1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993-2013 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 - structure the opcode space into opcode+flag.
22 - merge with glibc's regex.[ch].
23 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
24 need to modify the compiled regexp so that re_match can be reentrant.
25 - get rid of on_failure_jump_smart by doing the optimization in re_comp
26 rather than at run-time, so that re_match can be reentrant.
29 /* AIX requires this to be the first thing in the file. */
30 #if defined _AIX && !defined REGEX_MALLOC
34 /* Ignore some GCC warnings for now. This section should go away
35 once the Emacs and Gnulib regex code is merged. */
36 #if 4 < __GNUC__ + (5 <= __GNUC_MINOR__) || defined __clang__
37 # pragma GCC diagnostic ignored "-Wstrict-overflow"
39 # pragma GCC diagnostic ignored "-Wunused-function"
40 # pragma GCC diagnostic ignored "-Wunused-macros"
41 # pragma GCC diagnostic ignored "-Wunused-result"
42 # pragma GCC diagnostic ignored "-Wunused-variable"
46 #if 4 < __GNUC__ + (5 <= __GNUC_MINOR__) && ! defined __clang__
47 # pragma GCC diagnostic ignored "-Wunused-but-set-variable"
55 /* We need this for `regex.h', and perhaps for the Emacs include files. */
56 # include <sys/types.h>
59 /* Whether to use ISO C Amendment 1 wide char functions.
60 Those should not be used for Emacs since it uses its own. */
62 #define WIDE_CHAR_SUPPORT 1
64 #define WIDE_CHAR_SUPPORT \
65 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
68 /* For platform which support the ISO C amendment 1 functionality we
69 support user defined character classes. */
71 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
77 /* We have to keep the namespace clean. */
78 # define regfree(preg) __regfree (preg)
79 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
80 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
81 # define regerror(err_code, preg, errbuf, errbuf_size) \
82 __regerror (err_code, preg, errbuf, errbuf_size)
83 # define re_set_registers(bu, re, nu, st, en) \
84 __re_set_registers (bu, re, nu, st, en)
85 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
86 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
87 # define re_match(bufp, string, size, pos, regs) \
88 __re_match (bufp, string, size, pos, regs)
89 # define re_search(bufp, string, size, startpos, range, regs) \
90 __re_search (bufp, string, size, startpos, range, regs)
91 # define re_compile_pattern(pattern, length, bufp) \
92 __re_compile_pattern (pattern, length, bufp)
93 # define re_set_syntax(syntax) __re_set_syntax (syntax)
94 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
95 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
96 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
98 /* Make sure we call libc's function even if the user overrides them. */
99 # define btowc __btowc
100 # define iswctype __iswctype
101 # define wctype __wctype
103 # define WEAK_ALIAS(a,b) weak_alias (a, b)
105 /* We are also using some library internals. */
106 # include <locale/localeinfo.h>
107 # include <locale/elem-hash.h>
108 # include <langinfo.h>
110 # define WEAK_ALIAS(a,b)
113 /* This is for other GNU distributions with internationalized messages. */
114 #if HAVE_LIBINTL_H || defined _LIBC
115 # include <libintl.h>
117 # define gettext(msgid) (msgid)
121 /* This define is so xgettext can find the internationalizable
123 # define gettext_noop(String) String
126 /* The `emacs' switch turns on certain matching commands
127 that make sense only in Emacs. */
131 # include "character.h"
134 /* Make syntax table lookup grant data in gl_state. */
135 # define SYNTAX_ENTRY_VIA_PROPERTY
138 # include "category.h"
143 # define malloc xmalloc
147 # define realloc xrealloc
153 /* Converts the pointer to the char to BEG-based offset from the start. */
154 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
155 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
157 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
158 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
159 # define RE_STRING_CHAR(p, multibyte) \
160 (multibyte ? (STRING_CHAR (p)) : (*(p)))
161 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
162 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
164 # define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
166 # define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
168 /* Set C a (possibly converted to multibyte) character before P. P
169 points into a string which is the virtual concatenation of STR1
170 (which ends at END1) or STR2 (which ends at END2). */
171 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
173 if (target_multibyte) \
175 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
176 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
177 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
178 c = STRING_CHAR (dtemp); \
182 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
183 (c) = RE_CHAR_TO_MULTIBYTE (c); \
187 /* Set C a (possibly converted to multibyte) character at P, and set
188 LEN to the byte length of that character. */
189 # define GET_CHAR_AFTER(c, p, len) \
191 if (target_multibyte) \
192 (c) = STRING_CHAR_AND_LENGTH (p, len); \
197 (c) = RE_CHAR_TO_MULTIBYTE (c); \
201 #else /* not emacs */
203 /* If we are not linking with Emacs proper,
204 we can't use the relocating allocator
205 even if config.h says that we can. */
210 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
213 xmalloc (size_t size
)
215 void *val
= malloc (size
);
218 write (2, "virtual memory exhausted\n", 25);
225 xrealloc (void *block
, size_t size
)
228 /* We must call malloc explicitly when BLOCK is 0, since some
229 reallocs don't do this. */
233 val
= realloc (block
, size
);
236 write (2, "virtual memory exhausted\n", 25);
245 # define malloc xmalloc
249 # define realloc xrealloc
251 # include <stdbool.h>
254 /* Define the syntax stuff for \<, \>, etc. */
256 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
257 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1, Ssymbol
= 2 };
259 /* Dummy macros for non-Emacs environments. */
260 # define CHAR_CHARSET(c) 0
261 # define CHARSET_LEADING_CODE_BASE(c) 0
262 # define MAX_MULTIBYTE_LENGTH 1
263 # define RE_MULTIBYTE_P(x) 0
264 # define RE_TARGET_MULTIBYTE_P(x) 0
265 # define WORD_BOUNDARY_P(c1, c2) (0)
266 # define CHAR_HEAD_P(p) (1)
267 # define SINGLE_BYTE_CHAR_P(c) (1)
268 # define SAME_CHARSET_P(c1, c2) (1)
269 # define BYTES_BY_CHAR_HEAD(p) (1)
270 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
271 # define STRING_CHAR(p) (*(p))
272 # define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
273 # define CHAR_STRING(c, s) (*(s) = (c), 1)
274 # define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
275 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
276 # define RE_CHAR_TO_MULTIBYTE(c) (c)
277 # define RE_CHAR_TO_UNIBYTE(c) (c)
278 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
279 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
280 # define GET_CHAR_AFTER(c, p, len) \
282 # define MAKE_CHAR(charset, c1, c2) (c1)
283 # define BYTE8_TO_CHAR(c) (c)
284 # define CHAR_BYTE8_P(c) (0)
285 # define CHAR_LEADING_CODE(c) (c)
287 #endif /* not emacs */
290 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
291 # define RE_TRANSLATE_P(TBL) (TBL)
294 /* Get the interface, including the syntax bits. */
297 /* isalpha etc. are used for the character classes. */
302 /* 1 if C is an ASCII character. */
303 # define IS_REAL_ASCII(c) ((c) < 0200)
305 /* 1 if C is a unibyte character. */
306 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
308 /* The Emacs definitions should not be directly affected by locales. */
310 /* In Emacs, these are only used for single-byte characters. */
311 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
312 # define ISCNTRL(c) ((c) < ' ')
313 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
314 || ((c) >= 'a' && (c) <= 'f') \
315 || ((c) >= 'A' && (c) <= 'F'))
317 /* This is only used for single-byte characters. */
318 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
320 /* The rest must handle multibyte characters. */
322 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
323 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
326 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
327 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
330 # define ISALNUM(c) (IS_REAL_ASCII (c) \
331 ? (((c) >= 'a' && (c) <= 'z') \
332 || ((c) >= 'A' && (c) <= 'Z') \
333 || ((c) >= '0' && (c) <= '9')) \
334 : SYNTAX (c) == Sword)
336 # define ISALPHA(c) (IS_REAL_ASCII (c) \
337 ? (((c) >= 'a' && (c) <= 'z') \
338 || ((c) >= 'A' && (c) <= 'Z')) \
339 : SYNTAX (c) == Sword)
341 # define ISLOWER(c) lowercasep (c)
343 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
344 ? ((c) > ' ' && (c) < 0177 \
345 && !(((c) >= 'a' && (c) <= 'z') \
346 || ((c) >= 'A' && (c) <= 'Z') \
347 || ((c) >= '0' && (c) <= '9'))) \
348 : SYNTAX (c) != Sword)
350 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
352 # define ISUPPER(c) uppercasep (c)
354 # define ISWORD(c) (SYNTAX (c) == Sword)
356 #else /* not emacs */
358 /* 1 if C is an ASCII character. */
359 # define IS_REAL_ASCII(c) ((c) < 0200)
361 /* This distinction is not meaningful, except in Emacs. */
362 # define ISUNIBYTE(c) 1
365 # define ISBLANK(c) isblank (c)
367 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
370 # define ISGRAPH(c) isgraph (c)
372 # define ISGRAPH(c) (isprint (c) && !isspace (c))
375 /* Solaris defines ISPRINT so we must undefine it first. */
377 # define ISPRINT(c) isprint (c)
378 # define ISDIGIT(c) isdigit (c)
379 # define ISALNUM(c) isalnum (c)
380 # define ISALPHA(c) isalpha (c)
381 # define ISCNTRL(c) iscntrl (c)
382 # define ISLOWER(c) islower (c)
383 # define ISPUNCT(c) ispunct (c)
384 # define ISSPACE(c) isspace (c)
385 # define ISUPPER(c) isupper (c)
386 # define ISXDIGIT(c) isxdigit (c)
388 # define ISWORD(c) ISALPHA (c)
391 # define TOLOWER(c) _tolower (c)
393 # define TOLOWER(c) tolower (c)
396 /* How many characters in the character set. */
397 # define CHAR_SET_SIZE 256
401 extern char *re_syntax_table
;
403 # else /* not SYNTAX_TABLE */
405 static char re_syntax_table
[CHAR_SET_SIZE
];
408 init_syntax_once (void)
416 memset (re_syntax_table
, 0, sizeof re_syntax_table
);
418 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
420 re_syntax_table
[c
] = Sword
;
422 re_syntax_table
['_'] = Ssymbol
;
427 # endif /* not SYNTAX_TABLE */
429 # define SYNTAX(c) re_syntax_table[(c)]
431 #endif /* not emacs */
433 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
435 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
436 use `alloca' instead of `malloc'. This is because using malloc in
437 re_search* or re_match* could cause memory leaks when C-g is used in
438 Emacs; also, malloc is slower and causes storage fragmentation. On
439 the other hand, malloc is more portable, and easier to debug.
441 Because we sometimes use alloca, some routines have to be macros,
442 not functions -- `alloca'-allocated space disappears at the end of the
443 function it is called in. */
447 # define REGEX_ALLOCATE malloc
448 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
449 # define REGEX_FREE free
451 #else /* not REGEX_MALLOC */
453 /* Emacs already defines alloca, sometimes. */
456 /* Make alloca work the best possible way. */
458 # define alloca __builtin_alloca
459 # else /* not __GNUC__ */
460 # ifdef HAVE_ALLOCA_H
462 # endif /* HAVE_ALLOCA_H */
463 # endif /* not __GNUC__ */
465 # endif /* not alloca */
467 # define REGEX_ALLOCATE alloca
469 /* Assumes a `char *destination' variable. */
470 # define REGEX_REALLOCATE(source, osize, nsize) \
471 (destination = (char *) alloca (nsize), \
472 memcpy (destination, source, osize))
474 /* No need to do anything to free, after alloca. */
475 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
477 #endif /* not REGEX_MALLOC */
479 /* Define how to allocate the failure stack. */
481 #if defined REL_ALLOC && defined REGEX_MALLOC
483 # define REGEX_ALLOCATE_STACK(size) \
484 r_alloc (&failure_stack_ptr, (size))
485 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
486 r_re_alloc (&failure_stack_ptr, (nsize))
487 # define REGEX_FREE_STACK(ptr) \
488 r_alloc_free (&failure_stack_ptr)
490 #else /* not using relocating allocator */
494 # define REGEX_ALLOCATE_STACK malloc
495 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
496 # define REGEX_FREE_STACK free
498 # else /* not REGEX_MALLOC */
500 # define REGEX_ALLOCATE_STACK alloca
502 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
503 REGEX_REALLOCATE (source, osize, nsize)
504 /* No need to explicitly free anything. */
505 # define REGEX_FREE_STACK(arg) ((void)0)
507 # endif /* not REGEX_MALLOC */
508 #endif /* not using relocating allocator */
511 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
512 `string1' or just past its end. This works if PTR is NULL, which is
514 #define FIRST_STRING_P(ptr) \
515 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
517 /* (Re)Allocate N items of type T using malloc, or fail. */
518 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
519 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
520 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
522 #define BYTEWIDTH 8 /* In bits. */
524 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
528 #define MAX(a, b) ((a) > (b) ? (a) : (b))
529 #define MIN(a, b) ((a) < (b) ? (a) : (b))
531 /* Type of source-pattern and string chars. */
533 typedef unsigned char re_char
;
534 typedef const re_char const_re_char
;
536 typedef const unsigned char re_char
;
537 typedef re_char const_re_char
;
540 typedef char boolean
;
542 static regoff_t
re_match_2_internal (struct re_pattern_buffer
*bufp
,
543 re_char
*string1
, size_t size1
,
544 re_char
*string2
, size_t size2
,
546 struct re_registers
*regs
,
549 /* These are the command codes that appear in compiled regular
550 expressions. Some opcodes are followed by argument bytes. A
551 command code can specify any interpretation whatsoever for its
552 arguments. Zero bytes may appear in the compiled regular expression. */
558 /* Succeed right away--no more backtracking. */
561 /* Followed by one byte giving n, then by n literal bytes. */
564 /* Matches any (more or less) character. */
567 /* Matches any one char belonging to specified set. First
568 following byte is number of bitmap bytes. Then come bytes
569 for a bitmap saying which chars are in. Bits in each byte
570 are ordered low-bit-first. A character is in the set if its
571 bit is 1. A character too large to have a bit in the map is
572 automatically not in the set.
574 If the length byte has the 0x80 bit set, then that stuff
575 is followed by a range table:
576 2 bytes of flags for character sets (low 8 bits, high 8 bits)
577 See RANGE_TABLE_WORK_BITS below.
578 2 bytes, the number of pairs that follow (upto 32767)
579 pairs, each 2 multibyte characters,
580 each multibyte character represented as 3 bytes. */
583 /* Same parameters as charset, but match any character that is
584 not one of those specified. */
587 /* Start remembering the text that is matched, for storing in a
588 register. Followed by one byte with the register number, in
589 the range 0 to one less than the pattern buffer's re_nsub
593 /* Stop remembering the text that is matched and store it in a
594 memory register. Followed by one byte with the register
595 number, in the range 0 to one less than `re_nsub' in the
599 /* Match a duplicate of something remembered. Followed by one
600 byte containing the register number. */
603 /* Fail unless at beginning of line. */
606 /* Fail unless at end of line. */
609 /* Succeeds if at beginning of buffer (if emacs) or at beginning
610 of string to be matched (if not). */
613 /* Analogously, for end of buffer/string. */
616 /* Followed by two byte relative address to which to jump. */
619 /* Followed by two-byte relative address of place to resume at
620 in case of failure. */
623 /* Like on_failure_jump, but pushes a placeholder instead of the
624 current string position when executed. */
625 on_failure_keep_string_jump
,
627 /* Just like `on_failure_jump', except that it checks that we
628 don't get stuck in an infinite loop (matching an empty string
630 on_failure_jump_loop
,
632 /* Just like `on_failure_jump_loop', except that it checks for
633 a different kind of loop (the kind that shows up with non-greedy
634 operators). This operation has to be immediately preceded
636 on_failure_jump_nastyloop
,
638 /* A smart `on_failure_jump' used for greedy * and + operators.
639 It analyzes the loop before which it is put and if the
640 loop does not require backtracking, it changes itself to
641 `on_failure_keep_string_jump' and short-circuits the loop,
642 else it just defaults to changing itself into `on_failure_jump'.
643 It assumes that it is pointing to just past a `jump'. */
644 on_failure_jump_smart
,
646 /* Followed by two-byte relative address and two-byte number n.
647 After matching N times, jump to the address upon failure.
648 Does not work if N starts at 0: use on_failure_jump_loop
652 /* Followed by two-byte relative address, and two-byte number n.
653 Jump to the address N times, then fail. */
656 /* Set the following two-byte relative address to the
657 subsequent two-byte number. The address *includes* the two
661 wordbeg
, /* Succeeds if at word beginning. */
662 wordend
, /* Succeeds if at word end. */
664 wordbound
, /* Succeeds if at a word boundary. */
665 notwordbound
, /* Succeeds if not at a word boundary. */
667 symbeg
, /* Succeeds if at symbol beginning. */
668 symend
, /* Succeeds if at symbol end. */
670 /* Matches any character whose syntax is specified. Followed by
671 a byte which contains a syntax code, e.g., Sword. */
674 /* Matches any character whose syntax is not that specified. */
678 ,before_dot
, /* Succeeds if before point. */
679 at_dot
, /* Succeeds if at point. */
680 after_dot
, /* Succeeds if after point. */
682 /* Matches any character whose category-set contains the specified
683 category. The operator is followed by a byte which contains a
684 category code (mnemonic ASCII character). */
687 /* Matches any character whose category-set does not contain the
688 specified category. The operator is followed by a byte which
689 contains the category code (mnemonic ASCII character). */
694 /* Common operations on the compiled pattern. */
696 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
698 #define STORE_NUMBER(destination, number) \
700 (destination)[0] = (number) & 0377; \
701 (destination)[1] = (number) >> 8; \
704 /* Same as STORE_NUMBER, except increment DESTINATION to
705 the byte after where the number is stored. Therefore, DESTINATION
706 must be an lvalue. */
708 #define STORE_NUMBER_AND_INCR(destination, number) \
710 STORE_NUMBER (destination, number); \
711 (destination) += 2; \
714 /* Put into DESTINATION a number stored in two contiguous bytes starting
717 #define EXTRACT_NUMBER(destination, source) \
718 ((destination) = extract_number (source))
721 extract_number (re_char
*source
)
723 return (SIGN_EXTEND_CHAR (source
[1]) << 8) + source
[0];
726 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
727 SOURCE must be an lvalue. */
729 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
730 ((destination) = extract_number_and_incr (&source))
733 extract_number_and_incr (re_char
**source
)
735 int num
= extract_number (*source
);
740 /* Store a multibyte character in three contiguous bytes starting
741 DESTINATION, and increment DESTINATION to the byte after where the
742 character is stored. Therefore, DESTINATION must be an lvalue. */
744 #define STORE_CHARACTER_AND_INCR(destination, character) \
746 (destination)[0] = (character) & 0377; \
747 (destination)[1] = ((character) >> 8) & 0377; \
748 (destination)[2] = (character) >> 16; \
749 (destination) += 3; \
752 /* Put into DESTINATION a character stored in three contiguous bytes
753 starting at SOURCE. */
755 #define EXTRACT_CHARACTER(destination, source) \
757 (destination) = ((source)[0] \
758 | ((source)[1] << 8) \
759 | ((source)[2] << 16)); \
763 /* Macros for charset. */
765 /* Size of bitmap of charset P in bytes. P is a start of charset,
766 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
767 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
769 /* Nonzero if charset P has range table. */
770 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
772 /* Return the address of range table of charset P. But not the start
773 of table itself, but the before where the number of ranges is
774 stored. `2 +' means to skip re_opcode_t and size of bitmap,
775 and the 2 bytes of flags at the start of the range table. */
776 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
778 /* Extract the bit flags that start a range table. */
779 #define CHARSET_RANGE_TABLE_BITS(p) \
780 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
781 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
783 /* Return the address of end of RANGE_TABLE. COUNT is number of
784 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
785 is start of range and end of range. `* 3' is size of each start
787 #define CHARSET_RANGE_TABLE_END(range_table, count) \
788 ((range_table) + (count) * 2 * 3)
790 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
791 COUNT is number of ranges in RANGE_TABLE. */
792 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
795 re_wchar_t range_start, range_end; \
797 re_char *range_table_end \
798 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
800 for (rtp = (range_table); rtp < range_table_end; rtp += 2 * 3) \
802 EXTRACT_CHARACTER (range_start, rtp); \
803 EXTRACT_CHARACTER (range_end, rtp + 3); \
805 if (range_start <= (c) && (c) <= range_end) \
814 /* Test if C is in range table of CHARSET. The flag NOT is negated if
815 C is listed in it. */
816 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
819 /* Number of ranges in range table. */ \
821 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
823 EXTRACT_NUMBER_AND_INCR (count, range_table); \
824 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
828 /* If DEBUG is defined, Regex prints many voluminous messages about what
829 it is doing (if the variable `debug' is nonzero). If linked with the
830 main program in `iregex.c', you can enter patterns and strings
831 interactively. And if linked with the main program in `main.c' and
832 the other test files, you can run the already-written tests. */
836 /* We use standard I/O for debugging. */
839 /* It is useful to test things that ``must'' be true when debugging. */
842 static int debug
= -100000;
844 # define DEBUG_STATEMENT(e) e
845 # define DEBUG_PRINT(...) if (debug > 0) printf (__VA_ARGS__)
846 # define DEBUG_COMPILES_ARGUMENTS
847 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
848 if (debug > 0) print_partial_compiled_pattern (s, e)
849 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
850 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
853 /* Print the fastmap in human-readable form. */
856 print_fastmap (char *fastmap
)
858 unsigned was_a_range
= 0;
861 while (i
< (1 << BYTEWIDTH
))
867 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
883 /* Print a compiled pattern string in human-readable form, starting at
884 the START pointer into it and ending just before the pointer END. */
887 print_partial_compiled_pattern (re_char
*start
, re_char
*end
)
895 fprintf (stderr
, "(null)\n");
899 /* Loop over pattern commands. */
902 fprintf (stderr
, "%td:\t", p
- start
);
904 switch ((re_opcode_t
) *p
++)
907 fprintf (stderr
, "/no_op");
911 fprintf (stderr
, "/succeed");
916 fprintf (stderr
, "/exactn/%d", mcnt
);
919 fprintf (stderr
, "/%c", *p
++);
925 fprintf (stderr
, "/start_memory/%d", *p
++);
929 fprintf (stderr
, "/stop_memory/%d", *p
++);
933 fprintf (stderr
, "/duplicate/%d", *p
++);
937 fprintf (stderr
, "/anychar");
943 register int c
, last
= -100;
944 register int in_range
= 0;
945 int length
= CHARSET_BITMAP_SIZE (p
- 1);
946 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
948 fprintf (stderr
, "/charset [%s",
949 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
952 fprintf (stderr
, " !extends past end of pattern! ");
954 for (c
= 0; c
< 256; c
++)
956 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
958 /* Are we starting a range? */
959 if (last
+ 1 == c
&& ! in_range
)
961 fprintf (stderr
, "-");
964 /* Have we broken a range? */
965 else if (last
+ 1 != c
&& in_range
)
967 fprintf (stderr
, "%c", last
);
972 fprintf (stderr
, "%c", c
);
978 fprintf (stderr
, "%c", last
);
980 fprintf (stderr
, "]");
987 fprintf (stderr
, "has-range-table");
989 /* ??? Should print the range table; for now, just skip it. */
990 p
+= 2; /* skip range table bits */
991 EXTRACT_NUMBER_AND_INCR (count
, p
);
992 p
= CHARSET_RANGE_TABLE_END (p
, count
);
998 fprintf (stderr
, "/begline");
1002 fprintf (stderr
, "/endline");
1005 case on_failure_jump
:
1006 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1007 fprintf (stderr
, "/on_failure_jump to %td", p
+ mcnt
- start
);
1010 case on_failure_keep_string_jump
:
1011 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1012 fprintf (stderr
, "/on_failure_keep_string_jump to %td",
1016 case on_failure_jump_nastyloop
:
1017 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1018 fprintf (stderr
, "/on_failure_jump_nastyloop to %td",
1022 case on_failure_jump_loop
:
1023 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1024 fprintf (stderr
, "/on_failure_jump_loop to %td",
1028 case on_failure_jump_smart
:
1029 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1030 fprintf (stderr
, "/on_failure_jump_smart to %td",
1035 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1036 fprintf (stderr
, "/jump to %td", p
+ mcnt
- start
);
1040 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1041 EXTRACT_NUMBER_AND_INCR (mcnt2
, p
);
1042 fprintf (stderr
, "/succeed_n to %td, %d times",
1043 p
- 2 + mcnt
- start
, mcnt2
);
1047 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1048 EXTRACT_NUMBER_AND_INCR (mcnt2
, p
);
1049 fprintf (stderr
, "/jump_n to %td, %d times",
1050 p
- 2 + mcnt
- start
, mcnt2
);
1054 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1055 EXTRACT_NUMBER_AND_INCR (mcnt2
, p
);
1056 fprintf (stderr
, "/set_number_at location %td to %d",
1057 p
- 2 + mcnt
- start
, mcnt2
);
1061 fprintf (stderr
, "/wordbound");
1065 fprintf (stderr
, "/notwordbound");
1069 fprintf (stderr
, "/wordbeg");
1073 fprintf (stderr
, "/wordend");
1077 fprintf (stderr
, "/symbeg");
1081 fprintf (stderr
, "/symend");
1085 fprintf (stderr
, "/syntaxspec");
1087 fprintf (stderr
, "/%d", mcnt
);
1091 fprintf (stderr
, "/notsyntaxspec");
1093 fprintf (stderr
, "/%d", mcnt
);
1098 fprintf (stderr
, "/before_dot");
1102 fprintf (stderr
, "/at_dot");
1106 fprintf (stderr
, "/after_dot");
1110 fprintf (stderr
, "/categoryspec");
1112 fprintf (stderr
, "/%d", mcnt
);
1115 case notcategoryspec
:
1116 fprintf (stderr
, "/notcategoryspec");
1118 fprintf (stderr
, "/%d", mcnt
);
1123 fprintf (stderr
, "/begbuf");
1127 fprintf (stderr
, "/endbuf");
1131 fprintf (stderr
, "?%d", *(p
-1));
1134 fprintf (stderr
, "\n");
1137 fprintf (stderr
, "%td:\tend of pattern.\n", p
- start
);
1142 print_compiled_pattern (struct re_pattern_buffer
*bufp
)
1144 re_char
*buffer
= bufp
->buffer
;
1146 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1147 printf ("%ld bytes used/%ld bytes allocated.\n",
1148 bufp
->used
, bufp
->allocated
);
1150 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1152 printf ("fastmap: ");
1153 print_fastmap (bufp
->fastmap
);
1156 printf ("re_nsub: %zu\t", bufp
->re_nsub
);
1157 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1158 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1159 printf ("no_sub: %d\t", bufp
->no_sub
);
1160 printf ("not_bol: %d\t", bufp
->not_bol
);
1161 printf ("not_eol: %d\t", bufp
->not_eol
);
1162 printf ("syntax: %lx\n", bufp
->syntax
);
1164 /* Perhaps we should print the translate table? */
1169 print_double_string (re_char
*where
, re_char
*string1
, ssize_t size1
,
1170 re_char
*string2
, ssize_t size2
)
1178 if (FIRST_STRING_P (where
))
1180 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1181 putchar (string1
[this_char
]);
1186 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1187 putchar (string2
[this_char
]);
1191 #else /* not DEBUG */
1196 # define DEBUG_STATEMENT(e)
1197 # if __STDC_VERSION__ < 199901L
1198 # define DEBUG_COMPILES_ARGUMENTS
1199 # define DEBUG_PRINT /* 'DEBUG_PRINT (x, y)' discards X and Y. */ (void)
1201 # define DEBUG_PRINT(...)
1203 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1204 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1206 #endif /* not DEBUG */
1208 /* Use this to suppress gcc's `...may be used before initialized' warnings. */
1210 # define IF_LINT(Code) Code
1212 # define IF_LINT(Code) /* empty */
1215 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1216 also be assigned to arbitrarily: each pattern buffer stores its own
1217 syntax, so it can be changed between regex compilations. */
1218 /* This has no initializer because initialized variables in Emacs
1219 become read-only after dumping. */
1220 reg_syntax_t re_syntax_options
;
1223 /* Specify the precise syntax of regexps for compilation. This provides
1224 for compatibility for various utilities which historically have
1225 different, incompatible syntaxes.
1227 The argument SYNTAX is a bit mask comprised of the various bits
1228 defined in regex.h. We return the old syntax. */
1231 re_set_syntax (reg_syntax_t syntax
)
1233 reg_syntax_t ret
= re_syntax_options
;
1235 re_syntax_options
= syntax
;
1238 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1240 /* Regexp to use to replace spaces, or NULL meaning don't. */
1241 static re_char
*whitespace_regexp
;
1244 re_set_whitespace_regexp (const char *regexp
)
1246 whitespace_regexp
= (re_char
*) regexp
;
1248 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1250 /* This table gives an error message for each of the error codes listed
1251 in regex.h. Obviously the order here has to be same as there.
1252 POSIX doesn't require that we do anything for REG_NOERROR,
1253 but why not be nice? */
1255 static const char *re_error_msgid
[] =
1257 gettext_noop ("Success"), /* REG_NOERROR */
1258 gettext_noop ("No match"), /* REG_NOMATCH */
1259 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1260 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1261 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1262 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1263 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1264 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1265 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1266 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1267 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1268 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1269 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1270 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1271 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1272 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1273 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1274 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1277 /* Avoiding alloca during matching, to placate r_alloc. */
1279 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1280 searching and matching functions should not call alloca. On some
1281 systems, alloca is implemented in terms of malloc, and if we're
1282 using the relocating allocator routines, then malloc could cause a
1283 relocation, which might (if the strings being searched are in the
1284 ralloc heap) shift the data out from underneath the regexp
1287 Here's another reason to avoid allocation: Emacs
1288 processes input from X in a signal handler; processing X input may
1289 call malloc; if input arrives while a matching routine is calling
1290 malloc, then we're scrod. But Emacs can't just block input while
1291 calling matching routines; then we don't notice interrupts when
1292 they come in. So, Emacs blocks input around all regexp calls
1293 except the matching calls, which it leaves unprotected, in the
1294 faith that they will not malloc. */
1296 /* Normally, this is fine. */
1297 #define MATCH_MAY_ALLOCATE
1299 /* The match routines may not allocate if (1) they would do it with malloc
1300 and (2) it's not safe for them to use malloc.
1301 Note that if REL_ALLOC is defined, matching would not use malloc for the
1302 failure stack, but we would still use it for the register vectors;
1303 so REL_ALLOC should not affect this. */
1304 #if defined REGEX_MALLOC && defined emacs
1305 # undef MATCH_MAY_ALLOCATE
1309 /* Failure stack declarations and macros; both re_compile_fastmap and
1310 re_match_2 use a failure stack. These have to be macros because of
1311 REGEX_ALLOCATE_STACK. */
1314 /* Approximate number of failure points for which to initially allocate space
1315 when matching. If this number is exceeded, we allocate more
1316 space, so it is not a hard limit. */
1317 #ifndef INIT_FAILURE_ALLOC
1318 # define INIT_FAILURE_ALLOC 20
1321 /* Roughly the maximum number of failure points on the stack. Would be
1322 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1323 This is a variable only so users of regex can assign to it; we never
1324 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1325 before using it, so it should probably be a byte-count instead. */
1326 # if defined MATCH_MAY_ALLOCATE
1327 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1328 whose default stack limit is 2mb. In order for a larger
1329 value to work reliably, you have to try to make it accord
1330 with the process stack limit. */
1331 size_t re_max_failures
= 40000;
1333 size_t re_max_failures
= 4000;
1336 union fail_stack_elt
1339 /* This should be the biggest `int' that's no bigger than a pointer. */
1343 typedef union fail_stack_elt fail_stack_elt_t
;
1347 fail_stack_elt_t
*stack
;
1349 size_t avail
; /* Offset of next open position. */
1350 size_t frame
; /* Offset of the cur constructed frame. */
1353 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1356 /* Define macros to initialize and free the failure stack.
1357 Do `return -2' if the alloc fails. */
1359 #ifdef MATCH_MAY_ALLOCATE
1360 # define INIT_FAIL_STACK() \
1362 fail_stack.stack = \
1363 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1364 * sizeof (fail_stack_elt_t)); \
1366 if (fail_stack.stack == NULL) \
1369 fail_stack.size = INIT_FAILURE_ALLOC; \
1370 fail_stack.avail = 0; \
1371 fail_stack.frame = 0; \
1374 # define INIT_FAIL_STACK() \
1376 fail_stack.avail = 0; \
1377 fail_stack.frame = 0; \
1380 # define RETALLOC_IF(addr, n, t) \
1381 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
1385 /* Double the size of FAIL_STACK, up to a limit
1386 which allows approximately `re_max_failures' items.
1388 Return 1 if succeeds, and 0 if either ran out of memory
1389 allocating space for it or it was already too large.
1391 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1393 /* Factor to increase the failure stack size by
1394 when we increase it.
1395 This used to be 2, but 2 was too wasteful
1396 because the old discarded stacks added up to as much space
1397 were as ultimate, maximum-size stack. */
1398 #define FAIL_STACK_GROWTH_FACTOR 4
1400 #define GROW_FAIL_STACK(fail_stack) \
1401 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1402 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1404 : ((fail_stack).stack \
1405 = REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1406 (fail_stack).size * sizeof (fail_stack_elt_t), \
1407 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1408 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1409 * FAIL_STACK_GROWTH_FACTOR))), \
1411 (fail_stack).stack == NULL \
1413 : ((fail_stack).size \
1414 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1415 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1416 * FAIL_STACK_GROWTH_FACTOR)) \
1417 / sizeof (fail_stack_elt_t)), \
1421 /* Push a pointer value onto the failure stack.
1422 Assumes the variable `fail_stack'. Probably should only
1423 be called from within `PUSH_FAILURE_POINT'. */
1424 #define PUSH_FAILURE_POINTER(item) \
1425 fail_stack.stack[fail_stack.avail++].pointer = (item)
1427 /* This pushes an integer-valued item onto the failure stack.
1428 Assumes the variable `fail_stack'. Probably should only
1429 be called from within `PUSH_FAILURE_POINT'. */
1430 #define PUSH_FAILURE_INT(item) \
1431 fail_stack.stack[fail_stack.avail++].integer = (item)
1433 /* These POP... operations complement the PUSH... operations.
1434 All assume that `fail_stack' is nonempty. */
1435 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1436 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1438 /* Individual items aside from the registers. */
1439 #define NUM_NONREG_ITEMS 3
1441 /* Used to examine the stack (to detect infinite loops). */
1442 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1443 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1444 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1445 #define TOP_FAILURE_HANDLE() fail_stack.frame
1448 #define ENSURE_FAIL_STACK(space) \
1449 while (REMAINING_AVAIL_SLOTS <= space) { \
1450 if (!GROW_FAIL_STACK (fail_stack)) \
1452 DEBUG_PRINT ("\n Doubled stack; size now: %zd\n", (fail_stack).size);\
1453 DEBUG_PRINT (" slots available: %zd\n", REMAINING_AVAIL_SLOTS);\
1456 /* Push register NUM onto the stack. */
1457 #define PUSH_FAILURE_REG(num) \
1459 char *destination; \
1461 ENSURE_FAIL_STACK(3); \
1462 DEBUG_PRINT (" Push reg %ld (spanning %p -> %p)\n", \
1463 n, regstart[n], regend[n]); \
1464 PUSH_FAILURE_POINTER (regstart[n]); \
1465 PUSH_FAILURE_POINTER (regend[n]); \
1466 PUSH_FAILURE_INT (n); \
1469 /* Change the counter's value to VAL, but make sure that it will
1470 be reset when backtracking. */
1471 #define PUSH_NUMBER(ptr,val) \
1473 char *destination; \
1475 ENSURE_FAIL_STACK(3); \
1476 EXTRACT_NUMBER (c, ptr); \
1477 DEBUG_PRINT (" Push number %p = %d -> %d\n", ptr, c, val); \
1478 PUSH_FAILURE_INT (c); \
1479 PUSH_FAILURE_POINTER (ptr); \
1480 PUSH_FAILURE_INT (-1); \
1481 STORE_NUMBER (ptr, val); \
1484 /* Pop a saved register off the stack. */
1485 #define POP_FAILURE_REG_OR_COUNT() \
1487 long pfreg = POP_FAILURE_INT (); \
1490 /* It's a counter. */ \
1491 /* Here, we discard `const', making re_match non-reentrant. */ \
1492 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1493 pfreg = POP_FAILURE_INT (); \
1494 STORE_NUMBER (ptr, pfreg); \
1495 DEBUG_PRINT (" Pop counter %p = %ld\n", ptr, pfreg); \
1499 regend[pfreg] = POP_FAILURE_POINTER (); \
1500 regstart[pfreg] = POP_FAILURE_POINTER (); \
1501 DEBUG_PRINT (" Pop reg %ld (spanning %p -> %p)\n", \
1502 pfreg, regstart[pfreg], regend[pfreg]); \
1506 /* Check that we are not stuck in an infinite loop. */
1507 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1509 ssize_t failure = TOP_FAILURE_HANDLE (); \
1510 /* Check for infinite matching loops */ \
1511 while (failure > 0 \
1512 && (FAILURE_STR (failure) == string_place \
1513 || FAILURE_STR (failure) == NULL)) \
1515 assert (FAILURE_PAT (failure) >= bufp->buffer \
1516 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1517 if (FAILURE_PAT (failure) == pat_cur) \
1522 DEBUG_PRINT (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1523 failure = NEXT_FAILURE_HANDLE(failure); \
1525 DEBUG_PRINT (" Other string: %p\n", FAILURE_STR (failure)); \
1528 /* Push the information about the state we will need
1529 if we ever fail back to it.
1531 Requires variables fail_stack, regstart, regend and
1532 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1535 Does `return FAILURE_CODE' if runs out of memory. */
1537 #define PUSH_FAILURE_POINT(pattern, string_place) \
1539 char *destination; \
1540 /* Must be int, so when we don't save any registers, the arithmetic \
1541 of 0 + -1 isn't done as unsigned. */ \
1543 DEBUG_STATEMENT (nfailure_points_pushed++); \
1544 DEBUG_PRINT ("\nPUSH_FAILURE_POINT:\n"); \
1545 DEBUG_PRINT (" Before push, next avail: %zd\n", (fail_stack).avail); \
1546 DEBUG_PRINT (" size: %zd\n", (fail_stack).size);\
1548 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1550 DEBUG_PRINT ("\n"); \
1552 DEBUG_PRINT (" Push frame index: %zd\n", fail_stack.frame); \
1553 PUSH_FAILURE_INT (fail_stack.frame); \
1555 DEBUG_PRINT (" Push string %p: `", string_place); \
1556 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1557 DEBUG_PRINT ("'\n"); \
1558 PUSH_FAILURE_POINTER (string_place); \
1560 DEBUG_PRINT (" Push pattern %p: ", pattern); \
1561 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1562 PUSH_FAILURE_POINTER (pattern); \
1564 /* Close the frame by moving the frame pointer past it. */ \
1565 fail_stack.frame = fail_stack.avail; \
1568 /* Estimate the size of data pushed by a typical failure stack entry.
1569 An estimate is all we need, because all we use this for
1570 is to choose a limit for how big to make the failure stack. */
1571 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1572 #define TYPICAL_FAILURE_SIZE 20
1574 /* How many items can still be added to the stack without overflowing it. */
1575 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1578 /* Pops what PUSH_FAIL_STACK pushes.
1580 We restore into the parameters, all of which should be lvalues:
1581 STR -- the saved data position.
1582 PAT -- the saved pattern position.
1583 REGSTART, REGEND -- arrays of string positions.
1585 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1586 `pend', `string1', `size1', `string2', and `size2'. */
1588 #define POP_FAILURE_POINT(str, pat) \
1590 assert (!FAIL_STACK_EMPTY ()); \
1592 /* Remove failure points and point to how many regs pushed. */ \
1593 DEBUG_PRINT ("POP_FAILURE_POINT:\n"); \
1594 DEBUG_PRINT (" Before pop, next avail: %zd\n", fail_stack.avail); \
1595 DEBUG_PRINT (" size: %zd\n", fail_stack.size); \
1597 /* Pop the saved registers. */ \
1598 while (fail_stack.frame < fail_stack.avail) \
1599 POP_FAILURE_REG_OR_COUNT (); \
1601 pat = POP_FAILURE_POINTER (); \
1602 DEBUG_PRINT (" Popping pattern %p: ", pat); \
1603 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1605 /* If the saved string location is NULL, it came from an \
1606 on_failure_keep_string_jump opcode, and we want to throw away the \
1607 saved NULL, thus retaining our current position in the string. */ \
1608 str = POP_FAILURE_POINTER (); \
1609 DEBUG_PRINT (" Popping string %p: `", str); \
1610 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1611 DEBUG_PRINT ("'\n"); \
1613 fail_stack.frame = POP_FAILURE_INT (); \
1614 DEBUG_PRINT (" Popping frame index: %zd\n", fail_stack.frame); \
1616 assert (fail_stack.avail >= 0); \
1617 assert (fail_stack.frame <= fail_stack.avail); \
1619 DEBUG_STATEMENT (nfailure_points_popped++); \
1620 } while (0) /* POP_FAILURE_POINT */
1624 /* Registers are set to a sentinel when they haven't yet matched. */
1625 #define REG_UNSET(e) ((e) == NULL)
1627 /* Subroutine declarations and macros for regex_compile. */
1629 static reg_errcode_t
regex_compile (re_char
*pattern
, size_t size
,
1630 reg_syntax_t syntax
,
1631 struct re_pattern_buffer
*bufp
);
1632 static void store_op1 (re_opcode_t op
, unsigned char *loc
, int arg
);
1633 static void store_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
);
1634 static void insert_op1 (re_opcode_t op
, unsigned char *loc
,
1635 int arg
, unsigned char *end
);
1636 static void insert_op2 (re_opcode_t op
, unsigned char *loc
,
1637 int arg1
, int arg2
, unsigned char *end
);
1638 static boolean
at_begline_loc_p (re_char
*pattern
, re_char
*p
,
1639 reg_syntax_t syntax
);
1640 static boolean
at_endline_loc_p (re_char
*p
, re_char
*pend
,
1641 reg_syntax_t syntax
);
1642 static re_char
*skip_one_char (re_char
*p
);
1643 static int analyse_first (re_char
*p
, re_char
*pend
,
1644 char *fastmap
, const int multibyte
);
1646 /* Fetch the next character in the uncompiled pattern, with no
1648 #define PATFETCH(c) \
1651 if (p == pend) return REG_EEND; \
1652 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
1657 /* If `translate' is non-null, return translate[D], else just D. We
1658 cast the subscript to translate because some data is declared as
1659 `char *', to avoid warnings when a string constant is passed. But
1660 when we use a character as a subscript we must make it unsigned. */
1662 # define TRANSLATE(d) \
1663 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1667 /* Macros for outputting the compiled pattern into `buffer'. */
1669 /* If the buffer isn't allocated when it comes in, use this. */
1670 #define INIT_BUF_SIZE 32
1672 /* Make sure we have at least N more bytes of space in buffer. */
1673 #define GET_BUFFER_SPACE(n) \
1674 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1677 /* Make sure we have one more byte of buffer space and then add C to it. */
1678 #define BUF_PUSH(c) \
1680 GET_BUFFER_SPACE (1); \
1681 *b++ = (unsigned char) (c); \
1685 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1686 #define BUF_PUSH_2(c1, c2) \
1688 GET_BUFFER_SPACE (2); \
1689 *b++ = (unsigned char) (c1); \
1690 *b++ = (unsigned char) (c2); \
1694 /* Store a jump with opcode OP at LOC to location TO. We store a
1695 relative address offset by the three bytes the jump itself occupies. */
1696 #define STORE_JUMP(op, loc, to) \
1697 store_op1 (op, loc, (to) - (loc) - 3)
1699 /* Likewise, for a two-argument jump. */
1700 #define STORE_JUMP2(op, loc, to, arg) \
1701 store_op2 (op, loc, (to) - (loc) - 3, arg)
1703 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1704 #define INSERT_JUMP(op, loc, to) \
1705 insert_op1 (op, loc, (to) - (loc) - 3, b)
1707 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1708 #define INSERT_JUMP2(op, loc, to, arg) \
1709 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1712 /* This is not an arbitrary limit: the arguments which represent offsets
1713 into the pattern are two bytes long. So if 2^15 bytes turns out to
1714 be too small, many things would have to change. */
1715 # define MAX_BUF_SIZE (1L << 15)
1717 /* Extend the buffer by twice its current size via realloc and
1718 reset the pointers that pointed into the old block to point to the
1719 correct places in the new one. If extending the buffer results in it
1720 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1721 #if __BOUNDED_POINTERS__
1722 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1723 # define MOVE_BUFFER_POINTER(P) \
1724 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1725 SET_HIGH_BOUND (P), \
1726 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
1727 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1730 SET_HIGH_BOUND (b); \
1731 SET_HIGH_BOUND (begalt); \
1732 if (fixup_alt_jump) \
1733 SET_HIGH_BOUND (fixup_alt_jump); \
1735 SET_HIGH_BOUND (laststart); \
1736 if (pending_exact) \
1737 SET_HIGH_BOUND (pending_exact); \
1740 # define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
1741 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1743 #define EXTEND_BUFFER() \
1745 unsigned char *old_buffer = bufp->buffer; \
1746 if (bufp->allocated == MAX_BUF_SIZE) \
1748 bufp->allocated <<= 1; \
1749 if (bufp->allocated > MAX_BUF_SIZE) \
1750 bufp->allocated = MAX_BUF_SIZE; \
1751 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1752 if (bufp->buffer == NULL) \
1753 return REG_ESPACE; \
1754 /* If the buffer moved, move all the pointers into it. */ \
1755 if (old_buffer != bufp->buffer) \
1757 unsigned char *new_buffer = bufp->buffer; \
1758 MOVE_BUFFER_POINTER (b); \
1759 MOVE_BUFFER_POINTER (begalt); \
1760 if (fixup_alt_jump) \
1761 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1763 MOVE_BUFFER_POINTER (laststart); \
1764 if (pending_exact) \
1765 MOVE_BUFFER_POINTER (pending_exact); \
1767 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1771 /* Since we have one byte reserved for the register number argument to
1772 {start,stop}_memory, the maximum number of groups we can report
1773 things about is what fits in that byte. */
1774 #define MAX_REGNUM 255
1776 /* But patterns can have more than `MAX_REGNUM' registers. We just
1777 ignore the excess. */
1778 typedef int regnum_t
;
1781 /* Macros for the compile stack. */
1783 /* Since offsets can go either forwards or backwards, this type needs to
1784 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1785 /* int may be not enough when sizeof(int) == 2. */
1786 typedef long pattern_offset_t
;
1790 pattern_offset_t begalt_offset
;
1791 pattern_offset_t fixup_alt_jump
;
1792 pattern_offset_t laststart_offset
;
1794 } compile_stack_elt_t
;
1799 compile_stack_elt_t
*stack
;
1801 size_t avail
; /* Offset of next open position. */
1802 } compile_stack_type
;
1805 #define INIT_COMPILE_STACK_SIZE 32
1807 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1808 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1810 /* The next available element. */
1811 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1813 /* Explicit quit checking is needed for Emacs, which uses polling to
1814 process input events. */
1816 # define IMMEDIATE_QUIT_CHECK \
1818 if (immediate_quit) QUIT; \
1821 # define IMMEDIATE_QUIT_CHECK ((void)0)
1824 /* Structure to manage work area for range table. */
1825 struct range_table_work_area
1827 int *table
; /* actual work area. */
1828 int allocated
; /* allocated size for work area in bytes. */
1829 int used
; /* actually used size in words. */
1830 int bits
; /* flag to record character classes */
1833 /* Make sure that WORK_AREA can hold more N multibyte characters.
1834 This is used only in set_image_of_range and set_image_of_range_1.
1835 It expects WORK_AREA to be a pointer.
1836 If it can't get the space, it returns from the surrounding function. */
1838 #define EXTEND_RANGE_TABLE(work_area, n) \
1840 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1842 extend_range_table_work_area (&work_area); \
1843 if ((work_area).table == 0) \
1844 return (REG_ESPACE); \
1848 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1849 (work_area).bits |= (bit)
1851 /* Bits used to implement the multibyte-part of the various character classes
1852 such as [:alnum:] in a charset's range table. */
1853 #define BIT_WORD 0x1
1854 #define BIT_LOWER 0x2
1855 #define BIT_PUNCT 0x4
1856 #define BIT_SPACE 0x8
1857 #define BIT_UPPER 0x10
1858 #define BIT_MULTIBYTE 0x20
1860 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1861 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1863 EXTEND_RANGE_TABLE ((work_area), 2); \
1864 (work_area).table[(work_area).used++] = (range_start); \
1865 (work_area).table[(work_area).used++] = (range_end); \
1868 /* Free allocated memory for WORK_AREA. */
1869 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1871 if ((work_area).table) \
1872 free ((work_area).table); \
1875 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1876 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1877 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1878 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1881 /* Set the bit for character C in a list. */
1882 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1887 /* Store characters in the range FROM to TO in the bitmap at B (for
1888 ASCII and unibyte characters) and WORK_AREA (for multibyte
1889 characters) while translating them and paying attention to the
1890 continuity of translated characters.
1892 Implementation note: It is better to implement these fairly big
1893 macros by a function, but it's not that easy because macros called
1894 in this macro assume various local variables already declared. */
1896 /* Both FROM and TO are ASCII characters. */
1898 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
1902 for (C0 = (FROM); C0 <= (TO); C0++) \
1904 C1 = TRANSLATE (C0); \
1905 if (! ASCII_CHAR_P (C1)) \
1907 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1908 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
1911 SET_LIST_BIT (C1); \
1916 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
1918 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
1920 int C0, C1, C2, I; \
1921 int USED = RANGE_TABLE_WORK_USED (work_area); \
1923 for (C0 = (FROM); C0 <= (TO); C0++) \
1925 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
1926 if (CHAR_BYTE8_P (C1)) \
1927 SET_LIST_BIT (C0); \
1930 C2 = TRANSLATE (C1); \
1932 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
1934 SET_LIST_BIT (C1); \
1935 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1937 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1938 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1940 if (C2 >= from - 1 && C2 <= to + 1) \
1942 if (C2 == from - 1) \
1943 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1944 else if (C2 == to + 1) \
1945 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1950 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
1956 /* Both FROM and TO are multibyte characters. */
1958 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
1960 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
1962 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
1963 for (C0 = (FROM); C0 <= (TO); C0++) \
1965 C1 = TRANSLATE (C0); \
1966 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
1967 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
1968 SET_LIST_BIT (C2); \
1969 if (C1 >= (FROM) && C1 <= (TO)) \
1971 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1973 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1974 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1976 if (C1 >= from - 1 && C1 <= to + 1) \
1978 if (C1 == from - 1) \
1979 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1980 else if (C1 == to + 1) \
1981 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1986 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1992 /* Get the next unsigned number in the uncompiled pattern. */
1993 #define GET_UNSIGNED_NUMBER(num) \
1996 FREE_STACK_RETURN (REG_EBRACE); \
2000 while ('0' <= c && c <= '9') \
2006 num = num * 10 + c - '0'; \
2007 if (num / 10 != prev) \
2008 FREE_STACK_RETURN (REG_BADBR); \
2010 FREE_STACK_RETURN (REG_EBRACE); \
2016 #if ! WIDE_CHAR_SUPPORT
2018 /* Map a string to the char class it names (if any). */
2020 re_wctype (const_re_char
*str
)
2022 const char *string
= (const char *) str
;
2023 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
2024 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
2025 else if (STREQ (string
, "word")) return RECC_WORD
;
2026 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
2027 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
2028 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
2029 else if (STREQ (string
, "lower")) return RECC_LOWER
;
2030 else if (STREQ (string
, "print")) return RECC_PRINT
;
2031 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
2032 else if (STREQ (string
, "space")) return RECC_SPACE
;
2033 else if (STREQ (string
, "upper")) return RECC_UPPER
;
2034 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
2035 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
2036 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
2037 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
2038 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2039 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2043 /* True if CH is in the char class CC. */
2045 re_iswctype (int ch
, re_wctype_t cc
)
2049 case RECC_ALNUM
: return ISALNUM (ch
) != 0;
2050 case RECC_ALPHA
: return ISALPHA (ch
) != 0;
2051 case RECC_BLANK
: return ISBLANK (ch
) != 0;
2052 case RECC_CNTRL
: return ISCNTRL (ch
) != 0;
2053 case RECC_DIGIT
: return ISDIGIT (ch
) != 0;
2054 case RECC_GRAPH
: return ISGRAPH (ch
) != 0;
2055 case RECC_LOWER
: return ISLOWER (ch
) != 0;
2056 case RECC_PRINT
: return ISPRINT (ch
) != 0;
2057 case RECC_PUNCT
: return ISPUNCT (ch
) != 0;
2058 case RECC_SPACE
: return ISSPACE (ch
) != 0;
2059 case RECC_UPPER
: return ISUPPER (ch
) != 0;
2060 case RECC_XDIGIT
: return ISXDIGIT (ch
) != 0;
2061 case RECC_ASCII
: return IS_REAL_ASCII (ch
) != 0;
2062 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2063 case RECC_UNIBYTE
: return ISUNIBYTE (ch
) != 0;
2064 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2065 case RECC_WORD
: return ISWORD (ch
) != 0;
2066 case RECC_ERROR
: return false;
2072 /* Return a bit-pattern to use in the range-table bits to match multibyte
2073 chars of class CC. */
2075 re_wctype_to_bit (re_wctype_t cc
)
2079 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2080 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2081 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2082 case RECC_LOWER
: return BIT_LOWER
;
2083 case RECC_UPPER
: return BIT_UPPER
;
2084 case RECC_PUNCT
: return BIT_PUNCT
;
2085 case RECC_SPACE
: return BIT_SPACE
;
2086 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2087 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2094 /* Filling in the work area of a range. */
2096 /* Actually extend the space in WORK_AREA. */
2099 extend_range_table_work_area (struct range_table_work_area
*work_area
)
2101 work_area
->allocated
+= 16 * sizeof (int);
2102 work_area
->table
= realloc (work_area
->table
, work_area
->allocated
);
2108 /* Carefully find the ranges of codes that are equivalent
2109 under case conversion to the range start..end when passed through
2110 TRANSLATE. Handle the case where non-letters can come in between
2111 two upper-case letters (which happens in Latin-1).
2112 Also handle the case of groups of more than 2 case-equivalent chars.
2114 The basic method is to look at consecutive characters and see
2115 if they can form a run that can be handled as one.
2117 Returns -1 if successful, REG_ESPACE if ran out of space. */
2120 set_image_of_range_1 (struct range_table_work_area
*work_area
,
2121 re_wchar_t start
, re_wchar_t end
,
2122 RE_TRANSLATE_TYPE translate
)
2124 /* `one_case' indicates a character, or a run of characters,
2125 each of which is an isolate (no case-equivalents).
2126 This includes all ASCII non-letters.
2128 `two_case' indicates a character, or a run of characters,
2129 each of which has two case-equivalent forms.
2130 This includes all ASCII letters.
2132 `strange' indicates a character that has more than one
2135 enum case_type
{one_case
, two_case
, strange
};
2137 /* Describe the run that is in progress,
2138 which the next character can try to extend.
2139 If run_type is strange, that means there really is no run.
2140 If run_type is one_case, then run_start...run_end is the run.
2141 If run_type is two_case, then the run is run_start...run_end,
2142 and the case-equivalents end at run_eqv_end. */
2144 enum case_type run_type
= strange
;
2145 int run_start
, run_end
, run_eqv_end
;
2147 Lisp_Object eqv_table
;
2149 if (!RE_TRANSLATE_P (translate
))
2151 EXTEND_RANGE_TABLE (work_area
, 2);
2152 work_area
->table
[work_area
->used
++] = (start
);
2153 work_area
->table
[work_area
->used
++] = (end
);
2157 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2159 for (; start
<= end
; start
++)
2161 enum case_type this_type
;
2162 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2163 int minchar
, maxchar
;
2165 /* Classify this character */
2167 this_type
= one_case
;
2168 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2169 this_type
= two_case
;
2171 this_type
= strange
;
2174 minchar
= start
, maxchar
= eqv
;
2176 minchar
= eqv
, maxchar
= start
;
2178 /* Can this character extend the run in progress? */
2179 if (this_type
== strange
|| this_type
!= run_type
2180 || !(minchar
== run_end
+ 1
2181 && (run_type
== two_case
2182 ? maxchar
== run_eqv_end
+ 1 : 1)))
2185 Record each of its equivalent ranges. */
2186 if (run_type
== one_case
)
2188 EXTEND_RANGE_TABLE (work_area
, 2);
2189 work_area
->table
[work_area
->used
++] = run_start
;
2190 work_area
->table
[work_area
->used
++] = run_end
;
2192 else if (run_type
== two_case
)
2194 EXTEND_RANGE_TABLE (work_area
, 4);
2195 work_area
->table
[work_area
->used
++] = run_start
;
2196 work_area
->table
[work_area
->used
++] = run_end
;
2197 work_area
->table
[work_area
->used
++]
2198 = RE_TRANSLATE (eqv_table
, run_start
);
2199 work_area
->table
[work_area
->used
++]
2200 = RE_TRANSLATE (eqv_table
, run_end
);
2205 if (this_type
== strange
)
2207 /* For a strange character, add each of its equivalents, one
2208 by one. Don't start a range. */
2211 EXTEND_RANGE_TABLE (work_area
, 2);
2212 work_area
->table
[work_area
->used
++] = eqv
;
2213 work_area
->table
[work_area
->used
++] = eqv
;
2214 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2216 while (eqv
!= start
);
2219 /* Add this char to the run, or start a new run. */
2220 else if (run_type
== strange
)
2222 /* Initialize a new range. */
2223 run_type
= this_type
;
2226 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2230 /* Extend a running range. */
2232 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2236 /* If a run is still in progress at the end, finish it now
2237 by recording its equivalent ranges. */
2238 if (run_type
== one_case
)
2240 EXTEND_RANGE_TABLE (work_area
, 2);
2241 work_area
->table
[work_area
->used
++] = run_start
;
2242 work_area
->table
[work_area
->used
++] = run_end
;
2244 else if (run_type
== two_case
)
2246 EXTEND_RANGE_TABLE (work_area
, 4);
2247 work_area
->table
[work_area
->used
++] = run_start
;
2248 work_area
->table
[work_area
->used
++] = run_end
;
2249 work_area
->table
[work_area
->used
++]
2250 = RE_TRANSLATE (eqv_table
, run_start
);
2251 work_area
->table
[work_area
->used
++]
2252 = RE_TRANSLATE (eqv_table
, run_end
);
2260 /* Record the image of the range start..end when passed through
2261 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2262 and is not even necessarily contiguous.
2263 Normally we approximate it with the smallest contiguous range that contains
2264 all the chars we need. However, for Latin-1 we go to extra effort
2267 This function is not called for ASCII ranges.
2269 Returns -1 if successful, REG_ESPACE if ran out of space. */
2272 set_image_of_range (struct range_table_work_area
*work_area
,
2273 re_wchar_t start
, re_wchar_t end
,
2274 RE_TRANSLATE_TYPE translate
)
2276 re_wchar_t cmin
, cmax
;
2279 /* For Latin-1 ranges, use set_image_of_range_1
2280 to get proper handling of ranges that include letters and nonletters.
2281 For a range that includes the whole of Latin-1, this is not necessary.
2282 For other character sets, we don't bother to get this right. */
2283 if (RE_TRANSLATE_P (translate
) && start
< 04400
2284 && !(start
< 04200 && end
>= 04377))
2291 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2301 EXTEND_RANGE_TABLE (work_area
, 2);
2302 work_area
->table
[work_area
->used
++] = (start
);
2303 work_area
->table
[work_area
->used
++] = (end
);
2305 cmin
= -1, cmax
= -1;
2307 if (RE_TRANSLATE_P (translate
))
2311 for (ch
= start
; ch
<= end
; ch
++)
2313 re_wchar_t c
= TRANSLATE (ch
);
2314 if (! (start
<= c
&& c
<= end
))
2320 cmin
= MIN (cmin
, c
);
2321 cmax
= MAX (cmax
, c
);
2328 EXTEND_RANGE_TABLE (work_area
, 2);
2329 work_area
->table
[work_area
->used
++] = (cmin
);
2330 work_area
->table
[work_area
->used
++] = (cmax
);
2338 #ifndef MATCH_MAY_ALLOCATE
2340 /* If we cannot allocate large objects within re_match_2_internal,
2341 we make the fail stack and register vectors global.
2342 The fail stack, we grow to the maximum size when a regexp
2344 The register vectors, we adjust in size each time we
2345 compile a regexp, according to the number of registers it needs. */
2347 static fail_stack_type fail_stack
;
2349 /* Size with which the following vectors are currently allocated.
2350 That is so we can make them bigger as needed,
2351 but never make them smaller. */
2352 static int regs_allocated_size
;
2354 static re_char
** regstart
, ** regend
;
2355 static re_char
**best_regstart
, **best_regend
;
2357 /* Make the register vectors big enough for NUM_REGS registers,
2358 but don't make them smaller. */
2361 regex_grow_registers (int num_regs
)
2363 if (num_regs
> regs_allocated_size
)
2365 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2366 RETALLOC_IF (regend
, num_regs
, re_char
*);
2367 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2368 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2370 regs_allocated_size
= num_regs
;
2374 #endif /* not MATCH_MAY_ALLOCATE */
2376 static boolean
group_in_compile_stack (compile_stack_type compile_stack
,
2379 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2380 Returns one of error codes defined in `regex.h', or zero for success.
2382 Assumes the `allocated' (and perhaps `buffer') and `translate'
2383 fields are set in BUFP on entry.
2385 If it succeeds, results are put in BUFP (if it returns an error, the
2386 contents of BUFP are undefined):
2387 `buffer' is the compiled pattern;
2388 `syntax' is set to SYNTAX;
2389 `used' is set to the length of the compiled pattern;
2390 `fastmap_accurate' is zero;
2391 `re_nsub' is the number of subexpressions in PATTERN;
2392 `not_bol' and `not_eol' are zero;
2394 The `fastmap' field is neither examined nor set. */
2396 /* Insert the `jump' from the end of last alternative to "here".
2397 The space for the jump has already been allocated. */
2398 #define FIXUP_ALT_JUMP() \
2400 if (fixup_alt_jump) \
2401 STORE_JUMP (jump, fixup_alt_jump, b); \
2405 /* Return, freeing storage we allocated. */
2406 #define FREE_STACK_RETURN(value) \
2408 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2409 free (compile_stack.stack); \
2413 static reg_errcode_t
2414 regex_compile (const_re_char
*pattern
, size_t size
, reg_syntax_t syntax
,
2415 struct re_pattern_buffer
*bufp
)
2417 /* We fetch characters from PATTERN here. */
2418 register re_wchar_t c
, c1
;
2420 /* Points to the end of the buffer, where we should append. */
2421 register unsigned char *b
;
2423 /* Keeps track of unclosed groups. */
2424 compile_stack_type compile_stack
;
2426 /* Points to the current (ending) position in the pattern. */
2428 /* `const' makes AIX compiler fail. */
2429 unsigned char *p
= pattern
;
2431 re_char
*p
= pattern
;
2433 re_char
*pend
= pattern
+ size
;
2435 /* How to translate the characters in the pattern. */
2436 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2438 /* Address of the count-byte of the most recently inserted `exactn'
2439 command. This makes it possible to tell if a new exact-match
2440 character can be added to that command or if the character requires
2441 a new `exactn' command. */
2442 unsigned char *pending_exact
= 0;
2444 /* Address of start of the most recently finished expression.
2445 This tells, e.g., postfix * where to find the start of its
2446 operand. Reset at the beginning of groups and alternatives. */
2447 unsigned char *laststart
= 0;
2449 /* Address of beginning of regexp, or inside of last group. */
2450 unsigned char *begalt
;
2452 /* Place in the uncompiled pattern (i.e., the {) to
2453 which to go back if the interval is invalid. */
2454 re_char
*beg_interval
;
2456 /* Address of the place where a forward jump should go to the end of
2457 the containing expression. Each alternative of an `or' -- except the
2458 last -- ends with a forward jump of this sort. */
2459 unsigned char *fixup_alt_jump
= 0;
2461 /* Work area for range table of charset. */
2462 struct range_table_work_area range_table_work
;
2464 /* If the object matched can contain multibyte characters. */
2465 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2467 /* Nonzero if we have pushed down into a subpattern. */
2468 int in_subpattern
= 0;
2470 /* These hold the values of p, pattern, and pend from the main
2471 pattern when we have pushed into a subpattern. */
2472 re_char
*main_p
IF_LINT (= NULL
);
2473 re_char
*main_pattern
IF_LINT (= NULL
);
2474 re_char
*main_pend
IF_LINT (= NULL
);
2478 DEBUG_PRINT ("\nCompiling pattern: ");
2481 unsigned debug_count
;
2483 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2484 putchar (pattern
[debug_count
]);
2489 /* Initialize the compile stack. */
2490 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2491 if (compile_stack
.stack
== NULL
)
2494 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2495 compile_stack
.avail
= 0;
2497 range_table_work
.table
= 0;
2498 range_table_work
.allocated
= 0;
2500 /* Initialize the pattern buffer. */
2501 bufp
->syntax
= syntax
;
2502 bufp
->fastmap_accurate
= 0;
2503 bufp
->not_bol
= bufp
->not_eol
= 0;
2504 bufp
->used_syntax
= 0;
2506 /* Set `used' to zero, so that if we return an error, the pattern
2507 printer (for debugging) will think there's no pattern. We reset it
2511 /* Always count groups, whether or not bufp->no_sub is set. */
2514 #if !defined emacs && !defined SYNTAX_TABLE
2515 /* Initialize the syntax table. */
2516 init_syntax_once ();
2519 if (bufp
->allocated
== 0)
2522 { /* If zero allocated, but buffer is non-null, try to realloc
2523 enough space. This loses if buffer's address is bogus, but
2524 that is the user's responsibility. */
2525 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2528 { /* Caller did not allocate a buffer. Do it for them. */
2529 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2531 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2533 bufp
->allocated
= INIT_BUF_SIZE
;
2536 begalt
= b
= bufp
->buffer
;
2538 /* Loop through the uncompiled pattern until we're at the end. */
2543 /* If this is the end of an included regexp,
2544 pop back to the main regexp and try again. */
2548 pattern
= main_pattern
;
2553 /* If this is the end of the main regexp, we are done. */
2565 /* If there's no special whitespace regexp, treat
2566 spaces normally. And don't try to do this recursively. */
2567 if (!whitespace_regexp
|| in_subpattern
)
2570 /* Peek past following spaces. */
2577 /* If the spaces are followed by a repetition op,
2578 treat them normally. */
2580 && (*p1
== '*' || *p1
== '+' || *p1
== '?'
2581 || (*p1
== '\\' && p1
+ 1 != pend
&& p1
[1] == '{')))
2584 /* Replace the spaces with the whitespace regexp. */
2588 main_pattern
= pattern
;
2589 p
= pattern
= whitespace_regexp
;
2590 pend
= p
+ strlen ((const char *) p
);
2596 if ( /* If at start of pattern, it's an operator. */
2598 /* If context independent, it's an operator. */
2599 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2600 /* Otherwise, depends on what's come before. */
2601 || at_begline_loc_p (pattern
, p
, syntax
))
2602 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2611 if ( /* If at end of pattern, it's an operator. */
2613 /* If context independent, it's an operator. */
2614 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2615 /* Otherwise, depends on what's next. */
2616 || at_endline_loc_p (p
, pend
, syntax
))
2617 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2626 if ((syntax
& RE_BK_PLUS_QM
)
2627 || (syntax
& RE_LIMITED_OPS
))
2631 /* If there is no previous pattern... */
2634 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2635 FREE_STACK_RETURN (REG_BADRPT
);
2636 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2641 /* 1 means zero (many) matches is allowed. */
2642 boolean zero_times_ok
= 0, many_times_ok
= 0;
2645 /* If there is a sequence of repetition chars, collapse it
2646 down to just one (the right one). We can't combine
2647 interval operators with these because of, e.g., `a{2}*',
2648 which should only match an even number of `a's. */
2652 if ((syntax
& RE_FRUGAL
)
2653 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2657 zero_times_ok
|= c
!= '+';
2658 many_times_ok
|= c
!= '?';
2664 || (!(syntax
& RE_BK_PLUS_QM
)
2665 && (*p
== '+' || *p
== '?')))
2667 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2670 FREE_STACK_RETURN (REG_EESCAPE
);
2671 if (p
[1] == '+' || p
[1] == '?')
2672 PATFETCH (c
); /* Gobble up the backslash. */
2678 /* If we get here, we found another repeat character. */
2682 /* Star, etc. applied to an empty pattern is equivalent
2683 to an empty pattern. */
2684 if (!laststart
|| laststart
== b
)
2687 /* Now we know whether or not zero matches is allowed
2688 and also whether or not two or more matches is allowed. */
2693 boolean simple
= skip_one_char (laststart
) == b
;
2694 size_t startoffset
= 0;
2696 /* Check if the loop can match the empty string. */
2697 (simple
|| !analyse_first (laststart
, b
, NULL
, 0))
2698 ? on_failure_jump
: on_failure_jump_loop
;
2699 assert (skip_one_char (laststart
) <= b
);
2701 if (!zero_times_ok
&& simple
)
2702 { /* Since simple * loops can be made faster by using
2703 on_failure_keep_string_jump, we turn simple P+
2704 into PP* if P is simple. */
2705 unsigned char *p1
, *p2
;
2706 startoffset
= b
- laststart
;
2707 GET_BUFFER_SPACE (startoffset
);
2708 p1
= b
; p2
= laststart
;
2714 GET_BUFFER_SPACE (6);
2717 STORE_JUMP (ofj
, b
, b
+ 6);
2719 /* Simple * loops can use on_failure_keep_string_jump
2720 depending on what follows. But since we don't know
2721 that yet, we leave the decision up to
2722 on_failure_jump_smart. */
2723 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2724 laststart
+ startoffset
, b
+ 6);
2726 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2731 /* A simple ? pattern. */
2732 assert (zero_times_ok
);
2733 GET_BUFFER_SPACE (3);
2734 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2738 else /* not greedy */
2739 { /* I wish the greedy and non-greedy cases could be merged. */
2741 GET_BUFFER_SPACE (7); /* We might use less. */
2744 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2746 /* The non-greedy multiple match looks like
2747 a repeat..until: we only need a conditional jump
2748 at the end of the loop. */
2749 if (emptyp
) BUF_PUSH (no_op
);
2750 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2751 : on_failure_jump
, b
, laststart
);
2755 /* The repeat...until naturally matches one or more.
2756 To also match zero times, we need to first jump to
2757 the end of the loop (its conditional jump). */
2758 INSERT_JUMP (jump
, laststart
, b
);
2764 /* non-greedy a?? */
2765 INSERT_JUMP (jump
, laststart
, b
+ 3);
2767 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2786 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2788 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2790 /* Ensure that we have enough space to push a charset: the
2791 opcode, the length count, and the bitset; 34 bytes in all. */
2792 GET_BUFFER_SPACE (34);
2796 /* We test `*p == '^' twice, instead of using an if
2797 statement, so we only need one BUF_PUSH. */
2798 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2802 /* Remember the first position in the bracket expression. */
2805 /* Push the number of bytes in the bitmap. */
2806 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2808 /* Clear the whole map. */
2809 memset (b
, 0, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2811 /* charset_not matches newline according to a syntax bit. */
2812 if ((re_opcode_t
) b
[-2] == charset_not
2813 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2814 SET_LIST_BIT ('\n');
2816 /* Read in characters and ranges, setting map bits. */
2819 boolean escaped_char
= false;
2820 const unsigned char *p2
= p
;
2823 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2825 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2826 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2827 So the translation is done later in a loop. Example:
2828 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2831 /* \ might escape characters inside [...] and [^...]. */
2832 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2834 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2837 escaped_char
= true;
2841 /* Could be the end of the bracket expression. If it's
2842 not (i.e., when the bracket expression is `[]' so
2843 far), the ']' character bit gets set way below. */
2844 if (c
== ']' && p2
!= p1
)
2848 /* See if we're at the beginning of a possible character
2851 if (!escaped_char
&&
2852 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2854 /* Leave room for the null. */
2855 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2856 const unsigned char *class_beg
;
2862 /* If pattern is `[[:'. */
2863 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2868 if ((c
== ':' && *p
== ']') || p
== pend
)
2870 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2873 /* This is in any case an invalid class name. */
2878 /* If isn't a word bracketed by `[:' and `:]':
2879 undo the ending character, the letters, and
2880 leave the leading `:' and `[' (but set bits for
2882 if (c
== ':' && *p
== ']')
2884 re_wctype_t cc
= re_wctype (str
);
2887 FREE_STACK_RETURN (REG_ECTYPE
);
2889 /* Throw away the ] at the end of the character
2893 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2896 for (ch
= 0; ch
< (1 << BYTEWIDTH
); ++ch
)
2897 if (re_iswctype (btowc (ch
), cc
))
2900 if (c
< (1 << BYTEWIDTH
))
2904 /* Most character classes in a multibyte match
2905 just set a flag. Exceptions are is_blank,
2906 is_digit, is_cntrl, and is_xdigit, since
2907 they can only match ASCII characters. We
2908 don't need to handle them for multibyte.
2909 They are distinguished by a negative wctype. */
2911 /* Setup the gl_state object to its buffer-defined
2912 value. This hardcodes the buffer-global
2913 syntax-table for ASCII chars, while the other chars
2914 will obey syntax-table properties. It's not ideal,
2915 but it's the way it's been done until now. */
2916 SETUP_BUFFER_SYNTAX_TABLE ();
2918 for (ch
= 0; ch
< 256; ++ch
)
2920 c
= RE_CHAR_TO_MULTIBYTE (ch
);
2921 if (! CHAR_BYTE8_P (c
)
2922 && re_iswctype (c
, cc
))
2928 if (ASCII_CHAR_P (c1
))
2930 else if ((c1
= RE_CHAR_TO_UNIBYTE (c1
)) >= 0)
2934 SET_RANGE_TABLE_WORK_AREA_BIT
2935 (range_table_work
, re_wctype_to_bit (cc
));
2937 /* In most cases the matching rule for char classes
2938 only uses the syntax table for multibyte chars,
2939 so that the content of the syntax-table it is not
2940 hardcoded in the range_table. SPACE and WORD are
2941 the two exceptions. */
2942 if ((1 << cc
) & ((1 << RECC_SPACE
) | (1 << RECC_WORD
)))
2943 bufp
->used_syntax
= 1;
2945 /* Repeat the loop. */
2950 /* Go back to right after the "[:". */
2954 /* Because the `:' may starts the range, we
2955 can't simply set bit and repeat the loop.
2956 Instead, just set it to C and handle below. */
2961 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2964 /* Discard the `-'. */
2967 /* Fetch the character which ends the range. */
2970 if (CHAR_BYTE8_P (c1
)
2971 && ! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
2972 /* Treat the range from a multibyte character to
2973 raw-byte character as empty. */
2978 /* Range from C to C. */
2983 if (syntax
& RE_NO_EMPTY_RANGES
)
2984 FREE_STACK_RETURN (REG_ERANGEX
);
2985 /* Else, repeat the loop. */
2990 /* Set the range into bitmap */
2991 for (; c
<= c1
; c
++)
2994 if (ch
< (1 << BYTEWIDTH
))
3001 SETUP_ASCII_RANGE (range_table_work
, c
, ch
);
3003 if (CHAR_BYTE8_P (c1
))
3004 c
= BYTE8_TO_CHAR (128);
3008 if (CHAR_BYTE8_P (c
))
3010 c
= CHAR_TO_BYTE8 (c
);
3011 c1
= CHAR_TO_BYTE8 (c1
);
3012 for (; c
<= c1
; c
++)
3017 SETUP_MULTIBYTE_RANGE (range_table_work
, c
, c1
);
3021 SETUP_UNIBYTE_RANGE (range_table_work
, c
, c1
);
3028 /* Discard any (non)matching list bytes that are all 0 at the
3029 end of the map. Decrease the map-length byte too. */
3030 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3034 /* Build real range table from work area. */
3035 if (RANGE_TABLE_WORK_USED (range_table_work
)
3036 || RANGE_TABLE_WORK_BITS (range_table_work
))
3039 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
3041 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3042 bytes for flags, two for COUNT, and three bytes for
3044 GET_BUFFER_SPACE (4 + used
* 3);
3046 /* Indicate the existence of range table. */
3047 laststart
[1] |= 0x80;
3049 /* Store the character class flag bits into the range table.
3050 If not in emacs, these flag bits are always 0. */
3051 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
3052 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
3054 STORE_NUMBER_AND_INCR (b
, used
/ 2);
3055 for (i
= 0; i
< used
; i
++)
3056 STORE_CHARACTER_AND_INCR
3057 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
3064 if (syntax
& RE_NO_BK_PARENS
)
3071 if (syntax
& RE_NO_BK_PARENS
)
3078 if (syntax
& RE_NEWLINE_ALT
)
3085 if (syntax
& RE_NO_BK_VBAR
)
3092 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3093 goto handle_interval
;
3099 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3101 /* Do not translate the character after the \, so that we can
3102 distinguish, e.g., \B from \b, even if we normally would
3103 translate, e.g., B to b. */
3109 if (syntax
& RE_NO_BK_PARENS
)
3110 goto normal_backslash
;
3115 regnum_t regnum
= 0;
3118 /* Look for a special (?...) construct */
3119 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3121 PATFETCH (c
); /* Gobble up the '?'. */
3127 case ':': shy
= 1; break;
3129 /* An explicitly specified regnum must start
3132 FREE_STACK_RETURN (REG_BADPAT
);
3133 case '1': case '2': case '3': case '4':
3134 case '5': case '6': case '7': case '8': case '9':
3135 regnum
= 10*regnum
+ (c
- '0'); break;
3137 /* Only (?:...) is supported right now. */
3138 FREE_STACK_RETURN (REG_BADPAT
);
3145 regnum
= ++bufp
->re_nsub
;
3147 { /* It's actually not shy, but explicitly numbered. */
3149 if (regnum
> bufp
->re_nsub
)
3150 bufp
->re_nsub
= regnum
;
3151 else if (regnum
> bufp
->re_nsub
3152 /* Ideally, we'd want to check that the specified
3153 group can't have matched (i.e. all subgroups
3154 using the same regnum are in other branches of
3155 OR patterns), but we don't currently keep track
3156 of enough info to do that easily. */
3157 || group_in_compile_stack (compile_stack
, regnum
))
3158 FREE_STACK_RETURN (REG_BADPAT
);
3161 /* It's really shy. */
3162 regnum
= - bufp
->re_nsub
;
3164 if (COMPILE_STACK_FULL
)
3166 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3167 compile_stack_elt_t
);
3168 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3170 compile_stack
.size
<<= 1;
3173 /* These are the values to restore when we hit end of this
3174 group. They are all relative offsets, so that if the
3175 whole pattern moves because of realloc, they will still
3177 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3178 COMPILE_STACK_TOP
.fixup_alt_jump
3179 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3180 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3181 COMPILE_STACK_TOP
.regnum
= regnum
;
3183 /* Do not push a start_memory for groups beyond the last one
3184 we can represent in the compiled pattern. */
3185 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3186 BUF_PUSH_2 (start_memory
, regnum
);
3188 compile_stack
.avail
++;
3193 /* If we've reached MAX_REGNUM groups, then this open
3194 won't actually generate any code, so we'll have to
3195 clear pending_exact explicitly. */
3201 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3203 if (COMPILE_STACK_EMPTY
)
3205 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3206 goto normal_backslash
;
3208 FREE_STACK_RETURN (REG_ERPAREN
);
3214 /* See similar code for backslashed left paren above. */
3215 if (COMPILE_STACK_EMPTY
)
3217 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3220 FREE_STACK_RETURN (REG_ERPAREN
);
3223 /* Since we just checked for an empty stack above, this
3224 ``can't happen''. */
3225 assert (compile_stack
.avail
!= 0);
3227 /* We don't just want to restore into `regnum', because
3228 later groups should continue to be numbered higher,
3229 as in `(ab)c(de)' -- the second group is #2. */
3232 compile_stack
.avail
--;
3233 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3235 = COMPILE_STACK_TOP
.fixup_alt_jump
3236 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3238 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3239 regnum
= COMPILE_STACK_TOP
.regnum
;
3240 /* If we've reached MAX_REGNUM groups, then this open
3241 won't actually generate any code, so we'll have to
3242 clear pending_exact explicitly. */
3245 /* We're at the end of the group, so now we know how many
3246 groups were inside this one. */
3247 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3248 BUF_PUSH_2 (stop_memory
, regnum
);
3253 case '|': /* `\|'. */
3254 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3255 goto normal_backslash
;
3257 if (syntax
& RE_LIMITED_OPS
)
3260 /* Insert before the previous alternative a jump which
3261 jumps to this alternative if the former fails. */
3262 GET_BUFFER_SPACE (3);
3263 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3267 /* The alternative before this one has a jump after it
3268 which gets executed if it gets matched. Adjust that
3269 jump so it will jump to this alternative's analogous
3270 jump (put in below, which in turn will jump to the next
3271 (if any) alternative's such jump, etc.). The last such
3272 jump jumps to the correct final destination. A picture:
3278 If we are at `b', then fixup_alt_jump right now points to a
3279 three-byte space after `a'. We'll put in the jump, set
3280 fixup_alt_jump to right after `b', and leave behind three
3281 bytes which we'll fill in when we get to after `c'. */
3285 /* Mark and leave space for a jump after this alternative,
3286 to be filled in later either by next alternative or
3287 when know we're at the end of a series of alternatives. */
3289 GET_BUFFER_SPACE (3);
3298 /* If \{ is a literal. */
3299 if (!(syntax
& RE_INTERVALS
)
3300 /* If we're at `\{' and it's not the open-interval
3302 || (syntax
& RE_NO_BK_BRACES
))
3303 goto normal_backslash
;
3307 /* If got here, then the syntax allows intervals. */
3309 /* At least (most) this many matches must be made. */
3310 int lower_bound
= 0, upper_bound
= -1;
3314 GET_UNSIGNED_NUMBER (lower_bound
);
3317 GET_UNSIGNED_NUMBER (upper_bound
);
3319 /* Interval such as `{1}' => match exactly once. */
3320 upper_bound
= lower_bound
;
3322 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
3323 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
3324 FREE_STACK_RETURN (REG_BADBR
);
3326 if (!(syntax
& RE_NO_BK_BRACES
))
3329 FREE_STACK_RETURN (REG_BADBR
);
3331 FREE_STACK_RETURN (REG_EESCAPE
);
3336 FREE_STACK_RETURN (REG_BADBR
);
3338 /* We just parsed a valid interval. */
3340 /* If it's invalid to have no preceding re. */
3343 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3344 FREE_STACK_RETURN (REG_BADRPT
);
3345 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3348 goto unfetch_interval
;
3351 if (upper_bound
== 0)
3352 /* If the upper bound is zero, just drop the sub pattern
3355 else if (lower_bound
== 1 && upper_bound
== 1)
3356 /* Just match it once: nothing to do here. */
3359 /* Otherwise, we have a nontrivial interval. When
3360 we're all done, the pattern will look like:
3361 set_number_at <jump count> <upper bound>
3362 set_number_at <succeed_n count> <lower bound>
3363 succeed_n <after jump addr> <succeed_n count>
3365 jump_n <succeed_n addr> <jump count>
3366 (The upper bound and `jump_n' are omitted if
3367 `upper_bound' is 1, though.) */
3369 { /* If the upper bound is > 1, we need to insert
3370 more at the end of the loop. */
3371 unsigned int nbytes
= (upper_bound
< 0 ? 3
3372 : upper_bound
> 1 ? 5 : 0);
3373 unsigned int startoffset
= 0;
3375 GET_BUFFER_SPACE (20); /* We might use less. */
3377 if (lower_bound
== 0)
3379 /* A succeed_n that starts with 0 is really a
3380 a simple on_failure_jump_loop. */
3381 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3387 /* Initialize lower bound of the `succeed_n', even
3388 though it will be set during matching by its
3389 attendant `set_number_at' (inserted next),
3390 because `re_compile_fastmap' needs to know.
3391 Jump to the `jump_n' we might insert below. */
3392 INSERT_JUMP2 (succeed_n
, laststart
,
3397 /* Code to initialize the lower bound. Insert
3398 before the `succeed_n'. The `5' is the last two
3399 bytes of this `set_number_at', plus 3 bytes of
3400 the following `succeed_n'. */
3401 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3406 if (upper_bound
< 0)
3408 /* A negative upper bound stands for infinity,
3409 in which case it degenerates to a plain jump. */
3410 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3413 else if (upper_bound
> 1)
3414 { /* More than one repetition is allowed, so
3415 append a backward jump to the `succeed_n'
3416 that starts this interval.
3418 When we've reached this during matching,
3419 we'll have matched the interval once, so
3420 jump back only `upper_bound - 1' times. */
3421 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3425 /* The location we want to set is the second
3426 parameter of the `jump_n'; that is `b-2' as
3427 an absolute address. `laststart' will be
3428 the `set_number_at' we're about to insert;
3429 `laststart+3' the number to set, the source
3430 for the relative address. But we are
3431 inserting into the middle of the pattern --
3432 so everything is getting moved up by 5.
3433 Conclusion: (b - 2) - (laststart + 3) + 5,
3434 i.e., b - laststart.
3436 We insert this at the beginning of the loop
3437 so that if we fail during matching, we'll
3438 reinitialize the bounds. */
3439 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3440 upper_bound
- 1, b
);
3445 beg_interval
= NULL
;
3450 /* If an invalid interval, match the characters as literals. */
3451 assert (beg_interval
);
3453 beg_interval
= NULL
;
3455 /* normal_char and normal_backslash need `c'. */
3458 if (!(syntax
& RE_NO_BK_BRACES
))
3460 assert (p
> pattern
&& p
[-1] == '\\');
3461 goto normal_backslash
;
3467 /* There is no way to specify the before_dot and after_dot
3468 operators. rms says this is ok. --karl */
3477 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3483 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3489 BUF_PUSH_2 (categoryspec
, c
);
3495 BUF_PUSH_2 (notcategoryspec
, c
);
3501 if (syntax
& RE_NO_GNU_OPS
)
3504 BUF_PUSH_2 (syntaxspec
, Sword
);
3509 if (syntax
& RE_NO_GNU_OPS
)
3512 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3517 if (syntax
& RE_NO_GNU_OPS
)
3524 if (syntax
& RE_NO_GNU_OPS
)
3531 if (syntax
& RE_NO_GNU_OPS
)
3540 FREE_STACK_RETURN (REG_BADPAT
);
3544 if (syntax
& RE_NO_GNU_OPS
)
3546 BUF_PUSH (wordbound
);
3550 if (syntax
& RE_NO_GNU_OPS
)
3552 BUF_PUSH (notwordbound
);
3556 if (syntax
& RE_NO_GNU_OPS
)
3562 if (syntax
& RE_NO_GNU_OPS
)
3567 case '1': case '2': case '3': case '4': case '5':
3568 case '6': case '7': case '8': case '9':
3572 if (syntax
& RE_NO_BK_REFS
)
3573 goto normal_backslash
;
3577 if (reg
> bufp
->re_nsub
|| reg
< 1
3578 /* Can't back reference to a subexp before its end. */
3579 || group_in_compile_stack (compile_stack
, reg
))
3580 FREE_STACK_RETURN (REG_ESUBREG
);
3583 BUF_PUSH_2 (duplicate
, reg
);
3590 if (syntax
& RE_BK_PLUS_QM
)
3593 goto normal_backslash
;
3597 /* You might think it would be useful for \ to mean
3598 not to translate; but if we don't translate it
3599 it will never match anything. */
3606 /* Expects the character in `c'. */
3608 /* If no exactn currently being built. */
3611 /* If last exactn not at current position. */
3612 || pending_exact
+ *pending_exact
+ 1 != b
3614 /* We have only one byte following the exactn for the count. */
3615 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3617 /* If followed by a repetition operator. */
3618 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3619 || ((syntax
& RE_BK_PLUS_QM
)
3620 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3621 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3622 || ((syntax
& RE_INTERVALS
)
3623 && ((syntax
& RE_NO_BK_BRACES
)
3624 ? p
!= pend
&& *p
== '{'
3625 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3627 /* Start building a new exactn. */
3631 BUF_PUSH_2 (exactn
, 0);
3632 pending_exact
= b
- 1;
3635 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3642 len
= CHAR_STRING (c
, b
);
3647 c1
= RE_CHAR_TO_MULTIBYTE (c
);
3648 if (! CHAR_BYTE8_P (c1
))
3650 re_wchar_t c2
= TRANSLATE (c1
);
3652 if (c1
!= c2
&& (c1
= RE_CHAR_TO_UNIBYTE (c2
)) >= 0)
3658 (*pending_exact
) += len
;
3663 } /* while p != pend */
3666 /* Through the pattern now. */
3670 if (!COMPILE_STACK_EMPTY
)
3671 FREE_STACK_RETURN (REG_EPAREN
);
3673 /* If we don't want backtracking, force success
3674 the first time we reach the end of the compiled pattern. */
3675 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3678 /* We have succeeded; set the length of the buffer. */
3679 bufp
->used
= b
- bufp
->buffer
;
3684 re_compile_fastmap (bufp
);
3685 DEBUG_PRINT ("\nCompiled pattern: \n");
3686 print_compiled_pattern (bufp
);
3691 #ifndef MATCH_MAY_ALLOCATE
3692 /* Initialize the failure stack to the largest possible stack. This
3693 isn't necessary unless we're trying to avoid calling alloca in
3694 the search and match routines. */
3696 int num_regs
= bufp
->re_nsub
+ 1;
3698 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3700 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3701 falk_stack
.stack
= realloc (fail_stack
.stack
,
3702 fail_stack
.size
* sizeof *falk_stack
.stack
);
3705 regex_grow_registers (num_regs
);
3707 #endif /* not MATCH_MAY_ALLOCATE */
3709 FREE_STACK_RETURN (REG_NOERROR
);
3710 } /* regex_compile */
3712 /* Subroutines for `regex_compile'. */
3714 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3717 store_op1 (re_opcode_t op
, unsigned char *loc
, int arg
)
3719 *loc
= (unsigned char) op
;
3720 STORE_NUMBER (loc
+ 1, arg
);
3724 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3727 store_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
)
3729 *loc
= (unsigned char) op
;
3730 STORE_NUMBER (loc
+ 1, arg1
);
3731 STORE_NUMBER (loc
+ 3, arg2
);
3735 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3736 for OP followed by two-byte integer parameter ARG. */
3739 insert_op1 (re_opcode_t op
, unsigned char *loc
, int arg
, unsigned char *end
)
3741 register unsigned char *pfrom
= end
;
3742 register unsigned char *pto
= end
+ 3;
3744 while (pfrom
!= loc
)
3747 store_op1 (op
, loc
, arg
);
3751 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3754 insert_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
, unsigned char *end
)
3756 register unsigned char *pfrom
= end
;
3757 register unsigned char *pto
= end
+ 5;
3759 while (pfrom
!= loc
)
3762 store_op2 (op
, loc
, arg1
, arg2
);
3766 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3767 after an alternative or a begin-subexpression. We assume there is at
3768 least one character before the ^. */
3771 at_begline_loc_p (const_re_char
*pattern
, const_re_char
*p
, reg_syntax_t syntax
)
3773 re_char
*prev
= p
- 2;
3774 boolean odd_backslashes
;
3776 /* After a subexpression? */
3778 odd_backslashes
= (syntax
& RE_NO_BK_PARENS
) == 0;
3780 /* After an alternative? */
3781 else if (*prev
== '|')
3782 odd_backslashes
= (syntax
& RE_NO_BK_VBAR
) == 0;
3784 /* After a shy subexpression? */
3785 else if (*prev
== ':' && (syntax
& RE_SHY_GROUPS
))
3787 /* Skip over optional regnum. */
3788 while (prev
- 1 >= pattern
&& prev
[-1] >= '0' && prev
[-1] <= '9')
3791 if (!(prev
- 2 >= pattern
3792 && prev
[-1] == '?' && prev
[-2] == '('))
3795 odd_backslashes
= (syntax
& RE_NO_BK_PARENS
) == 0;
3800 /* Count the number of preceding backslashes. */
3802 while (prev
- 1 >= pattern
&& prev
[-1] == '\\')
3804 return (p
- prev
) & odd_backslashes
;
3808 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3809 at least one character after the $, i.e., `P < PEND'. */
3812 at_endline_loc_p (const_re_char
*p
, const_re_char
*pend
, reg_syntax_t syntax
)
3815 boolean next_backslash
= *next
== '\\';
3816 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3819 /* Before a subexpression? */
3820 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3821 : next_backslash
&& next_next
&& *next_next
== ')')
3822 /* Before an alternative? */
3823 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3824 : next_backslash
&& next_next
&& *next_next
== '|');
3828 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3829 false if it's not. */
3832 group_in_compile_stack (compile_stack_type compile_stack
, regnum_t regnum
)
3834 ssize_t this_element
;
3836 for (this_element
= compile_stack
.avail
- 1;
3839 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3846 If fastmap is non-NULL, go through the pattern and fill fastmap
3847 with all the possible leading chars. If fastmap is NULL, don't
3848 bother filling it up (obviously) and only return whether the
3849 pattern could potentially match the empty string.
3851 Return 1 if p..pend might match the empty string.
3852 Return 0 if p..pend matches at least one char.
3853 Return -1 if fastmap was not updated accurately. */
3856 analyse_first (const_re_char
*p
, const_re_char
*pend
, char *fastmap
,
3857 const int multibyte
)
3862 /* If all elements for base leading-codes in fastmap is set, this
3863 flag is set true. */
3864 boolean match_any_multibyte_characters
= false;
3868 /* The loop below works as follows:
3869 - It has a working-list kept in the PATTERN_STACK and which basically
3870 starts by only containing a pointer to the first operation.
3871 - If the opcode we're looking at is a match against some set of
3872 chars, then we add those chars to the fastmap and go on to the
3873 next work element from the worklist (done via `break').
3874 - If the opcode is a control operator on the other hand, we either
3875 ignore it (if it's meaningless at this point, such as `start_memory')
3876 or execute it (if it's a jump). If the jump has several destinations
3877 (i.e. `on_failure_jump'), then we push the other destination onto the
3879 We guarantee termination by ignoring backward jumps (more or less),
3880 so that `p' is monotonically increasing. More to the point, we
3881 never set `p' (or push) anything `<= p1'. */
3885 /* `p1' is used as a marker of how far back a `on_failure_jump'
3886 can go without being ignored. It is normally equal to `p'
3887 (which prevents any backward `on_failure_jump') except right
3888 after a plain `jump', to allow patterns such as:
3891 10: on_failure_jump 3
3892 as used for the *? operator. */
3901 /* If the first character has to match a backreference, that means
3902 that the group was empty (since it already matched). Since this
3903 is the only case that interests us here, we can assume that the
3904 backreference must match the empty string. */
3909 /* Following are the cases which match a character. These end
3915 /* If multibyte is nonzero, the first byte of each
3916 character is an ASCII or a leading code. Otherwise,
3917 each byte is a character. Thus, this works in both
3922 /* For the case of matching this unibyte regex
3923 against multibyte, we must set a leading code of
3924 the corresponding multibyte character. */
3925 int c
= RE_CHAR_TO_MULTIBYTE (p
[1]);
3927 fastmap
[CHAR_LEADING_CODE (c
)] = 1;
3934 /* We could put all the chars except for \n (and maybe \0)
3935 but we don't bother since it is generally not worth it. */
3936 if (!fastmap
) break;
3941 if (!fastmap
) break;
3943 /* Chars beyond end of bitmap are possible matches. */
3944 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3945 j
< (1 << BYTEWIDTH
); j
++)
3951 if (!fastmap
) break;
3952 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3953 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3955 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3959 if (/* Any leading code can possibly start a character
3960 which doesn't match the specified set of characters. */
3963 /* If we can match a character class, we can match any
3964 multibyte characters. */
3965 (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3966 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3969 if (match_any_multibyte_characters
== false)
3971 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
3972 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
3974 match_any_multibyte_characters
= true;
3978 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3979 && match_any_multibyte_characters
== false)
3981 /* Set fastmap[I] to 1 where I is a leading code of each
3982 multibyte character in the range table. */
3984 unsigned char lc1
, lc2
;
3986 /* Make P points the range table. `+ 2' is to skip flag
3987 bits for a character class. */
3988 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
3990 /* Extract the number of ranges in range table into COUNT. */
3991 EXTRACT_NUMBER_AND_INCR (count
, p
);
3992 for (; count
> 0; count
--, p
+= 3)
3994 /* Extract the start and end of each range. */
3995 EXTRACT_CHARACTER (c
, p
);
3996 lc1
= CHAR_LEADING_CODE (c
);
3998 EXTRACT_CHARACTER (c
, p
);
3999 lc2
= CHAR_LEADING_CODE (c
);
4000 for (j
= lc1
; j
<= lc2
; j
++)
4009 if (!fastmap
) break;
4011 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
4013 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4014 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
4018 /* This match depends on text properties. These end with
4019 aborting optimizations. */
4023 case notcategoryspec
:
4024 if (!fastmap
) break;
4025 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
4027 for (j
= (1 << BYTEWIDTH
); j
>= 0; j
--)
4028 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
4031 /* Any leading code can possibly start a character which
4032 has or doesn't has the specified category. */
4033 if (match_any_multibyte_characters
== false)
4035 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
4036 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
4038 match_any_multibyte_characters
= true;
4042 /* All cases after this match the empty string. These end with
4064 EXTRACT_NUMBER_AND_INCR (j
, p
);
4066 /* Backward jumps can only go back to code that we've already
4067 visited. `re_compile' should make sure this is true. */
4072 case on_failure_jump
:
4073 case on_failure_keep_string_jump
:
4074 case on_failure_jump_loop
:
4075 case on_failure_jump_nastyloop
:
4076 case on_failure_jump_smart
:
4082 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4083 to jump back to "just after here". */
4086 case on_failure_jump
:
4087 case on_failure_keep_string_jump
:
4088 case on_failure_jump_nastyloop
:
4089 case on_failure_jump_loop
:
4090 case on_failure_jump_smart
:
4091 EXTRACT_NUMBER_AND_INCR (j
, p
);
4093 ; /* Backward jump to be ignored. */
4095 { /* We have to look down both arms.
4096 We first go down the "straight" path so as to minimize
4097 stack usage when going through alternatives. */
4098 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
4106 /* This code simply does not properly handle forward jump_n. */
4107 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
4109 /* jump_n can either jump or fall through. The (backward) jump
4110 case has already been handled, so we only need to look at the
4111 fallthrough case. */
4115 /* If N == 0, it should be an on_failure_jump_loop instead. */
4116 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
4118 /* We only care about one iteration of the loop, so we don't
4119 need to consider the case where this behaves like an
4136 abort (); /* We have listed all the cases. */
4139 /* Getting here means we have found the possible starting
4140 characters for one path of the pattern -- and that the empty
4141 string does not match. We need not follow this path further. */
4145 /* We reached the end without matching anything. */
4148 } /* analyse_first */
4150 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4151 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4152 characters can start a string that matches the pattern. This fastmap
4153 is used by re_search to skip quickly over impossible starting points.
4155 Character codes above (1 << BYTEWIDTH) are not represented in the
4156 fastmap, but the leading codes are represented. Thus, the fastmap
4157 indicates which character sets could start a match.
4159 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4160 area as BUFP->fastmap.
4162 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4165 Returns 0 if we succeed, -2 if an internal error. */
4168 re_compile_fastmap (struct re_pattern_buffer
*bufp
)
4170 char *fastmap
= bufp
->fastmap
;
4173 assert (fastmap
&& bufp
->buffer
);
4175 memset (fastmap
, 0, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4176 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4178 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4179 fastmap
, RE_MULTIBYTE_P (bufp
));
4180 bufp
->can_be_null
= (analysis
!= 0);
4182 } /* re_compile_fastmap */
4184 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4185 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4186 this memory for recording register information. STARTS and ENDS
4187 must be allocated using the malloc library routine, and must each
4188 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4190 If NUM_REGS == 0, then subsequent matches should allocate their own
4193 Unless this function is called, the first search or match using
4194 PATTERN_BUFFER will allocate its own register data, without
4195 freeing the old data. */
4198 re_set_registers (struct re_pattern_buffer
*bufp
, struct re_registers
*regs
, unsigned int num_regs
, regoff_t
*starts
, regoff_t
*ends
)
4202 bufp
->regs_allocated
= REGS_REALLOCATE
;
4203 regs
->num_regs
= num_regs
;
4204 regs
->start
= starts
;
4209 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4211 regs
->start
= regs
->end
= (regoff_t
*) 0;
4214 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4216 /* Searching routines. */
4218 /* Like re_search_2, below, but only one string is specified, and
4219 doesn't let you say where to stop matching. */
4222 re_search (struct re_pattern_buffer
*bufp
, const char *string
, size_t size
,
4223 ssize_t startpos
, ssize_t range
, struct re_registers
*regs
)
4225 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4228 WEAK_ALIAS (__re_search
, re_search
)
4230 /* Head address of virtual concatenation of string. */
4231 #define HEAD_ADDR_VSTRING(P) \
4232 (((P) >= size1 ? string2 : string1))
4234 /* Address of POS in the concatenation of virtual string. */
4235 #define POS_ADDR_VSTRING(POS) \
4236 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4238 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4239 virtual concatenation of STRING1 and STRING2, starting first at index
4240 STARTPOS, then at STARTPOS + 1, and so on.
4242 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4244 RANGE is how far to scan while trying to match. RANGE = 0 means try
4245 only at STARTPOS; in general, the last start tried is STARTPOS +
4248 In REGS, return the indices of the virtual concatenation of STRING1
4249 and STRING2 that matched the entire BUFP->buffer and its contained
4252 Do not consider matching one past the index STOP in the virtual
4253 concatenation of STRING1 and STRING2.
4255 We return either the position in the strings at which the match was
4256 found, -1 if no match, or -2 if error (such as failure
4260 re_search_2 (struct re_pattern_buffer
*bufp
, const char *str1
, size_t size1
,
4261 const char *str2
, size_t size2
, ssize_t startpos
, ssize_t range
,
4262 struct re_registers
*regs
, ssize_t stop
)
4265 re_char
*string1
= (re_char
*) str1
;
4266 re_char
*string2
= (re_char
*) str2
;
4267 register char *fastmap
= bufp
->fastmap
;
4268 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4269 size_t total_size
= size1
+ size2
;
4270 ssize_t endpos
= startpos
+ range
;
4271 boolean anchored_start
;
4272 /* Nonzero if we are searching multibyte string. */
4273 const boolean multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
4275 /* Check for out-of-range STARTPOS. */
4276 if (startpos
< 0 || startpos
> total_size
)
4279 /* Fix up RANGE if it might eventually take us outside
4280 the virtual concatenation of STRING1 and STRING2.
4281 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4283 range
= 0 - startpos
;
4284 else if (endpos
> total_size
)
4285 range
= total_size
- startpos
;
4287 /* If the search isn't to be a backwards one, don't waste time in a
4288 search for a pattern anchored at beginning of buffer. */
4289 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4298 /* In a forward search for something that starts with \=.
4299 don't keep searching past point. */
4300 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4302 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4308 /* Update the fastmap now if not correct already. */
4309 if (fastmap
&& !bufp
->fastmap_accurate
)
4310 re_compile_fastmap (bufp
);
4312 /* See whether the pattern is anchored. */
4313 anchored_start
= (bufp
->buffer
[0] == begline
);
4316 gl_state
.object
= re_match_object
; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4318 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4320 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4324 /* Loop through the string, looking for a place to start matching. */
4327 /* If the pattern is anchored,
4328 skip quickly past places we cannot match.
4329 We don't bother to treat startpos == 0 specially
4330 because that case doesn't repeat. */
4331 if (anchored_start
&& startpos
> 0)
4333 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4334 : string2
[startpos
- size1
- 1])
4339 /* If a fastmap is supplied, skip quickly over characters that
4340 cannot be the start of a match. If the pattern can match the
4341 null string, however, we don't need to skip characters; we want
4342 the first null string. */
4343 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4345 register re_char
*d
;
4346 register re_wchar_t buf_ch
;
4348 d
= POS_ADDR_VSTRING (startpos
);
4350 if (range
> 0) /* Searching forwards. */
4352 register int lim
= 0;
4353 ssize_t irange
= range
;
4355 if (startpos
< size1
&& startpos
+ range
>= size1
)
4356 lim
= range
- (size1
- startpos
);
4358 /* Written out as an if-else to avoid testing `translate'
4360 if (RE_TRANSLATE_P (translate
))
4367 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4368 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4369 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4372 range
-= buf_charlen
;
4378 register re_wchar_t ch
, translated
;
4381 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4382 translated
= RE_TRANSLATE (translate
, ch
);
4383 if (translated
!= ch
4384 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4386 if (fastmap
[buf_ch
])
4399 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4400 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4402 range
-= buf_charlen
;
4406 while (range
> lim
&& !fastmap
[*d
])
4412 startpos
+= irange
- range
;
4414 else /* Searching backwards. */
4418 buf_ch
= STRING_CHAR (d
);
4419 buf_ch
= TRANSLATE (buf_ch
);
4420 if (! fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4425 register re_wchar_t ch
, translated
;
4428 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4429 translated
= TRANSLATE (ch
);
4430 if (translated
!= ch
4431 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4433 if (! fastmap
[TRANSLATE (buf_ch
)])
4439 /* If can't match the null string, and that's all we have left, fail. */
4440 if (range
>= 0 && startpos
== total_size
&& fastmap
4441 && !bufp
->can_be_null
)
4444 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4445 startpos
, regs
, stop
);
4458 /* Update STARTPOS to the next character boundary. */
4461 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4462 int len
= BYTES_BY_CHAR_HEAD (*p
);
4480 /* Update STARTPOS to the previous character boundary. */
4483 re_char
*p
= POS_ADDR_VSTRING (startpos
) + 1;
4485 re_char
*phead
= HEAD_ADDR_VSTRING (startpos
);
4487 /* Find the head of multibyte form. */
4488 PREV_CHAR_BOUNDARY (p
, phead
);
4489 range
+= p0
- 1 - p
;
4493 startpos
-= p0
- 1 - p
;
4499 WEAK_ALIAS (__re_search_2
, re_search_2
)
4501 /* Declarations and macros for re_match_2. */
4503 static int bcmp_translate (re_char
*s1
, re_char
*s2
,
4504 register ssize_t len
,
4505 RE_TRANSLATE_TYPE translate
,
4506 const int multibyte
);
4508 /* This converts PTR, a pointer into one of the search strings `string1'
4509 and `string2' into an offset from the beginning of that string. */
4510 #define POINTER_TO_OFFSET(ptr) \
4511 (FIRST_STRING_P (ptr) \
4513 : (ptr) - string2 + (ptrdiff_t) size1)
4515 /* Call before fetching a character with *d. This switches over to
4516 string2 if necessary.
4517 Check re_match_2_internal for a discussion of why end_match_2 might
4518 not be within string2 (but be equal to end_match_1 instead). */
4519 #define PREFETCH() \
4522 /* End of string2 => fail. */ \
4523 if (dend == end_match_2) \
4525 /* End of string1 => advance to string2. */ \
4527 dend = end_match_2; \
4530 /* Call before fetching a char with *d if you already checked other limits.
4531 This is meant for use in lookahead operations like wordend, etc..
4532 where we might need to look at parts of the string that might be
4533 outside of the LIMITs (i.e past `stop'). */
4534 #define PREFETCH_NOLIMIT() \
4538 dend = end_match_2; \
4541 /* Test if at very beginning or at very end of the virtual concatenation
4542 of `string1' and `string2'. If only one string, it's `string2'. */
4543 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4544 #define AT_STRINGS_END(d) ((d) == end2)
4546 /* Disabled due to a compiler bug -- see comment at case wordbound */
4548 /* The comment at case wordbound is following one, but we don't use
4549 AT_WORD_BOUNDARY anymore to support multibyte form.
4551 The DEC Alpha C compiler 3.x generates incorrect code for the
4552 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4553 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4554 macro and introducing temporary variables works around the bug. */
4557 /* Test if D points to a character which is word-constituent. We have
4558 two special cases to check for: if past the end of string1, look at
4559 the first character in string2; and if before the beginning of
4560 string2, look at the last character in string1. */
4561 #define WORDCHAR_P(d) \
4562 (SYNTAX ((d) == end1 ? *string2 \
4563 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4566 /* Test if the character before D and the one at D differ with respect
4567 to being word-constituent. */
4568 #define AT_WORD_BOUNDARY(d) \
4569 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4570 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4573 /* Free everything we malloc. */
4574 #ifdef MATCH_MAY_ALLOCATE
4575 # define FREE_VAR(var) \
4583 # define FREE_VARIABLES() \
4585 REGEX_FREE_STACK (fail_stack.stack); \
4586 FREE_VAR (regstart); \
4587 FREE_VAR (regend); \
4588 FREE_VAR (best_regstart); \
4589 FREE_VAR (best_regend); \
4592 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4593 #endif /* not MATCH_MAY_ALLOCATE */
4596 /* Optimization routines. */
4598 /* If the operation is a match against one or more chars,
4599 return a pointer to the next operation, else return NULL. */
4601 skip_one_char (const_re_char
*p
)
4614 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4617 p
= CHARSET_RANGE_TABLE (p
- 1);
4618 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4619 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4622 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4629 case notcategoryspec
:
4641 /* Jump over non-matching operations. */
4643 skip_noops (const_re_char
*p
, const_re_char
*pend
)
4657 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4668 /* Non-zero if "p1 matches something" implies "p2 fails". */
4670 mutually_exclusive_p (struct re_pattern_buffer
*bufp
, const_re_char
*p1
,
4674 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4675 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4677 assert (p1
>= bufp
->buffer
&& p1
< pend
4678 && p2
>= bufp
->buffer
&& p2
<= pend
);
4680 /* Skip over open/close-group commands.
4681 If what follows this loop is a ...+ construct,
4682 look at what begins its body, since we will have to
4683 match at least one of that. */
4684 p2
= skip_noops (p2
, pend
);
4685 /* The same skip can be done for p1, except that this function
4686 is only used in the case where p1 is a simple match operator. */
4687 /* p1 = skip_noops (p1, pend); */
4689 assert (p1
>= bufp
->buffer
&& p1
< pend
4690 && p2
>= bufp
->buffer
&& p2
<= pend
);
4692 op2
= p2
== pend
? succeed
: *p2
;
4698 /* If we're at the end of the pattern, we can change. */
4699 if (skip_one_char (p1
))
4701 DEBUG_PRINT (" End of pattern: fast loop.\n");
4709 register re_wchar_t c
4710 = (re_opcode_t
) *p2
== endline
? '\n'
4711 : RE_STRING_CHAR (p2
+ 2, multibyte
);
4713 if ((re_opcode_t
) *p1
== exactn
)
4715 if (c
!= RE_STRING_CHAR (p1
+ 2, multibyte
))
4717 DEBUG_PRINT (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4722 else if ((re_opcode_t
) *p1
== charset
4723 || (re_opcode_t
) *p1
== charset_not
)
4725 int not = (re_opcode_t
) *p1
== charset_not
;
4727 /* Test if C is listed in charset (or charset_not)
4729 if (! multibyte
|| IS_REAL_ASCII (c
))
4731 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4732 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4735 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4736 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4738 /* `not' is equal to 1 if c would match, which means
4739 that we can't change to pop_failure_jump. */
4742 DEBUG_PRINT (" No match => fast loop.\n");
4746 else if ((re_opcode_t
) *p1
== anychar
4749 DEBUG_PRINT (" . != \\n => fast loop.\n");
4757 if ((re_opcode_t
) *p1
== exactn
)
4758 /* Reuse the code above. */
4759 return mutually_exclusive_p (bufp
, p2
, p1
);
4761 /* It is hard to list up all the character in charset
4762 P2 if it includes multibyte character. Give up in
4764 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4766 /* Now, we are sure that P2 has no range table.
4767 So, for the size of bitmap in P2, `p2[1]' is
4768 enough. But P1 may have range table, so the
4769 size of bitmap table of P1 is extracted by
4770 using macro `CHARSET_BITMAP_SIZE'.
4772 In a multibyte case, we know that all the character
4773 listed in P2 is ASCII. In a unibyte case, P1 has only a
4774 bitmap table. So, in both cases, it is enough to test
4775 only the bitmap table of P1. */
4777 if ((re_opcode_t
) *p1
== charset
)
4780 /* We win if the charset inside the loop
4781 has no overlap with the one after the loop. */
4784 && idx
< CHARSET_BITMAP_SIZE (p1
));
4786 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4790 || idx
== CHARSET_BITMAP_SIZE (p1
))
4792 DEBUG_PRINT (" No match => fast loop.\n");
4796 else if ((re_opcode_t
) *p1
== charset_not
)
4799 /* We win if the charset_not inside the loop lists
4800 every character listed in the charset after. */
4801 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4802 if (! (p2
[2 + idx
] == 0
4803 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4804 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4809 DEBUG_PRINT (" No match => fast loop.\n");
4822 /* Reuse the code above. */
4823 return mutually_exclusive_p (bufp
, p2
, p1
);
4825 /* When we have two charset_not, it's very unlikely that
4826 they don't overlap. The union of the two sets of excluded
4827 chars should cover all possible chars, which, as a matter of
4828 fact, is virtually impossible in multibyte buffers. */
4834 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == Sword
);
4836 return ((re_opcode_t
) *p1
== syntaxspec
4837 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4839 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == p2
[1]);
4842 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == Sword
);
4844 return ((re_opcode_t
) *p1
== notsyntaxspec
4845 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4847 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == p2
[1]);
4850 return (((re_opcode_t
) *p1
== notsyntaxspec
4851 || (re_opcode_t
) *p1
== syntaxspec
)
4856 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4857 case notcategoryspec
:
4858 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4870 /* Matching routines. */
4872 #ifndef emacs /* Emacs never uses this. */
4873 /* re_match is like re_match_2 except it takes only a single string. */
4876 re_match (struct re_pattern_buffer
*bufp
, const char *string
,
4877 size_t size
, ssize_t pos
, struct re_registers
*regs
)
4879 regoff_t result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
,
4880 size
, pos
, regs
, size
);
4883 WEAK_ALIAS (__re_match
, re_match
)
4884 #endif /* not emacs */
4887 /* In Emacs, this is the string or buffer in which we
4888 are matching. It is used for looking up syntax properties. */
4889 Lisp_Object re_match_object
;
4892 /* re_match_2 matches the compiled pattern in BUFP against the
4893 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4894 and SIZE2, respectively). We start matching at POS, and stop
4897 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4898 store offsets for the substring each group matched in REGS. See the
4899 documentation for exactly how many groups we fill.
4901 We return -1 if no match, -2 if an internal error (such as the
4902 failure stack overflowing). Otherwise, we return the length of the
4903 matched substring. */
4906 re_match_2 (struct re_pattern_buffer
*bufp
, const char *string1
,
4907 size_t size1
, const char *string2
, size_t size2
, ssize_t pos
,
4908 struct re_registers
*regs
, ssize_t stop
)
4914 gl_state
.object
= re_match_object
; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4915 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4916 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4919 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4920 (re_char
*) string2
, size2
,
4924 WEAK_ALIAS (__re_match_2
, re_match_2
)
4927 /* This is a separate function so that we can force an alloca cleanup
4930 re_match_2_internal (struct re_pattern_buffer
*bufp
, const_re_char
*string1
,
4931 size_t size1
, const_re_char
*string2
, size_t size2
,
4932 ssize_t pos
, struct re_registers
*regs
, ssize_t stop
)
4934 /* General temporaries. */
4938 /* Just past the end of the corresponding string. */
4939 re_char
*end1
, *end2
;
4941 /* Pointers into string1 and string2, just past the last characters in
4942 each to consider matching. */
4943 re_char
*end_match_1
, *end_match_2
;
4945 /* Where we are in the data, and the end of the current string. */
4948 /* Used sometimes to remember where we were before starting matching
4949 an operator so that we can go back in case of failure. This "atomic"
4950 behavior of matching opcodes is indispensable to the correctness
4951 of the on_failure_keep_string_jump optimization. */
4954 /* Where we are in the pattern, and the end of the pattern. */
4955 re_char
*p
= bufp
->buffer
;
4956 re_char
*pend
= p
+ bufp
->used
;
4958 /* We use this to map every character in the string. */
4959 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4961 /* Nonzero if BUFP is setup from a multibyte regex. */
4962 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4964 /* Nonzero if STRING1/STRING2 are multibyte. */
4965 const boolean target_multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
4967 /* Failure point stack. Each place that can handle a failure further
4968 down the line pushes a failure point on this stack. It consists of
4969 regstart, and regend for all registers corresponding to
4970 the subexpressions we're currently inside, plus the number of such
4971 registers, and, finally, two char *'s. The first char * is where
4972 to resume scanning the pattern; the second one is where to resume
4973 scanning the strings. */
4974 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4975 fail_stack_type fail_stack
;
4977 #ifdef DEBUG_COMPILES_ARGUMENTS
4978 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4981 #if defined REL_ALLOC && defined REGEX_MALLOC
4982 /* This holds the pointer to the failure stack, when
4983 it is allocated relocatably. */
4984 fail_stack_elt_t
*failure_stack_ptr
;
4987 /* We fill all the registers internally, independent of what we
4988 return, for use in backreferences. The number here includes
4989 an element for register zero. */
4990 size_t num_regs
= bufp
->re_nsub
+ 1;
4992 /* Information on the contents of registers. These are pointers into
4993 the input strings; they record just what was matched (on this
4994 attempt) by a subexpression part of the pattern, that is, the
4995 regnum-th regstart pointer points to where in the pattern we began
4996 matching and the regnum-th regend points to right after where we
4997 stopped matching the regnum-th subexpression. (The zeroth register
4998 keeps track of what the whole pattern matches.) */
4999 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5000 re_char
**regstart
, **regend
;
5003 /* The following record the register info as found in the above
5004 variables when we find a match better than any we've seen before.
5005 This happens as we backtrack through the failure points, which in
5006 turn happens only if we have not yet matched the entire string. */
5007 unsigned best_regs_set
= false;
5008 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5009 re_char
**best_regstart
, **best_regend
;
5012 /* Logically, this is `best_regend[0]'. But we don't want to have to
5013 allocate space for that if we're not allocating space for anything
5014 else (see below). Also, we never need info about register 0 for
5015 any of the other register vectors, and it seems rather a kludge to
5016 treat `best_regend' differently than the rest. So we keep track of
5017 the end of the best match so far in a separate variable. We
5018 initialize this to NULL so that when we backtrack the first time
5019 and need to test it, it's not garbage. */
5020 re_char
*match_end
= NULL
;
5022 #ifdef DEBUG_COMPILES_ARGUMENTS
5023 /* Counts the total number of registers pushed. */
5024 unsigned num_regs_pushed
= 0;
5027 DEBUG_PRINT ("\n\nEntering re_match_2.\n");
5031 #ifdef MATCH_MAY_ALLOCATE
5032 /* Do not bother to initialize all the register variables if there are
5033 no groups in the pattern, as it takes a fair amount of time. If
5034 there are groups, we include space for register 0 (the whole
5035 pattern), even though we never use it, since it simplifies the
5036 array indexing. We should fix this. */
5039 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5040 regend
= REGEX_TALLOC (num_regs
, re_char
*);
5041 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5042 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
5044 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
5052 /* We must initialize all our variables to NULL, so that
5053 `FREE_VARIABLES' doesn't try to free them. */
5054 regstart
= regend
= best_regstart
= best_regend
= NULL
;
5056 #endif /* MATCH_MAY_ALLOCATE */
5058 /* The starting position is bogus. */
5059 if (pos
< 0 || pos
> size1
+ size2
)
5065 /* Initialize subexpression text positions to -1 to mark ones that no
5066 start_memory/stop_memory has been seen for. Also initialize the
5067 register information struct. */
5068 for (reg
= 1; reg
< num_regs
; reg
++)
5069 regstart
[reg
] = regend
[reg
] = NULL
;
5071 /* We move `string1' into `string2' if the latter's empty -- but not if
5072 `string1' is null. */
5073 if (size2
== 0 && string1
!= NULL
)
5080 end1
= string1
+ size1
;
5081 end2
= string2
+ size2
;
5083 /* `p' scans through the pattern as `d' scans through the data.
5084 `dend' is the end of the input string that `d' points within. `d'
5085 is advanced into the following input string whenever necessary, but
5086 this happens before fetching; therefore, at the beginning of the
5087 loop, `d' can be pointing at the end of a string, but it cannot
5091 /* Only match within string2. */
5092 d
= string2
+ pos
- size1
;
5093 dend
= end_match_2
= string2
+ stop
- size1
;
5094 end_match_1
= end1
; /* Just to give it a value. */
5100 /* Only match within string1. */
5101 end_match_1
= string1
+ stop
;
5103 When we reach end_match_1, PREFETCH normally switches to string2.
5104 But in the present case, this means that just doing a PREFETCH
5105 makes us jump from `stop' to `gap' within the string.
5106 What we really want here is for the search to stop as
5107 soon as we hit end_match_1. That's why we set end_match_2
5108 to end_match_1 (since PREFETCH fails as soon as we hit
5110 end_match_2
= end_match_1
;
5113 { /* It's important to use this code when stop == size so that
5114 moving `d' from end1 to string2 will not prevent the d == dend
5115 check from catching the end of string. */
5117 end_match_2
= string2
+ stop
- size1
;
5123 DEBUG_PRINT ("The compiled pattern is: ");
5124 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5125 DEBUG_PRINT ("The string to match is: `");
5126 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5127 DEBUG_PRINT ("'\n");
5129 /* This loops over pattern commands. It exits by returning from the
5130 function if the match is complete, or it drops through if the match
5131 fails at this starting point in the input data. */
5134 DEBUG_PRINT ("\n%p: ", p
);
5140 /* End of pattern means we might have succeeded. */
5141 DEBUG_PRINT ("end of pattern ... ");
5143 /* If we haven't matched the entire string, and we want the
5144 longest match, try backtracking. */
5145 if (d
!= end_match_2
)
5147 /* 1 if this match ends in the same string (string1 or string2)
5148 as the best previous match. */
5149 boolean same_str_p
= (FIRST_STRING_P (match_end
)
5150 == FIRST_STRING_P (d
));
5151 /* 1 if this match is the best seen so far. */
5152 boolean best_match_p
;
5154 /* AIX compiler got confused when this was combined
5155 with the previous declaration. */
5157 best_match_p
= d
> match_end
;
5159 best_match_p
= !FIRST_STRING_P (d
);
5161 DEBUG_PRINT ("backtracking.\n");
5163 if (!FAIL_STACK_EMPTY ())
5164 { /* More failure points to try. */
5166 /* If exceeds best match so far, save it. */
5167 if (!best_regs_set
|| best_match_p
)
5169 best_regs_set
= true;
5172 DEBUG_PRINT ("\nSAVING match as best so far.\n");
5174 for (reg
= 1; reg
< num_regs
; reg
++)
5176 best_regstart
[reg
] = regstart
[reg
];
5177 best_regend
[reg
] = regend
[reg
];
5183 /* If no failure points, don't restore garbage. And if
5184 last match is real best match, don't restore second
5186 else if (best_regs_set
&& !best_match_p
)
5189 /* Restore best match. It may happen that `dend ==
5190 end_match_1' while the restored d is in string2.
5191 For example, the pattern `x.*y.*z' against the
5192 strings `x-' and `y-z-', if the two strings are
5193 not consecutive in memory. */
5194 DEBUG_PRINT ("Restoring best registers.\n");
5197 dend
= ((d
>= string1
&& d
<= end1
)
5198 ? end_match_1
: end_match_2
);
5200 for (reg
= 1; reg
< num_regs
; reg
++)
5202 regstart
[reg
] = best_regstart
[reg
];
5203 regend
[reg
] = best_regend
[reg
];
5206 } /* d != end_match_2 */
5209 DEBUG_PRINT ("Accepting match.\n");
5211 /* If caller wants register contents data back, do it. */
5212 if (regs
&& !bufp
->no_sub
)
5214 /* Have the register data arrays been allocated? */
5215 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5216 { /* No. So allocate them with malloc. We need one
5217 extra element beyond `num_regs' for the `-1' marker
5219 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5220 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5221 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5222 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5227 bufp
->regs_allocated
= REGS_REALLOCATE
;
5229 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5230 { /* Yes. If we need more elements than were already
5231 allocated, reallocate them. If we need fewer, just
5233 if (regs
->num_regs
< num_regs
+ 1)
5235 regs
->num_regs
= num_regs
+ 1;
5236 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5237 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5238 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5247 /* These braces fend off a "empty body in an else-statement"
5248 warning under GCC when assert expands to nothing. */
5249 assert (bufp
->regs_allocated
== REGS_FIXED
);
5252 /* Convert the pointer data in `regstart' and `regend' to
5253 indices. Register zero has to be set differently,
5254 since we haven't kept track of any info for it. */
5255 if (regs
->num_regs
> 0)
5257 regs
->start
[0] = pos
;
5258 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5261 /* Go through the first `min (num_regs, regs->num_regs)'
5262 registers, since that is all we initialized. */
5263 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
5265 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5266 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5269 regs
->start
[reg
] = POINTER_TO_OFFSET (regstart
[reg
]);
5270 regs
->end
[reg
] = POINTER_TO_OFFSET (regend
[reg
]);
5274 /* If the regs structure we return has more elements than
5275 were in the pattern, set the extra elements to -1. If
5276 we (re)allocated the registers, this is the case,
5277 because we always allocate enough to have at least one
5279 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5280 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5281 } /* regs && !bufp->no_sub */
5283 DEBUG_PRINT ("%u failure points pushed, %u popped (%u remain).\n",
5284 nfailure_points_pushed
, nfailure_points_popped
,
5285 nfailure_points_pushed
- nfailure_points_popped
);
5286 DEBUG_PRINT ("%u registers pushed.\n", num_regs_pushed
);
5288 dcnt
= POINTER_TO_OFFSET (d
) - pos
;
5290 DEBUG_PRINT ("Returning %td from re_match_2.\n", dcnt
);
5296 /* Otherwise match next pattern command. */
5299 /* Ignore these. Used to ignore the n of succeed_n's which
5300 currently have n == 0. */
5302 DEBUG_PRINT ("EXECUTING no_op.\n");
5306 DEBUG_PRINT ("EXECUTING succeed.\n");
5309 /* Match the next n pattern characters exactly. The following
5310 byte in the pattern defines n, and the n bytes after that
5311 are the characters to match. */
5314 DEBUG_PRINT ("EXECUTING exactn %d.\n", mcnt
);
5316 /* Remember the start point to rollback upon failure. */
5320 /* This is written out as an if-else so we don't waste time
5321 testing `translate' inside the loop. */
5322 if (RE_TRANSLATE_P (translate
))
5326 if (RE_TRANSLATE (translate
, *d
) != *p
++)
5346 /* The cost of testing `translate' is comparatively small. */
5347 if (target_multibyte
)
5350 int pat_charlen
, buf_charlen
;
5355 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5358 pat_ch
= RE_CHAR_TO_MULTIBYTE (*p
);
5361 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
5363 if (TRANSLATE (buf_ch
) != pat_ch
)
5371 mcnt
-= pat_charlen
;
5383 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5384 pat_ch
= RE_CHAR_TO_UNIBYTE (pat_ch
);
5391 buf_ch
= RE_CHAR_TO_MULTIBYTE (*d
);
5392 if (! CHAR_BYTE8_P (buf_ch
))
5394 buf_ch
= TRANSLATE (buf_ch
);
5395 buf_ch
= RE_CHAR_TO_UNIBYTE (buf_ch
);
5401 if (buf_ch
!= pat_ch
)
5414 /* Match any character except possibly a newline or a null. */
5420 DEBUG_PRINT ("EXECUTING anychar.\n");
5423 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, buf_charlen
,
5425 buf_ch
= TRANSLATE (buf_ch
);
5427 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5429 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5430 && buf_ch
== '\000'))
5433 DEBUG_PRINT (" Matched `%d'.\n", *d
);
5442 register unsigned int c
;
5443 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5446 /* Start of actual range_table, or end of bitmap if there is no
5448 re_char
*range_table
IF_LINT (= NULL
);
5450 /* Nonzero if there is a range table. */
5451 int range_table_exists
;
5453 /* Number of ranges of range table. This is not included
5454 in the initial byte-length of the command. */
5457 /* Whether matching against a unibyte character. */
5458 boolean unibyte_char
= false;
5460 DEBUG_PRINT ("EXECUTING charset%s.\n", not ? "_not" : "");
5462 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5464 if (range_table_exists
)
5466 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5467 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5471 c
= RE_STRING_CHAR_AND_LENGTH (d
, len
, target_multibyte
);
5472 if (target_multibyte
)
5477 c1
= RE_CHAR_TO_UNIBYTE (c
);
5480 unibyte_char
= true;
5486 int c1
= RE_CHAR_TO_MULTIBYTE (c
);
5488 if (! CHAR_BYTE8_P (c1
))
5490 c1
= TRANSLATE (c1
);
5491 c1
= RE_CHAR_TO_UNIBYTE (c1
);
5494 unibyte_char
= true;
5499 unibyte_char
= true;
5502 if (unibyte_char
&& c
< (1 << BYTEWIDTH
))
5503 { /* Lookup bitmap. */
5504 /* Cast to `unsigned' instead of `unsigned char' in
5505 case the bit list is a full 32 bytes long. */
5506 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5507 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5511 else if (range_table_exists
)
5513 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5515 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5516 | (class_bits
& BIT_MULTIBYTE
)
5517 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5518 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5519 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5520 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5523 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5527 if (range_table_exists
)
5528 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5530 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5532 if (!not) goto fail
;
5539 /* The beginning of a group is represented by start_memory.
5540 The argument is the register number. The text
5541 matched within the group is recorded (in the internal
5542 registers data structure) under the register number. */
5544 DEBUG_PRINT ("EXECUTING start_memory %d:\n", *p
);
5546 /* In case we need to undo this operation (via backtracking). */
5547 PUSH_FAILURE_REG (*p
);
5550 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5551 DEBUG_PRINT (" regstart: %td\n", POINTER_TO_OFFSET (regstart
[*p
]));
5553 /* Move past the register number and inner group count. */
5558 /* The stop_memory opcode represents the end of a group. Its
5559 argument is the same as start_memory's: the register number. */
5561 DEBUG_PRINT ("EXECUTING stop_memory %d:\n", *p
);
5563 assert (!REG_UNSET (regstart
[*p
]));
5564 /* Strictly speaking, there should be code such as:
5566 assert (REG_UNSET (regend[*p]));
5567 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5569 But the only info to be pushed is regend[*p] and it is known to
5570 be UNSET, so there really isn't anything to push.
5571 Not pushing anything, on the other hand deprives us from the
5572 guarantee that regend[*p] is UNSET since undoing this operation
5573 will not reset its value properly. This is not important since
5574 the value will only be read on the next start_memory or at
5575 the very end and both events can only happen if this stop_memory
5579 DEBUG_PRINT (" regend: %td\n", POINTER_TO_OFFSET (regend
[*p
]));
5581 /* Move past the register number and the inner group count. */
5586 /* \<digit> has been turned into a `duplicate' command which is
5587 followed by the numeric value of <digit> as the register number. */
5590 register re_char
*d2
, *dend2
;
5591 int regno
= *p
++; /* Get which register to match against. */
5592 DEBUG_PRINT ("EXECUTING duplicate %d.\n", regno
);
5594 /* Can't back reference a group which we've never matched. */
5595 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5598 /* Where in input to try to start matching. */
5599 d2
= regstart
[regno
];
5601 /* Remember the start point to rollback upon failure. */
5604 /* Where to stop matching; if both the place to start and
5605 the place to stop matching are in the same string, then
5606 set to the place to stop, otherwise, for now have to use
5607 the end of the first string. */
5609 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5610 == FIRST_STRING_P (regend
[regno
]))
5611 ? regend
[regno
] : end_match_1
);
5616 /* If necessary, advance to next segment in register
5620 if (dend2
== end_match_2
) break;
5621 if (dend2
== regend
[regno
]) break;
5623 /* End of string1 => advance to string2. */
5625 dend2
= regend
[regno
];
5627 /* At end of register contents => success */
5628 if (d2
== dend2
) break;
5630 /* If necessary, advance to next segment in data. */
5633 /* How many characters left in this segment to match. */
5636 /* Want how many consecutive characters we can match in
5637 one shot, so, if necessary, adjust the count. */
5638 if (dcnt
> dend2
- d2
)
5641 /* Compare that many; failure if mismatch, else move
5643 if (RE_TRANSLATE_P (translate
)
5644 ? bcmp_translate (d
, d2
, dcnt
, translate
, target_multibyte
)
5645 : memcmp (d
, d2
, dcnt
))
5650 d
+= dcnt
, d2
+= dcnt
;
5656 /* begline matches the empty string at the beginning of the string
5657 (unless `not_bol' is set in `bufp'), and after newlines. */
5659 DEBUG_PRINT ("EXECUTING begline.\n");
5661 if (AT_STRINGS_BEG (d
))
5663 if (!bufp
->not_bol
) break;
5668 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5672 /* In all other cases, we fail. */
5676 /* endline is the dual of begline. */
5678 DEBUG_PRINT ("EXECUTING endline.\n");
5680 if (AT_STRINGS_END (d
))
5682 if (!bufp
->not_eol
) break;
5686 PREFETCH_NOLIMIT ();
5693 /* Match at the very beginning of the data. */
5695 DEBUG_PRINT ("EXECUTING begbuf.\n");
5696 if (AT_STRINGS_BEG (d
))
5701 /* Match at the very end of the data. */
5703 DEBUG_PRINT ("EXECUTING endbuf.\n");
5704 if (AT_STRINGS_END (d
))
5709 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5710 pushes NULL as the value for the string on the stack. Then
5711 `POP_FAILURE_POINT' will keep the current value for the
5712 string, instead of restoring it. To see why, consider
5713 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5714 then the . fails against the \n. But the next thing we want
5715 to do is match the \n against the \n; if we restored the
5716 string value, we would be back at the foo.
5718 Because this is used only in specific cases, we don't need to
5719 check all the things that `on_failure_jump' does, to make
5720 sure the right things get saved on the stack. Hence we don't
5721 share its code. The only reason to push anything on the
5722 stack at all is that otherwise we would have to change
5723 `anychar's code to do something besides goto fail in this
5724 case; that seems worse than this. */
5725 case on_failure_keep_string_jump
:
5726 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5727 DEBUG_PRINT ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5730 PUSH_FAILURE_POINT (p
- 3, NULL
);
5733 /* A nasty loop is introduced by the non-greedy *? and +?.
5734 With such loops, the stack only ever contains one failure point
5735 at a time, so that a plain on_failure_jump_loop kind of
5736 cycle detection cannot work. Worse yet, such a detection
5737 can not only fail to detect a cycle, but it can also wrongly
5738 detect a cycle (between different instantiations of the same
5740 So the method used for those nasty loops is a little different:
5741 We use a special cycle-detection-stack-frame which is pushed
5742 when the on_failure_jump_nastyloop failure-point is *popped*.
5743 This special frame thus marks the beginning of one iteration
5744 through the loop and we can hence easily check right here
5745 whether something matched between the beginning and the end of
5747 case on_failure_jump_nastyloop
:
5748 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5749 DEBUG_PRINT ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5752 assert ((re_opcode_t
)p
[-4] == no_op
);
5755 CHECK_INFINITE_LOOP (p
- 4, d
);
5757 /* If there's a cycle, just continue without pushing
5758 this failure point. The failure point is the "try again"
5759 option, which shouldn't be tried.
5760 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5761 PUSH_FAILURE_POINT (p
- 3, d
);
5765 /* Simple loop detecting on_failure_jump: just check on the
5766 failure stack if the same spot was already hit earlier. */
5767 case on_failure_jump_loop
:
5769 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5770 DEBUG_PRINT ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5774 CHECK_INFINITE_LOOP (p
- 3, d
);
5776 /* If there's a cycle, get out of the loop, as if the matching
5777 had failed. We used to just `goto fail' here, but that was
5778 aborting the search a bit too early: we want to keep the
5779 empty-loop-match and keep matching after the loop.
5780 We want (x?)*y\1z to match both xxyz and xxyxz. */
5783 PUSH_FAILURE_POINT (p
- 3, d
);
5788 /* Uses of on_failure_jump:
5790 Each alternative starts with an on_failure_jump that points
5791 to the beginning of the next alternative. Each alternative
5792 except the last ends with a jump that in effect jumps past
5793 the rest of the alternatives. (They really jump to the
5794 ending jump of the following alternative, because tensioning
5795 these jumps is a hassle.)
5797 Repeats start with an on_failure_jump that points past both
5798 the repetition text and either the following jump or
5799 pop_failure_jump back to this on_failure_jump. */
5800 case on_failure_jump
:
5801 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5802 DEBUG_PRINT ("EXECUTING on_failure_jump %d (to %p):\n",
5805 PUSH_FAILURE_POINT (p
-3, d
);
5808 /* This operation is used for greedy *.
5809 Compare the beginning of the repeat with what in the
5810 pattern follows its end. If we can establish that there
5811 is nothing that they would both match, i.e., that we
5812 would have to backtrack because of (as in, e.g., `a*a')
5813 then we can use a non-backtracking loop based on
5814 on_failure_keep_string_jump instead of on_failure_jump. */
5815 case on_failure_jump_smart
:
5816 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5817 DEBUG_PRINT ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5820 re_char
*p1
= p
; /* Next operation. */
5821 /* Here, we discard `const', making re_match non-reentrant. */
5822 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
5823 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
5825 p
-= 3; /* Reset so that we will re-execute the
5826 instruction once it's been changed. */
5828 EXTRACT_NUMBER (mcnt
, p2
- 2);
5830 /* Ensure this is a indeed the trivial kind of loop
5831 we are expecting. */
5832 assert (skip_one_char (p1
) == p2
- 3);
5833 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5834 DEBUG_STATEMENT (debug
+= 2);
5835 if (mutually_exclusive_p (bufp
, p1
, p2
))
5837 /* Use a fast `on_failure_keep_string_jump' loop. */
5838 DEBUG_PRINT (" smart exclusive => fast loop.\n");
5839 *p3
= (unsigned char) on_failure_keep_string_jump
;
5840 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5844 /* Default to a safe `on_failure_jump' loop. */
5845 DEBUG_PRINT (" smart default => slow loop.\n");
5846 *p3
= (unsigned char) on_failure_jump
;
5848 DEBUG_STATEMENT (debug
-= 2);
5852 /* Unconditionally jump (without popping any failure points). */
5855 IMMEDIATE_QUIT_CHECK
;
5856 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5857 DEBUG_PRINT ("EXECUTING jump %d ", mcnt
);
5858 p
+= mcnt
; /* Do the jump. */
5859 DEBUG_PRINT ("(to %p).\n", p
);
5863 /* Have to succeed matching what follows at least n times.
5864 After that, handle like `on_failure_jump'. */
5866 /* Signedness doesn't matter since we only compare MCNT to 0. */
5867 EXTRACT_NUMBER (mcnt
, p
+ 2);
5868 DEBUG_PRINT ("EXECUTING succeed_n %d.\n", mcnt
);
5870 /* Originally, mcnt is how many times we HAVE to succeed. */
5873 /* Here, we discard `const', making re_match non-reentrant. */
5874 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5877 PUSH_NUMBER (p2
, mcnt
);
5880 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5885 /* Signedness doesn't matter since we only compare MCNT to 0. */
5886 EXTRACT_NUMBER (mcnt
, p
+ 2);
5887 DEBUG_PRINT ("EXECUTING jump_n %d.\n", mcnt
);
5889 /* Originally, this is how many times we CAN jump. */
5892 /* Here, we discard `const', making re_match non-reentrant. */
5893 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5895 PUSH_NUMBER (p2
, mcnt
);
5896 goto unconditional_jump
;
5898 /* If don't have to jump any more, skip over the rest of command. */
5905 unsigned char *p2
; /* Location of the counter. */
5906 DEBUG_PRINT ("EXECUTING set_number_at.\n");
5908 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5909 /* Here, we discard `const', making re_match non-reentrant. */
5910 p2
= (unsigned char*) p
+ mcnt
;
5911 /* Signedness doesn't matter since we only copy MCNT's bits . */
5912 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5913 DEBUG_PRINT (" Setting %p to %d.\n", p2
, mcnt
);
5914 PUSH_NUMBER (p2
, mcnt
);
5921 boolean
not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5922 DEBUG_PRINT ("EXECUTING %swordbound.\n", not ? "not" : "");
5924 /* We SUCCEED (or FAIL) in one of the following cases: */
5926 /* Case 1: D is at the beginning or the end of string. */
5927 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5931 /* C1 is the character before D, S1 is the syntax of C1, C2
5932 is the character at D, and S2 is the syntax of C2. */
5937 ssize_t offset
= PTR_TO_OFFSET (d
- 1);
5938 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5939 UPDATE_SYNTAX_TABLE (charpos
);
5941 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5944 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5946 PREFETCH_NOLIMIT ();
5947 GET_CHAR_AFTER (c2
, d
, dummy
);
5950 if (/* Case 2: Only one of S1 and S2 is Sword. */
5951 ((s1
== Sword
) != (s2
== Sword
))
5952 /* Case 3: Both of S1 and S2 are Sword, and macro
5953 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5954 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5964 DEBUG_PRINT ("EXECUTING wordbeg.\n");
5966 /* We FAIL in one of the following cases: */
5968 /* Case 1: D is at the end of string. */
5969 if (AT_STRINGS_END (d
))
5973 /* C1 is the character before D, S1 is the syntax of C1, C2
5974 is the character at D, and S2 is the syntax of C2. */
5979 ssize_t offset
= PTR_TO_OFFSET (d
);
5980 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5981 UPDATE_SYNTAX_TABLE (charpos
);
5984 GET_CHAR_AFTER (c2
, d
, dummy
);
5987 /* Case 2: S2 is not Sword. */
5991 /* Case 3: D is not at the beginning of string ... */
5992 if (!AT_STRINGS_BEG (d
))
5994 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5996 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6000 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
6002 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6009 DEBUG_PRINT ("EXECUTING wordend.\n");
6011 /* We FAIL in one of the following cases: */
6013 /* Case 1: D is at the beginning of string. */
6014 if (AT_STRINGS_BEG (d
))
6018 /* C1 is the character before D, S1 is the syntax of C1, C2
6019 is the character at D, and S2 is the syntax of C2. */
6024 ssize_t offset
= PTR_TO_OFFSET (d
) - 1;
6025 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6026 UPDATE_SYNTAX_TABLE (charpos
);
6028 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6031 /* Case 2: S1 is not Sword. */
6035 /* Case 3: D is not at the end of string ... */
6036 if (!AT_STRINGS_END (d
))
6038 PREFETCH_NOLIMIT ();
6039 GET_CHAR_AFTER (c2
, d
, dummy
);
6041 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
6045 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6047 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6054 DEBUG_PRINT ("EXECUTING symbeg.\n");
6056 /* We FAIL in one of the following cases: */
6058 /* Case 1: D is at the end of string. */
6059 if (AT_STRINGS_END (d
))
6063 /* C1 is the character before D, S1 is the syntax of C1, C2
6064 is the character at D, and S2 is the syntax of C2. */
6068 ssize_t offset
= PTR_TO_OFFSET (d
);
6069 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6070 UPDATE_SYNTAX_TABLE (charpos
);
6073 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6076 /* Case 2: S2 is neither Sword nor Ssymbol. */
6077 if (s2
!= Sword
&& s2
!= Ssymbol
)
6080 /* Case 3: D is not at the beginning of string ... */
6081 if (!AT_STRINGS_BEG (d
))
6083 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6085 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6089 /* ... and S1 is Sword or Ssymbol. */
6090 if (s1
== Sword
|| s1
== Ssymbol
)
6097 DEBUG_PRINT ("EXECUTING symend.\n");
6099 /* We FAIL in one of the following cases: */
6101 /* Case 1: D is at the beginning of string. */
6102 if (AT_STRINGS_BEG (d
))
6106 /* C1 is the character before D, S1 is the syntax of C1, C2
6107 is the character at D, and S2 is the syntax of C2. */
6111 ssize_t offset
= PTR_TO_OFFSET (d
) - 1;
6112 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6113 UPDATE_SYNTAX_TABLE (charpos
);
6115 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6118 /* Case 2: S1 is neither Ssymbol nor Sword. */
6119 if (s1
!= Sword
&& s1
!= Ssymbol
)
6122 /* Case 3: D is not at the end of string ... */
6123 if (!AT_STRINGS_END (d
))
6125 PREFETCH_NOLIMIT ();
6126 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6128 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
6132 /* ... and S2 is Sword or Ssymbol. */
6133 if (s2
== Sword
|| s2
== Ssymbol
)
6142 boolean
not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
6144 DEBUG_PRINT ("EXECUTING %ssyntaxspec %d.\n", not ? "not" : "",
6149 ssize_t offset
= PTR_TO_OFFSET (d
);
6150 ssize_t pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6151 UPDATE_SYNTAX_TABLE (pos1
);
6158 GET_CHAR_AFTER (c
, d
, len
);
6159 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
6168 DEBUG_PRINT ("EXECUTING before_dot.\n");
6169 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
6174 DEBUG_PRINT ("EXECUTING at_dot.\n");
6175 if (PTR_BYTE_POS (d
) != PT_BYTE
)
6180 DEBUG_PRINT ("EXECUTING after_dot.\n");
6181 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
6186 case notcategoryspec
:
6188 boolean
not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
6190 DEBUG_PRINT ("EXECUTING %scategoryspec %d.\n",
6191 not ? "not" : "", mcnt
);
6197 GET_CHAR_AFTER (c
, d
, len
);
6198 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
6210 continue; /* Successfully executed one pattern command; keep going. */
6213 /* We goto here if a matching operation fails. */
6215 IMMEDIATE_QUIT_CHECK
;
6216 if (!FAIL_STACK_EMPTY ())
6219 /* A restart point is known. Restore to that state. */
6220 DEBUG_PRINT ("\nFAIL:\n");
6221 POP_FAILURE_POINT (str
, pat
);
6224 case on_failure_keep_string_jump
:
6225 assert (str
== NULL
);
6226 goto continue_failure_jump
;
6228 case on_failure_jump_nastyloop
:
6229 assert ((re_opcode_t
)pat
[-2] == no_op
);
6230 PUSH_FAILURE_POINT (pat
- 2, str
);
6233 case on_failure_jump_loop
:
6234 case on_failure_jump
:
6237 continue_failure_jump
:
6238 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
6243 /* A special frame used for nastyloops. */
6250 assert (p
>= bufp
->buffer
&& p
<= pend
);
6252 if (d
>= string1
&& d
<= end1
)
6256 break; /* Matching at this starting point really fails. */
6260 goto restore_best_regs
;
6264 return -1; /* Failure to match. */
6267 /* Subroutine definitions for re_match_2. */
6269 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6270 bytes; nonzero otherwise. */
6273 bcmp_translate (const_re_char
*s1
, const_re_char
*s2
, register ssize_t len
,
6274 RE_TRANSLATE_TYPE translate
, const int target_multibyte
)
6276 register re_char
*p1
= s1
, *p2
= s2
;
6277 re_char
*p1_end
= s1
+ len
;
6278 re_char
*p2_end
= s2
+ len
;
6280 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6281 different lengths, but relying on a single `len' would break this. -sm */
6282 while (p1
< p1_end
&& p2
< p2_end
)
6284 int p1_charlen
, p2_charlen
;
6285 re_wchar_t p1_ch
, p2_ch
;
6287 GET_CHAR_AFTER (p1_ch
, p1
, p1_charlen
);
6288 GET_CHAR_AFTER (p2_ch
, p2
, p2_charlen
);
6290 if (RE_TRANSLATE (translate
, p1_ch
)
6291 != RE_TRANSLATE (translate
, p2_ch
))
6294 p1
+= p1_charlen
, p2
+= p2_charlen
;
6297 if (p1
!= p1_end
|| p2
!= p2_end
)
6303 /* Entry points for GNU code. */
6305 /* re_compile_pattern is the GNU regular expression compiler: it
6306 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6307 Returns 0 if the pattern was valid, otherwise an error string.
6309 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6310 are set in BUFP on entry.
6312 We call regex_compile to do the actual compilation. */
6315 re_compile_pattern (const char *pattern
, size_t length
,
6316 struct re_pattern_buffer
*bufp
)
6320 /* GNU code is written to assume at least RE_NREGS registers will be set
6321 (and at least one extra will be -1). */
6322 bufp
->regs_allocated
= REGS_UNALLOCATED
;
6324 /* And GNU code determines whether or not to get register information
6325 by passing null for the REGS argument to re_match, etc., not by
6329 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
6333 return gettext (re_error_msgid
[(int) ret
]);
6335 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6337 /* Entry points compatible with 4.2 BSD regex library. We don't define
6338 them unless specifically requested. */
6340 #if defined _REGEX_RE_COMP || defined _LIBC
6342 /* BSD has one and only one pattern buffer. */
6343 static struct re_pattern_buffer re_comp_buf
;
6347 /* Make these definitions weak in libc, so POSIX programs can redefine
6348 these names if they don't use our functions, and still use
6349 regcomp/regexec below without link errors. */
6352 re_comp (const char *s
)
6358 if (!re_comp_buf
.buffer
)
6359 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6360 return (char *) gettext ("No previous regular expression");
6364 if (!re_comp_buf
.buffer
)
6366 re_comp_buf
.buffer
= malloc (200);
6367 if (re_comp_buf
.buffer
== NULL
)
6368 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6369 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6370 re_comp_buf
.allocated
= 200;
6372 re_comp_buf
.fastmap
= malloc (1 << BYTEWIDTH
);
6373 if (re_comp_buf
.fastmap
== NULL
)
6374 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6375 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6378 /* Since `re_exec' always passes NULL for the `regs' argument, we
6379 don't need to initialize the pattern buffer fields which affect it. */
6381 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6386 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6387 return (char *) gettext (re_error_msgid
[(int) ret
]);
6395 re_exec (const char *s
)
6397 const size_t len
= strlen (s
);
6398 return (re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0)
6401 #endif /* _REGEX_RE_COMP */
6403 /* POSIX.2 functions. Don't define these for Emacs. */
6407 /* regcomp takes a regular expression as a string and compiles it.
6409 PREG is a regex_t *. We do not expect any fields to be initialized,
6410 since POSIX says we shouldn't. Thus, we set
6412 `buffer' to the compiled pattern;
6413 `used' to the length of the compiled pattern;
6414 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6415 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6416 RE_SYNTAX_POSIX_BASIC;
6417 `fastmap' to an allocated space for the fastmap;
6418 `fastmap_accurate' to zero;
6419 `re_nsub' to the number of subexpressions in PATTERN.
6421 PATTERN is the address of the pattern string.
6423 CFLAGS is a series of bits which affect compilation.
6425 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6426 use POSIX basic syntax.
6428 If REG_NEWLINE is set, then . and [^...] don't match newline.
6429 Also, regexec will try a match beginning after every newline.
6431 If REG_ICASE is set, then we considers upper- and lowercase
6432 versions of letters to be equivalent when matching.
6434 If REG_NOSUB is set, then when PREG is passed to regexec, that
6435 routine will report only success or failure, and nothing about the
6438 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6439 the return codes and their meanings.) */
6442 regcomp (regex_t
*_Restrict_ preg
, const char *_Restrict_ pattern
,
6447 = (cflags
& REG_EXTENDED
) ?
6448 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6450 /* regex_compile will allocate the space for the compiled pattern. */
6452 preg
->allocated
= 0;
6455 /* Try to allocate space for the fastmap. */
6456 preg
->fastmap
= malloc (1 << BYTEWIDTH
);
6458 if (cflags
& REG_ICASE
)
6462 preg
->translate
= malloc (CHAR_SET_SIZE
* sizeof *preg
->translate
);
6463 if (preg
->translate
== NULL
)
6464 return (int) REG_ESPACE
;
6466 /* Map uppercase characters to corresponding lowercase ones. */
6467 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6468 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6471 preg
->translate
= NULL
;
6473 /* If REG_NEWLINE is set, newlines are treated differently. */
6474 if (cflags
& REG_NEWLINE
)
6475 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6476 syntax
&= ~RE_DOT_NEWLINE
;
6477 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6480 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6482 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6484 /* POSIX says a null character in the pattern terminates it, so we
6485 can use strlen here in compiling the pattern. */
6486 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6488 /* POSIX doesn't distinguish between an unmatched open-group and an
6489 unmatched close-group: both are REG_EPAREN. */
6490 if (ret
== REG_ERPAREN
)
6493 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6494 { /* Compute the fastmap now, since regexec cannot modify the pattern
6496 re_compile_fastmap (preg
);
6497 if (preg
->can_be_null
)
6498 { /* The fastmap can't be used anyway. */
6499 free (preg
->fastmap
);
6500 preg
->fastmap
= NULL
;
6505 WEAK_ALIAS (__regcomp
, regcomp
)
6508 /* regexec searches for a given pattern, specified by PREG, in the
6511 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6512 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6513 least NMATCH elements, and we set them to the offsets of the
6514 corresponding matched substrings.
6516 EFLAGS specifies `execution flags' which affect matching: if
6517 REG_NOTBOL is set, then ^ does not match at the beginning of the
6518 string; if REG_NOTEOL is set, then $ does not match at the end.
6520 We return 0 if we find a match and REG_NOMATCH if not. */
6523 regexec (const regex_t
*_Restrict_ preg
, const char *_Restrict_ string
,
6524 size_t nmatch
, regmatch_t pmatch
[_Restrict_arr_
], int eflags
)
6527 struct re_registers regs
;
6528 regex_t private_preg
;
6529 size_t len
= strlen (string
);
6530 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6532 private_preg
= *preg
;
6534 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6535 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6537 /* The user has told us exactly how many registers to return
6538 information about, via `nmatch'. We have to pass that on to the
6539 matching routines. */
6540 private_preg
.regs_allocated
= REGS_FIXED
;
6544 regs
.num_regs
= nmatch
;
6545 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6546 if (regs
.start
== NULL
)
6548 regs
.end
= regs
.start
+ nmatch
;
6551 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6552 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6553 was a little bit longer but still only matching the real part.
6554 This works because the `endline' will check for a '\n' and will find a
6555 '\0', correctly deciding that this is not the end of a line.
6556 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6557 a convenient '\0' there. For all we know, the string could be preceded
6558 by '\n' which would throw things off. */
6560 /* Perform the searching operation. */
6561 ret
= re_search (&private_preg
, string
, len
,
6562 /* start: */ 0, /* range: */ len
,
6563 want_reg_info
? ®s
: (struct re_registers
*) 0);
6565 /* Copy the register information to the POSIX structure. */
6572 for (r
= 0; r
< nmatch
; r
++)
6574 pmatch
[r
].rm_so
= regs
.start
[r
];
6575 pmatch
[r
].rm_eo
= regs
.end
[r
];
6579 /* If we needed the temporary register info, free the space now. */
6583 /* We want zero return to mean success, unlike `re_search'. */
6584 return ret
>= 0 ? REG_NOERROR
: REG_NOMATCH
;
6586 WEAK_ALIAS (__regexec
, regexec
)
6589 /* Returns a message corresponding to an error code, ERR_CODE, returned
6590 from either regcomp or regexec. We don't use PREG here.
6592 ERR_CODE was previously called ERRCODE, but that name causes an
6593 error with msvc8 compiler. */
6596 regerror (int err_code
, const regex_t
*preg
, char *errbuf
, size_t errbuf_size
)
6602 || err_code
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6603 /* Only error codes returned by the rest of the code should be passed
6604 to this routine. If we are given anything else, or if other regex
6605 code generates an invalid error code, then the program has a bug.
6606 Dump core so we can fix it. */
6609 msg
= gettext (re_error_msgid
[err_code
]);
6611 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6613 if (errbuf_size
!= 0)
6615 if (msg_size
> errbuf_size
)
6617 memcpy (errbuf
, msg
, errbuf_size
- 1);
6618 errbuf
[errbuf_size
- 1] = 0;
6621 strcpy (errbuf
, msg
);
6626 WEAK_ALIAS (__regerror
, regerror
)
6629 /* Free dynamically allocated space used by PREG. */
6632 regfree (regex_t
*preg
)
6634 free (preg
->buffer
);
6635 preg
->buffer
= NULL
;
6637 preg
->allocated
= 0;
6640 free (preg
->fastmap
);
6641 preg
->fastmap
= NULL
;
6642 preg
->fastmap_accurate
= 0;
6644 free (preg
->translate
);
6645 preg
->translate
= NULL
;
6647 WEAK_ALIAS (__regfree
, regfree
)
6649 #endif /* not emacs */