Merge from trunk.
[emacs.git] / src / alloc.c
blob621693fc0963a7191cb08076fc00cd6e47e777ff
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
46 #include <verify.h>
48 #if (defined ENABLE_CHECKING \
49 && defined HAVE_VALGRIND_VALGRIND_H \
50 && !defined USE_VALGRIND)
51 # define USE_VALGRIND 1
52 #endif
54 #if USE_VALGRIND
55 #include <valgrind/valgrind.h>
56 #include <valgrind/memcheck.h>
57 static bool valgrind_p;
58 #endif
60 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
61 Doable only if GC_MARK_STACK. */
62 #if ! GC_MARK_STACK
63 # undef GC_CHECK_MARKED_OBJECTS
64 #endif
66 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
67 memory. Can do this only if using gmalloc.c and if not checking
68 marked objects. */
70 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
71 || defined GC_CHECK_MARKED_OBJECTS)
72 #undef GC_MALLOC_CHECK
73 #endif
75 #include <unistd.h>
76 #include <fcntl.h>
78 #ifdef USE_GTK
79 # include "gtkutil.h"
80 #endif
81 #ifdef WINDOWSNT
82 #include "w32.h"
83 #include "w32heap.h" /* for sbrk */
84 #endif
86 #ifdef DOUG_LEA_MALLOC
88 #include <malloc.h>
90 /* Specify maximum number of areas to mmap. It would be nice to use a
91 value that explicitly means "no limit". */
93 #define MMAP_MAX_AREAS 100000000
95 #endif /* not DOUG_LEA_MALLOC */
97 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
98 to a struct Lisp_String. */
100 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
101 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
102 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
104 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
105 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
106 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
108 /* Default value of gc_cons_threshold (see below). */
110 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
112 /* Global variables. */
113 struct emacs_globals globals;
115 /* Number of bytes of consing done since the last gc. */
117 EMACS_INT consing_since_gc;
119 /* Similar minimum, computed from Vgc_cons_percentage. */
121 EMACS_INT gc_relative_threshold;
123 /* Minimum number of bytes of consing since GC before next GC,
124 when memory is full. */
126 EMACS_INT memory_full_cons_threshold;
128 /* True during GC. */
130 bool gc_in_progress;
132 /* True means abort if try to GC.
133 This is for code which is written on the assumption that
134 no GC will happen, so as to verify that assumption. */
136 bool abort_on_gc;
138 /* Number of live and free conses etc. */
140 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
141 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
142 static EMACS_INT total_free_floats, total_floats;
144 /* Points to memory space allocated as "spare", to be freed if we run
145 out of memory. We keep one large block, four cons-blocks, and
146 two string blocks. */
148 static char *spare_memory[7];
150 /* Amount of spare memory to keep in large reserve block, or to see
151 whether this much is available when malloc fails on a larger request. */
153 #define SPARE_MEMORY (1 << 14)
155 /* Initialize it to a nonzero value to force it into data space
156 (rather than bss space). That way unexec will remap it into text
157 space (pure), on some systems. We have not implemented the
158 remapping on more recent systems because this is less important
159 nowadays than in the days of small memories and timesharing. */
161 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
162 #define PUREBEG (char *) pure
164 /* Pointer to the pure area, and its size. */
166 static char *purebeg;
167 static ptrdiff_t pure_size;
169 /* Number of bytes of pure storage used before pure storage overflowed.
170 If this is non-zero, this implies that an overflow occurred. */
172 static ptrdiff_t pure_bytes_used_before_overflow;
174 /* True if P points into pure space. */
176 #define PURE_POINTER_P(P) \
177 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
179 /* Index in pure at which next pure Lisp object will be allocated.. */
181 static ptrdiff_t pure_bytes_used_lisp;
183 /* Number of bytes allocated for non-Lisp objects in pure storage. */
185 static ptrdiff_t pure_bytes_used_non_lisp;
187 /* If nonzero, this is a warning delivered by malloc and not yet
188 displayed. */
190 const char *pending_malloc_warning;
192 /* Maximum amount of C stack to save when a GC happens. */
194 #ifndef MAX_SAVE_STACK
195 #define MAX_SAVE_STACK 16000
196 #endif
198 /* Buffer in which we save a copy of the C stack at each GC. */
200 #if MAX_SAVE_STACK > 0
201 static char *stack_copy;
202 static ptrdiff_t stack_copy_size;
203 #endif
205 static Lisp_Object Qconses;
206 static Lisp_Object Qsymbols;
207 static Lisp_Object Qmiscs;
208 static Lisp_Object Qstrings;
209 static Lisp_Object Qvectors;
210 static Lisp_Object Qfloats;
211 static Lisp_Object Qintervals;
212 static Lisp_Object Qbuffers;
213 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
214 static Lisp_Object Qgc_cons_threshold;
215 Lisp_Object Qautomatic_gc;
216 Lisp_Object Qchar_table_extra_slots;
218 /* Hook run after GC has finished. */
220 static Lisp_Object Qpost_gc_hook;
222 static void mark_terminals (void);
223 static void gc_sweep (void);
224 static Lisp_Object make_pure_vector (ptrdiff_t);
225 static void mark_buffer (struct buffer *);
227 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
228 static void refill_memory_reserve (void);
229 #endif
230 static void compact_small_strings (void);
231 static void free_large_strings (void);
232 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
234 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
235 what memory allocated via lisp_malloc and lisp_align_malloc is intended
236 for what purpose. This enumeration specifies the type of memory. */
238 enum mem_type
240 MEM_TYPE_NON_LISP,
241 MEM_TYPE_BUFFER,
242 MEM_TYPE_CONS,
243 MEM_TYPE_STRING,
244 MEM_TYPE_MISC,
245 MEM_TYPE_SYMBOL,
246 MEM_TYPE_FLOAT,
247 /* Since all non-bool pseudovectors are small enough to be
248 allocated from vector blocks, this memory type denotes
249 large regular vectors and large bool pseudovectors. */
250 MEM_TYPE_VECTORLIKE,
251 /* Special type to denote vector blocks. */
252 MEM_TYPE_VECTOR_BLOCK,
253 /* Special type to denote reserved memory. */
254 MEM_TYPE_SPARE
257 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
259 /* A unique object in pure space used to make some Lisp objects
260 on free lists recognizable in O(1). */
262 static Lisp_Object Vdead;
263 #define DEADP(x) EQ (x, Vdead)
265 #ifdef GC_MALLOC_CHECK
267 enum mem_type allocated_mem_type;
269 #endif /* GC_MALLOC_CHECK */
271 /* A node in the red-black tree describing allocated memory containing
272 Lisp data. Each such block is recorded with its start and end
273 address when it is allocated, and removed from the tree when it
274 is freed.
276 A red-black tree is a balanced binary tree with the following
277 properties:
279 1. Every node is either red or black.
280 2. Every leaf is black.
281 3. If a node is red, then both of its children are black.
282 4. Every simple path from a node to a descendant leaf contains
283 the same number of black nodes.
284 5. The root is always black.
286 When nodes are inserted into the tree, or deleted from the tree,
287 the tree is "fixed" so that these properties are always true.
289 A red-black tree with N internal nodes has height at most 2
290 log(N+1). Searches, insertions and deletions are done in O(log N).
291 Please see a text book about data structures for a detailed
292 description of red-black trees. Any book worth its salt should
293 describe them. */
295 struct mem_node
297 /* Children of this node. These pointers are never NULL. When there
298 is no child, the value is MEM_NIL, which points to a dummy node. */
299 struct mem_node *left, *right;
301 /* The parent of this node. In the root node, this is NULL. */
302 struct mem_node *parent;
304 /* Start and end of allocated region. */
305 void *start, *end;
307 /* Node color. */
308 enum {MEM_BLACK, MEM_RED} color;
310 /* Memory type. */
311 enum mem_type type;
314 /* Base address of stack. Set in main. */
316 Lisp_Object *stack_base;
318 /* Root of the tree describing allocated Lisp memory. */
320 static struct mem_node *mem_root;
322 /* Lowest and highest known address in the heap. */
324 static void *min_heap_address, *max_heap_address;
326 /* Sentinel node of the tree. */
328 static struct mem_node mem_z;
329 #define MEM_NIL &mem_z
331 static struct mem_node *mem_insert (void *, void *, enum mem_type);
332 static void mem_insert_fixup (struct mem_node *);
333 static void mem_rotate_left (struct mem_node *);
334 static void mem_rotate_right (struct mem_node *);
335 static void mem_delete (struct mem_node *);
336 static void mem_delete_fixup (struct mem_node *);
337 static struct mem_node *mem_find (void *);
339 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
341 #ifndef DEADP
342 # define DEADP(x) 0
343 #endif
345 /* Recording what needs to be marked for gc. */
347 struct gcpro *gcprolist;
349 /* Addresses of staticpro'd variables. Initialize it to a nonzero
350 value; otherwise some compilers put it into BSS. */
352 enum { NSTATICS = 2048 };
353 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
355 /* Index of next unused slot in staticvec. */
357 static int staticidx;
359 static void *pure_alloc (size_t, int);
362 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
363 ALIGNMENT must be a power of 2. */
365 #define ALIGN(ptr, ALIGNMENT) \
366 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
367 & ~ ((ALIGNMENT) - 1)))
369 static void
370 XFLOAT_INIT (Lisp_Object f, double n)
372 XFLOAT (f)->u.data = n;
376 /************************************************************************
377 Malloc
378 ************************************************************************/
380 /* Function malloc calls this if it finds we are near exhausting storage. */
382 void
383 malloc_warning (const char *str)
385 pending_malloc_warning = str;
389 /* Display an already-pending malloc warning. */
391 void
392 display_malloc_warning (void)
394 call3 (intern ("display-warning"),
395 intern ("alloc"),
396 build_string (pending_malloc_warning),
397 intern ("emergency"));
398 pending_malloc_warning = 0;
401 /* Called if we can't allocate relocatable space for a buffer. */
403 void
404 buffer_memory_full (ptrdiff_t nbytes)
406 /* If buffers use the relocating allocator, no need to free
407 spare_memory, because we may have plenty of malloc space left
408 that we could get, and if we don't, the malloc that fails will
409 itself cause spare_memory to be freed. If buffers don't use the
410 relocating allocator, treat this like any other failing
411 malloc. */
413 #ifndef REL_ALLOC
414 memory_full (nbytes);
415 #else
416 /* This used to call error, but if we've run out of memory, we could
417 get infinite recursion trying to build the string. */
418 xsignal (Qnil, Vmemory_signal_data);
419 #endif
422 /* A common multiple of the positive integers A and B. Ideally this
423 would be the least common multiple, but there's no way to do that
424 as a constant expression in C, so do the best that we can easily do. */
425 #define COMMON_MULTIPLE(a, b) \
426 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
428 #ifndef XMALLOC_OVERRUN_CHECK
429 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
430 #else
432 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
433 around each block.
435 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
436 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
437 block size in little-endian order. The trailer consists of
438 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
440 The header is used to detect whether this block has been allocated
441 through these functions, as some low-level libc functions may
442 bypass the malloc hooks. */
444 #define XMALLOC_OVERRUN_CHECK_SIZE 16
445 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
446 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
448 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
449 hold a size_t value and (2) the header size is a multiple of the
450 alignment that Emacs needs for C types and for USE_LSB_TAG. */
451 #define XMALLOC_BASE_ALIGNMENT \
452 alignof (union { long double d; intmax_t i; void *p; })
454 #if USE_LSB_TAG
455 # define XMALLOC_HEADER_ALIGNMENT \
456 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
457 #else
458 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
459 #endif
460 #define XMALLOC_OVERRUN_SIZE_SIZE \
461 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
462 + XMALLOC_HEADER_ALIGNMENT - 1) \
463 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
464 - XMALLOC_OVERRUN_CHECK_SIZE)
466 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
467 { '\x9a', '\x9b', '\xae', '\xaf',
468 '\xbf', '\xbe', '\xce', '\xcf',
469 '\xea', '\xeb', '\xec', '\xed',
470 '\xdf', '\xde', '\x9c', '\x9d' };
472 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
473 { '\xaa', '\xab', '\xac', '\xad',
474 '\xba', '\xbb', '\xbc', '\xbd',
475 '\xca', '\xcb', '\xcc', '\xcd',
476 '\xda', '\xdb', '\xdc', '\xdd' };
478 /* Insert and extract the block size in the header. */
480 static void
481 xmalloc_put_size (unsigned char *ptr, size_t size)
483 int i;
484 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
486 *--ptr = size & ((1 << CHAR_BIT) - 1);
487 size >>= CHAR_BIT;
491 static size_t
492 xmalloc_get_size (unsigned char *ptr)
494 size_t size = 0;
495 int i;
496 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
497 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
499 size <<= CHAR_BIT;
500 size += *ptr++;
502 return size;
506 /* Like malloc, but wraps allocated block with header and trailer. */
508 static void *
509 overrun_check_malloc (size_t size)
511 register unsigned char *val;
512 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
513 emacs_abort ();
515 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
516 if (val)
518 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
519 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
520 xmalloc_put_size (val, size);
521 memcpy (val + size, xmalloc_overrun_check_trailer,
522 XMALLOC_OVERRUN_CHECK_SIZE);
524 return val;
528 /* Like realloc, but checks old block for overrun, and wraps new block
529 with header and trailer. */
531 static void *
532 overrun_check_realloc (void *block, size_t size)
534 register unsigned char *val = (unsigned char *) block;
535 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
536 emacs_abort ();
538 if (val
539 && memcmp (xmalloc_overrun_check_header,
540 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
541 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
543 size_t osize = xmalloc_get_size (val);
544 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
545 XMALLOC_OVERRUN_CHECK_SIZE))
546 emacs_abort ();
547 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
548 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
549 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
552 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
554 if (val)
556 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
557 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
558 xmalloc_put_size (val, size);
559 memcpy (val + size, xmalloc_overrun_check_trailer,
560 XMALLOC_OVERRUN_CHECK_SIZE);
562 return val;
565 /* Like free, but checks block for overrun. */
567 static void
568 overrun_check_free (void *block)
570 unsigned char *val = (unsigned char *) block;
572 if (val
573 && memcmp (xmalloc_overrun_check_header,
574 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
575 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
577 size_t osize = xmalloc_get_size (val);
578 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
579 XMALLOC_OVERRUN_CHECK_SIZE))
580 emacs_abort ();
581 #ifdef XMALLOC_CLEAR_FREE_MEMORY
582 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
583 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
584 #else
585 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
586 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
587 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
588 #endif
591 free (val);
594 #undef malloc
595 #undef realloc
596 #undef free
597 #define malloc overrun_check_malloc
598 #define realloc overrun_check_realloc
599 #define free overrun_check_free
600 #endif
602 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
603 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
604 If that variable is set, block input while in one of Emacs's memory
605 allocation functions. There should be no need for this debugging
606 option, since signal handlers do not allocate memory, but Emacs
607 formerly allocated memory in signal handlers and this compile-time
608 option remains as a way to help debug the issue should it rear its
609 ugly head again. */
610 #ifdef XMALLOC_BLOCK_INPUT_CHECK
611 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
612 static void
613 malloc_block_input (void)
615 if (block_input_in_memory_allocators)
616 block_input ();
618 static void
619 malloc_unblock_input (void)
621 if (block_input_in_memory_allocators)
622 unblock_input ();
624 # define MALLOC_BLOCK_INPUT malloc_block_input ()
625 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
626 #else
627 # define MALLOC_BLOCK_INPUT ((void) 0)
628 # define MALLOC_UNBLOCK_INPUT ((void) 0)
629 #endif
631 #define MALLOC_PROBE(size) \
632 do { \
633 if (profiler_memory_running) \
634 malloc_probe (size); \
635 } while (0)
638 /* Like malloc but check for no memory and block interrupt input.. */
640 void *
641 xmalloc (size_t size)
643 void *val;
645 MALLOC_BLOCK_INPUT;
646 val = malloc (size);
647 MALLOC_UNBLOCK_INPUT;
649 if (!val && size)
650 memory_full (size);
651 MALLOC_PROBE (size);
652 return val;
655 /* Like the above, but zeroes out the memory just allocated. */
657 void *
658 xzalloc (size_t size)
660 void *val;
662 MALLOC_BLOCK_INPUT;
663 val = malloc (size);
664 MALLOC_UNBLOCK_INPUT;
666 if (!val && size)
667 memory_full (size);
668 memset (val, 0, size);
669 MALLOC_PROBE (size);
670 return val;
673 /* Like realloc but check for no memory and block interrupt input.. */
675 void *
676 xrealloc (void *block, size_t size)
678 void *val;
680 MALLOC_BLOCK_INPUT;
681 /* We must call malloc explicitly when BLOCK is 0, since some
682 reallocs don't do this. */
683 if (! block)
684 val = malloc (size);
685 else
686 val = realloc (block, size);
687 MALLOC_UNBLOCK_INPUT;
689 if (!val && size)
690 memory_full (size);
691 MALLOC_PROBE (size);
692 return val;
696 /* Like free but block interrupt input. */
698 void
699 xfree (void *block)
701 if (!block)
702 return;
703 MALLOC_BLOCK_INPUT;
704 free (block);
705 MALLOC_UNBLOCK_INPUT;
706 /* We don't call refill_memory_reserve here
707 because in practice the call in r_alloc_free seems to suffice. */
711 /* Other parts of Emacs pass large int values to allocator functions
712 expecting ptrdiff_t. This is portable in practice, but check it to
713 be safe. */
714 verify (INT_MAX <= PTRDIFF_MAX);
717 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
718 Signal an error on memory exhaustion, and block interrupt input. */
720 void *
721 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
723 eassert (0 <= nitems && 0 < item_size);
724 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
725 memory_full (SIZE_MAX);
726 return xmalloc (nitems * item_size);
730 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
731 Signal an error on memory exhaustion, and block interrupt input. */
733 void *
734 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
736 eassert (0 <= nitems && 0 < item_size);
737 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
738 memory_full (SIZE_MAX);
739 return xrealloc (pa, nitems * item_size);
743 /* Grow PA, which points to an array of *NITEMS items, and return the
744 location of the reallocated array, updating *NITEMS to reflect its
745 new size. The new array will contain at least NITEMS_INCR_MIN more
746 items, but will not contain more than NITEMS_MAX items total.
747 ITEM_SIZE is the size of each item, in bytes.
749 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
750 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
751 infinity.
753 If PA is null, then allocate a new array instead of reallocating
754 the old one.
756 Block interrupt input as needed. If memory exhaustion occurs, set
757 *NITEMS to zero if PA is null, and signal an error (i.e., do not
758 return).
760 Thus, to grow an array A without saving its old contents, do
761 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
762 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
763 and signals an error, and later this code is reexecuted and
764 attempts to free A. */
766 void *
767 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
768 ptrdiff_t nitems_max, ptrdiff_t item_size)
770 /* The approximate size to use for initial small allocation
771 requests. This is the largest "small" request for the GNU C
772 library malloc. */
773 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
775 /* If the array is tiny, grow it to about (but no greater than)
776 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
777 ptrdiff_t n = *nitems;
778 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
779 ptrdiff_t half_again = n >> 1;
780 ptrdiff_t incr_estimate = max (tiny_max, half_again);
782 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
783 NITEMS_MAX, and what the C language can represent safely. */
784 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
785 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
786 ? nitems_max : C_language_max);
787 ptrdiff_t nitems_incr_max = n_max - n;
788 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
790 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
791 if (! pa)
792 *nitems = 0;
793 if (nitems_incr_max < incr)
794 memory_full (SIZE_MAX);
795 n += incr;
796 pa = xrealloc (pa, n * item_size);
797 *nitems = n;
798 return pa;
802 /* Like strdup, but uses xmalloc. */
804 char *
805 xstrdup (const char *s)
807 ptrdiff_t size;
808 eassert (s);
809 size = strlen (s) + 1;
810 return memcpy (xmalloc (size), s, size);
813 /* Like above, but duplicates Lisp string to C string. */
815 char *
816 xlispstrdup (Lisp_Object string)
818 ptrdiff_t size = SBYTES (string) + 1;
819 return memcpy (xmalloc (size), SSDATA (string), size);
822 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
823 argument is a const pointer. */
825 void
826 xputenv (char const *string)
828 if (putenv ((char *) string) != 0)
829 memory_full (0);
832 /* Return a newly allocated memory block of SIZE bytes, remembering
833 to free it when unwinding. */
834 void *
835 record_xmalloc (size_t size)
837 void *p = xmalloc (size);
838 record_unwind_protect_ptr (xfree, p);
839 return p;
843 /* Like malloc but used for allocating Lisp data. NBYTES is the
844 number of bytes to allocate, TYPE describes the intended use of the
845 allocated memory block (for strings, for conses, ...). */
847 #if ! USE_LSB_TAG
848 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
849 #endif
851 static void *
852 lisp_malloc (size_t nbytes, enum mem_type type)
854 register void *val;
856 MALLOC_BLOCK_INPUT;
858 #ifdef GC_MALLOC_CHECK
859 allocated_mem_type = type;
860 #endif
862 val = malloc (nbytes);
864 #if ! USE_LSB_TAG
865 /* If the memory just allocated cannot be addressed thru a Lisp
866 object's pointer, and it needs to be,
867 that's equivalent to running out of memory. */
868 if (val && type != MEM_TYPE_NON_LISP)
870 Lisp_Object tem;
871 XSETCONS (tem, (char *) val + nbytes - 1);
872 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
874 lisp_malloc_loser = val;
875 free (val);
876 val = 0;
879 #endif
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 if (val && type != MEM_TYPE_NON_LISP)
883 mem_insert (val, (char *) val + nbytes, type);
884 #endif
886 MALLOC_UNBLOCK_INPUT;
887 if (!val && nbytes)
888 memory_full (nbytes);
889 MALLOC_PROBE (nbytes);
890 return val;
893 /* Free BLOCK. This must be called to free memory allocated with a
894 call to lisp_malloc. */
896 static void
897 lisp_free (void *block)
899 MALLOC_BLOCK_INPUT;
900 free (block);
901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
902 mem_delete (mem_find (block));
903 #endif
904 MALLOC_UNBLOCK_INPUT;
907 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
909 /* The entry point is lisp_align_malloc which returns blocks of at most
910 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
912 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
913 #define USE_POSIX_MEMALIGN 1
914 #endif
916 /* BLOCK_ALIGN has to be a power of 2. */
917 #define BLOCK_ALIGN (1 << 10)
919 /* Padding to leave at the end of a malloc'd block. This is to give
920 malloc a chance to minimize the amount of memory wasted to alignment.
921 It should be tuned to the particular malloc library used.
922 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
923 posix_memalign on the other hand would ideally prefer a value of 4
924 because otherwise, there's 1020 bytes wasted between each ablocks.
925 In Emacs, testing shows that those 1020 can most of the time be
926 efficiently used by malloc to place other objects, so a value of 0 can
927 still preferable unless you have a lot of aligned blocks and virtually
928 nothing else. */
929 #define BLOCK_PADDING 0
930 #define BLOCK_BYTES \
931 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
933 /* Internal data structures and constants. */
935 #define ABLOCKS_SIZE 16
937 /* An aligned block of memory. */
938 struct ablock
940 union
942 char payload[BLOCK_BYTES];
943 struct ablock *next_free;
944 } x;
945 /* `abase' is the aligned base of the ablocks. */
946 /* It is overloaded to hold the virtual `busy' field that counts
947 the number of used ablock in the parent ablocks.
948 The first ablock has the `busy' field, the others have the `abase'
949 field. To tell the difference, we assume that pointers will have
950 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
951 is used to tell whether the real base of the parent ablocks is `abase'
952 (if not, the word before the first ablock holds a pointer to the
953 real base). */
954 struct ablocks *abase;
955 /* The padding of all but the last ablock is unused. The padding of
956 the last ablock in an ablocks is not allocated. */
957 #if BLOCK_PADDING
958 char padding[BLOCK_PADDING];
959 #endif
962 /* A bunch of consecutive aligned blocks. */
963 struct ablocks
965 struct ablock blocks[ABLOCKS_SIZE];
968 /* Size of the block requested from malloc or posix_memalign. */
969 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
971 #define ABLOCK_ABASE(block) \
972 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
973 ? (struct ablocks *)(block) \
974 : (block)->abase)
976 /* Virtual `busy' field. */
977 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
979 /* Pointer to the (not necessarily aligned) malloc block. */
980 #ifdef USE_POSIX_MEMALIGN
981 #define ABLOCKS_BASE(abase) (abase)
982 #else
983 #define ABLOCKS_BASE(abase) \
984 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
985 #endif
987 /* The list of free ablock. */
988 static struct ablock *free_ablock;
990 /* Allocate an aligned block of nbytes.
991 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
992 smaller or equal to BLOCK_BYTES. */
993 static void *
994 lisp_align_malloc (size_t nbytes, enum mem_type type)
996 void *base, *val;
997 struct ablocks *abase;
999 eassert (nbytes <= BLOCK_BYTES);
1001 MALLOC_BLOCK_INPUT;
1003 #ifdef GC_MALLOC_CHECK
1004 allocated_mem_type = type;
1005 #endif
1007 if (!free_ablock)
1009 int i;
1010 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1012 #ifdef DOUG_LEA_MALLOC
1013 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1014 because mapped region contents are not preserved in
1015 a dumped Emacs. */
1016 mallopt (M_MMAP_MAX, 0);
1017 #endif
1019 #ifdef USE_POSIX_MEMALIGN
1021 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1022 if (err)
1023 base = NULL;
1024 abase = base;
1026 #else
1027 base = malloc (ABLOCKS_BYTES);
1028 abase = ALIGN (base, BLOCK_ALIGN);
1029 #endif
1031 if (base == 0)
1033 MALLOC_UNBLOCK_INPUT;
1034 memory_full (ABLOCKS_BYTES);
1037 aligned = (base == abase);
1038 if (!aligned)
1039 ((void **) abase)[-1] = base;
1041 #ifdef DOUG_LEA_MALLOC
1042 /* Back to a reasonable maximum of mmap'ed areas. */
1043 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1044 #endif
1046 #if ! USE_LSB_TAG
1047 /* If the memory just allocated cannot be addressed thru a Lisp
1048 object's pointer, and it needs to be, that's equivalent to
1049 running out of memory. */
1050 if (type != MEM_TYPE_NON_LISP)
1052 Lisp_Object tem;
1053 char *end = (char *) base + ABLOCKS_BYTES - 1;
1054 XSETCONS (tem, end);
1055 if ((char *) XCONS (tem) != end)
1057 lisp_malloc_loser = base;
1058 free (base);
1059 MALLOC_UNBLOCK_INPUT;
1060 memory_full (SIZE_MAX);
1063 #endif
1065 /* Initialize the blocks and put them on the free list.
1066 If `base' was not properly aligned, we can't use the last block. */
1067 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1069 abase->blocks[i].abase = abase;
1070 abase->blocks[i].x.next_free = free_ablock;
1071 free_ablock = &abase->blocks[i];
1073 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1075 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1076 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1077 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1078 eassert (ABLOCKS_BASE (abase) == base);
1079 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1082 abase = ABLOCK_ABASE (free_ablock);
1083 ABLOCKS_BUSY (abase) =
1084 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1085 val = free_ablock;
1086 free_ablock = free_ablock->x.next_free;
1088 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1089 if (type != MEM_TYPE_NON_LISP)
1090 mem_insert (val, (char *) val + nbytes, type);
1091 #endif
1093 MALLOC_UNBLOCK_INPUT;
1095 MALLOC_PROBE (nbytes);
1097 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1098 return val;
1101 static void
1102 lisp_align_free (void *block)
1104 struct ablock *ablock = block;
1105 struct ablocks *abase = ABLOCK_ABASE (ablock);
1107 MALLOC_BLOCK_INPUT;
1108 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1109 mem_delete (mem_find (block));
1110 #endif
1111 /* Put on free list. */
1112 ablock->x.next_free = free_ablock;
1113 free_ablock = ablock;
1114 /* Update busy count. */
1115 ABLOCKS_BUSY (abase)
1116 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1118 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1119 { /* All the blocks are free. */
1120 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1121 struct ablock **tem = &free_ablock;
1122 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1124 while (*tem)
1126 if (*tem >= (struct ablock *) abase && *tem < atop)
1128 i++;
1129 *tem = (*tem)->x.next_free;
1131 else
1132 tem = &(*tem)->x.next_free;
1134 eassert ((aligned & 1) == aligned);
1135 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1136 #ifdef USE_POSIX_MEMALIGN
1137 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1138 #endif
1139 free (ABLOCKS_BASE (abase));
1141 MALLOC_UNBLOCK_INPUT;
1145 /***********************************************************************
1146 Interval Allocation
1147 ***********************************************************************/
1149 /* Number of intervals allocated in an interval_block structure.
1150 The 1020 is 1024 minus malloc overhead. */
1152 #define INTERVAL_BLOCK_SIZE \
1153 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1155 /* Intervals are allocated in chunks in the form of an interval_block
1156 structure. */
1158 struct interval_block
1160 /* Place `intervals' first, to preserve alignment. */
1161 struct interval intervals[INTERVAL_BLOCK_SIZE];
1162 struct interval_block *next;
1165 /* Current interval block. Its `next' pointer points to older
1166 blocks. */
1168 static struct interval_block *interval_block;
1170 /* Index in interval_block above of the next unused interval
1171 structure. */
1173 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1175 /* Number of free and live intervals. */
1177 static EMACS_INT total_free_intervals, total_intervals;
1179 /* List of free intervals. */
1181 static INTERVAL interval_free_list;
1183 /* Return a new interval. */
1185 INTERVAL
1186 make_interval (void)
1188 INTERVAL val;
1190 MALLOC_BLOCK_INPUT;
1192 if (interval_free_list)
1194 val = interval_free_list;
1195 interval_free_list = INTERVAL_PARENT (interval_free_list);
1197 else
1199 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1201 struct interval_block *newi
1202 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1204 newi->next = interval_block;
1205 interval_block = newi;
1206 interval_block_index = 0;
1207 total_free_intervals += INTERVAL_BLOCK_SIZE;
1209 val = &interval_block->intervals[interval_block_index++];
1212 MALLOC_UNBLOCK_INPUT;
1214 consing_since_gc += sizeof (struct interval);
1215 intervals_consed++;
1216 total_free_intervals--;
1217 RESET_INTERVAL (val);
1218 val->gcmarkbit = 0;
1219 return val;
1223 /* Mark Lisp objects in interval I. */
1225 static void
1226 mark_interval (register INTERVAL i, Lisp_Object dummy)
1228 /* Intervals should never be shared. So, if extra internal checking is
1229 enabled, GC aborts if it seems to have visited an interval twice. */
1230 eassert (!i->gcmarkbit);
1231 i->gcmarkbit = 1;
1232 mark_object (i->plist);
1235 /* Mark the interval tree rooted in I. */
1237 #define MARK_INTERVAL_TREE(i) \
1238 do { \
1239 if (i && !i->gcmarkbit) \
1240 traverse_intervals_noorder (i, mark_interval, Qnil); \
1241 } while (0)
1243 /***********************************************************************
1244 String Allocation
1245 ***********************************************************************/
1247 /* Lisp_Strings are allocated in string_block structures. When a new
1248 string_block is allocated, all the Lisp_Strings it contains are
1249 added to a free-list string_free_list. When a new Lisp_String is
1250 needed, it is taken from that list. During the sweep phase of GC,
1251 string_blocks that are entirely free are freed, except two which
1252 we keep.
1254 String data is allocated from sblock structures. Strings larger
1255 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1256 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1258 Sblocks consist internally of sdata structures, one for each
1259 Lisp_String. The sdata structure points to the Lisp_String it
1260 belongs to. The Lisp_String points back to the `u.data' member of
1261 its sdata structure.
1263 When a Lisp_String is freed during GC, it is put back on
1264 string_free_list, and its `data' member and its sdata's `string'
1265 pointer is set to null. The size of the string is recorded in the
1266 `n.nbytes' member of the sdata. So, sdata structures that are no
1267 longer used, can be easily recognized, and it's easy to compact the
1268 sblocks of small strings which we do in compact_small_strings. */
1270 /* Size in bytes of an sblock structure used for small strings. This
1271 is 8192 minus malloc overhead. */
1273 #define SBLOCK_SIZE 8188
1275 /* Strings larger than this are considered large strings. String data
1276 for large strings is allocated from individual sblocks. */
1278 #define LARGE_STRING_BYTES 1024
1280 /* Struct or union describing string memory sub-allocated from an sblock.
1281 This is where the contents of Lisp strings are stored. */
1283 #ifdef GC_CHECK_STRING_BYTES
1285 typedef struct
1287 /* Back-pointer to the string this sdata belongs to. If null, this
1288 structure is free, and the NBYTES member of the union below
1289 contains the string's byte size (the same value that STRING_BYTES
1290 would return if STRING were non-null). If non-null, STRING_BYTES
1291 (STRING) is the size of the data, and DATA contains the string's
1292 contents. */
1293 struct Lisp_String *string;
1295 ptrdiff_t nbytes;
1296 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1297 } sdata;
1299 #define SDATA_NBYTES(S) (S)->nbytes
1300 #define SDATA_DATA(S) (S)->data
1301 #define SDATA_SELECTOR(member) member
1303 #else
1305 typedef union
1307 struct Lisp_String *string;
1309 /* When STRING is non-null. */
1310 struct
1312 struct Lisp_String *string;
1313 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1314 } u;
1316 /* When STRING is null. */
1317 struct
1319 struct Lisp_String *string;
1320 ptrdiff_t nbytes;
1321 } n;
1322 } sdata;
1324 #define SDATA_NBYTES(S) (S)->n.nbytes
1325 #define SDATA_DATA(S) (S)->u.data
1326 #define SDATA_SELECTOR(member) u.member
1328 #endif /* not GC_CHECK_STRING_BYTES */
1330 #define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
1333 /* Structure describing a block of memory which is sub-allocated to
1334 obtain string data memory for strings. Blocks for small strings
1335 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1336 as large as needed. */
1338 struct sblock
1340 /* Next in list. */
1341 struct sblock *next;
1343 /* Pointer to the next free sdata block. This points past the end
1344 of the sblock if there isn't any space left in this block. */
1345 sdata *next_free;
1347 /* Start of data. */
1348 sdata first_data;
1351 /* Number of Lisp strings in a string_block structure. The 1020 is
1352 1024 minus malloc overhead. */
1354 #define STRING_BLOCK_SIZE \
1355 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1357 /* Structure describing a block from which Lisp_String structures
1358 are allocated. */
1360 struct string_block
1362 /* Place `strings' first, to preserve alignment. */
1363 struct Lisp_String strings[STRING_BLOCK_SIZE];
1364 struct string_block *next;
1367 /* Head and tail of the list of sblock structures holding Lisp string
1368 data. We always allocate from current_sblock. The NEXT pointers
1369 in the sblock structures go from oldest_sblock to current_sblock. */
1371 static struct sblock *oldest_sblock, *current_sblock;
1373 /* List of sblocks for large strings. */
1375 static struct sblock *large_sblocks;
1377 /* List of string_block structures. */
1379 static struct string_block *string_blocks;
1381 /* Free-list of Lisp_Strings. */
1383 static struct Lisp_String *string_free_list;
1385 /* Number of live and free Lisp_Strings. */
1387 static EMACS_INT total_strings, total_free_strings;
1389 /* Number of bytes used by live strings. */
1391 static EMACS_INT total_string_bytes;
1393 /* Given a pointer to a Lisp_String S which is on the free-list
1394 string_free_list, return a pointer to its successor in the
1395 free-list. */
1397 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1399 /* Return a pointer to the sdata structure belonging to Lisp string S.
1400 S must be live, i.e. S->data must not be null. S->data is actually
1401 a pointer to the `u.data' member of its sdata structure; the
1402 structure starts at a constant offset in front of that. */
1404 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1407 #ifdef GC_CHECK_STRING_OVERRUN
1409 /* We check for overrun in string data blocks by appending a small
1410 "cookie" after each allocated string data block, and check for the
1411 presence of this cookie during GC. */
1413 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1414 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1415 { '\xde', '\xad', '\xbe', '\xef' };
1417 #else
1418 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1419 #endif
1421 /* Value is the size of an sdata structure large enough to hold NBYTES
1422 bytes of string data. The value returned includes a terminating
1423 NUL byte, the size of the sdata structure, and padding. */
1425 #ifdef GC_CHECK_STRING_BYTES
1427 #define SDATA_SIZE(NBYTES) \
1428 ((SDATA_DATA_OFFSET \
1429 + (NBYTES) + 1 \
1430 + sizeof (ptrdiff_t) - 1) \
1431 & ~(sizeof (ptrdiff_t) - 1))
1433 #else /* not GC_CHECK_STRING_BYTES */
1435 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1436 less than the size of that member. The 'max' is not needed when
1437 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1438 alignment code reserves enough space. */
1440 #define SDATA_SIZE(NBYTES) \
1441 ((SDATA_DATA_OFFSET \
1442 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1443 ? NBYTES \
1444 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1445 + 1 \
1446 + sizeof (ptrdiff_t) - 1) \
1447 & ~(sizeof (ptrdiff_t) - 1))
1449 #endif /* not GC_CHECK_STRING_BYTES */
1451 /* Extra bytes to allocate for each string. */
1453 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1455 /* Exact bound on the number of bytes in a string, not counting the
1456 terminating null. A string cannot contain more bytes than
1457 STRING_BYTES_BOUND, nor can it be so long that the size_t
1458 arithmetic in allocate_string_data would overflow while it is
1459 calculating a value to be passed to malloc. */
1460 static ptrdiff_t const STRING_BYTES_MAX =
1461 min (STRING_BYTES_BOUND,
1462 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1463 - GC_STRING_EXTRA
1464 - offsetof (struct sblock, first_data)
1465 - SDATA_DATA_OFFSET)
1466 & ~(sizeof (EMACS_INT) - 1)));
1468 /* Initialize string allocation. Called from init_alloc_once. */
1470 static void
1471 init_strings (void)
1473 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1474 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1478 #ifdef GC_CHECK_STRING_BYTES
1480 static int check_string_bytes_count;
1482 /* Like STRING_BYTES, but with debugging check. Can be
1483 called during GC, so pay attention to the mark bit. */
1485 ptrdiff_t
1486 string_bytes (struct Lisp_String *s)
1488 ptrdiff_t nbytes =
1489 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1491 if (!PURE_POINTER_P (s)
1492 && s->data
1493 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1494 emacs_abort ();
1495 return nbytes;
1498 /* Check validity of Lisp strings' string_bytes member in B. */
1500 static void
1501 check_sblock (struct sblock *b)
1503 sdata *from, *end, *from_end;
1505 end = b->next_free;
1507 for (from = &b->first_data; from < end; from = from_end)
1509 /* Compute the next FROM here because copying below may
1510 overwrite data we need to compute it. */
1511 ptrdiff_t nbytes;
1513 /* Check that the string size recorded in the string is the
1514 same as the one recorded in the sdata structure. */
1515 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1516 : SDATA_NBYTES (from));
1517 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1522 /* Check validity of Lisp strings' string_bytes member. ALL_P
1523 means check all strings, otherwise check only most
1524 recently allocated strings. Used for hunting a bug. */
1526 static void
1527 check_string_bytes (bool all_p)
1529 if (all_p)
1531 struct sblock *b;
1533 for (b = large_sblocks; b; b = b->next)
1535 struct Lisp_String *s = b->first_data.string;
1536 if (s)
1537 string_bytes (s);
1540 for (b = oldest_sblock; b; b = b->next)
1541 check_sblock (b);
1543 else if (current_sblock)
1544 check_sblock (current_sblock);
1547 #else /* not GC_CHECK_STRING_BYTES */
1549 #define check_string_bytes(all) ((void) 0)
1551 #endif /* GC_CHECK_STRING_BYTES */
1553 #ifdef GC_CHECK_STRING_FREE_LIST
1555 /* Walk through the string free list looking for bogus next pointers.
1556 This may catch buffer overrun from a previous string. */
1558 static void
1559 check_string_free_list (void)
1561 struct Lisp_String *s;
1563 /* Pop a Lisp_String off the free-list. */
1564 s = string_free_list;
1565 while (s != NULL)
1567 if ((uintptr_t) s < 1024)
1568 emacs_abort ();
1569 s = NEXT_FREE_LISP_STRING (s);
1572 #else
1573 #define check_string_free_list()
1574 #endif
1576 /* Return a new Lisp_String. */
1578 static struct Lisp_String *
1579 allocate_string (void)
1581 struct Lisp_String *s;
1583 MALLOC_BLOCK_INPUT;
1585 /* If the free-list is empty, allocate a new string_block, and
1586 add all the Lisp_Strings in it to the free-list. */
1587 if (string_free_list == NULL)
1589 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1590 int i;
1592 b->next = string_blocks;
1593 string_blocks = b;
1595 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1597 s = b->strings + i;
1598 /* Every string on a free list should have NULL data pointer. */
1599 s->data = NULL;
1600 NEXT_FREE_LISP_STRING (s) = string_free_list;
1601 string_free_list = s;
1604 total_free_strings += STRING_BLOCK_SIZE;
1607 check_string_free_list ();
1609 /* Pop a Lisp_String off the free-list. */
1610 s = string_free_list;
1611 string_free_list = NEXT_FREE_LISP_STRING (s);
1613 MALLOC_UNBLOCK_INPUT;
1615 --total_free_strings;
1616 ++total_strings;
1617 ++strings_consed;
1618 consing_since_gc += sizeof *s;
1620 #ifdef GC_CHECK_STRING_BYTES
1621 if (!noninteractive)
1623 if (++check_string_bytes_count == 200)
1625 check_string_bytes_count = 0;
1626 check_string_bytes (1);
1628 else
1629 check_string_bytes (0);
1631 #endif /* GC_CHECK_STRING_BYTES */
1633 return s;
1637 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1638 plus a NUL byte at the end. Allocate an sdata structure for S, and
1639 set S->data to its `u.data' member. Store a NUL byte at the end of
1640 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1641 S->data if it was initially non-null. */
1643 void
1644 allocate_string_data (struct Lisp_String *s,
1645 EMACS_INT nchars, EMACS_INT nbytes)
1647 sdata *data, *old_data;
1648 struct sblock *b;
1649 ptrdiff_t needed, old_nbytes;
1651 if (STRING_BYTES_MAX < nbytes)
1652 string_overflow ();
1654 /* Determine the number of bytes needed to store NBYTES bytes
1655 of string data. */
1656 needed = SDATA_SIZE (nbytes);
1657 if (s->data)
1659 old_data = SDATA_OF_STRING (s);
1660 old_nbytes = STRING_BYTES (s);
1662 else
1663 old_data = NULL;
1665 MALLOC_BLOCK_INPUT;
1667 if (nbytes > LARGE_STRING_BYTES)
1669 size_t size = offsetof (struct sblock, first_data) + needed;
1671 #ifdef DOUG_LEA_MALLOC
1672 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1673 because mapped region contents are not preserved in
1674 a dumped Emacs.
1676 In case you think of allowing it in a dumped Emacs at the
1677 cost of not being able to re-dump, there's another reason:
1678 mmap'ed data typically have an address towards the top of the
1679 address space, which won't fit into an EMACS_INT (at least on
1680 32-bit systems with the current tagging scheme). --fx */
1681 mallopt (M_MMAP_MAX, 0);
1682 #endif
1684 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1686 #ifdef DOUG_LEA_MALLOC
1687 /* Back to a reasonable maximum of mmap'ed areas. */
1688 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1689 #endif
1691 b->next_free = &b->first_data;
1692 b->first_data.string = NULL;
1693 b->next = large_sblocks;
1694 large_sblocks = b;
1696 else if (current_sblock == NULL
1697 || (((char *) current_sblock + SBLOCK_SIZE
1698 - (char *) current_sblock->next_free)
1699 < (needed + GC_STRING_EXTRA)))
1701 /* Not enough room in the current sblock. */
1702 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1703 b->next_free = &b->first_data;
1704 b->first_data.string = NULL;
1705 b->next = NULL;
1707 if (current_sblock)
1708 current_sblock->next = b;
1709 else
1710 oldest_sblock = b;
1711 current_sblock = b;
1713 else
1714 b = current_sblock;
1716 data = b->next_free;
1717 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1719 MALLOC_UNBLOCK_INPUT;
1721 data->string = s;
1722 s->data = SDATA_DATA (data);
1723 #ifdef GC_CHECK_STRING_BYTES
1724 SDATA_NBYTES (data) = nbytes;
1725 #endif
1726 s->size = nchars;
1727 s->size_byte = nbytes;
1728 s->data[nbytes] = '\0';
1729 #ifdef GC_CHECK_STRING_OVERRUN
1730 memcpy ((char *) data + needed, string_overrun_cookie,
1731 GC_STRING_OVERRUN_COOKIE_SIZE);
1732 #endif
1734 /* Note that Faset may call to this function when S has already data
1735 assigned. In this case, mark data as free by setting it's string
1736 back-pointer to null, and record the size of the data in it. */
1737 if (old_data)
1739 SDATA_NBYTES (old_data) = old_nbytes;
1740 old_data->string = NULL;
1743 consing_since_gc += needed;
1747 /* Sweep and compact strings. */
1749 static void
1750 sweep_strings (void)
1752 struct string_block *b, *next;
1753 struct string_block *live_blocks = NULL;
1755 string_free_list = NULL;
1756 total_strings = total_free_strings = 0;
1757 total_string_bytes = 0;
1759 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1760 for (b = string_blocks; b; b = next)
1762 int i, nfree = 0;
1763 struct Lisp_String *free_list_before = string_free_list;
1765 next = b->next;
1767 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1769 struct Lisp_String *s = b->strings + i;
1771 if (s->data)
1773 /* String was not on free-list before. */
1774 if (STRING_MARKED_P (s))
1776 /* String is live; unmark it and its intervals. */
1777 UNMARK_STRING (s);
1779 /* Do not use string_(set|get)_intervals here. */
1780 s->intervals = balance_intervals (s->intervals);
1782 ++total_strings;
1783 total_string_bytes += STRING_BYTES (s);
1785 else
1787 /* String is dead. Put it on the free-list. */
1788 sdata *data = SDATA_OF_STRING (s);
1790 /* Save the size of S in its sdata so that we know
1791 how large that is. Reset the sdata's string
1792 back-pointer so that we know it's free. */
1793 #ifdef GC_CHECK_STRING_BYTES
1794 if (string_bytes (s) != SDATA_NBYTES (data))
1795 emacs_abort ();
1796 #else
1797 data->n.nbytes = STRING_BYTES (s);
1798 #endif
1799 data->string = NULL;
1801 /* Reset the strings's `data' member so that we
1802 know it's free. */
1803 s->data = NULL;
1805 /* Put the string on the free-list. */
1806 NEXT_FREE_LISP_STRING (s) = string_free_list;
1807 string_free_list = s;
1808 ++nfree;
1811 else
1813 /* S was on the free-list before. Put it there again. */
1814 NEXT_FREE_LISP_STRING (s) = string_free_list;
1815 string_free_list = s;
1816 ++nfree;
1820 /* Free blocks that contain free Lisp_Strings only, except
1821 the first two of them. */
1822 if (nfree == STRING_BLOCK_SIZE
1823 && total_free_strings > STRING_BLOCK_SIZE)
1825 lisp_free (b);
1826 string_free_list = free_list_before;
1828 else
1830 total_free_strings += nfree;
1831 b->next = live_blocks;
1832 live_blocks = b;
1836 check_string_free_list ();
1838 string_blocks = live_blocks;
1839 free_large_strings ();
1840 compact_small_strings ();
1842 check_string_free_list ();
1846 /* Free dead large strings. */
1848 static void
1849 free_large_strings (void)
1851 struct sblock *b, *next;
1852 struct sblock *live_blocks = NULL;
1854 for (b = large_sblocks; b; b = next)
1856 next = b->next;
1858 if (b->first_data.string == NULL)
1859 lisp_free (b);
1860 else
1862 b->next = live_blocks;
1863 live_blocks = b;
1867 large_sblocks = live_blocks;
1871 /* Compact data of small strings. Free sblocks that don't contain
1872 data of live strings after compaction. */
1874 static void
1875 compact_small_strings (void)
1877 struct sblock *b, *tb, *next;
1878 sdata *from, *to, *end, *tb_end;
1879 sdata *to_end, *from_end;
1881 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1882 to, and TB_END is the end of TB. */
1883 tb = oldest_sblock;
1884 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1885 to = &tb->first_data;
1887 /* Step through the blocks from the oldest to the youngest. We
1888 expect that old blocks will stabilize over time, so that less
1889 copying will happen this way. */
1890 for (b = oldest_sblock; b; b = b->next)
1892 end = b->next_free;
1893 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1895 for (from = &b->first_data; from < end; from = from_end)
1897 /* Compute the next FROM here because copying below may
1898 overwrite data we need to compute it. */
1899 ptrdiff_t nbytes;
1900 struct Lisp_String *s = from->string;
1902 #ifdef GC_CHECK_STRING_BYTES
1903 /* Check that the string size recorded in the string is the
1904 same as the one recorded in the sdata structure. */
1905 if (s && string_bytes (s) != SDATA_NBYTES (from))
1906 emacs_abort ();
1907 #endif /* GC_CHECK_STRING_BYTES */
1909 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1910 eassert (nbytes <= LARGE_STRING_BYTES);
1912 nbytes = SDATA_SIZE (nbytes);
1913 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1915 #ifdef GC_CHECK_STRING_OVERRUN
1916 if (memcmp (string_overrun_cookie,
1917 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1918 GC_STRING_OVERRUN_COOKIE_SIZE))
1919 emacs_abort ();
1920 #endif
1922 /* Non-NULL S means it's alive. Copy its data. */
1923 if (s)
1925 /* If TB is full, proceed with the next sblock. */
1926 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1927 if (to_end > tb_end)
1929 tb->next_free = to;
1930 tb = tb->next;
1931 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1932 to = &tb->first_data;
1933 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1936 /* Copy, and update the string's `data' pointer. */
1937 if (from != to)
1939 eassert (tb != b || to < from);
1940 memmove (to, from, nbytes + GC_STRING_EXTRA);
1941 to->string->data = SDATA_DATA (to);
1944 /* Advance past the sdata we copied to. */
1945 to = to_end;
1950 /* The rest of the sblocks following TB don't contain live data, so
1951 we can free them. */
1952 for (b = tb->next; b; b = next)
1954 next = b->next;
1955 lisp_free (b);
1958 tb->next_free = to;
1959 tb->next = NULL;
1960 current_sblock = tb;
1963 void
1964 string_overflow (void)
1966 error ("Maximum string size exceeded");
1969 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1970 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1971 LENGTH must be an integer.
1972 INIT must be an integer that represents a character. */)
1973 (Lisp_Object length, Lisp_Object init)
1975 register Lisp_Object val;
1976 register unsigned char *p, *end;
1977 int c;
1978 EMACS_INT nbytes;
1980 CHECK_NATNUM (length);
1981 CHECK_CHARACTER (init);
1983 c = XFASTINT (init);
1984 if (ASCII_CHAR_P (c))
1986 nbytes = XINT (length);
1987 val = make_uninit_string (nbytes);
1988 p = SDATA (val);
1989 end = p + SCHARS (val);
1990 while (p != end)
1991 *p++ = c;
1993 else
1995 unsigned char str[MAX_MULTIBYTE_LENGTH];
1996 int len = CHAR_STRING (c, str);
1997 EMACS_INT string_len = XINT (length);
1999 if (string_len > STRING_BYTES_MAX / len)
2000 string_overflow ();
2001 nbytes = len * string_len;
2002 val = make_uninit_multibyte_string (string_len, nbytes);
2003 p = SDATA (val);
2004 end = p + nbytes;
2005 while (p != end)
2007 memcpy (p, str, len);
2008 p += len;
2012 *p = 0;
2013 return val;
2016 verify (sizeof (size_t) * CHAR_BIT == BITS_PER_SIZE_T);
2017 verify ((BITS_PER_SIZE_T & (BITS_PER_SIZE_T - 1)) == 0);
2019 static ptrdiff_t
2020 bool_vector_payload_bytes (ptrdiff_t nr_bits,
2021 ptrdiff_t *exact_needed_bytes_out)
2023 ptrdiff_t exact_needed_bytes;
2024 ptrdiff_t needed_bytes;
2026 eassert_and_assume (nr_bits >= 0);
2028 exact_needed_bytes = ROUNDUP ((size_t) nr_bits, CHAR_BIT) / CHAR_BIT;
2029 needed_bytes = ROUNDUP ((size_t) nr_bits, BITS_PER_SIZE_T) / CHAR_BIT;
2031 if (needed_bytes == 0)
2033 /* Always allocate at least one machine word of payload so that
2034 bool-vector operations in data.c don't need a special case
2035 for empty vectors. */
2036 needed_bytes = sizeof (size_t);
2039 if (exact_needed_bytes_out != NULL)
2040 *exact_needed_bytes_out = exact_needed_bytes;
2042 return needed_bytes;
2045 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2046 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2047 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2048 (Lisp_Object length, Lisp_Object init)
2050 register Lisp_Object val;
2051 struct Lisp_Bool_Vector *p;
2052 ptrdiff_t exact_payload_bytes;
2053 ptrdiff_t total_payload_bytes;
2054 ptrdiff_t needed_elements;
2056 CHECK_NATNUM (length);
2057 if (PTRDIFF_MAX < XFASTINT (length))
2058 memory_full (SIZE_MAX);
2060 total_payload_bytes = bool_vector_payload_bytes
2061 (XFASTINT (length), &exact_payload_bytes);
2063 eassert_and_assume (exact_payload_bytes <= total_payload_bytes);
2064 eassert_and_assume (0 <= exact_payload_bytes);
2066 needed_elements = ROUNDUP ((size_t) ((bool_header_size - header_size)
2067 + total_payload_bytes),
2068 word_size) / word_size;
2070 p = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2071 XSETVECTOR (val, p);
2072 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2074 p->size = XFASTINT (length);
2075 if (exact_payload_bytes)
2077 memset (p->data, ! NILP (init) ? -1 : 0, exact_payload_bytes);
2079 /* Clear any extraneous bits in the last byte. */
2080 p->data[exact_payload_bytes - 1]
2081 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2084 /* Clear padding at the end. */
2085 memset (p->data + exact_payload_bytes,
2087 total_payload_bytes - exact_payload_bytes);
2089 return val;
2093 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2094 of characters from the contents. This string may be unibyte or
2095 multibyte, depending on the contents. */
2097 Lisp_Object
2098 make_string (const char *contents, ptrdiff_t nbytes)
2100 register Lisp_Object val;
2101 ptrdiff_t nchars, multibyte_nbytes;
2103 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2104 &nchars, &multibyte_nbytes);
2105 if (nbytes == nchars || nbytes != multibyte_nbytes)
2106 /* CONTENTS contains no multibyte sequences or contains an invalid
2107 multibyte sequence. We must make unibyte string. */
2108 val = make_unibyte_string (contents, nbytes);
2109 else
2110 val = make_multibyte_string (contents, nchars, nbytes);
2111 return val;
2115 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2117 Lisp_Object
2118 make_unibyte_string (const char *contents, ptrdiff_t length)
2120 register Lisp_Object val;
2121 val = make_uninit_string (length);
2122 memcpy (SDATA (val), contents, length);
2123 return val;
2127 /* Make a multibyte string from NCHARS characters occupying NBYTES
2128 bytes at CONTENTS. */
2130 Lisp_Object
2131 make_multibyte_string (const char *contents,
2132 ptrdiff_t nchars, ptrdiff_t nbytes)
2134 register Lisp_Object val;
2135 val = make_uninit_multibyte_string (nchars, nbytes);
2136 memcpy (SDATA (val), contents, nbytes);
2137 return val;
2141 /* Make a string from NCHARS characters occupying NBYTES bytes at
2142 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2144 Lisp_Object
2145 make_string_from_bytes (const char *contents,
2146 ptrdiff_t nchars, ptrdiff_t nbytes)
2148 register Lisp_Object val;
2149 val = make_uninit_multibyte_string (nchars, nbytes);
2150 memcpy (SDATA (val), contents, nbytes);
2151 if (SBYTES (val) == SCHARS (val))
2152 STRING_SET_UNIBYTE (val);
2153 return val;
2157 /* Make a string from NCHARS characters occupying NBYTES bytes at
2158 CONTENTS. The argument MULTIBYTE controls whether to label the
2159 string as multibyte. If NCHARS is negative, it counts the number of
2160 characters by itself. */
2162 Lisp_Object
2163 make_specified_string (const char *contents,
2164 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2166 Lisp_Object val;
2168 if (nchars < 0)
2170 if (multibyte)
2171 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2172 nbytes);
2173 else
2174 nchars = nbytes;
2176 val = make_uninit_multibyte_string (nchars, nbytes);
2177 memcpy (SDATA (val), contents, nbytes);
2178 if (!multibyte)
2179 STRING_SET_UNIBYTE (val);
2180 return val;
2184 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2185 occupying LENGTH bytes. */
2187 Lisp_Object
2188 make_uninit_string (EMACS_INT length)
2190 Lisp_Object val;
2192 if (!length)
2193 return empty_unibyte_string;
2194 val = make_uninit_multibyte_string (length, length);
2195 STRING_SET_UNIBYTE (val);
2196 return val;
2200 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2201 which occupy NBYTES bytes. */
2203 Lisp_Object
2204 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2206 Lisp_Object string;
2207 struct Lisp_String *s;
2209 if (nchars < 0)
2210 emacs_abort ();
2211 if (!nbytes)
2212 return empty_multibyte_string;
2214 s = allocate_string ();
2215 s->intervals = NULL;
2216 allocate_string_data (s, nchars, nbytes);
2217 XSETSTRING (string, s);
2218 string_chars_consed += nbytes;
2219 return string;
2222 /* Print arguments to BUF according to a FORMAT, then return
2223 a Lisp_String initialized with the data from BUF. */
2225 Lisp_Object
2226 make_formatted_string (char *buf, const char *format, ...)
2228 va_list ap;
2229 int length;
2231 va_start (ap, format);
2232 length = vsprintf (buf, format, ap);
2233 va_end (ap);
2234 return make_string (buf, length);
2238 /***********************************************************************
2239 Float Allocation
2240 ***********************************************************************/
2242 /* We store float cells inside of float_blocks, allocating a new
2243 float_block with malloc whenever necessary. Float cells reclaimed
2244 by GC are put on a free list to be reallocated before allocating
2245 any new float cells from the latest float_block. */
2247 #define FLOAT_BLOCK_SIZE \
2248 (((BLOCK_BYTES - sizeof (struct float_block *) \
2249 /* The compiler might add padding at the end. */ \
2250 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2251 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2253 #define GETMARKBIT(block,n) \
2254 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2255 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2256 & 1)
2258 #define SETMARKBIT(block,n) \
2259 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2260 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2262 #define UNSETMARKBIT(block,n) \
2263 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2264 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2266 #define FLOAT_BLOCK(fptr) \
2267 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2269 #define FLOAT_INDEX(fptr) \
2270 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2272 struct float_block
2274 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2275 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2276 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2277 struct float_block *next;
2280 #define FLOAT_MARKED_P(fptr) \
2281 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2283 #define FLOAT_MARK(fptr) \
2284 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2286 #define FLOAT_UNMARK(fptr) \
2287 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2289 /* Current float_block. */
2291 static struct float_block *float_block;
2293 /* Index of first unused Lisp_Float in the current float_block. */
2295 static int float_block_index = FLOAT_BLOCK_SIZE;
2297 /* Free-list of Lisp_Floats. */
2299 static struct Lisp_Float *float_free_list;
2301 /* Return a new float object with value FLOAT_VALUE. */
2303 Lisp_Object
2304 make_float (double float_value)
2306 register Lisp_Object val;
2308 MALLOC_BLOCK_INPUT;
2310 if (float_free_list)
2312 /* We use the data field for chaining the free list
2313 so that we won't use the same field that has the mark bit. */
2314 XSETFLOAT (val, float_free_list);
2315 float_free_list = float_free_list->u.chain;
2317 else
2319 if (float_block_index == FLOAT_BLOCK_SIZE)
2321 struct float_block *new
2322 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2323 new->next = float_block;
2324 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2325 float_block = new;
2326 float_block_index = 0;
2327 total_free_floats += FLOAT_BLOCK_SIZE;
2329 XSETFLOAT (val, &float_block->floats[float_block_index]);
2330 float_block_index++;
2333 MALLOC_UNBLOCK_INPUT;
2335 XFLOAT_INIT (val, float_value);
2336 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2337 consing_since_gc += sizeof (struct Lisp_Float);
2338 floats_consed++;
2339 total_free_floats--;
2340 return val;
2345 /***********************************************************************
2346 Cons Allocation
2347 ***********************************************************************/
2349 /* We store cons cells inside of cons_blocks, allocating a new
2350 cons_block with malloc whenever necessary. Cons cells reclaimed by
2351 GC are put on a free list to be reallocated before allocating
2352 any new cons cells from the latest cons_block. */
2354 #define CONS_BLOCK_SIZE \
2355 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2356 /* The compiler might add padding at the end. */ \
2357 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2358 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2360 #define CONS_BLOCK(fptr) \
2361 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2363 #define CONS_INDEX(fptr) \
2364 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2366 struct cons_block
2368 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2369 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2370 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2371 struct cons_block *next;
2374 #define CONS_MARKED_P(fptr) \
2375 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2377 #define CONS_MARK(fptr) \
2378 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2380 #define CONS_UNMARK(fptr) \
2381 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2383 /* Current cons_block. */
2385 static struct cons_block *cons_block;
2387 /* Index of first unused Lisp_Cons in the current block. */
2389 static int cons_block_index = CONS_BLOCK_SIZE;
2391 /* Free-list of Lisp_Cons structures. */
2393 static struct Lisp_Cons *cons_free_list;
2395 /* Explicitly free a cons cell by putting it on the free-list. */
2397 void
2398 free_cons (struct Lisp_Cons *ptr)
2400 ptr->u.chain = cons_free_list;
2401 #if GC_MARK_STACK
2402 ptr->car = Vdead;
2403 #endif
2404 cons_free_list = ptr;
2405 consing_since_gc -= sizeof *ptr;
2406 total_free_conses++;
2409 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2410 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2411 (Lisp_Object car, Lisp_Object cdr)
2413 register Lisp_Object val;
2415 MALLOC_BLOCK_INPUT;
2417 if (cons_free_list)
2419 /* We use the cdr for chaining the free list
2420 so that we won't use the same field that has the mark bit. */
2421 XSETCONS (val, cons_free_list);
2422 cons_free_list = cons_free_list->u.chain;
2424 else
2426 if (cons_block_index == CONS_BLOCK_SIZE)
2428 struct cons_block *new
2429 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2430 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2431 new->next = cons_block;
2432 cons_block = new;
2433 cons_block_index = 0;
2434 total_free_conses += CONS_BLOCK_SIZE;
2436 XSETCONS (val, &cons_block->conses[cons_block_index]);
2437 cons_block_index++;
2440 MALLOC_UNBLOCK_INPUT;
2442 XSETCAR (val, car);
2443 XSETCDR (val, cdr);
2444 eassert (!CONS_MARKED_P (XCONS (val)));
2445 consing_since_gc += sizeof (struct Lisp_Cons);
2446 total_free_conses--;
2447 cons_cells_consed++;
2448 return val;
2451 #ifdef GC_CHECK_CONS_LIST
2452 /* Get an error now if there's any junk in the cons free list. */
2453 void
2454 check_cons_list (void)
2456 struct Lisp_Cons *tail = cons_free_list;
2458 while (tail)
2459 tail = tail->u.chain;
2461 #endif
2463 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2465 Lisp_Object
2466 list1 (Lisp_Object arg1)
2468 return Fcons (arg1, Qnil);
2471 Lisp_Object
2472 list2 (Lisp_Object arg1, Lisp_Object arg2)
2474 return Fcons (arg1, Fcons (arg2, Qnil));
2478 Lisp_Object
2479 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2481 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2485 Lisp_Object
2486 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2488 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2492 Lisp_Object
2493 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2495 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2496 Fcons (arg5, Qnil)))));
2499 /* Make a list of COUNT Lisp_Objects, where ARG is the
2500 first one. Allocate conses from pure space if TYPE
2501 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2503 Lisp_Object
2504 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2506 va_list ap;
2507 ptrdiff_t i;
2508 Lisp_Object val, *objp;
2510 /* Change to SAFE_ALLOCA if you hit this eassert. */
2511 eassert (count <= MAX_ALLOCA / word_size);
2513 objp = alloca (count * word_size);
2514 objp[0] = arg;
2515 va_start (ap, arg);
2516 for (i = 1; i < count; i++)
2517 objp[i] = va_arg (ap, Lisp_Object);
2518 va_end (ap);
2520 for (val = Qnil, i = count - 1; i >= 0; i--)
2522 if (type == CONSTYPE_PURE)
2523 val = pure_cons (objp[i], val);
2524 else if (type == CONSTYPE_HEAP)
2525 val = Fcons (objp[i], val);
2526 else
2527 emacs_abort ();
2529 return val;
2532 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2533 doc: /* Return a newly created list with specified arguments as elements.
2534 Any number of arguments, even zero arguments, are allowed.
2535 usage: (list &rest OBJECTS) */)
2536 (ptrdiff_t nargs, Lisp_Object *args)
2538 register Lisp_Object val;
2539 val = Qnil;
2541 while (nargs > 0)
2543 nargs--;
2544 val = Fcons (args[nargs], val);
2546 return val;
2550 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2551 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2552 (register Lisp_Object length, Lisp_Object init)
2554 register Lisp_Object val;
2555 register EMACS_INT size;
2557 CHECK_NATNUM (length);
2558 size = XFASTINT (length);
2560 val = Qnil;
2561 while (size > 0)
2563 val = Fcons (init, val);
2564 --size;
2566 if (size > 0)
2568 val = Fcons (init, val);
2569 --size;
2571 if (size > 0)
2573 val = Fcons (init, val);
2574 --size;
2576 if (size > 0)
2578 val = Fcons (init, val);
2579 --size;
2581 if (size > 0)
2583 val = Fcons (init, val);
2584 --size;
2590 QUIT;
2593 return val;
2598 /***********************************************************************
2599 Vector Allocation
2600 ***********************************************************************/
2602 /* This value is balanced well enough to avoid too much internal overhead
2603 for the most common cases; it's not required to be a power of two, but
2604 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2606 #define VECTOR_BLOCK_SIZE 4096
2608 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2609 enum
2611 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2614 /* Verify assumptions described above. */
2615 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2616 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2618 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2619 #define vroundup_ct(x) ROUNDUP ((size_t) (x), roundup_size)
2620 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2621 #define vroundup(x) (assume ((x) >= 0), vroundup_ct (x))
2623 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2625 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2627 /* Size of the minimal vector allocated from block. */
2629 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2631 /* Size of the largest vector allocated from block. */
2633 #define VBLOCK_BYTES_MAX \
2634 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2636 /* We maintain one free list for each possible block-allocated
2637 vector size, and this is the number of free lists we have. */
2639 #define VECTOR_MAX_FREE_LIST_INDEX \
2640 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2642 /* Common shortcut to advance vector pointer over a block data. */
2644 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2646 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2648 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2650 /* Common shortcut to setup vector on a free list. */
2652 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2653 do { \
2654 (tmp) = ((nbytes - header_size) / word_size); \
2655 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2656 eassert ((nbytes) % roundup_size == 0); \
2657 (tmp) = VINDEX (nbytes); \
2658 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2659 v->u.next = vector_free_lists[tmp]; \
2660 vector_free_lists[tmp] = (v); \
2661 total_free_vector_slots += (nbytes) / word_size; \
2662 } while (0)
2664 /* This internal type is used to maintain the list of large vectors
2665 which are allocated at their own, e.g. outside of vector blocks. */
2667 struct large_vector
2669 union {
2670 struct large_vector *vector;
2671 #if USE_LSB_TAG
2672 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2673 unsigned char c[vroundup_ct (sizeof (struct large_vector *))];
2674 #endif
2675 } next;
2676 struct Lisp_Vector v;
2679 /* This internal type is used to maintain an underlying storage
2680 for small vectors. */
2682 struct vector_block
2684 char data[VECTOR_BLOCK_BYTES];
2685 struct vector_block *next;
2688 /* Chain of vector blocks. */
2690 static struct vector_block *vector_blocks;
2692 /* Vector free lists, where NTH item points to a chain of free
2693 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2695 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2697 /* Singly-linked list of large vectors. */
2699 static struct large_vector *large_vectors;
2701 /* The only vector with 0 slots, allocated from pure space. */
2703 Lisp_Object zero_vector;
2705 /* Number of live vectors. */
2707 static EMACS_INT total_vectors;
2709 /* Total size of live and free vectors, in Lisp_Object units. */
2711 static EMACS_INT total_vector_slots, total_free_vector_slots;
2713 /* Get a new vector block. */
2715 static struct vector_block *
2716 allocate_vector_block (void)
2718 struct vector_block *block = xmalloc (sizeof *block);
2720 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2721 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2722 MEM_TYPE_VECTOR_BLOCK);
2723 #endif
2725 block->next = vector_blocks;
2726 vector_blocks = block;
2727 return block;
2730 /* Called once to initialize vector allocation. */
2732 static void
2733 init_vectors (void)
2735 zero_vector = make_pure_vector (0);
2738 /* Allocate vector from a vector block. */
2740 static struct Lisp_Vector *
2741 allocate_vector_from_block (size_t nbytes)
2743 struct Lisp_Vector *vector;
2744 struct vector_block *block;
2745 size_t index, restbytes;
2747 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2748 eassert (nbytes % roundup_size == 0);
2750 /* First, try to allocate from a free list
2751 containing vectors of the requested size. */
2752 index = VINDEX (nbytes);
2753 if (vector_free_lists[index])
2755 vector = vector_free_lists[index];
2756 vector_free_lists[index] = vector->u.next;
2757 total_free_vector_slots -= nbytes / word_size;
2758 return vector;
2761 /* Next, check free lists containing larger vectors. Since
2762 we will split the result, we should have remaining space
2763 large enough to use for one-slot vector at least. */
2764 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2765 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2766 if (vector_free_lists[index])
2768 /* This vector is larger than requested. */
2769 vector = vector_free_lists[index];
2770 vector_free_lists[index] = vector->u.next;
2771 total_free_vector_slots -= nbytes / word_size;
2773 /* Excess bytes are used for the smaller vector,
2774 which should be set on an appropriate free list. */
2775 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2776 eassert (restbytes % roundup_size == 0);
2777 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2778 return vector;
2781 /* Finally, need a new vector block. */
2782 block = allocate_vector_block ();
2784 /* New vector will be at the beginning of this block. */
2785 vector = (struct Lisp_Vector *) block->data;
2787 /* If the rest of space from this block is large enough
2788 for one-slot vector at least, set up it on a free list. */
2789 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2790 if (restbytes >= VBLOCK_BYTES_MIN)
2792 eassert (restbytes % roundup_size == 0);
2793 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2795 return vector;
2798 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2800 #define VECTOR_IN_BLOCK(vector, block) \
2801 ((char *) (vector) <= (block)->data \
2802 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2804 /* Return the memory footprint of V in bytes. */
2806 static ptrdiff_t
2807 vector_nbytes (struct Lisp_Vector *v)
2809 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2811 if (size & PSEUDOVECTOR_FLAG)
2813 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2815 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2816 ptrdiff_t payload_bytes =
2817 bool_vector_payload_bytes (bv->size, NULL);
2819 eassert_and_assume (payload_bytes >= 0);
2820 size = bool_header_size + ROUNDUP (payload_bytes, word_size);
2822 else
2823 size = (header_size
2824 + ((size & PSEUDOVECTOR_SIZE_MASK)
2825 + ((size & PSEUDOVECTOR_REST_MASK)
2826 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2828 else
2829 size = header_size + size * word_size;
2830 return vroundup (size);
2833 /* Reclaim space used by unmarked vectors. */
2835 static void
2836 sweep_vectors (void)
2838 struct vector_block *block, **bprev = &vector_blocks;
2839 struct large_vector *lv, **lvprev = &large_vectors;
2840 struct Lisp_Vector *vector, *next;
2842 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2843 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2845 /* Looking through vector blocks. */
2847 for (block = vector_blocks; block; block = *bprev)
2849 bool free_this_block = 0;
2850 ptrdiff_t nbytes;
2852 for (vector = (struct Lisp_Vector *) block->data;
2853 VECTOR_IN_BLOCK (vector, block); vector = next)
2855 if (VECTOR_MARKED_P (vector))
2857 VECTOR_UNMARK (vector);
2858 total_vectors++;
2859 nbytes = vector_nbytes (vector);
2860 total_vector_slots += nbytes / word_size;
2861 next = ADVANCE (vector, nbytes);
2863 else
2865 ptrdiff_t total_bytes;
2867 nbytes = vector_nbytes (vector);
2868 total_bytes = nbytes;
2869 next = ADVANCE (vector, nbytes);
2871 /* While NEXT is not marked, try to coalesce with VECTOR,
2872 thus making VECTOR of the largest possible size. */
2874 while (VECTOR_IN_BLOCK (next, block))
2876 if (VECTOR_MARKED_P (next))
2877 break;
2878 nbytes = vector_nbytes (next);
2879 total_bytes += nbytes;
2880 next = ADVANCE (next, nbytes);
2883 eassert (total_bytes % roundup_size == 0);
2885 if (vector == (struct Lisp_Vector *) block->data
2886 && !VECTOR_IN_BLOCK (next, block))
2887 /* This block should be freed because all of it's
2888 space was coalesced into the only free vector. */
2889 free_this_block = 1;
2890 else
2892 size_t tmp;
2893 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2898 if (free_this_block)
2900 *bprev = block->next;
2901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2902 mem_delete (mem_find (block->data));
2903 #endif
2904 xfree (block);
2906 else
2907 bprev = &block->next;
2910 /* Sweep large vectors. */
2912 for (lv = large_vectors; lv; lv = *lvprev)
2914 vector = &lv->v;
2915 if (VECTOR_MARKED_P (vector))
2917 VECTOR_UNMARK (vector);
2918 total_vectors++;
2919 if (vector->header.size & PSEUDOVECTOR_FLAG)
2921 /* All non-bool pseudovectors are small enough to be allocated
2922 from vector blocks. This code should be redesigned if some
2923 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2924 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2925 total_vector_slots += vector_nbytes (vector) / word_size;
2927 else
2928 total_vector_slots
2929 += header_size / word_size + vector->header.size;
2930 lvprev = &lv->next.vector;
2932 else
2934 *lvprev = lv->next.vector;
2935 lisp_free (lv);
2940 /* Value is a pointer to a newly allocated Lisp_Vector structure
2941 with room for LEN Lisp_Objects. */
2943 static struct Lisp_Vector *
2944 allocate_vectorlike (ptrdiff_t len)
2946 struct Lisp_Vector *p;
2948 MALLOC_BLOCK_INPUT;
2950 if (len == 0)
2951 p = XVECTOR (zero_vector);
2952 else
2954 size_t nbytes = header_size + len * word_size;
2956 #ifdef DOUG_LEA_MALLOC
2957 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2958 because mapped region contents are not preserved in
2959 a dumped Emacs. */
2960 mallopt (M_MMAP_MAX, 0);
2961 #endif
2963 if (nbytes <= VBLOCK_BYTES_MAX)
2964 p = allocate_vector_from_block (vroundup (nbytes));
2965 else
2967 struct large_vector *lv
2968 = lisp_malloc ((offsetof (struct large_vector, v.u.contents)
2969 + len * word_size),
2970 MEM_TYPE_VECTORLIKE);
2971 lv->next.vector = large_vectors;
2972 large_vectors = lv;
2973 p = &lv->v;
2976 #ifdef DOUG_LEA_MALLOC
2977 /* Back to a reasonable maximum of mmap'ed areas. */
2978 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2979 #endif
2981 consing_since_gc += nbytes;
2982 vector_cells_consed += len;
2985 MALLOC_UNBLOCK_INPUT;
2987 return p;
2991 /* Allocate a vector with LEN slots. */
2993 struct Lisp_Vector *
2994 allocate_vector (EMACS_INT len)
2996 struct Lisp_Vector *v;
2997 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2999 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3000 memory_full (SIZE_MAX);
3001 v = allocate_vectorlike (len);
3002 v->header.size = len;
3003 return v;
3007 /* Allocate other vector-like structures. */
3009 struct Lisp_Vector *
3010 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3012 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3013 int i;
3015 /* Catch bogus values. */
3016 eassert (tag <= PVEC_FONT);
3017 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3018 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3020 /* Only the first lisplen slots will be traced normally by the GC. */
3021 for (i = 0; i < lisplen; ++i)
3022 v->u.contents[i] = Qnil;
3024 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3025 return v;
3028 struct buffer *
3029 allocate_buffer (void)
3031 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3033 BUFFER_PVEC_INIT (b);
3034 /* Put B on the chain of all buffers including killed ones. */
3035 b->next = all_buffers;
3036 all_buffers = b;
3037 /* Note that the rest fields of B are not initialized. */
3038 return b;
3041 struct Lisp_Hash_Table *
3042 allocate_hash_table (void)
3044 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3047 struct window *
3048 allocate_window (void)
3050 struct window *w;
3052 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3053 /* Users assumes that non-Lisp data is zeroed. */
3054 memset (&w->current_matrix, 0,
3055 sizeof (*w) - offsetof (struct window, current_matrix));
3056 return w;
3059 struct terminal *
3060 allocate_terminal (void)
3062 struct terminal *t;
3064 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3065 /* Users assumes that non-Lisp data is zeroed. */
3066 memset (&t->next_terminal, 0,
3067 sizeof (*t) - offsetof (struct terminal, next_terminal));
3068 return t;
3071 struct frame *
3072 allocate_frame (void)
3074 struct frame *f;
3076 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3077 /* Users assumes that non-Lisp data is zeroed. */
3078 memset (&f->face_cache, 0,
3079 sizeof (*f) - offsetof (struct frame, face_cache));
3080 return f;
3083 struct Lisp_Process *
3084 allocate_process (void)
3086 struct Lisp_Process *p;
3088 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3089 /* Users assumes that non-Lisp data is zeroed. */
3090 memset (&p->pid, 0,
3091 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3092 return p;
3095 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3096 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3097 See also the function `vector'. */)
3098 (register Lisp_Object length, Lisp_Object init)
3100 Lisp_Object vector;
3101 register ptrdiff_t sizei;
3102 register ptrdiff_t i;
3103 register struct Lisp_Vector *p;
3105 CHECK_NATNUM (length);
3107 p = allocate_vector (XFASTINT (length));
3108 sizei = XFASTINT (length);
3109 for (i = 0; i < sizei; i++)
3110 p->u.contents[i] = init;
3112 XSETVECTOR (vector, p);
3113 return vector;
3117 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3118 doc: /* Return a newly created vector with specified arguments as elements.
3119 Any number of arguments, even zero arguments, are allowed.
3120 usage: (vector &rest OBJECTS) */)
3121 (ptrdiff_t nargs, Lisp_Object *args)
3123 ptrdiff_t i;
3124 register Lisp_Object val = make_uninit_vector (nargs);
3125 register struct Lisp_Vector *p = XVECTOR (val);
3127 for (i = 0; i < nargs; i++)
3128 p->u.contents[i] = args[i];
3129 return val;
3132 void
3133 make_byte_code (struct Lisp_Vector *v)
3135 /* Don't allow the global zero_vector to become a byte code object. */
3136 eassert(0 < v->header.size);
3137 if (v->header.size > 1 && STRINGP (v->u.contents[1])
3138 && STRING_MULTIBYTE (v->u.contents[1]))
3139 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3140 earlier because they produced a raw 8-bit string for byte-code
3141 and now such a byte-code string is loaded as multibyte while
3142 raw 8-bit characters converted to multibyte form. Thus, now we
3143 must convert them back to the original unibyte form. */
3144 v->u.contents[1] = Fstring_as_unibyte (v->u.contents[1]);
3145 XSETPVECTYPE (v, PVEC_COMPILED);
3148 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3149 doc: /* Create a byte-code object with specified arguments as elements.
3150 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3151 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3152 and (optional) INTERACTIVE-SPEC.
3153 The first four arguments are required; at most six have any
3154 significance.
3155 The ARGLIST can be either like the one of `lambda', in which case the arguments
3156 will be dynamically bound before executing the byte code, or it can be an
3157 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3158 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3159 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3160 argument to catch the left-over arguments. If such an integer is used, the
3161 arguments will not be dynamically bound but will be instead pushed on the
3162 stack before executing the byte-code.
3163 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3164 (ptrdiff_t nargs, Lisp_Object *args)
3166 ptrdiff_t i;
3167 register Lisp_Object val = make_uninit_vector (nargs);
3168 register struct Lisp_Vector *p = XVECTOR (val);
3170 /* We used to purecopy everything here, if purify-flag was set. This worked
3171 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3172 dangerous, since make-byte-code is used during execution to build
3173 closures, so any closure built during the preload phase would end up
3174 copied into pure space, including its free variables, which is sometimes
3175 just wasteful and other times plainly wrong (e.g. those free vars may want
3176 to be setcar'd). */
3178 for (i = 0; i < nargs; i++)
3179 p->u.contents[i] = args[i];
3180 make_byte_code (p);
3181 XSETCOMPILED (val, p);
3182 return val;
3187 /***********************************************************************
3188 Symbol Allocation
3189 ***********************************************************************/
3191 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3192 of the required alignment if LSB tags are used. */
3194 union aligned_Lisp_Symbol
3196 struct Lisp_Symbol s;
3197 #if USE_LSB_TAG
3198 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3199 & -GCALIGNMENT];
3200 #endif
3203 /* Each symbol_block is just under 1020 bytes long, since malloc
3204 really allocates in units of powers of two and uses 4 bytes for its
3205 own overhead. */
3207 #define SYMBOL_BLOCK_SIZE \
3208 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3210 struct symbol_block
3212 /* Place `symbols' first, to preserve alignment. */
3213 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3214 struct symbol_block *next;
3217 /* Current symbol block and index of first unused Lisp_Symbol
3218 structure in it. */
3220 static struct symbol_block *symbol_block;
3221 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3223 /* List of free symbols. */
3225 static struct Lisp_Symbol *symbol_free_list;
3227 static void
3228 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3230 XSYMBOL (sym)->name = name;
3233 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3234 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3235 Its value is void, and its function definition and property list are nil. */)
3236 (Lisp_Object name)
3238 register Lisp_Object val;
3239 register struct Lisp_Symbol *p;
3241 CHECK_STRING (name);
3243 MALLOC_BLOCK_INPUT;
3245 if (symbol_free_list)
3247 XSETSYMBOL (val, symbol_free_list);
3248 symbol_free_list = symbol_free_list->next;
3250 else
3252 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3254 struct symbol_block *new
3255 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3256 new->next = symbol_block;
3257 symbol_block = new;
3258 symbol_block_index = 0;
3259 total_free_symbols += SYMBOL_BLOCK_SIZE;
3261 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3262 symbol_block_index++;
3265 MALLOC_UNBLOCK_INPUT;
3267 p = XSYMBOL (val);
3268 set_symbol_name (val, name);
3269 set_symbol_plist (val, Qnil);
3270 p->redirect = SYMBOL_PLAINVAL;
3271 SET_SYMBOL_VAL (p, Qunbound);
3272 set_symbol_function (val, Qnil);
3273 set_symbol_next (val, NULL);
3274 p->gcmarkbit = 0;
3275 p->interned = SYMBOL_UNINTERNED;
3276 p->constant = 0;
3277 p->declared_special = 0;
3278 consing_since_gc += sizeof (struct Lisp_Symbol);
3279 symbols_consed++;
3280 total_free_symbols--;
3281 return val;
3286 /***********************************************************************
3287 Marker (Misc) Allocation
3288 ***********************************************************************/
3290 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3291 the required alignment when LSB tags are used. */
3293 union aligned_Lisp_Misc
3295 union Lisp_Misc m;
3296 #if USE_LSB_TAG
3297 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3298 & -GCALIGNMENT];
3299 #endif
3302 /* Allocation of markers and other objects that share that structure.
3303 Works like allocation of conses. */
3305 #define MARKER_BLOCK_SIZE \
3306 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3308 struct marker_block
3310 /* Place `markers' first, to preserve alignment. */
3311 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3312 struct marker_block *next;
3315 static struct marker_block *marker_block;
3316 static int marker_block_index = MARKER_BLOCK_SIZE;
3318 static union Lisp_Misc *marker_free_list;
3320 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3322 static Lisp_Object
3323 allocate_misc (enum Lisp_Misc_Type type)
3325 Lisp_Object val;
3327 MALLOC_BLOCK_INPUT;
3329 if (marker_free_list)
3331 XSETMISC (val, marker_free_list);
3332 marker_free_list = marker_free_list->u_free.chain;
3334 else
3336 if (marker_block_index == MARKER_BLOCK_SIZE)
3338 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3339 new->next = marker_block;
3340 marker_block = new;
3341 marker_block_index = 0;
3342 total_free_markers += MARKER_BLOCK_SIZE;
3344 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3345 marker_block_index++;
3348 MALLOC_UNBLOCK_INPUT;
3350 --total_free_markers;
3351 consing_since_gc += sizeof (union Lisp_Misc);
3352 misc_objects_consed++;
3353 XMISCANY (val)->type = type;
3354 XMISCANY (val)->gcmarkbit = 0;
3355 return val;
3358 /* Free a Lisp_Misc object. */
3360 void
3361 free_misc (Lisp_Object misc)
3363 XMISCANY (misc)->type = Lisp_Misc_Free;
3364 XMISC (misc)->u_free.chain = marker_free_list;
3365 marker_free_list = XMISC (misc);
3366 consing_since_gc -= sizeof (union Lisp_Misc);
3367 total_free_markers++;
3370 /* Verify properties of Lisp_Save_Value's representation
3371 that are assumed here and elsewhere. */
3373 verify (SAVE_UNUSED == 0);
3374 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3375 >> SAVE_SLOT_BITS)
3376 == 0);
3378 /* Return Lisp_Save_Value objects for the various combinations
3379 that callers need. */
3381 Lisp_Object
3382 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3384 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3385 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3386 p->save_type = SAVE_TYPE_INT_INT_INT;
3387 p->data[0].integer = a;
3388 p->data[1].integer = b;
3389 p->data[2].integer = c;
3390 return val;
3393 Lisp_Object
3394 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3395 Lisp_Object d)
3397 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3398 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3399 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3400 p->data[0].object = a;
3401 p->data[1].object = b;
3402 p->data[2].object = c;
3403 p->data[3].object = d;
3404 return val;
3407 Lisp_Object
3408 make_save_ptr (void *a)
3410 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3411 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3412 p->save_type = SAVE_POINTER;
3413 p->data[0].pointer = a;
3414 return val;
3417 Lisp_Object
3418 make_save_ptr_int (void *a, ptrdiff_t b)
3420 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3421 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3422 p->save_type = SAVE_TYPE_PTR_INT;
3423 p->data[0].pointer = a;
3424 p->data[1].integer = b;
3425 return val;
3428 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3429 Lisp_Object
3430 make_save_ptr_ptr (void *a, void *b)
3432 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3433 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3434 p->save_type = SAVE_TYPE_PTR_PTR;
3435 p->data[0].pointer = a;
3436 p->data[1].pointer = b;
3437 return val;
3439 #endif
3441 Lisp_Object
3442 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3444 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3445 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3446 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3447 p->data[0].funcpointer = a;
3448 p->data[1].pointer = b;
3449 p->data[2].object = c;
3450 return val;
3453 /* Return a Lisp_Save_Value object that represents an array A
3454 of N Lisp objects. */
3456 Lisp_Object
3457 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3459 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3460 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3461 p->save_type = SAVE_TYPE_MEMORY;
3462 p->data[0].pointer = a;
3463 p->data[1].integer = n;
3464 return val;
3467 /* Free a Lisp_Save_Value object. Do not use this function
3468 if SAVE contains pointer other than returned by xmalloc. */
3470 void
3471 free_save_value (Lisp_Object save)
3473 xfree (XSAVE_POINTER (save, 0));
3474 free_misc (save);
3477 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3479 Lisp_Object
3480 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3482 register Lisp_Object overlay;
3484 overlay = allocate_misc (Lisp_Misc_Overlay);
3485 OVERLAY_START (overlay) = start;
3486 OVERLAY_END (overlay) = end;
3487 set_overlay_plist (overlay, plist);
3488 XOVERLAY (overlay)->next = NULL;
3489 return overlay;
3492 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3493 doc: /* Return a newly allocated marker which does not point at any place. */)
3494 (void)
3496 register Lisp_Object val;
3497 register struct Lisp_Marker *p;
3499 val = allocate_misc (Lisp_Misc_Marker);
3500 p = XMARKER (val);
3501 p->buffer = 0;
3502 p->bytepos = 0;
3503 p->charpos = 0;
3504 p->next = NULL;
3505 p->insertion_type = 0;
3506 p->need_adjustment = 0;
3507 return val;
3510 /* Return a newly allocated marker which points into BUF
3511 at character position CHARPOS and byte position BYTEPOS. */
3513 Lisp_Object
3514 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3516 Lisp_Object obj;
3517 struct Lisp_Marker *m;
3519 /* No dead buffers here. */
3520 eassert (BUFFER_LIVE_P (buf));
3522 /* Every character is at least one byte. */
3523 eassert (charpos <= bytepos);
3525 obj = allocate_misc (Lisp_Misc_Marker);
3526 m = XMARKER (obj);
3527 m->buffer = buf;
3528 m->charpos = charpos;
3529 m->bytepos = bytepos;
3530 m->insertion_type = 0;
3531 m->need_adjustment = 0;
3532 m->next = BUF_MARKERS (buf);
3533 BUF_MARKERS (buf) = m;
3534 return obj;
3537 /* Put MARKER back on the free list after using it temporarily. */
3539 void
3540 free_marker (Lisp_Object marker)
3542 unchain_marker (XMARKER (marker));
3543 free_misc (marker);
3547 /* Return a newly created vector or string with specified arguments as
3548 elements. If all the arguments are characters that can fit
3549 in a string of events, make a string; otherwise, make a vector.
3551 Any number of arguments, even zero arguments, are allowed. */
3553 Lisp_Object
3554 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3556 ptrdiff_t i;
3558 for (i = 0; i < nargs; i++)
3559 /* The things that fit in a string
3560 are characters that are in 0...127,
3561 after discarding the meta bit and all the bits above it. */
3562 if (!INTEGERP (args[i])
3563 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3564 return Fvector (nargs, args);
3566 /* Since the loop exited, we know that all the things in it are
3567 characters, so we can make a string. */
3569 Lisp_Object result;
3571 result = Fmake_string (make_number (nargs), make_number (0));
3572 for (i = 0; i < nargs; i++)
3574 SSET (result, i, XINT (args[i]));
3575 /* Move the meta bit to the right place for a string char. */
3576 if (XINT (args[i]) & CHAR_META)
3577 SSET (result, i, SREF (result, i) | 0x80);
3580 return result;
3586 /************************************************************************
3587 Memory Full Handling
3588 ************************************************************************/
3591 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3592 there may have been size_t overflow so that malloc was never
3593 called, or perhaps malloc was invoked successfully but the
3594 resulting pointer had problems fitting into a tagged EMACS_INT. In
3595 either case this counts as memory being full even though malloc did
3596 not fail. */
3598 void
3599 memory_full (size_t nbytes)
3601 /* Do not go into hysterics merely because a large request failed. */
3602 bool enough_free_memory = 0;
3603 if (SPARE_MEMORY < nbytes)
3605 void *p;
3607 MALLOC_BLOCK_INPUT;
3608 p = malloc (SPARE_MEMORY);
3609 if (p)
3611 free (p);
3612 enough_free_memory = 1;
3614 MALLOC_UNBLOCK_INPUT;
3617 if (! enough_free_memory)
3619 int i;
3621 Vmemory_full = Qt;
3623 memory_full_cons_threshold = sizeof (struct cons_block);
3625 /* The first time we get here, free the spare memory. */
3626 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3627 if (spare_memory[i])
3629 if (i == 0)
3630 free (spare_memory[i]);
3631 else if (i >= 1 && i <= 4)
3632 lisp_align_free (spare_memory[i]);
3633 else
3634 lisp_free (spare_memory[i]);
3635 spare_memory[i] = 0;
3639 /* This used to call error, but if we've run out of memory, we could
3640 get infinite recursion trying to build the string. */
3641 xsignal (Qnil, Vmemory_signal_data);
3644 /* If we released our reserve (due to running out of memory),
3645 and we have a fair amount free once again,
3646 try to set aside another reserve in case we run out once more.
3648 This is called when a relocatable block is freed in ralloc.c,
3649 and also directly from this file, in case we're not using ralloc.c. */
3651 void
3652 refill_memory_reserve (void)
3654 #ifndef SYSTEM_MALLOC
3655 if (spare_memory[0] == 0)
3656 spare_memory[0] = malloc (SPARE_MEMORY);
3657 if (spare_memory[1] == 0)
3658 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3659 MEM_TYPE_SPARE);
3660 if (spare_memory[2] == 0)
3661 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3662 MEM_TYPE_SPARE);
3663 if (spare_memory[3] == 0)
3664 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3665 MEM_TYPE_SPARE);
3666 if (spare_memory[4] == 0)
3667 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3668 MEM_TYPE_SPARE);
3669 if (spare_memory[5] == 0)
3670 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3671 MEM_TYPE_SPARE);
3672 if (spare_memory[6] == 0)
3673 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3674 MEM_TYPE_SPARE);
3675 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3676 Vmemory_full = Qnil;
3677 #endif
3680 /************************************************************************
3681 C Stack Marking
3682 ************************************************************************/
3684 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3686 /* Conservative C stack marking requires a method to identify possibly
3687 live Lisp objects given a pointer value. We do this by keeping
3688 track of blocks of Lisp data that are allocated in a red-black tree
3689 (see also the comment of mem_node which is the type of nodes in
3690 that tree). Function lisp_malloc adds information for an allocated
3691 block to the red-black tree with calls to mem_insert, and function
3692 lisp_free removes it with mem_delete. Functions live_string_p etc
3693 call mem_find to lookup information about a given pointer in the
3694 tree, and use that to determine if the pointer points to a Lisp
3695 object or not. */
3697 /* Initialize this part of alloc.c. */
3699 static void
3700 mem_init (void)
3702 mem_z.left = mem_z.right = MEM_NIL;
3703 mem_z.parent = NULL;
3704 mem_z.color = MEM_BLACK;
3705 mem_z.start = mem_z.end = NULL;
3706 mem_root = MEM_NIL;
3710 /* Value is a pointer to the mem_node containing START. Value is
3711 MEM_NIL if there is no node in the tree containing START. */
3713 static struct mem_node *
3714 mem_find (void *start)
3716 struct mem_node *p;
3718 if (start < min_heap_address || start > max_heap_address)
3719 return MEM_NIL;
3721 /* Make the search always successful to speed up the loop below. */
3722 mem_z.start = start;
3723 mem_z.end = (char *) start + 1;
3725 p = mem_root;
3726 while (start < p->start || start >= p->end)
3727 p = start < p->start ? p->left : p->right;
3728 return p;
3732 /* Insert a new node into the tree for a block of memory with start
3733 address START, end address END, and type TYPE. Value is a
3734 pointer to the node that was inserted. */
3736 static struct mem_node *
3737 mem_insert (void *start, void *end, enum mem_type type)
3739 struct mem_node *c, *parent, *x;
3741 if (min_heap_address == NULL || start < min_heap_address)
3742 min_heap_address = start;
3743 if (max_heap_address == NULL || end > max_heap_address)
3744 max_heap_address = end;
3746 /* See where in the tree a node for START belongs. In this
3747 particular application, it shouldn't happen that a node is already
3748 present. For debugging purposes, let's check that. */
3749 c = mem_root;
3750 parent = NULL;
3752 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3754 while (c != MEM_NIL)
3756 if (start >= c->start && start < c->end)
3757 emacs_abort ();
3758 parent = c;
3759 c = start < c->start ? c->left : c->right;
3762 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3764 while (c != MEM_NIL)
3766 parent = c;
3767 c = start < c->start ? c->left : c->right;
3770 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3772 /* Create a new node. */
3773 #ifdef GC_MALLOC_CHECK
3774 x = malloc (sizeof *x);
3775 if (x == NULL)
3776 emacs_abort ();
3777 #else
3778 x = xmalloc (sizeof *x);
3779 #endif
3780 x->start = start;
3781 x->end = end;
3782 x->type = type;
3783 x->parent = parent;
3784 x->left = x->right = MEM_NIL;
3785 x->color = MEM_RED;
3787 /* Insert it as child of PARENT or install it as root. */
3788 if (parent)
3790 if (start < parent->start)
3791 parent->left = x;
3792 else
3793 parent->right = x;
3795 else
3796 mem_root = x;
3798 /* Re-establish red-black tree properties. */
3799 mem_insert_fixup (x);
3801 return x;
3805 /* Re-establish the red-black properties of the tree, and thereby
3806 balance the tree, after node X has been inserted; X is always red. */
3808 static void
3809 mem_insert_fixup (struct mem_node *x)
3811 while (x != mem_root && x->parent->color == MEM_RED)
3813 /* X is red and its parent is red. This is a violation of
3814 red-black tree property #3. */
3816 if (x->parent == x->parent->parent->left)
3818 /* We're on the left side of our grandparent, and Y is our
3819 "uncle". */
3820 struct mem_node *y = x->parent->parent->right;
3822 if (y->color == MEM_RED)
3824 /* Uncle and parent are red but should be black because
3825 X is red. Change the colors accordingly and proceed
3826 with the grandparent. */
3827 x->parent->color = MEM_BLACK;
3828 y->color = MEM_BLACK;
3829 x->parent->parent->color = MEM_RED;
3830 x = x->parent->parent;
3832 else
3834 /* Parent and uncle have different colors; parent is
3835 red, uncle is black. */
3836 if (x == x->parent->right)
3838 x = x->parent;
3839 mem_rotate_left (x);
3842 x->parent->color = MEM_BLACK;
3843 x->parent->parent->color = MEM_RED;
3844 mem_rotate_right (x->parent->parent);
3847 else
3849 /* This is the symmetrical case of above. */
3850 struct mem_node *y = x->parent->parent->left;
3852 if (y->color == MEM_RED)
3854 x->parent->color = MEM_BLACK;
3855 y->color = MEM_BLACK;
3856 x->parent->parent->color = MEM_RED;
3857 x = x->parent->parent;
3859 else
3861 if (x == x->parent->left)
3863 x = x->parent;
3864 mem_rotate_right (x);
3867 x->parent->color = MEM_BLACK;
3868 x->parent->parent->color = MEM_RED;
3869 mem_rotate_left (x->parent->parent);
3874 /* The root may have been changed to red due to the algorithm. Set
3875 it to black so that property #5 is satisfied. */
3876 mem_root->color = MEM_BLACK;
3880 /* (x) (y)
3881 / \ / \
3882 a (y) ===> (x) c
3883 / \ / \
3884 b c a b */
3886 static void
3887 mem_rotate_left (struct mem_node *x)
3889 struct mem_node *y;
3891 /* Turn y's left sub-tree into x's right sub-tree. */
3892 y = x->right;
3893 x->right = y->left;
3894 if (y->left != MEM_NIL)
3895 y->left->parent = x;
3897 /* Y's parent was x's parent. */
3898 if (y != MEM_NIL)
3899 y->parent = x->parent;
3901 /* Get the parent to point to y instead of x. */
3902 if (x->parent)
3904 if (x == x->parent->left)
3905 x->parent->left = y;
3906 else
3907 x->parent->right = y;
3909 else
3910 mem_root = y;
3912 /* Put x on y's left. */
3913 y->left = x;
3914 if (x != MEM_NIL)
3915 x->parent = y;
3919 /* (x) (Y)
3920 / \ / \
3921 (y) c ===> a (x)
3922 / \ / \
3923 a b b c */
3925 static void
3926 mem_rotate_right (struct mem_node *x)
3928 struct mem_node *y = x->left;
3930 x->left = y->right;
3931 if (y->right != MEM_NIL)
3932 y->right->parent = x;
3934 if (y != MEM_NIL)
3935 y->parent = x->parent;
3936 if (x->parent)
3938 if (x == x->parent->right)
3939 x->parent->right = y;
3940 else
3941 x->parent->left = y;
3943 else
3944 mem_root = y;
3946 y->right = x;
3947 if (x != MEM_NIL)
3948 x->parent = y;
3952 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3954 static void
3955 mem_delete (struct mem_node *z)
3957 struct mem_node *x, *y;
3959 if (!z || z == MEM_NIL)
3960 return;
3962 if (z->left == MEM_NIL || z->right == MEM_NIL)
3963 y = z;
3964 else
3966 y = z->right;
3967 while (y->left != MEM_NIL)
3968 y = y->left;
3971 if (y->left != MEM_NIL)
3972 x = y->left;
3973 else
3974 x = y->right;
3976 x->parent = y->parent;
3977 if (y->parent)
3979 if (y == y->parent->left)
3980 y->parent->left = x;
3981 else
3982 y->parent->right = x;
3984 else
3985 mem_root = x;
3987 if (y != z)
3989 z->start = y->start;
3990 z->end = y->end;
3991 z->type = y->type;
3994 if (y->color == MEM_BLACK)
3995 mem_delete_fixup (x);
3997 #ifdef GC_MALLOC_CHECK
3998 free (y);
3999 #else
4000 xfree (y);
4001 #endif
4005 /* Re-establish the red-black properties of the tree, after a
4006 deletion. */
4008 static void
4009 mem_delete_fixup (struct mem_node *x)
4011 while (x != mem_root && x->color == MEM_BLACK)
4013 if (x == x->parent->left)
4015 struct mem_node *w = x->parent->right;
4017 if (w->color == MEM_RED)
4019 w->color = MEM_BLACK;
4020 x->parent->color = MEM_RED;
4021 mem_rotate_left (x->parent);
4022 w = x->parent->right;
4025 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4027 w->color = MEM_RED;
4028 x = x->parent;
4030 else
4032 if (w->right->color == MEM_BLACK)
4034 w->left->color = MEM_BLACK;
4035 w->color = MEM_RED;
4036 mem_rotate_right (w);
4037 w = x->parent->right;
4039 w->color = x->parent->color;
4040 x->parent->color = MEM_BLACK;
4041 w->right->color = MEM_BLACK;
4042 mem_rotate_left (x->parent);
4043 x = mem_root;
4046 else
4048 struct mem_node *w = x->parent->left;
4050 if (w->color == MEM_RED)
4052 w->color = MEM_BLACK;
4053 x->parent->color = MEM_RED;
4054 mem_rotate_right (x->parent);
4055 w = x->parent->left;
4058 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4060 w->color = MEM_RED;
4061 x = x->parent;
4063 else
4065 if (w->left->color == MEM_BLACK)
4067 w->right->color = MEM_BLACK;
4068 w->color = MEM_RED;
4069 mem_rotate_left (w);
4070 w = x->parent->left;
4073 w->color = x->parent->color;
4074 x->parent->color = MEM_BLACK;
4075 w->left->color = MEM_BLACK;
4076 mem_rotate_right (x->parent);
4077 x = mem_root;
4082 x->color = MEM_BLACK;
4086 /* Value is non-zero if P is a pointer to a live Lisp string on
4087 the heap. M is a pointer to the mem_block for P. */
4089 static bool
4090 live_string_p (struct mem_node *m, void *p)
4092 if (m->type == MEM_TYPE_STRING)
4094 struct string_block *b = m->start;
4095 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4097 /* P must point to the start of a Lisp_String structure, and it
4098 must not be on the free-list. */
4099 return (offset >= 0
4100 && offset % sizeof b->strings[0] == 0
4101 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4102 && ((struct Lisp_String *) p)->data != NULL);
4104 else
4105 return 0;
4109 /* Value is non-zero if P is a pointer to a live Lisp cons on
4110 the heap. M is a pointer to the mem_block for P. */
4112 static bool
4113 live_cons_p (struct mem_node *m, void *p)
4115 if (m->type == MEM_TYPE_CONS)
4117 struct cons_block *b = m->start;
4118 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4120 /* P must point to the start of a Lisp_Cons, not be
4121 one of the unused cells in the current cons block,
4122 and not be on the free-list. */
4123 return (offset >= 0
4124 && offset % sizeof b->conses[0] == 0
4125 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4126 && (b != cons_block
4127 || offset / sizeof b->conses[0] < cons_block_index)
4128 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4130 else
4131 return 0;
4135 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4136 the heap. M is a pointer to the mem_block for P. */
4138 static bool
4139 live_symbol_p (struct mem_node *m, void *p)
4141 if (m->type == MEM_TYPE_SYMBOL)
4143 struct symbol_block *b = m->start;
4144 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4146 /* P must point to the start of a Lisp_Symbol, not be
4147 one of the unused cells in the current symbol block,
4148 and not be on the free-list. */
4149 return (offset >= 0
4150 && offset % sizeof b->symbols[0] == 0
4151 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4152 && (b != symbol_block
4153 || offset / sizeof b->symbols[0] < symbol_block_index)
4154 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4156 else
4157 return 0;
4161 /* Value is non-zero if P is a pointer to a live Lisp float on
4162 the heap. M is a pointer to the mem_block for P. */
4164 static bool
4165 live_float_p (struct mem_node *m, void *p)
4167 if (m->type == MEM_TYPE_FLOAT)
4169 struct float_block *b = m->start;
4170 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4172 /* P must point to the start of a Lisp_Float and not be
4173 one of the unused cells in the current float block. */
4174 return (offset >= 0
4175 && offset % sizeof b->floats[0] == 0
4176 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4177 && (b != float_block
4178 || offset / sizeof b->floats[0] < float_block_index));
4180 else
4181 return 0;
4185 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4186 the heap. M is a pointer to the mem_block for P. */
4188 static bool
4189 live_misc_p (struct mem_node *m, void *p)
4191 if (m->type == MEM_TYPE_MISC)
4193 struct marker_block *b = m->start;
4194 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4196 /* P must point to the start of a Lisp_Misc, not be
4197 one of the unused cells in the current misc block,
4198 and not be on the free-list. */
4199 return (offset >= 0
4200 && offset % sizeof b->markers[0] == 0
4201 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4202 && (b != marker_block
4203 || offset / sizeof b->markers[0] < marker_block_index)
4204 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4206 else
4207 return 0;
4211 /* Value is non-zero if P is a pointer to a live vector-like object.
4212 M is a pointer to the mem_block for P. */
4214 static bool
4215 live_vector_p (struct mem_node *m, void *p)
4217 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4219 /* This memory node corresponds to a vector block. */
4220 struct vector_block *block = m->start;
4221 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4223 /* P is in the block's allocation range. Scan the block
4224 up to P and see whether P points to the start of some
4225 vector which is not on a free list. FIXME: check whether
4226 some allocation patterns (probably a lot of short vectors)
4227 may cause a substantial overhead of this loop. */
4228 while (VECTOR_IN_BLOCK (vector, block)
4229 && vector <= (struct Lisp_Vector *) p)
4231 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4232 return 1;
4233 else
4234 vector = ADVANCE (vector, vector_nbytes (vector));
4237 else if (m->type == MEM_TYPE_VECTORLIKE
4238 && (char *) p == ((char *) m->start
4239 + offsetof (struct large_vector, v)))
4240 /* This memory node corresponds to a large vector. */
4241 return 1;
4242 return 0;
4246 /* Value is non-zero if P is a pointer to a live buffer. M is a
4247 pointer to the mem_block for P. */
4249 static bool
4250 live_buffer_p (struct mem_node *m, void *p)
4252 /* P must point to the start of the block, and the buffer
4253 must not have been killed. */
4254 return (m->type == MEM_TYPE_BUFFER
4255 && p == m->start
4256 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4259 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4261 #if GC_MARK_STACK
4263 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4265 /* Currently not used, but may be called from gdb. */
4267 void dump_zombies (void) EXTERNALLY_VISIBLE;
4269 /* Array of objects that are kept alive because the C stack contains
4270 a pattern that looks like a reference to them . */
4272 #define MAX_ZOMBIES 10
4273 static Lisp_Object zombies[MAX_ZOMBIES];
4275 /* Number of zombie objects. */
4277 static EMACS_INT nzombies;
4279 /* Number of garbage collections. */
4281 static EMACS_INT ngcs;
4283 /* Average percentage of zombies per collection. */
4285 static double avg_zombies;
4287 /* Max. number of live and zombie objects. */
4289 static EMACS_INT max_live, max_zombies;
4291 /* Average number of live objects per GC. */
4293 static double avg_live;
4295 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4296 doc: /* Show information about live and zombie objects. */)
4297 (void)
4299 Lisp_Object args[8], zombie_list = Qnil;
4300 EMACS_INT i;
4301 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4302 zombie_list = Fcons (zombies[i], zombie_list);
4303 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4304 args[1] = make_number (ngcs);
4305 args[2] = make_float (avg_live);
4306 args[3] = make_float (avg_zombies);
4307 args[4] = make_float (avg_zombies / avg_live / 100);
4308 args[5] = make_number (max_live);
4309 args[6] = make_number (max_zombies);
4310 args[7] = zombie_list;
4311 return Fmessage (8, args);
4314 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4317 /* Mark OBJ if we can prove it's a Lisp_Object. */
4319 static void
4320 mark_maybe_object (Lisp_Object obj)
4322 void *po;
4323 struct mem_node *m;
4325 #if USE_VALGRIND
4326 if (valgrind_p)
4327 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4328 #endif
4330 if (INTEGERP (obj))
4331 return;
4333 po = (void *) XPNTR (obj);
4334 m = mem_find (po);
4336 if (m != MEM_NIL)
4338 bool mark_p = 0;
4340 switch (XTYPE (obj))
4342 case Lisp_String:
4343 mark_p = (live_string_p (m, po)
4344 && !STRING_MARKED_P ((struct Lisp_String *) po));
4345 break;
4347 case Lisp_Cons:
4348 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4349 break;
4351 case Lisp_Symbol:
4352 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4353 break;
4355 case Lisp_Float:
4356 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4357 break;
4359 case Lisp_Vectorlike:
4360 /* Note: can't check BUFFERP before we know it's a
4361 buffer because checking that dereferences the pointer
4362 PO which might point anywhere. */
4363 if (live_vector_p (m, po))
4364 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4365 else if (live_buffer_p (m, po))
4366 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4367 break;
4369 case Lisp_Misc:
4370 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4371 break;
4373 default:
4374 break;
4377 if (mark_p)
4379 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4380 if (nzombies < MAX_ZOMBIES)
4381 zombies[nzombies] = obj;
4382 ++nzombies;
4383 #endif
4384 mark_object (obj);
4390 /* If P points to Lisp data, mark that as live if it isn't already
4391 marked. */
4393 static void
4394 mark_maybe_pointer (void *p)
4396 struct mem_node *m;
4398 #if USE_VALGRIND
4399 if (valgrind_p)
4400 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4401 #endif
4403 /* Quickly rule out some values which can't point to Lisp data.
4404 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4405 Otherwise, assume that Lisp data is aligned on even addresses. */
4406 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4407 return;
4409 m = mem_find (p);
4410 if (m != MEM_NIL)
4412 Lisp_Object obj = Qnil;
4414 switch (m->type)
4416 case MEM_TYPE_NON_LISP:
4417 case MEM_TYPE_SPARE:
4418 /* Nothing to do; not a pointer to Lisp memory. */
4419 break;
4421 case MEM_TYPE_BUFFER:
4422 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4423 XSETVECTOR (obj, p);
4424 break;
4426 case MEM_TYPE_CONS:
4427 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4428 XSETCONS (obj, p);
4429 break;
4431 case MEM_TYPE_STRING:
4432 if (live_string_p (m, p)
4433 && !STRING_MARKED_P ((struct Lisp_String *) p))
4434 XSETSTRING (obj, p);
4435 break;
4437 case MEM_TYPE_MISC:
4438 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4439 XSETMISC (obj, p);
4440 break;
4442 case MEM_TYPE_SYMBOL:
4443 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4444 XSETSYMBOL (obj, p);
4445 break;
4447 case MEM_TYPE_FLOAT:
4448 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4449 XSETFLOAT (obj, p);
4450 break;
4452 case MEM_TYPE_VECTORLIKE:
4453 case MEM_TYPE_VECTOR_BLOCK:
4454 if (live_vector_p (m, p))
4456 Lisp_Object tem;
4457 XSETVECTOR (tem, p);
4458 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4459 obj = tem;
4461 break;
4463 default:
4464 emacs_abort ();
4467 if (!NILP (obj))
4468 mark_object (obj);
4473 /* Alignment of pointer values. Use alignof, as it sometimes returns
4474 a smaller alignment than GCC's __alignof__ and mark_memory might
4475 miss objects if __alignof__ were used. */
4476 #define GC_POINTER_ALIGNMENT alignof (void *)
4478 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4479 not suffice, which is the typical case. A host where a Lisp_Object is
4480 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4481 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4482 suffice to widen it to to a Lisp_Object and check it that way. */
4483 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4484 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4485 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4486 nor mark_maybe_object can follow the pointers. This should not occur on
4487 any practical porting target. */
4488 # error "MSB type bits straddle pointer-word boundaries"
4489 # endif
4490 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4491 pointer words that hold pointers ORed with type bits. */
4492 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4493 #else
4494 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4495 words that hold unmodified pointers. */
4496 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4497 #endif
4499 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4500 or END+OFFSET..START. */
4502 static void
4503 mark_memory (void *start, void *end)
4504 #if defined (__clang__) && defined (__has_feature)
4505 #if __has_feature(address_sanitizer)
4506 /* Do not allow -faddress-sanitizer to check this function, since it
4507 crosses the function stack boundary, and thus would yield many
4508 false positives. */
4509 __attribute__((no_address_safety_analysis))
4510 #endif
4511 #endif
4513 void **pp;
4514 int i;
4516 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4517 nzombies = 0;
4518 #endif
4520 /* Make START the pointer to the start of the memory region,
4521 if it isn't already. */
4522 if (end < start)
4524 void *tem = start;
4525 start = end;
4526 end = tem;
4529 /* Mark Lisp data pointed to. This is necessary because, in some
4530 situations, the C compiler optimizes Lisp objects away, so that
4531 only a pointer to them remains. Example:
4533 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4536 Lisp_Object obj = build_string ("test");
4537 struct Lisp_String *s = XSTRING (obj);
4538 Fgarbage_collect ();
4539 fprintf (stderr, "test `%s'\n", s->data);
4540 return Qnil;
4543 Here, `obj' isn't really used, and the compiler optimizes it
4544 away. The only reference to the life string is through the
4545 pointer `s'. */
4547 for (pp = start; (void *) pp < end; pp++)
4548 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4550 void *p = *(void **) ((char *) pp + i);
4551 mark_maybe_pointer (p);
4552 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4553 mark_maybe_object (XIL ((intptr_t) p));
4557 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4559 static bool setjmp_tested_p;
4560 static int longjmps_done;
4562 #define SETJMP_WILL_LIKELY_WORK "\
4564 Emacs garbage collector has been changed to use conservative stack\n\
4565 marking. Emacs has determined that the method it uses to do the\n\
4566 marking will likely work on your system, but this isn't sure.\n\
4568 If you are a system-programmer, or can get the help of a local wizard\n\
4569 who is, please take a look at the function mark_stack in alloc.c, and\n\
4570 verify that the methods used are appropriate for your system.\n\
4572 Please mail the result to <emacs-devel@gnu.org>.\n\
4575 #define SETJMP_WILL_NOT_WORK "\
4577 Emacs garbage collector has been changed to use conservative stack\n\
4578 marking. Emacs has determined that the default method it uses to do the\n\
4579 marking will not work on your system. We will need a system-dependent\n\
4580 solution for your system.\n\
4582 Please take a look at the function mark_stack in alloc.c, and\n\
4583 try to find a way to make it work on your system.\n\
4585 Note that you may get false negatives, depending on the compiler.\n\
4586 In particular, you need to use -O with GCC for this test.\n\
4588 Please mail the result to <emacs-devel@gnu.org>.\n\
4592 /* Perform a quick check if it looks like setjmp saves registers in a
4593 jmp_buf. Print a message to stderr saying so. When this test
4594 succeeds, this is _not_ a proof that setjmp is sufficient for
4595 conservative stack marking. Only the sources or a disassembly
4596 can prove that. */
4598 static void
4599 test_setjmp (void)
4601 char buf[10];
4602 register int x;
4603 sys_jmp_buf jbuf;
4605 /* Arrange for X to be put in a register. */
4606 sprintf (buf, "1");
4607 x = strlen (buf);
4608 x = 2 * x - 1;
4610 sys_setjmp (jbuf);
4611 if (longjmps_done == 1)
4613 /* Came here after the longjmp at the end of the function.
4615 If x == 1, the longjmp has restored the register to its
4616 value before the setjmp, and we can hope that setjmp
4617 saves all such registers in the jmp_buf, although that
4618 isn't sure.
4620 For other values of X, either something really strange is
4621 taking place, or the setjmp just didn't save the register. */
4623 if (x == 1)
4624 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4625 else
4627 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4628 exit (1);
4632 ++longjmps_done;
4633 x = 2;
4634 if (longjmps_done == 1)
4635 sys_longjmp (jbuf, 1);
4638 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4641 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4643 /* Abort if anything GCPRO'd doesn't survive the GC. */
4645 static void
4646 check_gcpros (void)
4648 struct gcpro *p;
4649 ptrdiff_t i;
4651 for (p = gcprolist; p; p = p->next)
4652 for (i = 0; i < p->nvars; ++i)
4653 if (!survives_gc_p (p->var[i]))
4654 /* FIXME: It's not necessarily a bug. It might just be that the
4655 GCPRO is unnecessary or should release the object sooner. */
4656 emacs_abort ();
4659 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4661 void
4662 dump_zombies (void)
4664 int i;
4666 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4667 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4669 fprintf (stderr, " %d = ", i);
4670 debug_print (zombies[i]);
4674 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4677 /* Mark live Lisp objects on the C stack.
4679 There are several system-dependent problems to consider when
4680 porting this to new architectures:
4682 Processor Registers
4684 We have to mark Lisp objects in CPU registers that can hold local
4685 variables or are used to pass parameters.
4687 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4688 something that either saves relevant registers on the stack, or
4689 calls mark_maybe_object passing it each register's contents.
4691 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4692 implementation assumes that calling setjmp saves registers we need
4693 to see in a jmp_buf which itself lies on the stack. This doesn't
4694 have to be true! It must be verified for each system, possibly
4695 by taking a look at the source code of setjmp.
4697 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4698 can use it as a machine independent method to store all registers
4699 to the stack. In this case the macros described in the previous
4700 two paragraphs are not used.
4702 Stack Layout
4704 Architectures differ in the way their processor stack is organized.
4705 For example, the stack might look like this
4707 +----------------+
4708 | Lisp_Object | size = 4
4709 +----------------+
4710 | something else | size = 2
4711 +----------------+
4712 | Lisp_Object | size = 4
4713 +----------------+
4714 | ... |
4716 In such a case, not every Lisp_Object will be aligned equally. To
4717 find all Lisp_Object on the stack it won't be sufficient to walk
4718 the stack in steps of 4 bytes. Instead, two passes will be
4719 necessary, one starting at the start of the stack, and a second
4720 pass starting at the start of the stack + 2. Likewise, if the
4721 minimal alignment of Lisp_Objects on the stack is 1, four passes
4722 would be necessary, each one starting with one byte more offset
4723 from the stack start. */
4725 static void
4726 mark_stack (void)
4728 void *end;
4730 #ifdef HAVE___BUILTIN_UNWIND_INIT
4731 /* Force callee-saved registers and register windows onto the stack.
4732 This is the preferred method if available, obviating the need for
4733 machine dependent methods. */
4734 __builtin_unwind_init ();
4735 end = &end;
4736 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4737 #ifndef GC_SAVE_REGISTERS_ON_STACK
4738 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4739 union aligned_jmpbuf {
4740 Lisp_Object o;
4741 sys_jmp_buf j;
4742 } j;
4743 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4744 #endif
4745 /* This trick flushes the register windows so that all the state of
4746 the process is contained in the stack. */
4747 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4748 needed on ia64 too. See mach_dep.c, where it also says inline
4749 assembler doesn't work with relevant proprietary compilers. */
4750 #ifdef __sparc__
4751 #if defined (__sparc64__) && defined (__FreeBSD__)
4752 /* FreeBSD does not have a ta 3 handler. */
4753 asm ("flushw");
4754 #else
4755 asm ("ta 3");
4756 #endif
4757 #endif
4759 /* Save registers that we need to see on the stack. We need to see
4760 registers used to hold register variables and registers used to
4761 pass parameters. */
4762 #ifdef GC_SAVE_REGISTERS_ON_STACK
4763 GC_SAVE_REGISTERS_ON_STACK (end);
4764 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4766 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4767 setjmp will definitely work, test it
4768 and print a message with the result
4769 of the test. */
4770 if (!setjmp_tested_p)
4772 setjmp_tested_p = 1;
4773 test_setjmp ();
4775 #endif /* GC_SETJMP_WORKS */
4777 sys_setjmp (j.j);
4778 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4779 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4780 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4782 /* This assumes that the stack is a contiguous region in memory. If
4783 that's not the case, something has to be done here to iterate
4784 over the stack segments. */
4785 mark_memory (stack_base, end);
4787 /* Allow for marking a secondary stack, like the register stack on the
4788 ia64. */
4789 #ifdef GC_MARK_SECONDARY_STACK
4790 GC_MARK_SECONDARY_STACK ();
4791 #endif
4793 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4794 check_gcpros ();
4795 #endif
4798 #else /* GC_MARK_STACK == 0 */
4800 #define mark_maybe_object(obj) emacs_abort ()
4802 #endif /* GC_MARK_STACK != 0 */
4805 /* Determine whether it is safe to access memory at address P. */
4806 static int
4807 valid_pointer_p (void *p)
4809 #ifdef WINDOWSNT
4810 return w32_valid_pointer_p (p, 16);
4811 #else
4812 int fd[2];
4814 /* Obviously, we cannot just access it (we would SEGV trying), so we
4815 trick the o/s to tell us whether p is a valid pointer.
4816 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4817 not validate p in that case. */
4819 if (emacs_pipe (fd) == 0)
4821 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4822 emacs_close (fd[1]);
4823 emacs_close (fd[0]);
4824 return valid;
4827 return -1;
4828 #endif
4831 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4832 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4833 cannot validate OBJ. This function can be quite slow, so its primary
4834 use is the manual debugging. The only exception is print_object, where
4835 we use it to check whether the memory referenced by the pointer of
4836 Lisp_Save_Value object contains valid objects. */
4839 valid_lisp_object_p (Lisp_Object obj)
4841 void *p;
4842 #if GC_MARK_STACK
4843 struct mem_node *m;
4844 #endif
4846 if (INTEGERP (obj))
4847 return 1;
4849 p = (void *) XPNTR (obj);
4850 if (PURE_POINTER_P (p))
4851 return 1;
4853 if (p == &buffer_defaults || p == &buffer_local_symbols)
4854 return 2;
4856 #if !GC_MARK_STACK
4857 return valid_pointer_p (p);
4858 #else
4860 m = mem_find (p);
4862 if (m == MEM_NIL)
4864 int valid = valid_pointer_p (p);
4865 if (valid <= 0)
4866 return valid;
4868 if (SUBRP (obj))
4869 return 1;
4871 return 0;
4874 switch (m->type)
4876 case MEM_TYPE_NON_LISP:
4877 case MEM_TYPE_SPARE:
4878 return 0;
4880 case MEM_TYPE_BUFFER:
4881 return live_buffer_p (m, p) ? 1 : 2;
4883 case MEM_TYPE_CONS:
4884 return live_cons_p (m, p);
4886 case MEM_TYPE_STRING:
4887 return live_string_p (m, p);
4889 case MEM_TYPE_MISC:
4890 return live_misc_p (m, p);
4892 case MEM_TYPE_SYMBOL:
4893 return live_symbol_p (m, p);
4895 case MEM_TYPE_FLOAT:
4896 return live_float_p (m, p);
4898 case MEM_TYPE_VECTORLIKE:
4899 case MEM_TYPE_VECTOR_BLOCK:
4900 return live_vector_p (m, p);
4902 default:
4903 break;
4906 return 0;
4907 #endif
4913 /***********************************************************************
4914 Pure Storage Management
4915 ***********************************************************************/
4917 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4918 pointer to it. TYPE is the Lisp type for which the memory is
4919 allocated. TYPE < 0 means it's not used for a Lisp object. */
4921 static void *
4922 pure_alloc (size_t size, int type)
4924 void *result;
4925 #if USE_LSB_TAG
4926 size_t alignment = GCALIGNMENT;
4927 #else
4928 size_t alignment = alignof (EMACS_INT);
4930 /* Give Lisp_Floats an extra alignment. */
4931 if (type == Lisp_Float)
4932 alignment = alignof (struct Lisp_Float);
4933 #endif
4935 again:
4936 if (type >= 0)
4938 /* Allocate space for a Lisp object from the beginning of the free
4939 space with taking account of alignment. */
4940 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4941 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4943 else
4945 /* Allocate space for a non-Lisp object from the end of the free
4946 space. */
4947 pure_bytes_used_non_lisp += size;
4948 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4950 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4952 if (pure_bytes_used <= pure_size)
4953 return result;
4955 /* Don't allocate a large amount here,
4956 because it might get mmap'd and then its address
4957 might not be usable. */
4958 purebeg = xmalloc (10000);
4959 pure_size = 10000;
4960 pure_bytes_used_before_overflow += pure_bytes_used - size;
4961 pure_bytes_used = 0;
4962 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4963 goto again;
4967 /* Print a warning if PURESIZE is too small. */
4969 void
4970 check_pure_size (void)
4972 if (pure_bytes_used_before_overflow)
4973 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4974 " bytes needed)"),
4975 pure_bytes_used + pure_bytes_used_before_overflow);
4979 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4980 the non-Lisp data pool of the pure storage, and return its start
4981 address. Return NULL if not found. */
4983 static char *
4984 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4986 int i;
4987 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4988 const unsigned char *p;
4989 char *non_lisp_beg;
4991 if (pure_bytes_used_non_lisp <= nbytes)
4992 return NULL;
4994 /* Set up the Boyer-Moore table. */
4995 skip = nbytes + 1;
4996 for (i = 0; i < 256; i++)
4997 bm_skip[i] = skip;
4999 p = (const unsigned char *) data;
5000 while (--skip > 0)
5001 bm_skip[*p++] = skip;
5003 last_char_skip = bm_skip['\0'];
5005 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5006 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5008 /* See the comments in the function `boyer_moore' (search.c) for the
5009 use of `infinity'. */
5010 infinity = pure_bytes_used_non_lisp + 1;
5011 bm_skip['\0'] = infinity;
5013 p = (const unsigned char *) non_lisp_beg + nbytes;
5014 start = 0;
5017 /* Check the last character (== '\0'). */
5020 start += bm_skip[*(p + start)];
5022 while (start <= start_max);
5024 if (start < infinity)
5025 /* Couldn't find the last character. */
5026 return NULL;
5028 /* No less than `infinity' means we could find the last
5029 character at `p[start - infinity]'. */
5030 start -= infinity;
5032 /* Check the remaining characters. */
5033 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5034 /* Found. */
5035 return non_lisp_beg + start;
5037 start += last_char_skip;
5039 while (start <= start_max);
5041 return NULL;
5045 /* Return a string allocated in pure space. DATA is a buffer holding
5046 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5047 means make the result string multibyte.
5049 Must get an error if pure storage is full, since if it cannot hold
5050 a large string it may be able to hold conses that point to that
5051 string; then the string is not protected from gc. */
5053 Lisp_Object
5054 make_pure_string (const char *data,
5055 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5057 Lisp_Object string;
5058 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5059 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5060 if (s->data == NULL)
5062 s->data = pure_alloc (nbytes + 1, -1);
5063 memcpy (s->data, data, nbytes);
5064 s->data[nbytes] = '\0';
5066 s->size = nchars;
5067 s->size_byte = multibyte ? nbytes : -1;
5068 s->intervals = NULL;
5069 XSETSTRING (string, s);
5070 return string;
5073 /* Return a string allocated in pure space. Do not
5074 allocate the string data, just point to DATA. */
5076 Lisp_Object
5077 make_pure_c_string (const char *data, ptrdiff_t nchars)
5079 Lisp_Object string;
5080 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5081 s->size = nchars;
5082 s->size_byte = -1;
5083 s->data = (unsigned char *) data;
5084 s->intervals = NULL;
5085 XSETSTRING (string, s);
5086 return string;
5089 /* Return a cons allocated from pure space. Give it pure copies
5090 of CAR as car and CDR as cdr. */
5092 Lisp_Object
5093 pure_cons (Lisp_Object car, Lisp_Object cdr)
5095 Lisp_Object new;
5096 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5097 XSETCONS (new, p);
5098 XSETCAR (new, Fpurecopy (car));
5099 XSETCDR (new, Fpurecopy (cdr));
5100 return new;
5104 /* Value is a float object with value NUM allocated from pure space. */
5106 static Lisp_Object
5107 make_pure_float (double num)
5109 Lisp_Object new;
5110 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5111 XSETFLOAT (new, p);
5112 XFLOAT_INIT (new, num);
5113 return new;
5117 /* Return a vector with room for LEN Lisp_Objects allocated from
5118 pure space. */
5120 static Lisp_Object
5121 make_pure_vector (ptrdiff_t len)
5123 Lisp_Object new;
5124 size_t size = header_size + len * word_size;
5125 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5126 XSETVECTOR (new, p);
5127 XVECTOR (new)->header.size = len;
5128 return new;
5132 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5133 doc: /* Make a copy of object OBJ in pure storage.
5134 Recursively copies contents of vectors and cons cells.
5135 Does not copy symbols. Copies strings without text properties. */)
5136 (register Lisp_Object obj)
5138 if (NILP (Vpurify_flag))
5139 return obj;
5141 if (PURE_POINTER_P (XPNTR (obj)))
5142 return obj;
5144 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5146 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5147 if (!NILP (tmp))
5148 return tmp;
5151 if (CONSP (obj))
5152 obj = pure_cons (XCAR (obj), XCDR (obj));
5153 else if (FLOATP (obj))
5154 obj = make_pure_float (XFLOAT_DATA (obj));
5155 else if (STRINGP (obj))
5156 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5157 SBYTES (obj),
5158 STRING_MULTIBYTE (obj));
5159 else if (COMPILEDP (obj) || VECTORP (obj))
5161 register struct Lisp_Vector *vec;
5162 register ptrdiff_t i;
5163 ptrdiff_t size;
5165 size = ASIZE (obj);
5166 if (size & PSEUDOVECTOR_FLAG)
5167 size &= PSEUDOVECTOR_SIZE_MASK;
5168 vec = XVECTOR (make_pure_vector (size));
5169 for (i = 0; i < size; i++)
5170 vec->u.contents[i] = Fpurecopy (AREF (obj, i));
5171 if (COMPILEDP (obj))
5173 XSETPVECTYPE (vec, PVEC_COMPILED);
5174 XSETCOMPILED (obj, vec);
5176 else
5177 XSETVECTOR (obj, vec);
5179 else if (MARKERP (obj))
5180 error ("Attempt to copy a marker to pure storage");
5181 else
5182 /* Not purified, don't hash-cons. */
5183 return obj;
5185 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5186 Fputhash (obj, obj, Vpurify_flag);
5188 return obj;
5193 /***********************************************************************
5194 Protection from GC
5195 ***********************************************************************/
5197 /* Put an entry in staticvec, pointing at the variable with address
5198 VARADDRESS. */
5200 void
5201 staticpro (Lisp_Object *varaddress)
5203 if (staticidx >= NSTATICS)
5204 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5205 staticvec[staticidx++] = varaddress;
5209 /***********************************************************************
5210 Protection from GC
5211 ***********************************************************************/
5213 /* Temporarily prevent garbage collection. */
5215 ptrdiff_t
5216 inhibit_garbage_collection (void)
5218 ptrdiff_t count = SPECPDL_INDEX ();
5220 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5221 return count;
5224 /* Used to avoid possible overflows when
5225 converting from C to Lisp integers. */
5227 static Lisp_Object
5228 bounded_number (EMACS_INT number)
5230 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5233 /* Calculate total bytes of live objects. */
5235 static size_t
5236 total_bytes_of_live_objects (void)
5238 size_t tot = 0;
5239 tot += total_conses * sizeof (struct Lisp_Cons);
5240 tot += total_symbols * sizeof (struct Lisp_Symbol);
5241 tot += total_markers * sizeof (union Lisp_Misc);
5242 tot += total_string_bytes;
5243 tot += total_vector_slots * word_size;
5244 tot += total_floats * sizeof (struct Lisp_Float);
5245 tot += total_intervals * sizeof (struct interval);
5246 tot += total_strings * sizeof (struct Lisp_String);
5247 return tot;
5250 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5251 doc: /* Reclaim storage for Lisp objects no longer needed.
5252 Garbage collection happens automatically if you cons more than
5253 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5254 `garbage-collect' normally returns a list with info on amount of space in use,
5255 where each entry has the form (NAME SIZE USED FREE), where:
5256 - NAME is a symbol describing the kind of objects this entry represents,
5257 - SIZE is the number of bytes used by each one,
5258 - USED is the number of those objects that were found live in the heap,
5259 - FREE is the number of those objects that are not live but that Emacs
5260 keeps around for future allocations (maybe because it does not know how
5261 to return them to the OS).
5262 However, if there was overflow in pure space, `garbage-collect'
5263 returns nil, because real GC can't be done.
5264 See Info node `(elisp)Garbage Collection'. */)
5265 (void)
5267 struct buffer *nextb;
5268 char stack_top_variable;
5269 ptrdiff_t i;
5270 bool message_p;
5271 ptrdiff_t count = SPECPDL_INDEX ();
5272 struct timespec start;
5273 Lisp_Object retval = Qnil;
5274 size_t tot_before = 0;
5276 if (abort_on_gc)
5277 emacs_abort ();
5279 /* Can't GC if pure storage overflowed because we can't determine
5280 if something is a pure object or not. */
5281 if (pure_bytes_used_before_overflow)
5282 return Qnil;
5284 /* Record this function, so it appears on the profiler's backtraces. */
5285 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5287 check_cons_list ();
5289 /* Don't keep undo information around forever.
5290 Do this early on, so it is no problem if the user quits. */
5291 FOR_EACH_BUFFER (nextb)
5292 compact_buffer (nextb);
5294 if (profiler_memory_running)
5295 tot_before = total_bytes_of_live_objects ();
5297 start = current_timespec ();
5299 /* In case user calls debug_print during GC,
5300 don't let that cause a recursive GC. */
5301 consing_since_gc = 0;
5303 /* Save what's currently displayed in the echo area. */
5304 message_p = push_message ();
5305 record_unwind_protect_void (pop_message_unwind);
5307 /* Save a copy of the contents of the stack, for debugging. */
5308 #if MAX_SAVE_STACK > 0
5309 if (NILP (Vpurify_flag))
5311 char *stack;
5312 ptrdiff_t stack_size;
5313 if (&stack_top_variable < stack_bottom)
5315 stack = &stack_top_variable;
5316 stack_size = stack_bottom - &stack_top_variable;
5318 else
5320 stack = stack_bottom;
5321 stack_size = &stack_top_variable - stack_bottom;
5323 if (stack_size <= MAX_SAVE_STACK)
5325 if (stack_copy_size < stack_size)
5327 stack_copy = xrealloc (stack_copy, stack_size);
5328 stack_copy_size = stack_size;
5330 memcpy (stack_copy, stack, stack_size);
5333 #endif /* MAX_SAVE_STACK > 0 */
5335 if (garbage_collection_messages)
5336 message1_nolog ("Garbage collecting...");
5338 block_input ();
5340 shrink_regexp_cache ();
5342 gc_in_progress = 1;
5344 /* Mark all the special slots that serve as the roots of accessibility. */
5346 mark_buffer (&buffer_defaults);
5347 mark_buffer (&buffer_local_symbols);
5349 for (i = 0; i < staticidx; i++)
5350 mark_object (*staticvec[i]);
5352 mark_specpdl ();
5353 mark_terminals ();
5354 mark_kboards ();
5356 #ifdef USE_GTK
5357 xg_mark_data ();
5358 #endif
5360 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5361 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5362 mark_stack ();
5363 #else
5365 register struct gcpro *tail;
5366 for (tail = gcprolist; tail; tail = tail->next)
5367 for (i = 0; i < tail->nvars; i++)
5368 mark_object (tail->var[i]);
5370 mark_byte_stack ();
5372 struct catchtag *catch;
5373 struct handler *handler;
5375 for (catch = catchlist; catch; catch = catch->next)
5377 mark_object (catch->tag);
5378 mark_object (catch->val);
5380 for (handler = handlerlist; handler; handler = handler->next)
5382 mark_object (handler->handler);
5383 mark_object (handler->var);
5386 #endif
5388 #ifdef HAVE_WINDOW_SYSTEM
5389 mark_fringe_data ();
5390 #endif
5392 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5393 mark_stack ();
5394 #endif
5396 /* Everything is now marked, except for the things that require special
5397 finalization, i.e. the undo_list.
5398 Look thru every buffer's undo list
5399 for elements that update markers that were not marked,
5400 and delete them. */
5401 FOR_EACH_BUFFER (nextb)
5403 /* If a buffer's undo list is Qt, that means that undo is
5404 turned off in that buffer. Calling truncate_undo_list on
5405 Qt tends to return NULL, which effectively turns undo back on.
5406 So don't call truncate_undo_list if undo_list is Qt. */
5407 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5409 Lisp_Object tail, prev;
5410 tail = nextb->INTERNAL_FIELD (undo_list);
5411 prev = Qnil;
5412 while (CONSP (tail))
5414 if (CONSP (XCAR (tail))
5415 && MARKERP (XCAR (XCAR (tail)))
5416 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5418 if (NILP (prev))
5419 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5420 else
5422 tail = XCDR (tail);
5423 XSETCDR (prev, tail);
5426 else
5428 prev = tail;
5429 tail = XCDR (tail);
5433 /* Now that we have stripped the elements that need not be in the
5434 undo_list any more, we can finally mark the list. */
5435 mark_object (nextb->INTERNAL_FIELD (undo_list));
5438 gc_sweep ();
5440 /* Clear the mark bits that we set in certain root slots. */
5442 unmark_byte_stack ();
5443 VECTOR_UNMARK (&buffer_defaults);
5444 VECTOR_UNMARK (&buffer_local_symbols);
5446 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5447 dump_zombies ();
5448 #endif
5450 check_cons_list ();
5452 gc_in_progress = 0;
5454 unblock_input ();
5456 consing_since_gc = 0;
5457 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5458 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5460 gc_relative_threshold = 0;
5461 if (FLOATP (Vgc_cons_percentage))
5462 { /* Set gc_cons_combined_threshold. */
5463 double tot = total_bytes_of_live_objects ();
5465 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5466 if (0 < tot)
5468 if (tot < TYPE_MAXIMUM (EMACS_INT))
5469 gc_relative_threshold = tot;
5470 else
5471 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5475 if (garbage_collection_messages)
5477 if (message_p || minibuf_level > 0)
5478 restore_message ();
5479 else
5480 message1_nolog ("Garbage collecting...done");
5483 unbind_to (count, Qnil);
5485 Lisp_Object total[11];
5486 int total_size = 10;
5488 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5489 bounded_number (total_conses),
5490 bounded_number (total_free_conses));
5492 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5493 bounded_number (total_symbols),
5494 bounded_number (total_free_symbols));
5496 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5497 bounded_number (total_markers),
5498 bounded_number (total_free_markers));
5500 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5501 bounded_number (total_strings),
5502 bounded_number (total_free_strings));
5504 total[4] = list3 (Qstring_bytes, make_number (1),
5505 bounded_number (total_string_bytes));
5507 total[5] = list3 (Qvectors,
5508 make_number (header_size + sizeof (Lisp_Object)),
5509 bounded_number (total_vectors));
5511 total[6] = list4 (Qvector_slots, make_number (word_size),
5512 bounded_number (total_vector_slots),
5513 bounded_number (total_free_vector_slots));
5515 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5516 bounded_number (total_floats),
5517 bounded_number (total_free_floats));
5519 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5520 bounded_number (total_intervals),
5521 bounded_number (total_free_intervals));
5523 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5524 bounded_number (total_buffers));
5526 #ifdef DOUG_LEA_MALLOC
5527 total_size++;
5528 total[10] = list4 (Qheap, make_number (1024),
5529 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5530 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5531 #endif
5532 retval = Flist (total_size, total);
5535 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5537 /* Compute average percentage of zombies. */
5538 double nlive
5539 = (total_conses + total_symbols + total_markers + total_strings
5540 + total_vectors + total_floats + total_intervals + total_buffers);
5542 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5543 max_live = max (nlive, max_live);
5544 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5545 max_zombies = max (nzombies, max_zombies);
5546 ++ngcs;
5548 #endif
5550 if (!NILP (Vpost_gc_hook))
5552 ptrdiff_t gc_count = inhibit_garbage_collection ();
5553 safe_run_hooks (Qpost_gc_hook);
5554 unbind_to (gc_count, Qnil);
5557 /* Accumulate statistics. */
5558 if (FLOATP (Vgc_elapsed))
5560 struct timespec since_start = timespec_sub (current_timespec (), start);
5561 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5562 + timespectod (since_start));
5565 gcs_done++;
5567 /* Collect profiling data. */
5568 if (profiler_memory_running)
5570 size_t swept = 0;
5571 size_t tot_after = total_bytes_of_live_objects ();
5572 if (tot_before > tot_after)
5573 swept = tot_before - tot_after;
5574 malloc_probe (swept);
5577 return retval;
5581 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5582 only interesting objects referenced from glyphs are strings. */
5584 static void
5585 mark_glyph_matrix (struct glyph_matrix *matrix)
5587 struct glyph_row *row = matrix->rows;
5588 struct glyph_row *end = row + matrix->nrows;
5590 for (; row < end; ++row)
5591 if (row->enabled_p)
5593 int area;
5594 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5596 struct glyph *glyph = row->glyphs[area];
5597 struct glyph *end_glyph = glyph + row->used[area];
5599 for (; glyph < end_glyph; ++glyph)
5600 if (STRINGP (glyph->object)
5601 && !STRING_MARKED_P (XSTRING (glyph->object)))
5602 mark_object (glyph->object);
5608 /* Mark Lisp faces in the face cache C. */
5610 static void
5611 mark_face_cache (struct face_cache *c)
5613 if (c)
5615 int i, j;
5616 for (i = 0; i < c->used; ++i)
5618 struct face *face = FACE_FROM_ID (c->f, i);
5620 if (face)
5622 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5623 mark_object (face->lface[j]);
5631 /* Mark reference to a Lisp_Object.
5632 If the object referred to has not been seen yet, recursively mark
5633 all the references contained in it. */
5635 #define LAST_MARKED_SIZE 500
5636 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5637 static int last_marked_index;
5639 /* For debugging--call abort when we cdr down this many
5640 links of a list, in mark_object. In debugging,
5641 the call to abort will hit a breakpoint.
5642 Normally this is zero and the check never goes off. */
5643 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5645 static void
5646 mark_vectorlike (struct Lisp_Vector *ptr)
5648 ptrdiff_t size = ptr->header.size;
5649 ptrdiff_t i;
5651 eassert (!VECTOR_MARKED_P (ptr));
5652 VECTOR_MARK (ptr); /* Else mark it. */
5653 if (size & PSEUDOVECTOR_FLAG)
5654 size &= PSEUDOVECTOR_SIZE_MASK;
5656 /* Note that this size is not the memory-footprint size, but only
5657 the number of Lisp_Object fields that we should trace.
5658 The distinction is used e.g. by Lisp_Process which places extra
5659 non-Lisp_Object fields at the end of the structure... */
5660 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5661 mark_object (ptr->u.contents[i]);
5664 /* Like mark_vectorlike but optimized for char-tables (and
5665 sub-char-tables) assuming that the contents are mostly integers or
5666 symbols. */
5668 static void
5669 mark_char_table (struct Lisp_Vector *ptr)
5671 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5672 int i;
5674 eassert (!VECTOR_MARKED_P (ptr));
5675 VECTOR_MARK (ptr);
5676 for (i = 0; i < size; i++)
5678 Lisp_Object val = ptr->u.contents[i];
5680 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5681 continue;
5682 if (SUB_CHAR_TABLE_P (val))
5684 if (! VECTOR_MARKED_P (XVECTOR (val)))
5685 mark_char_table (XVECTOR (val));
5687 else
5688 mark_object (val);
5692 /* Mark the chain of overlays starting at PTR. */
5694 static void
5695 mark_overlay (struct Lisp_Overlay *ptr)
5697 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5699 ptr->gcmarkbit = 1;
5700 mark_object (ptr->start);
5701 mark_object (ptr->end);
5702 mark_object (ptr->plist);
5706 /* Mark Lisp_Objects and special pointers in BUFFER. */
5708 static void
5709 mark_buffer (struct buffer *buffer)
5711 /* This is handled much like other pseudovectors... */
5712 mark_vectorlike ((struct Lisp_Vector *) buffer);
5714 /* ...but there are some buffer-specific things. */
5716 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5718 /* For now, we just don't mark the undo_list. It's done later in
5719 a special way just before the sweep phase, and after stripping
5720 some of its elements that are not needed any more. */
5722 mark_overlay (buffer->overlays_before);
5723 mark_overlay (buffer->overlays_after);
5725 /* If this is an indirect buffer, mark its base buffer. */
5726 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5727 mark_buffer (buffer->base_buffer);
5730 /* Remove killed buffers or items whose car is a killed buffer from
5731 LIST, and mark other items. Return changed LIST, which is marked. */
5733 static Lisp_Object
5734 mark_discard_killed_buffers (Lisp_Object list)
5736 Lisp_Object tail, *prev = &list;
5738 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5739 tail = XCDR (tail))
5741 Lisp_Object tem = XCAR (tail);
5742 if (CONSP (tem))
5743 tem = XCAR (tem);
5744 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5745 *prev = XCDR (tail);
5746 else
5748 CONS_MARK (XCONS (tail));
5749 mark_object (XCAR (tail));
5750 prev = xcdr_addr (tail);
5753 mark_object (tail);
5754 return list;
5757 /* Determine type of generic Lisp_Object and mark it accordingly. */
5759 void
5760 mark_object (Lisp_Object arg)
5762 register Lisp_Object obj = arg;
5763 #ifdef GC_CHECK_MARKED_OBJECTS
5764 void *po;
5765 struct mem_node *m;
5766 #endif
5767 ptrdiff_t cdr_count = 0;
5769 loop:
5771 if (PURE_POINTER_P (XPNTR (obj)))
5772 return;
5774 last_marked[last_marked_index++] = obj;
5775 if (last_marked_index == LAST_MARKED_SIZE)
5776 last_marked_index = 0;
5778 /* Perform some sanity checks on the objects marked here. Abort if
5779 we encounter an object we know is bogus. This increases GC time
5780 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5781 #ifdef GC_CHECK_MARKED_OBJECTS
5783 po = (void *) XPNTR (obj);
5785 /* Check that the object pointed to by PO is known to be a Lisp
5786 structure allocated from the heap. */
5787 #define CHECK_ALLOCATED() \
5788 do { \
5789 m = mem_find (po); \
5790 if (m == MEM_NIL) \
5791 emacs_abort (); \
5792 } while (0)
5794 /* Check that the object pointed to by PO is live, using predicate
5795 function LIVEP. */
5796 #define CHECK_LIVE(LIVEP) \
5797 do { \
5798 if (!LIVEP (m, po)) \
5799 emacs_abort (); \
5800 } while (0)
5802 /* Check both of the above conditions. */
5803 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5804 do { \
5805 CHECK_ALLOCATED (); \
5806 CHECK_LIVE (LIVEP); \
5807 } while (0) \
5809 #else /* not GC_CHECK_MARKED_OBJECTS */
5811 #define CHECK_LIVE(LIVEP) (void) 0
5812 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5814 #endif /* not GC_CHECK_MARKED_OBJECTS */
5816 switch (XTYPE (obj))
5818 case Lisp_String:
5820 register struct Lisp_String *ptr = XSTRING (obj);
5821 if (STRING_MARKED_P (ptr))
5822 break;
5823 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5824 MARK_STRING (ptr);
5825 MARK_INTERVAL_TREE (ptr->intervals);
5826 #ifdef GC_CHECK_STRING_BYTES
5827 /* Check that the string size recorded in the string is the
5828 same as the one recorded in the sdata structure. */
5829 string_bytes (ptr);
5830 #endif /* GC_CHECK_STRING_BYTES */
5832 break;
5834 case Lisp_Vectorlike:
5836 register struct Lisp_Vector *ptr = XVECTOR (obj);
5837 register ptrdiff_t pvectype;
5839 if (VECTOR_MARKED_P (ptr))
5840 break;
5842 #ifdef GC_CHECK_MARKED_OBJECTS
5843 m = mem_find (po);
5844 if (m == MEM_NIL && !SUBRP (obj))
5845 emacs_abort ();
5846 #endif /* GC_CHECK_MARKED_OBJECTS */
5848 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5849 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5850 >> PSEUDOVECTOR_AREA_BITS);
5851 else
5852 pvectype = PVEC_NORMAL_VECTOR;
5854 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5855 CHECK_LIVE (live_vector_p);
5857 switch (pvectype)
5859 case PVEC_BUFFER:
5860 #ifdef GC_CHECK_MARKED_OBJECTS
5862 struct buffer *b;
5863 FOR_EACH_BUFFER (b)
5864 if (b == po)
5865 break;
5866 if (b == NULL)
5867 emacs_abort ();
5869 #endif /* GC_CHECK_MARKED_OBJECTS */
5870 mark_buffer ((struct buffer *) ptr);
5871 break;
5873 case PVEC_COMPILED:
5874 { /* We could treat this just like a vector, but it is better
5875 to save the COMPILED_CONSTANTS element for last and avoid
5876 recursion there. */
5877 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5878 int i;
5880 VECTOR_MARK (ptr);
5881 for (i = 0; i < size; i++)
5882 if (i != COMPILED_CONSTANTS)
5883 mark_object (ptr->u.contents[i]);
5884 if (size > COMPILED_CONSTANTS)
5886 obj = ptr->u.contents[COMPILED_CONSTANTS];
5887 goto loop;
5890 break;
5892 case PVEC_FRAME:
5893 mark_vectorlike (ptr);
5894 mark_face_cache (((struct frame *) ptr)->face_cache);
5895 break;
5897 case PVEC_WINDOW:
5899 struct window *w = (struct window *) ptr;
5901 mark_vectorlike (ptr);
5903 /* Mark glyph matrices, if any. Marking window
5904 matrices is sufficient because frame matrices
5905 use the same glyph memory. */
5906 if (w->current_matrix)
5908 mark_glyph_matrix (w->current_matrix);
5909 mark_glyph_matrix (w->desired_matrix);
5912 /* Filter out killed buffers from both buffer lists
5913 in attempt to help GC to reclaim killed buffers faster.
5914 We can do it elsewhere for live windows, but this is the
5915 best place to do it for dead windows. */
5916 wset_prev_buffers
5917 (w, mark_discard_killed_buffers (w->prev_buffers));
5918 wset_next_buffers
5919 (w, mark_discard_killed_buffers (w->next_buffers));
5921 break;
5923 case PVEC_HASH_TABLE:
5925 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5927 mark_vectorlike (ptr);
5928 mark_object (h->test.name);
5929 mark_object (h->test.user_hash_function);
5930 mark_object (h->test.user_cmp_function);
5931 /* If hash table is not weak, mark all keys and values.
5932 For weak tables, mark only the vector. */
5933 if (NILP (h->weak))
5934 mark_object (h->key_and_value);
5935 else
5936 VECTOR_MARK (XVECTOR (h->key_and_value));
5938 break;
5940 case PVEC_CHAR_TABLE:
5941 mark_char_table (ptr);
5942 break;
5944 case PVEC_BOOL_VECTOR:
5945 /* No Lisp_Objects to mark in a bool vector. */
5946 VECTOR_MARK (ptr);
5947 break;
5949 case PVEC_SUBR:
5950 break;
5952 case PVEC_FREE:
5953 emacs_abort ();
5955 default:
5956 mark_vectorlike (ptr);
5959 break;
5961 case Lisp_Symbol:
5963 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5964 struct Lisp_Symbol *ptrx;
5966 if (ptr->gcmarkbit)
5967 break;
5968 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5969 ptr->gcmarkbit = 1;
5970 mark_object (ptr->function);
5971 mark_object (ptr->plist);
5972 switch (ptr->redirect)
5974 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5975 case SYMBOL_VARALIAS:
5977 Lisp_Object tem;
5978 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5979 mark_object (tem);
5980 break;
5982 case SYMBOL_LOCALIZED:
5984 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5985 Lisp_Object where = blv->where;
5986 /* If the value is set up for a killed buffer or deleted
5987 frame, restore it's global binding. If the value is
5988 forwarded to a C variable, either it's not a Lisp_Object
5989 var, or it's staticpro'd already. */
5990 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5991 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5992 swap_in_global_binding (ptr);
5993 mark_object (blv->where);
5994 mark_object (blv->valcell);
5995 mark_object (blv->defcell);
5996 break;
5998 case SYMBOL_FORWARDED:
5999 /* If the value is forwarded to a buffer or keyboard field,
6000 these are marked when we see the corresponding object.
6001 And if it's forwarded to a C variable, either it's not
6002 a Lisp_Object var, or it's staticpro'd already. */
6003 break;
6004 default: emacs_abort ();
6006 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6007 MARK_STRING (XSTRING (ptr->name));
6008 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6010 ptr = ptr->next;
6011 if (ptr)
6013 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6014 XSETSYMBOL (obj, ptrx);
6015 goto loop;
6018 break;
6020 case Lisp_Misc:
6021 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6023 if (XMISCANY (obj)->gcmarkbit)
6024 break;
6026 switch (XMISCTYPE (obj))
6028 case Lisp_Misc_Marker:
6029 /* DO NOT mark thru the marker's chain.
6030 The buffer's markers chain does not preserve markers from gc;
6031 instead, markers are removed from the chain when freed by gc. */
6032 XMISCANY (obj)->gcmarkbit = 1;
6033 break;
6035 case Lisp_Misc_Save_Value:
6036 XMISCANY (obj)->gcmarkbit = 1;
6038 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6039 /* If `save_type' is zero, `data[0].pointer' is the address
6040 of a memory area containing `data[1].integer' potential
6041 Lisp_Objects. */
6042 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6044 Lisp_Object *p = ptr->data[0].pointer;
6045 ptrdiff_t nelt;
6046 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6047 mark_maybe_object (*p);
6049 else
6051 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6052 int i;
6053 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6054 if (save_type (ptr, i) == SAVE_OBJECT)
6055 mark_object (ptr->data[i].object);
6058 break;
6060 case Lisp_Misc_Overlay:
6061 mark_overlay (XOVERLAY (obj));
6062 break;
6064 default:
6065 emacs_abort ();
6067 break;
6069 case Lisp_Cons:
6071 register struct Lisp_Cons *ptr = XCONS (obj);
6072 if (CONS_MARKED_P (ptr))
6073 break;
6074 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6075 CONS_MARK (ptr);
6076 /* If the cdr is nil, avoid recursion for the car. */
6077 if (EQ (ptr->u.cdr, Qnil))
6079 obj = ptr->car;
6080 cdr_count = 0;
6081 goto loop;
6083 mark_object (ptr->car);
6084 obj = ptr->u.cdr;
6085 cdr_count++;
6086 if (cdr_count == mark_object_loop_halt)
6087 emacs_abort ();
6088 goto loop;
6091 case Lisp_Float:
6092 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6093 FLOAT_MARK (XFLOAT (obj));
6094 break;
6096 case_Lisp_Int:
6097 break;
6099 default:
6100 emacs_abort ();
6103 #undef CHECK_LIVE
6104 #undef CHECK_ALLOCATED
6105 #undef CHECK_ALLOCATED_AND_LIVE
6107 /* Mark the Lisp pointers in the terminal objects.
6108 Called by Fgarbage_collect. */
6110 static void
6111 mark_terminals (void)
6113 struct terminal *t;
6114 for (t = terminal_list; t; t = t->next_terminal)
6116 eassert (t->name != NULL);
6117 #ifdef HAVE_WINDOW_SYSTEM
6118 /* If a terminal object is reachable from a stacpro'ed object,
6119 it might have been marked already. Make sure the image cache
6120 gets marked. */
6121 mark_image_cache (t->image_cache);
6122 #endif /* HAVE_WINDOW_SYSTEM */
6123 if (!VECTOR_MARKED_P (t))
6124 mark_vectorlike ((struct Lisp_Vector *)t);
6130 /* Value is non-zero if OBJ will survive the current GC because it's
6131 either marked or does not need to be marked to survive. */
6133 bool
6134 survives_gc_p (Lisp_Object obj)
6136 bool survives_p;
6138 switch (XTYPE (obj))
6140 case_Lisp_Int:
6141 survives_p = 1;
6142 break;
6144 case Lisp_Symbol:
6145 survives_p = XSYMBOL (obj)->gcmarkbit;
6146 break;
6148 case Lisp_Misc:
6149 survives_p = XMISCANY (obj)->gcmarkbit;
6150 break;
6152 case Lisp_String:
6153 survives_p = STRING_MARKED_P (XSTRING (obj));
6154 break;
6156 case Lisp_Vectorlike:
6157 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6158 break;
6160 case Lisp_Cons:
6161 survives_p = CONS_MARKED_P (XCONS (obj));
6162 break;
6164 case Lisp_Float:
6165 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6166 break;
6168 default:
6169 emacs_abort ();
6172 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6177 /* Sweep: find all structures not marked, and free them. */
6179 static void
6180 gc_sweep (void)
6182 /* Remove or mark entries in weak hash tables.
6183 This must be done before any object is unmarked. */
6184 sweep_weak_hash_tables ();
6186 sweep_strings ();
6187 check_string_bytes (!noninteractive);
6189 /* Put all unmarked conses on free list */
6191 register struct cons_block *cblk;
6192 struct cons_block **cprev = &cons_block;
6193 register int lim = cons_block_index;
6194 EMACS_INT num_free = 0, num_used = 0;
6196 cons_free_list = 0;
6198 for (cblk = cons_block; cblk; cblk = *cprev)
6200 register int i = 0;
6201 int this_free = 0;
6202 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6204 /* Scan the mark bits an int at a time. */
6205 for (i = 0; i < ilim; i++)
6207 if (cblk->gcmarkbits[i] == -1)
6209 /* Fast path - all cons cells for this int are marked. */
6210 cblk->gcmarkbits[i] = 0;
6211 num_used += BITS_PER_INT;
6213 else
6215 /* Some cons cells for this int are not marked.
6216 Find which ones, and free them. */
6217 int start, pos, stop;
6219 start = i * BITS_PER_INT;
6220 stop = lim - start;
6221 if (stop > BITS_PER_INT)
6222 stop = BITS_PER_INT;
6223 stop += start;
6225 for (pos = start; pos < stop; pos++)
6227 if (!CONS_MARKED_P (&cblk->conses[pos]))
6229 this_free++;
6230 cblk->conses[pos].u.chain = cons_free_list;
6231 cons_free_list = &cblk->conses[pos];
6232 #if GC_MARK_STACK
6233 cons_free_list->car = Vdead;
6234 #endif
6236 else
6238 num_used++;
6239 CONS_UNMARK (&cblk->conses[pos]);
6245 lim = CONS_BLOCK_SIZE;
6246 /* If this block contains only free conses and we have already
6247 seen more than two blocks worth of free conses then deallocate
6248 this block. */
6249 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6251 *cprev = cblk->next;
6252 /* Unhook from the free list. */
6253 cons_free_list = cblk->conses[0].u.chain;
6254 lisp_align_free (cblk);
6256 else
6258 num_free += this_free;
6259 cprev = &cblk->next;
6262 total_conses = num_used;
6263 total_free_conses = num_free;
6266 /* Put all unmarked floats on free list */
6268 register struct float_block *fblk;
6269 struct float_block **fprev = &float_block;
6270 register int lim = float_block_index;
6271 EMACS_INT num_free = 0, num_used = 0;
6273 float_free_list = 0;
6275 for (fblk = float_block; fblk; fblk = *fprev)
6277 register int i;
6278 int this_free = 0;
6279 for (i = 0; i < lim; i++)
6280 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6282 this_free++;
6283 fblk->floats[i].u.chain = float_free_list;
6284 float_free_list = &fblk->floats[i];
6286 else
6288 num_used++;
6289 FLOAT_UNMARK (&fblk->floats[i]);
6291 lim = FLOAT_BLOCK_SIZE;
6292 /* If this block contains only free floats and we have already
6293 seen more than two blocks worth of free floats then deallocate
6294 this block. */
6295 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6297 *fprev = fblk->next;
6298 /* Unhook from the free list. */
6299 float_free_list = fblk->floats[0].u.chain;
6300 lisp_align_free (fblk);
6302 else
6304 num_free += this_free;
6305 fprev = &fblk->next;
6308 total_floats = num_used;
6309 total_free_floats = num_free;
6312 /* Put all unmarked intervals on free list */
6314 register struct interval_block *iblk;
6315 struct interval_block **iprev = &interval_block;
6316 register int lim = interval_block_index;
6317 EMACS_INT num_free = 0, num_used = 0;
6319 interval_free_list = 0;
6321 for (iblk = interval_block; iblk; iblk = *iprev)
6323 register int i;
6324 int this_free = 0;
6326 for (i = 0; i < lim; i++)
6328 if (!iblk->intervals[i].gcmarkbit)
6330 set_interval_parent (&iblk->intervals[i], interval_free_list);
6331 interval_free_list = &iblk->intervals[i];
6332 this_free++;
6334 else
6336 num_used++;
6337 iblk->intervals[i].gcmarkbit = 0;
6340 lim = INTERVAL_BLOCK_SIZE;
6341 /* If this block contains only free intervals and we have already
6342 seen more than two blocks worth of free intervals then
6343 deallocate this block. */
6344 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6346 *iprev = iblk->next;
6347 /* Unhook from the free list. */
6348 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6349 lisp_free (iblk);
6351 else
6353 num_free += this_free;
6354 iprev = &iblk->next;
6357 total_intervals = num_used;
6358 total_free_intervals = num_free;
6361 /* Put all unmarked symbols on free list */
6363 register struct symbol_block *sblk;
6364 struct symbol_block **sprev = &symbol_block;
6365 register int lim = symbol_block_index;
6366 EMACS_INT num_free = 0, num_used = 0;
6368 symbol_free_list = NULL;
6370 for (sblk = symbol_block; sblk; sblk = *sprev)
6372 int this_free = 0;
6373 union aligned_Lisp_Symbol *sym = sblk->symbols;
6374 union aligned_Lisp_Symbol *end = sym + lim;
6376 for (; sym < end; ++sym)
6378 /* Check if the symbol was created during loadup. In such a case
6379 it might be pointed to by pure bytecode which we don't trace,
6380 so we conservatively assume that it is live. */
6381 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6383 if (!sym->s.gcmarkbit && !pure_p)
6385 if (sym->s.redirect == SYMBOL_LOCALIZED)
6386 xfree (SYMBOL_BLV (&sym->s));
6387 sym->s.next = symbol_free_list;
6388 symbol_free_list = &sym->s;
6389 #if GC_MARK_STACK
6390 symbol_free_list->function = Vdead;
6391 #endif
6392 ++this_free;
6394 else
6396 ++num_used;
6397 if (!pure_p)
6398 UNMARK_STRING (XSTRING (sym->s.name));
6399 sym->s.gcmarkbit = 0;
6403 lim = SYMBOL_BLOCK_SIZE;
6404 /* If this block contains only free symbols and we have already
6405 seen more than two blocks worth of free symbols then deallocate
6406 this block. */
6407 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6409 *sprev = sblk->next;
6410 /* Unhook from the free list. */
6411 symbol_free_list = sblk->symbols[0].s.next;
6412 lisp_free (sblk);
6414 else
6416 num_free += this_free;
6417 sprev = &sblk->next;
6420 total_symbols = num_used;
6421 total_free_symbols = num_free;
6424 /* Put all unmarked misc's on free list.
6425 For a marker, first unchain it from the buffer it points into. */
6427 register struct marker_block *mblk;
6428 struct marker_block **mprev = &marker_block;
6429 register int lim = marker_block_index;
6430 EMACS_INT num_free = 0, num_used = 0;
6432 marker_free_list = 0;
6434 for (mblk = marker_block; mblk; mblk = *mprev)
6436 register int i;
6437 int this_free = 0;
6439 for (i = 0; i < lim; i++)
6441 if (!mblk->markers[i].m.u_any.gcmarkbit)
6443 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6444 unchain_marker (&mblk->markers[i].m.u_marker);
6445 /* Set the type of the freed object to Lisp_Misc_Free.
6446 We could leave the type alone, since nobody checks it,
6447 but this might catch bugs faster. */
6448 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6449 mblk->markers[i].m.u_free.chain = marker_free_list;
6450 marker_free_list = &mblk->markers[i].m;
6451 this_free++;
6453 else
6455 num_used++;
6456 mblk->markers[i].m.u_any.gcmarkbit = 0;
6459 lim = MARKER_BLOCK_SIZE;
6460 /* If this block contains only free markers and we have already
6461 seen more than two blocks worth of free markers then deallocate
6462 this block. */
6463 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6465 *mprev = mblk->next;
6466 /* Unhook from the free list. */
6467 marker_free_list = mblk->markers[0].m.u_free.chain;
6468 lisp_free (mblk);
6470 else
6472 num_free += this_free;
6473 mprev = &mblk->next;
6477 total_markers = num_used;
6478 total_free_markers = num_free;
6481 /* Free all unmarked buffers */
6483 register struct buffer *buffer, **bprev = &all_buffers;
6485 total_buffers = 0;
6486 for (buffer = all_buffers; buffer; buffer = *bprev)
6487 if (!VECTOR_MARKED_P (buffer))
6489 *bprev = buffer->next;
6490 lisp_free (buffer);
6492 else
6494 VECTOR_UNMARK (buffer);
6495 /* Do not use buffer_(set|get)_intervals here. */
6496 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6497 total_buffers++;
6498 bprev = &buffer->next;
6502 sweep_vectors ();
6503 check_string_bytes (!noninteractive);
6509 /* Debugging aids. */
6511 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6512 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6513 This may be helpful in debugging Emacs's memory usage.
6514 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6515 (void)
6517 Lisp_Object end;
6519 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6521 return end;
6524 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6525 doc: /* Return a list of counters that measure how much consing there has been.
6526 Each of these counters increments for a certain kind of object.
6527 The counters wrap around from the largest positive integer to zero.
6528 Garbage collection does not decrease them.
6529 The elements of the value are as follows:
6530 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6531 All are in units of 1 = one object consed
6532 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6533 objects consed.
6534 MISCS include overlays, markers, and some internal types.
6535 Frames, windows, buffers, and subprocesses count as vectors
6536 (but the contents of a buffer's text do not count here). */)
6537 (void)
6539 return listn (CONSTYPE_HEAP, 8,
6540 bounded_number (cons_cells_consed),
6541 bounded_number (floats_consed),
6542 bounded_number (vector_cells_consed),
6543 bounded_number (symbols_consed),
6544 bounded_number (string_chars_consed),
6545 bounded_number (misc_objects_consed),
6546 bounded_number (intervals_consed),
6547 bounded_number (strings_consed));
6550 /* Find at most FIND_MAX symbols which have OBJ as their value or
6551 function. This is used in gdbinit's `xwhichsymbols' command. */
6553 Lisp_Object
6554 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6556 struct symbol_block *sblk;
6557 ptrdiff_t gc_count = inhibit_garbage_collection ();
6558 Lisp_Object found = Qnil;
6560 if (! DEADP (obj))
6562 for (sblk = symbol_block; sblk; sblk = sblk->next)
6564 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6565 int bn;
6567 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6569 struct Lisp_Symbol *sym = &aligned_sym->s;
6570 Lisp_Object val;
6571 Lisp_Object tem;
6573 if (sblk == symbol_block && bn >= symbol_block_index)
6574 break;
6576 XSETSYMBOL (tem, sym);
6577 val = find_symbol_value (tem);
6578 if (EQ (val, obj)
6579 || EQ (sym->function, obj)
6580 || (!NILP (sym->function)
6581 && COMPILEDP (sym->function)
6582 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6583 || (!NILP (val)
6584 && COMPILEDP (val)
6585 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6587 found = Fcons (tem, found);
6588 if (--find_max == 0)
6589 goto out;
6595 out:
6596 unbind_to (gc_count, Qnil);
6597 return found;
6600 #ifdef ENABLE_CHECKING
6602 bool suppress_checking;
6604 void
6605 die (const char *msg, const char *file, int line)
6607 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6608 file, line, msg);
6609 terminate_due_to_signal (SIGABRT, INT_MAX);
6611 #endif
6613 /* Initialization. */
6615 void
6616 init_alloc_once (void)
6618 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6619 purebeg = PUREBEG;
6620 pure_size = PURESIZE;
6622 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6623 mem_init ();
6624 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6625 #endif
6627 #ifdef DOUG_LEA_MALLOC
6628 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6629 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6630 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6631 #endif
6632 init_strings ();
6633 init_vectors ();
6635 refill_memory_reserve ();
6636 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6639 void
6640 init_alloc (void)
6642 gcprolist = 0;
6643 byte_stack_list = 0;
6644 #if GC_MARK_STACK
6645 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6646 setjmp_tested_p = longjmps_done = 0;
6647 #endif
6648 #endif
6649 Vgc_elapsed = make_float (0.0);
6650 gcs_done = 0;
6652 #if USE_VALGRIND
6653 valgrind_p = RUNNING_ON_VALGRIND != 0;
6654 #endif
6657 void
6658 syms_of_alloc (void)
6660 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6661 doc: /* Number of bytes of consing between garbage collections.
6662 Garbage collection can happen automatically once this many bytes have been
6663 allocated since the last garbage collection. All data types count.
6665 Garbage collection happens automatically only when `eval' is called.
6667 By binding this temporarily to a large number, you can effectively
6668 prevent garbage collection during a part of the program.
6669 See also `gc-cons-percentage'. */);
6671 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6672 doc: /* Portion of the heap used for allocation.
6673 Garbage collection can happen automatically once this portion of the heap
6674 has been allocated since the last garbage collection.
6675 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6676 Vgc_cons_percentage = make_float (0.1);
6678 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6679 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6681 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6682 doc: /* Number of cons cells that have been consed so far. */);
6684 DEFVAR_INT ("floats-consed", floats_consed,
6685 doc: /* Number of floats that have been consed so far. */);
6687 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6688 doc: /* Number of vector cells that have been consed so far. */);
6690 DEFVAR_INT ("symbols-consed", symbols_consed,
6691 doc: /* Number of symbols that have been consed so far. */);
6693 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6694 doc: /* Number of string characters that have been consed so far. */);
6696 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6697 doc: /* Number of miscellaneous objects that have been consed so far.
6698 These include markers and overlays, plus certain objects not visible
6699 to users. */);
6701 DEFVAR_INT ("intervals-consed", intervals_consed,
6702 doc: /* Number of intervals that have been consed so far. */);
6704 DEFVAR_INT ("strings-consed", strings_consed,
6705 doc: /* Number of strings that have been consed so far. */);
6707 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6708 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6709 This means that certain objects should be allocated in shared (pure) space.
6710 It can also be set to a hash-table, in which case this table is used to
6711 do hash-consing of the objects allocated to pure space. */);
6713 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6714 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6715 garbage_collection_messages = 0;
6717 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6718 doc: /* Hook run after garbage collection has finished. */);
6719 Vpost_gc_hook = Qnil;
6720 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6722 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6723 doc: /* Precomputed `signal' argument for memory-full error. */);
6724 /* We build this in advance because if we wait until we need it, we might
6725 not be able to allocate the memory to hold it. */
6726 Vmemory_signal_data
6727 = listn (CONSTYPE_PURE, 2, Qerror,
6728 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6730 DEFVAR_LISP ("memory-full", Vmemory_full,
6731 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6732 Vmemory_full = Qnil;
6734 DEFSYM (Qconses, "conses");
6735 DEFSYM (Qsymbols, "symbols");
6736 DEFSYM (Qmiscs, "miscs");
6737 DEFSYM (Qstrings, "strings");
6738 DEFSYM (Qvectors, "vectors");
6739 DEFSYM (Qfloats, "floats");
6740 DEFSYM (Qintervals, "intervals");
6741 DEFSYM (Qbuffers, "buffers");
6742 DEFSYM (Qstring_bytes, "string-bytes");
6743 DEFSYM (Qvector_slots, "vector-slots");
6744 DEFSYM (Qheap, "heap");
6745 DEFSYM (Qautomatic_gc, "Automatic GC");
6747 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6748 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6750 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6751 doc: /* Accumulated time elapsed in garbage collections.
6752 The time is in seconds as a floating point value. */);
6753 DEFVAR_INT ("gcs-done", gcs_done,
6754 doc: /* Accumulated number of garbage collections done. */);
6756 defsubr (&Scons);
6757 defsubr (&Slist);
6758 defsubr (&Svector);
6759 defsubr (&Smake_byte_code);
6760 defsubr (&Smake_list);
6761 defsubr (&Smake_vector);
6762 defsubr (&Smake_string);
6763 defsubr (&Smake_bool_vector);
6764 defsubr (&Smake_symbol);
6765 defsubr (&Smake_marker);
6766 defsubr (&Spurecopy);
6767 defsubr (&Sgarbage_collect);
6768 defsubr (&Smemory_limit);
6769 defsubr (&Smemory_use_counts);
6771 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6772 defsubr (&Sgc_status);
6773 #endif
6776 /* When compiled with GCC, GDB might say "No enum type named
6777 pvec_type" if we don't have at least one symbol with that type, and
6778 then xbacktrace could fail. Similarly for the other enums and
6779 their values. Some non-GCC compilers don't like these constructs. */
6780 #ifdef __GNUC__
6781 union
6783 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6784 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6785 enum char_bits char_bits;
6786 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6787 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6788 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6789 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6790 enum Lisp_Bits Lisp_Bits;
6791 enum Lisp_Compiled Lisp_Compiled;
6792 enum maxargs maxargs;
6793 enum MAX_ALLOCA MAX_ALLOCA;
6794 enum More_Lisp_Bits More_Lisp_Bits;
6795 enum pvec_type pvec_type;
6796 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6797 #endif /* __GNUC__ */