1 ;;; calc-mtx.el --- matrix functions for Calc
3 ;; Copyright (C) 1990-1993, 2001-2016 Free Software Foundation, Inc.
5 ;; Author: David Gillespie <daveg@synaptics.com>
7 ;; This file is part of GNU Emacs.
9 ;; GNU Emacs is free software: you can redistribute it and/or modify
10 ;; it under the terms of the GNU General Public License as published by
11 ;; the Free Software Foundation, either version 3 of the License, or
12 ;; (at your option) any later version.
14 ;; GNU Emacs is distributed in the hope that it will be useful,
15 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
16 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 ;; GNU General Public License for more details.
19 ;; You should have received a copy of the GNU General Public License
20 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
26 ;; This file is autoloaded from calc-ext.el.
31 (defun calc-mdet (arg)
34 (calc-unary-op "mdet" 'calcFunc-det arg
)))
36 (defun calc-mtrace (arg)
39 (calc-unary-op "mtr" 'calcFunc-tr arg
)))
41 (defun calc-mlud (arg)
44 (calc-unary-op "mlud" 'calcFunc-lud arg
)))
47 ;;; Coerce row vector A to be a matrix. [V V]
48 (defun math-row-matrix (a)
49 (if (and (Math-vectorp a
)
50 (not (math-matrixp a
)))
54 ;;; Coerce column vector A to be a matrix. [V V]
55 (defun math-col-matrix (a)
56 (if (and (Math-vectorp a
)
57 (not (math-matrixp a
)))
58 (cons 'vec
(mapcar (function (lambda (x) (list 'vec x
))) (cdr a
)))
63 ;;; Multiply matrices A and B. [V V V]
64 (defun math-mul-mats (a b
)
66 (cols (length (nth 1 b
)))
68 (while (setq a
(cdr a
))
71 (while (> (setq col
(1- col
)) 0)
72 (setq ap
(cdr (car a
))
74 accum
(math-mul (car ap
) (nth col
(car bp
))))
75 (while (setq ap
(cdr ap
) bp
(cdr bp
))
76 (setq accum
(math-add accum
(math-mul (car ap
) (nth col
(car bp
))))))
77 (setq row
(cons accum row
)))
78 (setq mat
(cons (cons 'vec row
) mat
)))
79 (cons 'vec
(nreverse mat
))))
81 (defun math-mul-mat-vec (a b
)
82 (cons 'vec
(mapcar (function (lambda (row)
83 (math-dot-product row b
)))
88 (defun calcFunc-tr (mat) ; [Public]
89 (if (math-square-matrixp mat
)
90 (math-matrix-trace-step 2 (1- (length mat
)) mat
(nth 1 (nth 1 mat
)))
91 (math-reject-arg mat
'square-matrixp
)))
93 (defun math-matrix-trace-step (n size mat sum
)
95 (math-matrix-trace-step (1+ n
) size mat
96 (math-add sum
(nth n
(nth n mat
))))
100 ;;; Matrix inverse and determinant.
101 (defun math-matrix-inv-raw (m)
102 (let ((n (1- (length m
))))
104 (let ((det (math-det-raw m
)))
105 (and (not (math-zerop det
))
112 (math-neg (nth 2 (nth 1 m
))))
114 (math-neg (nth 1 (nth 2 m
)))
119 (math-sub (math-mul (nth 3 (nth 3 m
))
121 (math-mul (nth 3 (nth 2 m
))
123 (math-sub (math-mul (nth 3 (nth 1 m
))
125 (math-mul (nth 3 (nth 3 m
))
127 (math-sub (math-mul (nth 3 (nth 2 m
))
129 (math-mul (nth 3 (nth 1 m
))
132 (math-sub (math-mul (nth 3 (nth 2 m
))
134 (math-mul (nth 3 (nth 3 m
))
136 (math-sub (math-mul (nth 3 (nth 3 m
))
138 (math-mul (nth 3 (nth 1 m
))
140 (math-sub (math-mul (nth 3 (nth 1 m
))
142 (math-mul (nth 3 (nth 2 m
))
145 (math-sub (math-mul (nth 2 (nth 3 m
))
147 (math-mul (nth 2 (nth 2 m
))
149 (math-sub (math-mul (nth 2 (nth 1 m
))
151 (math-mul (nth 2 (nth 3 m
))
153 (math-sub (math-mul (nth 2 (nth 2 m
))
155 (math-mul (nth 2 (nth 1 m
))
156 (nth 1 (nth 2 m
))))))))
158 (let ((lud (math-matrix-lud m
)))
160 (math-lud-solve lud
(calcFunc-idn 1 n
)))))))
162 (defun calcFunc-det (m)
163 (if (math-square-matrixp m
)
164 (math-with-extra-prec 2 (math-det-raw m
))
165 (if (and (eq (car-safe m
) 'calcFunc-idn
)
166 (or (math-zerop (nth 1 m
))
167 (math-equal-int (nth 1 m
) 1)))
169 (math-reject-arg m
'square-matrixp
))))
171 ;; The variable math-det-lu is local to math-det-raw, but is
172 ;; used by math-det-step, which is called by math-det-raw.
175 (defun math-det-raw (m)
176 (let ((n (1- (length m
))))
180 (math-sub (math-mul (nth 1 (nth 1 m
))
182 (math-mul (nth 2 (nth 1 m
))
190 (math-mul (nth 1 (nth 1 m
))
191 (math-mul (nth 2 (nth 2 m
))
193 (math-mul (nth 2 (nth 1 m
))
194 (math-mul (nth 3 (nth 2 m
))
196 (math-mul (nth 3 (nth 1 m
))
197 (math-mul (nth 1 (nth 2 m
))
199 (math-mul (nth 3 (nth 1 m
))
200 (math-mul (nth 2 (nth 2 m
))
202 (math-mul (nth 1 (nth 1 m
))
203 (math-mul (nth 3 (nth 2 m
))
205 (math-mul (nth 2 (nth 1 m
))
206 (math-mul (nth 1 (nth 2 m
))
207 (nth 3 (nth 3 m
))))))
208 (t (let ((lud (math-matrix-lud m
)))
210 (let ((math-det-lu (car lud
)))
211 (math-det-step n
(nth 2 lud
)))
214 (defun math-det-step (n prod
)
216 (math-det-step (1- n
) (math-mul prod
(nth n
(nth n math-det-lu
))))
219 ;;; This returns a list (LU index d), or nil if not possible.
220 ;;; Argument M must be a square matrix.
221 (defvar math-lud-cache nil
)
222 (defun math-matrix-lud (m)
223 (let ((old (assoc m math-lud-cache
))
224 (context (list calc-internal-prec calc-prefer-frac
)))
225 (if (and old
(equal (nth 1 old
) context
))
227 (let* ((lud (catch 'singular
(math-do-matrix-lud m
)))
228 (entry (cons context lud
)))
231 (setq math-lud-cache
(cons (cons m entry
) math-lud-cache
)))
235 (defun math-lud-pivot-check (a)
236 "Determine a useful value for checking the size of potential pivots
237 in LUD decomposition."
238 (cond ((eq (car-safe a
) 'mod
)
239 (if (and (math-integerp (nth 1 a
))
240 (math-integerp (nth 2 a
))
241 (eq (math-gcd (nth 1 a
) (nth 2 a
)) 1))
245 (math-abs-approx a
))))
248 ;;; Numerical Recipes section 2.3; implicit pivoting omitted.
249 (defun math-do-matrix-lud (m)
250 (let* ((lu (math-copy-matrix m
))
252 i
(j 1) k imax sum big
259 (math-working "LUD step" (format "%d/%d" j i
))
260 (setq sum
(nth j
(nth i lu
))
263 (setq sum
(math-sub sum
(math-mul (nth k
(nth i lu
))
266 (setcar (nthcdr j
(nth i lu
)) sum
)
269 (math-working "LUD step" (format "%d/%d" j i
))
270 (setq sum
(nth j
(nth i lu
))
273 (setq sum
(math-sub sum
(math-mul (nth k
(nth i lu
))
276 (setcar (nthcdr j
(nth i lu
)) sum
)
277 (let ((dum (math-lud-pivot-check sum
)))
278 (if (Math-lessp big dum
)
283 (setq lu
(math-swap-rows lu j imax
)
285 (setq index
(cons imax index
))
286 (let ((pivot (nth j
(nth j lu
))))
287 (if (math-zerop pivot
)
288 (throw 'singular nil
)
290 (while (<= (setq i
(1+ i
)) n
)
291 (setcar (nthcdr j
(nth i lu
))
292 (math-div (nth j
(nth i lu
)) pivot
)))))
294 (list lu
(nreverse index
) d
)))
296 (defun math-swap-rows (m r1 r2
)
298 (let* ((r1prev (nthcdr (1- r1
) m
))
300 (r2prev (nthcdr (1- r2
) m
))
305 (setcdr row2
(cdr row1
))
306 (setcdr row1 r2next
)))
310 (defun math-lud-solve (lud b
&optional need
)
312 (let* ((x (math-copy-matrix b
))
314 (m (1- (length (nth 1 x
))))
319 (math-working "LUD solver step" col
)
326 sum
(nth col
(nth ip x
)))
327 (setcar (nthcdr col
(nth ip x
)) (nth col
(nth i x
)))
333 (setq sum
(math-sub sum
(math-mul (nth j
(nth i lu
))
334 (nth col
(nth j x
))))
336 (setcar (nthcdr col
(nth i x
)) sum
)
338 (while (>= (setq i
(1- i
)) 1)
339 (setq sum
(nth col
(nth i x
))
341 (while (<= (setq j
(1+ j
)) n
)
342 (setq sum
(math-sub sum
(math-mul (nth j
(nth i lu
))
343 (nth col
(nth j x
))))))
344 (setcar (nthcdr col
(nth i x
))
345 (math-div sum
(nth i
(nth i lu
)))))
349 (math-reject-arg need
"*Singular matrix"))))
351 (defun calcFunc-lud (m)
352 (if (math-square-matrixp m
)
353 (or (math-with-extra-prec 2
354 (let ((lud (math-matrix-lud m
)))
356 (let* ((lmat (math-copy-matrix (car lud
)))
357 (umat (math-copy-matrix (car lud
)))
358 (n (1- (length (car lud
))))
359 (perm (calcFunc-idn 1 n
))
364 (setcar (nthcdr j
(nth i lmat
)) 0)
366 (setcar (nthcdr j
(nth j lmat
)) 1)
367 (while (<= (setq i
(1+ i
)) n
)
368 (setcar (nthcdr j
(nth i umat
)) 0))
370 (while (>= (setq j
(1- j
)) 1)
371 (let ((pos (nth (1- j
) (nth 1 lud
))))
373 (setq perm
(math-swap-rows perm j pos
)))))
374 (list 'vec perm lmat umat
)))))
375 (math-reject-arg m
"*Singular matrix"))
376 (math-reject-arg m
'square-matrixp
)))
380 ;;; calc-mtx.el ends here