603 A positive argument inserts the specified number of values from the top
29604 of the stack.  A negative argument inserts the @expr{n}th value from the
29605 top of the stack.  An argument of zero inserts the entire stack.  Note
29606 that @kbd{y} with an argument of 1 is slightly different from @kbd{y}
29607 with no argument; the former always copies full lines, whereas the
29608 latter strips off the trailing newline.
29610 With a lone @kbd{C-u} as a prefix argument, @kbd{y} @emph{replaces} the
29611 region in the other buffer with the yanked text, then quits the
29612 Calculator, leaving you in that buffer.  A typical use would be to use
29613 @kbd{M-# g} to read a region of data into the Calculator, operate on the
29614 data to produce a new matrix, then type @kbd{C-u y} to replace the
29615 original data with the new data.  One might wish to alter the matrix
29616 display style (@pxref{Vector and Matrix Formats}) or change the current
29617 display language (@pxref{Language Modes}) before doing this.  Also, note
29618 that this command replaces a linear region of text (as grabbed by
29619 @kbd{M-# g}), not a rectangle (as grabbed by @kbd{M-# r}).
29621 If the editing buffer is in overwrite (as opposed to insert) mode,
29622 and the @kbd{C-u} prefix was not used, then the yanked number will
29623 overwrite the characters following point rather than being inserted
29624 before those characters.  The usual conventions of overwrite mode
29625 are observed; for example, characters will be inserted at the end of
29626 a line rather than overflowing onto the next line.  Yanking a multi-line
29627 object such as a matrix in overwrite mode overwrites the next @var{n}
29628 lines in the buffer, lengthening or shortening each line as necessary.
29629 Finally, if the thing being yanked is a simple integer or floating-point
29630 number (like @samp{-1.2345e-3}) and the characters following point also
29631 make up such a number, then Calc will replace that number with the new
29632 number, lengthening or shortening as necessary.  The concept of
29633 ``overwrite mode'' has thus been generalized from overwriting characters
29634 to overwriting one complete number with another.
29636 @kindex M-# y
29637 The @kbd{M-# y} key sequence is equivalent to @kbd{y} except that
29638 it can be typed anywhere, not just in Calc.  This provides an easy
29639 way to guarantee that Calc knows which editing buffer you want to use!
29641 @node X Cut and Paste, , Yanking Into Buffers, Kill and Yank
29642 @section X Cut and Paste
29644 @noindent
29645 If you are using Emacs with the X window system, there is an easier
29646 way to move small amounts of data into and out of the calculator:
29647 Use the mouse-oriented cut and paste facilities of X.
29649 The default bindings for a three-button mouse cause the left button
29650 to move the Emacs cursor to the given place, the right button to
29651 select the text between the cursor and the clicked location, and
29652 the middle button to yank the selection into the buffer at the
29653 clicked location.  So, if you have a Calc window and an editing
29654 window on your Emacs screen, you can use left-click/right-click
29655 to select a number, vector, or formula from one window, then
29656 middle-click to paste that value into the other window.  When you
29657 paste text into the Calc window, Calc interprets it as an algebraic
29658 entry.  It doesn't matter where you click in the Calc window; the
29659 new value is always pushed onto the top of the stack.
29661 The @code{xterm} program that is typically used for general-purpose
29662 shell windows in X interprets the mouse buttons in the same way.
29663 So you can use the mouse to move data between Calc and any other
29664 Unix program.  One nice feature of @code{xterm} is that a double
29665 left-click selects one word, and a triple left-click selects a
29666 whole line.  So you can usually transfer a single number into Calc
29667 just by double-clicking on it in the shell, then middle-clicking
29668 in the Calc window.
29670 @node Keypad Mode, Embedded Mode, Kill and Yank, Top
29671 @chapter Keypad Mode
29673 @noindent
29674 @kindex M-# k
29675 @pindex calc-keypad
29676 The @kbd{M-# k} (@code{calc-keypad}) command starts the Calculator
29677 and displays a picture of a calculator-style keypad.  If you are using
29678 the X window system, you can click on any of the ``keys'' in the
29679 keypad using the left mouse button to operate the calculator.
29680 The original window remains the selected window; in Keypad mode
29681 you can type in your file while simultaneously performing
29682 calculations with the mouse.
29684 @pindex full-calc-keypad
29685 If you have used @kbd{M-# b} first, @kbd{M-# k} instead invokes
29686 the @code{full-calc-keypad} command, which takes over the whole
29687 Emacs screen and displays the keypad, the Calc stack, and the Calc
29688 trail all at once.  This mode would normally be used when running
29689 Calc standalone (@pxref{Standalone Operation}).
29691 If you aren't using the X window system, you must switch into
29692 the @samp{*Calc Keypad*} window, place the cursor on the desired
29693 ``key,'' and type @key{SPC} or @key{RET}.  If you think this
29694 is easier than using Calc normally, go right ahead.
29696 Calc commands are more or less the same in Keypad mode.  Certain
29697 keypad keys differ slightly from the corresponding normal Calc
29698 keystrokes; all such deviations are described below.
29700 Keypad mode includes many more commands than will fit on the keypad
29701 at once.  Click the right mouse button [@code{calc-keypad-menu}]
29702 to switch to the next menu.  The bottom five rows of the keypad
29703 stay the same; the top three rows change to a new set of commands.
29704 To return to earlier menus, click the middle mouse button
29705 [@code{calc-keypad-menu-back}] or simply advance through the menus
29706 until you wrap around.  Typing @key{TAB} inside the keypad window
29707 is equivalent to clicking the right mouse button there.
29709 You can always click the @key{EXEC} button and type any normal
29710 Calc key sequence.  This is equivalent to switching into the
29711 Calc buffer, typing the keys, then switching back to your
29712 original buffer.
29714 @menu
29715 * Keypad Main Menu::
29716 * Keypad Functions Menu::
29717 * Keypad Binary Menu::
29718 * Keypad Vectors Menu::
29719 * Keypad Modes Menu::
29720 @end menu
29722 @node Keypad Main Menu, Keypad Functions Menu, Keypad Mode, Keypad Mode
29723 @section Main Menu
29725 @smallexample
29726 @group
29727 |----+-----Calc 2.1------+----1
29728 |FLR |CEIL|RND |TRNC|CLN2|FLT |
29729 |----+----+----+----+----+----|
29730 | LN |EXP |    |ABS |IDIV|MOD |
29731 |----+----+----+----+----+----|
29732 |SIN |COS |TAN |SQRT|y^x |1/x |
29733 |----+----+----+----+----+----|
29734 |  ENTER  |+/- |EEX |UNDO| <- |
29735 |-----+---+-+--+--+-+---++----|
29736 | INV |  7  |  8  |  9  |  /  |
29737 |-----+-----+-----+-----+-----|
29738 | HYP |  4  |  5  |  6  |  *  |
29739 |-----+-----+-----+-----+-----|
29740 |EXEC |  1  |  2  |  3  |  -  |
29741 |-----+-----+-----+-----+-----|
29742 | OFF |  0  |  .  | PI  |  +  |
29743 |-----+-----+-----+-----+-----+
29744 @end group
29745 @end smallexample
29747 @noindent
29748 This is the menu that appears the first time you start Keypad mode.
29749 It will show up in a vertical window on the right side of your screen.
29750 Above this menu is the traditional Calc stack display.  On a 24-line
29751 screen you will be able to see the top three stack entries.
29753 The ten digit keys, decimal point, and @key{EEX} key are used for
29754 entering numbers in the obvious way.  @key{EEX} begins entry of an
29755 exponent in scientific notation.  Just as with regular Calc, the
29756 number is pushed onto the stack as soon as you press @key{ENTER}
29757 or any other function key.
29759 The @key{+/-} key corresponds to normal Calc's @kbd{n} key.  During
29760 numeric entry it changes the sign of the number or of the exponent.
29761 At other times it changes the sign of the number on the top of the
29762 stack.
29764 The @key{INV} and @key{HYP} keys modify other keys.  As well as
29765 having the effects described elsewhere in this manual, Keypad mode
29766 defines several other ``inverse'' operations.  These are described
29767 below and in the following sections.
29769 The @key{ENTER} key finishes the current numeric entry, or otherwise
29770 duplicates the top entry on the stack.
29772 The @key{UNDO} key undoes the most recent Calc operation.
29773 @kbd{INV UNDO} is the ``redo'' command, and @kbd{HYP UNDO} is
29774 ``last arguments'' (@kbd{M-@key{RET}}).
29776 The @key{<-} key acts as a ``backspace'' during numeric entry.
29777 At other times it removes the top stack entry.  @kbd{INV <-}
29778 clears the entire stack.  @kbd{HYP <-} takes an integer from
29779 the stack, then removes that many additional stack elements.
29781 The @key{EXEC} key prompts you to enter any keystroke sequence
29782 that would normally work in Calc mode.  This can include a
29783 numeric prefix if you wish.  It is also possible simply to
29784 switch into the Calc window and type commands in it; there is
29785 nothing ``magic'' about this window when Keypad mode is active.
29787 The other keys in this display perform their obvious calculator
29788 functions.  @key{CLN2} rounds the top-of-stack by temporarily
29789 reducing the precision by 2 digits.  @key{FLT} converts an
29790 integer or fraction on the top of the stack to floating-point.
29792 The @key{INV} and @key{HYP} keys combined with several of these keys
29793 give you access to some common functions even if the appropriate menu
29794 is not displayed.  Obviously you don't need to learn these keys
29795 unless you find yourself wasting time switching among the menus.
29797 @table @kbd
29798 @item INV +/-
29799 is the same as @key{1/x}.
29800 @item INV +
29801 is the same as @key{SQRT}.
29802 @item INV -
29803 is the same as @key{CONJ}.
29804 @item INV *
29805 is the same as @key{y^x}.
29806 @item INV /
29807 is the same as @key{INV y^x} (the @expr{x}th root of @expr{y}).
29808 @item HYP/INV 1
29809 are the same as @key{SIN} / @kbd{INV SIN}.
29810 @item HYP/INV 2
29811 are the same as @key{COS} / @kbd{INV COS}.
29812 @item HYP/INV 3
29813 are the same as @key{TAN} / @kbd{INV TAN}.
29814 @item INV/HYP 4
29815 are the same as @key{LN} / @kbd{HYP LN}.
29816 @item INV/HYP 5
29817 are the same as @key{EXP} / @kbd{HYP EXP}.
29818 @item INV 6
29819 is the same as @key{ABS}.
29820 @item INV 7
29821 is the same as @key{RND} (@code{calc-round}).
29822 @item INV 8
29823 is the same as @key{CLN2}.
29824 @item INV 9
29825 is the same as @key{FLT} (@code{calc-float}).
29826 @item INV 0
29827 is the same as @key{IMAG}.
29828 @item INV .
29829 is the same as @key{PREC}.
29830 @item INV ENTER
29831 is the same as @key{SWAP}.
29832 @item HYP ENTER
29833 is the same as @key{RLL3}.
29834 @item INV HYP ENTER
29835 is the same as @key{OVER}.
29836 @item HYP +/-
29837 packs the top two stack entries as an error form.
29838 @item HYP EEX
29839 packs the top two stack entries as a modulo form.
29840 @item INV EEX
29841 creates an interval form; this removes an integer which is one
29842 of 0 @samp{[]}, 1 @samp{[)}, 2 @samp{(]} or 3 @samp{()}, followed
29843 by the two limits of the interval.
29844 @end table
29846 The @kbd{OFF} key turns Calc off; typing @kbd{M-# k} or @kbd{M-# M-#}
29847 again has the same effect.  This is analogous to typing @kbd{q} or
29848 hitting @kbd{M-# c} again in the normal calculator.  If Calc is
29849 running standalone (the @code{full-calc-keypad} command appeared in the
29850 command line that started Emacs), then @kbd{OFF} is replaced with
29851 @kbd{EXIT}; clicking on this actually exits Emacs itself.
29853 @node Keypad Functions Menu, Keypad Binary Menu, Keypad Main Menu, Keypad Mode
29854 @section Functions Menu
29856 @smallexample
29857 @group
29858 |----+----+----+----+----+----2
29859 |IGAM|BETA|IBET|ERF |BESJ|BESY|
29860 |----+----+----+----+----+----|
29861 |IMAG|CONJ| RE |ATN2|RAND|RAGN|
29862 |----+----+----+----+----+----|
29863 |GCD |FACT|DFCT|BNOM|PERM|NXTP|
29864 |----+----+----+----+----+----|
29865 @end group
29866 @end smallexample
29868 @noindent
29869 This menu provides various operations from the @kbd{f} and @kbd{k}
29870 prefix keys.
29872 @key{IMAG} multiplies the number on the stack by the imaginary
29873 number @expr{i = (0, 1)}.
29875 @key{RE} extracts the real part a complex number.  @kbd{INV RE}
29876 extracts the imaginary part.
29878 @key{RAND} takes a number from the top of the stack and computes
29879 a random number greater than or equal to zero but less than that
29880 number.  (@xref{Random Numbers}.)  @key{RAGN} is the ``random
29881 again'' command; it computes another random number using the
29882 same limit as last time.
29884 @key{INV GCD} computes the LCM (least common multiple) function.
29886 @key{INV FACT} is the gamma function.  
29887 @texline @math{\Gamma(x) = (x-1)!}.
29888 @infoline @expr{gamma(x) = (x-1)!}.
29890 @key{PERM} is the number-of-permutations function, which is on the
29891 @kbd{H k c} key in normal Calc.
29893 @key{NXTP} finds the next prime after a number.  @kbd{INV NXTP}
29894 finds the previous prime.
29896 @node Keypad Binary Menu, Keypad Vectors Menu, Keypad Functions Menu, Keypad Mode
29897 @section Binary Menu
29899 @smallexample
29900 @group
29901 |----+----+----+----+----+----3
29902 |AND | OR |XOR |NOT |LSH |RSH |
29903 |----+----+----+----+----+----|
29904 |DEC |HEX |OCT |BIN |WSIZ|ARSH|
29905 |----+----+----+----+----+----|
29906 | A  | B  | C  | D  | E  | F  |
29907 |----+----+----+----+----+----|
29908 @end group
29909 @end smallexample
29911 @noindent
29912 The keys in this menu perform operations on binary integers.
29913 Note that both logical and arithmetic right-shifts are provided.
29914 @key{INV LSH} rotates one bit to the left.
29916 The ``difference'' function (normally on @kbd{b d}) is on @key{INV AND}.
29917 The ``clip'' function (normally on @w{@kbd{b c}}) is on @key{INV NOT}.
29919 The @key{DEC}, @key{HEX}, @key{OCT}, and @key{BIN} keys select the
29920 current radix for display and entry of numbers:  Decimal, hexadecimal,
29921 octal, or binary.  The six letter keys @key{A} through @key{F} are used
29922 for entering hexadecimal numbers.
29924 The @key{WSIZ} key displays the current word size for binary operations
29925 and allows you to enter a new word size.  You can respond to the prompt
29926 using either the keyboard or the digits and @key{ENTER} from the keypad.
29927 The initial word size is 32 bits.
29929 @node Keypad Vectors Menu, Keypad Modes Menu, Keypad Binary Menu, Keypad Mode
29930 @section Vectors Menu
29932 @smallexample
29933 @group
29934 |----+----+----+----+----+----4
29935 |SUM |PROD|MAX |MAP*|MAP^|MAP$|
29936 |----+----+----+----+----+----|
29937 |MINV|MDET|MTRN|IDNT|CRSS|"x" |
29938 |----+----+----+----+----+----|
29939 |PACK|UNPK|INDX|BLD |LEN |... |
29940 |----+----+----+----+----+----|
29941 @end group
29942 @end smallexample
29944 @noindent
29945 The keys in this menu operate on vectors and matrices.
29947 @key{PACK} removes an integer @var{n} from the top of the stack;
29948 the next @var{n} stack elements are removed and packed into a vector,
29949 which is replaced onto the stack.  Thus the sequence
29950 @kbd{1 ENTER 3 ENTER 5 ENTER 3 PACK} enters the vector
29951 @samp{[1, 3, 5]} onto the stack.  To enter a matrix, build each row
29952 on the stack as a vector, then use a final @key{PACK} to collect the
29953 rows into a matrix.
29955 @key{UNPK} unpacks the vector on the stack, pushing each of its
29956 components separately.
29958 @key{INDX} removes an integer @var{n}, then builds a vector of
29959 integers from 1 to @var{n}.  @kbd{INV INDX} takes three numbers
29960 from the stack:  The vector size @var{n}, the starting number,
29961 and the increment.  @kbd{BLD} takes an integer @var{n} and any
29962 value @var{x} and builds a vector of @var{n} copies of @var{x}.
29964 @key{IDNT} removes an integer @var{n}, then builds an @var{n}-by-@var{n}
29965 identity matrix.
29967 @key{LEN} replaces a vector by its length, an integer.
29969 @key{...} turns on or off ``abbreviated'' display mode for large vectors.
29971 @key{MINV}, @key{MDET}, @key{MTRN}, and @key{CROSS} are the matrix
29972 inverse, determinant, and transpose, and vector cross product.
29974 @key{SUM} replaces a vector by the sum of its elements.  It is
29975 equivalent to @kbd{u +} in normal Calc (@pxref{Statistical Operations}).
29976 @key{PROD} computes the product of the elements of a vector, and
29977 @key{MAX} computes the maximum of all the elements of a vector.
29979 @key{INV SUM} computes the alternating sum of the first element
29980 minus the second, plus the third, minus the fourth, and so on.
29981 @key{INV MAX} computes the minimum of the vector elements.
29983 @key{HYP SUM} computes the mean of the vector elements.
29984 @key{HYP PROD} computes the sample standard deviation.
29985 @key{HYP MAX} computes the median.
29987 @key{MAP*} multiplies two vectors elementwise.  It is equivalent
29988 to the @kbd{V M *} command.  @key{MAP^} computes powers elementwise.
29989 The arguments must be vectors of equal length, or one must be a vector
29990 and the other must be a plain number.  For example, @kbd{2 MAP^} squares
29991 all the elements of a vector.
29993 @key{MAP$} maps the formula on the top of the stack across the
29994 vector in the second-to-top position.  If the formula contains
29995 several variables, Calc takes that many vectors starting at the
29996 second-to-top position and matches them to the variables in
29997 alphabetical order.  The result is a vector of the same size as
29998 the input vectors, whose elements are the formula evaluated with
29999 the variables set to the various sets of numbers in those vectors.
30000 For example, you could simulate @key{MAP^} using @key{MAP$} with
30001 the formula @samp{x^y}.
30003 The @kbd{"x"} key pushes the variable name @expr{x} onto the
30004 stack.  To build the formula @expr{x^2 + 6}, you would use the
30005 key sequence @kbd{"x" 2 y^x 6 +}.  This formula would then be
30006 suitable for use with the @key{MAP$} key described above.
30007 With @key{INV}, @key{HYP}, or @key{INV} and @key{HYP}, the
30008 @kbd{"x"} key pushes the variable names @expr{y}, @expr{z}, and
30009 @expr{t}, respectively.
30011 @node Keypad Modes Menu, , Keypad Vectors Menu, Keypad Mode
30012 @section Modes Menu
30014 @smallexample
30015 @group
30016 |----+----+----+----+----+----5
30017 |FLT |FIX |SCI |ENG |GRP |    |
30018 |----+----+----+----+----+----|
30019 |RAD |DEG |FRAC|POLR|SYMB|PREC|
30020 |----+----+----+----+----+----|
30021 |SWAP|RLL3|RLL4|OVER|STO |RCL |
30022 |----+----+----+----+----+----|
30023 @end group
30024 @end smallexample
30026 @noindent
30027 The keys in this menu manipulate modes, variables, and the stack.
30029 The @key{FLT}, @key{FIX}, @key{SCI}, and @key{ENG} keys select
30030 floating-point, fixed-point, scientific, or engineering notation.
30031 @key{FIX} displays two digits after the decimal by default; the
30032 others display full precision.  With the @key{INV} prefix, these
30033 keys pop a number-of-digits argument from the stack.
30035 The @key{GRP} key turns grouping of digits with commas on or off.
30036 @kbd{INV GRP} enables grouping to the right of the decimal point as
30037 well as to the left.
30039 The @key{RAD} and @key{DEG} keys switch between radians and degrees
30040 for trigonometric functions.
30042 The @key{FRAC} key turns Fraction mode on or off.  This affects
30043 whether commands like @kbd{/} with integer arguments produce
30044 fractional or floating-point results.
30046 The @key{POLR} key turns Polar mode on or off, determining whether
30047 polar or rectangular complex numbers are used by default.
30049 The @key{SYMB} key turns Symbolic mode on or off, in which
30050 operations that would produce inexact floating-point results
30051 are left unevaluated as algebraic formulas.
30053 The @key{PREC} key selects the current precision.  Answer with
30054 the keyboard or with the keypad digit and @key{ENTER} keys.
30056 The @key{SWAP} key exchanges the top two stack elements.
30057 The @key{RLL3} key rotates the top three stack elements upwards.
30058 The @key{RLL4} key rotates the top four stack elements upwards.
30059 The @key{OVER} key duplicates the second-to-top stack element.
30061 The @key{STO} and @key{RCL} keys are analogous to @kbd{s t} and
30062 @kbd{s r} in regular Calc.  @xref{Store and Recall}.  Click the
30063 @key{STO} or @key{RCL} key, then one of the ten digits.  (Named
30064 variables are not available in Keypad mode.)  You can also use,
30065 for example, @kbd{STO + 3} to add to register 3.
30067 @node Embedded Mode, Programming, Keypad Mode, Top
30068 @chapter Embedded Mode
30070 @noindent
30071 Embedded mode in Calc provides an alternative to copying numbers
30072 and formulas back and forth between editing buffers and the Calc
30073 stack.  In Embedded mode, your editing buffer becomes temporarily
30074 linked to the stack and this copying is taken care of automatically.
30076 @menu
30077 * Basic Embedded Mode::
30078 * More About Embedded Mode::
30079 * Assignments in Embedded Mode::
30080 * Mode Settings in Embedded Mode::
30081 * Customizing Embedded Mode::
30082 @end menu
30084 @node Basic Embedded Mode, More About Embedded Mode, Embedded Mode, Embedded Mode
30085 @section Basic Embedded Mode
30087 @noindent
30088 @kindex M-# e
30089 @pindex calc-embedded
30090 To enter Embedded mode, position the Emacs point (cursor) on a
30091 formula in any buffer and press @kbd{M-# e} (@code{calc-embedded}).
30092 Note that @kbd{M-# e} is not to be used in the Calc stack buffer
30093 like most Calc commands, but rather in regular editing buffers that
30094 are visiting your own files.
30096 Calc will try to guess an appropriate language based on the major mode
30097 of the editing buffer. (@xref{Language Modes}.) If the current buffer is
30098 in @code{latex-mode}, for example, Calc will set its language to La@TeX{}.
30099 Similarly, Calc will use @TeX{} language for @code{tex-mode},
30100 @code{plain-tex-mode} and @code{context-mode}, C language for
30101 @code{c-mode} and @code{c++-mode}, FORTRAN language for
30102 @code{fortran-mode} and @code{f90-mode}, Pascal for @code{pascal-mode},
30103 and eqn for @code{nroff-mode} (@pxref{Customizable Variables}).  
30104 These can be overridden with Calc's mode
30105 changing commands (@pxref{Mode Settings in Embedded Mode}).  If no
30106 suitable language is available, Calc will continue with its current language.
30108 Calc normally scans backward and forward in the buffer for the
30109 nearest opening and closing @dfn{formula delimiters}.  The simplest
30110 delimiters are blank lines.  Other delimiters that Embedded mode
30111 understands are:
30113 @enumerate
30114 @item
30115 The @TeX{} and La@TeX{} math delimiters @samp{$ $}, @samp{$$ $$},
30116 @samp{\[ \]}, and @samp{\( \)};
30117 @item
30118 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
30119 @item
30120 Lines beginning with @samp{@@} (Texinfo delimiters).
30121 @item
30122 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
30123 @item
30124 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
30125 @end enumerate
30127 @xref{Customizing Embedded Mode}, to see how to make Calc recognize
30128 your own favorite delimiters.  Delimiters like @samp{$ $} can appear
30129 on their own separate lines or in-line with the formula.
30131 If you give a positive or negative numeric prefix argument, Calc
30132 instead uses the current point as one end of the formula, and includes
30133 that many lines forward or backward (respectively, including the current
30134 line). Explicit delimiters are not necessary in this case.
30136 With a prefix argument of zero, Calc uses the current region (delimited
30137 by point and mark) instead of formula delimiters.  With a prefix
30138 argument of @kbd{C-u} only, Calc uses the current line as the formula.
30140 @kindex M-# w
30141 @pindex calc-embedded-word
30142 The @kbd{M-# w} (@code{calc-embedded-word}) command will start Embedded
30143 mode on the current ``word''; in this case Calc will scan for the first
30144 non-numeric character (i.e., the first character that is not a digit,
30145 sign, decimal point, or upper- or lower-case @samp{e}) forward and
30146 backward to delimit the formula.
30148 When you enable Embedded mode for a formula, Calc reads the text
30149 between the delimiters and tries to interpret it as a Calc formula.
30150 Calc can generally identify @TeX{} formulas and
30151 Big-style formulas even if the language mode is wrong.  If Calc
30152 can't make sense of the formula, it beeps and refuses to enter
30153 Embedded mode.  But if the current language is wrong, Calc can
30154 sometimes parse the formula successfully (but incorrectly);
30155 for example, the C expression @samp{atan(a[1])} can be parsed
30156 in Normal language mode, but the @code{atan} won't correspond to
30157 the built-in @code{arctan} function, and the @samp{a[1]} will be
30158 interpreted as @samp{a} times the vector @samp{[1]}!
30160 If you press @kbd{M-# e} or @kbd{M-# w} to activate an embedded
30161 formula which is blank, say with the cursor on the space between
30162 the two delimiters @samp{$ $}, Calc will immediately prompt for
30163 an algebraic entry.
30165 Only one formula in one buffer can be enabled at a time.  If you
30166 move to another area of the current buffer and give Calc commands,
30167 Calc turns Embedded mode off for the old formula and then tries
30168 to restart Embedded mode at the new position.  Other buffers are
30169 not affected by Embedded mode.
30171 When Embedded mode begins, Calc pushes the current formula onto
30172 the stack.  No Calc stack window is created; however, Calc copies
30173 the top-of-stack position into the original buffer at all times.
30174 You can create a Calc window by hand with @kbd{M-# o} if you
30175 find you need to see the entire stack.
30177 For example, typing @kbd{M-# e} while somewhere in the formula
30178 @samp{n>2} in the following line enables Embedded mode on that
30179 inequality:
30181 @example
30182 We define $F_n = F_(n-1)+F_(n-2)$ for all $n>2$.
30183 @end example
30185 @noindent
30186 The formula @expr{n>2} will be pushed onto the Calc stack, and
30187 the top of stack will be copied back into the editing buffer.
30188 This means that spaces will appear around the @samp{>} symbol
30189 to match Calc's usual display style:
30191 @example
30192 We define $F_n = F_(n-1)+F_(n-2)$ for all $n > 2$.
30193 @end example
30195 @noindent
30196 No spaces have appeared around the @samp{+} sign because it's
30197 in a different formula, one which we have not yet touched with
30198 Embedded mode.
30200 Now that Embedded mode is enabled, keys you type in this buffer
30201 are interpreted as Calc commands.  At this point we might use
30202 the ``commute'' command @kbd{j C} to reverse the inequality.
30203 This is a selection-based command for which we first need to
30204 move the cursor onto the operator (@samp{>} in this case) that
30205 needs to be commuted.
30207 @example
30208 We define $F_n = F_(n-1)+F_(n-2)$ for all $2 < n$.
30209 @end example
30211 The @kbd{M-# o} command is a useful way to open a Calc window
30212 without actually selecting that window.  Giving this command
30213 verifies that @samp{2 < n} is also on the Calc stack.  Typing
30214 @kbd{17 @key{RET}} would produce:
30216 @example
30217 We define $F_n = F_(n-1)+F_(n-2)$ for all $17$.
30218 @end example
30220 @noindent
30221 with @samp{2 < n} and @samp{17} on the stack; typing @key{TAB}
30222 at this point will exchange the two stack values and restore
30223 @samp{2 < n} to the embedded formula.  Even though you can't
30224 normally see the stack in Embedded mode, it is still there and
30225 it still operates in the same way.  But, as with old-fashioned
30226 RPN calculators, you can only see the value at the top of the
30227 stack at any given time (unless you use @kbd{M-# o}).
30229 Typing @kbd{M-# e} again turns Embedded mode off.  The Calc
30230 window reveals that the formula @w{@samp{2 < n}} is automatically
30231 removed from the stack, but the @samp{17} is not.  Entering
30232 Embedded mode always pushes one thing onto the stack, and
30233 leaving Embedded mode always removes one thing.  Anything else
30234 that happens on the stack is entirely your business as far as
30235 Embedded mode is concerned.
30237 If you press @kbd{M-# e} in the wrong place by accident, it is
30238 possible that Calc will be able to parse the nearby text as a
30239 formula and will mangle that text in an attempt to redisplay it
30240 ``properly'' in the current language mode.  If this happens,
30241 press @kbd{M-# e} again to exit Embedded mode, then give the
30242 regular Emacs ``undo'' command (@kbd{C-_} or @kbd{C-x u}) to put
30243 the text back the way it was before Calc edited it.  Note that Calc's
30244 own Undo command (typed before you turn Embedded mode back off)
30245 will not do you any good, because as far as Calc is concerned
30246 you haven't done anything with this formula yet.
30248 @node More About Embedded Mode, Assignments in Embedded Mode, Basic Embedded Mode, Embedded Mode
30249 @section More About Embedded Mode
30251 @noindent
30252 When Embedded mode ``activates'' a formula, i.e., when it examines
30253 the formula for the first time since the buffer was created or
30254 loaded, Calc tries to sense the language in which the formula was
30255 written.  If the formula contains any La@TeX{}-like @samp{\} sequences,
30256 it is parsed (i.e., read) in La@TeX{} mode.  If the formula appears to
30257 be written in multi-line Big mode, it is parsed in Big mode.  Otherwise,
30258 it is parsed according to the current language mode.
30260 Note that Calc does not change the current language mode according
30261 the formula it reads in.  Even though it can read a La@TeX{} formula when
30262 not in La@TeX{} mode, it will immediately rewrite this formula using
30263 whatever language mode is in effect.
30265 @tex
30266 \bigskip
30267 @end tex
30269 @kindex d p
30270 @pindex calc-show-plain
30271 Calc's parser is unable to read certain kinds of formulas.  For
30272 example, with @kbd{v ]} (@code{calc-matrix-brackets}) you can
30273 specify matrix display styles which the parser is unable to
30274 recognize as matrices.  The @kbd{d p} (@code{calc-show-plain})
30275 command turns on a mode in which a ``plain'' version of a
30276 formula is placed in front of the fully-formatted version.
30277 When Calc reads a formula that has such a plain version in
30278 front, it reads the plain version and ignores the formatted
30279 version.
30281 Plain formulas are preceded and followed by @samp{%%%} signs
30282 by default.  This notation has the advantage that the @samp{%}
30283 character begins a comment in @TeX{} and La@TeX{}, so if your formula is 
30284 embedded in a @TeX{} or La@TeX{} document its plain version will be
30285 invisible in the final printed copy.  Certain major modes have different
30286 delimiters to ensure that the ``plain'' version will be 
30287 in a comment for those modes, also.  
30288 See @ref{Customizing Embedded Mode} to see how to change the ``plain''
30289 formula delimiters. 
30291 There are several notations which Calc's parser for ``big''
30292 formatted formulas can't yet recognize.  In particular, it can't
30293 read the large symbols for @code{sum}, @code{prod}, and @code{integ},
30294 and it can't handle @samp{=>} with the righthand argument omitted.
30295 Also, Calc won't recognize special formats you have defined with
30296 the @kbd{Z C} command (@pxref{User-Defined Compositions}).  In
30297 these cases it is important to use ``plain'' mode to make sure
30298 Calc will be able to read your formula later.
30300 Another example where ``plain'' mode is important is if you have
30301 specified a float mode with few digits of precision.  Normally
30302 any digits that are computed but not displayed will simply be
30303 lost when you save and re-load your embedded buffer, but ``plain''
30304 mode allows you to make sure that the complete number is present
30305 in the file as well as the rounded-down number.
30307 @tex
30308 \bigskip
30309 @end tex
30311 Embedded buffers remember active formulas for as long as they
30312 exist in Emacs memory.  Suppose you have an embedded formula
30313 which is @cpi{} to the normal 12 decimal places, and then
30314 type @w{@kbd{C-u 5 d n}} to display only five decimal places.
30315 If you then type @kbd{d n}, all 12 places reappear because the
30316 full number is still there on the Calc stack.  More surprisingly,
30317 even if you exit Embedded mode and later re-enter it for that
30318 formula, typing @kbd{d n} will restore all 12 places because
30319 each buffer remembers all its active formulas.  However, if you
30320 save the buffer in a file and reload it in a new Emacs session,
30321 all non-displayed digits will have been lost unless you used
30322 ``plain'' mode.
30324 @tex
30325 \bigskip
30326 @end tex
30328 In some applications of Embedded mode, you will want to have a
30329 sequence of copies of a formula that show its evolution as you
30330 work on it.  For example, you might want to have a sequence
30331 like this in your file (elaborating here on the example from
30332 the ``Getting Started'' chapter):
30334 @smallexample
30335 The derivative of
30337                               ln(ln(x))
30341                   @r{(the derivative of }ln(ln(x))@r{)}
30343 whose value at x = 2 is
30345                             @r{(the value)}
30347 and at x = 3 is
30349                             @r{(the value)}
30350 @end smallexample
30352 @kindex M-# d
30353 @pindex calc-embedded-duplicate
30354 The @kbd{M-# d} (@code{calc-embedded-duplicate}) command is a
30355 handy way to make sequences like this.  If you type @kbd{M-# d},
30356 the formula under the cursor (which may or may not have Embedded
30357 mode enabled for it at the time) is copied immediately below and
30358 Embedded mode is then enabled for that copy.
30360 For this example, you would start with just
30362 @smallexample
30363 The derivative of
30365                               ln(ln(x))
30366 @end smallexample
30368 @noindent
30369 and press @kbd{M-# d} with the cursor on this formula.  The result
30372 @smallexample
30373 The derivative of
30375                               ln(ln(x))
30378                               ln(ln(x))
30379 @end smallexample
30381 @noindent
30382 with the second copy of the formula enabled in Embedded mode.
30383 You can now press @kbd{a d x @key{RET}} to take the derivative, and
30384 @kbd{M-# d M-# d} to make two more copies of the derivative.
30385 To complete the computations, type @kbd{3 s l x @key{RET}} to evaluate
30386 the last formula, then move up to the second-to-last formula
30387 and type @kbd{2 s l x @key{RET}}.
30389 Finally, you would want to press @kbd{M-# e} to exit Embedded
30390 mode, then go up and insert the necessary text in between the
30391 various formulas and numbers.
30393 @tex
30394 \bigskip
30395 @end tex
30397 @kindex M-# f
30398 @kindex M-# '
30399 @pindex calc-embedded-new-formula
30400 The @kbd{M-# f} (@code{calc-embedded-new-formula}) command
30401 creates a new embedded formula at the current point.  It inserts
30402 some default delimiters, which are usually just blank lines,
30403 and then does an algebraic entry to get the formula (which is
30404 then enabled for Embedded mode).  This is just shorthand for
30405 typing the delimiters yourself, positioning the cursor between
30406 the new delimiters, and pressing @kbd{M-# e}.  The key sequence
30407 @kbd{M-# '} is equivalent to @kbd{M-# f}.
30409 @kindex M-# n
30410 @kindex M-# p
30411 @pindex calc-embedded-next
30412 @pindex calc-embedded-previous
30413 The @kbd{M-# n} (@code{calc-embedded-next}) and @kbd{M-# p}
30414 (@code{calc-embedded-previous}) commands move the cursor to the
30415 next or previous active embedded formula in the buffer.  They
30416 can take positive or negative prefix arguments to move by several
30417 formulas.  Note that these commands do not actually examine the
30418 text of the buffer looking for formulas; they only see formulas
30419 which have previously been activated in Embedded mode.  In fact,
30420 @kbd{M-# n} and @kbd{M-# p} are a useful way to tell which
30421 embedded formulas are currently active.  Also, note that these
30422 commands do not enable Embedded mode on the next or previous
30423 formula, they just move the cursor.  (By the way, @kbd{M-# n} is
30424 not as awkward to type as it may seem, because @kbd{M-#} ignores
30425 Shift and Meta on the second keystroke:  @kbd{M-# M-N} can be typed
30426 by holding down Shift and Meta and alternately typing two keys.)
30428 @kindex M-# `
30429 @pindex calc-embedded-edit
30430 The @kbd{M-# `} (@code{calc-embedded-edit}) command edits the
30431 embedded formula at the current point as if by @kbd{`} (@code{calc-edit}).
30432 Embedded mode does not have to be enabled for this to work.  Press
30433 @kbd{C-c C-c} to finish the edit, or @kbd{C-x k} to cancel.
30435 @node Assignments in Embedded Mode, Mode Settings in Embedded Mode, More About Embedded Mode, Embedded Mode
30436 @section Assignments in Embedded Mode
30438 @noindent
30439 The @samp{:=} (assignment) and @samp{=>} (``evaluates-to'') operators
30440 are especially useful in Embedded mode.  They allow you to make
30441 a definition in one formula, then refer to that definition in
30442 other formulas embedded in the same buffer.
30444 An embedded formula which is an assignment to a variable, as in
30446 @example
30447 foo := 5
30448 @end example
30450 @noindent
30451 records @expr{5} as the stored value of @code{foo} for the
30452 purposes of Embedded mode operations in the current buffer.  It
30453 does @emph{not} actually store @expr{5} as the ``global'' value
30454 of @code{foo}, however.  Regular Calc operations, and Embedded
30455 formulas in other buffers, will not see this assignment.
30457 One way to use this assigned value is simply to create an
30458 Embedded formula elsewhere that refers to @code{foo}, and to press
30459 @kbd{=} in that formula.  However, this permanently replaces the
30460 @code{foo} in the formula with its current value.  More interesting
30461 is to use @samp{=>} elsewhere:
30463 @example
30464 foo + 7 => 12
30465 @end example
30467 @xref{Evaluates-To Operator}, for a general discussion of @samp{=>}.
30469 If you move back and change the assignment to @code{foo}, any
30470 @samp{=>} formulas which refer to it are automatically updated.
30472 @example
30473 foo := 17
30475 foo + 7 => 24
30476 @end example
30478 The obvious question then is, @emph{how} can one easily change the
30479 assignment to @code{foo}?  If you simply select the formula in
30480 Embedded mode and type 17, the assignment itself will be replaced
30481 by the 17.  The effect on the other formula will be that the
30482 variable @code{foo} becomes unassigned:
30484 @example
30487 foo + 7 => foo + 7
30488 @end example
30490 The right thing to do is first to use a selection command (@kbd{j 2}
30491 will do the trick) to select the righthand side of the assignment.
30492 Then, @kbd{17 @key{TAB} @key{DEL}} will swap the 17 into place (@pxref{Selecting
30493 Subformulas}, to see how this works).
30495 @kindex M-# j
30496 @pindex calc-embedded-select
30497 The @kbd{M-# j} (@code{calc-embedded-select}) command provides an
30498 easy way to operate on assignments.  It is just like @kbd{M-# e},
30499 except that if the enabled formula is an assignment, it uses
30500 @kbd{j 2} to select the righthand side.  If the enabled formula
30501 is an evaluates-to, it uses @kbd{j 1} to select the lefthand side.
30502 A formula can also be a combination of both:
30504 @example
30505 bar := foo + 3 => 20
30506 @end example
30508 @noindent
30509 in which case @kbd{M-# j} will select the middle part (@samp{foo + 3}).
30511 The formula is automatically deselected when you leave Embedded
30512 mode.
30514 @kindex M-# u
30515 @kindex M-# =
30516 @pindex calc-embedded-update-formula
30517 Another way to change the assignment to @code{foo} would simply be
30518 to edit the number using regular Emacs editing rather than Embedded
30519 mode.  Then, we have to find a way to get Embedded mode to notice
30520 the change.  The @kbd{M-# u} or @kbd{M-# =}
30521 (@code{calc-embedded-update-formula}) command is a convenient way
30522 to do this.
30524 @example
30525 foo := 6
30527 foo + 7 => 13
30528 @end example
30530 Pressing @kbd{M-# u} is much like pressing @kbd{M-# e = M-# e}, that
30531 is, temporarily enabling Embedded mode for the formula under the
30532 cursor and then evaluating it with @kbd{=}.  But @kbd{M-# u} does
30533 not actually use @kbd{M-# e}, and in fact another formula somewhere
30534 else can be enabled in Embedded mode while you use @kbd{M-# u} and
30535 that formula will not be disturbed.
30537 With a numeric prefix argument, @kbd{M-# u} updates all active
30538 @samp{=>} formulas in the buffer.  Formulas which have not yet
30539 been activated in Embedded mode, and formulas which do not have
30540 @samp{=>} as their top-level operator, are not affected by this.
30541 (This is useful only if you have used @kbd{m C}; see below.)
30543 With a plain @kbd{C-u} prefix, @kbd{C-u M-# u} updates only in the
30544 region between mark and point rather than in the whole buffer.
30546 @kbd{M-# u} is also a handy way to activate a formula, such as an
30547 @samp{=>} formula that has freshly been typed in or loaded from a
30548 file.
30550 @kindex M-# a
30551 @pindex calc-embedded-activate
30552 The @kbd{M-# a} (@code{calc-embedded-activate}) command scans
30553 through the current buffer and activates all embedded formulas
30554 that contain @samp{:=} or @samp{=>} symbols.  This does not mean
30555 that Embedded mode is actually turned on, but only that the
30556 formulas' positions are registered with Embedded mode so that
30557 the @samp{=>} values can be properly updated as assignments are
30558 changed.
30560 It is a good idea to type @kbd{M-# a} right after loading a file
30561 that uses embedded @samp{=>} operators.  Emacs includes a nifty
30562 ``buffer-local variables'' feature that you can use to do this
30563 automatically.  The idea is to place near the end of your file
30564 a few lines that look like this:
30566 @example
30567 --- Local Variables: ---
30568 --- eval:(calc-embedded-activate) ---
30569 --- End: ---
30570 @end example
30572 @noindent
30573 where the leading and trailing @samp{---} can be replaced by
30574 any suitable strings (which must be the same on all three lines)
30575 or omitted altogether; in a @TeX{} or La@TeX{} file, @samp{%} would be a good
30576 leading string and no trailing string would be necessary.  In a
30577 C program, @samp{/*} and @samp{*/} would be good leading and
30578 trailing strings.
30580 When Emacs loads a file into memory, it checks for a Local Variables
30581 section like this one at the end of the file.  If it finds this
30582 section, it does the specified things (in this case, running
30583 @kbd{M-# a} automatically) before editing of the file begins.
30584 The Local Variables section must be within 3000 characters of the
30585 end of the file for Emacs to find it, and it must be in the last
30586 page of the file if the file has any page separators.
30587 @xref{File Variables, , Local Variables in Files, emacs, the
30588 Emacs manual}.
30590 Note that @kbd{M-# a} does not update the formulas it finds.
30591 To do this, type, say, @kbd{M-1 M-# u} after @w{@kbd{M-# a}}.
30592 Generally this should not be a problem, though, because the
30593 formulas will have been up-to-date already when the file was
30594 saved.
30596 Normally, @kbd{M-# a} activates all the formulas it finds, but
30597 any previous active formulas remain active as well.  With a
30598 positive numeric prefix argument, @kbd{M-# a} first deactivates
30599 all current active formulas, then actives the ones it finds in
30600 its scan of the buffer.  With a negative prefix argument,
30601 @kbd{M-# a} simply deactivates all formulas.
30603 Embedded mode has two symbols, @samp{Active} and @samp{~Active},
30604 which it puts next to the major mode name in a buffer's mode line.
30605 It puts @samp{Active} if it has reason to believe that all
30606 formulas in the buffer are active, because you have typed @kbd{M-# a}
30607 and Calc has not since had to deactivate any formulas (which can
30608 happen if Calc goes to update an @samp{=>} formula somewhere because
30609 a variable changed, and finds that the formula is no longer there
30610 due to some kind of editing outside of Embedded mode).  Calc puts
30611 @samp{~Active} in the mode line if some, but probably not all,
30612 formulas in the buffer are active.  This happens if you activate
30613 a few formulas one at a time but never use @kbd{M-# a}, or if you
30614 used @kbd{M-# a} but then Calc had to deactivate a formula
30615 because it lost track of it.  If neither of these symbols appears
30616 in the mode line, no embedded formulas are active in the buffer
30617 (e.g., before Embedded mode has been used, or after a @kbd{M-- M-# a}).
30619 Embedded formulas can refer to assignments both before and after them
30620 in the buffer.  If there are several assignments to a variable, the
30621 nearest preceding assignment is used if there is one, otherwise the
30622 following assignment is used.
30624 @example
30625 x => 1
30627 x := 1
30629 x => 1
30631 x := 2
30633 x => 2
30634 @end example
30636 As well as simple variables, you can also assign to subscript
30637 expressions of the form @samp{@var{var}_@var{number}} (as in
30638 @code{x_0}), or @samp{@var{var}_@var{var}} (as in @code{x_max}).
30639 Assignments to other kinds of objects can be represented by Calc,
30640 but the automatic linkage between assignments and references works
30641 only for plain variables and these two kinds of subscript expressions.
30643 If there are no assignments to a given variable, the global
30644 stored value for the variable is used (@pxref{Storing Variables}),
30645 or, if no value is stored, the variable is left in symbolic form.
30646 Note that global stored values will be lost when the file is saved
30647 and loaded in a later Emacs session, unless you have used the
30648 @kbd{s p} (@code{calc-permanent-variable}) command to save them;
30649 @pxref{Operations on Variables}.
30651 The @kbd{m C} (@code{calc-auto-recompute}) command turns automatic
30652 recomputation of @samp{=>} forms on and off.  If you turn automatic
30653 recomputation off, you will have to use @kbd{M-# u} to update these
30654 formulas manually after an assignment has been changed.  If you
30655 plan to change several assignments at once, it may be more efficient
30656 to type @kbd{m C}, change all the assignments, then use @kbd{M-1 M-# u}
30657 to update the entire buffer afterwards.  The @kbd{m C} command also
30658 controls @samp{=>} formulas on the stack; @pxref{Evaluates-To
30659 Operator}.  When you turn automatic recomputation back on, the
30660 stack will be updated but the Embedded buffer will not; you must
30661 use @kbd{M-# u} to update the buffer by hand.
30663 @node Mode Settings in Embedded Mode, Customizing Embedded Mode, Assignments in Embedded Mode, Embedded Mode
30664 @section Mode Settings in Embedded Mode
30666 @kindex m e
30667 @pindex calc-embedded-preserve-modes
30668 @noindent
30669 The mode settings can be changed while Calc is in embedded mode, but
30670 by default they will revert to their original values when embedded mode
30671 is ended. However, the modes saved when the mode-recording mode is
30672 @code{Save} (see below) and the modes in effect when the @kbd{m e}
30673 (@code{calc-embedded-preserve-modes}) command is given
30674 will be preserved when embedded mode is ended.
30676 Embedded mode has a rather complicated mechanism for handling mode
30677 settings in Embedded formulas.  It is possible to put annotations
30678 in the file that specify mode settings either global to the entire
30679 file or local to a particular formula or formulas.  In the latter
30680 case, different modes can be specified for use when a formula
30681 is the enabled Embedded mode formula.
30683 When you give any mode-setting command, like @kbd{m f} (for Fraction
30684 mode) or @kbd{d s} (for scientific notation), Embedded mode adds
30685 a line like the following one to the file just before the opening
30686 delimiter of the formula.
30688 @example
30689 % [calc-mode: fractions: t]
30690 % [calc-mode: float-format: (sci 0)]
30691 @end example
30693 When Calc interprets an embedded formula, it scans the text before
30694 the formula for mode-setting annotations like these and sets the
30695 Calc buffer to match these modes.  Modes not explicitly described
30696 in the file are not changed.  Calc scans all the way to the top of
30697 the file, or up to a line of the form
30699 @example
30700 % [calc-defaults]
30701 @end example
30703 @noindent
30704 which you can insert at strategic places in the file if this backward
30705 scan is getting too slow, or just to provide a barrier between one
30706 ``zone'' of mode settings and another.
30708 If the file contains several annotations for the same mode, the
30709 closest one before the formula is used.  Annotations after the
30710 formula are never used (except for global annotations, described
30711 below).
30713 The scan does not look for the leading @samp{% }, only for the
30714 square brackets and the text they enclose.  In fact, the leading
30715 characters are different for different major modes.  You can edit the
30716 mode annotations to a style that works better in context if you wish.
30717 @xref{Customizing Embedded Mode}, to see how to change the style
30718 that Calc uses when it generates the annotations.  You can write
30719 mode annotations into the file yourself if you know the syntax;
30720 the easiest way to find the syntax for a given mode is to let
30721 Calc write the annotation for it once and see what it does.
30723 If you give a mode-changing command for a mode that already has
30724 a suitable annotation just above the current formula, Calc will
30725 modify that annotation rather than generating a new, conflicting
30726 one.
30728 Mode annotations have three parts, separated by colons.  (Spaces
30729 after the colons are optional.)  The first identifies the kind
30730 of mode setting, the second is a name for the mode itself, and
30731 the third is the value in the form of a Lisp symbol, number,
30732 or list.  Annotations with unrecognizable text in the first or
30733 second parts are ignored.  The third part is not checked to make
30734 sure the value is of a valid type or range; if you write an
30735 annotation by hand, be sure to give a proper value or results
30736 will be unpredictable.  Mode-setting annotations are case-sensitive.
30738 While Embedded mode is enabled, the word @code{Local} appears in
30739 the mode line.  This is to show that mode setting commands generate
30740 annotations that are ``local'' to the current formula or set of
30741 formulas.  The @kbd{m R} (@code{calc-mode-record-mode}) command
30742 causes Calc to generate different kinds of annotations.  Pressing
30743 @kbd{m R} repeatedly cycles through the possible modes.
30745 @code{LocEdit} and @code{LocPerm} modes generate annotations
30746 that look like this, respectively:
30748 @example
30749 % [calc-edit-mode: float-format: (sci 0)]
30750 % [calc-perm-mode: float-format: (sci 5)]
30751 @end example
30753 The first kind of annotation will be used only while a formula
30754 is enabled in Embedded mode.  The second kind will be used only
30755 when the formula is @emph{not} enabled.  (Whether the formula
30756 is ``active'' or not, i.e., whether Calc has seen this formula
30757 yet, is not relevant here.)
30759 @code{Global} mode generates an annotation like this at the end
30760 of the file:
30762 @example
30763 % [calc-global-mode: fractions t]
30764 @end example
30766 Global mode annotations affect all formulas throughout the file,
30767 and may appear anywhere in the file.  This allows you to tuck your
30768 mode annotations somewhere out of the way, say, on a new page of
30769 the file, as long as those mode settings are suitable for all
30770 formulas in the file.
30772 Enabling a formula with @kbd{M-# e} causes a fresh scan for local
30773 mode annotations; you will have to use this after adding annotations
30774 above a formula by hand to get the formula to notice them.  Updating
30775 a formula with @kbd{M-# u} will also re-scan the local modes, but
30776 global modes are only re-scanned by @kbd{M-# a}.
30778 Another way that modes can get out of date is if you add a local
30779 mode annotation to a formula that has another formula after it.
30780 In this example, we have used the @kbd{d s} command while the
30781 first of the two embedded formulas is active.  But the second
30782 formula has not changed its style to match, even though by the
30783 rules of reading annotations the @samp{(sci 0)} applies to it, too.
30785 @example
30786 % [calc-mode: float-format: (sci 0)]
30787 1.23e2
30789 456.
30790 @end example
30792 We would have to go down to the other formula and press @kbd{M-# u}
30793 on it in order to get it to notice the new annotation.
30795 Two more mode-recording modes selectable by @kbd{m R} are available
30796 which are also available outside of Embedded mode.  
30797 (@pxref{General Mode Commands}.) They are @code{Save},  in which mode
30798 settings are recorded permanently in your Calc init file (the file given
30799 by the variable @code{calc-settings-file}, typically @file{~/.calc.el})
30800 rather than by annotating the current document, and no-recording
30801 mode (where there is no symbol like @code{Save} or @code{Local} in
30802 the mode line), in which mode-changing commands do not leave any
30803 annotations at all.
30805 When Embedded mode is not enabled, mode-recording modes except
30806 for @code{Save} have no effect.
30808 @node Customizing Embedded Mode, , Mode Settings in Embedded Mode, Embedded Mode
30809 @section Customizing Embedded Mode
30811 @noindent
30812 You can modify Embedded mode's behavior by setting various Lisp
30813 variables described here.  These variables are customizable 
30814 (@pxref{Customizable Variables}), or you can use @kbd{M-x set-variable}
30815 or @kbd{M-x edit-options} to adjust a variable on the fly.
30816 (Another possibility would be to use a file-local variable annotation at
30817 the end of the file; 
30818 @pxref{File Variables, , Local Variables in Files, emacs, the Emacs manual}.)
30819 Many of the variables given mentioned here can be set to depend on the
30820 major mode of the editing buffer (@pxref{Customizable Variables}).
30822 @vindex calc-embedded-open-formula
30823 The @code{calc-embedded-open-formula} variable holds a regular
30824 expression for the opening delimiter of a formula.  @xref{Regexp Search,
30825 , Regular Expression Search, emacs, the Emacs manual}, to see
30826 how regular expressions work.  Basically, a regular expression is a
30827 pattern that Calc can search for.  A regular expression that considers
30828 blank lines, @samp{$}, and @samp{$$} to be opening delimiters is
30829 @code{"\\`\\|^\n\\|\\$\\$?"}.  Just in case the meaning of this
30830 regular expression is not completely plain, let's go through it
30831 in detail.
30833 The surrounding @samp{" "} marks quote the text between them as a
30834 Lisp string.  If you left them off, @code{set-variable} or
30835 @code{edit-options} would try to read the regular expression as a
30836 Lisp program.
30838 The most obvious property of this regular expression is that it
30839 contains indecently many backslashes.  There are actually two levels
30840 of backslash usage going on here.  First, when Lisp reads a quoted
30841 string, all pairs of characters beginning with a backslash are
30842 interpreted as special characters.  Here, @code{\n} changes to a
30843 new-line character, and @code{\\} changes to a single backslash.
30844 So the actual regular expression seen by Calc is
30845 @samp{\`\|^ @r{(newline)} \|\$\$?}.
30847 Regular expressions also consider pairs beginning with backslash
30848 to have special meanings.  Sometimes the backslash is used to quote
30849 a character that otherwise would have a special meaning in a regular
30850 expression, like @samp{$}, which normally means ``end-of-line,''
30851 or @samp{?}, which means that the preceding item is optional.  So
30852 @samp{\$\$?} matches either one or two dollar signs.
30854 The other codes in this regular expression are @samp{^}, which matches
30855 ``beginning-of-line,'' @samp{\|}, which means ``or,'' and @samp{\`},
30856 which matches ``beginning-of-buffer.''  So the whole pattern means
30857 that a formula begins at the beginning of the buffer, or on a newline
30858 that occurs at the beginning of a line (i.e., a blank line), or at
30859 one or two dollar signs.
30861 The default value of @code{calc-embedded-open-formula} looks just
30862 like this example, with several more alternatives added on to
30863 recognize various other common kinds of delimiters.
30865 By the way, the reason to use @samp{^\n} rather than @samp{^$}
30866 or @samp{\n\n}, which also would appear to match blank lines,
30867 is that the former expression actually ``consumes'' only one
30868 newline character as @emph{part of} the delimiter, whereas the
30869 latter expressions consume zero or two newlines, respectively.
30870 The former choice gives the most natural behavior when Calc
30871 must operate on a whole formula including its delimiters.
30873 See the Emacs manual for complete details on regular expressions.
30874 But just for your convenience, here is a list of all characters
30875 which must be quoted with backslash (like @samp{\$}) to avoid
30876 some special interpretation:  @samp{. * + ? [ ] ^ $ \}.  (Note
30877 the backslash in this list; for example, to match @samp{\[} you
30878 must use @code{"\\\\\\["}.  An exercise for the reader is to
30879 account for each of these six backslashes!)
30881 @vindex calc-embedded-close-formula
30882 The @code{calc-embedded-close-formula} variable holds a regular
30883 expression for the closing delimiter of a formula.  A closing
30884 regular expression to match the above example would be
30885 @code{"\\'\\|\n$\\|\\$\\$?"}.  This is almost the same as the
30886 other one, except it now uses @samp{\'} (``end-of-buffer'') and
30887 @samp{\n$} (newline occurring at end of line, yet another way
30888 of describing a blank line that is more appropriate for this
30889 case).
30891 @vindex calc-embedded-open-word
30892 @vindex calc-embedded-close-word
30893 The @code{calc-embedded-open-word} and @code{calc-embedded-close-word}
30894 variables are similar expressions used when you type @kbd{M-# w}
30895 instead of @kbd{M-# e} to enable Embedded mode.
30897 @vindex calc-embedded-open-plain
30898 The @code{calc-embedded-open-plain} variable is a string which
30899 begins a ``plain'' formula written in front of the formatted
30900 formula when @kbd{d p} mode is turned on.  Note that this is an
30901 actual string, not a regular expression, because Calc must be able
30902 to write this string into a buffer as well as to recognize it.
30903 The default string is @code{"%%% "} (note the trailing space), but may
30904 be different for certain major modes.
30906 @vindex calc-embedded-close-plain
30907 The @code{calc-embedded-close-plain} variable is a string which
30908 ends a ``plain'' formula.  The default is @code{" %%%\n"}, but may be
30909 different for different major modes.  Without
30910 the trailing newline here, the first line of a Big mode formula
30911 that followed might be shifted over with respect to the other lines.
30913 @vindex calc-embedded-open-new-formula
30914 The @code{calc-embedded-open-new-formula} variable is a string
30915 which is inserted at the front of a new formula when you type
30916 @kbd{M-# f}.  Its default value is @code{"\n\n"}.  If this
30917 string begins with a newline character and the @kbd{M-# f} is
30918 typed at the beginning of a line, @kbd{M-# f} will skip this
30919 first newline to avoid introducing unnecessary blank lines in
30920 the file.
30922 @vindex calc-embedded-close-new-formula
30923 The @code{calc-embedded-close-new-formula} variable is the corresponding
30924 string which is inserted at the end of a new formula.  Its default
30925 value is also @code{"\n\n"}.  The final newline is omitted by
30926 @w{@kbd{M-# f}} if typed at the end of a line.  (It follows that if
30927 @kbd{M-# f} is typed on a blank line, both a leading opening
30928 newline and a trailing closing newline are omitted.)
30930 @vindex calc-embedded-announce-formula
30931 The @code{calc-embedded-announce-formula} variable is a regular
30932 expression which is sure to be followed by an embedded formula.
30933 The @kbd{M-# a} command searches for this pattern as well as for
30934 @samp{=>} and @samp{:=} operators.  Note that @kbd{M-# a} will
30935 not activate just anything surrounded by formula delimiters; after
30936 all, blank lines are considered formula delimiters by default!
30937 But if your language includes a delimiter which can only occur
30938 actually in front of a formula, you can take advantage of it here.
30939 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, but may be
30940 different for different major modes.
30941 This pattern will check for @samp{%Embed} followed by any number of
30942 lines beginning with @samp{%} and a space.  This last is important to
30943 make Calc consider mode annotations part of the pattern, so that the
30944 formula's opening delimiter really is sure to follow the pattern.
30946 @vindex calc-embedded-open-mode
30947 The @code{calc-embedded-open-mode} variable is a string (not a
30948 regular expression) which should precede a mode annotation.
30949 Calc never scans for this string; Calc always looks for the
30950 annotation itself.  But this is the string that is inserted before
30951 the opening bracket when Calc adds an annotation on its own.
30952 The default is @code{"% "}, but may be different for different major
30953 modes. 
30955 @vindex calc-embedded-close-mode
30956 The @code{calc-embedded-close-mode} variable is a string which
30957 follows a mode annotation written by Calc.  Its default value
30958 is simply a newline, @code{"\n"}, but may be different for different
30959 major modes.  If you change this, it is a good idea still to end with a
30960 newline so that mode annotations will appear on lines by themselves.
30962 @node Programming, Customizable Variables, Embedded Mode, Top
30963 @chapter Programming
30965 @noindent
30966 There are several ways to ``program'' the Emacs Calculator, depending
30967 on the nature of the problem you need to solve.
30969 @enumerate
30970 @item
30971 @dfn{Keyboard macros} allow you to record a sequence of keystrokes
30972 and play them back at a later time.  This is just the standard Emacs
30973 keyboard macro mechanism, dressed up with a few more features such
30974 as loops and conditionals.
30976 @item
30977 @dfn{Algebraic definitions} allow you to use any formula to define a
30978 new function.  This function can then be used in algebraic formulas or
30979 as an interactive command.
30981 @item
30982 @dfn{Rewrite rules} are discussed in the section on algebra commands.
30983 @xref{Rewrite Rules}.  If you put your rewrite rules in the variable
30984 @code{EvalRules}, they will be applied automatically to all Calc
30985 results in just the same way as an internal ``rule'' is applied to
30986 evaluate @samp{sqrt(9)} to 3 and so on.  @xref{Automatic Rewrites}.
30988 @item
30989 @dfn{Lisp} is the programming language that Calc (and most of Emacs)
30990 is written in.  If the above techniques aren't powerful enough, you
30991 can write Lisp functions to do anything that built-in Calc commands
30992 can do.  Lisp code is also somewhat faster than keyboard macros or
30993 rewrite rules.
30994 @end enumerate
30996 @kindex z
30997 Programming features are available through the @kbd{z} and @kbd{Z}
30998 prefix keys.  New commands that you define are two-key sequences
30999 beginning with @kbd{z}.  Commands for managing these definitions
31000 use the shift-@kbd{Z} prefix.  (The @kbd{Z T} (@code{calc-timing})
31001 command is described elsewhere; @pxref{Troubleshooting Commands}.
31002 The @kbd{Z C} (@code{calc-user-define-composition}) command is also
31003 described elsewhere; @pxref{User-Defined Compositions}.)
31005 @menu
31006 * Creating User Keys::
31007 * Keyboard Macros::
31008 * Invocation Macros::
31009 * Algebraic Definitions::
31010 * Lisp Definitions::
31011 @end menu
31013 @node Creating User Keys, Keyboard Macros, Programming, Programming
31014 @section Creating User Keys
31016 @noindent
31017 @kindex Z D
31018 @pindex calc-user-define
31019 Any Calculator command may be bound to a key using the @kbd{Z D}
31020 (@code{calc-user-define}) command.  Actually, it is bound to a two-key
31021 sequence beginning with the lower-case @kbd{z} prefix.
31023 The @kbd{Z D} command first prompts for the key to define.  For example,
31024 press @kbd{Z D a} to define the new key sequence @kbd{z a}.  You are then
31025 prompted for the name of the Calculator command that this key should
31026 run.  For example, the @code{calc-sincos} command is not normally
31027 available on a key.  Typing @kbd{Z D s sincos @key{RET}} programs the
31028 @kbd{z s} key sequence to run @code{calc-sincos}.  This definition will remain
31029 in effect for the rest of this Emacs session, or until you redefine
31030 @kbd{z s} to be something else.
31032 You can actually bind any Emacs command to a @kbd{z} key sequence by
31033 backspacing over the @samp{calc-} when you are prompted for the command name.
31035 As with any other prefix key, you can type @kbd{z ?} to see a list of
31036 all the two-key sequences you have defined that start with @kbd{z}.
31037 Initially, no @kbd{z} sequences (except @kbd{z ?} itself) are defined.
31039 User keys are typically letters, but may in fact be any key.
31040 (@key{META}-keys are not permitted, nor are a terminal's special
31041 function keys which generate multi-character sequences when pressed.)
31042 You can define different commands on the shifted and unshifted versions
31043 of a letter if you wish.
31045 @kindex Z U
31046 @pindex calc-user-undefine
31047 The @kbd{Z U} (@code{calc-user-undefine}) command unbinds a user key.
31048 For example, the key sequence @kbd{Z U s} will undefine the @code{sincos}
31049 key we defined above.
31051 @kindex Z P
31052 @pindex calc-user-define-permanent
31053 @cindex Storing user definitions
31054 @cindex Permanent user definitions
31055 @cindex Calc init file, user-defined commands
31056 The @kbd{Z P} (@code{calc-user-define-permanent}) command makes a key
31057 binding permanent so that it will remain in effect even in future Emacs
31058 sessions.  (It does this by adding a suitable bit of Lisp code into
31059 your Calc init file; that is, the file given by the variable
31060 @code{calc-settings-file}, typically @file{~/.calc.el}.)  For example,
31061 @kbd{Z P s} would register our @code{sincos} command permanently.  If
31062 you later wish to unregister this command you must edit your Calc init
31063 file by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
31064 use a different file for the Calc init file.)
31066 The @kbd{Z P} command also saves the user definition, if any, for the
31067 command bound to the key.  After @kbd{Z F} and @kbd{Z C}, a given user
31068 key could invoke a command, which in turn calls an algebraic function,
31069 which might have one or more special display formats.  A single @kbd{Z P}
31070 command will save all of these definitions.
31071 To save an algebraic function, type @kbd{'} (the apostrophe)
31072 when prompted for a key, and type the function name.  To save a command
31073 without its key binding, type @kbd{M-x} and enter a function name.  (The
31074 @samp{calc-} prefix will automatically be inserted for you.)
31075 (If the command you give implies a function, the function will be saved,
31076 and if the function has any display formats, those will be saved, but
31077 not the other way around:  Saving a function will not save any commands
31078 or key bindings associated with the function.) 
31080 @kindex Z E
31081 @pindex calc-user-define-edit
31082 @cindex Editing user definitions
31083 The @kbd{Z E} (@code{calc-user-define-edit}) command edits the definition
31084 of a user key.  This works for keys that have been defined by either
31085 keyboard macros or formulas; further details are contained in the relevant
31086 following sections.
31088 @node Keyboard Macros, Invocation Macros, Creating User Keys, Programming
31089 @section Programming with Keyboard Macros
31091 @noindent
31092 @kindex X
31093 @cindex Programming with keyboard macros
31094 @cindex Keyboard macros
31095 The easiest way to ``program'' the Emacs Calculator is to use standard
31096 keyboard macros.  Press @w{@kbd{C-x (}} to begin recording a macro.  From
31097 this point on, keystrokes you type will be saved away as well as
31098 performing their usual functions.  Press @kbd{C-x )} to end recording.
31099 Press shift-@kbd{X} (or the standard Emacs key sequence @kbd{C-x e}) to
31100 execute your keyboard macro by replaying the recorded keystrokes.
31101 @xref{Keyboard Macros, , , emacs, the Emacs Manual}, for further
31102 information.
31104 When you use @kbd{X} to invoke a keyboard macro, the entire macro is
31105 treated as a single command by the undo and trail features.  The stack
31106 display buffer is not updated during macro execution, but is instead
31107 fixed up once the macro completes.  Thus, commands defined with keyboard
31108 macros are convenient and efficient.  The @kbd{C-x e} command, on the
31109 other hand, invokes the keyboard macro with no special treatment: Each
31110 command in the macro will record its own undo information and trail entry,
31111 and update the stack buffer accordingly.  If your macro uses features
31112 outside of Calc's control to operate on the contents of the Calc stack
31113 buffer, or if it includes Undo, Redo, or last-arguments commands, you
31114 must use @kbd{C-x e} to make sure the buffer and undo list are up-to-date
31115 at all times.  You could also consider using @kbd{K} (@code{calc-keep-args})
31116 instead of @kbd{M-@key{RET}} (@code{calc-last-args}).
31118 Calc extends the standard Emacs keyboard macros in several ways.
31119 Keyboard macros can be used to create user-defined commands.  Keyboard
31120 macros can include conditional and iteration structures, somewhat
31121 analogous to those provided by a traditional programmable calculator.
31123 @menu
31124 * Naming Keyboard Macros::
31125 * Conditionals in Macros::
31126 * Loops in Macros::
31127 * Local Values in Macros::
31128 * Queries in Macros::
31129 @end menu
31131 @node Naming Keyboard Macros, Conditionals in Macros, Keyboard Macros, Keyboard Macros
31132 @subsection Naming Keyboard Macros
31134 @noindent
31135 @kindex Z K
31136 @pindex calc-user-define-kbd-macro
31137 Once you have defined a keyboard macro, you can bind it to a @kbd{z}
31138 key sequence with the @kbd{Z K} (@code{calc-user-define-kbd-macro}) command.
31139 This command prompts first for a key, then for a command name.  For
31140 example, if you type @kbd{C-x ( n @key{TAB} n @key{TAB} C-x )} you will
31141 define a keyboard macro which negates the top two numbers on the stack
31142 (@key{TAB} swaps the top two stack elements).  Now you can type
31143 @kbd{Z K n @key{RET}} to define this keyboard macro onto the @kbd{z n} key
31144 sequence.  The default command name (if you answer the second prompt with
31145 just the @key{RET} key as in this example) will be something like
31146 @samp{calc-User-n}.  The keyboard macro will now be available as both
31147 @kbd{z n} and @kbd{M-x calc-User-n}.  You can backspace and enter a more
31148 descriptive command name if you wish.
31150 Macros defined by @kbd{Z K} act like single commands; they are executed
31151 in the same way as by the @kbd{X} key.  If you wish to define the macro
31152 as a standard no-frills Emacs macro (to be executed as if by @kbd{C-x e}),
31153 give a negative prefix argument to @kbd{Z K}.
31155 Once you have bound your keyboard macro to a key, you can use
31156 @kbd{Z P} to register it permanently with Emacs.  @xref{Creating User Keys}.
31158 @cindex Keyboard macros, editing
31159 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
31160 been defined by a keyboard macro tries to use the @code{edmacro} package
31161 edit the macro.  Type @kbd{C-c C-c} to finish editing and update 
31162 the definition stored on the key, or, to cancel the edit, kill the
31163 buffer with @kbd{C-x k}.
31164 The special characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC},
31165 @code{DEL}, and @code{NUL} must be entered as these three character
31166 sequences, written in all uppercase, as must the prefixes @code{C-} and
31167 @code{M-}.  Spaces and line breaks are ignored.  Other characters are
31168 copied verbatim into the keyboard macro.  Basically, the notation is the
31169 same as is used in all of this manual's examples, except that the manual
31170 takes some liberties with spaces: When we say @kbd{' [1 2 3] @key{RET}},
31171 we take it for granted that it is clear we really mean 
31172 @kbd{' [1 @key{SPC} 2 @key{SPC} 3] @key{RET}}.
31174 @kindex M-# m
31175 @pindex read-kbd-macro
31176 The @kbd{M-# m} (@code{read-kbd-macro}) command reads an Emacs ``region''
31177 of spelled-out keystrokes and defines it as the current keyboard macro.
31178 It is a convenient way to define a keyboard macro that has been stored
31179 in a file, or to define a macro without executing it at the same time.
31181 @node Conditionals in Macros, Loops in Macros, Naming Keyboard Macros, Keyboard Macros
31182 @subsection Conditionals in Keyboard Macros
31184 @noindent
31185 @kindex Z [
31186 @kindex Z ]
31187 @pindex calc-kbd-if
31188 @pindex calc-kbd-else
31189 @pindex calc-kbd-else-if
31190 @pindex calc-kbd-end-if
31191 @cindex Conditional structures
31192 The @kbd{Z [} (@code{calc-kbd-if}) and @kbd{Z ]} (@code{calc-kbd-end-if})
31193 commands allow you to put simple tests in a keyboard macro.  When Calc
31194 sees the @kbd{Z [}, it pops an object from the stack and, if the object is
31195 a non-zero value, continues executing keystrokes.  But if the object is
31196 zero, or if it is not provably nonzero, Calc skips ahead to the matching
31197 @kbd{Z ]} keystroke.  @xref{Logical Operations}, for a set of commands for
31198 performing tests which conveniently produce 1 for true and 0 for false.
31200 For example, @kbd{@key{RET} 0 a < Z [ n Z ]} implements an absolute-value
31201 function in the form of a keyboard macro.  This macro duplicates the
31202 number on the top of the stack, pushes zero and compares using @kbd{a <}
31203 (@code{calc-less-than}), then, if the number was less than zero,
31204 executes @kbd{n} (@code{calc-change-sign}).  Otherwise, the change-sign
31205 command is skipped.
31207 To program this macro, type @kbd{C-x (}, type the above sequence of
31208 keystrokes, then type @kbd{C-x )}.  Note that the keystrokes will be
31209 executed while you are making the definition as well as when you later
31210 re-execute the macro by typing @kbd{X}.  Thus you should make sure a
31211 suitable number is on the stack before defining the macro so that you
31212 don't get a stack-underflow error during the definition process.
31214 Conditionals can be nested arbitrarily.  However, there should be exactly
31215 one @kbd{Z ]} for each @kbd{Z [} in a keyboard macro.
31217 @kindex Z :
31218 The @kbd{Z :} (@code{calc-kbd-else}) command allows you to choose between
31219 two keystroke sequences.  The general format is @kbd{@var{cond} Z [
31220 @var{then-part} Z : @var{else-part} Z ]}.  If @var{cond} is true
31221 (i.e., if the top of stack contains a non-zero number after @var{cond}
31222 has been executed), the @var{then-part} will be executed and the
31223 @var{else-part} will be skipped.  Otherwise, the @var{then-part} will
31224 be skipped and the @var{else-part} will be executed.
31226 @kindex Z |
31227 The @kbd{Z |} (@code{calc-kbd-else-if}) command allows you to choose
31228 between any number of alternatives.  For example,
31229 @kbd{@var{cond1} Z [ @var{part1} Z : @var{cond2} Z | @var{part2} Z :
31230 @var{part3} Z ]} will execute @var{part1} if @var{cond1} is true,
31231 otherwise it will execute @var{part2} if @var{cond2} is true, otherwise
31232 it will execute @var{part3}.
31234 More precisely, @kbd{Z [} pops a number and conditionally skips to the
31235 next matching @kbd{Z :} or @kbd{Z ]} key.  @w{@kbd{Z ]}} has no effect when
31236 actually executed.  @kbd{Z :} skips to the next matching @kbd{Z ]}.
31237 @kbd{Z |} pops a number and conditionally skips to the next matching
31238 @kbd{Z :} or @kbd{Z ]}; thus, @kbd{Z [} and @kbd{Z |} are functionally
31239 equivalent except that @kbd{Z [} participates in nesting but @kbd{Z |}
31240 does not.
31242 Calc's conditional and looping constructs work by scanning the
31243 keyboard macro for occurrences of character sequences like @samp{Z:}
31244 and @samp{Z]}.  One side-effect of this is that if you use these
31245 constructs you must be careful that these character pairs do not
31246 occur by accident in other parts of the macros.  Since Calc rarely
31247 uses shift-@kbd{Z} for any purpose except as a prefix character, this
31248 is not likely to be a problem.  Another side-effect is that it will
31249 not work to define your own custom key bindings for these commands.
31250 Only the standard shift-@kbd{Z} bindings will work correctly.
31252 @kindex Z C-g
31253 If Calc gets stuck while skipping characters during the definition of a
31254 macro, type @kbd{Z C-g} to cancel the definition.  (Typing plain @kbd{C-g}
31255 actually adds a @kbd{C-g} keystroke to the macro.)
31257 @node Loops in Macros, Local Values in Macros, Conditionals in Macros, Keyboard Macros
31258 @subsection Loops in Keyboard Macros
31260 @noindent
31261 @kindex Z <
31262 @kindex Z >
31263 @pindex calc-kbd-repeat
31264 @pindex calc-kbd-end-repeat
31265 @cindex Looping structures
31266 @cindex Iterative structures
31267 The @kbd{Z <} (@code{calc-kbd-repeat}) and @kbd{Z >}
31268 (@code{calc-kbd-end-repeat}) commands pop a number from the stack,
31269 which must be an integer, then repeat the keystrokes between the brackets
31270 the specified number of times.  If the integer is zero or negative, the
31271 body is skipped altogether.  For example, @kbd{1 @key{TAB} Z < 2 * Z >}
31272 computes two to a nonnegative integer power.  First, we push 1 on the
31273 stack and then swap the integer argument back to the top.  The @kbd{Z <}
31274 pops that argument leaving the 1 back on top of the stack.  Then, we
31275 repeat a multiply-by-two step however many times.
31277 Once again, the keyboard macro is executed as it is being entered.
31278 In this case it is especially important to set up reasonable initial
31279 conditions before making the definition:  Suppose the integer 1000 just
31280 happened to be sitting on the stack before we typed the above definition!
31281 Another approach is to enter a harmless dummy definition for the macro,
31282 then go back and edit in the real one with a @kbd{Z E} command.  Yet
31283 another approach is to type the macro as written-out keystroke names
31284 in a buffer, then use @kbd{M-# m} (@code{read-kbd-macro}) to read the
31285 macro.
31287 @kindex Z /
31288 @pindex calc-break
31289 The @kbd{Z /} (@code{calc-kbd-break}) command allows you to break out
31290 of a keyboard macro loop prematurely.  It pops an object from the stack;
31291 if that object is true (a non-zero number), control jumps out of the
31292 innermost enclosing @kbd{Z <} @dots{} @kbd{Z >} loop and continues
31293 after the @kbd{Z >}.  If the object is false, the @kbd{Z /} has no
31294 effect.  Thus @kbd{@var{cond} Z /} is similar to @samp{if (@var{cond}) break;}
31295 in the C language.
31297 @kindex Z (
31298 @kindex Z )
31299 @pindex calc-kbd-for
31300 @pindex calc-kbd-end-for
31301 The @kbd{Z (} (@code{calc-kbd-for}) and @kbd{Z )} (@code{calc-kbd-end-for})
31302 commands are similar to @kbd{Z <} and @kbd{Z >}, except that they make the
31303 value of the counter available inside the loop.  The general layout is
31304 @kbd{@var{init} @var{final} Z ( @var{body} @var{step} Z )}.  The @kbd{Z (}
31305 command pops initial and final values from the stack.  It then creates
31306 a temporary internal counter and initializes it with the value @var{init}.
31307 The @kbd{Z (} command then repeatedly pushes the counter value onto the
31308 stack and executes @var{body} and @var{step}, adding @var{step} to the
31309 counter each time until the loop finishes.
31311 @cindex Summations (by keyboard macros)
31312 By default, the loop finishes when the counter becomes greater than (or
31313 less than) @var{final}, assuming @var{initial} is less than (greater
31314 than) @var{final}.  If @var{initial} is equal to @var{final}, the body
31315 executes exactly once.  The body of the loop always executes at least
31316 once.  For example, @kbd{0 1 10 Z ( 2 ^ + 1 Z )} computes the sum of the
31317 squares of the integers from 1 to 10, in steps of 1.
31319 If you give a numeric prefix argument of 1 to @kbd{Z (}, the loop is
31320 forced to use upward-counting conventions.  In this case, if @var{initial}
31321 is greater than @var{final} the body will not be executed at all.
31322 Note that @var{step} may still be negative in this loop; the prefix
31323 argument merely constrains the loop-finished test.  Likewise, a prefix
31324 argument of @mathit{-1} forces downward-counting conventions.
31326 @kindex Z @{
31327 @kindex Z @}
31328 @pindex calc-kbd-loop
31329 @pindex calc-kbd-end-loop
31330 The @kbd{Z @{} (@code{calc-kbd-loop}) and @kbd{Z @}}
31331 (@code{calc-kbd-end-loop}) commands are similar to @kbd{Z <} and
31332 @kbd{Z >}, except that they do not pop a count from the stack---they
31333 effectively create an infinite loop.  Every @kbd{Z @{} @dots{} @kbd{Z @}}
31334 loop ought to include at least one @kbd{Z /} to make sure the loop
31335 doesn't run forever.  (If any error message occurs which causes Emacs
31336 to beep, the keyboard macro will also be halted; this is a standard
31337 feature of Emacs.  You can also generally press @kbd{C-g} to halt a
31338 running keyboard macro, although not all versions of Unix support
31339 this feature.)
31341 The conditional and looping constructs are not actually tied to
31342 keyboard macros, but they are most often used in that context.
31343 For example, the keystrokes @kbd{10 Z < 23 @key{RET} Z >} push
31344 ten copies of 23 onto the stack.  This can be typed ``live'' just
31345 as easily as in a macro definition.
31347 @xref{Conditionals in Macros}, for some additional notes about
31348 conditional and looping commands.
31350 @node Local Values in Macros, Queries in Macros, Loops in Macros, Keyboard Macros
31351 @subsection Local Values in Macros
31353 @noindent
31354 @cindex Local variables
31355 @cindex Restoring saved modes
31356 Keyboard macros sometimes want to operate under known conditions
31357 without affecting surrounding conditions.  For example, a keyboard
31358 macro may wish to turn on Fraction mode, or set a particular
31359 precision, independent of the user's normal setting for those
31360 modes.
31362 @kindex Z `
31363 @kindex Z '
31364 @pindex calc-kbd-push
31365 @pindex calc-kbd-pop
31366 Macros also sometimes need to use local variables.  Assignments to
31367 local variables inside the macro should not affect any variables
31368 outside the macro.  The @kbd{Z `} (@code{calc-kbd-push}) and @kbd{Z '}
31369 (@code{calc-kbd-pop}) commands give you both of these capabilities.
31371 When you type @kbd{Z `} (with a backquote or accent grave character),
31372 the values of various mode settings are saved away.  The ten ``quick''
31373 variables @code{q0} through @code{q9} are also saved.  When
31374 you type @w{@kbd{Z '}} (with an apostrophe), these values are restored.
31375 Pairs of @kbd{Z `} and @kbd{Z '} commands may be nested.
31377 If a keyboard macro halts due to an error in between a @kbd{Z `} and
31378 a @kbd{Z '}, the saved values will be restored correctly even though
31379 the macro never reaches the @kbd{Z '} command.  Thus you can use
31380 @kbd{Z `} and @kbd{Z '} without having to worry about what happens
31381 in exceptional conditions.
31383 If you type @kbd{Z `} ``live'' (not in a keyboard macro), Calc puts
31384 you into a ``recursive edit.''  You can tell you are in a recursive
31385 edit because there will be extra square brackets in the mode line,
31386 as in @samp{[(Calculator)]}.  These brackets will go away when you
31387 type the matching @kbd{Z '} command.  The modes and quick variables
31388 will be saved and restored in just the same way as if actual keyboard
31389 macros were involved.
31391 The modes saved by @kbd{Z `} and @kbd{Z '} are the current precision
31392 and binary word size, the angular mode (Deg, Rad, or HMS), the
31393 simplification mode, Algebraic mode, Symbolic mode, Infinite mode,
31394 Matrix or Scalar mode, Fraction mode, and the current complex mode
31395 (Polar or Rectangular).  The ten ``quick'' variables' values (or lack
31396 thereof) are also saved.
31398 Most mode-setting commands act as toggles, but with a numeric prefix
31399 they force the mode either on (positive prefix) or off (negative
31400 or zero prefix).  Since you don't know what the environment might
31401 be when you invoke your macro, it's best to use prefix arguments
31402 for all mode-setting commands inside the macro.
31404 In fact, @kbd{C-u Z `} is like @kbd{Z `} except that it sets the modes
31405 listed above to their default values.  As usual, the matching @kbd{Z '}
31406 will restore the modes to their settings from before the @kbd{C-u Z `}.
31407 Also, @w{@kbd{Z `}} with a negative prefix argument resets the algebraic mode
31408 to its default (off) but leaves the other modes the same as they were
31409 outside the construct.
31411 The contents of the stack and trail, values of non-quick variables, and
31412 other settings such as the language mode and the various display modes,
31413 are @emph{not} affected by @kbd{Z `} and @kbd{Z '}.
31415 @node Queries in Macros, , Local Values in Macros, Keyboard Macros
31416 @subsection Queries in Keyboard Macros
31418 @c @noindent
31419 @c @kindex Z =
31420 @c @pindex calc-kbd-report
31421 @c The @kbd{Z =} (@code{calc-kbd-report}) command displays an informative
31422 @c message including the value on the top of the stack.  You are prompted
31423 @c to enter a string.  That string, along with the top-of-stack value,
31424 @c is displayed unless @kbd{m w} (@code{calc-working}) has been used
31425 @c to turn such messages off.
31427 @noindent
31428 @kindex Z #
31429 @pindex calc-kbd-query
31430 The @kbd{Z #} (@code{calc-kbd-query}) command prompts for an algebraic
31431 entry which takes its input from the keyboard, even during macro
31432 execution.  All the normal conventions of algebraic input, including the
31433 use of @kbd{$} characters, are supported.  The prompt message itself is
31434 taken from the top of the stack, and so must be entered (as a string)
31435 before the @kbd{Z #} command.  (Recall, as a string it can be entered by
31436 pressing the @kbd{"} key and will appear as a vector when it is put on
31437 the stack.  The prompt message is only put on the stack to provide a
31438 prompt for the @kbd{Z #} command; it will not play any role in any
31439 subsequent calculations.)  This command allows your keyboard macros to
31440 accept numbers or formulas as interactive input.
31442 As an example, 
31443 @kbd{2 @key{RET} "Power: " @key{RET} Z # 3 @key{RET} ^} will prompt for
31444 input with ``Power: '' in the minibuffer, then return 2 to the provided
31445 power.  (The response to the prompt that's given, 3 in this example,
31446 will not be part of the macro.)
31448 @xref{Keyboard Macro Query, , , emacs, the Emacs Manual}, for a description of
31449 @kbd{C-x q} (@code{kbd-macro-query}), the standard Emacs way to accept
31450 keyboard input during a keyboard macro.  In particular, you can use
31451 @kbd{C-x q} to enter a recursive edit, which allows the user to perform
31452 any Calculator operations interactively before pressing @kbd{C-M-c} to
31453 return control to the keyboard macro.
31455 @node Invocation Macros, Algebraic Definitions, Keyboard Macros, Programming
31456 @section Invocation Macros
31458 @kindex M-# z
31459 @kindex Z I
31460 @pindex calc-user-invocation
31461 @pindex calc-user-define-invocation
31462 Calc provides one special keyboard macro, called up by @kbd{M-# z}
31463 (@code{calc-user-invocation}), that is intended to allow you to define
31464 your own special way of starting Calc.  To define this ``invocation
31465 macro,'' create the macro in the usual way with @kbd{C-x (} and
31466 @kbd{C-x )}, then type @kbd{Z I} (@code{calc-user-define-invocation}).
31467 There is only one invocation macro, so you don't need to type any
31468 additional letters after @kbd{Z I}.  From now on, you can type
31469 @kbd{M-# z} at any time to execute your invocation macro.
31471 For example, suppose you find yourself often grabbing rectangles of
31472 numbers into Calc and multiplying their columns.  You can do this
31473 by typing @kbd{M-# r} to grab, and @kbd{V R : *} to multiply columns.
31474 To make this into an invocation macro, just type @kbd{C-x ( M-# r
31475 V R : * C-x )}, then @kbd{Z I}.  Then, to multiply a rectangle of data,
31476 just mark the data in its buffer in the usual way and type @kbd{M-# z}.
31478 Invocation macros are treated like regular Emacs keyboard macros;
31479 all the special features described above for @kbd{Z K}-style macros
31480 do not apply.  @kbd{M-# z} is just like @kbd{C-x e}, except that it
31481 uses the macro that was last stored by @kbd{Z I}.  (In fact, the
31482 macro does not even have to have anything to do with Calc!)
31484 The @kbd{m m} command saves the last invocation macro defined by
31485 @kbd{Z I} along with all the other Calc mode settings.
31486 @xref{General Mode Commands}.
31488 @node Algebraic Definitions, Lisp Definitions, Invocation Macros, Programming
31489 @section Programming with Formulas
31491 @noindent
31492 @kindex Z F
31493 @pindex calc-user-define-formula
31494 @cindex Programming with algebraic formulas
31495 Another way to create a new Calculator command uses algebraic formulas.
31496 The @kbd{Z F} (@code{calc-user-define-formula}) command stores the
31497 formula at the top of the stack as the definition for a key.  This
31498 command prompts for five things: The key, the command name, the function
31499 name, the argument list, and the behavior of the command when given
31500 non-numeric arguments.
31502 For example, suppose we type @kbd{' a+2b @key{RET}} to push the formula
31503 @samp{a + 2*b} onto the stack.  We now type @kbd{Z F m} to define this
31504 formula on the @kbd{z m} key sequence.  The next prompt is for a command
31505 name, beginning with @samp{calc-}, which should be the long (@kbd{M-x}) form
31506 for the new command.  If you simply press @key{RET}, a default name like
31507 @code{calc-User-m} will be constructed.  In our example, suppose we enter
31508 @kbd{spam @key{RET}} to define the new command as @code{calc-spam}.
31510 If you want to give the formula a long-style name only, you can press
31511 @key{SPC} or @key{RET} when asked which single key to use.  For example
31512 @kbd{Z F @key{RET} spam @key{RET}} defines the new command as
31513 @kbd{M-x calc-spam}, with no keyboard equivalent.
31515 The third prompt is for an algebraic function name.  The default is to
31516 use the same name as the command name but without the @samp{calc-}
31517 prefix.  (If this is of the form @samp{User-m}, the hyphen is removed so
31518 it won't be taken for a minus sign in algebraic formulas.)
31519 This is the name you will use if you want to enter your 
31520 new function in an algebraic formula.  Suppose we enter @kbd{yow @key{RET}}.
31521 Then the new function can be invoked by pushing two numbers on the
31522 stack and typing @kbd{z m} or @kbd{x spam}, or by entering the algebraic
31523 formula @samp{yow(x,y)}.
31525 The fourth prompt is for the function's argument list.  This is used to
31526 associate values on the stack with the variables that appear in the formula.
31527 The default is a list of all variables which appear in the formula, sorted
31528 into alphabetical order.  In our case, the default would be @samp{(a b)}.
31529 This means that, when the user types @kbd{z m}, the Calculator will remove
31530 two numbers from the stack, substitute these numbers for @samp{a} and
31531 @samp{b} (respectively) in the formula, then simplify the formula and
31532 push the result on the stack.  In other words, @kbd{10 @key{RET} 100 z m}
31533 would replace the 10 and 100 on the stack with the number 210, which is
31534 @expr{a + 2 b} with @expr{a=10} and @expr{b=100}.  Likewise, the formula
31535 @samp{yow(10, 100)} will be evaluated by substituting @expr{a=10} and
31536 @expr{b=100} in the definition.
31538 You can rearrange the order of the names before pressing @key{RET} to
31539 control which stack positions go to which variables in the formula.  If
31540 you remove a variable from the argument list, that variable will be left
31541 in symbolic form by the command.  Thus using an argument list of @samp{(b)}
31542 for our function would cause @kbd{10 z m} to replace the 10 on the stack
31543 with the formula @samp{a + 20}.  If we had used an argument list of
31544 @samp{(b a)}, the result with inputs 10 and 100 would have been 120.
31546 You can also put a nameless function on the stack instead of just a
31547 formula, as in @samp{<a, b : a + 2 b>}.  @xref{Specifying Operators}.
31548 In this example, the command will be defined by the formula @samp{a + 2 b}
31549 using the argument list @samp{(a b)}.
31551 The final prompt is a y-or-n question concerning what to do if symbolic
31552 arguments are given to your function.  If you answer @kbd{y}, then
31553 executing @kbd{z m} (using the original argument list @samp{(a b)}) with
31554 arguments @expr{10} and @expr{x} will leave the function in symbolic
31555 form, i.e., @samp{yow(10,x)}.  On the other hand, if you answer @kbd{n},
31556 then the formula will always be expanded, even for non-constant
31557 arguments: @samp{10 + 2 x}.  If you never plan to feed algebraic
31558 formulas to your new function, it doesn't matter how you answer this
31559 question.
31561 If you answered @kbd{y} to this question you can still cause a function
31562 call to be expanded by typing @kbd{a "} (@code{calc-expand-formula}).
31563 Also, Calc will expand the function if necessary when you take a
31564 derivative or integral or solve an equation involving the function.
31566 @kindex Z G
31567 @pindex calc-get-user-defn
31568 Once you have defined a formula on a key, you can retrieve this formula
31569 with the @kbd{Z G} (@code{calc-user-define-get-defn}) command.  Press a
31570 key, and this command pushes the formula that was used to define that
31571 key onto the stack.  Actually, it pushes a nameless function that
31572 specifies both the argument list and the defining formula.  You will get
31573 an error message if the key is undefined, or if the key was not defined
31574 by a @kbd{Z F} command.
31576 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
31577 been defined by a formula uses a variant of the @code{calc-edit} command
31578 to edit the defining formula.  Press @kbd{C-c C-c} to finish editing and
31579 store the new formula back in the definition, or kill the buffer with
31580 @kbd{C-x k} to
31581 cancel the edit.  (The argument list and other properties of the
31582 definition are unchanged; to adjust the argument list, you can use
31583 @kbd{Z G} to grab the function onto the stack, edit with @kbd{`}, and
31584 then re-execute the @kbd{Z F} command.)
31586 As usual, the @kbd{Z P} command records your definition permanently.
31587 In this case it will permanently record all three of the relevant
31588 definitions: the key, the command, and the function.
31590 You may find it useful to turn off the default simplifications with
31591 @kbd{m O} (@code{calc-no-simplify-mode}) when entering a formula to be
31592 used as a function definition.  For example, the formula @samp{deriv(a^2,v)}
31593 which might be used to define a new function @samp{dsqr(a,v)} will be
31594 ``simplified'' to 0 immediately upon entry since @code{deriv} considers
31595 @expr{a} to be constant with respect to @expr{v}.  Turning off
31596 default simplifications cures this problem:  The definition will be stored
31597 in symbolic form without ever activating the @code{deriv} function.  Press
31598 @kbd{m D} to turn the default simplifications back on afterwards.
31600 @node Lisp Definitions, , Algebraic Definitions, Programming
31601 @section Programming with Lisp
31603 @noindent
31604 The Calculator can be programmed quite extensively in Lisp.  All you
31605 do is write a normal Lisp function definition, but with @code{defmath}
31606 in place of @code{defun}.  This has the same form as @code{defun}, but it
31607 automagically replaces calls to standard Lisp functions like @code{+} and
31608 @code{zerop} with calls to the corresponding functions in Calc's own library.
31609 Thus you can write natural-looking Lisp code which operates on all of the
31610 standard Calculator data types.  You can then use @kbd{Z D} if you wish to
31611 bind your new command to a @kbd{z}-prefix key sequence.  The @kbd{Z E} command
31612 will not edit a Lisp-based definition.
31614 Emacs Lisp is described in the GNU Emacs Lisp Reference Manual.  This section
31615 assumes a familiarity with Lisp programming concepts; if you do not know
31616 Lisp, you may find keyboard macros or rewrite rules to be an easier way
31617 to program the Calculator.
31619 This section first discusses ways to write commands, functions, or
31620 small programs to be executed inside of Calc.  Then it discusses how
31621 your own separate programs are able to call Calc from the outside.
31622 Finally, there is a list of internal Calc functions and data structures
31623 for the true Lisp enthusiast.
31625 @menu
31626 * Defining Functions::
31627 * Defining Simple Commands::
31628 * Defining Stack Commands::
31629 * Argument Qualifiers::
31630 * Example Definitions::
31632 * Calling Calc from Your Programs::
31633 * Internals::
31634 @end menu
31636 @node Defining Functions, Defining Simple Commands, Lisp Definitions, Lisp Definitions
31637 @subsection Defining New Functions
31639 @noindent
31640 @findex defmath
31641 The @code{defmath} function (actually a Lisp macro) is like @code{defun}
31642 except that code in the body of the definition can make use of the full
31643 range of Calculator data types.  The prefix @samp{calcFunc-} is added
31644 to the specified name to get the actual Lisp function name.  As a simple
31645 example,
31647 @example
31648 (defmath myfact (n)
31649   (if (> n 0)
31650       (* n (myfact (1- n)))
31651     1))
31652 @end example
31654 @noindent
31655 This actually expands to the code,
31657 @example
31658 (defun calcFunc-myfact (n)
31659   (if (math-posp n)
31660       (math-mul n (calcFunc-myfact (math-add n -1)))
31661     1))
31662 @end example
31664 @noindent
31665 This function can be used in algebraic expressions, e.g., @samp{myfact(5)}.
31667 The @samp{myfact} function as it is defined above has the bug that an
31668 expression @samp{myfact(a+b)} will be simplified to 1 because the
31669 formula @samp{a+b} is not considered to be @code{posp}.  A robust
31670 factorial function would be written along the following lines:
31672 @smallexample
31673 (defmath myfact (n)
31674   (if (> n 0)
31675       (* n (myfact (1- n)))
31676     (if (= n 0)
31677         1
31678       nil)))    ; this could be simplified as: (and (= n 0) 1)
31679 @end smallexample
31681 If a function returns @code{nil}, it is left unsimplified by the Calculator
31682 (except that its arguments will be simplified).  Thus, @samp{myfact(a+1+2)}
31683 will be simplified to @samp{myfact(a+3)} but no further.  Beware that every
31684 time the Calculator reexamines this formula it will attempt to resimplify
31685 it, so your function ought to detect the returning-@code{nil} case as
31686 efficiently as possible.
31688 The following standard Lisp functions are treated by @code{defmath}:
31689 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^} or
31690 @code{expt}, @code{=}, @code{<}, @code{>}, @code{<=}, @code{>=},
31691 @code{/=}, @code{1+}, @code{1-}, @code{logand}, @code{logior}, @code{logxor},
31692 @code{logandc2}, @code{lognot}.  Also, @code{~=} is an abbreviation for
31693 @code{math-nearly-equal}, which is useful in implementing Taylor series.
31695 For other functions @var{func}, if a function by the name
31696 @samp{calcFunc-@var{func}} exists it is used, otherwise if a function by the
31697 name @samp{math-@var{func}} exists it is used, otherwise if @var{func} itself
31698 is defined as a function it is used, otherwise @samp{calcFunc-@var{func}} is
31699 used on the assumption that this is a to-be-defined math function.  Also, if
31700 the function name is quoted as in @samp{('integerp a)} the function name is
31701 always used exactly as written (but not quoted).
31703 Variable names have @samp{var-} prepended to them unless they appear in
31704 the function's argument list or in an enclosing @code{let}, @code{let*},
31705 @code{for}, or @code{foreach} form,
31706 or their names already contain a @samp{-} character.  Thus a reference to
31707 @samp{foo} is the same as a reference to @samp{var-foo}.
31709 A few other Lisp extensions are available in @code{defmath} definitions:
31711 @itemize @bullet
31712 @item
31713 The @code{elt} function accepts any number of index variables.
31714 Note that Calc vectors are stored as Lisp lists whose first
31715 element is the symbol @code{vec}; thus, @samp{(elt v 2)} yields
31716 the second element of vector @code{v}, and @samp{(elt m i j)}
31717 yields one element of a Calc matrix.
31719 @item
31720 The @code{setq} function has been extended to act like the Common
31721 Lisp @code{setf} function.  (The name @code{setf} is recognized as
31722 a synonym of @code{setq}.)  Specifically, the first argument of
31723 @code{setq} can be an @code{nth}, @code{elt}, @code{car}, or @code{cdr} form,
31724 in which case the effect is to store into the specified
31725 element of a list.  Thus, @samp{(setq (elt m i j) x)} stores @expr{x}
31726 into one element of a matrix.
31728 @item
31729 A @code{for} looping construct is available.  For example,
31730 @samp{(for ((i 0 10)) body)} executes @code{body} once for each
31731 binding of @expr{i} from zero to 10.  This is like a @code{let}
31732 form in that @expr{i} is temporarily bound to the loop count
31733 without disturbing its value outside the @code{for} construct.
31734 Nested loops, as in @samp{(for ((i 0 10) (j 0 (1- i) 2)) body)},
31735 are also available.  For each value of @expr{i} from zero to 10,
31736 @expr{j} counts from 0 to @expr{i-1} in steps of two.  Note that
31737 @code{for} has the same general outline as @code{let*}, except
31738 that each element of the header is a list of three or four
31739 things, not just two.
31741 @item
31742 The @code{foreach} construct loops over elements of a list.
31743 For example, @samp{(foreach ((x (cdr v))) body)} executes
31744 @code{body} with @expr{x} bound to each element of Calc vector
31745 @expr{v} in turn.  The purpose of @code{cdr} here is to skip over
31746 the initial @code{vec} symbol in the vector.
31748 @item
31749 The @code{break} function breaks out of the innermost enclosing
31750 @code{while}, @code{for}, or @code{foreach} loop.  If given a
31751 value, as in @samp{(break x)}, this value is returned by the
31752 loop.  (Lisp loops otherwise always return @code{nil}.)
31754 @item
31755 The @code{return} function prematurely returns from the enclosing
31756 function.  For example, @samp{(return (+ x y))} returns @expr{x+y}
31757 as the value of a function.  You can use @code{return} anywhere
31758 inside the body of the function.
31759 @end itemize
31761 Non-integer numbers (and extremely large integers) cannot be included
31762 directly into a @code{defmath} definition.  This is because the Lisp
31763 reader will fail to parse them long before @code{defmath} ever gets control.
31764 Instead, use the notation, @samp{:"3.1415"}.  In fact, any algebraic
31765 formula can go between the quotes.  For example,
31767 @smallexample
31768 (defmath sqexp (x)     ; sqexp(x) == sqrt(exp(x)) == exp(x*0.5)
31769   (and (numberp x)
31770        (exp :"x * 0.5")))
31771 @end smallexample
31773 expands to
31775 @smallexample
31776 (defun calcFunc-sqexp (x)
31777   (and (math-numberp x)
31778        (calcFunc-exp (math-mul x '(float 5 -1)))))
31779 @end smallexample
31781 Note the use of @code{numberp} as a guard to ensure that the argument is
31782 a number first, returning @code{nil} if not.  The exponential function
31783 could itself have been included in the expression, if we had preferred:
31784 @samp{:"exp(x * 0.5)"}.  As another example, the multiplication-and-recursion
31785 step of @code{myfact} could have been written
31787 @example
31788 :"n * myfact(n-1)"
31789 @end example
31791 A good place to put your @code{defmath} commands is your Calc init file
31792 (the file given by @code{calc-settings-file}, typically
31793 @file{~/.calc.el}), which will not be loaded until Calc starts.
31794 If a file named @file{.emacs} exists in your home directory, Emacs reads
31795 and executes the Lisp forms in this file as it starts up.  While it may
31796 seem reasonable to put your favorite @code{defmath} commands there,
31797 this has the unfortunate side-effect that parts of the Calculator must be
31798 loaded in to process the @code{defmath} commands whether or not you will
31799 actually use the Calculator!  If you want to put the @code{defmath}
31800 commands there (for example, if you redefine @code{calc-settings-file}
31801 to be @file{.emacs}), a better effect can be had by writing
31803 @example
31804 (put 'calc-define 'thing '(progn
31805  (defmath ... )
31806  (defmath ... )
31808 @end example
31810 @noindent
31811 @vindex calc-define
31812 The @code{put} function adds a @dfn{property} to a symbol.  Each Lisp
31813 symbol has a list of properties associated with it.  Here we add a
31814 property with a name of @code{thing} and a @samp{(progn ...)} form as
31815 its value.  When Calc starts up, and at the start of every Calc command,
31816 the property list for the symbol @code{calc-define} is checked and the
31817 values of any properties found are evaluated as Lisp forms.  The
31818 properties are removed as they are evaluated.  The property names
31819 (like @code{thing}) are not used; you should choose something like the
31820 name of your project so as not to conflict with other properties.
31822 The net effect is that you can put the above code in your @file{.emacs}
31823 file and it will not be executed until Calc is loaded.  Or, you can put
31824 that same code in another file which you load by hand either before or
31825 after Calc itself is loaded.
31827 The properties of @code{calc-define} are evaluated in the same order
31828 that they were added.  They can assume that the Calc modules @file{calc.el},
31829 @file{calc-ext.el}, and @file{calc-macs.el} have been fully loaded, and
31830 that the @samp{*Calculator*} buffer will be the current buffer.
31832 If your @code{calc-define} property only defines algebraic functions,
31833 you can be sure that it will have been evaluated before Calc tries to
31834 call your function, even if the file defining the property is loaded
31835 after Calc is loaded.  But if the property defines commands or key
31836 sequences, it may not be evaluated soon enough.  (Suppose it defines the
31837 new command @code{tweak-calc}; the user can load your file, then type
31838 @kbd{M-x tweak-calc} before Calc has had chance to do anything.)  To
31839 protect against this situation, you can put
31841 @example
31842 (run-hooks 'calc-check-defines)
31843 @end example
31845 @findex calc-check-defines
31846 @noindent
31847 at the end of your file.  The @code{calc-check-defines} function is what
31848 looks for and evaluates properties on @code{calc-define}; @code{run-hooks}
31849 has the advantage that it is quietly ignored if @code{calc-check-defines}
31850 is not yet defined because Calc has not yet been loaded.
31852 Examples of things that ought to be enclosed in a @code{calc-define}
31853 property are @code{defmath} calls, @code{define-key} calls that modify
31854 the Calc key map, and any calls that redefine things defined inside Calc.
31855 Ordinary @code{defun}s need not be enclosed with @code{calc-define}.
31857 @node Defining Simple Commands, Defining Stack Commands, Defining Functions, Lisp Definitions
31858 @subsection Defining New Simple Commands
31860 @noindent
31861 @findex interactive
31862 If a @code{defmath} form contains an @code{interactive} clause, it defines
31863 a Calculator command.  Actually such a @code{defmath} results in @emph{two}
31864 function definitions:  One, a @samp{calcFunc-} function as was just described,
31865 with the @code{interactive} clause removed.  Two, a @samp{calc-} function
31866 with a suitable @code{interactive} clause and some sort of wrapper to make
31867 the command work in the Calc environment.
31869 In the simple case, the @code{interactive} clause has the same form as
31870 for normal Emacs Lisp commands:
31872 @smallexample
31873 (defmath increase-precision (delta)
31874   "Increase precision by DELTA."     ; This is the "documentation string"
31875   (interactive "p")                  ; Register this as a M-x-able command
31876   (setq calc-internal-prec (+ calc-internal-prec delta)))
31877 @end smallexample
31879 This expands to the pair of definitions,
31881 @smallexample
31882 (defun calc-increase-precision (delta)
31883   "Increase precision by DELTA."
31884   (interactive "p")
31885   (calc-wrapper
31886    (setq calc-internal-prec (math-add calc-internal-prec delta))))
31888 (defun calcFunc-increase-precision (delta)
31889   "Increase precision by DELTA."
31890   (setq calc-internal-prec (math-add calc-internal-prec delta)))
31891 @end smallexample
31893 @noindent
31894 where in this case the latter function would never really be used!  Note
31895 that since the Calculator stores small integers as plain Lisp integers,
31896 the @code{math-add} function will work just as well as the native
31897 @code{+} even when the intent is to operate on native Lisp integers.
31899 @findex calc-wrapper
31900 The @samp{calc-wrapper} call invokes a macro which surrounds the body of
31901 the function with code that looks roughly like this:
31903 @smallexample
31904 (let ((calc-command-flags nil))
31905   (unwind-protect
31906       (save-excursion
31907         (calc-select-buffer)
31908         @emph{body of function}
31909         @emph{renumber stack}
31910         @emph{clear} Working @emph{message})
31911     @emph{realign cursor and window}
31912     @emph{clear Inverse, Hyperbolic, and Keep Args flags}
31913     @emph{update Emacs mode line}))
31914 @end smallexample
31916 @findex calc-select-buffer
31917 The @code{calc-select-buffer} function selects the @samp{*Calculator*}
31918 buffer if necessary, say, because the command was invoked from inside
31919 the @samp{*Calc Trail*} window.
31921 @findex calc-set-command-flag
31922 You can call, for example, @code{(calc-set-command-flag 'no-align)} to
31923 set the above-mentioned command flags.  Calc routines recognize the
31924 following command flags:
31926 @table @code
31927 @item renum-stack
31928 Stack line numbers @samp{1:}, @samp{2:}, and so on must be renumbered
31929 after this command completes.  This is set by routines like
31930 @code{calc-push}.
31932 @item clear-message
31933 Calc should call @samp{(message "")} if this command completes normally
31934 (to clear a ``Working@dots{}'' message out of the echo area).
31936 @item no-align
31937 Do not move the cursor back to the @samp{.} top-of-stack marker.
31939 @item position-point
31940 Use the variables @code{calc-position-point-line} and
31941 @code{calc-position-point-column} to position the cursor after
31942 this command finishes.
31944 @item keep-flags
31945 Do not clear @code{calc-inverse-flag}, @code{calc-hyperbolic-flag},
31946 and @code{calc-keep-args-flag} at the end of this command.
31948 @item do-edit
31949 Switch to buffer @samp{*Calc Edit*} after this command.
31951 @item hold-trail
31952 Do not move trail pointer to end of trail when something is recorded
31953 there.
31954 @end table
31956 @kindex Y
31957 @kindex Y ?
31958 @vindex calc-Y-help-msgs
31959 Calc reserves a special prefix key, shift-@kbd{Y}, for user-written
31960 extensions to Calc.  There are no built-in commands that work with
31961 this prefix key; you must call @code{define-key} from Lisp (probably
31962 from inside a @code{calc-define} property) to add to it.  Initially only
31963 @kbd{Y ?} is defined; it takes help messages from a list of strings
31964 (initially @code{nil}) in the variable @code{calc-Y-help-msgs}.  All
31965 other undefined keys except for @kbd{Y} are reserved for use by
31966 future versions of Calc.
31968 If you are writing a Calc enhancement which you expect to give to
31969 others, it is best to minimize the number of @kbd{Y}-key sequences
31970 you use.  In fact, if you have more than one key sequence you should
31971 consider defining three-key sequences with a @kbd{Y}, then a key that
31972 stands for your package, then a third key for the particular command
31973 within your package.
31975 Users may wish to install several Calc enhancements, and it is possible
31976 that several enhancements will choose to use the same key.  In the
31977 example below, a variable @code{inc-prec-base-key} has been defined
31978 to contain the key that identifies the @code{inc-prec} package.  Its
31979 value is initially @code{"P"}, but a user can change this variable
31980 if necessary without having to modify the file.
31982 Here is a complete file, @file{inc-prec.el}, which makes a @kbd{Y P I}
31983 command that increases the precision, and a @kbd{Y P D} command that
31984 decreases the precision.
31986 @smallexample
31987 ;;; Increase and decrease Calc precision.  Dave Gillespie, 5/31/91.
31988 ;;; (Include copyright or copyleft stuff here.)
31990 (defvar inc-prec-base-key "P"
31991   "Base key for inc-prec.el commands.")
31993 (put 'calc-define 'inc-prec '(progn
31995 (define-key calc-mode-map (format "Y%sI" inc-prec-base-key)
31996             'increase-precision)
31997 (define-key calc-mode-map (format "Y%sD" inc-prec-base-key)
31998             'decrease-precision)
32000 (setq calc-Y-help-msgs
32001       (cons (format "%s + Inc-prec, Dec-prec" inc-prec-base-key)
32002             calc-Y-help-msgs))
32004 (defmath increase-precision (delta)
32005   "Increase precision by DELTA."
32006   (interactive "p")
32007   (setq calc-internal-prec (+ calc-internal-prec delta)))
32009 (defmath decrease-precision (delta)
32010   "Decrease precision by DELTA."
32011   (interactive "p")
32012   (setq calc-internal-prec (- calc-internal-prec delta)))
32014 ))  ; end of calc-define property
32016 (run-hooks 'calc-check-defines)
32017 @end smallexample
32019 @node Defining Stack Commands, Argument Qualifiers, Defining Simple Commands, Lisp Definitions
32020 @subsection Defining New Stack-Based Commands
32022 @noindent
32023 To define a new computational command which takes and/or leaves arguments
32024 on the stack, a special form of @code{interactive} clause is used.
32026 @example
32027 (interactive @var{num} @var{tag})
32028 @end example
32030 @noindent
32031 where @var{num} is an integer, and @var{tag} is a string.  The effect is
32032 to pop @var{num} values off the stack, resimplify them by calling
32033 @code{calc-normalize}, and hand them to your function according to the
32034 function's argument list.  Your function may include @code{&optional} and
32035 @code{&rest} parameters, so long as calling the function with @var{num}
32036 parameters is valid.
32038 Your function must return either a number or a formula in a form
32039 acceptable to Calc, or a list of such numbers or formulas.  These value(s)
32040 are pushed onto the stack when the function completes.  They are also
32041 recorded in the Calc Trail buffer on a line beginning with @var{tag},
32042 a string of (normally) four characters or less.  If you omit @var{tag}
32043 or use @code{nil} as a tag, the result is not recorded in the trail.
32045 As an example, the definition
32047 @smallexample
32048 (defmath myfact (n)
32049   "Compute the factorial of the integer at the top of the stack."
32050   (interactive 1 "fact")
32051   (if (> n 0)
32052       (* n (myfact (1- n)))
32053     (and (= n 0) 1)))
32054 @end smallexample
32056 @noindent
32057 is a version of the factorial function shown previously which can be used
32058 as a command as well as an algebraic function.  It expands to
32060 @smallexample
32061 (defun calc-myfact ()
32062   "Compute the factorial of the integer at the top of the stack."
32063   (interactive)
32064   (calc-slow-wrapper
32065    (calc-enter-result 1 "fact"
32066      (cons 'calcFunc-myfact (calc-top-list-n 1)))))
32068 (defun calcFunc-myfact (n)
32069   "Compute the factorial of the integer at the top of the stack."
32070   (if (math-posp n)
32071       (math-mul n (calcFunc-myfact (math-add n -1)))
32072     (and (math-zerop n) 1)))
32073 @end smallexample
32075 @findex calc-slow-wrapper
32076 The @code{calc-slow-wrapper} function is a version of @code{calc-wrapper}
32077 that automatically puts up a @samp{Working...} message before the
32078 computation begins.  (This message can be turned off by the user
32079 with an @kbd{m w} (@code{calc-working}) command.)
32081 @findex calc-top-list-n
32082 The @code{calc-top-list-n} function returns a list of the specified number
32083 of values from the top of the stack.  It resimplifies each value by
32084 calling @code{calc-normalize}.  If its argument is zero it returns an
32085 empty list.  It does not actually remove these values from the stack.
32087 @findex calc-enter-result
32088 The @code{calc-enter-result} function takes an integer @var{num} and string
32089 @var{tag} as described above, plus a third argument which is either a
32090 Calculator data object or a list of such objects.  These objects are
32091 resimplified and pushed onto the stack after popping the specified number
32092 of values from the stack.  If @var{tag} is non-@code{nil}, the values
32093 being pushed are also recorded in the trail.
32095 Note that if @code{calcFunc-myfact} returns @code{nil} this represents
32096 ``leave the function in symbolic form.''  To return an actual empty list,
32097 in the sense that @code{calc-enter-result} will push zero elements back
32098 onto the stack, you should return the special value @samp{'(nil)}, a list
32099 containing the single symbol @code{nil}.
32101 The @code{interactive} declaration can actually contain a limited
32102 Emacs-style code string as well which comes just before @var{num} and
32103 @var{tag}.  Currently the only Emacs code supported is @samp{"p"}, as in
32105 @example
32106 (defmath foo (a b &optional c)
32107   (interactive "p" 2 "foo")
32108   @var{body})
32109 @end example
32111 In this example, the command @code{calc-foo} will evaluate the expression
32112 @samp{foo(a,b)} if executed with no argument, or @samp{foo(a,b,n)} if
32113 executed with a numeric prefix argument of @expr{n}.
32115 The other code string allowed is @samp{"m"} (unrelated to the usual @samp{"m"}
32116 code as used with @code{defun}).  It uses the numeric prefix argument as the
32117 number of objects to remove from the stack and pass to the function.
32118 In this case, the integer @var{num} serves as a default number of
32119 arguments to be used when no prefix is supplied.
32121 @node Argument Qualifiers, Example Definitions, Defining Stack Commands, Lisp Definitions
32122 @subsection Argument Qualifiers
32124 @noindent
32125 Anywhere a parameter name can appear in the parameter list you can also use
32126 an @dfn{argument qualifier}.  Thus the general form of a definition is:
32128 @example
32129 (defmath @var{name} (@var{param} @var{param...}
32130                &optional @var{param} @var{param...}
32131                &rest @var{param})
32132   @var{body})
32133 @end example
32135 @noindent
32136 where each @var{param} is either a symbol or a list of the form
32138 @example
32139 (@var{qual} @var{param})
32140 @end example
32142 The following qualifiers are recognized:
32144 @table @samp
32145 @item complete
32146 @findex complete
32147 The argument must not be an incomplete vector, interval, or complex number.
32148 (This is rarely needed since the Calculator itself will never call your
32149 function with an incomplete argument.  But there is nothing stopping your
32150 own Lisp code from calling your function with an incomplete argument.)
32152 @item integer
32153 @findex integer
32154 The argument must be an integer.  If it is an integer-valued float
32155 it will be accepted but converted to integer form.  Non-integers and
32156 formulas are rejected.
32158 @item natnum
32159 @findex natnum
32160 Like @samp{integer}, but the argument must be non-negative.
32162 @item fixnum
32163 @findex fixnum
32164 Like @samp{integer}, but the argument must fit into a native Lisp integer,
32165 which on most systems means less than 2^23 in absolute value.  The
32166 argument is converted into Lisp-integer form if necessary.
32168 @item float
32169 @findex float
32170 The argument is converted to floating-point format if it is a number or
32171 vector.  If it is a formula it is left alone.  (The argument is never
32172 actually rejected by this qualifier.)
32174 @item @var{pred}
32175 The argument must satisfy predicate @var{pred}, which is one of the
32176 standard Calculator predicates.  @xref{Predicates}.
32178 @item not-@var{pred}
32179 The argument must @emph{not} satisfy predicate @var{pred}.
32180 @end table
32182 For example,
32184 @example
32185 (defmath foo (a (constp (not-matrixp b)) &optional (float c)
32186               &rest (integer d))
32187   @var{body})
32188 @end example
32190 @noindent
32191 expands to
32193 @example
32194 (defun calcFunc-foo (a b &optional c &rest d)
32195   (and (math-matrixp b)
32196        (math-reject-arg b 'not-matrixp))
32197   (or (math-constp b)
32198       (math-reject-arg b 'constp))
32199   (and c (setq c (math-check-float c)))
32200   (setq d (mapcar 'math-check-integer d))
32201   @var{body})
32202 @end example
32204 @noindent
32205 which performs the necessary checks and conversions before executing the
32206 body of the function.
32208 @node Example Definitions, Calling Calc from Your Programs, Argument Qualifiers, Lisp Definitions
32209 @subsection Example Definitions
32211 @noindent
32212 This section includes some Lisp programming examples on a larger scale.
32213 These programs make use of some of the Calculator's internal functions;
32214 @pxref{Internals}.
32216 @menu
32217 * Bit Counting Example::
32218 * Sine Example::
32219 @end menu
32221 @node Bit Counting Example, Sine Example, Example Definitions, Example Definitions
32222 @subsubsection Bit-Counting
32224 @noindent
32225 @ignore
32226 @starindex
32227 @end ignore
32228 @tindex bcount
32229 Calc does not include a built-in function for counting the number of
32230 ``one'' bits in a binary integer.  It's easy to invent one using @kbd{b u}
32231 to convert the integer to a set, and @kbd{V #} to count the elements of
32232 that set; let's write a function that counts the bits without having to
32233 create an intermediate set.
32235 @smallexample
32236 (defmath bcount ((natnum n))
32237   (interactive 1 "bcnt")
32238   (let ((count 0))
32239     (while (> n 0)
32240       (if (oddp n)
32241           (setq count (1+ count)))
32242       (setq n (lsh n -1)))
32243     count))
32244 @end smallexample
32246 @noindent
32247 When this is expanded by @code{defmath}, it will become the following
32248 Emacs Lisp function:
32250 @smallexample
32251 (defun calcFunc-bcount (n)
32252   (setq n (math-check-natnum n))
32253   (let ((count 0))
32254     (while (math-posp n)
32255       (if (math-oddp n)
32256           (setq count (math-add count 1)))
32257       (setq n (calcFunc-lsh n -1)))
32258     count))
32259 @end smallexample
32261 If the input numbers are large, this function involves a fair amount
32262 of arithmetic.  A binary right shift is essentially a division by two;
32263 recall that Calc stores integers in decimal form so bit shifts must
32264 involve actual division.
32266 To gain a bit more efficiency, we could divide the integer into
32267 @var{n}-bit chunks, each of which can be handled quickly because
32268 they fit into Lisp integers.  It turns out that Calc's arithmetic
32269 routines are especially fast when dividing by an integer less than
32270 1000, so we can set @var{n = 9} bits and use repeated division by 512:
32272 @smallexample
32273 (defmath bcount ((natnum n))
32274   (interactive 1 "bcnt")
32275   (let ((count 0))
32276     (while (not (fixnump n))
32277       (let ((qr (idivmod n 512)))
32278         (setq count (+ count (bcount-fixnum (cdr qr)))
32279               n (car qr))))
32280     (+ count (bcount-fixnum n))))
32282 (defun bcount-fixnum (n)
32283   (let ((count 0))
32284     (while (> n 0)
32285       (setq count (+ count (logand n 1))
32286             n (lsh n -1)))
32287     count))
32288 @end smallexample
32290 @noindent
32291 Note that the second function uses @code{defun}, not @code{defmath}.
32292 Because this function deals only with native Lisp integers (``fixnums''),
32293 it can use the actual Emacs @code{+} and related functions rather
32294 than the slower but more general Calc equivalents which @code{defmath}
32295 uses.
32297 The @code{idivmod} function does an integer division, returning both
32298 the quotient and the remainder at once.  Again, note that while it
32299 might seem that @samp{(logand n 511)} and @samp{(lsh n -9)} are
32300 more efficient ways to split off the bottom nine bits of @code{n},
32301 actually they are less efficient because each operation is really
32302 a division by 512 in disguise; @code{idivmod} allows us to do the
32303 same thing with a single division by 512.
32305 @node Sine Example, , Bit Counting Example, Example Definitions
32306 @subsubsection The Sine Function
32308 @noindent
32309 @ignore
32310 @starindex
32311 @end ignore
32312 @tindex mysin
32313 A somewhat limited sine function could be defined as follows, using the
32314 well-known Taylor series expansion for 
32315 @texline @math{\sin x}:
32316 @infoline @samp{sin(x)}:
32318 @smallexample
32319 (defmath mysin ((float (anglep x)))
32320   (interactive 1 "mysn")
32321   (setq x (to-radians x))    ; Convert from current angular mode.
32322   (let ((sum x)              ; Initial term of Taylor expansion of sin.
32323         newsum
32324         (nfact 1)            ; "nfact" equals "n" factorial at all times.
32325         (xnegsqr :"-(x^2)")) ; "xnegsqr" equals -x^2.
32326     (for ((n 3 100 2))       ; Upper limit of 100 is a good precaution.
32327       (working "mysin" sum)  ; Display "Working" message, if enabled.
32328       (setq nfact (* nfact (1- n) n)
32329             x (* x xnegsqr)
32330             newsum (+ sum (/ x nfact)))
32331       (if (~= newsum sum)    ; If newsum is "nearly equal to" sum,
32332           (break))           ;  then we are done.
32333       (setq sum newsum))
32334     sum))
32335 @end smallexample
32337 The actual @code{sin} function in Calc works by first reducing the problem
32338 to a sine or cosine of a nonnegative number less than @cpiover{4}.  This
32339 ensures that the Taylor series will converge quickly.  Also, the calculation
32340 is carried out with two extra digits of precision to guard against cumulative
32341 round-off in @samp{sum}.  Finally, complex arguments are allowed and handled
32342 by a separate algorithm.
32344 @smallexample
32345 (defmath mysin ((float (scalarp x)))
32346   (interactive 1 "mysn")
32347   (setq x (to-radians x))    ; Convert from current angular mode.
32348   (with-extra-prec 2         ; Evaluate with extra precision.
32349     (cond ((complexp x)
32350            (mysin-complex x))
32351           ((< x 0)
32352            (- (mysin-raw (- x)))    ; Always call mysin-raw with x >= 0.
32353           (t (mysin-raw x))))))
32355 (defmath mysin-raw (x)
32356   (cond ((>= x 7)
32357          (mysin-raw (% x (two-pi))))     ; Now x < 7.
32358         ((> x (pi-over-2))
32359          (- (mysin-raw (- x (pi)))))     ; Now -pi/2 <= x <= pi/2.
32360         ((> x (pi-over-4))
32361          (mycos-raw (- x (pi-over-2))))  ; Now -pi/2 <= x <= pi/4.
32362         ((< x (- (pi-over-4)))
32363          (- (mycos-raw (+ x (pi-over-2)))))  ; Now -pi/4 <= x <= pi/4,
32364         (t (mysin-series x))))           ; so the series will be efficient.
32365 @end smallexample
32367 @noindent
32368 where @code{mysin-complex} is an appropriate function to handle complex
32369 numbers, @code{mysin-series} is the routine to compute the sine Taylor
32370 series as before, and @code{mycos-raw} is a function analogous to
32371 @code{mysin-raw} for cosines.
32373 The strategy is to ensure that @expr{x} is nonnegative before calling
32374 @code{mysin-raw}.  This function then recursively reduces its argument
32375 to a suitable range, namely, plus-or-minus @cpiover{4}.  Note that each
32376 test, and particularly the first comparison against 7, is designed so
32377 that small roundoff errors cannot produce an infinite loop.  (Suppose
32378 we compared with @samp{(two-pi)} instead; if due to roundoff problems
32379 the modulo operator ever returned @samp{(two-pi)} exactly, an infinite
32380 recursion could result!)  We use modulo only for arguments that will
32381 clearly get reduced, knowing that the next rule will catch any reductions
32382 that this rule misses.
32384 If a program is being written for general use, it is important to code
32385 it carefully as shown in this second example.  For quick-and-dirty programs,
32386 when you know that your own use of the sine function will never encounter
32387 a large argument, a simpler program like the first one shown is fine.
32389 @node Calling Calc from Your Programs, Internals, Example Definitions, Lisp Definitions
32390 @subsection Calling Calc from Your Lisp Programs
32392 @noindent
32393 A later section (@pxref{Internals}) gives a full description of
32394 Calc's internal Lisp functions.  It's not hard to call Calc from
32395 inside your programs, but the number of these functions can be daunting.
32396 So Calc provides one special ``programmer-friendly'' function called
32397 @code{calc-eval} that can be made to do just about everything you
32398 need.  It's not as fast as the low-level Calc functions, but it's
32399 much simpler to use!
32401 It may seem that @code{calc-eval} itself has a daunting number of
32402 options, but they all stem from one simple operation.
32404 In its simplest manifestation, @samp{(calc-eval "1+2")} parses the
32405 string @code{"1+2"} as if it were a Calc algebraic entry and returns
32406 the result formatted as a string: @code{"3"}.
32408 Since @code{calc-eval} is on the list of recommended @code{autoload}
32409 functions, you don't need to make any special preparations to load
32410 Calc before calling @code{calc-eval} the first time.  Calc will be
32411 loaded and initialized for you.
32413 All the Calc modes that are currently in effect will be used when
32414 evaluating the expression and formatting the result.
32416 @ifinfo
32417 @example
32419 @end example
32420 @end ifinfo
32421 @subsubsection Additional Arguments to @code{calc-eval}
32423 @noindent
32424 If the input string parses to a list of expressions, Calc returns
32425 the results separated by @code{", "}.  You can specify a different
32426 separator by giving a second string argument to @code{calc-eval}:
32427 @samp{(calc-eval "1+2,3+4" ";")} returns @code{"3;7"}.
32429 The ``separator'' can also be any of several Lisp symbols which
32430 request other behaviors from @code{calc-eval}.  These are discussed
32431 one by one below.
32433 You can give additional arguments to be substituted for
32434 @samp{$}, @samp{$$}, and so on in the main expression.  For
32435 example, @samp{(calc-eval "$/$$" nil "7" "1+1")} evaluates the
32436 expression @code{"7/(1+1)"} to yield the result @code{"3.5"}
32437 (assuming Fraction mode is not in effect).  Note the @code{nil}
32438 used as a placeholder for the item-separator argument.
32440 @ifinfo
32441 @example
32443 @end example
32444 @end ifinfo
32445 @subsubsection Error Handling
32447 @noindent
32448 If @code{calc-eval} encounters an error, it returns a list containing
32449 the character position of the error, plus a suitable message as a
32450 string.  Note that @samp{1 / 0} is @emph{not} an error by Calc's
32451 standards; it simply returns the string @code{"1 / 0"} which is the
32452 division left in symbolic form.  But @samp{(calc-eval "1/")} will
32453 return the list @samp{(2 "Expected a number")}.
32455 If you bind the variable @code{calc-eval-error} to @code{t}
32456 using a @code{let} form surrounding the call to @code{calc-eval},
32457 errors instead call the Emacs @code{error} function which aborts
32458 to the Emacs command loop with a beep and an error message.
32460 If you bind this variable to the symbol @code{string}, error messages
32461 are returned as strings instead of lists.  The character position is
32462 ignored.
32464 As a courtesy to other Lisp code which may be using Calc, be sure
32465 to bind @code{calc-eval-error} using @code{let} rather than changing
32466 it permanently with @code{setq}.
32468 @ifinfo
32469 @example
32471 @end example
32472 @end ifinfo
32473 @subsubsection Numbers Only
32475 @noindent
32476 Sometimes it is preferable to treat @samp{1 / 0} as an error
32477 rather than returning a symbolic result.  If you pass the symbol
32478 @code{num} as the second argument to @code{calc-eval}, results
32479 that are not constants are treated as errors.  The error message
32480 reported is the first @code{calc-why} message if there is one,
32481 or otherwise ``Number expected.''
32483 A result is ``constant'' if it is a number, vector, or other
32484 object that does not include variables or function calls.  If it
32485 is a vector, the components must themselves be constants.
32487 @ifinfo
32488 @example
32490 @end example
32491 @end ifinfo
32492 @subsubsection Default Modes
32494 @noindent
32495 If the first argument to @code{calc-eval} is a list whose first
32496 element is a formula string, then @code{calc-eval} sets all the
32497 various Calc modes to their default values while the formula is
32498 evaluated and formatted.  For example, the precision is set to 12
32499 digits, digit grouping is turned off, and the Normal language
32500 mode is used.
32502 This same principle applies to the other options discussed below.
32503 If the first argument would normally be @var{x}, then it can also
32504 be the list @samp{(@var{x})} to use the default mode settings.
32506 If there are other elements in the list, they are taken as
32507 variable-name/value pairs which override the default mode
32508 settings.  Look at the documentation at the front of the
32509 @file{calc.el} file to find the names of the Lisp variables for
32510 the various modes.  The mode settings are restored to their
32511 original values when @code{calc-eval} is done.
32513 For example, @samp{(calc-eval '("$+$$" calc-internal-prec 8) 'num a b)}
32514 computes the sum of two numbers, requiring a numeric result, and
32515 using default mode settings except that the precision is 8 instead
32516 of the default of 12.
32518 It's usually best to use this form of @code{calc-eval} unless your
32519 program actually considers the interaction with Calc's mode settings
32520 to be a feature.  This will avoid all sorts of potential ``gotchas'';
32521 consider what happens with @samp{(calc-eval "sqrt(2)" 'num)}
32522 when the user has left Calc in Symbolic mode or No-Simplify mode.
32524 As another example, @samp{(equal (calc-eval '("$<$$") nil a b) "1")}
32525 checks if the number in string @expr{a} is less than the one in
32526 string @expr{b}.  Without using a list, the integer 1 might
32527 come out in a variety of formats which would be hard to test for
32528 conveniently: @code{"1"}, @code{"8#1"}, @code{"00001"}.  (But
32529 see ``Predicates'' mode, below.)
32531 @ifinfo
32532 @example
32534 @end example
32535 @end ifinfo
32536 @subsubsection Raw Numbers
32538 @noindent
32539 Normally all input and output for @code{calc-eval} is done with strings.
32540 You can do arithmetic with, say, @samp{(calc-eval "$+$$" nil a b)}
32541 in place of @samp{(+ a b)}, but this is very inefficient since the
32542 numbers must be converted to and from string format as they are passed
32543 from one @code{calc-eval} to the next.
32545 If the separator is the symbol @code{raw}, the result will be returned
32546 as a raw Calc data structure rather than a string.  You can read about
32547 how these objects look in the following sections, but usually you can
32548 treat them as ``black box'' objects with no important internal
32549 structure.
32551 There is also a @code{rawnum} symbol, which is a combination of
32552 @code{raw} (returning a raw Calc object) and @code{num} (signaling
32553 an error if that object is not a constant).
32555 You can pass a raw Calc object to @code{calc-eval} in place of a
32556 string, either as the formula itself or as one of the @samp{$}
32557 arguments.  Thus @samp{(calc-eval "$+$$" 'raw a b)} is an
32558 addition function that operates on raw Calc objects.  Of course
32559 in this case it would be easier to call the low-level @code{math-add}
32560 function in Calc, if you can remember its name.
32562 In particular, note that a plain Lisp integer is acceptable to Calc
32563 as a raw object.  (All Lisp integers are accepted on input, but
32564 integers of more than six decimal digits are converted to ``big-integer''
32565 form for output.  @xref{Data Type Formats}.)
32567 When it comes time to display the object, just use @samp{(calc-eval a)}
32568 to format it as a string.
32570 It is an error if the input expression evaluates to a list of
32571 values.  The separator symbol @code{list} is like @code{raw}
32572 except that it returns a list of one or more raw Calc objects.
32574 Note that a Lisp string is not a valid Calc object, nor is a list
32575 containing a string.  Thus you can still safely distinguish all the
32576 various kinds of error returns discussed above.
32578 @ifinfo
32579 @example
32581 @end example
32582 @end ifinfo
32583 @subsubsection Predicates
32585 @noindent
32586 If the separator symbol is @code{pred}, the result of the formula is
32587 treated as a true/false value; @code{calc-eval} returns @code{t} or
32588 @code{nil}, respectively.  A value is considered ``true'' if it is a
32589 non-zero number, or false if it is zero or if it is not a number.
32591 For example, @samp{(calc-eval "$<$$" 'pred a b)} tests whether
32592 one value is less than another.
32594 As usual, it is also possible for @code{calc-eval} to return one of
32595 the error indicators described above.  Lisp will interpret such an
32596 indicator as ``true'' if you don't check for it explicitly.  If you
32597 wish to have an error register as ``false'', use something like
32598 @samp{(eq (calc-eval ...) t)}.
32600 @ifinfo
32601 @example
32603 @end example
32604 @end ifinfo
32605 @subsubsection Variable Values
32607 @noindent
32608 Variables in the formula passed to @code{calc-eval} are not normally
32609 replaced by their values.  If you wish this, you can use the
32610 @code{evalv} function (@pxref{Algebraic Manipulation}).  For example,
32611 if 4 is stored in Calc variable @code{a} (i.e., in Lisp variable
32612 @code{var-a}), then @samp{(calc-eval "a+pi")} will return the
32613 formula @code{"a + pi"}, but @samp{(calc-eval "evalv(a+pi)")}
32614 will return @code{"7.14159265359"}.
32616 To store in a Calc variable, just use @code{setq} to store in the
32617 corresponding Lisp variable.  (This is obtained by prepending
32618 @samp{var-} to the Calc variable name.)  Calc routines will
32619 understand either string or raw form values stored in variables,
32620 although raw data objects are much more efficient.  For example,
32621 to increment the Calc variable @code{a}:
32623 @example
32624 (setq var-a (calc-eval "evalv(a+1)" 'raw))
32625 @end example
32627 @ifinfo
32628 @example
32630 @end example
32631 @end ifinfo
32632 @subsubsection Stack Access
32634 @noindent
32635 If the separator symbol is @code{push}, the formula argument is
32636 evaluated (with possible @samp{$} expansions, as usual).  The
32637 result is pushed onto the Calc stack.  The return value is @code{nil}
32638 (unless there is an error from evaluating the formula, in which
32639 case the return value depends on @code{calc-eval-error} in the
32640 usual way).
32642 If the separator symbol is @code{pop}, the first argument to
32643 @code{calc-eval} must be an integer instead of a string.  That
32644 many values are popped from the stack and thrown away.  A negative
32645 argument deletes the entry at that stack level.  The return value
32646 is the number of elements remaining in the stack after popping;
32647 @samp{(calc-eval 0 'pop)} is a good way to measure the size of
32648 the stack.
32650 If the separator symbol is @code{top}, the first argument to
32651 @code{calc-eval} must again be an integer.  The value at that
32652 stack level is formatted as a string and returned.  Thus
32653 @samp{(calc-eval 1 'top)} returns the top-of-stack value.  If the
32654 integer is out of range, @code{nil} is returned.
32656 The separator symbol @code{rawtop} is just like @code{top} except
32657 that the stack entry is returned as a raw Calc object instead of
32658 as a string.
32660 In all of these cases the first argument can be made a list in
32661 order to force the default mode settings, as described above.
32662 Thus @samp{(calc-eval '(2 calc-number-radix 16) 'top)} returns the
32663 second-to-top stack entry, formatted as a string using the default
32664 instead of current display modes, except that the radix is
32665 hexadecimal instead of decimal.
32667 It is, of course, polite to put the Calc stack back the way you
32668 found it when you are done, unless the user of your program is
32669 actually expecting it to affect the stack.
32671 Note that you do not actually have to switch into the @samp{*Calculator*}
32672 buffer in order to use @code{calc-eval}; it temporarily switches into
32673 the stack buffer if necessary.
32675 @ifinfo
32676 @example
32678 @end example
32679 @end ifinfo
32680 @subsubsection Keyboard Macros
32682 @noindent
32683 If the separator symbol is @code{macro}, the first argument must be a
32684 string of characters which Calc can execute as a sequence of keystrokes.
32685 This switches into the Calc buffer for the duration of the macro.
32686 For example, @samp{(calc-eval "vx5\rVR+" 'macro)} pushes the
32687 vector @samp{[1,2,3,4,5]} on the stack and then replaces it
32688 with the sum of those numbers.  Note that @samp{\r} is the Lisp
32689 notation for the carriage-return, @key{RET}, character.
32691 If your keyboard macro wishes to pop the stack, @samp{\C-d} is
32692 safer than @samp{\177} (the @key{DEL} character) because some
32693 installations may have switched the meanings of @key{DEL} and
32694 @kbd{C-h}.  Calc always interprets @kbd{C-d} as a synonym for
32695 ``pop-stack'' regardless of key mapping.
32697 If you provide a third argument to @code{calc-eval}, evaluation
32698 of the keyboard macro will leave a record in the Trail using
32699 that argument as a tag string.  Normally the Trail is unaffected.
32701 The return value in this case is always @code{nil}.
32703 @ifinfo
32704 @example
32706 @end example
32707 @end ifinfo
32708 @subsubsection Lisp Evaluation
32710 @noindent
32711 Finally, if the separator symbol is @code{eval}, then the Lisp
32712 @code{eval} function is called on the first argument, which must
32713 be a Lisp expression rather than a Calc formula.  Remember to
32714 quote the expression so that it is not evaluated until inside
32715 @code{calc-eval}.
32717 The difference from plain @code{eval} is that @code{calc-eval}
32718 switches to the Calc buffer before evaluating the expression.
32719 For example, @samp{(calc-eval '(setq calc-internal-prec 17) 'eval)}
32720 will correctly affect the buffer-local Calc precision variable.
32722 An alternative would be @samp{(calc-eval '(calc-precision 17) 'eval)}.
32723 This is evaluating a call to the function that is normally invoked
32724 by the @kbd{p} key, giving it 17 as its ``numeric prefix argument.''
32725 Note that this function will leave a message in the echo area as
32726 a side effect.  Also, all Calc functions switch to the Calc buffer
32727 automatically if not invoked from there, so the above call is
32728 also equivalent to @samp{(calc-precision 17)} by itself.
32729 In all cases, Calc uses @code{save-excursion} to switch back to
32730 your original buffer when it is done.
32732 As usual the first argument can be a list that begins with a Lisp
32733 expression to use default instead of current mode settings.
32735 The result of @code{calc-eval} in this usage is just the result
32736 returned by the evaluated Lisp expression.
32738 @ifinfo
32739 @example
32741 @end example
32742 @end ifinfo
32743 @subsubsection Example
32745 @noindent
32746 @findex convert-temp
32747 Here is a sample Emacs command that uses @code{calc-eval}.  Suppose
32748 you have a document with lots of references to temperatures on the
32749 Fahrenheit scale, say ``98.6 F'', and you wish to convert these
32750 references to Centigrade.  The following command does this conversion.
32751 Place the Emacs cursor right after the letter ``F'' and invoke the
32752 command to change ``98.6 F'' to ``37 C''.  Or, if the temperature is
32753 already in Centigrade form, the command changes it back to Fahrenheit.
32755 @example
32756 (defun convert-temp ()
32757   (interactive)
32758   (save-excursion
32759     (re-search-backward "[^-.0-9]\\([-.0-9]+\\) *\\([FC]\\)")
32760     (let* ((top1 (match-beginning 1))
32761            (bot1 (match-end 1))
32762            (number (buffer-substring top1 bot1))
32763            (top2 (match-beginning 2))
32764            (bot2 (match-end 2))
32765            (type (buffer-substring top2 bot2)))
32766       (if (equal type "F")
32767           (setq type "C"
32768                 number (calc-eval "($ - 32)*5/9" nil number))
32769         (setq type "F"
32770               number (calc-eval "$*9/5 + 32" nil number)))
32771       (goto-char top2)
32772       (delete-region top2 bot2)
32773       (insert-before-markers type)
32774       (goto-char top1)
32775       (delete-region top1 bot1)
32776       (if (string-match "\\.$" number)   ; change "37." to "37"
32777           (setq number (substring number 0 -1)))
32778       (insert number))))
32779 @end example
32781 Note the use of @code{insert-before-markers} when changing between
32782 ``F'' and ``C'', so that the character winds up before the cursor
32783 instead of after it.
32785 @node Internals, , Calling Calc from Your Programs, Lisp Definitions
32786 @subsection Calculator Internals
32788 @noindent
32789 This section describes the Lisp functions defined by the Calculator that
32790 may be of use to user-written Calculator programs (as described in the
32791 rest of this chapter).  These functions are shown by their names as they
32792 conventionally appear in @code{defmath}.  Their full Lisp names are
32793 generally gotten by prepending @samp{calcFunc-} or @samp{math-} to their
32794 apparent names.  (Names that begin with @samp{calc-} are already in
32795 their full Lisp form.)  You can use the actual full names instead if you
32796 prefer them, or if you are calling these functions from regular Lisp.
32798 The functions described here are scattered throughout the various
32799 Calc component files.  Note that @file{calc.el} includes @code{autoload}s
32800 for only a few component files; when Calc wants to call an advanced
32801 function it calls @samp{(calc-extensions)} first; this function
32802 autoloads @file{calc-ext.el}, which in turn autoloads all the functions
32803 in the remaining component files.
32805 Because @code{defmath} itself uses the extensions, user-written code
32806 generally always executes with the extensions already loaded, so
32807 normally you can use any Calc function and be confident that it will
32808 be autoloaded for you when necessary.  If you are doing something
32809 special, check carefully to make sure each function you are using is
32810 from @file{calc.el} or its components, and call @samp{(calc-extensions)}
32811 before using any function based in @file{calc-ext.el} if you can't
32812 prove this file will already be loaded.
32814 @menu
32815 * Data Type Formats::
32816 * Interactive Lisp Functions::
32817 * Stack Lisp Functions::
32818 * Predicates::
32819 * Computational Lisp Functions::
32820 * Vector Lisp Functions::
32821 * Symbolic Lisp Functions::
32822 * Formatting Lisp Functions::
32823 * Hooks::
32824 @end menu
32826 @node Data Type Formats, Interactive Lisp Functions, Internals, Internals
32827 @subsubsection Data Type Formats
32829 @noindent
32830 Integers are stored in either of two ways, depending on their magnitude.
32831 Integers less than one million in absolute value are stored as standard
32832 Lisp integers.  This is the only storage format for Calc data objects
32833 which is not a Lisp list.
32835 Large integers are stored as lists of the form @samp{(bigpos @var{d0}
32836 @var{d1} @var{d2} @dots{})} for positive integers 1000000 or more, or
32837 @samp{(bigneg @var{d0} @var{d1} @var{d2} @dots{})} for negative integers
32838 @mathit{-1000000} or less.  Each @var{d} is a base-1000 ``digit,'' a Lisp integer
32839 from 0 to 999.  The least significant digit is @var{d0}; the last digit,
32840 @var{dn}, which is always nonzero, is the most significant digit.  For
32841 example, the integer @mathit{-12345678} is stored as @samp{(bigneg 678 345 12)}.
32843 The distinction between small and large integers is entirely hidden from
32844 the user.  In @code{defmath} definitions, the Lisp predicate @code{integerp}
32845 returns true for either kind of integer, and in general both big and small
32846 integers are accepted anywhere the word ``integer'' is used in this manual.
32847 If the distinction must be made, native Lisp integers are called @dfn{fixnums}
32848 and large integers are called @dfn{bignums}.
32850 Fractions are stored as a list of the form, @samp{(frac @var{n} @var{d})}
32851 where @var{n} is an integer (big or small) numerator, @var{d} is an
32852 integer denominator greater than one, and @var{n} and @var{d} are relatively
32853 prime.  Note that fractions where @var{d} is one are automatically converted
32854 to plain integers by all math routines; fractions where @var{d} is negative
32855 are normalized by negating the numerator and denominator.
32857 Floating-point numbers are stored in the form, @samp{(float @var{mant}
32858 @var{exp})}, where @var{mant} (the ``mantissa'') is an integer less than
32859 @samp{10^@var{p}} in absolute value (@var{p} represents the current
32860 precision), and @var{exp} (the ``exponent'') is a fixnum.  The value of
32861 the float is @samp{@var{mant} * 10^@var{exp}}.  For example, the number
32862 @mathit{-3.14} is stored as @samp{(float -314 -2) = -314*10^-2}.  Other constraints
32863 are that the number 0.0 is always stored as @samp{(float 0 0)}, and,
32864 except for the 0.0 case, the rightmost base-10 digit of @var{mant} is
32865 always nonzero.  (If the rightmost digit is zero, the number is
32866 rearranged by dividing @var{mant} by ten and incrementing @var{exp}.)
32868 Rectangular complex numbers are stored in the form @samp{(cplx @var{re}
32869 @var{im})}, where @var{re} and @var{im} are each real numbers, either
32870 integers, fractions, or floats.  The value is @samp{@var{re} + @var{im}i}.
32871 The @var{im} part is nonzero; complex numbers with zero imaginary
32872 components are converted to real numbers automatically.
32874 Polar complex numbers are stored in the form @samp{(polar @var{r}
32875 @var{theta})}, where @var{r} is a positive real value and @var{theta}
32876 is a real value or HMS form representing an angle.  This angle is
32877 usually normalized to lie in the interval @samp{(-180 ..@: 180)} degrees,
32878 or @samp{(-pi ..@: pi)} radians, according to the current angular mode.
32879 If the angle is 0 the value is converted to a real number automatically.
32880 (If the angle is 180 degrees, the value is usually also converted to a
32881 negative real number.)
32883 Hours-minutes-seconds forms are stored as @samp{(hms @var{h} @var{m}
32884 @var{s})}, where @var{h} is an integer or an integer-valued float (i.e.,
32885 a float with @samp{@var{exp} >= 0}), @var{m} is an integer or integer-valued
32886 float in the range @w{@samp{[0 ..@: 60)}}, and @var{s} is any real number
32887 in the range @samp{[0 ..@: 60)}.
32889 Date forms are stored as @samp{(date @var{n})}, where @var{n} is
32890 a real number that counts days since midnight on the morning of
32891 January 1, 1 AD.  If @var{n} is an integer, this is a pure date
32892 form.  If @var{n} is a fraction or float, this is a date/time form.
32894 Modulo forms are stored as @samp{(mod @var{n} @var{m})}, where @var{m} is a
32895 positive real number or HMS form, and @var{n} is a real number or HMS
32896 form in the range @samp{[0 ..@: @var{m})}.
32898 Error forms are stored as @samp{(sdev @var{x} @var{sigma})}, where @var{x}
32899 is the mean value and @var{sigma} is the standard deviation.  Each
32900 component is either a number, an HMS form, or a symbolic object
32901 (a variable or function call).  If @var{sigma} is zero, the value is
32902 converted to a plain real number.  If @var{sigma} is negative or
32903 complex, it is automatically normalized to be a positive real.
32905 Interval forms are stored as @samp{(intv @var{mask} @var{lo} @var{hi})},
32906 where @var{mask} is one of the integers 0, 1, 2, or 3, and @var{lo} and
32907 @var{hi} are real numbers, HMS forms, or symbolic objects.  The @var{mask}
32908 is a binary integer where 1 represents the fact that the interval is
32909 closed on the high end, and 2 represents the fact that it is closed on
32910 the low end.  (Thus 3 represents a fully closed interval.)  The interval
32911 @w{@samp{(intv 3 @var{x} @var{x})}} is converted to the plain number @var{x};
32912 intervals @samp{(intv @var{mask} @var{x} @var{x})} for any other @var{mask}
32913 represent empty intervals.  If @var{hi} is less than @var{lo}, the interval
32914 is converted to a standard empty interval by replacing @var{hi} with @var{lo}.
32916 Vectors are stored as @samp{(vec @var{v1} @var{v2} @dots{})}, where @var{v1}
32917 is the first element of the vector, @var{v2} is the second, and so on.
32918 An empty vector is stored as @samp{(vec)}.  A matrix is simply a vector
32919 where all @var{v}'s are themselves vectors of equal lengths.  Note that
32920 Calc vectors are unrelated to the Emacs Lisp ``vector'' type, which is
32921 generally unused by Calc data structures.
32923 Variables are stored as @samp{(var @var{name} @var{sym})}, where
32924 @var{name} is a Lisp symbol whose print name is used as the visible name
32925 of the variable, and @var{sym} is a Lisp symbol in which the variable's
32926 value is actually stored.  Thus, @samp{(var pi var-pi)} represents the
32927 special constant @samp{pi}.  Almost always, the form is @samp{(var
32928 @var{v} var-@var{v})}.  If the variable name was entered with @code{#}
32929 signs (which are converted to hyphens internally), the form is
32930 @samp{(var @var{u} @var{v})}, where @var{u} is a symbol whose name
32931 contains @code{#} characters, and @var{v} is a symbol that contains
32932 @code{-} characters instead.  The value of a variable is the Calc
32933 object stored in its @var{sym} symbol's value cell.  If the symbol's
32934 value cell is void or if it contains @code{nil}, the variable has no
32935 value.  Special constants have the form @samp{(special-const
32936 @var{value})} stored in their value cell, where @var{value} is a formula
32937 which is evaluated when the constant's value is requested.  Variables
32938 which represent units are not stored in any special way; they are units
32939 only because their names appear in the units table.  If the value
32940 cell contains a string, it is parsed to get the variable's value when
32941 the variable is used.
32943 A Lisp list with any other symbol as the first element is a function call.
32944 The symbols @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^},
32945 and @code{|} represent special binary operators; these lists are always
32946 of the form @samp{(@var{op} @var{lhs} @var{rhs})} where @var{lhs} is the
32947 sub-formula on the lefthand side and @var{rhs} is the sub-formula on the
32948 right.  The symbol @code{neg} represents unary negation; this list is always
32949 of the form @samp{(neg @var{arg})}.  Any other symbol @var{func} represents a
32950 function that would be displayed in function-call notation; the symbol
32951 @var{func} is in general always of the form @samp{calcFunc-@var{name}}.
32952 The function cell of the symbol @var{func} should contain a Lisp function
32953 for evaluating a call to @var{func}.  This function is passed the remaining
32954 elements of the list (themselves already evaluated) as arguments; such
32955 functions should return @code{nil} or call @code{reject-arg} to signify
32956 that they should be left in symbolic form, or they should return a Calc
32957 object which represents their value, or a list of such objects if they
32958 wish to return multiple values.  (The latter case is allowed only for
32959 functions which are the outer-level call in an expression whose value is
32960 about to be pushed on the stack; this feature is considered obsolete
32961 and is not used by any built-in Calc functions.)
32963 @node Interactive Lisp Functions, Stack Lisp Functions, Data Type Formats, Internals
32964 @subsubsection Interactive Functions
32966 @noindent
32967 The functions described here are used in implementing interactive Calc
32968 commands.  Note that this list is not exhaustive!  If there is an
32969 existing command that behaves similarly to the one you want to define,
32970 you may find helpful tricks by checking the source code for that command.
32972 @defun calc-set-command-flag flag
32973 Set the command flag @var{flag}.  This is generally a Lisp symbol, but
32974 may in fact be anything.  The effect is to add @var{flag} to the list
32975 stored in the variable @code{calc-command-flags}, unless it is already
32976 there.  @xref{Defining Simple Commands}.
32977 @end defun
32979 @defun calc-clear-command-flag flag
32980 If @var{flag} appears among the list of currently-set command flags,
32981 remove it from that list.
32982 @end defun
32984 @defun calc-record-undo rec
32985 Add the ``undo record'' @var{rec} to the list of steps to take if the
32986 current operation should need to be undone.  Stack push and pop functions
32987 automatically call @code{calc-record-undo}, so the kinds of undo records
32988 you might need to create take the form @samp{(set @var{sym} @var{value})},
32989 which says that the Lisp variable @var{sym} was changed and had previously
32990 contained @var{value}; @samp{(store @var{var} @var{value})} which says that
32991 the Calc variable @var{var} (a string which is the name of the symbol that
32992 contains the variable's value) was stored and its previous value was
32993 @var{value} (either a Calc data object, or @code{nil} if the variable was
32994 previously void); or @samp{(eval @var{undo} @var{redo} @var{args} @dots{})},
32995 which means that to undo requires calling the function @samp{(@var{undo}
32996 @var{args} @dots{})} and, if the undo is later redone, calling
32997 @samp{(@var{redo} @var{args} @dots{})}.
32998 @end defun
33000 @defun calc-record-why msg args
33001 Record the error or warning message @var{msg}, which is normally a string.
33002 This message will be replayed if the user types @kbd{w} (@code{calc-why});
33003 if the message string begins with a @samp{*}, it is considered important
33004 enough to display even if the user doesn't type @kbd{w}.  If one or more
33005 @var{args} are present, the displayed message will be of the form,
33006 @samp{@var{msg}: @var{arg1}, @var{arg2}, @dots{}}, where the arguments are
33007 formatted on the assumption that they are either strings or Calc objects of
33008 some sort.  If @var{msg} is a symbol, it is the name of a Calc predicate
33009 (such as @code{integerp} or @code{numvecp}) which the arguments did not
33010 satisfy; it is expanded to a suitable string such as ``Expected an
33011 integer.''  The @code{reject-arg} function calls @code{calc-record-why}
33012 automatically; @pxref{Predicates}.
33013 @end defun
33015 @defun calc-is-inverse
33016 This predicate returns true if the current command is inverse,
33017 i.e., if the Inverse (@kbd{I} key) flag was set.
33018 @end defun
33020 @defun calc-is-hyperbolic
33021 This predicate is the analogous function for the @kbd{H} key.
33022 @end defun
33024 @node Stack Lisp Functions, Predicates, Interactive Lisp Functions, Internals
33025 @subsubsection Stack-Oriented Functions
33027 @noindent
33028 The functions described here perform various operations on the Calc
33029 stack and trail.  They are to be used in interactive Calc commands.
33031 @defun calc-push-list vals n
33032 Push the Calc objects in list @var{vals} onto the stack at stack level
33033 @var{n}.  If @var{n} is omitted it defaults to 1, so that the elements
33034 are pushed at the top of the stack.  If @var{n} is greater than 1, the
33035 elements will be inserted into the stack so that the last element will
33036 end up at level @var{n}, the next-to-last at level @var{n}+1, etc.
33037 The elements of @var{vals} are assumed to be valid Calc objects, and
33038 are not evaluated, rounded, or renormalized in any way.  If @var{vals}
33039 is an empty list, nothing happens.
33041 The stack elements are pushed without any sub-formula selections.
33042 You can give an optional third argument to this function, which must
33043 be a list the same size as @var{vals} of selections.  Each selection
33044 must be @code{eq} to some sub-formula of the corresponding formula
33045 in @var{vals}, or @code{nil} if that formula should have no selection.
33046 @end defun
33048 @defun calc-top-list n m
33049 Return a list of the @var{n} objects starting at level @var{m} of the
33050 stack.  If @var{m} is omitted it defaults to 1, so that the elements are
33051 taken from the top of the stack.  If @var{n} is omitted, it also
33052 defaults to 1, so that the top stack element (in the form of a
33053 one-element list) is returned.  If @var{m} is greater than 1, the
33054 @var{m}th stack element will be at the end of the list, the @var{m}+1st
33055 element will be next-to-last, etc.  If @var{n} or @var{m} are out of
33056 range, the command is aborted with a suitable error message.  If @var{n}
33057 is zero, the function returns an empty list.  The stack elements are not
33058 evaluated, rounded, or renormalized.
33060 If any stack elements contain selections, and selections have not
33061 been disabled by the @kbd{j e} (@code{calc-enable-selections}) command,
33062 this function returns the selected portions rather than the entire
33063 stack elements.  It can be given a third ``selection-mode'' argument
33064 which selects other behaviors.  If it is the symbol @code{t}, then
33065 a selection in any of the requested stack elements produces an
33066 ``invalid operation on selections'' error.  If it is the symbol @code{full},
33067 the whole stack entry is always returned regardless of selections.
33068 If it is the symbol @code{sel}, the selected portion is always returned,
33069 or @code{nil} if there is no selection.  (This mode ignores the @kbd{j e}
33070 command.)  If the symbol is @code{entry}, the complete stack entry in
33071 list form is returned; the first element of this list will be the whole
33072 formula, and the third element will be the selection (or @code{nil}).
33073 @end defun
33075 @defun calc-pop-stack n m
33076 Remove the specified elements from the stack.  The parameters @var{n}
33077 and @var{m} are defined the same as for @code{calc-top-list}.  The return
33078 value of @code{calc-pop-stack} is uninteresting.
33080 If there are any selected sub-formulas among the popped elements, and
33081 @kbd{j e} has not been used to disable selections, this produces an
33082 error without changing the stack.  If you supply an optional third
33083 argument of @code{t}, the stack elements are popped even if they
33084 contain selections.
33085 @end defun
33087 @defun calc-record-list vals tag
33088 This function records one or more results in the trail.  The @var{vals}
33089 are a list of strings or Calc objects.  The @var{tag} is the four-character
33090 tag string to identify the values.  If @var{tag} is omitted, a blank tag
33091 will be used.
33092 @end defun
33094 @defun calc-normalize n
33095 This function takes a Calc object and ``normalizes'' it.  At the very
33096 least this involves re-rounding floating-point values according to the
33097 current precision and other similar jobs.  Also, unless the user has
33098 selected No-Simplify mode (@pxref{Simplification Modes}), this involves
33099 actually evaluating a formula object by executing the function calls
33100 it contains, and possibly also doing algebraic simplification, etc.
33101 @end defun
33103 @defun calc-top-list-n n m
33104 This function is identical to @code{calc-top-list}, except that it calls
33105 @code{calc-normalize} on the values that it takes from the stack.  They
33106 are also passed through @code{check-complete}, so that incomplete
33107 objects will be rejected with an error message.  All computational
33108 commands should use this in preference to @code{calc-top-list}; the only
33109 standard Calc commands that operate on the stack without normalizing
33110 are stack management commands like @code{calc-enter} and @code{calc-roll-up}.
33111 This function accepts the same optional selection-mode argument as
33112 @code{calc-top-list}.
33113 @end defun
33115 @defun calc-top-n m
33116 This function is a convenient form of @code{calc-top-list-n} in which only
33117 a single element of the stack is taken and returned, rather than a list
33118 of elements.  This also accepts an optional selection-mode argument.
33119 @end defun
33121 @defun calc-enter-result n tag vals
33122 This function is a convenient interface to most of the above functions.
33123 The @var{vals} argument should be either a single Calc object, or a list
33124 of Calc objects; the object or objects are normalized, and the top @var{n}
33125 stack entries are replaced by the normalized objects.  If @var{tag} is
33126 non-@code{nil}, the normalized objects are also recorded in the trail.
33127 A typical stack-based computational command would take the form,
33129 @smallexample
33130 (calc-enter-result @var{n} @var{tag} (cons 'calcFunc-@var{func}
33131                                (calc-top-list-n @var{n})))
33132 @end smallexample
33134 If any of the @var{n} stack elements replaced contain sub-formula
33135 selections, and selections have not been disabled by @kbd{j e},
33136 this function takes one of two courses of action.  If @var{n} is
33137 equal to the number of elements in @var{vals}, then each element of
33138 @var{vals} is spliced into the corresponding selection; this is what
33139 happens when you use the @key{TAB} key, or when you use a unary
33140 arithmetic operation like @code{sqrt}.  If @var{vals} has only one
33141 element but @var{n} is greater than one, there must be only one
33142 selection among the top @var{n} stack elements; the element from
33143 @var{vals} is spliced into that selection.  This is what happens when
33144 you use a binary arithmetic operation like @kbd{+}.  Any other
33145 combination of @var{n} and @var{vals} is an error when selections
33146 are present.
33147 @end defun
33149 @defun calc-unary-op tag func arg
33150 This function implements a unary operator that allows a numeric prefix
33151 argument to apply the operator over many stack entries.  If the prefix
33152 argument @var{arg} is @code{nil}, this uses @code{calc-enter-result}
33153 as outlined above.  Otherwise, it maps the function over several stack
33154 elements; @pxref{Prefix Arguments}.  For example,
33156 @smallexample
33157 (defun calc-zeta (arg)
33158   (interactive "P")
33159   (calc-unary-op "zeta" 'calcFunc-zeta arg))
33160 @end smallexample
33161 @end defun
33163 @defun calc-binary-op tag func arg ident unary
33164 This function implements a binary operator, analogously to
33165 @code{calc-unary-op}.  The optional @var{ident} and @var{unary}
33166 arguments specify the behavior when the prefix argument is zero or
33167 one, respectively.  If the prefix is zero, the value @var{ident}
33168 is pushed onto the stack, if specified, otherwise an error message
33169 is displayed.  If the prefix is one, the unary function @var{unary}
33170 is applied to the top stack element, or, if @var{unary} is not
33171 specified, nothing happens.  When the argument is two or more,
33172 the binary function @var{func} is reduced across the top @var{arg}
33173 stack elements; when the argument is negative, the function is
33174 mapped between the next-to-top @mathit{-@var{arg}} stack elements and the
33175 top element.
33176 @end defun
33178 @defun calc-stack-size
33179 Return the number of elements on the stack as an integer.  This count
33180 does not include elements that have been temporarily hidden by stack
33181 truncation; @pxref{Truncating the Stack}.
33182 @end defun
33184 @defun calc-cursor-stack-index n
33185 Move the point to the @var{n}th stack entry.  If @var{n} is zero, this
33186 will be the @samp{.} line.  If @var{n} is from 1 to the current stack size,
33187 this will be the beginning of the first line of that stack entry's display.
33188 If line numbers are enabled, this will move to the first character of the
33189 line number, not the stack entry itself.
33190 @end defun
33192 @defun calc-substack-height n
33193 Return the number of lines between the beginning of the @var{n}th stack
33194 entry and the bottom of the buffer.  If @var{n} is zero, this
33195 will be one (assuming no stack truncation).  If all stack entries are
33196 one line long (i.e., no matrices are displayed), the return value will
33197 be equal @var{n}+1 as long as @var{n} is in range.  (Note that in Big
33198 mode, the return value includes the blank lines that separate stack
33199 entries.)
33200 @end defun
33202 @defun calc-refresh
33203 Erase the @code{*Calculator*} buffer and reformat its contents from memory.
33204 This must be called after changing any parameter, such as the current
33205 display radix, which might change the appearance of existing stack
33206 entries.  (During a keyboard macro invoked by the @kbd{X} key, refreshing
33207 is suppressed, but a flag is set so that the entire stack will be refreshed
33208 rather than just the top few elements when the macro finishes.)
33209 @end defun
33211 @node Predicates, Computational Lisp Functions, Stack Lisp Functions, Internals
33212 @subsubsection Predicates
33214 @noindent
33215 The functions described here are predicates, that is, they return a
33216 true/false value where @code{nil} means false and anything else means
33217 true.  These predicates are expanded by @code{defmath}, for example,
33218 from @code{zerop} to @code{math-zerop}.  In many cases they correspond
33219 to native Lisp functions by the same name, but are extended to cover
33220 the full range of Calc data types.
33222 @defun zerop x
33223 Returns true if @var{x} is numerically zero, in any of the Calc data
33224 types.  (Note that for some types, such as error forms and intervals,
33225 it never makes sense to return true.)  In @code{defmath}, the expression
33226 @samp{(= x 0)} will automatically be converted to @samp{(math-zerop x)},
33227 and @samp{(/= x 0)} will be converted to @samp{(not (math-zerop x))}.
33228 @end defun
33230 @defun negp x
33231 Returns true if @var{x} is negative.  This accepts negative real numbers
33232 of various types, negative HMS and date forms, and intervals in which
33233 all included values are negative.  In @code{defmath}, the expression
33234 @samp{(< x 0)} will automatically be converted to @samp{(math-negp x)},
33235 and @samp{(>= x 0)} will be converted to @samp{(not (math-negp x))}.
33236 @end defun
33238 @defun posp x
33239 Returns true if @var{x} is positive (and non-zero).  For complex
33240 numbers, none of these three predicates will return true.
33241 @end defun
33243 @defun looks-negp x
33244 Returns true if @var{x} is ``negative-looking.''  This returns true if
33245 @var{x} is a negative number, or a formula with a leading minus sign
33246 such as @samp{-a/b}.  In other words, this is an object which can be
33247 made simpler by calling @code{(- @var{x})}.
33248 @end defun
33250 @defun integerp x
33251 Returns true if @var{x} is an integer of any size.
33252 @end defun
33254 @defun fixnump x
33255 Returns true if @var{x} is a native Lisp integer.
33256 @end defun
33258 @defun natnump x
33259 Returns true if @var{x} is a nonnegative integer of any size.
33260 @end defun
33262 @defun fixnatnump x
33263 Returns true if @var{x} is a nonnegative Lisp integer.
33264 @end defun
33266 @defun num-integerp x
33267 Returns true if @var{x} is numerically an integer, i.e., either a
33268 true integer or a float with no significant digits to the right of
33269 the decimal point.
33270 @end defun
33272 @defun messy-integerp x
33273 Returns true if @var{x} is numerically, but not literally, an integer.
33274 A value is @code{num-integerp} if it is @code{integerp} or
33275 @code{messy-integerp} (but it is never both at once).
33276 @end defun
33278 @defun num-natnump x
33279 Returns true if @var{x} is numerically a nonnegative integer.
33280 @end defun
33282 @defun evenp x
33283 Returns true if @var{x} is an even integer.
33284 @end defun
33286 @defun looks-evenp x
33287 Returns true if @var{x} is an even integer, or a formula with a leading
33288 multiplicative coefficient which is an even integer.
33289 @end defun
33291 @defun oddp x
33292 Returns true if @var{x} is an odd integer.
33293 @end defun
33295 @defun ratp x
33296 Returns true if @var{x} is a rational number, i.e., an integer or a
33297 fraction.
33298 @end defun
33300 @defun realp x
33301 Returns true if @var{x} is a real number, i.e., an integer, fraction,
33302 or floating-point number.
33303 @end defun
33305 @defun anglep x
33306 Returns true if @var{x} is a real number or HMS form.
33307 @end defun
33309 @defun floatp x
33310 Returns true if @var{x} is a float, or a complex number, error form,
33311 interval, date form, or modulo form in which at least one component
33312 is a float.
33313 @end defun
33315 @defun complexp x
33316 Returns true if @var{x} is a rectangular or polar complex number
33317 (but not a real number).
33318 @end defun
33320 @defun rect-complexp x
33321 Returns true if @var{x} is a rectangular complex number.
33322 @end defun
33324 @defun polar-complexp x
33325 Returns true if @var{x} is a polar complex number.
33326 @end defun
33328 @defun numberp x
33329 Returns true if @var{x} is a real number or a complex number.
33330 @end defun
33332 @defun scalarp x
33333 Returns true if @var{x} is a real or complex number or an HMS form.
33334 @end defun
33336 @defun vectorp x
33337 Returns true if @var{x} is a vector (this simply checks if its argument
33338 is a list whose first element is the symbol @code{vec}).
33339 @end defun
33341 @defun numvecp x
33342 Returns true if @var{x} is a number or vector.
33343 @end defun
33345 @defun matrixp x
33346 Returns true if @var{x} is a matrix, i.e., a vector of one or more vectors,
33347 all of the same size.
33348 @end defun
33350 @defun square-matrixp x
33351 Returns true if @var{x} is a square matrix.
33352 @end defun
33354 @defun objectp x
33355 Returns true if @var{x} is any numeric Calc object, including real and
33356 complex numbers, HMS forms, date forms, error forms, intervals, and
33357 modulo forms.  (Note that error forms and intervals may include formulas
33358 as their components; see @code{constp} below.)
33359 @end defun
33361 @defun objvecp x
33362 Returns true if @var{x} is an object or a vector.  This also accepts
33363 incomplete objects, but it rejects variables and formulas (except as
33364 mentioned above for @code{objectp}).
33365 @end defun
33367 @defun primp x
33368 Returns true if @var{x} is a ``primitive'' or ``atomic'' Calc object,
33369 i.e., one whose components cannot be regarded as sub-formulas.  This
33370 includes variables, and all @code{objectp} types except error forms
33371 and intervals.
33372 @end defun
33374 @defun constp x
33375 Returns true if @var{x} is constant, i.e., a real or complex number,
33376 HMS form, date form, or error form, interval, or vector all of whose
33377 components are @code{constp}.
33378 @end defun
33380 @defun lessp x y
33381 Returns true if @var{x} is numerically less than @var{y}.  Returns false
33382 if @var{x} is greater than or equal to @var{y}, or if the order is
33383 undefined or cannot be determined.  Generally speaking, this works
33384 by checking whether @samp{@var{x} - @var{y}} is @code{negp}.  In
33385 @code{defmath}, the expression @samp{(< x y)} will automatically be
33386 converted to @samp{(lessp x y)}; expressions involving @code{>}, @code{<=},
33387 and @code{>=} are similarly converted in terms of @code{lessp}.
33388 @end defun
33390 @defun beforep x y
33391 Returns true if @var{x} comes before @var{y} in a canonical ordering
33392 of Calc objects.  If @var{x} and @var{y} are both real numbers, this
33393 will be the same as @code{lessp}.  But whereas @code{lessp} considers
33394 other types of objects to be unordered, @code{beforep} puts any two
33395 objects into a definite, consistent order.  The @code{beforep}
33396 function is used by the @kbd{V S} vector-sorting command, and also
33397 by @kbd{a s} to put the terms of a product into canonical order:
33398 This allows @samp{x y + y x} to be simplified easily to @samp{2 x y}.
33399 @end defun
33401 @defun equal x y
33402 This is the standard Lisp @code{equal} predicate; it returns true if
33403 @var{x} and @var{y} are structurally identical.  This is the usual way
33404 to compare numbers for equality, but note that @code{equal} will treat
33405 0 and 0.0 as different.
33406 @end defun
33408 @defun math-equal x y
33409 Returns true if @var{x} and @var{y} are numerically equal, either because
33410 they are @code{equal}, or because their difference is @code{zerop}.  In
33411 @code{defmath}, the expression @samp{(= x y)} will automatically be
33412 converted to @samp{(math-equal x y)}.
33413 @end defun
33415 @defun equal-int x n
33416 Returns true if @var{x} and @var{n} are numerically equal, where @var{n}
33417 is a fixnum which is not a multiple of 10.  This will automatically be
33418 used by @code{defmath} in place of the more general @code{math-equal}
33419 whenever possible.
33420 @end defun
33422 @defun nearly-equal x y
33423 Returns true if @var{x} and @var{y}, as floating-point numbers, are
33424 equal except possibly in the last decimal place.  For example,
33425 314.159 and 314.166 are considered nearly equal if the current
33426 precision is 6 (since they differ by 7 units), but not if the current
33427 precision is 7 (since they differ by 70 units).  Most functions which
33428 use series expansions use @code{with-extra-prec} to evaluate the
33429 series with 2 extra digits of precision, then use @code{nearly-equal}
33430 to decide when the series has converged; this guards against cumulative
33431 error in the series evaluation without doing extra work which would be
33432 lost when the result is rounded back down to the current precision.
33433 In @code{defmath}, this can be written @samp{(~= @var{x} @var{y})}.
33434 The @var{x} and @var{y} can be numbers of any kind, including complex.
33435 @end defun
33437 @defun nearly-zerop x y
33438 Returns true if @var{x} is nearly zero, compared to @var{y}.  This
33439 checks whether @var{x} plus @var{y} would by be @code{nearly-equal}
33440 to @var{y} itself, to within the current precision, in other words,
33441 if adding @var{x} to @var{y} would have a negligible effect on @var{y}
33442 due to roundoff error.  @var{X} may be a real or complex number, but
33443 @var{y} must be real.
33444 @end defun
33446 @defun is-true x
33447 Return true if the formula @var{x} represents a true value in
33448 Calc, not Lisp, terms.  It tests if @var{x} is a non-zero number
33449 or a provably non-zero formula.
33450 @end defun
33452 @defun reject-arg val pred
33453 Abort the current function evaluation due to unacceptable argument values.
33454 This calls @samp{(calc-record-why @var{pred} @var{val})}, then signals a
33455 Lisp error which @code{normalize} will trap.  The net effect is that the
33456 function call which led here will be left in symbolic form.
33457 @end defun
33459 @defun inexact-value
33460 If Symbolic mode is enabled, this will signal an error that causes
33461 @code{normalize} to leave the formula in symbolic form, with the message
33462 ``Inexact result.''  (This function has no effect when not in Symbolic mode.)
33463 Note that if your function calls @samp{(sin 5)} in Symbolic mode, the
33464 @code{sin} function will call @code{inexact-value}, which will cause your
33465 function to be left unsimplified.  You may instead wish to call
33466 @samp{(normalize (list 'calcFunc-sin 5))}, which in Symbolic mode will
33467 return the formula @samp{sin(5)} to your function.
33468 @end defun
33470 @defun overflow
33471 This signals an error that will be reported as a floating-point overflow.
33472 @end defun
33474 @defun underflow
33475 This signals a floating-point underflow.
33476 @end defun
33478 @node Computational Lisp Functions, Vector Lisp Functions, Predicates, Internals
33479 @subsubsection Computational Functions
33481 @noindent
33482 The functions described here do the actual computational work of the
33483 Calculator.  In addition to these, note that any function described in
33484 the main body of this manual may be called from Lisp; for example, if
33485 the documentation refers to the @code{calc-sqrt} [@code{sqrt}] command,
33486 this means @code{calc-sqrt} is an interactive stack-based square-root
33487 command and @code{sqrt} (which @code{defmath} expands to @code{calcFunc-sqrt})
33488 is the actual Lisp function for taking square roots.
33490 The functions @code{math-add}, @code{math-sub}, @code{math-mul},
33491 @code{math-div}, @code{math-mod}, and @code{math-neg} are not included
33492 in this list, since @code{defmath} allows you to write native Lisp
33493 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, and unary @code{-},
33494 respectively, instead.
33496 @defun normalize val
33497 (Full form: @code{math-normalize}.)
33498 Reduce the value @var{val} to standard form.  For example, if @var{val}
33499 is a fixnum, it will be converted to a bignum if it is too large, and
33500 if @var{val} is a bignum it will be normalized by clipping off trailing
33501 (i.e., most-significant) zero digits and converting to a fixnum if it is
33502 small.  All the various data types are similarly converted to their standard
33503 forms.  Variables are left alone, but function calls are actually evaluated
33504 in formulas.  For example, normalizing @samp{(+ 2 (calcFunc-abs -4))} will
33505 return 6.
33507 If a function call fails, because the function is void or has the wrong
33508 number of parameters, or because it returns @code{nil} or calls
33509 @code{reject-arg} or @code{inexact-result}, @code{normalize} returns
33510 the formula still in symbolic form.
33512 If the current simplification mode is ``none'' or ``numeric arguments
33513 only,'' @code{normalize} will act appropriately.  However, the more
33514 powerful simplification modes (like Algebraic Simplification) are
33515 not handled by @code{normalize}.  They are handled by @code{calc-normalize},
33516 which calls @code{normalize} and possibly some other routines, such
33517 as @code{simplify} or @code{simplify-units}.  Programs generally will
33518 never call @code{calc-normalize} except when popping or pushing values
33519 on the stack.
33520 @end defun
33522 @defun evaluate-expr expr
33523 Replace all variables in @var{expr} that have values with their values,
33524 then use @code{normalize} to simplify the result.  This is what happens
33525 when you press the @kbd{=} key interactively.
33526 @end defun
33528 @defmac with-extra-prec n body
33529 Evaluate the Lisp forms in @var{body} with precision increased by @var{n}
33530 digits.  This is a macro which expands to
33532 @smallexample
33533 (math-normalize
33534   (let ((calc-internal-prec (+ calc-internal-prec @var{n})))
33535     @var{body}))
33536 @end smallexample
33538 The surrounding call to @code{math-normalize} causes a floating-point
33539 result to be rounded down to the original precision afterwards.  This
33540 is important because some arithmetic operations assume a number's
33541 mantissa contains no more digits than the current precision allows.
33542 @end defmac
33544 @defun make-frac n d
33545 Build a fraction @samp{@var{n}:@var{d}}.  This is equivalent to calling
33546 @samp{(normalize (list 'frac @var{n} @var{d}))}, but more efficient.
33547 @end defun
33549 @defun make-float mant exp
33550 Build a floating-point value out of @var{mant} and @var{exp}, both
33551 of which are arbitrary integers.  This function will return a
33552 properly normalized float value, or signal an overflow or underflow
33553 if @var{exp} is out of range.
33554 @end defun
33556 @defun make-sdev x sigma
33557 Build an error form out of @var{x} and the absolute value of @var{sigma}.
33558 If @var{sigma} is zero, the result is the number @var{x} directly.
33559 If @var{sigma} is negative or complex, its absolute value is used.
33560 If @var{x} or @var{sigma} is not a valid type of object for use in
33561 error forms, this calls @code{reject-arg}.
33562 @end defun
33564 @defun make-intv mask lo hi
33565 Build an interval form out of @var{mask} (which is assumed to be an
33566 integer from 0 to 3), and the limits @var{lo} and @var{hi}.  If
33567 @var{lo} is greater than @var{hi}, an empty interval form is returned.
33568 This calls @code{reject-arg} if @var{lo} or @var{hi} is unsuitable.
33569 @end defun
33571 @defun sort-intv mask lo hi
33572 Build an interval form, similar to @code{make-intv}, except that if
33573 @var{lo} is less than @var{hi} they are simply exchanged, and the
33574 bits of @var{mask} are swapped accordingly.
33575 @end defun
33577 @defun make-mod n m
33578 Build a modulo form out of @var{n} and the modulus @var{m}.  Since modulo
33579 forms do not allow formulas as their components, if @var{n} or @var{m}
33580 is not a real number or HMS form the result will be a formula which
33581 is a call to @code{makemod}, the algebraic version of this function.
33582 @end defun
33584 @defun float x
33585 Convert @var{x} to floating-point form.  Integers and fractions are
33586 converted to numerically equivalent floats; components of complex
33587 numbers, vectors, HMS forms, date forms, error forms, intervals, and
33588 modulo forms are recursively floated.  If the argument is a variable
33589 or formula, this calls @code{reject-arg}.
33590 @end defun
33592 @defun compare x y
33593 Compare the numbers @var{x} and @var{y}, and return @mathit{-1} if
33594 @samp{(lessp @var{x} @var{y})}, 1 if @samp{(lessp @var{y} @var{x})},
33595 0 if @samp{(math-equal @var{x} @var{y})}, or 2 if the order is
33596 undefined or cannot be determined.
33597 @end defun
33599 @defun numdigs n
33600 Return the number of digits of integer @var{n}, effectively
33601 @samp{ceil(log10(@var{n}))}, but much more efficient.  Zero is
33602 considered to have zero digits.
33603 @end defun
33605 @defun scale-int x n
33606 Shift integer @var{x} left @var{n} decimal digits, or right @mathit{-@var{n}}
33607 digits with truncation toward zero.
33608 @end defun
33610 @defun scale-rounding x n
33611 Like @code{scale-int}, except that a right shift rounds to the nearest
33612 integer rather than truncating.
33613 @end defun
33615 @defun fixnum n
33616 Return the integer @var{n} as a fixnum, i.e., a native Lisp integer.
33617 If @var{n} is outside the permissible range for Lisp integers (usually
33618 24 binary bits) the result is undefined.
33619 @end defun
33621 @defun sqr x
33622 Compute the square of @var{x}; short for @samp{(* @var{x} @var{x})}.
33623 @end defun
33625 @defun quotient x y
33626 Divide integer @var{x} by integer @var{y}; return an integer quotient
33627 and discard the remainder.  If @var{x} or @var{y} is negative, the
33628 direction of rounding is undefined.
33629 @end defun
33631 @defun idiv x y
33632 Perform an integer division; if @var{x} and @var{y} are both nonnegative
33633 integers, this uses the @code{quotient} function, otherwise it computes
33634 @samp{floor(@var{x}/@var{y})}.  Thus the result is well-defined but
33635 slower than for @code{quotient}.
33636 @end defun
33638 @defun imod x y
33639 Divide integer @var{x} by integer @var{y}; return the integer remainder
33640 and discard the quotient.  Like @code{quotient}, this works only for
33641 integer arguments and is not well-defined for negative arguments.
33642 For a more well-defined result, use @samp{(% @var{x} @var{y})}.
33643 @end defun
33645 @defun idivmod x y
33646 Divide integer @var{x} by integer @var{y}; return a cons cell whose
33647 @code{car} is @samp{(quotient @var{x} @var{y})} and whose @code{cdr}
33648 is @samp{(imod @var{x} @var{y})}.
33649 @end defun
33651 @defun pow x y
33652 Compute @var{x} to the power @var{y}.  In @code{defmath} code, this can
33653 also be written @samp{(^ @var{x} @var{y})} or
33654 @w{@samp{(expt @var{x} @var{y})}}.
33655 @end defun
33657 @defun abs-approx x
33658 Compute a fast approximation to the absolute value of @var{x}.  For
33659 example, for a rectangular complex number the result is the sum of
33660 the absolute values of the components.
33661 @end defun
33663 @findex e
33664 @findex gamma-const
33665 @findex ln-2
33666 @findex ln-10
33667 @findex phi
33668 @findex pi-over-2
33669 @findex pi-over-4
33670 @findex pi-over-180
33671 @findex sqrt-two-pi
33672 @findex sqrt-e
33673 @findex two-pi
33674 @defun pi
33675 The function @samp{(pi)} computes @samp{pi} to the current precision.
33676 Other related constant-generating functions are @code{two-pi},
33677 @code{pi-over-2}, @code{pi-over-4}, @code{pi-over-180}, @code{sqrt-two-pi},
33678 @code{e}, @code{sqrt-e}, @code{ln-2}, @code{ln-10}, @code{phi} and
33679 @code{gamma-const}.  Each function returns a floating-point value in the
33680 current precision, and each uses caching so that all calls after the
33681 first are essentially free.
33682 @end defun
33684 @defmac math-defcache @var{func} @var{initial} @var{form}
33685 This macro, usually used as a top-level call like @code{defun} or
33686 @code{defvar}, defines a new cached constant analogous to @code{pi}, etc.
33687 It defines a function @code{func} which returns the requested value;
33688 if @var{initial} is non-@code{nil} it must be a @samp{(float @dots{})}
33689 form which serves as an initial value for the cache.  If @var{func}
33690 is called when the cache is empty or does not have enough digits to
33691 satisfy the current precision, the Lisp expression @var{form} is evaluated
33692 with the current precision increased by four, and the result minus its
33693 two least significant digits is stored in the cache.  For example,
33694 calling @samp{(pi)} with a precision of 30 computes @samp{pi} to 34
33695 digits, rounds it down to 32 digits for future use, then rounds it
33696 again to 30 digits for use in the present request.
33697 @end defmac
33699 @findex half-circle
33700 @findex quarter-circle
33701 @defun full-circle symb
33702 If the current angular mode is Degrees or HMS, this function returns the
33703 integer 360.  In Radians mode, this function returns either the
33704 corresponding value in radians to the current precision, or the formula
33705 @samp{2*pi}, depending on the Symbolic mode.  There are also similar
33706 function @code{half-circle} and @code{quarter-circle}.
33707 @end defun
33709 @defun power-of-2 n
33710 Compute two to the integer power @var{n}, as a (potentially very large)
33711 integer.  Powers of two are cached, so only the first call for a
33712 particular @var{n} is expensive.
33713 @end defun
33715 @defun integer-log2 n
33716 Compute the base-2 logarithm of @var{n}, which must be an integer which
33717 is a power of two.  If @var{n} is not a power of two, this function will
33718 return @code{nil}.
33719 @end defun
33721 @defun div-mod a b m
33722 Divide @var{a} by @var{b}, modulo @var{m}.  This returns @code{nil} if
33723 there is no solution, or if any of the arguments are not integers.
33724 @end defun
33726 @defun pow-mod a b m
33727 Compute @var{a} to the power @var{b}, modulo @var{m}.  If @var{a},
33728 @var{b}, and @var{m} are integers, this uses an especially efficient
33729 algorithm.  Otherwise, it simply computes @samp{(% (^ a b) m)}.
33730 @end defun
33732 @defun isqrt n
33733 Compute the integer square root of @var{n}.  This is the square root
33734 of @var{n} rounded down toward zero, i.e., @samp{floor(sqrt(@var{n}))}.
33735 If @var{n} is itself an integer, the computation is especially efficient.
33736 @end defun
33738 @defun to-hms a ang
33739 Convert the argument @var{a} into an HMS form.  If @var{ang} is specified,
33740 it is the angular mode in which to interpret @var{a}, either @code{deg}
33741 or @code{rad}.  Otherwise, the current angular mode is used.  If @var{a}
33742 is already an HMS form it is returned as-is.
33743 @end defun
33745 @defun from-hms a ang
33746 Convert the HMS form @var{a} into a real number.  If @var{ang} is specified,
33747 it is the angular mode in which to express the result, otherwise the
33748 current angular mode is used.  If @var{a} is already a real number, it
33749 is returned as-is.
33750 @end defun
33752 @defun to-radians a
33753 Convert the number or HMS form @var{a} to radians from the current
33754 angular mode.
33755 @end defun
33757 @defun from-radians a
33758 Convert the number @var{a} from radians to the current angular mode.
33759 If @var{a} is a formula, this returns the formula @samp{deg(@var{a})}.
33760 @end defun
33762 @defun to-radians-2 a
33763 Like @code{to-radians}, except that in Symbolic mode a degrees to
33764 radians conversion yields a formula like @samp{@var{a}*pi/180}.
33765 @end defun
33767 @defun from-radians-2 a
33768 Like @code{from-radians}, except that in Symbolic mode a radians to
33769 degrees conversion yields a formula like @samp{@var{a}*180/pi}.
33770 @end defun
33772 @defun random-digit
33773 Produce a random base-1000 digit in the range 0 to 999.
33774 @end defun
33776 @defun random-digits n
33777 Produce a random @var{n}-digit integer; this will be an integer
33778 in the interval @samp{[0, 10^@var{n})}.
33779 @end defun
33781 @defun random-float
33782 Produce a random float in the interval @samp{[0, 1)}.
33783 @end defun
33785 @defun prime-test n iters
33786 Determine whether the integer @var{n} is prime.  Return a list which has
33787 one of these forms: @samp{(nil @var{f})} means the number is non-prime
33788 because it was found to be divisible by @var{f}; @samp{(nil)} means it
33789 was found to be non-prime by table look-up (so no factors are known);
33790 @samp{(nil unknown)} means it is definitely non-prime but no factors
33791 are known because @var{n} was large enough that Fermat's probabilistic
33792 test had to be used; @samp{(t)} means the number is definitely prime;
33793 and @samp{(maybe @var{i} @var{p})} means that Fermat's test, after @var{i}
33794 iterations, is @var{p} percent sure that the number is prime.  The
33795 @var{iters} parameter is the number of Fermat iterations to use, in the
33796 case that this is necessary.  If @code{prime-test} returns ``maybe,''
33797 you can call it again with the same @var{n} to get a greater certainty;
33798 @code{prime-test} remembers where it left off.
33799 @end defun
33801 @defun to-simple-fraction f
33802 If @var{f} is a floating-point number which can be represented exactly
33803 as a small rational number. return that number, else return @var{f}.
33804 For example, 0.75 would be converted to 3:4.  This function is very
33805 fast.
33806 @end defun
33808 @defun to-fraction f tol
33809 Find a rational approximation to floating-point number @var{f} to within
33810 a specified tolerance @var{tol}; this corresponds to the algebraic
33811 function @code{frac}, and can be rather slow.
33812 @end defun
33814 @defun quarter-integer n
33815 If @var{n} is an integer or integer-valued float, this function
33816 returns zero.  If @var{n} is a half-integer (i.e., an integer plus
33817 @mathit{1:2} or 0.5), it returns 2.  If @var{n} is a quarter-integer,
33818 it returns 1 or 3.  If @var{n} is anything else, this function
33819 returns @code{nil}.
33820 @end defun
33822 @node Vector Lisp Functions, Symbolic Lisp Functions, Computational Lisp Functions, Internals
33823 @subsubsection Vector Functions
33825 @noindent
33826 The functions described here perform various operations on vectors and
33827 matrices.
33829 @defun math-concat x y
33830 Do a vector concatenation; this operation is written @samp{@var{x} | @var{y}}
33831 in a symbolic formula.  @xref{Building Vectors}.
33832 @end defun
33834 @defun vec-length v
33835 Return the length of vector @var{v}.  If @var{v} is not a vector, the
33836 result is zero.  If @var{v} is a matrix, this returns the number of
33837 rows in the matrix.
33838 @end defun
33840 @defun mat-dimens m
33841 Determine the dimensions of vector or matrix @var{m}.  If @var{m} is not
33842 a vector, the result is an empty list.  If @var{m} is a plain vector
33843 but not a matrix, the result is a one-element list containing the length
33844 of the vector.  If @var{m} is a matrix with @var{r} rows and @var{c} columns,
33845 the result is the list @samp{(@var{r} @var{c})}.  Higher-order tensors
33846 produce lists of more than two dimensions.  Note that the object
33847 @samp{[[1, 2, 3], [4, 5]]} is a vector of vectors not all the same size,
33848 and is treated by this and other Calc routines as a plain vector of two
33849 elements.
33850 @end defun
33852 @defun dimension-error
33853 Abort the current function with a message of ``Dimension error.''
33854 The Calculator will leave the function being evaluated in symbolic
33855 form; this is really just a special case of @code{reject-arg}.
33856 @end defun
33858 @defun build-vector args
33859 Return a Calc vector with @var{args} as elements.
33860 For example, @samp{(build-vector 1 2 3)} returns the Calc vector
33861 @samp{[1, 2, 3]}, stored internally as the list @samp{(vec 1 2 3)}.
33862 @end defun
33864 @defun make-vec obj dims
33865 Return a Calc vector or matrix all of whose elements are equal to
33866 @var{obj}.  For example, @samp{(make-vec 27 3 4)} returns a 3x4 matrix
33867 filled with 27's.
33868 @end defun
33870 @defun row-matrix v
33871 If @var{v} is a plain vector, convert it into a row matrix, i.e.,
33872 a matrix whose single row is @var{v}.  If @var{v} is already a matrix,
33873 leave it alone.
33874 @end defun
33876 @defun col-matrix v
33877 If @var{v} is a plain vector, convert it into a column matrix, i.e., a
33878 matrix with each element of @var{v} as a separate row.  If @var{v} is
33879 already a matrix, leave it alone.
33880 @end defun
33882 @defun map-vec f v
33883 Map the Lisp function @var{f} over the Calc vector @var{v}.  For example,
33884 @samp{(map-vec 'math-floor v)} returns a vector of the floored components
33885 of vector @var{v}.
33886 @end defun
33888 @defun map-vec-2 f a b
33889 Map the Lisp function @var{f} over the two vectors @var{a} and @var{b}.
33890 If @var{a} and @var{b} are vectors of equal length, the result is a
33891 vector of the results of calling @samp{(@var{f} @var{ai} @var{bi})}
33892 for each pair of elements @var{ai} and @var{bi}.  If either @var{a} or
33893 @var{b} is a scalar, it is matched with each value of the other vector.
33894 For example, @samp{(map-vec-2 'math-add v 1)} returns the vector @var{v}
33895 with each element increased by one.  Note that using @samp{'+} would not
33896 work here, since @code{defmath} does not expand function names everywhere,
33897 just where they are in the function position of a Lisp expression.
33898 @end defun
33900 @defun reduce-vec f v
33901 Reduce the function @var{f} over the vector @var{v}.  For example, if
33902 @var{v} is @samp{[10, 20, 30, 40]}, this calls @samp{(f (f (f 10 20) 30) 40)}.
33903 If @var{v} is a matrix, this reduces over the rows of @var{v}.
33904 @end defun
33906 @defun reduce-cols f m
33907 Reduce the function @var{f} over the columns of matrix @var{m}.  For
33908 example, if @var{m} is @samp{[[1, 2], [3, 4], [5, 6]]}, the result
33909 is a vector of the two elements @samp{(f (f 1 3) 5)} and @samp{(f (f 2 4) 6)}.
33910 @end defun
33912 @defun mat-row m n
33913 Return the @var{n}th row of matrix @var{m}.  This is equivalent to
33914 @samp{(elt m n)}.  For a slower but safer version, use @code{mrow}.
33915 (@xref{Extracting Elements}.)
33916 @end defun
33918 @defun mat-col m n
33919 Return the @var{n}th column of matrix @var{m}, in the form of a vector.
33920 The arguments are not checked for correctness.
33921 @end defun
33923 @defun mat-less-row m n
33924 Return a copy of matrix @var{m} with its @var{n}th row deleted.  The
33925 number @var{n} must be in range from 1 to the number of rows in @var{m}.
33926 @end defun
33928 @defun mat-less-col m n
33929 Return a copy of matrix @var{m} with its @var{n}th column deleted.
33930 @end defun
33932 @defun transpose m
33933 Return the transpose of matrix @var{m}.
33934 @end defun
33936 @defun flatten-vector v
33937 Flatten nested vector @var{v} into a vector of scalars.  For example,
33938 if @var{v} is @samp{[[1, 2, 3], [4, 5]]} the result is @samp{[1, 2, 3, 4, 5]}.
33939 @end defun
33941 @defun copy-matrix m
33942 If @var{m} is a matrix, return a copy of @var{m}.  This maps
33943 @code{copy-sequence} over the rows of @var{m}; in Lisp terms, each
33944 element of the result matrix will be @code{eq} to the corresponding
33945 element of @var{m}, but none of the @code{cons} cells that make up
33946 the structure of the matrix will be @code{eq}.  If @var{m} is a plain
33947 vector, this is the same as @code{copy-sequence}.
33948 @end defun
33950 @defun swap-rows m r1 r2
33951 Exchange rows @var{r1} and @var{r2} of matrix @var{m} in-place.  In
33952 other words, unlike most of the other functions described here, this
33953 function changes @var{m} itself rather than building up a new result
33954 matrix.  The return value is @var{m}, i.e., @samp{(eq (swap-rows m 1 2) m)}
33955 is true, with the side effect of exchanging the first two rows of
33956 @var{m}.
33957 @end defun
33959 @node Symbolic Lisp Functions, Formatting Lisp Functions, Vector Lisp Functions, Internals
33960 @subsubsection Symbolic Functions
33962 @noindent
33963 The functions described here operate on symbolic formulas in the
33964 Calculator.
33966 @defun calc-prepare-selection num
33967 Prepare a stack entry for selection operations.  If @var{num} is
33968 omitted, the stack entry containing the cursor is used; otherwise,
33969 it is the number of the stack entry to use.  This function stores
33970 useful information about the current stack entry into a set of
33971 variables.  @code{calc-selection-cache-num} contains the number of
33972 the stack entry involved (equal to @var{num} if you specified it);
33973 @code{calc-selection-cache-entry} contains the stack entry as a
33974 list (such as @code{calc-top-list} would return with @code{entry}
33975 as the selection mode); and @code{calc-selection-cache-comp} contains
33976 a special ``tagged'' composition (@pxref{Formatting Lisp Functions})
33977 which allows Calc to relate cursor positions in the buffer with
33978 their corresponding sub-formulas.
33980 A slight complication arises in the selection mechanism because
33981 formulas may contain small integers.  For example, in the vector
33982 @samp{[1, 2, 1]} the first and last elements are @code{eq} to each
33983 other; selections are recorded as the actual Lisp object that
33984 appears somewhere in the tree of the whole formula, but storing
33985 @code{1} would falsely select both @code{1}'s in the vector.  So
33986 @code{calc-prepare-selection} also checks the stack entry and
33987 replaces any plain integers with ``complex number'' lists of the form
33988 @samp{(cplx @var{n} 0)}.  This list will be displayed the same as a
33989 plain @var{n} and the change will be completely invisible to the
33990 user, but it will guarantee that no two sub-formulas of the stack
33991 entry will be @code{eq} to each other.  Next time the stack entry
33992 is involved in a computation, @code{calc-normalize} will replace
33993 these lists with plain numbers again, again invisibly to the user.
33994 @end defun
33996 @defun calc-encase-atoms x
33997 This modifies the formula @var{x} to ensure that each part of the
33998 formula is a unique atom, using the @samp{(cplx @var{n} 0)} trick
33999 described above.  This function may use @code{setcar} to modify
34000 the formula in-place.
34001 @end defun
34003 @defun calc-find-selected-part
34004 Find the smallest sub-formula of the current formula that contains
34005 the cursor.  This assumes @code{calc-prepare-selection} has been
34006 called already.  If the cursor is not actually on any part of the
34007 formula, this returns @code{nil}.
34008 @end defun
34010 @defun calc-change-current-selection selection
34011 Change the currently prepared stack element's selection to
34012 @var{selection}, which should be @code{eq} to some sub-formula
34013 of the stack element, or @code{nil} to unselect the formula.
34014 The stack element's appearance in the Calc buffer is adjusted
34015 to reflect the new selection.
34016 @end defun
34018 @defun calc-find-nth-part expr n
34019 Return the @var{n}th sub-formula of @var{expr}.  This function is used
34020 by the selection commands, and (unless @kbd{j b} has been used) treats
34021 sums and products as flat many-element formulas.  Thus if @var{expr}
34022 is @samp{((a + b) - c) + d}, calling @code{calc-find-nth-part} with
34023 @var{n} equal to four will return @samp{d}.
34024 @end defun
34026 @defun calc-find-parent-formula expr part
34027 Return the sub-formula of @var{expr} which immediately contains
34028 @var{part}.  If @var{expr} is @samp{a*b + (c+1)*d} and @var{part}
34029 is @code{eq} to the @samp{c+1} term of @var{expr}, then this function
34030 will return @samp{(c+1)*d}.  If @var{part} turns out not to be a
34031 sub-formula of @var{expr}, the function returns @code{nil}.  If
34032 @var{part} is @code{eq} to @var{expr}, the function returns @code{t}.
34033 This function does not take associativity into account.
34034 @end defun
34036 @defun calc-find-assoc-parent-formula expr part
34037 This is the same as @code{calc-find-parent-formula}, except that
34038 (unless @kbd{j b} has been used) it continues widening the selection
34039 to contain a complete level of the formula.  Given @samp{a} from
34040 @samp{((a + b) - c) + d}, @code{calc-find-parent-formula} will
34041 return @samp{a + b} but @code{calc-find-assoc-parent-formula} will
34042 return the whole expression.
34043 @end defun
34045 @defun calc-grow-assoc-formula expr part
34046 This expands sub-formula @var{part} of @var{expr} to encompass a
34047 complete level of the formula.  If @var{part} and its immediate
34048 parent are not compatible associative operators, or if @kbd{j b}
34049 has been used, this simply returns @var{part}.
34050 @end defun
34052 @defun calc-find-sub-formula expr part
34053 This finds the immediate sub-formula of @var{expr} which contains
34054 @var{part}.  It returns an index @var{n} such that
34055 @samp{(calc-find-nth-part @var{expr} @var{n})} would return @var{part}.
34056 If @var{part} is not a sub-formula of @var{expr}, it returns @code{nil}.
34057 If @var{part} is @code{eq} to @var{expr}, it returns @code{t}.  This
34058 function does not take associativity into account.
34059 @end defun
34061 @defun calc-replace-sub-formula expr old new
34062 This function returns a copy of formula @var{expr}, with the
34063 sub-formula that is @code{eq} to @var{old} replaced by @var{new}.
34064 @end defun
34066 @defun simplify expr
34067 Simplify the expression @var{expr} by applying various algebraic rules.
34068 This is what the @w{@kbd{a s}} (@code{calc-simplify}) command uses.  This
34069 always returns a copy of the expression; the structure @var{expr} points
34070 to remains unchanged in memory.
34072 More precisely, here is what @code{simplify} does:  The expression is
34073 first normalized and evaluated by calling @code{normalize}.  If any
34074 @code{AlgSimpRules} have been defined, they are then applied.  Then
34075 the expression is traversed in a depth-first, bottom-up fashion; at
34076 each level, any simplifications that can be made are made until no
34077 further changes are possible.  Once the entire formula has been
34078 traversed in this way, it is compared with the original formula (from
34079 before the call to @code{normalize}) and, if it has changed,
34080 the entire procedure is repeated (starting with @code{normalize})
34081 until no further changes occur.  Usually only two iterations are
34082 needed:@: one to simplify the formula, and another to verify that no
34083 further simplifications were possible.
34084 @end defun
34086 @defun simplify-extended expr
34087 Simplify the expression @var{expr}, with additional rules enabled that
34088 help do a more thorough job, while not being entirely ``safe'' in all
34089 circumstances.  (For example, this mode will simplify @samp{sqrt(x^2)}
34090 to @samp{x}, which is only valid when @var{x} is positive.)  This is
34091 implemented by temporarily binding the variable @code{math-living-dangerously}
34092 to @code{t} (using a @code{let} form) and calling @code{simplify}.
34093 Dangerous simplification rules are written to check this variable
34094 before taking any action.
34095 @end defun
34097 @defun simplify-units expr
34098 Simplify the expression @var{expr}, treating variable names as units
34099 whenever possible.  This works by binding the variable
34100 @code{math-simplifying-units} to @code{t} while calling @code{simplify}.
34101 @end defun
34103 @defmac math-defsimplify funcs body
34104 Register a new simplification rule; this is normally called as a top-level
34105 form, like @code{defun} or @code{defmath}.  If @var{funcs} is a symbol
34106 (like @code{+} or @code{calcFunc-sqrt}), this simplification rule is
34107 applied to the formulas which are calls to the specified function.  Or,
34108 @var{funcs} can be a list of such symbols; the rule applies to all
34109 functions on the list.  The @var{body} is written like the body of a
34110 function with a single argument called @code{expr}.  The body will be
34111 executed with @code{expr} bound to a formula which is a call to one of
34112 the functions @var{funcs}.  If the function body returns @code{nil}, or
34113 if it returns a result @code{equal} to the original @code{expr}, it is
34114 ignored and Calc goes on to try the next simplification rule that applies.
34115 If the function body returns something different, that new formula is
34116 substituted for @var{expr} in the original formula.
34118 At each point in the formula, rules are tried in the order of the
34119 original calls to @code{math-defsimplify}; the search stops after the
34120 first rule that makes a change.  Thus later rules for that same
34121 function will not have a chance to trigger until the next iteration
34122 of the main @code{simplify} loop.
34124 Note that, since @code{defmath} is not being used here, @var{body} must
34125 be written in true Lisp code without the conveniences that @code{defmath}
34126 provides.  If you prefer, you can have @var{body} simply call another
34127 function (defined with @code{defmath}) which does the real work.
34129 The arguments of a function call will already have been simplified
34130 before any rules for the call itself are invoked.  Since a new argument
34131 list is consed up when this happens, this means that the rule's body is
34132 allowed to rearrange the function's arguments destructively if that is
34133 convenient.  Here is a typical example of a simplification rule:
34135 @smallexample
34136 (math-defsimplify calcFunc-arcsinh
34137   (or (and (math-looks-negp (nth 1 expr))
34138            (math-neg (list 'calcFunc-arcsinh
34139                            (math-neg (nth 1 expr)))))
34140       (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
34141            (or math-living-dangerously
34142                (math-known-realp (nth 1 (nth 1 expr))))
34143            (nth 1 (nth 1 expr)))))
34144 @end smallexample
34146 This is really a pair of rules written with one @code{math-defsimplify}
34147 for convenience; the first replaces @samp{arcsinh(-x)} with
34148 @samp{-arcsinh(x)}, and the second, which is safe only for real @samp{x},
34149 replaces @samp{arcsinh(sinh(x))} with @samp{x}.
34150 @end defmac
34152 @defun common-constant-factor expr
34153 Check @var{expr} to see if it is a sum of terms all multiplied by the
34154 same rational value.  If so, return this value.  If not, return @code{nil}.
34155 For example, if called on @samp{6x + 9y + 12z}, it would return 3, since
34156 3 is a common factor of all the terms.
34157 @end defun
34159 @defun cancel-common-factor expr factor
34160 Assuming @var{expr} is a sum with @var{factor} as a common factor,
34161 divide each term of the sum by @var{factor}.  This is done by
34162 destructively modifying parts of @var{expr}, on the assumption that
34163 it is being used by a simplification rule (where such things are
34164 allowed; see above).  For example, consider this built-in rule for
34165 square roots:
34167 @smallexample
34168 (math-defsimplify calcFunc-sqrt
34169   (let ((fac (math-common-constant-factor (nth 1 expr))))
34170     (and fac (not (eq fac 1))
34171          (math-mul (math-normalize (list 'calcFunc-sqrt fac))
34172                    (math-normalize
34173                     (list 'calcFunc-sqrt
34174                           (math-cancel-common-factor
34175                            (nth 1 expr) fac)))))))
34176 @end smallexample
34177 @end defun
34179 @defun frac-gcd a b
34180 Compute a ``rational GCD'' of @var{a} and @var{b}, which must both be
34181 rational numbers.  This is the fraction composed of the GCD of the
34182 numerators of @var{a} and @var{b}, over the GCD of the denominators.
34183 It is used by @code{common-constant-factor}.  Note that the standard
34184 @code{gcd} function uses the LCM to combine the denominators.
34185 @end defun
34187 @defun map-tree func expr many
34188 Try applying Lisp function @var{func} to various sub-expressions of
34189 @var{expr}.  Initially, call @var{func} with @var{expr} itself as an
34190 argument.  If this returns an expression which is not @code{equal} to
34191 @var{expr}, apply @var{func} again until eventually it does return
34192 @var{expr} with no changes.  Then, if @var{expr} is a function call,
34193 recursively apply @var{func} to each of the arguments.  This keeps going
34194 until no changes occur anywhere in the expression; this final expression
34195 is returned by @code{map-tree}.  Note that, unlike simplification rules,
34196 @var{func} functions may @emph{not} make destructive changes to
34197 @var{expr}.  If a third argument @var{many} is provided, it is an
34198 integer which says how many times @var{func} may be applied; the
34199 default, as described above, is infinitely many times.
34200 @end defun
34202 @defun compile-rewrites rules
34203 Compile the rewrite rule set specified by @var{rules}, which should
34204 be a formula that is either a vector or a variable name.  If the latter,
34205 the compiled rules are saved so that later @code{compile-rules} calls
34206 for that same variable can return immediately.  If there are problems
34207 with the rules, this function calls @code{error} with a suitable
34208 message.
34209 @end defun
34211 @defun apply-rewrites expr crules heads
34212 Apply the compiled rewrite rule set @var{crules} to the expression
34213 @var{expr}.  This will make only one rewrite and only checks at the
34214 top level of the expression.  The result @code{nil} if no rules
34215 matched, or if the only rules that matched did not actually change
34216 the expression.  The @var{heads} argument is optional; if is given,
34217 it should be a list of all function names that (may) appear in
34218 @var{expr}.  The rewrite compiler tags each rule with the
34219 rarest-looking function name in the rule; if you specify @var{heads},
34220 @code{apply-rewrites} can use this information to narrow its search
34221 down to just a few rules in the rule set.
34222 @end defun
34224 @defun rewrite-heads expr
34225 Compute a @var{heads} list for @var{expr} suitable for use with
34226 @code{apply-rewrites}, as discussed above.
34227 @end defun
34229 @defun rewrite expr rules many
34230 This is an all-in-one rewrite function.  It compiles the rule set
34231 specified by @var{rules}, then uses @code{map-tree} to apply the
34232 rules throughout @var{expr} up to @var{many} (default infinity)
34233 times.
34234 @end defun
34236 @defun match-patterns pat vec not-flag
34237 Given a Calc vector @var{vec} and an uncompiled pattern set or
34238 pattern set variable @var{pat}, this function returns a new vector
34239 of all elements of @var{vec} which do (or don't, if @var{not-flag} is
34240 non-@code{nil}) match any of the patterns in @var{pat}.
34241 @end defun
34243 @defun deriv expr var value symb
34244 Compute the derivative of @var{expr} with respect to variable @var{var}
34245 (which may actually be any sub-expression).  If @var{value} is specified,
34246 the derivative is evaluated at the value of @var{var}; otherwise, the
34247 derivative is left in terms of @var{var}.  If the expression contains
34248 functions for which no derivative formula is known, new derivative
34249 functions are invented by adding primes to the names; @pxref{Calculus}.
34250 However, if @var{symb} is non-@code{nil}, the presence of undifferentiable
34251 functions in @var{expr} instead cancels the whole differentiation, and
34252 @code{deriv} returns @code{nil} instead.
34254 Derivatives of an @var{n}-argument function can be defined by
34255 adding a @code{math-derivative-@var{n}} property to the property list
34256 of the symbol for the function's derivative, which will be the
34257 function name followed by an apostrophe.  The value of the property
34258 should be a Lisp function; it is called with the same arguments as the
34259 original function call that is being differentiated.  It should return
34260 a formula for the derivative.  For example, the derivative of @code{ln}
34261 is defined by
34263 @smallexample
34264 (put 'calcFunc-ln\' 'math-derivative-1
34265      (function (lambda (u) (math-div 1 u))))
34266 @end smallexample
34268 The two-argument @code{log} function has two derivatives,
34269 @smallexample
34270 (put 'calcFunc-log\' 'math-derivative-2     ; d(log(x,b)) / dx
34271      (function (lambda (x b) ... )))
34272 (put 'calcFunc-log\'2 'math-derivative-2    ; d(log(x,b)) / db
34273      (function (lambda (x b) ... )))
34274 @end smallexample
34275 @end defun
34277 @defun tderiv expr var value symb
34278 Compute the total derivative of @var{expr}.  This is the same as
34279 @code{deriv}, except that variables other than @var{var} are not
34280 assumed to be constant with respect to @var{var}.
34281 @end defun
34283 @defun integ expr var low high
34284 Compute the integral of @var{expr} with respect to @var{var}.
34285 @xref{Calculus}, for further details.
34286 @end defun
34288 @defmac math-defintegral funcs body
34289 Define a rule for integrating a function or functions of one argument;
34290 this macro is very similar in format to @code{math-defsimplify}.
34291 The main difference is that here @var{body} is the body of a function
34292 with a single argument @code{u} which is bound to the argument to the
34293 function being integrated, not the function call itself.  Also, the
34294 variable of integration is available as @code{math-integ-var}.  If
34295 evaluation of the integral requires doing further integrals, the body
34296 should call @samp{(math-integral @var{x})} to find the integral of
34297 @var{x} with respect to @code{math-integ-var}; this function returns
34298 @code{nil} if the integral could not be done.  Some examples:
34300 @smallexample
34301 (math-defintegral calcFunc-conj
34302   (let ((int (math-integral u)))
34303     (and int
34304          (list 'calcFunc-conj int))))
34306 (math-defintegral calcFunc-cos
34307   (and (equal u math-integ-var)
34308        (math-from-radians-2 (list 'calcFunc-sin u))))
34309 @end smallexample
34311 In the @code{cos} example, we define only the integral of @samp{cos(x) dx},
34312 relying on the general integration-by-substitution facility to handle
34313 cosines of more complicated arguments.  An integration rule should return
34314 @code{nil} if it can't do the integral; if several rules are defined for
34315 the same function, they are tried in order until one returns a non-@code{nil}
34316 result.
34317 @end defmac
34319 @defmac math-defintegral-2 funcs body
34320 Define a rule for integrating a function or functions of two arguments.
34321 This is exactly analogous to @code{math-defintegral}, except that @var{body}
34322 is written as the body of a function with two arguments, @var{u} and
34323 @var{v}.
34324 @end defmac
34326 @defun solve-for lhs rhs var full
34327 Attempt to solve the equation @samp{@var{lhs} = @var{rhs}} by isolating
34328 the variable @var{var} on the lefthand side; return the resulting righthand
34329 side, or @code{nil} if the equation cannot be solved.  The variable
34330 @var{var} must appear at least once in @var{lhs} or @var{rhs}.  Note that
34331 the return value is a formula which does not contain @var{var}; this is
34332 different from the user-level @code{solve} and @code{finv} functions,
34333 which return a rearranged equation or a functional inverse, respectively.
34334 If @var{full} is non-@code{nil}, a full solution including dummy signs
34335 and dummy integers will be produced.  User-defined inverses are provided
34336 as properties in a manner similar to derivatives:
34338 @smallexample
34339 (put 'calcFunc-ln 'math-inverse
34340      (function (lambda (x) (list 'calcFunc-exp x))))
34341 @end smallexample
34343 This function can call @samp{(math-solve-get-sign @var{x})} to create
34344 a new arbitrary sign variable, returning @var{x} times that sign, and
34345 @samp{(math-solve-get-int @var{x})} to create a new arbitrary integer
34346 variable multiplied by @var{x}.  These functions simply return @var{x}
34347 if the caller requested a non-``full'' solution.
34348 @end defun
34350 @defun solve-eqn expr var full
34351 This version of @code{solve-for} takes an expression which will
34352 typically be an equation or inequality.  (If it is not, it will be
34353 interpreted as the equation @samp{@var{expr} = 0}.)  It returns an
34354 equation or inequality, or @code{nil} if no solution could be found.
34355 @end defun
34357 @defun solve-system exprs vars full
34358 This function solves a system of equations.  Generally, @var{exprs}
34359 and @var{vars} will be vectors of equal length.
34360 @xref{Solving Systems of Equations}, for other options.
34361 @end defun
34363 @defun expr-contains expr var
34364 Returns a non-@code{nil} value if @var{var} occurs as a subexpression
34365 of @var{expr}.
34367 This function might seem at first to be identical to
34368 @code{calc-find-sub-formula}.  The key difference is that
34369 @code{expr-contains} uses @code{equal} to test for matches, whereas
34370 @code{calc-find-sub-formula} uses @code{eq}.  In the formula
34371 @samp{f(a, a)}, the two @samp{a}s will be @code{equal} but not
34372 @code{eq} to each other.
34373 @end defun
34375 @defun expr-contains-count expr var
34376 Returns the number of occurrences of @var{var} as a subexpression
34377 of @var{expr}, or @code{nil} if there are no occurrences.
34378 @end defun
34380 @defun expr-depends expr var
34381 Returns true if @var{expr} refers to any variable the occurs in @var{var}.
34382 In other words, it checks if @var{expr} and @var{var} have any variables
34383 in common.
34384 @end defun
34386 @defun expr-contains-vars expr
34387 Return true if @var{expr} contains any variables, or @code{nil} if @var{expr}
34388 contains only constants and functions with constant arguments.
34389 @end defun
34391 @defun expr-subst expr old new
34392 Returns a copy of @var{expr}, with all occurrences of @var{old} replaced
34393 by @var{new}.  This treats @code{lambda} forms specially with respect
34394 to the dummy argument variables, so that the effect is always to return
34395 @var{expr} evaluated at @var{old} = @var{new}.
34396 @end defun
34398 @defun multi-subst expr old new
34399 This is like @code{expr-subst}, except that @var{old} and @var{new}
34400 are lists of expressions to be substituted simultaneously.  If one
34401 list is shorter than the other, trailing elements of the longer list
34402 are ignored.
34403 @end defun
34405 @defun expr-weight expr
34406 Returns the ``weight'' of @var{expr}, basically a count of the total
34407 number of objects and function calls that appear in @var{expr}.  For
34408 ``primitive'' objects, this will be one.
34409 @end defun
34411 @defun expr-height expr
34412 Returns the ``height'' of @var{expr}, which is the deepest level to
34413 which function calls are nested.  (Note that @samp{@var{a} + @var{b}}
34414 counts as a function call.)  For primitive objects, this returns zero.
34415 @end defun
34417 @defun polynomial-p expr var
34418 Check if @var{expr} is a polynomial in variable (or sub-expression)
34419 @var{var}.  If so, return the degree of the polynomial, that is, the
34420 highest power of @var{var} that appears in @var{expr}.  For example,
34421 for @samp{(x^2 + 3)^3 + 4} this would return 6.  This function returns
34422 @code{nil} unless @var{expr}, when expanded out by @kbd{a x}
34423 (@code{calc-expand}), would consist of a sum of terms in which @var{var}
34424 appears only raised to nonnegative integer powers.  Note that if
34425 @var{var} does not occur in @var{expr}, then @var{expr} is considered
34426 a polynomial of degree 0.
34427 @end defun
34429 @defun is-polynomial expr var degree loose
34430 Check if @var{expr} is a polynomial in variable or sub-expression
34431 @var{var}, and, if so, return a list representation of the polynomial
34432 where the elements of the list are coefficients of successive powers of
34433 @var{var}: @samp{@var{a} + @var{b} x + @var{c} x^3} would produce the
34434 list @samp{(@var{a} @var{b} 0 @var{c})}, and @samp{(x + 1)^2} would
34435 produce the list @samp{(1 2 1)}.  The highest element of the list will
34436 be non-zero, with the special exception that if @var{expr} is the
34437 constant zero, the returned value will be @samp{(0)}.  Return @code{nil}
34438 if @var{expr} is not a polynomial in @var{var}.  If @var{degree} is
34439 specified, this will not consider polynomials of degree higher than that
34440 value.  This is a good precaution because otherwise an input of
34441 @samp{(x+1)^1000} will cause a huge coefficient list to be built.  If
34442 @var{loose} is non-@code{nil}, then a looser definition of a polynomial
34443 is used in which coefficients are no longer required not to depend on
34444 @var{var}, but are only required not to take the form of polynomials
34445 themselves.  For example, @samp{sin(x) x^2 + cos(x)} is a loose
34446 polynomial with coefficients @samp{((calcFunc-cos x) 0 (calcFunc-sin
34447 x))}.  The result will never be @code{nil} in loose mode, since any
34448 expression can be interpreted as a ``constant'' loose polynomial.
34449 @end defun
34451 @defun polynomial-base expr pred
34452 Check if @var{expr} is a polynomial in any variable that occurs in it;
34453 if so, return that variable.  (If @var{expr} is a multivariate polynomial,
34454 this chooses one variable arbitrarily.)  If @var{pred} is specified, it should
34455 be a Lisp function which is called as @samp{(@var{pred} @var{subexpr})},
34456 and which should return true if @code{mpb-top-expr} (a global name for
34457 the original @var{expr}) is a suitable polynomial in @var{subexpr}.
34458 The default predicate uses @samp{(polynomial-p mpb-top-expr @var{subexpr})};
34459 you can use @var{pred} to specify additional conditions.  Or, you could
34460 have @var{pred} build up a list of every suitable @var{subexpr} that
34461 is found.
34462 @end defun
34464 @defun poly-simplify poly
34465 Simplify polynomial coefficient list @var{poly} by (destructively)
34466 clipping off trailing zeros.
34467 @end defun
34469 @defun poly-mix a ac b bc
34470 Mix two polynomial lists @var{a} and @var{b} (in the form returned by
34471 @code{is-polynomial}) in a linear combination with coefficient expressions
34472 @var{ac} and @var{bc}.  The result is a (not necessarily simplified)
34473 polynomial list representing @samp{@var{ac} @var{a} + @var{bc} @var{b}}.
34474 @end defun
34476 @defun poly-mul a b
34477 Multiply two polynomial coefficient lists @var{a} and @var{b}.  The
34478 result will be in simplified form if the inputs were simplified.
34479 @end defun
34481 @defun build-polynomial-expr poly var
34482 Construct a Calc formula which represents the polynomial coefficient
34483 list @var{poly} applied to variable @var{var}.  The @kbd{a c}
34484 (@code{calc-collect}) command uses @code{is-polynomial} to turn an
34485 expression into a coefficient list, then @code{build-polynomial-expr}
34486 to turn the list back into an expression in regular form.
34487 @end defun
34489 @defun check-unit-name var
34490 Check if @var{var} is a variable which can be interpreted as a unit
34491 name.  If so, return the units table entry for that unit.  This
34492 will be a list whose first element is the unit name (not counting
34493 prefix characters) as a symbol and whose second element is the
34494 Calc expression which defines the unit.  (Refer to the Calc sources
34495 for details on the remaining elements of this list.)  If @var{var}
34496 is not a variable or is not a unit name, return @code{nil}.
34497 @end defun
34499 @defun units-in-expr-p expr sub-exprs
34500 Return true if @var{expr} contains any variables which can be
34501 interpreted as units.  If @var{sub-exprs} is @code{t}, the entire
34502 expression is searched.  If @var{sub-exprs} is @code{nil}, this
34503 checks whether @var{expr} is directly a units expression.
34504 @end defun
34506 @defun single-units-in-expr-p expr
34507 Check whether @var{expr} contains exactly one units variable.  If so,
34508 return the units table entry for the variable.  If @var{expr} does
34509 not contain any units, return @code{nil}.  If @var{expr} contains
34510 two or more units, return the symbol @code{wrong}.
34511 @end defun
34513 @defun to-standard-units expr which
34514 Convert units expression @var{expr} to base units.  If @var{which}
34515 is @code{nil}, use Calc's native base units.  Otherwise, @var{which}
34516 can specify a units system, which is a list of two-element lists,
34517 where the first element is a Calc base symbol name and the second
34518 is an expression to substitute for it.
34519 @end defun
34521 @defun remove-units expr
34522 Return a copy of @var{expr} with all units variables replaced by ones.
34523 This expression is generally normalized before use.
34524 @end defun
34526 @defun extract-units expr
34527 Return a copy of @var{expr} with everything but units variables replaced
34528 by ones.
34529 @end defun
34531 @node Formatting Lisp Functions, Hooks, Symbolic Lisp Functions, Internals
34532 @subsubsection I/O and Formatting Functions
34534 @noindent
34535 The functions described here are responsible for parsing and formatting
34536 Calc numbers and formulas.
34538 @defun calc-eval str sep arg1 arg2 @dots{}
34539 This is the simplest interface to the Calculator from another Lisp program.
34540 @xref{Calling Calc from Your Programs}.
34541 @end defun
34543 @defun read-number str
34544 If string @var{str} contains a valid Calc number, either integer,
34545 fraction, float, or HMS form, this function parses and returns that
34546 number.  Otherwise, it returns @code{nil}.
34547 @end defun
34549 @defun read-expr str
34550 Read an algebraic expression from string @var{str}.  If @var{str} does
34551 not have the form of a valid expression, return a list of the form
34552 @samp{(error @var{pos} @var{msg})} where @var{pos} is an integer index
34553 into @var{str} of the general location of the error, and @var{msg} is
34554 a string describing the problem.
34555 @end defun
34557 @defun read-exprs str
34558 Read a list of expressions separated by commas, and return it as a
34559 Lisp list.  If an error occurs in any expressions, an error list as
34560 shown above is returned instead.
34561 @end defun
34563 @defun calc-do-alg-entry initial prompt no-norm
34564 Read an algebraic formula or formulas using the minibuffer.  All
34565 conventions of regular algebraic entry are observed.  The return value
34566 is a list of Calc formulas; there will be more than one if the user
34567 entered a list of values separated by commas.  The result is @code{nil}
34568 if the user presses Return with a blank line.  If @var{initial} is
34569 given, it is a string which the minibuffer will initially contain.
34570 If @var{prompt} is given, it is the prompt string to use; the default
34571 is ``Algebraic:''.  If @var{no-norm} is @code{t}, the formulas will
34572 be returned exactly as parsed; otherwise, they will be passed through
34573 @code{calc-normalize} first.
34575 To support the use of @kbd{$} characters in the algebraic entry, use
34576 @code{let} to bind @code{calc-dollar-values} to a list of the values
34577 to be substituted for @kbd{$}, @kbd{$$}, and so on, and bind
34578 @code{calc-dollar-used} to 0.  Upon return, @code{calc-dollar-used}
34579 will have been changed to the highest number of consecutive @kbd{$}s
34580 that actually appeared in the input.
34581 @end defun
34583 @defun format-number a
34584 Convert the real or complex number or HMS form @var{a} to string form.
34585 @end defun
34587 @defun format-flat-expr a prec
34588 Convert the arbitrary Calc number or formula @var{a} to string form,
34589 in the style used by the trail buffer and the @code{calc-edit} command.
34590 This is a simple format designed
34591 mostly to guarantee the string is of a form that can be re-parsed by
34592 @code{read-expr}.  Most formatting modes, such as digit grouping,
34593 complex number format, and point character, are ignored to ensure the
34594 result will be re-readable.  The @var{prec} parameter is normally 0; if
34595 you pass a large integer like 1000 instead, the expression will be
34596 surrounded by parentheses unless it is a plain number or variable name.
34597 @end defun
34599 @defun format-nice-expr a width
34600 This is like @code{format-flat-expr} (with @var{prec} equal to 0),
34601 except that newlines will be inserted to keep lines down to the
34602 specified @var{width}, and vectors that look like matrices or rewrite
34603 rules are written in a pseudo-matrix format.  The @code{calc-edit}
34604 command uses this when only one stack entry is being edited.
34605 @end defun
34607 @defun format-value a width
34608 Convert the Calc number or formula @var{a} to string form, using the
34609 format seen in the stack buffer.  Beware the string returned may
34610 not be re-readable by @code{read-expr}, for example, because of digit
34611 grouping.  Multi-line objects like matrices produce strings that
34612 contain newline characters to separate the lines.  The @var{w}
34613 parameter, if given, is the target window size for which to format
34614 the expressions.  If @var{w} is omitted, the width of the Calculator
34615 window is used.
34616 @end defun
34618 @defun compose-expr a prec
34619 Format the Calc number or formula @var{a} according to the current
34620 language mode, returning a ``composition.''  To learn about the
34621 structure of compositions, see the comments in the Calc source code.
34622 You can specify the format of a given type of function call by putting
34623 a @code{math-compose-@var{lang}} property on the function's symbol,
34624 whose value is a Lisp function that takes @var{a} and @var{prec} as
34625 arguments and returns a composition.  Here @var{lang} is a language
34626 mode name, one of @code{normal}, @code{big}, @code{c}, @code{pascal},
34627 @code{fortran}, @code{tex}, @code{eqn}, @code{math}, or @code{maple}.
34628 In Big mode, Calc actually tries @code{math-compose-big} first, then
34629 tries @code{math-compose-normal}.  If this property does not exist,
34630 or if the function returns @code{nil}, the function is written in the
34631 normal function-call notation for that language.
34632 @end defun
34634 @defun composition-to-string c w
34635 Convert a composition structure returned by @code{compose-expr} into
34636 a string.  Multi-line compositions convert to strings containing
34637 newline characters.  The target window size is given by @var{w}.
34638 The @code{format-value} function basically calls @code{compose-expr}
34639 followed by @code{composition-to-string}.
34640 @end defun
34642 @defun comp-width c
34643 Compute the width in characters of composition @var{c}.
34644 @end defun
34646 @defun comp-height c
34647 Compute the height in lines of composition @var{c}.
34648 @end defun
34650 @defun comp-ascent c
34651 Compute the portion of the height of composition @var{c} which is on or
34652 above the baseline.  For a one-line composition, this will be one.
34653 @end defun
34655 @defun comp-descent c
34656 Compute the portion of the height of composition @var{c} which is below
34657 the baseline.  For a one-line composition, this will be zero.
34658 @end defun
34660 @defun comp-first-char c
34661 If composition @var{c} is a ``flat'' composition, return the first
34662 (leftmost) character of the composition as an integer.  Otherwise,
34663 return @code{nil}.
34664 @end defun
34666 @defun comp-last-char c
34667 If composition @var{c} is a ``flat'' composition, return the last
34668 (rightmost) character, otherwise return @code{nil}.
34669 @end defun
34671 @comment @node Lisp Variables, Hooks, Formatting Lisp Functions, Internals
34672 @comment @subsubsection Lisp Variables
34673 @comment
34674 @comment @noindent
34675 @comment (This section is currently unfinished.)
34677 @node Hooks, , Formatting Lisp Functions, Internals
34678 @subsubsection Hooks
34680 @noindent
34681 Hooks are variables which contain Lisp functions (or lists of functions)
34682 which are called at various times.  Calc defines a number of hooks
34683 that help you to customize it in various ways.  Calc uses the Lisp
34684 function @code{run-hooks} to invoke the hooks shown below.  Several
34685 other customization-related variables are also described here.
34687 @defvar calc-load-hook
34688 This hook is called at the end of @file{calc.el}, after the file has
34689 been loaded, before any functions in it have been called, but after
34690 @code{calc-mode-map} and similar variables have been set up.
34691 @end defvar
34693 @defvar calc-ext-load-hook
34694 This hook is called at the end of @file{calc-ext.el}.
34695 @end defvar
34697 @defvar calc-start-hook
34698 This hook is called as the last step in a @kbd{M-x calc} command.
34699 At this point, the Calc buffer has been created and initialized if
34700 necessary, the Calc window and trail window have been created,
34701 and the ``Welcome to Calc'' message has been displayed.
34702 @end defvar
34704 @defvar calc-mode-hook
34705 This hook is called when the Calc buffer is being created.  Usually
34706 this will only happen once per Emacs session.  The hook is called
34707 after Emacs has switched to the new buffer, the mode-settings file
34708 has been read if necessary, and all other buffer-local variables
34709 have been set up.  After this hook returns, Calc will perform a
34710 @code{calc-refresh} operation, set up the mode line display, then
34711 evaluate any deferred @code{calc-define} properties that have not
34712 been evaluated yet.
34713 @end defvar
34715 @defvar calc-trail-mode-hook
34716 This hook is called when the Calc Trail buffer is being created.
34717 It is called as the very last step of setting up the Trail buffer.
34718 Like @code{calc-mode-hook}, this will normally happen only once
34719 per Emacs session.
34720 @end defvar
34722 @defvar calc-end-hook
34723 This hook is called by @code{calc-quit}, generally because the user
34724 presses @kbd{q} or @kbd{M-# c} while in Calc.  The Calc buffer will
34725 be the current buffer.  The hook is called as the very first
34726 step, before the Calc window is destroyed.
34727 @end defvar
34729 @defvar calc-window-hook
34730 If this hook is non-@code{nil}, it is called to create the Calc window.
34731 Upon return, this new Calc window should be the current window.
34732 (The Calc buffer will already be the current buffer when the
34733 hook is called.)  If the hook is not defined, Calc will
34734 generally use @code{split-window}, @code{set-window-buffer},
34735 and @code{select-window} to create the Calc window.
34736 @end defvar
34738 @defvar calc-trail-window-hook
34739 If this hook is non-@code{nil}, it is called to create the Calc Trail
34740 window.  The variable @code{calc-trail-buffer} will contain the buffer
34741 which the window should use.  Unlike @code{calc-window-hook}, this hook
34742 must @emph{not} switch into the new window.
34743 @end defvar
34745 @defvar calc-embedded-mode-hook
34746 This hook is called the first time that Embedded mode is entered.
34747 @end defvar
34749 @defvar calc-embedded-new-buffer-hook
34750 This hook is called each time that Embedded mode is entered in a
34751 new buffer.
34752 @end defvar
34754 @defvar calc-embedded-new-formula-hook
34755 This hook is called each time that Embedded mode is enabled for a
34756 new formula.
34757 @end defvar
34759 @defvar calc-edit-mode-hook
34760 This hook is called by @code{calc-edit} (and the other ``edit''
34761 commands) when the temporary editing buffer is being created.
34762 The buffer will have been selected and set up to be in
34763 @code{calc-edit-mode}, but will not yet have been filled with
34764 text.  (In fact it may still have leftover text from a previous
34765 @code{calc-edit} command.)
34766 @end defvar
34768 @defvar calc-mode-save-hook
34769 This hook is called by the @code{calc-save-modes} command,
34770 after Calc's own mode features have been inserted into the
34771 Calc init file and just before the ``End of mode settings''
34772 message is inserted.
34773 @end defvar
34775 @defvar calc-reset-hook
34776 This hook is called after @kbd{M-# 0} (@code{calc-reset}) has
34777 reset all modes.  The Calc buffer will be the current buffer.
34778 @end defvar
34780 @defvar calc-other-modes
34781 This variable contains a list of strings.  The strings are
34782 concatenated at the end of the modes portion of the Calc
34783 mode line (after standard modes such as ``Deg'', ``Inv'' and
34784 ``Hyp'').  Each string should be a short, single word followed
34785 by a space.  The variable is @code{nil} by default.
34786 @end defvar
34788 @defvar calc-mode-map
34789 This is the keymap that is used by Calc mode.  The best time
34790 to adjust it is probably in a @code{calc-mode-hook}.  If the
34791 Calc extensions package (@file{calc-ext.el}) has not yet been
34792 loaded, many of these keys will be bound to @code{calc-missing-key},
34793 which is a command that loads the extensions package and
34794 ``retypes'' the key.  If your @code{calc-mode-hook} rebinds
34795 one of these keys, it will probably be overridden when the
34796 extensions are loaded.
34797 @end defvar
34799 @defvar calc-digit-map
34800 This is the keymap that is used during numeric entry.  Numeric
34801 entry uses the minibuffer, but this map binds every non-numeric
34802 key to @code{calcDigit-nondigit} which generally calls
34803 @code{exit-minibuffer} and ``retypes'' the key.
34804 @end defvar
34806 @defvar calc-alg-ent-map
34807 This is the keymap that is used during algebraic entry.  This is
34808 mostly a copy of @code{minibuffer-local-map}.
34809 @end defvar
34811 @defvar calc-store-var-map
34812 This is the keymap that is used during entry of variable names for
34813 commands like @code{calc-store} and @code{calc-recall}.  This is
34814 mostly a copy of @code{minibuffer-local-completion-map}.
34815 @end defvar
34817 @defvar calc-edit-mode-map
34818 This is the (sparse) keymap used by @code{calc-edit} and other
34819 temporary editing commands.  It binds @key{RET}, @key{LFD},
34820 and @kbd{C-c C-c} to @code{calc-edit-finish}.
34821 @end defvar
34823 @defvar calc-mode-var-list
34824 This is a list of variables which are saved by @code{calc-save-modes}.
34825 Each entry is a list of two items, the variable (as a Lisp symbol)
34826 and its default value.  When modes are being saved, each variable
34827 is compared with its default value (using @code{equal}) and any
34828 non-default variables are written out.
34829 @end defvar
34831 @defvar calc-local-var-list
34832 This is a list of variables which should be buffer-local to the
34833 Calc buffer.  Each entry is a variable name (as a Lisp symbol).
34834 These variables also have their default values manipulated by
34835 the @code{calc} and @code{calc-quit} commands; @pxref{Multiple Calculators}.
34836 Since @code{calc-mode-hook} is called after this list has been
34837 used the first time, your hook should add a variable to the
34838 list and also call @code{make-local-variable} itself.
34839 @end defvar
34841 @node Customizable Variables, Reporting Bugs, Programming, Top
34842 @appendix Customizable Variables
34844 GNU Calc is controlled by many variables, most of which can be reset
34845 from within Calc.  Some variables are less involved with actual
34846 calculation, and can be set outside of Calc using Emacs's
34847 customization facilities.  These variables are listed below.
34848 Typing @kbd{M-x customize-variable RET @var{variable-name} RET}
34849 will bring up a buffer in which the variable's value can be redefined.
34850 Typing @kbd{M-x customize-group RET calc RET} will bring up a buffer which
34851 contains all of Calc's customizable variables.  (These variables can
34852 also be reset by putting the appropriate lines in your .emacs file;
34853 @xref{Init File, ,Init File, emacs, The GNU Emacs Manual}.)
34855 Some of the customizable variables are regular expressions.  A regular
34856 expression is basically a pattern that Calc can search for.
34857 See @ref{Regexp Search,, Regular Expression Search, emacs, The GNU Emacs Manual}
34858 to see how regular expressions work.
34860 @defvar calc-settings-file
34861 The variable @code{calc-settings-file} holds the file name in
34862 which commands like @kbd{m m} and @kbd{Z P} store ``permanent''
34863 definitions.  
34864 If @code{calc-settings-file} is not your user init file (typically
34865 @file{~/.emacs}) and if the variable @code{calc-loaded-settings-file} is
34866 @code{nil}, then Calc will automatically load your settings file (if it
34867 exists) the first time Calc is invoked.
34869 The default value for this variable is @code{"~/.calc.el"}.
34870 @end defvar
34872 @defvar calc-gnuplot-name
34873 See @ref{Graphics}.@*
34874 The variable @code{calc-gnuplot-name} should be the name of the
34875 GNUPLOT program (a string).  If you have GNUPLOT installed on your
34876 system but Calc is unable to find it, you may need to set this
34877 variable.  (@pxref{Customizable Variables})
34878 You may also need to set some Lisp variables to show Calc how to run
34879 GNUPLOT on your system, see @ref{Devices, ,Graphical Devices} .  The default value
34880 of @code{calc-gnuplot-name} is @code{"gnuplot"}.
34881 @end defvar
34883 @defvar  calc-gnuplot-plot-command
34884 @defvarx calc-gnuplot-print-command
34885 See @ref{Devices, ,Graphical Devices}.@*
34886 The variables @code{calc-gnuplot-plot-command} and
34887 @code{calc-gnuplot-print-command} represent system commands to
34888 display and print the output of GNUPLOT, respectively.  These may be
34889 @code{nil} if no command is necessary, or strings which can include
34890 @samp{%s} to signify the name of the file to be displayed or printed.
34891 Or, these variables may contain Lisp expressions which are evaluated
34892 to display or print the output.
34894 The default value of @code{calc-gnuplot-plot-command} is @code{nil},
34895 and the default value of @code{calc-gnuplot-print-command} is
34896 @code{"lp %s"}.
34897 @end defvar
34899 @defvar calc-language-alist
34900 See @ref{Basic Embedded Mode}.@*
34901 The variable @code{calc-language-alist} controls the languages that
34902 Calc will associate with major modes.  When Calc embedded mode is
34903 enabled, it will try to use the current major mode to
34904 determine what language should be used.  (This can be overridden using
34905 Calc's mode changing commands, @xref{Mode Settings in Embedded Mode}.)
34906 The variable @code{calc-language-alist} consists of a list of pairs of
34907 the form  @code{(@var{MAJOR-MODE} . @var{LANGUAGE})}; for example, 
34908 @code{(latex-mode . latex)} is one such pair.  If Calc embedded is
34909 activated in a buffer whose major mode is @var{MAJOR-MODE}, it will set itself
34910 to use the language @var{LANGUAGE}.
34912 The default value of @code{calc-language-alist} is
34913 @example
34914    ((latex-mode . latex)
34915     (tex-mode   . tex)
34916     (plain-tex-mode . tex)
34917     (context-mode . tex)
34918     (nroff-mode . eqn)
34919     (pascal-mode . pascal)
34920     (c-mode . c)
34921     (c++-mode . c)
34922     (fortran-mode . fortran)
34923     (f90-mode . fortran))
34924 @end example
34925 @end defvar
34927 @defvar calc-embedded-announce-formula
34928 @defvarx calc-embedded-announce-formula-alist
34929 See @ref{Customizing Embedded Mode}.@*
34930 The variable @code{calc-embedded-announce-formula} helps determine
34931 what formulas @kbd{M-# a} will activate in a buffer.  It is a
34932 regular expression, and when activating embedded formulas with
34933 @kbd{M-# a}, it will tell Calc that what follows is a formula to be
34934 activated.  (Calc also uses other patterns to find formulas, such as
34935 @samp{=>} and @samp{:=}.)  
34937 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, which checks
34938 for @samp{%Embed} followed by any number of lines beginning with
34939 @samp{%} and a space.
34941 The variable @code{calc-embedded-announce-formula-alist} is used to
34942 set @code{calc-embedded-announce-formula} to different regular
34943 expressions depending on the major mode of the editing buffer.
34944 It consists of a list of pairs of the form @code{(@var{MAJOR-MODE} .
34945 @var{REGEXP})}, and its default value is
34946 @example
34947    ((c++-mode     . "//Embed\n\\(// .*\n\\)*")
34948     (c-mode       . "/\\*Embed\\*/\n\\(/\\* .*\\*/\n\\)*")
34949     (f90-mode     . "!Embed\n\\(! .*\n\\)*")
34950     (fortran-mode . "C Embed\n\\(C .*\n\\)*")
34951     (html-helper-mode . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34952     (html-mode    . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34953     (nroff-mode   . "\\\\\"Embed\n\\(\\\\\" .*\n\\)*")
34954     (pascal-mode  . "@{Embed@}\n\\(@{.*@}\n\\)*")
34955     (sgml-mode    . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34956     (xml-mode     . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34957     (texinfo-mode . "@@c Embed\n\\(@@c .*\n\\)*"))
34958 @end example
34959 Any major modes added to @code{calc-embedded-announce-formula-alist}
34960 should also be added to @code{calc-embedded-open-close-plain-alist} 
34961 and @code{calc-embedded-open-close-mode-alist}.
34962 @end defvar
34964 @defvar  calc-embedded-open-formula
34965 @defvarx calc-embedded-close-formula
34966 @defvarx calc-embedded-open-close-formula-alist
34967 See @ref{Customizing Embedded Mode}.@*
34968 The variables @code{calc-embedded-open-formula} and
34969 @code{calc-embedded-open-formula} control the region that Calc will
34970 activate as a formula when Embedded mode is entered with @kbd{M-# e}.
34971 They are regular expressions; 
34972 Calc normally scans backward and forward in the buffer for the
34973 nearest text matching these regular expressions to be the ``formula
34974 delimiters''.
34976 The simplest delimiters are blank lines.  Other delimiters that
34977 Embedded mode understands by default are:
34978 @enumerate
34979 @item
34980 The @TeX{} and La@TeX{} math delimiters @samp{$ $}, @samp{$$ $$},
34981 @samp{\[ \]}, and @samp{\( \)};
34982 @item
34983 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
34984 @item
34985 Lines beginning with @samp{@@} (Texinfo delimiters).
34986 @item
34987 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
34988 @item
34989 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
34990 @end enumerate
34992 The variable @code{calc-embedded-open-close-formula-alist} is used to
34993 set @code{calc-embedded-open-formula} and
34994 @code{calc-embedded-close-formula} to different regular
34995 expressions depending on the major mode of the editing buffer.
34996 It consists of a list of lists of the form 
34997 @code{(@var{MAJOR-MODE}  @var{OPEN-FORMULA-REGEXP}
34998 @var{CLOSE-FORMULA-REGEXP})}, and its default value is
34999 @code{nil}.
35000 @end defvar
35002 @defvar  calc-embedded-open-word
35003 @defvarx calc-embedded-close-word
35004 @defvarx calc-embedded-open-close-word-alist
35005 See @ref{Customizing Embedded Mode}.@*
35006 The variables @code{calc-embedded-open-word} and
35007 @code{calc-embedded-close-word} control the region that Calc will
35008 activate when Embedded mode is entered with @kbd{M-# w}.  They are
35009 regular expressions.
35011 The default values of @code{calc-embedded-open-word} and
35012 @code{calc-embedded-close-word} are @code{"^\\|[^-+0-9.eE]"} and 
35013 @code{"$\\|[^-+0-9.eE]"} respectively.
35015 The variable @code{calc-embedded-open-close-word-alist} is used to
35016 set @code{calc-embedded-open-word} and
35017 @code{calc-embedded-close-word} to different regular
35018 expressions depending on the major mode of the editing buffer.
35019 It consists of a list of lists of the form 
35020 @code{(@var{MAJOR-MODE}  @var{OPEN-WORD-REGEXP}
35021 @var{CLOSE-WORD-REGEXP})}, and its default value is
35022 @code{nil}.
35023 @end defvar
35025 @defvar  calc-embedded-open-plain
35026 @defvarx calc-embedded-close-plain
35027 @defvarx calc-embedded-open-close-plain-alist
35028 See @ref{Customizing Embedded Mode}.@*
35029 The variables @code{calc-embedded-open-plain} and
35030 @code{calc-embedded-open-plain} are used to delimit ``plain''
35031 formulas.  Note that these are actual strings, not regular
35032 expressions, because Calc must be able to write these string into a
35033 buffer as well as to recognize them.
35035 The default string for @code{calc-embedded-open-plain} is 
35036 @code{"%%% "}, note the trailing space.  The default string for 
35037 @code{calc-embedded-close-plain} is @code{" %%%\n"}, without
35038 the trailing newline here, the first line of a Big mode formula
35039 that followed might be shifted over with respect to the other lines.
35041 The variable @code{calc-embedded-open-close-plain-alist} is used to
35042 set @code{calc-embedded-open-plain} and
35043 @code{calc-embedded-close-plain} to different strings
35044 depending on the major mode of the editing buffer.
35045 It consists of a list of lists of the form 
35046 @code{(@var{MAJOR-MODE}  @var{OPEN-PLAIN-STRING}
35047 @var{CLOSE-PLAIN-STRING})}, and its default value is
35048 @example
35049    ((c++-mode     "// %% "   " %%\n")
35050     (c-mode       "/* %% "   " %% */\n")
35051     (f90-mode     "! %% "    " %%\n")
35052     (fortran-mode "C %% "    " %%\n")
35053     (html-helper-mode "<!-- %% " " %% -->\n")
35054     (html-mode "<!-- %% " " %% -->\n")
35055     (nroff-mode   "\\\" %% " " %%\n")
35056     (pascal-mode  "@{%% "    " %%@}\n")
35057     (sgml-mode     "<!-- %% " " %% -->\n")
35058     (xml-mode     "<!-- %% " " %% -->\n")
35059     (texinfo-mode "@@c %% "   " %%\n"))
35060 @end example
35061 Any major modes added to @code{calc-embedded-open-close-plain-alist}
35062 should also be added to @code{calc-embedded-announce-formula-alist}
35063 and @code{calc-embedded-open-close-mode-alist}.
35064 @end defvar
35066 @defvar  calc-embedded-open-new-formula
35067 @defvarx calc-embedded-close-new-formula
35068 @defvarx calc-embedded-open-close-new-formula-alist
35069 See @ref{Customizing Embedded Mode}.@*
35070 The variables @code{calc-embedded-open-new-formula} and
35071 @code{calc-embedded-close-new-formula} are strings which are
35072 inserted before and after a new formula when you type @kbd{M-# f}.
35074 The default value of @code{calc-embedded-open-new-formula} is
35075 @code{"\n\n"}.  If this string begins with a newline character and the
35076 @kbd{M-# f} is typed at the beginning of a line, @kbd{M-# f} will skip
35077 this first newline to avoid introducing unnecessary blank lines in the
35078 file.  The default value of @code{calc-embedded-close-new-formula} is
35079 also @code{"\n\n"}.  The final newline is omitted by @w{@kbd{M-# f}}
35080 if typed at the end of a line.  (It follows that if @kbd{M-# f} is
35081 typed on a blank line, both a leading opening newline and a trailing
35082 closing newline are omitted.)
35084 The variable @code{calc-embedded-open-close-new-formula-alist} is used to
35085 set @code{calc-embedded-open-new-formula} and
35086 @code{calc-embedded-close-new-formula} to different strings
35087 depending on the major mode of the editing buffer.
35088 It consists of a list of lists of the form 
35089 @code{(@var{MAJOR-MODE}  @var{OPEN-NEW-FORMULA-STRING}
35090 @var{CLOSE-NEW-FORMULA-STRING})}, and its default value is
35091 @code{nil}.
35092 @end defvar
35094 @defvar  calc-embedded-open-mode
35095 @defvarx calc-embedded-close-mode
35096 @defvarx calc-embedded-open-close-mode-alist
35097 See @ref{Customizing Embedded Mode}.@*
35098 The variables @code{calc-embedded-open-mode} and
35099 @code{calc-embedded-close-mode} are strings which Calc will place before
35100 and after any mode annotations that it inserts.  Calc never scans for
35101 these strings; Calc always looks for the annotation itself, so it is not
35102 necessary to add them to user-written annotations.
35104 The default value of @code{calc-embedded-open-mode} is @code{"% "}
35105 and the default value of @code{calc-embedded-close-mode} is
35106 @code{"\n"}.  
35107 If you change the value of @code{calc-embedded-close-mode}, it is a good
35108 idea still to end with a newline so that mode annotations will appear on
35109 lines by themselves.
35111 The variable @code{calc-embedded-open-close-mode-alist} is used to
35112 set @code{calc-embedded-open-mode} and
35113 @code{calc-embedded-close-mode} to different strings
35114 expressions depending on the major mode of the editing buffer.
35115 It consists of a list of lists of the form 
35116 @code{(@var{MAJOR-MODE}  @var{OPEN-MODE-STRING}
35117 @var{CLOSE-MODE-STRING})}, and its default value is
35118 @example
35119    ((c++-mode     "// "   "\n")
35120     (c-mode       "/* "   " */\n")
35121     (f90-mode     "! "    "\n")
35122     (fortran-mode "C "    "\n")
35123     (html-helper-mode "<!-- " " -->\n")
35124     (html-mode    "<!-- " " -->\n")
35125     (nroff-mode   "\\\" " "\n")
35126     (pascal-mode  "@{ "    " @}\n")
35127     (sgml-mode    "<!-- " " -->\n")
35128     (xml-mode     "<!-- " " -->\n")
35129     (texinfo-mode "@@c "   "\n"))
35130 @end example
35131 Any major modes added to @code{calc-embedded-open-close-mode-alist}
35132 should also be added to @code{calc-embedded-announce-formula-alist}
35133 and @code{calc-embedded-open-close-plain-alist}.
35134 @end defvar
35136 @node Reporting Bugs, Summary, Customizable Variables, Top
35137 @appendix Reporting Bugs
35139 @noindent
35140 If you find a bug in Calc, send e-mail to Jay Belanger,
35142 @example
35143 belanger@@truman.edu
35144 @end example
35146 @noindent
35147 There is an automatic command @kbd{M-x report-calc-bug} which helps
35148 you to report bugs.  This command prompts you for a brief subject
35149 line, then leaves you in a mail editing buffer.  Type @kbd{C-c C-c} to
35150 send your mail.  Make sure your subject line indicates that you are
35151 reporting a Calc bug; this command sends mail to the maintainer's
35152 regular mailbox.
35154 If you have suggestions for additional features for Calc, please send
35155 them.  Some have dared to suggest that Calc is already top-heavy with
35156 features; this obviously cannot be the case, so if you have ideas, send
35157 them right in.
35159 At the front of the source file, @file{calc.el}, is a list of ideas for
35160 future work.  If any enthusiastic souls wish to take it upon themselves
35161 to work on these, please send a message (using @kbd{M-x report-calc-bug})
35162 so any efforts can be coordinated.
35164 The latest version of Calc is available from Savannah, in the Emacs
35165 CVS tree.  See @uref{http://savannah.gnu.org/projects/emacs}.
35167 @c [summary]
35168 @node Summary, Key Index, Reporting Bugs, Top
35169 @appendix Calc Summary
35171 @noindent
35172 This section includes a complete list of Calc 2.1 keystroke commands.
35173 Each line lists the stack entries used by the command (top-of-stack
35174 last), the keystrokes themselves, the prompts asked by the command,
35175 and the result of the command (also with top-of-stack last).
35176 The result is expressed using the equivalent algebraic function.
35177 Commands which put no results on the stack show the full @kbd{M-x}
35178 command name in that position.  Numbers preceding the result or
35179 command name refer to notes at the end.
35181 Algebraic functions and @kbd{M-x} commands that don't have corresponding
35182 keystrokes are not listed in this summary.
35183 @xref{Command Index}.  @xref{Function Index}.
35185 @iftex
35186 @begingroup
35187 @tex
35188 \vskip-2\baselineskip \null
35189 \gdef\sumrow#1{\sumrowx#1\relax}%
35190 \gdef\sumrowx#1\:#2\:#3\:#4\:#5\:#6\relax{%
35191 \leavevmode%
35192 {\smallfonts
35193 \hbox to5em{\sl\hss#1}%
35194 \hbox to5em{\tt#2\hss}%
35195 \hbox to4em{\sl#3\hss}%
35196 \hbox to5em{\rm\hss#4}%
35197 \thinspace%
35198 {\tt#5}%
35199 {\sl#6}%
35201 \gdef\sumlpar{{\rm(}}%
35202 \gdef\sumrpar{{\rm)}}%
35203 \gdef\sumcomma{{\rm,\thinspace}}%
35204 \gdef\sumexcl{{\rm!}}%
35205 \gdef\sumbreak{\vskip-2.5\baselineskip\goodbreak}%
35206 \gdef\minus#1{{\tt-}}%
35207 @end tex
35208 @let@:=@sumsep
35209 @let@r=@sumrow
35210 @catcode`@(=@active @let(=@sumlpar
35211 @catcode`@)=@active @let)=@sumrpar
35212 @catcode`@,=@active @let,=@sumcomma
35213 @catcode`@!=@active @let!=@sumexcl
35214 @end iftex
35215 @format
35216 @iftex
35217 @advance@baselineskip-2.5pt
35218 @let@c@sumbreak
35219 @end iftex
35220 @r{       @:     M-# a  @:             @:    33  @:calc-embedded-activate@:}
35221 @r{       @:     M-# b  @:             @:        @:calc-big-or-small@:}
35222 @r{       @:     M-# c  @:             @:        @:calc@:}
35223 @r{       @:     M-# d  @:             @:        @:calc-embedded-duplicate@:}
35224 @r{       @:     M-# e  @:             @:    34  @:calc-embedded@:}
35225 @r{       @:     M-# f  @:formula      @:        @:calc-embedded-new-formula@:}
35226 @r{       @:     M-# g  @:             @:    35  @:calc-grab-region@:}
35227 @r{       @:     M-# i  @:             @:        @:calc-info@:}
35228 @r{       @:     M-# j  @:             @:        @:calc-embedded-select@:}
35229 @r{       @:     M-# k  @:             @:        @:calc-keypad@:}
35230 @r{       @:     M-# l  @:             @:        @:calc-load-everything@:}
35231 @r{       @:     M-# m  @:             @:        @:read-kbd-macro@:}
35232 @r{       @:     M-# n  @:             @:     4  @:calc-embedded-next@:}
35233 @r{       @:     M-# o  @:             @:        @:calc-other-window@:}
35234 @r{       @:     M-# p  @:             @:     4  @:calc-embedded-previous@:}
35235 @r{       @:     M-# q  @:formula      @:        @:quick-calc@:}
35236 @r{       @:     M-# r  @:             @:    36  @:calc-grab-rectangle@:}
35237 @r{       @:     M-# s  @:             @:        @:calc-info-summary@:}
35238 @r{       @:     M-# t  @:             @:        @:calc-tutorial@:}
35239 @r{       @:     M-# u  @:             @:        @:calc-embedded-update-formula@:}
35240 @r{       @:     M-# w  @:             @:        @:calc-embedded-word@:}
35241 @r{       @:     M-# x  @:             @:        @:calc-quit@:}
35242 @r{       @:     M-# y  @:            @:1,28,49  @:calc-copy-to-buffer@:}
35243 @r{       @:     M-# z  @:             @:        @:calc-user-invocation@:}
35244 @r{       @:     M-# =  @:             @:        @:calc-embedded-update-formula@:}
35245 @r{       @:     M-# :  @:             @:    36  @:calc-grab-sum-down@:}
35246 @r{       @:     M-# _  @:             @:    36  @:calc-grab-sum-across@:}
35247 @r{       @:     M-# `  @:editing      @:    30  @:calc-embedded-edit@:}
35248 @r{       @:     M-# 0  @:(zero)       @:        @:calc-reset@:}
35251 @r{       @:      0-9   @:number       @:        @:@:number}
35252 @r{       @:      .     @:number       @:        @:@:0.number}
35253 @r{       @:      _     @:number       @:        @:-@:number}
35254 @r{       @:      e     @:number       @:        @:@:1e number}
35255 @r{       @:      #     @:number       @:        @:@:current-radix@tfn{#}number}
35256 @r{       @:      P     @:(in number)  @:        @:+/-@:}
35257 @r{       @:      M     @:(in number)  @:        @:mod@:}
35258 @r{       @:      @@ ' " @:  (in number)@:        @:@:HMS form}
35259 @r{       @:      h m s @:  (in number)@:        @:@:HMS form}
35262 @r{       @:      '     @:formula      @: 37,46  @:@:formula}
35263 @r{       @:      $     @:formula      @: 37,46  @:$@:formula}
35264 @r{       @:      "     @:string       @: 37,46  @:@:string}
35267 @r{    a b@:      +     @:             @:     2  @:add@:(a,b)  a+b}
35268 @r{    a b@:      -     @:             @:     2  @:sub@:(a,b)  a@minus{}b}
35269 @r{    a b@:      *     @:             @:     2  @:mul@:(a,b)  a b, a*b}
35270 @r{    a b@:      /     @:             @:     2  @:div@:(a,b)  a/b}
35271 @r{    a b@:      ^     @:             @:     2  @:pow@:(a,b)  a^b}
35272 @r{    a b@:    I ^     @:             @:     2  @:nroot@:(a,b)  a^(1/b)}
35273 @r{    a b@:      %     @:             @:     2  @:mod@:(a,b)  a%b}
35274 @r{    a b@:      \     @:             @:     2  @:idiv@:(a,b)  a\b}
35275 @r{    a b@:      :     @:             @:     2  @:fdiv@:(a,b)}
35276 @r{    a b@:      |     @:             @:     2  @:vconcat@:(a,b)  a|b}
35277 @r{    a b@:    I |     @:             @:        @:vconcat@:(b,a)  b|a}
35278 @r{    a b@:    H |     @:             @:     2  @:append@:(a,b)}
35279 @r{    a b@:  I H |     @:             @:        @:append@:(b,a)}
35280 @r{      a@:      &     @:             @:     1  @:inv@:(a)  1/a}
35281 @r{      a@:      !     @:             @:     1  @:fact@:(a)  a!}
35282 @r{      a@:      =     @:             @:     1  @:evalv@:(a)}
35283 @r{      a@:      M-%   @:             @:        @:percent@:(a)  a%}
35286 @r{  ... a@:      @key{RET}   @:             @:     1  @:@:... a a}
35287 @r{  ... a@:      @key{SPC}   @:             @:     1  @:@:... a a}
35288 @r{... a b@:      @key{TAB}   @:             @:     3  @:@:... b a}
35289 @r{. a b c@:      M-@key{TAB} @:             @:     3  @:@:... b c a}
35290 @r{... a b@:      @key{LFD}   @:             @:     1  @:@:... a b a}
35291 @r{  ... a@:      @key{DEL}   @:             @:     1  @:@:...}
35292 @r{... a b@:      M-@key{DEL} @:             @:     1  @:@:... b}
35293 @r{       @:      M-@key{RET} @:             @:     4  @:calc-last-args@:}
35294 @r{      a@:      `     @:editing      @:  1,30  @:calc-edit@:}
35297 @r{  ... a@:      C-d   @:             @:     1  @:@:...}
35298 @r{       @:      C-k   @:             @:    27  @:calc-kill@:}
35299 @r{       @:      C-w   @:             @:    27  @:calc-kill-region@:}
35300 @r{       @:      C-y   @:             @:        @:calc-yank@:}
35301 @r{       @:      C-_   @:             @:     4  @:calc-undo@:}
35302 @r{       @:      M-k   @:             @:    27  @:calc-copy-as-kill@:}
35303 @r{       @:      M-w   @:             @:    27  @:calc-copy-region-as-kill@:}
35306 @r{       @:      [     @:             @:        @:@:[...}
35307 @r{[.. a b@:      ]     @:             @:        @:@:[a,b]}
35308 @r{       @:      (     @:             @:        @:@:(...}
35309 @r{(.. a b@:      )     @:             @:        @:@:(a,b)}
35310 @r{       @:      ,     @:             @:        @:@:vector or rect complex}
35311 @r{       @:      ;     @:             @:        @:@:matrix or polar complex}
35312 @r{       @:      ..    @:             @:        @:@:interval}
35315 @r{       @:      ~     @:             @:        @:calc-num-prefix@:}
35316 @r{       @:      <     @:             @:     4  @:calc-scroll-left@:}
35317 @r{       @:      >     @:             @:     4  @:calc-scroll-right@:}
35318 @r{       @:      @{     @:             @:     4  @:calc-scroll-down@:}
35319 @r{       @:      @}     @:             @:     4  @:calc-scroll-up@:}
35320 @r{       @:      ?     @:             @:        @:calc-help@:}
35323 @r{      a@:      n     @:             @:     1  @:neg@:(a)  @minus{}a}
35324 @r{       @:      o     @:             @:     4  @:calc-realign@:}
35325 @r{       @:      p     @:precision    @:    31  @:calc-precision@:}
35326 @r{       @:      q     @:             @:        @:calc-quit@:}
35327 @r{       @:      w     @:             @:        @:calc-why@:}
35328 @r{       @:      x     @:command      @:        @:M-x calc-@:command}
35329 @r{      a@:      y     @:            @:1,28,49  @:calc-copy-to-buffer@:}
35332 @r{      a@:      A     @:             @:     1  @:abs@:(a)}
35333 @r{    a b@:      B     @:             @:     2  @:log@:(a,b)}
35334 @r{    a b@:    I B     @:             @:     2  @:alog@:(a,b)  b^a}
35335 @r{      a@:      C     @:             @:     1  @:cos@:(a)}
35336 @r{      a@:    I C     @:             @:     1  @:arccos@:(a)}
35337 @r{      a@:    H C     @:             @:     1  @:cosh@:(a)}
35338 @r{      a@:  I H C     @:             @:     1  @:arccosh@:(a)}
35339 @r{       @:      D     @:             @:     4  @:calc-redo@:}
35340 @r{      a@:      E     @:             @:     1  @:exp@:(a)}
35341 @r{      a@:    H E     @:             @:     1  @:exp10@:(a)  10.^a}
35342 @r{      a@:      F     @:             @:  1,11  @:floor@:(a,d)}
35343 @r{      a@:    I F     @:             @:  1,11  @:ceil@:(a,d)}
35344 @r{      a@:    H F     @:             @:  1,11  @:ffloor@:(a,d)}
35345 @r{      a@:  I H F     @:             @:  1,11  @:fceil@:(a,d)}
35346 @r{      a@:      G     @:             @:     1  @:arg@:(a)}
35347 @r{       @:      H     @:command      @:    32  @:@:Hyperbolic}
35348 @r{       @:      I     @:command      @:    32  @:@:Inverse}
35349 @r{      a@:      J     @:             @:     1  @:conj@:(a)}
35350 @r{       @:      K     @:command      @:    32  @:@:Keep-args}
35351 @r{      a@:      L     @:             @:     1  @:ln@:(a)}
35352 @r{      a@:    H L     @:             @:     1  @:log10@:(a)}
35353 @r{       @:      M     @:             @:        @:calc-more-recursion-depth@:}
35354 @r{       @:    I M     @:             @:        @:calc-less-recursion-depth@:}
35355 @r{      a@:      N     @:             @:     5  @:evalvn@:(a)}
35356 @r{       @:      P     @:             @:        @:@:pi}
35357 @r{       @:    I P     @:             @:        @:@:gamma}
35358 @r{       @:    H P     @:             @:        @:@:e}
35359 @r{       @:  I H P     @:             @:        @:@:phi}
35360 @r{      a@:      Q     @:             @:     1  @:sqrt@:(a)}
35361 @r{      a@:    I Q     @:             @:     1  @:sqr@:(a)  a^2}
35362 @r{      a@:      R     @:             @:  1,11  @:round@:(a,d)}
35363 @r{      a@:    I R     @:             @:  1,11  @:trunc@:(a,d)}
35364 @r{      a@:    H R     @:             @:  1,11  @:fround@:(a,d)}
35365 @r{      a@:  I H R     @:             @:  1,11  @:ftrunc@:(a,d)}
35366 @r{      a@:      S     @:             @:     1  @:sin@:(a)}
35367 @r{      a@:    I S     @:             @:     1  @:arcsin@:(a)}
35368 @r{      a@:    H S     @:             @:     1  @:sinh@:(a)}
35369 @r{      a@:  I H S     @:             @:     1  @:arcsinh@:(a)}
35370 @r{      a@:      T     @:             @:     1  @:tan@:(a)}
35371 @r{      a@:    I T     @:             @:     1  @:arctan@:(a)}
35372 @r{      a@:    H T     @:             @:     1  @:tanh@:(a)}
35373 @r{      a@:  I H T     @:             @:     1  @:arctanh@:(a)}
35374 @r{       @:      U     @:             @:     4  @:calc-undo@:}
35375 @r{       @:      X     @:             @:     4  @:calc-call-last-kbd-macro@:}
35378 @r{    a b@:      a =   @:             @:     2  @:eq@:(a,b)  a=b}
35379 @r{    a b@:      a #   @:             @:     2  @:neq@:(a,b)  a!=b}
35380 @r{    a b@:      a <   @:             @:     2  @:lt@:(a,b)  a<b}
35381 @r{    a b@:      a >   @:             @:     2  @:gt@:(a,b)  a>b}
35382 @r{    a b@:      a [   @:             @:     2  @:leq@:(a,b)  a<=b}
35383 @r{    a b@:      a ]   @:             @:     2  @:geq@:(a,b)  a>=b}
35384 @r{    a b@:      a @{   @:             @:     2  @:in@:(a,b)}
35385 @r{    a b@:      a &   @:             @:  2,45  @:land@:(a,b)  a&&b}
35386 @r{    a b@:      a |   @:             @:  2,45  @:lor@:(a,b)  a||b}
35387 @r{      a@:      a !   @:             @:  1,45  @:lnot@:(a)  !a}
35388 @r{  a b c@:      a :   @:             @:    45  @:if@:(a,b,c)  a?b:c}
35389 @r{      a@:      a .   @:             @:     1  @:rmeq@:(a)}
35390 @r{      a@:      a "   @:             @:   7,8  @:calc-expand-formula@:}
35393 @r{      a@:      a +   @:i, l, h      @:  6,38  @:sum@:(a,i,l,h)}
35394 @r{      a@:      a -   @:i, l, h      @:  6,38  @:asum@:(a,i,l,h)}
35395 @r{      a@:      a *   @:i, l, h      @:  6,38  @:prod@:(a,i,l,h)}
35396 @r{    a b@:      a _   @:             @:     2  @:subscr@:(a,b)  a_b}
35399 @r{    a b@:      a \   @:             @:     2  @:pdiv@:(a,b)}
35400 @r{    a b@:      a %   @:             @:     2  @:prem@:(a,b)}
35401 @r{    a b@:      a /   @:             @:     2  @:pdivrem@:(a,b)  [q,r]}
35402 @r{    a b@:    H a /   @:             @:     2  @:pdivide@:(a,b)  q+r/b}
35405 @r{      a@:      a a   @:             @:     1  @:apart@:(a)}
35406 @r{      a@:      a b   @:old, new     @:    38  @:subst@:(a,old,new)}
35407 @r{      a@:      a c   @:v            @:    38  @:collect@:(a,v)}
35408 @r{      a@:      a d   @:v            @:  4,38  @:deriv@:(a,v)}
35409 @r{      a@:    H a d   @:v            @:  4,38  @:tderiv@:(a,v)}
35410 @r{      a@:      a e   @:             @:        @:esimplify@:(a)}
35411 @r{      a@:      a f   @:             @:     1  @:factor@:(a)}
35412 @r{      a@:    H a f   @:             @:     1  @:factors@:(a)}
35413 @r{    a b@:      a g   @:             @:     2  @:pgcd@:(a,b)}
35414 @r{      a@:      a i   @:v            @:    38  @:integ@:(a,v)}
35415 @r{      a@:      a m   @:pats         @:    38  @:match@:(a,pats)}
35416 @r{      a@:    I a m   @:pats         @:    38  @:matchnot@:(a,pats)}
35417 @r{ data x@:      a p   @:             @:    28  @:polint@:(data,x)}
35418 @r{ data x@:    H a p   @:             @:    28  @:ratint@:(data,x)}
35419 @r{      a@:      a n   @:             @:     1  @:nrat@:(a)}
35420 @r{      a@:      a r   @:rules        @:4,8,38  @:rewrite@:(a,rules,n)}
35421 @r{      a@:      a s   @:             @:        @:simplify@:(a)}
35422 @r{      a@:      a t   @:v, n         @: 31,39  @:taylor@:(a,v,n)}
35423 @r{      a@:      a v   @:             @:   7,8  @:calc-alg-evaluate@:}
35424 @r{      a@:      a x   @:             @:   4,8  @:expand@:(a)}
35427 @r{   data@:      a F   @:model, vars  @:    48  @:fit@:(m,iv,pv,data)}
35428 @r{   data@:    I a F   @:model, vars  @:    48  @:xfit@:(m,iv,pv,data)}
35429 @r{   data@:    H a F   @:model, vars  @:    48  @:efit@:(m,iv,pv,data)}
35430 @r{      a@:      a I   @:v, l, h      @:    38  @:ninteg@:(a,v,l,h)}
35431 @r{    a b@:      a M   @:op           @:    22  @:mapeq@:(op,a,b)}
35432 @r{    a b@:    I a M   @:op           @:    22  @:mapeqr@:(op,a,b)}
35433 @r{    a b@:    H a M   @:op           @:    22  @:mapeqp@:(op,a,b)}
35434 @r{    a g@:      a N   @:v            @:    38  @:minimize@:(a,v,g)}
35435 @r{    a g@:    H a N   @:v            @:    38  @:wminimize@:(a,v,g)}
35436 @r{      a@:      a P   @:v            @:    38  @:roots@:(a,v)}
35437 @r{    a g@:      a R   @:v            @:    38  @:root@:(a,v,g)}
35438 @r{    a g@:    H a R   @:v            @:    38  @:wroot@:(a,v,g)}
35439 @r{      a@:      a S   @:v            @:    38  @:solve@:(a,v)}
35440 @r{      a@:    I a S   @:v            @:    38  @:finv@:(a,v)}
35441 @r{      a@:    H a S   @:v            @:    38  @:fsolve@:(a,v)}
35442 @r{      a@:  I H a S   @:v            @:    38  @:ffinv@:(a,v)}
35443 @r{      a@:      a T   @:i, l, h      @:  6,38  @:table@:(a,i,l,h)}
35444 @r{    a g@:      a X   @:v            @:    38  @:maximize@:(a,v,g)}
35445 @r{    a g@:    H a X   @:v            @:    38  @:wmaximize@:(a,v,g)}
35448 @r{    a b@:      b a   @:             @:     9  @:and@:(a,b,w)}
35449 @r{      a@:      b c   @:             @:     9  @:clip@:(a,w)}
35450 @r{    a b@:      b d   @:             @:     9  @:diff@:(a,b,w)}
35451 @r{      a@:      b l   @:             @:    10  @:lsh@:(a,n,w)}
35452 @r{    a n@:    H b l   @:             @:     9  @:lsh@:(a,n,w)}
35453 @r{      a@:      b n   @:             @:     9  @:not@:(a,w)}
35454 @r{    a b@:      b o   @:             @:     9  @:or@:(a,b,w)}
35455 @r{      v@:      b p   @:             @:     1  @:vpack@:(v)}
35456 @r{      a@:      b r   @:             @:    10  @:rsh@:(a,n,w)}
35457 @r{    a n@:    H b r   @:             @:     9  @:rsh@:(a,n,w)}
35458 @r{      a@:      b t   @:             @:    10  @:rot@:(a,n,w)}
35459 @r{    a n@:    H b t   @:             @:     9  @:rot@:(a,n,w)}
35460 @r{      a@:      b u   @:             @:     1  @:vunpack@:(a)}
35461 @r{       @:      b w   @:w            @:  9,50  @:calc-word-size@:}
35462 @r{    a b@:      b x   @:             @:     9  @:xor@:(a,b,w)}
35465 @r{c s l p@:      b D   @:             @:        @:ddb@:(c,s,l,p)}
35466 @r{  r n p@:      b F   @:             @:        @:fv@:(r,n,p)}
35467 @r{  r n p@:    I b F   @:             @:        @:fvb@:(r,n,p)}
35468 @r{  r n p@:    H b F   @:             @:        @:fvl@:(r,n,p)}
35469 @r{      v@:      b I   @:             @:    19  @:irr@:(v)}
35470 @r{      v@:    I b I   @:             @:    19  @:irrb@:(v)}
35471 @r{      a@:      b L   @:             @:    10  @:ash@:(a,n,w)}
35472 @r{    a n@:    H b L   @:             @:     9  @:ash@:(a,n,w)}
35473 @r{  r n a@:      b M   @:             @:        @:pmt@:(r,n,a)}
35474 @r{  r n a@:    I b M   @:             @:        @:pmtb@:(r,n,a)}
35475 @r{  r n a@:    H b M   @:             @:        @:pmtl@:(r,n,a)}
35476 @r{    r v@:      b N   @:             @:    19  @:npv@:(r,v)}
35477 @r{    r v@:    I b N   @:             @:    19  @:npvb@:(r,v)}
35478 @r{  r n p@:      b P   @:             @:        @:pv@:(r,n,p)}
35479 @r{  r n p@:    I b P   @:             @:        @:pvb@:(r,n,p)}
35480 @r{  r n p@:    H b P   @:             @:        @:pvl@:(r,n,p)}
35481 @r{      a@:      b R   @:             @:    10  @:rash@:(a,n,w)}
35482 @r{    a n@:    H b R   @:             @:     9  @:rash@:(a,n,w)}
35483 @r{  c s l@:      b S   @:             @:        @:sln@:(c,s,l)}
35484 @r{  n p a@:      b T   @:             @:        @:rate@:(n,p,a)}
35485 @r{  n p a@:    I b T   @:             @:        @:rateb@:(n,p,a)}
35486 @r{  n p a@:    H b T   @:             @:        @:ratel@:(n,p,a)}
35487 @r{c s l p@:      b Y   @:             @:        @:syd@:(c,s,l,p)}
35489 @r{  r p a@:      b #   @:             @:        @:nper@:(r,p,a)}
35490 @r{  r p a@:    I b #   @:             @:        @:nperb@:(r,p,a)}
35491 @r{  r p a@:    H b #   @:             @:        @:nperl@:(r,p,a)}
35492 @r{    a b@:      b %   @:             @:        @:relch@:(a,b)}
35495 @r{      a@:      c c   @:             @:     5  @:pclean@:(a,p)}
35496 @r{      a@:      c 0-9 @:             @:        @:pclean@:(a,p)}
35497 @r{      a@:    H c c   @:             @:     5  @:clean@:(a,p)}
35498 @r{      a@:    H c 0-9 @:             @:        @:clean@:(a,p)}
35499 @r{      a@:      c d   @:             @:     1  @:deg@:(a)}
35500 @r{      a@:      c f   @:             @:     1  @:pfloat@:(a)}
35501 @r{      a@:    H c f   @:             @:     1  @:float@:(a)}
35502 @r{      a@:      c h   @:             @:     1  @:hms@:(a)}
35503 @r{      a@:      c p   @:             @:        @:polar@:(a)}
35504 @r{      a@:    I c p   @:             @:        @:rect@:(a)}
35505 @r{      a@:      c r   @:             @:     1  @:rad@:(a)}
35508 @r{      a@:      c F   @:             @:     5  @:pfrac@:(a,p)}
35509 @r{      a@:    H c F   @:             @:     5  @:frac@:(a,p)}
35512 @r{      a@:      c %   @:             @:        @:percent@:(a*100)}
35515 @r{       @:      d .   @:char         @:    50  @:calc-point-char@:}
35516 @r{       @:      d ,   @:char         @:    50  @:calc-group-char@:}
35517 @r{       @:      d <   @:             @: 13,50  @:calc-left-justify@:}
35518 @r{       @:      d =   @:             @: 13,50  @:calc-center-justify@:}
35519 @r{       @:      d >   @:             @: 13,50  @:calc-right-justify@:}
35520 @r{       @:      d @{   @:label        @:    50  @:calc-left-label@:}
35521 @r{       @:      d @}   @:label        @:    50  @:calc-right-label@:}
35522 @r{       @:      d [   @:             @:     4  @:calc-truncate-up@:}
35523 @r{       @:      d ]   @:             @:     4  @:calc-truncate-down@:}
35524 @r{       @:      d "   @:             @: 12,50  @:calc-display-strings@:}
35525 @r{       @:      d @key{SPC} @:             @:        @:calc-refresh@:}
35526 @r{       @:      d @key{RET} @:             @:     1  @:calc-refresh-top@:}
35529 @r{       @:      d 0   @:             @:    50  @:calc-decimal-radix@:}
35530 @r{       @:      d 2   @:             @:    50  @:calc-binary-radix@:}
35531 @r{       @:      d 6   @:             @:    50  @:calc-hex-radix@:}
35532 @r{       @:      d 8   @:             @:    50  @:calc-octal-radix@:}
35535 @r{       @:      d b   @:           @:12,13,50  @:calc-line-breaking@:}
35536 @r{       @:      d c   @:             @:    50  @:calc-complex-notation@:}
35537 @r{       @:      d d   @:format       @:    50  @:calc-date-notation@:}
35538 @r{       @:      d e   @:             @:  5,50  @:calc-eng-notation@:}
35539 @r{       @:      d f   @:num          @: 31,50  @:calc-fix-notation@:}
35540 @r{       @:      d g   @:           @:12,13,50  @:calc-group-digits@:}
35541 @r{       @:      d h   @:format       @:    50  @:calc-hms-notation@:}
35542 @r{       @:      d i   @:             @:    50  @:calc-i-notation@:}
35543 @r{       @:      d j   @:             @:    50  @:calc-j-notation@:}
35544 @r{       @:      d l   @:             @: 12,50  @:calc-line-numbering@:}
35545 @r{       @:      d n   @:             @:  5,50  @:calc-normal-notation@:}
35546 @r{       @:      d o   @:format       @:    50  @:calc-over-notation@:}
35547 @r{       @:      d p   @:             @: 12,50  @:calc-show-plain@:}
35548 @r{       @:      d r   @:radix        @: 31,50  @:calc-radix@:}
35549 @r{       @:      d s   @:             @:  5,50  @:calc-sci-notation@:}
35550 @r{       @:      d t   @:             @:    27  @:calc-truncate-stack@:}
35551 @r{       @:      d w   @:             @: 12,13  @:calc-auto-why@:}
35552 @r{       @:      d z   @:             @: 12,50  @:calc-leading-zeros@:}
35555 @r{       @:      d B   @:             @:    50  @:calc-big-language@:}
35556 @r{       @:      d C   @:             @:    50  @:calc-c-language@:}
35557 @r{       @:      d E   @:             @:    50  @:calc-eqn-language@:}
35558 @r{       @:      d F   @:             @:    50  @:calc-fortran-language@:}
35559 @r{       @:      d M   @:             @:    50  @:calc-mathematica-language@:}
35560 @r{       @:      d N   @:             @:    50  @:calc-normal-language@:}
35561 @r{       @:      d O   @:             @:    50  @:calc-flat-language@:}
35562 @r{       @:      d P   @:             @:    50  @:calc-pascal-language@:}
35563 @r{       @:      d T   @:             @:    50  @:calc-tex-language@:}
35564 @r{       @:      d L   @:             @:    50  @:calc-latex-language@:}
35565 @r{       @:      d U   @:             @:    50  @:calc-unformatted-language@:}
35566 @r{       @:      d W   @:             @:    50  @:calc-maple-language@:}
35569 @r{      a@:      f [   @:             @:     4  @:decr@:(a,n)}
35570 @r{      a@:      f ]   @:             @:     4  @:incr@:(a,n)}
35573 @r{    a b@:      f b   @:             @:     2  @:beta@:(a,b)}
35574 @r{      a@:      f e   @:             @:     1  @:erf@:(a)}
35575 @r{      a@:    I f e   @:             @:     1  @:erfc@:(a)}
35576 @r{      a@:      f g   @:             @:     1  @:gamma@:(a)}
35577 @r{    a b@:      f h   @:             @:     2  @:hypot@:(a,b)}
35578 @r{      a@:      f i   @:             @:     1  @:im@:(a)}
35579 @r{    n a@:      f j   @:             @:     2  @:besJ@:(n,a)}
35580 @r{    a b@:      f n   @:             @:     2  @:min@:(a,b)}
35581 @r{      a@:      f r   @:             @:     1  @:re@:(a)}
35582 @r{      a@:      f s   @:             @:     1  @:sign@:(a)}
35583 @r{    a b@:      f x   @:             @:     2  @:max@:(a,b)}
35584 @r{    n a@:      f y   @:             @:     2  @:besY@:(n,a)}
35587 @r{      a@:      f A   @:             @:     1  @:abssqr@:(a)}
35588 @r{  x a b@:      f B   @:             @:        @:betaI@:(x,a,b)}
35589 @r{  x a b@:    H f B   @:             @:        @:betaB@:(x,a,b)}
35590 @r{      a@:      f E   @:             @:     1  @:expm1@:(a)}
35591 @r{    a x@:      f G   @:             @:     2  @:gammaP@:(a,x)}
35592 @r{    a x@:    I f G   @:             @:     2  @:gammaQ@:(a,x)}
35593 @r{    a x@:    H f G   @:             @:     2  @:gammag@:(a,x)}
35594 @r{    a x@:  I H f G   @:             @:     2  @:gammaG@:(a,x)}
35595 @r{    a b@:      f I   @:             @:     2  @:ilog@:(a,b)}
35596 @r{    a b@:    I f I   @:             @:     2  @:alog@:(a,b)  b^a}
35597 @r{      a@:      f L   @:             @:     1  @:lnp1@:(a)}
35598 @r{      a@:      f M   @:             @:     1  @:mant@:(a)}
35599 @r{      a@:      f Q   @:             @:     1  @:isqrt@:(a)}
35600 @r{      a@:    I f Q   @:             @:     1  @:sqr@:(a)  a^2}
35601 @r{    a n@:      f S   @:             @:     2  @:scf@:(a,n)}
35602 @r{    y x@:      f T   @:             @:        @:arctan2@:(y,x)}
35603 @r{      a@:      f X   @:             @:     1  @:xpon@:(a)}
35606 @r{    x y@:      g a   @:             @: 28,40  @:calc-graph-add@:}
35607 @r{       @:      g b   @:             @:    12  @:calc-graph-border@:}
35608 @r{       @:      g c   @:             @:        @:calc-graph-clear@:}
35609 @r{       @:      g d   @:             @:    41  @:calc-graph-delete@:}
35610 @r{    x y@:      g f   @:             @: 28,40  @:calc-graph-fast@:}
35611 @r{       @:      g g   @:             @:    12  @:calc-graph-grid@:}
35612 @r{       @:      g h   @:title        @:        @:calc-graph-header@:}
35613 @r{       @:      g j   @:             @:     4  @:calc-graph-juggle@:}
35614 @r{       @:      g k   @:             @:    12  @:calc-graph-key@:}
35615 @r{       @:      g l   @:             @:    12  @:calc-graph-log-x@:}
35616 @r{       @:      g n   @:name         @:        @:calc-graph-name@:}
35617 @r{       @:      g p   @:             @:    42  @:calc-graph-plot@:}
35618 @r{       @:      g q   @:             @:        @:calc-graph-quit@:}
35619 @r{       @:      g r   @:range        @:        @:calc-graph-range-x@:}
35620 @r{       @:      g s   @:             @: 12,13  @:calc-graph-line-style@:}
35621 @r{       @:      g t   @:title        @:        @:calc-graph-title-x@:}
35622 @r{       @:      g v   @:             @:        @:calc-graph-view-commands@:}
35623 @r{       @:      g x   @:display      @:        @:calc-graph-display@:}
35624 @r{       @:      g z   @:             @:    12  @:calc-graph-zero-x@:}
35627 @r{  x y z@:      g A   @:             @: 28,40  @:calc-graph-add-3d@:}
35628 @r{       @:      g C   @:command      @:        @:calc-graph-command@:}
35629 @r{       @:      g D   @:device       @: 43,44  @:calc-graph-device@:}
35630 @r{  x y z@:      g F   @:             @: 28,40  @:calc-graph-fast-3d@:}
35631 @r{       @:      g H   @:             @:    12  @:calc-graph-hide@:}
35632 @r{       @:      g K   @:             @:        @:calc-graph-kill@:}
35633 @r{       @:      g L   @:             @:    12  @:calc-graph-log-y@:}
35634 @r{       @:      g N   @:number       @: 43,51  @:calc-graph-num-points@:}
35635 @r{       @:      g O   @:filename     @: 43,44  @:calc-graph-output@:}
35636 @r{       @:      g P   @:             @:    42  @:calc-graph-print@:}
35637 @r{       @:      g R   @:range        @:        @:calc-graph-range-y@:}
35638 @r{       @:      g S   @:             @: 12,13  @:calc-graph-point-style@:}
35639 @r{       @:      g T   @:title        @:        @:calc-graph-title-y@:}
35640 @r{       @:      g V   @:             @:        @:calc-graph-view-trail@:}
35641 @r{       @:      g X   @:format       @:        @:calc-graph-geometry@:}
35642 @r{       @:      g Z   @:             @:    12  @:calc-graph-zero-y@:}
35645 @r{       @:      g C-l @:             @:    12  @:calc-graph-log-z@:}
35646 @r{       @:      g C-r @:range        @:        @:calc-graph-range-z@:}
35647 @r{       @:      g C-t @:title        @:        @:calc-graph-title-z@:}
35650 @r{       @:      h b   @:             @:        @:calc-describe-bindings@:}
35651 @r{       @:      h c   @:key          @:        @:calc-describe-key-briefly@:}
35652 @r{       @:      h f   @:function     @:        @:calc-describe-function@:}
35653 @r{       @:      h h   @:             @:        @:calc-full-help@:}
35654 @r{       @:      h i   @:             @:        @:calc-info@:}
35655 @r{       @:      h k   @:key          @:        @:calc-describe-key@:}
35656 @r{       @:      h n   @:             @:        @:calc-view-news@:}
35657 @r{       @:      h s   @:             @:        @:calc-info-summary@:}
35658 @r{       @:      h t   @:             @:        @:calc-tutorial@:}
35659 @r{       @:      h v   @:var          @:        @:calc-describe-variable@:}
35662 @r{       @:      j 1-9 @:             @:        @:calc-select-part@:}
35663 @r{       @:      j @key{RET} @:             @:    27  @:calc-copy-selection@:}
35664 @r{       @:      j @key{DEL} @:             @:    27  @:calc-del-selection@:}
35665 @r{       @:      j '   @:formula      @:    27  @:calc-enter-selection@:}
35666 @r{       @:      j `   @:editing      @: 27,30  @:calc-edit-selection@:}
35667 @r{       @:      j "   @:             @:  7,27  @:calc-sel-expand-formula@:}
35670 @r{       @:      j +   @:formula      @:    27  @:calc-sel-add-both-sides@:}
35671 @r{       @:      j -   @:formula      @:    27  @:calc-sel-sub-both-sides@:}
35672 @r{       @:      j *   @:formula      @:    27  @:calc-sel-mul-both-sides@:}
35673 @r{       @:      j /   @:formula      @:    27  @:calc-sel-div-both-sides@:}
35674 @r{       @:      j &   @:             @:    27  @:calc-sel-invert@:}
35677 @r{       @:      j a   @:             @:    27  @:calc-select-additional@:}
35678 @r{       @:      j b   @:             @:    12  @:calc-break-selections@:}
35679 @r{       @:      j c   @:             @:        @:calc-clear-selections@:}
35680 @r{       @:      j d   @:             @: 12,50  @:calc-show-selections@:}
35681 @r{       @:      j e   @:             @:    12  @:calc-enable-selections@:}
35682 @r{       @:      j l   @:             @:  4,27  @:calc-select-less@:}
35683 @r{       @:      j m   @:             @:  4,27  @:calc-select-more@:}
35684 @r{       @:      j n   @:             @:     4  @:calc-select-next@:}
35685 @r{       @:      j o   @:             @:  4,27  @:calc-select-once@:}
35686 @r{       @:      j p   @:             @:     4  @:calc-select-previous@:}
35687 @r{       @:      j r   @:rules        @:4,8,27  @:calc-rewrite-selection@:}
35688 @r{       @:      j s   @:             @:  4,27  @:calc-select-here@:}
35689 @r{       @:      j u   @:             @:    27  @:calc-unselect@:}
35690 @r{       @:      j v   @:             @:  7,27  @:calc-sel-evaluate@:}
35693 @r{       @:      j C   @:             @:    27  @:calc-sel-commute@:}
35694 @r{       @:      j D   @:             @:  4,27  @:calc-sel-distribute@:}
35695 @r{       @:      j E   @:             @:    27  @:calc-sel-jump-equals@:}
35696 @r{       @:      j I   @:             @:    27  @:calc-sel-isolate@:}
35697 @r{       @:    H j I   @:             @:    27  @:calc-sel-isolate@: (full)}
35698 @r{       @:      j L   @:             @:  4,27  @:calc-commute-left@:}
35699 @r{       @:      j M   @:             @:    27  @:calc-sel-merge@:}
35700 @r{       @:      j N   @:             @:    27  @:calc-sel-negate@:}
35701 @r{       @:      j O   @:             @:  4,27  @:calc-select-once-maybe@:}
35702 @r{       @:      j R   @:             @:  4,27  @:calc-commute-right@:}
35703 @r{       @:      j S   @:             @:  4,27  @:calc-select-here-maybe@:}
35704 @r{       @:      j U   @:             @:    27  @:calc-sel-unpack@:}
35707 @r{       @:      k a   @:             @:        @:calc-random-again@:}
35708 @r{      n@:      k b   @:             @:     1  @:bern@:(n)}
35709 @r{    n x@:    H k b   @:             @:     2  @:bern@:(n,x)}
35710 @r{    n m@:      k c   @:             @:     2  @:choose@:(n,m)}
35711 @r{    n m@:    H k c   @:             @:     2  @:perm@:(n,m)}
35712 @r{      n@:      k d   @:             @:     1  @:dfact@:(n)  n!!}
35713 @r{      n@:      k e   @:             @:     1  @:euler@:(n)}
35714 @r{    n x@:    H k e   @:             @:     2  @:euler@:(n,x)}
35715 @r{      n@:      k f   @:             @:     4  @:prfac@:(n)}
35716 @r{    n m@:      k g   @:             @:     2  @:gcd@:(n,m)}
35717 @r{    m n@:      k h   @:             @:    14  @:shuffle@:(n,m)}
35718 @r{    n m@:      k l   @:             @:     2  @:lcm@:(n,m)}
35719 @r{      n@:      k m   @:             @:     1  @:moebius@:(n)}
35720 @r{      n@:      k n   @:             @:     4  @:nextprime@:(n)}
35721 @r{      n@:    I k n   @:             @:     4  @:prevprime@:(n)}
35722 @r{      n@:      k p   @:             @:  4,28  @:calc-prime-test@:}
35723 @r{      m@:      k r   @:             @:    14  @:random@:(m)}
35724 @r{    n m@:      k s   @:             @:     2  @:stir1@:(n,m)}
35725 @r{    n m@:    H k s   @:             @:     2  @:stir2@:(n,m)}
35726 @r{      n@:      k t   @:             @:     1  @:totient@:(n)}
35729 @r{  n p x@:      k B   @:             @:        @:utpb@:(x,n,p)}
35730 @r{  n p x@:    I k B   @:             @:        @:ltpb@:(x,n,p)}
35731 @r{    v x@:      k C   @:             @:        @:utpc@:(x,v)}
35732 @r{    v x@:    I k C   @:             @:        @:ltpc@:(x,v)}
35733 @r{    n m@:      k E   @:             @:        @:egcd@:(n,m)}
35734 @r{v1 v2 x@:      k F   @:             @:        @:utpf@:(x,v1,v2)}
35735 @r{v1 v2 x@:    I k F   @:             @:        @:ltpf@:(x,v1,v2)}
35736 @r{  m s x@:      k N   @:             @:        @:utpn@:(x,m,s)}
35737 @r{  m s x@:    I k N   @:             @:        @:ltpn@:(x,m,s)}
35738 @r{    m x@:      k P   @:             @:        @:utpp@:(x,m)}
35739 @r{    m x@:    I k P   @:             @:        @:ltpp@:(x,m)}
35740 @r{    v x@:      k T   @:             @:        @:utpt@:(x,v)}
35741 @r{    v x@:    I k T   @:             @:        @:ltpt@:(x,v)}
35744 @r{       @:      m a   @:             @: 12,13  @:calc-algebraic-mode@:}
35745 @r{       @:      m d   @:             @:        @:calc-degrees-mode@:}
35746 @r{       @:      m e   @:             @:        @:calc-embedded-preserve-modes@:}
35747 @r{       @:      m f   @:             @:    12  @:calc-frac-mode@:}
35748 @r{       @:      m g   @:             @:    52  @:calc-get-modes@:}
35749 @r{       @:      m h   @:             @:        @:calc-hms-mode@:}
35750 @r{       @:      m i   @:             @: 12,13  @:calc-infinite-mode@:}
35751 @r{       @:      m m   @:             @:        @:calc-save-modes@:}
35752 @r{       @:      m p   @:             @:    12  @:calc-polar-mode@:}
35753 @r{       @:      m r   @:             @:        @:calc-radians-mode@:}
35754 @r{       @:      m s   @:             @:    12  @:calc-symbolic-mode@:}
35755 @r{       @:      m t   @:             @:    12  @:calc-total-algebraic-mode@:}
35756 @r{       @:      m v   @:             @: 12,13  @:calc-matrix-mode@:}
35757 @r{       @:      m w   @:             @:    13  @:calc-working@:}
35758 @r{       @:      m x   @:             @:        @:calc-always-load-extensions@:}
35761 @r{       @:      m A   @:             @:    12  @:calc-alg-simplify-mode@:}
35762 @r{       @:      m B   @:             @:    12  @:calc-bin-simplify-mode@:}
35763 @r{       @:      m C   @:             @:    12  @:calc-auto-recompute@:}
35764 @r{       @:      m D   @:             @:        @:calc-default-simplify-mode@:}
35765 @r{       @:      m E   @:             @:    12  @:calc-ext-simplify-mode@:}
35766 @r{       @:      m F   @:filename     @:    13  @:calc-settings-file-name@:}
35767 @r{       @:      m N   @:             @:    12  @:calc-num-simplify-mode@:}
35768 @r{       @:      m O   @:             @:    12  @:calc-no-simplify-mode@:}
35769 @r{       @:      m R   @:             @: 12,13  @:calc-mode-record-mode@:}
35770 @r{       @:      m S   @:             @:    12  @:calc-shift-prefix@:}
35771 @r{       @:      m U   @:             @:    12  @:calc-units-simplify-mode@:}
35774 @r{       @:      s c   @:var1, var2   @:    29  @:calc-copy-variable@:}
35775 @r{       @:      s d   @:var, decl    @:        @:calc-declare-variable@:}
35776 @r{       @:      s e   @:var, editing @: 29,30  @:calc-edit-variable@:}
35777 @r{       @:      s i   @:buffer       @:        @:calc-insert-variables@:}
35778 @r{       @:      s k   @:const, var   @:    29  @:calc-copy-special-constant@:}
35779 @r{    a b@:      s l   @:var          @:    29  @:@:a  (letting var=b)}
35780 @r{  a ...@:      s m   @:op, var      @: 22,29  @:calc-store-map@:}
35781 @r{       @:      s n   @:var          @: 29,47  @:calc-store-neg@:  (v/-1)}
35782 @r{       @:      s p   @:var          @:    29  @:calc-permanent-variable@:}
35783 @r{       @:      s r   @:var          @:    29  @:@:v  (recalled value)}
35784 @r{       @:      r 0-9 @:             @:        @:calc-recall-quick@:}
35785 @r{      a@:      s s   @:var          @: 28,29  @:calc-store@:}
35786 @r{      a@:      s 0-9 @:             @:        @:calc-store-quick@:}
35787 @r{      a@:      s t   @:var          @:    29  @:calc-store-into@:}
35788 @r{      a@:      t 0-9 @:             @:        @:calc-store-into-quick@:}
35789 @r{       @:      s u   @:var          @:    29  @:calc-unstore@:}
35790 @r{      a@:      s x   @:var          @:    29  @:calc-store-exchange@:}
35793 @r{       @:      s A   @:editing      @:    30  @:calc-edit-AlgSimpRules@:}
35794 @r{       @:      s D   @:editing      @:    30  @:calc-edit-Decls@:}
35795 @r{       @:      s E   @:editing      @:    30  @:calc-edit-EvalRules@:}
35796 @r{       @:      s F   @:editing      @:    30  @:calc-edit-FitRules@:}
35797 @r{       @:      s G   @:editing      @:    30  @:calc-edit-GenCount@:}
35798 @r{       @:      s H   @:editing      @:    30  @:calc-edit-Holidays@:}
35799 @r{       @:      s I   @:editing      @:    30  @:calc-edit-IntegLimit@:}
35800 @r{       @:      s L   @:editing      @:    30  @:calc-edit-LineStyles@:}
35801 @r{       @:      s P   @:editing      @:    30  @:calc-edit-PointStyles@:}
35802 @r{       @:      s R   @:editing      @:    30  @:calc-edit-PlotRejects@:}
35803 @r{       @:      s T   @:editing      @:    30  @:calc-edit-TimeZone@:}
35804 @r{       @:      s U   @:editing      @:    30  @:calc-edit-Units@:}
35805 @r{       @:      s X   @:editing      @:    30  @:calc-edit-ExtSimpRules@:}
35808 @r{      a@:      s +   @:var          @: 29,47  @:calc-store-plus@:  (v+a)}
35809 @r{      a@:      s -   @:var          @: 29,47  @:calc-store-minus@:  (v-a)}
35810 @r{      a@:      s *   @:var          @: 29,47  @:calc-store-times@:  (v*a)}
35811 @r{      a@:      s /   @:var          @: 29,47  @:calc-store-div@:  (v/a)}
35812 @r{      a@:      s ^   @:var          @: 29,47  @:calc-store-power@:  (v^a)}
35813 @r{      a@:      s |   @:var          @: 29,47  @:calc-store-concat@:  (v|a)}
35814 @r{       @:      s &   @:var          @: 29,47  @:calc-store-inv@:  (v^-1)}
35815 @r{       @:      s [   @:var          @: 29,47  @:calc-store-decr@:  (v-1)}
35816 @r{       @:      s ]   @:var          @: 29,47  @:calc-store-incr@:  (v-(-1))}
35817 @r{    a b@:      s :   @:             @:     2  @:assign@:(a,b)  a @tfn{:=} b}
35818 @r{      a@:      s =   @:             @:     1  @:evalto@:(a,b)  a @tfn{=>}}
35821 @r{       @:      t [   @:             @:     4  @:calc-trail-first@:}
35822 @r{       @:      t ]   @:             @:     4  @:calc-trail-last@:}
35823 @r{       @:      t <   @:             @:     4  @:calc-trail-scroll-left@:}
35824 @r{       @:      t >   @:             @:     4  @:calc-trail-scroll-right@:}
35825 @r{       @:      t .   @:             @:    12  @:calc-full-trail-vectors@:}
35828 @r{       @:      t b   @:             @:     4  @:calc-trail-backward@:}
35829 @r{       @:      t d   @:             @: 12,50  @:calc-trail-display@:}
35830 @r{       @:      t f   @:             @:     4  @:calc-trail-forward@:}
35831 @r{       @:      t h   @:             @:        @:calc-trail-here@:}
35832 @r{       @:      t i   @:             @:        @:calc-trail-in@:}
35833 @r{       @:      t k   @:             @:     4  @:calc-trail-kill@:}
35834 @r{       @:      t m   @:string       @:        @:calc-trail-marker@:}
35835 @r{       @:      t n   @:             @:     4  @:calc-trail-next@:}
35836 @r{       @:      t o   @:             @:        @:calc-trail-out@:}
35837 @r{       @:      t p   @:             @:     4  @:calc-trail-previous@:}
35838 @r{       @:      t r   @:string       @:        @:calc-trail-isearch-backward@:}
35839 @r{       @:      t s   @:string       @:        @:calc-trail-isearch-forward@:}
35840 @r{       @:      t y   @:             @:     4  @:calc-trail-yank@:}
35843 @r{      d@:      t C   @:oz, nz       @:        @:tzconv@:(d,oz,nz)}
35844 @r{d oz nz@:      t C   @:$            @:        @:tzconv@:(d,oz,nz)}
35845 @r{      d@:      t D   @:             @:    15  @:date@:(d)}
35846 @r{      d@:      t I   @:             @:     4  @:incmonth@:(d,n)}
35847 @r{      d@:      t J   @:             @:    16  @:julian@:(d,z)}
35848 @r{      d@:      t M   @:             @:    17  @:newmonth@:(d,n)}
35849 @r{       @:      t N   @:             @:    16  @:now@:(z)}
35850 @r{      d@:      t P   @:1            @:    31  @:year@:(d)}
35851 @r{      d@:      t P   @:2            @:    31  @:month@:(d)}
35852 @r{      d@:      t P   @:3            @:    31  @:day@:(d)}
35853 @r{      d@:      t P   @:4            @:    31  @:hour@:(d)}
35854 @r{      d@:      t P   @:5            @:    31  @:minute@:(d)}
35855 @r{      d@:      t P   @:6            @:    31  @:second@:(d)}
35856 @r{      d@:      t P   @:7            @:    31  @:weekday@:(d)}
35857 @r{      d@:      t P   @:8            @:    31  @:yearday@:(d)}
35858 @r{      d@:      t P   @:9            @:    31  @:time@:(d)}
35859 @r{      d@:      t U   @:             @:    16  @:unixtime@:(d,z)}
35860 @r{      d@:      t W   @:             @:    17  @:newweek@:(d,w)}
35861 @r{      d@:      t Y   @:             @:    17  @:newyear@:(d,n)}
35864 @r{    a b@:      t +   @:             @:     2  @:badd@:(a,b)}
35865 @r{    a b@:      t -   @:             @:     2  @:bsub@:(a,b)}
35868 @r{       @:      u a   @:             @:    12  @:calc-autorange-units@:}
35869 @r{      a@:      u b   @:             @:        @:calc-base-units@:}
35870 @r{      a@:      u c   @:units        @:    18  @:calc-convert-units@:}
35871 @r{   defn@:      u d   @:unit, descr  @:        @:calc-define-unit@:}
35872 @r{       @:      u e   @:             @:        @:calc-explain-units@:}
35873 @r{       @:      u g   @:unit         @:        @:calc-get-unit-definition@:}
35874 @r{       @:      u p   @:             @:        @:calc-permanent-units@:}
35875 @r{      a@:      u r   @:             @:        @:calc-remove-units@:}
35876 @r{      a@:      u s   @:             @:        @:usimplify@:(a)}
35877 @r{      a@:      u t   @:units        @:    18  @:calc-convert-temperature@:}
35878 @r{       @:      u u   @:unit         @:        @:calc-undefine-unit@:}
35879 @r{       @:      u v   @:             @:        @:calc-enter-units-table@:}
35880 @r{      a@:      u x   @:             @:        @:calc-extract-units@:}
35881 @r{      a@:      u 0-9 @:             @:        @:calc-quick-units@:}
35884 @r{  v1 v2@:      u C   @:             @:    20  @:vcov@:(v1,v2)}
35885 @r{  v1 v2@:    I u C   @:             @:    20  @:vpcov@:(v1,v2)}
35886 @r{  v1 v2@:    H u C   @:             @:    20  @:vcorr@:(v1,v2)}
35887 @r{      v@:      u G   @:             @:    19  @:vgmean@:(v)}
35888 @r{    a b@:    H u G   @:             @:     2  @:agmean@:(a,b)}
35889 @r{      v@:      u M   @:             @:    19  @:vmean@:(v)}
35890 @r{      v@:    I u M   @:             @:    19  @:vmeane@:(v)}
35891 @r{      v@:    H u M   @:             @:    19  @:vmedian@:(v)}
35892 @r{      v@:  I H u M   @:             @:    19  @:vhmean@:(v)}
35893 @r{      v@:      u N   @:             @:    19  @:vmin@:(v)}
35894 @r{      v@:      u S   @:             @:    19  @:vsdev@:(v)}
35895 @r{      v@:    I u S   @:             @:    19  @:vpsdev@:(v)}
35896 @r{      v@:    H u S   @:             @:    19  @:vvar@:(v)}
35897 @r{      v@:  I H u S   @:             @:    19  @:vpvar@:(v)}
35898 @r{       @:      u V   @:             @:        @:calc-view-units-table@:}
35899 @r{      v@:      u X   @:             @:    19  @:vmax@:(v)}
35902 @r{      v@:      u +   @:             @:    19  @:vsum@:(v)}
35903 @r{      v@:      u *   @:             @:    19  @:vprod@:(v)}
35904 @r{      v@:      u #   @:             @:    19  @:vcount@:(v)}
35907 @r{       @:      V (   @:             @:    50  @:calc-vector-parens@:}
35908 @r{       @:      V @{   @:             @:    50  @:calc-vector-braces@:}
35909 @r{       @:      V [   @:             @:    50  @:calc-vector-brackets@:}
35910 @r{       @:      V ]   @:ROCP         @:    50  @:calc-matrix-brackets@:}
35911 @r{       @:      V ,   @:             @:    50  @:calc-vector-commas@:}
35912 @r{       @:      V <   @:             @:    50  @:calc-matrix-left-justify@:}
35913 @r{       @:      V =   @:             @:    50  @:calc-matrix-center-justify@:}
35914 @r{       @:      V >   @:             @:    50  @:calc-matrix-right-justify@:}
35915 @r{       @:      V /   @:             @: 12,50  @:calc-break-vectors@:}
35916 @r{       @:      V .   @:             @: 12,50  @:calc-full-vectors@:}
35919 @r{    s t@:      V ^   @:             @:     2  @:vint@:(s,t)}
35920 @r{    s t@:      V -   @:             @:     2  @:vdiff@:(s,t)}
35921 @r{      s@:      V ~   @:             @:     1  @:vcompl@:(s)}
35922 @r{      s@:      V #   @:             @:     1  @:vcard@:(s)}
35923 @r{      s@:      V :   @:             @:     1  @:vspan@:(s)}
35924 @r{      s@:      V +   @:             @:     1  @:rdup@:(s)}
35927 @r{      m@:      V &   @:             @:     1  @:inv@:(m)  1/m}
35930 @r{      v@:      v a   @:n            @:        @:arrange@:(v,n)}
35931 @r{      a@:      v b   @:n            @:        @:cvec@:(a,n)}
35932 @r{      v@:      v c   @:n >0         @: 21,31  @:mcol@:(v,n)}
35933 @r{      v@:      v c   @:n <0         @:    31  @:mrcol@:(v,-n)}
35934 @r{      m@:      v c   @:0            @:    31  @:getdiag@:(m)}
35935 @r{      v@:      v d   @:             @:    25  @:diag@:(v,n)}
35936 @r{    v m@:      v e   @:             @:     2  @:vexp@:(v,m)}
35937 @r{  v m f@:    H v e   @:             @:     2  @:vexp@:(v,m,f)}
35938 @r{    v a@:      v f   @:             @:    26  @:find@:(v,a,n)}
35939 @r{      v@:      v h   @:             @:     1  @:head@:(v)}
35940 @r{      v@:    I v h   @:             @:     1  @:tail@:(v)}
35941 @r{      v@:    H v h   @:             @:     1  @:rhead@:(v)}
35942 @r{      v@:  I H v h   @:             @:     1  @:rtail@:(v)}
35943 @r{       @:      v i   @:n            @:    31  @:idn@:(1,n)}
35944 @r{       @:      v i   @:0            @:    31  @:idn@:(1)}
35945 @r{    h t@:      v k   @:             @:     2  @:cons@:(h,t)}
35946 @r{    h t@:    H v k   @:             @:     2  @:rcons@:(h,t)}
35947 @r{      v@:      v l   @:             @:     1  @:vlen@:(v)}
35948 @r{      v@:    H v l   @:             @:     1  @:mdims@:(v)}
35949 @r{    v m@:      v m   @:             @:     2  @:vmask@:(v,m)}
35950 @r{      v@:      v n   @:             @:     1  @:rnorm@:(v)}
35951 @r{  a b c@:      v p   @:             @:    24  @:calc-pack@:}
35952 @r{      v@:      v r   @:n >0         @: 21,31  @:mrow@:(v,n)}
35953 @r{      v@:      v r   @:n <0         @:    31  @:mrrow@:(v,-n)}
35954 @r{      m@:      v r   @:0            @:    31  @:getdiag@:(m)}
35955 @r{  v i j@:      v s   @:             @:        @:subvec@:(v,i,j)}
35956 @r{  v i j@:    I v s   @:             @:        @:rsubvec@:(v,i,j)}
35957 @r{      m@:      v t   @:             @:     1  @:trn@:(m)}
35958 @r{      v@:      v u   @:             @:    24  @:calc-unpack@:}
35959 @r{      v@:      v v   @:             @:     1  @:rev@:(v)}
35960 @r{       @:      v x   @:n            @:    31  @:index@:(n)}
35961 @r{  n s i@:  C-u v x   @:             @:        @:index@:(n,s,i)}
35964 @r{      v@:      V A   @:op           @:    22  @:apply@:(op,v)}
35965 @r{  v1 v2@:      V C   @:             @:     2  @:cross@:(v1,v2)}
35966 @r{      m@:      V D   @:             @:     1  @:det@:(m)}
35967 @r{      s@:      V E   @:             @:     1  @:venum@:(s)}
35968 @r{      s@:      V F   @:             @:     1  @:vfloor@:(s)}
35969 @r{      v@:      V G   @:             @:        @:grade@:(v)}
35970 @r{      v@:    I V G   @:             @:        @:rgrade@:(v)}
35971 @r{      v@:      V H   @:n            @:    31  @:histogram@:(v,n)}
35972 @r{    v w@:    H V H   @:n            @:    31  @:histogram@:(v,w,n)}
35973 @r{  v1 v2@:      V I   @:mop aop      @:    22  @:inner@:(mop,aop,v1,v2)}
35974 @r{      m@:      V J   @:             @:     1  @:ctrn@:(m)}
35975 @r{      m@:      V L   @:             @:     1  @:lud@:(m)}
35976 @r{      v@:      V M   @:op           @: 22,23  @:map@:(op,v)}
35977 @r{      v@:      V N   @:             @:     1  @:cnorm@:(v)}
35978 @r{  v1 v2@:      V O   @:op           @:    22  @:outer@:(op,v1,v2)}
35979 @r{      v@:      V R   @:op           @: 22,23  @:reduce@:(op,v)}
35980 @r{      v@:    I V R   @:op           @: 22,23  @:rreduce@:(op,v)}
35981 @r{    a n@:    H V R   @:op           @:    22  @:nest@:(op,a,n)}
35982 @r{      a@:  I H V R   @:op           @:    22  @:fixp@:(op,a)}
35983 @r{      v@:      V S   @:             @:        @:sort@:(v)}
35984 @r{      v@:    I V S   @:             @:        @:rsort@:(v)}
35985 @r{      m@:      V T   @:             @:     1  @:tr@:(m)}
35986 @r{      v@:      V U   @:op           @:    22  @:accum@:(op,v)}
35987 @r{      v@:    I V U   @:op           @:    22  @:raccum@:(op,v)}
35988 @r{    a n@:    H V U   @:op           @:    22  @:anest@:(op,a,n)}
35989 @r{      a@:  I H V U   @:op           @:    22  @:afixp@:(op,a)}
35990 @r{    s t@:      V V   @:             @:     2  @:vunion@:(s,t)}
35991 @r{    s t@:      V X   @:             @:     2  @:vxor@:(s,t)}
35994 @r{       @:      Y     @:             @:        @:@:user commands}
35997 @r{       @:      z     @:             @:        @:@:user commands}
36000 @r{      c@:      Z [   @:             @:    45  @:calc-kbd-if@:}
36001 @r{      c@:      Z |   @:             @:    45  @:calc-kbd-else-if@:}
36002 @r{       @:      Z :   @:             @:        @:calc-kbd-else@:}
36003 @r{       @:      Z ]   @:             @:        @:calc-kbd-end-if@:}
36006 @r{       @:      Z @{   @:             @:     4  @:calc-kbd-loop@:}
36007 @r{      c@:      Z /   @:             @:    45  @:calc-kbd-break@:}
36008 @r{       @:      Z @}   @:             @:        @:calc-kbd-end-loop@:}
36009 @r{      n@:      Z <   @:             @:        @:calc-kbd-repeat@:}
36010 @r{       @:      Z >   @:             @:        @:calc-kbd-end-repeat@:}
36011 @r{    n m@:      Z (   @:             @:        @:calc-kbd-for@:}
36012 @r{      s@:      Z )   @:             @:        @:calc-kbd-end-for@:}
36015 @r{       @:      Z C-g @:             @:        @:@:cancel if/loop command}
36018 @r{       @:      Z `   @:             @:        @:calc-kbd-push@:}
36019 @r{       @:      Z '   @:             @:        @:calc-kbd-pop@:}
36020 @r{       @:      Z #   @:             @:        @:calc-kbd-query@:}
36023 @r{   comp@:      Z C   @:func, args   @:    50  @:calc-user-define-composition@:}
36024 @r{       @:      Z D   @:key, command @:        @:calc-user-define@:}
36025 @r{       @:      Z E   @:key, editing @:    30  @:calc-user-define-edit@:}
36026 @r{   defn@:      Z F   @:k, c, f, a, n@:    28  @:calc-user-define-formula@:}
36027 @r{       @:      Z G   @:key          @:        @:calc-get-user-defn@:}
36028 @r{       @:      Z I   @:             @:        @:calc-user-define-invocation@:}
36029 @r{       @:      Z K   @:key, command @:        @:calc-user-define-kbd-macro@:}
36030 @r{       @:      Z P   @:key          @:        @:calc-user-define-permanent@:}
36031 @r{       @:      Z S   @:             @:    30  @:calc-edit-user-syntax@:}
36032 @r{       @:      Z T   @:             @:    12  @:calc-timing@:}
36033 @r{       @:      Z U   @:key          @:        @:calc-user-undefine@:}
36035 @end format
36037 @noindent
36038 NOTES
36040 @enumerate
36041 @c 1
36042 @item
36043 Positive prefix arguments apply to @expr{n} stack entries.
36044 Negative prefix arguments apply to the @expr{-n}th stack entry.
36045 A prefix of zero applies to the entire stack.  (For @key{LFD} and
36046 @kbd{M-@key{DEL}}, the meaning of the sign is reversed.)
36048 @c 2
36049 @item
36050 Positive prefix arguments apply to @expr{n} stack entries.
36051 Negative prefix arguments apply to the top stack entry
36052 and the next @expr{-n} stack entries.
36054 @c 3
36055 @item
36056 Positive prefix arguments rotate top @expr{n} stack entries by one.
36057 Negative prefix arguments rotate the entire stack by @expr{-n}.
36058 A prefix of zero reverses the entire stack.
36060 @c 4
36061 @item
36062 Prefix argument specifies a repeat count or distance.
36064 @c 5
36065 @item
36066 Positive prefix arguments specify a precision @expr{p}.
36067 Negative prefix arguments reduce the current precision by @expr{-p}.
36069 @c 6
36070 @item
36071 A prefix argument is interpreted as an additional step-size parameter.
36072 A plain @kbd{C-u} prefix means to prompt for the step size.
36074 @c 7
36075 @item
36076 A prefix argument specifies simplification level and depth.
36077 1=Default, 2=like @kbd{a s}, 3=like @kbd{a e}.
36079 @c 8
36080 @item
36081 A negative prefix operates only on the top level of the input formula.
36083 @c 9
36084 @item
36085 Positive prefix arguments specify a word size of @expr{w} bits, unsigned.
36086 Negative prefix arguments specify a word size of @expr{w} bits, signed.
36088 @c 10
36089 @item
36090 Prefix arguments specify the shift amount @expr{n}.  The @expr{w} argument
36091 cannot be specified in the keyboard version of this command.
36093 @c 11
36094 @item
36095 From the keyboard, @expr{d} is omitted and defaults to zero.
36097 @c 12
36098 @item
36099 Mode is toggled; a positive prefix always sets the mode, and a negative
36100 prefix always clears the mode.
36102 @c 13
36103 @item
36104 Some prefix argument values provide special variations of the mode.
36106 @c 14
36107 @item
36108 A prefix argument, if any, is used for @expr{m} instead of taking
36109 @expr{m} from the stack.  @expr{M} may take any of these values:
36110 @iftex
36111 {@advance@tableindent10pt
36112 @end iftex
36113 @table @asis
36114 @item Integer
36115 Random integer in the interval @expr{[0 .. m)}.
36116 @item Float
36117 Random floating-point number in the interval @expr{[0 .. m)}.
36118 @item 0.0
36119 Gaussian with mean 1 and standard deviation 0.
36120 @item Error form
36121 Gaussian with specified mean and standard deviation.
36122 @item Interval
36123 Random integer or floating-point number in that interval.
36124 @item Vector
36125 Random element from the vector.
36126 @end table
36127 @iftex
36129 @end iftex
36131 @c 15
36132 @item
36133 A prefix argument from 1 to 6 specifies number of date components
36134 to remove from the stack.  @xref{Date Conversions}.
36136 @c 16
36137 @item
36138 A prefix argument specifies a time zone; @kbd{C-u} says to take the
36139 time zone number or name from the top of the stack.  @xref{Time Zones}.
36141 @c 17
36142 @item
36143 A prefix argument specifies a day number (0-6, 0-31, or 0-366).
36145 @c 18
36146 @item
36147 If the input has no units, you will be prompted for both the old and
36148 the new units.
36150 @c 19
36151 @item
36152 With a prefix argument, collect that many stack entries to form the
36153 input data set.  Each entry may be a single value or a vector of values.
36155 @c 20
36156 @item
36157 With a prefix argument of 1, take a single 
36158 @texline @var{n}@math{\times2}
36159 @infoline @mathit{@var{N}x2} 
36160 matrix from the stack instead of two separate data vectors.
36162 @c 21
36163 @item
36164 The row or column number @expr{n} may be given as a numeric prefix
36165 argument instead.  A plain @kbd{C-u} prefix says to take @expr{n}
36166 from the top of the stack.  If @expr{n} is a vector or interval,
36167 a subvector/submatrix of the input is created.
36169 @c 22
36170 @item
36171 The @expr{op} prompt can be answered with the key sequence for the
36172 desired function, or with @kbd{x} or @kbd{z} followed by a function name,
36173 or with @kbd{$} to take a formula from the top of the stack, or with
36174 @kbd{'} and a typed formula.  In the last two cases, the formula may
36175 be a nameless function like @samp{<#1+#2>} or @samp{<x, y : x+y>}, or it
36176 may include @kbd{$}, @kbd{$$}, etc. (where @kbd{$} will correspond to the
36177 last argument of the created function), or otherwise you will be
36178 prompted for an argument list.  The number of vectors popped from the
36179 stack by @kbd{V M} depends on the number of arguments of the function.
36181 @c 23
36182 @item
36183 One of the mapping direction keys @kbd{_} (horizontal, i.e., map
36184 by rows or reduce across), @kbd{:} (vertical, i.e., map by columns or
36185 reduce down), or @kbd{=} (map or reduce by rows) may be used before
36186 entering @expr{op}; these modify the function name by adding the letter
36187 @code{r} for ``rows,'' @code{c} for ``columns,'' @code{a} for ``across,''
36188 or @code{d} for ``down.''
36190 @c 24
36191 @item
36192 The prefix argument specifies a packing mode.  A nonnegative mode
36193 is the number of items (for @kbd{v p}) or the number of levels
36194 (for @kbd{v u}).  A negative mode is as described below.  With no
36195 prefix argument, the mode is taken from the top of the stack and
36196 may be an integer or a vector of integers.
36197 @iftex
36198 {@advance@tableindent-20pt
36199 @end iftex
36200 @table @cite
36201 @item -1
36202 (@var{2})  Rectangular complex number.
36203 @item -2
36204 (@var{2})  Polar complex number.
36205 @item -3
36206 (@var{3})  HMS form.
36207 @item -4
36208 (@var{2})  Error form.
36209 @item -5
36210 (@var{2})  Modulo form.
36211 @item -6
36212 (@var{2})  Closed interval.
36213 @item -7
36214 (@var{2})  Closed .. open interval.
36215 @item -8
36216 (@var{2})  Open .. closed interval.
36217 @item -9
36218 (@var{2})  Open interval.
36219 @item -10
36220 (@var{2})  Fraction.
36221 @item -11
36222 (@var{2})  Float with integer mantissa.
36223 @item -12
36224 (@var{2})  Float with mantissa in @expr{[1 .. 10)}.
36225 @item -13
36226 (@var{1})  Date form (using date numbers).
36227 @item -14
36228 (@var{3})  Date form (using year, month, day).
36229 @item -15
36230 (@var{6})  Date form (using year, month, day, hour, minute, second).
36231 @end table
36232 @iftex
36234 @end iftex
36236 @c 25
36237 @item
36238 A prefix argument specifies the size @expr{n} of the matrix.  With no
36239 prefix argument, @expr{n} is omitted and the size is inferred from
36240 the input vector.
36242 @c 26
36243 @item
36244 The prefix argument specifies the starting position @expr{n} (default 1).
36246 @c 27
36247 @item
36248 Cursor position within stack buffer affects this command.
36250 @c 28
36251 @item
36252 Arguments are not actually removed from the stack by this command.
36254 @c 29
36255 @item
36256 Variable name may be a single digit or a full name.
36258 @c 30
36259 @item
36260 Editing occurs in a separate buffer.  Press @kbd{C-c C-c} (or 
36261 @key{LFD}, or in some cases @key{RET}) to finish the edit, or kill the
36262 buffer with @kbd{C-x k} to cancel the edit.  The @key{LFD} key prevents evaluation
36263 of the result of the edit.
36265 @c 31
36266 @item
36267 The number prompted for can also be provided as a prefix argument.
36269 @c 32
36270 @item
36271 Press this key a second time to cancel the prefix.
36273 @c 33
36274 @item
36275 With a negative prefix, deactivate all formulas.  With a positive
36276 prefix, deactivate and then reactivate from scratch.
36278 @c 34
36279 @item
36280 Default is to scan for nearest formula delimiter symbols.  With a
36281 prefix of zero, formula is delimited by mark and point.  With a
36282 non-zero prefix, formula is delimited by scanning forward or
36283 backward by that many lines.
36285 @c 35
36286 @item
36287 Parse the region between point and mark as a vector.  A nonzero prefix
36288 parses @var{n} lines before or after point as a vector.  A zero prefix
36289 parses the current line as a vector.  A @kbd{C-u} prefix parses the
36290 region between point and mark as a single formula.
36292 @c 36
36293 @item
36294 Parse the rectangle defined by point and mark as a matrix.  A positive
36295 prefix @var{n} divides the rectangle into columns of width @var{n}.
36296 A zero or @kbd{C-u} prefix parses each line as one formula.  A negative
36297 prefix suppresses special treatment of bracketed portions of a line.
36299 @c 37
36300 @item
36301 A numeric prefix causes the current language mode to be ignored.
36303 @c 38
36304 @item
36305 Responding to a prompt with a blank line answers that and all
36306 later prompts by popping additional stack entries.
36308 @c 39
36309 @item
36310 Answer for @expr{v} may also be of the form @expr{v = v_0} or
36311 @expr{v - v_0}.
36313 @c 40
36314 @item
36315 With a positive prefix argument, stack contains many @expr{y}'s and one
36316 common @expr{x}.  With a zero prefix, stack contains a vector of
36317 @expr{y}s and a common @expr{x}.  With a negative prefix, stack
36318 contains many @expr{[x,y]} vectors.  (For 3D plots, substitute
36319 @expr{z} for @expr{y} and @expr{x,y} for @expr{x}.)
36321 @c 41
36322 @item
36323 With any prefix argument, all curves in the graph are deleted.
36325 @c 42
36326 @item
36327 With a positive prefix, refines an existing plot with more data points.
36328 With a negative prefix, forces recomputation of the plot data.
36330 @c 43
36331 @item
36332 With any prefix argument, set the default value instead of the
36333 value for this graph.
36335 @c 44
36336 @item
36337 With a negative prefix argument, set the value for the printer.
36339 @c 45
36340 @item
36341 Condition is considered ``true'' if it is a nonzero real or complex
36342 number, or a formula whose value is known to be nonzero; it is ``false''
36343 otherwise.
36345 @c 46
36346 @item
36347 Several formulas separated by commas are pushed as multiple stack
36348 entries.  Trailing @kbd{)}, @kbd{]}, @kbd{@}}, @kbd{>}, and @kbd{"}
36349 delimiters may be omitted.  The notation @kbd{$$$} refers to the value
36350 in stack level three, and causes the formula to replace the top three
36351 stack levels.  The notation @kbd{$3} refers to stack level three without
36352 causing that value to be removed from the stack.  Use @key{LFD} in place
36353 of @key{RET} to prevent evaluation; use @kbd{M-=} in place of @key{RET}
36354 to evaluate variables.
36356 @c 47
36357 @item
36358 The variable is replaced by the formula shown on the right.  The
36359 Inverse flag reverses the order of the operands, e.g., @kbd{I s - x}
36360 assigns 
36361 @texline @math{x \coloneq a-x}.
36362 @infoline @expr{x := a-x}.
36364 @c 48
36365 @item
36366 Press @kbd{?} repeatedly to see how to choose a model.  Answer the
36367 variables prompt with @expr{iv} or @expr{iv;pv} to specify
36368 independent and parameter variables.  A positive prefix argument
36369 takes @mathit{@var{n}+1} vectors from the stack; a zero prefix takes a matrix
36370 and a vector from the stack.
36372 @c 49
36373 @item
36374 With a plain @kbd{C-u} prefix, replace the current region of the
36375 destination buffer with the yanked text instead of inserting.
36377 @c 50
36378 @item
36379 All stack entries are reformatted; the @kbd{H} prefix inhibits this.
36380 The @kbd{I} prefix sets the mode temporarily, redraws the top stack
36381 entry, then restores the original setting of the mode.
36383 @c 51
36384 @item
36385 A negative prefix sets the default 3D resolution instead of the
36386 default 2D resolution.
36388 @c 52
36389 @item
36390 This grabs a vector of the form [@var{prec}, @var{wsize}, @var{ssize},
36391 @var{radix}, @var{flfmt}, @var{ang}, @var{frac}, @var{symb}, @var{polar},
36392 @var{matrix}, @var{simp}, @var{inf}].  A prefix argument from 1 to 12
36393 grabs the @var{n}th mode value only.
36394 @end enumerate
36396 @iftex
36397 (Space is provided below for you to keep your own written notes.)
36398 @page
36399 @endgroup
36400 @end iftex
36403 @c [end-summary]
36405 @node Key Index, Command Index, Summary, Top
36406 @unnumbered Index of Key Sequences
36408 @printindex ky
36410 @node Command Index, Function Index, Key Index, Top
36411 @unnumbered Index of Calculator Commands
36413 Since all Calculator commands begin with the prefix @samp{calc-}, the
36414 @kbd{x} key has been provided as a variant of @kbd{M-x} which automatically
36415 types @samp{calc-} for you.  Thus, @kbd{x last-args} is short for
36416 @kbd{M-x calc-last-args}.
36418 @printindex pg
36420 @node Function Index, Concept Index, Command Index, Top
36421 @unnumbered Index of Algebraic Functions
36423 This is a list of built-in functions and operators usable in algebraic
36424 expressions.  Their full Lisp names are derived by adding the prefix
36425 @samp{calcFunc-}, as in @code{calcFunc-sqrt}.
36426 @iftex
36427 All functions except those noted with ``*'' have corresponding
36428 Calc keystrokes and can also be found in the Calc Summary.
36429 @end iftex
36431 @printindex tp
36433 @node Concept Index, Variable Index, Function Index, Top
36434 @unnumbered Concept Index
36436 @printindex cp
36438 @node Variable Index, Lisp Function Index, Concept Index, Top
36439 @unnumbered Index of Variables
36441 The variables in this list that do not contain dashes are accessible
36442 as Calc variables.  Add a @samp{var-} prefix to get the name of the
36443 corresponding Lisp variable.
36445 The remaining variables are Lisp variables suitable for @code{setq}ing
36446 in your Calc init file or @file{.emacs} file.
36448 @printindex vr
36450 @node Lisp Function Index, , Variable Index, Top
36451 @unnumbered Index of Lisp Math Functions
36453 The following functions are meant to be used with @code{defmath}, not
36454 @code{defun} definitions.  For names that do not start with @samp{calc-},
36455 the corresponding full Lisp name is derived by adding a prefix of
36456 @samp{math-}.
36458 @printindex fn
36460 @summarycontents
36462 @c [end]
36464 @contents
36465 @bye
36468 @ignore
36469    arch-tag: 77a71809-fa4d-40be-b2cc-da3e8fb137c0
36470 @end ignore