Fix problems found while writing a test suite.
[emacs.git] / src / alloc.c
blobb35f7c4333f22f0e0b4855a09f0f2cbe68430d7a
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
49 #include <verify.h>
51 #if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54 # define USE_VALGRIND 1
55 #endif
57 #if USE_VALGRIND
58 #include <valgrind/valgrind.h>
59 #include <valgrind/memcheck.h>
60 static bool valgrind_p;
61 #endif
63 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
65 #if ! GC_MARK_STACK
66 # undef GC_CHECK_MARKED_OBJECTS
67 #endif
69 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
71 marked objects. */
73 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75 #undef GC_MALLOC_CHECK
76 #endif
78 #include <unistd.h>
79 #include <fcntl.h>
81 #ifdef USE_GTK
82 # include "gtkutil.h"
83 #endif
84 #ifdef WINDOWSNT
85 #include "w32.h"
86 #include "w32heap.h" /* for sbrk */
87 #endif
89 #ifdef DOUG_LEA_MALLOC
91 #include <malloc.h>
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
96 #define MMAP_MAX_AREAS 100000000
98 #endif /* not DOUG_LEA_MALLOC */
100 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
103 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
107 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
111 /* Default value of gc_cons_threshold (see below). */
113 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
115 /* Global variables. */
116 struct emacs_globals globals;
118 /* Number of bytes of consing done since the last gc. */
120 EMACS_INT consing_since_gc;
122 /* Similar minimum, computed from Vgc_cons_percentage. */
124 EMACS_INT gc_relative_threshold;
126 /* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
129 EMACS_INT memory_full_cons_threshold;
131 /* True during GC. */
133 bool gc_in_progress;
135 /* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
139 bool abort_on_gc;
141 /* Number of live and free conses etc. */
143 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
144 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
145 static EMACS_INT total_free_floats, total_floats;
147 /* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
151 static char *spare_memory[7];
153 /* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
156 #define SPARE_MEMORY (1 << 14)
158 /* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
164 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
165 #define PUREBEG (char *) pure
167 /* Pointer to the pure area, and its size. */
169 static char *purebeg;
170 static ptrdiff_t pure_size;
172 /* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
175 static ptrdiff_t pure_bytes_used_before_overflow;
177 /* True if P points into pure space. */
179 #define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
182 /* Index in pure at which next pure Lisp object will be allocated.. */
184 static ptrdiff_t pure_bytes_used_lisp;
186 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188 static ptrdiff_t pure_bytes_used_non_lisp;
190 /* If nonzero, this is a warning delivered by malloc and not yet
191 displayed. */
193 const char *pending_malloc_warning;
195 /* Maximum amount of C stack to save when a GC happens. */
197 #ifndef MAX_SAVE_STACK
198 #define MAX_SAVE_STACK 16000
199 #endif
201 /* Buffer in which we save a copy of the C stack at each GC. */
203 #if MAX_SAVE_STACK > 0
204 static char *stack_copy;
205 static ptrdiff_t stack_copy_size;
206 #endif
208 static Lisp_Object Qconses;
209 static Lisp_Object Qsymbols;
210 static Lisp_Object Qmiscs;
211 static Lisp_Object Qstrings;
212 static Lisp_Object Qvectors;
213 static Lisp_Object Qfloats;
214 static Lisp_Object Qintervals;
215 static Lisp_Object Qbuffers;
216 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
217 static Lisp_Object Qgc_cons_threshold;
218 Lisp_Object Qautomatic_gc;
219 Lisp_Object Qchar_table_extra_slots;
221 /* Hook run after GC has finished. */
223 static Lisp_Object Qpost_gc_hook;
225 static void mark_terminals (void);
226 static void gc_sweep (void);
227 static Lisp_Object make_pure_vector (ptrdiff_t);
228 static void mark_buffer (struct buffer *);
230 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
231 static void refill_memory_reserve (void);
232 #endif
233 static void compact_small_strings (void);
234 static void free_large_strings (void);
235 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
237 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
238 what memory allocated via lisp_malloc and lisp_align_malloc is intended
239 for what purpose. This enumeration specifies the type of memory. */
241 enum mem_type
243 MEM_TYPE_NON_LISP,
244 MEM_TYPE_BUFFER,
245 MEM_TYPE_CONS,
246 MEM_TYPE_STRING,
247 MEM_TYPE_MISC,
248 MEM_TYPE_SYMBOL,
249 MEM_TYPE_FLOAT,
250 /* Since all non-bool pseudovectors are small enough to be
251 allocated from vector blocks, this memory type denotes
252 large regular vectors and large bool pseudovectors. */
253 MEM_TYPE_VECTORLIKE,
254 /* Special type to denote vector blocks. */
255 MEM_TYPE_VECTOR_BLOCK,
256 /* Special type to denote reserved memory. */
257 MEM_TYPE_SPARE
260 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
262 /* A unique object in pure space used to make some Lisp objects
263 on free lists recognizable in O(1). */
265 static Lisp_Object Vdead;
266 #define DEADP(x) EQ (x, Vdead)
268 #ifdef GC_MALLOC_CHECK
270 enum mem_type allocated_mem_type;
272 #endif /* GC_MALLOC_CHECK */
274 /* A node in the red-black tree describing allocated memory containing
275 Lisp data. Each such block is recorded with its start and end
276 address when it is allocated, and removed from the tree when it
277 is freed.
279 A red-black tree is a balanced binary tree with the following
280 properties:
282 1. Every node is either red or black.
283 2. Every leaf is black.
284 3. If a node is red, then both of its children are black.
285 4. Every simple path from a node to a descendant leaf contains
286 the same number of black nodes.
287 5. The root is always black.
289 When nodes are inserted into the tree, or deleted from the tree,
290 the tree is "fixed" so that these properties are always true.
292 A red-black tree with N internal nodes has height at most 2
293 log(N+1). Searches, insertions and deletions are done in O(log N).
294 Please see a text book about data structures for a detailed
295 description of red-black trees. Any book worth its salt should
296 describe them. */
298 struct mem_node
300 /* Children of this node. These pointers are never NULL. When there
301 is no child, the value is MEM_NIL, which points to a dummy node. */
302 struct mem_node *left, *right;
304 /* The parent of this node. In the root node, this is NULL. */
305 struct mem_node *parent;
307 /* Start and end of allocated region. */
308 void *start, *end;
310 /* Node color. */
311 enum {MEM_BLACK, MEM_RED} color;
313 /* Memory type. */
314 enum mem_type type;
317 /* Base address of stack. Set in main. */
319 Lisp_Object *stack_base;
321 /* Root of the tree describing allocated Lisp memory. */
323 static struct mem_node *mem_root;
325 /* Lowest and highest known address in the heap. */
327 static void *min_heap_address, *max_heap_address;
329 /* Sentinel node of the tree. */
331 static struct mem_node mem_z;
332 #define MEM_NIL &mem_z
334 static struct mem_node *mem_insert (void *, void *, enum mem_type);
335 static void mem_insert_fixup (struct mem_node *);
336 static void mem_rotate_left (struct mem_node *);
337 static void mem_rotate_right (struct mem_node *);
338 static void mem_delete (struct mem_node *);
339 static void mem_delete_fixup (struct mem_node *);
340 static struct mem_node *mem_find (void *);
342 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
344 #ifndef DEADP
345 # define DEADP(x) 0
346 #endif
348 /* Recording what needs to be marked for gc. */
350 struct gcpro *gcprolist;
352 /* Addresses of staticpro'd variables. Initialize it to a nonzero
353 value; otherwise some compilers put it into BSS. */
355 enum { NSTATICS = 2048 };
356 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
358 /* Index of next unused slot in staticvec. */
360 static int staticidx;
362 static void *pure_alloc (size_t, int);
365 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
366 ALIGNMENT must be a power of 2. */
368 #define ALIGN(ptr, ALIGNMENT) \
369 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
370 & ~ ((ALIGNMENT) - 1)))
372 static void
373 XFLOAT_INIT (Lisp_Object f, double n)
375 XFLOAT (f)->u.data = n;
379 /************************************************************************
380 Malloc
381 ************************************************************************/
383 /* Function malloc calls this if it finds we are near exhausting storage. */
385 void
386 malloc_warning (const char *str)
388 pending_malloc_warning = str;
392 /* Display an already-pending malloc warning. */
394 void
395 display_malloc_warning (void)
397 call3 (intern ("display-warning"),
398 intern ("alloc"),
399 build_string (pending_malloc_warning),
400 intern ("emergency"));
401 pending_malloc_warning = 0;
404 /* Called if we can't allocate relocatable space for a buffer. */
406 void
407 buffer_memory_full (ptrdiff_t nbytes)
409 /* If buffers use the relocating allocator, no need to free
410 spare_memory, because we may have plenty of malloc space left
411 that we could get, and if we don't, the malloc that fails will
412 itself cause spare_memory to be freed. If buffers don't use the
413 relocating allocator, treat this like any other failing
414 malloc. */
416 #ifndef REL_ALLOC
417 memory_full (nbytes);
418 #else
419 /* This used to call error, but if we've run out of memory, we could
420 get infinite recursion trying to build the string. */
421 xsignal (Qnil, Vmemory_signal_data);
422 #endif
425 /* A common multiple of the positive integers A and B. Ideally this
426 would be the least common multiple, but there's no way to do that
427 as a constant expression in C, so do the best that we can easily do. */
428 #define COMMON_MULTIPLE(a, b) \
429 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
431 #ifndef XMALLOC_OVERRUN_CHECK
432 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
433 #else
435 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
436 around each block.
438 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
439 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
440 block size in little-endian order. The trailer consists of
441 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
443 The header is used to detect whether this block has been allocated
444 through these functions, as some low-level libc functions may
445 bypass the malloc hooks. */
447 #define XMALLOC_OVERRUN_CHECK_SIZE 16
448 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
449 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
451 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
452 hold a size_t value and (2) the header size is a multiple of the
453 alignment that Emacs needs for C types and for USE_LSB_TAG. */
454 #define XMALLOC_BASE_ALIGNMENT \
455 alignof (union { long double d; intmax_t i; void *p; })
457 #if USE_LSB_TAG
458 # define XMALLOC_HEADER_ALIGNMENT \
459 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
460 #else
461 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
462 #endif
463 #define XMALLOC_OVERRUN_SIZE_SIZE \
464 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
465 + XMALLOC_HEADER_ALIGNMENT - 1) \
466 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
467 - XMALLOC_OVERRUN_CHECK_SIZE)
469 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
470 { '\x9a', '\x9b', '\xae', '\xaf',
471 '\xbf', '\xbe', '\xce', '\xcf',
472 '\xea', '\xeb', '\xec', '\xed',
473 '\xdf', '\xde', '\x9c', '\x9d' };
475 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
476 { '\xaa', '\xab', '\xac', '\xad',
477 '\xba', '\xbb', '\xbc', '\xbd',
478 '\xca', '\xcb', '\xcc', '\xcd',
479 '\xda', '\xdb', '\xdc', '\xdd' };
481 /* Insert and extract the block size in the header. */
483 static void
484 xmalloc_put_size (unsigned char *ptr, size_t size)
486 int i;
487 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
489 *--ptr = size & ((1 << CHAR_BIT) - 1);
490 size >>= CHAR_BIT;
494 static size_t
495 xmalloc_get_size (unsigned char *ptr)
497 size_t size = 0;
498 int i;
499 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
500 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
502 size <<= CHAR_BIT;
503 size += *ptr++;
505 return size;
509 /* Like malloc, but wraps allocated block with header and trailer. */
511 static void *
512 overrun_check_malloc (size_t size)
514 register unsigned char *val;
515 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
516 emacs_abort ();
518 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
519 if (val)
521 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
522 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
523 xmalloc_put_size (val, size);
524 memcpy (val + size, xmalloc_overrun_check_trailer,
525 XMALLOC_OVERRUN_CHECK_SIZE);
527 return val;
531 /* Like realloc, but checks old block for overrun, and wraps new block
532 with header and trailer. */
534 static void *
535 overrun_check_realloc (void *block, size_t size)
537 register unsigned char *val = (unsigned char *) block;
538 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
539 emacs_abort ();
541 if (val
542 && memcmp (xmalloc_overrun_check_header,
543 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
544 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
546 size_t osize = xmalloc_get_size (val);
547 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
548 XMALLOC_OVERRUN_CHECK_SIZE))
549 emacs_abort ();
550 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
551 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
552 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
555 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
557 if (val)
559 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
560 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
561 xmalloc_put_size (val, size);
562 memcpy (val + size, xmalloc_overrun_check_trailer,
563 XMALLOC_OVERRUN_CHECK_SIZE);
565 return val;
568 /* Like free, but checks block for overrun. */
570 static void
571 overrun_check_free (void *block)
573 unsigned char *val = (unsigned char *) block;
575 if (val
576 && memcmp (xmalloc_overrun_check_header,
577 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
578 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
580 size_t osize = xmalloc_get_size (val);
581 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
582 XMALLOC_OVERRUN_CHECK_SIZE))
583 emacs_abort ();
584 #ifdef XMALLOC_CLEAR_FREE_MEMORY
585 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
586 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
587 #else
588 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
589 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
590 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
591 #endif
594 free (val);
597 #undef malloc
598 #undef realloc
599 #undef free
600 #define malloc overrun_check_malloc
601 #define realloc overrun_check_realloc
602 #define free overrun_check_free
603 #endif
605 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
606 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
607 If that variable is set, block input while in one of Emacs's memory
608 allocation functions. There should be no need for this debugging
609 option, since signal handlers do not allocate memory, but Emacs
610 formerly allocated memory in signal handlers and this compile-time
611 option remains as a way to help debug the issue should it rear its
612 ugly head again. */
613 #ifdef XMALLOC_BLOCK_INPUT_CHECK
614 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
615 static void
616 malloc_block_input (void)
618 if (block_input_in_memory_allocators)
619 block_input ();
621 static void
622 malloc_unblock_input (void)
624 if (block_input_in_memory_allocators)
625 unblock_input ();
627 # define MALLOC_BLOCK_INPUT malloc_block_input ()
628 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
629 #else
630 # define MALLOC_BLOCK_INPUT ((void) 0)
631 # define MALLOC_UNBLOCK_INPUT ((void) 0)
632 #endif
634 #define MALLOC_PROBE(size) \
635 do { \
636 if (profiler_memory_running) \
637 malloc_probe (size); \
638 } while (0)
641 /* Like malloc but check for no memory and block interrupt input.. */
643 void *
644 xmalloc (size_t size)
646 void *val;
648 MALLOC_BLOCK_INPUT;
649 val = malloc (size);
650 MALLOC_UNBLOCK_INPUT;
652 if (!val && size)
653 memory_full (size);
654 MALLOC_PROBE (size);
655 return val;
658 /* Like the above, but zeroes out the memory just allocated. */
660 void *
661 xzalloc (size_t size)
663 void *val;
665 MALLOC_BLOCK_INPUT;
666 val = malloc (size);
667 MALLOC_UNBLOCK_INPUT;
669 if (!val && size)
670 memory_full (size);
671 memset (val, 0, size);
672 MALLOC_PROBE (size);
673 return val;
676 /* Like realloc but check for no memory and block interrupt input.. */
678 void *
679 xrealloc (void *block, size_t size)
681 void *val;
683 MALLOC_BLOCK_INPUT;
684 /* We must call malloc explicitly when BLOCK is 0, since some
685 reallocs don't do this. */
686 if (! block)
687 val = malloc (size);
688 else
689 val = realloc (block, size);
690 MALLOC_UNBLOCK_INPUT;
692 if (!val && size)
693 memory_full (size);
694 MALLOC_PROBE (size);
695 return val;
699 /* Like free but block interrupt input. */
701 void
702 xfree (void *block)
704 if (!block)
705 return;
706 MALLOC_BLOCK_INPUT;
707 free (block);
708 MALLOC_UNBLOCK_INPUT;
709 /* We don't call refill_memory_reserve here
710 because in practice the call in r_alloc_free seems to suffice. */
714 /* Other parts of Emacs pass large int values to allocator functions
715 expecting ptrdiff_t. This is portable in practice, but check it to
716 be safe. */
717 verify (INT_MAX <= PTRDIFF_MAX);
720 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
721 Signal an error on memory exhaustion, and block interrupt input. */
723 void *
724 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
726 eassert (0 <= nitems && 0 < item_size);
727 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
728 memory_full (SIZE_MAX);
729 return xmalloc (nitems * item_size);
733 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
734 Signal an error on memory exhaustion, and block interrupt input. */
736 void *
737 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
739 eassert (0 <= nitems && 0 < item_size);
740 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
741 memory_full (SIZE_MAX);
742 return xrealloc (pa, nitems * item_size);
746 /* Grow PA, which points to an array of *NITEMS items, and return the
747 location of the reallocated array, updating *NITEMS to reflect its
748 new size. The new array will contain at least NITEMS_INCR_MIN more
749 items, but will not contain more than NITEMS_MAX items total.
750 ITEM_SIZE is the size of each item, in bytes.
752 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
753 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
754 infinity.
756 If PA is null, then allocate a new array instead of reallocating
757 the old one.
759 Block interrupt input as needed. If memory exhaustion occurs, set
760 *NITEMS to zero if PA is null, and signal an error (i.e., do not
761 return).
763 Thus, to grow an array A without saving its old contents, do
764 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
765 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
766 and signals an error, and later this code is reexecuted and
767 attempts to free A. */
769 void *
770 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
771 ptrdiff_t nitems_max, ptrdiff_t item_size)
773 /* The approximate size to use for initial small allocation
774 requests. This is the largest "small" request for the GNU C
775 library malloc. */
776 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
778 /* If the array is tiny, grow it to about (but no greater than)
779 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
780 ptrdiff_t n = *nitems;
781 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
782 ptrdiff_t half_again = n >> 1;
783 ptrdiff_t incr_estimate = max (tiny_max, half_again);
785 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
786 NITEMS_MAX, and what the C language can represent safely. */
787 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
788 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
789 ? nitems_max : C_language_max);
790 ptrdiff_t nitems_incr_max = n_max - n;
791 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
793 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
794 if (! pa)
795 *nitems = 0;
796 if (nitems_incr_max < incr)
797 memory_full (SIZE_MAX);
798 n += incr;
799 pa = xrealloc (pa, n * item_size);
800 *nitems = n;
801 return pa;
805 /* Like strdup, but uses xmalloc. */
807 char *
808 xstrdup (const char *s)
810 ptrdiff_t size;
811 eassert (s);
812 size = strlen (s) + 1;
813 return memcpy (xmalloc (size), s, size);
816 /* Like above, but duplicates Lisp string to C string. */
818 char *
819 xlispstrdup (Lisp_Object string)
821 ptrdiff_t size = SBYTES (string) + 1;
822 return memcpy (xmalloc (size), SSDATA (string), size);
825 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
826 argument is a const pointer. */
828 void
829 xputenv (char const *string)
831 if (putenv ((char *) string) != 0)
832 memory_full (0);
835 /* Return a newly allocated memory block of SIZE bytes, remembering
836 to free it when unwinding. */
837 void *
838 record_xmalloc (size_t size)
840 void *p = xmalloc (size);
841 record_unwind_protect_ptr (xfree, p);
842 return p;
846 /* Like malloc but used for allocating Lisp data. NBYTES is the
847 number of bytes to allocate, TYPE describes the intended use of the
848 allocated memory block (for strings, for conses, ...). */
850 #if ! USE_LSB_TAG
851 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
852 #endif
854 static void *
855 lisp_malloc (size_t nbytes, enum mem_type type)
857 register void *val;
859 MALLOC_BLOCK_INPUT;
861 #ifdef GC_MALLOC_CHECK
862 allocated_mem_type = type;
863 #endif
865 val = malloc (nbytes);
867 #if ! USE_LSB_TAG
868 /* If the memory just allocated cannot be addressed thru a Lisp
869 object's pointer, and it needs to be,
870 that's equivalent to running out of memory. */
871 if (val && type != MEM_TYPE_NON_LISP)
873 Lisp_Object tem;
874 XSETCONS (tem, (char *) val + nbytes - 1);
875 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
877 lisp_malloc_loser = val;
878 free (val);
879 val = 0;
882 #endif
884 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
885 if (val && type != MEM_TYPE_NON_LISP)
886 mem_insert (val, (char *) val + nbytes, type);
887 #endif
889 MALLOC_UNBLOCK_INPUT;
890 if (!val && nbytes)
891 memory_full (nbytes);
892 MALLOC_PROBE (nbytes);
893 return val;
896 /* Free BLOCK. This must be called to free memory allocated with a
897 call to lisp_malloc. */
899 static void
900 lisp_free (void *block)
902 MALLOC_BLOCK_INPUT;
903 free (block);
904 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
905 mem_delete (mem_find (block));
906 #endif
907 MALLOC_UNBLOCK_INPUT;
910 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
912 /* The entry point is lisp_align_malloc which returns blocks of at most
913 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
915 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
916 #define USE_POSIX_MEMALIGN 1
917 #endif
919 /* BLOCK_ALIGN has to be a power of 2. */
920 #define BLOCK_ALIGN (1 << 10)
922 /* Padding to leave at the end of a malloc'd block. This is to give
923 malloc a chance to minimize the amount of memory wasted to alignment.
924 It should be tuned to the particular malloc library used.
925 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
926 posix_memalign on the other hand would ideally prefer a value of 4
927 because otherwise, there's 1020 bytes wasted between each ablocks.
928 In Emacs, testing shows that those 1020 can most of the time be
929 efficiently used by malloc to place other objects, so a value of 0 can
930 still preferable unless you have a lot of aligned blocks and virtually
931 nothing else. */
932 #define BLOCK_PADDING 0
933 #define BLOCK_BYTES \
934 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
936 /* Internal data structures and constants. */
938 #define ABLOCKS_SIZE 16
940 /* An aligned block of memory. */
941 struct ablock
943 union
945 char payload[BLOCK_BYTES];
946 struct ablock *next_free;
947 } x;
948 /* `abase' is the aligned base of the ablocks. */
949 /* It is overloaded to hold the virtual `busy' field that counts
950 the number of used ablock in the parent ablocks.
951 The first ablock has the `busy' field, the others have the `abase'
952 field. To tell the difference, we assume that pointers will have
953 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
954 is used to tell whether the real base of the parent ablocks is `abase'
955 (if not, the word before the first ablock holds a pointer to the
956 real base). */
957 struct ablocks *abase;
958 /* The padding of all but the last ablock is unused. The padding of
959 the last ablock in an ablocks is not allocated. */
960 #if BLOCK_PADDING
961 char padding[BLOCK_PADDING];
962 #endif
965 /* A bunch of consecutive aligned blocks. */
966 struct ablocks
968 struct ablock blocks[ABLOCKS_SIZE];
971 /* Size of the block requested from malloc or posix_memalign. */
972 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
974 #define ABLOCK_ABASE(block) \
975 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
976 ? (struct ablocks *)(block) \
977 : (block)->abase)
979 /* Virtual `busy' field. */
980 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
982 /* Pointer to the (not necessarily aligned) malloc block. */
983 #ifdef USE_POSIX_MEMALIGN
984 #define ABLOCKS_BASE(abase) (abase)
985 #else
986 #define ABLOCKS_BASE(abase) \
987 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
988 #endif
990 /* The list of free ablock. */
991 static struct ablock *free_ablock;
993 /* Allocate an aligned block of nbytes.
994 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
995 smaller or equal to BLOCK_BYTES. */
996 static void *
997 lisp_align_malloc (size_t nbytes, enum mem_type type)
999 void *base, *val;
1000 struct ablocks *abase;
1002 eassert (nbytes <= BLOCK_BYTES);
1004 MALLOC_BLOCK_INPUT;
1006 #ifdef GC_MALLOC_CHECK
1007 allocated_mem_type = type;
1008 #endif
1010 if (!free_ablock)
1012 int i;
1013 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1015 #ifdef DOUG_LEA_MALLOC
1016 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1017 because mapped region contents are not preserved in
1018 a dumped Emacs. */
1019 mallopt (M_MMAP_MAX, 0);
1020 #endif
1022 #ifdef USE_POSIX_MEMALIGN
1024 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1025 if (err)
1026 base = NULL;
1027 abase = base;
1029 #else
1030 base = malloc (ABLOCKS_BYTES);
1031 abase = ALIGN (base, BLOCK_ALIGN);
1032 #endif
1034 if (base == 0)
1036 MALLOC_UNBLOCK_INPUT;
1037 memory_full (ABLOCKS_BYTES);
1040 aligned = (base == abase);
1041 if (!aligned)
1042 ((void **) abase)[-1] = base;
1044 #ifdef DOUG_LEA_MALLOC
1045 /* Back to a reasonable maximum of mmap'ed areas. */
1046 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1047 #endif
1049 #if ! USE_LSB_TAG
1050 /* If the memory just allocated cannot be addressed thru a Lisp
1051 object's pointer, and it needs to be, that's equivalent to
1052 running out of memory. */
1053 if (type != MEM_TYPE_NON_LISP)
1055 Lisp_Object tem;
1056 char *end = (char *) base + ABLOCKS_BYTES - 1;
1057 XSETCONS (tem, end);
1058 if ((char *) XCONS (tem) != end)
1060 lisp_malloc_loser = base;
1061 free (base);
1062 MALLOC_UNBLOCK_INPUT;
1063 memory_full (SIZE_MAX);
1066 #endif
1068 /* Initialize the blocks and put them on the free list.
1069 If `base' was not properly aligned, we can't use the last block. */
1070 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1072 abase->blocks[i].abase = abase;
1073 abase->blocks[i].x.next_free = free_ablock;
1074 free_ablock = &abase->blocks[i];
1076 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1078 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1079 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1080 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1081 eassert (ABLOCKS_BASE (abase) == base);
1082 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1085 abase = ABLOCK_ABASE (free_ablock);
1086 ABLOCKS_BUSY (abase) =
1087 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1088 val = free_ablock;
1089 free_ablock = free_ablock->x.next_free;
1091 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1092 if (type != MEM_TYPE_NON_LISP)
1093 mem_insert (val, (char *) val + nbytes, type);
1094 #endif
1096 MALLOC_UNBLOCK_INPUT;
1098 MALLOC_PROBE (nbytes);
1100 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1101 return val;
1104 static void
1105 lisp_align_free (void *block)
1107 struct ablock *ablock = block;
1108 struct ablocks *abase = ABLOCK_ABASE (ablock);
1110 MALLOC_BLOCK_INPUT;
1111 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1112 mem_delete (mem_find (block));
1113 #endif
1114 /* Put on free list. */
1115 ablock->x.next_free = free_ablock;
1116 free_ablock = ablock;
1117 /* Update busy count. */
1118 ABLOCKS_BUSY (abase)
1119 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1121 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1122 { /* All the blocks are free. */
1123 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1124 struct ablock **tem = &free_ablock;
1125 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1127 while (*tem)
1129 if (*tem >= (struct ablock *) abase && *tem < atop)
1131 i++;
1132 *tem = (*tem)->x.next_free;
1134 else
1135 tem = &(*tem)->x.next_free;
1137 eassert ((aligned & 1) == aligned);
1138 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1139 #ifdef USE_POSIX_MEMALIGN
1140 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1141 #endif
1142 free (ABLOCKS_BASE (abase));
1144 MALLOC_UNBLOCK_INPUT;
1148 /***********************************************************************
1149 Interval Allocation
1150 ***********************************************************************/
1152 /* Number of intervals allocated in an interval_block structure.
1153 The 1020 is 1024 minus malloc overhead. */
1155 #define INTERVAL_BLOCK_SIZE \
1156 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1158 /* Intervals are allocated in chunks in the form of an interval_block
1159 structure. */
1161 struct interval_block
1163 /* Place `intervals' first, to preserve alignment. */
1164 struct interval intervals[INTERVAL_BLOCK_SIZE];
1165 struct interval_block *next;
1168 /* Current interval block. Its `next' pointer points to older
1169 blocks. */
1171 static struct interval_block *interval_block;
1173 /* Index in interval_block above of the next unused interval
1174 structure. */
1176 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1178 /* Number of free and live intervals. */
1180 static EMACS_INT total_free_intervals, total_intervals;
1182 /* List of free intervals. */
1184 static INTERVAL interval_free_list;
1186 /* Return a new interval. */
1188 INTERVAL
1189 make_interval (void)
1191 INTERVAL val;
1193 MALLOC_BLOCK_INPUT;
1195 if (interval_free_list)
1197 val = interval_free_list;
1198 interval_free_list = INTERVAL_PARENT (interval_free_list);
1200 else
1202 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1204 struct interval_block *newi
1205 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1207 newi->next = interval_block;
1208 interval_block = newi;
1209 interval_block_index = 0;
1210 total_free_intervals += INTERVAL_BLOCK_SIZE;
1212 val = &interval_block->intervals[interval_block_index++];
1215 MALLOC_UNBLOCK_INPUT;
1217 consing_since_gc += sizeof (struct interval);
1218 intervals_consed++;
1219 total_free_intervals--;
1220 RESET_INTERVAL (val);
1221 val->gcmarkbit = 0;
1222 return val;
1226 /* Mark Lisp objects in interval I. */
1228 static void
1229 mark_interval (register INTERVAL i, Lisp_Object dummy)
1231 /* Intervals should never be shared. So, if extra internal checking is
1232 enabled, GC aborts if it seems to have visited an interval twice. */
1233 eassert (!i->gcmarkbit);
1234 i->gcmarkbit = 1;
1235 mark_object (i->plist);
1238 /* Mark the interval tree rooted in I. */
1240 #define MARK_INTERVAL_TREE(i) \
1241 do { \
1242 if (i && !i->gcmarkbit) \
1243 traverse_intervals_noorder (i, mark_interval, Qnil); \
1244 } while (0)
1246 /***********************************************************************
1247 String Allocation
1248 ***********************************************************************/
1250 /* Lisp_Strings are allocated in string_block structures. When a new
1251 string_block is allocated, all the Lisp_Strings it contains are
1252 added to a free-list string_free_list. When a new Lisp_String is
1253 needed, it is taken from that list. During the sweep phase of GC,
1254 string_blocks that are entirely free are freed, except two which
1255 we keep.
1257 String data is allocated from sblock structures. Strings larger
1258 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1259 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1261 Sblocks consist internally of sdata structures, one for each
1262 Lisp_String. The sdata structure points to the Lisp_String it
1263 belongs to. The Lisp_String points back to the `u.data' member of
1264 its sdata structure.
1266 When a Lisp_String is freed during GC, it is put back on
1267 string_free_list, and its `data' member and its sdata's `string'
1268 pointer is set to null. The size of the string is recorded in the
1269 `n.nbytes' member of the sdata. So, sdata structures that are no
1270 longer used, can be easily recognized, and it's easy to compact the
1271 sblocks of small strings which we do in compact_small_strings. */
1273 /* Size in bytes of an sblock structure used for small strings. This
1274 is 8192 minus malloc overhead. */
1276 #define SBLOCK_SIZE 8188
1278 /* Strings larger than this are considered large strings. String data
1279 for large strings is allocated from individual sblocks. */
1281 #define LARGE_STRING_BYTES 1024
1283 /* The SDATA typedef is a struct or union describing string memory
1284 sub-allocated from an sblock. This is where the contents of Lisp
1285 strings are stored. */
1287 struct sdata
1289 /* Back-pointer to the string this sdata belongs to. If null, this
1290 structure is free, and NBYTES (in this structure or in the union below)
1291 contains the string's byte size (the same value that STRING_BYTES
1292 would return if STRING were non-null). If non-null, STRING_BYTES
1293 (STRING) is the size of the data, and DATA contains the string's
1294 contents. */
1295 struct Lisp_String *string;
1297 #ifdef GC_CHECK_STRING_BYTES
1298 ptrdiff_t nbytes;
1299 #endif
1301 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1304 #ifdef GC_CHECK_STRING_BYTES
1306 typedef struct sdata sdata;
1307 #define SDATA_NBYTES(S) (S)->nbytes
1308 #define SDATA_DATA(S) (S)->data
1310 #else
1312 typedef union
1314 struct Lisp_String *string;
1316 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1317 which has a flexible array member. However, if implemented by
1318 giving this union a member of type 'struct sdata', the union
1319 could not be the last (flexible) member of 'struct sblock',
1320 because C99 prohibits a flexible array member from having a type
1321 that is itself a flexible array. So, comment this member out here,
1322 but remember that the option's there when using this union. */
1323 #if 0
1324 struct sdata u;
1325 #endif
1327 /* When STRING is null. */
1328 struct
1330 struct Lisp_String *string;
1331 ptrdiff_t nbytes;
1332 } n;
1333 } sdata;
1335 #define SDATA_NBYTES(S) (S)->n.nbytes
1336 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1338 #endif /* not GC_CHECK_STRING_BYTES */
1340 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1342 /* Structure describing a block of memory which is sub-allocated to
1343 obtain string data memory for strings. Blocks for small strings
1344 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1345 as large as needed. */
1347 struct sblock
1349 /* Next in list. */
1350 struct sblock *next;
1352 /* Pointer to the next free sdata block. This points past the end
1353 of the sblock if there isn't any space left in this block. */
1354 sdata *next_free;
1356 /* String data. */
1357 sdata data[FLEXIBLE_ARRAY_MEMBER];
1360 /* Number of Lisp strings in a string_block structure. The 1020 is
1361 1024 minus malloc overhead. */
1363 #define STRING_BLOCK_SIZE \
1364 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1366 /* Structure describing a block from which Lisp_String structures
1367 are allocated. */
1369 struct string_block
1371 /* Place `strings' first, to preserve alignment. */
1372 struct Lisp_String strings[STRING_BLOCK_SIZE];
1373 struct string_block *next;
1376 /* Head and tail of the list of sblock structures holding Lisp string
1377 data. We always allocate from current_sblock. The NEXT pointers
1378 in the sblock structures go from oldest_sblock to current_sblock. */
1380 static struct sblock *oldest_sblock, *current_sblock;
1382 /* List of sblocks for large strings. */
1384 static struct sblock *large_sblocks;
1386 /* List of string_block structures. */
1388 static struct string_block *string_blocks;
1390 /* Free-list of Lisp_Strings. */
1392 static struct Lisp_String *string_free_list;
1394 /* Number of live and free Lisp_Strings. */
1396 static EMACS_INT total_strings, total_free_strings;
1398 /* Number of bytes used by live strings. */
1400 static EMACS_INT total_string_bytes;
1402 /* Given a pointer to a Lisp_String S which is on the free-list
1403 string_free_list, return a pointer to its successor in the
1404 free-list. */
1406 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1408 /* Return a pointer to the sdata structure belonging to Lisp string S.
1409 S must be live, i.e. S->data must not be null. S->data is actually
1410 a pointer to the `u.data' member of its sdata structure; the
1411 structure starts at a constant offset in front of that. */
1413 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1416 #ifdef GC_CHECK_STRING_OVERRUN
1418 /* We check for overrun in string data blocks by appending a small
1419 "cookie" after each allocated string data block, and check for the
1420 presence of this cookie during GC. */
1422 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1423 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1424 { '\xde', '\xad', '\xbe', '\xef' };
1426 #else
1427 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1428 #endif
1430 /* Value is the size of an sdata structure large enough to hold NBYTES
1431 bytes of string data. The value returned includes a terminating
1432 NUL byte, the size of the sdata structure, and padding. */
1434 #ifdef GC_CHECK_STRING_BYTES
1436 #define SDATA_SIZE(NBYTES) \
1437 ((SDATA_DATA_OFFSET \
1438 + (NBYTES) + 1 \
1439 + sizeof (ptrdiff_t) - 1) \
1440 & ~(sizeof (ptrdiff_t) - 1))
1442 #else /* not GC_CHECK_STRING_BYTES */
1444 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1445 less than the size of that member. The 'max' is not needed when
1446 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1447 alignment code reserves enough space. */
1449 #define SDATA_SIZE(NBYTES) \
1450 ((SDATA_DATA_OFFSET \
1451 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1452 ? NBYTES \
1453 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1454 + 1 \
1455 + sizeof (ptrdiff_t) - 1) \
1456 & ~(sizeof (ptrdiff_t) - 1))
1458 #endif /* not GC_CHECK_STRING_BYTES */
1460 /* Extra bytes to allocate for each string. */
1462 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1464 /* Exact bound on the number of bytes in a string, not counting the
1465 terminating null. A string cannot contain more bytes than
1466 STRING_BYTES_BOUND, nor can it be so long that the size_t
1467 arithmetic in allocate_string_data would overflow while it is
1468 calculating a value to be passed to malloc. */
1469 static ptrdiff_t const STRING_BYTES_MAX =
1470 min (STRING_BYTES_BOUND,
1471 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1472 - GC_STRING_EXTRA
1473 - offsetof (struct sblock, data)
1474 - SDATA_DATA_OFFSET)
1475 & ~(sizeof (EMACS_INT) - 1)));
1477 /* Initialize string allocation. Called from init_alloc_once. */
1479 static void
1480 init_strings (void)
1482 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1483 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1487 #ifdef GC_CHECK_STRING_BYTES
1489 static int check_string_bytes_count;
1491 /* Like STRING_BYTES, but with debugging check. Can be
1492 called during GC, so pay attention to the mark bit. */
1494 ptrdiff_t
1495 string_bytes (struct Lisp_String *s)
1497 ptrdiff_t nbytes =
1498 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1500 if (!PURE_POINTER_P (s)
1501 && s->data
1502 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1503 emacs_abort ();
1504 return nbytes;
1507 /* Check validity of Lisp strings' string_bytes member in B. */
1509 static void
1510 check_sblock (struct sblock *b)
1512 sdata *from, *end, *from_end;
1514 end = b->next_free;
1516 for (from = b->data; from < end; from = from_end)
1518 /* Compute the next FROM here because copying below may
1519 overwrite data we need to compute it. */
1520 ptrdiff_t nbytes;
1522 /* Check that the string size recorded in the string is the
1523 same as the one recorded in the sdata structure. */
1524 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1525 : SDATA_NBYTES (from));
1526 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1531 /* Check validity of Lisp strings' string_bytes member. ALL_P
1532 means check all strings, otherwise check only most
1533 recently allocated strings. Used for hunting a bug. */
1535 static void
1536 check_string_bytes (bool all_p)
1538 if (all_p)
1540 struct sblock *b;
1542 for (b = large_sblocks; b; b = b->next)
1544 struct Lisp_String *s = b->data[0].string;
1545 if (s)
1546 string_bytes (s);
1549 for (b = oldest_sblock; b; b = b->next)
1550 check_sblock (b);
1552 else if (current_sblock)
1553 check_sblock (current_sblock);
1556 #else /* not GC_CHECK_STRING_BYTES */
1558 #define check_string_bytes(all) ((void) 0)
1560 #endif /* GC_CHECK_STRING_BYTES */
1562 #ifdef GC_CHECK_STRING_FREE_LIST
1564 /* Walk through the string free list looking for bogus next pointers.
1565 This may catch buffer overrun from a previous string. */
1567 static void
1568 check_string_free_list (void)
1570 struct Lisp_String *s;
1572 /* Pop a Lisp_String off the free-list. */
1573 s = string_free_list;
1574 while (s != NULL)
1576 if ((uintptr_t) s < 1024)
1577 emacs_abort ();
1578 s = NEXT_FREE_LISP_STRING (s);
1581 #else
1582 #define check_string_free_list()
1583 #endif
1585 /* Return a new Lisp_String. */
1587 static struct Lisp_String *
1588 allocate_string (void)
1590 struct Lisp_String *s;
1592 MALLOC_BLOCK_INPUT;
1594 /* If the free-list is empty, allocate a new string_block, and
1595 add all the Lisp_Strings in it to the free-list. */
1596 if (string_free_list == NULL)
1598 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1599 int i;
1601 b->next = string_blocks;
1602 string_blocks = b;
1604 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1606 s = b->strings + i;
1607 /* Every string on a free list should have NULL data pointer. */
1608 s->data = NULL;
1609 NEXT_FREE_LISP_STRING (s) = string_free_list;
1610 string_free_list = s;
1613 total_free_strings += STRING_BLOCK_SIZE;
1616 check_string_free_list ();
1618 /* Pop a Lisp_String off the free-list. */
1619 s = string_free_list;
1620 string_free_list = NEXT_FREE_LISP_STRING (s);
1622 MALLOC_UNBLOCK_INPUT;
1624 --total_free_strings;
1625 ++total_strings;
1626 ++strings_consed;
1627 consing_since_gc += sizeof *s;
1629 #ifdef GC_CHECK_STRING_BYTES
1630 if (!noninteractive)
1632 if (++check_string_bytes_count == 200)
1634 check_string_bytes_count = 0;
1635 check_string_bytes (1);
1637 else
1638 check_string_bytes (0);
1640 #endif /* GC_CHECK_STRING_BYTES */
1642 return s;
1646 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1647 plus a NUL byte at the end. Allocate an sdata structure for S, and
1648 set S->data to its `u.data' member. Store a NUL byte at the end of
1649 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1650 S->data if it was initially non-null. */
1652 void
1653 allocate_string_data (struct Lisp_String *s,
1654 EMACS_INT nchars, EMACS_INT nbytes)
1656 sdata *data, *old_data;
1657 struct sblock *b;
1658 ptrdiff_t needed, old_nbytes;
1660 if (STRING_BYTES_MAX < nbytes)
1661 string_overflow ();
1663 /* Determine the number of bytes needed to store NBYTES bytes
1664 of string data. */
1665 needed = SDATA_SIZE (nbytes);
1666 if (s->data)
1668 old_data = SDATA_OF_STRING (s);
1669 old_nbytes = STRING_BYTES (s);
1671 else
1672 old_data = NULL;
1674 MALLOC_BLOCK_INPUT;
1676 if (nbytes > LARGE_STRING_BYTES)
1678 size_t size = offsetof (struct sblock, data) + needed;
1680 #ifdef DOUG_LEA_MALLOC
1681 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1682 because mapped region contents are not preserved in
1683 a dumped Emacs.
1685 In case you think of allowing it in a dumped Emacs at the
1686 cost of not being able to re-dump, there's another reason:
1687 mmap'ed data typically have an address towards the top of the
1688 address space, which won't fit into an EMACS_INT (at least on
1689 32-bit systems with the current tagging scheme). --fx */
1690 mallopt (M_MMAP_MAX, 0);
1691 #endif
1693 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1695 #ifdef DOUG_LEA_MALLOC
1696 /* Back to a reasonable maximum of mmap'ed areas. */
1697 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1698 #endif
1700 b->next_free = b->data;
1701 b->data[0].string = NULL;
1702 b->next = large_sblocks;
1703 large_sblocks = b;
1705 else if (current_sblock == NULL
1706 || (((char *) current_sblock + SBLOCK_SIZE
1707 - (char *) current_sblock->next_free)
1708 < (needed + GC_STRING_EXTRA)))
1710 /* Not enough room in the current sblock. */
1711 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1712 b->next_free = b->data;
1713 b->data[0].string = NULL;
1714 b->next = NULL;
1716 if (current_sblock)
1717 current_sblock->next = b;
1718 else
1719 oldest_sblock = b;
1720 current_sblock = b;
1722 else
1723 b = current_sblock;
1725 data = b->next_free;
1726 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1728 MALLOC_UNBLOCK_INPUT;
1730 data->string = s;
1731 s->data = SDATA_DATA (data);
1732 #ifdef GC_CHECK_STRING_BYTES
1733 SDATA_NBYTES (data) = nbytes;
1734 #endif
1735 s->size = nchars;
1736 s->size_byte = nbytes;
1737 s->data[nbytes] = '\0';
1738 #ifdef GC_CHECK_STRING_OVERRUN
1739 memcpy ((char *) data + needed, string_overrun_cookie,
1740 GC_STRING_OVERRUN_COOKIE_SIZE);
1741 #endif
1743 /* Note that Faset may call to this function when S has already data
1744 assigned. In this case, mark data as free by setting it's string
1745 back-pointer to null, and record the size of the data in it. */
1746 if (old_data)
1748 SDATA_NBYTES (old_data) = old_nbytes;
1749 old_data->string = NULL;
1752 consing_since_gc += needed;
1756 /* Sweep and compact strings. */
1758 static void
1759 sweep_strings (void)
1761 struct string_block *b, *next;
1762 struct string_block *live_blocks = NULL;
1764 string_free_list = NULL;
1765 total_strings = total_free_strings = 0;
1766 total_string_bytes = 0;
1768 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1769 for (b = string_blocks; b; b = next)
1771 int i, nfree = 0;
1772 struct Lisp_String *free_list_before = string_free_list;
1774 next = b->next;
1776 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1778 struct Lisp_String *s = b->strings + i;
1780 if (s->data)
1782 /* String was not on free-list before. */
1783 if (STRING_MARKED_P (s))
1785 /* String is live; unmark it and its intervals. */
1786 UNMARK_STRING (s);
1788 /* Do not use string_(set|get)_intervals here. */
1789 s->intervals = balance_intervals (s->intervals);
1791 ++total_strings;
1792 total_string_bytes += STRING_BYTES (s);
1794 else
1796 /* String is dead. Put it on the free-list. */
1797 sdata *data = SDATA_OF_STRING (s);
1799 /* Save the size of S in its sdata so that we know
1800 how large that is. Reset the sdata's string
1801 back-pointer so that we know it's free. */
1802 #ifdef GC_CHECK_STRING_BYTES
1803 if (string_bytes (s) != SDATA_NBYTES (data))
1804 emacs_abort ();
1805 #else
1806 data->n.nbytes = STRING_BYTES (s);
1807 #endif
1808 data->string = NULL;
1810 /* Reset the strings's `data' member so that we
1811 know it's free. */
1812 s->data = NULL;
1814 /* Put the string on the free-list. */
1815 NEXT_FREE_LISP_STRING (s) = string_free_list;
1816 string_free_list = s;
1817 ++nfree;
1820 else
1822 /* S was on the free-list before. Put it there again. */
1823 NEXT_FREE_LISP_STRING (s) = string_free_list;
1824 string_free_list = s;
1825 ++nfree;
1829 /* Free blocks that contain free Lisp_Strings only, except
1830 the first two of them. */
1831 if (nfree == STRING_BLOCK_SIZE
1832 && total_free_strings > STRING_BLOCK_SIZE)
1834 lisp_free (b);
1835 string_free_list = free_list_before;
1837 else
1839 total_free_strings += nfree;
1840 b->next = live_blocks;
1841 live_blocks = b;
1845 check_string_free_list ();
1847 string_blocks = live_blocks;
1848 free_large_strings ();
1849 compact_small_strings ();
1851 check_string_free_list ();
1855 /* Free dead large strings. */
1857 static void
1858 free_large_strings (void)
1860 struct sblock *b, *next;
1861 struct sblock *live_blocks = NULL;
1863 for (b = large_sblocks; b; b = next)
1865 next = b->next;
1867 if (b->data[0].string == NULL)
1868 lisp_free (b);
1869 else
1871 b->next = live_blocks;
1872 live_blocks = b;
1876 large_sblocks = live_blocks;
1880 /* Compact data of small strings. Free sblocks that don't contain
1881 data of live strings after compaction. */
1883 static void
1884 compact_small_strings (void)
1886 struct sblock *b, *tb, *next;
1887 sdata *from, *to, *end, *tb_end;
1888 sdata *to_end, *from_end;
1890 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1891 to, and TB_END is the end of TB. */
1892 tb = oldest_sblock;
1893 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1894 to = tb->data;
1896 /* Step through the blocks from the oldest to the youngest. We
1897 expect that old blocks will stabilize over time, so that less
1898 copying will happen this way. */
1899 for (b = oldest_sblock; b; b = b->next)
1901 end = b->next_free;
1902 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1904 for (from = b->data; from < end; from = from_end)
1906 /* Compute the next FROM here because copying below may
1907 overwrite data we need to compute it. */
1908 ptrdiff_t nbytes;
1909 struct Lisp_String *s = from->string;
1911 #ifdef GC_CHECK_STRING_BYTES
1912 /* Check that the string size recorded in the string is the
1913 same as the one recorded in the sdata structure. */
1914 if (s && string_bytes (s) != SDATA_NBYTES (from))
1915 emacs_abort ();
1916 #endif /* GC_CHECK_STRING_BYTES */
1918 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1919 eassert (nbytes <= LARGE_STRING_BYTES);
1921 nbytes = SDATA_SIZE (nbytes);
1922 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1924 #ifdef GC_CHECK_STRING_OVERRUN
1925 if (memcmp (string_overrun_cookie,
1926 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1927 GC_STRING_OVERRUN_COOKIE_SIZE))
1928 emacs_abort ();
1929 #endif
1931 /* Non-NULL S means it's alive. Copy its data. */
1932 if (s)
1934 /* If TB is full, proceed with the next sblock. */
1935 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1936 if (to_end > tb_end)
1938 tb->next_free = to;
1939 tb = tb->next;
1940 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1941 to = tb->data;
1942 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1945 /* Copy, and update the string's `data' pointer. */
1946 if (from != to)
1948 eassert (tb != b || to < from);
1949 memmove (to, from, nbytes + GC_STRING_EXTRA);
1950 to->string->data = SDATA_DATA (to);
1953 /* Advance past the sdata we copied to. */
1954 to = to_end;
1959 /* The rest of the sblocks following TB don't contain live data, so
1960 we can free them. */
1961 for (b = tb->next; b; b = next)
1963 next = b->next;
1964 lisp_free (b);
1967 tb->next_free = to;
1968 tb->next = NULL;
1969 current_sblock = tb;
1972 void
1973 string_overflow (void)
1975 error ("Maximum string size exceeded");
1978 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1979 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1980 LENGTH must be an integer.
1981 INIT must be an integer that represents a character. */)
1982 (Lisp_Object length, Lisp_Object init)
1984 register Lisp_Object val;
1985 int c;
1986 EMACS_INT nbytes;
1988 CHECK_NATNUM (length);
1989 CHECK_CHARACTER (init);
1991 c = XFASTINT (init);
1992 if (ASCII_CHAR_P (c))
1994 nbytes = XINT (length);
1995 val = make_uninit_string (nbytes);
1996 memset (SDATA (val), c, nbytes);
1997 SDATA (val)[nbytes] = 0;
1999 else
2001 unsigned char str[MAX_MULTIBYTE_LENGTH];
2002 ptrdiff_t len = CHAR_STRING (c, str);
2003 EMACS_INT string_len = XINT (length);
2004 unsigned char *p, *beg, *end;
2006 if (string_len > STRING_BYTES_MAX / len)
2007 string_overflow ();
2008 nbytes = len * string_len;
2009 val = make_uninit_multibyte_string (string_len, nbytes);
2010 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2012 /* First time we just copy `str' to the data of `val'. */
2013 if (p == beg)
2014 memcpy (p, str, len);
2015 else
2017 /* Next time we copy largest possible chunk from
2018 initialized to uninitialized part of `val'. */
2019 len = min (p - beg, end - p);
2020 memcpy (p, beg, len);
2023 *p = 0;
2026 return val;
2029 verify (sizeof (size_t) * CHAR_BIT == BITS_PER_BITS_WORD);
2030 verify ((BITS_PER_BITS_WORD & (BITS_PER_BITS_WORD - 1)) == 0);
2032 static ptrdiff_t
2033 bool_vector_payload_bytes (ptrdiff_t nr_bits,
2034 ptrdiff_t *exact_needed_bytes_out)
2036 ptrdiff_t exact_needed_bytes;
2037 ptrdiff_t needed_bytes;
2039 eassume (nr_bits >= 0);
2041 exact_needed_bytes = ROUNDUP ((size_t) nr_bits, CHAR_BIT) / CHAR_BIT;
2042 needed_bytes = ROUNDUP ((size_t) nr_bits, BITS_PER_BITS_WORD) / CHAR_BIT;
2044 if (needed_bytes == 0)
2046 /* Always allocate at least one machine word of payload so that
2047 bool-vector operations in data.c don't need a special case
2048 for empty vectors. */
2049 needed_bytes = sizeof (bits_word);
2052 if (exact_needed_bytes_out != NULL)
2053 *exact_needed_bytes_out = exact_needed_bytes;
2055 return needed_bytes;
2058 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2059 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2060 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2061 (Lisp_Object length, Lisp_Object init)
2063 register Lisp_Object val;
2064 struct Lisp_Bool_Vector *p;
2065 ptrdiff_t exact_payload_bytes;
2066 ptrdiff_t total_payload_bytes;
2067 ptrdiff_t needed_elements;
2069 CHECK_NATNUM (length);
2070 if (PTRDIFF_MAX < XFASTINT (length))
2071 memory_full (SIZE_MAX);
2073 total_payload_bytes = bool_vector_payload_bytes
2074 (XFASTINT (length), &exact_payload_bytes);
2076 eassume (exact_payload_bytes <= total_payload_bytes);
2077 eassume (0 <= exact_payload_bytes);
2079 needed_elements = ROUNDUP ((size_t) ((bool_header_size - header_size)
2080 + total_payload_bytes),
2081 word_size) / word_size;
2083 p = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2084 XSETVECTOR (val, p);
2085 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2087 p->size = XFASTINT (length);
2088 if (exact_payload_bytes)
2090 memset (p->data, ! NILP (init) ? -1 : 0, exact_payload_bytes);
2092 /* Clear any extraneous bits in the last byte. */
2093 p->data[exact_payload_bytes - 1]
2094 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2097 /* Clear padding at the end. */
2098 memset (p->data + exact_payload_bytes,
2100 total_payload_bytes - exact_payload_bytes);
2102 return val;
2106 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2107 of characters from the contents. This string may be unibyte or
2108 multibyte, depending on the contents. */
2110 Lisp_Object
2111 make_string (const char *contents, ptrdiff_t nbytes)
2113 register Lisp_Object val;
2114 ptrdiff_t nchars, multibyte_nbytes;
2116 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2117 &nchars, &multibyte_nbytes);
2118 if (nbytes == nchars || nbytes != multibyte_nbytes)
2119 /* CONTENTS contains no multibyte sequences or contains an invalid
2120 multibyte sequence. We must make unibyte string. */
2121 val = make_unibyte_string (contents, nbytes);
2122 else
2123 val = make_multibyte_string (contents, nchars, nbytes);
2124 return val;
2128 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2130 Lisp_Object
2131 make_unibyte_string (const char *contents, ptrdiff_t length)
2133 register Lisp_Object val;
2134 val = make_uninit_string (length);
2135 memcpy (SDATA (val), contents, length);
2136 return val;
2140 /* Make a multibyte string from NCHARS characters occupying NBYTES
2141 bytes at CONTENTS. */
2143 Lisp_Object
2144 make_multibyte_string (const char *contents,
2145 ptrdiff_t nchars, ptrdiff_t nbytes)
2147 register Lisp_Object val;
2148 val = make_uninit_multibyte_string (nchars, nbytes);
2149 memcpy (SDATA (val), contents, nbytes);
2150 return val;
2154 /* Make a string from NCHARS characters occupying NBYTES bytes at
2155 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2157 Lisp_Object
2158 make_string_from_bytes (const char *contents,
2159 ptrdiff_t nchars, ptrdiff_t nbytes)
2161 register Lisp_Object val;
2162 val = make_uninit_multibyte_string (nchars, nbytes);
2163 memcpy (SDATA (val), contents, nbytes);
2164 if (SBYTES (val) == SCHARS (val))
2165 STRING_SET_UNIBYTE (val);
2166 return val;
2170 /* Make a string from NCHARS characters occupying NBYTES bytes at
2171 CONTENTS. The argument MULTIBYTE controls whether to label the
2172 string as multibyte. If NCHARS is negative, it counts the number of
2173 characters by itself. */
2175 Lisp_Object
2176 make_specified_string (const char *contents,
2177 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2179 Lisp_Object val;
2181 if (nchars < 0)
2183 if (multibyte)
2184 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2185 nbytes);
2186 else
2187 nchars = nbytes;
2189 val = make_uninit_multibyte_string (nchars, nbytes);
2190 memcpy (SDATA (val), contents, nbytes);
2191 if (!multibyte)
2192 STRING_SET_UNIBYTE (val);
2193 return val;
2197 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2198 occupying LENGTH bytes. */
2200 Lisp_Object
2201 make_uninit_string (EMACS_INT length)
2203 Lisp_Object val;
2205 if (!length)
2206 return empty_unibyte_string;
2207 val = make_uninit_multibyte_string (length, length);
2208 STRING_SET_UNIBYTE (val);
2209 return val;
2213 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2214 which occupy NBYTES bytes. */
2216 Lisp_Object
2217 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2219 Lisp_Object string;
2220 struct Lisp_String *s;
2222 if (nchars < 0)
2223 emacs_abort ();
2224 if (!nbytes)
2225 return empty_multibyte_string;
2227 s = allocate_string ();
2228 s->intervals = NULL;
2229 allocate_string_data (s, nchars, nbytes);
2230 XSETSTRING (string, s);
2231 string_chars_consed += nbytes;
2232 return string;
2235 /* Print arguments to BUF according to a FORMAT, then return
2236 a Lisp_String initialized with the data from BUF. */
2238 Lisp_Object
2239 make_formatted_string (char *buf, const char *format, ...)
2241 va_list ap;
2242 int length;
2244 va_start (ap, format);
2245 length = vsprintf (buf, format, ap);
2246 va_end (ap);
2247 return make_string (buf, length);
2251 /***********************************************************************
2252 Float Allocation
2253 ***********************************************************************/
2255 /* We store float cells inside of float_blocks, allocating a new
2256 float_block with malloc whenever necessary. Float cells reclaimed
2257 by GC are put on a free list to be reallocated before allocating
2258 any new float cells from the latest float_block. */
2260 #define FLOAT_BLOCK_SIZE \
2261 (((BLOCK_BYTES - sizeof (struct float_block *) \
2262 /* The compiler might add padding at the end. */ \
2263 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2264 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2266 #define GETMARKBIT(block,n) \
2267 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2268 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2269 & 1)
2271 #define SETMARKBIT(block,n) \
2272 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2273 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2275 #define UNSETMARKBIT(block,n) \
2276 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2277 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2279 #define FLOAT_BLOCK(fptr) \
2280 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2282 #define FLOAT_INDEX(fptr) \
2283 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2285 struct float_block
2287 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2288 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2289 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2290 struct float_block *next;
2293 #define FLOAT_MARKED_P(fptr) \
2294 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2296 #define FLOAT_MARK(fptr) \
2297 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2299 #define FLOAT_UNMARK(fptr) \
2300 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2302 /* Current float_block. */
2304 static struct float_block *float_block;
2306 /* Index of first unused Lisp_Float in the current float_block. */
2308 static int float_block_index = FLOAT_BLOCK_SIZE;
2310 /* Free-list of Lisp_Floats. */
2312 static struct Lisp_Float *float_free_list;
2314 /* Return a new float object with value FLOAT_VALUE. */
2316 Lisp_Object
2317 make_float (double float_value)
2319 register Lisp_Object val;
2321 MALLOC_BLOCK_INPUT;
2323 if (float_free_list)
2325 /* We use the data field for chaining the free list
2326 so that we won't use the same field that has the mark bit. */
2327 XSETFLOAT (val, float_free_list);
2328 float_free_list = float_free_list->u.chain;
2330 else
2332 if (float_block_index == FLOAT_BLOCK_SIZE)
2334 struct float_block *new
2335 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2336 new->next = float_block;
2337 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2338 float_block = new;
2339 float_block_index = 0;
2340 total_free_floats += FLOAT_BLOCK_SIZE;
2342 XSETFLOAT (val, &float_block->floats[float_block_index]);
2343 float_block_index++;
2346 MALLOC_UNBLOCK_INPUT;
2348 XFLOAT_INIT (val, float_value);
2349 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2350 consing_since_gc += sizeof (struct Lisp_Float);
2351 floats_consed++;
2352 total_free_floats--;
2353 return val;
2358 /***********************************************************************
2359 Cons Allocation
2360 ***********************************************************************/
2362 /* We store cons cells inside of cons_blocks, allocating a new
2363 cons_block with malloc whenever necessary. Cons cells reclaimed by
2364 GC are put on a free list to be reallocated before allocating
2365 any new cons cells from the latest cons_block. */
2367 #define CONS_BLOCK_SIZE \
2368 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2369 /* The compiler might add padding at the end. */ \
2370 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2371 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2373 #define CONS_BLOCK(fptr) \
2374 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2376 #define CONS_INDEX(fptr) \
2377 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2379 struct cons_block
2381 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2382 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2383 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2384 struct cons_block *next;
2387 #define CONS_MARKED_P(fptr) \
2388 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2390 #define CONS_MARK(fptr) \
2391 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2393 #define CONS_UNMARK(fptr) \
2394 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2396 /* Current cons_block. */
2398 static struct cons_block *cons_block;
2400 /* Index of first unused Lisp_Cons in the current block. */
2402 static int cons_block_index = CONS_BLOCK_SIZE;
2404 /* Free-list of Lisp_Cons structures. */
2406 static struct Lisp_Cons *cons_free_list;
2408 /* Explicitly free a cons cell by putting it on the free-list. */
2410 void
2411 free_cons (struct Lisp_Cons *ptr)
2413 ptr->u.chain = cons_free_list;
2414 #if GC_MARK_STACK
2415 ptr->car = Vdead;
2416 #endif
2417 cons_free_list = ptr;
2418 consing_since_gc -= sizeof *ptr;
2419 total_free_conses++;
2422 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2423 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2424 (Lisp_Object car, Lisp_Object cdr)
2426 register Lisp_Object val;
2428 MALLOC_BLOCK_INPUT;
2430 if (cons_free_list)
2432 /* We use the cdr for chaining the free list
2433 so that we won't use the same field that has the mark bit. */
2434 XSETCONS (val, cons_free_list);
2435 cons_free_list = cons_free_list->u.chain;
2437 else
2439 if (cons_block_index == CONS_BLOCK_SIZE)
2441 struct cons_block *new
2442 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2443 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2444 new->next = cons_block;
2445 cons_block = new;
2446 cons_block_index = 0;
2447 total_free_conses += CONS_BLOCK_SIZE;
2449 XSETCONS (val, &cons_block->conses[cons_block_index]);
2450 cons_block_index++;
2453 MALLOC_UNBLOCK_INPUT;
2455 XSETCAR (val, car);
2456 XSETCDR (val, cdr);
2457 eassert (!CONS_MARKED_P (XCONS (val)));
2458 consing_since_gc += sizeof (struct Lisp_Cons);
2459 total_free_conses--;
2460 cons_cells_consed++;
2461 return val;
2464 #ifdef GC_CHECK_CONS_LIST
2465 /* Get an error now if there's any junk in the cons free list. */
2466 void
2467 check_cons_list (void)
2469 struct Lisp_Cons *tail = cons_free_list;
2471 while (tail)
2472 tail = tail->u.chain;
2474 #endif
2476 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2478 Lisp_Object
2479 list1 (Lisp_Object arg1)
2481 return Fcons (arg1, Qnil);
2484 Lisp_Object
2485 list2 (Lisp_Object arg1, Lisp_Object arg2)
2487 return Fcons (arg1, Fcons (arg2, Qnil));
2491 Lisp_Object
2492 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2494 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2498 Lisp_Object
2499 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2501 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2505 Lisp_Object
2506 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2508 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2509 Fcons (arg5, Qnil)))));
2512 /* Make a list of COUNT Lisp_Objects, where ARG is the
2513 first one. Allocate conses from pure space if TYPE
2514 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2516 Lisp_Object
2517 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2519 va_list ap;
2520 ptrdiff_t i;
2521 Lisp_Object val, *objp;
2523 /* Change to SAFE_ALLOCA if you hit this eassert. */
2524 eassert (count <= MAX_ALLOCA / word_size);
2526 objp = alloca (count * word_size);
2527 objp[0] = arg;
2528 va_start (ap, arg);
2529 for (i = 1; i < count; i++)
2530 objp[i] = va_arg (ap, Lisp_Object);
2531 va_end (ap);
2533 for (val = Qnil, i = count - 1; i >= 0; i--)
2535 if (type == CONSTYPE_PURE)
2536 val = pure_cons (objp[i], val);
2537 else if (type == CONSTYPE_HEAP)
2538 val = Fcons (objp[i], val);
2539 else
2540 emacs_abort ();
2542 return val;
2545 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2546 doc: /* Return a newly created list with specified arguments as elements.
2547 Any number of arguments, even zero arguments, are allowed.
2548 usage: (list &rest OBJECTS) */)
2549 (ptrdiff_t nargs, Lisp_Object *args)
2551 register Lisp_Object val;
2552 val = Qnil;
2554 while (nargs > 0)
2556 nargs--;
2557 val = Fcons (args[nargs], val);
2559 return val;
2563 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2564 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2565 (register Lisp_Object length, Lisp_Object init)
2567 register Lisp_Object val;
2568 register EMACS_INT size;
2570 CHECK_NATNUM (length);
2571 size = XFASTINT (length);
2573 val = Qnil;
2574 while (size > 0)
2576 val = Fcons (init, val);
2577 --size;
2579 if (size > 0)
2581 val = Fcons (init, val);
2582 --size;
2584 if (size > 0)
2586 val = Fcons (init, val);
2587 --size;
2589 if (size > 0)
2591 val = Fcons (init, val);
2592 --size;
2594 if (size > 0)
2596 val = Fcons (init, val);
2597 --size;
2603 QUIT;
2606 return val;
2611 /***********************************************************************
2612 Vector Allocation
2613 ***********************************************************************/
2615 /* Sometimes a vector's contents are merely a pointer internally used
2616 in vector allocation code. Usually you don't want to touch this. */
2618 static struct Lisp_Vector *
2619 next_vector (struct Lisp_Vector *v)
2621 return XUNTAG (v->contents[0], 0);
2624 static void
2625 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2627 v->contents[0] = make_lisp_ptr (p, 0);
2630 /* This value is balanced well enough to avoid too much internal overhead
2631 for the most common cases; it's not required to be a power of two, but
2632 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2634 #define VECTOR_BLOCK_SIZE 4096
2636 enum
2638 /* Alignment of struct Lisp_Vector objects. */
2639 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2640 USE_LSB_TAG ? GCALIGNMENT : 1),
2642 /* Vector size requests are a multiple of this. */
2643 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2646 /* Verify assumptions described above. */
2647 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2648 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2650 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2651 #define vroundup_ct(x) ROUNDUP ((size_t) (x), roundup_size)
2652 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2653 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2655 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2657 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2659 /* Size of the minimal vector allocated from block. */
2661 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2663 /* Size of the largest vector allocated from block. */
2665 #define VBLOCK_BYTES_MAX \
2666 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2668 /* We maintain one free list for each possible block-allocated
2669 vector size, and this is the number of free lists we have. */
2671 #define VECTOR_MAX_FREE_LIST_INDEX \
2672 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2674 /* Common shortcut to advance vector pointer over a block data. */
2676 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2678 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2680 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2682 /* Common shortcut to setup vector on a free list. */
2684 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2685 do { \
2686 (tmp) = ((nbytes - header_size) / word_size); \
2687 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2688 eassert ((nbytes) % roundup_size == 0); \
2689 (tmp) = VINDEX (nbytes); \
2690 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2691 set_next_vector (v, vector_free_lists[tmp]); \
2692 vector_free_lists[tmp] = (v); \
2693 total_free_vector_slots += (nbytes) / word_size; \
2694 } while (0)
2696 /* This internal type is used to maintain the list of large vectors
2697 which are allocated at their own, e.g. outside of vector blocks.
2699 struct large_vector itself cannot contain a struct Lisp_Vector, as
2700 the latter contains a flexible array member and C99 does not allow
2701 such structs to be nested. Instead, each struct large_vector
2702 object LV is followed by a struct Lisp_Vector, which is at offset
2703 large_vector_offset from LV, and whose address is therefore
2704 large_vector_vec (&LV). */
2706 struct large_vector
2708 struct large_vector *next;
2711 enum
2713 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2716 static struct Lisp_Vector *
2717 large_vector_vec (struct large_vector *p)
2719 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2722 /* This internal type is used to maintain an underlying storage
2723 for small vectors. */
2725 struct vector_block
2727 char data[VECTOR_BLOCK_BYTES];
2728 struct vector_block *next;
2731 /* Chain of vector blocks. */
2733 static struct vector_block *vector_blocks;
2735 /* Vector free lists, where NTH item points to a chain of free
2736 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2738 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2740 /* Singly-linked list of large vectors. */
2742 static struct large_vector *large_vectors;
2744 /* The only vector with 0 slots, allocated from pure space. */
2746 Lisp_Object zero_vector;
2748 /* Number of live vectors. */
2750 static EMACS_INT total_vectors;
2752 /* Total size of live and free vectors, in Lisp_Object units. */
2754 static EMACS_INT total_vector_slots, total_free_vector_slots;
2756 /* Get a new vector block. */
2758 static struct vector_block *
2759 allocate_vector_block (void)
2761 struct vector_block *block = xmalloc (sizeof *block);
2763 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2764 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2765 MEM_TYPE_VECTOR_BLOCK);
2766 #endif
2768 block->next = vector_blocks;
2769 vector_blocks = block;
2770 return block;
2773 /* Called once to initialize vector allocation. */
2775 static void
2776 init_vectors (void)
2778 zero_vector = make_pure_vector (0);
2781 /* Allocate vector from a vector block. */
2783 static struct Lisp_Vector *
2784 allocate_vector_from_block (size_t nbytes)
2786 struct Lisp_Vector *vector;
2787 struct vector_block *block;
2788 size_t index, restbytes;
2790 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2791 eassert (nbytes % roundup_size == 0);
2793 /* First, try to allocate from a free list
2794 containing vectors of the requested size. */
2795 index = VINDEX (nbytes);
2796 if (vector_free_lists[index])
2798 vector = vector_free_lists[index];
2799 vector_free_lists[index] = next_vector (vector);
2800 total_free_vector_slots -= nbytes / word_size;
2801 return vector;
2804 /* Next, check free lists containing larger vectors. Since
2805 we will split the result, we should have remaining space
2806 large enough to use for one-slot vector at least. */
2807 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2808 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2809 if (vector_free_lists[index])
2811 /* This vector is larger than requested. */
2812 vector = vector_free_lists[index];
2813 vector_free_lists[index] = next_vector (vector);
2814 total_free_vector_slots -= nbytes / word_size;
2816 /* Excess bytes are used for the smaller vector,
2817 which should be set on an appropriate free list. */
2818 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2819 eassert (restbytes % roundup_size == 0);
2820 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2821 return vector;
2824 /* Finally, need a new vector block. */
2825 block = allocate_vector_block ();
2827 /* New vector will be at the beginning of this block. */
2828 vector = (struct Lisp_Vector *) block->data;
2830 /* If the rest of space from this block is large enough
2831 for one-slot vector at least, set up it on a free list. */
2832 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2833 if (restbytes >= VBLOCK_BYTES_MIN)
2835 eassert (restbytes % roundup_size == 0);
2836 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2838 return vector;
2841 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2843 #define VECTOR_IN_BLOCK(vector, block) \
2844 ((char *) (vector) <= (block)->data \
2845 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2847 /* Return the memory footprint of V in bytes. */
2849 static ptrdiff_t
2850 vector_nbytes (struct Lisp_Vector *v)
2852 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2854 if (size & PSEUDOVECTOR_FLAG)
2856 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2858 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2859 ptrdiff_t payload_bytes =
2860 bool_vector_payload_bytes (bv->size, NULL);
2862 eassume (payload_bytes >= 0);
2863 size = bool_header_size + ROUNDUP (payload_bytes, word_size);
2865 else
2866 size = (header_size
2867 + ((size & PSEUDOVECTOR_SIZE_MASK)
2868 + ((size & PSEUDOVECTOR_REST_MASK)
2869 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2871 else
2872 size = header_size + size * word_size;
2873 return vroundup (size);
2876 /* Release extra resources still in use by VECTOR, which may be any
2877 vector-like object. For now, this is used just to free data in
2878 font objects. */
2880 static void
2881 cleanup_vector (struct Lisp_Vector *vector)
2883 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2884 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2885 == FONT_OBJECT_MAX))
2886 ((struct font *) vector)->driver->close ((struct font *) vector);
2889 /* Reclaim space used by unmarked vectors. */
2891 static void
2892 sweep_vectors (void)
2894 struct vector_block *block, **bprev = &vector_blocks;
2895 struct large_vector *lv, **lvprev = &large_vectors;
2896 struct Lisp_Vector *vector, *next;
2898 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2899 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2901 /* Looking through vector blocks. */
2903 for (block = vector_blocks; block; block = *bprev)
2905 bool free_this_block = 0;
2906 ptrdiff_t nbytes;
2908 for (vector = (struct Lisp_Vector *) block->data;
2909 VECTOR_IN_BLOCK (vector, block); vector = next)
2911 if (VECTOR_MARKED_P (vector))
2913 VECTOR_UNMARK (vector);
2914 total_vectors++;
2915 nbytes = vector_nbytes (vector);
2916 total_vector_slots += nbytes / word_size;
2917 next = ADVANCE (vector, nbytes);
2919 else
2921 ptrdiff_t total_bytes;
2923 cleanup_vector (vector);
2924 nbytes = vector_nbytes (vector);
2925 total_bytes = nbytes;
2926 next = ADVANCE (vector, nbytes);
2928 /* While NEXT is not marked, try to coalesce with VECTOR,
2929 thus making VECTOR of the largest possible size. */
2931 while (VECTOR_IN_BLOCK (next, block))
2933 if (VECTOR_MARKED_P (next))
2934 break;
2935 cleanup_vector (next);
2936 nbytes = vector_nbytes (next);
2937 total_bytes += nbytes;
2938 next = ADVANCE (next, nbytes);
2941 eassert (total_bytes % roundup_size == 0);
2943 if (vector == (struct Lisp_Vector *) block->data
2944 && !VECTOR_IN_BLOCK (next, block))
2945 /* This block should be freed because all of it's
2946 space was coalesced into the only free vector. */
2947 free_this_block = 1;
2948 else
2950 size_t tmp;
2951 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2956 if (free_this_block)
2958 *bprev = block->next;
2959 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2960 mem_delete (mem_find (block->data));
2961 #endif
2962 xfree (block);
2964 else
2965 bprev = &block->next;
2968 /* Sweep large vectors. */
2970 for (lv = large_vectors; lv; lv = *lvprev)
2972 vector = large_vector_vec (lv);
2973 if (VECTOR_MARKED_P (vector))
2975 VECTOR_UNMARK (vector);
2976 total_vectors++;
2977 if (vector->header.size & PSEUDOVECTOR_FLAG)
2979 /* All non-bool pseudovectors are small enough to be allocated
2980 from vector blocks. This code should be redesigned if some
2981 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2982 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2983 total_vector_slots += vector_nbytes (vector) / word_size;
2985 else
2986 total_vector_slots
2987 += header_size / word_size + vector->header.size;
2988 lvprev = &lv->next;
2990 else
2992 *lvprev = lv->next;
2993 lisp_free (lv);
2998 /* Value is a pointer to a newly allocated Lisp_Vector structure
2999 with room for LEN Lisp_Objects. */
3001 static struct Lisp_Vector *
3002 allocate_vectorlike (ptrdiff_t len)
3004 struct Lisp_Vector *p;
3006 MALLOC_BLOCK_INPUT;
3008 if (len == 0)
3009 p = XVECTOR (zero_vector);
3010 else
3012 size_t nbytes = header_size + len * word_size;
3014 #ifdef DOUG_LEA_MALLOC
3015 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3016 because mapped region contents are not preserved in
3017 a dumped Emacs. */
3018 mallopt (M_MMAP_MAX, 0);
3019 #endif
3021 if (nbytes <= VBLOCK_BYTES_MAX)
3022 p = allocate_vector_from_block (vroundup (nbytes));
3023 else
3025 struct large_vector *lv
3026 = lisp_malloc ((large_vector_offset + header_size
3027 + len * word_size),
3028 MEM_TYPE_VECTORLIKE);
3029 lv->next = large_vectors;
3030 large_vectors = lv;
3031 p = large_vector_vec (lv);
3034 #ifdef DOUG_LEA_MALLOC
3035 /* Back to a reasonable maximum of mmap'ed areas. */
3036 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3037 #endif
3039 consing_since_gc += nbytes;
3040 vector_cells_consed += len;
3043 MALLOC_UNBLOCK_INPUT;
3045 return p;
3049 /* Allocate a vector with LEN slots. */
3051 struct Lisp_Vector *
3052 allocate_vector (EMACS_INT len)
3054 struct Lisp_Vector *v;
3055 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3057 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3058 memory_full (SIZE_MAX);
3059 v = allocate_vectorlike (len);
3060 v->header.size = len;
3061 return v;
3065 /* Allocate other vector-like structures. */
3067 struct Lisp_Vector *
3068 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3070 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3071 int i;
3073 /* Catch bogus values. */
3074 eassert (tag <= PVEC_FONT);
3075 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3076 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3078 /* Only the first lisplen slots will be traced normally by the GC. */
3079 for (i = 0; i < lisplen; ++i)
3080 v->contents[i] = Qnil;
3082 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3083 return v;
3086 struct buffer *
3087 allocate_buffer (void)
3089 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3091 BUFFER_PVEC_INIT (b);
3092 /* Put B on the chain of all buffers including killed ones. */
3093 b->next = all_buffers;
3094 all_buffers = b;
3095 /* Note that the rest fields of B are not initialized. */
3096 return b;
3099 struct Lisp_Hash_Table *
3100 allocate_hash_table (void)
3102 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3105 struct window *
3106 allocate_window (void)
3108 struct window *w;
3110 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3111 /* Users assumes that non-Lisp data is zeroed. */
3112 memset (&w->current_matrix, 0,
3113 sizeof (*w) - offsetof (struct window, current_matrix));
3114 return w;
3117 struct terminal *
3118 allocate_terminal (void)
3120 struct terminal *t;
3122 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3123 /* Users assumes that non-Lisp data is zeroed. */
3124 memset (&t->next_terminal, 0,
3125 sizeof (*t) - offsetof (struct terminal, next_terminal));
3126 return t;
3129 struct frame *
3130 allocate_frame (void)
3132 struct frame *f;
3134 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3135 /* Users assumes that non-Lisp data is zeroed. */
3136 memset (&f->face_cache, 0,
3137 sizeof (*f) - offsetof (struct frame, face_cache));
3138 return f;
3141 struct Lisp_Process *
3142 allocate_process (void)
3144 struct Lisp_Process *p;
3146 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3147 /* Users assumes that non-Lisp data is zeroed. */
3148 memset (&p->pid, 0,
3149 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3150 return p;
3153 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3154 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3155 See also the function `vector'. */)
3156 (register Lisp_Object length, Lisp_Object init)
3158 Lisp_Object vector;
3159 register ptrdiff_t sizei;
3160 register ptrdiff_t i;
3161 register struct Lisp_Vector *p;
3163 CHECK_NATNUM (length);
3165 p = allocate_vector (XFASTINT (length));
3166 sizei = XFASTINT (length);
3167 for (i = 0; i < sizei; i++)
3168 p->contents[i] = init;
3170 XSETVECTOR (vector, p);
3171 return vector;
3175 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3176 doc: /* Return a newly created vector with specified arguments as elements.
3177 Any number of arguments, even zero arguments, are allowed.
3178 usage: (vector &rest OBJECTS) */)
3179 (ptrdiff_t nargs, Lisp_Object *args)
3181 ptrdiff_t i;
3182 register Lisp_Object val = make_uninit_vector (nargs);
3183 register struct Lisp_Vector *p = XVECTOR (val);
3185 for (i = 0; i < nargs; i++)
3186 p->contents[i] = args[i];
3187 return val;
3190 void
3191 make_byte_code (struct Lisp_Vector *v)
3193 /* Don't allow the global zero_vector to become a byte code object. */
3194 eassert(0 < v->header.size);
3195 if (v->header.size > 1 && STRINGP (v->contents[1])
3196 && STRING_MULTIBYTE (v->contents[1]))
3197 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3198 earlier because they produced a raw 8-bit string for byte-code
3199 and now such a byte-code string is loaded as multibyte while
3200 raw 8-bit characters converted to multibyte form. Thus, now we
3201 must convert them back to the original unibyte form. */
3202 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3203 XSETPVECTYPE (v, PVEC_COMPILED);
3206 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3207 doc: /* Create a byte-code object with specified arguments as elements.
3208 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3209 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3210 and (optional) INTERACTIVE-SPEC.
3211 The first four arguments are required; at most six have any
3212 significance.
3213 The ARGLIST can be either like the one of `lambda', in which case the arguments
3214 will be dynamically bound before executing the byte code, or it can be an
3215 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3216 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3217 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3218 argument to catch the left-over arguments. If such an integer is used, the
3219 arguments will not be dynamically bound but will be instead pushed on the
3220 stack before executing the byte-code.
3221 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3222 (ptrdiff_t nargs, Lisp_Object *args)
3224 ptrdiff_t i;
3225 register Lisp_Object val = make_uninit_vector (nargs);
3226 register struct Lisp_Vector *p = XVECTOR (val);
3228 /* We used to purecopy everything here, if purify-flag was set. This worked
3229 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3230 dangerous, since make-byte-code is used during execution to build
3231 closures, so any closure built during the preload phase would end up
3232 copied into pure space, including its free variables, which is sometimes
3233 just wasteful and other times plainly wrong (e.g. those free vars may want
3234 to be setcar'd). */
3236 for (i = 0; i < nargs; i++)
3237 p->contents[i] = args[i];
3238 make_byte_code (p);
3239 XSETCOMPILED (val, p);
3240 return val;
3245 /***********************************************************************
3246 Symbol Allocation
3247 ***********************************************************************/
3249 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3250 of the required alignment if LSB tags are used. */
3252 union aligned_Lisp_Symbol
3254 struct Lisp_Symbol s;
3255 #if USE_LSB_TAG
3256 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3257 & -GCALIGNMENT];
3258 #endif
3261 /* Each symbol_block is just under 1020 bytes long, since malloc
3262 really allocates in units of powers of two and uses 4 bytes for its
3263 own overhead. */
3265 #define SYMBOL_BLOCK_SIZE \
3266 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3268 struct symbol_block
3270 /* Place `symbols' first, to preserve alignment. */
3271 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3272 struct symbol_block *next;
3275 /* Current symbol block and index of first unused Lisp_Symbol
3276 structure in it. */
3278 static struct symbol_block *symbol_block;
3279 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3281 /* List of free symbols. */
3283 static struct Lisp_Symbol *symbol_free_list;
3285 static void
3286 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3288 XSYMBOL (sym)->name = name;
3291 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3292 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3293 Its value is void, and its function definition and property list are nil. */)
3294 (Lisp_Object name)
3296 register Lisp_Object val;
3297 register struct Lisp_Symbol *p;
3299 CHECK_STRING (name);
3301 MALLOC_BLOCK_INPUT;
3303 if (symbol_free_list)
3305 XSETSYMBOL (val, symbol_free_list);
3306 symbol_free_list = symbol_free_list->next;
3308 else
3310 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3312 struct symbol_block *new
3313 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3314 new->next = symbol_block;
3315 symbol_block = new;
3316 symbol_block_index = 0;
3317 total_free_symbols += SYMBOL_BLOCK_SIZE;
3319 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3320 symbol_block_index++;
3323 MALLOC_UNBLOCK_INPUT;
3325 p = XSYMBOL (val);
3326 set_symbol_name (val, name);
3327 set_symbol_plist (val, Qnil);
3328 p->redirect = SYMBOL_PLAINVAL;
3329 SET_SYMBOL_VAL (p, Qunbound);
3330 set_symbol_function (val, Qnil);
3331 set_symbol_next (val, NULL);
3332 p->gcmarkbit = 0;
3333 p->interned = SYMBOL_UNINTERNED;
3334 p->constant = 0;
3335 p->declared_special = 0;
3336 consing_since_gc += sizeof (struct Lisp_Symbol);
3337 symbols_consed++;
3338 total_free_symbols--;
3339 return val;
3344 /***********************************************************************
3345 Marker (Misc) Allocation
3346 ***********************************************************************/
3348 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3349 the required alignment when LSB tags are used. */
3351 union aligned_Lisp_Misc
3353 union Lisp_Misc m;
3354 #if USE_LSB_TAG
3355 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3356 & -GCALIGNMENT];
3357 #endif
3360 /* Allocation of markers and other objects that share that structure.
3361 Works like allocation of conses. */
3363 #define MARKER_BLOCK_SIZE \
3364 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3366 struct marker_block
3368 /* Place `markers' first, to preserve alignment. */
3369 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3370 struct marker_block *next;
3373 static struct marker_block *marker_block;
3374 static int marker_block_index = MARKER_BLOCK_SIZE;
3376 static union Lisp_Misc *marker_free_list;
3378 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3380 static Lisp_Object
3381 allocate_misc (enum Lisp_Misc_Type type)
3383 Lisp_Object val;
3385 MALLOC_BLOCK_INPUT;
3387 if (marker_free_list)
3389 XSETMISC (val, marker_free_list);
3390 marker_free_list = marker_free_list->u_free.chain;
3392 else
3394 if (marker_block_index == MARKER_BLOCK_SIZE)
3396 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3397 new->next = marker_block;
3398 marker_block = new;
3399 marker_block_index = 0;
3400 total_free_markers += MARKER_BLOCK_SIZE;
3402 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3403 marker_block_index++;
3406 MALLOC_UNBLOCK_INPUT;
3408 --total_free_markers;
3409 consing_since_gc += sizeof (union Lisp_Misc);
3410 misc_objects_consed++;
3411 XMISCANY (val)->type = type;
3412 XMISCANY (val)->gcmarkbit = 0;
3413 return val;
3416 /* Free a Lisp_Misc object. */
3418 void
3419 free_misc (Lisp_Object misc)
3421 XMISCANY (misc)->type = Lisp_Misc_Free;
3422 XMISC (misc)->u_free.chain = marker_free_list;
3423 marker_free_list = XMISC (misc);
3424 consing_since_gc -= sizeof (union Lisp_Misc);
3425 total_free_markers++;
3428 /* Verify properties of Lisp_Save_Value's representation
3429 that are assumed here and elsewhere. */
3431 verify (SAVE_UNUSED == 0);
3432 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3433 >> SAVE_SLOT_BITS)
3434 == 0);
3436 /* Return Lisp_Save_Value objects for the various combinations
3437 that callers need. */
3439 Lisp_Object
3440 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3442 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3443 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3444 p->save_type = SAVE_TYPE_INT_INT_INT;
3445 p->data[0].integer = a;
3446 p->data[1].integer = b;
3447 p->data[2].integer = c;
3448 return val;
3451 Lisp_Object
3452 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3453 Lisp_Object d)
3455 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3456 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3457 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3458 p->data[0].object = a;
3459 p->data[1].object = b;
3460 p->data[2].object = c;
3461 p->data[3].object = d;
3462 return val;
3465 Lisp_Object
3466 make_save_ptr (void *a)
3468 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3469 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3470 p->save_type = SAVE_POINTER;
3471 p->data[0].pointer = a;
3472 return val;
3475 Lisp_Object
3476 make_save_ptr_int (void *a, ptrdiff_t b)
3478 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3479 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3480 p->save_type = SAVE_TYPE_PTR_INT;
3481 p->data[0].pointer = a;
3482 p->data[1].integer = b;
3483 return val;
3486 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3487 Lisp_Object
3488 make_save_ptr_ptr (void *a, void *b)
3490 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3491 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3492 p->save_type = SAVE_TYPE_PTR_PTR;
3493 p->data[0].pointer = a;
3494 p->data[1].pointer = b;
3495 return val;
3497 #endif
3499 Lisp_Object
3500 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3502 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3503 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3504 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3505 p->data[0].funcpointer = a;
3506 p->data[1].pointer = b;
3507 p->data[2].object = c;
3508 return val;
3511 /* Return a Lisp_Save_Value object that represents an array A
3512 of N Lisp objects. */
3514 Lisp_Object
3515 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3517 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3518 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3519 p->save_type = SAVE_TYPE_MEMORY;
3520 p->data[0].pointer = a;
3521 p->data[1].integer = n;
3522 return val;
3525 /* Free a Lisp_Save_Value object. Do not use this function
3526 if SAVE contains pointer other than returned by xmalloc. */
3528 void
3529 free_save_value (Lisp_Object save)
3531 xfree (XSAVE_POINTER (save, 0));
3532 free_misc (save);
3535 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3537 Lisp_Object
3538 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3540 register Lisp_Object overlay;
3542 overlay = allocate_misc (Lisp_Misc_Overlay);
3543 OVERLAY_START (overlay) = start;
3544 OVERLAY_END (overlay) = end;
3545 set_overlay_plist (overlay, plist);
3546 XOVERLAY (overlay)->next = NULL;
3547 return overlay;
3550 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3551 doc: /* Return a newly allocated marker which does not point at any place. */)
3552 (void)
3554 register Lisp_Object val;
3555 register struct Lisp_Marker *p;
3557 val = allocate_misc (Lisp_Misc_Marker);
3558 p = XMARKER (val);
3559 p->buffer = 0;
3560 p->bytepos = 0;
3561 p->charpos = 0;
3562 p->next = NULL;
3563 p->insertion_type = 0;
3564 p->need_adjustment = 0;
3565 return val;
3568 /* Return a newly allocated marker which points into BUF
3569 at character position CHARPOS and byte position BYTEPOS. */
3571 Lisp_Object
3572 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3574 Lisp_Object obj;
3575 struct Lisp_Marker *m;
3577 /* No dead buffers here. */
3578 eassert (BUFFER_LIVE_P (buf));
3580 /* Every character is at least one byte. */
3581 eassert (charpos <= bytepos);
3583 obj = allocate_misc (Lisp_Misc_Marker);
3584 m = XMARKER (obj);
3585 m->buffer = buf;
3586 m->charpos = charpos;
3587 m->bytepos = bytepos;
3588 m->insertion_type = 0;
3589 m->need_adjustment = 0;
3590 m->next = BUF_MARKERS (buf);
3591 BUF_MARKERS (buf) = m;
3592 return obj;
3595 /* Put MARKER back on the free list after using it temporarily. */
3597 void
3598 free_marker (Lisp_Object marker)
3600 unchain_marker (XMARKER (marker));
3601 free_misc (marker);
3605 /* Return a newly created vector or string with specified arguments as
3606 elements. If all the arguments are characters that can fit
3607 in a string of events, make a string; otherwise, make a vector.
3609 Any number of arguments, even zero arguments, are allowed. */
3611 Lisp_Object
3612 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3614 ptrdiff_t i;
3616 for (i = 0; i < nargs; i++)
3617 /* The things that fit in a string
3618 are characters that are in 0...127,
3619 after discarding the meta bit and all the bits above it. */
3620 if (!INTEGERP (args[i])
3621 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3622 return Fvector (nargs, args);
3624 /* Since the loop exited, we know that all the things in it are
3625 characters, so we can make a string. */
3627 Lisp_Object result;
3629 result = Fmake_string (make_number (nargs), make_number (0));
3630 for (i = 0; i < nargs; i++)
3632 SSET (result, i, XINT (args[i]));
3633 /* Move the meta bit to the right place for a string char. */
3634 if (XINT (args[i]) & CHAR_META)
3635 SSET (result, i, SREF (result, i) | 0x80);
3638 return result;
3644 /************************************************************************
3645 Memory Full Handling
3646 ************************************************************************/
3649 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3650 there may have been size_t overflow so that malloc was never
3651 called, or perhaps malloc was invoked successfully but the
3652 resulting pointer had problems fitting into a tagged EMACS_INT. In
3653 either case this counts as memory being full even though malloc did
3654 not fail. */
3656 void
3657 memory_full (size_t nbytes)
3659 /* Do not go into hysterics merely because a large request failed. */
3660 bool enough_free_memory = 0;
3661 if (SPARE_MEMORY < nbytes)
3663 void *p;
3665 MALLOC_BLOCK_INPUT;
3666 p = malloc (SPARE_MEMORY);
3667 if (p)
3669 free (p);
3670 enough_free_memory = 1;
3672 MALLOC_UNBLOCK_INPUT;
3675 if (! enough_free_memory)
3677 int i;
3679 Vmemory_full = Qt;
3681 memory_full_cons_threshold = sizeof (struct cons_block);
3683 /* The first time we get here, free the spare memory. */
3684 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3685 if (spare_memory[i])
3687 if (i == 0)
3688 free (spare_memory[i]);
3689 else if (i >= 1 && i <= 4)
3690 lisp_align_free (spare_memory[i]);
3691 else
3692 lisp_free (spare_memory[i]);
3693 spare_memory[i] = 0;
3697 /* This used to call error, but if we've run out of memory, we could
3698 get infinite recursion trying to build the string. */
3699 xsignal (Qnil, Vmemory_signal_data);
3702 /* If we released our reserve (due to running out of memory),
3703 and we have a fair amount free once again,
3704 try to set aside another reserve in case we run out once more.
3706 This is called when a relocatable block is freed in ralloc.c,
3707 and also directly from this file, in case we're not using ralloc.c. */
3709 void
3710 refill_memory_reserve (void)
3712 #ifndef SYSTEM_MALLOC
3713 if (spare_memory[0] == 0)
3714 spare_memory[0] = malloc (SPARE_MEMORY);
3715 if (spare_memory[1] == 0)
3716 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3717 MEM_TYPE_SPARE);
3718 if (spare_memory[2] == 0)
3719 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3720 MEM_TYPE_SPARE);
3721 if (spare_memory[3] == 0)
3722 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3723 MEM_TYPE_SPARE);
3724 if (spare_memory[4] == 0)
3725 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3726 MEM_TYPE_SPARE);
3727 if (spare_memory[5] == 0)
3728 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3729 MEM_TYPE_SPARE);
3730 if (spare_memory[6] == 0)
3731 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3732 MEM_TYPE_SPARE);
3733 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3734 Vmemory_full = Qnil;
3735 #endif
3738 /************************************************************************
3739 C Stack Marking
3740 ************************************************************************/
3742 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3744 /* Conservative C stack marking requires a method to identify possibly
3745 live Lisp objects given a pointer value. We do this by keeping
3746 track of blocks of Lisp data that are allocated in a red-black tree
3747 (see also the comment of mem_node which is the type of nodes in
3748 that tree). Function lisp_malloc adds information for an allocated
3749 block to the red-black tree with calls to mem_insert, and function
3750 lisp_free removes it with mem_delete. Functions live_string_p etc
3751 call mem_find to lookup information about a given pointer in the
3752 tree, and use that to determine if the pointer points to a Lisp
3753 object or not. */
3755 /* Initialize this part of alloc.c. */
3757 static void
3758 mem_init (void)
3760 mem_z.left = mem_z.right = MEM_NIL;
3761 mem_z.parent = NULL;
3762 mem_z.color = MEM_BLACK;
3763 mem_z.start = mem_z.end = NULL;
3764 mem_root = MEM_NIL;
3768 /* Value is a pointer to the mem_node containing START. Value is
3769 MEM_NIL if there is no node in the tree containing START. */
3771 static struct mem_node *
3772 mem_find (void *start)
3774 struct mem_node *p;
3776 if (start < min_heap_address || start > max_heap_address)
3777 return MEM_NIL;
3779 /* Make the search always successful to speed up the loop below. */
3780 mem_z.start = start;
3781 mem_z.end = (char *) start + 1;
3783 p = mem_root;
3784 while (start < p->start || start >= p->end)
3785 p = start < p->start ? p->left : p->right;
3786 return p;
3790 /* Insert a new node into the tree for a block of memory with start
3791 address START, end address END, and type TYPE. Value is a
3792 pointer to the node that was inserted. */
3794 static struct mem_node *
3795 mem_insert (void *start, void *end, enum mem_type type)
3797 struct mem_node *c, *parent, *x;
3799 if (min_heap_address == NULL || start < min_heap_address)
3800 min_heap_address = start;
3801 if (max_heap_address == NULL || end > max_heap_address)
3802 max_heap_address = end;
3804 /* See where in the tree a node for START belongs. In this
3805 particular application, it shouldn't happen that a node is already
3806 present. For debugging purposes, let's check that. */
3807 c = mem_root;
3808 parent = NULL;
3810 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3812 while (c != MEM_NIL)
3814 if (start >= c->start && start < c->end)
3815 emacs_abort ();
3816 parent = c;
3817 c = start < c->start ? c->left : c->right;
3820 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3822 while (c != MEM_NIL)
3824 parent = c;
3825 c = start < c->start ? c->left : c->right;
3828 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3830 /* Create a new node. */
3831 #ifdef GC_MALLOC_CHECK
3832 x = malloc (sizeof *x);
3833 if (x == NULL)
3834 emacs_abort ();
3835 #else
3836 x = xmalloc (sizeof *x);
3837 #endif
3838 x->start = start;
3839 x->end = end;
3840 x->type = type;
3841 x->parent = parent;
3842 x->left = x->right = MEM_NIL;
3843 x->color = MEM_RED;
3845 /* Insert it as child of PARENT or install it as root. */
3846 if (parent)
3848 if (start < parent->start)
3849 parent->left = x;
3850 else
3851 parent->right = x;
3853 else
3854 mem_root = x;
3856 /* Re-establish red-black tree properties. */
3857 mem_insert_fixup (x);
3859 return x;
3863 /* Re-establish the red-black properties of the tree, and thereby
3864 balance the tree, after node X has been inserted; X is always red. */
3866 static void
3867 mem_insert_fixup (struct mem_node *x)
3869 while (x != mem_root && x->parent->color == MEM_RED)
3871 /* X is red and its parent is red. This is a violation of
3872 red-black tree property #3. */
3874 if (x->parent == x->parent->parent->left)
3876 /* We're on the left side of our grandparent, and Y is our
3877 "uncle". */
3878 struct mem_node *y = x->parent->parent->right;
3880 if (y->color == MEM_RED)
3882 /* Uncle and parent are red but should be black because
3883 X is red. Change the colors accordingly and proceed
3884 with the grandparent. */
3885 x->parent->color = MEM_BLACK;
3886 y->color = MEM_BLACK;
3887 x->parent->parent->color = MEM_RED;
3888 x = x->parent->parent;
3890 else
3892 /* Parent and uncle have different colors; parent is
3893 red, uncle is black. */
3894 if (x == x->parent->right)
3896 x = x->parent;
3897 mem_rotate_left (x);
3900 x->parent->color = MEM_BLACK;
3901 x->parent->parent->color = MEM_RED;
3902 mem_rotate_right (x->parent->parent);
3905 else
3907 /* This is the symmetrical case of above. */
3908 struct mem_node *y = x->parent->parent->left;
3910 if (y->color == MEM_RED)
3912 x->parent->color = MEM_BLACK;
3913 y->color = MEM_BLACK;
3914 x->parent->parent->color = MEM_RED;
3915 x = x->parent->parent;
3917 else
3919 if (x == x->parent->left)
3921 x = x->parent;
3922 mem_rotate_right (x);
3925 x->parent->color = MEM_BLACK;
3926 x->parent->parent->color = MEM_RED;
3927 mem_rotate_left (x->parent->parent);
3932 /* The root may have been changed to red due to the algorithm. Set
3933 it to black so that property #5 is satisfied. */
3934 mem_root->color = MEM_BLACK;
3938 /* (x) (y)
3939 / \ / \
3940 a (y) ===> (x) c
3941 / \ / \
3942 b c a b */
3944 static void
3945 mem_rotate_left (struct mem_node *x)
3947 struct mem_node *y;
3949 /* Turn y's left sub-tree into x's right sub-tree. */
3950 y = x->right;
3951 x->right = y->left;
3952 if (y->left != MEM_NIL)
3953 y->left->parent = x;
3955 /* Y's parent was x's parent. */
3956 if (y != MEM_NIL)
3957 y->parent = x->parent;
3959 /* Get the parent to point to y instead of x. */
3960 if (x->parent)
3962 if (x == x->parent->left)
3963 x->parent->left = y;
3964 else
3965 x->parent->right = y;
3967 else
3968 mem_root = y;
3970 /* Put x on y's left. */
3971 y->left = x;
3972 if (x != MEM_NIL)
3973 x->parent = y;
3977 /* (x) (Y)
3978 / \ / \
3979 (y) c ===> a (x)
3980 / \ / \
3981 a b b c */
3983 static void
3984 mem_rotate_right (struct mem_node *x)
3986 struct mem_node *y = x->left;
3988 x->left = y->right;
3989 if (y->right != MEM_NIL)
3990 y->right->parent = x;
3992 if (y != MEM_NIL)
3993 y->parent = x->parent;
3994 if (x->parent)
3996 if (x == x->parent->right)
3997 x->parent->right = y;
3998 else
3999 x->parent->left = y;
4001 else
4002 mem_root = y;
4004 y->right = x;
4005 if (x != MEM_NIL)
4006 x->parent = y;
4010 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4012 static void
4013 mem_delete (struct mem_node *z)
4015 struct mem_node *x, *y;
4017 if (!z || z == MEM_NIL)
4018 return;
4020 if (z->left == MEM_NIL || z->right == MEM_NIL)
4021 y = z;
4022 else
4024 y = z->right;
4025 while (y->left != MEM_NIL)
4026 y = y->left;
4029 if (y->left != MEM_NIL)
4030 x = y->left;
4031 else
4032 x = y->right;
4034 x->parent = y->parent;
4035 if (y->parent)
4037 if (y == y->parent->left)
4038 y->parent->left = x;
4039 else
4040 y->parent->right = x;
4042 else
4043 mem_root = x;
4045 if (y != z)
4047 z->start = y->start;
4048 z->end = y->end;
4049 z->type = y->type;
4052 if (y->color == MEM_BLACK)
4053 mem_delete_fixup (x);
4055 #ifdef GC_MALLOC_CHECK
4056 free (y);
4057 #else
4058 xfree (y);
4059 #endif
4063 /* Re-establish the red-black properties of the tree, after a
4064 deletion. */
4066 static void
4067 mem_delete_fixup (struct mem_node *x)
4069 while (x != mem_root && x->color == MEM_BLACK)
4071 if (x == x->parent->left)
4073 struct mem_node *w = x->parent->right;
4075 if (w->color == MEM_RED)
4077 w->color = MEM_BLACK;
4078 x->parent->color = MEM_RED;
4079 mem_rotate_left (x->parent);
4080 w = x->parent->right;
4083 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4085 w->color = MEM_RED;
4086 x = x->parent;
4088 else
4090 if (w->right->color == MEM_BLACK)
4092 w->left->color = MEM_BLACK;
4093 w->color = MEM_RED;
4094 mem_rotate_right (w);
4095 w = x->parent->right;
4097 w->color = x->parent->color;
4098 x->parent->color = MEM_BLACK;
4099 w->right->color = MEM_BLACK;
4100 mem_rotate_left (x->parent);
4101 x = mem_root;
4104 else
4106 struct mem_node *w = x->parent->left;
4108 if (w->color == MEM_RED)
4110 w->color = MEM_BLACK;
4111 x->parent->color = MEM_RED;
4112 mem_rotate_right (x->parent);
4113 w = x->parent->left;
4116 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4118 w->color = MEM_RED;
4119 x = x->parent;
4121 else
4123 if (w->left->color == MEM_BLACK)
4125 w->right->color = MEM_BLACK;
4126 w->color = MEM_RED;
4127 mem_rotate_left (w);
4128 w = x->parent->left;
4131 w->color = x->parent->color;
4132 x->parent->color = MEM_BLACK;
4133 w->left->color = MEM_BLACK;
4134 mem_rotate_right (x->parent);
4135 x = mem_root;
4140 x->color = MEM_BLACK;
4144 /* Value is non-zero if P is a pointer to a live Lisp string on
4145 the heap. M is a pointer to the mem_block for P. */
4147 static bool
4148 live_string_p (struct mem_node *m, void *p)
4150 if (m->type == MEM_TYPE_STRING)
4152 struct string_block *b = m->start;
4153 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4155 /* P must point to the start of a Lisp_String structure, and it
4156 must not be on the free-list. */
4157 return (offset >= 0
4158 && offset % sizeof b->strings[0] == 0
4159 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4160 && ((struct Lisp_String *) p)->data != NULL);
4162 else
4163 return 0;
4167 /* Value is non-zero if P is a pointer to a live Lisp cons on
4168 the heap. M is a pointer to the mem_block for P. */
4170 static bool
4171 live_cons_p (struct mem_node *m, void *p)
4173 if (m->type == MEM_TYPE_CONS)
4175 struct cons_block *b = m->start;
4176 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4178 /* P must point to the start of a Lisp_Cons, not be
4179 one of the unused cells in the current cons block,
4180 and not be on the free-list. */
4181 return (offset >= 0
4182 && offset % sizeof b->conses[0] == 0
4183 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4184 && (b != cons_block
4185 || offset / sizeof b->conses[0] < cons_block_index)
4186 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4188 else
4189 return 0;
4193 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4194 the heap. M is a pointer to the mem_block for P. */
4196 static bool
4197 live_symbol_p (struct mem_node *m, void *p)
4199 if (m->type == MEM_TYPE_SYMBOL)
4201 struct symbol_block *b = m->start;
4202 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4204 /* P must point to the start of a Lisp_Symbol, not be
4205 one of the unused cells in the current symbol block,
4206 and not be on the free-list. */
4207 return (offset >= 0
4208 && offset % sizeof b->symbols[0] == 0
4209 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4210 && (b != symbol_block
4211 || offset / sizeof b->symbols[0] < symbol_block_index)
4212 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4214 else
4215 return 0;
4219 /* Value is non-zero if P is a pointer to a live Lisp float on
4220 the heap. M is a pointer to the mem_block for P. */
4222 static bool
4223 live_float_p (struct mem_node *m, void *p)
4225 if (m->type == MEM_TYPE_FLOAT)
4227 struct float_block *b = m->start;
4228 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4230 /* P must point to the start of a Lisp_Float and not be
4231 one of the unused cells in the current float block. */
4232 return (offset >= 0
4233 && offset % sizeof b->floats[0] == 0
4234 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4235 && (b != float_block
4236 || offset / sizeof b->floats[0] < float_block_index));
4238 else
4239 return 0;
4243 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4244 the heap. M is a pointer to the mem_block for P. */
4246 static bool
4247 live_misc_p (struct mem_node *m, void *p)
4249 if (m->type == MEM_TYPE_MISC)
4251 struct marker_block *b = m->start;
4252 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4254 /* P must point to the start of a Lisp_Misc, not be
4255 one of the unused cells in the current misc block,
4256 and not be on the free-list. */
4257 return (offset >= 0
4258 && offset % sizeof b->markers[0] == 0
4259 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4260 && (b != marker_block
4261 || offset / sizeof b->markers[0] < marker_block_index)
4262 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4264 else
4265 return 0;
4269 /* Value is non-zero if P is a pointer to a live vector-like object.
4270 M is a pointer to the mem_block for P. */
4272 static bool
4273 live_vector_p (struct mem_node *m, void *p)
4275 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4277 /* This memory node corresponds to a vector block. */
4278 struct vector_block *block = m->start;
4279 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4281 /* P is in the block's allocation range. Scan the block
4282 up to P and see whether P points to the start of some
4283 vector which is not on a free list. FIXME: check whether
4284 some allocation patterns (probably a lot of short vectors)
4285 may cause a substantial overhead of this loop. */
4286 while (VECTOR_IN_BLOCK (vector, block)
4287 && vector <= (struct Lisp_Vector *) p)
4289 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4290 return 1;
4291 else
4292 vector = ADVANCE (vector, vector_nbytes (vector));
4295 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4296 /* This memory node corresponds to a large vector. */
4297 return 1;
4298 return 0;
4302 /* Value is non-zero if P is a pointer to a live buffer. M is a
4303 pointer to the mem_block for P. */
4305 static bool
4306 live_buffer_p (struct mem_node *m, void *p)
4308 /* P must point to the start of the block, and the buffer
4309 must not have been killed. */
4310 return (m->type == MEM_TYPE_BUFFER
4311 && p == m->start
4312 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4315 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4317 #if GC_MARK_STACK
4319 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4321 /* Currently not used, but may be called from gdb. */
4323 void dump_zombies (void) EXTERNALLY_VISIBLE;
4325 /* Array of objects that are kept alive because the C stack contains
4326 a pattern that looks like a reference to them . */
4328 #define MAX_ZOMBIES 10
4329 static Lisp_Object zombies[MAX_ZOMBIES];
4331 /* Number of zombie objects. */
4333 static EMACS_INT nzombies;
4335 /* Number of garbage collections. */
4337 static EMACS_INT ngcs;
4339 /* Average percentage of zombies per collection. */
4341 static double avg_zombies;
4343 /* Max. number of live and zombie objects. */
4345 static EMACS_INT max_live, max_zombies;
4347 /* Average number of live objects per GC. */
4349 static double avg_live;
4351 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4352 doc: /* Show information about live and zombie objects. */)
4353 (void)
4355 Lisp_Object args[8], zombie_list = Qnil;
4356 EMACS_INT i;
4357 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4358 zombie_list = Fcons (zombies[i], zombie_list);
4359 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4360 args[1] = make_number (ngcs);
4361 args[2] = make_float (avg_live);
4362 args[3] = make_float (avg_zombies);
4363 args[4] = make_float (avg_zombies / avg_live / 100);
4364 args[5] = make_number (max_live);
4365 args[6] = make_number (max_zombies);
4366 args[7] = zombie_list;
4367 return Fmessage (8, args);
4370 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4373 /* Mark OBJ if we can prove it's a Lisp_Object. */
4375 static void
4376 mark_maybe_object (Lisp_Object obj)
4378 void *po;
4379 struct mem_node *m;
4381 #if USE_VALGRIND
4382 if (valgrind_p)
4383 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4384 #endif
4386 if (INTEGERP (obj))
4387 return;
4389 po = (void *) XPNTR (obj);
4390 m = mem_find (po);
4392 if (m != MEM_NIL)
4394 bool mark_p = 0;
4396 switch (XTYPE (obj))
4398 case Lisp_String:
4399 mark_p = (live_string_p (m, po)
4400 && !STRING_MARKED_P ((struct Lisp_String *) po));
4401 break;
4403 case Lisp_Cons:
4404 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4405 break;
4407 case Lisp_Symbol:
4408 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4409 break;
4411 case Lisp_Float:
4412 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4413 break;
4415 case Lisp_Vectorlike:
4416 /* Note: can't check BUFFERP before we know it's a
4417 buffer because checking that dereferences the pointer
4418 PO which might point anywhere. */
4419 if (live_vector_p (m, po))
4420 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4421 else if (live_buffer_p (m, po))
4422 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4423 break;
4425 case Lisp_Misc:
4426 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4427 break;
4429 default:
4430 break;
4433 if (mark_p)
4435 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4436 if (nzombies < MAX_ZOMBIES)
4437 zombies[nzombies] = obj;
4438 ++nzombies;
4439 #endif
4440 mark_object (obj);
4446 /* If P points to Lisp data, mark that as live if it isn't already
4447 marked. */
4449 static void
4450 mark_maybe_pointer (void *p)
4452 struct mem_node *m;
4454 #if USE_VALGRIND
4455 if (valgrind_p)
4456 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4457 #endif
4459 /* Quickly rule out some values which can't point to Lisp data.
4460 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4461 Otherwise, assume that Lisp data is aligned on even addresses. */
4462 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4463 return;
4465 m = mem_find (p);
4466 if (m != MEM_NIL)
4468 Lisp_Object obj = Qnil;
4470 switch (m->type)
4472 case MEM_TYPE_NON_LISP:
4473 case MEM_TYPE_SPARE:
4474 /* Nothing to do; not a pointer to Lisp memory. */
4475 break;
4477 case MEM_TYPE_BUFFER:
4478 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4479 XSETVECTOR (obj, p);
4480 break;
4482 case MEM_TYPE_CONS:
4483 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4484 XSETCONS (obj, p);
4485 break;
4487 case MEM_TYPE_STRING:
4488 if (live_string_p (m, p)
4489 && !STRING_MARKED_P ((struct Lisp_String *) p))
4490 XSETSTRING (obj, p);
4491 break;
4493 case MEM_TYPE_MISC:
4494 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4495 XSETMISC (obj, p);
4496 break;
4498 case MEM_TYPE_SYMBOL:
4499 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4500 XSETSYMBOL (obj, p);
4501 break;
4503 case MEM_TYPE_FLOAT:
4504 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4505 XSETFLOAT (obj, p);
4506 break;
4508 case MEM_TYPE_VECTORLIKE:
4509 case MEM_TYPE_VECTOR_BLOCK:
4510 if (live_vector_p (m, p))
4512 Lisp_Object tem;
4513 XSETVECTOR (tem, p);
4514 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4515 obj = tem;
4517 break;
4519 default:
4520 emacs_abort ();
4523 if (!NILP (obj))
4524 mark_object (obj);
4529 /* Alignment of pointer values. Use alignof, as it sometimes returns
4530 a smaller alignment than GCC's __alignof__ and mark_memory might
4531 miss objects if __alignof__ were used. */
4532 #define GC_POINTER_ALIGNMENT alignof (void *)
4534 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4535 not suffice, which is the typical case. A host where a Lisp_Object is
4536 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4537 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4538 suffice to widen it to to a Lisp_Object and check it that way. */
4539 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4540 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4541 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4542 nor mark_maybe_object can follow the pointers. This should not occur on
4543 any practical porting target. */
4544 # error "MSB type bits straddle pointer-word boundaries"
4545 # endif
4546 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4547 pointer words that hold pointers ORed with type bits. */
4548 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4549 #else
4550 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4551 words that hold unmodified pointers. */
4552 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4553 #endif
4555 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4556 or END+OFFSET..START. */
4558 static void
4559 mark_memory (void *start, void *end)
4560 #if defined (__clang__) && defined (__has_feature)
4561 #if __has_feature(address_sanitizer)
4562 /* Do not allow -faddress-sanitizer to check this function, since it
4563 crosses the function stack boundary, and thus would yield many
4564 false positives. */
4565 __attribute__((no_address_safety_analysis))
4566 #endif
4567 #endif
4569 void **pp;
4570 int i;
4572 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4573 nzombies = 0;
4574 #endif
4576 /* Make START the pointer to the start of the memory region,
4577 if it isn't already. */
4578 if (end < start)
4580 void *tem = start;
4581 start = end;
4582 end = tem;
4585 /* Mark Lisp data pointed to. This is necessary because, in some
4586 situations, the C compiler optimizes Lisp objects away, so that
4587 only a pointer to them remains. Example:
4589 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4592 Lisp_Object obj = build_string ("test");
4593 struct Lisp_String *s = XSTRING (obj);
4594 Fgarbage_collect ();
4595 fprintf (stderr, "test `%s'\n", s->data);
4596 return Qnil;
4599 Here, `obj' isn't really used, and the compiler optimizes it
4600 away. The only reference to the life string is through the
4601 pointer `s'. */
4603 for (pp = start; (void *) pp < end; pp++)
4604 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4606 void *p = *(void **) ((char *) pp + i);
4607 mark_maybe_pointer (p);
4608 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4609 mark_maybe_object (XIL ((intptr_t) p));
4613 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4615 static bool setjmp_tested_p;
4616 static int longjmps_done;
4618 #define SETJMP_WILL_LIKELY_WORK "\
4620 Emacs garbage collector has been changed to use conservative stack\n\
4621 marking. Emacs has determined that the method it uses to do the\n\
4622 marking will likely work on your system, but this isn't sure.\n\
4624 If you are a system-programmer, or can get the help of a local wizard\n\
4625 who is, please take a look at the function mark_stack in alloc.c, and\n\
4626 verify that the methods used are appropriate for your system.\n\
4628 Please mail the result to <emacs-devel@gnu.org>.\n\
4631 #define SETJMP_WILL_NOT_WORK "\
4633 Emacs garbage collector has been changed to use conservative stack\n\
4634 marking. Emacs has determined that the default method it uses to do the\n\
4635 marking will not work on your system. We will need a system-dependent\n\
4636 solution for your system.\n\
4638 Please take a look at the function mark_stack in alloc.c, and\n\
4639 try to find a way to make it work on your system.\n\
4641 Note that you may get false negatives, depending on the compiler.\n\
4642 In particular, you need to use -O with GCC for this test.\n\
4644 Please mail the result to <emacs-devel@gnu.org>.\n\
4648 /* Perform a quick check if it looks like setjmp saves registers in a
4649 jmp_buf. Print a message to stderr saying so. When this test
4650 succeeds, this is _not_ a proof that setjmp is sufficient for
4651 conservative stack marking. Only the sources or a disassembly
4652 can prove that. */
4654 static void
4655 test_setjmp (void)
4657 char buf[10];
4658 register int x;
4659 sys_jmp_buf jbuf;
4661 /* Arrange for X to be put in a register. */
4662 sprintf (buf, "1");
4663 x = strlen (buf);
4664 x = 2 * x - 1;
4666 sys_setjmp (jbuf);
4667 if (longjmps_done == 1)
4669 /* Came here after the longjmp at the end of the function.
4671 If x == 1, the longjmp has restored the register to its
4672 value before the setjmp, and we can hope that setjmp
4673 saves all such registers in the jmp_buf, although that
4674 isn't sure.
4676 For other values of X, either something really strange is
4677 taking place, or the setjmp just didn't save the register. */
4679 if (x == 1)
4680 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4681 else
4683 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4684 exit (1);
4688 ++longjmps_done;
4689 x = 2;
4690 if (longjmps_done == 1)
4691 sys_longjmp (jbuf, 1);
4694 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4697 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4699 /* Abort if anything GCPRO'd doesn't survive the GC. */
4701 static void
4702 check_gcpros (void)
4704 struct gcpro *p;
4705 ptrdiff_t i;
4707 for (p = gcprolist; p; p = p->next)
4708 for (i = 0; i < p->nvars; ++i)
4709 if (!survives_gc_p (p->var[i]))
4710 /* FIXME: It's not necessarily a bug. It might just be that the
4711 GCPRO is unnecessary or should release the object sooner. */
4712 emacs_abort ();
4715 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4717 void
4718 dump_zombies (void)
4720 int i;
4722 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4723 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4725 fprintf (stderr, " %d = ", i);
4726 debug_print (zombies[i]);
4730 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4733 /* Mark live Lisp objects on the C stack.
4735 There are several system-dependent problems to consider when
4736 porting this to new architectures:
4738 Processor Registers
4740 We have to mark Lisp objects in CPU registers that can hold local
4741 variables or are used to pass parameters.
4743 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4744 something that either saves relevant registers on the stack, or
4745 calls mark_maybe_object passing it each register's contents.
4747 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4748 implementation assumes that calling setjmp saves registers we need
4749 to see in a jmp_buf which itself lies on the stack. This doesn't
4750 have to be true! It must be verified for each system, possibly
4751 by taking a look at the source code of setjmp.
4753 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4754 can use it as a machine independent method to store all registers
4755 to the stack. In this case the macros described in the previous
4756 two paragraphs are not used.
4758 Stack Layout
4760 Architectures differ in the way their processor stack is organized.
4761 For example, the stack might look like this
4763 +----------------+
4764 | Lisp_Object | size = 4
4765 +----------------+
4766 | something else | size = 2
4767 +----------------+
4768 | Lisp_Object | size = 4
4769 +----------------+
4770 | ... |
4772 In such a case, not every Lisp_Object will be aligned equally. To
4773 find all Lisp_Object on the stack it won't be sufficient to walk
4774 the stack in steps of 4 bytes. Instead, two passes will be
4775 necessary, one starting at the start of the stack, and a second
4776 pass starting at the start of the stack + 2. Likewise, if the
4777 minimal alignment of Lisp_Objects on the stack is 1, four passes
4778 would be necessary, each one starting with one byte more offset
4779 from the stack start. */
4781 static void
4782 mark_stack (void)
4784 void *end;
4786 #ifdef HAVE___BUILTIN_UNWIND_INIT
4787 /* Force callee-saved registers and register windows onto the stack.
4788 This is the preferred method if available, obviating the need for
4789 machine dependent methods. */
4790 __builtin_unwind_init ();
4791 end = &end;
4792 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4793 #ifndef GC_SAVE_REGISTERS_ON_STACK
4794 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4795 union aligned_jmpbuf {
4796 Lisp_Object o;
4797 sys_jmp_buf j;
4798 } j;
4799 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4800 #endif
4801 /* This trick flushes the register windows so that all the state of
4802 the process is contained in the stack. */
4803 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4804 needed on ia64 too. See mach_dep.c, where it also says inline
4805 assembler doesn't work with relevant proprietary compilers. */
4806 #ifdef __sparc__
4807 #if defined (__sparc64__) && defined (__FreeBSD__)
4808 /* FreeBSD does not have a ta 3 handler. */
4809 asm ("flushw");
4810 #else
4811 asm ("ta 3");
4812 #endif
4813 #endif
4815 /* Save registers that we need to see on the stack. We need to see
4816 registers used to hold register variables and registers used to
4817 pass parameters. */
4818 #ifdef GC_SAVE_REGISTERS_ON_STACK
4819 GC_SAVE_REGISTERS_ON_STACK (end);
4820 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4822 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4823 setjmp will definitely work, test it
4824 and print a message with the result
4825 of the test. */
4826 if (!setjmp_tested_p)
4828 setjmp_tested_p = 1;
4829 test_setjmp ();
4831 #endif /* GC_SETJMP_WORKS */
4833 sys_setjmp (j.j);
4834 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4835 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4836 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4838 /* This assumes that the stack is a contiguous region in memory. If
4839 that's not the case, something has to be done here to iterate
4840 over the stack segments. */
4841 mark_memory (stack_base, end);
4843 /* Allow for marking a secondary stack, like the register stack on the
4844 ia64. */
4845 #ifdef GC_MARK_SECONDARY_STACK
4846 GC_MARK_SECONDARY_STACK ();
4847 #endif
4849 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4850 check_gcpros ();
4851 #endif
4854 #else /* GC_MARK_STACK == 0 */
4856 #define mark_maybe_object(obj) emacs_abort ()
4858 #endif /* GC_MARK_STACK != 0 */
4861 /* Determine whether it is safe to access memory at address P. */
4862 static int
4863 valid_pointer_p (void *p)
4865 #ifdef WINDOWSNT
4866 return w32_valid_pointer_p (p, 16);
4867 #else
4868 int fd[2];
4870 /* Obviously, we cannot just access it (we would SEGV trying), so we
4871 trick the o/s to tell us whether p is a valid pointer.
4872 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4873 not validate p in that case. */
4875 if (emacs_pipe (fd) == 0)
4877 bool valid = emacs_write (fd[1], p, 16) == 16;
4878 emacs_close (fd[1]);
4879 emacs_close (fd[0]);
4880 return valid;
4883 return -1;
4884 #endif
4887 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4888 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4889 cannot validate OBJ. This function can be quite slow, so its primary
4890 use is the manual debugging. The only exception is print_object, where
4891 we use it to check whether the memory referenced by the pointer of
4892 Lisp_Save_Value object contains valid objects. */
4895 valid_lisp_object_p (Lisp_Object obj)
4897 void *p;
4898 #if GC_MARK_STACK
4899 struct mem_node *m;
4900 #endif
4902 if (INTEGERP (obj))
4903 return 1;
4905 p = (void *) XPNTR (obj);
4906 if (PURE_POINTER_P (p))
4907 return 1;
4909 if (p == &buffer_defaults || p == &buffer_local_symbols)
4910 return 2;
4912 #if !GC_MARK_STACK
4913 return valid_pointer_p (p);
4914 #else
4916 m = mem_find (p);
4918 if (m == MEM_NIL)
4920 int valid = valid_pointer_p (p);
4921 if (valid <= 0)
4922 return valid;
4924 if (SUBRP (obj))
4925 return 1;
4927 return 0;
4930 switch (m->type)
4932 case MEM_TYPE_NON_LISP:
4933 case MEM_TYPE_SPARE:
4934 return 0;
4936 case MEM_TYPE_BUFFER:
4937 return live_buffer_p (m, p) ? 1 : 2;
4939 case MEM_TYPE_CONS:
4940 return live_cons_p (m, p);
4942 case MEM_TYPE_STRING:
4943 return live_string_p (m, p);
4945 case MEM_TYPE_MISC:
4946 return live_misc_p (m, p);
4948 case MEM_TYPE_SYMBOL:
4949 return live_symbol_p (m, p);
4951 case MEM_TYPE_FLOAT:
4952 return live_float_p (m, p);
4954 case MEM_TYPE_VECTORLIKE:
4955 case MEM_TYPE_VECTOR_BLOCK:
4956 return live_vector_p (m, p);
4958 default:
4959 break;
4962 return 0;
4963 #endif
4969 /***********************************************************************
4970 Pure Storage Management
4971 ***********************************************************************/
4973 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4974 pointer to it. TYPE is the Lisp type for which the memory is
4975 allocated. TYPE < 0 means it's not used for a Lisp object. */
4977 static void *
4978 pure_alloc (size_t size, int type)
4980 void *result;
4981 #if USE_LSB_TAG
4982 size_t alignment = GCALIGNMENT;
4983 #else
4984 size_t alignment = alignof (EMACS_INT);
4986 /* Give Lisp_Floats an extra alignment. */
4987 if (type == Lisp_Float)
4988 alignment = alignof (struct Lisp_Float);
4989 #endif
4991 again:
4992 if (type >= 0)
4994 /* Allocate space for a Lisp object from the beginning of the free
4995 space with taking account of alignment. */
4996 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4997 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4999 else
5001 /* Allocate space for a non-Lisp object from the end of the free
5002 space. */
5003 pure_bytes_used_non_lisp += size;
5004 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5006 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5008 if (pure_bytes_used <= pure_size)
5009 return result;
5011 /* Don't allocate a large amount here,
5012 because it might get mmap'd and then its address
5013 might not be usable. */
5014 purebeg = xmalloc (10000);
5015 pure_size = 10000;
5016 pure_bytes_used_before_overflow += pure_bytes_used - size;
5017 pure_bytes_used = 0;
5018 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5019 goto again;
5023 /* Print a warning if PURESIZE is too small. */
5025 void
5026 check_pure_size (void)
5028 if (pure_bytes_used_before_overflow)
5029 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5030 " bytes needed)"),
5031 pure_bytes_used + pure_bytes_used_before_overflow);
5035 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5036 the non-Lisp data pool of the pure storage, and return its start
5037 address. Return NULL if not found. */
5039 static char *
5040 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5042 int i;
5043 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5044 const unsigned char *p;
5045 char *non_lisp_beg;
5047 if (pure_bytes_used_non_lisp <= nbytes)
5048 return NULL;
5050 /* Set up the Boyer-Moore table. */
5051 skip = nbytes + 1;
5052 for (i = 0; i < 256; i++)
5053 bm_skip[i] = skip;
5055 p = (const unsigned char *) data;
5056 while (--skip > 0)
5057 bm_skip[*p++] = skip;
5059 last_char_skip = bm_skip['\0'];
5061 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5062 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5064 /* See the comments in the function `boyer_moore' (search.c) for the
5065 use of `infinity'. */
5066 infinity = pure_bytes_used_non_lisp + 1;
5067 bm_skip['\0'] = infinity;
5069 p = (const unsigned char *) non_lisp_beg + nbytes;
5070 start = 0;
5073 /* Check the last character (== '\0'). */
5076 start += bm_skip[*(p + start)];
5078 while (start <= start_max);
5080 if (start < infinity)
5081 /* Couldn't find the last character. */
5082 return NULL;
5084 /* No less than `infinity' means we could find the last
5085 character at `p[start - infinity]'. */
5086 start -= infinity;
5088 /* Check the remaining characters. */
5089 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5090 /* Found. */
5091 return non_lisp_beg + start;
5093 start += last_char_skip;
5095 while (start <= start_max);
5097 return NULL;
5101 /* Return a string allocated in pure space. DATA is a buffer holding
5102 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5103 means make the result string multibyte.
5105 Must get an error if pure storage is full, since if it cannot hold
5106 a large string it may be able to hold conses that point to that
5107 string; then the string is not protected from gc. */
5109 Lisp_Object
5110 make_pure_string (const char *data,
5111 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5113 Lisp_Object string;
5114 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5115 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5116 if (s->data == NULL)
5118 s->data = pure_alloc (nbytes + 1, -1);
5119 memcpy (s->data, data, nbytes);
5120 s->data[nbytes] = '\0';
5122 s->size = nchars;
5123 s->size_byte = multibyte ? nbytes : -1;
5124 s->intervals = NULL;
5125 XSETSTRING (string, s);
5126 return string;
5129 /* Return a string allocated in pure space. Do not
5130 allocate the string data, just point to DATA. */
5132 Lisp_Object
5133 make_pure_c_string (const char *data, ptrdiff_t nchars)
5135 Lisp_Object string;
5136 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5137 s->size = nchars;
5138 s->size_byte = -1;
5139 s->data = (unsigned char *) data;
5140 s->intervals = NULL;
5141 XSETSTRING (string, s);
5142 return string;
5145 /* Return a cons allocated from pure space. Give it pure copies
5146 of CAR as car and CDR as cdr. */
5148 Lisp_Object
5149 pure_cons (Lisp_Object car, Lisp_Object cdr)
5151 Lisp_Object new;
5152 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5153 XSETCONS (new, p);
5154 XSETCAR (new, Fpurecopy (car));
5155 XSETCDR (new, Fpurecopy (cdr));
5156 return new;
5160 /* Value is a float object with value NUM allocated from pure space. */
5162 static Lisp_Object
5163 make_pure_float (double num)
5165 Lisp_Object new;
5166 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5167 XSETFLOAT (new, p);
5168 XFLOAT_INIT (new, num);
5169 return new;
5173 /* Return a vector with room for LEN Lisp_Objects allocated from
5174 pure space. */
5176 static Lisp_Object
5177 make_pure_vector (ptrdiff_t len)
5179 Lisp_Object new;
5180 size_t size = header_size + len * word_size;
5181 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5182 XSETVECTOR (new, p);
5183 XVECTOR (new)->header.size = len;
5184 return new;
5188 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5189 doc: /* Make a copy of object OBJ in pure storage.
5190 Recursively copies contents of vectors and cons cells.
5191 Does not copy symbols. Copies strings without text properties. */)
5192 (register Lisp_Object obj)
5194 if (NILP (Vpurify_flag))
5195 return obj;
5197 if (PURE_POINTER_P (XPNTR (obj)))
5198 return obj;
5200 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5202 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5203 if (!NILP (tmp))
5204 return tmp;
5207 if (CONSP (obj))
5208 obj = pure_cons (XCAR (obj), XCDR (obj));
5209 else if (FLOATP (obj))
5210 obj = make_pure_float (XFLOAT_DATA (obj));
5211 else if (STRINGP (obj))
5212 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5213 SBYTES (obj),
5214 STRING_MULTIBYTE (obj));
5215 else if (COMPILEDP (obj) || VECTORP (obj))
5217 register struct Lisp_Vector *vec;
5218 register ptrdiff_t i;
5219 ptrdiff_t size;
5221 size = ASIZE (obj);
5222 if (size & PSEUDOVECTOR_FLAG)
5223 size &= PSEUDOVECTOR_SIZE_MASK;
5224 vec = XVECTOR (make_pure_vector (size));
5225 for (i = 0; i < size; i++)
5226 vec->contents[i] = Fpurecopy (AREF (obj, i));
5227 if (COMPILEDP (obj))
5229 XSETPVECTYPE (vec, PVEC_COMPILED);
5230 XSETCOMPILED (obj, vec);
5232 else
5233 XSETVECTOR (obj, vec);
5235 else if (MARKERP (obj))
5236 error ("Attempt to copy a marker to pure storage");
5237 else
5238 /* Not purified, don't hash-cons. */
5239 return obj;
5241 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5242 Fputhash (obj, obj, Vpurify_flag);
5244 return obj;
5249 /***********************************************************************
5250 Protection from GC
5251 ***********************************************************************/
5253 /* Put an entry in staticvec, pointing at the variable with address
5254 VARADDRESS. */
5256 void
5257 staticpro (Lisp_Object *varaddress)
5259 if (staticidx >= NSTATICS)
5260 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5261 staticvec[staticidx++] = varaddress;
5265 /***********************************************************************
5266 Protection from GC
5267 ***********************************************************************/
5269 /* Temporarily prevent garbage collection. */
5271 ptrdiff_t
5272 inhibit_garbage_collection (void)
5274 ptrdiff_t count = SPECPDL_INDEX ();
5276 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5277 return count;
5280 /* Used to avoid possible overflows when
5281 converting from C to Lisp integers. */
5283 static Lisp_Object
5284 bounded_number (EMACS_INT number)
5286 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5289 /* Calculate total bytes of live objects. */
5291 static size_t
5292 total_bytes_of_live_objects (void)
5294 size_t tot = 0;
5295 tot += total_conses * sizeof (struct Lisp_Cons);
5296 tot += total_symbols * sizeof (struct Lisp_Symbol);
5297 tot += total_markers * sizeof (union Lisp_Misc);
5298 tot += total_string_bytes;
5299 tot += total_vector_slots * word_size;
5300 tot += total_floats * sizeof (struct Lisp_Float);
5301 tot += total_intervals * sizeof (struct interval);
5302 tot += total_strings * sizeof (struct Lisp_String);
5303 return tot;
5306 #ifdef HAVE_WINDOW_SYSTEM
5308 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5309 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5311 static Lisp_Object
5312 compact_font_cache_entry (Lisp_Object entry)
5314 Lisp_Object tail, *prev = &entry;
5316 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5318 bool drop = 0;
5319 Lisp_Object obj = XCAR (tail);
5321 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5322 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5323 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5324 && VECTORP (XCDR (obj)))
5326 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5328 /* If font-spec is not marked, most likely all font-entities
5329 are not marked too. But we must be sure that nothing is
5330 marked within OBJ before we really drop it. */
5331 for (i = 0; i < size; i++)
5332 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5333 break;
5335 if (i == size)
5336 drop = 1;
5338 if (drop)
5339 *prev = XCDR (tail);
5340 else
5341 prev = xcdr_addr (tail);
5343 return entry;
5346 /* Compact font caches on all terminals and mark
5347 everything which is still here after compaction. */
5349 static void
5350 compact_font_caches (void)
5352 struct terminal *t;
5354 for (t = terminal_list; t; t = t->next_terminal)
5356 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5358 if (CONSP (cache))
5360 Lisp_Object entry;
5362 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5363 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5365 mark_object (cache);
5369 #else /* not HAVE_WINDOW_SYSTEM */
5371 #define compact_font_caches() (void)(0)
5373 #endif /* HAVE_WINDOW_SYSTEM */
5375 /* Remove (MARKER . DATA) entries with unmarked MARKER
5376 from buffer undo LIST and return changed list. */
5378 static Lisp_Object
5379 compact_undo_list (Lisp_Object list)
5381 Lisp_Object tail, *prev = &list;
5383 for (tail = list; CONSP (tail); tail = XCDR (tail))
5385 if (CONSP (XCAR (tail))
5386 && MARKERP (XCAR (XCAR (tail)))
5387 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5388 *prev = XCDR (tail);
5389 else
5390 prev = xcdr_addr (tail);
5392 return list;
5395 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5396 doc: /* Reclaim storage for Lisp objects no longer needed.
5397 Garbage collection happens automatically if you cons more than
5398 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5399 `garbage-collect' normally returns a list with info on amount of space in use,
5400 where each entry has the form (NAME SIZE USED FREE), where:
5401 - NAME is a symbol describing the kind of objects this entry represents,
5402 - SIZE is the number of bytes used by each one,
5403 - USED is the number of those objects that were found live in the heap,
5404 - FREE is the number of those objects that are not live but that Emacs
5405 keeps around for future allocations (maybe because it does not know how
5406 to return them to the OS).
5407 However, if there was overflow in pure space, `garbage-collect'
5408 returns nil, because real GC can't be done.
5409 See Info node `(elisp)Garbage Collection'. */)
5410 (void)
5412 struct buffer *nextb;
5413 char stack_top_variable;
5414 ptrdiff_t i;
5415 bool message_p;
5416 ptrdiff_t count = SPECPDL_INDEX ();
5417 struct timespec start;
5418 Lisp_Object retval = Qnil;
5419 size_t tot_before = 0;
5421 if (abort_on_gc)
5422 emacs_abort ();
5424 /* Can't GC if pure storage overflowed because we can't determine
5425 if something is a pure object or not. */
5426 if (pure_bytes_used_before_overflow)
5427 return Qnil;
5429 /* Record this function, so it appears on the profiler's backtraces. */
5430 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5432 check_cons_list ();
5434 /* Don't keep undo information around forever.
5435 Do this early on, so it is no problem if the user quits. */
5436 FOR_EACH_BUFFER (nextb)
5437 compact_buffer (nextb);
5439 if (profiler_memory_running)
5440 tot_before = total_bytes_of_live_objects ();
5442 start = current_timespec ();
5444 /* In case user calls debug_print during GC,
5445 don't let that cause a recursive GC. */
5446 consing_since_gc = 0;
5448 /* Save what's currently displayed in the echo area. */
5449 message_p = push_message ();
5450 record_unwind_protect_void (pop_message_unwind);
5452 /* Save a copy of the contents of the stack, for debugging. */
5453 #if MAX_SAVE_STACK > 0
5454 if (NILP (Vpurify_flag))
5456 char *stack;
5457 ptrdiff_t stack_size;
5458 if (&stack_top_variable < stack_bottom)
5460 stack = &stack_top_variable;
5461 stack_size = stack_bottom - &stack_top_variable;
5463 else
5465 stack = stack_bottom;
5466 stack_size = &stack_top_variable - stack_bottom;
5468 if (stack_size <= MAX_SAVE_STACK)
5470 if (stack_copy_size < stack_size)
5472 stack_copy = xrealloc (stack_copy, stack_size);
5473 stack_copy_size = stack_size;
5475 memcpy (stack_copy, stack, stack_size);
5478 #endif /* MAX_SAVE_STACK > 0 */
5480 if (garbage_collection_messages)
5481 message1_nolog ("Garbage collecting...");
5483 block_input ();
5485 shrink_regexp_cache ();
5487 gc_in_progress = 1;
5489 /* Mark all the special slots that serve as the roots of accessibility. */
5491 mark_buffer (&buffer_defaults);
5492 mark_buffer (&buffer_local_symbols);
5494 for (i = 0; i < staticidx; i++)
5495 mark_object (*staticvec[i]);
5497 mark_specpdl ();
5498 mark_terminals ();
5499 mark_kboards ();
5501 #ifdef USE_GTK
5502 xg_mark_data ();
5503 #endif
5505 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5506 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5507 mark_stack ();
5508 #else
5510 register struct gcpro *tail;
5511 for (tail = gcprolist; tail; tail = tail->next)
5512 for (i = 0; i < tail->nvars; i++)
5513 mark_object (tail->var[i]);
5515 mark_byte_stack ();
5516 #endif
5518 struct handler *handler;
5519 for (handler = handlerlist; handler; handler = handler->next)
5521 mark_object (handler->tag_or_ch);
5522 mark_object (handler->val);
5525 #ifdef HAVE_WINDOW_SYSTEM
5526 mark_fringe_data ();
5527 #endif
5529 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5530 mark_stack ();
5531 #endif
5533 /* Everything is now marked, except for the data in font caches
5534 and undo lists. They're compacted by removing an items which
5535 aren't reachable otherwise. */
5537 compact_font_caches ();
5539 FOR_EACH_BUFFER (nextb)
5541 if (!EQ (BVAR (nextb, undo_list), Qt))
5542 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5543 /* Now that we have stripped the elements that need not be
5544 in the undo_list any more, we can finally mark the list. */
5545 mark_object (BVAR (nextb, undo_list));
5548 gc_sweep ();
5550 /* Clear the mark bits that we set in certain root slots. */
5552 unmark_byte_stack ();
5553 VECTOR_UNMARK (&buffer_defaults);
5554 VECTOR_UNMARK (&buffer_local_symbols);
5556 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5557 dump_zombies ();
5558 #endif
5560 check_cons_list ();
5562 gc_in_progress = 0;
5564 unblock_input ();
5566 consing_since_gc = 0;
5567 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5568 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5570 gc_relative_threshold = 0;
5571 if (FLOATP (Vgc_cons_percentage))
5572 { /* Set gc_cons_combined_threshold. */
5573 double tot = total_bytes_of_live_objects ();
5575 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5576 if (0 < tot)
5578 if (tot < TYPE_MAXIMUM (EMACS_INT))
5579 gc_relative_threshold = tot;
5580 else
5581 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5585 if (garbage_collection_messages)
5587 if (message_p || minibuf_level > 0)
5588 restore_message ();
5589 else
5590 message1_nolog ("Garbage collecting...done");
5593 unbind_to (count, Qnil);
5595 Lisp_Object total[11];
5596 int total_size = 10;
5598 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5599 bounded_number (total_conses),
5600 bounded_number (total_free_conses));
5602 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5603 bounded_number (total_symbols),
5604 bounded_number (total_free_symbols));
5606 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5607 bounded_number (total_markers),
5608 bounded_number (total_free_markers));
5610 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5611 bounded_number (total_strings),
5612 bounded_number (total_free_strings));
5614 total[4] = list3 (Qstring_bytes, make_number (1),
5615 bounded_number (total_string_bytes));
5617 total[5] = list3 (Qvectors,
5618 make_number (header_size + sizeof (Lisp_Object)),
5619 bounded_number (total_vectors));
5621 total[6] = list4 (Qvector_slots, make_number (word_size),
5622 bounded_number (total_vector_slots),
5623 bounded_number (total_free_vector_slots));
5625 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5626 bounded_number (total_floats),
5627 bounded_number (total_free_floats));
5629 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5630 bounded_number (total_intervals),
5631 bounded_number (total_free_intervals));
5633 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5634 bounded_number (total_buffers));
5636 #ifdef DOUG_LEA_MALLOC
5637 total_size++;
5638 total[10] = list4 (Qheap, make_number (1024),
5639 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5640 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5641 #endif
5642 retval = Flist (total_size, total);
5645 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5647 /* Compute average percentage of zombies. */
5648 double nlive
5649 = (total_conses + total_symbols + total_markers + total_strings
5650 + total_vectors + total_floats + total_intervals + total_buffers);
5652 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5653 max_live = max (nlive, max_live);
5654 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5655 max_zombies = max (nzombies, max_zombies);
5656 ++ngcs;
5658 #endif
5660 if (!NILP (Vpost_gc_hook))
5662 ptrdiff_t gc_count = inhibit_garbage_collection ();
5663 safe_run_hooks (Qpost_gc_hook);
5664 unbind_to (gc_count, Qnil);
5667 /* Accumulate statistics. */
5668 if (FLOATP (Vgc_elapsed))
5670 struct timespec since_start = timespec_sub (current_timespec (), start);
5671 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5672 + timespectod (since_start));
5675 gcs_done++;
5677 /* Collect profiling data. */
5678 if (profiler_memory_running)
5680 size_t swept = 0;
5681 size_t tot_after = total_bytes_of_live_objects ();
5682 if (tot_before > tot_after)
5683 swept = tot_before - tot_after;
5684 malloc_probe (swept);
5687 return retval;
5691 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5692 only interesting objects referenced from glyphs are strings. */
5694 static void
5695 mark_glyph_matrix (struct glyph_matrix *matrix)
5697 struct glyph_row *row = matrix->rows;
5698 struct glyph_row *end = row + matrix->nrows;
5700 for (; row < end; ++row)
5701 if (row->enabled_p)
5703 int area;
5704 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5706 struct glyph *glyph = row->glyphs[area];
5707 struct glyph *end_glyph = glyph + row->used[area];
5709 for (; glyph < end_glyph; ++glyph)
5710 if (STRINGP (glyph->object)
5711 && !STRING_MARKED_P (XSTRING (glyph->object)))
5712 mark_object (glyph->object);
5717 /* Mark reference to a Lisp_Object.
5718 If the object referred to has not been seen yet, recursively mark
5719 all the references contained in it. */
5721 #define LAST_MARKED_SIZE 500
5722 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5723 static int last_marked_index;
5725 /* For debugging--call abort when we cdr down this many
5726 links of a list, in mark_object. In debugging,
5727 the call to abort will hit a breakpoint.
5728 Normally this is zero and the check never goes off. */
5729 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5731 static void
5732 mark_vectorlike (struct Lisp_Vector *ptr)
5734 ptrdiff_t size = ptr->header.size;
5735 ptrdiff_t i;
5737 eassert (!VECTOR_MARKED_P (ptr));
5738 VECTOR_MARK (ptr); /* Else mark it. */
5739 if (size & PSEUDOVECTOR_FLAG)
5740 size &= PSEUDOVECTOR_SIZE_MASK;
5742 /* Note that this size is not the memory-footprint size, but only
5743 the number of Lisp_Object fields that we should trace.
5744 The distinction is used e.g. by Lisp_Process which places extra
5745 non-Lisp_Object fields at the end of the structure... */
5746 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5747 mark_object (ptr->contents[i]);
5750 /* Like mark_vectorlike but optimized for char-tables (and
5751 sub-char-tables) assuming that the contents are mostly integers or
5752 symbols. */
5754 static void
5755 mark_char_table (struct Lisp_Vector *ptr)
5757 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5758 int i;
5760 eassert (!VECTOR_MARKED_P (ptr));
5761 VECTOR_MARK (ptr);
5762 for (i = 0; i < size; i++)
5764 Lisp_Object val = ptr->contents[i];
5766 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5767 continue;
5768 if (SUB_CHAR_TABLE_P (val))
5770 if (! VECTOR_MARKED_P (XVECTOR (val)))
5771 mark_char_table (XVECTOR (val));
5773 else
5774 mark_object (val);
5778 /* Mark the chain of overlays starting at PTR. */
5780 static void
5781 mark_overlay (struct Lisp_Overlay *ptr)
5783 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5785 ptr->gcmarkbit = 1;
5786 mark_object (ptr->start);
5787 mark_object (ptr->end);
5788 mark_object (ptr->plist);
5792 /* Mark Lisp_Objects and special pointers in BUFFER. */
5794 static void
5795 mark_buffer (struct buffer *buffer)
5797 /* This is handled much like other pseudovectors... */
5798 mark_vectorlike ((struct Lisp_Vector *) buffer);
5800 /* ...but there are some buffer-specific things. */
5802 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5804 /* For now, we just don't mark the undo_list. It's done later in
5805 a special way just before the sweep phase, and after stripping
5806 some of its elements that are not needed any more. */
5808 mark_overlay (buffer->overlays_before);
5809 mark_overlay (buffer->overlays_after);
5811 /* If this is an indirect buffer, mark its base buffer. */
5812 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5813 mark_buffer (buffer->base_buffer);
5816 /* Mark Lisp faces in the face cache C. */
5818 static void
5819 mark_face_cache (struct face_cache *c)
5821 if (c)
5823 int i, j;
5824 for (i = 0; i < c->used; ++i)
5826 struct face *face = FACE_FROM_ID (c->f, i);
5828 if (face)
5830 if (face->font && !VECTOR_MARKED_P (face->font))
5831 mark_vectorlike ((struct Lisp_Vector *) face->font);
5833 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5834 mark_object (face->lface[j]);
5840 /* Remove killed buffers or items whose car is a killed buffer from
5841 LIST, and mark other items. Return changed LIST, which is marked. */
5843 static Lisp_Object
5844 mark_discard_killed_buffers (Lisp_Object list)
5846 Lisp_Object tail, *prev = &list;
5848 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5849 tail = XCDR (tail))
5851 Lisp_Object tem = XCAR (tail);
5852 if (CONSP (tem))
5853 tem = XCAR (tem);
5854 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5855 *prev = XCDR (tail);
5856 else
5858 CONS_MARK (XCONS (tail));
5859 mark_object (XCAR (tail));
5860 prev = xcdr_addr (tail);
5863 mark_object (tail);
5864 return list;
5867 /* Determine type of generic Lisp_Object and mark it accordingly. */
5869 void
5870 mark_object (Lisp_Object arg)
5872 register Lisp_Object obj = arg;
5873 #ifdef GC_CHECK_MARKED_OBJECTS
5874 void *po;
5875 struct mem_node *m;
5876 #endif
5877 ptrdiff_t cdr_count = 0;
5879 loop:
5881 if (PURE_POINTER_P (XPNTR (obj)))
5882 return;
5884 last_marked[last_marked_index++] = obj;
5885 if (last_marked_index == LAST_MARKED_SIZE)
5886 last_marked_index = 0;
5888 /* Perform some sanity checks on the objects marked here. Abort if
5889 we encounter an object we know is bogus. This increases GC time
5890 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5891 #ifdef GC_CHECK_MARKED_OBJECTS
5893 po = (void *) XPNTR (obj);
5895 /* Check that the object pointed to by PO is known to be a Lisp
5896 structure allocated from the heap. */
5897 #define CHECK_ALLOCATED() \
5898 do { \
5899 m = mem_find (po); \
5900 if (m == MEM_NIL) \
5901 emacs_abort (); \
5902 } while (0)
5904 /* Check that the object pointed to by PO is live, using predicate
5905 function LIVEP. */
5906 #define CHECK_LIVE(LIVEP) \
5907 do { \
5908 if (!LIVEP (m, po)) \
5909 emacs_abort (); \
5910 } while (0)
5912 /* Check both of the above conditions. */
5913 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5914 do { \
5915 CHECK_ALLOCATED (); \
5916 CHECK_LIVE (LIVEP); \
5917 } while (0) \
5919 #else /* not GC_CHECK_MARKED_OBJECTS */
5921 #define CHECK_LIVE(LIVEP) (void) 0
5922 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5924 #endif /* not GC_CHECK_MARKED_OBJECTS */
5926 switch (XTYPE (obj))
5928 case Lisp_String:
5930 register struct Lisp_String *ptr = XSTRING (obj);
5931 if (STRING_MARKED_P (ptr))
5932 break;
5933 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5934 MARK_STRING (ptr);
5935 MARK_INTERVAL_TREE (ptr->intervals);
5936 #ifdef GC_CHECK_STRING_BYTES
5937 /* Check that the string size recorded in the string is the
5938 same as the one recorded in the sdata structure. */
5939 string_bytes (ptr);
5940 #endif /* GC_CHECK_STRING_BYTES */
5942 break;
5944 case Lisp_Vectorlike:
5946 register struct Lisp_Vector *ptr = XVECTOR (obj);
5947 register ptrdiff_t pvectype;
5949 if (VECTOR_MARKED_P (ptr))
5950 break;
5952 #ifdef GC_CHECK_MARKED_OBJECTS
5953 m = mem_find (po);
5954 if (m == MEM_NIL && !SUBRP (obj))
5955 emacs_abort ();
5956 #endif /* GC_CHECK_MARKED_OBJECTS */
5958 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5959 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5960 >> PSEUDOVECTOR_AREA_BITS);
5961 else
5962 pvectype = PVEC_NORMAL_VECTOR;
5964 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5965 CHECK_LIVE (live_vector_p);
5967 switch (pvectype)
5969 case PVEC_BUFFER:
5970 #ifdef GC_CHECK_MARKED_OBJECTS
5972 struct buffer *b;
5973 FOR_EACH_BUFFER (b)
5974 if (b == po)
5975 break;
5976 if (b == NULL)
5977 emacs_abort ();
5979 #endif /* GC_CHECK_MARKED_OBJECTS */
5980 mark_buffer ((struct buffer *) ptr);
5981 break;
5983 case PVEC_COMPILED:
5984 { /* We could treat this just like a vector, but it is better
5985 to save the COMPILED_CONSTANTS element for last and avoid
5986 recursion there. */
5987 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5988 int i;
5990 VECTOR_MARK (ptr);
5991 for (i = 0; i < size; i++)
5992 if (i != COMPILED_CONSTANTS)
5993 mark_object (ptr->contents[i]);
5994 if (size > COMPILED_CONSTANTS)
5996 obj = ptr->contents[COMPILED_CONSTANTS];
5997 goto loop;
6000 break;
6002 case PVEC_FRAME:
6004 struct frame *f = (struct frame *) ptr;
6006 mark_vectorlike (ptr);
6007 mark_face_cache (f->face_cache);
6008 #ifdef HAVE_WINDOW_SYSTEM
6009 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6011 struct font *font = FRAME_FONT (f);
6013 if (font && !VECTOR_MARKED_P (font))
6014 mark_vectorlike ((struct Lisp_Vector *) font);
6016 #endif
6018 break;
6020 case PVEC_WINDOW:
6022 struct window *w = (struct window *) ptr;
6024 mark_vectorlike (ptr);
6026 /* Mark glyph matrices, if any. Marking window
6027 matrices is sufficient because frame matrices
6028 use the same glyph memory. */
6029 if (w->current_matrix)
6031 mark_glyph_matrix (w->current_matrix);
6032 mark_glyph_matrix (w->desired_matrix);
6035 /* Filter out killed buffers from both buffer lists
6036 in attempt to help GC to reclaim killed buffers faster.
6037 We can do it elsewhere for live windows, but this is the
6038 best place to do it for dead windows. */
6039 wset_prev_buffers
6040 (w, mark_discard_killed_buffers (w->prev_buffers));
6041 wset_next_buffers
6042 (w, mark_discard_killed_buffers (w->next_buffers));
6044 break;
6046 case PVEC_HASH_TABLE:
6048 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6050 mark_vectorlike (ptr);
6051 mark_object (h->test.name);
6052 mark_object (h->test.user_hash_function);
6053 mark_object (h->test.user_cmp_function);
6054 /* If hash table is not weak, mark all keys and values.
6055 For weak tables, mark only the vector. */
6056 if (NILP (h->weak))
6057 mark_object (h->key_and_value);
6058 else
6059 VECTOR_MARK (XVECTOR (h->key_and_value));
6061 break;
6063 case PVEC_CHAR_TABLE:
6064 mark_char_table (ptr);
6065 break;
6067 case PVEC_BOOL_VECTOR:
6068 /* No Lisp_Objects to mark in a bool vector. */
6069 VECTOR_MARK (ptr);
6070 break;
6072 case PVEC_SUBR:
6073 break;
6075 case PVEC_FREE:
6076 emacs_abort ();
6078 default:
6079 mark_vectorlike (ptr);
6082 break;
6084 case Lisp_Symbol:
6086 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6087 struct Lisp_Symbol *ptrx;
6089 if (ptr->gcmarkbit)
6090 break;
6091 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6092 ptr->gcmarkbit = 1;
6093 mark_object (ptr->function);
6094 mark_object (ptr->plist);
6095 switch (ptr->redirect)
6097 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6098 case SYMBOL_VARALIAS:
6100 Lisp_Object tem;
6101 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6102 mark_object (tem);
6103 break;
6105 case SYMBOL_LOCALIZED:
6107 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6108 Lisp_Object where = blv->where;
6109 /* If the value is set up for a killed buffer or deleted
6110 frame, restore it's global binding. If the value is
6111 forwarded to a C variable, either it's not a Lisp_Object
6112 var, or it's staticpro'd already. */
6113 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6114 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6115 swap_in_global_binding (ptr);
6116 mark_object (blv->where);
6117 mark_object (blv->valcell);
6118 mark_object (blv->defcell);
6119 break;
6121 case SYMBOL_FORWARDED:
6122 /* If the value is forwarded to a buffer or keyboard field,
6123 these are marked when we see the corresponding object.
6124 And if it's forwarded to a C variable, either it's not
6125 a Lisp_Object var, or it's staticpro'd already. */
6126 break;
6127 default: emacs_abort ();
6129 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6130 MARK_STRING (XSTRING (ptr->name));
6131 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6133 ptr = ptr->next;
6134 if (ptr)
6136 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6137 XSETSYMBOL (obj, ptrx);
6138 goto loop;
6141 break;
6143 case Lisp_Misc:
6144 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6146 if (XMISCANY (obj)->gcmarkbit)
6147 break;
6149 switch (XMISCTYPE (obj))
6151 case Lisp_Misc_Marker:
6152 /* DO NOT mark thru the marker's chain.
6153 The buffer's markers chain does not preserve markers from gc;
6154 instead, markers are removed from the chain when freed by gc. */
6155 XMISCANY (obj)->gcmarkbit = 1;
6156 break;
6158 case Lisp_Misc_Save_Value:
6159 XMISCANY (obj)->gcmarkbit = 1;
6161 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6162 /* If `save_type' is zero, `data[0].pointer' is the address
6163 of a memory area containing `data[1].integer' potential
6164 Lisp_Objects. */
6165 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6167 Lisp_Object *p = ptr->data[0].pointer;
6168 ptrdiff_t nelt;
6169 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6170 mark_maybe_object (*p);
6172 else
6174 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6175 int i;
6176 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6177 if (save_type (ptr, i) == SAVE_OBJECT)
6178 mark_object (ptr->data[i].object);
6181 break;
6183 case Lisp_Misc_Overlay:
6184 mark_overlay (XOVERLAY (obj));
6185 break;
6187 default:
6188 emacs_abort ();
6190 break;
6192 case Lisp_Cons:
6194 register struct Lisp_Cons *ptr = XCONS (obj);
6195 if (CONS_MARKED_P (ptr))
6196 break;
6197 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6198 CONS_MARK (ptr);
6199 /* If the cdr is nil, avoid recursion for the car. */
6200 if (EQ (ptr->u.cdr, Qnil))
6202 obj = ptr->car;
6203 cdr_count = 0;
6204 goto loop;
6206 mark_object (ptr->car);
6207 obj = ptr->u.cdr;
6208 cdr_count++;
6209 if (cdr_count == mark_object_loop_halt)
6210 emacs_abort ();
6211 goto loop;
6214 case Lisp_Float:
6215 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6216 FLOAT_MARK (XFLOAT (obj));
6217 break;
6219 case_Lisp_Int:
6220 break;
6222 default:
6223 emacs_abort ();
6226 #undef CHECK_LIVE
6227 #undef CHECK_ALLOCATED
6228 #undef CHECK_ALLOCATED_AND_LIVE
6230 /* Mark the Lisp pointers in the terminal objects.
6231 Called by Fgarbage_collect. */
6233 static void
6234 mark_terminals (void)
6236 struct terminal *t;
6237 for (t = terminal_list; t; t = t->next_terminal)
6239 eassert (t->name != NULL);
6240 #ifdef HAVE_WINDOW_SYSTEM
6241 /* If a terminal object is reachable from a stacpro'ed object,
6242 it might have been marked already. Make sure the image cache
6243 gets marked. */
6244 mark_image_cache (t->image_cache);
6245 #endif /* HAVE_WINDOW_SYSTEM */
6246 if (!VECTOR_MARKED_P (t))
6247 mark_vectorlike ((struct Lisp_Vector *)t);
6253 /* Value is non-zero if OBJ will survive the current GC because it's
6254 either marked or does not need to be marked to survive. */
6256 bool
6257 survives_gc_p (Lisp_Object obj)
6259 bool survives_p;
6261 switch (XTYPE (obj))
6263 case_Lisp_Int:
6264 survives_p = 1;
6265 break;
6267 case Lisp_Symbol:
6268 survives_p = XSYMBOL (obj)->gcmarkbit;
6269 break;
6271 case Lisp_Misc:
6272 survives_p = XMISCANY (obj)->gcmarkbit;
6273 break;
6275 case Lisp_String:
6276 survives_p = STRING_MARKED_P (XSTRING (obj));
6277 break;
6279 case Lisp_Vectorlike:
6280 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6281 break;
6283 case Lisp_Cons:
6284 survives_p = CONS_MARKED_P (XCONS (obj));
6285 break;
6287 case Lisp_Float:
6288 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6289 break;
6291 default:
6292 emacs_abort ();
6295 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6300 /* Sweep: find all structures not marked, and free them. */
6302 static void
6303 gc_sweep (void)
6305 /* Remove or mark entries in weak hash tables.
6306 This must be done before any object is unmarked. */
6307 sweep_weak_hash_tables ();
6309 sweep_strings ();
6310 check_string_bytes (!noninteractive);
6312 /* Put all unmarked conses on free list */
6314 register struct cons_block *cblk;
6315 struct cons_block **cprev = &cons_block;
6316 register int lim = cons_block_index;
6317 EMACS_INT num_free = 0, num_used = 0;
6319 cons_free_list = 0;
6321 for (cblk = cons_block; cblk; cblk = *cprev)
6323 register int i = 0;
6324 int this_free = 0;
6325 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6327 /* Scan the mark bits an int at a time. */
6328 for (i = 0; i < ilim; i++)
6330 if (cblk->gcmarkbits[i] == -1)
6332 /* Fast path - all cons cells for this int are marked. */
6333 cblk->gcmarkbits[i] = 0;
6334 num_used += BITS_PER_INT;
6336 else
6338 /* Some cons cells for this int are not marked.
6339 Find which ones, and free them. */
6340 int start, pos, stop;
6342 start = i * BITS_PER_INT;
6343 stop = lim - start;
6344 if (stop > BITS_PER_INT)
6345 stop = BITS_PER_INT;
6346 stop += start;
6348 for (pos = start; pos < stop; pos++)
6350 if (!CONS_MARKED_P (&cblk->conses[pos]))
6352 this_free++;
6353 cblk->conses[pos].u.chain = cons_free_list;
6354 cons_free_list = &cblk->conses[pos];
6355 #if GC_MARK_STACK
6356 cons_free_list->car = Vdead;
6357 #endif
6359 else
6361 num_used++;
6362 CONS_UNMARK (&cblk->conses[pos]);
6368 lim = CONS_BLOCK_SIZE;
6369 /* If this block contains only free conses and we have already
6370 seen more than two blocks worth of free conses then deallocate
6371 this block. */
6372 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6374 *cprev = cblk->next;
6375 /* Unhook from the free list. */
6376 cons_free_list = cblk->conses[0].u.chain;
6377 lisp_align_free (cblk);
6379 else
6381 num_free += this_free;
6382 cprev = &cblk->next;
6385 total_conses = num_used;
6386 total_free_conses = num_free;
6389 /* Put all unmarked floats on free list */
6391 register struct float_block *fblk;
6392 struct float_block **fprev = &float_block;
6393 register int lim = float_block_index;
6394 EMACS_INT num_free = 0, num_used = 0;
6396 float_free_list = 0;
6398 for (fblk = float_block; fblk; fblk = *fprev)
6400 register int i;
6401 int this_free = 0;
6402 for (i = 0; i < lim; i++)
6403 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6405 this_free++;
6406 fblk->floats[i].u.chain = float_free_list;
6407 float_free_list = &fblk->floats[i];
6409 else
6411 num_used++;
6412 FLOAT_UNMARK (&fblk->floats[i]);
6414 lim = FLOAT_BLOCK_SIZE;
6415 /* If this block contains only free floats and we have already
6416 seen more than two blocks worth of free floats then deallocate
6417 this block. */
6418 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6420 *fprev = fblk->next;
6421 /* Unhook from the free list. */
6422 float_free_list = fblk->floats[0].u.chain;
6423 lisp_align_free (fblk);
6425 else
6427 num_free += this_free;
6428 fprev = &fblk->next;
6431 total_floats = num_used;
6432 total_free_floats = num_free;
6435 /* Put all unmarked intervals on free list */
6437 register struct interval_block *iblk;
6438 struct interval_block **iprev = &interval_block;
6439 register int lim = interval_block_index;
6440 EMACS_INT num_free = 0, num_used = 0;
6442 interval_free_list = 0;
6444 for (iblk = interval_block; iblk; iblk = *iprev)
6446 register int i;
6447 int this_free = 0;
6449 for (i = 0; i < lim; i++)
6451 if (!iblk->intervals[i].gcmarkbit)
6453 set_interval_parent (&iblk->intervals[i], interval_free_list);
6454 interval_free_list = &iblk->intervals[i];
6455 this_free++;
6457 else
6459 num_used++;
6460 iblk->intervals[i].gcmarkbit = 0;
6463 lim = INTERVAL_BLOCK_SIZE;
6464 /* If this block contains only free intervals and we have already
6465 seen more than two blocks worth of free intervals then
6466 deallocate this block. */
6467 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6469 *iprev = iblk->next;
6470 /* Unhook from the free list. */
6471 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6472 lisp_free (iblk);
6474 else
6476 num_free += this_free;
6477 iprev = &iblk->next;
6480 total_intervals = num_used;
6481 total_free_intervals = num_free;
6484 /* Put all unmarked symbols on free list */
6486 register struct symbol_block *sblk;
6487 struct symbol_block **sprev = &symbol_block;
6488 register int lim = symbol_block_index;
6489 EMACS_INT num_free = 0, num_used = 0;
6491 symbol_free_list = NULL;
6493 for (sblk = symbol_block; sblk; sblk = *sprev)
6495 int this_free = 0;
6496 union aligned_Lisp_Symbol *sym = sblk->symbols;
6497 union aligned_Lisp_Symbol *end = sym + lim;
6499 for (; sym < end; ++sym)
6501 /* Check if the symbol was created during loadup. In such a case
6502 it might be pointed to by pure bytecode which we don't trace,
6503 so we conservatively assume that it is live. */
6504 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6506 if (!sym->s.gcmarkbit && !pure_p)
6508 if (sym->s.redirect == SYMBOL_LOCALIZED)
6509 xfree (SYMBOL_BLV (&sym->s));
6510 sym->s.next = symbol_free_list;
6511 symbol_free_list = &sym->s;
6512 #if GC_MARK_STACK
6513 symbol_free_list->function = Vdead;
6514 #endif
6515 ++this_free;
6517 else
6519 ++num_used;
6520 if (!pure_p)
6521 UNMARK_STRING (XSTRING (sym->s.name));
6522 sym->s.gcmarkbit = 0;
6526 lim = SYMBOL_BLOCK_SIZE;
6527 /* If this block contains only free symbols and we have already
6528 seen more than two blocks worth of free symbols then deallocate
6529 this block. */
6530 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6532 *sprev = sblk->next;
6533 /* Unhook from the free list. */
6534 symbol_free_list = sblk->symbols[0].s.next;
6535 lisp_free (sblk);
6537 else
6539 num_free += this_free;
6540 sprev = &sblk->next;
6543 total_symbols = num_used;
6544 total_free_symbols = num_free;
6547 /* Put all unmarked misc's on free list.
6548 For a marker, first unchain it from the buffer it points into. */
6550 register struct marker_block *mblk;
6551 struct marker_block **mprev = &marker_block;
6552 register int lim = marker_block_index;
6553 EMACS_INT num_free = 0, num_used = 0;
6555 marker_free_list = 0;
6557 for (mblk = marker_block; mblk; mblk = *mprev)
6559 register int i;
6560 int this_free = 0;
6562 for (i = 0; i < lim; i++)
6564 if (!mblk->markers[i].m.u_any.gcmarkbit)
6566 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6567 unchain_marker (&mblk->markers[i].m.u_marker);
6568 /* Set the type of the freed object to Lisp_Misc_Free.
6569 We could leave the type alone, since nobody checks it,
6570 but this might catch bugs faster. */
6571 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6572 mblk->markers[i].m.u_free.chain = marker_free_list;
6573 marker_free_list = &mblk->markers[i].m;
6574 this_free++;
6576 else
6578 num_used++;
6579 mblk->markers[i].m.u_any.gcmarkbit = 0;
6582 lim = MARKER_BLOCK_SIZE;
6583 /* If this block contains only free markers and we have already
6584 seen more than two blocks worth of free markers then deallocate
6585 this block. */
6586 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6588 *mprev = mblk->next;
6589 /* Unhook from the free list. */
6590 marker_free_list = mblk->markers[0].m.u_free.chain;
6591 lisp_free (mblk);
6593 else
6595 num_free += this_free;
6596 mprev = &mblk->next;
6600 total_markers = num_used;
6601 total_free_markers = num_free;
6604 /* Free all unmarked buffers */
6606 register struct buffer *buffer, **bprev = &all_buffers;
6608 total_buffers = 0;
6609 for (buffer = all_buffers; buffer; buffer = *bprev)
6610 if (!VECTOR_MARKED_P (buffer))
6612 *bprev = buffer->next;
6613 lisp_free (buffer);
6615 else
6617 VECTOR_UNMARK (buffer);
6618 /* Do not use buffer_(set|get)_intervals here. */
6619 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6620 total_buffers++;
6621 bprev = &buffer->next;
6625 sweep_vectors ();
6626 check_string_bytes (!noninteractive);
6632 /* Debugging aids. */
6634 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6635 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6636 This may be helpful in debugging Emacs's memory usage.
6637 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6638 (void)
6640 Lisp_Object end;
6642 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6644 return end;
6647 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6648 doc: /* Return a list of counters that measure how much consing there has been.
6649 Each of these counters increments for a certain kind of object.
6650 The counters wrap around from the largest positive integer to zero.
6651 Garbage collection does not decrease them.
6652 The elements of the value are as follows:
6653 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6654 All are in units of 1 = one object consed
6655 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6656 objects consed.
6657 MISCS include overlays, markers, and some internal types.
6658 Frames, windows, buffers, and subprocesses count as vectors
6659 (but the contents of a buffer's text do not count here). */)
6660 (void)
6662 return listn (CONSTYPE_HEAP, 8,
6663 bounded_number (cons_cells_consed),
6664 bounded_number (floats_consed),
6665 bounded_number (vector_cells_consed),
6666 bounded_number (symbols_consed),
6667 bounded_number (string_chars_consed),
6668 bounded_number (misc_objects_consed),
6669 bounded_number (intervals_consed),
6670 bounded_number (strings_consed));
6673 /* Find at most FIND_MAX symbols which have OBJ as their value or
6674 function. This is used in gdbinit's `xwhichsymbols' command. */
6676 Lisp_Object
6677 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6679 struct symbol_block *sblk;
6680 ptrdiff_t gc_count = inhibit_garbage_collection ();
6681 Lisp_Object found = Qnil;
6683 if (! DEADP (obj))
6685 for (sblk = symbol_block; sblk; sblk = sblk->next)
6687 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6688 int bn;
6690 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6692 struct Lisp_Symbol *sym = &aligned_sym->s;
6693 Lisp_Object val;
6694 Lisp_Object tem;
6696 if (sblk == symbol_block && bn >= symbol_block_index)
6697 break;
6699 XSETSYMBOL (tem, sym);
6700 val = find_symbol_value (tem);
6701 if (EQ (val, obj)
6702 || EQ (sym->function, obj)
6703 || (!NILP (sym->function)
6704 && COMPILEDP (sym->function)
6705 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6706 || (!NILP (val)
6707 && COMPILEDP (val)
6708 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6710 found = Fcons (tem, found);
6711 if (--find_max == 0)
6712 goto out;
6718 out:
6719 unbind_to (gc_count, Qnil);
6720 return found;
6723 #ifdef ENABLE_CHECKING
6725 bool suppress_checking;
6727 void
6728 die (const char *msg, const char *file, int line)
6730 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6731 file, line, msg);
6732 terminate_due_to_signal (SIGABRT, INT_MAX);
6734 #endif
6736 /* Initialization. */
6738 void
6739 init_alloc_once (void)
6741 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6742 purebeg = PUREBEG;
6743 pure_size = PURESIZE;
6745 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6746 mem_init ();
6747 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6748 #endif
6750 #ifdef DOUG_LEA_MALLOC
6751 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6752 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6753 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6754 #endif
6755 init_strings ();
6756 init_vectors ();
6758 refill_memory_reserve ();
6759 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6762 void
6763 init_alloc (void)
6765 gcprolist = 0;
6766 byte_stack_list = 0;
6767 #if GC_MARK_STACK
6768 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6769 setjmp_tested_p = longjmps_done = 0;
6770 #endif
6771 #endif
6772 Vgc_elapsed = make_float (0.0);
6773 gcs_done = 0;
6775 #if USE_VALGRIND
6776 valgrind_p = RUNNING_ON_VALGRIND != 0;
6777 #endif
6780 void
6781 syms_of_alloc (void)
6783 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6784 doc: /* Number of bytes of consing between garbage collections.
6785 Garbage collection can happen automatically once this many bytes have been
6786 allocated since the last garbage collection. All data types count.
6788 Garbage collection happens automatically only when `eval' is called.
6790 By binding this temporarily to a large number, you can effectively
6791 prevent garbage collection during a part of the program.
6792 See also `gc-cons-percentage'. */);
6794 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6795 doc: /* Portion of the heap used for allocation.
6796 Garbage collection can happen automatically once this portion of the heap
6797 has been allocated since the last garbage collection.
6798 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6799 Vgc_cons_percentage = make_float (0.1);
6801 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6802 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6804 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6805 doc: /* Number of cons cells that have been consed so far. */);
6807 DEFVAR_INT ("floats-consed", floats_consed,
6808 doc: /* Number of floats that have been consed so far. */);
6810 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6811 doc: /* Number of vector cells that have been consed so far. */);
6813 DEFVAR_INT ("symbols-consed", symbols_consed,
6814 doc: /* Number of symbols that have been consed so far. */);
6816 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6817 doc: /* Number of string characters that have been consed so far. */);
6819 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6820 doc: /* Number of miscellaneous objects that have been consed so far.
6821 These include markers and overlays, plus certain objects not visible
6822 to users. */);
6824 DEFVAR_INT ("intervals-consed", intervals_consed,
6825 doc: /* Number of intervals that have been consed so far. */);
6827 DEFVAR_INT ("strings-consed", strings_consed,
6828 doc: /* Number of strings that have been consed so far. */);
6830 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6831 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6832 This means that certain objects should be allocated in shared (pure) space.
6833 It can also be set to a hash-table, in which case this table is used to
6834 do hash-consing of the objects allocated to pure space. */);
6836 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6837 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6838 garbage_collection_messages = 0;
6840 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6841 doc: /* Hook run after garbage collection has finished. */);
6842 Vpost_gc_hook = Qnil;
6843 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6845 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6846 doc: /* Precomputed `signal' argument for memory-full error. */);
6847 /* We build this in advance because if we wait until we need it, we might
6848 not be able to allocate the memory to hold it. */
6849 Vmemory_signal_data
6850 = listn (CONSTYPE_PURE, 2, Qerror,
6851 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6853 DEFVAR_LISP ("memory-full", Vmemory_full,
6854 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6855 Vmemory_full = Qnil;
6857 DEFSYM (Qconses, "conses");
6858 DEFSYM (Qsymbols, "symbols");
6859 DEFSYM (Qmiscs, "miscs");
6860 DEFSYM (Qstrings, "strings");
6861 DEFSYM (Qvectors, "vectors");
6862 DEFSYM (Qfloats, "floats");
6863 DEFSYM (Qintervals, "intervals");
6864 DEFSYM (Qbuffers, "buffers");
6865 DEFSYM (Qstring_bytes, "string-bytes");
6866 DEFSYM (Qvector_slots, "vector-slots");
6867 DEFSYM (Qheap, "heap");
6868 DEFSYM (Qautomatic_gc, "Automatic GC");
6870 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6871 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6873 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6874 doc: /* Accumulated time elapsed in garbage collections.
6875 The time is in seconds as a floating point value. */);
6876 DEFVAR_INT ("gcs-done", gcs_done,
6877 doc: /* Accumulated number of garbage collections done. */);
6879 defsubr (&Scons);
6880 defsubr (&Slist);
6881 defsubr (&Svector);
6882 defsubr (&Smake_byte_code);
6883 defsubr (&Smake_list);
6884 defsubr (&Smake_vector);
6885 defsubr (&Smake_string);
6886 defsubr (&Smake_bool_vector);
6887 defsubr (&Smake_symbol);
6888 defsubr (&Smake_marker);
6889 defsubr (&Spurecopy);
6890 defsubr (&Sgarbage_collect);
6891 defsubr (&Smemory_limit);
6892 defsubr (&Smemory_use_counts);
6894 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6895 defsubr (&Sgc_status);
6896 #endif
6899 /* When compiled with GCC, GDB might say "No enum type named
6900 pvec_type" if we don't have at least one symbol with that type, and
6901 then xbacktrace could fail. Similarly for the other enums and
6902 their values. Some non-GCC compilers don't like these constructs. */
6903 #ifdef __GNUC__
6904 union
6906 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6907 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6908 enum char_bits char_bits;
6909 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6910 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6911 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6912 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6913 enum Lisp_Bits Lisp_Bits;
6914 enum Lisp_Compiled Lisp_Compiled;
6915 enum maxargs maxargs;
6916 enum MAX_ALLOCA MAX_ALLOCA;
6917 enum More_Lisp_Bits More_Lisp_Bits;
6918 enum pvec_type pvec_type;
6919 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6920 #endif /* __GNUC__ */