src/w32*.c: Convert function definitions to standard C.
[emacs.git] / src / regex.c
blob10ab857b00a1333dfb2f9f1098d9246443b7dad9
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
7 Free Software Foundation, Inc.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
22 USA. */
24 /* TODO:
25 - structure the opcode space into opcode+flag.
26 - merge with glibc's regex.[ch].
27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
33 /* AIX requires this to be the first thing in the file. */
34 #if defined _AIX && !defined REGEX_MALLOC
35 #pragma alloca
36 #endif
38 #ifdef HAVE_CONFIG_H
39 # include <config.h>
40 #endif
42 #if defined STDC_HEADERS && !defined emacs
43 # include <stddef.h>
44 #else
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
47 #endif
49 /* Whether to use ISO C Amendment 1 wide char functions.
50 Those should not be used for Emacs since it uses its own. */
51 #if defined _LIBC
52 #define WIDE_CHAR_SUPPORT 1
53 #else
54 #define WIDE_CHAR_SUPPORT \
55 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
56 #endif
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
60 #if WIDE_CHAR_SUPPORT
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
62 # include <wchar.h>
63 # include <wctype.h>
64 #endif
66 #ifdef _LIBC
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(err_code, preg, errbuf, errbuf_size) \
72 __regerror(err_code, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88 /* Make sure we call libc's function even if the user overrides them. */
89 # define btowc __btowc
90 # define iswctype __iswctype
91 # define wctype __wctype
93 # define WEAK_ALIAS(a,b) weak_alias (a, b)
95 /* We are also using some library internals. */
96 # include <locale/localeinfo.h>
97 # include <locale/elem-hash.h>
98 # include <langinfo.h>
99 #else
100 # define WEAK_ALIAS(a,b)
101 #endif
103 /* This is for other GNU distributions with internationalized messages. */
104 #if HAVE_LIBINTL_H || defined _LIBC
105 # include <libintl.h>
106 #else
107 # define gettext(msgid) (msgid)
108 #endif
110 #ifndef gettext_noop
111 /* This define is so xgettext can find the internationalizable
112 strings. */
113 # define gettext_noop(String) String
114 #endif
116 /* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
118 #ifdef emacs
120 # include <setjmp.h>
121 # include "lisp.h"
122 # include "buffer.h"
124 /* Make syntax table lookup grant data in gl_state. */
125 # define SYNTAX_ENTRY_VIA_PROPERTY
127 # include "syntax.h"
128 # include "character.h"
129 # include "category.h"
131 # ifdef malloc
132 # undef malloc
133 # endif
134 # define malloc xmalloc
135 # ifdef realloc
136 # undef realloc
137 # endif
138 # define realloc xrealloc
139 # ifdef free
140 # undef free
141 # endif
142 # define free xfree
144 /* Converts the pointer to the char to BEG-based offset from the start. */
145 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
146 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
148 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
149 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
150 # define RE_STRING_CHAR(p, multibyte) \
151 (multibyte ? (STRING_CHAR (p)) : (*(p)))
152 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
153 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
155 # define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
157 # define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
159 /* Set C a (possibly converted to multibyte) character before P. P
160 points into a string which is the virtual concatenation of STR1
161 (which ends at END1) or STR2 (which ends at END2). */
162 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
163 do { \
164 if (target_multibyte) \
166 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
167 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
168 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
169 c = STRING_CHAR (dtemp); \
171 else \
173 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
174 (c) = RE_CHAR_TO_MULTIBYTE (c); \
176 } while (0)
178 /* Set C a (possibly converted to multibyte) character at P, and set
179 LEN to the byte length of that character. */
180 # define GET_CHAR_AFTER(c, p, len) \
181 do { \
182 if (target_multibyte) \
183 (c) = STRING_CHAR_AND_LENGTH (p, len); \
184 else \
186 (c) = *p; \
187 len = 1; \
188 (c) = RE_CHAR_TO_MULTIBYTE (c); \
190 } while (0)
192 #else /* not emacs */
194 /* If we are not linking with Emacs proper,
195 we can't use the relocating allocator
196 even if config.h says that we can. */
197 # undef REL_ALLOC
199 # if defined STDC_HEADERS || defined _LIBC
200 # include <stdlib.h>
201 # else
202 char *malloc ();
203 char *realloc ();
204 # endif
206 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
208 void *
209 xmalloc (size)
210 size_t size;
212 register void *val;
213 val = (void *) malloc (size);
214 if (!val && size)
216 write (2, "virtual memory exhausted\n", 25);
217 exit (1);
219 return val;
222 void *
223 xrealloc (block, size)
224 void *block;
225 size_t size;
227 register void *val;
228 /* We must call malloc explicitly when BLOCK is 0, since some
229 reallocs don't do this. */
230 if (! block)
231 val = (void *) malloc (size);
232 else
233 val = (void *) realloc (block, size);
234 if (!val && size)
236 write (2, "virtual memory exhausted\n", 25);
237 exit (1);
239 return val;
242 # ifdef malloc
243 # undef malloc
244 # endif
245 # define malloc xmalloc
246 # ifdef realloc
247 # undef realloc
248 # endif
249 # define realloc xrealloc
251 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
252 If nothing else has been done, use the method below. */
253 # ifdef INHIBIT_STRING_HEADER
254 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
255 # if !defined bzero && !defined bcopy
256 # undef INHIBIT_STRING_HEADER
257 # endif
258 # endif
259 # endif
261 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
262 This is used in most programs--a few other programs avoid this
263 by defining INHIBIT_STRING_HEADER. */
264 # ifndef INHIBIT_STRING_HEADER
265 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
266 # include <string.h>
267 # ifndef bzero
268 # ifndef _LIBC
269 # define bzero(s, n) (memset (s, '\0', n), (s))
270 # else
271 # define bzero(s, n) __bzero (s, n)
272 # endif
273 # endif
274 # else
275 # include <strings.h>
276 # ifndef memcmp
277 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
278 # endif
279 # ifndef memcpy
280 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
281 # endif
282 # endif
283 # endif
285 /* Define the syntax stuff for \<, \>, etc. */
287 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
288 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
290 # define SWITCH_ENUM_CAST(x) (x)
292 /* Dummy macros for non-Emacs environments. */
293 # define CHAR_CHARSET(c) 0
294 # define CHARSET_LEADING_CODE_BASE(c) 0
295 # define MAX_MULTIBYTE_LENGTH 1
296 # define RE_MULTIBYTE_P(x) 0
297 # define RE_TARGET_MULTIBYTE_P(x) 0
298 # define WORD_BOUNDARY_P(c1, c2) (0)
299 # define CHAR_HEAD_P(p) (1)
300 # define SINGLE_BYTE_CHAR_P(c) (1)
301 # define SAME_CHARSET_P(c1, c2) (1)
302 # define BYTES_BY_CHAR_HEAD(p) (1)
303 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
304 # define STRING_CHAR(p) (*(p))
305 # define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
306 # define CHAR_STRING(c, s) (*(s) = (c), 1)
307 # define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
308 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
309 # define RE_CHAR_TO_MULTIBYTE(c) (c)
310 # define RE_CHAR_TO_UNIBYTE(c) (c)
311 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
312 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
313 # define GET_CHAR_AFTER(c, p, len) \
314 (c = *p, len = 1)
315 # define MAKE_CHAR(charset, c1, c2) (c1)
316 # define BYTE8_TO_CHAR(c) (c)
317 # define CHAR_BYTE8_P(c) (0)
318 # define CHAR_LEADING_CODE(c) (c)
320 #endif /* not emacs */
322 #ifndef RE_TRANSLATE
323 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
324 # define RE_TRANSLATE_P(TBL) (TBL)
325 #endif
327 /* Get the interface, including the syntax bits. */
328 #include "regex.h"
330 /* isalpha etc. are used for the character classes. */
331 #include <ctype.h>
333 #ifdef emacs
335 /* 1 if C is an ASCII character. */
336 # define IS_REAL_ASCII(c) ((c) < 0200)
338 /* 1 if C is a unibyte character. */
339 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
341 /* The Emacs definitions should not be directly affected by locales. */
343 /* In Emacs, these are only used for single-byte characters. */
344 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
345 # define ISCNTRL(c) ((c) < ' ')
346 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
347 || ((c) >= 'a' && (c) <= 'f') \
348 || ((c) >= 'A' && (c) <= 'F'))
350 /* This is only used for single-byte characters. */
351 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
353 /* The rest must handle multibyte characters. */
355 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
356 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
357 : 1)
359 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
360 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
361 : 1)
363 # define ISALNUM(c) (IS_REAL_ASCII (c) \
364 ? (((c) >= 'a' && (c) <= 'z') \
365 || ((c) >= 'A' && (c) <= 'Z') \
366 || ((c) >= '0' && (c) <= '9')) \
367 : SYNTAX (c) == Sword)
369 # define ISALPHA(c) (IS_REAL_ASCII (c) \
370 ? (((c) >= 'a' && (c) <= 'z') \
371 || ((c) >= 'A' && (c) <= 'Z')) \
372 : SYNTAX (c) == Sword)
374 # define ISLOWER(c) (LOWERCASEP (c))
376 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
377 ? ((c) > ' ' && (c) < 0177 \
378 && !(((c) >= 'a' && (c) <= 'z') \
379 || ((c) >= 'A' && (c) <= 'Z') \
380 || ((c) >= '0' && (c) <= '9'))) \
381 : SYNTAX (c) != Sword)
383 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
385 # define ISUPPER(c) (UPPERCASEP (c))
387 # define ISWORD(c) (SYNTAX (c) == Sword)
389 #else /* not emacs */
391 /* Jim Meyering writes:
393 "... Some ctype macros are valid only for character codes that
394 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
395 using /bin/cc or gcc but without giving an ansi option). So, all
396 ctype uses should be through macros like ISPRINT... If
397 STDC_HEADERS is defined, then autoconf has verified that the ctype
398 macros don't need to be guarded with references to isascii. ...
399 Defining isascii to 1 should let any compiler worth its salt
400 eliminate the && through constant folding."
401 Solaris defines some of these symbols so we must undefine them first. */
403 # undef ISASCII
404 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
405 # define ISASCII(c) 1
406 # else
407 # define ISASCII(c) isascii(c)
408 # endif
410 /* 1 if C is an ASCII character. */
411 # define IS_REAL_ASCII(c) ((c) < 0200)
413 /* This distinction is not meaningful, except in Emacs. */
414 # define ISUNIBYTE(c) 1
416 # ifdef isblank
417 # define ISBLANK(c) (ISASCII (c) && isblank (c))
418 # else
419 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
420 # endif
421 # ifdef isgraph
422 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
423 # else
424 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
425 # endif
427 # undef ISPRINT
428 # define ISPRINT(c) (ISASCII (c) && isprint (c))
429 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
430 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
431 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
432 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
433 # define ISLOWER(c) (ISASCII (c) && islower (c))
434 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
435 # define ISSPACE(c) (ISASCII (c) && isspace (c))
436 # define ISUPPER(c) (ISASCII (c) && isupper (c))
437 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
439 # define ISWORD(c) ISALPHA(c)
441 # ifdef _tolower
442 # define TOLOWER(c) _tolower(c)
443 # else
444 # define TOLOWER(c) tolower(c)
445 # endif
447 /* How many characters in the character set. */
448 # define CHAR_SET_SIZE 256
450 # ifdef SYNTAX_TABLE
452 extern char *re_syntax_table;
454 # else /* not SYNTAX_TABLE */
456 static char re_syntax_table[CHAR_SET_SIZE];
458 static void
459 init_syntax_once ()
461 register int c;
462 static int done = 0;
464 if (done)
465 return;
467 bzero (re_syntax_table, sizeof re_syntax_table);
469 for (c = 0; c < CHAR_SET_SIZE; ++c)
470 if (ISALNUM (c))
471 re_syntax_table[c] = Sword;
473 re_syntax_table['_'] = Ssymbol;
475 done = 1;
478 # endif /* not SYNTAX_TABLE */
480 # define SYNTAX(c) re_syntax_table[(c)]
482 #endif /* not emacs */
484 #ifndef NULL
485 # define NULL (void *)0
486 #endif
488 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
489 since ours (we hope) works properly with all combinations of
490 machines, compilers, `char' and `unsigned char' argument types.
491 (Per Bothner suggested the basic approach.) */
492 #undef SIGN_EXTEND_CHAR
493 #if __STDC__
494 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
495 #else /* not __STDC__ */
496 /* As in Harbison and Steele. */
497 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
498 #endif
500 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
501 use `alloca' instead of `malloc'. This is because using malloc in
502 re_search* or re_match* could cause memory leaks when C-g is used in
503 Emacs; also, malloc is slower and causes storage fragmentation. On
504 the other hand, malloc is more portable, and easier to debug.
506 Because we sometimes use alloca, some routines have to be macros,
507 not functions -- `alloca'-allocated space disappears at the end of the
508 function it is called in. */
510 #ifdef REGEX_MALLOC
512 # define REGEX_ALLOCATE malloc
513 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
514 # define REGEX_FREE free
516 #else /* not REGEX_MALLOC */
518 /* Emacs already defines alloca, sometimes. */
519 # ifndef alloca
521 /* Make alloca work the best possible way. */
522 # ifdef __GNUC__
523 # define alloca __builtin_alloca
524 # else /* not __GNUC__ */
525 # ifdef HAVE_ALLOCA_H
526 # include <alloca.h>
527 # endif /* HAVE_ALLOCA_H */
528 # endif /* not __GNUC__ */
530 # endif /* not alloca */
532 # define REGEX_ALLOCATE alloca
534 /* Assumes a `char *destination' variable. */
535 # define REGEX_REALLOCATE(source, osize, nsize) \
536 (destination = (char *) alloca (nsize), \
537 memcpy (destination, source, osize))
539 /* No need to do anything to free, after alloca. */
540 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
542 #endif /* not REGEX_MALLOC */
544 /* Define how to allocate the failure stack. */
546 #if defined REL_ALLOC && defined REGEX_MALLOC
548 # define REGEX_ALLOCATE_STACK(size) \
549 r_alloc (&failure_stack_ptr, (size))
550 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
551 r_re_alloc (&failure_stack_ptr, (nsize))
552 # define REGEX_FREE_STACK(ptr) \
553 r_alloc_free (&failure_stack_ptr)
555 #else /* not using relocating allocator */
557 # ifdef REGEX_MALLOC
559 # define REGEX_ALLOCATE_STACK malloc
560 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
561 # define REGEX_FREE_STACK free
563 # else /* not REGEX_MALLOC */
565 # define REGEX_ALLOCATE_STACK alloca
567 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
568 REGEX_REALLOCATE (source, osize, nsize)
569 /* No need to explicitly free anything. */
570 # define REGEX_FREE_STACK(arg) ((void)0)
572 # endif /* not REGEX_MALLOC */
573 #endif /* not using relocating allocator */
576 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
577 `string1' or just past its end. This works if PTR is NULL, which is
578 a good thing. */
579 #define FIRST_STRING_P(ptr) \
580 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
582 /* (Re)Allocate N items of type T using malloc, or fail. */
583 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
584 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
585 #define RETALLOC_IF(addr, n, t) \
586 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
587 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
589 #define BYTEWIDTH 8 /* In bits. */
591 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
593 #undef MAX
594 #undef MIN
595 #define MAX(a, b) ((a) > (b) ? (a) : (b))
596 #define MIN(a, b) ((a) < (b) ? (a) : (b))
598 /* Type of source-pattern and string chars. */
599 typedef const unsigned char re_char;
601 typedef char boolean;
602 #define false 0
603 #define true 1
605 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
606 re_char *string1, int size1,
607 re_char *string2, int size2,
608 int pos,
609 struct re_registers *regs,
610 int stop));
612 /* These are the command codes that appear in compiled regular
613 expressions. Some opcodes are followed by argument bytes. A
614 command code can specify any interpretation whatsoever for its
615 arguments. Zero bytes may appear in the compiled regular expression. */
617 typedef enum
619 no_op = 0,
621 /* Succeed right away--no more backtracking. */
622 succeed,
624 /* Followed by one byte giving n, then by n literal bytes. */
625 exactn,
627 /* Matches any (more or less) character. */
628 anychar,
630 /* Matches any one char belonging to specified set. First
631 following byte is number of bitmap bytes. Then come bytes
632 for a bitmap saying which chars are in. Bits in each byte
633 are ordered low-bit-first. A character is in the set if its
634 bit is 1. A character too large to have a bit in the map is
635 automatically not in the set.
637 If the length byte has the 0x80 bit set, then that stuff
638 is followed by a range table:
639 2 bytes of flags for character sets (low 8 bits, high 8 bits)
640 See RANGE_TABLE_WORK_BITS below.
641 2 bytes, the number of pairs that follow (upto 32767)
642 pairs, each 2 multibyte characters,
643 each multibyte character represented as 3 bytes. */
644 charset,
646 /* Same parameters as charset, but match any character that is
647 not one of those specified. */
648 charset_not,
650 /* Start remembering the text that is matched, for storing in a
651 register. Followed by one byte with the register number, in
652 the range 0 to one less than the pattern buffer's re_nsub
653 field. */
654 start_memory,
656 /* Stop remembering the text that is matched and store it in a
657 memory register. Followed by one byte with the register
658 number, in the range 0 to one less than `re_nsub' in the
659 pattern buffer. */
660 stop_memory,
662 /* Match a duplicate of something remembered. Followed by one
663 byte containing the register number. */
664 duplicate,
666 /* Fail unless at beginning of line. */
667 begline,
669 /* Fail unless at end of line. */
670 endline,
672 /* Succeeds if at beginning of buffer (if emacs) or at beginning
673 of string to be matched (if not). */
674 begbuf,
676 /* Analogously, for end of buffer/string. */
677 endbuf,
679 /* Followed by two byte relative address to which to jump. */
680 jump,
682 /* Followed by two-byte relative address of place to resume at
683 in case of failure. */
684 on_failure_jump,
686 /* Like on_failure_jump, but pushes a placeholder instead of the
687 current string position when executed. */
688 on_failure_keep_string_jump,
690 /* Just like `on_failure_jump', except that it checks that we
691 don't get stuck in an infinite loop (matching an empty string
692 indefinitely). */
693 on_failure_jump_loop,
695 /* Just like `on_failure_jump_loop', except that it checks for
696 a different kind of loop (the kind that shows up with non-greedy
697 operators). This operation has to be immediately preceded
698 by a `no_op'. */
699 on_failure_jump_nastyloop,
701 /* A smart `on_failure_jump' used for greedy * and + operators.
702 It analyses the loop before which it is put and if the
703 loop does not require backtracking, it changes itself to
704 `on_failure_keep_string_jump' and short-circuits the loop,
705 else it just defaults to changing itself into `on_failure_jump'.
706 It assumes that it is pointing to just past a `jump'. */
707 on_failure_jump_smart,
709 /* Followed by two-byte relative address and two-byte number n.
710 After matching N times, jump to the address upon failure.
711 Does not work if N starts at 0: use on_failure_jump_loop
712 instead. */
713 succeed_n,
715 /* Followed by two-byte relative address, and two-byte number n.
716 Jump to the address N times, then fail. */
717 jump_n,
719 /* Set the following two-byte relative address to the
720 subsequent two-byte number. The address *includes* the two
721 bytes of number. */
722 set_number_at,
724 wordbeg, /* Succeeds if at word beginning. */
725 wordend, /* Succeeds if at word end. */
727 wordbound, /* Succeeds if at a word boundary. */
728 notwordbound, /* Succeeds if not at a word boundary. */
730 symbeg, /* Succeeds if at symbol beginning. */
731 symend, /* Succeeds if at symbol end. */
733 /* Matches any character whose syntax is specified. Followed by
734 a byte which contains a syntax code, e.g., Sword. */
735 syntaxspec,
737 /* Matches any character whose syntax is not that specified. */
738 notsyntaxspec
740 #ifdef emacs
741 ,before_dot, /* Succeeds if before point. */
742 at_dot, /* Succeeds if at point. */
743 after_dot, /* Succeeds if after point. */
745 /* Matches any character whose category-set contains the specified
746 category. The operator is followed by a byte which contains a
747 category code (mnemonic ASCII character). */
748 categoryspec,
750 /* Matches any character whose category-set does not contain the
751 specified category. The operator is followed by a byte which
752 contains the category code (mnemonic ASCII character). */
753 notcategoryspec
754 #endif /* emacs */
755 } re_opcode_t;
757 /* Common operations on the compiled pattern. */
759 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
761 #define STORE_NUMBER(destination, number) \
762 do { \
763 (destination)[0] = (number) & 0377; \
764 (destination)[1] = (number) >> 8; \
765 } while (0)
767 /* Same as STORE_NUMBER, except increment DESTINATION to
768 the byte after where the number is stored. Therefore, DESTINATION
769 must be an lvalue. */
771 #define STORE_NUMBER_AND_INCR(destination, number) \
772 do { \
773 STORE_NUMBER (destination, number); \
774 (destination) += 2; \
775 } while (0)
777 /* Put into DESTINATION a number stored in two contiguous bytes starting
778 at SOURCE. */
780 #define EXTRACT_NUMBER(destination, source) \
781 do { \
782 (destination) = *(source) & 0377; \
783 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
784 } while (0)
786 #ifdef DEBUG
787 static void extract_number _RE_ARGS ((int *dest, re_char *source));
788 static void
789 extract_number (dest, source)
790 int *dest;
791 re_char *source;
793 int temp = SIGN_EXTEND_CHAR (*(source + 1));
794 *dest = *source & 0377;
795 *dest += temp << 8;
798 # ifndef EXTRACT_MACROS /* To debug the macros. */
799 # undef EXTRACT_NUMBER
800 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
801 # endif /* not EXTRACT_MACROS */
803 #endif /* DEBUG */
805 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
806 SOURCE must be an lvalue. */
808 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
809 do { \
810 EXTRACT_NUMBER (destination, source); \
811 (source) += 2; \
812 } while (0)
814 #ifdef DEBUG
815 static void extract_number_and_incr _RE_ARGS ((int *destination,
816 re_char **source));
817 static void
818 extract_number_and_incr (destination, source)
819 int *destination;
820 re_char **source;
822 extract_number (destination, *source);
823 *source += 2;
826 # ifndef EXTRACT_MACROS
827 # undef EXTRACT_NUMBER_AND_INCR
828 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
829 extract_number_and_incr (&dest, &src)
830 # endif /* not EXTRACT_MACROS */
832 #endif /* DEBUG */
834 /* Store a multibyte character in three contiguous bytes starting
835 DESTINATION, and increment DESTINATION to the byte after where the
836 character is stored. Therefore, DESTINATION must be an lvalue. */
838 #define STORE_CHARACTER_AND_INCR(destination, character) \
839 do { \
840 (destination)[0] = (character) & 0377; \
841 (destination)[1] = ((character) >> 8) & 0377; \
842 (destination)[2] = (character) >> 16; \
843 (destination) += 3; \
844 } while (0)
846 /* Put into DESTINATION a character stored in three contiguous bytes
847 starting at SOURCE. */
849 #define EXTRACT_CHARACTER(destination, source) \
850 do { \
851 (destination) = ((source)[0] \
852 | ((source)[1] << 8) \
853 | ((source)[2] << 16)); \
854 } while (0)
857 /* Macros for charset. */
859 /* Size of bitmap of charset P in bytes. P is a start of charset,
860 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
861 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
863 /* Nonzero if charset P has range table. */
864 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
866 /* Return the address of range table of charset P. But not the start
867 of table itself, but the before where the number of ranges is
868 stored. `2 +' means to skip re_opcode_t and size of bitmap,
869 and the 2 bytes of flags at the start of the range table. */
870 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
872 /* Extract the bit flags that start a range table. */
873 #define CHARSET_RANGE_TABLE_BITS(p) \
874 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
875 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
877 /* Test if C is listed in the bitmap of charset P. */
878 #define CHARSET_LOOKUP_BITMAP(p, c) \
879 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
880 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
882 /* Return the address of end of RANGE_TABLE. COUNT is number of
883 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
884 is start of range and end of range. `* 3' is size of each start
885 and end. */
886 #define CHARSET_RANGE_TABLE_END(range_table, count) \
887 ((range_table) + (count) * 2 * 3)
889 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
890 COUNT is number of ranges in RANGE_TABLE. */
891 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
892 do \
894 re_wchar_t range_start, range_end; \
895 re_char *p; \
896 re_char *range_table_end \
897 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
899 for (p = (range_table); p < range_table_end; p += 2 * 3) \
901 EXTRACT_CHARACTER (range_start, p); \
902 EXTRACT_CHARACTER (range_end, p + 3); \
904 if (range_start <= (c) && (c) <= range_end) \
906 (not) = !(not); \
907 break; \
911 while (0)
913 /* Test if C is in range table of CHARSET. The flag NOT is negated if
914 C is listed in it. */
915 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
916 do \
918 /* Number of ranges in range table. */ \
919 int count; \
920 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
922 EXTRACT_NUMBER_AND_INCR (count, range_table); \
923 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
925 while (0)
927 /* If DEBUG is defined, Regex prints many voluminous messages about what
928 it is doing (if the variable `debug' is nonzero). If linked with the
929 main program in `iregex.c', you can enter patterns and strings
930 interactively. And if linked with the main program in `main.c' and
931 the other test files, you can run the already-written tests. */
933 #ifdef DEBUG
935 /* We use standard I/O for debugging. */
936 # include <stdio.h>
938 /* It is useful to test things that ``must'' be true when debugging. */
939 # include <assert.h>
941 static int debug = -100000;
943 # define DEBUG_STATEMENT(e) e
944 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
945 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
946 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
947 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
948 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
949 if (debug > 0) print_partial_compiled_pattern (s, e)
950 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
951 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
954 /* Print the fastmap in human-readable form. */
956 void
957 print_fastmap (fastmap)
958 char *fastmap;
960 unsigned was_a_range = 0;
961 unsigned i = 0;
963 while (i < (1 << BYTEWIDTH))
965 if (fastmap[i++])
967 was_a_range = 0;
968 putchar (i - 1);
969 while (i < (1 << BYTEWIDTH) && fastmap[i])
971 was_a_range = 1;
972 i++;
974 if (was_a_range)
976 printf ("-");
977 putchar (i - 1);
981 putchar ('\n');
985 /* Print a compiled pattern string in human-readable form, starting at
986 the START pointer into it and ending just before the pointer END. */
988 void
989 print_partial_compiled_pattern (start, end)
990 re_char *start;
991 re_char *end;
993 int mcnt, mcnt2;
994 re_char *p = start;
995 re_char *pend = end;
997 if (start == NULL)
999 fprintf (stderr, "(null)\n");
1000 return;
1003 /* Loop over pattern commands. */
1004 while (p < pend)
1006 fprintf (stderr, "%d:\t", p - start);
1008 switch ((re_opcode_t) *p++)
1010 case no_op:
1011 fprintf (stderr, "/no_op");
1012 break;
1014 case succeed:
1015 fprintf (stderr, "/succeed");
1016 break;
1018 case exactn:
1019 mcnt = *p++;
1020 fprintf (stderr, "/exactn/%d", mcnt);
1023 fprintf (stderr, "/%c", *p++);
1025 while (--mcnt);
1026 break;
1028 case start_memory:
1029 fprintf (stderr, "/start_memory/%d", *p++);
1030 break;
1032 case stop_memory:
1033 fprintf (stderr, "/stop_memory/%d", *p++);
1034 break;
1036 case duplicate:
1037 fprintf (stderr, "/duplicate/%d", *p++);
1038 break;
1040 case anychar:
1041 fprintf (stderr, "/anychar");
1042 break;
1044 case charset:
1045 case charset_not:
1047 register int c, last = -100;
1048 register int in_range = 0;
1049 int length = CHARSET_BITMAP_SIZE (p - 1);
1050 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
1052 fprintf (stderr, "/charset [%s",
1053 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
1055 if (p + *p >= pend)
1056 fprintf (stderr, " !extends past end of pattern! ");
1058 for (c = 0; c < 256; c++)
1059 if (c / 8 < length
1060 && (p[1 + (c/8)] & (1 << (c % 8))))
1062 /* Are we starting a range? */
1063 if (last + 1 == c && ! in_range)
1065 fprintf (stderr, "-");
1066 in_range = 1;
1068 /* Have we broken a range? */
1069 else if (last + 1 != c && in_range)
1071 fprintf (stderr, "%c", last);
1072 in_range = 0;
1075 if (! in_range)
1076 fprintf (stderr, "%c", c);
1078 last = c;
1081 if (in_range)
1082 fprintf (stderr, "%c", last);
1084 fprintf (stderr, "]");
1086 p += 1 + length;
1088 if (has_range_table)
1090 int count;
1091 fprintf (stderr, "has-range-table");
1093 /* ??? Should print the range table; for now, just skip it. */
1094 p += 2; /* skip range table bits */
1095 EXTRACT_NUMBER_AND_INCR (count, p);
1096 p = CHARSET_RANGE_TABLE_END (p, count);
1099 break;
1101 case begline:
1102 fprintf (stderr, "/begline");
1103 break;
1105 case endline:
1106 fprintf (stderr, "/endline");
1107 break;
1109 case on_failure_jump:
1110 extract_number_and_incr (&mcnt, &p);
1111 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1112 break;
1114 case on_failure_keep_string_jump:
1115 extract_number_and_incr (&mcnt, &p);
1116 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1117 break;
1119 case on_failure_jump_nastyloop:
1120 extract_number_and_incr (&mcnt, &p);
1121 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1122 break;
1124 case on_failure_jump_loop:
1125 extract_number_and_incr (&mcnt, &p);
1126 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1127 break;
1129 case on_failure_jump_smart:
1130 extract_number_and_incr (&mcnt, &p);
1131 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1132 break;
1134 case jump:
1135 extract_number_and_incr (&mcnt, &p);
1136 fprintf (stderr, "/jump to %d", p + mcnt - start);
1137 break;
1139 case succeed_n:
1140 extract_number_and_incr (&mcnt, &p);
1141 extract_number_and_incr (&mcnt2, &p);
1142 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1143 break;
1145 case jump_n:
1146 extract_number_and_incr (&mcnt, &p);
1147 extract_number_and_incr (&mcnt2, &p);
1148 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1149 break;
1151 case set_number_at:
1152 extract_number_and_incr (&mcnt, &p);
1153 extract_number_and_incr (&mcnt2, &p);
1154 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1155 break;
1157 case wordbound:
1158 fprintf (stderr, "/wordbound");
1159 break;
1161 case notwordbound:
1162 fprintf (stderr, "/notwordbound");
1163 break;
1165 case wordbeg:
1166 fprintf (stderr, "/wordbeg");
1167 break;
1169 case wordend:
1170 fprintf (stderr, "/wordend");
1171 break;
1173 case symbeg:
1174 fprintf (stderr, "/symbeg");
1175 break;
1177 case symend:
1178 fprintf (stderr, "/symend");
1179 break;
1181 case syntaxspec:
1182 fprintf (stderr, "/syntaxspec");
1183 mcnt = *p++;
1184 fprintf (stderr, "/%d", mcnt);
1185 break;
1187 case notsyntaxspec:
1188 fprintf (stderr, "/notsyntaxspec");
1189 mcnt = *p++;
1190 fprintf (stderr, "/%d", mcnt);
1191 break;
1193 # ifdef emacs
1194 case before_dot:
1195 fprintf (stderr, "/before_dot");
1196 break;
1198 case at_dot:
1199 fprintf (stderr, "/at_dot");
1200 break;
1202 case after_dot:
1203 fprintf (stderr, "/after_dot");
1204 break;
1206 case categoryspec:
1207 fprintf (stderr, "/categoryspec");
1208 mcnt = *p++;
1209 fprintf (stderr, "/%d", mcnt);
1210 break;
1212 case notcategoryspec:
1213 fprintf (stderr, "/notcategoryspec");
1214 mcnt = *p++;
1215 fprintf (stderr, "/%d", mcnt);
1216 break;
1217 # endif /* emacs */
1219 case begbuf:
1220 fprintf (stderr, "/begbuf");
1221 break;
1223 case endbuf:
1224 fprintf (stderr, "/endbuf");
1225 break;
1227 default:
1228 fprintf (stderr, "?%d", *(p-1));
1231 fprintf (stderr, "\n");
1234 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1238 void
1239 print_compiled_pattern (bufp)
1240 struct re_pattern_buffer *bufp;
1242 re_char *buffer = bufp->buffer;
1244 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1245 printf ("%ld bytes used/%ld bytes allocated.\n",
1246 bufp->used, bufp->allocated);
1248 if (bufp->fastmap_accurate && bufp->fastmap)
1250 printf ("fastmap: ");
1251 print_fastmap (bufp->fastmap);
1254 printf ("re_nsub: %d\t", bufp->re_nsub);
1255 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1256 printf ("can_be_null: %d\t", bufp->can_be_null);
1257 printf ("no_sub: %d\t", bufp->no_sub);
1258 printf ("not_bol: %d\t", bufp->not_bol);
1259 printf ("not_eol: %d\t", bufp->not_eol);
1260 printf ("syntax: %lx\n", bufp->syntax);
1261 fflush (stdout);
1262 /* Perhaps we should print the translate table? */
1266 void
1267 print_double_string (where, string1, size1, string2, size2)
1268 re_char *where;
1269 re_char *string1;
1270 re_char *string2;
1271 int size1;
1272 int size2;
1274 int this_char;
1276 if (where == NULL)
1277 printf ("(null)");
1278 else
1280 if (FIRST_STRING_P (where))
1282 for (this_char = where - string1; this_char < size1; this_char++)
1283 putchar (string1[this_char]);
1285 where = string2;
1288 for (this_char = where - string2; this_char < size2; this_char++)
1289 putchar (string2[this_char]);
1293 #else /* not DEBUG */
1295 # undef assert
1296 # define assert(e)
1298 # define DEBUG_STATEMENT(e)
1299 # define DEBUG_PRINT1(x)
1300 # define DEBUG_PRINT2(x1, x2)
1301 # define DEBUG_PRINT3(x1, x2, x3)
1302 # define DEBUG_PRINT4(x1, x2, x3, x4)
1303 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1304 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1306 #endif /* not DEBUG */
1308 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1309 also be assigned to arbitrarily: each pattern buffer stores its own
1310 syntax, so it can be changed between regex compilations. */
1311 /* This has no initializer because initialized variables in Emacs
1312 become read-only after dumping. */
1313 reg_syntax_t re_syntax_options;
1316 /* Specify the precise syntax of regexps for compilation. This provides
1317 for compatibility for various utilities which historically have
1318 different, incompatible syntaxes.
1320 The argument SYNTAX is a bit mask comprised of the various bits
1321 defined in regex.h. We return the old syntax. */
1323 reg_syntax_t
1324 re_set_syntax (reg_syntax_t syntax)
1326 reg_syntax_t ret = re_syntax_options;
1328 re_syntax_options = syntax;
1329 return ret;
1331 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1333 /* Regexp to use to replace spaces, or NULL meaning don't. */
1334 static re_char *whitespace_regexp;
1336 void
1337 re_set_whitespace_regexp (const char *regexp)
1339 whitespace_regexp = (re_char *) regexp;
1341 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1343 /* This table gives an error message for each of the error codes listed
1344 in regex.h. Obviously the order here has to be same as there.
1345 POSIX doesn't require that we do anything for REG_NOERROR,
1346 but why not be nice? */
1348 static const char *re_error_msgid[] =
1350 gettext_noop ("Success"), /* REG_NOERROR */
1351 gettext_noop ("No match"), /* REG_NOMATCH */
1352 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1353 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1354 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1355 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1356 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1357 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1358 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1359 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1360 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1361 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1362 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1363 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1364 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1365 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1366 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1367 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1370 /* Avoiding alloca during matching, to placate r_alloc. */
1372 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1373 searching and matching functions should not call alloca. On some
1374 systems, alloca is implemented in terms of malloc, and if we're
1375 using the relocating allocator routines, then malloc could cause a
1376 relocation, which might (if the strings being searched are in the
1377 ralloc heap) shift the data out from underneath the regexp
1378 routines.
1380 Here's another reason to avoid allocation: Emacs
1381 processes input from X in a signal handler; processing X input may
1382 call malloc; if input arrives while a matching routine is calling
1383 malloc, then we're scrod. But Emacs can't just block input while
1384 calling matching routines; then we don't notice interrupts when
1385 they come in. So, Emacs blocks input around all regexp calls
1386 except the matching calls, which it leaves unprotected, in the
1387 faith that they will not malloc. */
1389 /* Normally, this is fine. */
1390 #define MATCH_MAY_ALLOCATE
1392 /* The match routines may not allocate if (1) they would do it with malloc
1393 and (2) it's not safe for them to use malloc.
1394 Note that if REL_ALLOC is defined, matching would not use malloc for the
1395 failure stack, but we would still use it for the register vectors;
1396 so REL_ALLOC should not affect this. */
1397 #if defined REGEX_MALLOC && defined emacs
1398 # undef MATCH_MAY_ALLOCATE
1399 #endif
1402 /* Failure stack declarations and macros; both re_compile_fastmap and
1403 re_match_2 use a failure stack. These have to be macros because of
1404 REGEX_ALLOCATE_STACK. */
1407 /* Approximate number of failure points for which to initially allocate space
1408 when matching. If this number is exceeded, we allocate more
1409 space, so it is not a hard limit. */
1410 #ifndef INIT_FAILURE_ALLOC
1411 # define INIT_FAILURE_ALLOC 20
1412 #endif
1414 /* Roughly the maximum number of failure points on the stack. Would be
1415 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1416 This is a variable only so users of regex can assign to it; we never
1417 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1418 before using it, so it should probably be a byte-count instead. */
1419 # if defined MATCH_MAY_ALLOCATE
1420 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1421 whose default stack limit is 2mb. In order for a larger
1422 value to work reliably, you have to try to make it accord
1423 with the process stack limit. */
1424 size_t re_max_failures = 40000;
1425 # else
1426 size_t re_max_failures = 4000;
1427 # endif
1429 union fail_stack_elt
1431 re_char *pointer;
1432 /* This should be the biggest `int' that's no bigger than a pointer. */
1433 long integer;
1436 typedef union fail_stack_elt fail_stack_elt_t;
1438 typedef struct
1440 fail_stack_elt_t *stack;
1441 size_t size;
1442 size_t avail; /* Offset of next open position. */
1443 size_t frame; /* Offset of the cur constructed frame. */
1444 } fail_stack_type;
1446 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1447 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1450 /* Define macros to initialize and free the failure stack.
1451 Do `return -2' if the alloc fails. */
1453 #ifdef MATCH_MAY_ALLOCATE
1454 # define INIT_FAIL_STACK() \
1455 do { \
1456 fail_stack.stack = (fail_stack_elt_t *) \
1457 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1458 * sizeof (fail_stack_elt_t)); \
1460 if (fail_stack.stack == NULL) \
1461 return -2; \
1463 fail_stack.size = INIT_FAILURE_ALLOC; \
1464 fail_stack.avail = 0; \
1465 fail_stack.frame = 0; \
1466 } while (0)
1468 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1469 #else
1470 # define INIT_FAIL_STACK() \
1471 do { \
1472 fail_stack.avail = 0; \
1473 fail_stack.frame = 0; \
1474 } while (0)
1476 # define RESET_FAIL_STACK() ((void)0)
1477 #endif
1480 /* Double the size of FAIL_STACK, up to a limit
1481 which allows approximately `re_max_failures' items.
1483 Return 1 if succeeds, and 0 if either ran out of memory
1484 allocating space for it or it was already too large.
1486 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1488 /* Factor to increase the failure stack size by
1489 when we increase it.
1490 This used to be 2, but 2 was too wasteful
1491 because the old discarded stacks added up to as much space
1492 were as ultimate, maximum-size stack. */
1493 #define FAIL_STACK_GROWTH_FACTOR 4
1495 #define GROW_FAIL_STACK(fail_stack) \
1496 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1497 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1498 ? 0 \
1499 : ((fail_stack).stack \
1500 = (fail_stack_elt_t *) \
1501 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1502 (fail_stack).size * sizeof (fail_stack_elt_t), \
1503 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1504 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1505 * FAIL_STACK_GROWTH_FACTOR))), \
1507 (fail_stack).stack == NULL \
1508 ? 0 \
1509 : ((fail_stack).size \
1510 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1511 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1512 * FAIL_STACK_GROWTH_FACTOR)) \
1513 / sizeof (fail_stack_elt_t)), \
1514 1)))
1517 /* Push a pointer value onto the failure stack.
1518 Assumes the variable `fail_stack'. Probably should only
1519 be called from within `PUSH_FAILURE_POINT'. */
1520 #define PUSH_FAILURE_POINTER(item) \
1521 fail_stack.stack[fail_stack.avail++].pointer = (item)
1523 /* This pushes an integer-valued item onto the failure stack.
1524 Assumes the variable `fail_stack'. Probably should only
1525 be called from within `PUSH_FAILURE_POINT'. */
1526 #define PUSH_FAILURE_INT(item) \
1527 fail_stack.stack[fail_stack.avail++].integer = (item)
1529 /* Push a fail_stack_elt_t value onto the failure stack.
1530 Assumes the variable `fail_stack'. Probably should only
1531 be called from within `PUSH_FAILURE_POINT'. */
1532 #define PUSH_FAILURE_ELT(item) \
1533 fail_stack.stack[fail_stack.avail++] = (item)
1535 /* These three POP... operations complement the three PUSH... operations.
1536 All assume that `fail_stack' is nonempty. */
1537 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1538 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1539 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1541 /* Individual items aside from the registers. */
1542 #define NUM_NONREG_ITEMS 3
1544 /* Used to examine the stack (to detect infinite loops). */
1545 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1546 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1547 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1548 #define TOP_FAILURE_HANDLE() fail_stack.frame
1551 #define ENSURE_FAIL_STACK(space) \
1552 while (REMAINING_AVAIL_SLOTS <= space) { \
1553 if (!GROW_FAIL_STACK (fail_stack)) \
1554 return -2; \
1555 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1556 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1559 /* Push register NUM onto the stack. */
1560 #define PUSH_FAILURE_REG(num) \
1561 do { \
1562 char *destination; \
1563 ENSURE_FAIL_STACK(3); \
1564 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1565 num, regstart[num], regend[num]); \
1566 PUSH_FAILURE_POINTER (regstart[num]); \
1567 PUSH_FAILURE_POINTER (regend[num]); \
1568 PUSH_FAILURE_INT (num); \
1569 } while (0)
1571 /* Change the counter's value to VAL, but make sure that it will
1572 be reset when backtracking. */
1573 #define PUSH_NUMBER(ptr,val) \
1574 do { \
1575 char *destination; \
1576 int c; \
1577 ENSURE_FAIL_STACK(3); \
1578 EXTRACT_NUMBER (c, ptr); \
1579 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1580 PUSH_FAILURE_INT (c); \
1581 PUSH_FAILURE_POINTER (ptr); \
1582 PUSH_FAILURE_INT (-1); \
1583 STORE_NUMBER (ptr, val); \
1584 } while (0)
1586 /* Pop a saved register off the stack. */
1587 #define POP_FAILURE_REG_OR_COUNT() \
1588 do { \
1589 int reg = POP_FAILURE_INT (); \
1590 if (reg == -1) \
1592 /* It's a counter. */ \
1593 /* Here, we discard `const', making re_match non-reentrant. */ \
1594 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1595 reg = POP_FAILURE_INT (); \
1596 STORE_NUMBER (ptr, reg); \
1597 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1599 else \
1601 regend[reg] = POP_FAILURE_POINTER (); \
1602 regstart[reg] = POP_FAILURE_POINTER (); \
1603 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1604 reg, regstart[reg], regend[reg]); \
1606 } while (0)
1608 /* Check that we are not stuck in an infinite loop. */
1609 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1610 do { \
1611 int failure = TOP_FAILURE_HANDLE (); \
1612 /* Check for infinite matching loops */ \
1613 while (failure > 0 \
1614 && (FAILURE_STR (failure) == string_place \
1615 || FAILURE_STR (failure) == NULL)) \
1617 assert (FAILURE_PAT (failure) >= bufp->buffer \
1618 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1619 if (FAILURE_PAT (failure) == pat_cur) \
1621 cycle = 1; \
1622 break; \
1624 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1625 failure = NEXT_FAILURE_HANDLE(failure); \
1627 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1628 } while (0)
1630 /* Push the information about the state we will need
1631 if we ever fail back to it.
1633 Requires variables fail_stack, regstart, regend and
1634 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1635 declared.
1637 Does `return FAILURE_CODE' if runs out of memory. */
1639 #define PUSH_FAILURE_POINT(pattern, string_place) \
1640 do { \
1641 char *destination; \
1642 /* Must be int, so when we don't save any registers, the arithmetic \
1643 of 0 + -1 isn't done as unsigned. */ \
1645 DEBUG_STATEMENT (nfailure_points_pushed++); \
1646 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1647 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1648 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1650 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1652 DEBUG_PRINT1 ("\n"); \
1654 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1655 PUSH_FAILURE_INT (fail_stack.frame); \
1657 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1658 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1659 DEBUG_PRINT1 ("'\n"); \
1660 PUSH_FAILURE_POINTER (string_place); \
1662 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1663 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1664 PUSH_FAILURE_POINTER (pattern); \
1666 /* Close the frame by moving the frame pointer past it. */ \
1667 fail_stack.frame = fail_stack.avail; \
1668 } while (0)
1670 /* Estimate the size of data pushed by a typical failure stack entry.
1671 An estimate is all we need, because all we use this for
1672 is to choose a limit for how big to make the failure stack. */
1673 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1674 #define TYPICAL_FAILURE_SIZE 20
1676 /* How many items can still be added to the stack without overflowing it. */
1677 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1680 /* Pops what PUSH_FAIL_STACK pushes.
1682 We restore into the parameters, all of which should be lvalues:
1683 STR -- the saved data position.
1684 PAT -- the saved pattern position.
1685 REGSTART, REGEND -- arrays of string positions.
1687 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1688 `pend', `string1', `size1', `string2', and `size2'. */
1690 #define POP_FAILURE_POINT(str, pat) \
1691 do { \
1692 assert (!FAIL_STACK_EMPTY ()); \
1694 /* Remove failure points and point to how many regs pushed. */ \
1695 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1696 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1697 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1699 /* Pop the saved registers. */ \
1700 while (fail_stack.frame < fail_stack.avail) \
1701 POP_FAILURE_REG_OR_COUNT (); \
1703 pat = POP_FAILURE_POINTER (); \
1704 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1705 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1707 /* If the saved string location is NULL, it came from an \
1708 on_failure_keep_string_jump opcode, and we want to throw away the \
1709 saved NULL, thus retaining our current position in the string. */ \
1710 str = POP_FAILURE_POINTER (); \
1711 DEBUG_PRINT2 (" Popping string %p: `", str); \
1712 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1713 DEBUG_PRINT1 ("'\n"); \
1715 fail_stack.frame = POP_FAILURE_INT (); \
1716 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1718 assert (fail_stack.avail >= 0); \
1719 assert (fail_stack.frame <= fail_stack.avail); \
1721 DEBUG_STATEMENT (nfailure_points_popped++); \
1722 } while (0) /* POP_FAILURE_POINT */
1726 /* Registers are set to a sentinel when they haven't yet matched. */
1727 #define REG_UNSET(e) ((e) == NULL)
1729 /* Subroutine declarations and macros for regex_compile. */
1731 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1732 reg_syntax_t syntax,
1733 struct re_pattern_buffer *bufp));
1734 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1735 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1736 int arg1, int arg2));
1737 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1738 int arg, unsigned char *end));
1739 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1740 int arg1, int arg2, unsigned char *end));
1741 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1742 re_char *p,
1743 reg_syntax_t syntax));
1744 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1745 re_char *pend,
1746 reg_syntax_t syntax));
1747 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1748 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1749 char *fastmap, const int multibyte));
1751 /* Fetch the next character in the uncompiled pattern, with no
1752 translation. */
1753 #define PATFETCH(c) \
1754 do { \
1755 int len; \
1756 if (p == pend) return REG_EEND; \
1757 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
1758 p += len; \
1759 } while (0)
1762 /* If `translate' is non-null, return translate[D], else just D. We
1763 cast the subscript to translate because some data is declared as
1764 `char *', to avoid warnings when a string constant is passed. But
1765 when we use a character as a subscript we must make it unsigned. */
1766 #ifndef TRANSLATE
1767 # define TRANSLATE(d) \
1768 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1769 #endif
1772 /* Macros for outputting the compiled pattern into `buffer'. */
1774 /* If the buffer isn't allocated when it comes in, use this. */
1775 #define INIT_BUF_SIZE 32
1777 /* Make sure we have at least N more bytes of space in buffer. */
1778 #define GET_BUFFER_SPACE(n) \
1779 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1780 EXTEND_BUFFER ()
1782 /* Make sure we have one more byte of buffer space and then add C to it. */
1783 #define BUF_PUSH(c) \
1784 do { \
1785 GET_BUFFER_SPACE (1); \
1786 *b++ = (unsigned char) (c); \
1787 } while (0)
1790 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1791 #define BUF_PUSH_2(c1, c2) \
1792 do { \
1793 GET_BUFFER_SPACE (2); \
1794 *b++ = (unsigned char) (c1); \
1795 *b++ = (unsigned char) (c2); \
1796 } while (0)
1799 /* As with BUF_PUSH_2, except for three bytes. */
1800 #define BUF_PUSH_3(c1, c2, c3) \
1801 do { \
1802 GET_BUFFER_SPACE (3); \
1803 *b++ = (unsigned char) (c1); \
1804 *b++ = (unsigned char) (c2); \
1805 *b++ = (unsigned char) (c3); \
1806 } while (0)
1809 /* Store a jump with opcode OP at LOC to location TO. We store a
1810 relative address offset by the three bytes the jump itself occupies. */
1811 #define STORE_JUMP(op, loc, to) \
1812 store_op1 (op, loc, (to) - (loc) - 3)
1814 /* Likewise, for a two-argument jump. */
1815 #define STORE_JUMP2(op, loc, to, arg) \
1816 store_op2 (op, loc, (to) - (loc) - 3, arg)
1818 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1819 #define INSERT_JUMP(op, loc, to) \
1820 insert_op1 (op, loc, (to) - (loc) - 3, b)
1822 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1823 #define INSERT_JUMP2(op, loc, to, arg) \
1824 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1827 /* This is not an arbitrary limit: the arguments which represent offsets
1828 into the pattern are two bytes long. So if 2^15 bytes turns out to
1829 be too small, many things would have to change. */
1830 # define MAX_BUF_SIZE (1L << 15)
1832 #if 0 /* This is when we thought it could be 2^16 bytes. */
1833 /* Any other compiler which, like MSC, has allocation limit below 2^16
1834 bytes will have to use approach similar to what was done below for
1835 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1836 reallocating to 0 bytes. Such thing is not going to work too well.
1837 You have been warned!! */
1838 #if defined _MSC_VER && !defined WIN32
1839 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1840 # define MAX_BUF_SIZE 65500L
1841 #else
1842 # define MAX_BUF_SIZE (1L << 16)
1843 #endif
1844 #endif /* 0 */
1846 /* Extend the buffer by twice its current size via realloc and
1847 reset the pointers that pointed into the old block to point to the
1848 correct places in the new one. If extending the buffer results in it
1849 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1850 #if __BOUNDED_POINTERS__
1851 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1852 # define MOVE_BUFFER_POINTER(P) \
1853 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1854 SET_HIGH_BOUND (P), \
1855 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
1856 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1857 else \
1859 SET_HIGH_BOUND (b); \
1860 SET_HIGH_BOUND (begalt); \
1861 if (fixup_alt_jump) \
1862 SET_HIGH_BOUND (fixup_alt_jump); \
1863 if (laststart) \
1864 SET_HIGH_BOUND (laststart); \
1865 if (pending_exact) \
1866 SET_HIGH_BOUND (pending_exact); \
1868 #else
1869 # define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
1870 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1871 #endif
1872 #define EXTEND_BUFFER() \
1873 do { \
1874 unsigned char *old_buffer = bufp->buffer; \
1875 if (bufp->allocated == MAX_BUF_SIZE) \
1876 return REG_ESIZE; \
1877 bufp->allocated <<= 1; \
1878 if (bufp->allocated > MAX_BUF_SIZE) \
1879 bufp->allocated = MAX_BUF_SIZE; \
1880 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1881 if (bufp->buffer == NULL) \
1882 return REG_ESPACE; \
1883 /* If the buffer moved, move all the pointers into it. */ \
1884 if (old_buffer != bufp->buffer) \
1886 unsigned char *new_buffer = bufp->buffer; \
1887 MOVE_BUFFER_POINTER (b); \
1888 MOVE_BUFFER_POINTER (begalt); \
1889 if (fixup_alt_jump) \
1890 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1891 if (laststart) \
1892 MOVE_BUFFER_POINTER (laststart); \
1893 if (pending_exact) \
1894 MOVE_BUFFER_POINTER (pending_exact); \
1896 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1897 } while (0)
1900 /* Since we have one byte reserved for the register number argument to
1901 {start,stop}_memory, the maximum number of groups we can report
1902 things about is what fits in that byte. */
1903 #define MAX_REGNUM 255
1905 /* But patterns can have more than `MAX_REGNUM' registers. We just
1906 ignore the excess. */
1907 typedef int regnum_t;
1910 /* Macros for the compile stack. */
1912 /* Since offsets can go either forwards or backwards, this type needs to
1913 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1914 /* int may be not enough when sizeof(int) == 2. */
1915 typedef long pattern_offset_t;
1917 typedef struct
1919 pattern_offset_t begalt_offset;
1920 pattern_offset_t fixup_alt_jump;
1921 pattern_offset_t laststart_offset;
1922 regnum_t regnum;
1923 } compile_stack_elt_t;
1926 typedef struct
1928 compile_stack_elt_t *stack;
1929 unsigned size;
1930 unsigned avail; /* Offset of next open position. */
1931 } compile_stack_type;
1934 #define INIT_COMPILE_STACK_SIZE 32
1936 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1937 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1939 /* The next available element. */
1940 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1942 /* Explicit quit checking is only used on NTemacs and whenever we
1943 use polling to process input events. */
1944 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1945 extern int immediate_quit;
1946 # define IMMEDIATE_QUIT_CHECK \
1947 do { \
1948 if (immediate_quit) QUIT; \
1949 } while (0)
1950 #else
1951 # define IMMEDIATE_QUIT_CHECK ((void)0)
1952 #endif
1954 /* Structure to manage work area for range table. */
1955 struct range_table_work_area
1957 int *table; /* actual work area. */
1958 int allocated; /* allocated size for work area in bytes. */
1959 int used; /* actually used size in words. */
1960 int bits; /* flag to record character classes */
1963 /* Make sure that WORK_AREA can hold more N multibyte characters.
1964 This is used only in set_image_of_range and set_image_of_range_1.
1965 It expects WORK_AREA to be a pointer.
1966 If it can't get the space, it returns from the surrounding function. */
1968 #define EXTEND_RANGE_TABLE(work_area, n) \
1969 do { \
1970 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1972 extend_range_table_work_area (&work_area); \
1973 if ((work_area).table == 0) \
1974 return (REG_ESPACE); \
1976 } while (0)
1978 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1979 (work_area).bits |= (bit)
1981 /* Bits used to implement the multibyte-part of the various character classes
1982 such as [:alnum:] in a charset's range table. */
1983 #define BIT_WORD 0x1
1984 #define BIT_LOWER 0x2
1985 #define BIT_PUNCT 0x4
1986 #define BIT_SPACE 0x8
1987 #define BIT_UPPER 0x10
1988 #define BIT_MULTIBYTE 0x20
1990 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1991 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1992 do { \
1993 EXTEND_RANGE_TABLE ((work_area), 2); \
1994 (work_area).table[(work_area).used++] = (range_start); \
1995 (work_area).table[(work_area).used++] = (range_end); \
1996 } while (0)
1998 /* Free allocated memory for WORK_AREA. */
1999 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
2000 do { \
2001 if ((work_area).table) \
2002 free ((work_area).table); \
2003 } while (0)
2005 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
2006 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
2007 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
2008 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
2011 /* Set the bit for character C in a list. */
2012 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
2015 #ifdef emacs
2017 /* Store characters in the range FROM to TO in the bitmap at B (for
2018 ASCII and unibyte characters) and WORK_AREA (for multibyte
2019 characters) while translating them and paying attention to the
2020 continuity of translated characters.
2022 Implementation note: It is better to implement these fairly big
2023 macros by a function, but it's not that easy because macros called
2024 in this macro assume various local variables already declared. */
2026 /* Both FROM and TO are ASCII characters. */
2028 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
2029 do { \
2030 int C0, C1; \
2032 for (C0 = (FROM); C0 <= (TO); C0++) \
2034 C1 = TRANSLATE (C0); \
2035 if (! ASCII_CHAR_P (C1)) \
2037 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2038 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
2039 C1 = C0; \
2041 SET_LIST_BIT (C1); \
2043 } while (0)
2046 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
2048 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
2049 do { \
2050 int C0, C1, C2, I; \
2051 int USED = RANGE_TABLE_WORK_USED (work_area); \
2053 for (C0 = (FROM); C0 <= (TO); C0++) \
2055 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
2056 if (CHAR_BYTE8_P (C1)) \
2057 SET_LIST_BIT (C0); \
2058 else \
2060 C2 = TRANSLATE (C1); \
2061 if (C2 == C1 \
2062 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
2063 C1 = C0; \
2064 SET_LIST_BIT (C1); \
2065 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2067 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2068 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2070 if (C2 >= from - 1 && C2 <= to + 1) \
2072 if (C2 == from - 1) \
2073 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2074 else if (C2 == to + 1) \
2075 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2076 break; \
2079 if (I < USED) \
2080 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
2083 } while (0)
2086 /* Both FROM and TO are multibyte characters. */
2088 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
2089 do { \
2090 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
2092 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
2093 for (C0 = (FROM); C0 <= (TO); C0++) \
2095 C1 = TRANSLATE (C0); \
2096 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
2097 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
2098 SET_LIST_BIT (C2); \
2099 if (C1 >= (FROM) && C1 <= (TO)) \
2100 continue; \
2101 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2103 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2104 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2106 if (C1 >= from - 1 && C1 <= to + 1) \
2108 if (C1 == from - 1) \
2109 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2110 else if (C1 == to + 1) \
2111 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2112 break; \
2115 if (I < USED) \
2116 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2118 } while (0)
2120 #endif /* emacs */
2122 /* Get the next unsigned number in the uncompiled pattern. */
2123 #define GET_UNSIGNED_NUMBER(num) \
2124 do { \
2125 if (p == pend) \
2126 FREE_STACK_RETURN (REG_EBRACE); \
2127 else \
2129 PATFETCH (c); \
2130 while ('0' <= c && c <= '9') \
2132 int prev; \
2133 if (num < 0) \
2134 num = 0; \
2135 prev = num; \
2136 num = num * 10 + c - '0'; \
2137 if (num / 10 != prev) \
2138 FREE_STACK_RETURN (REG_BADBR); \
2139 if (p == pend) \
2140 FREE_STACK_RETURN (REG_EBRACE); \
2141 PATFETCH (c); \
2144 } while (0)
2146 #if ! WIDE_CHAR_SUPPORT
2148 /* Map a string to the char class it names (if any). */
2149 re_wctype_t
2150 re_wctype (const re_char *str)
2152 const char *string = str;
2153 if (STREQ (string, "alnum")) return RECC_ALNUM;
2154 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2155 else if (STREQ (string, "word")) return RECC_WORD;
2156 else if (STREQ (string, "ascii")) return RECC_ASCII;
2157 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2158 else if (STREQ (string, "graph")) return RECC_GRAPH;
2159 else if (STREQ (string, "lower")) return RECC_LOWER;
2160 else if (STREQ (string, "print")) return RECC_PRINT;
2161 else if (STREQ (string, "punct")) return RECC_PUNCT;
2162 else if (STREQ (string, "space")) return RECC_SPACE;
2163 else if (STREQ (string, "upper")) return RECC_UPPER;
2164 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2165 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2166 else if (STREQ (string, "digit")) return RECC_DIGIT;
2167 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2168 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2169 else if (STREQ (string, "blank")) return RECC_BLANK;
2170 else return 0;
2173 /* True if CH is in the char class CC. */
2174 boolean
2175 re_iswctype (int ch, re_wctype_t cc)
2177 switch (cc)
2179 case RECC_ALNUM: return ISALNUM (ch);
2180 case RECC_ALPHA: return ISALPHA (ch);
2181 case RECC_BLANK: return ISBLANK (ch);
2182 case RECC_CNTRL: return ISCNTRL (ch);
2183 case RECC_DIGIT: return ISDIGIT (ch);
2184 case RECC_GRAPH: return ISGRAPH (ch);
2185 case RECC_LOWER: return ISLOWER (ch);
2186 case RECC_PRINT: return ISPRINT (ch);
2187 case RECC_PUNCT: return ISPUNCT (ch);
2188 case RECC_SPACE: return ISSPACE (ch);
2189 case RECC_UPPER: return ISUPPER (ch);
2190 case RECC_XDIGIT: return ISXDIGIT (ch);
2191 case RECC_ASCII: return IS_REAL_ASCII (ch);
2192 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2193 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2194 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2195 case RECC_WORD: return ISWORD (ch);
2196 case RECC_ERROR: return false;
2197 default:
2198 abort();
2202 /* Return a bit-pattern to use in the range-table bits to match multibyte
2203 chars of class CC. */
2204 static int
2205 re_wctype_to_bit (re_wctype_t cc)
2207 switch (cc)
2209 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2210 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2211 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2212 case RECC_LOWER: return BIT_LOWER;
2213 case RECC_UPPER: return BIT_UPPER;
2214 case RECC_PUNCT: return BIT_PUNCT;
2215 case RECC_SPACE: return BIT_SPACE;
2216 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2217 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2218 default:
2219 abort();
2222 #endif
2224 /* Filling in the work area of a range. */
2226 /* Actually extend the space in WORK_AREA. */
2228 static void
2229 extend_range_table_work_area (struct range_table_work_area *work_area)
2231 work_area->allocated += 16 * sizeof (int);
2232 if (work_area->table)
2233 work_area->table
2234 = (int *) realloc (work_area->table, work_area->allocated);
2235 else
2236 work_area->table
2237 = (int *) malloc (work_area->allocated);
2240 #if 0
2241 #ifdef emacs
2243 /* Carefully find the ranges of codes that are equivalent
2244 under case conversion to the range start..end when passed through
2245 TRANSLATE. Handle the case where non-letters can come in between
2246 two upper-case letters (which happens in Latin-1).
2247 Also handle the case of groups of more than 2 case-equivalent chars.
2249 The basic method is to look at consecutive characters and see
2250 if they can form a run that can be handled as one.
2252 Returns -1 if successful, REG_ESPACE if ran out of space. */
2254 static int
2255 set_image_of_range_1 (work_area, start, end, translate)
2256 RE_TRANSLATE_TYPE translate;
2257 struct range_table_work_area *work_area;
2258 re_wchar_t start, end;
2260 /* `one_case' indicates a character, or a run of characters,
2261 each of which is an isolate (no case-equivalents).
2262 This includes all ASCII non-letters.
2264 `two_case' indicates a character, or a run of characters,
2265 each of which has two case-equivalent forms.
2266 This includes all ASCII letters.
2268 `strange' indicates a character that has more than one
2269 case-equivalent. */
2271 enum case_type {one_case, two_case, strange};
2273 /* Describe the run that is in progress,
2274 which the next character can try to extend.
2275 If run_type is strange, that means there really is no run.
2276 If run_type is one_case, then run_start...run_end is the run.
2277 If run_type is two_case, then the run is run_start...run_end,
2278 and the case-equivalents end at run_eqv_end. */
2280 enum case_type run_type = strange;
2281 int run_start, run_end, run_eqv_end;
2283 Lisp_Object eqv_table;
2285 if (!RE_TRANSLATE_P (translate))
2287 EXTEND_RANGE_TABLE (work_area, 2);
2288 work_area->table[work_area->used++] = (start);
2289 work_area->table[work_area->used++] = (end);
2290 return -1;
2293 eqv_table = XCHAR_TABLE (translate)->extras[2];
2295 for (; start <= end; start++)
2297 enum case_type this_type;
2298 int eqv = RE_TRANSLATE (eqv_table, start);
2299 int minchar, maxchar;
2301 /* Classify this character */
2302 if (eqv == start)
2303 this_type = one_case;
2304 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2305 this_type = two_case;
2306 else
2307 this_type = strange;
2309 if (start < eqv)
2310 minchar = start, maxchar = eqv;
2311 else
2312 minchar = eqv, maxchar = start;
2314 /* Can this character extend the run in progress? */
2315 if (this_type == strange || this_type != run_type
2316 || !(minchar == run_end + 1
2317 && (run_type == two_case
2318 ? maxchar == run_eqv_end + 1 : 1)))
2320 /* No, end the run.
2321 Record each of its equivalent ranges. */
2322 if (run_type == one_case)
2324 EXTEND_RANGE_TABLE (work_area, 2);
2325 work_area->table[work_area->used++] = run_start;
2326 work_area->table[work_area->used++] = run_end;
2328 else if (run_type == two_case)
2330 EXTEND_RANGE_TABLE (work_area, 4);
2331 work_area->table[work_area->used++] = run_start;
2332 work_area->table[work_area->used++] = run_end;
2333 work_area->table[work_area->used++]
2334 = RE_TRANSLATE (eqv_table, run_start);
2335 work_area->table[work_area->used++]
2336 = RE_TRANSLATE (eqv_table, run_end);
2338 run_type = strange;
2341 if (this_type == strange)
2343 /* For a strange character, add each of its equivalents, one
2344 by one. Don't start a range. */
2347 EXTEND_RANGE_TABLE (work_area, 2);
2348 work_area->table[work_area->used++] = eqv;
2349 work_area->table[work_area->used++] = eqv;
2350 eqv = RE_TRANSLATE (eqv_table, eqv);
2352 while (eqv != start);
2355 /* Add this char to the run, or start a new run. */
2356 else if (run_type == strange)
2358 /* Initialize a new range. */
2359 run_type = this_type;
2360 run_start = start;
2361 run_end = start;
2362 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2364 else
2366 /* Extend a running range. */
2367 run_end = minchar;
2368 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2372 /* If a run is still in progress at the end, finish it now
2373 by recording its equivalent ranges. */
2374 if (run_type == one_case)
2376 EXTEND_RANGE_TABLE (work_area, 2);
2377 work_area->table[work_area->used++] = run_start;
2378 work_area->table[work_area->used++] = run_end;
2380 else if (run_type == two_case)
2382 EXTEND_RANGE_TABLE (work_area, 4);
2383 work_area->table[work_area->used++] = run_start;
2384 work_area->table[work_area->used++] = run_end;
2385 work_area->table[work_area->used++]
2386 = RE_TRANSLATE (eqv_table, run_start);
2387 work_area->table[work_area->used++]
2388 = RE_TRANSLATE (eqv_table, run_end);
2391 return -1;
2394 #endif /* emacs */
2396 /* Record the image of the range start..end when passed through
2397 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2398 and is not even necessarily contiguous.
2399 Normally we approximate it with the smallest contiguous range that contains
2400 all the chars we need. However, for Latin-1 we go to extra effort
2401 to do a better job.
2403 This function is not called for ASCII ranges.
2405 Returns -1 if successful, REG_ESPACE if ran out of space. */
2407 static int
2408 set_image_of_range (work_area, start, end, translate)
2409 RE_TRANSLATE_TYPE translate;
2410 struct range_table_work_area *work_area;
2411 re_wchar_t start, end;
2413 re_wchar_t cmin, cmax;
2415 #ifdef emacs
2416 /* For Latin-1 ranges, use set_image_of_range_1
2417 to get proper handling of ranges that include letters and nonletters.
2418 For a range that includes the whole of Latin-1, this is not necessary.
2419 For other character sets, we don't bother to get this right. */
2420 if (RE_TRANSLATE_P (translate) && start < 04400
2421 && !(start < 04200 && end >= 04377))
2423 int newend;
2424 int tem;
2425 newend = end;
2426 if (newend > 04377)
2427 newend = 04377;
2428 tem = set_image_of_range_1 (work_area, start, newend, translate);
2429 if (tem > 0)
2430 return tem;
2432 start = 04400;
2433 if (end < 04400)
2434 return -1;
2436 #endif
2438 EXTEND_RANGE_TABLE (work_area, 2);
2439 work_area->table[work_area->used++] = (start);
2440 work_area->table[work_area->used++] = (end);
2442 cmin = -1, cmax = -1;
2444 if (RE_TRANSLATE_P (translate))
2446 int ch;
2448 for (ch = start; ch <= end; ch++)
2450 re_wchar_t c = TRANSLATE (ch);
2451 if (! (start <= c && c <= end))
2453 if (cmin == -1)
2454 cmin = c, cmax = c;
2455 else
2457 cmin = MIN (cmin, c);
2458 cmax = MAX (cmax, c);
2463 if (cmin != -1)
2465 EXTEND_RANGE_TABLE (work_area, 2);
2466 work_area->table[work_area->used++] = (cmin);
2467 work_area->table[work_area->used++] = (cmax);
2471 return -1;
2473 #endif /* 0 */
2475 #ifndef MATCH_MAY_ALLOCATE
2477 /* If we cannot allocate large objects within re_match_2_internal,
2478 we make the fail stack and register vectors global.
2479 The fail stack, we grow to the maximum size when a regexp
2480 is compiled.
2481 The register vectors, we adjust in size each time we
2482 compile a regexp, according to the number of registers it needs. */
2484 static fail_stack_type fail_stack;
2486 /* Size with which the following vectors are currently allocated.
2487 That is so we can make them bigger as needed,
2488 but never make them smaller. */
2489 static int regs_allocated_size;
2491 static re_char ** regstart, ** regend;
2492 static re_char **best_regstart, **best_regend;
2494 /* Make the register vectors big enough for NUM_REGS registers,
2495 but don't make them smaller. */
2497 static
2498 regex_grow_registers (num_regs)
2499 int num_regs;
2501 if (num_regs > regs_allocated_size)
2503 RETALLOC_IF (regstart, num_regs, re_char *);
2504 RETALLOC_IF (regend, num_regs, re_char *);
2505 RETALLOC_IF (best_regstart, num_regs, re_char *);
2506 RETALLOC_IF (best_regend, num_regs, re_char *);
2508 regs_allocated_size = num_regs;
2512 #endif /* not MATCH_MAY_ALLOCATE */
2514 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2515 compile_stack,
2516 regnum_t regnum));
2518 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2519 Returns one of error codes defined in `regex.h', or zero for success.
2521 Assumes the `allocated' (and perhaps `buffer') and `translate'
2522 fields are set in BUFP on entry.
2524 If it succeeds, results are put in BUFP (if it returns an error, the
2525 contents of BUFP are undefined):
2526 `buffer' is the compiled pattern;
2527 `syntax' is set to SYNTAX;
2528 `used' is set to the length of the compiled pattern;
2529 `fastmap_accurate' is zero;
2530 `re_nsub' is the number of subexpressions in PATTERN;
2531 `not_bol' and `not_eol' are zero;
2533 The `fastmap' field is neither examined nor set. */
2535 /* Insert the `jump' from the end of last alternative to "here".
2536 The space for the jump has already been allocated. */
2537 #define FIXUP_ALT_JUMP() \
2538 do { \
2539 if (fixup_alt_jump) \
2540 STORE_JUMP (jump, fixup_alt_jump, b); \
2541 } while (0)
2544 /* Return, freeing storage we allocated. */
2545 #define FREE_STACK_RETURN(value) \
2546 do { \
2547 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2548 free (compile_stack.stack); \
2549 return value; \
2550 } while (0)
2552 static reg_errcode_t
2553 regex_compile (const re_char *pattern, size_t size, reg_syntax_t syntax, struct re_pattern_buffer *bufp)
2555 /* We fetch characters from PATTERN here. */
2556 register re_wchar_t c, c1;
2558 /* A random temporary spot in PATTERN. */
2559 re_char *p1;
2561 /* Points to the end of the buffer, where we should append. */
2562 register unsigned char *b;
2564 /* Keeps track of unclosed groups. */
2565 compile_stack_type compile_stack;
2567 /* Points to the current (ending) position in the pattern. */
2568 #ifdef AIX
2569 /* `const' makes AIX compiler fail. */
2570 unsigned char *p = pattern;
2571 #else
2572 re_char *p = pattern;
2573 #endif
2574 re_char *pend = pattern + size;
2576 /* How to translate the characters in the pattern. */
2577 RE_TRANSLATE_TYPE translate = bufp->translate;
2579 /* Address of the count-byte of the most recently inserted `exactn'
2580 command. This makes it possible to tell if a new exact-match
2581 character can be added to that command or if the character requires
2582 a new `exactn' command. */
2583 unsigned char *pending_exact = 0;
2585 /* Address of start of the most recently finished expression.
2586 This tells, e.g., postfix * where to find the start of its
2587 operand. Reset at the beginning of groups and alternatives. */
2588 unsigned char *laststart = 0;
2590 /* Address of beginning of regexp, or inside of last group. */
2591 unsigned char *begalt;
2593 /* Place in the uncompiled pattern (i.e., the {) to
2594 which to go back if the interval is invalid. */
2595 re_char *beg_interval;
2597 /* Address of the place where a forward jump should go to the end of
2598 the containing expression. Each alternative of an `or' -- except the
2599 last -- ends with a forward jump of this sort. */
2600 unsigned char *fixup_alt_jump = 0;
2602 /* Work area for range table of charset. */
2603 struct range_table_work_area range_table_work;
2605 /* If the object matched can contain multibyte characters. */
2606 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2608 /* If a target of matching can contain multibyte characters. */
2609 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
2611 /* Nonzero if we have pushed down into a subpattern. */
2612 int in_subpattern = 0;
2614 /* These hold the values of p, pattern, and pend from the main
2615 pattern when we have pushed into a subpattern. */
2616 re_char *main_p;
2617 re_char *main_pattern;
2618 re_char *main_pend;
2620 #ifdef DEBUG
2621 debug++;
2622 DEBUG_PRINT1 ("\nCompiling pattern: ");
2623 if (debug > 0)
2625 unsigned debug_count;
2627 for (debug_count = 0; debug_count < size; debug_count++)
2628 putchar (pattern[debug_count]);
2629 putchar ('\n');
2631 #endif /* DEBUG */
2633 /* Initialize the compile stack. */
2634 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2635 if (compile_stack.stack == NULL)
2636 return REG_ESPACE;
2638 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2639 compile_stack.avail = 0;
2641 range_table_work.table = 0;
2642 range_table_work.allocated = 0;
2644 /* Initialize the pattern buffer. */
2645 bufp->syntax = syntax;
2646 bufp->fastmap_accurate = 0;
2647 bufp->not_bol = bufp->not_eol = 0;
2648 bufp->used_syntax = 0;
2650 /* Set `used' to zero, so that if we return an error, the pattern
2651 printer (for debugging) will think there's no pattern. We reset it
2652 at the end. */
2653 bufp->used = 0;
2655 /* Always count groups, whether or not bufp->no_sub is set. */
2656 bufp->re_nsub = 0;
2658 #if !defined emacs && !defined SYNTAX_TABLE
2659 /* Initialize the syntax table. */
2660 init_syntax_once ();
2661 #endif
2663 if (bufp->allocated == 0)
2665 if (bufp->buffer)
2666 { /* If zero allocated, but buffer is non-null, try to realloc
2667 enough space. This loses if buffer's address is bogus, but
2668 that is the user's responsibility. */
2669 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2671 else
2672 { /* Caller did not allocate a buffer. Do it for them. */
2673 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2675 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2677 bufp->allocated = INIT_BUF_SIZE;
2680 begalt = b = bufp->buffer;
2682 /* Loop through the uncompiled pattern until we're at the end. */
2683 while (1)
2685 if (p == pend)
2687 /* If this is the end of an included regexp,
2688 pop back to the main regexp and try again. */
2689 if (in_subpattern)
2691 in_subpattern = 0;
2692 pattern = main_pattern;
2693 p = main_p;
2694 pend = main_pend;
2695 continue;
2697 /* If this is the end of the main regexp, we are done. */
2698 break;
2701 PATFETCH (c);
2703 switch (c)
2705 case ' ':
2707 re_char *p1 = p;
2709 /* If there's no special whitespace regexp, treat
2710 spaces normally. And don't try to do this recursively. */
2711 if (!whitespace_regexp || in_subpattern)
2712 goto normal_char;
2714 /* Peek past following spaces. */
2715 while (p1 != pend)
2717 if (*p1 != ' ')
2718 break;
2719 p1++;
2721 /* If the spaces are followed by a repetition op,
2722 treat them normally. */
2723 if (p1 != pend
2724 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2725 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2726 goto normal_char;
2728 /* Replace the spaces with the whitespace regexp. */
2729 in_subpattern = 1;
2730 main_p = p1;
2731 main_pend = pend;
2732 main_pattern = pattern;
2733 p = pattern = whitespace_regexp;
2734 pend = p + strlen (p);
2735 break;
2738 case '^':
2740 if ( /* If at start of pattern, it's an operator. */
2741 p == pattern + 1
2742 /* If context independent, it's an operator. */
2743 || syntax & RE_CONTEXT_INDEP_ANCHORS
2744 /* Otherwise, depends on what's come before. */
2745 || at_begline_loc_p (pattern, p, syntax))
2746 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2747 else
2748 goto normal_char;
2750 break;
2753 case '$':
2755 if ( /* If at end of pattern, it's an operator. */
2756 p == pend
2757 /* If context independent, it's an operator. */
2758 || syntax & RE_CONTEXT_INDEP_ANCHORS
2759 /* Otherwise, depends on what's next. */
2760 || at_endline_loc_p (p, pend, syntax))
2761 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2762 else
2763 goto normal_char;
2765 break;
2768 case '+':
2769 case '?':
2770 if ((syntax & RE_BK_PLUS_QM)
2771 || (syntax & RE_LIMITED_OPS))
2772 goto normal_char;
2773 handle_plus:
2774 case '*':
2775 /* If there is no previous pattern... */
2776 if (!laststart)
2778 if (syntax & RE_CONTEXT_INVALID_OPS)
2779 FREE_STACK_RETURN (REG_BADRPT);
2780 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2781 goto normal_char;
2785 /* 1 means zero (many) matches is allowed. */
2786 boolean zero_times_ok = 0, many_times_ok = 0;
2787 boolean greedy = 1;
2789 /* If there is a sequence of repetition chars, collapse it
2790 down to just one (the right one). We can't combine
2791 interval operators with these because of, e.g., `a{2}*',
2792 which should only match an even number of `a's. */
2794 for (;;)
2796 if ((syntax & RE_FRUGAL)
2797 && c == '?' && (zero_times_ok || many_times_ok))
2798 greedy = 0;
2799 else
2801 zero_times_ok |= c != '+';
2802 many_times_ok |= c != '?';
2805 if (p == pend)
2806 break;
2807 else if (*p == '*'
2808 || (!(syntax & RE_BK_PLUS_QM)
2809 && (*p == '+' || *p == '?')))
2811 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2813 if (p+1 == pend)
2814 FREE_STACK_RETURN (REG_EESCAPE);
2815 if (p[1] == '+' || p[1] == '?')
2816 PATFETCH (c); /* Gobble up the backslash. */
2817 else
2818 break;
2820 else
2821 break;
2822 /* If we get here, we found another repeat character. */
2823 PATFETCH (c);
2826 /* Star, etc. applied to an empty pattern is equivalent
2827 to an empty pattern. */
2828 if (!laststart || laststart == b)
2829 break;
2831 /* Now we know whether or not zero matches is allowed
2832 and also whether or not two or more matches is allowed. */
2833 if (greedy)
2835 if (many_times_ok)
2837 boolean simple = skip_one_char (laststart) == b;
2838 unsigned int startoffset = 0;
2839 re_opcode_t ofj =
2840 /* Check if the loop can match the empty string. */
2841 (simple || !analyse_first (laststart, b, NULL, 0))
2842 ? on_failure_jump : on_failure_jump_loop;
2843 assert (skip_one_char (laststart) <= b);
2845 if (!zero_times_ok && simple)
2846 { /* Since simple * loops can be made faster by using
2847 on_failure_keep_string_jump, we turn simple P+
2848 into PP* if P is simple. */
2849 unsigned char *p1, *p2;
2850 startoffset = b - laststart;
2851 GET_BUFFER_SPACE (startoffset);
2852 p1 = b; p2 = laststart;
2853 while (p2 < p1)
2854 *b++ = *p2++;
2855 zero_times_ok = 1;
2858 GET_BUFFER_SPACE (6);
2859 if (!zero_times_ok)
2860 /* A + loop. */
2861 STORE_JUMP (ofj, b, b + 6);
2862 else
2863 /* Simple * loops can use on_failure_keep_string_jump
2864 depending on what follows. But since we don't know
2865 that yet, we leave the decision up to
2866 on_failure_jump_smart. */
2867 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2868 laststart + startoffset, b + 6);
2869 b += 3;
2870 STORE_JUMP (jump, b, laststart + startoffset);
2871 b += 3;
2873 else
2875 /* A simple ? pattern. */
2876 assert (zero_times_ok);
2877 GET_BUFFER_SPACE (3);
2878 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2879 b += 3;
2882 else /* not greedy */
2883 { /* I wish the greedy and non-greedy cases could be merged. */
2885 GET_BUFFER_SPACE (7); /* We might use less. */
2886 if (many_times_ok)
2888 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2890 /* The non-greedy multiple match looks like
2891 a repeat..until: we only need a conditional jump
2892 at the end of the loop. */
2893 if (emptyp) BUF_PUSH (no_op);
2894 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2895 : on_failure_jump, b, laststart);
2896 b += 3;
2897 if (zero_times_ok)
2899 /* The repeat...until naturally matches one or more.
2900 To also match zero times, we need to first jump to
2901 the end of the loop (its conditional jump). */
2902 INSERT_JUMP (jump, laststart, b);
2903 b += 3;
2906 else
2908 /* non-greedy a?? */
2909 INSERT_JUMP (jump, laststart, b + 3);
2910 b += 3;
2911 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2912 b += 3;
2916 pending_exact = 0;
2917 break;
2920 case '.':
2921 laststart = b;
2922 BUF_PUSH (anychar);
2923 break;
2926 case '[':
2928 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2930 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2932 /* Ensure that we have enough space to push a charset: the
2933 opcode, the length count, and the bitset; 34 bytes in all. */
2934 GET_BUFFER_SPACE (34);
2936 laststart = b;
2938 /* We test `*p == '^' twice, instead of using an if
2939 statement, so we only need one BUF_PUSH. */
2940 BUF_PUSH (*p == '^' ? charset_not : charset);
2941 if (*p == '^')
2942 p++;
2944 /* Remember the first position in the bracket expression. */
2945 p1 = p;
2947 /* Push the number of bytes in the bitmap. */
2948 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2950 /* Clear the whole map. */
2951 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2953 /* charset_not matches newline according to a syntax bit. */
2954 if ((re_opcode_t) b[-2] == charset_not
2955 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2956 SET_LIST_BIT ('\n');
2958 /* Read in characters and ranges, setting map bits. */
2959 for (;;)
2961 boolean escaped_char = false;
2962 const unsigned char *p2 = p;
2963 re_wchar_t ch, c2;
2965 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2967 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2968 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2969 So the translation is done later in a loop. Example:
2970 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2971 PATFETCH (c);
2973 /* \ might escape characters inside [...] and [^...]. */
2974 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2976 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2978 PATFETCH (c);
2979 escaped_char = true;
2981 else
2983 /* Could be the end of the bracket expression. If it's
2984 not (i.e., when the bracket expression is `[]' so
2985 far), the ']' character bit gets set way below. */
2986 if (c == ']' && p2 != p1)
2987 break;
2990 /* See if we're at the beginning of a possible character
2991 class. */
2993 if (!escaped_char &&
2994 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2996 /* Leave room for the null. */
2997 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2998 const unsigned char *class_beg;
3000 PATFETCH (c);
3001 c1 = 0;
3002 class_beg = p;
3004 /* If pattern is `[[:'. */
3005 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3007 for (;;)
3009 PATFETCH (c);
3010 if ((c == ':' && *p == ']') || p == pend)
3011 break;
3012 if (c1 < CHAR_CLASS_MAX_LENGTH)
3013 str[c1++] = c;
3014 else
3015 /* This is in any case an invalid class name. */
3016 str[0] = '\0';
3018 str[c1] = '\0';
3020 /* If isn't a word bracketed by `[:' and `:]':
3021 undo the ending character, the letters, and
3022 leave the leading `:' and `[' (but set bits for
3023 them). */
3024 if (c == ':' && *p == ']')
3026 re_wctype_t cc;
3027 int limit;
3029 cc = re_wctype (str);
3031 if (cc == 0)
3032 FREE_STACK_RETURN (REG_ECTYPE);
3034 /* Throw away the ] at the end of the character
3035 class. */
3036 PATFETCH (c);
3038 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3040 #ifndef emacs
3041 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
3042 if (re_iswctype (btowc (ch), cc))
3044 c = TRANSLATE (ch);
3045 if (c < (1 << BYTEWIDTH))
3046 SET_LIST_BIT (c);
3048 #else /* emacs */
3049 /* Most character classes in a multibyte match
3050 just set a flag. Exceptions are is_blank,
3051 is_digit, is_cntrl, and is_xdigit, since
3052 they can only match ASCII characters. We
3053 don't need to handle them for multibyte.
3054 They are distinguished by a negative wctype. */
3056 /* Setup the gl_state object to its buffer-defined
3057 value. This hardcodes the buffer-global
3058 syntax-table for ASCII chars, while the other chars
3059 will obey syntax-table properties. It's not ideal,
3060 but it's the way it's been done until now. */
3061 SETUP_BUFFER_SYNTAX_TABLE ();
3063 for (ch = 0; ch < 256; ++ch)
3065 c = RE_CHAR_TO_MULTIBYTE (ch);
3066 if (! CHAR_BYTE8_P (c)
3067 && re_iswctype (c, cc))
3069 SET_LIST_BIT (ch);
3070 c1 = TRANSLATE (c);
3071 if (c1 == c)
3072 continue;
3073 if (ASCII_CHAR_P (c1))
3074 SET_LIST_BIT (c1);
3075 else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
3076 SET_LIST_BIT (c1);
3079 SET_RANGE_TABLE_WORK_AREA_BIT
3080 (range_table_work, re_wctype_to_bit (cc));
3081 #endif /* emacs */
3082 /* In most cases the matching rule for char classes
3083 only uses the syntax table for multibyte chars,
3084 so that the content of the syntax-table it is not
3085 hardcoded in the range_table. SPACE and WORD are
3086 the two exceptions. */
3087 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
3088 bufp->used_syntax = 1;
3090 /* Repeat the loop. */
3091 continue;
3093 else
3095 /* Go back to right after the "[:". */
3096 p = class_beg;
3097 SET_LIST_BIT ('[');
3099 /* Because the `:' may starts the range, we
3100 can't simply set bit and repeat the loop.
3101 Instead, just set it to C and handle below. */
3102 c = ':';
3106 if (p < pend && p[0] == '-' && p[1] != ']')
3109 /* Discard the `-'. */
3110 PATFETCH (c1);
3112 /* Fetch the character which ends the range. */
3113 PATFETCH (c1);
3114 #ifdef emacs
3115 if (CHAR_BYTE8_P (c1)
3116 && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
3117 /* Treat the range from a multibyte character to
3118 raw-byte character as empty. */
3119 c = c1 + 1;
3120 #endif /* emacs */
3122 else
3123 /* Range from C to C. */
3124 c1 = c;
3126 if (c > c1)
3128 if (syntax & RE_NO_EMPTY_RANGES)
3129 FREE_STACK_RETURN (REG_ERANGEX);
3130 /* Else, repeat the loop. */
3132 else
3134 #ifndef emacs
3135 /* Set the range into bitmap */
3136 for (; c <= c1; c++)
3138 ch = TRANSLATE (c);
3139 if (ch < (1 << BYTEWIDTH))
3140 SET_LIST_BIT (ch);
3142 #else /* emacs */
3143 if (c < 128)
3145 ch = MIN (127, c1);
3146 SETUP_ASCII_RANGE (range_table_work, c, ch);
3147 c = ch + 1;
3148 if (CHAR_BYTE8_P (c1))
3149 c = BYTE8_TO_CHAR (128);
3151 if (c <= c1)
3153 if (CHAR_BYTE8_P (c))
3155 c = CHAR_TO_BYTE8 (c);
3156 c1 = CHAR_TO_BYTE8 (c1);
3157 for (; c <= c1; c++)
3158 SET_LIST_BIT (c);
3160 else if (multibyte)
3162 SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
3164 else
3166 SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
3169 #endif /* emacs */
3173 /* Discard any (non)matching list bytes that are all 0 at the
3174 end of the map. Decrease the map-length byte too. */
3175 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3176 b[-1]--;
3177 b += b[-1];
3179 /* Build real range table from work area. */
3180 if (RANGE_TABLE_WORK_USED (range_table_work)
3181 || RANGE_TABLE_WORK_BITS (range_table_work))
3183 int i;
3184 int used = RANGE_TABLE_WORK_USED (range_table_work);
3186 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3187 bytes for flags, two for COUNT, and three bytes for
3188 each character. */
3189 GET_BUFFER_SPACE (4 + used * 3);
3191 /* Indicate the existence of range table. */
3192 laststart[1] |= 0x80;
3194 /* Store the character class flag bits into the range table.
3195 If not in emacs, these flag bits are always 0. */
3196 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3197 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3199 STORE_NUMBER_AND_INCR (b, used / 2);
3200 for (i = 0; i < used; i++)
3201 STORE_CHARACTER_AND_INCR
3202 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3205 break;
3208 case '(':
3209 if (syntax & RE_NO_BK_PARENS)
3210 goto handle_open;
3211 else
3212 goto normal_char;
3215 case ')':
3216 if (syntax & RE_NO_BK_PARENS)
3217 goto handle_close;
3218 else
3219 goto normal_char;
3222 case '\n':
3223 if (syntax & RE_NEWLINE_ALT)
3224 goto handle_alt;
3225 else
3226 goto normal_char;
3229 case '|':
3230 if (syntax & RE_NO_BK_VBAR)
3231 goto handle_alt;
3232 else
3233 goto normal_char;
3236 case '{':
3237 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3238 goto handle_interval;
3239 else
3240 goto normal_char;
3243 case '\\':
3244 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3246 /* Do not translate the character after the \, so that we can
3247 distinguish, e.g., \B from \b, even if we normally would
3248 translate, e.g., B to b. */
3249 PATFETCH (c);
3251 switch (c)
3253 case '(':
3254 if (syntax & RE_NO_BK_PARENS)
3255 goto normal_backslash;
3257 handle_open:
3259 int shy = 0;
3260 regnum_t regnum = 0;
3261 if (p+1 < pend)
3263 /* Look for a special (?...) construct */
3264 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3266 PATFETCH (c); /* Gobble up the '?'. */
3267 while (!shy)
3269 PATFETCH (c);
3270 switch (c)
3272 case ':': shy = 1; break;
3273 case '0':
3274 /* An explicitly specified regnum must start
3275 with non-0. */
3276 if (regnum == 0)
3277 FREE_STACK_RETURN (REG_BADPAT);
3278 case '1': case '2': case '3': case '4':
3279 case '5': case '6': case '7': case '8': case '9':
3280 regnum = 10*regnum + (c - '0'); break;
3281 default:
3282 /* Only (?:...) is supported right now. */
3283 FREE_STACK_RETURN (REG_BADPAT);
3289 if (!shy)
3290 regnum = ++bufp->re_nsub;
3291 else if (regnum)
3292 { /* It's actually not shy, but explicitly numbered. */
3293 shy = 0;
3294 if (regnum > bufp->re_nsub)
3295 bufp->re_nsub = regnum;
3296 else if (regnum > bufp->re_nsub
3297 /* Ideally, we'd want to check that the specified
3298 group can't have matched (i.e. all subgroups
3299 using the same regnum are in other branches of
3300 OR patterns), but we don't currently keep track
3301 of enough info to do that easily. */
3302 || group_in_compile_stack (compile_stack, regnum))
3303 FREE_STACK_RETURN (REG_BADPAT);
3305 else
3306 /* It's really shy. */
3307 regnum = - bufp->re_nsub;
3309 if (COMPILE_STACK_FULL)
3311 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3312 compile_stack_elt_t);
3313 if (compile_stack.stack == NULL) return REG_ESPACE;
3315 compile_stack.size <<= 1;
3318 /* These are the values to restore when we hit end of this
3319 group. They are all relative offsets, so that if the
3320 whole pattern moves because of realloc, they will still
3321 be valid. */
3322 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3323 COMPILE_STACK_TOP.fixup_alt_jump
3324 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3325 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3326 COMPILE_STACK_TOP.regnum = regnum;
3328 /* Do not push a start_memory for groups beyond the last one
3329 we can represent in the compiled pattern. */
3330 if (regnum <= MAX_REGNUM && regnum > 0)
3331 BUF_PUSH_2 (start_memory, regnum);
3333 compile_stack.avail++;
3335 fixup_alt_jump = 0;
3336 laststart = 0;
3337 begalt = b;
3338 /* If we've reached MAX_REGNUM groups, then this open
3339 won't actually generate any code, so we'll have to
3340 clear pending_exact explicitly. */
3341 pending_exact = 0;
3342 break;
3345 case ')':
3346 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3348 if (COMPILE_STACK_EMPTY)
3350 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3351 goto normal_backslash;
3352 else
3353 FREE_STACK_RETURN (REG_ERPAREN);
3356 handle_close:
3357 FIXUP_ALT_JUMP ();
3359 /* See similar code for backslashed left paren above. */
3360 if (COMPILE_STACK_EMPTY)
3362 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3363 goto normal_char;
3364 else
3365 FREE_STACK_RETURN (REG_ERPAREN);
3368 /* Since we just checked for an empty stack above, this
3369 ``can't happen''. */
3370 assert (compile_stack.avail != 0);
3372 /* We don't just want to restore into `regnum', because
3373 later groups should continue to be numbered higher,
3374 as in `(ab)c(de)' -- the second group is #2. */
3375 regnum_t regnum;
3377 compile_stack.avail--;
3378 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3379 fixup_alt_jump
3380 = COMPILE_STACK_TOP.fixup_alt_jump
3381 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3382 : 0;
3383 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3384 regnum = COMPILE_STACK_TOP.regnum;
3385 /* If we've reached MAX_REGNUM groups, then this open
3386 won't actually generate any code, so we'll have to
3387 clear pending_exact explicitly. */
3388 pending_exact = 0;
3390 /* We're at the end of the group, so now we know how many
3391 groups were inside this one. */
3392 if (regnum <= MAX_REGNUM && regnum > 0)
3393 BUF_PUSH_2 (stop_memory, regnum);
3395 break;
3398 case '|': /* `\|'. */
3399 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3400 goto normal_backslash;
3401 handle_alt:
3402 if (syntax & RE_LIMITED_OPS)
3403 goto normal_char;
3405 /* Insert before the previous alternative a jump which
3406 jumps to this alternative if the former fails. */
3407 GET_BUFFER_SPACE (3);
3408 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3409 pending_exact = 0;
3410 b += 3;
3412 /* The alternative before this one has a jump after it
3413 which gets executed if it gets matched. Adjust that
3414 jump so it will jump to this alternative's analogous
3415 jump (put in below, which in turn will jump to the next
3416 (if any) alternative's such jump, etc.). The last such
3417 jump jumps to the correct final destination. A picture:
3418 _____ _____
3419 | | | |
3420 | v | v
3421 a | b | c
3423 If we are at `b', then fixup_alt_jump right now points to a
3424 three-byte space after `a'. We'll put in the jump, set
3425 fixup_alt_jump to right after `b', and leave behind three
3426 bytes which we'll fill in when we get to after `c'. */
3428 FIXUP_ALT_JUMP ();
3430 /* Mark and leave space for a jump after this alternative,
3431 to be filled in later either by next alternative or
3432 when know we're at the end of a series of alternatives. */
3433 fixup_alt_jump = b;
3434 GET_BUFFER_SPACE (3);
3435 b += 3;
3437 laststart = 0;
3438 begalt = b;
3439 break;
3442 case '{':
3443 /* If \{ is a literal. */
3444 if (!(syntax & RE_INTERVALS)
3445 /* If we're at `\{' and it's not the open-interval
3446 operator. */
3447 || (syntax & RE_NO_BK_BRACES))
3448 goto normal_backslash;
3450 handle_interval:
3452 /* If got here, then the syntax allows intervals. */
3454 /* At least (most) this many matches must be made. */
3455 int lower_bound = 0, upper_bound = -1;
3457 beg_interval = p;
3459 GET_UNSIGNED_NUMBER (lower_bound);
3461 if (c == ',')
3462 GET_UNSIGNED_NUMBER (upper_bound);
3463 else
3464 /* Interval such as `{1}' => match exactly once. */
3465 upper_bound = lower_bound;
3467 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3468 || (upper_bound >= 0 && lower_bound > upper_bound))
3469 FREE_STACK_RETURN (REG_BADBR);
3471 if (!(syntax & RE_NO_BK_BRACES))
3473 if (c != '\\')
3474 FREE_STACK_RETURN (REG_BADBR);
3475 if (p == pend)
3476 FREE_STACK_RETURN (REG_EESCAPE);
3477 PATFETCH (c);
3480 if (c != '}')
3481 FREE_STACK_RETURN (REG_BADBR);
3483 /* We just parsed a valid interval. */
3485 /* If it's invalid to have no preceding re. */
3486 if (!laststart)
3488 if (syntax & RE_CONTEXT_INVALID_OPS)
3489 FREE_STACK_RETURN (REG_BADRPT);
3490 else if (syntax & RE_CONTEXT_INDEP_OPS)
3491 laststart = b;
3492 else
3493 goto unfetch_interval;
3496 if (upper_bound == 0)
3497 /* If the upper bound is zero, just drop the sub pattern
3498 altogether. */
3499 b = laststart;
3500 else if (lower_bound == 1 && upper_bound == 1)
3501 /* Just match it once: nothing to do here. */
3504 /* Otherwise, we have a nontrivial interval. When
3505 we're all done, the pattern will look like:
3506 set_number_at <jump count> <upper bound>
3507 set_number_at <succeed_n count> <lower bound>
3508 succeed_n <after jump addr> <succeed_n count>
3509 <body of loop>
3510 jump_n <succeed_n addr> <jump count>
3511 (The upper bound and `jump_n' are omitted if
3512 `upper_bound' is 1, though.) */
3513 else
3514 { /* If the upper bound is > 1, we need to insert
3515 more at the end of the loop. */
3516 unsigned int nbytes = (upper_bound < 0 ? 3
3517 : upper_bound > 1 ? 5 : 0);
3518 unsigned int startoffset = 0;
3520 GET_BUFFER_SPACE (20); /* We might use less. */
3522 if (lower_bound == 0)
3524 /* A succeed_n that starts with 0 is really a
3525 a simple on_failure_jump_loop. */
3526 INSERT_JUMP (on_failure_jump_loop, laststart,
3527 b + 3 + nbytes);
3528 b += 3;
3530 else
3532 /* Initialize lower bound of the `succeed_n', even
3533 though it will be set during matching by its
3534 attendant `set_number_at' (inserted next),
3535 because `re_compile_fastmap' needs to know.
3536 Jump to the `jump_n' we might insert below. */
3537 INSERT_JUMP2 (succeed_n, laststart,
3538 b + 5 + nbytes,
3539 lower_bound);
3540 b += 5;
3542 /* Code to initialize the lower bound. Insert
3543 before the `succeed_n'. The `5' is the last two
3544 bytes of this `set_number_at', plus 3 bytes of
3545 the following `succeed_n'. */
3546 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3547 b += 5;
3548 startoffset += 5;
3551 if (upper_bound < 0)
3553 /* A negative upper bound stands for infinity,
3554 in which case it degenerates to a plain jump. */
3555 STORE_JUMP (jump, b, laststart + startoffset);
3556 b += 3;
3558 else if (upper_bound > 1)
3559 { /* More than one repetition is allowed, so
3560 append a backward jump to the `succeed_n'
3561 that starts this interval.
3563 When we've reached this during matching,
3564 we'll have matched the interval once, so
3565 jump back only `upper_bound - 1' times. */
3566 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3567 upper_bound - 1);
3568 b += 5;
3570 /* The location we want to set is the second
3571 parameter of the `jump_n'; that is `b-2' as
3572 an absolute address. `laststart' will be
3573 the `set_number_at' we're about to insert;
3574 `laststart+3' the number to set, the source
3575 for the relative address. But we are
3576 inserting into the middle of the pattern --
3577 so everything is getting moved up by 5.
3578 Conclusion: (b - 2) - (laststart + 3) + 5,
3579 i.e., b - laststart.
3581 We insert this at the beginning of the loop
3582 so that if we fail during matching, we'll
3583 reinitialize the bounds. */
3584 insert_op2 (set_number_at, laststart, b - laststart,
3585 upper_bound - 1, b);
3586 b += 5;
3589 pending_exact = 0;
3590 beg_interval = NULL;
3592 break;
3594 unfetch_interval:
3595 /* If an invalid interval, match the characters as literals. */
3596 assert (beg_interval);
3597 p = beg_interval;
3598 beg_interval = NULL;
3600 /* normal_char and normal_backslash need `c'. */
3601 c = '{';
3603 if (!(syntax & RE_NO_BK_BRACES))
3605 assert (p > pattern && p[-1] == '\\');
3606 goto normal_backslash;
3608 else
3609 goto normal_char;
3611 #ifdef emacs
3612 /* There is no way to specify the before_dot and after_dot
3613 operators. rms says this is ok. --karl */
3614 case '=':
3615 BUF_PUSH (at_dot);
3616 break;
3618 case 's':
3619 laststart = b;
3620 PATFETCH (c);
3621 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3622 break;
3624 case 'S':
3625 laststart = b;
3626 PATFETCH (c);
3627 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3628 break;
3630 case 'c':
3631 laststart = b;
3632 PATFETCH (c);
3633 BUF_PUSH_2 (categoryspec, c);
3634 break;
3636 case 'C':
3637 laststart = b;
3638 PATFETCH (c);
3639 BUF_PUSH_2 (notcategoryspec, c);
3640 break;
3641 #endif /* emacs */
3644 case 'w':
3645 if (syntax & RE_NO_GNU_OPS)
3646 goto normal_char;
3647 laststart = b;
3648 BUF_PUSH_2 (syntaxspec, Sword);
3649 break;
3652 case 'W':
3653 if (syntax & RE_NO_GNU_OPS)
3654 goto normal_char;
3655 laststart = b;
3656 BUF_PUSH_2 (notsyntaxspec, Sword);
3657 break;
3660 case '<':
3661 if (syntax & RE_NO_GNU_OPS)
3662 goto normal_char;
3663 BUF_PUSH (wordbeg);
3664 break;
3666 case '>':
3667 if (syntax & RE_NO_GNU_OPS)
3668 goto normal_char;
3669 BUF_PUSH (wordend);
3670 break;
3672 case '_':
3673 if (syntax & RE_NO_GNU_OPS)
3674 goto normal_char;
3675 laststart = b;
3676 PATFETCH (c);
3677 if (c == '<')
3678 BUF_PUSH (symbeg);
3679 else if (c == '>')
3680 BUF_PUSH (symend);
3681 else
3682 FREE_STACK_RETURN (REG_BADPAT);
3683 break;
3685 case 'b':
3686 if (syntax & RE_NO_GNU_OPS)
3687 goto normal_char;
3688 BUF_PUSH (wordbound);
3689 break;
3691 case 'B':
3692 if (syntax & RE_NO_GNU_OPS)
3693 goto normal_char;
3694 BUF_PUSH (notwordbound);
3695 break;
3697 case '`':
3698 if (syntax & RE_NO_GNU_OPS)
3699 goto normal_char;
3700 BUF_PUSH (begbuf);
3701 break;
3703 case '\'':
3704 if (syntax & RE_NO_GNU_OPS)
3705 goto normal_char;
3706 BUF_PUSH (endbuf);
3707 break;
3709 case '1': case '2': case '3': case '4': case '5':
3710 case '6': case '7': case '8': case '9':
3712 regnum_t reg;
3714 if (syntax & RE_NO_BK_REFS)
3715 goto normal_backslash;
3717 reg = c - '0';
3719 if (reg > bufp->re_nsub || reg < 1
3720 /* Can't back reference to a subexp before its end. */
3721 || group_in_compile_stack (compile_stack, reg))
3722 FREE_STACK_RETURN (REG_ESUBREG);
3724 laststart = b;
3725 BUF_PUSH_2 (duplicate, reg);
3727 break;
3730 case '+':
3731 case '?':
3732 if (syntax & RE_BK_PLUS_QM)
3733 goto handle_plus;
3734 else
3735 goto normal_backslash;
3737 default:
3738 normal_backslash:
3739 /* You might think it would be useful for \ to mean
3740 not to translate; but if we don't translate it
3741 it will never match anything. */
3742 goto normal_char;
3744 break;
3747 default:
3748 /* Expects the character in `c'. */
3749 normal_char:
3750 /* If no exactn currently being built. */
3751 if (!pending_exact
3753 /* If last exactn not at current position. */
3754 || pending_exact + *pending_exact + 1 != b
3756 /* We have only one byte following the exactn for the count. */
3757 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3759 /* If followed by a repetition operator. */
3760 || (p != pend && (*p == '*' || *p == '^'))
3761 || ((syntax & RE_BK_PLUS_QM)
3762 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3763 : p != pend && (*p == '+' || *p == '?'))
3764 || ((syntax & RE_INTERVALS)
3765 && ((syntax & RE_NO_BK_BRACES)
3766 ? p != pend && *p == '{'
3767 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3769 /* Start building a new exactn. */
3771 laststart = b;
3773 BUF_PUSH_2 (exactn, 0);
3774 pending_exact = b - 1;
3777 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3779 int len;
3781 if (multibyte)
3783 c = TRANSLATE (c);
3784 len = CHAR_STRING (c, b);
3785 b += len;
3787 else
3789 c1 = RE_CHAR_TO_MULTIBYTE (c);
3790 if (! CHAR_BYTE8_P (c1))
3792 re_wchar_t c2 = TRANSLATE (c1);
3794 if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
3795 c = c1;
3797 *b++ = c;
3798 len = 1;
3800 (*pending_exact) += len;
3803 break;
3804 } /* switch (c) */
3805 } /* while p != pend */
3808 /* Through the pattern now. */
3810 FIXUP_ALT_JUMP ();
3812 if (!COMPILE_STACK_EMPTY)
3813 FREE_STACK_RETURN (REG_EPAREN);
3815 /* If we don't want backtracking, force success
3816 the first time we reach the end of the compiled pattern. */
3817 if (syntax & RE_NO_POSIX_BACKTRACKING)
3818 BUF_PUSH (succeed);
3820 /* We have succeeded; set the length of the buffer. */
3821 bufp->used = b - bufp->buffer;
3823 #ifdef DEBUG
3824 if (debug > 0)
3826 re_compile_fastmap (bufp);
3827 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3828 print_compiled_pattern (bufp);
3830 debug--;
3831 #endif /* DEBUG */
3833 #ifndef MATCH_MAY_ALLOCATE
3834 /* Initialize the failure stack to the largest possible stack. This
3835 isn't necessary unless we're trying to avoid calling alloca in
3836 the search and match routines. */
3838 int num_regs = bufp->re_nsub + 1;
3840 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3842 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3844 if (! fail_stack.stack)
3845 fail_stack.stack
3846 = (fail_stack_elt_t *) malloc (fail_stack.size
3847 * sizeof (fail_stack_elt_t));
3848 else
3849 fail_stack.stack
3850 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3851 (fail_stack.size
3852 * sizeof (fail_stack_elt_t)));
3855 regex_grow_registers (num_regs);
3857 #endif /* not MATCH_MAY_ALLOCATE */
3859 FREE_STACK_RETURN (REG_NOERROR);
3860 } /* regex_compile */
3862 /* Subroutines for `regex_compile'. */
3864 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3866 static void
3867 store_op1 (re_opcode_t op, unsigned char *loc, int arg)
3869 *loc = (unsigned char) op;
3870 STORE_NUMBER (loc + 1, arg);
3874 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3876 static void
3877 store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
3879 *loc = (unsigned char) op;
3880 STORE_NUMBER (loc + 1, arg1);
3881 STORE_NUMBER (loc + 3, arg2);
3885 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3886 for OP followed by two-byte integer parameter ARG. */
3888 static void
3889 insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
3891 register unsigned char *pfrom = end;
3892 register unsigned char *pto = end + 3;
3894 while (pfrom != loc)
3895 *--pto = *--pfrom;
3897 store_op1 (op, loc, arg);
3901 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3903 static void
3904 insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
3906 register unsigned char *pfrom = end;
3907 register unsigned char *pto = end + 5;
3909 while (pfrom != loc)
3910 *--pto = *--pfrom;
3912 store_op2 (op, loc, arg1, arg2);
3916 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3917 after an alternative or a begin-subexpression. We assume there is at
3918 least one character before the ^. */
3920 static boolean
3921 at_begline_loc_p (const re_char *pattern, const re_char *p, reg_syntax_t syntax)
3923 re_char *prev = p - 2;
3924 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3926 return
3927 /* After a subexpression? */
3928 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3929 /* After an alternative? */
3930 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3931 /* After a shy subexpression? */
3932 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3933 && prev[-1] == '?' && prev[-2] == '('
3934 && (syntax & RE_NO_BK_PARENS
3935 || (prev - 3 >= pattern && prev[-3] == '\\')));
3939 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3940 at least one character after the $, i.e., `P < PEND'. */
3942 static boolean
3943 at_endline_loc_p (const re_char *p, const re_char *pend, reg_syntax_t syntax)
3945 re_char *next = p;
3946 boolean next_backslash = *next == '\\';
3947 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3949 return
3950 /* Before a subexpression? */
3951 (syntax & RE_NO_BK_PARENS ? *next == ')'
3952 : next_backslash && next_next && *next_next == ')')
3953 /* Before an alternative? */
3954 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3955 : next_backslash && next_next && *next_next == '|');
3959 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3960 false if it's not. */
3962 static boolean
3963 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
3965 int this_element;
3967 for (this_element = compile_stack.avail - 1;
3968 this_element >= 0;
3969 this_element--)
3970 if (compile_stack.stack[this_element].regnum == regnum)
3971 return true;
3973 return false;
3976 /* analyse_first.
3977 If fastmap is non-NULL, go through the pattern and fill fastmap
3978 with all the possible leading chars. If fastmap is NULL, don't
3979 bother filling it up (obviously) and only return whether the
3980 pattern could potentially match the empty string.
3982 Return 1 if p..pend might match the empty string.
3983 Return 0 if p..pend matches at least one char.
3984 Return -1 if fastmap was not updated accurately. */
3986 static int
3987 analyse_first (const re_char *p, const re_char *pend, char *fastmap, const int multibyte)
3989 int j, k;
3990 boolean not;
3992 /* If all elements for base leading-codes in fastmap is set, this
3993 flag is set true. */
3994 boolean match_any_multibyte_characters = false;
3996 assert (p);
3998 /* The loop below works as follows:
3999 - It has a working-list kept in the PATTERN_STACK and which basically
4000 starts by only containing a pointer to the first operation.
4001 - If the opcode we're looking at is a match against some set of
4002 chars, then we add those chars to the fastmap and go on to the
4003 next work element from the worklist (done via `break').
4004 - If the opcode is a control operator on the other hand, we either
4005 ignore it (if it's meaningless at this point, such as `start_memory')
4006 or execute it (if it's a jump). If the jump has several destinations
4007 (i.e. `on_failure_jump'), then we push the other destination onto the
4008 worklist.
4009 We guarantee termination by ignoring backward jumps (more or less),
4010 so that `p' is monotonically increasing. More to the point, we
4011 never set `p' (or push) anything `<= p1'. */
4013 while (p < pend)
4015 /* `p1' is used as a marker of how far back a `on_failure_jump'
4016 can go without being ignored. It is normally equal to `p'
4017 (which prevents any backward `on_failure_jump') except right
4018 after a plain `jump', to allow patterns such as:
4019 0: jump 10
4020 3..9: <body>
4021 10: on_failure_jump 3
4022 as used for the *? operator. */
4023 re_char *p1 = p;
4025 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4027 case succeed:
4028 return 1;
4029 continue;
4031 case duplicate:
4032 /* If the first character has to match a backreference, that means
4033 that the group was empty (since it already matched). Since this
4034 is the only case that interests us here, we can assume that the
4035 backreference must match the empty string. */
4036 p++;
4037 continue;
4040 /* Following are the cases which match a character. These end
4041 with `break'. */
4043 case exactn:
4044 if (fastmap)
4046 /* If multibyte is nonzero, the first byte of each
4047 character is an ASCII or a leading code. Otherwise,
4048 each byte is a character. Thus, this works in both
4049 cases. */
4050 fastmap[p[1]] = 1;
4051 if (! multibyte)
4053 /* For the case of matching this unibyte regex
4054 against multibyte, we must set a leading code of
4055 the corresponding multibyte character. */
4056 int c = RE_CHAR_TO_MULTIBYTE (p[1]);
4058 fastmap[CHAR_LEADING_CODE (c)] = 1;
4061 break;
4064 case anychar:
4065 /* We could put all the chars except for \n (and maybe \0)
4066 but we don't bother since it is generally not worth it. */
4067 if (!fastmap) break;
4068 return -1;
4071 case charset_not:
4072 if (!fastmap) break;
4074 /* Chars beyond end of bitmap are possible matches. */
4075 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
4076 j < (1 << BYTEWIDTH); j++)
4077 fastmap[j] = 1;
4080 /* Fallthrough */
4081 case charset:
4082 if (!fastmap) break;
4083 not = (re_opcode_t) *(p - 1) == charset_not;
4084 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
4085 j >= 0; j--)
4086 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
4087 fastmap[j] = 1;
4089 #ifdef emacs
4090 if (/* Any leading code can possibly start a character
4091 which doesn't match the specified set of characters. */
4094 /* If we can match a character class, we can match any
4095 multibyte characters. */
4096 (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4097 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
4100 if (match_any_multibyte_characters == false)
4102 for (j = MIN_MULTIBYTE_LEADING_CODE;
4103 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4104 fastmap[j] = 1;
4105 match_any_multibyte_characters = true;
4109 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4110 && match_any_multibyte_characters == false)
4112 /* Set fastmap[I] to 1 where I is a leading code of each
4113 multibyte characer in the range table. */
4114 int c, count;
4115 unsigned char lc1, lc2;
4117 /* Make P points the range table. `+ 2' is to skip flag
4118 bits for a character class. */
4119 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
4121 /* Extract the number of ranges in range table into COUNT. */
4122 EXTRACT_NUMBER_AND_INCR (count, p);
4123 for (; count > 0; count--, p += 3)
4125 /* Extract the start and end of each range. */
4126 EXTRACT_CHARACTER (c, p);
4127 lc1 = CHAR_LEADING_CODE (c);
4128 p += 3;
4129 EXTRACT_CHARACTER (c, p);
4130 lc2 = CHAR_LEADING_CODE (c);
4131 for (j = lc1; j <= lc2; j++)
4132 fastmap[j] = 1;
4135 #endif
4136 break;
4138 case syntaxspec:
4139 case notsyntaxspec:
4140 if (!fastmap) break;
4141 #ifndef emacs
4142 not = (re_opcode_t)p[-1] == notsyntaxspec;
4143 k = *p++;
4144 for (j = 0; j < (1 << BYTEWIDTH); j++)
4145 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
4146 fastmap[j] = 1;
4147 break;
4148 #else /* emacs */
4149 /* This match depends on text properties. These end with
4150 aborting optimizations. */
4151 return -1;
4153 case categoryspec:
4154 case notcategoryspec:
4155 if (!fastmap) break;
4156 not = (re_opcode_t)p[-1] == notcategoryspec;
4157 k = *p++;
4158 for (j = (1 << BYTEWIDTH); j >= 0; j--)
4159 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
4160 fastmap[j] = 1;
4162 /* Any leading code can possibly start a character which
4163 has or doesn't has the specified category. */
4164 if (match_any_multibyte_characters == false)
4166 for (j = MIN_MULTIBYTE_LEADING_CODE;
4167 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4168 fastmap[j] = 1;
4169 match_any_multibyte_characters = true;
4171 break;
4173 /* All cases after this match the empty string. These end with
4174 `continue'. */
4176 case before_dot:
4177 case at_dot:
4178 case after_dot:
4179 #endif /* !emacs */
4180 case no_op:
4181 case begline:
4182 case endline:
4183 case begbuf:
4184 case endbuf:
4185 case wordbound:
4186 case notwordbound:
4187 case wordbeg:
4188 case wordend:
4189 case symbeg:
4190 case symend:
4191 continue;
4194 case jump:
4195 EXTRACT_NUMBER_AND_INCR (j, p);
4196 if (j < 0)
4197 /* Backward jumps can only go back to code that we've already
4198 visited. `re_compile' should make sure this is true. */
4199 break;
4200 p += j;
4201 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4203 case on_failure_jump:
4204 case on_failure_keep_string_jump:
4205 case on_failure_jump_loop:
4206 case on_failure_jump_nastyloop:
4207 case on_failure_jump_smart:
4208 p++;
4209 break;
4210 default:
4211 continue;
4213 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4214 to jump back to "just after here". */
4215 /* Fallthrough */
4217 case on_failure_jump:
4218 case on_failure_keep_string_jump:
4219 case on_failure_jump_nastyloop:
4220 case on_failure_jump_loop:
4221 case on_failure_jump_smart:
4222 EXTRACT_NUMBER_AND_INCR (j, p);
4223 if (p + j <= p1)
4224 ; /* Backward jump to be ignored. */
4225 else
4226 { /* We have to look down both arms.
4227 We first go down the "straight" path so as to minimize
4228 stack usage when going through alternatives. */
4229 int r = analyse_first (p, pend, fastmap, multibyte);
4230 if (r) return r;
4231 p += j;
4233 continue;
4236 case jump_n:
4237 /* This code simply does not properly handle forward jump_n. */
4238 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4239 p += 4;
4240 /* jump_n can either jump or fall through. The (backward) jump
4241 case has already been handled, so we only need to look at the
4242 fallthrough case. */
4243 continue;
4245 case succeed_n:
4246 /* If N == 0, it should be an on_failure_jump_loop instead. */
4247 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4248 p += 4;
4249 /* We only care about one iteration of the loop, so we don't
4250 need to consider the case where this behaves like an
4251 on_failure_jump. */
4252 continue;
4255 case set_number_at:
4256 p += 4;
4257 continue;
4260 case start_memory:
4261 case stop_memory:
4262 p += 1;
4263 continue;
4266 default:
4267 abort (); /* We have listed all the cases. */
4268 } /* switch *p++ */
4270 /* Getting here means we have found the possible starting
4271 characters for one path of the pattern -- and that the empty
4272 string does not match. We need not follow this path further. */
4273 return 0;
4274 } /* while p */
4276 /* We reached the end without matching anything. */
4277 return 1;
4279 } /* analyse_first */
4281 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4282 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4283 characters can start a string that matches the pattern. This fastmap
4284 is used by re_search to skip quickly over impossible starting points.
4286 Character codes above (1 << BYTEWIDTH) are not represented in the
4287 fastmap, but the leading codes are represented. Thus, the fastmap
4288 indicates which character sets could start a match.
4290 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4291 area as BUFP->fastmap.
4293 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4294 the pattern buffer.
4296 Returns 0 if we succeed, -2 if an internal error. */
4299 re_compile_fastmap (struct re_pattern_buffer *bufp)
4301 char *fastmap = bufp->fastmap;
4302 int analysis;
4304 assert (fastmap && bufp->buffer);
4306 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4307 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4309 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4310 fastmap, RE_MULTIBYTE_P (bufp));
4311 bufp->can_be_null = (analysis != 0);
4312 return 0;
4313 } /* re_compile_fastmap */
4315 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4316 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4317 this memory for recording register information. STARTS and ENDS
4318 must be allocated using the malloc library routine, and must each
4319 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4321 If NUM_REGS == 0, then subsequent matches should allocate their own
4322 register data.
4324 Unless this function is called, the first search or match using
4325 PATTERN_BUFFER will allocate its own register data, without
4326 freeing the old data. */
4328 void
4329 re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, unsigned int num_regs, regoff_t *starts, regoff_t *ends)
4331 if (num_regs)
4333 bufp->regs_allocated = REGS_REALLOCATE;
4334 regs->num_regs = num_regs;
4335 regs->start = starts;
4336 regs->end = ends;
4338 else
4340 bufp->regs_allocated = REGS_UNALLOCATED;
4341 regs->num_regs = 0;
4342 regs->start = regs->end = (regoff_t *) 0;
4345 WEAK_ALIAS (__re_set_registers, re_set_registers)
4347 /* Searching routines. */
4349 /* Like re_search_2, below, but only one string is specified, and
4350 doesn't let you say where to stop matching. */
4353 re_search (struct re_pattern_buffer *bufp, const char *string, int size, int startpos, int range, struct re_registers *regs)
4355 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4356 regs, size);
4358 WEAK_ALIAS (__re_search, re_search)
4360 /* Head address of virtual concatenation of string. */
4361 #define HEAD_ADDR_VSTRING(P) \
4362 (((P) >= size1 ? string2 : string1))
4364 /* End address of virtual concatenation of string. */
4365 #define STOP_ADDR_VSTRING(P) \
4366 (((P) >= size1 ? string2 + size2 : string1 + size1))
4368 /* Address of POS in the concatenation of virtual string. */
4369 #define POS_ADDR_VSTRING(POS) \
4370 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4372 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4373 virtual concatenation of STRING1 and STRING2, starting first at index
4374 STARTPOS, then at STARTPOS + 1, and so on.
4376 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4378 RANGE is how far to scan while trying to match. RANGE = 0 means try
4379 only at STARTPOS; in general, the last start tried is STARTPOS +
4380 RANGE.
4382 In REGS, return the indices of the virtual concatenation of STRING1
4383 and STRING2 that matched the entire BUFP->buffer and its contained
4384 subexpressions.
4386 Do not consider matching one past the index STOP in the virtual
4387 concatenation of STRING1 and STRING2.
4389 We return either the position in the strings at which the match was
4390 found, -1 if no match, or -2 if error (such as failure
4391 stack overflow). */
4394 re_search_2 (struct re_pattern_buffer *bufp, const char *str1, int size1, const char *str2, int size2, int startpos, int range, struct re_registers *regs, int stop)
4396 int val;
4397 re_char *string1 = (re_char*) str1;
4398 re_char *string2 = (re_char*) str2;
4399 register char *fastmap = bufp->fastmap;
4400 register RE_TRANSLATE_TYPE translate = bufp->translate;
4401 int total_size = size1 + size2;
4402 int endpos = startpos + range;
4403 boolean anchored_start;
4404 /* Nonzero if we are searching multibyte string. */
4405 const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
4407 /* Check for out-of-range STARTPOS. */
4408 if (startpos < 0 || startpos > total_size)
4409 return -1;
4411 /* Fix up RANGE if it might eventually take us outside
4412 the virtual concatenation of STRING1 and STRING2.
4413 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4414 if (endpos < 0)
4415 range = 0 - startpos;
4416 else if (endpos > total_size)
4417 range = total_size - startpos;
4419 /* If the search isn't to be a backwards one, don't waste time in a
4420 search for a pattern anchored at beginning of buffer. */
4421 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4423 if (startpos > 0)
4424 return -1;
4425 else
4426 range = 0;
4429 #ifdef emacs
4430 /* In a forward search for something that starts with \=.
4431 don't keep searching past point. */
4432 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4434 range = PT_BYTE - BEGV_BYTE - startpos;
4435 if (range < 0)
4436 return -1;
4438 #endif /* emacs */
4440 /* Update the fastmap now if not correct already. */
4441 if (fastmap && !bufp->fastmap_accurate)
4442 re_compile_fastmap (bufp);
4444 /* See whether the pattern is anchored. */
4445 anchored_start = (bufp->buffer[0] == begline);
4447 #ifdef emacs
4448 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4450 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4452 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4454 #endif
4456 /* Loop through the string, looking for a place to start matching. */
4457 for (;;)
4459 /* If the pattern is anchored,
4460 skip quickly past places we cannot match.
4461 We don't bother to treat startpos == 0 specially
4462 because that case doesn't repeat. */
4463 if (anchored_start && startpos > 0)
4465 if (! ((startpos <= size1 ? string1[startpos - 1]
4466 : string2[startpos - size1 - 1])
4467 == '\n'))
4468 goto advance;
4471 /* If a fastmap is supplied, skip quickly over characters that
4472 cannot be the start of a match. If the pattern can match the
4473 null string, however, we don't need to skip characters; we want
4474 the first null string. */
4475 if (fastmap && startpos < total_size && !bufp->can_be_null)
4477 register re_char *d;
4478 register re_wchar_t buf_ch;
4480 d = POS_ADDR_VSTRING (startpos);
4482 if (range > 0) /* Searching forwards. */
4484 register int lim = 0;
4485 int irange = range;
4487 if (startpos < size1 && startpos + range >= size1)
4488 lim = range - (size1 - startpos);
4490 /* Written out as an if-else to avoid testing `translate'
4491 inside the loop. */
4492 if (RE_TRANSLATE_P (translate))
4494 if (multibyte)
4495 while (range > lim)
4497 int buf_charlen;
4499 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
4500 buf_ch = RE_TRANSLATE (translate, buf_ch);
4501 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4502 break;
4504 range -= buf_charlen;
4505 d += buf_charlen;
4507 else
4508 while (range > lim)
4510 register re_wchar_t ch, translated;
4512 buf_ch = *d;
4513 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4514 translated = RE_TRANSLATE (translate, ch);
4515 if (translated != ch
4516 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4517 buf_ch = ch;
4518 if (fastmap[buf_ch])
4519 break;
4520 d++;
4521 range--;
4524 else
4526 if (multibyte)
4527 while (range > lim)
4529 int buf_charlen;
4531 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
4532 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4533 break;
4534 range -= buf_charlen;
4535 d += buf_charlen;
4537 else
4538 while (range > lim && !fastmap[*d])
4540 d++;
4541 range--;
4544 startpos += irange - range;
4546 else /* Searching backwards. */
4548 if (multibyte)
4550 buf_ch = STRING_CHAR (d);
4551 buf_ch = TRANSLATE (buf_ch);
4552 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4553 goto advance;
4555 else
4557 register re_wchar_t ch, translated;
4559 buf_ch = *d;
4560 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4561 translated = TRANSLATE (ch);
4562 if (translated != ch
4563 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4564 buf_ch = ch;
4565 if (! fastmap[TRANSLATE (buf_ch)])
4566 goto advance;
4571 /* If can't match the null string, and that's all we have left, fail. */
4572 if (range >= 0 && startpos == total_size && fastmap
4573 && !bufp->can_be_null)
4574 return -1;
4576 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4577 startpos, regs, stop);
4579 if (val >= 0)
4580 return startpos;
4582 if (val == -2)
4583 return -2;
4585 advance:
4586 if (!range)
4587 break;
4588 else if (range > 0)
4590 /* Update STARTPOS to the next character boundary. */
4591 if (multibyte)
4593 re_char *p = POS_ADDR_VSTRING (startpos);
4594 re_char *pend = STOP_ADDR_VSTRING (startpos);
4595 int len = BYTES_BY_CHAR_HEAD (*p);
4597 range -= len;
4598 if (range < 0)
4599 break;
4600 startpos += len;
4602 else
4604 range--;
4605 startpos++;
4608 else
4610 range++;
4611 startpos--;
4613 /* Update STARTPOS to the previous character boundary. */
4614 if (multibyte)
4616 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4617 re_char *p0 = p;
4618 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4620 /* Find the head of multibyte form. */
4621 PREV_CHAR_BOUNDARY (p, phead);
4622 range += p0 - 1 - p;
4623 if (range > 0)
4624 break;
4626 startpos -= p0 - 1 - p;
4630 return -1;
4631 } /* re_search_2 */
4632 WEAK_ALIAS (__re_search_2, re_search_2)
4634 /* Declarations and macros for re_match_2. */
4636 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4637 register int len,
4638 RE_TRANSLATE_TYPE translate,
4639 const int multibyte));
4641 /* This converts PTR, a pointer into one of the search strings `string1'
4642 and `string2' into an offset from the beginning of that string. */
4643 #define POINTER_TO_OFFSET(ptr) \
4644 (FIRST_STRING_P (ptr) \
4645 ? ((regoff_t) ((ptr) - string1)) \
4646 : ((regoff_t) ((ptr) - string2 + size1)))
4648 /* Call before fetching a character with *d. This switches over to
4649 string2 if necessary.
4650 Check re_match_2_internal for a discussion of why end_match_2 might
4651 not be within string2 (but be equal to end_match_1 instead). */
4652 #define PREFETCH() \
4653 while (d == dend) \
4655 /* End of string2 => fail. */ \
4656 if (dend == end_match_2) \
4657 goto fail; \
4658 /* End of string1 => advance to string2. */ \
4659 d = string2; \
4660 dend = end_match_2; \
4663 /* Call before fetching a char with *d if you already checked other limits.
4664 This is meant for use in lookahead operations like wordend, etc..
4665 where we might need to look at parts of the string that might be
4666 outside of the LIMITs (i.e past `stop'). */
4667 #define PREFETCH_NOLIMIT() \
4668 if (d == end1) \
4670 d = string2; \
4671 dend = end_match_2; \
4674 /* Test if at very beginning or at very end of the virtual concatenation
4675 of `string1' and `string2'. If only one string, it's `string2'. */
4676 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4677 #define AT_STRINGS_END(d) ((d) == end2)
4680 /* Test if D points to a character which is word-constituent. We have
4681 two special cases to check for: if past the end of string1, look at
4682 the first character in string2; and if before the beginning of
4683 string2, look at the last character in string1. */
4684 #define WORDCHAR_P(d) \
4685 (SYNTAX ((d) == end1 ? *string2 \
4686 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4687 == Sword)
4689 /* Disabled due to a compiler bug -- see comment at case wordbound */
4691 /* The comment at case wordbound is following one, but we don't use
4692 AT_WORD_BOUNDARY anymore to support multibyte form.
4694 The DEC Alpha C compiler 3.x generates incorrect code for the
4695 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4696 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4697 macro and introducing temporary variables works around the bug. */
4699 #if 0
4700 /* Test if the character before D and the one at D differ with respect
4701 to being word-constituent. */
4702 #define AT_WORD_BOUNDARY(d) \
4703 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4704 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4705 #endif
4707 /* Free everything we malloc. */
4708 #ifdef MATCH_MAY_ALLOCATE
4709 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4710 # define FREE_VARIABLES() \
4711 do { \
4712 REGEX_FREE_STACK (fail_stack.stack); \
4713 FREE_VAR (regstart); \
4714 FREE_VAR (regend); \
4715 FREE_VAR (best_regstart); \
4716 FREE_VAR (best_regend); \
4717 } while (0)
4718 #else
4719 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4720 #endif /* not MATCH_MAY_ALLOCATE */
4723 /* Optimization routines. */
4725 /* If the operation is a match against one or more chars,
4726 return a pointer to the next operation, else return NULL. */
4727 static re_char *
4728 skip_one_char (const re_char *p)
4730 switch (SWITCH_ENUM_CAST (*p++))
4732 case anychar:
4733 break;
4735 case exactn:
4736 p += *p + 1;
4737 break;
4739 case charset_not:
4740 case charset:
4741 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4743 int mcnt;
4744 p = CHARSET_RANGE_TABLE (p - 1);
4745 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4746 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4748 else
4749 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4750 break;
4752 case syntaxspec:
4753 case notsyntaxspec:
4754 #ifdef emacs
4755 case categoryspec:
4756 case notcategoryspec:
4757 #endif /* emacs */
4758 p++;
4759 break;
4761 default:
4762 p = NULL;
4764 return p;
4768 /* Jump over non-matching operations. */
4769 static re_char *
4770 skip_noops (const re_char *p, const re_char *pend)
4772 int mcnt;
4773 while (p < pend)
4775 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4777 case start_memory:
4778 case stop_memory:
4779 p += 2; break;
4780 case no_op:
4781 p += 1; break;
4782 case jump:
4783 p += 1;
4784 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4785 p += mcnt;
4786 break;
4787 default:
4788 return p;
4791 assert (p == pend);
4792 return p;
4795 /* Non-zero if "p1 matches something" implies "p2 fails". */
4796 static int
4797 mutually_exclusive_p (struct re_pattern_buffer *bufp, const re_char *p1, const re_char *p2)
4799 re_opcode_t op2;
4800 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4801 unsigned char *pend = bufp->buffer + bufp->used;
4803 assert (p1 >= bufp->buffer && p1 < pend
4804 && p2 >= bufp->buffer && p2 <= pend);
4806 /* Skip over open/close-group commands.
4807 If what follows this loop is a ...+ construct,
4808 look at what begins its body, since we will have to
4809 match at least one of that. */
4810 p2 = skip_noops (p2, pend);
4811 /* The same skip can be done for p1, except that this function
4812 is only used in the case where p1 is a simple match operator. */
4813 /* p1 = skip_noops (p1, pend); */
4815 assert (p1 >= bufp->buffer && p1 < pend
4816 && p2 >= bufp->buffer && p2 <= pend);
4818 op2 = p2 == pend ? succeed : *p2;
4820 switch (SWITCH_ENUM_CAST (op2))
4822 case succeed:
4823 case endbuf:
4824 /* If we're at the end of the pattern, we can change. */
4825 if (skip_one_char (p1))
4827 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4828 return 1;
4830 break;
4832 case endline:
4833 case exactn:
4835 register re_wchar_t c
4836 = (re_opcode_t) *p2 == endline ? '\n'
4837 : RE_STRING_CHAR (p2 + 2, multibyte);
4839 if ((re_opcode_t) *p1 == exactn)
4841 if (c != RE_STRING_CHAR (p1 + 2, multibyte))
4843 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4844 return 1;
4848 else if ((re_opcode_t) *p1 == charset
4849 || (re_opcode_t) *p1 == charset_not)
4851 int not = (re_opcode_t) *p1 == charset_not;
4853 /* Test if C is listed in charset (or charset_not)
4854 at `p1'. */
4855 if (! multibyte || IS_REAL_ASCII (c))
4857 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4858 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4859 not = !not;
4861 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4862 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4864 /* `not' is equal to 1 if c would match, which means
4865 that we can't change to pop_failure_jump. */
4866 if (!not)
4868 DEBUG_PRINT1 (" No match => fast loop.\n");
4869 return 1;
4872 else if ((re_opcode_t) *p1 == anychar
4873 && c == '\n')
4875 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4876 return 1;
4879 break;
4881 case charset:
4883 if ((re_opcode_t) *p1 == exactn)
4884 /* Reuse the code above. */
4885 return mutually_exclusive_p (bufp, p2, p1);
4887 /* It is hard to list up all the character in charset
4888 P2 if it includes multibyte character. Give up in
4889 such case. */
4890 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4892 /* Now, we are sure that P2 has no range table.
4893 So, for the size of bitmap in P2, `p2[1]' is
4894 enough. But P1 may have range table, so the
4895 size of bitmap table of P1 is extracted by
4896 using macro `CHARSET_BITMAP_SIZE'.
4898 In a multibyte case, we know that all the character
4899 listed in P2 is ASCII. In a unibyte case, P1 has only a
4900 bitmap table. So, in both cases, it is enough to test
4901 only the bitmap table of P1. */
4903 if ((re_opcode_t) *p1 == charset)
4905 int idx;
4906 /* We win if the charset inside the loop
4907 has no overlap with the one after the loop. */
4908 for (idx = 0;
4909 (idx < (int) p2[1]
4910 && idx < CHARSET_BITMAP_SIZE (p1));
4911 idx++)
4912 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4913 break;
4915 if (idx == p2[1]
4916 || idx == CHARSET_BITMAP_SIZE (p1))
4918 DEBUG_PRINT1 (" No match => fast loop.\n");
4919 return 1;
4922 else if ((re_opcode_t) *p1 == charset_not)
4924 int idx;
4925 /* We win if the charset_not inside the loop lists
4926 every character listed in the charset after. */
4927 for (idx = 0; idx < (int) p2[1]; idx++)
4928 if (! (p2[2 + idx] == 0
4929 || (idx < CHARSET_BITMAP_SIZE (p1)
4930 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4931 break;
4933 if (idx == p2[1])
4935 DEBUG_PRINT1 (" No match => fast loop.\n");
4936 return 1;
4941 break;
4943 case charset_not:
4944 switch (SWITCH_ENUM_CAST (*p1))
4946 case exactn:
4947 case charset:
4948 /* Reuse the code above. */
4949 return mutually_exclusive_p (bufp, p2, p1);
4950 case charset_not:
4951 /* When we have two charset_not, it's very unlikely that
4952 they don't overlap. The union of the two sets of excluded
4953 chars should cover all possible chars, which, as a matter of
4954 fact, is virtually impossible in multibyte buffers. */
4955 break;
4957 break;
4959 case wordend:
4960 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4961 case symend:
4962 return ((re_opcode_t) *p1 == syntaxspec
4963 && (p1[1] == Ssymbol || p1[1] == Sword));
4964 case notsyntaxspec:
4965 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4967 case wordbeg:
4968 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4969 case symbeg:
4970 return ((re_opcode_t) *p1 == notsyntaxspec
4971 && (p1[1] == Ssymbol || p1[1] == Sword));
4972 case syntaxspec:
4973 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4975 case wordbound:
4976 return (((re_opcode_t) *p1 == notsyntaxspec
4977 || (re_opcode_t) *p1 == syntaxspec)
4978 && p1[1] == Sword);
4980 #ifdef emacs
4981 case categoryspec:
4982 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4983 case notcategoryspec:
4984 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4985 #endif /* emacs */
4987 default:
4991 /* Safe default. */
4992 return 0;
4996 /* Matching routines. */
4998 #ifndef emacs /* Emacs never uses this. */
4999 /* re_match is like re_match_2 except it takes only a single string. */
5002 re_match (bufp, string, size, pos, regs)
5003 struct re_pattern_buffer *bufp;
5004 const char *string;
5005 int size, pos;
5006 struct re_registers *regs;
5008 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
5009 pos, regs, size);
5010 return result;
5012 WEAK_ALIAS (__re_match, re_match)
5013 #endif /* not emacs */
5015 #ifdef emacs
5016 /* In Emacs, this is the string or buffer in which we
5017 are matching. It is used for looking up syntax properties. */
5018 Lisp_Object re_match_object;
5019 #endif
5021 /* re_match_2 matches the compiled pattern in BUFP against the
5022 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5023 and SIZE2, respectively). We start matching at POS, and stop
5024 matching at STOP.
5026 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5027 store offsets for the substring each group matched in REGS. See the
5028 documentation for exactly how many groups we fill.
5030 We return -1 if no match, -2 if an internal error (such as the
5031 failure stack overflowing). Otherwise, we return the length of the
5032 matched substring. */
5035 re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1, const char *string2, int size2, int pos, struct re_registers *regs, int stop)
5037 int result;
5039 #ifdef emacs
5040 int charpos;
5041 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
5042 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
5043 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
5044 #endif
5046 result = re_match_2_internal (bufp, (re_char*) string1, size1,
5047 (re_char*) string2, size2,
5048 pos, regs, stop);
5049 return result;
5051 WEAK_ALIAS (__re_match_2, re_match_2)
5054 /* This is a separate function so that we can force an alloca cleanup
5055 afterwards. */
5056 static int
5057 re_match_2_internal (struct re_pattern_buffer *bufp, const re_char *string1, int size1, const re_char *string2, int size2, int pos, struct re_registers *regs, int stop)
5059 /* General temporaries. */
5060 int mcnt;
5061 size_t reg;
5062 boolean not;
5064 /* Just past the end of the corresponding string. */
5065 re_char *end1, *end2;
5067 /* Pointers into string1 and string2, just past the last characters in
5068 each to consider matching. */
5069 re_char *end_match_1, *end_match_2;
5071 /* Where we are in the data, and the end of the current string. */
5072 re_char *d, *dend;
5074 /* Used sometimes to remember where we were before starting matching
5075 an operator so that we can go back in case of failure. This "atomic"
5076 behavior of matching opcodes is indispensable to the correctness
5077 of the on_failure_keep_string_jump optimization. */
5078 re_char *dfail;
5080 /* Where we are in the pattern, and the end of the pattern. */
5081 re_char *p = bufp->buffer;
5082 re_char *pend = p + bufp->used;
5084 /* We use this to map every character in the string. */
5085 RE_TRANSLATE_TYPE translate = bufp->translate;
5087 /* Nonzero if BUFP is setup from a multibyte regex. */
5088 const boolean multibyte = RE_MULTIBYTE_P (bufp);
5090 /* Nonzero if STRING1/STRING2 are multibyte. */
5091 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
5093 /* Failure point stack. Each place that can handle a failure further
5094 down the line pushes a failure point on this stack. It consists of
5095 regstart, and regend for all registers corresponding to
5096 the subexpressions we're currently inside, plus the number of such
5097 registers, and, finally, two char *'s. The first char * is where
5098 to resume scanning the pattern; the second one is where to resume
5099 scanning the strings. */
5100 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5101 fail_stack_type fail_stack;
5102 #endif
5103 #ifdef DEBUG
5104 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5105 #endif
5107 #if defined REL_ALLOC && defined REGEX_MALLOC
5108 /* This holds the pointer to the failure stack, when
5109 it is allocated relocatably. */
5110 fail_stack_elt_t *failure_stack_ptr;
5111 #endif
5113 /* We fill all the registers internally, independent of what we
5114 return, for use in backreferences. The number here includes
5115 an element for register zero. */
5116 size_t num_regs = bufp->re_nsub + 1;
5118 /* Information on the contents of registers. These are pointers into
5119 the input strings; they record just what was matched (on this
5120 attempt) by a subexpression part of the pattern, that is, the
5121 regnum-th regstart pointer points to where in the pattern we began
5122 matching and the regnum-th regend points to right after where we
5123 stopped matching the regnum-th subexpression. (The zeroth register
5124 keeps track of what the whole pattern matches.) */
5125 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5126 re_char **regstart, **regend;
5127 #endif
5129 /* The following record the register info as found in the above
5130 variables when we find a match better than any we've seen before.
5131 This happens as we backtrack through the failure points, which in
5132 turn happens only if we have not yet matched the entire string. */
5133 unsigned best_regs_set = false;
5134 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5135 re_char **best_regstart, **best_regend;
5136 #endif
5138 /* Logically, this is `best_regend[0]'. But we don't want to have to
5139 allocate space for that if we're not allocating space for anything
5140 else (see below). Also, we never need info about register 0 for
5141 any of the other register vectors, and it seems rather a kludge to
5142 treat `best_regend' differently than the rest. So we keep track of
5143 the end of the best match so far in a separate variable. We
5144 initialize this to NULL so that when we backtrack the first time
5145 and need to test it, it's not garbage. */
5146 re_char *match_end = NULL;
5148 #ifdef DEBUG
5149 /* Counts the total number of registers pushed. */
5150 unsigned num_regs_pushed = 0;
5151 #endif
5153 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5155 INIT_FAIL_STACK ();
5157 #ifdef MATCH_MAY_ALLOCATE
5158 /* Do not bother to initialize all the register variables if there are
5159 no groups in the pattern, as it takes a fair amount of time. If
5160 there are groups, we include space for register 0 (the whole
5161 pattern), even though we never use it, since it simplifies the
5162 array indexing. We should fix this. */
5163 if (bufp->re_nsub)
5165 regstart = REGEX_TALLOC (num_regs, re_char *);
5166 regend = REGEX_TALLOC (num_regs, re_char *);
5167 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5168 best_regend = REGEX_TALLOC (num_regs, re_char *);
5170 if (!(regstart && regend && best_regstart && best_regend))
5172 FREE_VARIABLES ();
5173 return -2;
5176 else
5178 /* We must initialize all our variables to NULL, so that
5179 `FREE_VARIABLES' doesn't try to free them. */
5180 regstart = regend = best_regstart = best_regend = NULL;
5182 #endif /* MATCH_MAY_ALLOCATE */
5184 /* The starting position is bogus. */
5185 if (pos < 0 || pos > size1 + size2)
5187 FREE_VARIABLES ();
5188 return -1;
5191 /* Initialize subexpression text positions to -1 to mark ones that no
5192 start_memory/stop_memory has been seen for. Also initialize the
5193 register information struct. */
5194 for (reg = 1; reg < num_regs; reg++)
5195 regstart[reg] = regend[reg] = NULL;
5197 /* We move `string1' into `string2' if the latter's empty -- but not if
5198 `string1' is null. */
5199 if (size2 == 0 && string1 != NULL)
5201 string2 = string1;
5202 size2 = size1;
5203 string1 = 0;
5204 size1 = 0;
5206 end1 = string1 + size1;
5207 end2 = string2 + size2;
5209 /* `p' scans through the pattern as `d' scans through the data.
5210 `dend' is the end of the input string that `d' points within. `d'
5211 is advanced into the following input string whenever necessary, but
5212 this happens before fetching; therefore, at the beginning of the
5213 loop, `d' can be pointing at the end of a string, but it cannot
5214 equal `string2'. */
5215 if (pos >= size1)
5217 /* Only match within string2. */
5218 d = string2 + pos - size1;
5219 dend = end_match_2 = string2 + stop - size1;
5220 end_match_1 = end1; /* Just to give it a value. */
5222 else
5224 if (stop < size1)
5226 /* Only match within string1. */
5227 end_match_1 = string1 + stop;
5228 /* BEWARE!
5229 When we reach end_match_1, PREFETCH normally switches to string2.
5230 But in the present case, this means that just doing a PREFETCH
5231 makes us jump from `stop' to `gap' within the string.
5232 What we really want here is for the search to stop as
5233 soon as we hit end_match_1. That's why we set end_match_2
5234 to end_match_1 (since PREFETCH fails as soon as we hit
5235 end_match_2). */
5236 end_match_2 = end_match_1;
5238 else
5239 { /* It's important to use this code when stop == size so that
5240 moving `d' from end1 to string2 will not prevent the d == dend
5241 check from catching the end of string. */
5242 end_match_1 = end1;
5243 end_match_2 = string2 + stop - size1;
5245 d = string1 + pos;
5246 dend = end_match_1;
5249 DEBUG_PRINT1 ("The compiled pattern is: ");
5250 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5251 DEBUG_PRINT1 ("The string to match is: `");
5252 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5253 DEBUG_PRINT1 ("'\n");
5255 /* This loops over pattern commands. It exits by returning from the
5256 function if the match is complete, or it drops through if the match
5257 fails at this starting point in the input data. */
5258 for (;;)
5260 DEBUG_PRINT2 ("\n%p: ", p);
5262 if (p == pend)
5263 { /* End of pattern means we might have succeeded. */
5264 DEBUG_PRINT1 ("end of pattern ... ");
5266 /* If we haven't matched the entire string, and we want the
5267 longest match, try backtracking. */
5268 if (d != end_match_2)
5270 /* 1 if this match ends in the same string (string1 or string2)
5271 as the best previous match. */
5272 boolean same_str_p = (FIRST_STRING_P (match_end)
5273 == FIRST_STRING_P (d));
5274 /* 1 if this match is the best seen so far. */
5275 boolean best_match_p;
5277 /* AIX compiler got confused when this was combined
5278 with the previous declaration. */
5279 if (same_str_p)
5280 best_match_p = d > match_end;
5281 else
5282 best_match_p = !FIRST_STRING_P (d);
5284 DEBUG_PRINT1 ("backtracking.\n");
5286 if (!FAIL_STACK_EMPTY ())
5287 { /* More failure points to try. */
5289 /* If exceeds best match so far, save it. */
5290 if (!best_regs_set || best_match_p)
5292 best_regs_set = true;
5293 match_end = d;
5295 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5297 for (reg = 1; reg < num_regs; reg++)
5299 best_regstart[reg] = regstart[reg];
5300 best_regend[reg] = regend[reg];
5303 goto fail;
5306 /* If no failure points, don't restore garbage. And if
5307 last match is real best match, don't restore second
5308 best one. */
5309 else if (best_regs_set && !best_match_p)
5311 restore_best_regs:
5312 /* Restore best match. It may happen that `dend ==
5313 end_match_1' while the restored d is in string2.
5314 For example, the pattern `x.*y.*z' against the
5315 strings `x-' and `y-z-', if the two strings are
5316 not consecutive in memory. */
5317 DEBUG_PRINT1 ("Restoring best registers.\n");
5319 d = match_end;
5320 dend = ((d >= string1 && d <= end1)
5321 ? end_match_1 : end_match_2);
5323 for (reg = 1; reg < num_regs; reg++)
5325 regstart[reg] = best_regstart[reg];
5326 regend[reg] = best_regend[reg];
5329 } /* d != end_match_2 */
5331 succeed_label:
5332 DEBUG_PRINT1 ("Accepting match.\n");
5334 /* If caller wants register contents data back, do it. */
5335 if (regs && !bufp->no_sub)
5337 /* Have the register data arrays been allocated? */
5338 if (bufp->regs_allocated == REGS_UNALLOCATED)
5339 { /* No. So allocate them with malloc. We need one
5340 extra element beyond `num_regs' for the `-1' marker
5341 GNU code uses. */
5342 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5343 regs->start = TALLOC (regs->num_regs, regoff_t);
5344 regs->end = TALLOC (regs->num_regs, regoff_t);
5345 if (regs->start == NULL || regs->end == NULL)
5347 FREE_VARIABLES ();
5348 return -2;
5350 bufp->regs_allocated = REGS_REALLOCATE;
5352 else if (bufp->regs_allocated == REGS_REALLOCATE)
5353 { /* Yes. If we need more elements than were already
5354 allocated, reallocate them. If we need fewer, just
5355 leave it alone. */
5356 if (regs->num_regs < num_regs + 1)
5358 regs->num_regs = num_regs + 1;
5359 RETALLOC (regs->start, regs->num_regs, regoff_t);
5360 RETALLOC (regs->end, regs->num_regs, regoff_t);
5361 if (regs->start == NULL || regs->end == NULL)
5363 FREE_VARIABLES ();
5364 return -2;
5368 else
5370 /* These braces fend off a "empty body in an else-statement"
5371 warning under GCC when assert expands to nothing. */
5372 assert (bufp->regs_allocated == REGS_FIXED);
5375 /* Convert the pointer data in `regstart' and `regend' to
5376 indices. Register zero has to be set differently,
5377 since we haven't kept track of any info for it. */
5378 if (regs->num_regs > 0)
5380 regs->start[0] = pos;
5381 regs->end[0] = POINTER_TO_OFFSET (d);
5384 /* Go through the first `min (num_regs, regs->num_regs)'
5385 registers, since that is all we initialized. */
5386 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5388 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5389 regs->start[reg] = regs->end[reg] = -1;
5390 else
5392 regs->start[reg]
5393 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5394 regs->end[reg]
5395 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5399 /* If the regs structure we return has more elements than
5400 were in the pattern, set the extra elements to -1. If
5401 we (re)allocated the registers, this is the case,
5402 because we always allocate enough to have at least one
5403 -1 at the end. */
5404 for (reg = num_regs; reg < regs->num_regs; reg++)
5405 regs->start[reg] = regs->end[reg] = -1;
5406 } /* regs && !bufp->no_sub */
5408 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5409 nfailure_points_pushed, nfailure_points_popped,
5410 nfailure_points_pushed - nfailure_points_popped);
5411 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5413 mcnt = POINTER_TO_OFFSET (d) - pos;
5415 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5417 FREE_VARIABLES ();
5418 return mcnt;
5421 /* Otherwise match next pattern command. */
5422 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5424 /* Ignore these. Used to ignore the n of succeed_n's which
5425 currently have n == 0. */
5426 case no_op:
5427 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5428 break;
5430 case succeed:
5431 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5432 goto succeed_label;
5434 /* Match the next n pattern characters exactly. The following
5435 byte in the pattern defines n, and the n bytes after that
5436 are the characters to match. */
5437 case exactn:
5438 mcnt = *p++;
5439 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5441 /* Remember the start point to rollback upon failure. */
5442 dfail = d;
5444 #ifndef emacs
5445 /* This is written out as an if-else so we don't waste time
5446 testing `translate' inside the loop. */
5447 if (RE_TRANSLATE_P (translate))
5450 PREFETCH ();
5451 if (RE_TRANSLATE (translate, *d) != *p++)
5453 d = dfail;
5454 goto fail;
5456 d++;
5458 while (--mcnt);
5459 else
5462 PREFETCH ();
5463 if (*d++ != *p++)
5465 d = dfail;
5466 goto fail;
5469 while (--mcnt);
5470 #else /* emacs */
5471 /* The cost of testing `translate' is comparatively small. */
5472 if (target_multibyte)
5475 int pat_charlen, buf_charlen;
5476 int pat_ch, buf_ch;
5478 PREFETCH ();
5479 if (multibyte)
5480 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
5481 else
5483 pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
5484 pat_charlen = 1;
5486 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
5488 if (TRANSLATE (buf_ch) != pat_ch)
5490 d = dfail;
5491 goto fail;
5494 p += pat_charlen;
5495 d += buf_charlen;
5496 mcnt -= pat_charlen;
5498 while (mcnt > 0);
5499 else
5502 int pat_charlen, buf_charlen;
5503 int pat_ch, buf_ch;
5505 PREFETCH ();
5506 if (multibyte)
5508 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
5509 pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
5511 else
5513 pat_ch = *p;
5514 pat_charlen = 1;
5516 buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
5517 if (! CHAR_BYTE8_P (buf_ch))
5519 buf_ch = TRANSLATE (buf_ch);
5520 buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
5521 if (buf_ch < 0)
5522 buf_ch = *d;
5524 else
5525 buf_ch = *d;
5526 if (buf_ch != pat_ch)
5528 d = dfail;
5529 goto fail;
5531 p += pat_charlen;
5532 d++;
5534 while (--mcnt);
5535 #endif
5536 break;
5539 /* Match any character except possibly a newline or a null. */
5540 case anychar:
5542 int buf_charlen;
5543 re_wchar_t buf_ch;
5545 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5547 PREFETCH ();
5548 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
5549 target_multibyte);
5550 buf_ch = TRANSLATE (buf_ch);
5552 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5553 && buf_ch == '\n')
5554 || ((bufp->syntax & RE_DOT_NOT_NULL)
5555 && buf_ch == '\000'))
5556 goto fail;
5558 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5559 d += buf_charlen;
5561 break;
5564 case charset:
5565 case charset_not:
5567 register unsigned int c;
5568 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5569 int len;
5571 /* Start of actual range_table, or end of bitmap if there is no
5572 range table. */
5573 re_char *range_table;
5575 /* Nonzero if there is a range table. */
5576 int range_table_exists;
5578 /* Number of ranges of range table. This is not included
5579 in the initial byte-length of the command. */
5580 int count = 0;
5582 /* Whether matching against a unibyte character. */
5583 boolean unibyte_char = false;
5585 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5587 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5589 if (range_table_exists)
5591 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5592 EXTRACT_NUMBER_AND_INCR (count, range_table);
5595 PREFETCH ();
5596 c = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
5597 if (target_multibyte)
5599 int c1;
5601 c = TRANSLATE (c);
5602 c1 = RE_CHAR_TO_UNIBYTE (c);
5603 if (c1 >= 0)
5605 unibyte_char = true;
5606 c = c1;
5609 else
5611 int c1 = RE_CHAR_TO_MULTIBYTE (c);
5613 if (! CHAR_BYTE8_P (c1))
5615 c1 = TRANSLATE (c1);
5616 c1 = RE_CHAR_TO_UNIBYTE (c1);
5617 if (c1 >= 0)
5619 unibyte_char = true;
5620 c = c1;
5623 else
5624 unibyte_char = true;
5627 if (unibyte_char && c < (1 << BYTEWIDTH))
5628 { /* Lookup bitmap. */
5629 /* Cast to `unsigned' instead of `unsigned char' in
5630 case the bit list is a full 32 bytes long. */
5631 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5632 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5633 not = !not;
5635 #ifdef emacs
5636 else if (range_table_exists)
5638 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5640 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5641 | (class_bits & BIT_MULTIBYTE)
5642 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5643 | (class_bits & BIT_SPACE && ISSPACE (c))
5644 | (class_bits & BIT_UPPER && ISUPPER (c))
5645 | (class_bits & BIT_WORD && ISWORD (c)))
5646 not = !not;
5647 else
5648 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5650 #endif /* emacs */
5652 if (range_table_exists)
5653 p = CHARSET_RANGE_TABLE_END (range_table, count);
5654 else
5655 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5657 if (!not) goto fail;
5659 d += len;
5660 break;
5664 /* The beginning of a group is represented by start_memory.
5665 The argument is the register number. The text
5666 matched within the group is recorded (in the internal
5667 registers data structure) under the register number. */
5668 case start_memory:
5669 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5671 /* In case we need to undo this operation (via backtracking). */
5672 PUSH_FAILURE_REG ((unsigned int)*p);
5674 regstart[*p] = d;
5675 regend[*p] = NULL; /* probably unnecessary. -sm */
5676 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5678 /* Move past the register number and inner group count. */
5679 p += 1;
5680 break;
5683 /* The stop_memory opcode represents the end of a group. Its
5684 argument is the same as start_memory's: the register number. */
5685 case stop_memory:
5686 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5688 assert (!REG_UNSET (regstart[*p]));
5689 /* Strictly speaking, there should be code such as:
5691 assert (REG_UNSET (regend[*p]));
5692 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5694 But the only info to be pushed is regend[*p] and it is known to
5695 be UNSET, so there really isn't anything to push.
5696 Not pushing anything, on the other hand deprives us from the
5697 guarantee that regend[*p] is UNSET since undoing this operation
5698 will not reset its value properly. This is not important since
5699 the value will only be read on the next start_memory or at
5700 the very end and both events can only happen if this stop_memory
5701 is *not* undone. */
5703 regend[*p] = d;
5704 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5706 /* Move past the register number and the inner group count. */
5707 p += 1;
5708 break;
5711 /* \<digit> has been turned into a `duplicate' command which is
5712 followed by the numeric value of <digit> as the register number. */
5713 case duplicate:
5715 register re_char *d2, *dend2;
5716 int regno = *p++; /* Get which register to match against. */
5717 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5719 /* Can't back reference a group which we've never matched. */
5720 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5721 goto fail;
5723 /* Where in input to try to start matching. */
5724 d2 = regstart[regno];
5726 /* Remember the start point to rollback upon failure. */
5727 dfail = d;
5729 /* Where to stop matching; if both the place to start and
5730 the place to stop matching are in the same string, then
5731 set to the place to stop, otherwise, for now have to use
5732 the end of the first string. */
5734 dend2 = ((FIRST_STRING_P (regstart[regno])
5735 == FIRST_STRING_P (regend[regno]))
5736 ? regend[regno] : end_match_1);
5737 for (;;)
5739 /* If necessary, advance to next segment in register
5740 contents. */
5741 while (d2 == dend2)
5743 if (dend2 == end_match_2) break;
5744 if (dend2 == regend[regno]) break;
5746 /* End of string1 => advance to string2. */
5747 d2 = string2;
5748 dend2 = regend[regno];
5750 /* At end of register contents => success */
5751 if (d2 == dend2) break;
5753 /* If necessary, advance to next segment in data. */
5754 PREFETCH ();
5756 /* How many characters left in this segment to match. */
5757 mcnt = dend - d;
5759 /* Want how many consecutive characters we can match in
5760 one shot, so, if necessary, adjust the count. */
5761 if (mcnt > dend2 - d2)
5762 mcnt = dend2 - d2;
5764 /* Compare that many; failure if mismatch, else move
5765 past them. */
5766 if (RE_TRANSLATE_P (translate)
5767 ? bcmp_translate (d, d2, mcnt, translate, target_multibyte)
5768 : memcmp (d, d2, mcnt))
5770 d = dfail;
5771 goto fail;
5773 d += mcnt, d2 += mcnt;
5776 break;
5779 /* begline matches the empty string at the beginning of the string
5780 (unless `not_bol' is set in `bufp'), and after newlines. */
5781 case begline:
5782 DEBUG_PRINT1 ("EXECUTING begline.\n");
5784 if (AT_STRINGS_BEG (d))
5786 if (!bufp->not_bol) break;
5788 else
5790 unsigned c;
5791 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5792 if (c == '\n')
5793 break;
5795 /* In all other cases, we fail. */
5796 goto fail;
5799 /* endline is the dual of begline. */
5800 case endline:
5801 DEBUG_PRINT1 ("EXECUTING endline.\n");
5803 if (AT_STRINGS_END (d))
5805 if (!bufp->not_eol) break;
5807 else
5809 PREFETCH_NOLIMIT ();
5810 if (*d == '\n')
5811 break;
5813 goto fail;
5816 /* Match at the very beginning of the data. */
5817 case begbuf:
5818 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5819 if (AT_STRINGS_BEG (d))
5820 break;
5821 goto fail;
5824 /* Match at the very end of the data. */
5825 case endbuf:
5826 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5827 if (AT_STRINGS_END (d))
5828 break;
5829 goto fail;
5832 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5833 pushes NULL as the value for the string on the stack. Then
5834 `POP_FAILURE_POINT' will keep the current value for the
5835 string, instead of restoring it. To see why, consider
5836 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5837 then the . fails against the \n. But the next thing we want
5838 to do is match the \n against the \n; if we restored the
5839 string value, we would be back at the foo.
5841 Because this is used only in specific cases, we don't need to
5842 check all the things that `on_failure_jump' does, to make
5843 sure the right things get saved on the stack. Hence we don't
5844 share its code. The only reason to push anything on the
5845 stack at all is that otherwise we would have to change
5846 `anychar's code to do something besides goto fail in this
5847 case; that seems worse than this. */
5848 case on_failure_keep_string_jump:
5849 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5850 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5851 mcnt, p + mcnt);
5853 PUSH_FAILURE_POINT (p - 3, NULL);
5854 break;
5856 /* A nasty loop is introduced by the non-greedy *? and +?.
5857 With such loops, the stack only ever contains one failure point
5858 at a time, so that a plain on_failure_jump_loop kind of
5859 cycle detection cannot work. Worse yet, such a detection
5860 can not only fail to detect a cycle, but it can also wrongly
5861 detect a cycle (between different instantiations of the same
5862 loop).
5863 So the method used for those nasty loops is a little different:
5864 We use a special cycle-detection-stack-frame which is pushed
5865 when the on_failure_jump_nastyloop failure-point is *popped*.
5866 This special frame thus marks the beginning of one iteration
5867 through the loop and we can hence easily check right here
5868 whether something matched between the beginning and the end of
5869 the loop. */
5870 case on_failure_jump_nastyloop:
5871 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5872 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5873 mcnt, p + mcnt);
5875 assert ((re_opcode_t)p[-4] == no_op);
5877 int cycle = 0;
5878 CHECK_INFINITE_LOOP (p - 4, d);
5879 if (!cycle)
5880 /* If there's a cycle, just continue without pushing
5881 this failure point. The failure point is the "try again"
5882 option, which shouldn't be tried.
5883 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5884 PUSH_FAILURE_POINT (p - 3, d);
5886 break;
5888 /* Simple loop detecting on_failure_jump: just check on the
5889 failure stack if the same spot was already hit earlier. */
5890 case on_failure_jump_loop:
5891 on_failure:
5892 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5893 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5894 mcnt, p + mcnt);
5896 int cycle = 0;
5897 CHECK_INFINITE_LOOP (p - 3, d);
5898 if (cycle)
5899 /* If there's a cycle, get out of the loop, as if the matching
5900 had failed. We used to just `goto fail' here, but that was
5901 aborting the search a bit too early: we want to keep the
5902 empty-loop-match and keep matching after the loop.
5903 We want (x?)*y\1z to match both xxyz and xxyxz. */
5904 p += mcnt;
5905 else
5906 PUSH_FAILURE_POINT (p - 3, d);
5908 break;
5911 /* Uses of on_failure_jump:
5913 Each alternative starts with an on_failure_jump that points
5914 to the beginning of the next alternative. Each alternative
5915 except the last ends with a jump that in effect jumps past
5916 the rest of the alternatives. (They really jump to the
5917 ending jump of the following alternative, because tensioning
5918 these jumps is a hassle.)
5920 Repeats start with an on_failure_jump that points past both
5921 the repetition text and either the following jump or
5922 pop_failure_jump back to this on_failure_jump. */
5923 case on_failure_jump:
5924 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5925 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5926 mcnt, p + mcnt);
5928 PUSH_FAILURE_POINT (p -3, d);
5929 break;
5931 /* This operation is used for greedy *.
5932 Compare the beginning of the repeat with what in the
5933 pattern follows its end. If we can establish that there
5934 is nothing that they would both match, i.e., that we
5935 would have to backtrack because of (as in, e.g., `a*a')
5936 then we can use a non-backtracking loop based on
5937 on_failure_keep_string_jump instead of on_failure_jump. */
5938 case on_failure_jump_smart:
5939 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5940 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5941 mcnt, p + mcnt);
5943 re_char *p1 = p; /* Next operation. */
5944 /* Here, we discard `const', making re_match non-reentrant. */
5945 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5946 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5948 p -= 3; /* Reset so that we will re-execute the
5949 instruction once it's been changed. */
5951 EXTRACT_NUMBER (mcnt, p2 - 2);
5953 /* Ensure this is a indeed the trivial kind of loop
5954 we are expecting. */
5955 assert (skip_one_char (p1) == p2 - 3);
5956 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5957 DEBUG_STATEMENT (debug += 2);
5958 if (mutually_exclusive_p (bufp, p1, p2))
5960 /* Use a fast `on_failure_keep_string_jump' loop. */
5961 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5962 *p3 = (unsigned char) on_failure_keep_string_jump;
5963 STORE_NUMBER (p2 - 2, mcnt + 3);
5965 else
5967 /* Default to a safe `on_failure_jump' loop. */
5968 DEBUG_PRINT1 (" smart default => slow loop.\n");
5969 *p3 = (unsigned char) on_failure_jump;
5971 DEBUG_STATEMENT (debug -= 2);
5973 break;
5975 /* Unconditionally jump (without popping any failure points). */
5976 case jump:
5977 unconditional_jump:
5978 IMMEDIATE_QUIT_CHECK;
5979 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5980 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5981 p += mcnt; /* Do the jump. */
5982 DEBUG_PRINT2 ("(to %p).\n", p);
5983 break;
5986 /* Have to succeed matching what follows at least n times.
5987 After that, handle like `on_failure_jump'. */
5988 case succeed_n:
5989 /* Signedness doesn't matter since we only compare MCNT to 0. */
5990 EXTRACT_NUMBER (mcnt, p + 2);
5991 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5993 /* Originally, mcnt is how many times we HAVE to succeed. */
5994 if (mcnt != 0)
5996 /* Here, we discard `const', making re_match non-reentrant. */
5997 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5998 mcnt--;
5999 p += 4;
6000 PUSH_NUMBER (p2, mcnt);
6002 else
6003 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
6004 goto on_failure;
6005 break;
6007 case jump_n:
6008 /* Signedness doesn't matter since we only compare MCNT to 0. */
6009 EXTRACT_NUMBER (mcnt, p + 2);
6010 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
6012 /* Originally, this is how many times we CAN jump. */
6013 if (mcnt != 0)
6015 /* Here, we discard `const', making re_match non-reentrant. */
6016 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
6017 mcnt--;
6018 PUSH_NUMBER (p2, mcnt);
6019 goto unconditional_jump;
6021 /* If don't have to jump any more, skip over the rest of command. */
6022 else
6023 p += 4;
6024 break;
6026 case set_number_at:
6028 unsigned char *p2; /* Location of the counter. */
6029 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
6031 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6032 /* Here, we discard `const', making re_match non-reentrant. */
6033 p2 = (unsigned char*) p + mcnt;
6034 /* Signedness doesn't matter since we only copy MCNT's bits . */
6035 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6036 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
6037 PUSH_NUMBER (p2, mcnt);
6038 break;
6041 case wordbound:
6042 case notwordbound:
6043 not = (re_opcode_t) *(p - 1) == notwordbound;
6044 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
6046 /* We SUCCEED (or FAIL) in one of the following cases: */
6048 /* Case 1: D is at the beginning or the end of string. */
6049 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
6050 not = !not;
6051 else
6053 /* C1 is the character before D, S1 is the syntax of C1, C2
6054 is the character at D, and S2 is the syntax of C2. */
6055 re_wchar_t c1, c2;
6056 int s1, s2;
6057 int dummy;
6058 #ifdef emacs
6059 int offset = PTR_TO_OFFSET (d - 1);
6060 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6061 UPDATE_SYNTAX_TABLE (charpos);
6062 #endif
6063 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6064 s1 = SYNTAX (c1);
6065 #ifdef emacs
6066 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
6067 #endif
6068 PREFETCH_NOLIMIT ();
6069 GET_CHAR_AFTER (c2, d, dummy);
6070 s2 = SYNTAX (c2);
6072 if (/* Case 2: Only one of S1 and S2 is Sword. */
6073 ((s1 == Sword) != (s2 == Sword))
6074 /* Case 3: Both of S1 and S2 are Sword, and macro
6075 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
6076 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
6077 not = !not;
6079 if (not)
6080 break;
6081 else
6082 goto fail;
6084 case wordbeg:
6085 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
6087 /* We FAIL in one of the following cases: */
6089 /* Case 1: D is at the end of string. */
6090 if (AT_STRINGS_END (d))
6091 goto fail;
6092 else
6094 /* C1 is the character before D, S1 is the syntax of C1, C2
6095 is the character at D, and S2 is the syntax of C2. */
6096 re_wchar_t c1, c2;
6097 int s1, s2;
6098 int dummy;
6099 #ifdef emacs
6100 int offset = PTR_TO_OFFSET (d);
6101 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6102 UPDATE_SYNTAX_TABLE (charpos);
6103 #endif
6104 PREFETCH ();
6105 GET_CHAR_AFTER (c2, d, dummy);
6106 s2 = SYNTAX (c2);
6108 /* Case 2: S2 is not Sword. */
6109 if (s2 != Sword)
6110 goto fail;
6112 /* Case 3: D is not at the beginning of string ... */
6113 if (!AT_STRINGS_BEG (d))
6115 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6116 #ifdef emacs
6117 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6118 #endif
6119 s1 = SYNTAX (c1);
6121 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
6122 returns 0. */
6123 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6124 goto fail;
6127 break;
6129 case wordend:
6130 DEBUG_PRINT1 ("EXECUTING wordend.\n");
6132 /* We FAIL in one of the following cases: */
6134 /* Case 1: D is at the beginning of string. */
6135 if (AT_STRINGS_BEG (d))
6136 goto fail;
6137 else
6139 /* C1 is the character before D, S1 is the syntax of C1, C2
6140 is the character at D, and S2 is the syntax of C2. */
6141 re_wchar_t c1, c2;
6142 int s1, s2;
6143 int dummy;
6144 #ifdef emacs
6145 int offset = PTR_TO_OFFSET (d) - 1;
6146 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6147 UPDATE_SYNTAX_TABLE (charpos);
6148 #endif
6149 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6150 s1 = SYNTAX (c1);
6152 /* Case 2: S1 is not Sword. */
6153 if (s1 != Sword)
6154 goto fail;
6156 /* Case 3: D is not at the end of string ... */
6157 if (!AT_STRINGS_END (d))
6159 PREFETCH_NOLIMIT ();
6160 GET_CHAR_AFTER (c2, d, dummy);
6161 #ifdef emacs
6162 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6163 #endif
6164 s2 = SYNTAX (c2);
6166 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6167 returns 0. */
6168 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6169 goto fail;
6172 break;
6174 case symbeg:
6175 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6177 /* We FAIL in one of the following cases: */
6179 /* Case 1: D is at the end of string. */
6180 if (AT_STRINGS_END (d))
6181 goto fail;
6182 else
6184 /* C1 is the character before D, S1 is the syntax of C1, C2
6185 is the character at D, and S2 is the syntax of C2. */
6186 re_wchar_t c1, c2;
6187 int s1, s2;
6188 #ifdef emacs
6189 int offset = PTR_TO_OFFSET (d);
6190 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6191 UPDATE_SYNTAX_TABLE (charpos);
6192 #endif
6193 PREFETCH ();
6194 c2 = RE_STRING_CHAR (d, target_multibyte);
6195 s2 = SYNTAX (c2);
6197 /* Case 2: S2 is neither Sword nor Ssymbol. */
6198 if (s2 != Sword && s2 != Ssymbol)
6199 goto fail;
6201 /* Case 3: D is not at the beginning of string ... */
6202 if (!AT_STRINGS_BEG (d))
6204 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6205 #ifdef emacs
6206 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6207 #endif
6208 s1 = SYNTAX (c1);
6210 /* ... and S1 is Sword or Ssymbol. */
6211 if (s1 == Sword || s1 == Ssymbol)
6212 goto fail;
6215 break;
6217 case symend:
6218 DEBUG_PRINT1 ("EXECUTING symend.\n");
6220 /* We FAIL in one of the following cases: */
6222 /* Case 1: D is at the beginning of string. */
6223 if (AT_STRINGS_BEG (d))
6224 goto fail;
6225 else
6227 /* C1 is the character before D, S1 is the syntax of C1, C2
6228 is the character at D, and S2 is the syntax of C2. */
6229 re_wchar_t c1, c2;
6230 int s1, s2;
6231 #ifdef emacs
6232 int offset = PTR_TO_OFFSET (d) - 1;
6233 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6234 UPDATE_SYNTAX_TABLE (charpos);
6235 #endif
6236 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6237 s1 = SYNTAX (c1);
6239 /* Case 2: S1 is neither Ssymbol nor Sword. */
6240 if (s1 != Sword && s1 != Ssymbol)
6241 goto fail;
6243 /* Case 3: D is not at the end of string ... */
6244 if (!AT_STRINGS_END (d))
6246 PREFETCH_NOLIMIT ();
6247 c2 = RE_STRING_CHAR (d, target_multibyte);
6248 #ifdef emacs
6249 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
6250 #endif
6251 s2 = SYNTAX (c2);
6253 /* ... and S2 is Sword or Ssymbol. */
6254 if (s2 == Sword || s2 == Ssymbol)
6255 goto fail;
6258 break;
6260 case syntaxspec:
6261 case notsyntaxspec:
6262 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6263 mcnt = *p++;
6264 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
6265 PREFETCH ();
6266 #ifdef emacs
6268 int offset = PTR_TO_OFFSET (d);
6269 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6270 UPDATE_SYNTAX_TABLE (pos1);
6272 #endif
6274 int len;
6275 re_wchar_t c;
6277 GET_CHAR_AFTER (c, d, len);
6278 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6279 goto fail;
6280 d += len;
6282 break;
6284 #ifdef emacs
6285 case before_dot:
6286 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6287 if (PTR_BYTE_POS (d) >= PT_BYTE)
6288 goto fail;
6289 break;
6291 case at_dot:
6292 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6293 if (PTR_BYTE_POS (d) != PT_BYTE)
6294 goto fail;
6295 break;
6297 case after_dot:
6298 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6299 if (PTR_BYTE_POS (d) <= PT_BYTE)
6300 goto fail;
6301 break;
6303 case categoryspec:
6304 case notcategoryspec:
6305 not = (re_opcode_t) *(p - 1) == notcategoryspec;
6306 mcnt = *p++;
6307 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
6308 PREFETCH ();
6310 int len;
6311 re_wchar_t c;
6313 GET_CHAR_AFTER (c, d, len);
6314 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6315 goto fail;
6316 d += len;
6318 break;
6320 #endif /* emacs */
6322 default:
6323 abort ();
6325 continue; /* Successfully executed one pattern command; keep going. */
6328 /* We goto here if a matching operation fails. */
6329 fail:
6330 IMMEDIATE_QUIT_CHECK;
6331 if (!FAIL_STACK_EMPTY ())
6333 re_char *str, *pat;
6334 /* A restart point is known. Restore to that state. */
6335 DEBUG_PRINT1 ("\nFAIL:\n");
6336 POP_FAILURE_POINT (str, pat);
6337 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6339 case on_failure_keep_string_jump:
6340 assert (str == NULL);
6341 goto continue_failure_jump;
6343 case on_failure_jump_nastyloop:
6344 assert ((re_opcode_t)pat[-2] == no_op);
6345 PUSH_FAILURE_POINT (pat - 2, str);
6346 /* Fallthrough */
6348 case on_failure_jump_loop:
6349 case on_failure_jump:
6350 case succeed_n:
6351 d = str;
6352 continue_failure_jump:
6353 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6354 p = pat + mcnt;
6355 break;
6357 case no_op:
6358 /* A special frame used for nastyloops. */
6359 goto fail;
6361 default:
6362 abort();
6365 assert (p >= bufp->buffer && p <= pend);
6367 if (d >= string1 && d <= end1)
6368 dend = end_match_1;
6370 else
6371 break; /* Matching at this starting point really fails. */
6372 } /* for (;;) */
6374 if (best_regs_set)
6375 goto restore_best_regs;
6377 FREE_VARIABLES ();
6379 return -1; /* Failure to match. */
6380 } /* re_match_2 */
6382 /* Subroutine definitions for re_match_2. */
6384 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6385 bytes; nonzero otherwise. */
6387 static int
6388 bcmp_translate (const re_char *s1, const re_char *s2, register int len,
6389 RE_TRANSLATE_TYPE translate, const int target_multibyte)
6391 register re_char *p1 = s1, *p2 = s2;
6392 re_char *p1_end = s1 + len;
6393 re_char *p2_end = s2 + len;
6395 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6396 different lengths, but relying on a single `len' would break this. -sm */
6397 while (p1 < p1_end && p2 < p2_end)
6399 int p1_charlen, p2_charlen;
6400 re_wchar_t p1_ch, p2_ch;
6402 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6403 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
6405 if (RE_TRANSLATE (translate, p1_ch)
6406 != RE_TRANSLATE (translate, p2_ch))
6407 return 1;
6409 p1 += p1_charlen, p2 += p2_charlen;
6412 if (p1 != p1_end || p2 != p2_end)
6413 return 1;
6415 return 0;
6418 /* Entry points for GNU code. */
6420 /* re_compile_pattern is the GNU regular expression compiler: it
6421 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6422 Returns 0 if the pattern was valid, otherwise an error string.
6424 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6425 are set in BUFP on entry.
6427 We call regex_compile to do the actual compilation. */
6429 const char *
6430 re_compile_pattern (const char *pattern, size_t length, struct re_pattern_buffer *bufp)
6432 reg_errcode_t ret;
6434 /* GNU code is written to assume at least RE_NREGS registers will be set
6435 (and at least one extra will be -1). */
6436 bufp->regs_allocated = REGS_UNALLOCATED;
6438 /* And GNU code determines whether or not to get register information
6439 by passing null for the REGS argument to re_match, etc., not by
6440 setting no_sub. */
6441 bufp->no_sub = 0;
6443 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6445 if (!ret)
6446 return NULL;
6447 return gettext (re_error_msgid[(int) ret]);
6449 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6451 /* Entry points compatible with 4.2 BSD regex library. We don't define
6452 them unless specifically requested. */
6454 #if defined _REGEX_RE_COMP || defined _LIBC
6456 /* BSD has one and only one pattern buffer. */
6457 static struct re_pattern_buffer re_comp_buf;
6459 char *
6460 # ifdef _LIBC
6461 /* Make these definitions weak in libc, so POSIX programs can redefine
6462 these names if they don't use our functions, and still use
6463 regcomp/regexec below without link errors. */
6464 weak_function
6465 # endif
6466 re_comp (s)
6467 const char *s;
6469 reg_errcode_t ret;
6471 if (!s)
6473 if (!re_comp_buf.buffer)
6474 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6475 return (char *) gettext ("No previous regular expression");
6476 return 0;
6479 if (!re_comp_buf.buffer)
6481 re_comp_buf.buffer = (unsigned char *) malloc (200);
6482 if (re_comp_buf.buffer == NULL)
6483 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6484 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6485 re_comp_buf.allocated = 200;
6487 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6488 if (re_comp_buf.fastmap == NULL)
6489 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6490 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6493 /* Since `re_exec' always passes NULL for the `regs' argument, we
6494 don't need to initialize the pattern buffer fields which affect it. */
6496 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6498 if (!ret)
6499 return NULL;
6501 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6502 return (char *) gettext (re_error_msgid[(int) ret]);
6507 # ifdef _LIBC
6508 weak_function
6509 # endif
6510 re_exec (s)
6511 const char *s;
6513 const int len = strlen (s);
6514 return
6515 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6517 #endif /* _REGEX_RE_COMP */
6519 /* POSIX.2 functions. Don't define these for Emacs. */
6521 #ifndef emacs
6523 /* regcomp takes a regular expression as a string and compiles it.
6525 PREG is a regex_t *. We do not expect any fields to be initialized,
6526 since POSIX says we shouldn't. Thus, we set
6528 `buffer' to the compiled pattern;
6529 `used' to the length of the compiled pattern;
6530 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6531 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6532 RE_SYNTAX_POSIX_BASIC;
6533 `fastmap' to an allocated space for the fastmap;
6534 `fastmap_accurate' to zero;
6535 `re_nsub' to the number of subexpressions in PATTERN.
6537 PATTERN is the address of the pattern string.
6539 CFLAGS is a series of bits which affect compilation.
6541 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6542 use POSIX basic syntax.
6544 If REG_NEWLINE is set, then . and [^...] don't match newline.
6545 Also, regexec will try a match beginning after every newline.
6547 If REG_ICASE is set, then we considers upper- and lowercase
6548 versions of letters to be equivalent when matching.
6550 If REG_NOSUB is set, then when PREG is passed to regexec, that
6551 routine will report only success or failure, and nothing about the
6552 registers.
6554 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6555 the return codes and their meanings.) */
6558 regcomp (preg, pattern, cflags)
6559 regex_t *__restrict preg;
6560 const char *__restrict pattern;
6561 int cflags;
6563 reg_errcode_t ret;
6564 reg_syntax_t syntax
6565 = (cflags & REG_EXTENDED) ?
6566 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6568 /* regex_compile will allocate the space for the compiled pattern. */
6569 preg->buffer = 0;
6570 preg->allocated = 0;
6571 preg->used = 0;
6573 /* Try to allocate space for the fastmap. */
6574 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6576 if (cflags & REG_ICASE)
6578 unsigned i;
6580 preg->translate
6581 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6582 * sizeof (*(RE_TRANSLATE_TYPE)0));
6583 if (preg->translate == NULL)
6584 return (int) REG_ESPACE;
6586 /* Map uppercase characters to corresponding lowercase ones. */
6587 for (i = 0; i < CHAR_SET_SIZE; i++)
6588 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6590 else
6591 preg->translate = NULL;
6593 /* If REG_NEWLINE is set, newlines are treated differently. */
6594 if (cflags & REG_NEWLINE)
6595 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6596 syntax &= ~RE_DOT_NEWLINE;
6597 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6599 else
6600 syntax |= RE_NO_NEWLINE_ANCHOR;
6602 preg->no_sub = !!(cflags & REG_NOSUB);
6604 /* POSIX says a null character in the pattern terminates it, so we
6605 can use strlen here in compiling the pattern. */
6606 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6608 /* POSIX doesn't distinguish between an unmatched open-group and an
6609 unmatched close-group: both are REG_EPAREN. */
6610 if (ret == REG_ERPAREN)
6611 ret = REG_EPAREN;
6613 if (ret == REG_NOERROR && preg->fastmap)
6614 { /* Compute the fastmap now, since regexec cannot modify the pattern
6615 buffer. */
6616 re_compile_fastmap (preg);
6617 if (preg->can_be_null)
6618 { /* The fastmap can't be used anyway. */
6619 free (preg->fastmap);
6620 preg->fastmap = NULL;
6623 return (int) ret;
6625 WEAK_ALIAS (__regcomp, regcomp)
6628 /* regexec searches for a given pattern, specified by PREG, in the
6629 string STRING.
6631 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6632 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6633 least NMATCH elements, and we set them to the offsets of the
6634 corresponding matched substrings.
6636 EFLAGS specifies `execution flags' which affect matching: if
6637 REG_NOTBOL is set, then ^ does not match at the beginning of the
6638 string; if REG_NOTEOL is set, then $ does not match at the end.
6640 We return 0 if we find a match and REG_NOMATCH if not. */
6643 regexec (preg, string, nmatch, pmatch, eflags)
6644 const regex_t *__restrict preg;
6645 const char *__restrict string;
6646 size_t nmatch;
6647 regmatch_t pmatch[__restrict_arr];
6648 int eflags;
6650 int ret;
6651 struct re_registers regs;
6652 regex_t private_preg;
6653 int len = strlen (string);
6654 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6656 private_preg = *preg;
6658 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6659 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6661 /* The user has told us exactly how many registers to return
6662 information about, via `nmatch'. We have to pass that on to the
6663 matching routines. */
6664 private_preg.regs_allocated = REGS_FIXED;
6666 if (want_reg_info)
6668 regs.num_regs = nmatch;
6669 regs.start = TALLOC (nmatch * 2, regoff_t);
6670 if (regs.start == NULL)
6671 return (int) REG_NOMATCH;
6672 regs.end = regs.start + nmatch;
6675 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6676 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6677 was a little bit longer but still only matching the real part.
6678 This works because the `endline' will check for a '\n' and will find a
6679 '\0', correctly deciding that this is not the end of a line.
6680 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6681 a convenient '\0' there. For all we know, the string could be preceded
6682 by '\n' which would throw things off. */
6684 /* Perform the searching operation. */
6685 ret = re_search (&private_preg, string, len,
6686 /* start: */ 0, /* range: */ len,
6687 want_reg_info ? &regs : (struct re_registers *) 0);
6689 /* Copy the register information to the POSIX structure. */
6690 if (want_reg_info)
6692 if (ret >= 0)
6694 unsigned r;
6696 for (r = 0; r < nmatch; r++)
6698 pmatch[r].rm_so = regs.start[r];
6699 pmatch[r].rm_eo = regs.end[r];
6703 /* If we needed the temporary register info, free the space now. */
6704 free (regs.start);
6707 /* We want zero return to mean success, unlike `re_search'. */
6708 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6710 WEAK_ALIAS (__regexec, regexec)
6713 /* Returns a message corresponding to an error code, ERR_CODE, returned
6714 from either regcomp or regexec. We don't use PREG here.
6716 ERR_CODE was previously called ERRCODE, but that name causes an
6717 error with msvc8 compiler. */
6719 size_t
6720 regerror (err_code, preg, errbuf, errbuf_size)
6721 int err_code;
6722 const regex_t *preg;
6723 char *errbuf;
6724 size_t errbuf_size;
6726 const char *msg;
6727 size_t msg_size;
6729 if (err_code < 0
6730 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6731 /* Only error codes returned by the rest of the code should be passed
6732 to this routine. If we are given anything else, or if other regex
6733 code generates an invalid error code, then the program has a bug.
6734 Dump core so we can fix it. */
6735 abort ();
6737 msg = gettext (re_error_msgid[err_code]);
6739 msg_size = strlen (msg) + 1; /* Includes the null. */
6741 if (errbuf_size != 0)
6743 if (msg_size > errbuf_size)
6745 strncpy (errbuf, msg, errbuf_size - 1);
6746 errbuf[errbuf_size - 1] = 0;
6748 else
6749 strcpy (errbuf, msg);
6752 return msg_size;
6754 WEAK_ALIAS (__regerror, regerror)
6757 /* Free dynamically allocated space used by PREG. */
6759 void
6760 regfree (preg)
6761 regex_t *preg;
6763 free (preg->buffer);
6764 preg->buffer = NULL;
6766 preg->allocated = 0;
6767 preg->used = 0;
6769 free (preg->fastmap);
6770 preg->fastmap = NULL;
6771 preg->fastmap_accurate = 0;
6773 free (preg->translate);
6774 preg->translate = NULL;
6776 WEAK_ALIAS (__regfree, regfree)
6778 #endif /* not emacs */
6780 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6781 (do not change this comment) */