1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2016 Free Software
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
24 #include <limits.h> /* For CHAR_BIT. */
25 #include <signal.h> /* For SIGABRT, SIGDANGER. */
32 #include "dispextern.h"
33 #include "intervals.h"
37 #include "character.h"
42 #include "blockinput.h"
43 #include "termhooks.h" /* For struct terminal. */
44 #ifdef HAVE_WINDOW_SYSTEM
46 #endif /* HAVE_WINDOW_SYSTEM */
49 #include <execinfo.h> /* For backtrace. */
51 #ifdef HAVE_LINUX_SYSINFO
52 #include <sys/sysinfo.h>
56 #include "dosfns.h" /* For dos_memory_info. */
63 #if (defined ENABLE_CHECKING \
64 && defined HAVE_VALGRIND_VALGRIND_H \
65 && !defined USE_VALGRIND)
66 # define USE_VALGRIND 1
70 #include <valgrind/valgrind.h>
71 #include <valgrind/memcheck.h>
72 static bool valgrind_p
;
75 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
77 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
78 memory. Can do this only if using gmalloc.c and if not checking
81 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
82 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
83 #undef GC_MALLOC_CHECK
94 #include "w32heap.h" /* for sbrk */
97 #if defined DOUG_LEA_MALLOC || defined GNU_LINUX
98 /* The address where the heap starts. */
109 #ifdef DOUG_LEA_MALLOC
111 /* Specify maximum number of areas to mmap. It would be nice to use a
112 value that explicitly means "no limit". */
114 #define MMAP_MAX_AREAS 100000000
116 /* A pointer to the memory allocated that copies that static data
117 inside glibc's malloc. */
118 static void *malloc_state_ptr
;
120 /* Restore the dumped malloc state. Because malloc can be invoked
121 even before main (e.g. by the dynamic linker), the dumped malloc
122 state must be restored as early as possible using this special hook. */
124 malloc_initialize_hook (void)
126 static bool malloc_using_checking
;
131 malloc_using_checking
= getenv ("MALLOC_CHECK_") != NULL
;
135 if (!malloc_using_checking
)
137 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
138 ignored if the heap to be restored was constructed without
139 malloc checking. Can't use unsetenv, since that calls malloc. */
143 if (strncmp (*p
, "MALLOC_CHECK_=", 14) == 0)
153 malloc_set_state (malloc_state_ptr
);
154 # ifndef XMALLOC_OVERRUN_CHECK
155 alloc_unexec_post ();
160 /* Declare the malloc initialization hook, which runs before 'main' starts.
161 EXTERNALLY_VISIBLE works around Bug#22522. */
162 # ifndef __MALLOC_HOOK_VOLATILE
163 # define __MALLOC_HOOK_VOLATILE
165 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
166 = malloc_initialize_hook
;
170 /* Allocator-related actions to do just before and after unexec. */
173 alloc_unexec_pre (void)
175 #ifdef DOUG_LEA_MALLOC
176 malloc_state_ptr
= malloc_get_state ();
179 bss_sbrk_did_unexec
= true;
184 alloc_unexec_post (void)
186 #ifdef DOUG_LEA_MALLOC
187 free (malloc_state_ptr
);
190 bss_sbrk_did_unexec
= false;
194 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
195 to a struct Lisp_String. */
197 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
198 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
199 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
201 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
202 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
203 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
205 /* Default value of gc_cons_threshold (see below). */
207 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
209 /* Global variables. */
210 struct emacs_globals globals
;
212 /* Number of bytes of consing done since the last gc. */
214 EMACS_INT consing_since_gc
;
216 /* Similar minimum, computed from Vgc_cons_percentage. */
218 EMACS_INT gc_relative_threshold
;
220 /* Minimum number of bytes of consing since GC before next GC,
221 when memory is full. */
223 EMACS_INT memory_full_cons_threshold
;
225 /* True during GC. */
229 /* True means abort if try to GC.
230 This is for code which is written on the assumption that
231 no GC will happen, so as to verify that assumption. */
235 /* Number of live and free conses etc. */
237 static EMACS_INT total_conses
, total_markers
, total_symbols
, total_buffers
;
238 static EMACS_INT total_free_conses
, total_free_markers
, total_free_symbols
;
239 static EMACS_INT total_free_floats
, total_floats
;
241 /* Points to memory space allocated as "spare", to be freed if we run
242 out of memory. We keep one large block, four cons-blocks, and
243 two string blocks. */
245 static char *spare_memory
[7];
247 /* Amount of spare memory to keep in large reserve block, or to see
248 whether this much is available when malloc fails on a larger request. */
250 #define SPARE_MEMORY (1 << 14)
252 /* Initialize it to a nonzero value to force it into data space
253 (rather than bss space). That way unexec will remap it into text
254 space (pure), on some systems. We have not implemented the
255 remapping on more recent systems because this is less important
256 nowadays than in the days of small memories and timesharing. */
258 EMACS_INT pure
[(PURESIZE
+ sizeof (EMACS_INT
) - 1) / sizeof (EMACS_INT
)] = {1,};
259 #define PUREBEG (char *) pure
261 /* Pointer to the pure area, and its size. */
263 static char *purebeg
;
264 static ptrdiff_t pure_size
;
266 /* Number of bytes of pure storage used before pure storage overflowed.
267 If this is non-zero, this implies that an overflow occurred. */
269 static ptrdiff_t pure_bytes_used_before_overflow
;
271 /* Index in pure at which next pure Lisp object will be allocated.. */
273 static ptrdiff_t pure_bytes_used_lisp
;
275 /* Number of bytes allocated for non-Lisp objects in pure storage. */
277 static ptrdiff_t pure_bytes_used_non_lisp
;
279 /* If nonzero, this is a warning delivered by malloc and not yet
282 const char *pending_malloc_warning
;
284 #if 0 /* Normally, pointer sanity only on request... */
285 #ifdef ENABLE_CHECKING
286 #define SUSPICIOUS_OBJECT_CHECKING 1
290 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
291 bug is unresolved. */
292 #define SUSPICIOUS_OBJECT_CHECKING 1
294 #ifdef SUSPICIOUS_OBJECT_CHECKING
295 struct suspicious_free_record
297 void *suspicious_object
;
298 void *backtrace
[128];
300 static void *suspicious_objects
[32];
301 static int suspicious_object_index
;
302 struct suspicious_free_record suspicious_free_history
[64] EXTERNALLY_VISIBLE
;
303 static int suspicious_free_history_index
;
304 /* Find the first currently-monitored suspicious pointer in range
305 [begin,end) or NULL if no such pointer exists. */
306 static void *find_suspicious_object_in_range (void *begin
, void *end
);
307 static void detect_suspicious_free (void *ptr
);
309 # define find_suspicious_object_in_range(begin, end) NULL
310 # define detect_suspicious_free(ptr) (void)
313 /* Maximum amount of C stack to save when a GC happens. */
315 #ifndef MAX_SAVE_STACK
316 #define MAX_SAVE_STACK 16000
319 /* Buffer in which we save a copy of the C stack at each GC. */
321 #if MAX_SAVE_STACK > 0
322 static char *stack_copy
;
323 static ptrdiff_t stack_copy_size
;
325 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
326 avoiding any address sanitization. */
328 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
329 no_sanitize_memcpy (void *dest
, void const *src
, size_t size
)
331 if (! ADDRESS_SANITIZER
)
332 return memcpy (dest
, src
, size
);
338 for (i
= 0; i
< size
; i
++)
344 #endif /* MAX_SAVE_STACK > 0 */
346 static void mark_terminals (void);
347 static void gc_sweep (void);
348 static Lisp_Object
make_pure_vector (ptrdiff_t);
349 static void mark_buffer (struct buffer
*);
351 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
352 static void refill_memory_reserve (void);
354 static void compact_small_strings (void);
355 static void free_large_strings (void);
356 extern Lisp_Object
which_symbols (Lisp_Object
, EMACS_INT
) EXTERNALLY_VISIBLE
;
358 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
359 what memory allocated via lisp_malloc and lisp_align_malloc is intended
360 for what purpose. This enumeration specifies the type of memory. */
371 /* Since all non-bool pseudovectors are small enough to be
372 allocated from vector blocks, this memory type denotes
373 large regular vectors and large bool pseudovectors. */
375 /* Special type to denote vector blocks. */
376 MEM_TYPE_VECTOR_BLOCK
,
377 /* Special type to denote reserved memory. */
381 /* A unique object in pure space used to make some Lisp objects
382 on free lists recognizable in O(1). */
384 static Lisp_Object Vdead
;
385 #define DEADP(x) EQ (x, Vdead)
387 #ifdef GC_MALLOC_CHECK
389 enum mem_type allocated_mem_type
;
391 #endif /* GC_MALLOC_CHECK */
393 /* A node in the red-black tree describing allocated memory containing
394 Lisp data. Each such block is recorded with its start and end
395 address when it is allocated, and removed from the tree when it
398 A red-black tree is a balanced binary tree with the following
401 1. Every node is either red or black.
402 2. Every leaf is black.
403 3. If a node is red, then both of its children are black.
404 4. Every simple path from a node to a descendant leaf contains
405 the same number of black nodes.
406 5. The root is always black.
408 When nodes are inserted into the tree, or deleted from the tree,
409 the tree is "fixed" so that these properties are always true.
411 A red-black tree with N internal nodes has height at most 2
412 log(N+1). Searches, insertions and deletions are done in O(log N).
413 Please see a text book about data structures for a detailed
414 description of red-black trees. Any book worth its salt should
419 /* Children of this node. These pointers are never NULL. When there
420 is no child, the value is MEM_NIL, which points to a dummy node. */
421 struct mem_node
*left
, *right
;
423 /* The parent of this node. In the root node, this is NULL. */
424 struct mem_node
*parent
;
426 /* Start and end of allocated region. */
430 enum {MEM_BLACK
, MEM_RED
} color
;
436 /* Base address of stack. Set in main. */
438 Lisp_Object
*stack_base
;
440 /* Root of the tree describing allocated Lisp memory. */
442 static struct mem_node
*mem_root
;
444 /* Lowest and highest known address in the heap. */
446 static void *min_heap_address
, *max_heap_address
;
448 /* Sentinel node of the tree. */
450 static struct mem_node mem_z
;
451 #define MEM_NIL &mem_z
453 static struct mem_node
*mem_insert (void *, void *, enum mem_type
);
454 static void mem_insert_fixup (struct mem_node
*);
455 static void mem_rotate_left (struct mem_node
*);
456 static void mem_rotate_right (struct mem_node
*);
457 static void mem_delete (struct mem_node
*);
458 static void mem_delete_fixup (struct mem_node
*);
459 static struct mem_node
*mem_find (void *);
465 /* Addresses of staticpro'd variables. Initialize it to a nonzero
466 value; otherwise some compilers put it into BSS. */
468 enum { NSTATICS
= 2048 };
469 static Lisp_Object
*staticvec
[NSTATICS
] = {&Vpurify_flag
};
471 /* Index of next unused slot in staticvec. */
473 static int staticidx
;
475 static void *pure_alloc (size_t, int);
477 /* Return X rounded to the next multiple of Y. Arguments should not
478 have side effects, as they are evaluated more than once. Assume X
479 + Y - 1 does not overflow. Tune for Y being a power of 2. */
481 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
482 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
483 : ((x) + (y) - 1) & ~ ((y) - 1))
485 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
488 ALIGN (void *ptr
, int alignment
)
490 return (void *) ROUNDUP ((uintptr_t) ptr
, alignment
);
493 /* Extract the pointer hidden within A, if A is not a symbol.
494 If A is a symbol, extract the hidden pointer's offset from lispsym,
495 converted to void *. */
497 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
498 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
500 /* Extract the pointer hidden within A. */
502 #define macro_XPNTR(a) \
503 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
504 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
506 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
507 functions, as functions are cleaner and can be used in debuggers.
508 Also, define them as macros if being compiled with GCC without
509 optimization, for performance in that case. The macro_* names are
510 private to this section of code. */
512 static ATTRIBUTE_UNUSED
void *
513 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a
)
515 return macro_XPNTR_OR_SYMBOL_OFFSET (a
);
517 static ATTRIBUTE_UNUSED
void *
518 XPNTR (Lisp_Object a
)
520 return macro_XPNTR (a
);
523 #if DEFINE_KEY_OPS_AS_MACROS
524 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
525 # define XPNTR(a) macro_XPNTR (a)
529 XFLOAT_INIT (Lisp_Object f
, double n
)
531 XFLOAT (f
)->u
.data
= n
;
534 #ifdef DOUG_LEA_MALLOC
536 pointers_fit_in_lispobj_p (void)
538 return (UINTPTR_MAX
<= VAL_MAX
) || USE_LSB_TAG
;
542 mmap_lisp_allowed_p (void)
544 /* If we can't store all memory addresses in our lisp objects, it's
545 risky to let the heap use mmap and give us addresses from all
546 over our address space. We also can't use mmap for lisp objects
547 if we might dump: unexec doesn't preserve the contents of mmapped
549 return pointers_fit_in_lispobj_p () && !might_dump
;
553 /* Head of a circularly-linked list of extant finalizers. */
554 static struct Lisp_Finalizer finalizers
;
556 /* Head of a circularly-linked list of finalizers that must be invoked
557 because we deemed them unreachable. This list must be global, and
558 not a local inside garbage_collect_1, in case we GC again while
559 running finalizers. */
560 static struct Lisp_Finalizer doomed_finalizers
;
563 /************************************************************************
565 ************************************************************************/
567 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
569 /* Function malloc calls this if it finds we are near exhausting storage. */
572 malloc_warning (const char *str
)
574 pending_malloc_warning
= str
;
579 /* Display an already-pending malloc warning. */
582 display_malloc_warning (void)
584 call3 (intern ("display-warning"),
586 build_string (pending_malloc_warning
),
587 intern ("emergency"));
588 pending_malloc_warning
= 0;
591 /* Called if we can't allocate relocatable space for a buffer. */
594 buffer_memory_full (ptrdiff_t nbytes
)
596 /* If buffers use the relocating allocator, no need to free
597 spare_memory, because we may have plenty of malloc space left
598 that we could get, and if we don't, the malloc that fails will
599 itself cause spare_memory to be freed. If buffers don't use the
600 relocating allocator, treat this like any other failing
604 memory_full (nbytes
);
606 /* This used to call error, but if we've run out of memory, we could
607 get infinite recursion trying to build the string. */
608 xsignal (Qnil
, Vmemory_signal_data
);
612 /* A common multiple of the positive integers A and B. Ideally this
613 would be the least common multiple, but there's no way to do that
614 as a constant expression in C, so do the best that we can easily do. */
615 #define COMMON_MULTIPLE(a, b) \
616 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
618 #ifndef XMALLOC_OVERRUN_CHECK
619 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
622 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
625 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
626 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
627 block size in little-endian order. The trailer consists of
628 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
630 The header is used to detect whether this block has been allocated
631 through these functions, as some low-level libc functions may
632 bypass the malloc hooks. */
634 #define XMALLOC_OVERRUN_CHECK_SIZE 16
635 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
636 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
638 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
639 hold a size_t value and (2) the header size is a multiple of the
640 alignment that Emacs needs for C types and for USE_LSB_TAG. */
641 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
643 #define XMALLOC_HEADER_ALIGNMENT \
644 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
645 #define XMALLOC_OVERRUN_SIZE_SIZE \
646 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
647 + XMALLOC_HEADER_ALIGNMENT - 1) \
648 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
649 - XMALLOC_OVERRUN_CHECK_SIZE)
651 static char const xmalloc_overrun_check_header
[XMALLOC_OVERRUN_CHECK_SIZE
] =
652 { '\x9a', '\x9b', '\xae', '\xaf',
653 '\xbf', '\xbe', '\xce', '\xcf',
654 '\xea', '\xeb', '\xec', '\xed',
655 '\xdf', '\xde', '\x9c', '\x9d' };
657 static char const xmalloc_overrun_check_trailer
[XMALLOC_OVERRUN_CHECK_SIZE
] =
658 { '\xaa', '\xab', '\xac', '\xad',
659 '\xba', '\xbb', '\xbc', '\xbd',
660 '\xca', '\xcb', '\xcc', '\xcd',
661 '\xda', '\xdb', '\xdc', '\xdd' };
663 /* Insert and extract the block size in the header. */
666 xmalloc_put_size (unsigned char *ptr
, size_t size
)
669 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
671 *--ptr
= size
& ((1 << CHAR_BIT
) - 1);
677 xmalloc_get_size (unsigned char *ptr
)
681 ptr
-= XMALLOC_OVERRUN_SIZE_SIZE
;
682 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
691 /* Like malloc, but wraps allocated block with header and trailer. */
694 overrun_check_malloc (size_t size
)
696 register unsigned char *val
;
697 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
700 val
= malloc (size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
703 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
704 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
705 xmalloc_put_size (val
, size
);
706 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
707 XMALLOC_OVERRUN_CHECK_SIZE
);
713 /* Like realloc, but checks old block for overrun, and wraps new block
714 with header and trailer. */
717 overrun_check_realloc (void *block
, size_t size
)
719 register unsigned char *val
= (unsigned char *) block
;
720 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
724 && memcmp (xmalloc_overrun_check_header
,
725 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
726 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
728 size_t osize
= xmalloc_get_size (val
);
729 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
730 XMALLOC_OVERRUN_CHECK_SIZE
))
732 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
733 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
734 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
737 val
= realloc (val
, size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
741 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
742 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
743 xmalloc_put_size (val
, size
);
744 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
745 XMALLOC_OVERRUN_CHECK_SIZE
);
750 /* Like free, but checks block for overrun. */
753 overrun_check_free (void *block
)
755 unsigned char *val
= (unsigned char *) block
;
758 && memcmp (xmalloc_overrun_check_header
,
759 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
760 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
762 size_t osize
= xmalloc_get_size (val
);
763 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
764 XMALLOC_OVERRUN_CHECK_SIZE
))
766 #ifdef XMALLOC_CLEAR_FREE_MEMORY
767 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
768 memset (val
, 0xff, osize
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
770 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
771 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
772 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
782 #define malloc overrun_check_malloc
783 #define realloc overrun_check_realloc
784 #define free overrun_check_free
787 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
788 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
789 If that variable is set, block input while in one of Emacs's memory
790 allocation functions. There should be no need for this debugging
791 option, since signal handlers do not allocate memory, but Emacs
792 formerly allocated memory in signal handlers and this compile-time
793 option remains as a way to help debug the issue should it rear its
795 #ifdef XMALLOC_BLOCK_INPUT_CHECK
796 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE
;
798 malloc_block_input (void)
800 if (block_input_in_memory_allocators
)
804 malloc_unblock_input (void)
806 if (block_input_in_memory_allocators
)
809 # define MALLOC_BLOCK_INPUT malloc_block_input ()
810 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
812 # define MALLOC_BLOCK_INPUT ((void) 0)
813 # define MALLOC_UNBLOCK_INPUT ((void) 0)
816 #define MALLOC_PROBE(size) \
818 if (profiler_memory_running) \
819 malloc_probe (size); \
822 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
823 static void *lrealloc (void *, size_t);
825 /* Like malloc but check for no memory and block interrupt input. */
828 xmalloc (size_t size
)
833 val
= lmalloc (size
);
834 MALLOC_UNBLOCK_INPUT
;
842 /* Like the above, but zeroes out the memory just allocated. */
845 xzalloc (size_t size
)
850 val
= lmalloc (size
);
851 MALLOC_UNBLOCK_INPUT
;
855 memset (val
, 0, size
);
860 /* Like realloc but check for no memory and block interrupt input.. */
863 xrealloc (void *block
, size_t size
)
868 /* We must call malloc explicitly when BLOCK is 0, since some
869 reallocs don't do this. */
871 val
= lmalloc (size
);
873 val
= lrealloc (block
, size
);
874 MALLOC_UNBLOCK_INPUT
;
883 /* Like free but block interrupt input. */
892 MALLOC_UNBLOCK_INPUT
;
893 /* We don't call refill_memory_reserve here
894 because in practice the call in r_alloc_free seems to suffice. */
898 /* Other parts of Emacs pass large int values to allocator functions
899 expecting ptrdiff_t. This is portable in practice, but check it to
901 verify (INT_MAX
<= PTRDIFF_MAX
);
904 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
905 Signal an error on memory exhaustion, and block interrupt input. */
908 xnmalloc (ptrdiff_t nitems
, ptrdiff_t item_size
)
910 eassert (0 <= nitems
&& 0 < item_size
);
912 if (INT_MULTIPLY_WRAPV (nitems
, item_size
, &nbytes
) || SIZE_MAX
< nbytes
)
913 memory_full (SIZE_MAX
);
914 return xmalloc (nbytes
);
918 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
919 Signal an error on memory exhaustion, and block interrupt input. */
922 xnrealloc (void *pa
, ptrdiff_t nitems
, ptrdiff_t item_size
)
924 eassert (0 <= nitems
&& 0 < item_size
);
926 if (INT_MULTIPLY_WRAPV (nitems
, item_size
, &nbytes
) || SIZE_MAX
< nbytes
)
927 memory_full (SIZE_MAX
);
928 return xrealloc (pa
, nbytes
);
932 /* Grow PA, which points to an array of *NITEMS items, and return the
933 location of the reallocated array, updating *NITEMS to reflect its
934 new size. The new array will contain at least NITEMS_INCR_MIN more
935 items, but will not contain more than NITEMS_MAX items total.
936 ITEM_SIZE is the size of each item, in bytes.
938 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
939 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
942 If PA is null, then allocate a new array instead of reallocating
945 Block interrupt input as needed. If memory exhaustion occurs, set
946 *NITEMS to zero if PA is null, and signal an error (i.e., do not
949 Thus, to grow an array A without saving its old contents, do
950 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
951 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
952 and signals an error, and later this code is reexecuted and
953 attempts to free A. */
956 xpalloc (void *pa
, ptrdiff_t *nitems
, ptrdiff_t nitems_incr_min
,
957 ptrdiff_t nitems_max
, ptrdiff_t item_size
)
959 ptrdiff_t n0
= *nitems
;
960 eassume (0 < item_size
&& 0 < nitems_incr_min
&& 0 <= n0
&& -1 <= nitems_max
);
962 /* The approximate size to use for initial small allocation
963 requests. This is the largest "small" request for the GNU C
965 enum { DEFAULT_MXFAST
= 64 * sizeof (size_t) / 4 };
967 /* If the array is tiny, grow it to about (but no greater than)
968 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
969 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
970 NITEMS_MAX, and what the C language can represent safely. */
973 if (INT_ADD_WRAPV (n0
, n0
>> 1, &n
))
975 if (0 <= nitems_max
&& nitems_max
< n
)
978 ptrdiff_t adjusted_nbytes
979 = ((INT_MULTIPLY_WRAPV (n
, item_size
, &nbytes
) || SIZE_MAX
< nbytes
)
980 ? min (PTRDIFF_MAX
, SIZE_MAX
)
981 : nbytes
< DEFAULT_MXFAST
? DEFAULT_MXFAST
: 0);
984 n
= adjusted_nbytes
/ item_size
;
985 nbytes
= adjusted_nbytes
- adjusted_nbytes
% item_size
;
990 if (n
- n0
< nitems_incr_min
991 && (INT_ADD_WRAPV (n0
, nitems_incr_min
, &n
)
992 || (0 <= nitems_max
&& nitems_max
< n
)
993 || INT_MULTIPLY_WRAPV (n
, item_size
, &nbytes
)))
994 memory_full (SIZE_MAX
);
995 pa
= xrealloc (pa
, nbytes
);
1001 /* Like strdup, but uses xmalloc. */
1004 xstrdup (const char *s
)
1008 size
= strlen (s
) + 1;
1009 return memcpy (xmalloc (size
), s
, size
);
1012 /* Like above, but duplicates Lisp string to C string. */
1015 xlispstrdup (Lisp_Object string
)
1017 ptrdiff_t size
= SBYTES (string
) + 1;
1018 return memcpy (xmalloc (size
), SSDATA (string
), size
);
1021 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1022 pointed to. If STRING is null, assign it without copying anything.
1023 Allocate before freeing, to avoid a dangling pointer if allocation
1027 dupstring (char **ptr
, char const *string
)
1030 *ptr
= string
? xstrdup (string
) : 0;
1035 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1036 argument is a const pointer. */
1039 xputenv (char const *string
)
1041 if (putenv ((char *) string
) != 0)
1045 /* Return a newly allocated memory block of SIZE bytes, remembering
1046 to free it when unwinding. */
1048 record_xmalloc (size_t size
)
1050 void *p
= xmalloc (size
);
1051 record_unwind_protect_ptr (xfree
, p
);
1056 /* Like malloc but used for allocating Lisp data. NBYTES is the
1057 number of bytes to allocate, TYPE describes the intended use of the
1058 allocated memory block (for strings, for conses, ...). */
1061 void *lisp_malloc_loser EXTERNALLY_VISIBLE
;
1065 lisp_malloc (size_t nbytes
, enum mem_type type
)
1071 #ifdef GC_MALLOC_CHECK
1072 allocated_mem_type
= type
;
1075 val
= lmalloc (nbytes
);
1078 /* If the memory just allocated cannot be addressed thru a Lisp
1079 object's pointer, and it needs to be,
1080 that's equivalent to running out of memory. */
1081 if (val
&& type
!= MEM_TYPE_NON_LISP
)
1084 XSETCONS (tem
, (char *) val
+ nbytes
- 1);
1085 if ((char *) XCONS (tem
) != (char *) val
+ nbytes
- 1)
1087 lisp_malloc_loser
= val
;
1094 #ifndef GC_MALLOC_CHECK
1095 if (val
&& type
!= MEM_TYPE_NON_LISP
)
1096 mem_insert (val
, (char *) val
+ nbytes
, type
);
1099 MALLOC_UNBLOCK_INPUT
;
1101 memory_full (nbytes
);
1102 MALLOC_PROBE (nbytes
);
1106 /* Free BLOCK. This must be called to free memory allocated with a
1107 call to lisp_malloc. */
1110 lisp_free (void *block
)
1114 #ifndef GC_MALLOC_CHECK
1115 mem_delete (mem_find (block
));
1117 MALLOC_UNBLOCK_INPUT
;
1120 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1122 /* The entry point is lisp_align_malloc which returns blocks of at most
1123 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1125 /* Use aligned_alloc if it or a simple substitute is available.
1126 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1127 clang 3.3 anyway. Aligned allocation is incompatible with
1128 unexmacosx.c, so don't use it on Darwin. */
1130 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1131 # if (defined HAVE_ALIGNED_ALLOC \
1132 || (defined HYBRID_MALLOC \
1133 ? defined HAVE_POSIX_MEMALIGN \
1134 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1135 # define USE_ALIGNED_ALLOC 1
1136 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1137 # define USE_ALIGNED_ALLOC 1
1138 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1140 aligned_alloc (size_t alignment
, size_t size
)
1143 return posix_memalign (&p
, alignment
, size
) == 0 ? p
: 0;
1148 /* BLOCK_ALIGN has to be a power of 2. */
1149 #define BLOCK_ALIGN (1 << 10)
1151 /* Padding to leave at the end of a malloc'd block. This is to give
1152 malloc a chance to minimize the amount of memory wasted to alignment.
1153 It should be tuned to the particular malloc library used.
1154 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1155 aligned_alloc on the other hand would ideally prefer a value of 4
1156 because otherwise, there's 1020 bytes wasted between each ablocks.
1157 In Emacs, testing shows that those 1020 can most of the time be
1158 efficiently used by malloc to place other objects, so a value of 0 can
1159 still preferable unless you have a lot of aligned blocks and virtually
1161 #define BLOCK_PADDING 0
1162 #define BLOCK_BYTES \
1163 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1165 /* Internal data structures and constants. */
1167 #define ABLOCKS_SIZE 16
1169 /* An aligned block of memory. */
1174 char payload
[BLOCK_BYTES
];
1175 struct ablock
*next_free
;
1177 /* `abase' is the aligned base of the ablocks. */
1178 /* It is overloaded to hold the virtual `busy' field that counts
1179 the number of used ablock in the parent ablocks.
1180 The first ablock has the `busy' field, the others have the `abase'
1181 field. To tell the difference, we assume that pointers will have
1182 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1183 is used to tell whether the real base of the parent ablocks is `abase'
1184 (if not, the word before the first ablock holds a pointer to the
1186 struct ablocks
*abase
;
1187 /* The padding of all but the last ablock is unused. The padding of
1188 the last ablock in an ablocks is not allocated. */
1190 char padding
[BLOCK_PADDING
];
1194 /* A bunch of consecutive aligned blocks. */
1197 struct ablock blocks
[ABLOCKS_SIZE
];
1200 /* Size of the block requested from malloc or aligned_alloc. */
1201 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1203 #define ABLOCK_ABASE(block) \
1204 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1205 ? (struct ablocks *)(block) \
1208 /* Virtual `busy' field. */
1209 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1211 /* Pointer to the (not necessarily aligned) malloc block. */
1212 #ifdef USE_ALIGNED_ALLOC
1213 #define ABLOCKS_BASE(abase) (abase)
1215 #define ABLOCKS_BASE(abase) \
1216 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1219 /* The list of free ablock. */
1220 static struct ablock
*free_ablock
;
1222 /* Allocate an aligned block of nbytes.
1223 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1224 smaller or equal to BLOCK_BYTES. */
1226 lisp_align_malloc (size_t nbytes
, enum mem_type type
)
1229 struct ablocks
*abase
;
1231 eassert (nbytes
<= BLOCK_BYTES
);
1235 #ifdef GC_MALLOC_CHECK
1236 allocated_mem_type
= type
;
1242 intptr_t aligned
; /* int gets warning casting to 64-bit pointer. */
1244 #ifdef DOUG_LEA_MALLOC
1245 if (!mmap_lisp_allowed_p ())
1246 mallopt (M_MMAP_MAX
, 0);
1249 #ifdef USE_ALIGNED_ALLOC
1250 abase
= base
= aligned_alloc (BLOCK_ALIGN
, ABLOCKS_BYTES
);
1252 base
= malloc (ABLOCKS_BYTES
);
1253 abase
= ALIGN (base
, BLOCK_ALIGN
);
1258 MALLOC_UNBLOCK_INPUT
;
1259 memory_full (ABLOCKS_BYTES
);
1262 aligned
= (base
== abase
);
1264 ((void **) abase
)[-1] = base
;
1266 #ifdef DOUG_LEA_MALLOC
1267 if (!mmap_lisp_allowed_p ())
1268 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1272 /* If the memory just allocated cannot be addressed thru a Lisp
1273 object's pointer, and it needs to be, that's equivalent to
1274 running out of memory. */
1275 if (type
!= MEM_TYPE_NON_LISP
)
1278 char *end
= (char *) base
+ ABLOCKS_BYTES
- 1;
1279 XSETCONS (tem
, end
);
1280 if ((char *) XCONS (tem
) != end
)
1282 lisp_malloc_loser
= base
;
1284 MALLOC_UNBLOCK_INPUT
;
1285 memory_full (SIZE_MAX
);
1290 /* Initialize the blocks and put them on the free list.
1291 If `base' was not properly aligned, we can't use the last block. */
1292 for (i
= 0; i
< (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1); i
++)
1294 abase
->blocks
[i
].abase
= abase
;
1295 abase
->blocks
[i
].x
.next_free
= free_ablock
;
1296 free_ablock
= &abase
->blocks
[i
];
1298 ABLOCKS_BUSY (abase
) = (struct ablocks
*) aligned
;
1300 eassert (0 == ((uintptr_t) abase
) % BLOCK_ALIGN
);
1301 eassert (ABLOCK_ABASE (&abase
->blocks
[3]) == abase
); /* 3 is arbitrary */
1302 eassert (ABLOCK_ABASE (&abase
->blocks
[0]) == abase
);
1303 eassert (ABLOCKS_BASE (abase
) == base
);
1304 eassert (aligned
== (intptr_t) ABLOCKS_BUSY (abase
));
1307 abase
= ABLOCK_ABASE (free_ablock
);
1308 ABLOCKS_BUSY (abase
)
1309 = (struct ablocks
*) (2 + (intptr_t) ABLOCKS_BUSY (abase
));
1311 free_ablock
= free_ablock
->x
.next_free
;
1313 #ifndef GC_MALLOC_CHECK
1314 if (type
!= MEM_TYPE_NON_LISP
)
1315 mem_insert (val
, (char *) val
+ nbytes
, type
);
1318 MALLOC_UNBLOCK_INPUT
;
1320 MALLOC_PROBE (nbytes
);
1322 eassert (0 == ((uintptr_t) val
) % BLOCK_ALIGN
);
1327 lisp_align_free (void *block
)
1329 struct ablock
*ablock
= block
;
1330 struct ablocks
*abase
= ABLOCK_ABASE (ablock
);
1333 #ifndef GC_MALLOC_CHECK
1334 mem_delete (mem_find (block
));
1336 /* Put on free list. */
1337 ablock
->x
.next_free
= free_ablock
;
1338 free_ablock
= ablock
;
1339 /* Update busy count. */
1340 ABLOCKS_BUSY (abase
)
1341 = (struct ablocks
*) (-2 + (intptr_t) ABLOCKS_BUSY (abase
));
1343 if (2 > (intptr_t) ABLOCKS_BUSY (abase
))
1344 { /* All the blocks are free. */
1345 int i
= 0, aligned
= (intptr_t) ABLOCKS_BUSY (abase
);
1346 struct ablock
**tem
= &free_ablock
;
1347 struct ablock
*atop
= &abase
->blocks
[aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1];
1351 if (*tem
>= (struct ablock
*) abase
&& *tem
< atop
)
1354 *tem
= (*tem
)->x
.next_free
;
1357 tem
= &(*tem
)->x
.next_free
;
1359 eassert ((aligned
& 1) == aligned
);
1360 eassert (i
== (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1));
1361 #ifdef USE_POSIX_MEMALIGN
1362 eassert ((uintptr_t) ABLOCKS_BASE (abase
) % BLOCK_ALIGN
== 0);
1364 free (ABLOCKS_BASE (abase
));
1366 MALLOC_UNBLOCK_INPUT
;
1369 #if !defined __GNUC__ && !defined __alignof__
1370 # define __alignof__(type) alignof (type)
1373 /* True if malloc returns a multiple of GCALIGNMENT. In practice this
1374 holds if __alignof__ (max_align_t) is a multiple. Use __alignof__
1375 if available, as otherwise this check would fail with GCC x86.
1376 This is a macro, not an enum constant, for portability to HP-UX
1377 10.20 cc and AIX 3.2.5 xlc. */
1378 #define MALLOC_IS_GC_ALIGNED (__alignof__ (max_align_t) % GCALIGNMENT == 0)
1380 /* True if P is suitably aligned for SIZE, where Lisp alignment may be
1381 needed if SIZE is Lisp-aligned. */
1384 laligned (void *p
, size_t size
)
1386 return (MALLOC_IS_GC_ALIGNED
|| (intptr_t) p
% GCALIGNMENT
== 0
1387 || size
% GCALIGNMENT
!= 0);
1390 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1391 sure the result is too, if necessary by reallocating (typically
1392 with larger and larger sizes) until the allocator returns a
1393 Lisp-aligned pointer. Code that needs to allocate C heap memory
1394 for a Lisp object should use one of these functions to obtain a
1395 pointer P; that way, if T is an enum Lisp_Type value and L ==
1396 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1398 On typical modern platforms these functions' loops do not iterate.
1399 On now-rare (and perhaps nonexistent) platforms, the loops in
1400 theory could repeat forever. If an infinite loop is possible on a
1401 platform, a build would surely loop and the builder can then send
1402 us a bug report. Adding a counter to try to detect any such loop
1403 would complicate the code (and possibly introduce bugs, in code
1404 that's never really exercised) for little benefit. */
1407 lmalloc (size_t size
)
1409 #if USE_ALIGNED_ALLOC
1410 if (! MALLOC_IS_GC_ALIGNED
)
1411 return aligned_alloc (GCALIGNMENT
, size
);
1418 if (laligned (p
, size
))
1422 if (! INT_ADD_WRAPV (size
, GCALIGNMENT
, &bigger
))
1426 eassert ((intptr_t) p
% GCALIGNMENT
== 0);
1431 lrealloc (void *p
, size_t size
)
1435 p
= realloc (p
, size
);
1436 if (laligned (p
, size
))
1439 if (! INT_ADD_WRAPV (size
, GCALIGNMENT
, &bigger
))
1443 eassert ((intptr_t) p
% GCALIGNMENT
== 0);
1448 /***********************************************************************
1450 ***********************************************************************/
1452 /* Number of intervals allocated in an interval_block structure.
1453 The 1020 is 1024 minus malloc overhead. */
1455 #define INTERVAL_BLOCK_SIZE \
1456 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1458 /* Intervals are allocated in chunks in the form of an interval_block
1461 struct interval_block
1463 /* Place `intervals' first, to preserve alignment. */
1464 struct interval intervals
[INTERVAL_BLOCK_SIZE
];
1465 struct interval_block
*next
;
1468 /* Current interval block. Its `next' pointer points to older
1471 static struct interval_block
*interval_block
;
1473 /* Index in interval_block above of the next unused interval
1476 static int interval_block_index
= INTERVAL_BLOCK_SIZE
;
1478 /* Number of free and live intervals. */
1480 static EMACS_INT total_free_intervals
, total_intervals
;
1482 /* List of free intervals. */
1484 static INTERVAL interval_free_list
;
1486 /* Return a new interval. */
1489 make_interval (void)
1495 if (interval_free_list
)
1497 val
= interval_free_list
;
1498 interval_free_list
= INTERVAL_PARENT (interval_free_list
);
1502 if (interval_block_index
== INTERVAL_BLOCK_SIZE
)
1504 struct interval_block
*newi
1505 = lisp_malloc (sizeof *newi
, MEM_TYPE_NON_LISP
);
1507 newi
->next
= interval_block
;
1508 interval_block
= newi
;
1509 interval_block_index
= 0;
1510 total_free_intervals
+= INTERVAL_BLOCK_SIZE
;
1512 val
= &interval_block
->intervals
[interval_block_index
++];
1515 MALLOC_UNBLOCK_INPUT
;
1517 consing_since_gc
+= sizeof (struct interval
);
1519 total_free_intervals
--;
1520 RESET_INTERVAL (val
);
1526 /* Mark Lisp objects in interval I. */
1529 mark_interval (register INTERVAL i
, Lisp_Object dummy
)
1531 /* Intervals should never be shared. So, if extra internal checking is
1532 enabled, GC aborts if it seems to have visited an interval twice. */
1533 eassert (!i
->gcmarkbit
);
1535 mark_object (i
->plist
);
1538 /* Mark the interval tree rooted in I. */
1540 #define MARK_INTERVAL_TREE(i) \
1542 if (i && !i->gcmarkbit) \
1543 traverse_intervals_noorder (i, mark_interval, Qnil); \
1546 /***********************************************************************
1548 ***********************************************************************/
1550 /* Lisp_Strings are allocated in string_block structures. When a new
1551 string_block is allocated, all the Lisp_Strings it contains are
1552 added to a free-list string_free_list. When a new Lisp_String is
1553 needed, it is taken from that list. During the sweep phase of GC,
1554 string_blocks that are entirely free are freed, except two which
1557 String data is allocated from sblock structures. Strings larger
1558 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1559 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1561 Sblocks consist internally of sdata structures, one for each
1562 Lisp_String. The sdata structure points to the Lisp_String it
1563 belongs to. The Lisp_String points back to the `u.data' member of
1564 its sdata structure.
1566 When a Lisp_String is freed during GC, it is put back on
1567 string_free_list, and its `data' member and its sdata's `string'
1568 pointer is set to null. The size of the string is recorded in the
1569 `n.nbytes' member of the sdata. So, sdata structures that are no
1570 longer used, can be easily recognized, and it's easy to compact the
1571 sblocks of small strings which we do in compact_small_strings. */
1573 /* Size in bytes of an sblock structure used for small strings. This
1574 is 8192 minus malloc overhead. */
1576 #define SBLOCK_SIZE 8188
1578 /* Strings larger than this are considered large strings. String data
1579 for large strings is allocated from individual sblocks. */
1581 #define LARGE_STRING_BYTES 1024
1583 /* The SDATA typedef is a struct or union describing string memory
1584 sub-allocated from an sblock. This is where the contents of Lisp
1585 strings are stored. */
1589 /* Back-pointer to the string this sdata belongs to. If null, this
1590 structure is free, and NBYTES (in this structure or in the union below)
1591 contains the string's byte size (the same value that STRING_BYTES
1592 would return if STRING were non-null). If non-null, STRING_BYTES
1593 (STRING) is the size of the data, and DATA contains the string's
1595 struct Lisp_String
*string
;
1597 #ifdef GC_CHECK_STRING_BYTES
1601 unsigned char data
[FLEXIBLE_ARRAY_MEMBER
];
1604 #ifdef GC_CHECK_STRING_BYTES
1606 typedef struct sdata sdata
;
1607 #define SDATA_NBYTES(S) (S)->nbytes
1608 #define SDATA_DATA(S) (S)->data
1614 struct Lisp_String
*string
;
1616 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1617 which has a flexible array member. However, if implemented by
1618 giving this union a member of type 'struct sdata', the union
1619 could not be the last (flexible) member of 'struct sblock',
1620 because C99 prohibits a flexible array member from having a type
1621 that is itself a flexible array. So, comment this member out here,
1622 but remember that the option's there when using this union. */
1627 /* When STRING is null. */
1630 struct Lisp_String
*string
;
1635 #define SDATA_NBYTES(S) (S)->n.nbytes
1636 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1638 #endif /* not GC_CHECK_STRING_BYTES */
1640 enum { SDATA_DATA_OFFSET
= offsetof (struct sdata
, data
) };
1642 /* Structure describing a block of memory which is sub-allocated to
1643 obtain string data memory for strings. Blocks for small strings
1644 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1645 as large as needed. */
1650 struct sblock
*next
;
1652 /* Pointer to the next free sdata block. This points past the end
1653 of the sblock if there isn't any space left in this block. */
1657 sdata data
[FLEXIBLE_ARRAY_MEMBER
];
1660 /* Number of Lisp strings in a string_block structure. The 1020 is
1661 1024 minus malloc overhead. */
1663 #define STRING_BLOCK_SIZE \
1664 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1666 /* Structure describing a block from which Lisp_String structures
1671 /* Place `strings' first, to preserve alignment. */
1672 struct Lisp_String strings
[STRING_BLOCK_SIZE
];
1673 struct string_block
*next
;
1676 /* Head and tail of the list of sblock structures holding Lisp string
1677 data. We always allocate from current_sblock. The NEXT pointers
1678 in the sblock structures go from oldest_sblock to current_sblock. */
1680 static struct sblock
*oldest_sblock
, *current_sblock
;
1682 /* List of sblocks for large strings. */
1684 static struct sblock
*large_sblocks
;
1686 /* List of string_block structures. */
1688 static struct string_block
*string_blocks
;
1690 /* Free-list of Lisp_Strings. */
1692 static struct Lisp_String
*string_free_list
;
1694 /* Number of live and free Lisp_Strings. */
1696 static EMACS_INT total_strings
, total_free_strings
;
1698 /* Number of bytes used by live strings. */
1700 static EMACS_INT total_string_bytes
;
1702 /* Given a pointer to a Lisp_String S which is on the free-list
1703 string_free_list, return a pointer to its successor in the
1706 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1708 /* Return a pointer to the sdata structure belonging to Lisp string S.
1709 S must be live, i.e. S->data must not be null. S->data is actually
1710 a pointer to the `u.data' member of its sdata structure; the
1711 structure starts at a constant offset in front of that. */
1713 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1716 #ifdef GC_CHECK_STRING_OVERRUN
1718 /* We check for overrun in string data blocks by appending a small
1719 "cookie" after each allocated string data block, and check for the
1720 presence of this cookie during GC. */
1722 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1723 static char const string_overrun_cookie
[GC_STRING_OVERRUN_COOKIE_SIZE
] =
1724 { '\xde', '\xad', '\xbe', '\xef' };
1727 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1730 /* Value is the size of an sdata structure large enough to hold NBYTES
1731 bytes of string data. The value returned includes a terminating
1732 NUL byte, the size of the sdata structure, and padding. */
1734 #ifdef GC_CHECK_STRING_BYTES
1736 #define SDATA_SIZE(NBYTES) \
1737 ((SDATA_DATA_OFFSET \
1739 + sizeof (ptrdiff_t) - 1) \
1740 & ~(sizeof (ptrdiff_t) - 1))
1742 #else /* not GC_CHECK_STRING_BYTES */
1744 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1745 less than the size of that member. The 'max' is not needed when
1746 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1747 alignment code reserves enough space. */
1749 #define SDATA_SIZE(NBYTES) \
1750 ((SDATA_DATA_OFFSET \
1751 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1753 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1755 + sizeof (ptrdiff_t) - 1) \
1756 & ~(sizeof (ptrdiff_t) - 1))
1758 #endif /* not GC_CHECK_STRING_BYTES */
1760 /* Extra bytes to allocate for each string. */
1762 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1764 /* Exact bound on the number of bytes in a string, not counting the
1765 terminating null. A string cannot contain more bytes than
1766 STRING_BYTES_BOUND, nor can it be so long that the size_t
1767 arithmetic in allocate_string_data would overflow while it is
1768 calculating a value to be passed to malloc. */
1769 static ptrdiff_t const STRING_BYTES_MAX
=
1770 min (STRING_BYTES_BOUND
,
1771 ((SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
1773 - offsetof (struct sblock
, data
)
1774 - SDATA_DATA_OFFSET
)
1775 & ~(sizeof (EMACS_INT
) - 1)));
1777 /* Initialize string allocation. Called from init_alloc_once. */
1782 empty_unibyte_string
= make_pure_string ("", 0, 0, 0);
1783 empty_multibyte_string
= make_pure_string ("", 0, 0, 1);
1787 #ifdef GC_CHECK_STRING_BYTES
1789 static int check_string_bytes_count
;
1791 /* Like STRING_BYTES, but with debugging check. Can be
1792 called during GC, so pay attention to the mark bit. */
1795 string_bytes (struct Lisp_String
*s
)
1798 (s
->size_byte
< 0 ? s
->size
& ~ARRAY_MARK_FLAG
: s
->size_byte
);
1800 if (!PURE_P (s
) && s
->data
&& nbytes
!= SDATA_NBYTES (SDATA_OF_STRING (s
)))
1805 /* Check validity of Lisp strings' string_bytes member in B. */
1808 check_sblock (struct sblock
*b
)
1810 sdata
*from
, *end
, *from_end
;
1814 for (from
= b
->data
; from
< end
; from
= from_end
)
1816 /* Compute the next FROM here because copying below may
1817 overwrite data we need to compute it. */
1820 /* Check that the string size recorded in the string is the
1821 same as the one recorded in the sdata structure. */
1822 nbytes
= SDATA_SIZE (from
->string
? string_bytes (from
->string
)
1823 : SDATA_NBYTES (from
));
1824 from_end
= (sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1829 /* Check validity of Lisp strings' string_bytes member. ALL_P
1830 means check all strings, otherwise check only most
1831 recently allocated strings. Used for hunting a bug. */
1834 check_string_bytes (bool all_p
)
1840 for (b
= large_sblocks
; b
; b
= b
->next
)
1842 struct Lisp_String
*s
= b
->data
[0].string
;
1847 for (b
= oldest_sblock
; b
; b
= b
->next
)
1850 else if (current_sblock
)
1851 check_sblock (current_sblock
);
1854 #else /* not GC_CHECK_STRING_BYTES */
1856 #define check_string_bytes(all) ((void) 0)
1858 #endif /* GC_CHECK_STRING_BYTES */
1860 #ifdef GC_CHECK_STRING_FREE_LIST
1862 /* Walk through the string free list looking for bogus next pointers.
1863 This may catch buffer overrun from a previous string. */
1866 check_string_free_list (void)
1868 struct Lisp_String
*s
;
1870 /* Pop a Lisp_String off the free-list. */
1871 s
= string_free_list
;
1874 if ((uintptr_t) s
< 1024)
1876 s
= NEXT_FREE_LISP_STRING (s
);
1880 #define check_string_free_list()
1883 /* Return a new Lisp_String. */
1885 static struct Lisp_String
*
1886 allocate_string (void)
1888 struct Lisp_String
*s
;
1892 /* If the free-list is empty, allocate a new string_block, and
1893 add all the Lisp_Strings in it to the free-list. */
1894 if (string_free_list
== NULL
)
1896 struct string_block
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_STRING
);
1899 b
->next
= string_blocks
;
1902 for (i
= STRING_BLOCK_SIZE
- 1; i
>= 0; --i
)
1905 /* Every string on a free list should have NULL data pointer. */
1907 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1908 string_free_list
= s
;
1911 total_free_strings
+= STRING_BLOCK_SIZE
;
1914 check_string_free_list ();
1916 /* Pop a Lisp_String off the free-list. */
1917 s
= string_free_list
;
1918 string_free_list
= NEXT_FREE_LISP_STRING (s
);
1920 MALLOC_UNBLOCK_INPUT
;
1922 --total_free_strings
;
1925 consing_since_gc
+= sizeof *s
;
1927 #ifdef GC_CHECK_STRING_BYTES
1928 if (!noninteractive
)
1930 if (++check_string_bytes_count
== 200)
1932 check_string_bytes_count
= 0;
1933 check_string_bytes (1);
1936 check_string_bytes (0);
1938 #endif /* GC_CHECK_STRING_BYTES */
1944 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1945 plus a NUL byte at the end. Allocate an sdata structure for S, and
1946 set S->data to its `u.data' member. Store a NUL byte at the end of
1947 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1948 S->data if it was initially non-null. */
1951 allocate_string_data (struct Lisp_String
*s
,
1952 EMACS_INT nchars
, EMACS_INT nbytes
)
1954 sdata
*data
, *old_data
;
1956 ptrdiff_t needed
, old_nbytes
;
1958 if (STRING_BYTES_MAX
< nbytes
)
1961 /* Determine the number of bytes needed to store NBYTES bytes
1963 needed
= SDATA_SIZE (nbytes
);
1966 old_data
= SDATA_OF_STRING (s
);
1967 old_nbytes
= STRING_BYTES (s
);
1974 if (nbytes
> LARGE_STRING_BYTES
)
1976 size_t size
= offsetof (struct sblock
, data
) + needed
;
1978 #ifdef DOUG_LEA_MALLOC
1979 if (!mmap_lisp_allowed_p ())
1980 mallopt (M_MMAP_MAX
, 0);
1983 b
= lisp_malloc (size
+ GC_STRING_EXTRA
, MEM_TYPE_NON_LISP
);
1985 #ifdef DOUG_LEA_MALLOC
1986 if (!mmap_lisp_allowed_p ())
1987 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1990 b
->next_free
= b
->data
;
1991 b
->data
[0].string
= NULL
;
1992 b
->next
= large_sblocks
;
1995 else if (current_sblock
== NULL
1996 || (((char *) current_sblock
+ SBLOCK_SIZE
1997 - (char *) current_sblock
->next_free
)
1998 < (needed
+ GC_STRING_EXTRA
)))
2000 /* Not enough room in the current sblock. */
2001 b
= lisp_malloc (SBLOCK_SIZE
, MEM_TYPE_NON_LISP
);
2002 b
->next_free
= b
->data
;
2003 b
->data
[0].string
= NULL
;
2007 current_sblock
->next
= b
;
2015 data
= b
->next_free
;
2016 b
->next_free
= (sdata
*) ((char *) data
+ needed
+ GC_STRING_EXTRA
);
2018 MALLOC_UNBLOCK_INPUT
;
2021 s
->data
= SDATA_DATA (data
);
2022 #ifdef GC_CHECK_STRING_BYTES
2023 SDATA_NBYTES (data
) = nbytes
;
2026 s
->size_byte
= nbytes
;
2027 s
->data
[nbytes
] = '\0';
2028 #ifdef GC_CHECK_STRING_OVERRUN
2029 memcpy ((char *) data
+ needed
, string_overrun_cookie
,
2030 GC_STRING_OVERRUN_COOKIE_SIZE
);
2033 /* Note that Faset may call to this function when S has already data
2034 assigned. In this case, mark data as free by setting it's string
2035 back-pointer to null, and record the size of the data in it. */
2038 SDATA_NBYTES (old_data
) = old_nbytes
;
2039 old_data
->string
= NULL
;
2042 consing_since_gc
+= needed
;
2046 /* Sweep and compact strings. */
2048 NO_INLINE
/* For better stack traces */
2050 sweep_strings (void)
2052 struct string_block
*b
, *next
;
2053 struct string_block
*live_blocks
= NULL
;
2055 string_free_list
= NULL
;
2056 total_strings
= total_free_strings
= 0;
2057 total_string_bytes
= 0;
2059 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2060 for (b
= string_blocks
; b
; b
= next
)
2063 struct Lisp_String
*free_list_before
= string_free_list
;
2067 for (i
= 0; i
< STRING_BLOCK_SIZE
; ++i
)
2069 struct Lisp_String
*s
= b
->strings
+ i
;
2073 /* String was not on free-list before. */
2074 if (STRING_MARKED_P (s
))
2076 /* String is live; unmark it and its intervals. */
2079 /* Do not use string_(set|get)_intervals here. */
2080 s
->intervals
= balance_intervals (s
->intervals
);
2083 total_string_bytes
+= STRING_BYTES (s
);
2087 /* String is dead. Put it on the free-list. */
2088 sdata
*data
= SDATA_OF_STRING (s
);
2090 /* Save the size of S in its sdata so that we know
2091 how large that is. Reset the sdata's string
2092 back-pointer so that we know it's free. */
2093 #ifdef GC_CHECK_STRING_BYTES
2094 if (string_bytes (s
) != SDATA_NBYTES (data
))
2097 data
->n
.nbytes
= STRING_BYTES (s
);
2099 data
->string
= NULL
;
2101 /* Reset the strings's `data' member so that we
2105 /* Put the string on the free-list. */
2106 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
2107 string_free_list
= s
;
2113 /* S was on the free-list before. Put it there again. */
2114 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
2115 string_free_list
= s
;
2120 /* Free blocks that contain free Lisp_Strings only, except
2121 the first two of them. */
2122 if (nfree
== STRING_BLOCK_SIZE
2123 && total_free_strings
> STRING_BLOCK_SIZE
)
2126 string_free_list
= free_list_before
;
2130 total_free_strings
+= nfree
;
2131 b
->next
= live_blocks
;
2136 check_string_free_list ();
2138 string_blocks
= live_blocks
;
2139 free_large_strings ();
2140 compact_small_strings ();
2142 check_string_free_list ();
2146 /* Free dead large strings. */
2149 free_large_strings (void)
2151 struct sblock
*b
, *next
;
2152 struct sblock
*live_blocks
= NULL
;
2154 for (b
= large_sblocks
; b
; b
= next
)
2158 if (b
->data
[0].string
== NULL
)
2162 b
->next
= live_blocks
;
2167 large_sblocks
= live_blocks
;
2171 /* Compact data of small strings. Free sblocks that don't contain
2172 data of live strings after compaction. */
2175 compact_small_strings (void)
2177 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2178 to, and TB_END is the end of TB. */
2179 struct sblock
*tb
= oldest_sblock
;
2182 sdata
*tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
2183 sdata
*to
= tb
->data
;
2185 /* Step through the blocks from the oldest to the youngest. We
2186 expect that old blocks will stabilize over time, so that less
2187 copying will happen this way. */
2188 struct sblock
*b
= tb
;
2191 sdata
*end
= b
->next_free
;
2192 eassert ((char *) end
<= (char *) b
+ SBLOCK_SIZE
);
2194 for (sdata
*from
= b
->data
; from
< end
; )
2196 /* Compute the next FROM here because copying below may
2197 overwrite data we need to compute it. */
2199 struct Lisp_String
*s
= from
->string
;
2201 #ifdef GC_CHECK_STRING_BYTES
2202 /* Check that the string size recorded in the string is the
2203 same as the one recorded in the sdata structure. */
2204 if (s
&& string_bytes (s
) != SDATA_NBYTES (from
))
2206 #endif /* GC_CHECK_STRING_BYTES */
2208 nbytes
= s
? STRING_BYTES (s
) : SDATA_NBYTES (from
);
2209 eassert (nbytes
<= LARGE_STRING_BYTES
);
2211 nbytes
= SDATA_SIZE (nbytes
);
2212 sdata
*from_end
= (sdata
*) ((char *) from
2213 + nbytes
+ GC_STRING_EXTRA
);
2215 #ifdef GC_CHECK_STRING_OVERRUN
2216 if (memcmp (string_overrun_cookie
,
2217 (char *) from_end
- GC_STRING_OVERRUN_COOKIE_SIZE
,
2218 GC_STRING_OVERRUN_COOKIE_SIZE
))
2222 /* Non-NULL S means it's alive. Copy its data. */
2225 /* If TB is full, proceed with the next sblock. */
2226 sdata
*to_end
= (sdata
*) ((char *) to
2227 + nbytes
+ GC_STRING_EXTRA
);
2228 if (to_end
> tb_end
)
2232 tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
2234 to_end
= (sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
2237 /* Copy, and update the string's `data' pointer. */
2240 eassert (tb
!= b
|| to
< from
);
2241 memmove (to
, from
, nbytes
+ GC_STRING_EXTRA
);
2242 to
->string
->data
= SDATA_DATA (to
);
2245 /* Advance past the sdata we copied to. */
2254 /* The rest of the sblocks following TB don't contain live data, so
2255 we can free them. */
2256 for (b
= tb
->next
; b
; )
2258 struct sblock
*next
= b
->next
;
2267 current_sblock
= tb
;
2271 string_overflow (void)
2273 error ("Maximum string size exceeded");
2276 DEFUN ("make-string", Fmake_string
, Smake_string
, 2, 2, 0,
2277 doc
: /* Return a newly created string of length LENGTH, with INIT in each element.
2278 LENGTH must be an integer.
2279 INIT must be an integer that represents a character. */)
2280 (Lisp_Object length
, Lisp_Object init
)
2282 register Lisp_Object val
;
2286 CHECK_NATNUM (length
);
2287 CHECK_CHARACTER (init
);
2289 c
= XFASTINT (init
);
2290 if (ASCII_CHAR_P (c
))
2292 nbytes
= XINT (length
);
2293 val
= make_uninit_string (nbytes
);
2296 memset (SDATA (val
), c
, nbytes
);
2297 SDATA (val
)[nbytes
] = 0;
2302 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
2303 ptrdiff_t len
= CHAR_STRING (c
, str
);
2304 EMACS_INT string_len
= XINT (length
);
2305 unsigned char *p
, *beg
, *end
;
2307 if (INT_MULTIPLY_WRAPV (len
, string_len
, &nbytes
))
2309 val
= make_uninit_multibyte_string (string_len
, nbytes
);
2310 for (beg
= SDATA (val
), p
= beg
, end
= beg
+ nbytes
; p
< end
; p
+= len
)
2312 /* First time we just copy `str' to the data of `val'. */
2314 memcpy (p
, str
, len
);
2317 /* Next time we copy largest possible chunk from
2318 initialized to uninitialized part of `val'. */
2319 len
= min (p
- beg
, end
- p
);
2320 memcpy (p
, beg
, len
);
2330 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2334 bool_vector_fill (Lisp_Object a
, Lisp_Object init
)
2336 EMACS_INT nbits
= bool_vector_size (a
);
2339 unsigned char *data
= bool_vector_uchar_data (a
);
2340 int pattern
= NILP (init
) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR
) - 1;
2341 ptrdiff_t nbytes
= bool_vector_bytes (nbits
);
2342 int last_mask
= ~ (~0u << ((nbits
- 1) % BOOL_VECTOR_BITS_PER_CHAR
+ 1));
2343 memset (data
, pattern
, nbytes
- 1);
2344 data
[nbytes
- 1] = pattern
& last_mask
;
2349 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2352 make_uninit_bool_vector (EMACS_INT nbits
)
2355 EMACS_INT words
= bool_vector_words (nbits
);
2356 EMACS_INT word_bytes
= words
* sizeof (bits_word
);
2357 EMACS_INT needed_elements
= ((bool_header_size
- header_size
+ word_bytes
2360 struct Lisp_Bool_Vector
*p
2361 = (struct Lisp_Bool_Vector
*) allocate_vector (needed_elements
);
2362 XSETVECTOR (val
, p
);
2363 XSETPVECTYPESIZE (XVECTOR (val
), PVEC_BOOL_VECTOR
, 0, 0);
2366 /* Clear padding at the end. */
2368 p
->data
[words
- 1] = 0;
2373 DEFUN ("make-bool-vector", Fmake_bool_vector
, Smake_bool_vector
, 2, 2, 0,
2374 doc
: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2375 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2376 (Lisp_Object length
, Lisp_Object init
)
2380 CHECK_NATNUM (length
);
2381 val
= make_uninit_bool_vector (XFASTINT (length
));
2382 return bool_vector_fill (val
, init
);
2385 DEFUN ("bool-vector", Fbool_vector
, Sbool_vector
, 0, MANY
, 0,
2386 doc
: /* Return a new bool-vector with specified arguments as elements.
2387 Any number of arguments, even zero arguments, are allowed.
2388 usage: (bool-vector &rest OBJECTS) */)
2389 (ptrdiff_t nargs
, Lisp_Object
*args
)
2394 vector
= make_uninit_bool_vector (nargs
);
2395 for (i
= 0; i
< nargs
; i
++)
2396 bool_vector_set (vector
, i
, !NILP (args
[i
]));
2401 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2402 of characters from the contents. This string may be unibyte or
2403 multibyte, depending on the contents. */
2406 make_string (const char *contents
, ptrdiff_t nbytes
)
2408 register Lisp_Object val
;
2409 ptrdiff_t nchars
, multibyte_nbytes
;
2411 parse_str_as_multibyte ((const unsigned char *) contents
, nbytes
,
2412 &nchars
, &multibyte_nbytes
);
2413 if (nbytes
== nchars
|| nbytes
!= multibyte_nbytes
)
2414 /* CONTENTS contains no multibyte sequences or contains an invalid
2415 multibyte sequence. We must make unibyte string. */
2416 val
= make_unibyte_string (contents
, nbytes
);
2418 val
= make_multibyte_string (contents
, nchars
, nbytes
);
2422 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2425 make_unibyte_string (const char *contents
, ptrdiff_t length
)
2427 register Lisp_Object val
;
2428 val
= make_uninit_string (length
);
2429 memcpy (SDATA (val
), contents
, length
);
2434 /* Make a multibyte string from NCHARS characters occupying NBYTES
2435 bytes at CONTENTS. */
2438 make_multibyte_string (const char *contents
,
2439 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2441 register Lisp_Object val
;
2442 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2443 memcpy (SDATA (val
), contents
, nbytes
);
2448 /* Make a string from NCHARS characters occupying NBYTES bytes at
2449 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2452 make_string_from_bytes (const char *contents
,
2453 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2455 register Lisp_Object val
;
2456 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2457 memcpy (SDATA (val
), contents
, nbytes
);
2458 if (SBYTES (val
) == SCHARS (val
))
2459 STRING_SET_UNIBYTE (val
);
2464 /* Make a string from NCHARS characters occupying NBYTES bytes at
2465 CONTENTS. The argument MULTIBYTE controls whether to label the
2466 string as multibyte. If NCHARS is negative, it counts the number of
2467 characters by itself. */
2470 make_specified_string (const char *contents
,
2471 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
2478 nchars
= multibyte_chars_in_text ((const unsigned char *) contents
,
2483 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2484 memcpy (SDATA (val
), contents
, nbytes
);
2486 STRING_SET_UNIBYTE (val
);
2491 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2492 occupying LENGTH bytes. */
2495 make_uninit_string (EMACS_INT length
)
2500 return empty_unibyte_string
;
2501 val
= make_uninit_multibyte_string (length
, length
);
2502 STRING_SET_UNIBYTE (val
);
2507 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2508 which occupy NBYTES bytes. */
2511 make_uninit_multibyte_string (EMACS_INT nchars
, EMACS_INT nbytes
)
2514 struct Lisp_String
*s
;
2519 return empty_multibyte_string
;
2521 s
= allocate_string ();
2522 s
->intervals
= NULL
;
2523 allocate_string_data (s
, nchars
, nbytes
);
2524 XSETSTRING (string
, s
);
2525 string_chars_consed
+= nbytes
;
2529 /* Print arguments to BUF according to a FORMAT, then return
2530 a Lisp_String initialized with the data from BUF. */
2533 make_formatted_string (char *buf
, const char *format
, ...)
2538 va_start (ap
, format
);
2539 length
= vsprintf (buf
, format
, ap
);
2541 return make_string (buf
, length
);
2545 /***********************************************************************
2547 ***********************************************************************/
2549 /* We store float cells inside of float_blocks, allocating a new
2550 float_block with malloc whenever necessary. Float cells reclaimed
2551 by GC are put on a free list to be reallocated before allocating
2552 any new float cells from the latest float_block. */
2554 #define FLOAT_BLOCK_SIZE \
2555 (((BLOCK_BYTES - sizeof (struct float_block *) \
2556 /* The compiler might add padding at the end. */ \
2557 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2558 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2560 #define GETMARKBIT(block,n) \
2561 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2562 >> ((n) % BITS_PER_BITS_WORD)) \
2565 #define SETMARKBIT(block,n) \
2566 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2567 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2569 #define UNSETMARKBIT(block,n) \
2570 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2571 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2573 #define FLOAT_BLOCK(fptr) \
2574 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2576 #define FLOAT_INDEX(fptr) \
2577 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2581 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2582 struct Lisp_Float floats
[FLOAT_BLOCK_SIZE
];
2583 bits_word gcmarkbits
[1 + FLOAT_BLOCK_SIZE
/ BITS_PER_BITS_WORD
];
2584 struct float_block
*next
;
2587 #define FLOAT_MARKED_P(fptr) \
2588 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2590 #define FLOAT_MARK(fptr) \
2591 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2593 #define FLOAT_UNMARK(fptr) \
2594 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2596 /* Current float_block. */
2598 static struct float_block
*float_block
;
2600 /* Index of first unused Lisp_Float in the current float_block. */
2602 static int float_block_index
= FLOAT_BLOCK_SIZE
;
2604 /* Free-list of Lisp_Floats. */
2606 static struct Lisp_Float
*float_free_list
;
2608 /* Return a new float object with value FLOAT_VALUE. */
2611 make_float (double float_value
)
2613 register Lisp_Object val
;
2617 if (float_free_list
)
2619 /* We use the data field for chaining the free list
2620 so that we won't use the same field that has the mark bit. */
2621 XSETFLOAT (val
, float_free_list
);
2622 float_free_list
= float_free_list
->u
.chain
;
2626 if (float_block_index
== FLOAT_BLOCK_SIZE
)
2628 struct float_block
*new
2629 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT
);
2630 new->next
= float_block
;
2631 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2633 float_block_index
= 0;
2634 total_free_floats
+= FLOAT_BLOCK_SIZE
;
2636 XSETFLOAT (val
, &float_block
->floats
[float_block_index
]);
2637 float_block_index
++;
2640 MALLOC_UNBLOCK_INPUT
;
2642 XFLOAT_INIT (val
, float_value
);
2643 eassert (!FLOAT_MARKED_P (XFLOAT (val
)));
2644 consing_since_gc
+= sizeof (struct Lisp_Float
);
2646 total_free_floats
--;
2652 /***********************************************************************
2654 ***********************************************************************/
2656 /* We store cons cells inside of cons_blocks, allocating a new
2657 cons_block with malloc whenever necessary. Cons cells reclaimed by
2658 GC are put on a free list to be reallocated before allocating
2659 any new cons cells from the latest cons_block. */
2661 #define CONS_BLOCK_SIZE \
2662 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2663 /* The compiler might add padding at the end. */ \
2664 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2665 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2667 #define CONS_BLOCK(fptr) \
2668 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2670 #define CONS_INDEX(fptr) \
2671 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2675 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2676 struct Lisp_Cons conses
[CONS_BLOCK_SIZE
];
2677 bits_word gcmarkbits
[1 + CONS_BLOCK_SIZE
/ BITS_PER_BITS_WORD
];
2678 struct cons_block
*next
;
2681 #define CONS_MARKED_P(fptr) \
2682 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2684 #define CONS_MARK(fptr) \
2685 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2687 #define CONS_UNMARK(fptr) \
2688 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2690 /* Current cons_block. */
2692 static struct cons_block
*cons_block
;
2694 /* Index of first unused Lisp_Cons in the current block. */
2696 static int cons_block_index
= CONS_BLOCK_SIZE
;
2698 /* Free-list of Lisp_Cons structures. */
2700 static struct Lisp_Cons
*cons_free_list
;
2702 /* Explicitly free a cons cell by putting it on the free-list. */
2705 free_cons (struct Lisp_Cons
*ptr
)
2707 ptr
->u
.chain
= cons_free_list
;
2709 cons_free_list
= ptr
;
2710 consing_since_gc
-= sizeof *ptr
;
2711 total_free_conses
++;
2714 DEFUN ("cons", Fcons
, Scons
, 2, 2, 0,
2715 doc
: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2716 (Lisp_Object car
, Lisp_Object cdr
)
2718 register Lisp_Object val
;
2724 /* We use the cdr for chaining the free list
2725 so that we won't use the same field that has the mark bit. */
2726 XSETCONS (val
, cons_free_list
);
2727 cons_free_list
= cons_free_list
->u
.chain
;
2731 if (cons_block_index
== CONS_BLOCK_SIZE
)
2733 struct cons_block
*new
2734 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS
);
2735 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2736 new->next
= cons_block
;
2738 cons_block_index
= 0;
2739 total_free_conses
+= CONS_BLOCK_SIZE
;
2741 XSETCONS (val
, &cons_block
->conses
[cons_block_index
]);
2745 MALLOC_UNBLOCK_INPUT
;
2749 eassert (!CONS_MARKED_P (XCONS (val
)));
2750 consing_since_gc
+= sizeof (struct Lisp_Cons
);
2751 total_free_conses
--;
2752 cons_cells_consed
++;
2756 #ifdef GC_CHECK_CONS_LIST
2757 /* Get an error now if there's any junk in the cons free list. */
2759 check_cons_list (void)
2761 struct Lisp_Cons
*tail
= cons_free_list
;
2764 tail
= tail
->u
.chain
;
2768 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2771 list1 (Lisp_Object arg1
)
2773 return Fcons (arg1
, Qnil
);
2777 list2 (Lisp_Object arg1
, Lisp_Object arg2
)
2779 return Fcons (arg1
, Fcons (arg2
, Qnil
));
2784 list3 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
)
2786 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Qnil
)));
2791 list4 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
)
2793 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
, Qnil
))));
2798 list5 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
, Lisp_Object arg5
)
2800 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
,
2801 Fcons (arg5
, Qnil
)))));
2804 /* Make a list of COUNT Lisp_Objects, where ARG is the
2805 first one. Allocate conses from pure space if TYPE
2806 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2809 listn (enum constype type
, ptrdiff_t count
, Lisp_Object arg
, ...)
2811 Lisp_Object (*cons
) (Lisp_Object
, Lisp_Object
);
2814 case CONSTYPE_PURE
: cons
= pure_cons
; break;
2815 case CONSTYPE_HEAP
: cons
= Fcons
; break;
2816 default: emacs_abort ();
2819 eassume (0 < count
);
2820 Lisp_Object val
= cons (arg
, Qnil
);
2821 Lisp_Object tail
= val
;
2825 for (ptrdiff_t i
= 1; i
< count
; i
++)
2827 Lisp_Object elem
= cons (va_arg (ap
, Lisp_Object
), Qnil
);
2828 XSETCDR (tail
, elem
);
2836 DEFUN ("list", Flist
, Slist
, 0, MANY
, 0,
2837 doc
: /* Return a newly created list with specified arguments as elements.
2838 Any number of arguments, even zero arguments, are allowed.
2839 usage: (list &rest OBJECTS) */)
2840 (ptrdiff_t nargs
, Lisp_Object
*args
)
2842 register Lisp_Object val
;
2848 val
= Fcons (args
[nargs
], val
);
2854 DEFUN ("make-list", Fmake_list
, Smake_list
, 2, 2, 0,
2855 doc
: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2856 (register Lisp_Object length
, Lisp_Object init
)
2858 register Lisp_Object val
;
2859 register EMACS_INT size
;
2861 CHECK_NATNUM (length
);
2862 size
= XFASTINT (length
);
2867 val
= Fcons (init
, val
);
2872 val
= Fcons (init
, val
);
2877 val
= Fcons (init
, val
);
2882 val
= Fcons (init
, val
);
2887 val
= Fcons (init
, val
);
2902 /***********************************************************************
2904 ***********************************************************************/
2906 /* Sometimes a vector's contents are merely a pointer internally used
2907 in vector allocation code. On the rare platforms where a null
2908 pointer cannot be tagged, represent it with a Lisp 0.
2909 Usually you don't want to touch this. */
2911 static struct Lisp_Vector
*
2912 next_vector (struct Lisp_Vector
*v
)
2914 return XUNTAG (v
->contents
[0], Lisp_Int0
);
2918 set_next_vector (struct Lisp_Vector
*v
, struct Lisp_Vector
*p
)
2920 v
->contents
[0] = make_lisp_ptr (p
, Lisp_Int0
);
2923 /* This value is balanced well enough to avoid too much internal overhead
2924 for the most common cases; it's not required to be a power of two, but
2925 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2927 #define VECTOR_BLOCK_SIZE 4096
2931 /* Alignment of struct Lisp_Vector objects. */
2932 vector_alignment
= COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR
,
2935 /* Vector size requests are a multiple of this. */
2936 roundup_size
= COMMON_MULTIPLE (vector_alignment
, word_size
)
2939 /* Verify assumptions described above. */
2940 verify ((VECTOR_BLOCK_SIZE
% roundup_size
) == 0);
2941 verify (VECTOR_BLOCK_SIZE
<= (1 << PSEUDOVECTOR_SIZE_BITS
));
2943 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2944 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2945 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2946 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2948 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2950 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2952 /* Size of the minimal vector allocated from block. */
2954 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2956 /* Size of the largest vector allocated from block. */
2958 #define VBLOCK_BYTES_MAX \
2959 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2961 /* We maintain one free list for each possible block-allocated
2962 vector size, and this is the number of free lists we have. */
2964 #define VECTOR_MAX_FREE_LIST_INDEX \
2965 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2967 /* Common shortcut to advance vector pointer over a block data. */
2969 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2971 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2973 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2975 /* Common shortcut to setup vector on a free list. */
2977 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2979 (tmp) = ((nbytes - header_size) / word_size); \
2980 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2981 eassert ((nbytes) % roundup_size == 0); \
2982 (tmp) = VINDEX (nbytes); \
2983 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2984 set_next_vector (v, vector_free_lists[tmp]); \
2985 vector_free_lists[tmp] = (v); \
2986 total_free_vector_slots += (nbytes) / word_size; \
2989 /* This internal type is used to maintain the list of large vectors
2990 which are allocated at their own, e.g. outside of vector blocks.
2992 struct large_vector itself cannot contain a struct Lisp_Vector, as
2993 the latter contains a flexible array member and C99 does not allow
2994 such structs to be nested. Instead, each struct large_vector
2995 object LV is followed by a struct Lisp_Vector, which is at offset
2996 large_vector_offset from LV, and whose address is therefore
2997 large_vector_vec (&LV). */
3001 struct large_vector
*next
;
3006 large_vector_offset
= ROUNDUP (sizeof (struct large_vector
), vector_alignment
)
3009 static struct Lisp_Vector
*
3010 large_vector_vec (struct large_vector
*p
)
3012 return (struct Lisp_Vector
*) ((char *) p
+ large_vector_offset
);
3015 /* This internal type is used to maintain an underlying storage
3016 for small vectors. */
3020 char data
[VECTOR_BLOCK_BYTES
];
3021 struct vector_block
*next
;
3024 /* Chain of vector blocks. */
3026 static struct vector_block
*vector_blocks
;
3028 /* Vector free lists, where NTH item points to a chain of free
3029 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3031 static struct Lisp_Vector
*vector_free_lists
[VECTOR_MAX_FREE_LIST_INDEX
];
3033 /* Singly-linked list of large vectors. */
3035 static struct large_vector
*large_vectors
;
3037 /* The only vector with 0 slots, allocated from pure space. */
3039 Lisp_Object zero_vector
;
3041 /* Number of live vectors. */
3043 static EMACS_INT total_vectors
;
3045 /* Total size of live and free vectors, in Lisp_Object units. */
3047 static EMACS_INT total_vector_slots
, total_free_vector_slots
;
3049 /* Get a new vector block. */
3051 static struct vector_block
*
3052 allocate_vector_block (void)
3054 struct vector_block
*block
= xmalloc (sizeof *block
);
3056 #ifndef GC_MALLOC_CHECK
3057 mem_insert (block
->data
, block
->data
+ VECTOR_BLOCK_BYTES
,
3058 MEM_TYPE_VECTOR_BLOCK
);
3061 block
->next
= vector_blocks
;
3062 vector_blocks
= block
;
3066 /* Called once to initialize vector allocation. */
3071 zero_vector
= make_pure_vector (0);
3074 /* Allocate vector from a vector block. */
3076 static struct Lisp_Vector
*
3077 allocate_vector_from_block (size_t nbytes
)
3079 struct Lisp_Vector
*vector
;
3080 struct vector_block
*block
;
3081 size_t index
, restbytes
;
3083 eassert (VBLOCK_BYTES_MIN
<= nbytes
&& nbytes
<= VBLOCK_BYTES_MAX
);
3084 eassert (nbytes
% roundup_size
== 0);
3086 /* First, try to allocate from a free list
3087 containing vectors of the requested size. */
3088 index
= VINDEX (nbytes
);
3089 if (vector_free_lists
[index
])
3091 vector
= vector_free_lists
[index
];
3092 vector_free_lists
[index
] = next_vector (vector
);
3093 total_free_vector_slots
-= nbytes
/ word_size
;
3097 /* Next, check free lists containing larger vectors. Since
3098 we will split the result, we should have remaining space
3099 large enough to use for one-slot vector at least. */
3100 for (index
= VINDEX (nbytes
+ VBLOCK_BYTES_MIN
);
3101 index
< VECTOR_MAX_FREE_LIST_INDEX
; index
++)
3102 if (vector_free_lists
[index
])
3104 /* This vector is larger than requested. */
3105 vector
= vector_free_lists
[index
];
3106 vector_free_lists
[index
] = next_vector (vector
);
3107 total_free_vector_slots
-= nbytes
/ word_size
;
3109 /* Excess bytes are used for the smaller vector,
3110 which should be set on an appropriate free list. */
3111 restbytes
= index
* roundup_size
+ VBLOCK_BYTES_MIN
- nbytes
;
3112 eassert (restbytes
% roundup_size
== 0);
3113 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
3117 /* Finally, need a new vector block. */
3118 block
= allocate_vector_block ();
3120 /* New vector will be at the beginning of this block. */
3121 vector
= (struct Lisp_Vector
*) block
->data
;
3123 /* If the rest of space from this block is large enough
3124 for one-slot vector at least, set up it on a free list. */
3125 restbytes
= VECTOR_BLOCK_BYTES
- nbytes
;
3126 if (restbytes
>= VBLOCK_BYTES_MIN
)
3128 eassert (restbytes
% roundup_size
== 0);
3129 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
3134 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3136 #define VECTOR_IN_BLOCK(vector, block) \
3137 ((char *) (vector) <= (block)->data \
3138 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3140 /* Return the memory footprint of V in bytes. */
3143 vector_nbytes (struct Lisp_Vector
*v
)
3145 ptrdiff_t size
= v
->header
.size
& ~ARRAY_MARK_FLAG
;
3148 if (size
& PSEUDOVECTOR_FLAG
)
3150 if (PSEUDOVECTOR_TYPEP (&v
->header
, PVEC_BOOL_VECTOR
))
3152 struct Lisp_Bool_Vector
*bv
= (struct Lisp_Bool_Vector
*) v
;
3153 ptrdiff_t word_bytes
= (bool_vector_words (bv
->size
)
3154 * sizeof (bits_word
));
3155 ptrdiff_t boolvec_bytes
= bool_header_size
+ word_bytes
;
3156 verify (header_size
<= bool_header_size
);
3157 nwords
= (boolvec_bytes
- header_size
+ word_size
- 1) / word_size
;
3160 nwords
= ((size
& PSEUDOVECTOR_SIZE_MASK
)
3161 + ((size
& PSEUDOVECTOR_REST_MASK
)
3162 >> PSEUDOVECTOR_SIZE_BITS
));
3166 return vroundup (header_size
+ word_size
* nwords
);
3169 /* Release extra resources still in use by VECTOR, which may be any
3170 vector-like object. For now, this is used just to free data in
3174 cleanup_vector (struct Lisp_Vector
*vector
)
3176 detect_suspicious_free (vector
);
3177 if (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FONT
)
3178 && ((vector
->header
.size
& PSEUDOVECTOR_SIZE_MASK
)
3179 == FONT_OBJECT_MAX
))
3181 struct font_driver
*drv
= ((struct font
*) vector
)->driver
;
3183 /* The font driver might sometimes be NULL, e.g. if Emacs was
3184 interrupted before it had time to set it up. */
3187 /* Attempt to catch subtle bugs like Bug#16140. */
3188 eassert (valid_font_driver (drv
));
3189 drv
->close ((struct font
*) vector
);
3194 /* Reclaim space used by unmarked vectors. */
3196 NO_INLINE
/* For better stack traces */
3198 sweep_vectors (void)
3200 struct vector_block
*block
, **bprev
= &vector_blocks
;
3201 struct large_vector
*lv
, **lvprev
= &large_vectors
;
3202 struct Lisp_Vector
*vector
, *next
;
3204 total_vectors
= total_vector_slots
= total_free_vector_slots
= 0;
3205 memset (vector_free_lists
, 0, sizeof (vector_free_lists
));
3207 /* Looking through vector blocks. */
3209 for (block
= vector_blocks
; block
; block
= *bprev
)
3211 bool free_this_block
= 0;
3214 for (vector
= (struct Lisp_Vector
*) block
->data
;
3215 VECTOR_IN_BLOCK (vector
, block
); vector
= next
)
3217 if (VECTOR_MARKED_P (vector
))
3219 VECTOR_UNMARK (vector
);
3221 nbytes
= vector_nbytes (vector
);
3222 total_vector_slots
+= nbytes
/ word_size
;
3223 next
= ADVANCE (vector
, nbytes
);
3227 ptrdiff_t total_bytes
;
3229 cleanup_vector (vector
);
3230 nbytes
= vector_nbytes (vector
);
3231 total_bytes
= nbytes
;
3232 next
= ADVANCE (vector
, nbytes
);
3234 /* While NEXT is not marked, try to coalesce with VECTOR,
3235 thus making VECTOR of the largest possible size. */
3237 while (VECTOR_IN_BLOCK (next
, block
))
3239 if (VECTOR_MARKED_P (next
))
3241 cleanup_vector (next
);
3242 nbytes
= vector_nbytes (next
);
3243 total_bytes
+= nbytes
;
3244 next
= ADVANCE (next
, nbytes
);
3247 eassert (total_bytes
% roundup_size
== 0);
3249 if (vector
== (struct Lisp_Vector
*) block
->data
3250 && !VECTOR_IN_BLOCK (next
, block
))
3251 /* This block should be freed because all of its
3252 space was coalesced into the only free vector. */
3253 free_this_block
= 1;
3257 SETUP_ON_FREE_LIST (vector
, total_bytes
, tmp
);
3262 if (free_this_block
)
3264 *bprev
= block
->next
;
3265 #ifndef GC_MALLOC_CHECK
3266 mem_delete (mem_find (block
->data
));
3271 bprev
= &block
->next
;
3274 /* Sweep large vectors. */
3276 for (lv
= large_vectors
; lv
; lv
= *lvprev
)
3278 vector
= large_vector_vec (lv
);
3279 if (VECTOR_MARKED_P (vector
))
3281 VECTOR_UNMARK (vector
);
3283 if (vector
->header
.size
& PSEUDOVECTOR_FLAG
)
3285 /* All non-bool pseudovectors are small enough to be allocated
3286 from vector blocks. This code should be redesigned if some
3287 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3288 eassert (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_BOOL_VECTOR
));
3289 total_vector_slots
+= vector_nbytes (vector
) / word_size
;
3293 += header_size
/ word_size
+ vector
->header
.size
;
3304 /* Value is a pointer to a newly allocated Lisp_Vector structure
3305 with room for LEN Lisp_Objects. */
3307 static struct Lisp_Vector
*
3308 allocate_vectorlike (ptrdiff_t len
)
3310 struct Lisp_Vector
*p
;
3315 p
= XVECTOR (zero_vector
);
3318 size_t nbytes
= header_size
+ len
* word_size
;
3320 #ifdef DOUG_LEA_MALLOC
3321 if (!mmap_lisp_allowed_p ())
3322 mallopt (M_MMAP_MAX
, 0);
3325 if (nbytes
<= VBLOCK_BYTES_MAX
)
3326 p
= allocate_vector_from_block (vroundup (nbytes
));
3329 struct large_vector
*lv
3330 = lisp_malloc ((large_vector_offset
+ header_size
3332 MEM_TYPE_VECTORLIKE
);
3333 lv
->next
= large_vectors
;
3335 p
= large_vector_vec (lv
);
3338 #ifdef DOUG_LEA_MALLOC
3339 if (!mmap_lisp_allowed_p ())
3340 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
3343 if (find_suspicious_object_in_range (p
, (char *) p
+ nbytes
))
3346 consing_since_gc
+= nbytes
;
3347 vector_cells_consed
+= len
;
3350 MALLOC_UNBLOCK_INPUT
;
3356 /* Allocate a vector with LEN slots. */
3358 struct Lisp_Vector
*
3359 allocate_vector (EMACS_INT len
)
3361 struct Lisp_Vector
*v
;
3362 ptrdiff_t nbytes_max
= min (PTRDIFF_MAX
, SIZE_MAX
);
3364 if (min ((nbytes_max
- header_size
) / word_size
, MOST_POSITIVE_FIXNUM
) < len
)
3365 memory_full (SIZE_MAX
);
3366 v
= allocate_vectorlike (len
);
3368 v
->header
.size
= len
;
3373 /* Allocate other vector-like structures. */
3375 struct Lisp_Vector
*
3376 allocate_pseudovector (int memlen
, int lisplen
,
3377 int zerolen
, enum pvec_type tag
)
3379 struct Lisp_Vector
*v
= allocate_vectorlike (memlen
);
3381 /* Catch bogus values. */
3382 eassert (0 <= tag
&& tag
<= PVEC_FONT
);
3383 eassert (0 <= lisplen
&& lisplen
<= zerolen
&& zerolen
<= memlen
);
3384 eassert (memlen
- lisplen
<= (1 << PSEUDOVECTOR_REST_BITS
) - 1);
3385 eassert (lisplen
<= (1 << PSEUDOVECTOR_SIZE_BITS
) - 1);
3387 /* Only the first LISPLEN slots will be traced normally by the GC. */
3388 memclear (v
->contents
, zerolen
* word_size
);
3389 XSETPVECTYPESIZE (v
, tag
, lisplen
, memlen
- lisplen
);
3394 allocate_buffer (void)
3396 struct buffer
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_BUFFER
);
3398 BUFFER_PVEC_INIT (b
);
3399 /* Put B on the chain of all buffers including killed ones. */
3400 b
->next
= all_buffers
;
3402 /* Note that the rest fields of B are not initialized. */
3406 DEFUN ("make-vector", Fmake_vector
, Smake_vector
, 2, 2, 0,
3407 doc
: /* Return a newly created vector of length LENGTH, with each element being INIT.
3408 See also the function `vector'. */)
3409 (Lisp_Object length
, Lisp_Object init
)
3411 CHECK_NATNUM (length
);
3412 struct Lisp_Vector
*p
= allocate_vector (XFASTINT (length
));
3413 for (ptrdiff_t i
= 0; i
< XFASTINT (length
); i
++)
3414 p
->contents
[i
] = init
;
3415 return make_lisp_ptr (p
, Lisp_Vectorlike
);
3418 DEFUN ("vector", Fvector
, Svector
, 0, MANY
, 0,
3419 doc
: /* Return a newly created vector with specified arguments as elements.
3420 Any number of arguments, even zero arguments, are allowed.
3421 usage: (vector &rest OBJECTS) */)
3422 (ptrdiff_t nargs
, Lisp_Object
*args
)
3424 Lisp_Object val
= make_uninit_vector (nargs
);
3425 struct Lisp_Vector
*p
= XVECTOR (val
);
3426 memcpy (p
->contents
, args
, nargs
* sizeof *args
);
3431 make_byte_code (struct Lisp_Vector
*v
)
3433 /* Don't allow the global zero_vector to become a byte code object. */
3434 eassert (0 < v
->header
.size
);
3436 if (v
->header
.size
> 1 && STRINGP (v
->contents
[1])
3437 && STRING_MULTIBYTE (v
->contents
[1]))
3438 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3439 earlier because they produced a raw 8-bit string for byte-code
3440 and now such a byte-code string is loaded as multibyte while
3441 raw 8-bit characters converted to multibyte form. Thus, now we
3442 must convert them back to the original unibyte form. */
3443 v
->contents
[1] = Fstring_as_unibyte (v
->contents
[1]);
3444 XSETPVECTYPE (v
, PVEC_COMPILED
);
3447 DEFUN ("make-byte-code", Fmake_byte_code
, Smake_byte_code
, 4, MANY
, 0,
3448 doc
: /* Create a byte-code object with specified arguments as elements.
3449 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3450 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3451 and (optional) INTERACTIVE-SPEC.
3452 The first four arguments are required; at most six have any
3454 The ARGLIST can be either like the one of `lambda', in which case the arguments
3455 will be dynamically bound before executing the byte code, or it can be an
3456 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3457 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3458 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3459 argument to catch the left-over arguments. If such an integer is used, the
3460 arguments will not be dynamically bound but will be instead pushed on the
3461 stack before executing the byte-code.
3462 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3463 (ptrdiff_t nargs
, Lisp_Object
*args
)
3465 Lisp_Object val
= make_uninit_vector (nargs
);
3466 struct Lisp_Vector
*p
= XVECTOR (val
);
3468 /* We used to purecopy everything here, if purify-flag was set. This worked
3469 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3470 dangerous, since make-byte-code is used during execution to build
3471 closures, so any closure built during the preload phase would end up
3472 copied into pure space, including its free variables, which is sometimes
3473 just wasteful and other times plainly wrong (e.g. those free vars may want
3476 memcpy (p
->contents
, args
, nargs
* sizeof *args
);
3478 XSETCOMPILED (val
, p
);
3484 /***********************************************************************
3486 ***********************************************************************/
3488 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3489 of the required alignment. */
3491 union aligned_Lisp_Symbol
3493 struct Lisp_Symbol s
;
3494 unsigned char c
[(sizeof (struct Lisp_Symbol
) + GCALIGNMENT
- 1)
3498 /* Each symbol_block is just under 1020 bytes long, since malloc
3499 really allocates in units of powers of two and uses 4 bytes for its
3502 #define SYMBOL_BLOCK_SIZE \
3503 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3507 /* Place `symbols' first, to preserve alignment. */
3508 union aligned_Lisp_Symbol symbols
[SYMBOL_BLOCK_SIZE
];
3509 struct symbol_block
*next
;
3512 /* Current symbol block and index of first unused Lisp_Symbol
3515 static struct symbol_block
*symbol_block
;
3516 static int symbol_block_index
= SYMBOL_BLOCK_SIZE
;
3517 /* Pointer to the first symbol_block that contains pinned symbols.
3518 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3519 10K of which are pinned (and all but 250 of them are interned in obarray),
3520 whereas a "typical session" has in the order of 30K symbols.
3521 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3522 than 30K to find the 10K symbols we need to mark. */
3523 static struct symbol_block
*symbol_block_pinned
;
3525 /* List of free symbols. */
3527 static struct Lisp_Symbol
*symbol_free_list
;
3530 set_symbol_name (Lisp_Object sym
, Lisp_Object name
)
3532 XSYMBOL (sym
)->name
= name
;
3536 init_symbol (Lisp_Object val
, Lisp_Object name
)
3538 struct Lisp_Symbol
*p
= XSYMBOL (val
);
3539 set_symbol_name (val
, name
);
3540 set_symbol_plist (val
, Qnil
);
3541 p
->redirect
= SYMBOL_PLAINVAL
;
3542 SET_SYMBOL_VAL (p
, Qunbound
);
3543 set_symbol_function (val
, Qnil
);
3544 set_symbol_next (val
, NULL
);
3545 p
->gcmarkbit
= false;
3546 p
->interned
= SYMBOL_UNINTERNED
;
3548 p
->declared_special
= false;
3552 DEFUN ("make-symbol", Fmake_symbol
, Smake_symbol
, 1, 1, 0,
3553 doc
: /* Return a newly allocated uninterned symbol whose name is NAME.
3554 Its value is void, and its function definition and property list are nil. */)
3559 CHECK_STRING (name
);
3563 if (symbol_free_list
)
3565 XSETSYMBOL (val
, symbol_free_list
);
3566 symbol_free_list
= symbol_free_list
->next
;
3570 if (symbol_block_index
== SYMBOL_BLOCK_SIZE
)
3572 struct symbol_block
*new
3573 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL
);
3574 new->next
= symbol_block
;
3576 symbol_block_index
= 0;
3577 total_free_symbols
+= SYMBOL_BLOCK_SIZE
;
3579 XSETSYMBOL (val
, &symbol_block
->symbols
[symbol_block_index
].s
);
3580 symbol_block_index
++;
3583 MALLOC_UNBLOCK_INPUT
;
3585 init_symbol (val
, name
);
3586 consing_since_gc
+= sizeof (struct Lisp_Symbol
);
3588 total_free_symbols
--;
3594 /***********************************************************************
3595 Marker (Misc) Allocation
3596 ***********************************************************************/
3598 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3599 the required alignment. */
3601 union aligned_Lisp_Misc
3604 unsigned char c
[(sizeof (union Lisp_Misc
) + GCALIGNMENT
- 1)
3608 /* Allocation of markers and other objects that share that structure.
3609 Works like allocation of conses. */
3611 #define MARKER_BLOCK_SIZE \
3612 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3616 /* Place `markers' first, to preserve alignment. */
3617 union aligned_Lisp_Misc markers
[MARKER_BLOCK_SIZE
];
3618 struct marker_block
*next
;
3621 static struct marker_block
*marker_block
;
3622 static int marker_block_index
= MARKER_BLOCK_SIZE
;
3624 static union Lisp_Misc
*marker_free_list
;
3626 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3629 allocate_misc (enum Lisp_Misc_Type type
)
3635 if (marker_free_list
)
3637 XSETMISC (val
, marker_free_list
);
3638 marker_free_list
= marker_free_list
->u_free
.chain
;
3642 if (marker_block_index
== MARKER_BLOCK_SIZE
)
3644 struct marker_block
*new = lisp_malloc (sizeof *new, MEM_TYPE_MISC
);
3645 new->next
= marker_block
;
3647 marker_block_index
= 0;
3648 total_free_markers
+= MARKER_BLOCK_SIZE
;
3650 XSETMISC (val
, &marker_block
->markers
[marker_block_index
].m
);
3651 marker_block_index
++;
3654 MALLOC_UNBLOCK_INPUT
;
3656 --total_free_markers
;
3657 consing_since_gc
+= sizeof (union Lisp_Misc
);
3658 misc_objects_consed
++;
3659 XMISCANY (val
)->type
= type
;
3660 XMISCANY (val
)->gcmarkbit
= 0;
3664 /* Free a Lisp_Misc object. */
3667 free_misc (Lisp_Object misc
)
3669 XMISCANY (misc
)->type
= Lisp_Misc_Free
;
3670 XMISC (misc
)->u_free
.chain
= marker_free_list
;
3671 marker_free_list
= XMISC (misc
);
3672 consing_since_gc
-= sizeof (union Lisp_Misc
);
3673 total_free_markers
++;
3676 /* Verify properties of Lisp_Save_Value's representation
3677 that are assumed here and elsewhere. */
3679 verify (SAVE_UNUSED
== 0);
3680 verify (((SAVE_INTEGER
| SAVE_POINTER
| SAVE_FUNCPOINTER
| SAVE_OBJECT
)
3684 /* Return Lisp_Save_Value objects for the various combinations
3685 that callers need. */
3688 make_save_int_int_int (ptrdiff_t a
, ptrdiff_t b
, ptrdiff_t c
)
3690 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3691 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3692 p
->save_type
= SAVE_TYPE_INT_INT_INT
;
3693 p
->data
[0].integer
= a
;
3694 p
->data
[1].integer
= b
;
3695 p
->data
[2].integer
= c
;
3700 make_save_obj_obj_obj_obj (Lisp_Object a
, Lisp_Object b
, Lisp_Object c
,
3703 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3704 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3705 p
->save_type
= SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
;
3706 p
->data
[0].object
= a
;
3707 p
->data
[1].object
= b
;
3708 p
->data
[2].object
= c
;
3709 p
->data
[3].object
= d
;
3714 make_save_ptr (void *a
)
3716 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3717 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3718 p
->save_type
= SAVE_POINTER
;
3719 p
->data
[0].pointer
= a
;
3724 make_save_ptr_int (void *a
, ptrdiff_t b
)
3726 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3727 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3728 p
->save_type
= SAVE_TYPE_PTR_INT
;
3729 p
->data
[0].pointer
= a
;
3730 p
->data
[1].integer
= b
;
3735 make_save_ptr_ptr (void *a
, void *b
)
3737 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3738 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3739 p
->save_type
= SAVE_TYPE_PTR_PTR
;
3740 p
->data
[0].pointer
= a
;
3741 p
->data
[1].pointer
= b
;
3746 make_save_funcptr_ptr_obj (void (*a
) (void), void *b
, Lisp_Object c
)
3748 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3749 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3750 p
->save_type
= SAVE_TYPE_FUNCPTR_PTR_OBJ
;
3751 p
->data
[0].funcpointer
= a
;
3752 p
->data
[1].pointer
= b
;
3753 p
->data
[2].object
= c
;
3757 /* Return a Lisp_Save_Value object that represents an array A
3758 of N Lisp objects. */
3761 make_save_memory (Lisp_Object
*a
, ptrdiff_t n
)
3763 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3764 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3765 p
->save_type
= SAVE_TYPE_MEMORY
;
3766 p
->data
[0].pointer
= a
;
3767 p
->data
[1].integer
= n
;
3771 /* Free a Lisp_Save_Value object. Do not use this function
3772 if SAVE contains pointer other than returned by xmalloc. */
3775 free_save_value (Lisp_Object save
)
3777 xfree (XSAVE_POINTER (save
, 0));
3781 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3784 build_overlay (Lisp_Object start
, Lisp_Object end
, Lisp_Object plist
)
3786 register Lisp_Object overlay
;
3788 overlay
= allocate_misc (Lisp_Misc_Overlay
);
3789 OVERLAY_START (overlay
) = start
;
3790 OVERLAY_END (overlay
) = end
;
3791 set_overlay_plist (overlay
, plist
);
3792 XOVERLAY (overlay
)->next
= NULL
;
3796 DEFUN ("make-marker", Fmake_marker
, Smake_marker
, 0, 0, 0,
3797 doc
: /* Return a newly allocated marker which does not point at any place. */)
3800 register Lisp_Object val
;
3801 register struct Lisp_Marker
*p
;
3803 val
= allocate_misc (Lisp_Misc_Marker
);
3809 p
->insertion_type
= 0;
3810 p
->need_adjustment
= 0;
3814 /* Return a newly allocated marker which points into BUF
3815 at character position CHARPOS and byte position BYTEPOS. */
3818 build_marker (struct buffer
*buf
, ptrdiff_t charpos
, ptrdiff_t bytepos
)
3821 struct Lisp_Marker
*m
;
3823 /* No dead buffers here. */
3824 eassert (BUFFER_LIVE_P (buf
));
3826 /* Every character is at least one byte. */
3827 eassert (charpos
<= bytepos
);
3829 obj
= allocate_misc (Lisp_Misc_Marker
);
3832 m
->charpos
= charpos
;
3833 m
->bytepos
= bytepos
;
3834 m
->insertion_type
= 0;
3835 m
->need_adjustment
= 0;
3836 m
->next
= BUF_MARKERS (buf
);
3837 BUF_MARKERS (buf
) = m
;
3841 /* Put MARKER back on the free list after using it temporarily. */
3844 free_marker (Lisp_Object marker
)
3846 unchain_marker (XMARKER (marker
));
3851 /* Return a newly created vector or string with specified arguments as
3852 elements. If all the arguments are characters that can fit
3853 in a string of events, make a string; otherwise, make a vector.
3855 Any number of arguments, even zero arguments, are allowed. */
3858 make_event_array (ptrdiff_t nargs
, Lisp_Object
*args
)
3862 for (i
= 0; i
< nargs
; i
++)
3863 /* The things that fit in a string
3864 are characters that are in 0...127,
3865 after discarding the meta bit and all the bits above it. */
3866 if (!INTEGERP (args
[i
])
3867 || (XINT (args
[i
]) & ~(-CHAR_META
)) >= 0200)
3868 return Fvector (nargs
, args
);
3870 /* Since the loop exited, we know that all the things in it are
3871 characters, so we can make a string. */
3875 result
= Fmake_string (make_number (nargs
), make_number (0));
3876 for (i
= 0; i
< nargs
; i
++)
3878 SSET (result
, i
, XINT (args
[i
]));
3879 /* Move the meta bit to the right place for a string char. */
3880 if (XINT (args
[i
]) & CHAR_META
)
3881 SSET (result
, i
, SREF (result
, i
) | 0x80);
3889 /* Create a new module user ptr object. */
3891 make_user_ptr (void (*finalizer
) (void *), void *p
)
3894 struct Lisp_User_Ptr
*uptr
;
3896 obj
= allocate_misc (Lisp_Misc_User_Ptr
);
3897 uptr
= XUSER_PTR (obj
);
3898 uptr
->finalizer
= finalizer
;
3906 init_finalizer_list (struct Lisp_Finalizer
*head
)
3908 head
->prev
= head
->next
= head
;
3911 /* Insert FINALIZER before ELEMENT. */
3914 finalizer_insert (struct Lisp_Finalizer
*element
,
3915 struct Lisp_Finalizer
*finalizer
)
3917 eassert (finalizer
->prev
== NULL
);
3918 eassert (finalizer
->next
== NULL
);
3919 finalizer
->next
= element
;
3920 finalizer
->prev
= element
->prev
;
3921 finalizer
->prev
->next
= finalizer
;
3922 element
->prev
= finalizer
;
3926 unchain_finalizer (struct Lisp_Finalizer
*finalizer
)
3928 if (finalizer
->prev
!= NULL
)
3930 eassert (finalizer
->next
!= NULL
);
3931 finalizer
->prev
->next
= finalizer
->next
;
3932 finalizer
->next
->prev
= finalizer
->prev
;
3933 finalizer
->prev
= finalizer
->next
= NULL
;
3938 mark_finalizer_list (struct Lisp_Finalizer
*head
)
3940 for (struct Lisp_Finalizer
*finalizer
= head
->next
;
3942 finalizer
= finalizer
->next
)
3944 finalizer
->base
.gcmarkbit
= true;
3945 mark_object (finalizer
->function
);
3949 /* Move doomed finalizers to list DEST from list SRC. A doomed
3950 finalizer is one that is not GC-reachable and whose
3951 finalizer->function is non-nil. */
3954 queue_doomed_finalizers (struct Lisp_Finalizer
*dest
,
3955 struct Lisp_Finalizer
*src
)
3957 struct Lisp_Finalizer
*finalizer
= src
->next
;
3958 while (finalizer
!= src
)
3960 struct Lisp_Finalizer
*next
= finalizer
->next
;
3961 if (!finalizer
->base
.gcmarkbit
&& !NILP (finalizer
->function
))
3963 unchain_finalizer (finalizer
);
3964 finalizer_insert (dest
, finalizer
);
3972 run_finalizer_handler (Lisp_Object args
)
3974 add_to_log ("finalizer failed: %S", args
);
3979 run_finalizer_function (Lisp_Object function
)
3981 ptrdiff_t count
= SPECPDL_INDEX ();
3983 specbind (Qinhibit_quit
, Qt
);
3984 internal_condition_case_1 (call0
, function
, Qt
, run_finalizer_handler
);
3985 unbind_to (count
, Qnil
);
3989 run_finalizers (struct Lisp_Finalizer
*finalizers
)
3991 struct Lisp_Finalizer
*finalizer
;
3992 Lisp_Object function
;
3994 while (finalizers
->next
!= finalizers
)
3996 finalizer
= finalizers
->next
;
3997 eassert (finalizer
->base
.type
== Lisp_Misc_Finalizer
);
3998 unchain_finalizer (finalizer
);
3999 function
= finalizer
->function
;
4000 if (!NILP (function
))
4002 finalizer
->function
= Qnil
;
4003 run_finalizer_function (function
);
4008 DEFUN ("make-finalizer", Fmake_finalizer
, Smake_finalizer
, 1, 1, 0,
4009 doc
: /* Make a finalizer that will run FUNCTION.
4010 FUNCTION will be called after garbage collection when the returned
4011 finalizer object becomes unreachable. If the finalizer object is
4012 reachable only through references from finalizer objects, it does not
4013 count as reachable for the purpose of deciding whether to run
4014 FUNCTION. FUNCTION will be run once per finalizer object. */)
4015 (Lisp_Object function
)
4017 Lisp_Object val
= allocate_misc (Lisp_Misc_Finalizer
);
4018 struct Lisp_Finalizer
*finalizer
= XFINALIZER (val
);
4019 finalizer
->function
= function
;
4020 finalizer
->prev
= finalizer
->next
= NULL
;
4021 finalizer_insert (&finalizers
, finalizer
);
4026 /************************************************************************
4027 Memory Full Handling
4028 ************************************************************************/
4031 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4032 there may have been size_t overflow so that malloc was never
4033 called, or perhaps malloc was invoked successfully but the
4034 resulting pointer had problems fitting into a tagged EMACS_INT. In
4035 either case this counts as memory being full even though malloc did
4039 memory_full (size_t nbytes
)
4041 /* Do not go into hysterics merely because a large request failed. */
4042 bool enough_free_memory
= 0;
4043 if (SPARE_MEMORY
< nbytes
)
4048 p
= malloc (SPARE_MEMORY
);
4052 enough_free_memory
= 1;
4054 MALLOC_UNBLOCK_INPUT
;
4057 if (! enough_free_memory
)
4063 memory_full_cons_threshold
= sizeof (struct cons_block
);
4065 /* The first time we get here, free the spare memory. */
4066 for (i
= 0; i
< ARRAYELTS (spare_memory
); i
++)
4067 if (spare_memory
[i
])
4070 free (spare_memory
[i
]);
4071 else if (i
>= 1 && i
<= 4)
4072 lisp_align_free (spare_memory
[i
]);
4074 lisp_free (spare_memory
[i
]);
4075 spare_memory
[i
] = 0;
4079 /* This used to call error, but if we've run out of memory, we could
4080 get infinite recursion trying to build the string. */
4081 xsignal (Qnil
, Vmemory_signal_data
);
4084 /* If we released our reserve (due to running out of memory),
4085 and we have a fair amount free once again,
4086 try to set aside another reserve in case we run out once more.
4088 This is called when a relocatable block is freed in ralloc.c,
4089 and also directly from this file, in case we're not using ralloc.c. */
4092 refill_memory_reserve (void)
4094 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4095 if (spare_memory
[0] == 0)
4096 spare_memory
[0] = malloc (SPARE_MEMORY
);
4097 if (spare_memory
[1] == 0)
4098 spare_memory
[1] = lisp_align_malloc (sizeof (struct cons_block
),
4100 if (spare_memory
[2] == 0)
4101 spare_memory
[2] = lisp_align_malloc (sizeof (struct cons_block
),
4103 if (spare_memory
[3] == 0)
4104 spare_memory
[3] = lisp_align_malloc (sizeof (struct cons_block
),
4106 if (spare_memory
[4] == 0)
4107 spare_memory
[4] = lisp_align_malloc (sizeof (struct cons_block
),
4109 if (spare_memory
[5] == 0)
4110 spare_memory
[5] = lisp_malloc (sizeof (struct string_block
),
4112 if (spare_memory
[6] == 0)
4113 spare_memory
[6] = lisp_malloc (sizeof (struct string_block
),
4115 if (spare_memory
[0] && spare_memory
[1] && spare_memory
[5])
4116 Vmemory_full
= Qnil
;
4120 /************************************************************************
4122 ************************************************************************/
4124 /* Conservative C stack marking requires a method to identify possibly
4125 live Lisp objects given a pointer value. We do this by keeping
4126 track of blocks of Lisp data that are allocated in a red-black tree
4127 (see also the comment of mem_node which is the type of nodes in
4128 that tree). Function lisp_malloc adds information for an allocated
4129 block to the red-black tree with calls to mem_insert, and function
4130 lisp_free removes it with mem_delete. Functions live_string_p etc
4131 call mem_find to lookup information about a given pointer in the
4132 tree, and use that to determine if the pointer points to a Lisp
4135 /* Initialize this part of alloc.c. */
4140 mem_z
.left
= mem_z
.right
= MEM_NIL
;
4141 mem_z
.parent
= NULL
;
4142 mem_z
.color
= MEM_BLACK
;
4143 mem_z
.start
= mem_z
.end
= NULL
;
4148 /* Value is a pointer to the mem_node containing START. Value is
4149 MEM_NIL if there is no node in the tree containing START. */
4151 static struct mem_node
*
4152 mem_find (void *start
)
4156 if (start
< min_heap_address
|| start
> max_heap_address
)
4159 /* Make the search always successful to speed up the loop below. */
4160 mem_z
.start
= start
;
4161 mem_z
.end
= (char *) start
+ 1;
4164 while (start
< p
->start
|| start
>= p
->end
)
4165 p
= start
< p
->start
? p
->left
: p
->right
;
4170 /* Insert a new node into the tree for a block of memory with start
4171 address START, end address END, and type TYPE. Value is a
4172 pointer to the node that was inserted. */
4174 static struct mem_node
*
4175 mem_insert (void *start
, void *end
, enum mem_type type
)
4177 struct mem_node
*c
, *parent
, *x
;
4179 if (min_heap_address
== NULL
|| start
< min_heap_address
)
4180 min_heap_address
= start
;
4181 if (max_heap_address
== NULL
|| end
> max_heap_address
)
4182 max_heap_address
= end
;
4184 /* See where in the tree a node for START belongs. In this
4185 particular application, it shouldn't happen that a node is already
4186 present. For debugging purposes, let's check that. */
4190 while (c
!= MEM_NIL
)
4193 c
= start
< c
->start
? c
->left
: c
->right
;
4196 /* Create a new node. */
4197 #ifdef GC_MALLOC_CHECK
4198 x
= malloc (sizeof *x
);
4202 x
= xmalloc (sizeof *x
);
4208 x
->left
= x
->right
= MEM_NIL
;
4211 /* Insert it as child of PARENT or install it as root. */
4214 if (start
< parent
->start
)
4222 /* Re-establish red-black tree properties. */
4223 mem_insert_fixup (x
);
4229 /* Re-establish the red-black properties of the tree, and thereby
4230 balance the tree, after node X has been inserted; X is always red. */
4233 mem_insert_fixup (struct mem_node
*x
)
4235 while (x
!= mem_root
&& x
->parent
->color
== MEM_RED
)
4237 /* X is red and its parent is red. This is a violation of
4238 red-black tree property #3. */
4240 if (x
->parent
== x
->parent
->parent
->left
)
4242 /* We're on the left side of our grandparent, and Y is our
4244 struct mem_node
*y
= x
->parent
->parent
->right
;
4246 if (y
->color
== MEM_RED
)
4248 /* Uncle and parent are red but should be black because
4249 X is red. Change the colors accordingly and proceed
4250 with the grandparent. */
4251 x
->parent
->color
= MEM_BLACK
;
4252 y
->color
= MEM_BLACK
;
4253 x
->parent
->parent
->color
= MEM_RED
;
4254 x
= x
->parent
->parent
;
4258 /* Parent and uncle have different colors; parent is
4259 red, uncle is black. */
4260 if (x
== x
->parent
->right
)
4263 mem_rotate_left (x
);
4266 x
->parent
->color
= MEM_BLACK
;
4267 x
->parent
->parent
->color
= MEM_RED
;
4268 mem_rotate_right (x
->parent
->parent
);
4273 /* This is the symmetrical case of above. */
4274 struct mem_node
*y
= x
->parent
->parent
->left
;
4276 if (y
->color
== MEM_RED
)
4278 x
->parent
->color
= MEM_BLACK
;
4279 y
->color
= MEM_BLACK
;
4280 x
->parent
->parent
->color
= MEM_RED
;
4281 x
= x
->parent
->parent
;
4285 if (x
== x
->parent
->left
)
4288 mem_rotate_right (x
);
4291 x
->parent
->color
= MEM_BLACK
;
4292 x
->parent
->parent
->color
= MEM_RED
;
4293 mem_rotate_left (x
->parent
->parent
);
4298 /* The root may have been changed to red due to the algorithm. Set
4299 it to black so that property #5 is satisfied. */
4300 mem_root
->color
= MEM_BLACK
;
4311 mem_rotate_left (struct mem_node
*x
)
4315 /* Turn y's left sub-tree into x's right sub-tree. */
4318 if (y
->left
!= MEM_NIL
)
4319 y
->left
->parent
= x
;
4321 /* Y's parent was x's parent. */
4323 y
->parent
= x
->parent
;
4325 /* Get the parent to point to y instead of x. */
4328 if (x
== x
->parent
->left
)
4329 x
->parent
->left
= y
;
4331 x
->parent
->right
= y
;
4336 /* Put x on y's left. */
4350 mem_rotate_right (struct mem_node
*x
)
4352 struct mem_node
*y
= x
->left
;
4355 if (y
->right
!= MEM_NIL
)
4356 y
->right
->parent
= x
;
4359 y
->parent
= x
->parent
;
4362 if (x
== x
->parent
->right
)
4363 x
->parent
->right
= y
;
4365 x
->parent
->left
= y
;
4376 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4379 mem_delete (struct mem_node
*z
)
4381 struct mem_node
*x
, *y
;
4383 if (!z
|| z
== MEM_NIL
)
4386 if (z
->left
== MEM_NIL
|| z
->right
== MEM_NIL
)
4391 while (y
->left
!= MEM_NIL
)
4395 if (y
->left
!= MEM_NIL
)
4400 x
->parent
= y
->parent
;
4403 if (y
== y
->parent
->left
)
4404 y
->parent
->left
= x
;
4406 y
->parent
->right
= x
;
4413 z
->start
= y
->start
;
4418 if (y
->color
== MEM_BLACK
)
4419 mem_delete_fixup (x
);
4421 #ifdef GC_MALLOC_CHECK
4429 /* Re-establish the red-black properties of the tree, after a
4433 mem_delete_fixup (struct mem_node
*x
)
4435 while (x
!= mem_root
&& x
->color
== MEM_BLACK
)
4437 if (x
== x
->parent
->left
)
4439 struct mem_node
*w
= x
->parent
->right
;
4441 if (w
->color
== MEM_RED
)
4443 w
->color
= MEM_BLACK
;
4444 x
->parent
->color
= MEM_RED
;
4445 mem_rotate_left (x
->parent
);
4446 w
= x
->parent
->right
;
4449 if (w
->left
->color
== MEM_BLACK
&& w
->right
->color
== MEM_BLACK
)
4456 if (w
->right
->color
== MEM_BLACK
)
4458 w
->left
->color
= MEM_BLACK
;
4460 mem_rotate_right (w
);
4461 w
= x
->parent
->right
;
4463 w
->color
= x
->parent
->color
;
4464 x
->parent
->color
= MEM_BLACK
;
4465 w
->right
->color
= MEM_BLACK
;
4466 mem_rotate_left (x
->parent
);
4472 struct mem_node
*w
= x
->parent
->left
;
4474 if (w
->color
== MEM_RED
)
4476 w
->color
= MEM_BLACK
;
4477 x
->parent
->color
= MEM_RED
;
4478 mem_rotate_right (x
->parent
);
4479 w
= x
->parent
->left
;
4482 if (w
->right
->color
== MEM_BLACK
&& w
->left
->color
== MEM_BLACK
)
4489 if (w
->left
->color
== MEM_BLACK
)
4491 w
->right
->color
= MEM_BLACK
;
4493 mem_rotate_left (w
);
4494 w
= x
->parent
->left
;
4497 w
->color
= x
->parent
->color
;
4498 x
->parent
->color
= MEM_BLACK
;
4499 w
->left
->color
= MEM_BLACK
;
4500 mem_rotate_right (x
->parent
);
4506 x
->color
= MEM_BLACK
;
4510 /* Value is non-zero if P is a pointer to a live Lisp string on
4511 the heap. M is a pointer to the mem_block for P. */
4514 live_string_p (struct mem_node
*m
, void *p
)
4516 if (m
->type
== MEM_TYPE_STRING
)
4518 struct string_block
*b
= m
->start
;
4519 ptrdiff_t offset
= (char *) p
- (char *) &b
->strings
[0];
4521 /* P must point to the start of a Lisp_String structure, and it
4522 must not be on the free-list. */
4524 && offset
% sizeof b
->strings
[0] == 0
4525 && offset
< (STRING_BLOCK_SIZE
* sizeof b
->strings
[0])
4526 && ((struct Lisp_String
*) p
)->data
!= NULL
);
4533 /* Value is non-zero if P is a pointer to a live Lisp cons on
4534 the heap. M is a pointer to the mem_block for P. */
4537 live_cons_p (struct mem_node
*m
, void *p
)
4539 if (m
->type
== MEM_TYPE_CONS
)
4541 struct cons_block
*b
= m
->start
;
4542 ptrdiff_t offset
= (char *) p
- (char *) &b
->conses
[0];
4544 /* P must point to the start of a Lisp_Cons, not be
4545 one of the unused cells in the current cons block,
4546 and not be on the free-list. */
4548 && offset
% sizeof b
->conses
[0] == 0
4549 && offset
< (CONS_BLOCK_SIZE
* sizeof b
->conses
[0])
4551 || offset
/ sizeof b
->conses
[0] < cons_block_index
)
4552 && !EQ (((struct Lisp_Cons
*) p
)->car
, Vdead
));
4559 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4560 the heap. M is a pointer to the mem_block for P. */
4563 live_symbol_p (struct mem_node
*m
, void *p
)
4565 if (m
->type
== MEM_TYPE_SYMBOL
)
4567 struct symbol_block
*b
= m
->start
;
4568 ptrdiff_t offset
= (char *) p
- (char *) &b
->symbols
[0];
4570 /* P must point to the start of a Lisp_Symbol, not be
4571 one of the unused cells in the current symbol block,
4572 and not be on the free-list. */
4574 && offset
% sizeof b
->symbols
[0] == 0
4575 && offset
< (SYMBOL_BLOCK_SIZE
* sizeof b
->symbols
[0])
4576 && (b
!= symbol_block
4577 || offset
/ sizeof b
->symbols
[0] < symbol_block_index
)
4578 && !EQ (((struct Lisp_Symbol
*)p
)->function
, Vdead
));
4585 /* Value is non-zero if P is a pointer to a live Lisp float on
4586 the heap. M is a pointer to the mem_block for P. */
4589 live_float_p (struct mem_node
*m
, void *p
)
4591 if (m
->type
== MEM_TYPE_FLOAT
)
4593 struct float_block
*b
= m
->start
;
4594 ptrdiff_t offset
= (char *) p
- (char *) &b
->floats
[0];
4596 /* P must point to the start of a Lisp_Float and not be
4597 one of the unused cells in the current float block. */
4599 && offset
% sizeof b
->floats
[0] == 0
4600 && offset
< (FLOAT_BLOCK_SIZE
* sizeof b
->floats
[0])
4601 && (b
!= float_block
4602 || offset
/ sizeof b
->floats
[0] < float_block_index
));
4609 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4610 the heap. M is a pointer to the mem_block for P. */
4613 live_misc_p (struct mem_node
*m
, void *p
)
4615 if (m
->type
== MEM_TYPE_MISC
)
4617 struct marker_block
*b
= m
->start
;
4618 ptrdiff_t offset
= (char *) p
- (char *) &b
->markers
[0];
4620 /* P must point to the start of a Lisp_Misc, not be
4621 one of the unused cells in the current misc block,
4622 and not be on the free-list. */
4624 && offset
% sizeof b
->markers
[0] == 0
4625 && offset
< (MARKER_BLOCK_SIZE
* sizeof b
->markers
[0])
4626 && (b
!= marker_block
4627 || offset
/ sizeof b
->markers
[0] < marker_block_index
)
4628 && ((union Lisp_Misc
*) p
)->u_any
.type
!= Lisp_Misc_Free
);
4635 /* Value is non-zero if P is a pointer to a live vector-like object.
4636 M is a pointer to the mem_block for P. */
4639 live_vector_p (struct mem_node
*m
, void *p
)
4641 if (m
->type
== MEM_TYPE_VECTOR_BLOCK
)
4643 /* This memory node corresponds to a vector block. */
4644 struct vector_block
*block
= m
->start
;
4645 struct Lisp_Vector
*vector
= (struct Lisp_Vector
*) block
->data
;
4647 /* P is in the block's allocation range. Scan the block
4648 up to P and see whether P points to the start of some
4649 vector which is not on a free list. FIXME: check whether
4650 some allocation patterns (probably a lot of short vectors)
4651 may cause a substantial overhead of this loop. */
4652 while (VECTOR_IN_BLOCK (vector
, block
)
4653 && vector
<= (struct Lisp_Vector
*) p
)
4655 if (!PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FREE
) && vector
== p
)
4658 vector
= ADVANCE (vector
, vector_nbytes (vector
));
4661 else if (m
->type
== MEM_TYPE_VECTORLIKE
&& p
== large_vector_vec (m
->start
))
4662 /* This memory node corresponds to a large vector. */
4668 /* Value is non-zero if P is a pointer to a live buffer. M is a
4669 pointer to the mem_block for P. */
4672 live_buffer_p (struct mem_node
*m
, void *p
)
4674 /* P must point to the start of the block, and the buffer
4675 must not have been killed. */
4676 return (m
->type
== MEM_TYPE_BUFFER
4678 && !NILP (((struct buffer
*) p
)->name_
));
4681 /* Mark OBJ if we can prove it's a Lisp_Object. */
4684 mark_maybe_object (Lisp_Object obj
)
4688 VALGRIND_MAKE_MEM_DEFINED (&obj
, sizeof (obj
));
4694 void *po
= XPNTR (obj
);
4695 struct mem_node
*m
= mem_find (po
);
4699 bool mark_p
= false;
4701 switch (XTYPE (obj
))
4704 mark_p
= (live_string_p (m
, po
)
4705 && !STRING_MARKED_P ((struct Lisp_String
*) po
));
4709 mark_p
= (live_cons_p (m
, po
) && !CONS_MARKED_P (XCONS (obj
)));
4713 mark_p
= (live_symbol_p (m
, po
) && !XSYMBOL (obj
)->gcmarkbit
);
4717 mark_p
= (live_float_p (m
, po
) && !FLOAT_MARKED_P (XFLOAT (obj
)));
4720 case Lisp_Vectorlike
:
4721 /* Note: can't check BUFFERP before we know it's a
4722 buffer because checking that dereferences the pointer
4723 PO which might point anywhere. */
4724 if (live_vector_p (m
, po
))
4725 mark_p
= !SUBRP (obj
) && !VECTOR_MARKED_P (XVECTOR (obj
));
4726 else if (live_buffer_p (m
, po
))
4727 mark_p
= BUFFERP (obj
) && !VECTOR_MARKED_P (XBUFFER (obj
));
4731 mark_p
= (live_misc_p (m
, po
) && !XMISCANY (obj
)->gcmarkbit
);
4743 /* Return true if P can point to Lisp data, and false otherwise.
4744 Symbols are implemented via offsets not pointers, but the offsets
4745 are also multiples of GCALIGNMENT. */
4748 maybe_lisp_pointer (void *p
)
4750 return (uintptr_t) p
% GCALIGNMENT
== 0;
4753 #ifndef HAVE_MODULES
4754 enum { HAVE_MODULES
= false };
4757 /* If P points to Lisp data, mark that as live if it isn't already
4761 mark_maybe_pointer (void *p
)
4767 VALGRIND_MAKE_MEM_DEFINED (&p
, sizeof (p
));
4770 if (sizeof (Lisp_Object
) == sizeof (void *) || !HAVE_MODULES
)
4772 if (!maybe_lisp_pointer (p
))
4777 /* For the wide-int case, also mark emacs_value tagged pointers,
4778 which can be generated by emacs-module.c's value_to_lisp. */
4779 p
= (void *) ((uintptr_t) p
& ~(GCALIGNMENT
- 1));
4785 Lisp_Object obj
= Qnil
;
4789 case MEM_TYPE_NON_LISP
:
4790 case MEM_TYPE_SPARE
:
4791 /* Nothing to do; not a pointer to Lisp memory. */
4794 case MEM_TYPE_BUFFER
:
4795 if (live_buffer_p (m
, p
) && !VECTOR_MARKED_P ((struct buffer
*)p
))
4796 XSETVECTOR (obj
, p
);
4800 if (live_cons_p (m
, p
) && !CONS_MARKED_P ((struct Lisp_Cons
*) p
))
4804 case MEM_TYPE_STRING
:
4805 if (live_string_p (m
, p
)
4806 && !STRING_MARKED_P ((struct Lisp_String
*) p
))
4807 XSETSTRING (obj
, p
);
4811 if (live_misc_p (m
, p
) && !((struct Lisp_Free
*) p
)->gcmarkbit
)
4815 case MEM_TYPE_SYMBOL
:
4816 if (live_symbol_p (m
, p
) && !((struct Lisp_Symbol
*) p
)->gcmarkbit
)
4817 XSETSYMBOL (obj
, p
);
4820 case MEM_TYPE_FLOAT
:
4821 if (live_float_p (m
, p
) && !FLOAT_MARKED_P (p
))
4825 case MEM_TYPE_VECTORLIKE
:
4826 case MEM_TYPE_VECTOR_BLOCK
:
4827 if (live_vector_p (m
, p
))
4830 XSETVECTOR (tem
, p
);
4831 if (!SUBRP (tem
) && !VECTOR_MARKED_P (XVECTOR (tem
)))
4846 /* Alignment of pointer values. Use alignof, as it sometimes returns
4847 a smaller alignment than GCC's __alignof__ and mark_memory might
4848 miss objects if __alignof__ were used. */
4849 #define GC_POINTER_ALIGNMENT alignof (void *)
4851 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4852 or END+OFFSET..START. */
4854 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4855 mark_memory (void *start
, void *end
)
4859 /* Make START the pointer to the start of the memory region,
4860 if it isn't already. */
4868 eassert (((uintptr_t) start
) % GC_POINTER_ALIGNMENT
== 0);
4870 /* Mark Lisp data pointed to. This is necessary because, in some
4871 situations, the C compiler optimizes Lisp objects away, so that
4872 only a pointer to them remains. Example:
4874 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4877 Lisp_Object obj = build_string ("test");
4878 struct Lisp_String *s = XSTRING (obj);
4879 Fgarbage_collect ();
4880 fprintf (stderr, "test '%s'\n", s->data);
4884 Here, `obj' isn't really used, and the compiler optimizes it
4885 away. The only reference to the life string is through the
4888 for (pp
= start
; (void *) pp
< end
; pp
+= GC_POINTER_ALIGNMENT
)
4890 mark_maybe_pointer (*(void **) pp
);
4891 mark_maybe_object (*(Lisp_Object
*) pp
);
4895 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4897 static bool setjmp_tested_p
;
4898 static int longjmps_done
;
4900 #define SETJMP_WILL_LIKELY_WORK "\
4902 Emacs garbage collector has been changed to use conservative stack\n\
4903 marking. Emacs has determined that the method it uses to do the\n\
4904 marking will likely work on your system, but this isn't sure.\n\
4906 If you are a system-programmer, or can get the help of a local wizard\n\
4907 who is, please take a look at the function mark_stack in alloc.c, and\n\
4908 verify that the methods used are appropriate for your system.\n\
4910 Please mail the result to <emacs-devel@gnu.org>.\n\
4913 #define SETJMP_WILL_NOT_WORK "\
4915 Emacs garbage collector has been changed to use conservative stack\n\
4916 marking. Emacs has determined that the default method it uses to do the\n\
4917 marking will not work on your system. We will need a system-dependent\n\
4918 solution for your system.\n\
4920 Please take a look at the function mark_stack in alloc.c, and\n\
4921 try to find a way to make it work on your system.\n\
4923 Note that you may get false negatives, depending on the compiler.\n\
4924 In particular, you need to use -O with GCC for this test.\n\
4926 Please mail the result to <emacs-devel@gnu.org>.\n\
4930 /* Perform a quick check if it looks like setjmp saves registers in a
4931 jmp_buf. Print a message to stderr saying so. When this test
4932 succeeds, this is _not_ a proof that setjmp is sufficient for
4933 conservative stack marking. Only the sources or a disassembly
4943 /* Arrange for X to be put in a register. */
4949 if (longjmps_done
== 1)
4951 /* Came here after the longjmp at the end of the function.
4953 If x == 1, the longjmp has restored the register to its
4954 value before the setjmp, and we can hope that setjmp
4955 saves all such registers in the jmp_buf, although that
4958 For other values of X, either something really strange is
4959 taking place, or the setjmp just didn't save the register. */
4962 fprintf (stderr
, SETJMP_WILL_LIKELY_WORK
);
4965 fprintf (stderr
, SETJMP_WILL_NOT_WORK
);
4972 if (longjmps_done
== 1)
4973 sys_longjmp (jbuf
, 1);
4976 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4979 /* Mark live Lisp objects on the C stack.
4981 There are several system-dependent problems to consider when
4982 porting this to new architectures:
4986 We have to mark Lisp objects in CPU registers that can hold local
4987 variables or are used to pass parameters.
4989 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4990 something that either saves relevant registers on the stack, or
4991 calls mark_maybe_object passing it each register's contents.
4993 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4994 implementation assumes that calling setjmp saves registers we need
4995 to see in a jmp_buf which itself lies on the stack. This doesn't
4996 have to be true! It must be verified for each system, possibly
4997 by taking a look at the source code of setjmp.
4999 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
5000 can use it as a machine independent method to store all registers
5001 to the stack. In this case the macros described in the previous
5002 two paragraphs are not used.
5006 Architectures differ in the way their processor stack is organized.
5007 For example, the stack might look like this
5010 | Lisp_Object | size = 4
5012 | something else | size = 2
5014 | Lisp_Object | size = 4
5018 In such a case, not every Lisp_Object will be aligned equally. To
5019 find all Lisp_Object on the stack it won't be sufficient to walk
5020 the stack in steps of 4 bytes. Instead, two passes will be
5021 necessary, one starting at the start of the stack, and a second
5022 pass starting at the start of the stack + 2. Likewise, if the
5023 minimal alignment of Lisp_Objects on the stack is 1, four passes
5024 would be necessary, each one starting with one byte more offset
5025 from the stack start. */
5028 mark_stack (void *end
)
5031 /* This assumes that the stack is a contiguous region in memory. If
5032 that's not the case, something has to be done here to iterate
5033 over the stack segments. */
5034 mark_memory (stack_base
, end
);
5036 /* Allow for marking a secondary stack, like the register stack on the
5038 #ifdef GC_MARK_SECONDARY_STACK
5039 GC_MARK_SECONDARY_STACK ();
5044 c_symbol_p (struct Lisp_Symbol
*sym
)
5046 char *lispsym_ptr
= (char *) lispsym
;
5047 char *sym_ptr
= (char *) sym
;
5048 ptrdiff_t lispsym_offset
= sym_ptr
- lispsym_ptr
;
5049 return 0 <= lispsym_offset
&& lispsym_offset
< sizeof lispsym
;
5052 /* Determine whether it is safe to access memory at address P. */
5054 valid_pointer_p (void *p
)
5057 return w32_valid_pointer_p (p
, 16);
5060 if (ADDRESS_SANITIZER
)
5065 /* Obviously, we cannot just access it (we would SEGV trying), so we
5066 trick the o/s to tell us whether p is a valid pointer.
5067 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5068 not validate p in that case. */
5070 if (emacs_pipe (fd
) == 0)
5072 bool valid
= emacs_write (fd
[1], p
, 16) == 16;
5073 emacs_close (fd
[1]);
5074 emacs_close (fd
[0]);
5082 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5083 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5084 cannot validate OBJ. This function can be quite slow, so its primary
5085 use is the manual debugging. The only exception is print_object, where
5086 we use it to check whether the memory referenced by the pointer of
5087 Lisp_Save_Value object contains valid objects. */
5090 valid_lisp_object_p (Lisp_Object obj
)
5095 void *p
= XPNTR (obj
);
5099 if (SYMBOLP (obj
) && c_symbol_p (p
))
5100 return ((char *) p
- (char *) lispsym
) % sizeof lispsym
[0] == 0;
5102 if (p
== &buffer_defaults
|| p
== &buffer_local_symbols
)
5105 struct mem_node
*m
= mem_find (p
);
5109 int valid
= valid_pointer_p (p
);
5121 case MEM_TYPE_NON_LISP
:
5122 case MEM_TYPE_SPARE
:
5125 case MEM_TYPE_BUFFER
:
5126 return live_buffer_p (m
, p
) ? 1 : 2;
5129 return live_cons_p (m
, p
);
5131 case MEM_TYPE_STRING
:
5132 return live_string_p (m
, p
);
5135 return live_misc_p (m
, p
);
5137 case MEM_TYPE_SYMBOL
:
5138 return live_symbol_p (m
, p
);
5140 case MEM_TYPE_FLOAT
:
5141 return live_float_p (m
, p
);
5143 case MEM_TYPE_VECTORLIKE
:
5144 case MEM_TYPE_VECTOR_BLOCK
:
5145 return live_vector_p (m
, p
);
5154 /***********************************************************************
5155 Pure Storage Management
5156 ***********************************************************************/
5158 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5159 pointer to it. TYPE is the Lisp type for which the memory is
5160 allocated. TYPE < 0 means it's not used for a Lisp object. */
5163 pure_alloc (size_t size
, int type
)
5170 /* Allocate space for a Lisp object from the beginning of the free
5171 space with taking account of alignment. */
5172 result
= ALIGN (purebeg
+ pure_bytes_used_lisp
, GCALIGNMENT
);
5173 pure_bytes_used_lisp
= ((char *)result
- (char *)purebeg
) + size
;
5177 /* Allocate space for a non-Lisp object from the end of the free
5179 pure_bytes_used_non_lisp
+= size
;
5180 result
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
5182 pure_bytes_used
= pure_bytes_used_lisp
+ pure_bytes_used_non_lisp
;
5184 if (pure_bytes_used
<= pure_size
)
5187 /* Don't allocate a large amount here,
5188 because it might get mmap'd and then its address
5189 might not be usable. */
5190 purebeg
= xmalloc (10000);
5192 pure_bytes_used_before_overflow
+= pure_bytes_used
- size
;
5193 pure_bytes_used
= 0;
5194 pure_bytes_used_lisp
= pure_bytes_used_non_lisp
= 0;
5199 /* Print a warning if PURESIZE is too small. */
5202 check_pure_size (void)
5204 if (pure_bytes_used_before_overflow
)
5205 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI
"d"
5207 pure_bytes_used
+ pure_bytes_used_before_overflow
);
5211 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5212 the non-Lisp data pool of the pure storage, and return its start
5213 address. Return NULL if not found. */
5216 find_string_data_in_pure (const char *data
, ptrdiff_t nbytes
)
5219 ptrdiff_t skip
, bm_skip
[256], last_char_skip
, infinity
, start
, start_max
;
5220 const unsigned char *p
;
5223 if (pure_bytes_used_non_lisp
<= nbytes
)
5226 /* Set up the Boyer-Moore table. */
5228 for (i
= 0; i
< 256; i
++)
5231 p
= (const unsigned char *) data
;
5233 bm_skip
[*p
++] = skip
;
5235 last_char_skip
= bm_skip
['\0'];
5237 non_lisp_beg
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
5238 start_max
= pure_bytes_used_non_lisp
- (nbytes
+ 1);
5240 /* See the comments in the function `boyer_moore' (search.c) for the
5241 use of `infinity'. */
5242 infinity
= pure_bytes_used_non_lisp
+ 1;
5243 bm_skip
['\0'] = infinity
;
5245 p
= (const unsigned char *) non_lisp_beg
+ nbytes
;
5249 /* Check the last character (== '\0'). */
5252 start
+= bm_skip
[*(p
+ start
)];
5254 while (start
<= start_max
);
5256 if (start
< infinity
)
5257 /* Couldn't find the last character. */
5260 /* No less than `infinity' means we could find the last
5261 character at `p[start - infinity]'. */
5264 /* Check the remaining characters. */
5265 if (memcmp (data
, non_lisp_beg
+ start
, nbytes
) == 0)
5267 return non_lisp_beg
+ start
;
5269 start
+= last_char_skip
;
5271 while (start
<= start_max
);
5277 /* Return a string allocated in pure space. DATA is a buffer holding
5278 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5279 means make the result string multibyte.
5281 Must get an error if pure storage is full, since if it cannot hold
5282 a large string it may be able to hold conses that point to that
5283 string; then the string is not protected from gc. */
5286 make_pure_string (const char *data
,
5287 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
5290 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5291 s
->data
= (unsigned char *) find_string_data_in_pure (data
, nbytes
);
5292 if (s
->data
== NULL
)
5294 s
->data
= pure_alloc (nbytes
+ 1, -1);
5295 memcpy (s
->data
, data
, nbytes
);
5296 s
->data
[nbytes
] = '\0';
5299 s
->size_byte
= multibyte
? nbytes
: -1;
5300 s
->intervals
= NULL
;
5301 XSETSTRING (string
, s
);
5305 /* Return a string allocated in pure space. Do not
5306 allocate the string data, just point to DATA. */
5309 make_pure_c_string (const char *data
, ptrdiff_t nchars
)
5312 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5315 s
->data
= (unsigned char *) data
;
5316 s
->intervals
= NULL
;
5317 XSETSTRING (string
, s
);
5321 static Lisp_Object
purecopy (Lisp_Object obj
);
5323 /* Return a cons allocated from pure space. Give it pure copies
5324 of CAR as car and CDR as cdr. */
5327 pure_cons (Lisp_Object car
, Lisp_Object cdr
)
5330 struct Lisp_Cons
*p
= pure_alloc (sizeof *p
, Lisp_Cons
);
5332 XSETCAR (new, purecopy (car
));
5333 XSETCDR (new, purecopy (cdr
));
5338 /* Value is a float object with value NUM allocated from pure space. */
5341 make_pure_float (double num
)
5344 struct Lisp_Float
*p
= pure_alloc (sizeof *p
, Lisp_Float
);
5346 XFLOAT_INIT (new, num
);
5351 /* Return a vector with room for LEN Lisp_Objects allocated from
5355 make_pure_vector (ptrdiff_t len
)
5358 size_t size
= header_size
+ len
* word_size
;
5359 struct Lisp_Vector
*p
= pure_alloc (size
, Lisp_Vectorlike
);
5360 XSETVECTOR (new, p
);
5361 XVECTOR (new)->header
.size
= len
;
5365 DEFUN ("purecopy", Fpurecopy
, Spurecopy
, 1, 1, 0,
5366 doc
: /* Make a copy of object OBJ in pure storage.
5367 Recursively copies contents of vectors and cons cells.
5368 Does not copy symbols. Copies strings without text properties. */)
5369 (register Lisp_Object obj
)
5371 if (NILP (Vpurify_flag
))
5373 else if (MARKERP (obj
) || OVERLAYP (obj
)
5374 || HASH_TABLE_P (obj
) || SYMBOLP (obj
))
5375 /* Can't purify those. */
5378 return purecopy (obj
);
5382 purecopy (Lisp_Object obj
)
5385 || (! SYMBOLP (obj
) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj
)))
5387 return obj
; /* Already pure. */
5389 if (STRINGP (obj
) && XSTRING (obj
)->intervals
)
5390 message_with_string ("Dropping text-properties while making string `%s' pure",
5393 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5395 Lisp_Object tmp
= Fgethash (obj
, Vpurify_flag
, Qnil
);
5401 obj
= pure_cons (XCAR (obj
), XCDR (obj
));
5402 else if (FLOATP (obj
))
5403 obj
= make_pure_float (XFLOAT_DATA (obj
));
5404 else if (STRINGP (obj
))
5405 obj
= make_pure_string (SSDATA (obj
), SCHARS (obj
),
5407 STRING_MULTIBYTE (obj
));
5408 else if (COMPILEDP (obj
) || VECTORP (obj
) || HASH_TABLE_P (obj
))
5410 struct Lisp_Vector
*objp
= XVECTOR (obj
);
5411 ptrdiff_t nbytes
= vector_nbytes (objp
);
5412 struct Lisp_Vector
*vec
= pure_alloc (nbytes
, Lisp_Vectorlike
);
5413 register ptrdiff_t i
;
5414 ptrdiff_t size
= ASIZE (obj
);
5415 if (size
& PSEUDOVECTOR_FLAG
)
5416 size
&= PSEUDOVECTOR_SIZE_MASK
;
5417 memcpy (vec
, objp
, nbytes
);
5418 for (i
= 0; i
< size
; i
++)
5419 vec
->contents
[i
] = purecopy (vec
->contents
[i
]);
5420 XSETVECTOR (obj
, vec
);
5422 else if (SYMBOLP (obj
))
5424 if (!XSYMBOL (obj
)->pinned
&& !c_symbol_p (XSYMBOL (obj
)))
5425 { /* We can't purify them, but they appear in many pure objects.
5426 Mark them as `pinned' so we know to mark them at every GC cycle. */
5427 XSYMBOL (obj
)->pinned
= true;
5428 symbol_block_pinned
= symbol_block
;
5430 /* Don't hash-cons it. */
5435 AUTO_STRING (fmt
, "Don't know how to purify: %S");
5436 Fsignal (Qerror
, list1 (CALLN (Fformat
, fmt
, obj
)));
5439 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5440 Fputhash (obj
, obj
, Vpurify_flag
);
5447 /***********************************************************************
5449 ***********************************************************************/
5451 /* Put an entry in staticvec, pointing at the variable with address
5455 staticpro (Lisp_Object
*varaddress
)
5457 if (staticidx
>= NSTATICS
)
5458 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5459 staticvec
[staticidx
++] = varaddress
;
5463 /***********************************************************************
5465 ***********************************************************************/
5467 /* Temporarily prevent garbage collection. */
5470 inhibit_garbage_collection (void)
5472 ptrdiff_t count
= SPECPDL_INDEX ();
5474 specbind (Qgc_cons_threshold
, make_number (MOST_POSITIVE_FIXNUM
));
5478 /* Used to avoid possible overflows when
5479 converting from C to Lisp integers. */
5482 bounded_number (EMACS_INT number
)
5484 return make_number (min (MOST_POSITIVE_FIXNUM
, number
));
5487 /* Calculate total bytes of live objects. */
5490 total_bytes_of_live_objects (void)
5493 tot
+= total_conses
* sizeof (struct Lisp_Cons
);
5494 tot
+= total_symbols
* sizeof (struct Lisp_Symbol
);
5495 tot
+= total_markers
* sizeof (union Lisp_Misc
);
5496 tot
+= total_string_bytes
;
5497 tot
+= total_vector_slots
* word_size
;
5498 tot
+= total_floats
* sizeof (struct Lisp_Float
);
5499 tot
+= total_intervals
* sizeof (struct interval
);
5500 tot
+= total_strings
* sizeof (struct Lisp_String
);
5504 #ifdef HAVE_WINDOW_SYSTEM
5506 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5507 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5510 compact_font_cache_entry (Lisp_Object entry
)
5512 Lisp_Object tail
, *prev
= &entry
;
5514 for (tail
= entry
; CONSP (tail
); tail
= XCDR (tail
))
5517 Lisp_Object obj
= XCAR (tail
);
5519 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5520 if (CONSP (obj
) && GC_FONT_SPEC_P (XCAR (obj
))
5521 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj
)))
5522 /* Don't use VECTORP here, as that calls ASIZE, which could
5523 hit assertion violation during GC. */
5524 && (VECTORLIKEP (XCDR (obj
))
5525 && ! (gc_asize (XCDR (obj
)) & PSEUDOVECTOR_FLAG
)))
5527 ptrdiff_t i
, size
= gc_asize (XCDR (obj
));
5528 Lisp_Object obj_cdr
= XCDR (obj
);
5530 /* If font-spec is not marked, most likely all font-entities
5531 are not marked too. But we must be sure that nothing is
5532 marked within OBJ before we really drop it. */
5533 for (i
= 0; i
< size
; i
++)
5535 Lisp_Object objlist
;
5537 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr
, i
))))
5540 objlist
= AREF (AREF (obj_cdr
, i
), FONT_OBJLIST_INDEX
);
5541 for (; CONSP (objlist
); objlist
= XCDR (objlist
))
5543 Lisp_Object val
= XCAR (objlist
);
5544 struct font
*font
= GC_XFONT_OBJECT (val
);
5546 if (!NILP (AREF (val
, FONT_TYPE_INDEX
))
5547 && VECTOR_MARKED_P(font
))
5550 if (CONSP (objlist
))
5552 /* Found a marked font, bail out. */
5559 /* No marked fonts were found, so this entire font
5560 entity can be dropped. */
5565 *prev
= XCDR (tail
);
5567 prev
= xcdr_addr (tail
);
5572 /* Compact font caches on all terminals and mark
5573 everything which is still here after compaction. */
5576 compact_font_caches (void)
5580 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
5582 Lisp_Object cache
= TERMINAL_FONT_CACHE (t
);
5587 for (entry
= XCDR (cache
); CONSP (entry
); entry
= XCDR (entry
))
5588 XSETCAR (entry
, compact_font_cache_entry (XCAR (entry
)));
5590 mark_object (cache
);
5594 #else /* not HAVE_WINDOW_SYSTEM */
5596 #define compact_font_caches() (void)(0)
5598 #endif /* HAVE_WINDOW_SYSTEM */
5600 /* Remove (MARKER . DATA) entries with unmarked MARKER
5601 from buffer undo LIST and return changed list. */
5604 compact_undo_list (Lisp_Object list
)
5606 Lisp_Object tail
, *prev
= &list
;
5608 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
5610 if (CONSP (XCAR (tail
))
5611 && MARKERP (XCAR (XCAR (tail
)))
5612 && !XMARKER (XCAR (XCAR (tail
)))->gcmarkbit
)
5613 *prev
= XCDR (tail
);
5615 prev
= xcdr_addr (tail
);
5621 mark_pinned_symbols (void)
5623 struct symbol_block
*sblk
;
5624 int lim
= (symbol_block_pinned
== symbol_block
5625 ? symbol_block_index
: SYMBOL_BLOCK_SIZE
);
5627 for (sblk
= symbol_block_pinned
; sblk
; sblk
= sblk
->next
)
5629 union aligned_Lisp_Symbol
*sym
= sblk
->symbols
, *end
= sym
+ lim
;
5630 for (; sym
< end
; ++sym
)
5632 mark_object (make_lisp_symbol (&sym
->s
));
5634 lim
= SYMBOL_BLOCK_SIZE
;
5638 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5639 separate function so that we could limit mark_stack in searching
5640 the stack frames below this function, thus avoiding the rare cases
5641 where mark_stack finds values that look like live Lisp objects on
5642 portions of stack that couldn't possibly contain such live objects.
5643 For more details of this, see the discussion at
5644 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5646 garbage_collect_1 (void *end
)
5648 struct buffer
*nextb
;
5649 char stack_top_variable
;
5652 ptrdiff_t count
= SPECPDL_INDEX ();
5653 struct timespec start
;
5654 Lisp_Object retval
= Qnil
;
5655 size_t tot_before
= 0;
5660 /* Can't GC if pure storage overflowed because we can't determine
5661 if something is a pure object or not. */
5662 if (pure_bytes_used_before_overflow
)
5665 /* Record this function, so it appears on the profiler's backtraces. */
5666 record_in_backtrace (QAutomatic_GC
, 0, 0);
5670 /* Don't keep undo information around forever.
5671 Do this early on, so it is no problem if the user quits. */
5672 FOR_EACH_BUFFER (nextb
)
5673 compact_buffer (nextb
);
5675 if (profiler_memory_running
)
5676 tot_before
= total_bytes_of_live_objects ();
5678 start
= current_timespec ();
5680 /* In case user calls debug_print during GC,
5681 don't let that cause a recursive GC. */
5682 consing_since_gc
= 0;
5684 /* Save what's currently displayed in the echo area. Don't do that
5685 if we are GC'ing because we've run out of memory, since
5686 push_message will cons, and we might have no memory for that. */
5687 if (NILP (Vmemory_full
))
5689 message_p
= push_message ();
5690 record_unwind_protect_void (pop_message_unwind
);
5695 /* Save a copy of the contents of the stack, for debugging. */
5696 #if MAX_SAVE_STACK > 0
5697 if (NILP (Vpurify_flag
))
5700 ptrdiff_t stack_size
;
5701 if (&stack_top_variable
< stack_bottom
)
5703 stack
= &stack_top_variable
;
5704 stack_size
= stack_bottom
- &stack_top_variable
;
5708 stack
= stack_bottom
;
5709 stack_size
= &stack_top_variable
- stack_bottom
;
5711 if (stack_size
<= MAX_SAVE_STACK
)
5713 if (stack_copy_size
< stack_size
)
5715 stack_copy
= xrealloc (stack_copy
, stack_size
);
5716 stack_copy_size
= stack_size
;
5718 no_sanitize_memcpy (stack_copy
, stack
, stack_size
);
5721 #endif /* MAX_SAVE_STACK > 0 */
5723 if (garbage_collection_messages
)
5724 message1_nolog ("Garbage collecting...");
5728 shrink_regexp_cache ();
5732 /* Mark all the special slots that serve as the roots of accessibility. */
5734 mark_buffer (&buffer_defaults
);
5735 mark_buffer (&buffer_local_symbols
);
5737 for (i
= 0; i
< ARRAYELTS (lispsym
); i
++)
5738 mark_object (builtin_lisp_symbol (i
));
5740 for (i
= 0; i
< staticidx
; i
++)
5741 mark_object (*staticvec
[i
]);
5743 mark_pinned_symbols ();
5755 struct handler
*handler
;
5756 for (handler
= handlerlist
; handler
; handler
= handler
->next
)
5758 mark_object (handler
->tag_or_ch
);
5759 mark_object (handler
->val
);
5762 #ifdef HAVE_WINDOW_SYSTEM
5763 mark_fringe_data ();
5766 /* Everything is now marked, except for the data in font caches,
5767 undo lists, and finalizers. The first two are compacted by
5768 removing an items which aren't reachable otherwise. */
5770 compact_font_caches ();
5772 FOR_EACH_BUFFER (nextb
)
5774 if (!EQ (BVAR (nextb
, undo_list
), Qt
))
5775 bset_undo_list (nextb
, compact_undo_list (BVAR (nextb
, undo_list
)));
5776 /* Now that we have stripped the elements that need not be
5777 in the undo_list any more, we can finally mark the list. */
5778 mark_object (BVAR (nextb
, undo_list
));
5781 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5782 to doomed_finalizers so we can run their associated functions
5783 after GC. It's important to scan finalizers at this stage so
5784 that we can be sure that unmarked finalizers are really
5785 unreachable except for references from their associated functions
5786 and from other finalizers. */
5788 queue_doomed_finalizers (&doomed_finalizers
, &finalizers
);
5789 mark_finalizer_list (&doomed_finalizers
);
5793 relocate_byte_stack ();
5795 /* Clear the mark bits that we set in certain root slots. */
5796 VECTOR_UNMARK (&buffer_defaults
);
5797 VECTOR_UNMARK (&buffer_local_symbols
);
5805 consing_since_gc
= 0;
5806 if (gc_cons_threshold
< GC_DEFAULT_THRESHOLD
/ 10)
5807 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
/ 10;
5809 gc_relative_threshold
= 0;
5810 if (FLOATP (Vgc_cons_percentage
))
5811 { /* Set gc_cons_combined_threshold. */
5812 double tot
= total_bytes_of_live_objects ();
5814 tot
*= XFLOAT_DATA (Vgc_cons_percentage
);
5817 if (tot
< TYPE_MAXIMUM (EMACS_INT
))
5818 gc_relative_threshold
= tot
;
5820 gc_relative_threshold
= TYPE_MAXIMUM (EMACS_INT
);
5824 if (garbage_collection_messages
&& NILP (Vmemory_full
))
5826 if (message_p
|| minibuf_level
> 0)
5829 message1_nolog ("Garbage collecting...done");
5832 unbind_to (count
, Qnil
);
5834 Lisp_Object total
[] = {
5835 list4 (Qconses
, make_number (sizeof (struct Lisp_Cons
)),
5836 bounded_number (total_conses
),
5837 bounded_number (total_free_conses
)),
5838 list4 (Qsymbols
, make_number (sizeof (struct Lisp_Symbol
)),
5839 bounded_number (total_symbols
),
5840 bounded_number (total_free_symbols
)),
5841 list4 (Qmiscs
, make_number (sizeof (union Lisp_Misc
)),
5842 bounded_number (total_markers
),
5843 bounded_number (total_free_markers
)),
5844 list4 (Qstrings
, make_number (sizeof (struct Lisp_String
)),
5845 bounded_number (total_strings
),
5846 bounded_number (total_free_strings
)),
5847 list3 (Qstring_bytes
, make_number (1),
5848 bounded_number (total_string_bytes
)),
5850 make_number (header_size
+ sizeof (Lisp_Object
)),
5851 bounded_number (total_vectors
)),
5852 list4 (Qvector_slots
, make_number (word_size
),
5853 bounded_number (total_vector_slots
),
5854 bounded_number (total_free_vector_slots
)),
5855 list4 (Qfloats
, make_number (sizeof (struct Lisp_Float
)),
5856 bounded_number (total_floats
),
5857 bounded_number (total_free_floats
)),
5858 list4 (Qintervals
, make_number (sizeof (struct interval
)),
5859 bounded_number (total_intervals
),
5860 bounded_number (total_free_intervals
)),
5861 list3 (Qbuffers
, make_number (sizeof (struct buffer
)),
5862 bounded_number (total_buffers
)),
5864 #ifdef DOUG_LEA_MALLOC
5865 list4 (Qheap
, make_number (1024),
5866 bounded_number ((mallinfo ().uordblks
+ 1023) >> 10),
5867 bounded_number ((mallinfo ().fordblks
+ 1023) >> 10)),
5870 retval
= CALLMANY (Flist
, total
);
5872 /* GC is complete: now we can run our finalizer callbacks. */
5873 run_finalizers (&doomed_finalizers
);
5875 if (!NILP (Vpost_gc_hook
))
5877 ptrdiff_t gc_count
= inhibit_garbage_collection ();
5878 safe_run_hooks (Qpost_gc_hook
);
5879 unbind_to (gc_count
, Qnil
);
5882 /* Accumulate statistics. */
5883 if (FLOATP (Vgc_elapsed
))
5885 struct timespec since_start
= timespec_sub (current_timespec (), start
);
5886 Vgc_elapsed
= make_float (XFLOAT_DATA (Vgc_elapsed
)
5887 + timespectod (since_start
));
5892 /* Collect profiling data. */
5893 if (profiler_memory_running
)
5896 size_t tot_after
= total_bytes_of_live_objects ();
5897 if (tot_before
> tot_after
)
5898 swept
= tot_before
- tot_after
;
5899 malloc_probe (swept
);
5905 DEFUN ("garbage-collect", Fgarbage_collect
, Sgarbage_collect
, 0, 0, "",
5906 doc
: /* Reclaim storage for Lisp objects no longer needed.
5907 Garbage collection happens automatically if you cons more than
5908 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5909 `garbage-collect' normally returns a list with info on amount of space in use,
5910 where each entry has the form (NAME SIZE USED FREE), where:
5911 - NAME is a symbol describing the kind of objects this entry represents,
5912 - SIZE is the number of bytes used by each one,
5913 - USED is the number of those objects that were found live in the heap,
5914 - FREE is the number of those objects that are not live but that Emacs
5915 keeps around for future allocations (maybe because it does not know how
5916 to return them to the OS).
5917 However, if there was overflow in pure space, `garbage-collect'
5918 returns nil, because real GC can't be done.
5919 See Info node `(elisp)Garbage Collection'. */)
5924 #ifdef HAVE___BUILTIN_UNWIND_INIT
5925 /* Force callee-saved registers and register windows onto the stack.
5926 This is the preferred method if available, obviating the need for
5927 machine dependent methods. */
5928 __builtin_unwind_init ();
5930 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5931 #ifndef GC_SAVE_REGISTERS_ON_STACK
5932 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5933 union aligned_jmpbuf
{
5937 volatile bool stack_grows_down_p
= (char *) &j
> (char *) stack_base
;
5939 /* This trick flushes the register windows so that all the state of
5940 the process is contained in the stack. */
5941 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5942 needed on ia64 too. See mach_dep.c, where it also says inline
5943 assembler doesn't work with relevant proprietary compilers. */
5945 #if defined (__sparc64__) && defined (__FreeBSD__)
5946 /* FreeBSD does not have a ta 3 handler. */
5953 /* Save registers that we need to see on the stack. We need to see
5954 registers used to hold register variables and registers used to
5956 #ifdef GC_SAVE_REGISTERS_ON_STACK
5957 GC_SAVE_REGISTERS_ON_STACK (end
);
5958 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5960 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5961 setjmp will definitely work, test it
5962 and print a message with the result
5964 if (!setjmp_tested_p
)
5966 setjmp_tested_p
= 1;
5969 #endif /* GC_SETJMP_WORKS */
5972 end
= stack_grows_down_p
? (char *) &j
+ sizeof j
: (char *) &j
;
5973 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5974 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5975 return garbage_collect_1 (end
);
5978 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5979 only interesting objects referenced from glyphs are strings. */
5982 mark_glyph_matrix (struct glyph_matrix
*matrix
)
5984 struct glyph_row
*row
= matrix
->rows
;
5985 struct glyph_row
*end
= row
+ matrix
->nrows
;
5987 for (; row
< end
; ++row
)
5991 for (area
= LEFT_MARGIN_AREA
; area
< LAST_AREA
; ++area
)
5993 struct glyph
*glyph
= row
->glyphs
[area
];
5994 struct glyph
*end_glyph
= glyph
+ row
->used
[area
];
5996 for (; glyph
< end_glyph
; ++glyph
)
5997 if (STRINGP (glyph
->object
)
5998 && !STRING_MARKED_P (XSTRING (glyph
->object
)))
5999 mark_object (glyph
->object
);
6004 /* Mark reference to a Lisp_Object.
6005 If the object referred to has not been seen yet, recursively mark
6006 all the references contained in it. */
6008 #define LAST_MARKED_SIZE 500
6009 static Lisp_Object last_marked
[LAST_MARKED_SIZE
];
6010 static int last_marked_index
;
6012 /* For debugging--call abort when we cdr down this many
6013 links of a list, in mark_object. In debugging,
6014 the call to abort will hit a breakpoint.
6015 Normally this is zero and the check never goes off. */
6016 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE
;
6019 mark_vectorlike (struct Lisp_Vector
*ptr
)
6021 ptrdiff_t size
= ptr
->header
.size
;
6024 eassert (!VECTOR_MARKED_P (ptr
));
6025 VECTOR_MARK (ptr
); /* Else mark it. */
6026 if (size
& PSEUDOVECTOR_FLAG
)
6027 size
&= PSEUDOVECTOR_SIZE_MASK
;
6029 /* Note that this size is not the memory-footprint size, but only
6030 the number of Lisp_Object fields that we should trace.
6031 The distinction is used e.g. by Lisp_Process which places extra
6032 non-Lisp_Object fields at the end of the structure... */
6033 for (i
= 0; i
< size
; i
++) /* ...and then mark its elements. */
6034 mark_object (ptr
->contents
[i
]);
6037 /* Like mark_vectorlike but optimized for char-tables (and
6038 sub-char-tables) assuming that the contents are mostly integers or
6042 mark_char_table (struct Lisp_Vector
*ptr
, enum pvec_type pvectype
)
6044 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
6045 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6046 int i
, idx
= (pvectype
== PVEC_SUB_CHAR_TABLE
? SUB_CHAR_TABLE_OFFSET
: 0);
6048 eassert (!VECTOR_MARKED_P (ptr
));
6050 for (i
= idx
; i
< size
; i
++)
6052 Lisp_Object val
= ptr
->contents
[i
];
6054 if (INTEGERP (val
) || (SYMBOLP (val
) && XSYMBOL (val
)->gcmarkbit
))
6056 if (SUB_CHAR_TABLE_P (val
))
6058 if (! VECTOR_MARKED_P (XVECTOR (val
)))
6059 mark_char_table (XVECTOR (val
), PVEC_SUB_CHAR_TABLE
);
6066 NO_INLINE
/* To reduce stack depth in mark_object. */
6068 mark_compiled (struct Lisp_Vector
*ptr
)
6070 int i
, size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
6073 for (i
= 0; i
< size
; i
++)
6074 if (i
!= COMPILED_CONSTANTS
)
6075 mark_object (ptr
->contents
[i
]);
6076 return size
> COMPILED_CONSTANTS
? ptr
->contents
[COMPILED_CONSTANTS
] : Qnil
;
6079 /* Mark the chain of overlays starting at PTR. */
6082 mark_overlay (struct Lisp_Overlay
*ptr
)
6084 for (; ptr
&& !ptr
->gcmarkbit
; ptr
= ptr
->next
)
6087 /* These two are always markers and can be marked fast. */
6088 XMARKER (ptr
->start
)->gcmarkbit
= 1;
6089 XMARKER (ptr
->end
)->gcmarkbit
= 1;
6090 mark_object (ptr
->plist
);
6094 /* Mark Lisp_Objects and special pointers in BUFFER. */
6097 mark_buffer (struct buffer
*buffer
)
6099 /* This is handled much like other pseudovectors... */
6100 mark_vectorlike ((struct Lisp_Vector
*) buffer
);
6102 /* ...but there are some buffer-specific things. */
6104 MARK_INTERVAL_TREE (buffer_intervals (buffer
));
6106 /* For now, we just don't mark the undo_list. It's done later in
6107 a special way just before the sweep phase, and after stripping
6108 some of its elements that are not needed any more. */
6110 mark_overlay (buffer
->overlays_before
);
6111 mark_overlay (buffer
->overlays_after
);
6113 /* If this is an indirect buffer, mark its base buffer. */
6114 if (buffer
->base_buffer
&& !VECTOR_MARKED_P (buffer
->base_buffer
))
6115 mark_buffer (buffer
->base_buffer
);
6118 /* Mark Lisp faces in the face cache C. */
6120 NO_INLINE
/* To reduce stack depth in mark_object. */
6122 mark_face_cache (struct face_cache
*c
)
6127 for (i
= 0; i
< c
->used
; ++i
)
6129 struct face
*face
= FACE_OPT_FROM_ID (c
->f
, i
);
6133 if (face
->font
&& !VECTOR_MARKED_P (face
->font
))
6134 mark_vectorlike ((struct Lisp_Vector
*) face
->font
);
6136 for (j
= 0; j
< LFACE_VECTOR_SIZE
; ++j
)
6137 mark_object (face
->lface
[j
]);
6143 NO_INLINE
/* To reduce stack depth in mark_object. */
6145 mark_localized_symbol (struct Lisp_Symbol
*ptr
)
6147 struct Lisp_Buffer_Local_Value
*blv
= SYMBOL_BLV (ptr
);
6148 Lisp_Object where
= blv
->where
;
6149 /* If the value is set up for a killed buffer or deleted
6150 frame, restore its global binding. If the value is
6151 forwarded to a C variable, either it's not a Lisp_Object
6152 var, or it's staticpro'd already. */
6153 if ((BUFFERP (where
) && !BUFFER_LIVE_P (XBUFFER (where
)))
6154 || (FRAMEP (where
) && !FRAME_LIVE_P (XFRAME (where
))))
6155 swap_in_global_binding (ptr
);
6156 mark_object (blv
->where
);
6157 mark_object (blv
->valcell
);
6158 mark_object (blv
->defcell
);
6161 NO_INLINE
/* To reduce stack depth in mark_object. */
6163 mark_save_value (struct Lisp_Save_Value
*ptr
)
6165 /* If `save_type' is zero, `data[0].pointer' is the address
6166 of a memory area containing `data[1].integer' potential
6168 if (ptr
->save_type
== SAVE_TYPE_MEMORY
)
6170 Lisp_Object
*p
= ptr
->data
[0].pointer
;
6172 for (nelt
= ptr
->data
[1].integer
; nelt
> 0; nelt
--, p
++)
6173 mark_maybe_object (*p
);
6177 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6179 for (i
= 0; i
< SAVE_VALUE_SLOTS
; i
++)
6180 if (save_type (ptr
, i
) == SAVE_OBJECT
)
6181 mark_object (ptr
->data
[i
].object
);
6185 /* Remove killed buffers or items whose car is a killed buffer from
6186 LIST, and mark other items. Return changed LIST, which is marked. */
6189 mark_discard_killed_buffers (Lisp_Object list
)
6191 Lisp_Object tail
, *prev
= &list
;
6193 for (tail
= list
; CONSP (tail
) && !CONS_MARKED_P (XCONS (tail
));
6196 Lisp_Object tem
= XCAR (tail
);
6199 if (BUFFERP (tem
) && !BUFFER_LIVE_P (XBUFFER (tem
)))
6200 *prev
= XCDR (tail
);
6203 CONS_MARK (XCONS (tail
));
6204 mark_object (XCAR (tail
));
6205 prev
= xcdr_addr (tail
);
6212 /* Determine type of generic Lisp_Object and mark it accordingly.
6214 This function implements a straightforward depth-first marking
6215 algorithm and so the recursion depth may be very high (a few
6216 tens of thousands is not uncommon). To minimize stack usage,
6217 a few cold paths are moved out to NO_INLINE functions above.
6218 In general, inlining them doesn't help you to gain more speed. */
6221 mark_object (Lisp_Object arg
)
6223 register Lisp_Object obj
;
6225 #ifdef GC_CHECK_MARKED_OBJECTS
6228 ptrdiff_t cdr_count
= 0;
6237 last_marked
[last_marked_index
++] = obj
;
6238 if (last_marked_index
== LAST_MARKED_SIZE
)
6239 last_marked_index
= 0;
6241 /* Perform some sanity checks on the objects marked here. Abort if
6242 we encounter an object we know is bogus. This increases GC time
6244 #ifdef GC_CHECK_MARKED_OBJECTS
6246 /* Check that the object pointed to by PO is known to be a Lisp
6247 structure allocated from the heap. */
6248 #define CHECK_ALLOCATED() \
6250 m = mem_find (po); \
6255 /* Check that the object pointed to by PO is live, using predicate
6257 #define CHECK_LIVE(LIVEP) \
6259 if (!LIVEP (m, po)) \
6263 /* Check both of the above conditions, for non-symbols. */
6264 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6266 CHECK_ALLOCATED (); \
6267 CHECK_LIVE (LIVEP); \
6270 /* Check both of the above conditions, for symbols. */
6271 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6273 if (!c_symbol_p (ptr)) \
6275 CHECK_ALLOCATED (); \
6276 CHECK_LIVE (live_symbol_p); \
6280 #else /* not GC_CHECK_MARKED_OBJECTS */
6282 #define CHECK_LIVE(LIVEP) ((void) 0)
6283 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6284 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6286 #endif /* not GC_CHECK_MARKED_OBJECTS */
6288 switch (XTYPE (obj
))
6292 register struct Lisp_String
*ptr
= XSTRING (obj
);
6293 if (STRING_MARKED_P (ptr
))
6295 CHECK_ALLOCATED_AND_LIVE (live_string_p
);
6297 MARK_INTERVAL_TREE (ptr
->intervals
);
6298 #ifdef GC_CHECK_STRING_BYTES
6299 /* Check that the string size recorded in the string is the
6300 same as the one recorded in the sdata structure. */
6302 #endif /* GC_CHECK_STRING_BYTES */
6306 case Lisp_Vectorlike
:
6308 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
6309 register ptrdiff_t pvectype
;
6311 if (VECTOR_MARKED_P (ptr
))
6314 #ifdef GC_CHECK_MARKED_OBJECTS
6316 if (m
== MEM_NIL
&& !SUBRP (obj
))
6318 #endif /* GC_CHECK_MARKED_OBJECTS */
6320 if (ptr
->header
.size
& PSEUDOVECTOR_FLAG
)
6321 pvectype
= ((ptr
->header
.size
& PVEC_TYPE_MASK
)
6322 >> PSEUDOVECTOR_AREA_BITS
);
6324 pvectype
= PVEC_NORMAL_VECTOR
;
6326 if (pvectype
!= PVEC_SUBR
&& pvectype
!= PVEC_BUFFER
)
6327 CHECK_LIVE (live_vector_p
);
6332 #ifdef GC_CHECK_MARKED_OBJECTS
6341 #endif /* GC_CHECK_MARKED_OBJECTS */
6342 mark_buffer ((struct buffer
*) ptr
);
6346 /* Although we could treat this just like a vector, mark_compiled
6347 returns the COMPILED_CONSTANTS element, which is marked at the
6348 next iteration of goto-loop here. This is done to avoid a few
6349 recursive calls to mark_object. */
6350 obj
= mark_compiled (ptr
);
6357 struct frame
*f
= (struct frame
*) ptr
;
6359 mark_vectorlike (ptr
);
6360 mark_face_cache (f
->face_cache
);
6361 #ifdef HAVE_WINDOW_SYSTEM
6362 if (FRAME_WINDOW_P (f
) && FRAME_X_OUTPUT (f
))
6364 struct font
*font
= FRAME_FONT (f
);
6366 if (font
&& !VECTOR_MARKED_P (font
))
6367 mark_vectorlike ((struct Lisp_Vector
*) font
);
6375 struct window
*w
= (struct window
*) ptr
;
6377 mark_vectorlike (ptr
);
6379 /* Mark glyph matrices, if any. Marking window
6380 matrices is sufficient because frame matrices
6381 use the same glyph memory. */
6382 if (w
->current_matrix
)
6384 mark_glyph_matrix (w
->current_matrix
);
6385 mark_glyph_matrix (w
->desired_matrix
);
6388 /* Filter out killed buffers from both buffer lists
6389 in attempt to help GC to reclaim killed buffers faster.
6390 We can do it elsewhere for live windows, but this is the
6391 best place to do it for dead windows. */
6393 (w
, mark_discard_killed_buffers (w
->prev_buffers
));
6395 (w
, mark_discard_killed_buffers (w
->next_buffers
));
6399 case PVEC_HASH_TABLE
:
6401 struct Lisp_Hash_Table
*h
= (struct Lisp_Hash_Table
*) ptr
;
6403 mark_vectorlike (ptr
);
6404 mark_object (h
->test
.name
);
6405 mark_object (h
->test
.user_hash_function
);
6406 mark_object (h
->test
.user_cmp_function
);
6407 /* If hash table is not weak, mark all keys and values.
6408 For weak tables, mark only the vector. */
6410 mark_object (h
->key_and_value
);
6412 VECTOR_MARK (XVECTOR (h
->key_and_value
));
6416 case PVEC_CHAR_TABLE
:
6417 case PVEC_SUB_CHAR_TABLE
:
6418 mark_char_table (ptr
, (enum pvec_type
) pvectype
);
6421 case PVEC_BOOL_VECTOR
:
6422 /* No Lisp_Objects to mark in a bool vector. */
6433 mark_vectorlike (ptr
);
6440 register struct Lisp_Symbol
*ptr
= XSYMBOL (obj
);
6444 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6446 /* Attempt to catch bogus objects. */
6447 eassert (valid_lisp_object_p (ptr
->function
));
6448 mark_object (ptr
->function
);
6449 mark_object (ptr
->plist
);
6450 switch (ptr
->redirect
)
6452 case SYMBOL_PLAINVAL
: mark_object (SYMBOL_VAL (ptr
)); break;
6453 case SYMBOL_VARALIAS
:
6456 XSETSYMBOL (tem
, SYMBOL_ALIAS (ptr
));
6460 case SYMBOL_LOCALIZED
:
6461 mark_localized_symbol (ptr
);
6463 case SYMBOL_FORWARDED
:
6464 /* If the value is forwarded to a buffer or keyboard field,
6465 these are marked when we see the corresponding object.
6466 And if it's forwarded to a C variable, either it's not
6467 a Lisp_Object var, or it's staticpro'd already. */
6469 default: emacs_abort ();
6471 if (!PURE_P (XSTRING (ptr
->name
)))
6472 MARK_STRING (XSTRING (ptr
->name
));
6473 MARK_INTERVAL_TREE (string_intervals (ptr
->name
));
6474 /* Inner loop to mark next symbol in this bucket, if any. */
6475 po
= ptr
= ptr
->next
;
6482 CHECK_ALLOCATED_AND_LIVE (live_misc_p
);
6484 if (XMISCANY (obj
)->gcmarkbit
)
6487 switch (XMISCTYPE (obj
))
6489 case Lisp_Misc_Marker
:
6490 /* DO NOT mark thru the marker's chain.
6491 The buffer's markers chain does not preserve markers from gc;
6492 instead, markers are removed from the chain when freed by gc. */
6493 XMISCANY (obj
)->gcmarkbit
= 1;
6496 case Lisp_Misc_Save_Value
:
6497 XMISCANY (obj
)->gcmarkbit
= 1;
6498 mark_save_value (XSAVE_VALUE (obj
));
6501 case Lisp_Misc_Overlay
:
6502 mark_overlay (XOVERLAY (obj
));
6505 case Lisp_Misc_Finalizer
:
6506 XMISCANY (obj
)->gcmarkbit
= true;
6507 mark_object (XFINALIZER (obj
)->function
);
6511 case Lisp_Misc_User_Ptr
:
6512 XMISCANY (obj
)->gcmarkbit
= true;
6523 register struct Lisp_Cons
*ptr
= XCONS (obj
);
6524 if (CONS_MARKED_P (ptr
))
6526 CHECK_ALLOCATED_AND_LIVE (live_cons_p
);
6528 /* If the cdr is nil, avoid recursion for the car. */
6529 if (EQ (ptr
->u
.cdr
, Qnil
))
6535 mark_object (ptr
->car
);
6538 if (cdr_count
== mark_object_loop_halt
)
6544 CHECK_ALLOCATED_AND_LIVE (live_float_p
);
6545 FLOAT_MARK (XFLOAT (obj
));
6556 #undef CHECK_ALLOCATED
6557 #undef CHECK_ALLOCATED_AND_LIVE
6559 /* Mark the Lisp pointers in the terminal objects.
6560 Called by Fgarbage_collect. */
6563 mark_terminals (void)
6566 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
6568 eassert (t
->name
!= NULL
);
6569 #ifdef HAVE_WINDOW_SYSTEM
6570 /* If a terminal object is reachable from a stacpro'ed object,
6571 it might have been marked already. Make sure the image cache
6573 mark_image_cache (t
->image_cache
);
6574 #endif /* HAVE_WINDOW_SYSTEM */
6575 if (!VECTOR_MARKED_P (t
))
6576 mark_vectorlike ((struct Lisp_Vector
*)t
);
6582 /* Value is non-zero if OBJ will survive the current GC because it's
6583 either marked or does not need to be marked to survive. */
6586 survives_gc_p (Lisp_Object obj
)
6590 switch (XTYPE (obj
))
6597 survives_p
= XSYMBOL (obj
)->gcmarkbit
;
6601 survives_p
= XMISCANY (obj
)->gcmarkbit
;
6605 survives_p
= STRING_MARKED_P (XSTRING (obj
));
6608 case Lisp_Vectorlike
:
6609 survives_p
= SUBRP (obj
) || VECTOR_MARKED_P (XVECTOR (obj
));
6613 survives_p
= CONS_MARKED_P (XCONS (obj
));
6617 survives_p
= FLOAT_MARKED_P (XFLOAT (obj
));
6624 return survives_p
|| PURE_P (XPNTR (obj
));
6630 NO_INLINE
/* For better stack traces */
6634 struct cons_block
*cblk
;
6635 struct cons_block
**cprev
= &cons_block
;
6636 int lim
= cons_block_index
;
6637 EMACS_INT num_free
= 0, num_used
= 0;
6641 for (cblk
= cons_block
; cblk
; cblk
= *cprev
)
6645 int ilim
= (lim
+ BITS_PER_BITS_WORD
- 1) / BITS_PER_BITS_WORD
;
6647 /* Scan the mark bits an int at a time. */
6648 for (i
= 0; i
< ilim
; i
++)
6650 if (cblk
->gcmarkbits
[i
] == BITS_WORD_MAX
)
6652 /* Fast path - all cons cells for this int are marked. */
6653 cblk
->gcmarkbits
[i
] = 0;
6654 num_used
+= BITS_PER_BITS_WORD
;
6658 /* Some cons cells for this int are not marked.
6659 Find which ones, and free them. */
6660 int start
, pos
, stop
;
6662 start
= i
* BITS_PER_BITS_WORD
;
6664 if (stop
> BITS_PER_BITS_WORD
)
6665 stop
= BITS_PER_BITS_WORD
;
6668 for (pos
= start
; pos
< stop
; pos
++)
6670 if (!CONS_MARKED_P (&cblk
->conses
[pos
]))
6673 cblk
->conses
[pos
].u
.chain
= cons_free_list
;
6674 cons_free_list
= &cblk
->conses
[pos
];
6675 cons_free_list
->car
= Vdead
;
6680 CONS_UNMARK (&cblk
->conses
[pos
]);
6686 lim
= CONS_BLOCK_SIZE
;
6687 /* If this block contains only free conses and we have already
6688 seen more than two blocks worth of free conses then deallocate
6690 if (this_free
== CONS_BLOCK_SIZE
&& num_free
> CONS_BLOCK_SIZE
)
6692 *cprev
= cblk
->next
;
6693 /* Unhook from the free list. */
6694 cons_free_list
= cblk
->conses
[0].u
.chain
;
6695 lisp_align_free (cblk
);
6699 num_free
+= this_free
;
6700 cprev
= &cblk
->next
;
6703 total_conses
= num_used
;
6704 total_free_conses
= num_free
;
6707 NO_INLINE
/* For better stack traces */
6711 register struct float_block
*fblk
;
6712 struct float_block
**fprev
= &float_block
;
6713 register int lim
= float_block_index
;
6714 EMACS_INT num_free
= 0, num_used
= 0;
6716 float_free_list
= 0;
6718 for (fblk
= float_block
; fblk
; fblk
= *fprev
)
6722 for (i
= 0; i
< lim
; i
++)
6723 if (!FLOAT_MARKED_P (&fblk
->floats
[i
]))
6726 fblk
->floats
[i
].u
.chain
= float_free_list
;
6727 float_free_list
= &fblk
->floats
[i
];
6732 FLOAT_UNMARK (&fblk
->floats
[i
]);
6734 lim
= FLOAT_BLOCK_SIZE
;
6735 /* If this block contains only free floats and we have already
6736 seen more than two blocks worth of free floats then deallocate
6738 if (this_free
== FLOAT_BLOCK_SIZE
&& num_free
> FLOAT_BLOCK_SIZE
)
6740 *fprev
= fblk
->next
;
6741 /* Unhook from the free list. */
6742 float_free_list
= fblk
->floats
[0].u
.chain
;
6743 lisp_align_free (fblk
);
6747 num_free
+= this_free
;
6748 fprev
= &fblk
->next
;
6751 total_floats
= num_used
;
6752 total_free_floats
= num_free
;
6755 NO_INLINE
/* For better stack traces */
6757 sweep_intervals (void)
6759 register struct interval_block
*iblk
;
6760 struct interval_block
**iprev
= &interval_block
;
6761 register int lim
= interval_block_index
;
6762 EMACS_INT num_free
= 0, num_used
= 0;
6764 interval_free_list
= 0;
6766 for (iblk
= interval_block
; iblk
; iblk
= *iprev
)
6771 for (i
= 0; i
< lim
; i
++)
6773 if (!iblk
->intervals
[i
].gcmarkbit
)
6775 set_interval_parent (&iblk
->intervals
[i
], interval_free_list
);
6776 interval_free_list
= &iblk
->intervals
[i
];
6782 iblk
->intervals
[i
].gcmarkbit
= 0;
6785 lim
= INTERVAL_BLOCK_SIZE
;
6786 /* If this block contains only free intervals and we have already
6787 seen more than two blocks worth of free intervals then
6788 deallocate this block. */
6789 if (this_free
== INTERVAL_BLOCK_SIZE
&& num_free
> INTERVAL_BLOCK_SIZE
)
6791 *iprev
= iblk
->next
;
6792 /* Unhook from the free list. */
6793 interval_free_list
= INTERVAL_PARENT (&iblk
->intervals
[0]);
6798 num_free
+= this_free
;
6799 iprev
= &iblk
->next
;
6802 total_intervals
= num_used
;
6803 total_free_intervals
= num_free
;
6806 NO_INLINE
/* For better stack traces */
6808 sweep_symbols (void)
6810 struct symbol_block
*sblk
;
6811 struct symbol_block
**sprev
= &symbol_block
;
6812 int lim
= symbol_block_index
;
6813 EMACS_INT num_free
= 0, num_used
= ARRAYELTS (lispsym
);
6815 symbol_free_list
= NULL
;
6817 for (int i
= 0; i
< ARRAYELTS (lispsym
); i
++)
6818 lispsym
[i
].gcmarkbit
= 0;
6820 for (sblk
= symbol_block
; sblk
; sblk
= *sprev
)
6823 union aligned_Lisp_Symbol
*sym
= sblk
->symbols
;
6824 union aligned_Lisp_Symbol
*end
= sym
+ lim
;
6826 for (; sym
< end
; ++sym
)
6828 if (!sym
->s
.gcmarkbit
)
6830 if (sym
->s
.redirect
== SYMBOL_LOCALIZED
)
6831 xfree (SYMBOL_BLV (&sym
->s
));
6832 sym
->s
.next
= symbol_free_list
;
6833 symbol_free_list
= &sym
->s
;
6834 symbol_free_list
->function
= Vdead
;
6840 sym
->s
.gcmarkbit
= 0;
6841 /* Attempt to catch bogus objects. */
6842 eassert (valid_lisp_object_p (sym
->s
.function
));
6846 lim
= SYMBOL_BLOCK_SIZE
;
6847 /* If this block contains only free symbols and we have already
6848 seen more than two blocks worth of free symbols then deallocate
6850 if (this_free
== SYMBOL_BLOCK_SIZE
&& num_free
> SYMBOL_BLOCK_SIZE
)
6852 *sprev
= sblk
->next
;
6853 /* Unhook from the free list. */
6854 symbol_free_list
= sblk
->symbols
[0].s
.next
;
6859 num_free
+= this_free
;
6860 sprev
= &sblk
->next
;
6863 total_symbols
= num_used
;
6864 total_free_symbols
= num_free
;
6867 NO_INLINE
/* For better stack traces. */
6871 register struct marker_block
*mblk
;
6872 struct marker_block
**mprev
= &marker_block
;
6873 register int lim
= marker_block_index
;
6874 EMACS_INT num_free
= 0, num_used
= 0;
6876 /* Put all unmarked misc's on free list. For a marker, first
6877 unchain it from the buffer it points into. */
6879 marker_free_list
= 0;
6881 for (mblk
= marker_block
; mblk
; mblk
= *mprev
)
6886 for (i
= 0; i
< lim
; i
++)
6888 if (!mblk
->markers
[i
].m
.u_any
.gcmarkbit
)
6890 if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_Marker
)
6891 unchain_marker (&mblk
->markers
[i
].m
.u_marker
);
6892 else if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_Finalizer
)
6893 unchain_finalizer (&mblk
->markers
[i
].m
.u_finalizer
);
6895 else if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_User_Ptr
)
6897 struct Lisp_User_Ptr
*uptr
= &mblk
->markers
[i
].m
.u_user_ptr
;
6898 uptr
->finalizer (uptr
->p
);
6901 /* Set the type of the freed object to Lisp_Misc_Free.
6902 We could leave the type alone, since nobody checks it,
6903 but this might catch bugs faster. */
6904 mblk
->markers
[i
].m
.u_marker
.type
= Lisp_Misc_Free
;
6905 mblk
->markers
[i
].m
.u_free
.chain
= marker_free_list
;
6906 marker_free_list
= &mblk
->markers
[i
].m
;
6912 mblk
->markers
[i
].m
.u_any
.gcmarkbit
= 0;
6915 lim
= MARKER_BLOCK_SIZE
;
6916 /* If this block contains only free markers and we have already
6917 seen more than two blocks worth of free markers then deallocate
6919 if (this_free
== MARKER_BLOCK_SIZE
&& num_free
> MARKER_BLOCK_SIZE
)
6921 *mprev
= mblk
->next
;
6922 /* Unhook from the free list. */
6923 marker_free_list
= mblk
->markers
[0].m
.u_free
.chain
;
6928 num_free
+= this_free
;
6929 mprev
= &mblk
->next
;
6933 total_markers
= num_used
;
6934 total_free_markers
= num_free
;
6937 NO_INLINE
/* For better stack traces */
6939 sweep_buffers (void)
6941 register struct buffer
*buffer
, **bprev
= &all_buffers
;
6944 for (buffer
= all_buffers
; buffer
; buffer
= *bprev
)
6945 if (!VECTOR_MARKED_P (buffer
))
6947 *bprev
= buffer
->next
;
6952 VECTOR_UNMARK (buffer
);
6953 /* Do not use buffer_(set|get)_intervals here. */
6954 buffer
->text
->intervals
= balance_intervals (buffer
->text
->intervals
);
6956 bprev
= &buffer
->next
;
6960 /* Sweep: find all structures not marked, and free them. */
6964 /* Remove or mark entries in weak hash tables.
6965 This must be done before any object is unmarked. */
6966 sweep_weak_hash_tables ();
6969 check_string_bytes (!noninteractive
);
6977 check_string_bytes (!noninteractive
);
6980 DEFUN ("memory-info", Fmemory_info
, Smemory_info
, 0, 0, 0,
6981 doc
: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6982 All values are in Kbytes. If there is no swap space,
6983 last two values are zero. If the system is not supported
6984 or memory information can't be obtained, return nil. */)
6987 #if defined HAVE_LINUX_SYSINFO
6993 #ifdef LINUX_SYSINFO_UNIT
6994 units
= si
.mem_unit
;
6998 return list4i ((uintmax_t) si
.totalram
* units
/ 1024,
6999 (uintmax_t) si
.freeram
* units
/ 1024,
7000 (uintmax_t) si
.totalswap
* units
/ 1024,
7001 (uintmax_t) si
.freeswap
* units
/ 1024);
7002 #elif defined WINDOWSNT
7003 unsigned long long totalram
, freeram
, totalswap
, freeswap
;
7005 if (w32_memory_info (&totalram
, &freeram
, &totalswap
, &freeswap
) == 0)
7006 return list4i ((uintmax_t) totalram
/ 1024,
7007 (uintmax_t) freeram
/ 1024,
7008 (uintmax_t) totalswap
/ 1024,
7009 (uintmax_t) freeswap
/ 1024);
7013 unsigned long totalram
, freeram
, totalswap
, freeswap
;
7015 if (dos_memory_info (&totalram
, &freeram
, &totalswap
, &freeswap
) == 0)
7016 return list4i ((uintmax_t) totalram
/ 1024,
7017 (uintmax_t) freeram
/ 1024,
7018 (uintmax_t) totalswap
/ 1024,
7019 (uintmax_t) freeswap
/ 1024);
7022 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7023 /* FIXME: add more systems. */
7025 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7028 /* Debugging aids. */
7030 DEFUN ("memory-limit", Fmemory_limit
, Smemory_limit
, 0, 0, 0,
7031 doc
: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7032 This may be helpful in debugging Emacs's memory usage.
7033 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7039 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7042 XSETINT (end
, (intptr_t) (char *) sbrk (0) / 1024);
7048 DEFUN ("memory-use-counts", Fmemory_use_counts
, Smemory_use_counts
, 0, 0, 0,
7049 doc
: /* Return a list of counters that measure how much consing there has been.
7050 Each of these counters increments for a certain kind of object.
7051 The counters wrap around from the largest positive integer to zero.
7052 Garbage collection does not decrease them.
7053 The elements of the value are as follows:
7054 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7055 All are in units of 1 = one object consed
7056 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7058 MISCS include overlays, markers, and some internal types.
7059 Frames, windows, buffers, and subprocesses count as vectors
7060 (but the contents of a buffer's text do not count here). */)
7063 return listn (CONSTYPE_HEAP
, 8,
7064 bounded_number (cons_cells_consed
),
7065 bounded_number (floats_consed
),
7066 bounded_number (vector_cells_consed
),
7067 bounded_number (symbols_consed
),
7068 bounded_number (string_chars_consed
),
7069 bounded_number (misc_objects_consed
),
7070 bounded_number (intervals_consed
),
7071 bounded_number (strings_consed
));
7075 symbol_uses_obj (Lisp_Object symbol
, Lisp_Object obj
)
7077 struct Lisp_Symbol
*sym
= XSYMBOL (symbol
);
7078 Lisp_Object val
= find_symbol_value (symbol
);
7079 return (EQ (val
, obj
)
7080 || EQ (sym
->function
, obj
)
7081 || (!NILP (sym
->function
)
7082 && COMPILEDP (sym
->function
)
7083 && EQ (AREF (sym
->function
, COMPILED_BYTECODE
), obj
))
7086 && EQ (AREF (val
, COMPILED_BYTECODE
), obj
)));
7089 /* Find at most FIND_MAX symbols which have OBJ as their value or
7090 function. This is used in gdbinit's `xwhichsymbols' command. */
7093 which_symbols (Lisp_Object obj
, EMACS_INT find_max
)
7095 struct symbol_block
*sblk
;
7096 ptrdiff_t gc_count
= inhibit_garbage_collection ();
7097 Lisp_Object found
= Qnil
;
7101 for (int i
= 0; i
< ARRAYELTS (lispsym
); i
++)
7103 Lisp_Object sym
= builtin_lisp_symbol (i
);
7104 if (symbol_uses_obj (sym
, obj
))
7106 found
= Fcons (sym
, found
);
7107 if (--find_max
== 0)
7112 for (sblk
= symbol_block
; sblk
; sblk
= sblk
->next
)
7114 union aligned_Lisp_Symbol
*aligned_sym
= sblk
->symbols
;
7117 for (bn
= 0; bn
< SYMBOL_BLOCK_SIZE
; bn
++, aligned_sym
++)
7119 if (sblk
== symbol_block
&& bn
>= symbol_block_index
)
7122 Lisp_Object sym
= make_lisp_symbol (&aligned_sym
->s
);
7123 if (symbol_uses_obj (sym
, obj
))
7125 found
= Fcons (sym
, found
);
7126 if (--find_max
== 0)
7134 unbind_to (gc_count
, Qnil
);
7138 #ifdef SUSPICIOUS_OBJECT_CHECKING
7141 find_suspicious_object_in_range (void *begin
, void *end
)
7143 char *begin_a
= begin
;
7147 for (i
= 0; i
< ARRAYELTS (suspicious_objects
); ++i
)
7149 char *suspicious_object
= suspicious_objects
[i
];
7150 if (begin_a
<= suspicious_object
&& suspicious_object
< end_a
)
7151 return suspicious_object
;
7158 note_suspicious_free (void* ptr
)
7160 struct suspicious_free_record
* rec
;
7162 rec
= &suspicious_free_history
[suspicious_free_history_index
++];
7163 if (suspicious_free_history_index
==
7164 ARRAYELTS (suspicious_free_history
))
7166 suspicious_free_history_index
= 0;
7169 memset (rec
, 0, sizeof (*rec
));
7170 rec
->suspicious_object
= ptr
;
7171 backtrace (&rec
->backtrace
[0], ARRAYELTS (rec
->backtrace
));
7175 detect_suspicious_free (void* ptr
)
7179 eassert (ptr
!= NULL
);
7181 for (i
= 0; i
< ARRAYELTS (suspicious_objects
); ++i
)
7182 if (suspicious_objects
[i
] == ptr
)
7184 note_suspicious_free (ptr
);
7185 suspicious_objects
[i
] = NULL
;
7189 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7191 DEFUN ("suspicious-object", Fsuspicious_object
, Ssuspicious_object
, 1, 1, 0,
7192 doc
: /* Return OBJ, maybe marking it for extra scrutiny.
7193 If Emacs is compiled with suspicious object checking, capture
7194 a stack trace when OBJ is freed in order to help track down
7195 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7198 #ifdef SUSPICIOUS_OBJECT_CHECKING
7199 /* Right now, we care only about vectors. */
7200 if (VECTORLIKEP (obj
))
7202 suspicious_objects
[suspicious_object_index
++] = XVECTOR (obj
);
7203 if (suspicious_object_index
== ARRAYELTS (suspicious_objects
))
7204 suspicious_object_index
= 0;
7210 #ifdef ENABLE_CHECKING
7212 bool suppress_checking
;
7215 die (const char *msg
, const char *file
, int line
)
7217 fprintf (stderr
, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7219 terminate_due_to_signal (SIGABRT
, INT_MAX
);
7222 #endif /* ENABLE_CHECKING */
7224 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7226 /* Stress alloca with inconveniently sized requests and check
7227 whether all allocated areas may be used for Lisp_Object. */
7229 NO_INLINE
static void
7230 verify_alloca (void)
7233 enum { ALLOCA_CHECK_MAX
= 256 };
7234 /* Start from size of the smallest Lisp object. */
7235 for (i
= sizeof (struct Lisp_Cons
); i
<= ALLOCA_CHECK_MAX
; i
++)
7237 void *ptr
= alloca (i
);
7238 make_lisp_ptr (ptr
, Lisp_Cons
);
7242 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7244 #define verify_alloca() ((void) 0)
7246 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7248 /* Initialization. */
7251 init_alloc_once (void)
7253 /* Even though Qt's contents are not set up, its address is known. */
7257 pure_size
= PURESIZE
;
7260 init_finalizer_list (&finalizers
);
7261 init_finalizer_list (&doomed_finalizers
);
7264 Vdead
= make_pure_string ("DEAD", 4, 4, 0);
7266 #ifdef DOUG_LEA_MALLOC
7267 mallopt (M_TRIM_THRESHOLD
, 128 * 1024); /* Trim threshold. */
7268 mallopt (M_MMAP_THRESHOLD
, 64 * 1024); /* Mmap threshold. */
7269 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
); /* Max. number of mmap'ed areas. */
7274 refill_memory_reserve ();
7275 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
;
7281 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7282 setjmp_tested_p
= longjmps_done
= 0;
7284 Vgc_elapsed
= make_float (0.0);
7288 valgrind_p
= RUNNING_ON_VALGRIND
!= 0;
7293 syms_of_alloc (void)
7295 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold
,
7296 doc
: /* Number of bytes of consing between garbage collections.
7297 Garbage collection can happen automatically once this many bytes have been
7298 allocated since the last garbage collection. All data types count.
7300 Garbage collection happens automatically only when `eval' is called.
7302 By binding this temporarily to a large number, you can effectively
7303 prevent garbage collection during a part of the program.
7304 See also `gc-cons-percentage'. */);
7306 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage
,
7307 doc
: /* Portion of the heap used for allocation.
7308 Garbage collection can happen automatically once this portion of the heap
7309 has been allocated since the last garbage collection.
7310 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7311 Vgc_cons_percentage
= make_float (0.1);
7313 DEFVAR_INT ("pure-bytes-used", pure_bytes_used
,
7314 doc
: /* Number of bytes of shareable Lisp data allocated so far. */);
7316 DEFVAR_INT ("cons-cells-consed", cons_cells_consed
,
7317 doc
: /* Number of cons cells that have been consed so far. */);
7319 DEFVAR_INT ("floats-consed", floats_consed
,
7320 doc
: /* Number of floats that have been consed so far. */);
7322 DEFVAR_INT ("vector-cells-consed", vector_cells_consed
,
7323 doc
: /* Number of vector cells that have been consed so far. */);
7325 DEFVAR_INT ("symbols-consed", symbols_consed
,
7326 doc
: /* Number of symbols that have been consed so far. */);
7327 symbols_consed
+= ARRAYELTS (lispsym
);
7329 DEFVAR_INT ("string-chars-consed", string_chars_consed
,
7330 doc
: /* Number of string characters that have been consed so far. */);
7332 DEFVAR_INT ("misc-objects-consed", misc_objects_consed
,
7333 doc
: /* Number of miscellaneous objects that have been consed so far.
7334 These include markers and overlays, plus certain objects not visible
7337 DEFVAR_INT ("intervals-consed", intervals_consed
,
7338 doc
: /* Number of intervals that have been consed so far. */);
7340 DEFVAR_INT ("strings-consed", strings_consed
,
7341 doc
: /* Number of strings that have been consed so far. */);
7343 DEFVAR_LISP ("purify-flag", Vpurify_flag
,
7344 doc
: /* Non-nil means loading Lisp code in order to dump an executable.
7345 This means that certain objects should be allocated in shared (pure) space.
7346 It can also be set to a hash-table, in which case this table is used to
7347 do hash-consing of the objects allocated to pure space. */);
7349 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages
,
7350 doc
: /* Non-nil means display messages at start and end of garbage collection. */);
7351 garbage_collection_messages
= 0;
7353 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook
,
7354 doc
: /* Hook run after garbage collection has finished. */);
7355 Vpost_gc_hook
= Qnil
;
7356 DEFSYM (Qpost_gc_hook
, "post-gc-hook");
7358 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data
,
7359 doc
: /* Precomputed `signal' argument for memory-full error. */);
7360 /* We build this in advance because if we wait until we need it, we might
7361 not be able to allocate the memory to hold it. */
7363 = listn (CONSTYPE_PURE
, 2, Qerror
,
7364 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7366 DEFVAR_LISP ("memory-full", Vmemory_full
,
7367 doc
: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7368 Vmemory_full
= Qnil
;
7370 DEFSYM (Qconses
, "conses");
7371 DEFSYM (Qsymbols
, "symbols");
7372 DEFSYM (Qmiscs
, "miscs");
7373 DEFSYM (Qstrings
, "strings");
7374 DEFSYM (Qvectors
, "vectors");
7375 DEFSYM (Qfloats
, "floats");
7376 DEFSYM (Qintervals
, "intervals");
7377 DEFSYM (Qbuffers
, "buffers");
7378 DEFSYM (Qstring_bytes
, "string-bytes");
7379 DEFSYM (Qvector_slots
, "vector-slots");
7380 DEFSYM (Qheap
, "heap");
7381 DEFSYM (QAutomatic_GC
, "Automatic GC");
7383 DEFSYM (Qgc_cons_threshold
, "gc-cons-threshold");
7384 DEFSYM (Qchar_table_extra_slots
, "char-table-extra-slots");
7386 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed
,
7387 doc
: /* Accumulated time elapsed in garbage collections.
7388 The time is in seconds as a floating point value. */);
7389 DEFVAR_INT ("gcs-done", gcs_done
,
7390 doc
: /* Accumulated number of garbage collections done. */);
7395 defsubr (&Sbool_vector
);
7396 defsubr (&Smake_byte_code
);
7397 defsubr (&Smake_list
);
7398 defsubr (&Smake_vector
);
7399 defsubr (&Smake_string
);
7400 defsubr (&Smake_bool_vector
);
7401 defsubr (&Smake_symbol
);
7402 defsubr (&Smake_marker
);
7403 defsubr (&Smake_finalizer
);
7404 defsubr (&Spurecopy
);
7405 defsubr (&Sgarbage_collect
);
7406 defsubr (&Smemory_limit
);
7407 defsubr (&Smemory_info
);
7408 defsubr (&Smemory_use_counts
);
7409 defsubr (&Ssuspicious_object
);
7412 /* When compiled with GCC, GDB might say "No enum type named
7413 pvec_type" if we don't have at least one symbol with that type, and
7414 then xbacktrace could fail. Similarly for the other enums and
7415 their values. Some non-GCC compilers don't like these constructs. */
7419 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS
;
7420 enum char_table_specials char_table_specials
;
7421 enum char_bits char_bits
;
7422 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE
;
7423 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE
;
7424 enum Lisp_Bits Lisp_Bits
;
7425 enum Lisp_Compiled Lisp_Compiled
;
7426 enum maxargs maxargs
;
7427 enum MAX_ALLOCA MAX_ALLOCA
;
7428 enum More_Lisp_Bits More_Lisp_Bits
;
7429 enum pvec_type pvec_type
;
7430 } const EXTERNALLY_VISIBLE gdb_make_enums_visible
= {0};
7431 #endif /* __GNUC__ */