1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006, 2007, 2008
7 Free Software Foundation, Inc.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
25 - structure the opcode space into opcode+flag.
26 - merge with glibc's regex.[ch].
27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
33 /* AIX requires this to be the first thing in the file. */
34 #if defined _AIX && !defined REGEX_MALLOC
42 #if defined STDC_HEADERS && !defined emacs
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
49 /* Whether to use ISO C Amendment 1 wide char functions.
50 Those should not be used for Emacs since it uses its own. */
52 #define WIDE_CHAR_SUPPORT 1
54 #define WIDE_CHAR_SUPPORT \
55 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(err_code, preg, errbuf, errbuf_size) \
72 __regerror(err_code, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88 /* Make sure we call libc's function even if the user overrides them. */
89 # define btowc __btowc
90 # define iswctype __iswctype
91 # define wctype __wctype
93 # define WEAK_ALIAS(a,b) weak_alias (a, b)
95 /* We are also using some library internals. */
96 # include <locale/localeinfo.h>
97 # include <locale/elem-hash.h>
98 # include <langinfo.h>
100 # define WEAK_ALIAS(a,b)
103 /* This is for other GNU distributions with internationalized messages. */
104 #if HAVE_LIBINTL_H || defined _LIBC
105 # include <libintl.h>
107 # define gettext(msgid) (msgid)
111 /* This define is so xgettext can find the internationalizable
113 # define gettext_noop(String) String
116 /* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
123 /* Make syntax table lookup grant data in gl_state. */
124 # define SYNTAX_ENTRY_VIA_PROPERTY
127 # include "character.h"
128 # include "category.h"
133 # define malloc xmalloc
137 # define realloc xrealloc
143 /* Converts the pointer to the char to BEG-based offset from the start. */
144 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
145 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
147 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
148 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
149 # define RE_STRING_CHAR(p, s, multibyte) \
150 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
151 # define RE_STRING_CHAR_AND_LENGTH(p, s, len, multibyte) \
152 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
154 # define RE_CHAR_TO_MULTIBYTE(c) unibyte_to_multibyte_table[(c)]
156 # define RE_CHAR_TO_UNIBYTE(c) \
157 (ASCII_CHAR_P (c) ? (c) \
158 : CHAR_BYTE8_P (c) ? CHAR_TO_BYTE8 (c) \
159 : multibyte_char_to_unibyte_safe (c))
161 /* Set C a (possibly converted to multibyte) character before P. P
162 points into a string which is the virtual concatenation of STR1
163 (which ends at END1) or STR2 (which ends at END2). */
164 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
166 if (target_multibyte) \
168 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
169 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
170 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
171 c = STRING_CHAR (dtemp, (p) - dtemp); \
175 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
176 (c) = RE_CHAR_TO_MULTIBYTE (c); \
180 /* Set C a (possibly converted to multibyte) character at P, and set
181 LEN to the byte length of that character. */
182 # define GET_CHAR_AFTER(c, p, len) \
184 if (target_multibyte) \
185 (c) = STRING_CHAR_AND_LENGTH (p, 0, len); \
190 (c) = RE_CHAR_TO_MULTIBYTE (c); \
194 #else /* not emacs */
196 /* If we are not linking with Emacs proper,
197 we can't use the relocating allocator
198 even if config.h says that we can. */
201 # if defined STDC_HEADERS || defined _LIBC
208 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
215 val
= (void *) malloc (size
);
218 write (2, "virtual memory exhausted\n", 25);
225 xrealloc (block
, size
)
230 /* We must call malloc explicitly when BLOCK is 0, since some
231 reallocs don't do this. */
233 val
= (void *) malloc (size
);
235 val
= (void *) realloc (block
, size
);
238 write (2, "virtual memory exhausted\n", 25);
247 # define malloc xmalloc
251 # define realloc xrealloc
253 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
254 If nothing else has been done, use the method below. */
255 # ifdef INHIBIT_STRING_HEADER
256 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
257 # if !defined bzero && !defined bcopy
258 # undef INHIBIT_STRING_HEADER
263 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
264 This is used in most programs--a few other programs avoid this
265 by defining INHIBIT_STRING_HEADER. */
266 # ifndef INHIBIT_STRING_HEADER
267 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
271 # define bzero(s, n) (memset (s, '\0', n), (s))
273 # define bzero(s, n) __bzero (s, n)
277 # include <strings.h>
279 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
282 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
287 /* Define the syntax stuff for \<, \>, etc. */
289 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
290 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1, Ssymbol
= 2 };
292 # define SWITCH_ENUM_CAST(x) (x)
294 /* Dummy macros for non-Emacs environments. */
295 # define BASE_LEADING_CODE_P(c) (0)
296 # define CHAR_CHARSET(c) 0
297 # define CHARSET_LEADING_CODE_BASE(c) 0
298 # define MAX_MULTIBYTE_LENGTH 1
299 # define RE_MULTIBYTE_P(x) 0
300 # define RE_TARGET_MULTIBYTE_P(x) 0
301 # define WORD_BOUNDARY_P(c1, c2) (0)
302 # define CHAR_HEAD_P(p) (1)
303 # define SINGLE_BYTE_CHAR_P(c) (1)
304 # define SAME_CHARSET_P(c1, c2) (1)
305 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
306 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
307 # define STRING_CHAR(p, s) (*(p))
308 # define RE_STRING_CHAR(p, s, multibyte) STRING_CHAR ((p), (s))
309 # define CHAR_STRING(c, s) (*(s) = (c), 1)
310 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
311 # define RE_STRING_CHAR_AND_LENGTH(p, s, len, multibyte) STRING_CHAR_AND_LENGTH ((p), (s), (len))
312 # define RE_CHAR_TO_MULTIBYTE(c) (c)
313 # define RE_CHAR_TO_UNIBYTE(c) (c)
314 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
315 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
316 # define GET_CHAR_AFTER(c, p, len) \
318 # define MAKE_CHAR(charset, c1, c2) (c1)
319 # define BYTE8_TO_CHAR(c) (c)
320 # define CHAR_BYTE8_P(c) (0)
321 # define CHAR_LEADING_CODE(c) (c)
323 #endif /* not emacs */
326 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
327 # define RE_TRANSLATE_P(TBL) (TBL)
330 /* Get the interface, including the syntax bits. */
333 /* isalpha etc. are used for the character classes. */
338 /* 1 if C is an ASCII character. */
339 # define IS_REAL_ASCII(c) ((c) < 0200)
341 /* 1 if C is a unibyte character. */
342 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
344 /* The Emacs definitions should not be directly affected by locales. */
346 /* In Emacs, these are only used for single-byte characters. */
347 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
348 # define ISCNTRL(c) ((c) < ' ')
349 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
350 || ((c) >= 'a' && (c) <= 'f') \
351 || ((c) >= 'A' && (c) <= 'F'))
353 /* This is only used for single-byte characters. */
354 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
356 /* The rest must handle multibyte characters. */
358 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
359 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
362 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
363 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
366 # define ISALNUM(c) (IS_REAL_ASCII (c) \
367 ? (((c) >= 'a' && (c) <= 'z') \
368 || ((c) >= 'A' && (c) <= 'Z') \
369 || ((c) >= '0' && (c) <= '9')) \
370 : SYNTAX (c) == Sword)
372 # define ISALPHA(c) (IS_REAL_ASCII (c) \
373 ? (((c) >= 'a' && (c) <= 'z') \
374 || ((c) >= 'A' && (c) <= 'Z')) \
375 : SYNTAX (c) == Sword)
377 # define ISLOWER(c) (LOWERCASEP (c))
379 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
380 ? ((c) > ' ' && (c) < 0177 \
381 && !(((c) >= 'a' && (c) <= 'z') \
382 || ((c) >= 'A' && (c) <= 'Z') \
383 || ((c) >= '0' && (c) <= '9'))) \
384 : SYNTAX (c) != Sword)
386 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
388 # define ISUPPER(c) (UPPERCASEP (c))
390 # define ISWORD(c) (SYNTAX (c) == Sword)
392 #else /* not emacs */
394 /* Jim Meyering writes:
396 "... Some ctype macros are valid only for character codes that
397 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
398 using /bin/cc or gcc but without giving an ansi option). So, all
399 ctype uses should be through macros like ISPRINT... If
400 STDC_HEADERS is defined, then autoconf has verified that the ctype
401 macros don't need to be guarded with references to isascii. ...
402 Defining isascii to 1 should let any compiler worth its salt
403 eliminate the && through constant folding."
404 Solaris defines some of these symbols so we must undefine them first. */
407 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
408 # define ISASCII(c) 1
410 # define ISASCII(c) isascii(c)
413 /* 1 if C is an ASCII character. */
414 # define IS_REAL_ASCII(c) ((c) < 0200)
416 /* This distinction is not meaningful, except in Emacs. */
417 # define ISUNIBYTE(c) 1
420 # define ISBLANK(c) (ISASCII (c) && isblank (c))
422 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
425 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
427 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
431 # define ISPRINT(c) (ISASCII (c) && isprint (c))
432 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
433 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
434 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
435 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
436 # define ISLOWER(c) (ISASCII (c) && islower (c))
437 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
438 # define ISSPACE(c) (ISASCII (c) && isspace (c))
439 # define ISUPPER(c) (ISASCII (c) && isupper (c))
440 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
442 # define ISWORD(c) ISALPHA(c)
445 # define TOLOWER(c) _tolower(c)
447 # define TOLOWER(c) tolower(c)
450 /* How many characters in the character set. */
451 # define CHAR_SET_SIZE 256
455 extern char *re_syntax_table
;
457 # else /* not SYNTAX_TABLE */
459 static char re_syntax_table
[CHAR_SET_SIZE
];
470 bzero (re_syntax_table
, sizeof re_syntax_table
);
472 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
474 re_syntax_table
[c
] = Sword
;
476 re_syntax_table
['_'] = Ssymbol
;
481 # endif /* not SYNTAX_TABLE */
483 # define SYNTAX(c) re_syntax_table[(c)]
485 #endif /* not emacs */
488 # define NULL (void *)0
491 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
492 since ours (we hope) works properly with all combinations of
493 machines, compilers, `char' and `unsigned char' argument types.
494 (Per Bothner suggested the basic approach.) */
495 #undef SIGN_EXTEND_CHAR
497 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
498 #else /* not __STDC__ */
499 /* As in Harbison and Steele. */
500 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
503 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
504 use `alloca' instead of `malloc'. This is because using malloc in
505 re_search* or re_match* could cause memory leaks when C-g is used in
506 Emacs; also, malloc is slower and causes storage fragmentation. On
507 the other hand, malloc is more portable, and easier to debug.
509 Because we sometimes use alloca, some routines have to be macros,
510 not functions -- `alloca'-allocated space disappears at the end of the
511 function it is called in. */
515 # define REGEX_ALLOCATE malloc
516 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
517 # define REGEX_FREE free
519 #else /* not REGEX_MALLOC */
521 /* Emacs already defines alloca, sometimes. */
524 /* Make alloca work the best possible way. */
526 # define alloca __builtin_alloca
527 # else /* not __GNUC__ */
528 # ifdef HAVE_ALLOCA_H
530 # endif /* HAVE_ALLOCA_H */
531 # endif /* not __GNUC__ */
533 # endif /* not alloca */
535 # define REGEX_ALLOCATE alloca
537 /* Assumes a `char *destination' variable. */
538 # define REGEX_REALLOCATE(source, osize, nsize) \
539 (destination = (char *) alloca (nsize), \
540 memcpy (destination, source, osize))
542 /* No need to do anything to free, after alloca. */
543 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
545 #endif /* not REGEX_MALLOC */
547 /* Define how to allocate the failure stack. */
549 #if defined REL_ALLOC && defined REGEX_MALLOC
551 # define REGEX_ALLOCATE_STACK(size) \
552 r_alloc (&failure_stack_ptr, (size))
553 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
554 r_re_alloc (&failure_stack_ptr, (nsize))
555 # define REGEX_FREE_STACK(ptr) \
556 r_alloc_free (&failure_stack_ptr)
558 #else /* not using relocating allocator */
562 # define REGEX_ALLOCATE_STACK malloc
563 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
564 # define REGEX_FREE_STACK free
566 # else /* not REGEX_MALLOC */
568 # define REGEX_ALLOCATE_STACK alloca
570 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
571 REGEX_REALLOCATE (source, osize, nsize)
572 /* No need to explicitly free anything. */
573 # define REGEX_FREE_STACK(arg) ((void)0)
575 # endif /* not REGEX_MALLOC */
576 #endif /* not using relocating allocator */
579 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
580 `string1' or just past its end. This works if PTR is NULL, which is
582 #define FIRST_STRING_P(ptr) \
583 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
585 /* (Re)Allocate N items of type T using malloc, or fail. */
586 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
587 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
588 #define RETALLOC_IF(addr, n, t) \
589 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
590 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
592 #define BYTEWIDTH 8 /* In bits. */
594 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
598 #define MAX(a, b) ((a) > (b) ? (a) : (b))
599 #define MIN(a, b) ((a) < (b) ? (a) : (b))
601 /* Type of source-pattern and string chars. */
602 typedef const unsigned char re_char
;
604 typedef char boolean
;
608 static int re_match_2_internal
_RE_ARGS ((struct re_pattern_buffer
*bufp
,
609 re_char
*string1
, int size1
,
610 re_char
*string2
, int size2
,
612 struct re_registers
*regs
,
615 /* These are the command codes that appear in compiled regular
616 expressions. Some opcodes are followed by argument bytes. A
617 command code can specify any interpretation whatsoever for its
618 arguments. Zero bytes may appear in the compiled regular expression. */
624 /* Succeed right away--no more backtracking. */
627 /* Followed by one byte giving n, then by n literal bytes. */
630 /* Matches any (more or less) character. */
633 /* Matches any one char belonging to specified set. First
634 following byte is number of bitmap bytes. Then come bytes
635 for a bitmap saying which chars are in. Bits in each byte
636 are ordered low-bit-first. A character is in the set if its
637 bit is 1. A character too large to have a bit in the map is
638 automatically not in the set.
640 If the length byte has the 0x80 bit set, then that stuff
641 is followed by a range table:
642 2 bytes of flags for character sets (low 8 bits, high 8 bits)
643 See RANGE_TABLE_WORK_BITS below.
644 2 bytes, the number of pairs that follow (upto 32767)
645 pairs, each 2 multibyte characters,
646 each multibyte character represented as 3 bytes. */
649 /* Same parameters as charset, but match any character that is
650 not one of those specified. */
653 /* Start remembering the text that is matched, for storing in a
654 register. Followed by one byte with the register number, in
655 the range 0 to one less than the pattern buffer's re_nsub
659 /* Stop remembering the text that is matched and store it in a
660 memory register. Followed by one byte with the register
661 number, in the range 0 to one less than `re_nsub' in the
665 /* Match a duplicate of something remembered. Followed by one
666 byte containing the register number. */
669 /* Fail unless at beginning of line. */
672 /* Fail unless at end of line. */
675 /* Succeeds if at beginning of buffer (if emacs) or at beginning
676 of string to be matched (if not). */
679 /* Analogously, for end of buffer/string. */
682 /* Followed by two byte relative address to which to jump. */
685 /* Followed by two-byte relative address of place to resume at
686 in case of failure. */
689 /* Like on_failure_jump, but pushes a placeholder instead of the
690 current string position when executed. */
691 on_failure_keep_string_jump
,
693 /* Just like `on_failure_jump', except that it checks that we
694 don't get stuck in an infinite loop (matching an empty string
696 on_failure_jump_loop
,
698 /* Just like `on_failure_jump_loop', except that it checks for
699 a different kind of loop (the kind that shows up with non-greedy
700 operators). This operation has to be immediately preceded
702 on_failure_jump_nastyloop
,
704 /* A smart `on_failure_jump' used for greedy * and + operators.
705 It analyses the loop before which it is put and if the
706 loop does not require backtracking, it changes itself to
707 `on_failure_keep_string_jump' and short-circuits the loop,
708 else it just defaults to changing itself into `on_failure_jump'.
709 It assumes that it is pointing to just past a `jump'. */
710 on_failure_jump_smart
,
712 /* Followed by two-byte relative address and two-byte number n.
713 After matching N times, jump to the address upon failure.
714 Does not work if N starts at 0: use on_failure_jump_loop
718 /* Followed by two-byte relative address, and two-byte number n.
719 Jump to the address N times, then fail. */
722 /* Set the following two-byte relative address to the
723 subsequent two-byte number. The address *includes* the two
727 wordbeg
, /* Succeeds if at word beginning. */
728 wordend
, /* Succeeds if at word end. */
730 wordbound
, /* Succeeds if at a word boundary. */
731 notwordbound
, /* Succeeds if not at a word boundary. */
733 symbeg
, /* Succeeds if at symbol beginning. */
734 symend
, /* Succeeds if at symbol end. */
736 /* Matches any character whose syntax is specified. Followed by
737 a byte which contains a syntax code, e.g., Sword. */
740 /* Matches any character whose syntax is not that specified. */
744 ,before_dot
, /* Succeeds if before point. */
745 at_dot
, /* Succeeds if at point. */
746 after_dot
, /* Succeeds if after point. */
748 /* Matches any character whose category-set contains the specified
749 category. The operator is followed by a byte which contains a
750 category code (mnemonic ASCII character). */
753 /* Matches any character whose category-set does not contain the
754 specified category. The operator is followed by a byte which
755 contains the category code (mnemonic ASCII character). */
760 /* Common operations on the compiled pattern. */
762 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
764 #define STORE_NUMBER(destination, number) \
766 (destination)[0] = (number) & 0377; \
767 (destination)[1] = (number) >> 8; \
770 /* Same as STORE_NUMBER, except increment DESTINATION to
771 the byte after where the number is stored. Therefore, DESTINATION
772 must be an lvalue. */
774 #define STORE_NUMBER_AND_INCR(destination, number) \
776 STORE_NUMBER (destination, number); \
777 (destination) += 2; \
780 /* Put into DESTINATION a number stored in two contiguous bytes starting
783 #define EXTRACT_NUMBER(destination, source) \
785 (destination) = *(source) & 0377; \
786 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
790 static void extract_number
_RE_ARGS ((int *dest
, re_char
*source
));
792 extract_number (dest
, source
)
796 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
797 *dest
= *source
& 0377;
801 # ifndef EXTRACT_MACROS /* To debug the macros. */
802 # undef EXTRACT_NUMBER
803 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
804 # endif /* not EXTRACT_MACROS */
808 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
809 SOURCE must be an lvalue. */
811 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
813 EXTRACT_NUMBER (destination, source); \
818 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
821 extract_number_and_incr (destination
, source
)
825 extract_number (destination
, *source
);
829 # ifndef EXTRACT_MACROS
830 # undef EXTRACT_NUMBER_AND_INCR
831 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
832 extract_number_and_incr (&dest, &src)
833 # endif /* not EXTRACT_MACROS */
837 /* Store a multibyte character in three contiguous bytes starting
838 DESTINATION, and increment DESTINATION to the byte after where the
839 character is stored. Therefore, DESTINATION must be an lvalue. */
841 #define STORE_CHARACTER_AND_INCR(destination, character) \
843 (destination)[0] = (character) & 0377; \
844 (destination)[1] = ((character) >> 8) & 0377; \
845 (destination)[2] = (character) >> 16; \
846 (destination) += 3; \
849 /* Put into DESTINATION a character stored in three contiguous bytes
850 starting at SOURCE. */
852 #define EXTRACT_CHARACTER(destination, source) \
854 (destination) = ((source)[0] \
855 | ((source)[1] << 8) \
856 | ((source)[2] << 16)); \
860 /* Macros for charset. */
862 /* Size of bitmap of charset P in bytes. P is a start of charset,
863 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
864 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
866 /* Nonzero if charset P has range table. */
867 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
869 /* Return the address of range table of charset P. But not the start
870 of table itself, but the before where the number of ranges is
871 stored. `2 +' means to skip re_opcode_t and size of bitmap,
872 and the 2 bytes of flags at the start of the range table. */
873 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
875 /* Extract the bit flags that start a range table. */
876 #define CHARSET_RANGE_TABLE_BITS(p) \
877 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
878 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
880 /* Test if C is listed in the bitmap of charset P. */
881 #define CHARSET_LOOKUP_BITMAP(p, c) \
882 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
883 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
885 /* Return the address of end of RANGE_TABLE. COUNT is number of
886 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
887 is start of range and end of range. `* 3' is size of each start
889 #define CHARSET_RANGE_TABLE_END(range_table, count) \
890 ((range_table) + (count) * 2 * 3)
892 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
893 COUNT is number of ranges in RANGE_TABLE. */
894 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
897 re_wchar_t range_start, range_end; \
899 re_char *range_table_end \
900 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
902 for (p = (range_table); p < range_table_end; p += 2 * 3) \
904 EXTRACT_CHARACTER (range_start, p); \
905 EXTRACT_CHARACTER (range_end, p + 3); \
907 if (range_start <= (c) && (c) <= range_end) \
916 /* Test if C is in range table of CHARSET. The flag NOT is negated if
917 C is listed in it. */
918 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
921 /* Number of ranges in range table. */ \
923 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
925 EXTRACT_NUMBER_AND_INCR (count, range_table); \
926 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
930 /* If DEBUG is defined, Regex prints many voluminous messages about what
931 it is doing (if the variable `debug' is nonzero). If linked with the
932 main program in `iregex.c', you can enter patterns and strings
933 interactively. And if linked with the main program in `main.c' and
934 the other test files, you can run the already-written tests. */
938 /* We use standard I/O for debugging. */
941 /* It is useful to test things that ``must'' be true when debugging. */
944 static int debug
= -100000;
946 # define DEBUG_STATEMENT(e) e
947 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
948 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
949 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
950 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
951 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
952 if (debug > 0) print_partial_compiled_pattern (s, e)
953 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
954 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
957 /* Print the fastmap in human-readable form. */
960 print_fastmap (fastmap
)
963 unsigned was_a_range
= 0;
966 while (i
< (1 << BYTEWIDTH
))
972 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
988 /* Print a compiled pattern string in human-readable form, starting at
989 the START pointer into it and ending just before the pointer END. */
992 print_partial_compiled_pattern (start
, end
)
1002 fprintf (stderr
, "(null)\n");
1006 /* Loop over pattern commands. */
1009 fprintf (stderr
, "%d:\t", p
- start
);
1011 switch ((re_opcode_t
) *p
++)
1014 fprintf (stderr
, "/no_op");
1018 fprintf (stderr
, "/succeed");
1023 fprintf (stderr
, "/exactn/%d", mcnt
);
1026 fprintf (stderr
, "/%c", *p
++);
1032 fprintf (stderr
, "/start_memory/%d", *p
++);
1036 fprintf (stderr
, "/stop_memory/%d", *p
++);
1040 fprintf (stderr
, "/duplicate/%d", *p
++);
1044 fprintf (stderr
, "/anychar");
1050 register int c
, last
= -100;
1051 register int in_range
= 0;
1052 int length
= CHARSET_BITMAP_SIZE (p
- 1);
1053 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
1055 fprintf (stderr
, "/charset [%s",
1056 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
1059 fprintf (stderr
, " !extends past end of pattern! ");
1061 for (c
= 0; c
< 256; c
++)
1063 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
1065 /* Are we starting a range? */
1066 if (last
+ 1 == c
&& ! in_range
)
1068 fprintf (stderr
, "-");
1071 /* Have we broken a range? */
1072 else if (last
+ 1 != c
&& in_range
)
1074 fprintf (stderr
, "%c", last
);
1079 fprintf (stderr
, "%c", c
);
1085 fprintf (stderr
, "%c", last
);
1087 fprintf (stderr
, "]");
1091 if (has_range_table
)
1094 fprintf (stderr
, "has-range-table");
1096 /* ??? Should print the range table; for now, just skip it. */
1097 p
+= 2; /* skip range table bits */
1098 EXTRACT_NUMBER_AND_INCR (count
, p
);
1099 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1105 fprintf (stderr
, "/begline");
1109 fprintf (stderr
, "/endline");
1112 case on_failure_jump
:
1113 extract_number_and_incr (&mcnt
, &p
);
1114 fprintf (stderr
, "/on_failure_jump to %d", p
+ mcnt
- start
);
1117 case on_failure_keep_string_jump
:
1118 extract_number_and_incr (&mcnt
, &p
);
1119 fprintf (stderr
, "/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1122 case on_failure_jump_nastyloop
:
1123 extract_number_and_incr (&mcnt
, &p
);
1124 fprintf (stderr
, "/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1127 case on_failure_jump_loop
:
1128 extract_number_and_incr (&mcnt
, &p
);
1129 fprintf (stderr
, "/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1132 case on_failure_jump_smart
:
1133 extract_number_and_incr (&mcnt
, &p
);
1134 fprintf (stderr
, "/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1138 extract_number_and_incr (&mcnt
, &p
);
1139 fprintf (stderr
, "/jump to %d", p
+ mcnt
- start
);
1143 extract_number_and_incr (&mcnt
, &p
);
1144 extract_number_and_incr (&mcnt2
, &p
);
1145 fprintf (stderr
, "/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1149 extract_number_and_incr (&mcnt
, &p
);
1150 extract_number_and_incr (&mcnt2
, &p
);
1151 fprintf (stderr
, "/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1155 extract_number_and_incr (&mcnt
, &p
);
1156 extract_number_and_incr (&mcnt2
, &p
);
1157 fprintf (stderr
, "/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1161 fprintf (stderr
, "/wordbound");
1165 fprintf (stderr
, "/notwordbound");
1169 fprintf (stderr
, "/wordbeg");
1173 fprintf (stderr
, "/wordend");
1177 fprintf (stderr
, "/symbeg");
1181 fprintf (stderr
, "/symend");
1185 fprintf (stderr
, "/syntaxspec");
1187 fprintf (stderr
, "/%d", mcnt
);
1191 fprintf (stderr
, "/notsyntaxspec");
1193 fprintf (stderr
, "/%d", mcnt
);
1198 fprintf (stderr
, "/before_dot");
1202 fprintf (stderr
, "/at_dot");
1206 fprintf (stderr
, "/after_dot");
1210 fprintf (stderr
, "/categoryspec");
1212 fprintf (stderr
, "/%d", mcnt
);
1215 case notcategoryspec
:
1216 fprintf (stderr
, "/notcategoryspec");
1218 fprintf (stderr
, "/%d", mcnt
);
1223 fprintf (stderr
, "/begbuf");
1227 fprintf (stderr
, "/endbuf");
1231 fprintf (stderr
, "?%d", *(p
-1));
1234 fprintf (stderr
, "\n");
1237 fprintf (stderr
, "%d:\tend of pattern.\n", p
- start
);
1242 print_compiled_pattern (bufp
)
1243 struct re_pattern_buffer
*bufp
;
1245 re_char
*buffer
= bufp
->buffer
;
1247 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1248 printf ("%ld bytes used/%ld bytes allocated.\n",
1249 bufp
->used
, bufp
->allocated
);
1251 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1253 printf ("fastmap: ");
1254 print_fastmap (bufp
->fastmap
);
1257 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1258 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1259 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1260 printf ("no_sub: %d\t", bufp
->no_sub
);
1261 printf ("not_bol: %d\t", bufp
->not_bol
);
1262 printf ("not_eol: %d\t", bufp
->not_eol
);
1263 printf ("syntax: %lx\n", bufp
->syntax
);
1265 /* Perhaps we should print the translate table? */
1270 print_double_string (where
, string1
, size1
, string2
, size2
)
1283 if (FIRST_STRING_P (where
))
1285 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1286 putchar (string1
[this_char
]);
1291 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1292 putchar (string2
[this_char
]);
1296 #else /* not DEBUG */
1301 # define DEBUG_STATEMENT(e)
1302 # define DEBUG_PRINT1(x)
1303 # define DEBUG_PRINT2(x1, x2)
1304 # define DEBUG_PRINT3(x1, x2, x3)
1305 # define DEBUG_PRINT4(x1, x2, x3, x4)
1306 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1307 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1309 #endif /* not DEBUG */
1311 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1312 also be assigned to arbitrarily: each pattern buffer stores its own
1313 syntax, so it can be changed between regex compilations. */
1314 /* This has no initializer because initialized variables in Emacs
1315 become read-only after dumping. */
1316 reg_syntax_t re_syntax_options
;
1319 /* Specify the precise syntax of regexps for compilation. This provides
1320 for compatibility for various utilities which historically have
1321 different, incompatible syntaxes.
1323 The argument SYNTAX is a bit mask comprised of the various bits
1324 defined in regex.h. We return the old syntax. */
1327 re_set_syntax (syntax
)
1328 reg_syntax_t syntax
;
1330 reg_syntax_t ret
= re_syntax_options
;
1332 re_syntax_options
= syntax
;
1335 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1337 /* Regexp to use to replace spaces, or NULL meaning don't. */
1338 static re_char
*whitespace_regexp
;
1341 re_set_whitespace_regexp (regexp
)
1344 whitespace_regexp
= (re_char
*) regexp
;
1346 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1348 /* This table gives an error message for each of the error codes listed
1349 in regex.h. Obviously the order here has to be same as there.
1350 POSIX doesn't require that we do anything for REG_NOERROR,
1351 but why not be nice? */
1353 static const char *re_error_msgid
[] =
1355 gettext_noop ("Success"), /* REG_NOERROR */
1356 gettext_noop ("No match"), /* REG_NOMATCH */
1357 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1358 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1359 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1360 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1361 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1362 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1363 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1364 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1365 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1366 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1367 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1368 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1369 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1370 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1371 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1372 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1375 /* Avoiding alloca during matching, to placate r_alloc. */
1377 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1378 searching and matching functions should not call alloca. On some
1379 systems, alloca is implemented in terms of malloc, and if we're
1380 using the relocating allocator routines, then malloc could cause a
1381 relocation, which might (if the strings being searched are in the
1382 ralloc heap) shift the data out from underneath the regexp
1385 Here's another reason to avoid allocation: Emacs
1386 processes input from X in a signal handler; processing X input may
1387 call malloc; if input arrives while a matching routine is calling
1388 malloc, then we're scrod. But Emacs can't just block input while
1389 calling matching routines; then we don't notice interrupts when
1390 they come in. So, Emacs blocks input around all regexp calls
1391 except the matching calls, which it leaves unprotected, in the
1392 faith that they will not malloc. */
1394 /* Normally, this is fine. */
1395 #define MATCH_MAY_ALLOCATE
1397 /* The match routines may not allocate if (1) they would do it with malloc
1398 and (2) it's not safe for them to use malloc.
1399 Note that if REL_ALLOC is defined, matching would not use malloc for the
1400 failure stack, but we would still use it for the register vectors;
1401 so REL_ALLOC should not affect this. */
1402 #if defined REGEX_MALLOC && defined emacs
1403 # undef MATCH_MAY_ALLOCATE
1407 /* Failure stack declarations and macros; both re_compile_fastmap and
1408 re_match_2 use a failure stack. These have to be macros because of
1409 REGEX_ALLOCATE_STACK. */
1412 /* Approximate number of failure points for which to initially allocate space
1413 when matching. If this number is exceeded, we allocate more
1414 space, so it is not a hard limit. */
1415 #ifndef INIT_FAILURE_ALLOC
1416 # define INIT_FAILURE_ALLOC 20
1419 /* Roughly the maximum number of failure points on the stack. Would be
1420 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1421 This is a variable only so users of regex can assign to it; we never
1422 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1423 before using it, so it should probably be a byte-count instead. */
1424 # if defined MATCH_MAY_ALLOCATE
1425 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1426 whose default stack limit is 2mb. In order for a larger
1427 value to work reliably, you have to try to make it accord
1428 with the process stack limit. */
1429 size_t re_max_failures
= 40000;
1431 size_t re_max_failures
= 4000;
1434 union fail_stack_elt
1437 /* This should be the biggest `int' that's no bigger than a pointer. */
1441 typedef union fail_stack_elt fail_stack_elt_t
;
1445 fail_stack_elt_t
*stack
;
1447 size_t avail
; /* Offset of next open position. */
1448 size_t frame
; /* Offset of the cur constructed frame. */
1451 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1452 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1455 /* Define macros to initialize and free the failure stack.
1456 Do `return -2' if the alloc fails. */
1458 #ifdef MATCH_MAY_ALLOCATE
1459 # define INIT_FAIL_STACK() \
1461 fail_stack.stack = (fail_stack_elt_t *) \
1462 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1463 * sizeof (fail_stack_elt_t)); \
1465 if (fail_stack.stack == NULL) \
1468 fail_stack.size = INIT_FAILURE_ALLOC; \
1469 fail_stack.avail = 0; \
1470 fail_stack.frame = 0; \
1473 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1475 # define INIT_FAIL_STACK() \
1477 fail_stack.avail = 0; \
1478 fail_stack.frame = 0; \
1481 # define RESET_FAIL_STACK() ((void)0)
1485 /* Double the size of FAIL_STACK, up to a limit
1486 which allows approximately `re_max_failures' items.
1488 Return 1 if succeeds, and 0 if either ran out of memory
1489 allocating space for it or it was already too large.
1491 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1493 /* Factor to increase the failure stack size by
1494 when we increase it.
1495 This used to be 2, but 2 was too wasteful
1496 because the old discarded stacks added up to as much space
1497 were as ultimate, maximum-size stack. */
1498 #define FAIL_STACK_GROWTH_FACTOR 4
1500 #define GROW_FAIL_STACK(fail_stack) \
1501 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1502 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1504 : ((fail_stack).stack \
1505 = (fail_stack_elt_t *) \
1506 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1507 (fail_stack).size * sizeof (fail_stack_elt_t), \
1508 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1509 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1510 * FAIL_STACK_GROWTH_FACTOR))), \
1512 (fail_stack).stack == NULL \
1514 : ((fail_stack).size \
1515 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1516 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1517 * FAIL_STACK_GROWTH_FACTOR)) \
1518 / sizeof (fail_stack_elt_t)), \
1522 /* Push a pointer value onto the failure stack.
1523 Assumes the variable `fail_stack'. Probably should only
1524 be called from within `PUSH_FAILURE_POINT'. */
1525 #define PUSH_FAILURE_POINTER(item) \
1526 fail_stack.stack[fail_stack.avail++].pointer = (item)
1528 /* This pushes an integer-valued item onto the failure stack.
1529 Assumes the variable `fail_stack'. Probably should only
1530 be called from within `PUSH_FAILURE_POINT'. */
1531 #define PUSH_FAILURE_INT(item) \
1532 fail_stack.stack[fail_stack.avail++].integer = (item)
1534 /* Push a fail_stack_elt_t value onto the failure stack.
1535 Assumes the variable `fail_stack'. Probably should only
1536 be called from within `PUSH_FAILURE_POINT'. */
1537 #define PUSH_FAILURE_ELT(item) \
1538 fail_stack.stack[fail_stack.avail++] = (item)
1540 /* These three POP... operations complement the three PUSH... operations.
1541 All assume that `fail_stack' is nonempty. */
1542 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1543 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1544 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1546 /* Individual items aside from the registers. */
1547 #define NUM_NONREG_ITEMS 3
1549 /* Used to examine the stack (to detect infinite loops). */
1550 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1551 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1552 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1553 #define TOP_FAILURE_HANDLE() fail_stack.frame
1556 #define ENSURE_FAIL_STACK(space) \
1557 while (REMAINING_AVAIL_SLOTS <= space) { \
1558 if (!GROW_FAIL_STACK (fail_stack)) \
1560 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1561 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1564 /* Push register NUM onto the stack. */
1565 #define PUSH_FAILURE_REG(num) \
1567 char *destination; \
1568 ENSURE_FAIL_STACK(3); \
1569 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1570 num, regstart[num], regend[num]); \
1571 PUSH_FAILURE_POINTER (regstart[num]); \
1572 PUSH_FAILURE_POINTER (regend[num]); \
1573 PUSH_FAILURE_INT (num); \
1576 /* Change the counter's value to VAL, but make sure that it will
1577 be reset when backtracking. */
1578 #define PUSH_NUMBER(ptr,val) \
1580 char *destination; \
1582 ENSURE_FAIL_STACK(3); \
1583 EXTRACT_NUMBER (c, ptr); \
1584 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1585 PUSH_FAILURE_INT (c); \
1586 PUSH_FAILURE_POINTER (ptr); \
1587 PUSH_FAILURE_INT (-1); \
1588 STORE_NUMBER (ptr, val); \
1591 /* Pop a saved register off the stack. */
1592 #define POP_FAILURE_REG_OR_COUNT() \
1594 int reg = POP_FAILURE_INT (); \
1597 /* It's a counter. */ \
1598 /* Here, we discard `const', making re_match non-reentrant. */ \
1599 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1600 reg = POP_FAILURE_INT (); \
1601 STORE_NUMBER (ptr, reg); \
1602 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1606 regend[reg] = POP_FAILURE_POINTER (); \
1607 regstart[reg] = POP_FAILURE_POINTER (); \
1608 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1609 reg, regstart[reg], regend[reg]); \
1613 /* Check that we are not stuck in an infinite loop. */
1614 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1616 int failure = TOP_FAILURE_HANDLE (); \
1617 /* Check for infinite matching loops */ \
1618 while (failure > 0 \
1619 && (FAILURE_STR (failure) == string_place \
1620 || FAILURE_STR (failure) == NULL)) \
1622 assert (FAILURE_PAT (failure) >= bufp->buffer \
1623 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1624 if (FAILURE_PAT (failure) == pat_cur) \
1629 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1630 failure = NEXT_FAILURE_HANDLE(failure); \
1632 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1635 /* Push the information about the state we will need
1636 if we ever fail back to it.
1638 Requires variables fail_stack, regstart, regend and
1639 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1642 Does `return FAILURE_CODE' if runs out of memory. */
1644 #define PUSH_FAILURE_POINT(pattern, string_place) \
1646 char *destination; \
1647 /* Must be int, so when we don't save any registers, the arithmetic \
1648 of 0 + -1 isn't done as unsigned. */ \
1650 DEBUG_STATEMENT (nfailure_points_pushed++); \
1651 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1652 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1653 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1655 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1657 DEBUG_PRINT1 ("\n"); \
1659 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1660 PUSH_FAILURE_INT (fail_stack.frame); \
1662 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1663 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1664 DEBUG_PRINT1 ("'\n"); \
1665 PUSH_FAILURE_POINTER (string_place); \
1667 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1668 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1669 PUSH_FAILURE_POINTER (pattern); \
1671 /* Close the frame by moving the frame pointer past it. */ \
1672 fail_stack.frame = fail_stack.avail; \
1675 /* Estimate the size of data pushed by a typical failure stack entry.
1676 An estimate is all we need, because all we use this for
1677 is to choose a limit for how big to make the failure stack. */
1678 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1679 #define TYPICAL_FAILURE_SIZE 20
1681 /* How many items can still be added to the stack without overflowing it. */
1682 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1685 /* Pops what PUSH_FAIL_STACK pushes.
1687 We restore into the parameters, all of which should be lvalues:
1688 STR -- the saved data position.
1689 PAT -- the saved pattern position.
1690 REGSTART, REGEND -- arrays of string positions.
1692 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1693 `pend', `string1', `size1', `string2', and `size2'. */
1695 #define POP_FAILURE_POINT(str, pat) \
1697 assert (!FAIL_STACK_EMPTY ()); \
1699 /* Remove failure points and point to how many regs pushed. */ \
1700 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1701 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1702 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1704 /* Pop the saved registers. */ \
1705 while (fail_stack.frame < fail_stack.avail) \
1706 POP_FAILURE_REG_OR_COUNT (); \
1708 pat = POP_FAILURE_POINTER (); \
1709 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1710 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1712 /* If the saved string location is NULL, it came from an \
1713 on_failure_keep_string_jump opcode, and we want to throw away the \
1714 saved NULL, thus retaining our current position in the string. */ \
1715 str = POP_FAILURE_POINTER (); \
1716 DEBUG_PRINT2 (" Popping string %p: `", str); \
1717 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1718 DEBUG_PRINT1 ("'\n"); \
1720 fail_stack.frame = POP_FAILURE_INT (); \
1721 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1723 assert (fail_stack.avail >= 0); \
1724 assert (fail_stack.frame <= fail_stack.avail); \
1726 DEBUG_STATEMENT (nfailure_points_popped++); \
1727 } while (0) /* POP_FAILURE_POINT */
1731 /* Registers are set to a sentinel when they haven't yet matched. */
1732 #define REG_UNSET(e) ((e) == NULL)
1734 /* Subroutine declarations and macros for regex_compile. */
1736 static reg_errcode_t regex_compile
_RE_ARGS ((re_char
*pattern
, size_t size
,
1737 reg_syntax_t syntax
,
1738 struct re_pattern_buffer
*bufp
));
1739 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1740 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1741 int arg1
, int arg2
));
1742 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1743 int arg
, unsigned char *end
));
1744 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1745 int arg1
, int arg2
, unsigned char *end
));
1746 static boolean at_begline_loc_p
_RE_ARGS ((re_char
*pattern
,
1748 reg_syntax_t syntax
));
1749 static boolean at_endline_loc_p
_RE_ARGS ((re_char
*p
,
1751 reg_syntax_t syntax
));
1752 static re_char
*skip_one_char
_RE_ARGS ((re_char
*p
));
1753 static int analyse_first
_RE_ARGS ((re_char
*p
, re_char
*pend
,
1754 char *fastmap
, const int multibyte
));
1756 /* Fetch the next character in the uncompiled pattern, with no
1758 #define PATFETCH(c) \
1761 if (p == pend) return REG_EEND; \
1762 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len, multibyte); \
1767 /* If `translate' is non-null, return translate[D], else just D. We
1768 cast the subscript to translate because some data is declared as
1769 `char *', to avoid warnings when a string constant is passed. But
1770 when we use a character as a subscript we must make it unsigned. */
1772 # define TRANSLATE(d) \
1773 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1777 /* Macros for outputting the compiled pattern into `buffer'. */
1779 /* If the buffer isn't allocated when it comes in, use this. */
1780 #define INIT_BUF_SIZE 32
1782 /* Make sure we have at least N more bytes of space in buffer. */
1783 #define GET_BUFFER_SPACE(n) \
1784 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1787 /* Make sure we have one more byte of buffer space and then add C to it. */
1788 #define BUF_PUSH(c) \
1790 GET_BUFFER_SPACE (1); \
1791 *b++ = (unsigned char) (c); \
1795 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1796 #define BUF_PUSH_2(c1, c2) \
1798 GET_BUFFER_SPACE (2); \
1799 *b++ = (unsigned char) (c1); \
1800 *b++ = (unsigned char) (c2); \
1804 /* As with BUF_PUSH_2, except for three bytes. */
1805 #define BUF_PUSH_3(c1, c2, c3) \
1807 GET_BUFFER_SPACE (3); \
1808 *b++ = (unsigned char) (c1); \
1809 *b++ = (unsigned char) (c2); \
1810 *b++ = (unsigned char) (c3); \
1814 /* Store a jump with opcode OP at LOC to location TO. We store a
1815 relative address offset by the three bytes the jump itself occupies. */
1816 #define STORE_JUMP(op, loc, to) \
1817 store_op1 (op, loc, (to) - (loc) - 3)
1819 /* Likewise, for a two-argument jump. */
1820 #define STORE_JUMP2(op, loc, to, arg) \
1821 store_op2 (op, loc, (to) - (loc) - 3, arg)
1823 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1824 #define INSERT_JUMP(op, loc, to) \
1825 insert_op1 (op, loc, (to) - (loc) - 3, b)
1827 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1828 #define INSERT_JUMP2(op, loc, to, arg) \
1829 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1832 /* This is not an arbitrary limit: the arguments which represent offsets
1833 into the pattern are two bytes long. So if 2^15 bytes turns out to
1834 be too small, many things would have to change. */
1835 # define MAX_BUF_SIZE (1L << 15)
1837 #if 0 /* This is when we thought it could be 2^16 bytes. */
1838 /* Any other compiler which, like MSC, has allocation limit below 2^16
1839 bytes will have to use approach similar to what was done below for
1840 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1841 reallocating to 0 bytes. Such thing is not going to work too well.
1842 You have been warned!! */
1843 #if defined _MSC_VER && !defined WIN32
1844 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1845 # define MAX_BUF_SIZE 65500L
1847 # define MAX_BUF_SIZE (1L << 16)
1851 /* Extend the buffer by twice its current size via realloc and
1852 reset the pointers that pointed into the old block to point to the
1853 correct places in the new one. If extending the buffer results in it
1854 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1855 #if __BOUNDED_POINTERS__
1856 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1857 # define MOVE_BUFFER_POINTER(P) \
1858 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1859 SET_HIGH_BOUND (P), \
1860 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
1861 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1864 SET_HIGH_BOUND (b); \
1865 SET_HIGH_BOUND (begalt); \
1866 if (fixup_alt_jump) \
1867 SET_HIGH_BOUND (fixup_alt_jump); \
1869 SET_HIGH_BOUND (laststart); \
1870 if (pending_exact) \
1871 SET_HIGH_BOUND (pending_exact); \
1874 # define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
1875 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1877 #define EXTEND_BUFFER() \
1879 unsigned char *old_buffer = bufp->buffer; \
1880 if (bufp->allocated == MAX_BUF_SIZE) \
1882 bufp->allocated <<= 1; \
1883 if (bufp->allocated > MAX_BUF_SIZE) \
1884 bufp->allocated = MAX_BUF_SIZE; \
1885 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1886 if (bufp->buffer == NULL) \
1887 return REG_ESPACE; \
1888 /* If the buffer moved, move all the pointers into it. */ \
1889 if (old_buffer != bufp->buffer) \
1891 unsigned char *new_buffer = bufp->buffer; \
1892 MOVE_BUFFER_POINTER (b); \
1893 MOVE_BUFFER_POINTER (begalt); \
1894 if (fixup_alt_jump) \
1895 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1897 MOVE_BUFFER_POINTER (laststart); \
1898 if (pending_exact) \
1899 MOVE_BUFFER_POINTER (pending_exact); \
1901 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1905 /* Since we have one byte reserved for the register number argument to
1906 {start,stop}_memory, the maximum number of groups we can report
1907 things about is what fits in that byte. */
1908 #define MAX_REGNUM 255
1910 /* But patterns can have more than `MAX_REGNUM' registers. We just
1911 ignore the excess. */
1912 typedef int regnum_t
;
1915 /* Macros for the compile stack. */
1917 /* Since offsets can go either forwards or backwards, this type needs to
1918 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1919 /* int may be not enough when sizeof(int) == 2. */
1920 typedef long pattern_offset_t
;
1924 pattern_offset_t begalt_offset
;
1925 pattern_offset_t fixup_alt_jump
;
1926 pattern_offset_t laststart_offset
;
1928 } compile_stack_elt_t
;
1933 compile_stack_elt_t
*stack
;
1935 unsigned avail
; /* Offset of next open position. */
1936 } compile_stack_type
;
1939 #define INIT_COMPILE_STACK_SIZE 32
1941 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1942 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1944 /* The next available element. */
1945 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1947 /* Explicit quit checking is only used on NTemacs and whenever we
1948 use polling to process input events. */
1949 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1950 extern int immediate_quit
;
1951 # define IMMEDIATE_QUIT_CHECK \
1953 if (immediate_quit) QUIT; \
1956 # define IMMEDIATE_QUIT_CHECK ((void)0)
1959 /* Structure to manage work area for range table. */
1960 struct range_table_work_area
1962 int *table
; /* actual work area. */
1963 int allocated
; /* allocated size for work area in bytes. */
1964 int used
; /* actually used size in words. */
1965 int bits
; /* flag to record character classes */
1968 /* Make sure that WORK_AREA can hold more N multibyte characters.
1969 This is used only in set_image_of_range and set_image_of_range_1.
1970 It expects WORK_AREA to be a pointer.
1971 If it can't get the space, it returns from the surrounding function. */
1973 #define EXTEND_RANGE_TABLE(work_area, n) \
1975 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1977 extend_range_table_work_area (&work_area); \
1978 if ((work_area).table == 0) \
1979 return (REG_ESPACE); \
1983 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1984 (work_area).bits |= (bit)
1986 /* Bits used to implement the multibyte-part of the various character classes
1987 such as [:alnum:] in a charset's range table. */
1988 #define BIT_WORD 0x1
1989 #define BIT_LOWER 0x2
1990 #define BIT_PUNCT 0x4
1991 #define BIT_SPACE 0x8
1992 #define BIT_UPPER 0x10
1993 #define BIT_MULTIBYTE 0x20
1995 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1996 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1998 EXTEND_RANGE_TABLE ((work_area), 2); \
1999 (work_area).table[(work_area).used++] = (range_start); \
2000 (work_area).table[(work_area).used++] = (range_end); \
2003 /* Free allocated memory for WORK_AREA. */
2004 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
2006 if ((work_area).table) \
2007 free ((work_area).table); \
2010 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
2011 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
2012 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
2013 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
2016 /* Set the bit for character C in a list. */
2017 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
2022 /* Store characters in the range FROM to TO in the bitmap at B (for
2023 ASCII and unibyte characters) and WORK_AREA (for multibyte
2024 characters) while translating them and paying attention to the
2025 continuity of translated characters.
2027 Implementation note: It is better to implement these fairly big
2028 macros by a function, but it's not that easy because macros called
2029 in this macro assume various local variables already declared. */
2031 /* Both FROM and TO are ASCII characters. */
2033 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
2037 for (C0 = (FROM); C0 <= (TO); C0++) \
2039 C1 = TRANSLATE (C0); \
2040 if (! ASCII_CHAR_P (C1)) \
2042 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2043 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
2046 SET_LIST_BIT (C1); \
2051 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
2053 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
2055 int C0, C1, C2, I; \
2056 int USED = RANGE_TABLE_WORK_USED (work_area); \
2058 for (C0 = (FROM); C0 <= (TO); C0++) \
2060 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
2061 if (CHAR_BYTE8_P (C1)) \
2062 SET_LIST_BIT (C0); \
2065 C2 = TRANSLATE (C1); \
2067 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
2069 SET_LIST_BIT (C1); \
2070 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2072 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2073 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2075 if (C2 >= from - 1 && C2 <= to + 1) \
2077 if (C2 == from - 1) \
2078 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2079 else if (C2 == to + 1) \
2080 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2085 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
2091 /* Both FROM and TO are mulitbyte characters. */
2093 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
2095 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
2097 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
2098 for (C0 = (FROM); C0 <= (TO); C0++) \
2100 C1 = TRANSLATE (C0); \
2101 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
2102 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
2103 SET_LIST_BIT (C2); \
2104 if (C1 >= (FROM) && C1 <= (TO)) \
2106 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2108 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2109 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2111 if (C1 >= from - 1 && C1 <= to + 1) \
2113 if (C1 == from - 1) \
2114 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2115 else if (C1 == to + 1) \
2116 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2121 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2127 /* Get the next unsigned number in the uncompiled pattern. */
2128 #define GET_UNSIGNED_NUMBER(num) \
2131 FREE_STACK_RETURN (REG_EBRACE); \
2135 while ('0' <= c && c <= '9') \
2141 num = num * 10 + c - '0'; \
2142 if (num / 10 != prev) \
2143 FREE_STACK_RETURN (REG_BADBR); \
2145 FREE_STACK_RETURN (REG_EBRACE); \
2151 #if ! WIDE_CHAR_SUPPORT
2153 /* Map a string to the char class it names (if any). */
2158 const char *string
= str
;
2159 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
2160 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
2161 else if (STREQ (string
, "word")) return RECC_WORD
;
2162 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
2163 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
2164 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
2165 else if (STREQ (string
, "lower")) return RECC_LOWER
;
2166 else if (STREQ (string
, "print")) return RECC_PRINT
;
2167 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
2168 else if (STREQ (string
, "space")) return RECC_SPACE
;
2169 else if (STREQ (string
, "upper")) return RECC_UPPER
;
2170 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
2171 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
2172 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
2173 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
2174 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2175 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2179 /* True if CH is in the char class CC. */
2181 re_iswctype (ch
, cc
)
2187 case RECC_ALNUM
: return ISALNUM (ch
);
2188 case RECC_ALPHA
: return ISALPHA (ch
);
2189 case RECC_BLANK
: return ISBLANK (ch
);
2190 case RECC_CNTRL
: return ISCNTRL (ch
);
2191 case RECC_DIGIT
: return ISDIGIT (ch
);
2192 case RECC_GRAPH
: return ISGRAPH (ch
);
2193 case RECC_LOWER
: return ISLOWER (ch
);
2194 case RECC_PRINT
: return ISPRINT (ch
);
2195 case RECC_PUNCT
: return ISPUNCT (ch
);
2196 case RECC_SPACE
: return ISSPACE (ch
);
2197 case RECC_UPPER
: return ISUPPER (ch
);
2198 case RECC_XDIGIT
: return ISXDIGIT (ch
);
2199 case RECC_ASCII
: return IS_REAL_ASCII (ch
);
2200 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2201 case RECC_UNIBYTE
: return ISUNIBYTE (ch
);
2202 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2203 case RECC_WORD
: return ISWORD (ch
);
2204 case RECC_ERROR
: return false;
2210 /* Return a bit-pattern to use in the range-table bits to match multibyte
2211 chars of class CC. */
2213 re_wctype_to_bit (cc
)
2218 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2219 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2220 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2221 case RECC_LOWER
: return BIT_LOWER
;
2222 case RECC_UPPER
: return BIT_UPPER
;
2223 case RECC_PUNCT
: return BIT_PUNCT
;
2224 case RECC_SPACE
: return BIT_SPACE
;
2225 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2226 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2233 /* Filling in the work area of a range. */
2235 /* Actually extend the space in WORK_AREA. */
2238 extend_range_table_work_area (work_area
)
2239 struct range_table_work_area
*work_area
;
2241 work_area
->allocated
+= 16 * sizeof (int);
2242 if (work_area
->table
)
2244 = (int *) realloc (work_area
->table
, work_area
->allocated
);
2247 = (int *) malloc (work_area
->allocated
);
2253 /* Carefully find the ranges of codes that are equivalent
2254 under case conversion to the range start..end when passed through
2255 TRANSLATE. Handle the case where non-letters can come in between
2256 two upper-case letters (which happens in Latin-1).
2257 Also handle the case of groups of more than 2 case-equivalent chars.
2259 The basic method is to look at consecutive characters and see
2260 if they can form a run that can be handled as one.
2262 Returns -1 if successful, REG_ESPACE if ran out of space. */
2265 set_image_of_range_1 (work_area
, start
, end
, translate
)
2266 RE_TRANSLATE_TYPE translate
;
2267 struct range_table_work_area
*work_area
;
2268 re_wchar_t start
, end
;
2270 /* `one_case' indicates a character, or a run of characters,
2271 each of which is an isolate (no case-equivalents).
2272 This includes all ASCII non-letters.
2274 `two_case' indicates a character, or a run of characters,
2275 each of which has two case-equivalent forms.
2276 This includes all ASCII letters.
2278 `strange' indicates a character that has more than one
2281 enum case_type
{one_case
, two_case
, strange
};
2283 /* Describe the run that is in progress,
2284 which the next character can try to extend.
2285 If run_type is strange, that means there really is no run.
2286 If run_type is one_case, then run_start...run_end is the run.
2287 If run_type is two_case, then the run is run_start...run_end,
2288 and the case-equivalents end at run_eqv_end. */
2290 enum case_type run_type
= strange
;
2291 int run_start
, run_end
, run_eqv_end
;
2293 Lisp_Object eqv_table
;
2295 if (!RE_TRANSLATE_P (translate
))
2297 EXTEND_RANGE_TABLE (work_area
, 2);
2298 work_area
->table
[work_area
->used
++] = (start
);
2299 work_area
->table
[work_area
->used
++] = (end
);
2303 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2305 for (; start
<= end
; start
++)
2307 enum case_type this_type
;
2308 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2309 int minchar
, maxchar
;
2311 /* Classify this character */
2313 this_type
= one_case
;
2314 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2315 this_type
= two_case
;
2317 this_type
= strange
;
2320 minchar
= start
, maxchar
= eqv
;
2322 minchar
= eqv
, maxchar
= start
;
2324 /* Can this character extend the run in progress? */
2325 if (this_type
== strange
|| this_type
!= run_type
2326 || !(minchar
== run_end
+ 1
2327 && (run_type
== two_case
2328 ? maxchar
== run_eqv_end
+ 1 : 1)))
2331 Record each of its equivalent ranges. */
2332 if (run_type
== one_case
)
2334 EXTEND_RANGE_TABLE (work_area
, 2);
2335 work_area
->table
[work_area
->used
++] = run_start
;
2336 work_area
->table
[work_area
->used
++] = run_end
;
2338 else if (run_type
== two_case
)
2340 EXTEND_RANGE_TABLE (work_area
, 4);
2341 work_area
->table
[work_area
->used
++] = run_start
;
2342 work_area
->table
[work_area
->used
++] = run_end
;
2343 work_area
->table
[work_area
->used
++]
2344 = RE_TRANSLATE (eqv_table
, run_start
);
2345 work_area
->table
[work_area
->used
++]
2346 = RE_TRANSLATE (eqv_table
, run_end
);
2351 if (this_type
== strange
)
2353 /* For a strange character, add each of its equivalents, one
2354 by one. Don't start a range. */
2357 EXTEND_RANGE_TABLE (work_area
, 2);
2358 work_area
->table
[work_area
->used
++] = eqv
;
2359 work_area
->table
[work_area
->used
++] = eqv
;
2360 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2362 while (eqv
!= start
);
2365 /* Add this char to the run, or start a new run. */
2366 else if (run_type
== strange
)
2368 /* Initialize a new range. */
2369 run_type
= this_type
;
2372 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2376 /* Extend a running range. */
2378 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2382 /* If a run is still in progress at the end, finish it now
2383 by recording its equivalent ranges. */
2384 if (run_type
== one_case
)
2386 EXTEND_RANGE_TABLE (work_area
, 2);
2387 work_area
->table
[work_area
->used
++] = run_start
;
2388 work_area
->table
[work_area
->used
++] = run_end
;
2390 else if (run_type
== two_case
)
2392 EXTEND_RANGE_TABLE (work_area
, 4);
2393 work_area
->table
[work_area
->used
++] = run_start
;
2394 work_area
->table
[work_area
->used
++] = run_end
;
2395 work_area
->table
[work_area
->used
++]
2396 = RE_TRANSLATE (eqv_table
, run_start
);
2397 work_area
->table
[work_area
->used
++]
2398 = RE_TRANSLATE (eqv_table
, run_end
);
2406 /* Record the the image of the range start..end when passed through
2407 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2408 and is not even necessarily contiguous.
2409 Normally we approximate it with the smallest contiguous range that contains
2410 all the chars we need. However, for Latin-1 we go to extra effort
2413 This function is not called for ASCII ranges.
2415 Returns -1 if successful, REG_ESPACE if ran out of space. */
2418 set_image_of_range (work_area
, start
, end
, translate
)
2419 RE_TRANSLATE_TYPE translate
;
2420 struct range_table_work_area
*work_area
;
2421 re_wchar_t start
, end
;
2423 re_wchar_t cmin
, cmax
;
2426 /* For Latin-1 ranges, use set_image_of_range_1
2427 to get proper handling of ranges that include letters and nonletters.
2428 For a range that includes the whole of Latin-1, this is not necessary.
2429 For other character sets, we don't bother to get this right. */
2430 if (RE_TRANSLATE_P (translate
) && start
< 04400
2431 && !(start
< 04200 && end
>= 04377))
2438 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2448 EXTEND_RANGE_TABLE (work_area
, 2);
2449 work_area
->table
[work_area
->used
++] = (start
);
2450 work_area
->table
[work_area
->used
++] = (end
);
2452 cmin
= -1, cmax
= -1;
2454 if (RE_TRANSLATE_P (translate
))
2458 for (ch
= start
; ch
<= end
; ch
++)
2460 re_wchar_t c
= TRANSLATE (ch
);
2461 if (! (start
<= c
&& c
<= end
))
2467 cmin
= MIN (cmin
, c
);
2468 cmax
= MAX (cmax
, c
);
2475 EXTEND_RANGE_TABLE (work_area
, 2);
2476 work_area
->table
[work_area
->used
++] = (cmin
);
2477 work_area
->table
[work_area
->used
++] = (cmax
);
2485 #ifndef MATCH_MAY_ALLOCATE
2487 /* If we cannot allocate large objects within re_match_2_internal,
2488 we make the fail stack and register vectors global.
2489 The fail stack, we grow to the maximum size when a regexp
2491 The register vectors, we adjust in size each time we
2492 compile a regexp, according to the number of registers it needs. */
2494 static fail_stack_type fail_stack
;
2496 /* Size with which the following vectors are currently allocated.
2497 That is so we can make them bigger as needed,
2498 but never make them smaller. */
2499 static int regs_allocated_size
;
2501 static re_char
** regstart
, ** regend
;
2502 static re_char
**best_regstart
, **best_regend
;
2504 /* Make the register vectors big enough for NUM_REGS registers,
2505 but don't make them smaller. */
2508 regex_grow_registers (num_regs
)
2511 if (num_regs
> regs_allocated_size
)
2513 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2514 RETALLOC_IF (regend
, num_regs
, re_char
*);
2515 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2516 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2518 regs_allocated_size
= num_regs
;
2522 #endif /* not MATCH_MAY_ALLOCATE */
2524 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2528 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2529 Returns one of error codes defined in `regex.h', or zero for success.
2531 Assumes the `allocated' (and perhaps `buffer') and `translate'
2532 fields are set in BUFP on entry.
2534 If it succeeds, results are put in BUFP (if it returns an error, the
2535 contents of BUFP are undefined):
2536 `buffer' is the compiled pattern;
2537 `syntax' is set to SYNTAX;
2538 `used' is set to the length of the compiled pattern;
2539 `fastmap_accurate' is zero;
2540 `re_nsub' is the number of subexpressions in PATTERN;
2541 `not_bol' and `not_eol' are zero;
2543 The `fastmap' field is neither examined nor set. */
2545 /* Insert the `jump' from the end of last alternative to "here".
2546 The space for the jump has already been allocated. */
2547 #define FIXUP_ALT_JUMP() \
2549 if (fixup_alt_jump) \
2550 STORE_JUMP (jump, fixup_alt_jump, b); \
2554 /* Return, freeing storage we allocated. */
2555 #define FREE_STACK_RETURN(value) \
2557 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2558 free (compile_stack.stack); \
2562 static reg_errcode_t
2563 regex_compile (pattern
, size
, syntax
, bufp
)
2566 reg_syntax_t syntax
;
2567 struct re_pattern_buffer
*bufp
;
2569 /* We fetch characters from PATTERN here. */
2570 register re_wchar_t c
, c1
;
2572 /* A random temporary spot in PATTERN. */
2575 /* Points to the end of the buffer, where we should append. */
2576 register unsigned char *b
;
2578 /* Keeps track of unclosed groups. */
2579 compile_stack_type compile_stack
;
2581 /* Points to the current (ending) position in the pattern. */
2583 /* `const' makes AIX compiler fail. */
2584 unsigned char *p
= pattern
;
2586 re_char
*p
= pattern
;
2588 re_char
*pend
= pattern
+ size
;
2590 /* How to translate the characters in the pattern. */
2591 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2593 /* Address of the count-byte of the most recently inserted `exactn'
2594 command. This makes it possible to tell if a new exact-match
2595 character can be added to that command or if the character requires
2596 a new `exactn' command. */
2597 unsigned char *pending_exact
= 0;
2599 /* Address of start of the most recently finished expression.
2600 This tells, e.g., postfix * where to find the start of its
2601 operand. Reset at the beginning of groups and alternatives. */
2602 unsigned char *laststart
= 0;
2604 /* Address of beginning of regexp, or inside of last group. */
2605 unsigned char *begalt
;
2607 /* Place in the uncompiled pattern (i.e., the {) to
2608 which to go back if the interval is invalid. */
2609 re_char
*beg_interval
;
2611 /* Address of the place where a forward jump should go to the end of
2612 the containing expression. Each alternative of an `or' -- except the
2613 last -- ends with a forward jump of this sort. */
2614 unsigned char *fixup_alt_jump
= 0;
2616 /* Work area for range table of charset. */
2617 struct range_table_work_area range_table_work
;
2619 /* If the object matched can contain multibyte characters. */
2620 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2622 /* If a target of matching can contain multibyte characters. */
2623 const boolean target_multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
2625 /* Nonzero if we have pushed down into a subpattern. */
2626 int in_subpattern
= 0;
2628 /* These hold the values of p, pattern, and pend from the main
2629 pattern when we have pushed into a subpattern. */
2631 re_char
*main_pattern
;
2636 DEBUG_PRINT1 ("\nCompiling pattern: ");
2639 unsigned debug_count
;
2641 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2642 putchar (pattern
[debug_count
]);
2647 /* Initialize the compile stack. */
2648 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2649 if (compile_stack
.stack
== NULL
)
2652 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2653 compile_stack
.avail
= 0;
2655 range_table_work
.table
= 0;
2656 range_table_work
.allocated
= 0;
2658 /* Initialize the pattern buffer. */
2659 bufp
->syntax
= syntax
;
2660 bufp
->fastmap_accurate
= 0;
2661 bufp
->not_bol
= bufp
->not_eol
= 0;
2662 bufp
->used_syntax
= 0;
2664 /* Set `used' to zero, so that if we return an error, the pattern
2665 printer (for debugging) will think there's no pattern. We reset it
2669 /* Always count groups, whether or not bufp->no_sub is set. */
2672 #if !defined emacs && !defined SYNTAX_TABLE
2673 /* Initialize the syntax table. */
2674 init_syntax_once ();
2677 if (bufp
->allocated
== 0)
2680 { /* If zero allocated, but buffer is non-null, try to realloc
2681 enough space. This loses if buffer's address is bogus, but
2682 that is the user's responsibility. */
2683 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2686 { /* Caller did not allocate a buffer. Do it for them. */
2687 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2689 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2691 bufp
->allocated
= INIT_BUF_SIZE
;
2694 begalt
= b
= bufp
->buffer
;
2696 /* Loop through the uncompiled pattern until we're at the end. */
2701 /* If this is the end of an included regexp,
2702 pop back to the main regexp and try again. */
2706 pattern
= main_pattern
;
2711 /* If this is the end of the main regexp, we are done. */
2723 /* If there's no special whitespace regexp, treat
2724 spaces normally. And don't try to do this recursively. */
2725 if (!whitespace_regexp
|| in_subpattern
)
2728 /* Peek past following spaces. */
2735 /* If the spaces are followed by a repetition op,
2736 treat them normally. */
2738 && (*p1
== '*' || *p1
== '+' || *p1
== '?'
2739 || (*p1
== '\\' && p1
+ 1 != pend
&& p1
[1] == '{')))
2742 /* Replace the spaces with the whitespace regexp. */
2746 main_pattern
= pattern
;
2747 p
= pattern
= whitespace_regexp
;
2748 pend
= p
+ strlen (p
);
2754 if ( /* If at start of pattern, it's an operator. */
2756 /* If context independent, it's an operator. */
2757 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2758 /* Otherwise, depends on what's come before. */
2759 || at_begline_loc_p (pattern
, p
, syntax
))
2760 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2769 if ( /* If at end of pattern, it's an operator. */
2771 /* If context independent, it's an operator. */
2772 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2773 /* Otherwise, depends on what's next. */
2774 || at_endline_loc_p (p
, pend
, syntax
))
2775 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2784 if ((syntax
& RE_BK_PLUS_QM
)
2785 || (syntax
& RE_LIMITED_OPS
))
2789 /* If there is no previous pattern... */
2792 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2793 FREE_STACK_RETURN (REG_BADRPT
);
2794 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2799 /* 1 means zero (many) matches is allowed. */
2800 boolean zero_times_ok
= 0, many_times_ok
= 0;
2803 /* If there is a sequence of repetition chars, collapse it
2804 down to just one (the right one). We can't combine
2805 interval operators with these because of, e.g., `a{2}*',
2806 which should only match an even number of `a's. */
2810 if ((syntax
& RE_FRUGAL
)
2811 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2815 zero_times_ok
|= c
!= '+';
2816 many_times_ok
|= c
!= '?';
2822 || (!(syntax
& RE_BK_PLUS_QM
)
2823 && (*p
== '+' || *p
== '?')))
2825 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2828 FREE_STACK_RETURN (REG_EESCAPE
);
2829 if (p
[1] == '+' || p
[1] == '?')
2830 PATFETCH (c
); /* Gobble up the backslash. */
2836 /* If we get here, we found another repeat character. */
2840 /* Star, etc. applied to an empty pattern is equivalent
2841 to an empty pattern. */
2842 if (!laststart
|| laststart
== b
)
2845 /* Now we know whether or not zero matches is allowed
2846 and also whether or not two or more matches is allowed. */
2851 boolean simple
= skip_one_char (laststart
) == b
;
2852 unsigned int startoffset
= 0;
2854 /* Check if the loop can match the empty string. */
2855 (simple
|| !analyse_first (laststart
, b
, NULL
, 0))
2856 ? on_failure_jump
: on_failure_jump_loop
;
2857 assert (skip_one_char (laststart
) <= b
);
2859 if (!zero_times_ok
&& simple
)
2860 { /* Since simple * loops can be made faster by using
2861 on_failure_keep_string_jump, we turn simple P+
2862 into PP* if P is simple. */
2863 unsigned char *p1
, *p2
;
2864 startoffset
= b
- laststart
;
2865 GET_BUFFER_SPACE (startoffset
);
2866 p1
= b
; p2
= laststart
;
2872 GET_BUFFER_SPACE (6);
2875 STORE_JUMP (ofj
, b
, b
+ 6);
2877 /* Simple * loops can use on_failure_keep_string_jump
2878 depending on what follows. But since we don't know
2879 that yet, we leave the decision up to
2880 on_failure_jump_smart. */
2881 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2882 laststart
+ startoffset
, b
+ 6);
2884 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2889 /* A simple ? pattern. */
2890 assert (zero_times_ok
);
2891 GET_BUFFER_SPACE (3);
2892 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2896 else /* not greedy */
2897 { /* I wish the greedy and non-greedy cases could be merged. */
2899 GET_BUFFER_SPACE (7); /* We might use less. */
2902 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2904 /* The non-greedy multiple match looks like
2905 a repeat..until: we only need a conditional jump
2906 at the end of the loop. */
2907 if (emptyp
) BUF_PUSH (no_op
);
2908 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2909 : on_failure_jump
, b
, laststart
);
2913 /* The repeat...until naturally matches one or more.
2914 To also match zero times, we need to first jump to
2915 the end of the loop (its conditional jump). */
2916 INSERT_JUMP (jump
, laststart
, b
);
2922 /* non-greedy a?? */
2923 INSERT_JUMP (jump
, laststart
, b
+ 3);
2925 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2942 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2944 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2946 /* Ensure that we have enough space to push a charset: the
2947 opcode, the length count, and the bitset; 34 bytes in all. */
2948 GET_BUFFER_SPACE (34);
2952 /* We test `*p == '^' twice, instead of using an if
2953 statement, so we only need one BUF_PUSH. */
2954 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2958 /* Remember the first position in the bracket expression. */
2961 /* Push the number of bytes in the bitmap. */
2962 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2964 /* Clear the whole map. */
2965 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2967 /* charset_not matches newline according to a syntax bit. */
2968 if ((re_opcode_t
) b
[-2] == charset_not
2969 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2970 SET_LIST_BIT ('\n');
2972 /* Read in characters and ranges, setting map bits. */
2975 boolean escaped_char
= false;
2976 const unsigned char *p2
= p
;
2979 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2981 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2982 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2983 So the translation is done later in a loop. Example:
2984 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2987 /* \ might escape characters inside [...] and [^...]. */
2988 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2990 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2993 escaped_char
= true;
2997 /* Could be the end of the bracket expression. If it's
2998 not (i.e., when the bracket expression is `[]' so
2999 far), the ']' character bit gets set way below. */
3000 if (c
== ']' && p2
!= p1
)
3004 /* See if we're at the beginning of a possible character
3007 if (!escaped_char
&&
3008 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
3010 /* Leave room for the null. */
3011 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
3012 const unsigned char *class_beg
;
3018 /* If pattern is `[[:'. */
3019 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3024 if ((c
== ':' && *p
== ']') || p
== pend
)
3026 if (c1
< CHAR_CLASS_MAX_LENGTH
)
3029 /* This is in any case an invalid class name. */
3034 /* If isn't a word bracketed by `[:' and `:]':
3035 undo the ending character, the letters, and
3036 leave the leading `:' and `[' (but set bits for
3038 if (c
== ':' && *p
== ']')
3043 cc
= re_wctype (str
);
3046 FREE_STACK_RETURN (REG_ECTYPE
);
3048 /* Throw away the ] at the end of the character
3052 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3055 for (ch
= 0; ch
< (1 << BYTEWIDTH
); ++ch
)
3056 if (re_iswctype (btowc (ch
), cc
))
3059 if (c
< (1 << BYTEWIDTH
))
3063 /* Most character classes in a multibyte match
3064 just set a flag. Exceptions are is_blank,
3065 is_digit, is_cntrl, and is_xdigit, since
3066 they can only match ASCII characters. We
3067 don't need to handle them for multibyte.
3068 They are distinguished by a negative wctype. */
3070 for (ch
= 0; ch
< 256; ++ch
)
3072 c
= RE_CHAR_TO_MULTIBYTE (ch
);
3073 if (! CHAR_BYTE8_P (c
)
3074 && re_iswctype (c
, cc
))
3080 if (ASCII_CHAR_P (c1
))
3082 else if ((c1
= RE_CHAR_TO_UNIBYTE (c1
)) >= 0)
3086 SET_RANGE_TABLE_WORK_AREA_BIT
3087 (range_table_work
, re_wctype_to_bit (cc
));
3089 /* In most cases the matching rule for char classes
3090 only uses the syntax table for multibyte chars,
3091 so that the content of the syntax-table it is not
3092 hardcoded in the range_table. SPACE and WORD are
3093 the two exceptions. */
3094 if ((1 << cc
) & ((1 << RECC_SPACE
) | (1 << RECC_WORD
)))
3095 bufp
->used_syntax
= 1;
3097 /* Repeat the loop. */
3102 /* Go back to right after the "[:". */
3106 /* Because the `:' may starts the range, we
3107 can't simply set bit and repeat the loop.
3108 Instead, just set it to C and handle below. */
3113 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
3116 /* Discard the `-'. */
3119 /* Fetch the character which ends the range. */
3122 if (CHAR_BYTE8_P (c1
)
3123 && ! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
3124 /* Treat the range from a multibyte character to
3125 raw-byte character as empty. */
3130 /* Range from C to C. */
3135 if (syntax
& RE_NO_EMPTY_RANGES
)
3136 FREE_STACK_RETURN (REG_ERANGEX
);
3137 /* Else, repeat the loop. */
3142 /* Set the range into bitmap */
3143 for (; c
<= c1
; c
++)
3146 if (ch
< (1 << BYTEWIDTH
))
3153 SETUP_ASCII_RANGE (range_table_work
, c
, ch
);
3155 if (CHAR_BYTE8_P (c1
))
3156 c
= BYTE8_TO_CHAR (128);
3160 if (CHAR_BYTE8_P (c
))
3162 c
= CHAR_TO_BYTE8 (c
);
3163 c1
= CHAR_TO_BYTE8 (c1
);
3164 for (; c
<= c1
; c
++)
3169 SETUP_MULTIBYTE_RANGE (range_table_work
, c
, c1
);
3173 SETUP_UNIBYTE_RANGE (range_table_work
, c
, c1
);
3180 /* Discard any (non)matching list bytes that are all 0 at the
3181 end of the map. Decrease the map-length byte too. */
3182 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3186 /* Build real range table from work area. */
3187 if (RANGE_TABLE_WORK_USED (range_table_work
)
3188 || RANGE_TABLE_WORK_BITS (range_table_work
))
3191 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
3193 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3194 bytes for flags, two for COUNT, and three bytes for
3196 GET_BUFFER_SPACE (4 + used
* 3);
3198 /* Indicate the existence of range table. */
3199 laststart
[1] |= 0x80;
3201 /* Store the character class flag bits into the range table.
3202 If not in emacs, these flag bits are always 0. */
3203 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
3204 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
3206 STORE_NUMBER_AND_INCR (b
, used
/ 2);
3207 for (i
= 0; i
< used
; i
++)
3208 STORE_CHARACTER_AND_INCR
3209 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
3216 if (syntax
& RE_NO_BK_PARENS
)
3223 if (syntax
& RE_NO_BK_PARENS
)
3230 if (syntax
& RE_NEWLINE_ALT
)
3237 if (syntax
& RE_NO_BK_VBAR
)
3244 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3245 goto handle_interval
;
3251 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3253 /* Do not translate the character after the \, so that we can
3254 distinguish, e.g., \B from \b, even if we normally would
3255 translate, e.g., B to b. */
3261 if (syntax
& RE_NO_BK_PARENS
)
3262 goto normal_backslash
;
3267 regnum_t regnum
= 0;
3270 /* Look for a special (?...) construct */
3271 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3273 PATFETCH (c
); /* Gobble up the '?'. */
3279 case ':': shy
= 1; break;
3281 /* An explicitly specified regnum must start
3284 FREE_STACK_RETURN (REG_BADPAT
);
3285 case '1': case '2': case '3': case '4':
3286 case '5': case '6': case '7': case '8': case '9':
3287 regnum
= 10*regnum
+ (c
- '0'); break;
3289 /* Only (?:...) is supported right now. */
3290 FREE_STACK_RETURN (REG_BADPAT
);
3297 regnum
= ++bufp
->re_nsub
;
3299 { /* It's actually not shy, but explicitly numbered. */
3301 if (regnum
> bufp
->re_nsub
)
3302 bufp
->re_nsub
= regnum
;
3303 else if (regnum
> bufp
->re_nsub
3304 /* Ideally, we'd want to check that the specified
3305 group can't have matched (i.e. all subgroups
3306 using the same regnum are in other branches of
3307 OR patterns), but we don't currently keep track
3308 of enough info to do that easily. */
3309 || group_in_compile_stack (compile_stack
, regnum
))
3310 FREE_STACK_RETURN (REG_BADPAT
);
3313 /* It's really shy. */
3314 regnum
= - bufp
->re_nsub
;
3316 if (COMPILE_STACK_FULL
)
3318 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3319 compile_stack_elt_t
);
3320 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3322 compile_stack
.size
<<= 1;
3325 /* These are the values to restore when we hit end of this
3326 group. They are all relative offsets, so that if the
3327 whole pattern moves because of realloc, they will still
3329 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3330 COMPILE_STACK_TOP
.fixup_alt_jump
3331 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3332 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3333 COMPILE_STACK_TOP
.regnum
= regnum
;
3335 /* Do not push a start_memory for groups beyond the last one
3336 we can represent in the compiled pattern. */
3337 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3338 BUF_PUSH_2 (start_memory
, regnum
);
3340 compile_stack
.avail
++;
3345 /* If we've reached MAX_REGNUM groups, then this open
3346 won't actually generate any code, so we'll have to
3347 clear pending_exact explicitly. */
3353 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3355 if (COMPILE_STACK_EMPTY
)
3357 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3358 goto normal_backslash
;
3360 FREE_STACK_RETURN (REG_ERPAREN
);
3366 /* See similar code for backslashed left paren above. */
3367 if (COMPILE_STACK_EMPTY
)
3369 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3372 FREE_STACK_RETURN (REG_ERPAREN
);
3375 /* Since we just checked for an empty stack above, this
3376 ``can't happen''. */
3377 assert (compile_stack
.avail
!= 0);
3379 /* We don't just want to restore into `regnum', because
3380 later groups should continue to be numbered higher,
3381 as in `(ab)c(de)' -- the second group is #2. */
3384 compile_stack
.avail
--;
3385 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3387 = COMPILE_STACK_TOP
.fixup_alt_jump
3388 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3390 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3391 regnum
= COMPILE_STACK_TOP
.regnum
;
3392 /* If we've reached MAX_REGNUM groups, then this open
3393 won't actually generate any code, so we'll have to
3394 clear pending_exact explicitly. */
3397 /* We're at the end of the group, so now we know how many
3398 groups were inside this one. */
3399 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3400 BUF_PUSH_2 (stop_memory
, regnum
);
3405 case '|': /* `\|'. */
3406 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3407 goto normal_backslash
;
3409 if (syntax
& RE_LIMITED_OPS
)
3412 /* Insert before the previous alternative a jump which
3413 jumps to this alternative if the former fails. */
3414 GET_BUFFER_SPACE (3);
3415 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3419 /* The alternative before this one has a jump after it
3420 which gets executed if it gets matched. Adjust that
3421 jump so it will jump to this alternative's analogous
3422 jump (put in below, which in turn will jump to the next
3423 (if any) alternative's such jump, etc.). The last such
3424 jump jumps to the correct final destination. A picture:
3430 If we are at `b', then fixup_alt_jump right now points to a
3431 three-byte space after `a'. We'll put in the jump, set
3432 fixup_alt_jump to right after `b', and leave behind three
3433 bytes which we'll fill in when we get to after `c'. */
3437 /* Mark and leave space for a jump after this alternative,
3438 to be filled in later either by next alternative or
3439 when know we're at the end of a series of alternatives. */
3441 GET_BUFFER_SPACE (3);
3450 /* If \{ is a literal. */
3451 if (!(syntax
& RE_INTERVALS
)
3452 /* If we're at `\{' and it's not the open-interval
3454 || (syntax
& RE_NO_BK_BRACES
))
3455 goto normal_backslash
;
3459 /* If got here, then the syntax allows intervals. */
3461 /* At least (most) this many matches must be made. */
3462 int lower_bound
= 0, upper_bound
= -1;
3466 GET_UNSIGNED_NUMBER (lower_bound
);
3469 GET_UNSIGNED_NUMBER (upper_bound
);
3471 /* Interval such as `{1}' => match exactly once. */
3472 upper_bound
= lower_bound
;
3474 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
3475 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
3476 FREE_STACK_RETURN (REG_BADBR
);
3478 if (!(syntax
& RE_NO_BK_BRACES
))
3481 FREE_STACK_RETURN (REG_BADBR
);
3483 FREE_STACK_RETURN (REG_EESCAPE
);
3488 FREE_STACK_RETURN (REG_BADBR
);
3490 /* We just parsed a valid interval. */
3492 /* If it's invalid to have no preceding re. */
3495 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3496 FREE_STACK_RETURN (REG_BADRPT
);
3497 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3500 goto unfetch_interval
;
3503 if (upper_bound
== 0)
3504 /* If the upper bound is zero, just drop the sub pattern
3507 else if (lower_bound
== 1 && upper_bound
== 1)
3508 /* Just match it once: nothing to do here. */
3511 /* Otherwise, we have a nontrivial interval. When
3512 we're all done, the pattern will look like:
3513 set_number_at <jump count> <upper bound>
3514 set_number_at <succeed_n count> <lower bound>
3515 succeed_n <after jump addr> <succeed_n count>
3517 jump_n <succeed_n addr> <jump count>
3518 (The upper bound and `jump_n' are omitted if
3519 `upper_bound' is 1, though.) */
3521 { /* If the upper bound is > 1, we need to insert
3522 more at the end of the loop. */
3523 unsigned int nbytes
= (upper_bound
< 0 ? 3
3524 : upper_bound
> 1 ? 5 : 0);
3525 unsigned int startoffset
= 0;
3527 GET_BUFFER_SPACE (20); /* We might use less. */
3529 if (lower_bound
== 0)
3531 /* A succeed_n that starts with 0 is really a
3532 a simple on_failure_jump_loop. */
3533 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3539 /* Initialize lower bound of the `succeed_n', even
3540 though it will be set during matching by its
3541 attendant `set_number_at' (inserted next),
3542 because `re_compile_fastmap' needs to know.
3543 Jump to the `jump_n' we might insert below. */
3544 INSERT_JUMP2 (succeed_n
, laststart
,
3549 /* Code to initialize the lower bound. Insert
3550 before the `succeed_n'. The `5' is the last two
3551 bytes of this `set_number_at', plus 3 bytes of
3552 the following `succeed_n'. */
3553 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3558 if (upper_bound
< 0)
3560 /* A negative upper bound stands for infinity,
3561 in which case it degenerates to a plain jump. */
3562 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3565 else if (upper_bound
> 1)
3566 { /* More than one repetition is allowed, so
3567 append a backward jump to the `succeed_n'
3568 that starts this interval.
3570 When we've reached this during matching,
3571 we'll have matched the interval once, so
3572 jump back only `upper_bound - 1' times. */
3573 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3577 /* The location we want to set is the second
3578 parameter of the `jump_n'; that is `b-2' as
3579 an absolute address. `laststart' will be
3580 the `set_number_at' we're about to insert;
3581 `laststart+3' the number to set, the source
3582 for the relative address. But we are
3583 inserting into the middle of the pattern --
3584 so everything is getting moved up by 5.
3585 Conclusion: (b - 2) - (laststart + 3) + 5,
3586 i.e., b - laststart.
3588 We insert this at the beginning of the loop
3589 so that if we fail during matching, we'll
3590 reinitialize the bounds. */
3591 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3592 upper_bound
- 1, b
);
3597 beg_interval
= NULL
;
3602 /* If an invalid interval, match the characters as literals. */
3603 assert (beg_interval
);
3605 beg_interval
= NULL
;
3607 /* normal_char and normal_backslash need `c'. */
3610 if (!(syntax
& RE_NO_BK_BRACES
))
3612 assert (p
> pattern
&& p
[-1] == '\\');
3613 goto normal_backslash
;
3619 /* There is no way to specify the before_dot and after_dot
3620 operators. rms says this is ok. --karl */
3628 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3634 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3640 BUF_PUSH_2 (categoryspec
, c
);
3646 BUF_PUSH_2 (notcategoryspec
, c
);
3652 if (syntax
& RE_NO_GNU_OPS
)
3655 BUF_PUSH_2 (syntaxspec
, Sword
);
3660 if (syntax
& RE_NO_GNU_OPS
)
3663 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3668 if (syntax
& RE_NO_GNU_OPS
)
3674 if (syntax
& RE_NO_GNU_OPS
)
3680 if (syntax
& RE_NO_GNU_OPS
)
3689 FREE_STACK_RETURN (REG_BADPAT
);
3693 if (syntax
& RE_NO_GNU_OPS
)
3695 BUF_PUSH (wordbound
);
3699 if (syntax
& RE_NO_GNU_OPS
)
3701 BUF_PUSH (notwordbound
);
3705 if (syntax
& RE_NO_GNU_OPS
)
3711 if (syntax
& RE_NO_GNU_OPS
)
3716 case '1': case '2': case '3': case '4': case '5':
3717 case '6': case '7': case '8': case '9':
3721 if (syntax
& RE_NO_BK_REFS
)
3722 goto normal_backslash
;
3726 if (reg
> bufp
->re_nsub
|| reg
< 1
3727 /* Can't back reference to a subexp before its end. */
3728 || group_in_compile_stack (compile_stack
, reg
))
3729 FREE_STACK_RETURN (REG_ESUBREG
);
3732 BUF_PUSH_2 (duplicate
, reg
);
3739 if (syntax
& RE_BK_PLUS_QM
)
3742 goto normal_backslash
;
3746 /* You might think it would be useful for \ to mean
3747 not to translate; but if we don't translate it
3748 it will never match anything. */
3755 /* Expects the character in `c'. */
3757 /* If no exactn currently being built. */
3760 /* If last exactn not at current position. */
3761 || pending_exact
+ *pending_exact
+ 1 != b
3763 /* We have only one byte following the exactn for the count. */
3764 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3766 /* If followed by a repetition operator. */
3767 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3768 || ((syntax
& RE_BK_PLUS_QM
)
3769 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3770 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3771 || ((syntax
& RE_INTERVALS
)
3772 && ((syntax
& RE_NO_BK_BRACES
)
3773 ? p
!= pend
&& *p
== '{'
3774 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3776 /* Start building a new exactn. */
3780 BUF_PUSH_2 (exactn
, 0);
3781 pending_exact
= b
- 1;
3784 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3791 len
= CHAR_STRING (c
, b
);
3796 c1
= RE_CHAR_TO_MULTIBYTE (c
);
3797 if (! CHAR_BYTE8_P (c1
))
3799 re_wchar_t c2
= TRANSLATE (c1
);
3801 if (c1
!= c2
&& (c1
= RE_CHAR_TO_UNIBYTE (c2
)) >= 0)
3807 (*pending_exact
) += len
;
3812 } /* while p != pend */
3815 /* Through the pattern now. */
3819 if (!COMPILE_STACK_EMPTY
)
3820 FREE_STACK_RETURN (REG_EPAREN
);
3822 /* If we don't want backtracking, force success
3823 the first time we reach the end of the compiled pattern. */
3824 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3827 /* We have succeeded; set the length of the buffer. */
3828 bufp
->used
= b
- bufp
->buffer
;
3833 re_compile_fastmap (bufp
);
3834 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3835 print_compiled_pattern (bufp
);
3840 #ifndef MATCH_MAY_ALLOCATE
3841 /* Initialize the failure stack to the largest possible stack. This
3842 isn't necessary unless we're trying to avoid calling alloca in
3843 the search and match routines. */
3845 int num_regs
= bufp
->re_nsub
+ 1;
3847 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3849 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3851 if (! fail_stack
.stack
)
3853 = (fail_stack_elt_t
*) malloc (fail_stack
.size
3854 * sizeof (fail_stack_elt_t
));
3857 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
3859 * sizeof (fail_stack_elt_t
)));
3862 regex_grow_registers (num_regs
);
3864 #endif /* not MATCH_MAY_ALLOCATE */
3866 FREE_STACK_RETURN (REG_NOERROR
);
3867 } /* regex_compile */
3869 /* Subroutines for `regex_compile'. */
3871 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3874 store_op1 (op
, loc
, arg
)
3879 *loc
= (unsigned char) op
;
3880 STORE_NUMBER (loc
+ 1, arg
);
3884 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3887 store_op2 (op
, loc
, arg1
, arg2
)
3892 *loc
= (unsigned char) op
;
3893 STORE_NUMBER (loc
+ 1, arg1
);
3894 STORE_NUMBER (loc
+ 3, arg2
);
3898 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3899 for OP followed by two-byte integer parameter ARG. */
3902 insert_op1 (op
, loc
, arg
, end
)
3908 register unsigned char *pfrom
= end
;
3909 register unsigned char *pto
= end
+ 3;
3911 while (pfrom
!= loc
)
3914 store_op1 (op
, loc
, arg
);
3918 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3921 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3927 register unsigned char *pfrom
= end
;
3928 register unsigned char *pto
= end
+ 5;
3930 while (pfrom
!= loc
)
3933 store_op2 (op
, loc
, arg1
, arg2
);
3937 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3938 after an alternative or a begin-subexpression. We assume there is at
3939 least one character before the ^. */
3942 at_begline_loc_p (pattern
, p
, syntax
)
3943 re_char
*pattern
, *p
;
3944 reg_syntax_t syntax
;
3946 re_char
*prev
= p
- 2;
3947 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3950 /* After a subexpression? */
3951 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3952 /* After an alternative? */
3953 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
))
3954 /* After a shy subexpression? */
3955 || ((syntax
& RE_SHY_GROUPS
) && prev
- 2 >= pattern
3956 && prev
[-1] == '?' && prev
[-2] == '('
3957 && (syntax
& RE_NO_BK_PARENS
3958 || (prev
- 3 >= pattern
&& prev
[-3] == '\\')));
3962 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3963 at least one character after the $, i.e., `P < PEND'. */
3966 at_endline_loc_p (p
, pend
, syntax
)
3968 reg_syntax_t syntax
;
3971 boolean next_backslash
= *next
== '\\';
3972 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3975 /* Before a subexpression? */
3976 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3977 : next_backslash
&& next_next
&& *next_next
== ')')
3978 /* Before an alternative? */
3979 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3980 : next_backslash
&& next_next
&& *next_next
== '|');
3984 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3985 false if it's not. */
3988 group_in_compile_stack (compile_stack
, regnum
)
3989 compile_stack_type compile_stack
;
3994 for (this_element
= compile_stack
.avail
- 1;
3997 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
4004 If fastmap is non-NULL, go through the pattern and fill fastmap
4005 with all the possible leading chars. If fastmap is NULL, don't
4006 bother filling it up (obviously) and only return whether the
4007 pattern could potentially match the empty string.
4009 Return 1 if p..pend might match the empty string.
4010 Return 0 if p..pend matches at least one char.
4011 Return -1 if fastmap was not updated accurately. */
4014 analyse_first (p
, pend
, fastmap
, multibyte
)
4017 const int multibyte
;
4022 /* If all elements for base leading-codes in fastmap is set, this
4023 flag is set true. */
4024 boolean match_any_multibyte_characters
= false;
4028 /* The loop below works as follows:
4029 - It has a working-list kept in the PATTERN_STACK and which basically
4030 starts by only containing a pointer to the first operation.
4031 - If the opcode we're looking at is a match against some set of
4032 chars, then we add those chars to the fastmap and go on to the
4033 next work element from the worklist (done via `break').
4034 - If the opcode is a control operator on the other hand, we either
4035 ignore it (if it's meaningless at this point, such as `start_memory')
4036 or execute it (if it's a jump). If the jump has several destinations
4037 (i.e. `on_failure_jump'), then we push the other destination onto the
4039 We guarantee termination by ignoring backward jumps (more or less),
4040 so that `p' is monotonically increasing. More to the point, we
4041 never set `p' (or push) anything `<= p1'. */
4045 /* `p1' is used as a marker of how far back a `on_failure_jump'
4046 can go without being ignored. It is normally equal to `p'
4047 (which prevents any backward `on_failure_jump') except right
4048 after a plain `jump', to allow patterns such as:
4051 10: on_failure_jump 3
4052 as used for the *? operator. */
4055 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4062 /* If the first character has to match a backreference, that means
4063 that the group was empty (since it already matched). Since this
4064 is the only case that interests us here, we can assume that the
4065 backreference must match the empty string. */
4070 /* Following are the cases which match a character. These end
4076 /* If multibyte is nonzero, the first byte of each
4077 character is an ASCII or a leading code. Otherwise,
4078 each byte is a character. Thus, this works in both
4083 /* For the case of matching this unibyte regex
4084 against multibyte, we must set a leading code of
4085 the corresponding multibyte character. */
4086 int c
= RE_CHAR_TO_MULTIBYTE (p
[1]);
4088 if (! CHAR_BYTE8_P (c
))
4089 fastmap
[CHAR_LEADING_CODE (c
)] = 1;
4096 /* We could put all the chars except for \n (and maybe \0)
4097 but we don't bother since it is generally not worth it. */
4098 if (!fastmap
) break;
4103 if (!fastmap
) break;
4105 /* Chars beyond end of bitmap are possible matches. */
4106 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
4107 j
< (1 << BYTEWIDTH
); j
++)
4113 if (!fastmap
) break;
4114 not = (re_opcode_t
) *(p
- 1) == charset_not
;
4115 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
4117 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
4121 if (/* Any leading code can possibly start a character
4122 which doesn't match the specified set of characters. */
4125 /* If we can match a character class, we can match any
4126 multibyte characters. */
4127 (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
4128 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
4131 if (match_any_multibyte_characters
== false)
4133 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
4134 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
4136 match_any_multibyte_characters
= true;
4140 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
4141 && match_any_multibyte_characters
== false)
4143 /* Set fastmap[I] to 1 where I is a leading code of each
4144 multibyte characer in the range table. */
4146 unsigned char lc1
, lc2
;
4148 /* Make P points the range table. `+ 2' is to skip flag
4149 bits for a character class. */
4150 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
4152 /* Extract the number of ranges in range table into COUNT. */
4153 EXTRACT_NUMBER_AND_INCR (count
, p
);
4154 for (; count
> 0; count
--, p
+= 3)
4156 /* Extract the start and end of each range. */
4157 EXTRACT_CHARACTER (c
, p
);
4158 lc1
= CHAR_LEADING_CODE (c
);
4160 EXTRACT_CHARACTER (c
, p
);
4161 lc2
= CHAR_LEADING_CODE (c
);
4162 for (j
= lc1
; j
<= lc2
; j
++)
4171 if (!fastmap
) break;
4173 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
4175 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4176 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
4180 /* This match depends on text properties. These end with
4181 aborting optimizations. */
4185 case notcategoryspec
:
4186 if (!fastmap
) break;
4187 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
4189 for (j
= (1 << BYTEWIDTH
); j
>= 0; j
--)
4190 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
4193 /* Any leading code can possibly start a character which
4194 has or doesn't has the specified category. */
4195 if (match_any_multibyte_characters
== false)
4197 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
4198 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
4200 match_any_multibyte_characters
= true;
4204 /* All cases after this match the empty string. These end with
4226 EXTRACT_NUMBER_AND_INCR (j
, p
);
4228 /* Backward jumps can only go back to code that we've already
4229 visited. `re_compile' should make sure this is true. */
4232 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4234 case on_failure_jump
:
4235 case on_failure_keep_string_jump
:
4236 case on_failure_jump_loop
:
4237 case on_failure_jump_nastyloop
:
4238 case on_failure_jump_smart
:
4244 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4245 to jump back to "just after here". */
4248 case on_failure_jump
:
4249 case on_failure_keep_string_jump
:
4250 case on_failure_jump_nastyloop
:
4251 case on_failure_jump_loop
:
4252 case on_failure_jump_smart
:
4253 EXTRACT_NUMBER_AND_INCR (j
, p
);
4255 ; /* Backward jump to be ignored. */
4257 { /* We have to look down both arms.
4258 We first go down the "straight" path so as to minimize
4259 stack usage when going through alternatives. */
4260 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
4268 /* This code simply does not properly handle forward jump_n. */
4269 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
4271 /* jump_n can either jump or fall through. The (backward) jump
4272 case has already been handled, so we only need to look at the
4273 fallthrough case. */
4277 /* If N == 0, it should be an on_failure_jump_loop instead. */
4278 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
4280 /* We only care about one iteration of the loop, so we don't
4281 need to consider the case where this behaves like an
4298 abort (); /* We have listed all the cases. */
4301 /* Getting here means we have found the possible starting
4302 characters for one path of the pattern -- and that the empty
4303 string does not match. We need not follow this path further. */
4307 /* We reached the end without matching anything. */
4310 } /* analyse_first */
4312 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4313 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4314 characters can start a string that matches the pattern. This fastmap
4315 is used by re_search to skip quickly over impossible starting points.
4317 Character codes above (1 << BYTEWIDTH) are not represented in the
4318 fastmap, but the leading codes are represented. Thus, the fastmap
4319 indicates which character sets could start a match.
4321 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4322 area as BUFP->fastmap.
4324 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4327 Returns 0 if we succeed, -2 if an internal error. */
4330 re_compile_fastmap (bufp
)
4331 struct re_pattern_buffer
*bufp
;
4333 char *fastmap
= bufp
->fastmap
;
4336 assert (fastmap
&& bufp
->buffer
);
4338 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4339 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4341 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4342 fastmap
, RE_MULTIBYTE_P (bufp
));
4343 bufp
->can_be_null
= (analysis
!= 0);
4345 } /* re_compile_fastmap */
4347 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4348 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4349 this memory for recording register information. STARTS and ENDS
4350 must be allocated using the malloc library routine, and must each
4351 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4353 If NUM_REGS == 0, then subsequent matches should allocate their own
4356 Unless this function is called, the first search or match using
4357 PATTERN_BUFFER will allocate its own register data, without
4358 freeing the old data. */
4361 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
4362 struct re_pattern_buffer
*bufp
;
4363 struct re_registers
*regs
;
4365 regoff_t
*starts
, *ends
;
4369 bufp
->regs_allocated
= REGS_REALLOCATE
;
4370 regs
->num_regs
= num_regs
;
4371 regs
->start
= starts
;
4376 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4378 regs
->start
= regs
->end
= (regoff_t
*) 0;
4381 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4383 /* Searching routines. */
4385 /* Like re_search_2, below, but only one string is specified, and
4386 doesn't let you say where to stop matching. */
4389 re_search (bufp
, string
, size
, startpos
, range
, regs
)
4390 struct re_pattern_buffer
*bufp
;
4392 int size
, startpos
, range
;
4393 struct re_registers
*regs
;
4395 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4398 WEAK_ALIAS (__re_search
, re_search
)
4400 /* Head address of virtual concatenation of string. */
4401 #define HEAD_ADDR_VSTRING(P) \
4402 (((P) >= size1 ? string2 : string1))
4404 /* End address of virtual concatenation of string. */
4405 #define STOP_ADDR_VSTRING(P) \
4406 (((P) >= size1 ? string2 + size2 : string1 + size1))
4408 /* Address of POS in the concatenation of virtual string. */
4409 #define POS_ADDR_VSTRING(POS) \
4410 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4412 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4413 virtual concatenation of STRING1 and STRING2, starting first at index
4414 STARTPOS, then at STARTPOS + 1, and so on.
4416 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4418 RANGE is how far to scan while trying to match. RANGE = 0 means try
4419 only at STARTPOS; in general, the last start tried is STARTPOS +
4422 In REGS, return the indices of the virtual concatenation of STRING1
4423 and STRING2 that matched the entire BUFP->buffer and its contained
4426 Do not consider matching one past the index STOP in the virtual
4427 concatenation of STRING1 and STRING2.
4429 We return either the position in the strings at which the match was
4430 found, -1 if no match, or -2 if error (such as failure
4434 re_search_2 (bufp
, str1
, size1
, str2
, size2
, startpos
, range
, regs
, stop
)
4435 struct re_pattern_buffer
*bufp
;
4436 const char *str1
, *str2
;
4440 struct re_registers
*regs
;
4444 re_char
*string1
= (re_char
*) str1
;
4445 re_char
*string2
= (re_char
*) str2
;
4446 register char *fastmap
= bufp
->fastmap
;
4447 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4448 int total_size
= size1
+ size2
;
4449 int endpos
= startpos
+ range
;
4450 boolean anchored_start
;
4451 /* Nonzero if we are searching multibyte string. */
4452 const boolean multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
4454 /* Check for out-of-range STARTPOS. */
4455 if (startpos
< 0 || startpos
> total_size
)
4458 /* Fix up RANGE if it might eventually take us outside
4459 the virtual concatenation of STRING1 and STRING2.
4460 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4462 range
= 0 - startpos
;
4463 else if (endpos
> total_size
)
4464 range
= total_size
- startpos
;
4466 /* If the search isn't to be a backwards one, don't waste time in a
4467 search for a pattern anchored at beginning of buffer. */
4468 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4477 /* In a forward search for something that starts with \=.
4478 don't keep searching past point. */
4479 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4481 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4487 /* Update the fastmap now if not correct already. */
4488 if (fastmap
&& !bufp
->fastmap_accurate
)
4489 re_compile_fastmap (bufp
);
4491 /* See whether the pattern is anchored. */
4492 anchored_start
= (bufp
->buffer
[0] == begline
);
4495 gl_state
.object
= re_match_object
;
4497 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4499 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4503 /* Loop through the string, looking for a place to start matching. */
4506 /* If the pattern is anchored,
4507 skip quickly past places we cannot match.
4508 We don't bother to treat startpos == 0 specially
4509 because that case doesn't repeat. */
4510 if (anchored_start
&& startpos
> 0)
4512 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4513 : string2
[startpos
- size1
- 1])
4518 /* If a fastmap is supplied, skip quickly over characters that
4519 cannot be the start of a match. If the pattern can match the
4520 null string, however, we don't need to skip characters; we want
4521 the first null string. */
4522 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4524 register re_char
*d
;
4525 register re_wchar_t buf_ch
;
4527 d
= POS_ADDR_VSTRING (startpos
);
4529 if (range
> 0) /* Searching forwards. */
4531 register int lim
= 0;
4534 if (startpos
< size1
&& startpos
+ range
>= size1
)
4535 lim
= range
- (size1
- startpos
);
4537 /* Written out as an if-else to avoid testing `translate'
4539 if (RE_TRANSLATE_P (translate
))
4546 buf_ch
= STRING_CHAR_AND_LENGTH (d
, range
- lim
,
4548 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4549 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4552 range
-= buf_charlen
;
4558 register re_wchar_t ch
, translated
;
4561 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4562 translated
= RE_TRANSLATE (translate
, ch
);
4563 if (translated
!= ch
4564 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4566 if (fastmap
[buf_ch
])
4579 buf_ch
= STRING_CHAR_AND_LENGTH (d
, range
- lim
,
4581 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4583 range
-= buf_charlen
;
4587 while (range
> lim
&& !fastmap
[*d
])
4593 startpos
+= irange
- range
;
4595 else /* Searching backwards. */
4597 int room
= (startpos
>= size1
4598 ? size2
+ size1
- startpos
4599 : size1
- startpos
);
4602 buf_ch
= STRING_CHAR (d
, room
);
4603 buf_ch
= TRANSLATE (buf_ch
);
4604 if (! fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4609 register re_wchar_t ch
, translated
;
4612 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4613 translated
= TRANSLATE (ch
);
4614 if (translated
!= ch
4615 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4617 if (! fastmap
[TRANSLATE (buf_ch
)])
4623 /* If can't match the null string, and that's all we have left, fail. */
4624 if (range
>= 0 && startpos
== total_size
&& fastmap
4625 && !bufp
->can_be_null
)
4628 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4629 startpos
, regs
, stop
);
4642 /* Update STARTPOS to the next character boundary. */
4645 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4646 re_char
*pend
= STOP_ADDR_VSTRING (startpos
);
4647 int len
= MULTIBYTE_FORM_LENGTH (p
, pend
- p
);
4665 /* Update STARTPOS to the previous character boundary. */
4668 re_char
*p
= POS_ADDR_VSTRING (startpos
) + 1;
4670 re_char
*phead
= HEAD_ADDR_VSTRING (startpos
);
4672 /* Find the head of multibyte form. */
4673 PREV_CHAR_BOUNDARY (p
, phead
);
4674 range
+= p0
- 1 - p
;
4678 startpos
-= p0
- 1 - p
;
4684 WEAK_ALIAS (__re_search_2
, re_search_2
)
4686 /* Declarations and macros for re_match_2. */
4688 static int bcmp_translate
_RE_ARGS((re_char
*s1
, re_char
*s2
,
4690 RE_TRANSLATE_TYPE translate
,
4691 const int multibyte
));
4693 /* This converts PTR, a pointer into one of the search strings `string1'
4694 and `string2' into an offset from the beginning of that string. */
4695 #define POINTER_TO_OFFSET(ptr) \
4696 (FIRST_STRING_P (ptr) \
4697 ? ((regoff_t) ((ptr) - string1)) \
4698 : ((regoff_t) ((ptr) - string2 + size1)))
4700 /* Call before fetching a character with *d. This switches over to
4701 string2 if necessary.
4702 Check re_match_2_internal for a discussion of why end_match_2 might
4703 not be within string2 (but be equal to end_match_1 instead). */
4704 #define PREFETCH() \
4707 /* End of string2 => fail. */ \
4708 if (dend == end_match_2) \
4710 /* End of string1 => advance to string2. */ \
4712 dend = end_match_2; \
4715 /* Call before fetching a char with *d if you already checked other limits.
4716 This is meant for use in lookahead operations like wordend, etc..
4717 where we might need to look at parts of the string that might be
4718 outside of the LIMITs (i.e past `stop'). */
4719 #define PREFETCH_NOLIMIT() \
4723 dend = end_match_2; \
4726 /* Test if at very beginning or at very end of the virtual concatenation
4727 of `string1' and `string2'. If only one string, it's `string2'. */
4728 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4729 #define AT_STRINGS_END(d) ((d) == end2)
4732 /* Test if D points to a character which is word-constituent. We have
4733 two special cases to check for: if past the end of string1, look at
4734 the first character in string2; and if before the beginning of
4735 string2, look at the last character in string1. */
4736 #define WORDCHAR_P(d) \
4737 (SYNTAX ((d) == end1 ? *string2 \
4738 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4741 /* Disabled due to a compiler bug -- see comment at case wordbound */
4743 /* The comment at case wordbound is following one, but we don't use
4744 AT_WORD_BOUNDARY anymore to support multibyte form.
4746 The DEC Alpha C compiler 3.x generates incorrect code for the
4747 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4748 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4749 macro and introducing temporary variables works around the bug. */
4752 /* Test if the character before D and the one at D differ with respect
4753 to being word-constituent. */
4754 #define AT_WORD_BOUNDARY(d) \
4755 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4756 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4759 /* Free everything we malloc. */
4760 #ifdef MATCH_MAY_ALLOCATE
4761 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4762 # define FREE_VARIABLES() \
4764 REGEX_FREE_STACK (fail_stack.stack); \
4765 FREE_VAR (regstart); \
4766 FREE_VAR (regend); \
4767 FREE_VAR (best_regstart); \
4768 FREE_VAR (best_regend); \
4771 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4772 #endif /* not MATCH_MAY_ALLOCATE */
4775 /* Optimization routines. */
4777 /* If the operation is a match against one or more chars,
4778 return a pointer to the next operation, else return NULL. */
4783 switch (SWITCH_ENUM_CAST (*p
++))
4794 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4797 p
= CHARSET_RANGE_TABLE (p
- 1);
4798 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4799 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4802 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4809 case notcategoryspec
:
4821 /* Jump over non-matching operations. */
4823 skip_noops (p
, pend
)
4829 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4838 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4849 /* Non-zero if "p1 matches something" implies "p2 fails". */
4851 mutually_exclusive_p (bufp
, p1
, p2
)
4852 struct re_pattern_buffer
*bufp
;
4856 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4857 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4859 assert (p1
>= bufp
->buffer
&& p1
< pend
4860 && p2
>= bufp
->buffer
&& p2
<= pend
);
4862 /* Skip over open/close-group commands.
4863 If what follows this loop is a ...+ construct,
4864 look at what begins its body, since we will have to
4865 match at least one of that. */
4866 p2
= skip_noops (p2
, pend
);
4867 /* The same skip can be done for p1, except that this function
4868 is only used in the case where p1 is a simple match operator. */
4869 /* p1 = skip_noops (p1, pend); */
4871 assert (p1
>= bufp
->buffer
&& p1
< pend
4872 && p2
>= bufp
->buffer
&& p2
<= pend
);
4874 op2
= p2
== pend
? succeed
: *p2
;
4876 switch (SWITCH_ENUM_CAST (op2
))
4880 /* If we're at the end of the pattern, we can change. */
4881 if (skip_one_char (p1
))
4883 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4891 register re_wchar_t c
4892 = (re_opcode_t
) *p2
== endline
? '\n'
4893 : RE_STRING_CHAR (p2
+ 2, pend
- p2
- 2, multibyte
);
4895 if ((re_opcode_t
) *p1
== exactn
)
4897 if (c
!= RE_STRING_CHAR (p1
+ 2, pend
- p1
- 2, multibyte
))
4899 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4904 else if ((re_opcode_t
) *p1
== charset
4905 || (re_opcode_t
) *p1
== charset_not
)
4907 int not = (re_opcode_t
) *p1
== charset_not
;
4909 /* Test if C is listed in charset (or charset_not)
4911 if (! multibyte
|| IS_REAL_ASCII (c
))
4913 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4914 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4917 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4918 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4920 /* `not' is equal to 1 if c would match, which means
4921 that we can't change to pop_failure_jump. */
4924 DEBUG_PRINT1 (" No match => fast loop.\n");
4928 else if ((re_opcode_t
) *p1
== anychar
4931 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4939 if ((re_opcode_t
) *p1
== exactn
)
4940 /* Reuse the code above. */
4941 return mutually_exclusive_p (bufp
, p2
, p1
);
4943 /* It is hard to list up all the character in charset
4944 P2 if it includes multibyte character. Give up in
4946 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4948 /* Now, we are sure that P2 has no range table.
4949 So, for the size of bitmap in P2, `p2[1]' is
4950 enough. But P1 may have range table, so the
4951 size of bitmap table of P1 is extracted by
4952 using macro `CHARSET_BITMAP_SIZE'.
4954 In a multibyte case, we know that all the character
4955 listed in P2 is ASCII. In a unibyte case, P1 has only a
4956 bitmap table. So, in both cases, it is enough to test
4957 only the bitmap table of P1. */
4959 if ((re_opcode_t
) *p1
== charset
)
4962 /* We win if the charset inside the loop
4963 has no overlap with the one after the loop. */
4966 && idx
< CHARSET_BITMAP_SIZE (p1
));
4968 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4972 || idx
== CHARSET_BITMAP_SIZE (p1
))
4974 DEBUG_PRINT1 (" No match => fast loop.\n");
4978 else if ((re_opcode_t
) *p1
== charset_not
)
4981 /* We win if the charset_not inside the loop lists
4982 every character listed in the charset after. */
4983 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4984 if (! (p2
[2 + idx
] == 0
4985 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4986 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4991 DEBUG_PRINT1 (" No match => fast loop.\n");
5000 switch (SWITCH_ENUM_CAST (*p1
))
5004 /* Reuse the code above. */
5005 return mutually_exclusive_p (bufp
, p2
, p1
);
5007 /* When we have two charset_not, it's very unlikely that
5008 they don't overlap. The union of the two sets of excluded
5009 chars should cover all possible chars, which, as a matter of
5010 fact, is virtually impossible in multibyte buffers. */
5016 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == Sword
);
5018 return ((re_opcode_t
) *p1
== syntaxspec
5019 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
5021 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == p2
[1]);
5024 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == Sword
);
5026 return ((re_opcode_t
) *p1
== notsyntaxspec
5027 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
5029 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == p2
[1]);
5032 return (((re_opcode_t
) *p1
== notsyntaxspec
5033 || (re_opcode_t
) *p1
== syntaxspec
)
5038 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
5039 case notcategoryspec
:
5040 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
5052 /* Matching routines. */
5054 #ifndef emacs /* Emacs never uses this. */
5055 /* re_match is like re_match_2 except it takes only a single string. */
5058 re_match (bufp
, string
, size
, pos
, regs
)
5059 struct re_pattern_buffer
*bufp
;
5062 struct re_registers
*regs
;
5064 int result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
, size
,
5068 WEAK_ALIAS (__re_match
, re_match
)
5069 #endif /* not emacs */
5072 /* In Emacs, this is the string or buffer in which we
5073 are matching. It is used for looking up syntax properties. */
5074 Lisp_Object re_match_object
;
5077 /* re_match_2 matches the compiled pattern in BUFP against the
5078 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5079 and SIZE2, respectively). We start matching at POS, and stop
5082 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5083 store offsets for the substring each group matched in REGS. See the
5084 documentation for exactly how many groups we fill.
5086 We return -1 if no match, -2 if an internal error (such as the
5087 failure stack overflowing). Otherwise, we return the length of the
5088 matched substring. */
5091 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
5092 struct re_pattern_buffer
*bufp
;
5093 const char *string1
, *string2
;
5096 struct re_registers
*regs
;
5103 gl_state
.object
= re_match_object
;
5104 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
5105 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
5108 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
5109 (re_char
*) string2
, size2
,
5113 WEAK_ALIAS (__re_match_2
, re_match_2
)
5116 /* This is a separate function so that we can force an alloca cleanup
5119 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
5120 struct re_pattern_buffer
*bufp
;
5121 re_char
*string1
, *string2
;
5124 struct re_registers
*regs
;
5127 /* General temporaries. */
5132 /* Just past the end of the corresponding string. */
5133 re_char
*end1
, *end2
;
5135 /* Pointers into string1 and string2, just past the last characters in
5136 each to consider matching. */
5137 re_char
*end_match_1
, *end_match_2
;
5139 /* Where we are in the data, and the end of the current string. */
5142 /* Used sometimes to remember where we were before starting matching
5143 an operator so that we can go back in case of failure. This "atomic"
5144 behavior of matching opcodes is indispensable to the correctness
5145 of the on_failure_keep_string_jump optimization. */
5148 /* Where we are in the pattern, and the end of the pattern. */
5149 re_char
*p
= bufp
->buffer
;
5150 re_char
*pend
= p
+ bufp
->used
;
5152 /* We use this to map every character in the string. */
5153 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5155 /* Nonzero if BUFP is setup from a multibyte regex. */
5156 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
5158 /* Nonzero if STRING1/STRING2 are multibyte. */
5159 const boolean target_multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
5161 /* Failure point stack. Each place that can handle a failure further
5162 down the line pushes a failure point on this stack. It consists of
5163 regstart, and regend for all registers corresponding to
5164 the subexpressions we're currently inside, plus the number of such
5165 registers, and, finally, two char *'s. The first char * is where
5166 to resume scanning the pattern; the second one is where to resume
5167 scanning the strings. */
5168 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5169 fail_stack_type fail_stack
;
5172 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
5175 #if defined REL_ALLOC && defined REGEX_MALLOC
5176 /* This holds the pointer to the failure stack, when
5177 it is allocated relocatably. */
5178 fail_stack_elt_t
*failure_stack_ptr
;
5181 /* We fill all the registers internally, independent of what we
5182 return, for use in backreferences. The number here includes
5183 an element for register zero. */
5184 size_t num_regs
= bufp
->re_nsub
+ 1;
5186 /* Information on the contents of registers. These are pointers into
5187 the input strings; they record just what was matched (on this
5188 attempt) by a subexpression part of the pattern, that is, the
5189 regnum-th regstart pointer points to where in the pattern we began
5190 matching and the regnum-th regend points to right after where we
5191 stopped matching the regnum-th subexpression. (The zeroth register
5192 keeps track of what the whole pattern matches.) */
5193 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5194 re_char
**regstart
, **regend
;
5197 /* The following record the register info as found in the above
5198 variables when we find a match better than any we've seen before.
5199 This happens as we backtrack through the failure points, which in
5200 turn happens only if we have not yet matched the entire string. */
5201 unsigned best_regs_set
= false;
5202 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5203 re_char
**best_regstart
, **best_regend
;
5206 /* Logically, this is `best_regend[0]'. But we don't want to have to
5207 allocate space for that if we're not allocating space for anything
5208 else (see below). Also, we never need info about register 0 for
5209 any of the other register vectors, and it seems rather a kludge to
5210 treat `best_regend' differently than the rest. So we keep track of
5211 the end of the best match so far in a separate variable. We
5212 initialize this to NULL so that when we backtrack the first time
5213 and need to test it, it's not garbage. */
5214 re_char
*match_end
= NULL
;
5217 /* Counts the total number of registers pushed. */
5218 unsigned num_regs_pushed
= 0;
5221 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5225 #ifdef MATCH_MAY_ALLOCATE
5226 /* Do not bother to initialize all the register variables if there are
5227 no groups in the pattern, as it takes a fair amount of time. If
5228 there are groups, we include space for register 0 (the whole
5229 pattern), even though we never use it, since it simplifies the
5230 array indexing. We should fix this. */
5233 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5234 regend
= REGEX_TALLOC (num_regs
, re_char
*);
5235 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5236 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
5238 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
5246 /* We must initialize all our variables to NULL, so that
5247 `FREE_VARIABLES' doesn't try to free them. */
5248 regstart
= regend
= best_regstart
= best_regend
= NULL
;
5250 #endif /* MATCH_MAY_ALLOCATE */
5252 /* The starting position is bogus. */
5253 if (pos
< 0 || pos
> size1
+ size2
)
5259 /* Initialize subexpression text positions to -1 to mark ones that no
5260 start_memory/stop_memory has been seen for. Also initialize the
5261 register information struct. */
5262 for (reg
= 1; reg
< num_regs
; reg
++)
5263 regstart
[reg
] = regend
[reg
] = NULL
;
5265 /* We move `string1' into `string2' if the latter's empty -- but not if
5266 `string1' is null. */
5267 if (size2
== 0 && string1
!= NULL
)
5274 end1
= string1
+ size1
;
5275 end2
= string2
+ size2
;
5277 /* `p' scans through the pattern as `d' scans through the data.
5278 `dend' is the end of the input string that `d' points within. `d'
5279 is advanced into the following input string whenever necessary, but
5280 this happens before fetching; therefore, at the beginning of the
5281 loop, `d' can be pointing at the end of a string, but it cannot
5285 /* Only match within string2. */
5286 d
= string2
+ pos
- size1
;
5287 dend
= end_match_2
= string2
+ stop
- size1
;
5288 end_match_1
= end1
; /* Just to give it a value. */
5294 /* Only match within string1. */
5295 end_match_1
= string1
+ stop
;
5297 When we reach end_match_1, PREFETCH normally switches to string2.
5298 But in the present case, this means that just doing a PREFETCH
5299 makes us jump from `stop' to `gap' within the string.
5300 What we really want here is for the search to stop as
5301 soon as we hit end_match_1. That's why we set end_match_2
5302 to end_match_1 (since PREFETCH fails as soon as we hit
5304 end_match_2
= end_match_1
;
5307 { /* It's important to use this code when stop == size so that
5308 moving `d' from end1 to string2 will not prevent the d == dend
5309 check from catching the end of string. */
5311 end_match_2
= string2
+ stop
- size1
;
5317 DEBUG_PRINT1 ("The compiled pattern is: ");
5318 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5319 DEBUG_PRINT1 ("The string to match is: `");
5320 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5321 DEBUG_PRINT1 ("'\n");
5323 /* This loops over pattern commands. It exits by returning from the
5324 function if the match is complete, or it drops through if the match
5325 fails at this starting point in the input data. */
5328 DEBUG_PRINT2 ("\n%p: ", p
);
5331 { /* End of pattern means we might have succeeded. */
5332 DEBUG_PRINT1 ("end of pattern ... ");
5334 /* If we haven't matched the entire string, and we want the
5335 longest match, try backtracking. */
5336 if (d
!= end_match_2
)
5338 /* 1 if this match ends in the same string (string1 or string2)
5339 as the best previous match. */
5340 boolean same_str_p
= (FIRST_STRING_P (match_end
)
5341 == FIRST_STRING_P (d
));
5342 /* 1 if this match is the best seen so far. */
5343 boolean best_match_p
;
5345 /* AIX compiler got confused when this was combined
5346 with the previous declaration. */
5348 best_match_p
= d
> match_end
;
5350 best_match_p
= !FIRST_STRING_P (d
);
5352 DEBUG_PRINT1 ("backtracking.\n");
5354 if (!FAIL_STACK_EMPTY ())
5355 { /* More failure points to try. */
5357 /* If exceeds best match so far, save it. */
5358 if (!best_regs_set
|| best_match_p
)
5360 best_regs_set
= true;
5363 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5365 for (reg
= 1; reg
< num_regs
; reg
++)
5367 best_regstart
[reg
] = regstart
[reg
];
5368 best_regend
[reg
] = regend
[reg
];
5374 /* If no failure points, don't restore garbage. And if
5375 last match is real best match, don't restore second
5377 else if (best_regs_set
&& !best_match_p
)
5380 /* Restore best match. It may happen that `dend ==
5381 end_match_1' while the restored d is in string2.
5382 For example, the pattern `x.*y.*z' against the
5383 strings `x-' and `y-z-', if the two strings are
5384 not consecutive in memory. */
5385 DEBUG_PRINT1 ("Restoring best registers.\n");
5388 dend
= ((d
>= string1
&& d
<= end1
)
5389 ? end_match_1
: end_match_2
);
5391 for (reg
= 1; reg
< num_regs
; reg
++)
5393 regstart
[reg
] = best_regstart
[reg
];
5394 regend
[reg
] = best_regend
[reg
];
5397 } /* d != end_match_2 */
5400 DEBUG_PRINT1 ("Accepting match.\n");
5402 /* If caller wants register contents data back, do it. */
5403 if (regs
&& !bufp
->no_sub
)
5405 /* Have the register data arrays been allocated? */
5406 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5407 { /* No. So allocate them with malloc. We need one
5408 extra element beyond `num_regs' for the `-1' marker
5410 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5411 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5412 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5413 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5418 bufp
->regs_allocated
= REGS_REALLOCATE
;
5420 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5421 { /* Yes. If we need more elements than were already
5422 allocated, reallocate them. If we need fewer, just
5424 if (regs
->num_regs
< num_regs
+ 1)
5426 regs
->num_regs
= num_regs
+ 1;
5427 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5428 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5429 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5438 /* These braces fend off a "empty body in an else-statement"
5439 warning under GCC when assert expands to nothing. */
5440 assert (bufp
->regs_allocated
== REGS_FIXED
);
5443 /* Convert the pointer data in `regstart' and `regend' to
5444 indices. Register zero has to be set differently,
5445 since we haven't kept track of any info for it. */
5446 if (regs
->num_regs
> 0)
5448 regs
->start
[0] = pos
;
5449 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5452 /* Go through the first `min (num_regs, regs->num_regs)'
5453 registers, since that is all we initialized. */
5454 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
5456 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5457 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5461 = (regoff_t
) POINTER_TO_OFFSET (regstart
[reg
]);
5463 = (regoff_t
) POINTER_TO_OFFSET (regend
[reg
]);
5467 /* If the regs structure we return has more elements than
5468 were in the pattern, set the extra elements to -1. If
5469 we (re)allocated the registers, this is the case,
5470 because we always allocate enough to have at least one
5472 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5473 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5474 } /* regs && !bufp->no_sub */
5476 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5477 nfailure_points_pushed
, nfailure_points_popped
,
5478 nfailure_points_pushed
- nfailure_points_popped
);
5479 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
5481 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
5483 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
5489 /* Otherwise match next pattern command. */
5490 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
5492 /* Ignore these. Used to ignore the n of succeed_n's which
5493 currently have n == 0. */
5495 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5499 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5502 /* Match the next n pattern characters exactly. The following
5503 byte in the pattern defines n, and the n bytes after that
5504 are the characters to match. */
5507 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
5509 /* Remember the start point to rollback upon failure. */
5513 /* This is written out as an if-else so we don't waste time
5514 testing `translate' inside the loop. */
5515 if (RE_TRANSLATE_P (translate
))
5519 if (RE_TRANSLATE (translate
, *d
) != *p
++)
5539 /* The cost of testing `translate' is comparatively small. */
5540 if (target_multibyte
)
5543 int pat_charlen
, buf_charlen
;
5548 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pend
- p
, pat_charlen
);
5551 pat_ch
= RE_CHAR_TO_MULTIBYTE (*p
);
5554 buf_ch
= STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5556 if (TRANSLATE (buf_ch
) != pat_ch
)
5564 mcnt
-= pat_charlen
;
5570 int pat_charlen
, buf_charlen
;
5576 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pend
- p
, pat_charlen
);
5577 if (CHAR_BYTE8_P (pat_ch
))
5578 pat_ch
= CHAR_TO_BYTE8 (pat_ch
);
5580 pat_ch
= RE_CHAR_TO_UNIBYTE (pat_ch
);
5587 buf_ch
= RE_CHAR_TO_MULTIBYTE (*d
);
5588 if (! CHAR_BYTE8_P (buf_ch
))
5590 buf_ch
= TRANSLATE (buf_ch
);
5591 buf_ch
= RE_CHAR_TO_UNIBYTE (buf_ch
);
5597 if (buf_ch
!= pat_ch
)
5610 /* Match any character except possibly a newline or a null. */
5616 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5619 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
,
5621 buf_ch
= TRANSLATE (buf_ch
);
5623 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5625 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5626 && buf_ch
== '\000'))
5629 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
5638 register unsigned int c
;
5639 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5642 /* Start of actual range_table, or end of bitmap if there is no
5644 re_char
*range_table
;
5646 /* Nonzero if there is a range table. */
5647 int range_table_exists
;
5649 /* Number of ranges of range table. This is not included
5650 in the initial byte-length of the command. */
5653 /* Whether matching against a unibyte character. */
5654 boolean unibyte_char
= false;
5656 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5658 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5660 if (range_table_exists
)
5662 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5663 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5667 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
, target_multibyte
);
5668 if (target_multibyte
)
5673 c1
= RE_CHAR_TO_UNIBYTE (c
);
5676 unibyte_char
= true;
5682 int c1
= RE_CHAR_TO_MULTIBYTE (c
);
5684 if (! CHAR_BYTE8_P (c1
))
5686 c1
= TRANSLATE (c1
);
5687 c1
= RE_CHAR_TO_UNIBYTE (c1
);
5690 unibyte_char
= true;
5695 unibyte_char
= true;
5698 if (unibyte_char
&& c
< (1 << BYTEWIDTH
))
5699 { /* Lookup bitmap. */
5700 /* Cast to `unsigned' instead of `unsigned char' in
5701 case the bit list is a full 32 bytes long. */
5702 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5703 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5707 else if (range_table_exists
)
5709 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5711 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5712 | (class_bits
& BIT_MULTIBYTE
)
5713 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5714 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5715 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5716 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5719 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5723 if (range_table_exists
)
5724 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5726 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5728 if (!not) goto fail
;
5735 /* The beginning of a group is represented by start_memory.
5736 The argument is the register number. The text
5737 matched within the group is recorded (in the internal
5738 registers data structure) under the register number. */
5740 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5742 /* In case we need to undo this operation (via backtracking). */
5743 PUSH_FAILURE_REG ((unsigned int)*p
);
5746 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5747 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5749 /* Move past the register number and inner group count. */
5754 /* The stop_memory opcode represents the end of a group. Its
5755 argument is the same as start_memory's: the register number. */
5757 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5759 assert (!REG_UNSET (regstart
[*p
]));
5760 /* Strictly speaking, there should be code such as:
5762 assert (REG_UNSET (regend[*p]));
5763 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5765 But the only info to be pushed is regend[*p] and it is known to
5766 be UNSET, so there really isn't anything to push.
5767 Not pushing anything, on the other hand deprives us from the
5768 guarantee that regend[*p] is UNSET since undoing this operation
5769 will not reset its value properly. This is not important since
5770 the value will only be read on the next start_memory or at
5771 the very end and both events can only happen if this stop_memory
5775 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5777 /* Move past the register number and the inner group count. */
5782 /* \<digit> has been turned into a `duplicate' command which is
5783 followed by the numeric value of <digit> as the register number. */
5786 register re_char
*d2
, *dend2
;
5787 int regno
= *p
++; /* Get which register to match against. */
5788 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5790 /* Can't back reference a group which we've never matched. */
5791 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5794 /* Where in input to try to start matching. */
5795 d2
= regstart
[regno
];
5797 /* Remember the start point to rollback upon failure. */
5800 /* Where to stop matching; if both the place to start and
5801 the place to stop matching are in the same string, then
5802 set to the place to stop, otherwise, for now have to use
5803 the end of the first string. */
5805 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5806 == FIRST_STRING_P (regend
[regno
]))
5807 ? regend
[regno
] : end_match_1
);
5810 /* If necessary, advance to next segment in register
5814 if (dend2
== end_match_2
) break;
5815 if (dend2
== regend
[regno
]) break;
5817 /* End of string1 => advance to string2. */
5819 dend2
= regend
[regno
];
5821 /* At end of register contents => success */
5822 if (d2
== dend2
) break;
5824 /* If necessary, advance to next segment in data. */
5827 /* How many characters left in this segment to match. */
5830 /* Want how many consecutive characters we can match in
5831 one shot, so, if necessary, adjust the count. */
5832 if (mcnt
> dend2
- d2
)
5835 /* Compare that many; failure if mismatch, else move
5837 if (RE_TRANSLATE_P (translate
)
5838 ? bcmp_translate (d
, d2
, mcnt
, translate
, target_multibyte
)
5839 : memcmp (d
, d2
, mcnt
))
5844 d
+= mcnt
, d2
+= mcnt
;
5850 /* begline matches the empty string at the beginning of the string
5851 (unless `not_bol' is set in `bufp'), and after newlines. */
5853 DEBUG_PRINT1 ("EXECUTING begline.\n");
5855 if (AT_STRINGS_BEG (d
))
5857 if (!bufp
->not_bol
) break;
5862 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5866 /* In all other cases, we fail. */
5870 /* endline is the dual of begline. */
5872 DEBUG_PRINT1 ("EXECUTING endline.\n");
5874 if (AT_STRINGS_END (d
))
5876 if (!bufp
->not_eol
) break;
5880 PREFETCH_NOLIMIT ();
5887 /* Match at the very beginning of the data. */
5889 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5890 if (AT_STRINGS_BEG (d
))
5895 /* Match at the very end of the data. */
5897 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5898 if (AT_STRINGS_END (d
))
5903 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5904 pushes NULL as the value for the string on the stack. Then
5905 `POP_FAILURE_POINT' will keep the current value for the
5906 string, instead of restoring it. To see why, consider
5907 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5908 then the . fails against the \n. But the next thing we want
5909 to do is match the \n against the \n; if we restored the
5910 string value, we would be back at the foo.
5912 Because this is used only in specific cases, we don't need to
5913 check all the things that `on_failure_jump' does, to make
5914 sure the right things get saved on the stack. Hence we don't
5915 share its code. The only reason to push anything on the
5916 stack at all is that otherwise we would have to change
5917 `anychar's code to do something besides goto fail in this
5918 case; that seems worse than this. */
5919 case on_failure_keep_string_jump
:
5920 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5921 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5924 PUSH_FAILURE_POINT (p
- 3, NULL
);
5927 /* A nasty loop is introduced by the non-greedy *? and +?.
5928 With such loops, the stack only ever contains one failure point
5929 at a time, so that a plain on_failure_jump_loop kind of
5930 cycle detection cannot work. Worse yet, such a detection
5931 can not only fail to detect a cycle, but it can also wrongly
5932 detect a cycle (between different instantiations of the same
5934 So the method used for those nasty loops is a little different:
5935 We use a special cycle-detection-stack-frame which is pushed
5936 when the on_failure_jump_nastyloop failure-point is *popped*.
5937 This special frame thus marks the beginning of one iteration
5938 through the loop and we can hence easily check right here
5939 whether something matched between the beginning and the end of
5941 case on_failure_jump_nastyloop
:
5942 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5943 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5946 assert ((re_opcode_t
)p
[-4] == no_op
);
5949 CHECK_INFINITE_LOOP (p
- 4, d
);
5951 /* If there's a cycle, just continue without pushing
5952 this failure point. The failure point is the "try again"
5953 option, which shouldn't be tried.
5954 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5955 PUSH_FAILURE_POINT (p
- 3, d
);
5959 /* Simple loop detecting on_failure_jump: just check on the
5960 failure stack if the same spot was already hit earlier. */
5961 case on_failure_jump_loop
:
5963 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5964 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5968 CHECK_INFINITE_LOOP (p
- 3, d
);
5970 /* If there's a cycle, get out of the loop, as if the matching
5971 had failed. We used to just `goto fail' here, but that was
5972 aborting the search a bit too early: we want to keep the
5973 empty-loop-match and keep matching after the loop.
5974 We want (x?)*y\1z to match both xxyz and xxyxz. */
5977 PUSH_FAILURE_POINT (p
- 3, d
);
5982 /* Uses of on_failure_jump:
5984 Each alternative starts with an on_failure_jump that points
5985 to the beginning of the next alternative. Each alternative
5986 except the last ends with a jump that in effect jumps past
5987 the rest of the alternatives. (They really jump to the
5988 ending jump of the following alternative, because tensioning
5989 these jumps is a hassle.)
5991 Repeats start with an on_failure_jump that points past both
5992 the repetition text and either the following jump or
5993 pop_failure_jump back to this on_failure_jump. */
5994 case on_failure_jump
:
5995 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5996 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5999 PUSH_FAILURE_POINT (p
-3, d
);
6002 /* This operation is used for greedy *.
6003 Compare the beginning of the repeat with what in the
6004 pattern follows its end. If we can establish that there
6005 is nothing that they would both match, i.e., that we
6006 would have to backtrack because of (as in, e.g., `a*a')
6007 then we can use a non-backtracking loop based on
6008 on_failure_keep_string_jump instead of on_failure_jump. */
6009 case on_failure_jump_smart
:
6010 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6011 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
6014 re_char
*p1
= p
; /* Next operation. */
6015 /* Here, we discard `const', making re_match non-reentrant. */
6016 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
6017 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
6019 p
-= 3; /* Reset so that we will re-execute the
6020 instruction once it's been changed. */
6022 EXTRACT_NUMBER (mcnt
, p2
- 2);
6024 /* Ensure this is a indeed the trivial kind of loop
6025 we are expecting. */
6026 assert (skip_one_char (p1
) == p2
- 3);
6027 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
6028 DEBUG_STATEMENT (debug
+= 2);
6029 if (mutually_exclusive_p (bufp
, p1
, p2
))
6031 /* Use a fast `on_failure_keep_string_jump' loop. */
6032 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
6033 *p3
= (unsigned char) on_failure_keep_string_jump
;
6034 STORE_NUMBER (p2
- 2, mcnt
+ 3);
6038 /* Default to a safe `on_failure_jump' loop. */
6039 DEBUG_PRINT1 (" smart default => slow loop.\n");
6040 *p3
= (unsigned char) on_failure_jump
;
6042 DEBUG_STATEMENT (debug
-= 2);
6046 /* Unconditionally jump (without popping any failure points). */
6049 IMMEDIATE_QUIT_CHECK
;
6050 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
6051 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
6052 p
+= mcnt
; /* Do the jump. */
6053 DEBUG_PRINT2 ("(to %p).\n", p
);
6057 /* Have to succeed matching what follows at least n times.
6058 After that, handle like `on_failure_jump'. */
6060 /* Signedness doesn't matter since we only compare MCNT to 0. */
6061 EXTRACT_NUMBER (mcnt
, p
+ 2);
6062 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
6064 /* Originally, mcnt is how many times we HAVE to succeed. */
6067 /* Here, we discard `const', making re_match non-reentrant. */
6068 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
6071 PUSH_NUMBER (p2
, mcnt
);
6074 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
6079 /* Signedness doesn't matter since we only compare MCNT to 0. */
6080 EXTRACT_NUMBER (mcnt
, p
+ 2);
6081 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
6083 /* Originally, this is how many times we CAN jump. */
6086 /* Here, we discard `const', making re_match non-reentrant. */
6087 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
6089 PUSH_NUMBER (p2
, mcnt
);
6090 goto unconditional_jump
;
6092 /* If don't have to jump any more, skip over the rest of command. */
6099 unsigned char *p2
; /* Location of the counter. */
6100 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
6102 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6103 /* Here, we discard `const', making re_match non-reentrant. */
6104 p2
= (unsigned char*) p
+ mcnt
;
6105 /* Signedness doesn't matter since we only copy MCNT's bits . */
6106 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6107 DEBUG_PRINT3 (" Setting %p to %d.\n", p2
, mcnt
);
6108 PUSH_NUMBER (p2
, mcnt
);
6114 not = (re_opcode_t
) *(p
- 1) == notwordbound
;
6115 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
6117 /* We SUCCEED (or FAIL) in one of the following cases: */
6119 /* Case 1: D is at the beginning or the end of string. */
6120 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
6124 /* C1 is the character before D, S1 is the syntax of C1, C2
6125 is the character at D, and S2 is the syntax of C2. */
6130 int offset
= PTR_TO_OFFSET (d
- 1);
6131 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6132 UPDATE_SYNTAX_TABLE (charpos
);
6134 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6137 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
6139 PREFETCH_NOLIMIT ();
6140 GET_CHAR_AFTER (c2
, d
, dummy
);
6143 if (/* Case 2: Only one of S1 and S2 is Sword. */
6144 ((s1
== Sword
) != (s2
== Sword
))
6145 /* Case 3: Both of S1 and S2 are Sword, and macro
6146 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
6147 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
6156 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
6158 /* We FAIL in one of the following cases: */
6160 /* Case 1: D is at the end of string. */
6161 if (AT_STRINGS_END (d
))
6165 /* C1 is the character before D, S1 is the syntax of C1, C2
6166 is the character at D, and S2 is the syntax of C2. */
6171 int offset
= PTR_TO_OFFSET (d
);
6172 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6173 UPDATE_SYNTAX_TABLE (charpos
);
6176 GET_CHAR_AFTER (c2
, d
, dummy
);
6179 /* Case 2: S2 is not Sword. */
6183 /* Case 3: D is not at the beginning of string ... */
6184 if (!AT_STRINGS_BEG (d
))
6186 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6188 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6192 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
6194 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6201 DEBUG_PRINT1 ("EXECUTING wordend.\n");
6203 /* We FAIL in one of the following cases: */
6205 /* Case 1: D is at the beginning of string. */
6206 if (AT_STRINGS_BEG (d
))
6210 /* C1 is the character before D, S1 is the syntax of C1, C2
6211 is the character at D, and S2 is the syntax of C2. */
6216 int offset
= PTR_TO_OFFSET (d
) - 1;
6217 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6218 UPDATE_SYNTAX_TABLE (charpos
);
6220 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6223 /* Case 2: S1 is not Sword. */
6227 /* Case 3: D is not at the end of string ... */
6228 if (!AT_STRINGS_END (d
))
6230 PREFETCH_NOLIMIT ();
6231 GET_CHAR_AFTER (c2
, d
, dummy
);
6233 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
6237 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6239 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6246 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6248 /* We FAIL in one of the following cases: */
6250 /* Case 1: D is at the end of string. */
6251 if (AT_STRINGS_END (d
))
6255 /* C1 is the character before D, S1 is the syntax of C1, C2
6256 is the character at D, and S2 is the syntax of C2. */
6260 int offset
= PTR_TO_OFFSET (d
);
6261 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6262 UPDATE_SYNTAX_TABLE (charpos
);
6265 c2
= RE_STRING_CHAR (d
, dend
- d
, target_multibyte
);
6268 /* Case 2: S2 is neither Sword nor Ssymbol. */
6269 if (s2
!= Sword
&& s2
!= Ssymbol
)
6272 /* Case 3: D is not at the beginning of string ... */
6273 if (!AT_STRINGS_BEG (d
))
6275 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6277 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6281 /* ... and S1 is Sword or Ssymbol. */
6282 if (s1
== Sword
|| s1
== Ssymbol
)
6289 DEBUG_PRINT1 ("EXECUTING symend.\n");
6291 /* We FAIL in one of the following cases: */
6293 /* Case 1: D is at the beginning of string. */
6294 if (AT_STRINGS_BEG (d
))
6298 /* C1 is the character before D, S1 is the syntax of C1, C2
6299 is the character at D, and S2 is the syntax of C2. */
6303 int offset
= PTR_TO_OFFSET (d
) - 1;
6304 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6305 UPDATE_SYNTAX_TABLE (charpos
);
6307 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6310 /* Case 2: S1 is neither Ssymbol nor Sword. */
6311 if (s1
!= Sword
&& s1
!= Ssymbol
)
6314 /* Case 3: D is not at the end of string ... */
6315 if (!AT_STRINGS_END (d
))
6317 PREFETCH_NOLIMIT ();
6318 c2
= RE_STRING_CHAR (d
, dend
- d
, target_multibyte
);
6320 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
6324 /* ... and S2 is Sword or Ssymbol. */
6325 if (s2
== Sword
|| s2
== Ssymbol
)
6333 not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
6335 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
6339 int offset
= PTR_TO_OFFSET (d
);
6340 int pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6341 UPDATE_SYNTAX_TABLE (pos1
);
6348 GET_CHAR_AFTER (c
, d
, len
);
6349 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
6357 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6358 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
6363 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6364 if (PTR_BYTE_POS (d
) != PT_BYTE
)
6369 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6370 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
6375 case notcategoryspec
:
6376 not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
6378 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt
);
6384 GET_CHAR_AFTER (c
, d
, len
);
6385 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
6396 continue; /* Successfully executed one pattern command; keep going. */
6399 /* We goto here if a matching operation fails. */
6401 IMMEDIATE_QUIT_CHECK
;
6402 if (!FAIL_STACK_EMPTY ())
6405 /* A restart point is known. Restore to that state. */
6406 DEBUG_PRINT1 ("\nFAIL:\n");
6407 POP_FAILURE_POINT (str
, pat
);
6408 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *pat
++))
6410 case on_failure_keep_string_jump
:
6411 assert (str
== NULL
);
6412 goto continue_failure_jump
;
6414 case on_failure_jump_nastyloop
:
6415 assert ((re_opcode_t
)pat
[-2] == no_op
);
6416 PUSH_FAILURE_POINT (pat
- 2, str
);
6419 case on_failure_jump_loop
:
6420 case on_failure_jump
:
6423 continue_failure_jump
:
6424 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
6429 /* A special frame used for nastyloops. */
6436 assert (p
>= bufp
->buffer
&& p
<= pend
);
6438 if (d
>= string1
&& d
<= end1
)
6442 break; /* Matching at this starting point really fails. */
6446 goto restore_best_regs
;
6450 return -1; /* Failure to match. */
6453 /* Subroutine definitions for re_match_2. */
6455 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6456 bytes; nonzero otherwise. */
6459 bcmp_translate (s1
, s2
, len
, translate
, target_multibyte
)
6462 RE_TRANSLATE_TYPE translate
;
6463 const int target_multibyte
;
6465 register re_char
*p1
= s1
, *p2
= s2
;
6466 re_char
*p1_end
= s1
+ len
;
6467 re_char
*p2_end
= s2
+ len
;
6469 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6470 different lengths, but relying on a single `len' would break this. -sm */
6471 while (p1
< p1_end
&& p2
< p2_end
)
6473 int p1_charlen
, p2_charlen
;
6474 re_wchar_t p1_ch
, p2_ch
;
6476 GET_CHAR_AFTER (p1_ch
, p1
, p1_charlen
);
6477 GET_CHAR_AFTER (p2_ch
, p2
, p2_charlen
);
6479 if (RE_TRANSLATE (translate
, p1_ch
)
6480 != RE_TRANSLATE (translate
, p2_ch
))
6483 p1
+= p1_charlen
, p2
+= p2_charlen
;
6486 if (p1
!= p1_end
|| p2
!= p2_end
)
6492 /* Entry points for GNU code. */
6494 /* re_compile_pattern is the GNU regular expression compiler: it
6495 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6496 Returns 0 if the pattern was valid, otherwise an error string.
6498 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6499 are set in BUFP on entry.
6501 We call regex_compile to do the actual compilation. */
6504 re_compile_pattern (pattern
, length
, bufp
)
6505 const char *pattern
;
6507 struct re_pattern_buffer
*bufp
;
6512 gl_state
.current_syntax_table
= current_buffer
->syntax_table
;
6515 /* GNU code is written to assume at least RE_NREGS registers will be set
6516 (and at least one extra will be -1). */
6517 bufp
->regs_allocated
= REGS_UNALLOCATED
;
6519 /* And GNU code determines whether or not to get register information
6520 by passing null for the REGS argument to re_match, etc., not by
6524 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
6528 return gettext (re_error_msgid
[(int) ret
]);
6530 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6532 /* Entry points compatible with 4.2 BSD regex library. We don't define
6533 them unless specifically requested. */
6535 #if defined _REGEX_RE_COMP || defined _LIBC
6537 /* BSD has one and only one pattern buffer. */
6538 static struct re_pattern_buffer re_comp_buf
;
6542 /* Make these definitions weak in libc, so POSIX programs can redefine
6543 these names if they don't use our functions, and still use
6544 regcomp/regexec below without link errors. */
6554 if (!re_comp_buf
.buffer
)
6555 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6556 return (char *) gettext ("No previous regular expression");
6560 if (!re_comp_buf
.buffer
)
6562 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
6563 if (re_comp_buf
.buffer
== NULL
)
6564 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6565 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6566 re_comp_buf
.allocated
= 200;
6568 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6569 if (re_comp_buf
.fastmap
== NULL
)
6570 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6571 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6574 /* Since `re_exec' always passes NULL for the `regs' argument, we
6575 don't need to initialize the pattern buffer fields which affect it. */
6577 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6582 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6583 return (char *) gettext (re_error_msgid
[(int) ret
]);
6594 const int len
= strlen (s
);
6596 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
6598 #endif /* _REGEX_RE_COMP */
6600 /* POSIX.2 functions. Don't define these for Emacs. */
6604 /* regcomp takes a regular expression as a string and compiles it.
6606 PREG is a regex_t *. We do not expect any fields to be initialized,
6607 since POSIX says we shouldn't. Thus, we set
6609 `buffer' to the compiled pattern;
6610 `used' to the length of the compiled pattern;
6611 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6612 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6613 RE_SYNTAX_POSIX_BASIC;
6614 `fastmap' to an allocated space for the fastmap;
6615 `fastmap_accurate' to zero;
6616 `re_nsub' to the number of subexpressions in PATTERN.
6618 PATTERN is the address of the pattern string.
6620 CFLAGS is a series of bits which affect compilation.
6622 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6623 use POSIX basic syntax.
6625 If REG_NEWLINE is set, then . and [^...] don't match newline.
6626 Also, regexec will try a match beginning after every newline.
6628 If REG_ICASE is set, then we considers upper- and lowercase
6629 versions of letters to be equivalent when matching.
6631 If REG_NOSUB is set, then when PREG is passed to regexec, that
6632 routine will report only success or failure, and nothing about the
6635 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6636 the return codes and their meanings.) */
6639 regcomp (preg
, pattern
, cflags
)
6640 regex_t
*__restrict preg
;
6641 const char *__restrict pattern
;
6646 = (cflags
& REG_EXTENDED
) ?
6647 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6649 /* regex_compile will allocate the space for the compiled pattern. */
6651 preg
->allocated
= 0;
6654 /* Try to allocate space for the fastmap. */
6655 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6657 if (cflags
& REG_ICASE
)
6662 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
6663 * sizeof (*(RE_TRANSLATE_TYPE
)0));
6664 if (preg
->translate
== NULL
)
6665 return (int) REG_ESPACE
;
6667 /* Map uppercase characters to corresponding lowercase ones. */
6668 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6669 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6672 preg
->translate
= NULL
;
6674 /* If REG_NEWLINE is set, newlines are treated differently. */
6675 if (cflags
& REG_NEWLINE
)
6676 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6677 syntax
&= ~RE_DOT_NEWLINE
;
6678 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6681 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6683 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6685 /* POSIX says a null character in the pattern terminates it, so we
6686 can use strlen here in compiling the pattern. */
6687 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6689 /* POSIX doesn't distinguish between an unmatched open-group and an
6690 unmatched close-group: both are REG_EPAREN. */
6691 if (ret
== REG_ERPAREN
)
6694 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6695 { /* Compute the fastmap now, since regexec cannot modify the pattern
6697 re_compile_fastmap (preg
);
6698 if (preg
->can_be_null
)
6699 { /* The fastmap can't be used anyway. */
6700 free (preg
->fastmap
);
6701 preg
->fastmap
= NULL
;
6706 WEAK_ALIAS (__regcomp
, regcomp
)
6709 /* regexec searches for a given pattern, specified by PREG, in the
6712 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6713 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6714 least NMATCH elements, and we set them to the offsets of the
6715 corresponding matched substrings.
6717 EFLAGS specifies `execution flags' which affect matching: if
6718 REG_NOTBOL is set, then ^ does not match at the beginning of the
6719 string; if REG_NOTEOL is set, then $ does not match at the end.
6721 We return 0 if we find a match and REG_NOMATCH if not. */
6724 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
6725 const regex_t
*__restrict preg
;
6726 const char *__restrict string
;
6728 regmatch_t pmatch
[__restrict_arr
];
6732 struct re_registers regs
;
6733 regex_t private_preg
;
6734 int len
= strlen (string
);
6735 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6737 private_preg
= *preg
;
6739 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6740 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6742 /* The user has told us exactly how many registers to return
6743 information about, via `nmatch'. We have to pass that on to the
6744 matching routines. */
6745 private_preg
.regs_allocated
= REGS_FIXED
;
6749 regs
.num_regs
= nmatch
;
6750 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6751 if (regs
.start
== NULL
)
6752 return (int) REG_NOMATCH
;
6753 regs
.end
= regs
.start
+ nmatch
;
6756 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6757 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6758 was a little bit longer but still only matching the real part.
6759 This works because the `endline' will check for a '\n' and will find a
6760 '\0', correctly deciding that this is not the end of a line.
6761 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6762 a convenient '\0' there. For all we know, the string could be preceded
6763 by '\n' which would throw things off. */
6765 /* Perform the searching operation. */
6766 ret
= re_search (&private_preg
, string
, len
,
6767 /* start: */ 0, /* range: */ len
,
6768 want_reg_info
? ®s
: (struct re_registers
*) 0);
6770 /* Copy the register information to the POSIX structure. */
6777 for (r
= 0; r
< nmatch
; r
++)
6779 pmatch
[r
].rm_so
= regs
.start
[r
];
6780 pmatch
[r
].rm_eo
= regs
.end
[r
];
6784 /* If we needed the temporary register info, free the space now. */
6788 /* We want zero return to mean success, unlike `re_search'. */
6789 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
6791 WEAK_ALIAS (__regexec
, regexec
)
6794 /* Returns a message corresponding to an error code, ERR_CODE, returned
6795 from either regcomp or regexec. We don't use PREG here.
6797 ERR_CODE was previously called ERRCODE, but that name causes an
6798 error with msvc8 compiler. */
6801 regerror (err_code
, preg
, errbuf
, errbuf_size
)
6803 const regex_t
*preg
;
6811 || err_code
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6812 /* Only error codes returned by the rest of the code should be passed
6813 to this routine. If we are given anything else, or if other regex
6814 code generates an invalid error code, then the program has a bug.
6815 Dump core so we can fix it. */
6818 msg
= gettext (re_error_msgid
[err_code
]);
6820 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6822 if (errbuf_size
!= 0)
6824 if (msg_size
> errbuf_size
)
6826 strncpy (errbuf
, msg
, errbuf_size
- 1);
6827 errbuf
[errbuf_size
- 1] = 0;
6830 strcpy (errbuf
, msg
);
6835 WEAK_ALIAS (__regerror
, regerror
)
6838 /* Free dynamically allocated space used by PREG. */
6844 if (preg
->buffer
!= NULL
)
6845 free (preg
->buffer
);
6846 preg
->buffer
= NULL
;
6848 preg
->allocated
= 0;
6851 if (preg
->fastmap
!= NULL
)
6852 free (preg
->fastmap
);
6853 preg
->fastmap
= NULL
;
6854 preg
->fastmap_accurate
= 0;
6856 if (preg
->translate
!= NULL
)
6857 free (preg
->translate
);
6858 preg
->translate
= NULL
;
6860 WEAK_ALIAS (__regfree
, regfree
)
6862 #endif /* not emacs */
6864 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6865 (do not change this comment) */