Fix indentation problem
[emacs.git] / src / alloc.c
blob36b197e5eac76991db4443d6f8ac7894bc26d58f
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
34 #include <signal.h>
36 #ifdef HAVE_GTK_AND_PTHREAD
37 #include <pthread.h>
38 #endif
40 /* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
44 #undef HIDE_LISP_IMPLEMENTATION
45 #include "lisp.h"
46 #include "process.h"
47 #include "intervals.h"
48 #include "puresize.h"
49 #include "buffer.h"
50 #include "window.h"
51 #include "keyboard.h"
52 #include "frame.h"
53 #include "blockinput.h"
54 #include "character.h"
55 #include "syssignal.h"
56 #include "termhooks.h" /* For struct terminal. */
57 #include <setjmp.h>
59 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
60 memory. Can do this only if using gmalloc.c. */
62 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
63 #undef GC_MALLOC_CHECK
64 #endif
66 #ifdef HAVE_UNISTD_H
67 #include <unistd.h>
68 #else
69 extern POINTER_TYPE *sbrk ();
70 #endif
72 #ifdef HAVE_FCNTL_H
73 #include <fcntl.h>
74 #endif
75 #ifndef O_WRONLY
76 #define O_WRONLY 1
77 #endif
79 #ifdef WINDOWSNT
80 #include <fcntl.h>
81 #include "w32.h"
82 #endif
84 #ifdef DOUG_LEA_MALLOC
86 #include <malloc.h>
87 /* malloc.h #defines this as size_t, at least in glibc2. */
88 #ifndef __malloc_size_t
89 #define __malloc_size_t int
90 #endif
92 /* Specify maximum number of areas to mmap. It would be nice to use a
93 value that explicitly means "no limit". */
95 #define MMAP_MAX_AREAS 100000000
97 #else /* not DOUG_LEA_MALLOC */
99 /* The following come from gmalloc.c. */
101 #define __malloc_size_t size_t
102 extern __malloc_size_t _bytes_used;
103 extern __malloc_size_t __malloc_extra_blocks;
105 #endif /* not DOUG_LEA_MALLOC */
107 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
109 /* When GTK uses the file chooser dialog, different backends can be loaded
110 dynamically. One such a backend is the Gnome VFS backend that gets loaded
111 if you run Gnome. That backend creates several threads and also allocates
112 memory with malloc.
114 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
115 functions below are called from malloc, there is a chance that one
116 of these threads preempts the Emacs main thread and the hook variables
117 end up in an inconsistent state. So we have a mutex to prevent that (note
118 that the backend handles concurrent access to malloc within its own threads
119 but Emacs code running in the main thread is not included in that control).
121 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
122 happens in one of the backend threads we will have two threads that tries
123 to run Emacs code at once, and the code is not prepared for that.
124 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
126 static pthread_mutex_t alloc_mutex;
128 #define BLOCK_INPUT_ALLOC \
129 do \
131 if (pthread_equal (pthread_self (), main_thread)) \
132 BLOCK_INPUT; \
133 pthread_mutex_lock (&alloc_mutex); \
135 while (0)
136 #define UNBLOCK_INPUT_ALLOC \
137 do \
139 pthread_mutex_unlock (&alloc_mutex); \
140 if (pthread_equal (pthread_self (), main_thread)) \
141 UNBLOCK_INPUT; \
143 while (0)
145 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
147 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
148 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
150 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
152 /* Value of _bytes_used, when spare_memory was freed. */
154 static __malloc_size_t bytes_used_when_full;
156 static __malloc_size_t bytes_used_when_reconsidered;
158 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
159 to a struct Lisp_String. */
161 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
162 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
163 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
165 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
166 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
167 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
169 /* Value is the number of bytes/chars of S, a pointer to a struct
170 Lisp_String. This must be used instead of STRING_BYTES (S) or
171 S->size during GC, because S->size contains the mark bit for
172 strings. */
174 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
175 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
177 /* Number of bytes of consing done since the last gc. */
179 int consing_since_gc;
181 /* Count the amount of consing of various sorts of space. */
183 EMACS_INT cons_cells_consed;
184 EMACS_INT floats_consed;
185 EMACS_INT vector_cells_consed;
186 EMACS_INT symbols_consed;
187 EMACS_INT string_chars_consed;
188 EMACS_INT misc_objects_consed;
189 EMACS_INT intervals_consed;
190 EMACS_INT strings_consed;
192 /* Minimum number of bytes of consing since GC before next GC. */
194 EMACS_INT gc_cons_threshold;
196 /* Similar minimum, computed from Vgc_cons_percentage. */
198 EMACS_INT gc_relative_threshold;
200 static Lisp_Object Vgc_cons_percentage;
202 /* Minimum number of bytes of consing since GC before next GC,
203 when memory is full. */
205 EMACS_INT memory_full_cons_threshold;
207 /* Nonzero during GC. */
209 int gc_in_progress;
211 /* Nonzero means abort if try to GC.
212 This is for code which is written on the assumption that
213 no GC will happen, so as to verify that assumption. */
215 int abort_on_gc;
217 /* Nonzero means display messages at beginning and end of GC. */
219 int garbage_collection_messages;
221 #ifndef VIRT_ADDR_VARIES
222 extern
223 #endif /* VIRT_ADDR_VARIES */
224 int malloc_sbrk_used;
226 #ifndef VIRT_ADDR_VARIES
227 extern
228 #endif /* VIRT_ADDR_VARIES */
229 int malloc_sbrk_unused;
231 /* Number of live and free conses etc. */
233 static int total_conses, total_markers, total_symbols, total_vector_size;
234 static int total_free_conses, total_free_markers, total_free_symbols;
235 static int total_free_floats, total_floats;
237 /* Points to memory space allocated as "spare", to be freed if we run
238 out of memory. We keep one large block, four cons-blocks, and
239 two string blocks. */
241 static char *spare_memory[7];
243 /* Amount of spare memory to keep in large reserve block. */
245 #define SPARE_MEMORY (1 << 14)
247 /* Number of extra blocks malloc should get when it needs more core. */
249 static int malloc_hysteresis;
251 /* Non-nil means defun should do purecopy on the function definition. */
253 Lisp_Object Vpurify_flag;
255 /* Non-nil means we are handling a memory-full error. */
257 Lisp_Object Vmemory_full;
259 /* Initialize it to a nonzero value to force it into data space
260 (rather than bss space). That way unexec will remap it into text
261 space (pure), on some systems. We have not implemented the
262 remapping on more recent systems because this is less important
263 nowadays than in the days of small memories and timesharing. */
265 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
266 #define PUREBEG (char *) pure
268 /* Pointer to the pure area, and its size. */
270 static char *purebeg;
271 static size_t pure_size;
273 /* Number of bytes of pure storage used before pure storage overflowed.
274 If this is non-zero, this implies that an overflow occurred. */
276 static size_t pure_bytes_used_before_overflow;
278 /* Value is non-zero if P points into pure space. */
280 #define PURE_POINTER_P(P) \
281 (((PNTR_COMPARISON_TYPE) (P) \
282 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
283 && ((PNTR_COMPARISON_TYPE) (P) \
284 >= (PNTR_COMPARISON_TYPE) purebeg))
286 /* Total number of bytes allocated in pure storage. */
288 EMACS_INT pure_bytes_used;
290 /* Index in pure at which next pure Lisp object will be allocated.. */
292 static EMACS_INT pure_bytes_used_lisp;
294 /* Number of bytes allocated for non-Lisp objects in pure storage. */
296 static EMACS_INT pure_bytes_used_non_lisp;
298 /* If nonzero, this is a warning delivered by malloc and not yet
299 displayed. */
301 char *pending_malloc_warning;
303 /* Pre-computed signal argument for use when memory is exhausted. */
305 Lisp_Object Vmemory_signal_data;
307 /* Maximum amount of C stack to save when a GC happens. */
309 #ifndef MAX_SAVE_STACK
310 #define MAX_SAVE_STACK 16000
311 #endif
313 /* Buffer in which we save a copy of the C stack at each GC. */
315 static char *stack_copy;
316 static int stack_copy_size;
318 /* Non-zero means ignore malloc warnings. Set during initialization.
319 Currently not used. */
321 static int ignore_warnings;
323 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
325 /* Hook run after GC has finished. */
327 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
329 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
330 EMACS_INT gcs_done; /* accumulated GCs */
332 static void mark_buffer (Lisp_Object);
333 static void mark_terminals (void);
334 extern void mark_kboards (void);
335 extern void mark_ttys (void);
336 extern void mark_backtrace (void);
337 static void gc_sweep (void);
338 static void mark_glyph_matrix (struct glyph_matrix *);
339 static void mark_face_cache (struct face_cache *);
341 #ifdef HAVE_WINDOW_SYSTEM
342 extern void mark_fringe_data (void);
343 #endif /* HAVE_WINDOW_SYSTEM */
345 static struct Lisp_String *allocate_string (void);
346 static void compact_small_strings (void);
347 static void free_large_strings (void);
348 static void sweep_strings (void);
350 extern int message_enable_multibyte;
352 /* When scanning the C stack for live Lisp objects, Emacs keeps track
353 of what memory allocated via lisp_malloc is intended for what
354 purpose. This enumeration specifies the type of memory. */
356 enum mem_type
358 MEM_TYPE_NON_LISP,
359 MEM_TYPE_BUFFER,
360 MEM_TYPE_CONS,
361 MEM_TYPE_STRING,
362 MEM_TYPE_MISC,
363 MEM_TYPE_SYMBOL,
364 MEM_TYPE_FLOAT,
365 /* We used to keep separate mem_types for subtypes of vectors such as
366 process, hash_table, frame, terminal, and window, but we never made
367 use of the distinction, so it only caused source-code complexity
368 and runtime slowdown. Minor but pointless. */
369 MEM_TYPE_VECTORLIKE
372 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
373 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
374 void refill_memory_reserve (void);
377 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
379 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
380 #include <stdio.h> /* For fprintf. */
381 #endif
383 /* A unique object in pure space used to make some Lisp objects
384 on free lists recognizable in O(1). */
386 static Lisp_Object Vdead;
388 #ifdef GC_MALLOC_CHECK
390 enum mem_type allocated_mem_type;
391 static int dont_register_blocks;
393 #endif /* GC_MALLOC_CHECK */
395 /* A node in the red-black tree describing allocated memory containing
396 Lisp data. Each such block is recorded with its start and end
397 address when it is allocated, and removed from the tree when it
398 is freed.
400 A red-black tree is a balanced binary tree with the following
401 properties:
403 1. Every node is either red or black.
404 2. Every leaf is black.
405 3. If a node is red, then both of its children are black.
406 4. Every simple path from a node to a descendant leaf contains
407 the same number of black nodes.
408 5. The root is always black.
410 When nodes are inserted into the tree, or deleted from the tree,
411 the tree is "fixed" so that these properties are always true.
413 A red-black tree with N internal nodes has height at most 2
414 log(N+1). Searches, insertions and deletions are done in O(log N).
415 Please see a text book about data structures for a detailed
416 description of red-black trees. Any book worth its salt should
417 describe them. */
419 struct mem_node
421 /* Children of this node. These pointers are never NULL. When there
422 is no child, the value is MEM_NIL, which points to a dummy node. */
423 struct mem_node *left, *right;
425 /* The parent of this node. In the root node, this is NULL. */
426 struct mem_node *parent;
428 /* Start and end of allocated region. */
429 void *start, *end;
431 /* Node color. */
432 enum {MEM_BLACK, MEM_RED} color;
434 /* Memory type. */
435 enum mem_type type;
438 /* Base address of stack. Set in main. */
440 Lisp_Object *stack_base;
442 /* Root of the tree describing allocated Lisp memory. */
444 static struct mem_node *mem_root;
446 /* Lowest and highest known address in the heap. */
448 static void *min_heap_address, *max_heap_address;
450 /* Sentinel node of the tree. */
452 static struct mem_node mem_z;
453 #define MEM_NIL &mem_z
455 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
456 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
457 static void lisp_free (POINTER_TYPE *);
458 static void mark_stack (void);
459 static int live_vector_p (struct mem_node *, void *);
460 static int live_buffer_p (struct mem_node *, void *);
461 static int live_string_p (struct mem_node *, void *);
462 static int live_cons_p (struct mem_node *, void *);
463 static int live_symbol_p (struct mem_node *, void *);
464 static int live_float_p (struct mem_node *, void *);
465 static int live_misc_p (struct mem_node *, void *);
466 static void mark_maybe_object (Lisp_Object);
467 static void mark_memory (void *, void *, int);
468 static void mem_init (void);
469 static struct mem_node *mem_insert (void *, void *, enum mem_type);
470 static void mem_insert_fixup (struct mem_node *);
471 static void mem_rotate_left (struct mem_node *);
472 static void mem_rotate_right (struct mem_node *);
473 static void mem_delete (struct mem_node *);
474 static void mem_delete_fixup (struct mem_node *);
475 static INLINE struct mem_node *mem_find (void *);
478 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
479 static void check_gcpros (void);
480 #endif
482 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
484 /* Recording what needs to be marked for gc. */
486 struct gcpro *gcprolist;
488 /* Addresses of staticpro'd variables. Initialize it to a nonzero
489 value; otherwise some compilers put it into BSS. */
491 #define NSTATICS 0x640
492 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
494 /* Index of next unused slot in staticvec. */
496 static int staticidx = 0;
498 static POINTER_TYPE *pure_alloc (size_t, int);
501 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
502 ALIGNMENT must be a power of 2. */
504 #define ALIGN(ptr, ALIGNMENT) \
505 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
506 & ~((ALIGNMENT) - 1)))
510 /************************************************************************
511 Malloc
512 ************************************************************************/
514 /* Function malloc calls this if it finds we are near exhausting storage. */
516 void
517 malloc_warning (char *str)
519 pending_malloc_warning = str;
523 /* Display an already-pending malloc warning. */
525 void
526 display_malloc_warning (void)
528 call3 (intern ("display-warning"),
529 intern ("alloc"),
530 build_string (pending_malloc_warning),
531 intern ("emergency"));
532 pending_malloc_warning = 0;
536 #ifdef DOUG_LEA_MALLOC
537 # define BYTES_USED (mallinfo ().uordblks)
538 #else
539 # define BYTES_USED _bytes_used
540 #endif
542 /* Called if we can't allocate relocatable space for a buffer. */
544 void
545 buffer_memory_full (void)
547 /* If buffers use the relocating allocator, no need to free
548 spare_memory, because we may have plenty of malloc space left
549 that we could get, and if we don't, the malloc that fails will
550 itself cause spare_memory to be freed. If buffers don't use the
551 relocating allocator, treat this like any other failing
552 malloc. */
554 #ifndef REL_ALLOC
555 memory_full ();
556 #endif
558 /* This used to call error, but if we've run out of memory, we could
559 get infinite recursion trying to build the string. */
560 xsignal (Qnil, Vmemory_signal_data);
564 #ifdef XMALLOC_OVERRUN_CHECK
566 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
567 and a 16 byte trailer around each block.
569 The header consists of 12 fixed bytes + a 4 byte integer contaning the
570 original block size, while the trailer consists of 16 fixed bytes.
572 The header is used to detect whether this block has been allocated
573 through these functions -- as it seems that some low-level libc
574 functions may bypass the malloc hooks.
578 #define XMALLOC_OVERRUN_CHECK_SIZE 16
580 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
581 { 0x9a, 0x9b, 0xae, 0xaf,
582 0xbf, 0xbe, 0xce, 0xcf,
583 0xea, 0xeb, 0xec, 0xed };
585 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
586 { 0xaa, 0xab, 0xac, 0xad,
587 0xba, 0xbb, 0xbc, 0xbd,
588 0xca, 0xcb, 0xcc, 0xcd,
589 0xda, 0xdb, 0xdc, 0xdd };
591 /* Macros to insert and extract the block size in the header. */
593 #define XMALLOC_PUT_SIZE(ptr, size) \
594 (ptr[-1] = (size & 0xff), \
595 ptr[-2] = ((size >> 8) & 0xff), \
596 ptr[-3] = ((size >> 16) & 0xff), \
597 ptr[-4] = ((size >> 24) & 0xff))
599 #define XMALLOC_GET_SIZE(ptr) \
600 (size_t)((unsigned)(ptr[-1]) | \
601 ((unsigned)(ptr[-2]) << 8) | \
602 ((unsigned)(ptr[-3]) << 16) | \
603 ((unsigned)(ptr[-4]) << 24))
606 /* The call depth in overrun_check functions. For example, this might happen:
607 xmalloc()
608 overrun_check_malloc()
609 -> malloc -> (via hook)_-> emacs_blocked_malloc
610 -> overrun_check_malloc
611 call malloc (hooks are NULL, so real malloc is called).
612 malloc returns 10000.
613 add overhead, return 10016.
614 <- (back in overrun_check_malloc)
615 add overhead again, return 10032
616 xmalloc returns 10032.
618 (time passes).
620 xfree(10032)
621 overrun_check_free(10032)
622 decrease overhed
623 free(10016) <- crash, because 10000 is the original pointer. */
625 static int check_depth;
627 /* Like malloc, but wraps allocated block with header and trailer. */
629 POINTER_TYPE *
630 overrun_check_malloc (size)
631 size_t size;
633 register unsigned char *val;
634 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
636 val = (unsigned char *) malloc (size + overhead);
637 if (val && check_depth == 1)
639 memcpy (val, xmalloc_overrun_check_header,
640 XMALLOC_OVERRUN_CHECK_SIZE - 4);
641 val += XMALLOC_OVERRUN_CHECK_SIZE;
642 XMALLOC_PUT_SIZE(val, size);
643 memcpy (val + size, xmalloc_overrun_check_trailer,
644 XMALLOC_OVERRUN_CHECK_SIZE);
646 --check_depth;
647 return (POINTER_TYPE *)val;
651 /* Like realloc, but checks old block for overrun, and wraps new block
652 with header and trailer. */
654 POINTER_TYPE *
655 overrun_check_realloc (block, size)
656 POINTER_TYPE *block;
657 size_t size;
659 register unsigned char *val = (unsigned char *)block;
660 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
662 if (val
663 && check_depth == 1
664 && memcmp (xmalloc_overrun_check_header,
665 val - XMALLOC_OVERRUN_CHECK_SIZE,
666 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
668 size_t osize = XMALLOC_GET_SIZE (val);
669 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
670 XMALLOC_OVERRUN_CHECK_SIZE))
671 abort ();
672 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
673 val -= XMALLOC_OVERRUN_CHECK_SIZE;
674 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
677 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
679 if (val && check_depth == 1)
681 memcpy (val, xmalloc_overrun_check_header,
682 XMALLOC_OVERRUN_CHECK_SIZE - 4);
683 val += XMALLOC_OVERRUN_CHECK_SIZE;
684 XMALLOC_PUT_SIZE(val, size);
685 memcpy (val + size, xmalloc_overrun_check_trailer,
686 XMALLOC_OVERRUN_CHECK_SIZE);
688 --check_depth;
689 return (POINTER_TYPE *)val;
692 /* Like free, but checks block for overrun. */
694 void
695 overrun_check_free (block)
696 POINTER_TYPE *block;
698 unsigned char *val = (unsigned char *)block;
700 ++check_depth;
701 if (val
702 && check_depth == 1
703 && memcmp (xmalloc_overrun_check_header,
704 val - XMALLOC_OVERRUN_CHECK_SIZE,
705 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
707 size_t osize = XMALLOC_GET_SIZE (val);
708 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
709 XMALLOC_OVERRUN_CHECK_SIZE))
710 abort ();
711 #ifdef XMALLOC_CLEAR_FREE_MEMORY
712 val -= XMALLOC_OVERRUN_CHECK_SIZE;
713 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
714 #else
715 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
716 val -= XMALLOC_OVERRUN_CHECK_SIZE;
717 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
718 #endif
721 free (val);
722 --check_depth;
725 #undef malloc
726 #undef realloc
727 #undef free
728 #define malloc overrun_check_malloc
729 #define realloc overrun_check_realloc
730 #define free overrun_check_free
731 #endif
733 #ifdef SYNC_INPUT
734 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
735 there's no need to block input around malloc. */
736 #define MALLOC_BLOCK_INPUT ((void)0)
737 #define MALLOC_UNBLOCK_INPUT ((void)0)
738 #else
739 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
740 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
741 #endif
743 /* Like malloc but check for no memory and block interrupt input.. */
745 POINTER_TYPE *
746 xmalloc (size_t size)
748 register POINTER_TYPE *val;
750 MALLOC_BLOCK_INPUT;
751 val = (POINTER_TYPE *) malloc (size);
752 MALLOC_UNBLOCK_INPUT;
754 if (!val && size)
755 memory_full ();
756 return val;
760 /* Like realloc but check for no memory and block interrupt input.. */
762 POINTER_TYPE *
763 xrealloc (POINTER_TYPE *block, size_t size)
765 register POINTER_TYPE *val;
767 MALLOC_BLOCK_INPUT;
768 /* We must call malloc explicitly when BLOCK is 0, since some
769 reallocs don't do this. */
770 if (! block)
771 val = (POINTER_TYPE *) malloc (size);
772 else
773 val = (POINTER_TYPE *) realloc (block, size);
774 MALLOC_UNBLOCK_INPUT;
776 if (!val && size) memory_full ();
777 return val;
781 /* Like free but block interrupt input. */
783 void
784 xfree (POINTER_TYPE *block)
786 if (!block)
787 return;
788 MALLOC_BLOCK_INPUT;
789 free (block);
790 MALLOC_UNBLOCK_INPUT;
791 /* We don't call refill_memory_reserve here
792 because that duplicates doing so in emacs_blocked_free
793 and the criterion should go there. */
797 /* Like strdup, but uses xmalloc. */
799 char *
800 xstrdup (const char *s)
802 size_t len = strlen (s) + 1;
803 char *p = (char *) xmalloc (len);
804 memcpy (p, s, len);
805 return p;
809 /* Unwind for SAFE_ALLOCA */
811 Lisp_Object
812 safe_alloca_unwind (Lisp_Object arg)
814 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
816 p->dogc = 0;
817 xfree (p->pointer);
818 p->pointer = 0;
819 free_misc (arg);
820 return Qnil;
824 /* Like malloc but used for allocating Lisp data. NBYTES is the
825 number of bytes to allocate, TYPE describes the intended use of the
826 allcated memory block (for strings, for conses, ...). */
828 #ifndef USE_LSB_TAG
829 static void *lisp_malloc_loser;
830 #endif
832 static POINTER_TYPE *
833 lisp_malloc (size_t nbytes, enum mem_type type)
835 register void *val;
837 MALLOC_BLOCK_INPUT;
839 #ifdef GC_MALLOC_CHECK
840 allocated_mem_type = type;
841 #endif
843 val = (void *) malloc (nbytes);
845 #ifndef USE_LSB_TAG
846 /* If the memory just allocated cannot be addressed thru a Lisp
847 object's pointer, and it needs to be,
848 that's equivalent to running out of memory. */
849 if (val && type != MEM_TYPE_NON_LISP)
851 Lisp_Object tem;
852 XSETCONS (tem, (char *) val + nbytes - 1);
853 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
855 lisp_malloc_loser = val;
856 free (val);
857 val = 0;
860 #endif
862 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
863 if (val && type != MEM_TYPE_NON_LISP)
864 mem_insert (val, (char *) val + nbytes, type);
865 #endif
867 MALLOC_UNBLOCK_INPUT;
868 if (!val && nbytes)
869 memory_full ();
870 return val;
873 /* Free BLOCK. This must be called to free memory allocated with a
874 call to lisp_malloc. */
876 static void
877 lisp_free (POINTER_TYPE *block)
879 MALLOC_BLOCK_INPUT;
880 free (block);
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 mem_delete (mem_find (block));
883 #endif
884 MALLOC_UNBLOCK_INPUT;
887 /* Allocation of aligned blocks of memory to store Lisp data. */
888 /* The entry point is lisp_align_malloc which returns blocks of at most */
889 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
891 /* Use posix_memalloc if the system has it and we're using the system's
892 malloc (because our gmalloc.c routines don't have posix_memalign although
893 its memalloc could be used). */
894 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
895 #define USE_POSIX_MEMALIGN 1
896 #endif
898 /* BLOCK_ALIGN has to be a power of 2. */
899 #define BLOCK_ALIGN (1 << 10)
901 /* Padding to leave at the end of a malloc'd block. This is to give
902 malloc a chance to minimize the amount of memory wasted to alignment.
903 It should be tuned to the particular malloc library used.
904 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
905 posix_memalign on the other hand would ideally prefer a value of 4
906 because otherwise, there's 1020 bytes wasted between each ablocks.
907 In Emacs, testing shows that those 1020 can most of the time be
908 efficiently used by malloc to place other objects, so a value of 0 can
909 still preferable unless you have a lot of aligned blocks and virtually
910 nothing else. */
911 #define BLOCK_PADDING 0
912 #define BLOCK_BYTES \
913 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
915 /* Internal data structures and constants. */
917 #define ABLOCKS_SIZE 16
919 /* An aligned block of memory. */
920 struct ablock
922 union
924 char payload[BLOCK_BYTES];
925 struct ablock *next_free;
926 } x;
927 /* `abase' is the aligned base of the ablocks. */
928 /* It is overloaded to hold the virtual `busy' field that counts
929 the number of used ablock in the parent ablocks.
930 The first ablock has the `busy' field, the others have the `abase'
931 field. To tell the difference, we assume that pointers will have
932 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
933 is used to tell whether the real base of the parent ablocks is `abase'
934 (if not, the word before the first ablock holds a pointer to the
935 real base). */
936 struct ablocks *abase;
937 /* The padding of all but the last ablock is unused. The padding of
938 the last ablock in an ablocks is not allocated. */
939 #if BLOCK_PADDING
940 char padding[BLOCK_PADDING];
941 #endif
944 /* A bunch of consecutive aligned blocks. */
945 struct ablocks
947 struct ablock blocks[ABLOCKS_SIZE];
950 /* Size of the block requested from malloc or memalign. */
951 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
953 #define ABLOCK_ABASE(block) \
954 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
955 ? (struct ablocks *)(block) \
956 : (block)->abase)
958 /* Virtual `busy' field. */
959 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
961 /* Pointer to the (not necessarily aligned) malloc block. */
962 #ifdef USE_POSIX_MEMALIGN
963 #define ABLOCKS_BASE(abase) (abase)
964 #else
965 #define ABLOCKS_BASE(abase) \
966 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
967 #endif
969 /* The list of free ablock. */
970 static struct ablock *free_ablock;
972 /* Allocate an aligned block of nbytes.
973 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
974 smaller or equal to BLOCK_BYTES. */
975 static POINTER_TYPE *
976 lisp_align_malloc (size_t nbytes, enum mem_type type)
978 void *base, *val;
979 struct ablocks *abase;
981 eassert (nbytes <= BLOCK_BYTES);
983 MALLOC_BLOCK_INPUT;
985 #ifdef GC_MALLOC_CHECK
986 allocated_mem_type = type;
987 #endif
989 if (!free_ablock)
991 int i;
992 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
994 #ifdef DOUG_LEA_MALLOC
995 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
996 because mapped region contents are not preserved in
997 a dumped Emacs. */
998 mallopt (M_MMAP_MAX, 0);
999 #endif
1001 #ifdef USE_POSIX_MEMALIGN
1003 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1004 if (err)
1005 base = NULL;
1006 abase = base;
1008 #else
1009 base = malloc (ABLOCKS_BYTES);
1010 abase = ALIGN (base, BLOCK_ALIGN);
1011 #endif
1013 if (base == 0)
1015 MALLOC_UNBLOCK_INPUT;
1016 memory_full ();
1019 aligned = (base == abase);
1020 if (!aligned)
1021 ((void**)abase)[-1] = base;
1023 #ifdef DOUG_LEA_MALLOC
1024 /* Back to a reasonable maximum of mmap'ed areas. */
1025 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1026 #endif
1028 #ifndef USE_LSB_TAG
1029 /* If the memory just allocated cannot be addressed thru a Lisp
1030 object's pointer, and it needs to be, that's equivalent to
1031 running out of memory. */
1032 if (type != MEM_TYPE_NON_LISP)
1034 Lisp_Object tem;
1035 char *end = (char *) base + ABLOCKS_BYTES - 1;
1036 XSETCONS (tem, end);
1037 if ((char *) XCONS (tem) != end)
1039 lisp_malloc_loser = base;
1040 free (base);
1041 MALLOC_UNBLOCK_INPUT;
1042 memory_full ();
1045 #endif
1047 /* Initialize the blocks and put them on the free list.
1048 Is `base' was not properly aligned, we can't use the last block. */
1049 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1051 abase->blocks[i].abase = abase;
1052 abase->blocks[i].x.next_free = free_ablock;
1053 free_ablock = &abase->blocks[i];
1055 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1057 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1058 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1059 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1060 eassert (ABLOCKS_BASE (abase) == base);
1061 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1064 abase = ABLOCK_ABASE (free_ablock);
1065 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1066 val = free_ablock;
1067 free_ablock = free_ablock->x.next_free;
1069 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1070 if (val && type != MEM_TYPE_NON_LISP)
1071 mem_insert (val, (char *) val + nbytes, type);
1072 #endif
1074 MALLOC_UNBLOCK_INPUT;
1075 if (!val && nbytes)
1076 memory_full ();
1078 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1079 return val;
1082 static void
1083 lisp_align_free (POINTER_TYPE *block)
1085 struct ablock *ablock = block;
1086 struct ablocks *abase = ABLOCK_ABASE (ablock);
1088 MALLOC_BLOCK_INPUT;
1089 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1090 mem_delete (mem_find (block));
1091 #endif
1092 /* Put on free list. */
1093 ablock->x.next_free = free_ablock;
1094 free_ablock = ablock;
1095 /* Update busy count. */
1096 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1098 if (2 > (long) ABLOCKS_BUSY (abase))
1099 { /* All the blocks are free. */
1100 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1101 struct ablock **tem = &free_ablock;
1102 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1104 while (*tem)
1106 if (*tem >= (struct ablock *) abase && *tem < atop)
1108 i++;
1109 *tem = (*tem)->x.next_free;
1111 else
1112 tem = &(*tem)->x.next_free;
1114 eassert ((aligned & 1) == aligned);
1115 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1116 #ifdef USE_POSIX_MEMALIGN
1117 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1118 #endif
1119 free (ABLOCKS_BASE (abase));
1121 MALLOC_UNBLOCK_INPUT;
1124 /* Return a new buffer structure allocated from the heap with
1125 a call to lisp_malloc. */
1127 struct buffer *
1128 allocate_buffer (void)
1130 struct buffer *b
1131 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1132 MEM_TYPE_BUFFER);
1133 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1134 XSETPVECTYPE (b, PVEC_BUFFER);
1135 return b;
1139 #ifndef SYSTEM_MALLOC
1141 /* Arranging to disable input signals while we're in malloc.
1143 This only works with GNU malloc. To help out systems which can't
1144 use GNU malloc, all the calls to malloc, realloc, and free
1145 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1146 pair; unfortunately, we have no idea what C library functions
1147 might call malloc, so we can't really protect them unless you're
1148 using GNU malloc. Fortunately, most of the major operating systems
1149 can use GNU malloc. */
1151 #ifndef SYNC_INPUT
1152 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1153 there's no need to block input around malloc. */
1155 #ifndef DOUG_LEA_MALLOC
1156 extern void * (*__malloc_hook) (size_t, const void *);
1157 extern void * (*__realloc_hook) (void *, size_t, const void *);
1158 extern void (*__free_hook) (void *, const void *);
1159 /* Else declared in malloc.h, perhaps with an extra arg. */
1160 #endif /* DOUG_LEA_MALLOC */
1161 static void * (*old_malloc_hook) (size_t, const void *);
1162 static void * (*old_realloc_hook) (void *, size_t, const void*);
1163 static void (*old_free_hook) (void*, const void*);
1165 /* This function is used as the hook for free to call. */
1167 static void
1168 emacs_blocked_free (ptr, ptr2)
1169 void *ptr;
1170 const void *ptr2;
1172 BLOCK_INPUT_ALLOC;
1174 #ifdef GC_MALLOC_CHECK
1175 if (ptr)
1177 struct mem_node *m;
1179 m = mem_find (ptr);
1180 if (m == MEM_NIL || m->start != ptr)
1182 fprintf (stderr,
1183 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1184 abort ();
1186 else
1188 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1189 mem_delete (m);
1192 #endif /* GC_MALLOC_CHECK */
1194 __free_hook = old_free_hook;
1195 free (ptr);
1197 /* If we released our reserve (due to running out of memory),
1198 and we have a fair amount free once again,
1199 try to set aside another reserve in case we run out once more. */
1200 if (! NILP (Vmemory_full)
1201 /* Verify there is enough space that even with the malloc
1202 hysteresis this call won't run out again.
1203 The code here is correct as long as SPARE_MEMORY
1204 is substantially larger than the block size malloc uses. */
1205 && (bytes_used_when_full
1206 > ((bytes_used_when_reconsidered = BYTES_USED)
1207 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1208 refill_memory_reserve ();
1210 __free_hook = emacs_blocked_free;
1211 UNBLOCK_INPUT_ALLOC;
1215 /* This function is the malloc hook that Emacs uses. */
1217 static void *
1218 emacs_blocked_malloc (size, ptr)
1219 size_t size;
1220 const void *ptr;
1222 void *value;
1224 BLOCK_INPUT_ALLOC;
1225 __malloc_hook = old_malloc_hook;
1226 #ifdef DOUG_LEA_MALLOC
1227 /* Segfaults on my system. --lorentey */
1228 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1229 #else
1230 __malloc_extra_blocks = malloc_hysteresis;
1231 #endif
1233 value = (void *) malloc (size);
1235 #ifdef GC_MALLOC_CHECK
1237 struct mem_node *m = mem_find (value);
1238 if (m != MEM_NIL)
1240 fprintf (stderr, "Malloc returned %p which is already in use\n",
1241 value);
1242 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1243 m->start, m->end, (char *) m->end - (char *) m->start,
1244 m->type);
1245 abort ();
1248 if (!dont_register_blocks)
1250 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1251 allocated_mem_type = MEM_TYPE_NON_LISP;
1254 #endif /* GC_MALLOC_CHECK */
1256 __malloc_hook = emacs_blocked_malloc;
1257 UNBLOCK_INPUT_ALLOC;
1259 /* fprintf (stderr, "%p malloc\n", value); */
1260 return value;
1264 /* This function is the realloc hook that Emacs uses. */
1266 static void *
1267 emacs_blocked_realloc (ptr, size, ptr2)
1268 void *ptr;
1269 size_t size;
1270 const void *ptr2;
1272 void *value;
1274 BLOCK_INPUT_ALLOC;
1275 __realloc_hook = old_realloc_hook;
1277 #ifdef GC_MALLOC_CHECK
1278 if (ptr)
1280 struct mem_node *m = mem_find (ptr);
1281 if (m == MEM_NIL || m->start != ptr)
1283 fprintf (stderr,
1284 "Realloc of %p which wasn't allocated with malloc\n",
1285 ptr);
1286 abort ();
1289 mem_delete (m);
1292 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1294 /* Prevent malloc from registering blocks. */
1295 dont_register_blocks = 1;
1296 #endif /* GC_MALLOC_CHECK */
1298 value = (void *) realloc (ptr, size);
1300 #ifdef GC_MALLOC_CHECK
1301 dont_register_blocks = 0;
1304 struct mem_node *m = mem_find (value);
1305 if (m != MEM_NIL)
1307 fprintf (stderr, "Realloc returns memory that is already in use\n");
1308 abort ();
1311 /* Can't handle zero size regions in the red-black tree. */
1312 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1315 /* fprintf (stderr, "%p <- realloc\n", value); */
1316 #endif /* GC_MALLOC_CHECK */
1318 __realloc_hook = emacs_blocked_realloc;
1319 UNBLOCK_INPUT_ALLOC;
1321 return value;
1325 #ifdef HAVE_GTK_AND_PTHREAD
1326 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1327 normal malloc. Some thread implementations need this as they call
1328 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1329 calls malloc because it is the first call, and we have an endless loop. */
1331 void
1332 reset_malloc_hooks ()
1334 __free_hook = old_free_hook;
1335 __malloc_hook = old_malloc_hook;
1336 __realloc_hook = old_realloc_hook;
1338 #endif /* HAVE_GTK_AND_PTHREAD */
1341 /* Called from main to set up malloc to use our hooks. */
1343 void
1344 uninterrupt_malloc ()
1346 #ifdef HAVE_GTK_AND_PTHREAD
1347 #ifdef DOUG_LEA_MALLOC
1348 pthread_mutexattr_t attr;
1350 /* GLIBC has a faster way to do this, but lets keep it portable.
1351 This is according to the Single UNIX Specification. */
1352 pthread_mutexattr_init (&attr);
1353 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1354 pthread_mutex_init (&alloc_mutex, &attr);
1355 #else /* !DOUG_LEA_MALLOC */
1356 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1357 and the bundled gmalloc.c doesn't require it. */
1358 pthread_mutex_init (&alloc_mutex, NULL);
1359 #endif /* !DOUG_LEA_MALLOC */
1360 #endif /* HAVE_GTK_AND_PTHREAD */
1362 if (__free_hook != emacs_blocked_free)
1363 old_free_hook = __free_hook;
1364 __free_hook = emacs_blocked_free;
1366 if (__malloc_hook != emacs_blocked_malloc)
1367 old_malloc_hook = __malloc_hook;
1368 __malloc_hook = emacs_blocked_malloc;
1370 if (__realloc_hook != emacs_blocked_realloc)
1371 old_realloc_hook = __realloc_hook;
1372 __realloc_hook = emacs_blocked_realloc;
1375 #endif /* not SYNC_INPUT */
1376 #endif /* not SYSTEM_MALLOC */
1380 /***********************************************************************
1381 Interval Allocation
1382 ***********************************************************************/
1384 /* Number of intervals allocated in an interval_block structure.
1385 The 1020 is 1024 minus malloc overhead. */
1387 #define INTERVAL_BLOCK_SIZE \
1388 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1390 /* Intervals are allocated in chunks in form of an interval_block
1391 structure. */
1393 struct interval_block
1395 /* Place `intervals' first, to preserve alignment. */
1396 struct interval intervals[INTERVAL_BLOCK_SIZE];
1397 struct interval_block *next;
1400 /* Current interval block. Its `next' pointer points to older
1401 blocks. */
1403 static struct interval_block *interval_block;
1405 /* Index in interval_block above of the next unused interval
1406 structure. */
1408 static int interval_block_index;
1410 /* Number of free and live intervals. */
1412 static int total_free_intervals, total_intervals;
1414 /* List of free intervals. */
1416 INTERVAL interval_free_list;
1418 /* Total number of interval blocks now in use. */
1420 static int n_interval_blocks;
1423 /* Initialize interval allocation. */
1425 static void
1426 init_intervals (void)
1428 interval_block = NULL;
1429 interval_block_index = INTERVAL_BLOCK_SIZE;
1430 interval_free_list = 0;
1431 n_interval_blocks = 0;
1435 /* Return a new interval. */
1437 INTERVAL
1438 make_interval (void)
1440 INTERVAL val;
1442 /* eassert (!handling_signal); */
1444 MALLOC_BLOCK_INPUT;
1446 if (interval_free_list)
1448 val = interval_free_list;
1449 interval_free_list = INTERVAL_PARENT (interval_free_list);
1451 else
1453 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1455 register struct interval_block *newi;
1457 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1458 MEM_TYPE_NON_LISP);
1460 newi->next = interval_block;
1461 interval_block = newi;
1462 interval_block_index = 0;
1463 n_interval_blocks++;
1465 val = &interval_block->intervals[interval_block_index++];
1468 MALLOC_UNBLOCK_INPUT;
1470 consing_since_gc += sizeof (struct interval);
1471 intervals_consed++;
1472 RESET_INTERVAL (val);
1473 val->gcmarkbit = 0;
1474 return val;
1478 /* Mark Lisp objects in interval I. */
1480 static void
1481 mark_interval (register INTERVAL i, Lisp_Object dummy)
1483 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1484 i->gcmarkbit = 1;
1485 mark_object (i->plist);
1489 /* Mark the interval tree rooted in TREE. Don't call this directly;
1490 use the macro MARK_INTERVAL_TREE instead. */
1492 static void
1493 mark_interval_tree (register INTERVAL tree)
1495 /* No need to test if this tree has been marked already; this
1496 function is always called through the MARK_INTERVAL_TREE macro,
1497 which takes care of that. */
1499 traverse_intervals_noorder (tree, mark_interval, Qnil);
1503 /* Mark the interval tree rooted in I. */
1505 #define MARK_INTERVAL_TREE(i) \
1506 do { \
1507 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1508 mark_interval_tree (i); \
1509 } while (0)
1512 #define UNMARK_BALANCE_INTERVALS(i) \
1513 do { \
1514 if (! NULL_INTERVAL_P (i)) \
1515 (i) = balance_intervals (i); \
1516 } while (0)
1519 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1520 can't create number objects in macros. */
1521 #ifndef make_number
1522 Lisp_Object
1523 make_number (n)
1524 EMACS_INT n;
1526 Lisp_Object obj;
1527 obj.s.val = n;
1528 obj.s.type = Lisp_Int;
1529 return obj;
1531 #endif
1533 /***********************************************************************
1534 String Allocation
1535 ***********************************************************************/
1537 /* Lisp_Strings are allocated in string_block structures. When a new
1538 string_block is allocated, all the Lisp_Strings it contains are
1539 added to a free-list string_free_list. When a new Lisp_String is
1540 needed, it is taken from that list. During the sweep phase of GC,
1541 string_blocks that are entirely free are freed, except two which
1542 we keep.
1544 String data is allocated from sblock structures. Strings larger
1545 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1546 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1548 Sblocks consist internally of sdata structures, one for each
1549 Lisp_String. The sdata structure points to the Lisp_String it
1550 belongs to. The Lisp_String points back to the `u.data' member of
1551 its sdata structure.
1553 When a Lisp_String is freed during GC, it is put back on
1554 string_free_list, and its `data' member and its sdata's `string'
1555 pointer is set to null. The size of the string is recorded in the
1556 `u.nbytes' member of the sdata. So, sdata structures that are no
1557 longer used, can be easily recognized, and it's easy to compact the
1558 sblocks of small strings which we do in compact_small_strings. */
1560 /* Size in bytes of an sblock structure used for small strings. This
1561 is 8192 minus malloc overhead. */
1563 #define SBLOCK_SIZE 8188
1565 /* Strings larger than this are considered large strings. String data
1566 for large strings is allocated from individual sblocks. */
1568 #define LARGE_STRING_BYTES 1024
1570 /* Structure describing string memory sub-allocated from an sblock.
1571 This is where the contents of Lisp strings are stored. */
1573 struct sdata
1575 /* Back-pointer to the string this sdata belongs to. If null, this
1576 structure is free, and the NBYTES member of the union below
1577 contains the string's byte size (the same value that STRING_BYTES
1578 would return if STRING were non-null). If non-null, STRING_BYTES
1579 (STRING) is the size of the data, and DATA contains the string's
1580 contents. */
1581 struct Lisp_String *string;
1583 #ifdef GC_CHECK_STRING_BYTES
1585 EMACS_INT nbytes;
1586 unsigned char data[1];
1588 #define SDATA_NBYTES(S) (S)->nbytes
1589 #define SDATA_DATA(S) (S)->data
1591 #else /* not GC_CHECK_STRING_BYTES */
1593 union
1595 /* When STRING in non-null. */
1596 unsigned char data[1];
1598 /* When STRING is null. */
1599 EMACS_INT nbytes;
1600 } u;
1603 #define SDATA_NBYTES(S) (S)->u.nbytes
1604 #define SDATA_DATA(S) (S)->u.data
1606 #endif /* not GC_CHECK_STRING_BYTES */
1610 /* Structure describing a block of memory which is sub-allocated to
1611 obtain string data memory for strings. Blocks for small strings
1612 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1613 as large as needed. */
1615 struct sblock
1617 /* Next in list. */
1618 struct sblock *next;
1620 /* Pointer to the next free sdata block. This points past the end
1621 of the sblock if there isn't any space left in this block. */
1622 struct sdata *next_free;
1624 /* Start of data. */
1625 struct sdata first_data;
1628 /* Number of Lisp strings in a string_block structure. The 1020 is
1629 1024 minus malloc overhead. */
1631 #define STRING_BLOCK_SIZE \
1632 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1634 /* Structure describing a block from which Lisp_String structures
1635 are allocated. */
1637 struct string_block
1639 /* Place `strings' first, to preserve alignment. */
1640 struct Lisp_String strings[STRING_BLOCK_SIZE];
1641 struct string_block *next;
1644 /* Head and tail of the list of sblock structures holding Lisp string
1645 data. We always allocate from current_sblock. The NEXT pointers
1646 in the sblock structures go from oldest_sblock to current_sblock. */
1648 static struct sblock *oldest_sblock, *current_sblock;
1650 /* List of sblocks for large strings. */
1652 static struct sblock *large_sblocks;
1654 /* List of string_block structures, and how many there are. */
1656 static struct string_block *string_blocks;
1657 static int n_string_blocks;
1659 /* Free-list of Lisp_Strings. */
1661 static struct Lisp_String *string_free_list;
1663 /* Number of live and free Lisp_Strings. */
1665 static int total_strings, total_free_strings;
1667 /* Number of bytes used by live strings. */
1669 static int total_string_size;
1671 /* Given a pointer to a Lisp_String S which is on the free-list
1672 string_free_list, return a pointer to its successor in the
1673 free-list. */
1675 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1677 /* Return a pointer to the sdata structure belonging to Lisp string S.
1678 S must be live, i.e. S->data must not be null. S->data is actually
1679 a pointer to the `u.data' member of its sdata structure; the
1680 structure starts at a constant offset in front of that. */
1682 #ifdef GC_CHECK_STRING_BYTES
1684 #define SDATA_OF_STRING(S) \
1685 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1686 - sizeof (EMACS_INT)))
1688 #else /* not GC_CHECK_STRING_BYTES */
1690 #define SDATA_OF_STRING(S) \
1691 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1693 #endif /* not GC_CHECK_STRING_BYTES */
1696 #ifdef GC_CHECK_STRING_OVERRUN
1698 /* We check for overrun in string data blocks by appending a small
1699 "cookie" after each allocated string data block, and check for the
1700 presence of this cookie during GC. */
1702 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1703 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1704 { 0xde, 0xad, 0xbe, 0xef };
1706 #else
1707 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1708 #endif
1710 /* Value is the size of an sdata structure large enough to hold NBYTES
1711 bytes of string data. The value returned includes a terminating
1712 NUL byte, the size of the sdata structure, and padding. */
1714 #ifdef GC_CHECK_STRING_BYTES
1716 #define SDATA_SIZE(NBYTES) \
1717 ((sizeof (struct Lisp_String *) \
1718 + (NBYTES) + 1 \
1719 + sizeof (EMACS_INT) \
1720 + sizeof (EMACS_INT) - 1) \
1721 & ~(sizeof (EMACS_INT) - 1))
1723 #else /* not GC_CHECK_STRING_BYTES */
1725 #define SDATA_SIZE(NBYTES) \
1726 ((sizeof (struct Lisp_String *) \
1727 + (NBYTES) + 1 \
1728 + sizeof (EMACS_INT) - 1) \
1729 & ~(sizeof (EMACS_INT) - 1))
1731 #endif /* not GC_CHECK_STRING_BYTES */
1733 /* Extra bytes to allocate for each string. */
1735 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1737 /* Initialize string allocation. Called from init_alloc_once. */
1739 static void
1740 init_strings (void)
1742 total_strings = total_free_strings = total_string_size = 0;
1743 oldest_sblock = current_sblock = large_sblocks = NULL;
1744 string_blocks = NULL;
1745 n_string_blocks = 0;
1746 string_free_list = NULL;
1747 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1748 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1752 #ifdef GC_CHECK_STRING_BYTES
1754 static int check_string_bytes_count;
1756 static void check_string_bytes (int);
1757 static void check_sblock (struct sblock *);
1759 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1762 /* Like GC_STRING_BYTES, but with debugging check. */
1765 string_bytes (s)
1766 struct Lisp_String *s;
1768 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1769 if (!PURE_POINTER_P (s)
1770 && s->data
1771 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1772 abort ();
1773 return nbytes;
1776 /* Check validity of Lisp strings' string_bytes member in B. */
1778 static void
1779 check_sblock (b)
1780 struct sblock *b;
1782 struct sdata *from, *end, *from_end;
1784 end = b->next_free;
1786 for (from = &b->first_data; from < end; from = from_end)
1788 /* Compute the next FROM here because copying below may
1789 overwrite data we need to compute it. */
1790 int nbytes;
1792 /* Check that the string size recorded in the string is the
1793 same as the one recorded in the sdata structure. */
1794 if (from->string)
1795 CHECK_STRING_BYTES (from->string);
1797 if (from->string)
1798 nbytes = GC_STRING_BYTES (from->string);
1799 else
1800 nbytes = SDATA_NBYTES (from);
1802 nbytes = SDATA_SIZE (nbytes);
1803 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1808 /* Check validity of Lisp strings' string_bytes member. ALL_P
1809 non-zero means check all strings, otherwise check only most
1810 recently allocated strings. Used for hunting a bug. */
1812 static void
1813 check_string_bytes (all_p)
1814 int all_p;
1816 if (all_p)
1818 struct sblock *b;
1820 for (b = large_sblocks; b; b = b->next)
1822 struct Lisp_String *s = b->first_data.string;
1823 if (s)
1824 CHECK_STRING_BYTES (s);
1827 for (b = oldest_sblock; b; b = b->next)
1828 check_sblock (b);
1830 else
1831 check_sblock (current_sblock);
1834 #endif /* GC_CHECK_STRING_BYTES */
1836 #ifdef GC_CHECK_STRING_FREE_LIST
1838 /* Walk through the string free list looking for bogus next pointers.
1839 This may catch buffer overrun from a previous string. */
1841 static void
1842 check_string_free_list ()
1844 struct Lisp_String *s;
1846 /* Pop a Lisp_String off the free-list. */
1847 s = string_free_list;
1848 while (s != NULL)
1850 if ((unsigned)s < 1024)
1851 abort();
1852 s = NEXT_FREE_LISP_STRING (s);
1855 #else
1856 #define check_string_free_list()
1857 #endif
1859 /* Return a new Lisp_String. */
1861 static struct Lisp_String *
1862 allocate_string (void)
1864 struct Lisp_String *s;
1866 /* eassert (!handling_signal); */
1868 MALLOC_BLOCK_INPUT;
1870 /* If the free-list is empty, allocate a new string_block, and
1871 add all the Lisp_Strings in it to the free-list. */
1872 if (string_free_list == NULL)
1874 struct string_block *b;
1875 int i;
1877 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1878 memset (b, 0, sizeof *b);
1879 b->next = string_blocks;
1880 string_blocks = b;
1881 ++n_string_blocks;
1883 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1885 s = b->strings + i;
1886 NEXT_FREE_LISP_STRING (s) = string_free_list;
1887 string_free_list = s;
1890 total_free_strings += STRING_BLOCK_SIZE;
1893 check_string_free_list ();
1895 /* Pop a Lisp_String off the free-list. */
1896 s = string_free_list;
1897 string_free_list = NEXT_FREE_LISP_STRING (s);
1899 MALLOC_UNBLOCK_INPUT;
1901 /* Probably not strictly necessary, but play it safe. */
1902 memset (s, 0, sizeof *s);
1904 --total_free_strings;
1905 ++total_strings;
1906 ++strings_consed;
1907 consing_since_gc += sizeof *s;
1909 #ifdef GC_CHECK_STRING_BYTES
1910 if (!noninteractive)
1912 if (++check_string_bytes_count == 200)
1914 check_string_bytes_count = 0;
1915 check_string_bytes (1);
1917 else
1918 check_string_bytes (0);
1920 #endif /* GC_CHECK_STRING_BYTES */
1922 return s;
1926 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1927 plus a NUL byte at the end. Allocate an sdata structure for S, and
1928 set S->data to its `u.data' member. Store a NUL byte at the end of
1929 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1930 S->data if it was initially non-null. */
1932 void
1933 allocate_string_data (struct Lisp_String *s, int nchars, int nbytes)
1935 struct sdata *data, *old_data;
1936 struct sblock *b;
1937 int needed, old_nbytes;
1939 /* Determine the number of bytes needed to store NBYTES bytes
1940 of string data. */
1941 needed = SDATA_SIZE (nbytes);
1942 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1943 old_nbytes = GC_STRING_BYTES (s);
1945 MALLOC_BLOCK_INPUT;
1947 if (nbytes > LARGE_STRING_BYTES)
1949 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1951 #ifdef DOUG_LEA_MALLOC
1952 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1953 because mapped region contents are not preserved in
1954 a dumped Emacs.
1956 In case you think of allowing it in a dumped Emacs at the
1957 cost of not being able to re-dump, there's another reason:
1958 mmap'ed data typically have an address towards the top of the
1959 address space, which won't fit into an EMACS_INT (at least on
1960 32-bit systems with the current tagging scheme). --fx */
1961 mallopt (M_MMAP_MAX, 0);
1962 #endif
1964 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1966 #ifdef DOUG_LEA_MALLOC
1967 /* Back to a reasonable maximum of mmap'ed areas. */
1968 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1969 #endif
1971 b->next_free = &b->first_data;
1972 b->first_data.string = NULL;
1973 b->next = large_sblocks;
1974 large_sblocks = b;
1976 else if (current_sblock == NULL
1977 || (((char *) current_sblock + SBLOCK_SIZE
1978 - (char *) current_sblock->next_free)
1979 < (needed + GC_STRING_EXTRA)))
1981 /* Not enough room in the current sblock. */
1982 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1983 b->next_free = &b->first_data;
1984 b->first_data.string = NULL;
1985 b->next = NULL;
1987 if (current_sblock)
1988 current_sblock->next = b;
1989 else
1990 oldest_sblock = b;
1991 current_sblock = b;
1993 else
1994 b = current_sblock;
1996 data = b->next_free;
1997 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1999 MALLOC_UNBLOCK_INPUT;
2001 data->string = s;
2002 s->data = SDATA_DATA (data);
2003 #ifdef GC_CHECK_STRING_BYTES
2004 SDATA_NBYTES (data) = nbytes;
2005 #endif
2006 s->size = nchars;
2007 s->size_byte = nbytes;
2008 s->data[nbytes] = '\0';
2009 #ifdef GC_CHECK_STRING_OVERRUN
2010 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
2011 #endif
2013 /* If S had already data assigned, mark that as free by setting its
2014 string back-pointer to null, and recording the size of the data
2015 in it. */
2016 if (old_data)
2018 SDATA_NBYTES (old_data) = old_nbytes;
2019 old_data->string = NULL;
2022 consing_since_gc += needed;
2026 /* Sweep and compact strings. */
2028 static void
2029 sweep_strings (void)
2031 struct string_block *b, *next;
2032 struct string_block *live_blocks = NULL;
2034 string_free_list = NULL;
2035 total_strings = total_free_strings = 0;
2036 total_string_size = 0;
2038 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2039 for (b = string_blocks; b; b = next)
2041 int i, nfree = 0;
2042 struct Lisp_String *free_list_before = string_free_list;
2044 next = b->next;
2046 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2048 struct Lisp_String *s = b->strings + i;
2050 if (s->data)
2052 /* String was not on free-list before. */
2053 if (STRING_MARKED_P (s))
2055 /* String is live; unmark it and its intervals. */
2056 UNMARK_STRING (s);
2058 if (!NULL_INTERVAL_P (s->intervals))
2059 UNMARK_BALANCE_INTERVALS (s->intervals);
2061 ++total_strings;
2062 total_string_size += STRING_BYTES (s);
2064 else
2066 /* String is dead. Put it on the free-list. */
2067 struct sdata *data = SDATA_OF_STRING (s);
2069 /* Save the size of S in its sdata so that we know
2070 how large that is. Reset the sdata's string
2071 back-pointer so that we know it's free. */
2072 #ifdef GC_CHECK_STRING_BYTES
2073 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2074 abort ();
2075 #else
2076 data->u.nbytes = GC_STRING_BYTES (s);
2077 #endif
2078 data->string = NULL;
2080 /* Reset the strings's `data' member so that we
2081 know it's free. */
2082 s->data = NULL;
2084 /* Put the string on the free-list. */
2085 NEXT_FREE_LISP_STRING (s) = string_free_list;
2086 string_free_list = s;
2087 ++nfree;
2090 else
2092 /* S was on the free-list before. Put it there again. */
2093 NEXT_FREE_LISP_STRING (s) = string_free_list;
2094 string_free_list = s;
2095 ++nfree;
2099 /* Free blocks that contain free Lisp_Strings only, except
2100 the first two of them. */
2101 if (nfree == STRING_BLOCK_SIZE
2102 && total_free_strings > STRING_BLOCK_SIZE)
2104 lisp_free (b);
2105 --n_string_blocks;
2106 string_free_list = free_list_before;
2108 else
2110 total_free_strings += nfree;
2111 b->next = live_blocks;
2112 live_blocks = b;
2116 check_string_free_list ();
2118 string_blocks = live_blocks;
2119 free_large_strings ();
2120 compact_small_strings ();
2122 check_string_free_list ();
2126 /* Free dead large strings. */
2128 static void
2129 free_large_strings (void)
2131 struct sblock *b, *next;
2132 struct sblock *live_blocks = NULL;
2134 for (b = large_sblocks; b; b = next)
2136 next = b->next;
2138 if (b->first_data.string == NULL)
2139 lisp_free (b);
2140 else
2142 b->next = live_blocks;
2143 live_blocks = b;
2147 large_sblocks = live_blocks;
2151 /* Compact data of small strings. Free sblocks that don't contain
2152 data of live strings after compaction. */
2154 static void
2155 compact_small_strings (void)
2157 struct sblock *b, *tb, *next;
2158 struct sdata *from, *to, *end, *tb_end;
2159 struct sdata *to_end, *from_end;
2161 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2162 to, and TB_END is the end of TB. */
2163 tb = oldest_sblock;
2164 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2165 to = &tb->first_data;
2167 /* Step through the blocks from the oldest to the youngest. We
2168 expect that old blocks will stabilize over time, so that less
2169 copying will happen this way. */
2170 for (b = oldest_sblock; b; b = b->next)
2172 end = b->next_free;
2173 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2175 for (from = &b->first_data; from < end; from = from_end)
2177 /* Compute the next FROM here because copying below may
2178 overwrite data we need to compute it. */
2179 int nbytes;
2181 #ifdef GC_CHECK_STRING_BYTES
2182 /* Check that the string size recorded in the string is the
2183 same as the one recorded in the sdata structure. */
2184 if (from->string
2185 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2186 abort ();
2187 #endif /* GC_CHECK_STRING_BYTES */
2189 if (from->string)
2190 nbytes = GC_STRING_BYTES (from->string);
2191 else
2192 nbytes = SDATA_NBYTES (from);
2194 if (nbytes > LARGE_STRING_BYTES)
2195 abort ();
2197 nbytes = SDATA_SIZE (nbytes);
2198 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2200 #ifdef GC_CHECK_STRING_OVERRUN
2201 if (memcmp (string_overrun_cookie,
2202 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2203 GC_STRING_OVERRUN_COOKIE_SIZE))
2204 abort ();
2205 #endif
2207 /* FROM->string non-null means it's alive. Copy its data. */
2208 if (from->string)
2210 /* If TB is full, proceed with the next sblock. */
2211 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2212 if (to_end > tb_end)
2214 tb->next_free = to;
2215 tb = tb->next;
2216 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2217 to = &tb->first_data;
2218 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2221 /* Copy, and update the string's `data' pointer. */
2222 if (from != to)
2224 xassert (tb != b || to <= from);
2225 memmove (to, from, nbytes + GC_STRING_EXTRA);
2226 to->string->data = SDATA_DATA (to);
2229 /* Advance past the sdata we copied to. */
2230 to = to_end;
2235 /* The rest of the sblocks following TB don't contain live data, so
2236 we can free them. */
2237 for (b = tb->next; b; b = next)
2239 next = b->next;
2240 lisp_free (b);
2243 tb->next_free = to;
2244 tb->next = NULL;
2245 current_sblock = tb;
2249 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2250 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2251 LENGTH must be an integer.
2252 INIT must be an integer that represents a character. */)
2253 (Lisp_Object length, Lisp_Object init)
2255 register Lisp_Object val;
2256 register unsigned char *p, *end;
2257 int c, nbytes;
2259 CHECK_NATNUM (length);
2260 CHECK_NUMBER (init);
2262 c = XINT (init);
2263 if (ASCII_CHAR_P (c))
2265 nbytes = XINT (length);
2266 val = make_uninit_string (nbytes);
2267 p = SDATA (val);
2268 end = p + SCHARS (val);
2269 while (p != end)
2270 *p++ = c;
2272 else
2274 unsigned char str[MAX_MULTIBYTE_LENGTH];
2275 int len = CHAR_STRING (c, str);
2277 nbytes = len * XINT (length);
2278 val = make_uninit_multibyte_string (XINT (length), nbytes);
2279 p = SDATA (val);
2280 end = p + nbytes;
2281 while (p != end)
2283 memcpy (p, str, len);
2284 p += len;
2288 *p = 0;
2289 return val;
2293 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2294 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2295 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2296 (Lisp_Object length, Lisp_Object init)
2298 register Lisp_Object val;
2299 struct Lisp_Bool_Vector *p;
2300 int real_init, i;
2301 int length_in_chars, length_in_elts, bits_per_value;
2303 CHECK_NATNUM (length);
2305 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2307 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2308 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2309 / BOOL_VECTOR_BITS_PER_CHAR);
2311 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2312 slot `size' of the struct Lisp_Bool_Vector. */
2313 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2315 /* Get rid of any bits that would cause confusion. */
2316 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2317 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2318 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2320 p = XBOOL_VECTOR (val);
2321 p->size = XFASTINT (length);
2323 real_init = (NILP (init) ? 0 : -1);
2324 for (i = 0; i < length_in_chars ; i++)
2325 p->data[i] = real_init;
2327 /* Clear the extraneous bits in the last byte. */
2328 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2329 p->data[length_in_chars - 1]
2330 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2332 return val;
2336 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2337 of characters from the contents. This string may be unibyte or
2338 multibyte, depending on the contents. */
2340 Lisp_Object
2341 make_string (const char *contents, int nbytes)
2343 register Lisp_Object val;
2344 int nchars, multibyte_nbytes;
2346 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2347 if (nbytes == nchars || nbytes != multibyte_nbytes)
2348 /* CONTENTS contains no multibyte sequences or contains an invalid
2349 multibyte sequence. We must make unibyte string. */
2350 val = make_unibyte_string (contents, nbytes);
2351 else
2352 val = make_multibyte_string (contents, nchars, nbytes);
2353 return val;
2357 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2359 Lisp_Object
2360 make_unibyte_string (const char *contents, int length)
2362 register Lisp_Object val;
2363 val = make_uninit_string (length);
2364 memcpy (SDATA (val), contents, length);
2365 STRING_SET_UNIBYTE (val);
2366 return val;
2370 /* Make a multibyte string from NCHARS characters occupying NBYTES
2371 bytes at CONTENTS. */
2373 Lisp_Object
2374 make_multibyte_string (const char *contents, int nchars, int nbytes)
2376 register Lisp_Object val;
2377 val = make_uninit_multibyte_string (nchars, nbytes);
2378 memcpy (SDATA (val), contents, nbytes);
2379 return val;
2383 /* Make a string from NCHARS characters occupying NBYTES bytes at
2384 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2386 Lisp_Object
2387 make_string_from_bytes (const char *contents, int nchars, int nbytes)
2389 register Lisp_Object val;
2390 val = make_uninit_multibyte_string (nchars, nbytes);
2391 memcpy (SDATA (val), contents, nbytes);
2392 if (SBYTES (val) == SCHARS (val))
2393 STRING_SET_UNIBYTE (val);
2394 return val;
2398 /* Make a string from NCHARS characters occupying NBYTES bytes at
2399 CONTENTS. The argument MULTIBYTE controls whether to label the
2400 string as multibyte. If NCHARS is negative, it counts the number of
2401 characters by itself. */
2403 Lisp_Object
2404 make_specified_string (const char *contents, int nchars, int nbytes, int multibyte)
2406 register Lisp_Object val;
2408 if (nchars < 0)
2410 if (multibyte)
2411 nchars = multibyte_chars_in_text (contents, nbytes);
2412 else
2413 nchars = nbytes;
2415 val = make_uninit_multibyte_string (nchars, nbytes);
2416 memcpy (SDATA (val), contents, nbytes);
2417 if (!multibyte)
2418 STRING_SET_UNIBYTE (val);
2419 return val;
2423 /* Make a string from the data at STR, treating it as multibyte if the
2424 data warrants. */
2426 Lisp_Object
2427 build_string (const char *str)
2429 return make_string (str, strlen (str));
2433 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2434 occupying LENGTH bytes. */
2436 Lisp_Object
2437 make_uninit_string (int length)
2439 Lisp_Object val;
2441 if (!length)
2442 return empty_unibyte_string;
2443 val = make_uninit_multibyte_string (length, length);
2444 STRING_SET_UNIBYTE (val);
2445 return val;
2449 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2450 which occupy NBYTES bytes. */
2452 Lisp_Object
2453 make_uninit_multibyte_string (int nchars, int nbytes)
2455 Lisp_Object string;
2456 struct Lisp_String *s;
2458 if (nchars < 0)
2459 abort ();
2460 if (!nbytes)
2461 return empty_multibyte_string;
2463 s = allocate_string ();
2464 allocate_string_data (s, nchars, nbytes);
2465 XSETSTRING (string, s);
2466 string_chars_consed += nbytes;
2467 return string;
2472 /***********************************************************************
2473 Float Allocation
2474 ***********************************************************************/
2476 /* We store float cells inside of float_blocks, allocating a new
2477 float_block with malloc whenever necessary. Float cells reclaimed
2478 by GC are put on a free list to be reallocated before allocating
2479 any new float cells from the latest float_block. */
2481 #define FLOAT_BLOCK_SIZE \
2482 (((BLOCK_BYTES - sizeof (struct float_block *) \
2483 /* The compiler might add padding at the end. */ \
2484 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2485 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2487 #define GETMARKBIT(block,n) \
2488 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2489 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2490 & 1)
2492 #define SETMARKBIT(block,n) \
2493 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2494 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2496 #define UNSETMARKBIT(block,n) \
2497 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2498 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2500 #define FLOAT_BLOCK(fptr) \
2501 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2503 #define FLOAT_INDEX(fptr) \
2504 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2506 struct float_block
2508 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2509 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2510 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2511 struct float_block *next;
2514 #define FLOAT_MARKED_P(fptr) \
2515 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2517 #define FLOAT_MARK(fptr) \
2518 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2520 #define FLOAT_UNMARK(fptr) \
2521 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2523 /* Current float_block. */
2525 struct float_block *float_block;
2527 /* Index of first unused Lisp_Float in the current float_block. */
2529 int float_block_index;
2531 /* Total number of float blocks now in use. */
2533 int n_float_blocks;
2535 /* Free-list of Lisp_Floats. */
2537 struct Lisp_Float *float_free_list;
2540 /* Initialize float allocation. */
2542 static void
2543 init_float (void)
2545 float_block = NULL;
2546 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2547 float_free_list = 0;
2548 n_float_blocks = 0;
2552 /* Explicitly free a float cell by putting it on the free-list. */
2554 static void
2555 free_float (struct Lisp_Float *ptr)
2557 ptr->u.chain = float_free_list;
2558 float_free_list = ptr;
2562 /* Return a new float object with value FLOAT_VALUE. */
2564 Lisp_Object
2565 make_float (double float_value)
2567 register Lisp_Object val;
2569 /* eassert (!handling_signal); */
2571 MALLOC_BLOCK_INPUT;
2573 if (float_free_list)
2575 /* We use the data field for chaining the free list
2576 so that we won't use the same field that has the mark bit. */
2577 XSETFLOAT (val, float_free_list);
2578 float_free_list = float_free_list->u.chain;
2580 else
2582 if (float_block_index == FLOAT_BLOCK_SIZE)
2584 register struct float_block *new;
2586 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2587 MEM_TYPE_FLOAT);
2588 new->next = float_block;
2589 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2590 float_block = new;
2591 float_block_index = 0;
2592 n_float_blocks++;
2594 XSETFLOAT (val, &float_block->floats[float_block_index]);
2595 float_block_index++;
2598 MALLOC_UNBLOCK_INPUT;
2600 XFLOAT_INIT (val, float_value);
2601 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2602 consing_since_gc += sizeof (struct Lisp_Float);
2603 floats_consed++;
2604 return val;
2609 /***********************************************************************
2610 Cons Allocation
2611 ***********************************************************************/
2613 /* We store cons cells inside of cons_blocks, allocating a new
2614 cons_block with malloc whenever necessary. Cons cells reclaimed by
2615 GC are put on a free list to be reallocated before allocating
2616 any new cons cells from the latest cons_block. */
2618 #define CONS_BLOCK_SIZE \
2619 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2620 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2622 #define CONS_BLOCK(fptr) \
2623 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2625 #define CONS_INDEX(fptr) \
2626 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2628 struct cons_block
2630 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2631 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2632 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2633 struct cons_block *next;
2636 #define CONS_MARKED_P(fptr) \
2637 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2639 #define CONS_MARK(fptr) \
2640 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2642 #define CONS_UNMARK(fptr) \
2643 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2645 /* Current cons_block. */
2647 struct cons_block *cons_block;
2649 /* Index of first unused Lisp_Cons in the current block. */
2651 int cons_block_index;
2653 /* Free-list of Lisp_Cons structures. */
2655 struct Lisp_Cons *cons_free_list;
2657 /* Total number of cons blocks now in use. */
2659 static int n_cons_blocks;
2662 /* Initialize cons allocation. */
2664 static void
2665 init_cons (void)
2667 cons_block = NULL;
2668 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2669 cons_free_list = 0;
2670 n_cons_blocks = 0;
2674 /* Explicitly free a cons cell by putting it on the free-list. */
2676 void
2677 free_cons (struct Lisp_Cons *ptr)
2679 ptr->u.chain = cons_free_list;
2680 #if GC_MARK_STACK
2681 ptr->car = Vdead;
2682 #endif
2683 cons_free_list = ptr;
2686 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2687 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2688 (Lisp_Object car, Lisp_Object cdr)
2690 register Lisp_Object val;
2692 /* eassert (!handling_signal); */
2694 MALLOC_BLOCK_INPUT;
2696 if (cons_free_list)
2698 /* We use the cdr for chaining the free list
2699 so that we won't use the same field that has the mark bit. */
2700 XSETCONS (val, cons_free_list);
2701 cons_free_list = cons_free_list->u.chain;
2703 else
2705 if (cons_block_index == CONS_BLOCK_SIZE)
2707 register struct cons_block *new;
2708 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2709 MEM_TYPE_CONS);
2710 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2711 new->next = cons_block;
2712 cons_block = new;
2713 cons_block_index = 0;
2714 n_cons_blocks++;
2716 XSETCONS (val, &cons_block->conses[cons_block_index]);
2717 cons_block_index++;
2720 MALLOC_UNBLOCK_INPUT;
2722 XSETCAR (val, car);
2723 XSETCDR (val, cdr);
2724 eassert (!CONS_MARKED_P (XCONS (val)));
2725 consing_since_gc += sizeof (struct Lisp_Cons);
2726 cons_cells_consed++;
2727 return val;
2730 /* Get an error now if there's any junk in the cons free list. */
2731 void
2732 check_cons_list (void)
2734 #ifdef GC_CHECK_CONS_LIST
2735 struct Lisp_Cons *tail = cons_free_list;
2737 while (tail)
2738 tail = tail->u.chain;
2739 #endif
2742 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2744 Lisp_Object
2745 list1 (Lisp_Object arg1)
2747 return Fcons (arg1, Qnil);
2750 Lisp_Object
2751 list2 (Lisp_Object arg1, Lisp_Object arg2)
2753 return Fcons (arg1, Fcons (arg2, Qnil));
2757 Lisp_Object
2758 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2760 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2764 Lisp_Object
2765 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2767 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2771 Lisp_Object
2772 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2774 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2775 Fcons (arg5, Qnil)))));
2779 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2780 doc: /* Return a newly created list with specified arguments as elements.
2781 Any number of arguments, even zero arguments, are allowed.
2782 usage: (list &rest OBJECTS) */)
2783 (int nargs, register Lisp_Object *args)
2785 register Lisp_Object val;
2786 val = Qnil;
2788 while (nargs > 0)
2790 nargs--;
2791 val = Fcons (args[nargs], val);
2793 return val;
2797 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2798 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2799 (register Lisp_Object length, Lisp_Object init)
2801 register Lisp_Object val;
2802 register int size;
2804 CHECK_NATNUM (length);
2805 size = XFASTINT (length);
2807 val = Qnil;
2808 while (size > 0)
2810 val = Fcons (init, val);
2811 --size;
2813 if (size > 0)
2815 val = Fcons (init, val);
2816 --size;
2818 if (size > 0)
2820 val = Fcons (init, val);
2821 --size;
2823 if (size > 0)
2825 val = Fcons (init, val);
2826 --size;
2828 if (size > 0)
2830 val = Fcons (init, val);
2831 --size;
2837 QUIT;
2840 return val;
2845 /***********************************************************************
2846 Vector Allocation
2847 ***********************************************************************/
2849 /* Singly-linked list of all vectors. */
2851 static struct Lisp_Vector *all_vectors;
2853 /* Total number of vector-like objects now in use. */
2855 static int n_vectors;
2858 /* Value is a pointer to a newly allocated Lisp_Vector structure
2859 with room for LEN Lisp_Objects. */
2861 static struct Lisp_Vector *
2862 allocate_vectorlike (EMACS_INT len)
2864 struct Lisp_Vector *p;
2865 size_t nbytes;
2867 MALLOC_BLOCK_INPUT;
2869 #ifdef DOUG_LEA_MALLOC
2870 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2871 because mapped region contents are not preserved in
2872 a dumped Emacs. */
2873 mallopt (M_MMAP_MAX, 0);
2874 #endif
2876 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2877 /* eassert (!handling_signal); */
2879 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2880 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2882 #ifdef DOUG_LEA_MALLOC
2883 /* Back to a reasonable maximum of mmap'ed areas. */
2884 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2885 #endif
2887 consing_since_gc += nbytes;
2888 vector_cells_consed += len;
2890 p->next = all_vectors;
2891 all_vectors = p;
2893 MALLOC_UNBLOCK_INPUT;
2895 ++n_vectors;
2896 return p;
2900 /* Allocate a vector with NSLOTS slots. */
2902 struct Lisp_Vector *
2903 allocate_vector (EMACS_INT nslots)
2905 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2906 v->size = nslots;
2907 return v;
2911 /* Allocate other vector-like structures. */
2913 struct Lisp_Vector *
2914 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2916 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2917 EMACS_INT i;
2919 /* Only the first lisplen slots will be traced normally by the GC. */
2920 v->size = lisplen;
2921 for (i = 0; i < lisplen; ++i)
2922 v->contents[i] = Qnil;
2924 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2925 return v;
2928 struct Lisp_Hash_Table *
2929 allocate_hash_table (void)
2931 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2935 struct window *
2936 allocate_window (void)
2938 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2942 struct terminal *
2943 allocate_terminal (void)
2945 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2946 next_terminal, PVEC_TERMINAL);
2947 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2948 memset (&t->next_terminal, 0,
2949 (char*) (t + 1) - (char*) &t->next_terminal);
2951 return t;
2954 struct frame *
2955 allocate_frame (void)
2957 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2958 face_cache, PVEC_FRAME);
2959 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2960 memset (&f->face_cache, 0,
2961 (char *) (f + 1) - (char *) &f->face_cache);
2962 return f;
2966 struct Lisp_Process *
2967 allocate_process (void)
2969 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2973 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2974 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2975 See also the function `vector'. */)
2976 (register Lisp_Object length, Lisp_Object init)
2978 Lisp_Object vector;
2979 register EMACS_INT sizei;
2980 register int index;
2981 register struct Lisp_Vector *p;
2983 CHECK_NATNUM (length);
2984 sizei = XFASTINT (length);
2986 p = allocate_vector (sizei);
2987 for (index = 0; index < sizei; index++)
2988 p->contents[index] = init;
2990 XSETVECTOR (vector, p);
2991 return vector;
2995 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2996 doc: /* Return a newly created vector with specified arguments as elements.
2997 Any number of arguments, even zero arguments, are allowed.
2998 usage: (vector &rest OBJECTS) */)
2999 (register int nargs, Lisp_Object *args)
3001 register Lisp_Object len, val;
3002 register int index;
3003 register struct Lisp_Vector *p;
3005 XSETFASTINT (len, nargs);
3006 val = Fmake_vector (len, Qnil);
3007 p = XVECTOR (val);
3008 for (index = 0; index < nargs; index++)
3009 p->contents[index] = args[index];
3010 return val;
3014 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3015 doc: /* Create a byte-code object with specified arguments as elements.
3016 The arguments should be the arglist, bytecode-string, constant vector,
3017 stack size, (optional) doc string, and (optional) interactive spec.
3018 The first four arguments are required; at most six have any
3019 significance.
3020 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3021 (register int nargs, Lisp_Object *args)
3023 register Lisp_Object len, val;
3024 register int index;
3025 register struct Lisp_Vector *p;
3027 XSETFASTINT (len, nargs);
3028 if (!NILP (Vpurify_flag))
3029 val = make_pure_vector ((EMACS_INT) nargs);
3030 else
3031 val = Fmake_vector (len, Qnil);
3033 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3034 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3035 earlier because they produced a raw 8-bit string for byte-code
3036 and now such a byte-code string is loaded as multibyte while
3037 raw 8-bit characters converted to multibyte form. Thus, now we
3038 must convert them back to the original unibyte form. */
3039 args[1] = Fstring_as_unibyte (args[1]);
3041 p = XVECTOR (val);
3042 for (index = 0; index < nargs; index++)
3044 if (!NILP (Vpurify_flag))
3045 args[index] = Fpurecopy (args[index]);
3046 p->contents[index] = args[index];
3048 XSETPVECTYPE (p, PVEC_COMPILED);
3049 XSETCOMPILED (val, p);
3050 return val;
3055 /***********************************************************************
3056 Symbol Allocation
3057 ***********************************************************************/
3059 /* Each symbol_block is just under 1020 bytes long, since malloc
3060 really allocates in units of powers of two and uses 4 bytes for its
3061 own overhead. */
3063 #define SYMBOL_BLOCK_SIZE \
3064 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3066 struct symbol_block
3068 /* Place `symbols' first, to preserve alignment. */
3069 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3070 struct symbol_block *next;
3073 /* Current symbol block and index of first unused Lisp_Symbol
3074 structure in it. */
3076 static struct symbol_block *symbol_block;
3077 static int symbol_block_index;
3079 /* List of free symbols. */
3081 static struct Lisp_Symbol *symbol_free_list;
3083 /* Total number of symbol blocks now in use. */
3085 static int n_symbol_blocks;
3088 /* Initialize symbol allocation. */
3090 static void
3091 init_symbol (void)
3093 symbol_block = NULL;
3094 symbol_block_index = SYMBOL_BLOCK_SIZE;
3095 symbol_free_list = 0;
3096 n_symbol_blocks = 0;
3100 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3101 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3102 Its value and function definition are void, and its property list is nil. */)
3103 (Lisp_Object name)
3105 register Lisp_Object val;
3106 register struct Lisp_Symbol *p;
3108 CHECK_STRING (name);
3110 /* eassert (!handling_signal); */
3112 MALLOC_BLOCK_INPUT;
3114 if (symbol_free_list)
3116 XSETSYMBOL (val, symbol_free_list);
3117 symbol_free_list = symbol_free_list->next;
3119 else
3121 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3123 struct symbol_block *new;
3124 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3125 MEM_TYPE_SYMBOL);
3126 new->next = symbol_block;
3127 symbol_block = new;
3128 symbol_block_index = 0;
3129 n_symbol_blocks++;
3131 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3132 symbol_block_index++;
3135 MALLOC_UNBLOCK_INPUT;
3137 p = XSYMBOL (val);
3138 p->xname = name;
3139 p->plist = Qnil;
3140 p->redirect = SYMBOL_PLAINVAL;
3141 SET_SYMBOL_VAL (p, Qunbound);
3142 p->function = Qunbound;
3143 p->next = NULL;
3144 p->gcmarkbit = 0;
3145 p->interned = SYMBOL_UNINTERNED;
3146 p->constant = 0;
3147 consing_since_gc += sizeof (struct Lisp_Symbol);
3148 symbols_consed++;
3149 return val;
3154 /***********************************************************************
3155 Marker (Misc) Allocation
3156 ***********************************************************************/
3158 /* Allocation of markers and other objects that share that structure.
3159 Works like allocation of conses. */
3161 #define MARKER_BLOCK_SIZE \
3162 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3164 struct marker_block
3166 /* Place `markers' first, to preserve alignment. */
3167 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3168 struct marker_block *next;
3171 static struct marker_block *marker_block;
3172 static int marker_block_index;
3174 static union Lisp_Misc *marker_free_list;
3176 /* Total number of marker blocks now in use. */
3178 static int n_marker_blocks;
3180 static void
3181 init_marker (void)
3183 marker_block = NULL;
3184 marker_block_index = MARKER_BLOCK_SIZE;
3185 marker_free_list = 0;
3186 n_marker_blocks = 0;
3189 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3191 Lisp_Object
3192 allocate_misc (void)
3194 Lisp_Object val;
3196 /* eassert (!handling_signal); */
3198 MALLOC_BLOCK_INPUT;
3200 if (marker_free_list)
3202 XSETMISC (val, marker_free_list);
3203 marker_free_list = marker_free_list->u_free.chain;
3205 else
3207 if (marker_block_index == MARKER_BLOCK_SIZE)
3209 struct marker_block *new;
3210 new = (struct marker_block *) lisp_malloc (sizeof *new,
3211 MEM_TYPE_MISC);
3212 new->next = marker_block;
3213 marker_block = new;
3214 marker_block_index = 0;
3215 n_marker_blocks++;
3216 total_free_markers += MARKER_BLOCK_SIZE;
3218 XSETMISC (val, &marker_block->markers[marker_block_index]);
3219 marker_block_index++;
3222 MALLOC_UNBLOCK_INPUT;
3224 --total_free_markers;
3225 consing_since_gc += sizeof (union Lisp_Misc);
3226 misc_objects_consed++;
3227 XMISCANY (val)->gcmarkbit = 0;
3228 return val;
3231 /* Free a Lisp_Misc object */
3233 void
3234 free_misc (Lisp_Object misc)
3236 XMISCTYPE (misc) = Lisp_Misc_Free;
3237 XMISC (misc)->u_free.chain = marker_free_list;
3238 marker_free_list = XMISC (misc);
3240 total_free_markers++;
3243 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3244 INTEGER. This is used to package C values to call record_unwind_protect.
3245 The unwind function can get the C values back using XSAVE_VALUE. */
3247 Lisp_Object
3248 make_save_value (void *pointer, int integer)
3250 register Lisp_Object val;
3251 register struct Lisp_Save_Value *p;
3253 val = allocate_misc ();
3254 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3255 p = XSAVE_VALUE (val);
3256 p->pointer = pointer;
3257 p->integer = integer;
3258 p->dogc = 0;
3259 return val;
3262 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3263 doc: /* Return a newly allocated marker which does not point at any place. */)
3264 (void)
3266 register Lisp_Object val;
3267 register struct Lisp_Marker *p;
3269 val = allocate_misc ();
3270 XMISCTYPE (val) = Lisp_Misc_Marker;
3271 p = XMARKER (val);
3272 p->buffer = 0;
3273 p->bytepos = 0;
3274 p->charpos = 0;
3275 p->next = NULL;
3276 p->insertion_type = 0;
3277 return val;
3280 /* Put MARKER back on the free list after using it temporarily. */
3282 void
3283 free_marker (Lisp_Object marker)
3285 unchain_marker (XMARKER (marker));
3286 free_misc (marker);
3290 /* Return a newly created vector or string with specified arguments as
3291 elements. If all the arguments are characters that can fit
3292 in a string of events, make a string; otherwise, make a vector.
3294 Any number of arguments, even zero arguments, are allowed. */
3296 Lisp_Object
3297 make_event_array (register int nargs, Lisp_Object *args)
3299 int i;
3301 for (i = 0; i < nargs; i++)
3302 /* The things that fit in a string
3303 are characters that are in 0...127,
3304 after discarding the meta bit and all the bits above it. */
3305 if (!INTEGERP (args[i])
3306 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3307 return Fvector (nargs, args);
3309 /* Since the loop exited, we know that all the things in it are
3310 characters, so we can make a string. */
3312 Lisp_Object result;
3314 result = Fmake_string (make_number (nargs), make_number (0));
3315 for (i = 0; i < nargs; i++)
3317 SSET (result, i, XINT (args[i]));
3318 /* Move the meta bit to the right place for a string char. */
3319 if (XINT (args[i]) & CHAR_META)
3320 SSET (result, i, SREF (result, i) | 0x80);
3323 return result;
3329 /************************************************************************
3330 Memory Full Handling
3331 ************************************************************************/
3334 /* Called if malloc returns zero. */
3336 void
3337 memory_full (void)
3339 int i;
3341 Vmemory_full = Qt;
3343 memory_full_cons_threshold = sizeof (struct cons_block);
3345 /* The first time we get here, free the spare memory. */
3346 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3347 if (spare_memory[i])
3349 if (i == 0)
3350 free (spare_memory[i]);
3351 else if (i >= 1 && i <= 4)
3352 lisp_align_free (spare_memory[i]);
3353 else
3354 lisp_free (spare_memory[i]);
3355 spare_memory[i] = 0;
3358 /* Record the space now used. When it decreases substantially,
3359 we can refill the memory reserve. */
3360 #ifndef SYSTEM_MALLOC
3361 bytes_used_when_full = BYTES_USED;
3362 #endif
3364 /* This used to call error, but if we've run out of memory, we could
3365 get infinite recursion trying to build the string. */
3366 xsignal (Qnil, Vmemory_signal_data);
3369 /* If we released our reserve (due to running out of memory),
3370 and we have a fair amount free once again,
3371 try to set aside another reserve in case we run out once more.
3373 This is called when a relocatable block is freed in ralloc.c,
3374 and also directly from this file, in case we're not using ralloc.c. */
3376 void
3377 refill_memory_reserve (void)
3379 #ifndef SYSTEM_MALLOC
3380 if (spare_memory[0] == 0)
3381 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3382 if (spare_memory[1] == 0)
3383 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3384 MEM_TYPE_CONS);
3385 if (spare_memory[2] == 0)
3386 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3387 MEM_TYPE_CONS);
3388 if (spare_memory[3] == 0)
3389 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3390 MEM_TYPE_CONS);
3391 if (spare_memory[4] == 0)
3392 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3393 MEM_TYPE_CONS);
3394 if (spare_memory[5] == 0)
3395 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3396 MEM_TYPE_STRING);
3397 if (spare_memory[6] == 0)
3398 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3399 MEM_TYPE_STRING);
3400 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3401 Vmemory_full = Qnil;
3402 #endif
3405 /************************************************************************
3406 C Stack Marking
3407 ************************************************************************/
3409 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3411 /* Conservative C stack marking requires a method to identify possibly
3412 live Lisp objects given a pointer value. We do this by keeping
3413 track of blocks of Lisp data that are allocated in a red-black tree
3414 (see also the comment of mem_node which is the type of nodes in
3415 that tree). Function lisp_malloc adds information for an allocated
3416 block to the red-black tree with calls to mem_insert, and function
3417 lisp_free removes it with mem_delete. Functions live_string_p etc
3418 call mem_find to lookup information about a given pointer in the
3419 tree, and use that to determine if the pointer points to a Lisp
3420 object or not. */
3422 /* Initialize this part of alloc.c. */
3424 static void
3425 mem_init (void)
3427 mem_z.left = mem_z.right = MEM_NIL;
3428 mem_z.parent = NULL;
3429 mem_z.color = MEM_BLACK;
3430 mem_z.start = mem_z.end = NULL;
3431 mem_root = MEM_NIL;
3435 /* Value is a pointer to the mem_node containing START. Value is
3436 MEM_NIL if there is no node in the tree containing START. */
3438 static INLINE struct mem_node *
3439 mem_find (void *start)
3441 struct mem_node *p;
3443 if (start < min_heap_address || start > max_heap_address)
3444 return MEM_NIL;
3446 /* Make the search always successful to speed up the loop below. */
3447 mem_z.start = start;
3448 mem_z.end = (char *) start + 1;
3450 p = mem_root;
3451 while (start < p->start || start >= p->end)
3452 p = start < p->start ? p->left : p->right;
3453 return p;
3457 /* Insert a new node into the tree for a block of memory with start
3458 address START, end address END, and type TYPE. Value is a
3459 pointer to the node that was inserted. */
3461 static struct mem_node *
3462 mem_insert (void *start, void *end, enum mem_type type)
3464 struct mem_node *c, *parent, *x;
3466 if (min_heap_address == NULL || start < min_heap_address)
3467 min_heap_address = start;
3468 if (max_heap_address == NULL || end > max_heap_address)
3469 max_heap_address = end;
3471 /* See where in the tree a node for START belongs. In this
3472 particular application, it shouldn't happen that a node is already
3473 present. For debugging purposes, let's check that. */
3474 c = mem_root;
3475 parent = NULL;
3477 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3479 while (c != MEM_NIL)
3481 if (start >= c->start && start < c->end)
3482 abort ();
3483 parent = c;
3484 c = start < c->start ? c->left : c->right;
3487 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3489 while (c != MEM_NIL)
3491 parent = c;
3492 c = start < c->start ? c->left : c->right;
3495 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3497 /* Create a new node. */
3498 #ifdef GC_MALLOC_CHECK
3499 x = (struct mem_node *) _malloc_internal (sizeof *x);
3500 if (x == NULL)
3501 abort ();
3502 #else
3503 x = (struct mem_node *) xmalloc (sizeof *x);
3504 #endif
3505 x->start = start;
3506 x->end = end;
3507 x->type = type;
3508 x->parent = parent;
3509 x->left = x->right = MEM_NIL;
3510 x->color = MEM_RED;
3512 /* Insert it as child of PARENT or install it as root. */
3513 if (parent)
3515 if (start < parent->start)
3516 parent->left = x;
3517 else
3518 parent->right = x;
3520 else
3521 mem_root = x;
3523 /* Re-establish red-black tree properties. */
3524 mem_insert_fixup (x);
3526 return x;
3530 /* Re-establish the red-black properties of the tree, and thereby
3531 balance the tree, after node X has been inserted; X is always red. */
3533 static void
3534 mem_insert_fixup (struct mem_node *x)
3536 while (x != mem_root && x->parent->color == MEM_RED)
3538 /* X is red and its parent is red. This is a violation of
3539 red-black tree property #3. */
3541 if (x->parent == x->parent->parent->left)
3543 /* We're on the left side of our grandparent, and Y is our
3544 "uncle". */
3545 struct mem_node *y = x->parent->parent->right;
3547 if (y->color == MEM_RED)
3549 /* Uncle and parent are red but should be black because
3550 X is red. Change the colors accordingly and proceed
3551 with the grandparent. */
3552 x->parent->color = MEM_BLACK;
3553 y->color = MEM_BLACK;
3554 x->parent->parent->color = MEM_RED;
3555 x = x->parent->parent;
3557 else
3559 /* Parent and uncle have different colors; parent is
3560 red, uncle is black. */
3561 if (x == x->parent->right)
3563 x = x->parent;
3564 mem_rotate_left (x);
3567 x->parent->color = MEM_BLACK;
3568 x->parent->parent->color = MEM_RED;
3569 mem_rotate_right (x->parent->parent);
3572 else
3574 /* This is the symmetrical case of above. */
3575 struct mem_node *y = x->parent->parent->left;
3577 if (y->color == MEM_RED)
3579 x->parent->color = MEM_BLACK;
3580 y->color = MEM_BLACK;
3581 x->parent->parent->color = MEM_RED;
3582 x = x->parent->parent;
3584 else
3586 if (x == x->parent->left)
3588 x = x->parent;
3589 mem_rotate_right (x);
3592 x->parent->color = MEM_BLACK;
3593 x->parent->parent->color = MEM_RED;
3594 mem_rotate_left (x->parent->parent);
3599 /* The root may have been changed to red due to the algorithm. Set
3600 it to black so that property #5 is satisfied. */
3601 mem_root->color = MEM_BLACK;
3605 /* (x) (y)
3606 / \ / \
3607 a (y) ===> (x) c
3608 / \ / \
3609 b c a b */
3611 static void
3612 mem_rotate_left (struct mem_node *x)
3614 struct mem_node *y;
3616 /* Turn y's left sub-tree into x's right sub-tree. */
3617 y = x->right;
3618 x->right = y->left;
3619 if (y->left != MEM_NIL)
3620 y->left->parent = x;
3622 /* Y's parent was x's parent. */
3623 if (y != MEM_NIL)
3624 y->parent = x->parent;
3626 /* Get the parent to point to y instead of x. */
3627 if (x->parent)
3629 if (x == x->parent->left)
3630 x->parent->left = y;
3631 else
3632 x->parent->right = y;
3634 else
3635 mem_root = y;
3637 /* Put x on y's left. */
3638 y->left = x;
3639 if (x != MEM_NIL)
3640 x->parent = y;
3644 /* (x) (Y)
3645 / \ / \
3646 (y) c ===> a (x)
3647 / \ / \
3648 a b b c */
3650 static void
3651 mem_rotate_right (struct mem_node *x)
3653 struct mem_node *y = x->left;
3655 x->left = y->right;
3656 if (y->right != MEM_NIL)
3657 y->right->parent = x;
3659 if (y != MEM_NIL)
3660 y->parent = x->parent;
3661 if (x->parent)
3663 if (x == x->parent->right)
3664 x->parent->right = y;
3665 else
3666 x->parent->left = y;
3668 else
3669 mem_root = y;
3671 y->right = x;
3672 if (x != MEM_NIL)
3673 x->parent = y;
3677 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3679 static void
3680 mem_delete (struct mem_node *z)
3682 struct mem_node *x, *y;
3684 if (!z || z == MEM_NIL)
3685 return;
3687 if (z->left == MEM_NIL || z->right == MEM_NIL)
3688 y = z;
3689 else
3691 y = z->right;
3692 while (y->left != MEM_NIL)
3693 y = y->left;
3696 if (y->left != MEM_NIL)
3697 x = y->left;
3698 else
3699 x = y->right;
3701 x->parent = y->parent;
3702 if (y->parent)
3704 if (y == y->parent->left)
3705 y->parent->left = x;
3706 else
3707 y->parent->right = x;
3709 else
3710 mem_root = x;
3712 if (y != z)
3714 z->start = y->start;
3715 z->end = y->end;
3716 z->type = y->type;
3719 if (y->color == MEM_BLACK)
3720 mem_delete_fixup (x);
3722 #ifdef GC_MALLOC_CHECK
3723 _free_internal (y);
3724 #else
3725 xfree (y);
3726 #endif
3730 /* Re-establish the red-black properties of the tree, after a
3731 deletion. */
3733 static void
3734 mem_delete_fixup (struct mem_node *x)
3736 while (x != mem_root && x->color == MEM_BLACK)
3738 if (x == x->parent->left)
3740 struct mem_node *w = x->parent->right;
3742 if (w->color == MEM_RED)
3744 w->color = MEM_BLACK;
3745 x->parent->color = MEM_RED;
3746 mem_rotate_left (x->parent);
3747 w = x->parent->right;
3750 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3752 w->color = MEM_RED;
3753 x = x->parent;
3755 else
3757 if (w->right->color == MEM_BLACK)
3759 w->left->color = MEM_BLACK;
3760 w->color = MEM_RED;
3761 mem_rotate_right (w);
3762 w = x->parent->right;
3764 w->color = x->parent->color;
3765 x->parent->color = MEM_BLACK;
3766 w->right->color = MEM_BLACK;
3767 mem_rotate_left (x->parent);
3768 x = mem_root;
3771 else
3773 struct mem_node *w = x->parent->left;
3775 if (w->color == MEM_RED)
3777 w->color = MEM_BLACK;
3778 x->parent->color = MEM_RED;
3779 mem_rotate_right (x->parent);
3780 w = x->parent->left;
3783 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3785 w->color = MEM_RED;
3786 x = x->parent;
3788 else
3790 if (w->left->color == MEM_BLACK)
3792 w->right->color = MEM_BLACK;
3793 w->color = MEM_RED;
3794 mem_rotate_left (w);
3795 w = x->parent->left;
3798 w->color = x->parent->color;
3799 x->parent->color = MEM_BLACK;
3800 w->left->color = MEM_BLACK;
3801 mem_rotate_right (x->parent);
3802 x = mem_root;
3807 x->color = MEM_BLACK;
3811 /* Value is non-zero if P is a pointer to a live Lisp string on
3812 the heap. M is a pointer to the mem_block for P. */
3814 static INLINE int
3815 live_string_p (struct mem_node *m, void *p)
3817 if (m->type == MEM_TYPE_STRING)
3819 struct string_block *b = (struct string_block *) m->start;
3820 int offset = (char *) p - (char *) &b->strings[0];
3822 /* P must point to the start of a Lisp_String structure, and it
3823 must not be on the free-list. */
3824 return (offset >= 0
3825 && offset % sizeof b->strings[0] == 0
3826 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3827 && ((struct Lisp_String *) p)->data != NULL);
3829 else
3830 return 0;
3834 /* Value is non-zero if P is a pointer to a live Lisp cons on
3835 the heap. M is a pointer to the mem_block for P. */
3837 static INLINE int
3838 live_cons_p (struct mem_node *m, void *p)
3840 if (m->type == MEM_TYPE_CONS)
3842 struct cons_block *b = (struct cons_block *) m->start;
3843 int offset = (char *) p - (char *) &b->conses[0];
3845 /* P must point to the start of a Lisp_Cons, not be
3846 one of the unused cells in the current cons block,
3847 and not be on the free-list. */
3848 return (offset >= 0
3849 && offset % sizeof b->conses[0] == 0
3850 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3851 && (b != cons_block
3852 || offset / sizeof b->conses[0] < cons_block_index)
3853 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3855 else
3856 return 0;
3860 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3861 the heap. M is a pointer to the mem_block for P. */
3863 static INLINE int
3864 live_symbol_p (struct mem_node *m, void *p)
3866 if (m->type == MEM_TYPE_SYMBOL)
3868 struct symbol_block *b = (struct symbol_block *) m->start;
3869 int offset = (char *) p - (char *) &b->symbols[0];
3871 /* P must point to the start of a Lisp_Symbol, not be
3872 one of the unused cells in the current symbol block,
3873 and not be on the free-list. */
3874 return (offset >= 0
3875 && offset % sizeof b->symbols[0] == 0
3876 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3877 && (b != symbol_block
3878 || offset / sizeof b->symbols[0] < symbol_block_index)
3879 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3881 else
3882 return 0;
3886 /* Value is non-zero if P is a pointer to a live Lisp float on
3887 the heap. M is a pointer to the mem_block for P. */
3889 static INLINE int
3890 live_float_p (struct mem_node *m, void *p)
3892 if (m->type == MEM_TYPE_FLOAT)
3894 struct float_block *b = (struct float_block *) m->start;
3895 int offset = (char *) p - (char *) &b->floats[0];
3897 /* P must point to the start of a Lisp_Float and not be
3898 one of the unused cells in the current float block. */
3899 return (offset >= 0
3900 && offset % sizeof b->floats[0] == 0
3901 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3902 && (b != float_block
3903 || offset / sizeof b->floats[0] < float_block_index));
3905 else
3906 return 0;
3910 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3911 the heap. M is a pointer to the mem_block for P. */
3913 static INLINE int
3914 live_misc_p (struct mem_node *m, void *p)
3916 if (m->type == MEM_TYPE_MISC)
3918 struct marker_block *b = (struct marker_block *) m->start;
3919 int offset = (char *) p - (char *) &b->markers[0];
3921 /* P must point to the start of a Lisp_Misc, not be
3922 one of the unused cells in the current misc block,
3923 and not be on the free-list. */
3924 return (offset >= 0
3925 && offset % sizeof b->markers[0] == 0
3926 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3927 && (b != marker_block
3928 || offset / sizeof b->markers[0] < marker_block_index)
3929 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3931 else
3932 return 0;
3936 /* Value is non-zero if P is a pointer to a live vector-like object.
3937 M is a pointer to the mem_block for P. */
3939 static INLINE int
3940 live_vector_p (struct mem_node *m, void *p)
3942 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3946 /* Value is non-zero if P is a pointer to a live buffer. M is a
3947 pointer to the mem_block for P. */
3949 static INLINE int
3950 live_buffer_p (struct mem_node *m, void *p)
3952 /* P must point to the start of the block, and the buffer
3953 must not have been killed. */
3954 return (m->type == MEM_TYPE_BUFFER
3955 && p == m->start
3956 && !NILP (((struct buffer *) p)->name));
3959 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3961 #if GC_MARK_STACK
3963 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3965 /* Array of objects that are kept alive because the C stack contains
3966 a pattern that looks like a reference to them . */
3968 #define MAX_ZOMBIES 10
3969 static Lisp_Object zombies[MAX_ZOMBIES];
3971 /* Number of zombie objects. */
3973 static int nzombies;
3975 /* Number of garbage collections. */
3977 static int ngcs;
3979 /* Average percentage of zombies per collection. */
3981 static double avg_zombies;
3983 /* Max. number of live and zombie objects. */
3985 static int max_live, max_zombies;
3987 /* Average number of live objects per GC. */
3989 static double avg_live;
3991 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3992 doc: /* Show information about live and zombie objects. */)
3993 (void)
3995 Lisp_Object args[8], zombie_list = Qnil;
3996 int i;
3997 for (i = 0; i < nzombies; i++)
3998 zombie_list = Fcons (zombies[i], zombie_list);
3999 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4000 args[1] = make_number (ngcs);
4001 args[2] = make_float (avg_live);
4002 args[3] = make_float (avg_zombies);
4003 args[4] = make_float (avg_zombies / avg_live / 100);
4004 args[5] = make_number (max_live);
4005 args[6] = make_number (max_zombies);
4006 args[7] = zombie_list;
4007 return Fmessage (8, args);
4010 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4013 /* Mark OBJ if we can prove it's a Lisp_Object. */
4015 static INLINE void
4016 mark_maybe_object (Lisp_Object obj)
4018 void *po = (void *) XPNTR (obj);
4019 struct mem_node *m = mem_find (po);
4021 if (m != MEM_NIL)
4023 int mark_p = 0;
4025 switch (XTYPE (obj))
4027 case Lisp_String:
4028 mark_p = (live_string_p (m, po)
4029 && !STRING_MARKED_P ((struct Lisp_String *) po));
4030 break;
4032 case Lisp_Cons:
4033 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4034 break;
4036 case Lisp_Symbol:
4037 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4038 break;
4040 case Lisp_Float:
4041 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4042 break;
4044 case Lisp_Vectorlike:
4045 /* Note: can't check BUFFERP before we know it's a
4046 buffer because checking that dereferences the pointer
4047 PO which might point anywhere. */
4048 if (live_vector_p (m, po))
4049 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4050 else if (live_buffer_p (m, po))
4051 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4052 break;
4054 case Lisp_Misc:
4055 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4056 break;
4058 default:
4059 break;
4062 if (mark_p)
4064 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4065 if (nzombies < MAX_ZOMBIES)
4066 zombies[nzombies] = obj;
4067 ++nzombies;
4068 #endif
4069 mark_object (obj);
4075 /* If P points to Lisp data, mark that as live if it isn't already
4076 marked. */
4078 static INLINE void
4079 mark_maybe_pointer (void *p)
4081 struct mem_node *m;
4083 /* Quickly rule out some values which can't point to Lisp data. */
4084 if ((EMACS_INT) p %
4085 #ifdef USE_LSB_TAG
4086 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4087 #else
4088 2 /* We assume that Lisp data is aligned on even addresses. */
4089 #endif
4091 return;
4093 m = mem_find (p);
4094 if (m != MEM_NIL)
4096 Lisp_Object obj = Qnil;
4098 switch (m->type)
4100 case MEM_TYPE_NON_LISP:
4101 /* Nothing to do; not a pointer to Lisp memory. */
4102 break;
4104 case MEM_TYPE_BUFFER:
4105 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4106 XSETVECTOR (obj, p);
4107 break;
4109 case MEM_TYPE_CONS:
4110 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4111 XSETCONS (obj, p);
4112 break;
4114 case MEM_TYPE_STRING:
4115 if (live_string_p (m, p)
4116 && !STRING_MARKED_P ((struct Lisp_String *) p))
4117 XSETSTRING (obj, p);
4118 break;
4120 case MEM_TYPE_MISC:
4121 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4122 XSETMISC (obj, p);
4123 break;
4125 case MEM_TYPE_SYMBOL:
4126 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4127 XSETSYMBOL (obj, p);
4128 break;
4130 case MEM_TYPE_FLOAT:
4131 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4132 XSETFLOAT (obj, p);
4133 break;
4135 case MEM_TYPE_VECTORLIKE:
4136 if (live_vector_p (m, p))
4138 Lisp_Object tem;
4139 XSETVECTOR (tem, p);
4140 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4141 obj = tem;
4143 break;
4145 default:
4146 abort ();
4149 if (!NILP (obj))
4150 mark_object (obj);
4155 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4156 or END+OFFSET..START. */
4158 static void
4159 mark_memory (void *start, void *end, int offset)
4161 Lisp_Object *p;
4162 void **pp;
4164 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4165 nzombies = 0;
4166 #endif
4168 /* Make START the pointer to the start of the memory region,
4169 if it isn't already. */
4170 if (end < start)
4172 void *tem = start;
4173 start = end;
4174 end = tem;
4177 /* Mark Lisp_Objects. */
4178 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4179 mark_maybe_object (*p);
4181 /* Mark Lisp data pointed to. This is necessary because, in some
4182 situations, the C compiler optimizes Lisp objects away, so that
4183 only a pointer to them remains. Example:
4185 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4188 Lisp_Object obj = build_string ("test");
4189 struct Lisp_String *s = XSTRING (obj);
4190 Fgarbage_collect ();
4191 fprintf (stderr, "test `%s'\n", s->data);
4192 return Qnil;
4195 Here, `obj' isn't really used, and the compiler optimizes it
4196 away. The only reference to the life string is through the
4197 pointer `s'. */
4199 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4200 mark_maybe_pointer (*pp);
4203 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4204 the GCC system configuration. In gcc 3.2, the only systems for
4205 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4206 by others?) and ns32k-pc532-min. */
4208 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4210 static int setjmp_tested_p, longjmps_done;
4212 #define SETJMP_WILL_LIKELY_WORK "\
4214 Emacs garbage collector has been changed to use conservative stack\n\
4215 marking. Emacs has determined that the method it uses to do the\n\
4216 marking will likely work on your system, but this isn't sure.\n\
4218 If you are a system-programmer, or can get the help of a local wizard\n\
4219 who is, please take a look at the function mark_stack in alloc.c, and\n\
4220 verify that the methods used are appropriate for your system.\n\
4222 Please mail the result to <emacs-devel@gnu.org>.\n\
4225 #define SETJMP_WILL_NOT_WORK "\
4227 Emacs garbage collector has been changed to use conservative stack\n\
4228 marking. Emacs has determined that the default method it uses to do the\n\
4229 marking will not work on your system. We will need a system-dependent\n\
4230 solution for your system.\n\
4232 Please take a look at the function mark_stack in alloc.c, and\n\
4233 try to find a way to make it work on your system.\n\
4235 Note that you may get false negatives, depending on the compiler.\n\
4236 In particular, you need to use -O with GCC for this test.\n\
4238 Please mail the result to <emacs-devel@gnu.org>.\n\
4242 /* Perform a quick check if it looks like setjmp saves registers in a
4243 jmp_buf. Print a message to stderr saying so. When this test
4244 succeeds, this is _not_ a proof that setjmp is sufficient for
4245 conservative stack marking. Only the sources or a disassembly
4246 can prove that. */
4248 static void
4249 test_setjmp ()
4251 char buf[10];
4252 register int x;
4253 jmp_buf jbuf;
4254 int result = 0;
4256 /* Arrange for X to be put in a register. */
4257 sprintf (buf, "1");
4258 x = strlen (buf);
4259 x = 2 * x - 1;
4261 setjmp (jbuf);
4262 if (longjmps_done == 1)
4264 /* Came here after the longjmp at the end of the function.
4266 If x == 1, the longjmp has restored the register to its
4267 value before the setjmp, and we can hope that setjmp
4268 saves all such registers in the jmp_buf, although that
4269 isn't sure.
4271 For other values of X, either something really strange is
4272 taking place, or the setjmp just didn't save the register. */
4274 if (x == 1)
4275 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4276 else
4278 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4279 exit (1);
4283 ++longjmps_done;
4284 x = 2;
4285 if (longjmps_done == 1)
4286 longjmp (jbuf, 1);
4289 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4292 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4294 /* Abort if anything GCPRO'd doesn't survive the GC. */
4296 static void
4297 check_gcpros ()
4299 struct gcpro *p;
4300 int i;
4302 for (p = gcprolist; p; p = p->next)
4303 for (i = 0; i < p->nvars; ++i)
4304 if (!survives_gc_p (p->var[i]))
4305 /* FIXME: It's not necessarily a bug. It might just be that the
4306 GCPRO is unnecessary or should release the object sooner. */
4307 abort ();
4310 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4312 static void
4313 dump_zombies ()
4315 int i;
4317 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4318 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4320 fprintf (stderr, " %d = ", i);
4321 debug_print (zombies[i]);
4325 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4328 /* Mark live Lisp objects on the C stack.
4330 There are several system-dependent problems to consider when
4331 porting this to new architectures:
4333 Processor Registers
4335 We have to mark Lisp objects in CPU registers that can hold local
4336 variables or are used to pass parameters.
4338 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4339 something that either saves relevant registers on the stack, or
4340 calls mark_maybe_object passing it each register's contents.
4342 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4343 implementation assumes that calling setjmp saves registers we need
4344 to see in a jmp_buf which itself lies on the stack. This doesn't
4345 have to be true! It must be verified for each system, possibly
4346 by taking a look at the source code of setjmp.
4348 Stack Layout
4350 Architectures differ in the way their processor stack is organized.
4351 For example, the stack might look like this
4353 +----------------+
4354 | Lisp_Object | size = 4
4355 +----------------+
4356 | something else | size = 2
4357 +----------------+
4358 | Lisp_Object | size = 4
4359 +----------------+
4360 | ... |
4362 In such a case, not every Lisp_Object will be aligned equally. To
4363 find all Lisp_Object on the stack it won't be sufficient to walk
4364 the stack in steps of 4 bytes. Instead, two passes will be
4365 necessary, one starting at the start of the stack, and a second
4366 pass starting at the start of the stack + 2. Likewise, if the
4367 minimal alignment of Lisp_Objects on the stack is 1, four passes
4368 would be necessary, each one starting with one byte more offset
4369 from the stack start.
4371 The current code assumes by default that Lisp_Objects are aligned
4372 equally on the stack. */
4374 static void
4375 mark_stack (void)
4377 int i;
4378 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4379 union aligned_jmpbuf {
4380 Lisp_Object o;
4381 jmp_buf j;
4382 } j;
4383 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4384 void *end;
4386 /* This trick flushes the register windows so that all the state of
4387 the process is contained in the stack. */
4388 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4389 needed on ia64 too. See mach_dep.c, where it also says inline
4390 assembler doesn't work with relevant proprietary compilers. */
4391 #ifdef __sparc__
4392 #if defined (__sparc64__) && defined (__FreeBSD__)
4393 /* FreeBSD does not have a ta 3 handler. */
4394 asm ("flushw");
4395 #else
4396 asm ("ta 3");
4397 #endif
4398 #endif
4400 /* Save registers that we need to see on the stack. We need to see
4401 registers used to hold register variables and registers used to
4402 pass parameters. */
4403 #ifdef GC_SAVE_REGISTERS_ON_STACK
4404 GC_SAVE_REGISTERS_ON_STACK (end);
4405 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4407 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4408 setjmp will definitely work, test it
4409 and print a message with the result
4410 of the test. */
4411 if (!setjmp_tested_p)
4413 setjmp_tested_p = 1;
4414 test_setjmp ();
4416 #endif /* GC_SETJMP_WORKS */
4418 setjmp (j.j);
4419 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4420 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4422 /* This assumes that the stack is a contiguous region in memory. If
4423 that's not the case, something has to be done here to iterate
4424 over the stack segments. */
4425 #ifndef GC_LISP_OBJECT_ALIGNMENT
4426 #ifdef __GNUC__
4427 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4428 #else
4429 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4430 #endif
4431 #endif
4432 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4433 mark_memory (stack_base, end, i);
4434 /* Allow for marking a secondary stack, like the register stack on the
4435 ia64. */
4436 #ifdef GC_MARK_SECONDARY_STACK
4437 GC_MARK_SECONDARY_STACK ();
4438 #endif
4440 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4441 check_gcpros ();
4442 #endif
4445 #endif /* GC_MARK_STACK != 0 */
4448 /* Determine whether it is safe to access memory at address P. */
4449 static int
4450 valid_pointer_p (void *p)
4452 #ifdef WINDOWSNT
4453 return w32_valid_pointer_p (p, 16);
4454 #else
4455 int fd;
4457 /* Obviously, we cannot just access it (we would SEGV trying), so we
4458 trick the o/s to tell us whether p is a valid pointer.
4459 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4460 not validate p in that case. */
4462 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4464 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4465 emacs_close (fd);
4466 unlink ("__Valid__Lisp__Object__");
4467 return valid;
4470 return -1;
4471 #endif
4474 /* Return 1 if OBJ is a valid lisp object.
4475 Return 0 if OBJ is NOT a valid lisp object.
4476 Return -1 if we cannot validate OBJ.
4477 This function can be quite slow,
4478 so it should only be used in code for manual debugging. */
4481 valid_lisp_object_p (Lisp_Object obj)
4483 void *p;
4484 #if GC_MARK_STACK
4485 struct mem_node *m;
4486 #endif
4488 if (INTEGERP (obj))
4489 return 1;
4491 p = (void *) XPNTR (obj);
4492 if (PURE_POINTER_P (p))
4493 return 1;
4495 #if !GC_MARK_STACK
4496 return valid_pointer_p (p);
4497 #else
4499 m = mem_find (p);
4501 if (m == MEM_NIL)
4503 int valid = valid_pointer_p (p);
4504 if (valid <= 0)
4505 return valid;
4507 if (SUBRP (obj))
4508 return 1;
4510 return 0;
4513 switch (m->type)
4515 case MEM_TYPE_NON_LISP:
4516 return 0;
4518 case MEM_TYPE_BUFFER:
4519 return live_buffer_p (m, p);
4521 case MEM_TYPE_CONS:
4522 return live_cons_p (m, p);
4524 case MEM_TYPE_STRING:
4525 return live_string_p (m, p);
4527 case MEM_TYPE_MISC:
4528 return live_misc_p (m, p);
4530 case MEM_TYPE_SYMBOL:
4531 return live_symbol_p (m, p);
4533 case MEM_TYPE_FLOAT:
4534 return live_float_p (m, p);
4536 case MEM_TYPE_VECTORLIKE:
4537 return live_vector_p (m, p);
4539 default:
4540 break;
4543 return 0;
4544 #endif
4550 /***********************************************************************
4551 Pure Storage Management
4552 ***********************************************************************/
4554 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4555 pointer to it. TYPE is the Lisp type for which the memory is
4556 allocated. TYPE < 0 means it's not used for a Lisp object. */
4558 static POINTER_TYPE *
4559 pure_alloc (size_t size, int type)
4561 POINTER_TYPE *result;
4562 #ifdef USE_LSB_TAG
4563 size_t alignment = (1 << GCTYPEBITS);
4564 #else
4565 size_t alignment = sizeof (EMACS_INT);
4567 /* Give Lisp_Floats an extra alignment. */
4568 if (type == Lisp_Float)
4570 #if defined __GNUC__ && __GNUC__ >= 2
4571 alignment = __alignof (struct Lisp_Float);
4572 #else
4573 alignment = sizeof (struct Lisp_Float);
4574 #endif
4576 #endif
4578 again:
4579 if (type >= 0)
4581 /* Allocate space for a Lisp object from the beginning of the free
4582 space with taking account of alignment. */
4583 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4584 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4586 else
4588 /* Allocate space for a non-Lisp object from the end of the free
4589 space. */
4590 pure_bytes_used_non_lisp += size;
4591 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4593 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4595 if (pure_bytes_used <= pure_size)
4596 return result;
4598 /* Don't allocate a large amount here,
4599 because it might get mmap'd and then its address
4600 might not be usable. */
4601 purebeg = (char *) xmalloc (10000);
4602 pure_size = 10000;
4603 pure_bytes_used_before_overflow += pure_bytes_used - size;
4604 pure_bytes_used = 0;
4605 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4606 goto again;
4610 /* Print a warning if PURESIZE is too small. */
4612 void
4613 check_pure_size (void)
4615 if (pure_bytes_used_before_overflow)
4616 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4617 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4621 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4622 the non-Lisp data pool of the pure storage, and return its start
4623 address. Return NULL if not found. */
4625 static char *
4626 find_string_data_in_pure (const char *data, int nbytes)
4628 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4629 const unsigned char *p;
4630 char *non_lisp_beg;
4632 if (pure_bytes_used_non_lisp < nbytes + 1)
4633 return NULL;
4635 /* Set up the Boyer-Moore table. */
4636 skip = nbytes + 1;
4637 for (i = 0; i < 256; i++)
4638 bm_skip[i] = skip;
4640 p = (const unsigned char *) data;
4641 while (--skip > 0)
4642 bm_skip[*p++] = skip;
4644 last_char_skip = bm_skip['\0'];
4646 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4647 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4649 /* See the comments in the function `boyer_moore' (search.c) for the
4650 use of `infinity'. */
4651 infinity = pure_bytes_used_non_lisp + 1;
4652 bm_skip['\0'] = infinity;
4654 p = (const unsigned char *) non_lisp_beg + nbytes;
4655 start = 0;
4658 /* Check the last character (== '\0'). */
4661 start += bm_skip[*(p + start)];
4663 while (start <= start_max);
4665 if (start < infinity)
4666 /* Couldn't find the last character. */
4667 return NULL;
4669 /* No less than `infinity' means we could find the last
4670 character at `p[start - infinity]'. */
4671 start -= infinity;
4673 /* Check the remaining characters. */
4674 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4675 /* Found. */
4676 return non_lisp_beg + start;
4678 start += last_char_skip;
4680 while (start <= start_max);
4682 return NULL;
4686 /* Return a string allocated in pure space. DATA is a buffer holding
4687 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4688 non-zero means make the result string multibyte.
4690 Must get an error if pure storage is full, since if it cannot hold
4691 a large string it may be able to hold conses that point to that
4692 string; then the string is not protected from gc. */
4694 Lisp_Object
4695 make_pure_string (const char *data, int nchars, int nbytes, int multibyte)
4697 Lisp_Object string;
4698 struct Lisp_String *s;
4700 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4701 s->data = find_string_data_in_pure (data, nbytes);
4702 if (s->data == NULL)
4704 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4705 memcpy (s->data, data, nbytes);
4706 s->data[nbytes] = '\0';
4708 s->size = nchars;
4709 s->size_byte = multibyte ? nbytes : -1;
4710 s->intervals = NULL_INTERVAL;
4711 XSETSTRING (string, s);
4712 return string;
4715 /* Return a string a string allocated in pure space. Do not allocate
4716 the string data, just point to DATA. */
4718 Lisp_Object
4719 make_pure_c_string (const char *data)
4721 Lisp_Object string;
4722 struct Lisp_String *s;
4723 int nchars = strlen (data);
4725 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4726 s->size = nchars;
4727 s->size_byte = -1;
4728 s->data = (unsigned char *) data;
4729 s->intervals = NULL_INTERVAL;
4730 XSETSTRING (string, s);
4731 return string;
4734 /* Return a cons allocated from pure space. Give it pure copies
4735 of CAR as car and CDR as cdr. */
4737 Lisp_Object
4738 pure_cons (Lisp_Object car, Lisp_Object cdr)
4740 register Lisp_Object new;
4741 struct Lisp_Cons *p;
4743 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4744 XSETCONS (new, p);
4745 XSETCAR (new, Fpurecopy (car));
4746 XSETCDR (new, Fpurecopy (cdr));
4747 return new;
4751 /* Value is a float object with value NUM allocated from pure space. */
4753 static Lisp_Object
4754 make_pure_float (double num)
4756 register Lisp_Object new;
4757 struct Lisp_Float *p;
4759 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4760 XSETFLOAT (new, p);
4761 XFLOAT_INIT (new, num);
4762 return new;
4766 /* Return a vector with room for LEN Lisp_Objects allocated from
4767 pure space. */
4769 Lisp_Object
4770 make_pure_vector (EMACS_INT len)
4772 Lisp_Object new;
4773 struct Lisp_Vector *p;
4774 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4776 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4777 XSETVECTOR (new, p);
4778 XVECTOR (new)->size = len;
4779 return new;
4783 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4784 doc: /* Make a copy of object OBJ in pure storage.
4785 Recursively copies contents of vectors and cons cells.
4786 Does not copy symbols. Copies strings without text properties. */)
4787 (register Lisp_Object obj)
4789 if (NILP (Vpurify_flag))
4790 return obj;
4792 if (PURE_POINTER_P (XPNTR (obj)))
4793 return obj;
4795 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4797 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4798 if (!NILP (tmp))
4799 return tmp;
4802 if (CONSP (obj))
4803 obj = pure_cons (XCAR (obj), XCDR (obj));
4804 else if (FLOATP (obj))
4805 obj = make_pure_float (XFLOAT_DATA (obj));
4806 else if (STRINGP (obj))
4807 obj = make_pure_string (SDATA (obj), SCHARS (obj),
4808 SBYTES (obj),
4809 STRING_MULTIBYTE (obj));
4810 else if (COMPILEDP (obj) || VECTORP (obj))
4812 register struct Lisp_Vector *vec;
4813 register int i;
4814 EMACS_INT size;
4816 size = XVECTOR (obj)->size;
4817 if (size & PSEUDOVECTOR_FLAG)
4818 size &= PSEUDOVECTOR_SIZE_MASK;
4819 vec = XVECTOR (make_pure_vector (size));
4820 for (i = 0; i < size; i++)
4821 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4822 if (COMPILEDP (obj))
4824 XSETPVECTYPE (vec, PVEC_COMPILED);
4825 XSETCOMPILED (obj, vec);
4827 else
4828 XSETVECTOR (obj, vec);
4830 else if (MARKERP (obj))
4831 error ("Attempt to copy a marker to pure storage");
4832 else
4833 /* Not purified, don't hash-cons. */
4834 return obj;
4836 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4837 Fputhash (obj, obj, Vpurify_flag);
4839 return obj;
4844 /***********************************************************************
4845 Protection from GC
4846 ***********************************************************************/
4848 /* Put an entry in staticvec, pointing at the variable with address
4849 VARADDRESS. */
4851 void
4852 staticpro (Lisp_Object *varaddress)
4854 staticvec[staticidx++] = varaddress;
4855 if (staticidx >= NSTATICS)
4856 abort ();
4860 /***********************************************************************
4861 Protection from GC
4862 ***********************************************************************/
4864 /* Temporarily prevent garbage collection. */
4867 inhibit_garbage_collection (void)
4869 int count = SPECPDL_INDEX ();
4870 int nbits = min (VALBITS, BITS_PER_INT);
4872 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4873 return count;
4877 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4878 doc: /* Reclaim storage for Lisp objects no longer needed.
4879 Garbage collection happens automatically if you cons more than
4880 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4881 `garbage-collect' normally returns a list with info on amount of space in use:
4882 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4883 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4884 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4885 (USED-STRINGS . FREE-STRINGS))
4886 However, if there was overflow in pure space, `garbage-collect'
4887 returns nil, because real GC can't be done. */)
4888 (void)
4890 register struct specbinding *bind;
4891 struct catchtag *catch;
4892 struct handler *handler;
4893 char stack_top_variable;
4894 register int i;
4895 int message_p;
4896 Lisp_Object total[8];
4897 int count = SPECPDL_INDEX ();
4898 EMACS_TIME t1, t2, t3;
4900 if (abort_on_gc)
4901 abort ();
4903 /* Can't GC if pure storage overflowed because we can't determine
4904 if something is a pure object or not. */
4905 if (pure_bytes_used_before_overflow)
4906 return Qnil;
4908 CHECK_CONS_LIST ();
4910 /* Don't keep undo information around forever.
4911 Do this early on, so it is no problem if the user quits. */
4913 register struct buffer *nextb = all_buffers;
4915 while (nextb)
4917 /* If a buffer's undo list is Qt, that means that undo is
4918 turned off in that buffer. Calling truncate_undo_list on
4919 Qt tends to return NULL, which effectively turns undo back on.
4920 So don't call truncate_undo_list if undo_list is Qt. */
4921 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4922 truncate_undo_list (nextb);
4924 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4925 if (nextb->base_buffer == 0 && !NILP (nextb->name)
4926 && ! nextb->text->inhibit_shrinking)
4928 /* If a buffer's gap size is more than 10% of the buffer
4929 size, or larger than 2000 bytes, then shrink it
4930 accordingly. Keep a minimum size of 20 bytes. */
4931 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4933 if (nextb->text->gap_size > size)
4935 struct buffer *save_current = current_buffer;
4936 current_buffer = nextb;
4937 make_gap (-(nextb->text->gap_size - size));
4938 current_buffer = save_current;
4942 nextb = nextb->next;
4946 EMACS_GET_TIME (t1);
4948 /* In case user calls debug_print during GC,
4949 don't let that cause a recursive GC. */
4950 consing_since_gc = 0;
4952 /* Save what's currently displayed in the echo area. */
4953 message_p = push_message ();
4954 record_unwind_protect (pop_message_unwind, Qnil);
4956 /* Save a copy of the contents of the stack, for debugging. */
4957 #if MAX_SAVE_STACK > 0
4958 if (NILP (Vpurify_flag))
4960 i = &stack_top_variable - stack_bottom;
4961 if (i < 0) i = -i;
4962 if (i < MAX_SAVE_STACK)
4964 if (stack_copy == 0)
4965 stack_copy = (char *) xmalloc (stack_copy_size = i);
4966 else if (stack_copy_size < i)
4967 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4968 if (stack_copy)
4970 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4971 memcpy (stack_copy, stack_bottom, i);
4972 else
4973 memcpy (stack_copy, &stack_top_variable, i);
4977 #endif /* MAX_SAVE_STACK > 0 */
4979 if (garbage_collection_messages)
4980 message1_nolog ("Garbage collecting...");
4982 BLOCK_INPUT;
4984 shrink_regexp_cache ();
4986 gc_in_progress = 1;
4988 /* clear_marks (); */
4990 /* Mark all the special slots that serve as the roots of accessibility. */
4992 for (i = 0; i < staticidx; i++)
4993 mark_object (*staticvec[i]);
4995 for (bind = specpdl; bind != specpdl_ptr; bind++)
4997 mark_object (bind->symbol);
4998 mark_object (bind->old_value);
5000 mark_terminals ();
5001 mark_kboards ();
5002 mark_ttys ();
5004 #ifdef USE_GTK
5006 extern void xg_mark_data (void);
5007 xg_mark_data ();
5009 #endif
5011 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5012 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5013 mark_stack ();
5014 #else
5016 register struct gcpro *tail;
5017 for (tail = gcprolist; tail; tail = tail->next)
5018 for (i = 0; i < tail->nvars; i++)
5019 mark_object (tail->var[i]);
5021 #endif
5023 mark_byte_stack ();
5024 for (catch = catchlist; catch; catch = catch->next)
5026 mark_object (catch->tag);
5027 mark_object (catch->val);
5029 for (handler = handlerlist; handler; handler = handler->next)
5031 mark_object (handler->handler);
5032 mark_object (handler->var);
5034 mark_backtrace ();
5036 #ifdef HAVE_WINDOW_SYSTEM
5037 mark_fringe_data ();
5038 #endif
5040 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5041 mark_stack ();
5042 #endif
5044 /* Everything is now marked, except for the things that require special
5045 finalization, i.e. the undo_list.
5046 Look thru every buffer's undo list
5047 for elements that update markers that were not marked,
5048 and delete them. */
5050 register struct buffer *nextb = all_buffers;
5052 while (nextb)
5054 /* If a buffer's undo list is Qt, that means that undo is
5055 turned off in that buffer. Calling truncate_undo_list on
5056 Qt tends to return NULL, which effectively turns undo back on.
5057 So don't call truncate_undo_list if undo_list is Qt. */
5058 if (! EQ (nextb->undo_list, Qt))
5060 Lisp_Object tail, prev;
5061 tail = nextb->undo_list;
5062 prev = Qnil;
5063 while (CONSP (tail))
5065 if (CONSP (XCAR (tail))
5066 && MARKERP (XCAR (XCAR (tail)))
5067 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5069 if (NILP (prev))
5070 nextb->undo_list = tail = XCDR (tail);
5071 else
5073 tail = XCDR (tail);
5074 XSETCDR (prev, tail);
5077 else
5079 prev = tail;
5080 tail = XCDR (tail);
5084 /* Now that we have stripped the elements that need not be in the
5085 undo_list any more, we can finally mark the list. */
5086 mark_object (nextb->undo_list);
5088 nextb = nextb->next;
5092 gc_sweep ();
5094 /* Clear the mark bits that we set in certain root slots. */
5096 unmark_byte_stack ();
5097 VECTOR_UNMARK (&buffer_defaults);
5098 VECTOR_UNMARK (&buffer_local_symbols);
5100 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5101 dump_zombies ();
5102 #endif
5104 UNBLOCK_INPUT;
5106 CHECK_CONS_LIST ();
5108 /* clear_marks (); */
5109 gc_in_progress = 0;
5111 consing_since_gc = 0;
5112 if (gc_cons_threshold < 10000)
5113 gc_cons_threshold = 10000;
5115 if (FLOATP (Vgc_cons_percentage))
5116 { /* Set gc_cons_combined_threshold. */
5117 EMACS_INT total = 0;
5119 total += total_conses * sizeof (struct Lisp_Cons);
5120 total += total_symbols * sizeof (struct Lisp_Symbol);
5121 total += total_markers * sizeof (union Lisp_Misc);
5122 total += total_string_size;
5123 total += total_vector_size * sizeof (Lisp_Object);
5124 total += total_floats * sizeof (struct Lisp_Float);
5125 total += total_intervals * sizeof (struct interval);
5126 total += total_strings * sizeof (struct Lisp_String);
5128 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5130 else
5131 gc_relative_threshold = 0;
5133 if (garbage_collection_messages)
5135 if (message_p || minibuf_level > 0)
5136 restore_message ();
5137 else
5138 message1_nolog ("Garbage collecting...done");
5141 unbind_to (count, Qnil);
5143 total[0] = Fcons (make_number (total_conses),
5144 make_number (total_free_conses));
5145 total[1] = Fcons (make_number (total_symbols),
5146 make_number (total_free_symbols));
5147 total[2] = Fcons (make_number (total_markers),
5148 make_number (total_free_markers));
5149 total[3] = make_number (total_string_size);
5150 total[4] = make_number (total_vector_size);
5151 total[5] = Fcons (make_number (total_floats),
5152 make_number (total_free_floats));
5153 total[6] = Fcons (make_number (total_intervals),
5154 make_number (total_free_intervals));
5155 total[7] = Fcons (make_number (total_strings),
5156 make_number (total_free_strings));
5158 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5160 /* Compute average percentage of zombies. */
5161 double nlive = 0;
5163 for (i = 0; i < 7; ++i)
5164 if (CONSP (total[i]))
5165 nlive += XFASTINT (XCAR (total[i]));
5167 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5168 max_live = max (nlive, max_live);
5169 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5170 max_zombies = max (nzombies, max_zombies);
5171 ++ngcs;
5173 #endif
5175 if (!NILP (Vpost_gc_hook))
5177 int count = inhibit_garbage_collection ();
5178 safe_run_hooks (Qpost_gc_hook);
5179 unbind_to (count, Qnil);
5182 /* Accumulate statistics. */
5183 EMACS_GET_TIME (t2);
5184 EMACS_SUB_TIME (t3, t2, t1);
5185 if (FLOATP (Vgc_elapsed))
5186 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5187 EMACS_SECS (t3) +
5188 EMACS_USECS (t3) * 1.0e-6);
5189 gcs_done++;
5191 return Flist (sizeof total / sizeof *total, total);
5195 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5196 only interesting objects referenced from glyphs are strings. */
5198 static void
5199 mark_glyph_matrix (struct glyph_matrix *matrix)
5201 struct glyph_row *row = matrix->rows;
5202 struct glyph_row *end = row + matrix->nrows;
5204 for (; row < end; ++row)
5205 if (row->enabled_p)
5207 int area;
5208 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5210 struct glyph *glyph = row->glyphs[area];
5211 struct glyph *end_glyph = glyph + row->used[area];
5213 for (; glyph < end_glyph; ++glyph)
5214 if (STRINGP (glyph->object)
5215 && !STRING_MARKED_P (XSTRING (glyph->object)))
5216 mark_object (glyph->object);
5222 /* Mark Lisp faces in the face cache C. */
5224 static void
5225 mark_face_cache (struct face_cache *c)
5227 if (c)
5229 int i, j;
5230 for (i = 0; i < c->used; ++i)
5232 struct face *face = FACE_FROM_ID (c->f, i);
5234 if (face)
5236 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5237 mark_object (face->lface[j]);
5245 /* Mark reference to a Lisp_Object.
5246 If the object referred to has not been seen yet, recursively mark
5247 all the references contained in it. */
5249 #define LAST_MARKED_SIZE 500
5250 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5251 int last_marked_index;
5253 /* For debugging--call abort when we cdr down this many
5254 links of a list, in mark_object. In debugging,
5255 the call to abort will hit a breakpoint.
5256 Normally this is zero and the check never goes off. */
5257 static int mark_object_loop_halt;
5259 static void
5260 mark_vectorlike (struct Lisp_Vector *ptr)
5262 register EMACS_INT size = ptr->size;
5263 register int i;
5265 eassert (!VECTOR_MARKED_P (ptr));
5266 VECTOR_MARK (ptr); /* Else mark it */
5267 if (size & PSEUDOVECTOR_FLAG)
5268 size &= PSEUDOVECTOR_SIZE_MASK;
5270 /* Note that this size is not the memory-footprint size, but only
5271 the number of Lisp_Object fields that we should trace.
5272 The distinction is used e.g. by Lisp_Process which places extra
5273 non-Lisp_Object fields at the end of the structure. */
5274 for (i = 0; i < size; i++) /* and then mark its elements */
5275 mark_object (ptr->contents[i]);
5278 /* Like mark_vectorlike but optimized for char-tables (and
5279 sub-char-tables) assuming that the contents are mostly integers or
5280 symbols. */
5282 static void
5283 mark_char_table (struct Lisp_Vector *ptr)
5285 register EMACS_INT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5286 register int i;
5288 eassert (!VECTOR_MARKED_P (ptr));
5289 VECTOR_MARK (ptr);
5290 for (i = 0; i < size; i++)
5292 Lisp_Object val = ptr->contents[i];
5294 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5295 continue;
5296 if (SUB_CHAR_TABLE_P (val))
5298 if (! VECTOR_MARKED_P (XVECTOR (val)))
5299 mark_char_table (XVECTOR (val));
5301 else
5302 mark_object (val);
5306 void
5307 mark_object (Lisp_Object arg)
5309 register Lisp_Object obj = arg;
5310 #ifdef GC_CHECK_MARKED_OBJECTS
5311 void *po;
5312 struct mem_node *m;
5313 #endif
5314 int cdr_count = 0;
5316 loop:
5318 if (PURE_POINTER_P (XPNTR (obj)))
5319 return;
5321 last_marked[last_marked_index++] = obj;
5322 if (last_marked_index == LAST_MARKED_SIZE)
5323 last_marked_index = 0;
5325 /* Perform some sanity checks on the objects marked here. Abort if
5326 we encounter an object we know is bogus. This increases GC time
5327 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5328 #ifdef GC_CHECK_MARKED_OBJECTS
5330 po = (void *) XPNTR (obj);
5332 /* Check that the object pointed to by PO is known to be a Lisp
5333 structure allocated from the heap. */
5334 #define CHECK_ALLOCATED() \
5335 do { \
5336 m = mem_find (po); \
5337 if (m == MEM_NIL) \
5338 abort (); \
5339 } while (0)
5341 /* Check that the object pointed to by PO is live, using predicate
5342 function LIVEP. */
5343 #define CHECK_LIVE(LIVEP) \
5344 do { \
5345 if (!LIVEP (m, po)) \
5346 abort (); \
5347 } while (0)
5349 /* Check both of the above conditions. */
5350 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5351 do { \
5352 CHECK_ALLOCATED (); \
5353 CHECK_LIVE (LIVEP); \
5354 } while (0) \
5356 #else /* not GC_CHECK_MARKED_OBJECTS */
5358 #define CHECK_ALLOCATED() (void) 0
5359 #define CHECK_LIVE(LIVEP) (void) 0
5360 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5362 #endif /* not GC_CHECK_MARKED_OBJECTS */
5364 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5366 case Lisp_String:
5368 register struct Lisp_String *ptr = XSTRING (obj);
5369 if (STRING_MARKED_P (ptr))
5370 break;
5371 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5372 MARK_INTERVAL_TREE (ptr->intervals);
5373 MARK_STRING (ptr);
5374 #ifdef GC_CHECK_STRING_BYTES
5375 /* Check that the string size recorded in the string is the
5376 same as the one recorded in the sdata structure. */
5377 CHECK_STRING_BYTES (ptr);
5378 #endif /* GC_CHECK_STRING_BYTES */
5380 break;
5382 case Lisp_Vectorlike:
5383 if (VECTOR_MARKED_P (XVECTOR (obj)))
5384 break;
5385 #ifdef GC_CHECK_MARKED_OBJECTS
5386 m = mem_find (po);
5387 if (m == MEM_NIL && !SUBRP (obj)
5388 && po != &buffer_defaults
5389 && po != &buffer_local_symbols)
5390 abort ();
5391 #endif /* GC_CHECK_MARKED_OBJECTS */
5393 if (BUFFERP (obj))
5395 #ifdef GC_CHECK_MARKED_OBJECTS
5396 if (po != &buffer_defaults && po != &buffer_local_symbols)
5398 struct buffer *b;
5399 for (b = all_buffers; b && b != po; b = b->next)
5401 if (b == NULL)
5402 abort ();
5404 #endif /* GC_CHECK_MARKED_OBJECTS */
5405 mark_buffer (obj);
5407 else if (SUBRP (obj))
5408 break;
5409 else if (COMPILEDP (obj))
5410 /* We could treat this just like a vector, but it is better to
5411 save the COMPILED_CONSTANTS element for last and avoid
5412 recursion there. */
5414 register struct Lisp_Vector *ptr = XVECTOR (obj);
5415 register EMACS_INT size = ptr->size;
5416 register int i;
5418 CHECK_LIVE (live_vector_p);
5419 VECTOR_MARK (ptr); /* Else mark it */
5420 size &= PSEUDOVECTOR_SIZE_MASK;
5421 for (i = 0; i < size; i++) /* and then mark its elements */
5423 if (i != COMPILED_CONSTANTS)
5424 mark_object (ptr->contents[i]);
5426 obj = ptr->contents[COMPILED_CONSTANTS];
5427 goto loop;
5429 else if (FRAMEP (obj))
5431 register struct frame *ptr = XFRAME (obj);
5432 mark_vectorlike (XVECTOR (obj));
5433 mark_face_cache (ptr->face_cache);
5435 else if (WINDOWP (obj))
5437 register struct Lisp_Vector *ptr = XVECTOR (obj);
5438 struct window *w = XWINDOW (obj);
5439 mark_vectorlike (ptr);
5440 /* Mark glyphs for leaf windows. Marking window matrices is
5441 sufficient because frame matrices use the same glyph
5442 memory. */
5443 if (NILP (w->hchild)
5444 && NILP (w->vchild)
5445 && w->current_matrix)
5447 mark_glyph_matrix (w->current_matrix);
5448 mark_glyph_matrix (w->desired_matrix);
5451 else if (HASH_TABLE_P (obj))
5453 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5454 mark_vectorlike ((struct Lisp_Vector *)h);
5455 /* If hash table is not weak, mark all keys and values.
5456 For weak tables, mark only the vector. */
5457 if (NILP (h->weak))
5458 mark_object (h->key_and_value);
5459 else
5460 VECTOR_MARK (XVECTOR (h->key_and_value));
5462 else if (CHAR_TABLE_P (obj))
5463 mark_char_table (XVECTOR (obj));
5464 else
5465 mark_vectorlike (XVECTOR (obj));
5466 break;
5468 case Lisp_Symbol:
5470 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5471 struct Lisp_Symbol *ptrx;
5473 if (ptr->gcmarkbit)
5474 break;
5475 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5476 ptr->gcmarkbit = 1;
5477 mark_object (ptr->function);
5478 mark_object (ptr->plist);
5479 switch (ptr->redirect)
5481 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5482 case SYMBOL_VARALIAS:
5484 Lisp_Object tem;
5485 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5486 mark_object (tem);
5487 break;
5489 case SYMBOL_LOCALIZED:
5491 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5492 /* If the value is forwarded to a buffer or keyboard field,
5493 these are marked when we see the corresponding object.
5494 And if it's forwarded to a C variable, either it's not
5495 a Lisp_Object var, or it's staticpro'd already. */
5496 mark_object (blv->where);
5497 mark_object (blv->valcell);
5498 mark_object (blv->defcell);
5499 break;
5501 case SYMBOL_FORWARDED:
5502 /* If the value is forwarded to a buffer or keyboard field,
5503 these are marked when we see the corresponding object.
5504 And if it's forwarded to a C variable, either it's not
5505 a Lisp_Object var, or it's staticpro'd already. */
5506 break;
5507 default: abort ();
5509 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5510 MARK_STRING (XSTRING (ptr->xname));
5511 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5513 ptr = ptr->next;
5514 if (ptr)
5516 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5517 XSETSYMBOL (obj, ptrx);
5518 goto loop;
5521 break;
5523 case Lisp_Misc:
5524 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5525 if (XMISCANY (obj)->gcmarkbit)
5526 break;
5527 XMISCANY (obj)->gcmarkbit = 1;
5529 switch (XMISCTYPE (obj))
5532 case Lisp_Misc_Marker:
5533 /* DO NOT mark thru the marker's chain.
5534 The buffer's markers chain does not preserve markers from gc;
5535 instead, markers are removed from the chain when freed by gc. */
5536 break;
5538 case Lisp_Misc_Save_Value:
5539 #if GC_MARK_STACK
5541 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5542 /* If DOGC is set, POINTER is the address of a memory
5543 area containing INTEGER potential Lisp_Objects. */
5544 if (ptr->dogc)
5546 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5547 int nelt;
5548 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5549 mark_maybe_object (*p);
5552 #endif
5553 break;
5555 case Lisp_Misc_Overlay:
5557 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5558 mark_object (ptr->start);
5559 mark_object (ptr->end);
5560 mark_object (ptr->plist);
5561 if (ptr->next)
5563 XSETMISC (obj, ptr->next);
5564 goto loop;
5567 break;
5569 default:
5570 abort ();
5572 break;
5574 case Lisp_Cons:
5576 register struct Lisp_Cons *ptr = XCONS (obj);
5577 if (CONS_MARKED_P (ptr))
5578 break;
5579 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5580 CONS_MARK (ptr);
5581 /* If the cdr is nil, avoid recursion for the car. */
5582 if (EQ (ptr->u.cdr, Qnil))
5584 obj = ptr->car;
5585 cdr_count = 0;
5586 goto loop;
5588 mark_object (ptr->car);
5589 obj = ptr->u.cdr;
5590 cdr_count++;
5591 if (cdr_count == mark_object_loop_halt)
5592 abort ();
5593 goto loop;
5596 case Lisp_Float:
5597 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5598 FLOAT_MARK (XFLOAT (obj));
5599 break;
5601 case_Lisp_Int:
5602 break;
5604 default:
5605 abort ();
5608 #undef CHECK_LIVE
5609 #undef CHECK_ALLOCATED
5610 #undef CHECK_ALLOCATED_AND_LIVE
5613 /* Mark the pointers in a buffer structure. */
5615 static void
5616 mark_buffer (Lisp_Object buf)
5618 register struct buffer *buffer = XBUFFER (buf);
5619 register Lisp_Object *ptr, tmp;
5620 Lisp_Object base_buffer;
5622 eassert (!VECTOR_MARKED_P (buffer));
5623 VECTOR_MARK (buffer);
5625 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5627 /* For now, we just don't mark the undo_list. It's done later in
5628 a special way just before the sweep phase, and after stripping
5629 some of its elements that are not needed any more. */
5631 if (buffer->overlays_before)
5633 XSETMISC (tmp, buffer->overlays_before);
5634 mark_object (tmp);
5636 if (buffer->overlays_after)
5638 XSETMISC (tmp, buffer->overlays_after);
5639 mark_object (tmp);
5642 /* buffer-local Lisp variables start at `undo_list',
5643 tho only the ones from `name' on are GC'd normally. */
5644 for (ptr = &buffer->name;
5645 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5646 ptr++)
5647 mark_object (*ptr);
5649 /* If this is an indirect buffer, mark its base buffer. */
5650 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5652 XSETBUFFER (base_buffer, buffer->base_buffer);
5653 mark_buffer (base_buffer);
5657 /* Mark the Lisp pointers in the terminal objects.
5658 Called by the Fgarbage_collector. */
5660 static void
5661 mark_terminals (void)
5663 struct terminal *t;
5664 for (t = terminal_list; t; t = t->next_terminal)
5666 eassert (t->name != NULL);
5667 if (!VECTOR_MARKED_P (t))
5669 #ifdef HAVE_WINDOW_SYSTEM
5670 mark_image_cache (t->image_cache);
5671 #endif /* HAVE_WINDOW_SYSTEM */
5672 mark_vectorlike ((struct Lisp_Vector *)t);
5679 /* Value is non-zero if OBJ will survive the current GC because it's
5680 either marked or does not need to be marked to survive. */
5683 survives_gc_p (Lisp_Object obj)
5685 int survives_p;
5687 switch (XTYPE (obj))
5689 case_Lisp_Int:
5690 survives_p = 1;
5691 break;
5693 case Lisp_Symbol:
5694 survives_p = XSYMBOL (obj)->gcmarkbit;
5695 break;
5697 case Lisp_Misc:
5698 survives_p = XMISCANY (obj)->gcmarkbit;
5699 break;
5701 case Lisp_String:
5702 survives_p = STRING_MARKED_P (XSTRING (obj));
5703 break;
5705 case Lisp_Vectorlike:
5706 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5707 break;
5709 case Lisp_Cons:
5710 survives_p = CONS_MARKED_P (XCONS (obj));
5711 break;
5713 case Lisp_Float:
5714 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5715 break;
5717 default:
5718 abort ();
5721 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5726 /* Sweep: find all structures not marked, and free them. */
5728 static void
5729 gc_sweep (void)
5731 /* Remove or mark entries in weak hash tables.
5732 This must be done before any object is unmarked. */
5733 sweep_weak_hash_tables ();
5735 sweep_strings ();
5736 #ifdef GC_CHECK_STRING_BYTES
5737 if (!noninteractive)
5738 check_string_bytes (1);
5739 #endif
5741 /* Put all unmarked conses on free list */
5743 register struct cons_block *cblk;
5744 struct cons_block **cprev = &cons_block;
5745 register int lim = cons_block_index;
5746 register int num_free = 0, num_used = 0;
5748 cons_free_list = 0;
5750 for (cblk = cons_block; cblk; cblk = *cprev)
5752 register int i = 0;
5753 int this_free = 0;
5754 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5756 /* Scan the mark bits an int at a time. */
5757 for (i = 0; i <= ilim; i++)
5759 if (cblk->gcmarkbits[i] == -1)
5761 /* Fast path - all cons cells for this int are marked. */
5762 cblk->gcmarkbits[i] = 0;
5763 num_used += BITS_PER_INT;
5765 else
5767 /* Some cons cells for this int are not marked.
5768 Find which ones, and free them. */
5769 int start, pos, stop;
5771 start = i * BITS_PER_INT;
5772 stop = lim - start;
5773 if (stop > BITS_PER_INT)
5774 stop = BITS_PER_INT;
5775 stop += start;
5777 for (pos = start; pos < stop; pos++)
5779 if (!CONS_MARKED_P (&cblk->conses[pos]))
5781 this_free++;
5782 cblk->conses[pos].u.chain = cons_free_list;
5783 cons_free_list = &cblk->conses[pos];
5784 #if GC_MARK_STACK
5785 cons_free_list->car = Vdead;
5786 #endif
5788 else
5790 num_used++;
5791 CONS_UNMARK (&cblk->conses[pos]);
5797 lim = CONS_BLOCK_SIZE;
5798 /* If this block contains only free conses and we have already
5799 seen more than two blocks worth of free conses then deallocate
5800 this block. */
5801 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5803 *cprev = cblk->next;
5804 /* Unhook from the free list. */
5805 cons_free_list = cblk->conses[0].u.chain;
5806 lisp_align_free (cblk);
5807 n_cons_blocks--;
5809 else
5811 num_free += this_free;
5812 cprev = &cblk->next;
5815 total_conses = num_used;
5816 total_free_conses = num_free;
5819 /* Put all unmarked floats on free list */
5821 register struct float_block *fblk;
5822 struct float_block **fprev = &float_block;
5823 register int lim = float_block_index;
5824 register int num_free = 0, num_used = 0;
5826 float_free_list = 0;
5828 for (fblk = float_block; fblk; fblk = *fprev)
5830 register int i;
5831 int this_free = 0;
5832 for (i = 0; i < lim; i++)
5833 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5835 this_free++;
5836 fblk->floats[i].u.chain = float_free_list;
5837 float_free_list = &fblk->floats[i];
5839 else
5841 num_used++;
5842 FLOAT_UNMARK (&fblk->floats[i]);
5844 lim = FLOAT_BLOCK_SIZE;
5845 /* If this block contains only free floats and we have already
5846 seen more than two blocks worth of free floats then deallocate
5847 this block. */
5848 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5850 *fprev = fblk->next;
5851 /* Unhook from the free list. */
5852 float_free_list = fblk->floats[0].u.chain;
5853 lisp_align_free (fblk);
5854 n_float_blocks--;
5856 else
5858 num_free += this_free;
5859 fprev = &fblk->next;
5862 total_floats = num_used;
5863 total_free_floats = num_free;
5866 /* Put all unmarked intervals on free list */
5868 register struct interval_block *iblk;
5869 struct interval_block **iprev = &interval_block;
5870 register int lim = interval_block_index;
5871 register int num_free = 0, num_used = 0;
5873 interval_free_list = 0;
5875 for (iblk = interval_block; iblk; iblk = *iprev)
5877 register int i;
5878 int this_free = 0;
5880 for (i = 0; i < lim; i++)
5882 if (!iblk->intervals[i].gcmarkbit)
5884 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5885 interval_free_list = &iblk->intervals[i];
5886 this_free++;
5888 else
5890 num_used++;
5891 iblk->intervals[i].gcmarkbit = 0;
5894 lim = INTERVAL_BLOCK_SIZE;
5895 /* If this block contains only free intervals and we have already
5896 seen more than two blocks worth of free intervals then
5897 deallocate this block. */
5898 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5900 *iprev = iblk->next;
5901 /* Unhook from the free list. */
5902 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5903 lisp_free (iblk);
5904 n_interval_blocks--;
5906 else
5908 num_free += this_free;
5909 iprev = &iblk->next;
5912 total_intervals = num_used;
5913 total_free_intervals = num_free;
5916 /* Put all unmarked symbols on free list */
5918 register struct symbol_block *sblk;
5919 struct symbol_block **sprev = &symbol_block;
5920 register int lim = symbol_block_index;
5921 register int num_free = 0, num_used = 0;
5923 symbol_free_list = NULL;
5925 for (sblk = symbol_block; sblk; sblk = *sprev)
5927 int this_free = 0;
5928 struct Lisp_Symbol *sym = sblk->symbols;
5929 struct Lisp_Symbol *end = sym + lim;
5931 for (; sym < end; ++sym)
5933 /* Check if the symbol was created during loadup. In such a case
5934 it might be pointed to by pure bytecode which we don't trace,
5935 so we conservatively assume that it is live. */
5936 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5938 if (!sym->gcmarkbit && !pure_p)
5940 if (sym->redirect == SYMBOL_LOCALIZED)
5941 xfree (SYMBOL_BLV (sym));
5942 sym->next = symbol_free_list;
5943 symbol_free_list = sym;
5944 #if GC_MARK_STACK
5945 symbol_free_list->function = Vdead;
5946 #endif
5947 ++this_free;
5949 else
5951 ++num_used;
5952 if (!pure_p)
5953 UNMARK_STRING (XSTRING (sym->xname));
5954 sym->gcmarkbit = 0;
5958 lim = SYMBOL_BLOCK_SIZE;
5959 /* If this block contains only free symbols and we have already
5960 seen more than two blocks worth of free symbols then deallocate
5961 this block. */
5962 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5964 *sprev = sblk->next;
5965 /* Unhook from the free list. */
5966 symbol_free_list = sblk->symbols[0].next;
5967 lisp_free (sblk);
5968 n_symbol_blocks--;
5970 else
5972 num_free += this_free;
5973 sprev = &sblk->next;
5976 total_symbols = num_used;
5977 total_free_symbols = num_free;
5980 /* Put all unmarked misc's on free list.
5981 For a marker, first unchain it from the buffer it points into. */
5983 register struct marker_block *mblk;
5984 struct marker_block **mprev = &marker_block;
5985 register int lim = marker_block_index;
5986 register int num_free = 0, num_used = 0;
5988 marker_free_list = 0;
5990 for (mblk = marker_block; mblk; mblk = *mprev)
5992 register int i;
5993 int this_free = 0;
5995 for (i = 0; i < lim; i++)
5997 if (!mblk->markers[i].u_any.gcmarkbit)
5999 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6000 unchain_marker (&mblk->markers[i].u_marker);
6001 /* Set the type of the freed object to Lisp_Misc_Free.
6002 We could leave the type alone, since nobody checks it,
6003 but this might catch bugs faster. */
6004 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6005 mblk->markers[i].u_free.chain = marker_free_list;
6006 marker_free_list = &mblk->markers[i];
6007 this_free++;
6009 else
6011 num_used++;
6012 mblk->markers[i].u_any.gcmarkbit = 0;
6015 lim = MARKER_BLOCK_SIZE;
6016 /* If this block contains only free markers and we have already
6017 seen more than two blocks worth of free markers then deallocate
6018 this block. */
6019 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6021 *mprev = mblk->next;
6022 /* Unhook from the free list. */
6023 marker_free_list = mblk->markers[0].u_free.chain;
6024 lisp_free (mblk);
6025 n_marker_blocks--;
6027 else
6029 num_free += this_free;
6030 mprev = &mblk->next;
6034 total_markers = num_used;
6035 total_free_markers = num_free;
6038 /* Free all unmarked buffers */
6040 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6042 while (buffer)
6043 if (!VECTOR_MARKED_P (buffer))
6045 if (prev)
6046 prev->next = buffer->next;
6047 else
6048 all_buffers = buffer->next;
6049 next = buffer->next;
6050 lisp_free (buffer);
6051 buffer = next;
6053 else
6055 VECTOR_UNMARK (buffer);
6056 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6057 prev = buffer, buffer = buffer->next;
6061 /* Free all unmarked vectors */
6063 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6064 total_vector_size = 0;
6066 while (vector)
6067 if (!VECTOR_MARKED_P (vector))
6069 if (prev)
6070 prev->next = vector->next;
6071 else
6072 all_vectors = vector->next;
6073 next = vector->next;
6074 lisp_free (vector);
6075 n_vectors--;
6076 vector = next;
6079 else
6081 VECTOR_UNMARK (vector);
6082 if (vector->size & PSEUDOVECTOR_FLAG)
6083 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6084 else
6085 total_vector_size += vector->size;
6086 prev = vector, vector = vector->next;
6090 #ifdef GC_CHECK_STRING_BYTES
6091 if (!noninteractive)
6092 check_string_bytes (1);
6093 #endif
6099 /* Debugging aids. */
6101 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6102 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6103 This may be helpful in debugging Emacs's memory usage.
6104 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6105 (void)
6107 Lisp_Object end;
6109 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6111 return end;
6114 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6115 doc: /* Return a list of counters that measure how much consing there has been.
6116 Each of these counters increments for a certain kind of object.
6117 The counters wrap around from the largest positive integer to zero.
6118 Garbage collection does not decrease them.
6119 The elements of the value are as follows:
6120 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6121 All are in units of 1 = one object consed
6122 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6123 objects consed.
6124 MISCS include overlays, markers, and some internal types.
6125 Frames, windows, buffers, and subprocesses count as vectors
6126 (but the contents of a buffer's text do not count here). */)
6127 (void)
6129 Lisp_Object consed[8];
6131 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6132 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6133 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6134 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6135 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6136 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6137 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6138 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6140 return Flist (8, consed);
6143 int suppress_checking;
6145 void
6146 die (const char *msg, const char *file, int line)
6148 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6149 file, line, msg);
6150 abort ();
6153 /* Initialization */
6155 void
6156 init_alloc_once (void)
6158 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6159 purebeg = PUREBEG;
6160 pure_size = PURESIZE;
6161 pure_bytes_used = 0;
6162 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6163 pure_bytes_used_before_overflow = 0;
6165 /* Initialize the list of free aligned blocks. */
6166 free_ablock = NULL;
6168 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6169 mem_init ();
6170 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6171 #endif
6173 all_vectors = 0;
6174 ignore_warnings = 1;
6175 #ifdef DOUG_LEA_MALLOC
6176 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6177 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6178 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6179 #endif
6180 init_strings ();
6181 init_cons ();
6182 init_symbol ();
6183 init_marker ();
6184 init_float ();
6185 init_intervals ();
6186 init_weak_hash_tables ();
6188 #ifdef REL_ALLOC
6189 malloc_hysteresis = 32;
6190 #else
6191 malloc_hysteresis = 0;
6192 #endif
6194 refill_memory_reserve ();
6196 ignore_warnings = 0;
6197 gcprolist = 0;
6198 byte_stack_list = 0;
6199 staticidx = 0;
6200 consing_since_gc = 0;
6201 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6202 gc_relative_threshold = 0;
6204 #ifdef VIRT_ADDR_VARIES
6205 malloc_sbrk_unused = 1<<22; /* A large number */
6206 malloc_sbrk_used = 100000; /* as reasonable as any number */
6207 #endif /* VIRT_ADDR_VARIES */
6210 void
6211 init_alloc (void)
6213 gcprolist = 0;
6214 byte_stack_list = 0;
6215 #if GC_MARK_STACK
6216 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6217 setjmp_tested_p = longjmps_done = 0;
6218 #endif
6219 #endif
6220 Vgc_elapsed = make_float (0.0);
6221 gcs_done = 0;
6224 void
6225 syms_of_alloc (void)
6227 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6228 doc: /* *Number of bytes of consing between garbage collections.
6229 Garbage collection can happen automatically once this many bytes have been
6230 allocated since the last garbage collection. All data types count.
6232 Garbage collection happens automatically only when `eval' is called.
6234 By binding this temporarily to a large number, you can effectively
6235 prevent garbage collection during a part of the program.
6236 See also `gc-cons-percentage'. */);
6238 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6239 doc: /* *Portion of the heap used for allocation.
6240 Garbage collection can happen automatically once this portion of the heap
6241 has been allocated since the last garbage collection.
6242 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6243 Vgc_cons_percentage = make_float (0.1);
6245 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6246 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6248 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6249 doc: /* Number of cons cells that have been consed so far. */);
6251 DEFVAR_INT ("floats-consed", &floats_consed,
6252 doc: /* Number of floats that have been consed so far. */);
6254 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6255 doc: /* Number of vector cells that have been consed so far. */);
6257 DEFVAR_INT ("symbols-consed", &symbols_consed,
6258 doc: /* Number of symbols that have been consed so far. */);
6260 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6261 doc: /* Number of string characters that have been consed so far. */);
6263 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6264 doc: /* Number of miscellaneous objects that have been consed so far. */);
6266 DEFVAR_INT ("intervals-consed", &intervals_consed,
6267 doc: /* Number of intervals that have been consed so far. */);
6269 DEFVAR_INT ("strings-consed", &strings_consed,
6270 doc: /* Number of strings that have been consed so far. */);
6272 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6273 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6274 This means that certain objects should be allocated in shared (pure) space.
6275 It can also be set to a hash-table, in which case this table is used to
6276 do hash-consing of the objects allocated to pure space. */);
6278 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6279 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6280 garbage_collection_messages = 0;
6282 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6283 doc: /* Hook run after garbage collection has finished. */);
6284 Vpost_gc_hook = Qnil;
6285 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6286 staticpro (&Qpost_gc_hook);
6288 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6289 doc: /* Precomputed `signal' argument for memory-full error. */);
6290 /* We build this in advance because if we wait until we need it, we might
6291 not be able to allocate the memory to hold it. */
6292 Vmemory_signal_data
6293 = pure_cons (Qerror,
6294 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6296 DEFVAR_LISP ("memory-full", &Vmemory_full,
6297 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6298 Vmemory_full = Qnil;
6300 staticpro (&Qgc_cons_threshold);
6301 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6303 staticpro (&Qchar_table_extra_slots);
6304 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6306 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6307 doc: /* Accumulated time elapsed in garbage collections.
6308 The time is in seconds as a floating point value. */);
6309 DEFVAR_INT ("gcs-done", &gcs_done,
6310 doc: /* Accumulated number of garbage collections done. */);
6312 defsubr (&Scons);
6313 defsubr (&Slist);
6314 defsubr (&Svector);
6315 defsubr (&Smake_byte_code);
6316 defsubr (&Smake_list);
6317 defsubr (&Smake_vector);
6318 defsubr (&Smake_string);
6319 defsubr (&Smake_bool_vector);
6320 defsubr (&Smake_symbol);
6321 defsubr (&Smake_marker);
6322 defsubr (&Spurecopy);
6323 defsubr (&Sgarbage_collect);
6324 defsubr (&Smemory_limit);
6325 defsubr (&Smemory_use_counts);
6327 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6328 defsubr (&Sgc_status);
6329 #endif
6332 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6333 (do not change this comment) */