Fix TTY colors breakage by 'clear-face-cache'
[emacs.git] / lisp / calc / calc-cplx.el
blob4a453a73d72744d9dcc0973d4b392192981a87aa
1 ;;; calc-cplx.el --- Complex number functions for Calc
3 ;; Copyright (C) 1990-1993, 2001-2018 Free Software Foundation, Inc.
5 ;; Author: David Gillespie <daveg@synaptics.com>
7 ;; This file is part of GNU Emacs.
9 ;; GNU Emacs is free software: you can redistribute it and/or modify
10 ;; it under the terms of the GNU General Public License as published by
11 ;; the Free Software Foundation, either version 3 of the License, or
12 ;; (at your option) any later version.
14 ;; GNU Emacs is distributed in the hope that it will be useful,
15 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
16 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 ;; GNU General Public License for more details.
19 ;; You should have received a copy of the GNU General Public License
20 ;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
22 ;;; Commentary:
24 ;;; Code:
26 ;; This file is autoloaded from calc-ext.el.
28 (require 'calc-ext)
29 (require 'calc-macs)
31 (defun calc-argument (arg)
32 (interactive "P")
33 (calc-slow-wrapper
34 (calc-unary-op "arg" 'calcFunc-arg arg)))
36 (defun calc-re (arg)
37 (interactive "P")
38 (calc-slow-wrapper
39 (calc-unary-op "re" 'calcFunc-re arg)))
41 (defun calc-im (arg)
42 (interactive "P")
43 (calc-slow-wrapper
44 (calc-unary-op "im" 'calcFunc-im arg)))
47 (defun calc-polar ()
48 (interactive)
49 (calc-slow-wrapper
50 (let ((arg (calc-top-n 1)))
51 (if (or (calc-is-inverse)
52 (eq (car-safe arg) 'polar))
53 (calc-enter-result 1 "p-r" (list 'calcFunc-rect arg))
54 (calc-enter-result 1 "r-p" (list 'calcFunc-polar arg))))))
59 (defun calc-complex-notation ()
60 (interactive)
61 (calc-wrapper
62 (calc-change-mode 'calc-complex-format nil t)
63 (message "Displaying complex numbers in (X,Y) format")))
65 (defun calc-i-notation ()
66 (interactive)
67 (calc-wrapper
68 (calc-change-mode 'calc-complex-format 'i t)
69 (message "Displaying complex numbers in X+Yi format")))
71 (defun calc-j-notation ()
72 (interactive)
73 (calc-wrapper
74 (calc-change-mode 'calc-complex-format 'j t)
75 (message "Displaying complex numbers in X+Yj format")))
78 (defun calc-polar-mode (n)
79 (interactive "P")
80 (calc-wrapper
81 (if (if n
82 (> (prefix-numeric-value n) 0)
83 (eq calc-complex-mode 'cplx))
84 (progn
85 (calc-change-mode 'calc-complex-mode 'polar)
86 (message "Preferred complex form is polar"))
87 (calc-change-mode 'calc-complex-mode 'cplx)
88 (message "Preferred complex form is rectangular"))))
91 ;;;; Complex numbers.
93 (defun math-normalize-polar (a)
94 (let ((r (math-normalize (nth 1 a)))
95 (th (math-normalize (nth 2 a))))
96 (cond ((math-zerop r)
97 '(polar 0 0))
98 ((or (math-zerop th))
100 ((and (not (eq calc-angle-mode 'rad))
101 (or (equal th '(float 18 1))
102 (equal th 180)))
103 (math-neg r))
104 ((math-negp r)
105 (math-neg (list 'polar (math-neg r) th)))
107 (list 'polar r th)))))
110 ;;; Coerce A to be complex (rectangular form). [c N]
111 (defun math-complex (a)
112 (cond ((eq (car-safe a) 'cplx) a)
113 ((eq (car-safe a) 'polar)
114 (if (math-zerop (nth 1 a))
115 (nth 1 a)
116 (let ((sc (calcFunc-sincos (nth 2 a))))
117 (list 'cplx
118 (math-mul (nth 1 a) (nth 1 sc))
119 (math-mul (nth 1 a) (nth 2 sc))))))
120 (t (list 'cplx a 0))))
122 ;;; Coerce A to be complex (polar form). [c N]
123 (defun math-polar (a)
124 (cond ((eq (car-safe a) 'polar) a)
125 ((math-zerop a) '(polar 0 0))
127 (list 'polar
128 (math-abs a)
129 (calcFunc-arg a)))))
131 ;;; Multiply A by the imaginary constant i. [N N] [Public]
132 (defun math-imaginary (a)
133 (if (and (or (Math-objvecp a) (math-infinitep a))
134 (not calc-symbolic-mode))
135 (math-mul a
136 (if (or (eq (car-safe a) 'polar)
137 (and (not (eq (car-safe a) 'cplx))
138 (eq calc-complex-mode 'polar)))
139 (list 'polar 1 (math-quarter-circle nil))
140 '(cplx 0 1)))
141 (math-mul a '(var i var-i))))
146 (defun math-want-polar (a b)
147 (cond ((eq (car-safe a) 'polar)
148 (if (eq (car-safe b) 'cplx)
149 (eq calc-complex-mode 'polar)
151 ((eq (car-safe a) 'cplx)
152 (if (eq (car-safe b) 'polar)
153 (eq calc-complex-mode 'polar)
154 nil))
155 ((eq (car-safe b) 'polar)
157 ((eq (car-safe b) 'cplx)
158 nil)
159 (t (eq calc-complex-mode 'polar))))
161 ;;; Force A to be in the (-pi,pi] or (-180,180] range.
162 (defun math-fix-circular (a &optional dir) ; [R R]
163 (cond ((eq (car-safe a) 'hms)
164 (cond ((and (Math-lessp 180 (nth 1 a)) (not (eq dir 1)))
165 (math-fix-circular (math-add a '(float -36 1)) -1))
166 ((or (Math-lessp -180 (nth 1 a)) (eq dir -1))
169 (math-fix-circular (math-add a '(float 36 1)) 1))))
170 ((eq calc-angle-mode 'rad)
171 (cond ((and (Math-lessp (math-pi) a) (not (eq dir 1)))
172 (math-fix-circular (math-sub a (math-two-pi)) -1))
173 ((or (Math-lessp (math-neg (math-pi)) a) (eq dir -1))
176 (math-fix-circular (math-add a (math-two-pi)) 1))))
178 (cond ((and (Math-lessp '(float 18 1) a) (not (eq dir 1)))
179 (math-fix-circular (math-add a '(float -36 1)) -1))
180 ((or (Math-lessp '(float -18 1) a) (eq dir -1))
183 (math-fix-circular (math-add a '(float 36 1)) 1))))))
186 ;;;; Complex numbers.
188 (defun calcFunc-polar (a) ; [C N] [Public]
189 (cond ((Math-vectorp a)
190 (math-map-vec 'calcFunc-polar a))
191 ((Math-realp a) a)
192 ((Math-numberp a)
193 (math-normalize (math-polar a)))
194 (t (list 'calcFunc-polar a))))
196 (defun calcFunc-rect (a) ; [N N] [Public]
197 (cond ((Math-vectorp a)
198 (math-map-vec 'calcFunc-rect a))
199 ((Math-realp a) a)
200 ((Math-numberp a)
201 (math-normalize (math-complex a)))
202 (t (list 'calcFunc-rect a))))
204 ;;; Compute the complex conjugate of A. [O O] [Public]
205 (defun calcFunc-conj (a)
206 (let (aa bb)
207 (cond ((Math-realp a)
209 ((eq (car a) 'cplx)
210 (list 'cplx (nth 1 a) (math-neg (nth 2 a))))
211 ((eq (car a) 'polar)
212 (list 'polar (nth 1 a) (math-neg (nth 2 a))))
213 ((eq (car a) 'vec)
214 (math-map-vec 'calcFunc-conj a))
215 ((eq (car a) 'calcFunc-conj)
216 (nth 1 a))
217 ((math-known-realp a)
219 ((and (equal a '(var i var-i))
220 (math-imaginary-i))
221 (math-neg a))
222 ((and (memq (car a) '(+ - * /))
223 (progn
224 (setq aa (calcFunc-conj (nth 1 a))
225 bb (calcFunc-conj (nth 2 a)))
226 (or (not (eq (car-safe aa) 'calcFunc-conj))
227 (not (eq (car-safe bb) 'calcFunc-conj)))))
228 (if (eq (car a) '+)
229 (math-add aa bb)
230 (if (eq (car a) '-)
231 (math-sub aa bb)
232 (if (eq (car a) '*)
233 (math-mul aa bb)
234 (math-div aa bb)))))
235 ((eq (car a) 'neg)
236 (math-neg (calcFunc-conj (nth 1 a))))
237 ((let ((inf (math-infinitep a)))
238 (and inf
239 (math-mul (calcFunc-conj (math-infinite-dir a inf)) inf))))
240 (t (calc-record-why 'numberp a)
241 (list 'calcFunc-conj a)))))
244 ;;; Compute the complex argument of A. [F N] [Public]
245 (defun calcFunc-arg (a)
246 (cond ((Math-anglep a)
247 (if (math-negp a) (math-half-circle nil) 0))
248 ((eq (car-safe a) 'cplx)
249 (calcFunc-arctan2 (nth 2 a) (nth 1 a)))
250 ((eq (car-safe a) 'polar)
251 (nth 2 a))
252 ((eq (car a) 'vec)
253 (math-map-vec 'calcFunc-arg a))
254 ((and (equal a '(var i var-i))
255 (math-imaginary-i))
256 (math-quarter-circle t))
257 ((and (equal a '(neg (var i var-i)))
258 (math-imaginary-i))
259 (math-neg (math-quarter-circle t)))
260 ((let ((signs (math-possible-signs a)))
261 (or (and (memq signs '(2 4 6)) 0)
262 (and (eq signs 1) (math-half-circle nil)))))
263 ((math-infinitep a)
264 (if (or (equal a '(var uinf var-uinf))
265 (equal a '(var nan var-nan)))
266 '(var nan var-nan)
267 (calcFunc-arg (math-infinite-dir a))))
268 (t (calc-record-why 'numvecp a)
269 (list 'calcFunc-arg a))))
271 (defun math-imaginary-i ()
272 (let ((val (calc-var-value 'var-i)))
273 (or (eq (car-safe val) 'special-const)
274 (equal val '(cplx 0 1))
275 (and (eq (car-safe val) 'polar)
276 (eq (nth 1 val) 0)
277 (Math-equal (nth 1 val) (math-quarter-circle nil))))))
279 ;;; Extract the real or complex part of a complex number. [R N] [Public]
280 ;;; Also extracts the real part of a modulo form.
281 (defun calcFunc-re (a)
282 (let (aa bb)
283 (cond ((Math-realp a) a)
284 ((memq (car a) '(mod cplx))
285 (nth 1 a))
286 ((eq (car a) 'polar)
287 (math-mul (nth 1 a) (calcFunc-cos (nth 2 a))))
288 ((eq (car a) 'vec)
289 (math-map-vec 'calcFunc-re a))
290 ((math-known-realp a) a)
291 ((eq (car a) 'calcFunc-conj)
292 (calcFunc-re (nth 1 a)))
293 ((and (equal a '(var i var-i))
294 (math-imaginary-i))
296 ((and (memq (car a) '(+ - *))
297 (progn
298 (setq aa (calcFunc-re (nth 1 a))
299 bb (calcFunc-re (nth 2 a)))
300 (or (not (eq (car-safe aa) 'calcFunc-re))
301 (not (eq (car-safe bb) 'calcFunc-re)))))
302 (if (eq (car a) '+)
303 (math-add aa bb)
304 (if (eq (car a) '-)
305 (math-sub aa bb)
306 (math-sub (math-mul aa bb)
307 (math-mul (calcFunc-im (nth 1 a))
308 (calcFunc-im (nth 2 a)))))))
309 ((and (eq (car a) '/)
310 (math-known-realp (nth 2 a)))
311 (math-div (calcFunc-re (nth 1 a)) (nth 2 a)))
312 ((eq (car a) 'neg)
313 (math-neg (calcFunc-re (nth 1 a))))
314 (t (calc-record-why 'numberp a)
315 (list 'calcFunc-re a)))))
317 (defun calcFunc-im (a)
318 (let (aa bb)
319 (cond ((Math-realp a)
320 (if (math-floatp a) '(float 0 0) 0))
321 ((eq (car a) 'cplx)
322 (nth 2 a))
323 ((eq (car a) 'polar)
324 (math-mul (nth 1 a) (calcFunc-sin (nth 2 a))))
325 ((eq (car a) 'vec)
326 (math-map-vec 'calcFunc-im a))
327 ((math-known-realp a)
329 ((eq (car a) 'calcFunc-conj)
330 (math-neg (calcFunc-im (nth 1 a))))
331 ((and (equal a '(var i var-i))
332 (math-imaginary-i))
334 ((and (memq (car a) '(+ - *))
335 (progn
336 (setq aa (calcFunc-im (nth 1 a))
337 bb (calcFunc-im (nth 2 a)))
338 (or (not (eq (car-safe aa) 'calcFunc-im))
339 (not (eq (car-safe bb) 'calcFunc-im)))))
340 (if (eq (car a) '+)
341 (math-add aa bb)
342 (if (eq (car a) '-)
343 (math-sub aa bb)
344 (math-add (math-mul (calcFunc-re (nth 1 a)) bb)
345 (math-mul aa (calcFunc-re (nth 2 a)))))))
346 ((and (eq (car a) '/)
347 (math-known-realp (nth 2 a)))
348 (math-div (calcFunc-im (nth 1 a)) (nth 2 a)))
349 ((eq (car a) 'neg)
350 (math-neg (calcFunc-im (nth 1 a))))
351 (t (calc-record-why 'numberp a)
352 (list 'calcFunc-im a)))))
354 (provide 'calc-cplx)
356 ;;; calc-cplx.el ends here