Move with-no-threads inside the let body block.
[emacs.git] / src / fns.c
blob1ab16ce80f1cd0b115803abb3b3ea35abf9999fb
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #ifdef HAVE_UNISTD_H
24 #include <unistd.h>
25 #endif
26 #include <time.h>
27 #include <setjmp.h>
29 /* Note on some machines this defines `vector' as a typedef,
30 so make sure we don't use that name in this file. */
31 #undef vector
32 #define vector *****
34 #include "lisp.h"
35 #include "commands.h"
36 #include "character.h"
37 #include "coding.h"
38 #include "buffer.h"
39 #include "keyboard.h"
40 #include "keymap.h"
41 #include "intervals.h"
42 #include "frame.h"
43 #include "window.h"
44 #include "blockinput.h"
45 #ifdef HAVE_MENUS
46 #if defined (HAVE_X_WINDOWS)
47 #include "xterm.h"
48 #endif
49 #endif /* HAVE_MENUS */
51 #ifndef NULL
52 #define NULL ((POINTER_TYPE *)0)
53 #endif
55 /* Nonzero enables use of dialog boxes for questions
56 asked by mouse commands. */
57 int use_dialog_box;
59 /* Nonzero enables use of a file dialog for file name
60 questions asked by mouse commands. */
61 int use_file_dialog;
63 extern int minibuffer_auto_raise;
64 extern Lisp_Object minibuf_window;
65 extern Lisp_Object impl_Vlocale_coding_system;
66 extern int load_in_progress;
68 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
69 Lisp_Object Qyes_or_no_p_history;
70 Lisp_Object Qcursor_in_echo_area;
71 Lisp_Object Qwidget_type;
72 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
74 extern Lisp_Object Qinput_method_function;
76 static int internal_equal P_ ((Lisp_Object , Lisp_Object, int, int));
78 extern long get_random ();
79 extern void seed_random P_ ((long));
81 static Lisp_Object Fyes_or_no1 (Lisp_Object prompt);
83 #ifndef HAVE_UNISTD_H
84 extern long time ();
85 #endif
87 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
88 doc: /* Return the argument unchanged. */)
89 (arg)
90 Lisp_Object arg;
92 return arg;
95 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
96 doc: /* Return a pseudo-random number.
97 All integers representable in Lisp are equally likely.
98 On most systems, this is 29 bits' worth.
99 With positive integer LIMIT, return random number in interval [0,LIMIT).
100 With argument t, set the random number seed from the current time and pid.
101 Other values of LIMIT are ignored. */)
102 (limit)
103 Lisp_Object limit;
105 EMACS_INT val;
106 Lisp_Object lispy_val;
107 unsigned long denominator;
109 if (EQ (limit, Qt))
110 seed_random (getpid () + time (NULL));
111 if (NATNUMP (limit) && XFASTINT (limit) != 0)
113 /* Try to take our random number from the higher bits of VAL,
114 not the lower, since (says Gentzel) the low bits of `random'
115 are less random than the higher ones. We do this by using the
116 quotient rather than the remainder. At the high end of the RNG
117 it's possible to get a quotient larger than n; discarding
118 these values eliminates the bias that would otherwise appear
119 when using a large n. */
120 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (limit);
122 val = get_random () / denominator;
123 while (val >= XFASTINT (limit));
125 else
126 val = get_random ();
127 XSETINT (lispy_val, val);
128 return lispy_val;
131 /* Random data-structure functions */
133 DEFUN ("length", Flength, Slength, 1, 1, 0,
134 doc: /* Return the length of vector, list or string SEQUENCE.
135 A byte-code function object is also allowed.
136 If the string contains multibyte characters, this is not necessarily
137 the number of bytes in the string; it is the number of characters.
138 To get the number of bytes, use `string-bytes'. */)
139 (sequence)
140 register Lisp_Object sequence;
142 register Lisp_Object val;
143 register int i;
145 if (STRINGP (sequence))
146 XSETFASTINT (val, SCHARS (sequence));
147 else if (VECTORP (sequence))
148 XSETFASTINT (val, ASIZE (sequence));
149 else if (CHAR_TABLE_P (sequence))
150 XSETFASTINT (val, MAX_CHAR);
151 else if (BOOL_VECTOR_P (sequence))
152 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
153 else if (COMPILEDP (sequence))
154 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
155 else if (CONSP (sequence))
157 i = 0;
158 while (CONSP (sequence))
160 sequence = XCDR (sequence);
161 ++i;
163 if (!CONSP (sequence))
164 break;
166 sequence = XCDR (sequence);
167 ++i;
168 QUIT;
171 CHECK_LIST_END (sequence, sequence);
173 val = make_number (i);
175 else if (NILP (sequence))
176 XSETFASTINT (val, 0);
177 else
178 wrong_type_argument (Qsequencep, sequence);
180 return val;
183 /* This does not check for quits. That is safe since it must terminate. */
185 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
186 doc: /* Return the length of a list, but avoid error or infinite loop.
187 This function never gets an error. If LIST is not really a list,
188 it returns 0. If LIST is circular, it returns a finite value
189 which is at least the number of distinct elements. */)
190 (list)
191 Lisp_Object list;
193 Lisp_Object tail, halftail, length;
194 int len = 0;
196 /* halftail is used to detect circular lists. */
197 halftail = list;
198 for (tail = list; CONSP (tail); tail = XCDR (tail))
200 if (EQ (tail, halftail) && len != 0)
201 break;
202 len++;
203 if ((len & 1) == 0)
204 halftail = XCDR (halftail);
207 XSETINT (length, len);
208 return length;
211 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
212 doc: /* Return the number of bytes in STRING.
213 If STRING is multibyte, this may be greater than the length of STRING. */)
214 (string)
215 Lisp_Object string;
217 CHECK_STRING (string);
218 return make_number (SBYTES (string));
221 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
222 doc: /* Return t if two strings have identical contents.
223 Case is significant, but text properties are ignored.
224 Symbols are also allowed; their print names are used instead. */)
225 (s1, s2)
226 register Lisp_Object s1, s2;
228 if (SYMBOLP (s1))
229 s1 = SYMBOL_NAME (s1);
230 if (SYMBOLP (s2))
231 s2 = SYMBOL_NAME (s2);
232 CHECK_STRING (s1);
233 CHECK_STRING (s2);
235 if (SCHARS (s1) != SCHARS (s2)
236 || SBYTES (s1) != SBYTES (s2)
237 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
238 return Qnil;
239 return Qt;
242 DEFUN ("compare-strings", Fcompare_strings,
243 Scompare_strings, 6, 7, 0,
244 doc: /* Compare the contents of two strings, converting to multibyte if needed.
245 In string STR1, skip the first START1 characters and stop at END1.
246 In string STR2, skip the first START2 characters and stop at END2.
247 END1 and END2 default to the full lengths of the respective strings.
249 Case is significant in this comparison if IGNORE-CASE is nil.
250 Unibyte strings are converted to multibyte for comparison.
252 The value is t if the strings (or specified portions) match.
253 If string STR1 is less, the value is a negative number N;
254 - 1 - N is the number of characters that match at the beginning.
255 If string STR1 is greater, the value is a positive number N;
256 N - 1 is the number of characters that match at the beginning. */)
257 (str1, start1, end1, str2, start2, end2, ignore_case)
258 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
260 register int end1_char, end2_char;
261 register int i1, i1_byte, i2, i2_byte;
263 CHECK_STRING (str1);
264 CHECK_STRING (str2);
265 if (NILP (start1))
266 start1 = make_number (0);
267 if (NILP (start2))
268 start2 = make_number (0);
269 CHECK_NATNUM (start1);
270 CHECK_NATNUM (start2);
271 if (! NILP (end1))
272 CHECK_NATNUM (end1);
273 if (! NILP (end2))
274 CHECK_NATNUM (end2);
276 i1 = XINT (start1);
277 i2 = XINT (start2);
279 i1_byte = string_char_to_byte (str1, i1);
280 i2_byte = string_char_to_byte (str2, i2);
282 end1_char = SCHARS (str1);
283 if (! NILP (end1) && end1_char > XINT (end1))
284 end1_char = XINT (end1);
286 end2_char = SCHARS (str2);
287 if (! NILP (end2) && end2_char > XINT (end2))
288 end2_char = XINT (end2);
290 while (i1 < end1_char && i2 < end2_char)
292 /* When we find a mismatch, we must compare the
293 characters, not just the bytes. */
294 int c1, c2;
296 if (STRING_MULTIBYTE (str1))
297 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
298 else
300 c1 = SREF (str1, i1++);
301 MAKE_CHAR_MULTIBYTE (c1);
304 if (STRING_MULTIBYTE (str2))
305 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
306 else
308 c2 = SREF (str2, i2++);
309 MAKE_CHAR_MULTIBYTE (c2);
312 if (c1 == c2)
313 continue;
315 if (! NILP (ignore_case))
317 Lisp_Object tem;
319 tem = Fupcase (make_number (c1));
320 c1 = XINT (tem);
321 tem = Fupcase (make_number (c2));
322 c2 = XINT (tem);
325 if (c1 == c2)
326 continue;
328 /* Note that I1 has already been incremented
329 past the character that we are comparing;
330 hence we don't add or subtract 1 here. */
331 if (c1 < c2)
332 return make_number (- i1 + XINT (start1));
333 else
334 return make_number (i1 - XINT (start1));
337 if (i1 < end1_char)
338 return make_number (i1 - XINT (start1) + 1);
339 if (i2 < end2_char)
340 return make_number (- i1 + XINT (start1) - 1);
342 return Qt;
345 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
346 doc: /* Return t if first arg string is less than second in lexicographic order.
347 Case is significant.
348 Symbols are also allowed; their print names are used instead. */)
349 (s1, s2)
350 register Lisp_Object s1, s2;
352 register int end;
353 register int i1, i1_byte, i2, i2_byte;
355 if (SYMBOLP (s1))
356 s1 = SYMBOL_NAME (s1);
357 if (SYMBOLP (s2))
358 s2 = SYMBOL_NAME (s2);
359 CHECK_STRING (s1);
360 CHECK_STRING (s2);
362 i1 = i1_byte = i2 = i2_byte = 0;
364 end = SCHARS (s1);
365 if (end > SCHARS (s2))
366 end = SCHARS (s2);
368 while (i1 < end)
370 /* When we find a mismatch, we must compare the
371 characters, not just the bytes. */
372 int c1, c2;
374 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
375 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
377 if (c1 != c2)
378 return c1 < c2 ? Qt : Qnil;
380 return i1 < SCHARS (s2) ? Qt : Qnil;
383 #if __GNUC__
384 /* "gcc -O3" enables automatic function inlining, which optimizes out
385 the arguments for the invocations of this function, whereas it
386 expects these values on the stack. */
387 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special)) __attribute__((noinline));
388 #else /* !__GNUC__ */
389 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special));
390 #endif
392 /* ARGSUSED */
393 Lisp_Object
394 concat2 (s1, s2)
395 Lisp_Object s1, s2;
397 #ifdef NO_ARG_ARRAY
398 Lisp_Object args[2];
399 args[0] = s1;
400 args[1] = s2;
401 return concat (2, args, Lisp_String, 0);
402 #else
403 return concat (2, &s1, Lisp_String, 0);
404 #endif /* NO_ARG_ARRAY */
407 /* ARGSUSED */
408 Lisp_Object
409 concat3 (s1, s2, s3)
410 Lisp_Object s1, s2, s3;
412 #ifdef NO_ARG_ARRAY
413 Lisp_Object args[3];
414 args[0] = s1;
415 args[1] = s2;
416 args[2] = s3;
417 return concat (3, args, Lisp_String, 0);
418 #else
419 return concat (3, &s1, Lisp_String, 0);
420 #endif /* NO_ARG_ARRAY */
423 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
424 doc: /* Concatenate all the arguments and make the result a list.
425 The result is a list whose elements are the elements of all the arguments.
426 Each argument may be a list, vector or string.
427 The last argument is not copied, just used as the tail of the new list.
428 usage: (append &rest SEQUENCES) */)
429 (nargs, args)
430 int nargs;
431 Lisp_Object *args;
433 return concat (nargs, args, Lisp_Cons, 1);
436 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
437 doc: /* Concatenate all the arguments and make the result a string.
438 The result is a string whose elements are the elements of all the arguments.
439 Each argument may be a string or a list or vector of characters (integers).
440 usage: (concat &rest SEQUENCES) */)
441 (nargs, args)
442 int nargs;
443 Lisp_Object *args;
445 return concat (nargs, args, Lisp_String, 0);
448 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
449 doc: /* Concatenate all the arguments and make the result a vector.
450 The result is a vector whose elements are the elements of all the arguments.
451 Each argument may be a list, vector or string.
452 usage: (vconcat &rest SEQUENCES) */)
453 (nargs, args)
454 int nargs;
455 Lisp_Object *args;
457 return concat (nargs, args, Lisp_Vectorlike, 0);
461 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
462 doc: /* Return a copy of a list, vector, string or char-table.
463 The elements of a list or vector are not copied; they are shared
464 with the original. */)
465 (arg)
466 Lisp_Object arg;
468 if (NILP (arg)) return arg;
470 if (CHAR_TABLE_P (arg))
472 return copy_char_table (arg);
475 if (BOOL_VECTOR_P (arg))
477 Lisp_Object val;
478 int size_in_chars
479 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
480 / BOOL_VECTOR_BITS_PER_CHAR);
482 val = Fmake_bool_vector (Flength (arg), Qnil);
483 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
484 size_in_chars);
485 return val;
488 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
489 wrong_type_argument (Qsequencep, arg);
491 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
494 /* This structure holds information of an argument of `concat' that is
495 a string and has text properties to be copied. */
496 struct textprop_rec
498 int argnum; /* refer to ARGS (arguments of `concat') */
499 int from; /* refer to ARGS[argnum] (argument string) */
500 int to; /* refer to VAL (the target string) */
503 static Lisp_Object
504 concat (nargs, args, target_type, last_special)
505 int nargs;
506 Lisp_Object *args;
507 enum Lisp_Type target_type;
508 int last_special;
510 Lisp_Object val;
511 register Lisp_Object tail;
512 register Lisp_Object this;
513 int toindex;
514 int toindex_byte = 0;
515 register int result_len;
516 register int result_len_byte;
517 register int argnum;
518 Lisp_Object last_tail;
519 Lisp_Object prev;
520 int some_multibyte;
521 /* When we make a multibyte string, we can't copy text properties
522 while concatinating each string because the length of resulting
523 string can't be decided until we finish the whole concatination.
524 So, we record strings that have text properties to be copied
525 here, and copy the text properties after the concatination. */
526 struct textprop_rec *textprops = NULL;
527 /* Number of elments in textprops. */
528 int num_textprops = 0;
529 USE_SAFE_ALLOCA;
531 tail = Qnil;
533 /* In append, the last arg isn't treated like the others */
534 if (last_special && nargs > 0)
536 nargs--;
537 last_tail = args[nargs];
539 else
540 last_tail = Qnil;
542 /* Check each argument. */
543 for (argnum = 0; argnum < nargs; argnum++)
545 this = args[argnum];
546 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
547 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
548 wrong_type_argument (Qsequencep, this);
551 /* Compute total length in chars of arguments in RESULT_LEN.
552 If desired output is a string, also compute length in bytes
553 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
554 whether the result should be a multibyte string. */
555 result_len_byte = 0;
556 result_len = 0;
557 some_multibyte = 0;
558 for (argnum = 0; argnum < nargs; argnum++)
560 int len;
561 this = args[argnum];
562 len = XFASTINT (Flength (this));
563 if (target_type == Lisp_String)
565 /* We must count the number of bytes needed in the string
566 as well as the number of characters. */
567 int i;
568 Lisp_Object ch;
569 int this_len_byte;
571 if (VECTORP (this))
572 for (i = 0; i < len; i++)
574 ch = AREF (this, i);
575 CHECK_CHARACTER (ch);
576 this_len_byte = CHAR_BYTES (XINT (ch));
577 result_len_byte += this_len_byte;
578 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
579 some_multibyte = 1;
581 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
582 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
583 else if (CONSP (this))
584 for (; CONSP (this); this = XCDR (this))
586 ch = XCAR (this);
587 CHECK_CHARACTER (ch);
588 this_len_byte = CHAR_BYTES (XINT (ch));
589 result_len_byte += this_len_byte;
590 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
591 some_multibyte = 1;
593 else if (STRINGP (this))
595 if (STRING_MULTIBYTE (this))
597 some_multibyte = 1;
598 result_len_byte += SBYTES (this);
600 else
601 result_len_byte += count_size_as_multibyte (SDATA (this),
602 SCHARS (this));
606 result_len += len;
607 if (result_len < 0)
608 error ("String overflow");
611 if (! some_multibyte)
612 result_len_byte = result_len;
614 /* Create the output object. */
615 if (target_type == Lisp_Cons)
616 val = Fmake_list (make_number (result_len), Qnil);
617 else if (target_type == Lisp_Vectorlike)
618 val = Fmake_vector (make_number (result_len), Qnil);
619 else if (some_multibyte)
620 val = make_uninit_multibyte_string (result_len, result_len_byte);
621 else
622 val = make_uninit_string (result_len);
624 /* In `append', if all but last arg are nil, return last arg. */
625 if (target_type == Lisp_Cons && EQ (val, Qnil))
626 return last_tail;
628 /* Copy the contents of the args into the result. */
629 if (CONSP (val))
630 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
631 else
632 toindex = 0, toindex_byte = 0;
634 prev = Qnil;
635 if (STRINGP (val))
636 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
638 for (argnum = 0; argnum < nargs; argnum++)
640 Lisp_Object thislen;
641 int thisleni = 0;
642 register unsigned int thisindex = 0;
643 register unsigned int thisindex_byte = 0;
645 this = args[argnum];
646 if (!CONSP (this))
647 thislen = Flength (this), thisleni = XINT (thislen);
649 /* Between strings of the same kind, copy fast. */
650 if (STRINGP (this) && STRINGP (val)
651 && STRING_MULTIBYTE (this) == some_multibyte)
653 int thislen_byte = SBYTES (this);
655 bcopy (SDATA (this), SDATA (val) + toindex_byte,
656 SBYTES (this));
657 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
659 textprops[num_textprops].argnum = argnum;
660 textprops[num_textprops].from = 0;
661 textprops[num_textprops++].to = toindex;
663 toindex_byte += thislen_byte;
664 toindex += thisleni;
666 /* Copy a single-byte string to a multibyte string. */
667 else if (STRINGP (this) && STRINGP (val))
669 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
671 textprops[num_textprops].argnum = argnum;
672 textprops[num_textprops].from = 0;
673 textprops[num_textprops++].to = toindex;
675 toindex_byte += copy_text (SDATA (this),
676 SDATA (val) + toindex_byte,
677 SCHARS (this), 0, 1);
678 toindex += thisleni;
680 else
681 /* Copy element by element. */
682 while (1)
684 register Lisp_Object elt;
686 /* Fetch next element of `this' arg into `elt', or break if
687 `this' is exhausted. */
688 if (NILP (this)) break;
689 if (CONSP (this))
690 elt = XCAR (this), this = XCDR (this);
691 else if (thisindex >= thisleni)
692 break;
693 else if (STRINGP (this))
695 int c;
696 if (STRING_MULTIBYTE (this))
698 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
699 thisindex,
700 thisindex_byte);
701 XSETFASTINT (elt, c);
703 else
705 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
706 if (some_multibyte
707 && !ASCII_CHAR_P (XINT (elt))
708 && XINT (elt) < 0400)
710 c = BYTE8_TO_CHAR (XINT (elt));
711 XSETINT (elt, c);
715 else if (BOOL_VECTOR_P (this))
717 int byte;
718 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
719 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
720 elt = Qt;
721 else
722 elt = Qnil;
723 thisindex++;
725 else
727 elt = AREF (this, thisindex);
728 thisindex++;
731 /* Store this element into the result. */
732 if (toindex < 0)
734 XSETCAR (tail, elt);
735 prev = tail;
736 tail = XCDR (tail);
738 else if (VECTORP (val))
740 ASET (val, toindex, elt);
741 toindex++;
743 else
745 CHECK_NUMBER (elt);
746 if (some_multibyte)
747 toindex_byte += CHAR_STRING (XINT (elt),
748 SDATA (val) + toindex_byte);
749 else
750 SSET (val, toindex_byte++, XINT (elt));
751 toindex++;
755 if (!NILP (prev))
756 XSETCDR (prev, last_tail);
758 if (num_textprops > 0)
760 Lisp_Object props;
761 int last_to_end = -1;
763 for (argnum = 0; argnum < num_textprops; argnum++)
765 this = args[textprops[argnum].argnum];
766 props = text_property_list (this,
767 make_number (0),
768 make_number (SCHARS (this)),
769 Qnil);
770 /* If successive arguments have properites, be sure that the
771 value of `composition' property be the copy. */
772 if (last_to_end == textprops[argnum].to)
773 make_composition_value_copy (props);
774 add_text_properties_from_list (val, props,
775 make_number (textprops[argnum].to));
776 last_to_end = textprops[argnum].to + SCHARS (this);
780 SAFE_FREE ();
781 return val;
784 static Lisp_Object string_char_byte_cache_string;
785 static EMACS_INT string_char_byte_cache_charpos;
786 static EMACS_INT string_char_byte_cache_bytepos;
788 void
789 clear_string_char_byte_cache ()
791 string_char_byte_cache_string = Qnil;
794 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
796 EMACS_INT
797 string_char_to_byte (string, char_index)
798 Lisp_Object string;
799 EMACS_INT char_index;
801 EMACS_INT i_byte;
802 EMACS_INT best_below, best_below_byte;
803 EMACS_INT best_above, best_above_byte;
805 best_below = best_below_byte = 0;
806 best_above = SCHARS (string);
807 best_above_byte = SBYTES (string);
808 if (best_above == best_above_byte)
809 return char_index;
811 if (EQ (string, string_char_byte_cache_string))
813 if (string_char_byte_cache_charpos < char_index)
815 best_below = string_char_byte_cache_charpos;
816 best_below_byte = string_char_byte_cache_bytepos;
818 else
820 best_above = string_char_byte_cache_charpos;
821 best_above_byte = string_char_byte_cache_bytepos;
825 if (char_index - best_below < best_above - char_index)
827 unsigned char *p = SDATA (string) + best_below_byte;
829 while (best_below < char_index)
831 p += BYTES_BY_CHAR_HEAD (*p);
832 best_below++;
834 i_byte = p - SDATA (string);
836 else
838 unsigned char *p = SDATA (string) + best_above_byte;
840 while (best_above > char_index)
842 p--;
843 while (!CHAR_HEAD_P (*p)) p--;
844 best_above--;
846 i_byte = p - SDATA (string);
849 string_char_byte_cache_bytepos = i_byte;
850 string_char_byte_cache_charpos = char_index;
851 string_char_byte_cache_string = string;
853 return i_byte;
856 /* Return the character index corresponding to BYTE_INDEX in STRING. */
858 EMACS_INT
859 string_byte_to_char (string, byte_index)
860 Lisp_Object string;
861 EMACS_INT byte_index;
863 EMACS_INT i, i_byte;
864 EMACS_INT best_below, best_below_byte;
865 EMACS_INT best_above, best_above_byte;
867 best_below = best_below_byte = 0;
868 best_above = SCHARS (string);
869 best_above_byte = SBYTES (string);
870 if (best_above == best_above_byte)
871 return byte_index;
873 if (EQ (string, string_char_byte_cache_string))
875 if (string_char_byte_cache_bytepos < byte_index)
877 best_below = string_char_byte_cache_charpos;
878 best_below_byte = string_char_byte_cache_bytepos;
880 else
882 best_above = string_char_byte_cache_charpos;
883 best_above_byte = string_char_byte_cache_bytepos;
887 if (byte_index - best_below_byte < best_above_byte - byte_index)
889 unsigned char *p = SDATA (string) + best_below_byte;
890 unsigned char *pend = SDATA (string) + byte_index;
892 while (p < pend)
894 p += BYTES_BY_CHAR_HEAD (*p);
895 best_below++;
897 i = best_below;
898 i_byte = p - SDATA (string);
900 else
902 unsigned char *p = SDATA (string) + best_above_byte;
903 unsigned char *pbeg = SDATA (string) + byte_index;
905 while (p > pbeg)
907 p--;
908 while (!CHAR_HEAD_P (*p)) p--;
909 best_above--;
911 i = best_above;
912 i_byte = p - SDATA (string);
915 string_char_byte_cache_bytepos = i_byte;
916 string_char_byte_cache_charpos = i;
917 string_char_byte_cache_string = string;
919 return i;
922 /* Convert STRING to a multibyte string. */
924 Lisp_Object
925 string_make_multibyte (string)
926 Lisp_Object string;
928 unsigned char *buf;
929 EMACS_INT nbytes;
930 Lisp_Object ret;
931 USE_SAFE_ALLOCA;
933 if (STRING_MULTIBYTE (string))
934 return string;
936 nbytes = count_size_as_multibyte (SDATA (string),
937 SCHARS (string));
938 /* If all the chars are ASCII, they won't need any more bytes
939 once converted. In that case, we can return STRING itself. */
940 if (nbytes == SBYTES (string))
941 return string;
943 SAFE_ALLOCA (buf, unsigned char *, nbytes);
944 copy_text (SDATA (string), buf, SBYTES (string),
945 0, 1);
947 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
948 SAFE_FREE ();
950 return ret;
954 /* Convert STRING (if unibyte) to a multibyte string without changing
955 the number of characters. Characters 0200 trough 0237 are
956 converted to eight-bit characters. */
958 Lisp_Object
959 string_to_multibyte (string)
960 Lisp_Object string;
962 unsigned char *buf;
963 EMACS_INT nbytes;
964 Lisp_Object ret;
965 USE_SAFE_ALLOCA;
967 if (STRING_MULTIBYTE (string))
968 return string;
970 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
971 /* If all the chars are ASCII, they won't need any more bytes once
972 converted. */
973 if (nbytes == SBYTES (string))
974 return make_multibyte_string (SDATA (string), nbytes, nbytes);
976 SAFE_ALLOCA (buf, unsigned char *, nbytes);
977 bcopy (SDATA (string), buf, SBYTES (string));
978 str_to_multibyte (buf, nbytes, SBYTES (string));
980 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
981 SAFE_FREE ();
983 return ret;
987 /* Convert STRING to a single-byte string. */
989 Lisp_Object
990 string_make_unibyte (string)
991 Lisp_Object string;
993 int nchars;
994 unsigned char *buf;
995 Lisp_Object ret;
996 USE_SAFE_ALLOCA;
998 if (! STRING_MULTIBYTE (string))
999 return string;
1001 nchars = SCHARS (string);
1003 SAFE_ALLOCA (buf, unsigned char *, nchars);
1004 copy_text (SDATA (string), buf, SBYTES (string),
1005 1, 0);
1007 ret = make_unibyte_string (buf, nchars);
1008 SAFE_FREE ();
1010 return ret;
1013 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1014 1, 1, 0,
1015 doc: /* Return the multibyte equivalent of STRING.
1016 If STRING is unibyte and contains non-ASCII characters, the function
1017 `unibyte-char-to-multibyte' is used to convert each unibyte character
1018 to a multibyte character. In this case, the returned string is a
1019 newly created string with no text properties. If STRING is multibyte
1020 or entirely ASCII, it is returned unchanged. In particular, when
1021 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1022 \(When the characters are all ASCII, Emacs primitives will treat the
1023 string the same way whether it is unibyte or multibyte.) */)
1024 (string)
1025 Lisp_Object string;
1027 CHECK_STRING (string);
1029 return string_make_multibyte (string);
1032 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1033 1, 1, 0,
1034 doc: /* Return the unibyte equivalent of STRING.
1035 Multibyte character codes are converted to unibyte according to
1036 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1037 If the lookup in the translation table fails, this function takes just
1038 the low 8 bits of each character. */)
1039 (string)
1040 Lisp_Object string;
1042 CHECK_STRING (string);
1044 return string_make_unibyte (string);
1047 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1048 1, 1, 0,
1049 doc: /* Return a unibyte string with the same individual bytes as STRING.
1050 If STRING is unibyte, the result is STRING itself.
1051 Otherwise it is a newly created string, with no text properties.
1052 If STRING is multibyte and contains a character of charset
1053 `eight-bit', it is converted to the corresponding single byte. */)
1054 (string)
1055 Lisp_Object string;
1057 CHECK_STRING (string);
1059 if (STRING_MULTIBYTE (string))
1061 int bytes = SBYTES (string);
1062 unsigned char *str = (unsigned char *) xmalloc (bytes);
1064 bcopy (SDATA (string), str, bytes);
1065 bytes = str_as_unibyte (str, bytes);
1066 string = make_unibyte_string (str, bytes);
1067 xfree (str);
1069 return string;
1072 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1073 1, 1, 0,
1074 doc: /* Return a multibyte string with the same individual bytes as STRING.
1075 If STRING is multibyte, the result is STRING itself.
1076 Otherwise it is a newly created string, with no text properties.
1078 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1079 part of a correct utf-8 sequence), it is converted to the corresponding
1080 multibyte character of charset `eight-bit'.
1081 See also `string-to-multibyte'.
1083 Beware, this often doesn't really do what you think it does.
1084 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1085 If you're not sure, whether to use `string-as-multibyte' or
1086 `string-to-multibyte', use `string-to-multibyte'. */)
1087 (string)
1088 Lisp_Object string;
1090 CHECK_STRING (string);
1092 if (! STRING_MULTIBYTE (string))
1094 Lisp_Object new_string;
1095 int nchars, nbytes;
1097 parse_str_as_multibyte (SDATA (string),
1098 SBYTES (string),
1099 &nchars, &nbytes);
1100 new_string = make_uninit_multibyte_string (nchars, nbytes);
1101 bcopy (SDATA (string), SDATA (new_string),
1102 SBYTES (string));
1103 if (nbytes != SBYTES (string))
1104 str_as_multibyte (SDATA (new_string), nbytes,
1105 SBYTES (string), NULL);
1106 string = new_string;
1107 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1109 return string;
1112 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1113 1, 1, 0,
1114 doc: /* Return a multibyte string with the same individual chars as STRING.
1115 If STRING is multibyte, the result is STRING itself.
1116 Otherwise it is a newly created string, with no text properties.
1118 If STRING is unibyte and contains an 8-bit byte, it is converted to
1119 the corresponding multibyte character of charset `eight-bit'.
1121 This differs from `string-as-multibyte' by converting each byte of a correct
1122 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1123 correct sequence. */)
1124 (string)
1125 Lisp_Object string;
1127 CHECK_STRING (string);
1129 return string_to_multibyte (string);
1132 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1133 1, 1, 0,
1134 doc: /* Return a unibyte string with the same individual chars as STRING.
1135 If STRING is unibyte, the result is STRING itself.
1136 Otherwise it is a newly created string, with no text properties,
1137 where each `eight-bit' character is converted to the corresponding byte.
1138 If STRING contains a non-ASCII, non-`eight-bit' character,
1139 an error is signaled. */)
1140 (string)
1141 Lisp_Object string;
1143 CHECK_STRING (string);
1145 if (STRING_MULTIBYTE (string))
1147 EMACS_INT chars = SCHARS (string);
1148 unsigned char *str = (unsigned char *) xmalloc (chars);
1149 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1151 if (converted < chars)
1152 error ("Can't convert the %dth character to unibyte", converted);
1153 string = make_unibyte_string (str, chars);
1154 xfree (str);
1156 return string;
1160 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1161 doc: /* Return a copy of ALIST.
1162 This is an alist which represents the same mapping from objects to objects,
1163 but does not share the alist structure with ALIST.
1164 The objects mapped (cars and cdrs of elements of the alist)
1165 are shared, however.
1166 Elements of ALIST that are not conses are also shared. */)
1167 (alist)
1168 Lisp_Object alist;
1170 register Lisp_Object tem;
1172 CHECK_LIST (alist);
1173 if (NILP (alist))
1174 return alist;
1175 alist = concat (1, &alist, Lisp_Cons, 0);
1176 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1178 register Lisp_Object car;
1179 car = XCAR (tem);
1181 if (CONSP (car))
1182 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1184 return alist;
1187 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1188 doc: /* Return a new string whose contents are a substring of STRING.
1189 The returned string consists of the characters between index FROM
1190 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1191 zero-indexed: 0 means the first character of STRING. Negative values
1192 are counted from the end of STRING. If TO is nil, the substring runs
1193 to the end of STRING.
1195 The STRING argument may also be a vector. In that case, the return
1196 value is a new vector that contains the elements between index FROM
1197 \(inclusive) and index TO (exclusive) of that vector argument. */)
1198 (string, from, to)
1199 Lisp_Object string;
1200 register Lisp_Object from, to;
1202 Lisp_Object res;
1203 int size;
1204 int size_byte = 0;
1205 int from_char, to_char;
1206 int from_byte = 0, to_byte = 0;
1208 CHECK_VECTOR_OR_STRING (string);
1209 CHECK_NUMBER (from);
1211 if (STRINGP (string))
1213 size = SCHARS (string);
1214 size_byte = SBYTES (string);
1216 else
1217 size = ASIZE (string);
1219 if (NILP (to))
1221 to_char = size;
1222 to_byte = size_byte;
1224 else
1226 CHECK_NUMBER (to);
1228 to_char = XINT (to);
1229 if (to_char < 0)
1230 to_char += size;
1232 if (STRINGP (string))
1233 to_byte = string_char_to_byte (string, to_char);
1236 from_char = XINT (from);
1237 if (from_char < 0)
1238 from_char += size;
1239 if (STRINGP (string))
1240 from_byte = string_char_to_byte (string, from_char);
1242 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1243 args_out_of_range_3 (string, make_number (from_char),
1244 make_number (to_char));
1246 if (STRINGP (string))
1248 res = make_specified_string (SDATA (string) + from_byte,
1249 to_char - from_char, to_byte - from_byte,
1250 STRING_MULTIBYTE (string));
1251 copy_text_properties (make_number (from_char), make_number (to_char),
1252 string, make_number (0), res, Qnil);
1254 else
1255 res = Fvector (to_char - from_char, &AREF (string, from_char));
1257 return res;
1261 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1262 doc: /* Return a substring of STRING, without text properties.
1263 It starts at index FROM and ending before TO.
1264 TO may be nil or omitted; then the substring runs to the end of STRING.
1265 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1266 If FROM or TO is negative, it counts from the end.
1268 With one argument, just copy STRING without its properties. */)
1269 (string, from, to)
1270 Lisp_Object string;
1271 register Lisp_Object from, to;
1273 int size, size_byte;
1274 int from_char, to_char;
1275 int from_byte, to_byte;
1277 CHECK_STRING (string);
1279 size = SCHARS (string);
1280 size_byte = SBYTES (string);
1282 if (NILP (from))
1283 from_char = from_byte = 0;
1284 else
1286 CHECK_NUMBER (from);
1287 from_char = XINT (from);
1288 if (from_char < 0)
1289 from_char += size;
1291 from_byte = string_char_to_byte (string, from_char);
1294 if (NILP (to))
1296 to_char = size;
1297 to_byte = size_byte;
1299 else
1301 CHECK_NUMBER (to);
1303 to_char = XINT (to);
1304 if (to_char < 0)
1305 to_char += size;
1307 to_byte = string_char_to_byte (string, to_char);
1310 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1311 args_out_of_range_3 (string, make_number (from_char),
1312 make_number (to_char));
1314 return make_specified_string (SDATA (string) + from_byte,
1315 to_char - from_char, to_byte - from_byte,
1316 STRING_MULTIBYTE (string));
1319 /* Extract a substring of STRING, giving start and end positions
1320 both in characters and in bytes. */
1322 Lisp_Object
1323 substring_both (string, from, from_byte, to, to_byte)
1324 Lisp_Object string;
1325 int from, from_byte, to, to_byte;
1327 Lisp_Object res;
1328 int size;
1329 int size_byte;
1331 CHECK_VECTOR_OR_STRING (string);
1333 if (STRINGP (string))
1335 size = SCHARS (string);
1336 size_byte = SBYTES (string);
1338 else
1339 size = ASIZE (string);
1341 if (!(0 <= from && from <= to && to <= size))
1342 args_out_of_range_3 (string, make_number (from), make_number (to));
1344 if (STRINGP (string))
1346 res = make_specified_string (SDATA (string) + from_byte,
1347 to - from, to_byte - from_byte,
1348 STRING_MULTIBYTE (string));
1349 copy_text_properties (make_number (from), make_number (to),
1350 string, make_number (0), res, Qnil);
1352 else
1353 res = Fvector (to - from, &AREF (string, from));
1355 return res;
1358 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1359 doc: /* Take cdr N times on LIST, returns the result. */)
1360 (n, list)
1361 Lisp_Object n;
1362 register Lisp_Object list;
1364 register int i, num;
1365 CHECK_NUMBER (n);
1366 num = XINT (n);
1367 for (i = 0; i < num && !NILP (list); i++)
1369 QUIT;
1370 CHECK_LIST_CONS (list, list);
1371 list = XCDR (list);
1373 return list;
1376 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1377 doc: /* Return the Nth element of LIST.
1378 N counts from zero. If LIST is not that long, nil is returned. */)
1379 (n, list)
1380 Lisp_Object n, list;
1382 return Fcar (Fnthcdr (n, list));
1385 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1386 doc: /* Return element of SEQUENCE at index N. */)
1387 (sequence, n)
1388 register Lisp_Object sequence, n;
1390 CHECK_NUMBER (n);
1391 if (CONSP (sequence) || NILP (sequence))
1392 return Fcar (Fnthcdr (n, sequence));
1394 /* Faref signals a "not array" error, so check here. */
1395 CHECK_ARRAY (sequence, Qsequencep);
1396 return Faref (sequence, n);
1399 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1400 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1401 The value is actually the tail of LIST whose car is ELT. */)
1402 (elt, list)
1403 register Lisp_Object elt;
1404 Lisp_Object list;
1406 register Lisp_Object tail;
1407 for (tail = list; CONSP (tail); tail = XCDR (tail))
1409 register Lisp_Object tem;
1410 CHECK_LIST_CONS (tail, list);
1411 tem = XCAR (tail);
1412 if (! NILP (Fequal (elt, tem)))
1413 return tail;
1414 QUIT;
1416 return Qnil;
1419 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1420 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1421 The value is actually the tail of LIST whose car is ELT. */)
1422 (elt, list)
1423 register Lisp_Object elt, list;
1425 while (1)
1427 if (!CONSP (list) || EQ (XCAR (list), elt))
1428 break;
1430 list = XCDR (list);
1431 if (!CONSP (list) || EQ (XCAR (list), elt))
1432 break;
1434 list = XCDR (list);
1435 if (!CONSP (list) || EQ (XCAR (list), elt))
1436 break;
1438 list = XCDR (list);
1439 QUIT;
1442 CHECK_LIST (list);
1443 return list;
1446 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1447 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1448 The value is actually the tail of LIST whose car is ELT. */)
1449 (elt, list)
1450 register Lisp_Object elt;
1451 Lisp_Object list;
1453 register Lisp_Object tail;
1455 if (!FLOATP (elt))
1456 return Fmemq (elt, list);
1458 for (tail = list; CONSP (tail); tail = XCDR (tail))
1460 register Lisp_Object tem;
1461 CHECK_LIST_CONS (tail, list);
1462 tem = XCAR (tail);
1463 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1464 return tail;
1465 QUIT;
1467 return Qnil;
1470 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1471 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1472 The value is actually the first element of LIST whose car is KEY.
1473 Elements of LIST that are not conses are ignored. */)
1474 (key, list)
1475 Lisp_Object key, list;
1477 while (1)
1479 if (!CONSP (list)
1480 || (CONSP (XCAR (list))
1481 && EQ (XCAR (XCAR (list)), key)))
1482 break;
1484 list = XCDR (list);
1485 if (!CONSP (list)
1486 || (CONSP (XCAR (list))
1487 && EQ (XCAR (XCAR (list)), key)))
1488 break;
1490 list = XCDR (list);
1491 if (!CONSP (list)
1492 || (CONSP (XCAR (list))
1493 && EQ (XCAR (XCAR (list)), key)))
1494 break;
1496 list = XCDR (list);
1497 QUIT;
1500 return CAR (list);
1503 /* Like Fassq but never report an error and do not allow quits.
1504 Use only on lists known never to be circular. */
1506 Lisp_Object
1507 assq_no_quit (key, list)
1508 Lisp_Object key, list;
1510 while (CONSP (list)
1511 && (!CONSP (XCAR (list))
1512 || !EQ (XCAR (XCAR (list)), key)))
1513 list = XCDR (list);
1515 return CAR_SAFE (list);
1518 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1519 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1520 The value is actually the first element of LIST whose car equals KEY. */)
1521 (key, list)
1522 Lisp_Object key, list;
1524 Lisp_Object car;
1526 while (1)
1528 if (!CONSP (list)
1529 || (CONSP (XCAR (list))
1530 && (car = XCAR (XCAR (list)),
1531 EQ (car, key) || !NILP (Fequal (car, key)))))
1532 break;
1534 list = XCDR (list);
1535 if (!CONSP (list)
1536 || (CONSP (XCAR (list))
1537 && (car = XCAR (XCAR (list)),
1538 EQ (car, key) || !NILP (Fequal (car, key)))))
1539 break;
1541 list = XCDR (list);
1542 if (!CONSP (list)
1543 || (CONSP (XCAR (list))
1544 && (car = XCAR (XCAR (list)),
1545 EQ (car, key) || !NILP (Fequal (car, key)))))
1546 break;
1548 list = XCDR (list);
1549 QUIT;
1552 return CAR (list);
1555 /* Like Fassoc but never report an error and do not allow quits.
1556 Use only on lists known never to be circular. */
1558 Lisp_Object
1559 assoc_no_quit (key, list)
1560 Lisp_Object key, list;
1562 while (CONSP (list)
1563 && (!CONSP (XCAR (list))
1564 || (!EQ (XCAR (XCAR (list)), key)
1565 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1566 list = XCDR (list);
1568 return CONSP (list) ? XCAR (list) : Qnil;
1571 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1572 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1573 The value is actually the first element of LIST whose cdr is KEY. */)
1574 (key, list)
1575 register Lisp_Object key;
1576 Lisp_Object list;
1578 while (1)
1580 if (!CONSP (list)
1581 || (CONSP (XCAR (list))
1582 && EQ (XCDR (XCAR (list)), key)))
1583 break;
1585 list = XCDR (list);
1586 if (!CONSP (list)
1587 || (CONSP (XCAR (list))
1588 && EQ (XCDR (XCAR (list)), key)))
1589 break;
1591 list = XCDR (list);
1592 if (!CONSP (list)
1593 || (CONSP (XCAR (list))
1594 && EQ (XCDR (XCAR (list)), key)))
1595 break;
1597 list = XCDR (list);
1598 QUIT;
1601 return CAR (list);
1604 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1605 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1606 The value is actually the first element of LIST whose cdr equals KEY. */)
1607 (key, list)
1608 Lisp_Object key, list;
1610 Lisp_Object cdr;
1612 while (1)
1614 if (!CONSP (list)
1615 || (CONSP (XCAR (list))
1616 && (cdr = XCDR (XCAR (list)),
1617 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1618 break;
1620 list = XCDR (list);
1621 if (!CONSP (list)
1622 || (CONSP (XCAR (list))
1623 && (cdr = XCDR (XCAR (list)),
1624 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1625 break;
1627 list = XCDR (list);
1628 if (!CONSP (list)
1629 || (CONSP (XCAR (list))
1630 && (cdr = XCDR (XCAR (list)),
1631 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1632 break;
1634 list = XCDR (list);
1635 QUIT;
1638 return CAR (list);
1641 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1642 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1643 The modified LIST is returned. Comparison is done with `eq'.
1644 If the first member of LIST is ELT, there is no way to remove it by side effect;
1645 therefore, write `(setq foo (delq element foo))'
1646 to be sure of changing the value of `foo'. */)
1647 (elt, list)
1648 register Lisp_Object elt;
1649 Lisp_Object list;
1651 register Lisp_Object tail, prev;
1652 register Lisp_Object tem;
1654 tail = list;
1655 prev = Qnil;
1656 while (!NILP (tail))
1658 CHECK_LIST_CONS (tail, list);
1659 tem = XCAR (tail);
1660 if (EQ (elt, tem))
1662 if (NILP (prev))
1663 list = XCDR (tail);
1664 else
1665 Fsetcdr (prev, XCDR (tail));
1667 else
1668 prev = tail;
1669 tail = XCDR (tail);
1670 QUIT;
1672 return list;
1675 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1676 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1677 SEQ must be a list, a vector, or a string.
1678 The modified SEQ is returned. Comparison is done with `equal'.
1679 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1680 is not a side effect; it is simply using a different sequence.
1681 Therefore, write `(setq foo (delete element foo))'
1682 to be sure of changing the value of `foo'. */)
1683 (elt, seq)
1684 Lisp_Object elt, seq;
1686 if (VECTORP (seq))
1688 EMACS_INT i, n;
1690 for (i = n = 0; i < ASIZE (seq); ++i)
1691 if (NILP (Fequal (AREF (seq, i), elt)))
1692 ++n;
1694 if (n != ASIZE (seq))
1696 struct Lisp_Vector *p = allocate_vector (n);
1698 for (i = n = 0; i < ASIZE (seq); ++i)
1699 if (NILP (Fequal (AREF (seq, i), elt)))
1700 p->contents[n++] = AREF (seq, i);
1702 XSETVECTOR (seq, p);
1705 else if (STRINGP (seq))
1707 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1708 int c;
1710 for (i = nchars = nbytes = ibyte = 0;
1711 i < SCHARS (seq);
1712 ++i, ibyte += cbytes)
1714 if (STRING_MULTIBYTE (seq))
1716 c = STRING_CHAR (SDATA (seq) + ibyte);
1717 cbytes = CHAR_BYTES (c);
1719 else
1721 c = SREF (seq, i);
1722 cbytes = 1;
1725 if (!INTEGERP (elt) || c != XINT (elt))
1727 ++nchars;
1728 nbytes += cbytes;
1732 if (nchars != SCHARS (seq))
1734 Lisp_Object tem;
1736 tem = make_uninit_multibyte_string (nchars, nbytes);
1737 if (!STRING_MULTIBYTE (seq))
1738 STRING_SET_UNIBYTE (tem);
1740 for (i = nchars = nbytes = ibyte = 0;
1741 i < SCHARS (seq);
1742 ++i, ibyte += cbytes)
1744 if (STRING_MULTIBYTE (seq))
1746 c = STRING_CHAR (SDATA (seq) + ibyte);
1747 cbytes = CHAR_BYTES (c);
1749 else
1751 c = SREF (seq, i);
1752 cbytes = 1;
1755 if (!INTEGERP (elt) || c != XINT (elt))
1757 unsigned char *from = SDATA (seq) + ibyte;
1758 unsigned char *to = SDATA (tem) + nbytes;
1759 EMACS_INT n;
1761 ++nchars;
1762 nbytes += cbytes;
1764 for (n = cbytes; n--; )
1765 *to++ = *from++;
1769 seq = tem;
1772 else
1774 Lisp_Object tail, prev;
1776 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1778 CHECK_LIST_CONS (tail, seq);
1780 if (!NILP (Fequal (elt, XCAR (tail))))
1782 if (NILP (prev))
1783 seq = XCDR (tail);
1784 else
1785 Fsetcdr (prev, XCDR (tail));
1787 else
1788 prev = tail;
1789 QUIT;
1793 return seq;
1796 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1797 doc: /* Reverse LIST by modifying cdr pointers.
1798 Return the reversed list. */)
1799 (list)
1800 Lisp_Object list;
1802 register Lisp_Object prev, tail, next;
1804 if (NILP (list)) return list;
1805 prev = Qnil;
1806 tail = list;
1807 while (!NILP (tail))
1809 QUIT;
1810 CHECK_LIST_CONS (tail, list);
1811 next = XCDR (tail);
1812 Fsetcdr (tail, prev);
1813 prev = tail;
1814 tail = next;
1816 return prev;
1819 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1820 doc: /* Reverse LIST, copying. Return the reversed list.
1821 See also the function `nreverse', which is used more often. */)
1822 (list)
1823 Lisp_Object list;
1825 Lisp_Object new;
1827 for (new = Qnil; CONSP (list); list = XCDR (list))
1829 QUIT;
1830 new = Fcons (XCAR (list), new);
1832 CHECK_LIST_END (list, list);
1833 return new;
1836 Lisp_Object merge ();
1838 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1839 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1840 Returns the sorted list. LIST is modified by side effects.
1841 PREDICATE is called with two elements of LIST, and should return non-nil
1842 if the first element should sort before the second. */)
1843 (list, predicate)
1844 Lisp_Object list, predicate;
1846 Lisp_Object front, back;
1847 register Lisp_Object len, tem;
1848 struct gcpro gcpro1, gcpro2;
1849 register int length;
1851 front = list;
1852 len = Flength (list);
1853 length = XINT (len);
1854 if (length < 2)
1855 return list;
1857 XSETINT (len, (length / 2) - 1);
1858 tem = Fnthcdr (len, list);
1859 back = Fcdr (tem);
1860 Fsetcdr (tem, Qnil);
1862 GCPRO2 (front, back);
1863 front = Fsort (front, predicate);
1864 back = Fsort (back, predicate);
1865 UNGCPRO;
1866 return merge (front, back, predicate);
1869 Lisp_Object
1870 merge (org_l1, org_l2, pred)
1871 Lisp_Object org_l1, org_l2;
1872 Lisp_Object pred;
1874 Lisp_Object value;
1875 register Lisp_Object tail;
1876 Lisp_Object tem;
1877 register Lisp_Object l1, l2;
1878 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1880 l1 = org_l1;
1881 l2 = org_l2;
1882 tail = Qnil;
1883 value = Qnil;
1885 /* It is sufficient to protect org_l1 and org_l2.
1886 When l1 and l2 are updated, we copy the new values
1887 back into the org_ vars. */
1888 GCPRO4 (org_l1, org_l2, pred, value);
1890 while (1)
1892 if (NILP (l1))
1894 UNGCPRO;
1895 if (NILP (tail))
1896 return l2;
1897 Fsetcdr (tail, l2);
1898 return value;
1900 if (NILP (l2))
1902 UNGCPRO;
1903 if (NILP (tail))
1904 return l1;
1905 Fsetcdr (tail, l1);
1906 return value;
1908 tem = call2 (pred, Fcar (l2), Fcar (l1));
1909 if (NILP (tem))
1911 tem = l1;
1912 l1 = Fcdr (l1);
1913 org_l1 = l1;
1915 else
1917 tem = l2;
1918 l2 = Fcdr (l2);
1919 org_l2 = l2;
1921 if (NILP (tail))
1922 value = tem;
1923 else
1924 Fsetcdr (tail, tem);
1925 tail = tem;
1930 /* This does not check for quits. That is safe since it must terminate. */
1932 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1933 doc: /* Extract a value from a property list.
1934 PLIST is a property list, which is a list of the form
1935 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1936 corresponding to the given PROP, or nil if PROP is not one of the
1937 properties on the list. This function never signals an error. */)
1938 (plist, prop)
1939 Lisp_Object plist;
1940 Lisp_Object prop;
1942 Lisp_Object tail, halftail;
1944 /* halftail is used to detect circular lists. */
1945 tail = halftail = plist;
1946 while (CONSP (tail) && CONSP (XCDR (tail)))
1948 if (EQ (prop, XCAR (tail)))
1949 return XCAR (XCDR (tail));
1951 tail = XCDR (XCDR (tail));
1952 halftail = XCDR (halftail);
1953 if (EQ (tail, halftail))
1954 break;
1956 #if 0 /* Unsafe version. */
1957 /* This function can be called asynchronously
1958 (setup_coding_system). Don't QUIT in that case. */
1959 if (!interrupt_input_blocked)
1960 QUIT;
1961 #endif
1964 return Qnil;
1967 DEFUN ("get", Fget, Sget, 2, 2, 0,
1968 doc: /* Return the value of SYMBOL's PROPNAME property.
1969 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1970 (symbol, propname)
1971 Lisp_Object symbol, propname;
1973 CHECK_SYMBOL (symbol);
1974 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1977 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1978 doc: /* Change value in PLIST of PROP to VAL.
1979 PLIST is a property list, which is a list of the form
1980 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1981 If PROP is already a property on the list, its value is set to VAL,
1982 otherwise the new PROP VAL pair is added. The new plist is returned;
1983 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1984 The PLIST is modified by side effects. */)
1985 (plist, prop, val)
1986 Lisp_Object plist;
1987 register Lisp_Object prop;
1988 Lisp_Object val;
1990 register Lisp_Object tail, prev;
1991 Lisp_Object newcell;
1992 prev = Qnil;
1993 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1994 tail = XCDR (XCDR (tail)))
1996 if (EQ (prop, XCAR (tail)))
1998 Fsetcar (XCDR (tail), val);
1999 return plist;
2002 prev = tail;
2003 QUIT;
2005 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
2006 if (NILP (prev))
2007 return newcell;
2008 else
2009 Fsetcdr (XCDR (prev), newcell);
2010 return plist;
2013 DEFUN ("put", Fput, Sput, 3, 3, 0,
2014 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2015 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2016 (symbol, propname, value)
2017 Lisp_Object symbol, propname, value;
2019 CHECK_SYMBOL (symbol);
2020 XSYMBOL (symbol)->plist
2021 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2022 return value;
2025 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2026 doc: /* Extract a value from a property list, comparing with `equal'.
2027 PLIST is a property list, which is a list of the form
2028 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2029 corresponding to the given PROP, or nil if PROP is not
2030 one of the properties on the list. */)
2031 (plist, prop)
2032 Lisp_Object plist;
2033 Lisp_Object prop;
2035 Lisp_Object tail;
2037 for (tail = plist;
2038 CONSP (tail) && CONSP (XCDR (tail));
2039 tail = XCDR (XCDR (tail)))
2041 if (! NILP (Fequal (prop, XCAR (tail))))
2042 return XCAR (XCDR (tail));
2044 QUIT;
2047 CHECK_LIST_END (tail, prop);
2049 return Qnil;
2052 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2053 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2054 PLIST is a property list, which is a list of the form
2055 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2056 If PROP is already a property on the list, its value is set to VAL,
2057 otherwise the new PROP VAL pair is added. The new plist is returned;
2058 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2059 The PLIST is modified by side effects. */)
2060 (plist, prop, val)
2061 Lisp_Object plist;
2062 register Lisp_Object prop;
2063 Lisp_Object val;
2065 register Lisp_Object tail, prev;
2066 Lisp_Object newcell;
2067 prev = Qnil;
2068 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2069 tail = XCDR (XCDR (tail)))
2071 if (! NILP (Fequal (prop, XCAR (tail))))
2073 Fsetcar (XCDR (tail), val);
2074 return plist;
2077 prev = tail;
2078 QUIT;
2080 newcell = Fcons (prop, Fcons (val, Qnil));
2081 if (NILP (prev))
2082 return newcell;
2083 else
2084 Fsetcdr (XCDR (prev), newcell);
2085 return plist;
2088 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2089 doc: /* Return t if the two args are the same Lisp object.
2090 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2091 (obj1, obj2)
2092 Lisp_Object obj1, obj2;
2094 if (FLOATP (obj1))
2095 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
2096 else
2097 return EQ (obj1, obj2) ? Qt : Qnil;
2100 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2101 doc: /* Return t if two Lisp objects have similar structure and contents.
2102 They must have the same data type.
2103 Conses are compared by comparing the cars and the cdrs.
2104 Vectors and strings are compared element by element.
2105 Numbers are compared by value, but integers cannot equal floats.
2106 (Use `=' if you want integers and floats to be able to be equal.)
2107 Symbols must match exactly. */)
2108 (o1, o2)
2109 register Lisp_Object o1, o2;
2111 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2114 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2115 doc: /* Return t if two Lisp objects have similar structure and contents.
2116 This is like `equal' except that it compares the text properties
2117 of strings. (`equal' ignores text properties.) */)
2118 (o1, o2)
2119 register Lisp_Object o1, o2;
2121 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2124 /* DEPTH is current depth of recursion. Signal an error if it
2125 gets too deep.
2126 PROPS, if non-nil, means compare string text properties too. */
2128 static int
2129 internal_equal (o1, o2, depth, props)
2130 register Lisp_Object o1, o2;
2131 int depth, props;
2133 if (depth > 200)
2134 error ("Stack overflow in equal");
2136 tail_recurse:
2137 QUIT;
2138 if (EQ (o1, o2))
2139 return 1;
2140 if (XTYPE (o1) != XTYPE (o2))
2141 return 0;
2143 switch (XTYPE (o1))
2145 case Lisp_Float:
2147 double d1, d2;
2149 d1 = extract_float (o1);
2150 d2 = extract_float (o2);
2151 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2152 though they are not =. */
2153 return d1 == d2 || (d1 != d1 && d2 != d2);
2156 case Lisp_Cons:
2157 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2158 return 0;
2159 o1 = XCDR (o1);
2160 o2 = XCDR (o2);
2161 goto tail_recurse;
2163 case Lisp_Misc:
2164 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2165 return 0;
2166 if (OVERLAYP (o1))
2168 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2169 depth + 1, props)
2170 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2171 depth + 1, props))
2172 return 0;
2173 o1 = XOVERLAY (o1)->plist;
2174 o2 = XOVERLAY (o2)->plist;
2175 goto tail_recurse;
2177 if (MARKERP (o1))
2179 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2180 && (XMARKER (o1)->buffer == 0
2181 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2183 break;
2185 case Lisp_Vectorlike:
2187 register int i;
2188 EMACS_INT size = ASIZE (o1);
2189 /* Pseudovectors have the type encoded in the size field, so this test
2190 actually checks that the objects have the same type as well as the
2191 same size. */
2192 if (ASIZE (o2) != size)
2193 return 0;
2194 /* Boolvectors are compared much like strings. */
2195 if (BOOL_VECTOR_P (o1))
2197 int size_in_chars
2198 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2199 / BOOL_VECTOR_BITS_PER_CHAR);
2201 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2202 return 0;
2203 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2204 size_in_chars))
2205 return 0;
2206 return 1;
2208 if (WINDOW_CONFIGURATIONP (o1))
2209 return compare_window_configurations (o1, o2, 0);
2211 /* Aside from them, only true vectors, char-tables, compiled
2212 functions, and fonts (font-spec, font-entity, font-ojbect)
2213 are sensible to compare, so eliminate the others now. */
2214 if (size & PSEUDOVECTOR_FLAG)
2216 if (!(size & (PVEC_COMPILED
2217 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2218 return 0;
2219 size &= PSEUDOVECTOR_SIZE_MASK;
2221 for (i = 0; i < size; i++)
2223 Lisp_Object v1, v2;
2224 v1 = AREF (o1, i);
2225 v2 = AREF (o2, i);
2226 if (!internal_equal (v1, v2, depth + 1, props))
2227 return 0;
2229 return 1;
2231 break;
2233 case Lisp_String:
2234 if (SCHARS (o1) != SCHARS (o2))
2235 return 0;
2236 if (SBYTES (o1) != SBYTES (o2))
2237 return 0;
2238 if (bcmp (SDATA (o1), SDATA (o2),
2239 SBYTES (o1)))
2240 return 0;
2241 if (props && !compare_string_intervals (o1, o2))
2242 return 0;
2243 return 1;
2245 default:
2246 break;
2249 return 0;
2252 extern Lisp_Object Fmake_char_internal ();
2254 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2255 doc: /* Store each element of ARRAY with ITEM.
2256 ARRAY is a vector, string, char-table, or bool-vector. */)
2257 (array, item)
2258 Lisp_Object array, item;
2260 register int size, index, charval;
2261 if (VECTORP (array))
2263 register Lisp_Object *p = XVECTOR (array)->contents;
2264 size = ASIZE (array);
2265 for (index = 0; index < size; index++)
2266 p[index] = item;
2268 else if (CHAR_TABLE_P (array))
2270 int i;
2272 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2273 XCHAR_TABLE (array)->contents[i] = item;
2274 XCHAR_TABLE (array)->defalt = item;
2276 else if (STRINGP (array))
2278 register unsigned char *p = SDATA (array);
2279 CHECK_NUMBER (item);
2280 charval = XINT (item);
2281 size = SCHARS (array);
2282 if (STRING_MULTIBYTE (array))
2284 unsigned char str[MAX_MULTIBYTE_LENGTH];
2285 int len = CHAR_STRING (charval, str);
2286 int size_byte = SBYTES (array);
2287 unsigned char *p1 = p, *endp = p + size_byte;
2288 int i;
2290 if (size != size_byte)
2291 while (p1 < endp)
2293 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2294 if (len != this_len)
2295 error ("Attempt to change byte length of a string");
2296 p1 += this_len;
2298 for (i = 0; i < size_byte; i++)
2299 *p++ = str[i % len];
2301 else
2302 for (index = 0; index < size; index++)
2303 p[index] = charval;
2305 else if (BOOL_VECTOR_P (array))
2307 register unsigned char *p = XBOOL_VECTOR (array)->data;
2308 int size_in_chars
2309 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2310 / BOOL_VECTOR_BITS_PER_CHAR);
2312 charval = (! NILP (item) ? -1 : 0);
2313 for (index = 0; index < size_in_chars - 1; index++)
2314 p[index] = charval;
2315 if (index < size_in_chars)
2317 /* Mask out bits beyond the vector size. */
2318 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2319 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2320 p[index] = charval;
2323 else
2324 wrong_type_argument (Qarrayp, array);
2325 return array;
2328 DEFUN ("clear-string", Fclear_string, Sclear_string,
2329 1, 1, 0,
2330 doc: /* Clear the contents of STRING.
2331 This makes STRING unibyte and may change its length. */)
2332 (string)
2333 Lisp_Object string;
2335 int len;
2336 CHECK_STRING (string);
2337 len = SBYTES (string);
2338 bzero (SDATA (string), len);
2339 STRING_SET_CHARS (string, len);
2340 STRING_SET_UNIBYTE (string);
2341 return Qnil;
2344 /* ARGSUSED */
2345 Lisp_Object
2346 nconc2 (s1, s2)
2347 Lisp_Object s1, s2;
2349 #ifdef NO_ARG_ARRAY
2350 Lisp_Object args[2];
2351 args[0] = s1;
2352 args[1] = s2;
2353 return Fnconc (2, args);
2354 #else
2355 return Fnconc (2, &s1);
2356 #endif /* NO_ARG_ARRAY */
2359 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2360 doc: /* Concatenate any number of lists by altering them.
2361 Only the last argument is not altered, and need not be a list.
2362 usage: (nconc &rest LISTS) */)
2363 (nargs, args)
2364 int nargs;
2365 Lisp_Object *args;
2367 register int argnum;
2368 register Lisp_Object tail, tem, val;
2370 val = tail = Qnil;
2372 for (argnum = 0; argnum < nargs; argnum++)
2374 tem = args[argnum];
2375 if (NILP (tem)) continue;
2377 if (NILP (val))
2378 val = tem;
2380 if (argnum + 1 == nargs) break;
2382 CHECK_LIST_CONS (tem, tem);
2384 while (CONSP (tem))
2386 tail = tem;
2387 tem = XCDR (tail);
2388 QUIT;
2391 tem = args[argnum + 1];
2392 Fsetcdr (tail, tem);
2393 if (NILP (tem))
2394 args[argnum + 1] = tail;
2397 return val;
2400 /* This is the guts of all mapping functions.
2401 Apply FN to each element of SEQ, one by one,
2402 storing the results into elements of VALS, a C vector of Lisp_Objects.
2403 LENI is the length of VALS, which should also be the length of SEQ. */
2405 static void
2406 mapcar1 (leni, vals, fn, seq)
2407 int leni;
2408 Lisp_Object *vals;
2409 Lisp_Object fn, seq;
2411 register Lisp_Object tail;
2412 Lisp_Object dummy;
2413 register int i;
2414 struct gcpro gcpro1, gcpro2, gcpro3;
2416 if (vals)
2418 /* Don't let vals contain any garbage when GC happens. */
2419 for (i = 0; i < leni; i++)
2420 vals[i] = Qnil;
2422 GCPRO3 (dummy, fn, seq);
2423 gcpro1.var = vals;
2424 gcpro1.nvars = leni;
2426 else
2427 GCPRO2 (fn, seq);
2428 /* We need not explicitly protect `tail' because it is used only on lists, and
2429 1) lists are not relocated and 2) the list is marked via `seq' so will not
2430 be freed */
2432 if (VECTORP (seq))
2434 for (i = 0; i < leni; i++)
2436 dummy = call1 (fn, AREF (seq, i));
2437 if (vals)
2438 vals[i] = dummy;
2441 else if (BOOL_VECTOR_P (seq))
2443 for (i = 0; i < leni; i++)
2445 int byte;
2446 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2447 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2448 dummy = call1 (fn, dummy);
2449 if (vals)
2450 vals[i] = dummy;
2453 else if (STRINGP (seq))
2455 int i_byte;
2457 for (i = 0, i_byte = 0; i < leni;)
2459 int c;
2460 int i_before = i;
2462 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2463 XSETFASTINT (dummy, c);
2464 dummy = call1 (fn, dummy);
2465 if (vals)
2466 vals[i_before] = dummy;
2469 else /* Must be a list, since Flength did not get an error */
2471 tail = seq;
2472 for (i = 0; i < leni && CONSP (tail); i++)
2474 dummy = call1 (fn, XCAR (tail));
2475 if (vals)
2476 vals[i] = dummy;
2477 tail = XCDR (tail);
2481 UNGCPRO;
2484 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2485 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2486 In between each pair of results, stick in SEPARATOR. Thus, " " as
2487 SEPARATOR results in spaces between the values returned by FUNCTION.
2488 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2489 (function, sequence, separator)
2490 Lisp_Object function, sequence, separator;
2492 Lisp_Object len;
2493 register int leni;
2494 int nargs;
2495 register Lisp_Object *args;
2496 register int i;
2497 struct gcpro gcpro1;
2498 Lisp_Object ret;
2499 USE_SAFE_ALLOCA;
2501 len = Flength (sequence);
2502 if (CHAR_TABLE_P (sequence))
2503 wrong_type_argument (Qlistp, sequence);
2504 leni = XINT (len);
2505 nargs = leni + leni - 1;
2506 if (nargs < 0) return empty_unibyte_string;
2508 SAFE_ALLOCA_LISP (args, nargs);
2510 GCPRO1 (separator);
2511 mapcar1 (leni, args, function, sequence);
2512 UNGCPRO;
2514 for (i = leni - 1; i > 0; i--)
2515 args[i + i] = args[i];
2517 for (i = 1; i < nargs; i += 2)
2518 args[i] = separator;
2520 ret = Fconcat (nargs, args);
2521 SAFE_FREE ();
2523 return ret;
2526 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2527 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2528 The result is a list just as long as SEQUENCE.
2529 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2530 (function, sequence)
2531 Lisp_Object function, sequence;
2533 register Lisp_Object len;
2534 register int leni;
2535 register Lisp_Object *args;
2536 Lisp_Object ret;
2537 USE_SAFE_ALLOCA;
2539 len = Flength (sequence);
2540 if (CHAR_TABLE_P (sequence))
2541 wrong_type_argument (Qlistp, sequence);
2542 leni = XFASTINT (len);
2544 SAFE_ALLOCA_LISP (args, leni);
2546 mapcar1 (leni, args, function, sequence);
2548 ret = Flist (leni, args);
2549 SAFE_FREE ();
2551 return ret;
2554 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2555 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2556 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2557 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2558 (function, sequence)
2559 Lisp_Object function, sequence;
2561 register int leni;
2563 leni = XFASTINT (Flength (sequence));
2564 if (CHAR_TABLE_P (sequence))
2565 wrong_type_argument (Qlistp, sequence);
2566 mapcar1 (leni, 0, function, sequence);
2568 return sequence;
2571 /* Anything that calls this function must protect from GC! */
2573 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
2574 doc: /* Ask user a "y or n" question. Return t if answer is "y".
2575 Takes one argument, which is the string to display to ask the question.
2576 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
2577 No confirmation of the answer is requested; a single character is enough.
2578 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
2579 the bindings in `query-replace-map'; see the documentation of that variable
2580 for more information. In this case, the useful bindings are `act', `skip',
2581 `recenter', and `quit'.\)
2583 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2584 is nil and `use-dialog-box' is non-nil. */)
2585 (prompt)
2586 Lisp_Object prompt;
2588 register Lisp_Object obj, key, def, map;
2589 register int answer;
2590 Lisp_Object xprompt;
2591 Lisp_Object args[2];
2592 struct gcpro gcpro1, gcpro2;
2593 int count = SPECPDL_INDEX ();
2595 specbind (Qcursor_in_echo_area, Qt);
2597 map = Fsymbol_value (intern ("query-replace-map"));
2599 CHECK_STRING (prompt);
2600 xprompt = prompt;
2601 GCPRO2 (prompt, xprompt);
2603 #ifdef HAVE_WINDOW_SYSTEM
2604 if (display_hourglass_p)
2605 cancel_hourglass ();
2606 #endif
2608 while (1)
2611 #ifdef HAVE_MENUS
2612 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2613 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2614 && use_dialog_box
2615 && have_menus_p ())
2617 Lisp_Object pane, menu;
2618 redisplay_preserve_echo_area (3);
2619 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2620 Fcons (Fcons (build_string ("No"), Qnil),
2621 Qnil));
2622 menu = Fcons (prompt, pane);
2623 obj = Fx_popup_dialog (Qt, menu, Qnil);
2624 answer = !NILP (obj);
2625 break;
2627 #endif /* HAVE_MENUS */
2628 cursor_in_echo_area = 1;
2629 choose_minibuf_frame ();
2632 Lisp_Object pargs[3];
2634 /* Colorize prompt according to `minibuffer-prompt' face. */
2635 pargs[0] = build_string ("%s(y or n) ");
2636 pargs[1] = intern ("face");
2637 pargs[2] = intern ("minibuffer-prompt");
2638 args[0] = Fpropertize (3, pargs);
2639 args[1] = xprompt;
2640 Fmessage (2, args);
2643 if (minibuffer_auto_raise)
2645 Lisp_Object mini_frame;
2647 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
2649 Fraise_frame (mini_frame);
2652 temporarily_switch_to_single_kboard (SELECTED_FRAME ());
2653 obj = read_filtered_event (1, 0, 0, 0, Qnil);
2654 cursor_in_echo_area = 0;
2655 /* If we need to quit, quit with cursor_in_echo_area = 0. */
2656 QUIT;
2658 key = Fmake_vector (make_number (1), obj);
2659 def = Flookup_key (map, key, Qt);
2661 if (EQ (def, intern ("skip")))
2663 answer = 0;
2664 break;
2666 else if (EQ (def, intern ("act")))
2668 answer = 1;
2669 break;
2671 else if (EQ (def, intern ("recenter")))
2673 Frecenter (Qnil);
2674 xprompt = prompt;
2675 continue;
2677 else if (EQ (def, intern ("quit")))
2678 Vquit_flag = Qt;
2679 /* We want to exit this command for exit-prefix,
2680 and this is the only way to do it. */
2681 else if (EQ (def, intern ("exit-prefix")))
2682 Vquit_flag = Qt;
2684 QUIT;
2686 /* If we don't clear this, then the next call to read_char will
2687 return quit_char again, and we'll enter an infinite loop. */
2688 Vquit_flag = Qnil;
2690 Fding (Qnil);
2691 Fdiscard_input ();
2692 if (EQ (xprompt, prompt))
2694 args[0] = build_string ("Please answer y or n. ");
2695 args[1] = prompt;
2696 xprompt = Fconcat (2, args);
2699 UNGCPRO;
2701 if (! noninteractive)
2703 cursor_in_echo_area = -1;
2704 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
2705 xprompt, 0);
2708 unbind_to (count, Qnil);
2709 return answer ? Qt : Qnil;
2712 /* This is how C code calls `yes-or-no-p' and allows the user
2713 to redefined it.
2715 Anything that calls this function must protect from GC! */
2717 Lisp_Object
2718 do_yes_or_no_p (prompt)
2719 Lisp_Object prompt;
2721 return call1 (intern ("yes-or-no-p"), prompt);
2724 /* Anything that calls this function must protect from GC! */
2726 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2727 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2728 Takes one argument, which is the string to display to ask the question.
2729 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
2730 The user must confirm the answer with RET,
2731 and can edit it until it has been confirmed.
2733 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2734 is nil, and `use-dialog-box' is non-nil. */)
2735 (prompt)
2736 Lisp_Object prompt;
2738 Lisp_Object ret;
2739 int count = SPECPDL_INDEX ();
2741 Finhibit_yield (Qt);
2742 record_unwind_protect (Finhibit_yield, Qnil);
2743 ret = Fyes_or_no1 (prompt);
2744 Finhibit_yield (Qnil);
2745 unbind_to (count, Qnil);
2746 return ret;
2749 Lisp_Object
2750 Fyes_or_no1 (Lisp_Object prompt)
2752 register Lisp_Object ans;
2753 Lisp_Object args[2];
2754 struct gcpro gcpro1;
2756 CHECK_STRING (prompt);
2758 #ifdef HAVE_MENUS
2759 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2760 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2761 && use_dialog_box
2762 && have_menus_p ())
2764 Lisp_Object pane, menu, obj;
2765 redisplay_preserve_echo_area (4);
2766 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2767 Fcons (Fcons (build_string ("No"), Qnil),
2768 Qnil));
2769 GCPRO1 (pane);
2770 menu = Fcons (prompt, pane);
2771 obj = Fx_popup_dialog (Qt, menu, Qnil);
2772 UNGCPRO;
2773 return obj;
2775 #endif /* HAVE_MENUS */
2777 args[0] = prompt;
2778 args[1] = build_string ("(yes or no) ");
2779 prompt = Fconcat (2, args);
2781 GCPRO1 (prompt);
2783 while (1)
2785 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2786 Qyes_or_no_p_history, Qnil,
2787 Qnil));
2788 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
2790 UNGCPRO;
2791 return Qt;
2793 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
2795 UNGCPRO;
2796 return Qnil;
2799 Fding (Qnil);
2800 Fdiscard_input ();
2801 message ("Please answer yes or no.");
2802 Fsleep_for (make_number (2), Qnil);
2806 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2807 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2809 Each of the three load averages is multiplied by 100, then converted
2810 to integer.
2812 When USE-FLOATS is non-nil, floats will be used instead of integers.
2813 These floats are not multiplied by 100.
2815 If the 5-minute or 15-minute load averages are not available, return a
2816 shortened list, containing only those averages which are available.
2818 An error is thrown if the load average can't be obtained. In some
2819 cases making it work would require Emacs being installed setuid or
2820 setgid so that it can read kernel information, and that usually isn't
2821 advisable. */)
2822 (use_floats)
2823 Lisp_Object use_floats;
2825 double load_ave[3];
2826 int loads = getloadavg (load_ave, 3);
2827 Lisp_Object ret = Qnil;
2829 if (loads < 0)
2830 error ("load-average not implemented for this operating system");
2832 while (loads-- > 0)
2834 Lisp_Object load = (NILP (use_floats) ?
2835 make_number ((int) (100.0 * load_ave[loads]))
2836 : make_float (load_ave[loads]));
2837 ret = Fcons (load, ret);
2840 return ret;
2843 Lisp_Object impl_Vfeatures, Qsubfeatures;
2844 extern Lisp_Object impl_Vafter_load_alist;
2846 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2847 doc: /* Returns t if FEATURE is present in this Emacs.
2849 Use this to conditionalize execution of lisp code based on the
2850 presence or absence of Emacs or environment extensions.
2851 Use `provide' to declare that a feature is available. This function
2852 looks at the value of the variable `features'. The optional argument
2853 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2854 (feature, subfeature)
2855 Lisp_Object feature, subfeature;
2857 register Lisp_Object tem;
2858 CHECK_SYMBOL (feature);
2859 tem = Fmemq (feature, Vfeatures);
2860 if (!NILP (tem) && !NILP (subfeature))
2861 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2862 return (NILP (tem)) ? Qnil : Qt;
2865 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2866 doc: /* Announce that FEATURE is a feature of the current Emacs.
2867 The optional argument SUBFEATURES should be a list of symbols listing
2868 particular subfeatures supported in this version of FEATURE. */)
2869 (feature, subfeatures)
2870 Lisp_Object feature, subfeatures;
2872 register Lisp_Object tem;
2873 CHECK_SYMBOL (feature);
2874 CHECK_LIST (subfeatures);
2875 if (!NILP (Vautoload_queue))
2876 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2877 Vautoload_queue);
2878 tem = Fmemq (feature, Vfeatures);
2879 if (NILP (tem))
2880 Vfeatures = Fcons (feature, Vfeatures);
2881 if (!NILP (subfeatures))
2882 Fput (feature, Qsubfeatures, subfeatures);
2883 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2885 /* Run any load-hooks for this file. */
2886 tem = Fassq (feature, Vafter_load_alist);
2887 if (CONSP (tem))
2888 Fprogn (XCDR (tem));
2890 return feature;
2893 /* `require' and its subroutines. */
2895 /* List of features currently being require'd, innermost first. */
2897 Lisp_Object require_nesting_list;
2899 Lisp_Object
2900 require_unwind (old_value)
2901 Lisp_Object old_value;
2903 return require_nesting_list = old_value;
2906 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2907 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2908 If FEATURE is not a member of the list `features', then the feature
2909 is not loaded; so load the file FILENAME.
2910 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2911 and `load' will try to load this name appended with the suffix `.elc' or
2912 `.el', in that order. The name without appended suffix will not be used.
2913 If the optional third argument NOERROR is non-nil,
2914 then return nil if the file is not found instead of signaling an error.
2915 Normally the return value is FEATURE.
2916 The normal messages at start and end of loading FILENAME are suppressed. */)
2917 (feature, filename, noerror)
2918 Lisp_Object feature, filename, noerror;
2920 register Lisp_Object tem;
2921 struct gcpro gcpro1, gcpro2;
2922 int from_file = load_in_progress;
2924 CHECK_SYMBOL (feature);
2926 /* Record the presence of `require' in this file
2927 even if the feature specified is already loaded.
2928 But not more than once in any file,
2929 and not when we aren't loading or reading from a file. */
2930 if (!from_file)
2931 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2932 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2933 from_file = 1;
2935 if (from_file)
2937 tem = Fcons (Qrequire, feature);
2938 if (NILP (Fmember (tem, Vcurrent_load_list)))
2939 LOADHIST_ATTACH (tem);
2941 tem = Fmemq (feature, Vfeatures);
2943 if (NILP (tem))
2945 int count = SPECPDL_INDEX ();
2946 int nesting = 0;
2948 /* This is to make sure that loadup.el gives a clear picture
2949 of what files are preloaded and when. */
2950 if (! NILP (Vpurify_flag))
2951 error ("(require %s) while preparing to dump",
2952 SDATA (SYMBOL_NAME (feature)));
2954 /* A certain amount of recursive `require' is legitimate,
2955 but if we require the same feature recursively 3 times,
2956 signal an error. */
2957 tem = require_nesting_list;
2958 while (! NILP (tem))
2960 if (! NILP (Fequal (feature, XCAR (tem))))
2961 nesting++;
2962 tem = XCDR (tem);
2964 if (nesting > 3)
2965 error ("Recursive `require' for feature `%s'",
2966 SDATA (SYMBOL_NAME (feature)));
2968 /* Update the list for any nested `require's that occur. */
2969 record_unwind_protect (require_unwind, require_nesting_list);
2970 require_nesting_list = Fcons (feature, require_nesting_list);
2972 /* Value saved here is to be restored into Vautoload_queue */
2973 record_unwind_protect (un_autoload, Vautoload_queue);
2974 Vautoload_queue = Qt;
2976 /* Load the file. */
2977 GCPRO2 (feature, filename);
2978 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2979 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2980 UNGCPRO;
2982 /* If load failed entirely, return nil. */
2983 if (NILP (tem))
2984 return unbind_to (count, Qnil);
2986 tem = Fmemq (feature, Vfeatures);
2987 if (NILP (tem))
2988 error ("Required feature `%s' was not provided",
2989 SDATA (SYMBOL_NAME (feature)));
2991 /* Once loading finishes, don't undo it. */
2992 Vautoload_queue = Qt;
2993 feature = unbind_to (count, feature);
2996 return feature;
2999 /* Primitives for work of the "widget" library.
3000 In an ideal world, this section would not have been necessary.
3001 However, lisp function calls being as slow as they are, it turns
3002 out that some functions in the widget library (wid-edit.el) are the
3003 bottleneck of Widget operation. Here is their translation to C,
3004 for the sole reason of efficiency. */
3006 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3007 doc: /* Return non-nil if PLIST has the property PROP.
3008 PLIST is a property list, which is a list of the form
3009 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3010 Unlike `plist-get', this allows you to distinguish between a missing
3011 property and a property with the value nil.
3012 The value is actually the tail of PLIST whose car is PROP. */)
3013 (plist, prop)
3014 Lisp_Object plist, prop;
3016 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3018 QUIT;
3019 plist = XCDR (plist);
3020 plist = CDR (plist);
3022 return plist;
3025 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3026 doc: /* In WIDGET, set PROPERTY to VALUE.
3027 The value can later be retrieved with `widget-get'. */)
3028 (widget, property, value)
3029 Lisp_Object widget, property, value;
3031 CHECK_CONS (widget);
3032 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3033 return value;
3036 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3037 doc: /* In WIDGET, get the value of PROPERTY.
3038 The value could either be specified when the widget was created, or
3039 later with `widget-put'. */)
3040 (widget, property)
3041 Lisp_Object widget, property;
3043 Lisp_Object tmp;
3045 while (1)
3047 if (NILP (widget))
3048 return Qnil;
3049 CHECK_CONS (widget);
3050 tmp = Fplist_member (XCDR (widget), property);
3051 if (CONSP (tmp))
3053 tmp = XCDR (tmp);
3054 return CAR (tmp);
3056 tmp = XCAR (widget);
3057 if (NILP (tmp))
3058 return Qnil;
3059 widget = Fget (tmp, Qwidget_type);
3063 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3064 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3065 ARGS are passed as extra arguments to the function.
3066 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3067 (nargs, args)
3068 int nargs;
3069 Lisp_Object *args;
3071 /* This function can GC. */
3072 Lisp_Object newargs[3];
3073 struct gcpro gcpro1, gcpro2;
3074 Lisp_Object result;
3076 newargs[0] = Fwidget_get (args[0], args[1]);
3077 newargs[1] = args[0];
3078 newargs[2] = Flist (nargs - 2, args + 2);
3079 GCPRO2 (newargs[0], newargs[2]);
3080 result = Fapply (3, newargs);
3081 UNGCPRO;
3082 return result;
3085 #ifdef HAVE_LANGINFO_CODESET
3086 #include <langinfo.h>
3087 #endif
3089 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3090 doc: /* Access locale data ITEM for the current C locale, if available.
3091 ITEM should be one of the following:
3093 `codeset', returning the character set as a string (locale item CODESET);
3095 `days', returning a 7-element vector of day names (locale items DAY_n);
3097 `months', returning a 12-element vector of month names (locale items MON_n);
3099 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3100 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3102 If the system can't provide such information through a call to
3103 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3105 See also Info node `(libc)Locales'.
3107 The data read from the system are decoded using `locale-coding-system'. */)
3108 (item)
3109 Lisp_Object item;
3111 char *str = NULL;
3112 #ifdef HAVE_LANGINFO_CODESET
3113 Lisp_Object val;
3114 if (EQ (item, Qcodeset))
3116 str = nl_langinfo (CODESET);
3117 return build_string (str);
3119 #ifdef DAY_1
3120 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3122 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3123 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3124 int i;
3125 struct gcpro gcpro1;
3126 GCPRO1 (v);
3127 synchronize_system_time_locale ();
3128 for (i = 0; i < 7; i++)
3130 str = nl_langinfo (days[i]);
3131 val = make_unibyte_string (str, strlen (str));
3132 /* Fixme: Is this coding system necessarily right, even if
3133 it is consistent with CODESET? If not, what to do? */
3134 Faset (v, make_number (i),
3135 code_convert_string_norecord (val, Vlocale_coding_system,
3136 0));
3138 UNGCPRO;
3139 return v;
3141 #endif /* DAY_1 */
3142 #ifdef MON_1
3143 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3145 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
3146 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3147 MON_8, MON_9, MON_10, MON_11, MON_12};
3148 int i;
3149 struct gcpro gcpro1;
3150 GCPRO1 (v);
3151 synchronize_system_time_locale ();
3152 for (i = 0; i < 12; i++)
3154 str = nl_langinfo (months[i]);
3155 val = make_unibyte_string (str, strlen (str));
3156 Faset (v, make_number (i),
3157 code_convert_string_norecord (val, Vlocale_coding_system, 0));
3159 UNGCPRO;
3160 return v;
3162 #endif /* MON_1 */
3163 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3164 but is in the locale files. This could be used by ps-print. */
3165 #ifdef PAPER_WIDTH
3166 else if (EQ (item, Qpaper))
3168 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3169 make_number (nl_langinfo (PAPER_HEIGHT)));
3171 #endif /* PAPER_WIDTH */
3172 #endif /* HAVE_LANGINFO_CODESET*/
3173 return Qnil;
3176 /* base64 encode/decode functions (RFC 2045).
3177 Based on code from GNU recode. */
3179 #define MIME_LINE_LENGTH 76
3181 #define IS_ASCII(Character) \
3182 ((Character) < 128)
3183 #define IS_BASE64(Character) \
3184 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3185 #define IS_BASE64_IGNORABLE(Character) \
3186 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3187 || (Character) == '\f' || (Character) == '\r')
3189 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3190 character or return retval if there are no characters left to
3191 process. */
3192 #define READ_QUADRUPLET_BYTE(retval) \
3193 do \
3195 if (i == length) \
3197 if (nchars_return) \
3198 *nchars_return = nchars; \
3199 return (retval); \
3201 c = from[i++]; \
3203 while (IS_BASE64_IGNORABLE (c))
3205 /* Table of characters coding the 64 values. */
3206 static const char base64_value_to_char[64] =
3208 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3209 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3210 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3211 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3212 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3213 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3214 '8', '9', '+', '/' /* 60-63 */
3217 /* Table of base64 values for first 128 characters. */
3218 static const short base64_char_to_value[128] =
3220 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3221 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3222 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3223 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3224 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3225 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3226 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3227 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3228 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3229 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3230 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3231 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3232 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3235 /* The following diagram shows the logical steps by which three octets
3236 get transformed into four base64 characters.
3238 .--------. .--------. .--------.
3239 |aaaaaabb| |bbbbcccc| |ccdddddd|
3240 `--------' `--------' `--------'
3241 6 2 4 4 2 6
3242 .--------+--------+--------+--------.
3243 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3244 `--------+--------+--------+--------'
3246 .--------+--------+--------+--------.
3247 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3248 `--------+--------+--------+--------'
3250 The octets are divided into 6 bit chunks, which are then encoded into
3251 base64 characters. */
3254 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3255 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3257 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3258 2, 3, "r",
3259 doc: /* Base64-encode the region between BEG and END.
3260 Return the length of the encoded text.
3261 Optional third argument NO-LINE-BREAK means do not break long lines
3262 into shorter lines. */)
3263 (beg, end, no_line_break)
3264 Lisp_Object beg, end, no_line_break;
3266 char *encoded;
3267 int allength, length;
3268 int ibeg, iend, encoded_length;
3269 int old_pos = PT;
3270 USE_SAFE_ALLOCA;
3272 validate_region (&beg, &end);
3274 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3275 iend = CHAR_TO_BYTE (XFASTINT (end));
3276 move_gap_both (XFASTINT (beg), ibeg);
3278 /* We need to allocate enough room for encoding the text.
3279 We need 33 1/3% more space, plus a newline every 76
3280 characters, and then we round up. */
3281 length = iend - ibeg;
3282 allength = length + length/3 + 1;
3283 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3285 SAFE_ALLOCA (encoded, char *, allength);
3286 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3287 NILP (no_line_break),
3288 !NILP (current_buffer->enable_multibyte_characters));
3289 if (encoded_length > allength)
3290 abort ();
3292 if (encoded_length < 0)
3294 /* The encoding wasn't possible. */
3295 SAFE_FREE ();
3296 error ("Multibyte character in data for base64 encoding");
3299 /* Now we have encoded the region, so we insert the new contents
3300 and delete the old. (Insert first in order to preserve markers.) */
3301 SET_PT_BOTH (XFASTINT (beg), ibeg);
3302 insert (encoded, encoded_length);
3303 SAFE_FREE ();
3304 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3306 /* If point was outside of the region, restore it exactly; else just
3307 move to the beginning of the region. */
3308 if (old_pos >= XFASTINT (end))
3309 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3310 else if (old_pos > XFASTINT (beg))
3311 old_pos = XFASTINT (beg);
3312 SET_PT (old_pos);
3314 /* We return the length of the encoded text. */
3315 return make_number (encoded_length);
3318 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3319 1, 2, 0,
3320 doc: /* Base64-encode STRING and return the result.
3321 Optional second argument NO-LINE-BREAK means do not break long lines
3322 into shorter lines. */)
3323 (string, no_line_break)
3324 Lisp_Object string, no_line_break;
3326 int allength, length, encoded_length;
3327 char *encoded;
3328 Lisp_Object encoded_string;
3329 USE_SAFE_ALLOCA;
3331 CHECK_STRING (string);
3333 /* We need to allocate enough room for encoding the text.
3334 We need 33 1/3% more space, plus a newline every 76
3335 characters, and then we round up. */
3336 length = SBYTES (string);
3337 allength = length + length/3 + 1;
3338 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3340 /* We need to allocate enough room for decoding the text. */
3341 SAFE_ALLOCA (encoded, char *, allength);
3343 encoded_length = base64_encode_1 (SDATA (string),
3344 encoded, length, NILP (no_line_break),
3345 STRING_MULTIBYTE (string));
3346 if (encoded_length > allength)
3347 abort ();
3349 if (encoded_length < 0)
3351 /* The encoding wasn't possible. */
3352 SAFE_FREE ();
3353 error ("Multibyte character in data for base64 encoding");
3356 encoded_string = make_unibyte_string (encoded, encoded_length);
3357 SAFE_FREE ();
3359 return encoded_string;
3362 static int
3363 base64_encode_1 (from, to, length, line_break, multibyte)
3364 const char *from;
3365 char *to;
3366 int length;
3367 int line_break;
3368 int multibyte;
3370 int counter = 0, i = 0;
3371 char *e = to;
3372 int c;
3373 unsigned int value;
3374 int bytes;
3376 while (i < length)
3378 if (multibyte)
3380 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3381 if (CHAR_BYTE8_P (c))
3382 c = CHAR_TO_BYTE8 (c);
3383 else if (c >= 256)
3384 return -1;
3385 i += bytes;
3387 else
3388 c = from[i++];
3390 /* Wrap line every 76 characters. */
3392 if (line_break)
3394 if (counter < MIME_LINE_LENGTH / 4)
3395 counter++;
3396 else
3398 *e++ = '\n';
3399 counter = 1;
3403 /* Process first byte of a triplet. */
3405 *e++ = base64_value_to_char[0x3f & c >> 2];
3406 value = (0x03 & c) << 4;
3408 /* Process second byte of a triplet. */
3410 if (i == length)
3412 *e++ = base64_value_to_char[value];
3413 *e++ = '=';
3414 *e++ = '=';
3415 break;
3418 if (multibyte)
3420 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3421 if (CHAR_BYTE8_P (c))
3422 c = CHAR_TO_BYTE8 (c);
3423 else if (c >= 256)
3424 return -1;
3425 i += bytes;
3427 else
3428 c = from[i++];
3430 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3431 value = (0x0f & c) << 2;
3433 /* Process third byte of a triplet. */
3435 if (i == length)
3437 *e++ = base64_value_to_char[value];
3438 *e++ = '=';
3439 break;
3442 if (multibyte)
3444 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3445 if (CHAR_BYTE8_P (c))
3446 c = CHAR_TO_BYTE8 (c);
3447 else if (c >= 256)
3448 return -1;
3449 i += bytes;
3451 else
3452 c = from[i++];
3454 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3455 *e++ = base64_value_to_char[0x3f & c];
3458 return e - to;
3462 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3463 2, 2, "r",
3464 doc: /* Base64-decode the region between BEG and END.
3465 Return the length of the decoded text.
3466 If the region can't be decoded, signal an error and don't modify the buffer. */)
3467 (beg, end)
3468 Lisp_Object beg, end;
3470 int ibeg, iend, length, allength;
3471 char *decoded;
3472 int old_pos = PT;
3473 int decoded_length;
3474 int inserted_chars;
3475 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3476 USE_SAFE_ALLOCA;
3478 validate_region (&beg, &end);
3480 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3481 iend = CHAR_TO_BYTE (XFASTINT (end));
3483 length = iend - ibeg;
3485 /* We need to allocate enough room for decoding the text. If we are
3486 working on a multibyte buffer, each decoded code may occupy at
3487 most two bytes. */
3488 allength = multibyte ? length * 2 : length;
3489 SAFE_ALLOCA (decoded, char *, allength);
3491 move_gap_both (XFASTINT (beg), ibeg);
3492 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3493 multibyte, &inserted_chars);
3494 if (decoded_length > allength)
3495 abort ();
3497 if (decoded_length < 0)
3499 /* The decoding wasn't possible. */
3500 SAFE_FREE ();
3501 error ("Invalid base64 data");
3504 /* Now we have decoded the region, so we insert the new contents
3505 and delete the old. (Insert first in order to preserve markers.) */
3506 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3507 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3508 SAFE_FREE ();
3510 /* Delete the original text. */
3511 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3512 iend + decoded_length, 1);
3514 /* If point was outside of the region, restore it exactly; else just
3515 move to the beginning of the region. */
3516 if (old_pos >= XFASTINT (end))
3517 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3518 else if (old_pos > XFASTINT (beg))
3519 old_pos = XFASTINT (beg);
3520 SET_PT (old_pos > ZV ? ZV : old_pos);
3522 return make_number (inserted_chars);
3525 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3526 1, 1, 0,
3527 doc: /* Base64-decode STRING and return the result. */)
3528 (string)
3529 Lisp_Object string;
3531 char *decoded;
3532 int length, decoded_length;
3533 Lisp_Object decoded_string;
3534 USE_SAFE_ALLOCA;
3536 CHECK_STRING (string);
3538 length = SBYTES (string);
3539 /* We need to allocate enough room for decoding the text. */
3540 SAFE_ALLOCA (decoded, char *, length);
3542 /* The decoded result should be unibyte. */
3543 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3544 0, NULL);
3545 if (decoded_length > length)
3546 abort ();
3547 else if (decoded_length >= 0)
3548 decoded_string = make_unibyte_string (decoded, decoded_length);
3549 else
3550 decoded_string = Qnil;
3552 SAFE_FREE ();
3553 if (!STRINGP (decoded_string))
3554 error ("Invalid base64 data");
3556 return decoded_string;
3559 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3560 MULTIBYTE is nonzero, the decoded result should be in multibyte
3561 form. If NCHARS_RETRUN is not NULL, store the number of produced
3562 characters in *NCHARS_RETURN. */
3564 static int
3565 base64_decode_1 (from, to, length, multibyte, nchars_return)
3566 const char *from;
3567 char *to;
3568 int length;
3569 int multibyte;
3570 int *nchars_return;
3572 int i = 0;
3573 char *e = to;
3574 unsigned char c;
3575 unsigned long value;
3576 int nchars = 0;
3578 while (1)
3580 /* Process first byte of a quadruplet. */
3582 READ_QUADRUPLET_BYTE (e-to);
3584 if (!IS_BASE64 (c))
3585 return -1;
3586 value = base64_char_to_value[c] << 18;
3588 /* Process second byte of a quadruplet. */
3590 READ_QUADRUPLET_BYTE (-1);
3592 if (!IS_BASE64 (c))
3593 return -1;
3594 value |= base64_char_to_value[c] << 12;
3596 c = (unsigned char) (value >> 16);
3597 if (multibyte && c >= 128)
3598 e += BYTE8_STRING (c, e);
3599 else
3600 *e++ = c;
3601 nchars++;
3603 /* Process third byte of a quadruplet. */
3605 READ_QUADRUPLET_BYTE (-1);
3607 if (c == '=')
3609 READ_QUADRUPLET_BYTE (-1);
3611 if (c != '=')
3612 return -1;
3613 continue;
3616 if (!IS_BASE64 (c))
3617 return -1;
3618 value |= base64_char_to_value[c] << 6;
3620 c = (unsigned char) (0xff & value >> 8);
3621 if (multibyte && c >= 128)
3622 e += BYTE8_STRING (c, e);
3623 else
3624 *e++ = c;
3625 nchars++;
3627 /* Process fourth byte of a quadruplet. */
3629 READ_QUADRUPLET_BYTE (-1);
3631 if (c == '=')
3632 continue;
3634 if (!IS_BASE64 (c))
3635 return -1;
3636 value |= base64_char_to_value[c];
3638 c = (unsigned char) (0xff & value);
3639 if (multibyte && c >= 128)
3640 e += BYTE8_STRING (c, e);
3641 else
3642 *e++ = c;
3643 nchars++;
3649 /***********************************************************************
3650 ***** *****
3651 ***** Hash Tables *****
3652 ***** *****
3653 ***********************************************************************/
3655 /* Implemented by gerd@gnu.org. This hash table implementation was
3656 inspired by CMUCL hash tables. */
3658 /* Ideas:
3660 1. For small tables, association lists are probably faster than
3661 hash tables because they have lower overhead.
3663 For uses of hash tables where the O(1) behavior of table
3664 operations is not a requirement, it might therefore be a good idea
3665 not to hash. Instead, we could just do a linear search in the
3666 key_and_value vector of the hash table. This could be done
3667 if a `:linear-search t' argument is given to make-hash-table. */
3670 /* The list of all weak hash tables. Don't staticpro this one. */
3672 struct Lisp_Hash_Table *weak_hash_tables;
3674 /* Various symbols. */
3676 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
3677 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3678 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3680 /* Function prototypes. */
3682 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
3683 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
3684 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
3685 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3686 Lisp_Object, unsigned));
3687 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3688 Lisp_Object, unsigned));
3689 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
3690 unsigned, Lisp_Object, unsigned));
3691 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3692 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3693 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3694 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
3695 Lisp_Object));
3696 static unsigned sxhash_string P_ ((unsigned char *, int));
3697 static unsigned sxhash_list P_ ((Lisp_Object, int));
3698 static unsigned sxhash_vector P_ ((Lisp_Object, int));
3699 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
3700 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
3704 /***********************************************************************
3705 Utilities
3706 ***********************************************************************/
3708 /* If OBJ is a Lisp hash table, return a pointer to its struct
3709 Lisp_Hash_Table. Otherwise, signal an error. */
3711 static struct Lisp_Hash_Table *
3712 check_hash_table (obj)
3713 Lisp_Object obj;
3715 CHECK_HASH_TABLE (obj);
3716 return XHASH_TABLE (obj);
3720 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3721 number. */
3724 next_almost_prime (n)
3725 int n;
3727 if (n % 2 == 0)
3728 n += 1;
3729 if (n % 3 == 0)
3730 n += 2;
3731 if (n % 7 == 0)
3732 n += 4;
3733 return n;
3737 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3738 which USED[I] is non-zero. If found at index I in ARGS, set
3739 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3740 -1. This function is used to extract a keyword/argument pair from
3741 a DEFUN parameter list. */
3743 static int
3744 get_key_arg (key, nargs, args, used)
3745 Lisp_Object key;
3746 int nargs;
3747 Lisp_Object *args;
3748 char *used;
3750 int i;
3752 for (i = 0; i < nargs - 1; ++i)
3753 if (!used[i] && EQ (args[i], key))
3754 break;
3756 if (i >= nargs - 1)
3757 i = -1;
3758 else
3760 used[i++] = 1;
3761 used[i] = 1;
3764 return i;
3768 /* Return a Lisp vector which has the same contents as VEC but has
3769 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3770 vector that are not copied from VEC are set to INIT. */
3772 Lisp_Object
3773 larger_vector (vec, new_size, init)
3774 Lisp_Object vec;
3775 int new_size;
3776 Lisp_Object init;
3778 struct Lisp_Vector *v;
3779 int i, old_size;
3781 xassert (VECTORP (vec));
3782 old_size = ASIZE (vec);
3783 xassert (new_size >= old_size);
3785 v = allocate_vector (new_size);
3786 bcopy (XVECTOR (vec)->contents, v->contents,
3787 old_size * sizeof *v->contents);
3788 for (i = old_size; i < new_size; ++i)
3789 v->contents[i] = init;
3790 XSETVECTOR (vec, v);
3791 return vec;
3795 /***********************************************************************
3796 Low-level Functions
3797 ***********************************************************************/
3799 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3800 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3801 KEY2 are the same. */
3803 static int
3804 cmpfn_eql (h, key1, hash1, key2, hash2)
3805 struct Lisp_Hash_Table *h;
3806 Lisp_Object key1, key2;
3807 unsigned hash1, hash2;
3809 return (FLOATP (key1)
3810 && FLOATP (key2)
3811 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3815 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3816 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3817 KEY2 are the same. */
3819 static int
3820 cmpfn_equal (h, key1, hash1, key2, hash2)
3821 struct Lisp_Hash_Table *h;
3822 Lisp_Object key1, key2;
3823 unsigned hash1, hash2;
3825 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3829 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3830 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3831 if KEY1 and KEY2 are the same. */
3833 static int
3834 cmpfn_user_defined (h, key1, hash1, key2, hash2)
3835 struct Lisp_Hash_Table *h;
3836 Lisp_Object key1, key2;
3837 unsigned hash1, hash2;
3839 if (hash1 == hash2)
3841 Lisp_Object args[3];
3843 args[0] = h->user_cmp_function;
3844 args[1] = key1;
3845 args[2] = key2;
3846 return !NILP (Ffuncall (3, args));
3848 else
3849 return 0;
3853 /* Value is a hash code for KEY for use in hash table H which uses
3854 `eq' to compare keys. The hash code returned is guaranteed to fit
3855 in a Lisp integer. */
3857 static unsigned
3858 hashfn_eq (h, key)
3859 struct Lisp_Hash_Table *h;
3860 Lisp_Object key;
3862 unsigned hash = XUINT (key) ^ XTYPE (key);
3863 xassert ((hash & ~INTMASK) == 0);
3864 return hash;
3868 /* Value is a hash code for KEY for use in hash table H which uses
3869 `eql' to compare keys. The hash code returned is guaranteed to fit
3870 in a Lisp integer. */
3872 static unsigned
3873 hashfn_eql (h, key)
3874 struct Lisp_Hash_Table *h;
3875 Lisp_Object key;
3877 unsigned hash;
3878 if (FLOATP (key))
3879 hash = sxhash (key, 0);
3880 else
3881 hash = XUINT (key) ^ XTYPE (key);
3882 xassert ((hash & ~INTMASK) == 0);
3883 return hash;
3887 /* Value is a hash code for KEY for use in hash table H which uses
3888 `equal' to compare keys. The hash code returned is guaranteed to fit
3889 in a Lisp integer. */
3891 static unsigned
3892 hashfn_equal (h, key)
3893 struct Lisp_Hash_Table *h;
3894 Lisp_Object key;
3896 unsigned hash = sxhash (key, 0);
3897 xassert ((hash & ~INTMASK) == 0);
3898 return hash;
3902 /* Value is a hash code for KEY for use in hash table H which uses as
3903 user-defined function to compare keys. The hash code returned is
3904 guaranteed to fit in a Lisp integer. */
3906 static unsigned
3907 hashfn_user_defined (h, key)
3908 struct Lisp_Hash_Table *h;
3909 Lisp_Object key;
3911 Lisp_Object args[2], hash;
3913 args[0] = h->user_hash_function;
3914 args[1] = key;
3915 hash = Ffuncall (2, args);
3916 if (!INTEGERP (hash))
3917 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3918 return XUINT (hash);
3922 /* Create and initialize a new hash table.
3924 TEST specifies the test the hash table will use to compare keys.
3925 It must be either one of the predefined tests `eq', `eql' or
3926 `equal' or a symbol denoting a user-defined test named TEST with
3927 test and hash functions USER_TEST and USER_HASH.
3929 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3931 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3932 new size when it becomes full is computed by adding REHASH_SIZE to
3933 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3934 table's new size is computed by multiplying its old size with
3935 REHASH_SIZE.
3937 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3938 be resized when the ratio of (number of entries in the table) /
3939 (table size) is >= REHASH_THRESHOLD.
3941 WEAK specifies the weakness of the table. If non-nil, it must be
3942 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3944 Lisp_Object
3945 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
3946 user_test, user_hash)
3947 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
3948 Lisp_Object user_test, user_hash;
3950 struct Lisp_Hash_Table *h;
3951 Lisp_Object table;
3952 int index_size, i, sz;
3954 /* Preconditions. */
3955 xassert (SYMBOLP (test));
3956 xassert (INTEGERP (size) && XINT (size) >= 0);
3957 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3958 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
3959 xassert (FLOATP (rehash_threshold)
3960 && XFLOATINT (rehash_threshold) > 0
3961 && XFLOATINT (rehash_threshold) <= 1.0);
3963 if (XFASTINT (size) == 0)
3964 size = make_number (1);
3966 /* Allocate a table and initialize it. */
3967 h = allocate_hash_table ();
3969 /* Initialize hash table slots. */
3970 sz = XFASTINT (size);
3972 h->test = test;
3973 if (EQ (test, Qeql))
3975 h->cmpfn = cmpfn_eql;
3976 h->hashfn = hashfn_eql;
3978 else if (EQ (test, Qeq))
3980 h->cmpfn = NULL;
3981 h->hashfn = hashfn_eq;
3983 else if (EQ (test, Qequal))
3985 h->cmpfn = cmpfn_equal;
3986 h->hashfn = hashfn_equal;
3988 else
3990 h->user_cmp_function = user_test;
3991 h->user_hash_function = user_hash;
3992 h->cmpfn = cmpfn_user_defined;
3993 h->hashfn = hashfn_user_defined;
3996 h->weak = weak;
3997 h->rehash_threshold = rehash_threshold;
3998 h->rehash_size = rehash_size;
3999 h->count = 0;
4000 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4001 h->hash = Fmake_vector (size, Qnil);
4002 h->next = Fmake_vector (size, Qnil);
4003 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4004 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4005 h->index = Fmake_vector (make_number (index_size), Qnil);
4007 /* Set up the free list. */
4008 for (i = 0; i < sz - 1; ++i)
4009 HASH_NEXT (h, i) = make_number (i + 1);
4010 h->next_free = make_number (0);
4012 XSET_HASH_TABLE (table, h);
4013 xassert (HASH_TABLE_P (table));
4014 xassert (XHASH_TABLE (table) == h);
4016 /* Maybe add this hash table to the list of all weak hash tables. */
4017 if (NILP (h->weak))
4018 h->next_weak = NULL;
4019 else
4021 h->next_weak = weak_hash_tables;
4022 weak_hash_tables = h;
4025 return table;
4029 /* Return a copy of hash table H1. Keys and values are not copied,
4030 only the table itself is. */
4032 Lisp_Object
4033 copy_hash_table (h1)
4034 struct Lisp_Hash_Table *h1;
4036 Lisp_Object table;
4037 struct Lisp_Hash_Table *h2;
4038 struct Lisp_Vector *next;
4040 h2 = allocate_hash_table ();
4041 next = h2->vec_next;
4042 bcopy (h1, h2, sizeof *h2);
4043 h2->vec_next = next;
4044 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4045 h2->hash = Fcopy_sequence (h1->hash);
4046 h2->next = Fcopy_sequence (h1->next);
4047 h2->index = Fcopy_sequence (h1->index);
4048 XSET_HASH_TABLE (table, h2);
4050 /* Maybe add this hash table to the list of all weak hash tables. */
4051 if (!NILP (h2->weak))
4053 h2->next_weak = weak_hash_tables;
4054 weak_hash_tables = h2;
4057 return table;
4061 /* Resize hash table H if it's too full. If H cannot be resized
4062 because it's already too large, throw an error. */
4064 static INLINE void
4065 maybe_resize_hash_table (h)
4066 struct Lisp_Hash_Table *h;
4068 if (NILP (h->next_free))
4070 int old_size = HASH_TABLE_SIZE (h);
4071 int i, new_size, index_size;
4072 EMACS_INT nsize;
4074 if (INTEGERP (h->rehash_size))
4075 new_size = old_size + XFASTINT (h->rehash_size);
4076 else
4077 new_size = old_size * XFLOATINT (h->rehash_size);
4078 new_size = max (old_size + 1, new_size);
4079 index_size = next_almost_prime ((int)
4080 (new_size
4081 / XFLOATINT (h->rehash_threshold)));
4082 /* Assignment to EMACS_INT stops GCC whining about limited range
4083 of data type. */
4084 nsize = max (index_size, 2 * new_size);
4085 if (nsize > MOST_POSITIVE_FIXNUM)
4086 error ("Hash table too large to resize");
4088 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4089 h->next = larger_vector (h->next, new_size, Qnil);
4090 h->hash = larger_vector (h->hash, new_size, Qnil);
4091 h->index = Fmake_vector (make_number (index_size), Qnil);
4093 /* Update the free list. Do it so that new entries are added at
4094 the end of the free list. This makes some operations like
4095 maphash faster. */
4096 for (i = old_size; i < new_size - 1; ++i)
4097 HASH_NEXT (h, i) = make_number (i + 1);
4099 if (!NILP (h->next_free))
4101 Lisp_Object last, next;
4103 last = h->next_free;
4104 while (next = HASH_NEXT (h, XFASTINT (last)),
4105 !NILP (next))
4106 last = next;
4108 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4110 else
4111 XSETFASTINT (h->next_free, old_size);
4113 /* Rehash. */
4114 for (i = 0; i < old_size; ++i)
4115 if (!NILP (HASH_HASH (h, i)))
4117 unsigned hash_code = XUINT (HASH_HASH (h, i));
4118 int start_of_bucket = hash_code % ASIZE (h->index);
4119 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4120 HASH_INDEX (h, start_of_bucket) = make_number (i);
4126 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4127 the hash code of KEY. Value is the index of the entry in H
4128 matching KEY, or -1 if not found. */
4131 hash_lookup (h, key, hash)
4132 struct Lisp_Hash_Table *h;
4133 Lisp_Object key;
4134 unsigned *hash;
4136 unsigned hash_code;
4137 int start_of_bucket;
4138 Lisp_Object idx;
4140 hash_code = h->hashfn (h, key);
4141 if (hash)
4142 *hash = hash_code;
4144 start_of_bucket = hash_code % ASIZE (h->index);
4145 idx = HASH_INDEX (h, start_of_bucket);
4147 /* We need not gcpro idx since it's either an integer or nil. */
4148 while (!NILP (idx))
4150 int i = XFASTINT (idx);
4151 if (EQ (key, HASH_KEY (h, i))
4152 || (h->cmpfn
4153 && h->cmpfn (h, key, hash_code,
4154 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4155 break;
4156 idx = HASH_NEXT (h, i);
4159 return NILP (idx) ? -1 : XFASTINT (idx);
4163 /* Put an entry into hash table H that associates KEY with VALUE.
4164 HASH is a previously computed hash code of KEY.
4165 Value is the index of the entry in H matching KEY. */
4168 hash_put (h, key, value, hash)
4169 struct Lisp_Hash_Table *h;
4170 Lisp_Object key, value;
4171 unsigned hash;
4173 int start_of_bucket, i;
4175 xassert ((hash & ~INTMASK) == 0);
4177 /* Increment count after resizing because resizing may fail. */
4178 maybe_resize_hash_table (h);
4179 h->count++;
4181 /* Store key/value in the key_and_value vector. */
4182 i = XFASTINT (h->next_free);
4183 h->next_free = HASH_NEXT (h, i);
4184 HASH_KEY (h, i) = key;
4185 HASH_VALUE (h, i) = value;
4187 /* Remember its hash code. */
4188 HASH_HASH (h, i) = make_number (hash);
4190 /* Add new entry to its collision chain. */
4191 start_of_bucket = hash % ASIZE (h->index);
4192 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4193 HASH_INDEX (h, start_of_bucket) = make_number (i);
4194 return i;
4198 /* Remove the entry matching KEY from hash table H, if there is one. */
4200 static void
4201 hash_remove_from_table (h, key)
4202 struct Lisp_Hash_Table *h;
4203 Lisp_Object key;
4205 unsigned hash_code;
4206 int start_of_bucket;
4207 Lisp_Object idx, prev;
4209 hash_code = h->hashfn (h, key);
4210 start_of_bucket = hash_code % ASIZE (h->index);
4211 idx = HASH_INDEX (h, start_of_bucket);
4212 prev = Qnil;
4214 /* We need not gcpro idx, prev since they're either integers or nil. */
4215 while (!NILP (idx))
4217 int i = XFASTINT (idx);
4219 if (EQ (key, HASH_KEY (h, i))
4220 || (h->cmpfn
4221 && h->cmpfn (h, key, hash_code,
4222 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4224 /* Take entry out of collision chain. */
4225 if (NILP (prev))
4226 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4227 else
4228 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4230 /* Clear slots in key_and_value and add the slots to
4231 the free list. */
4232 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4233 HASH_NEXT (h, i) = h->next_free;
4234 h->next_free = make_number (i);
4235 h->count--;
4236 xassert (h->count >= 0);
4237 break;
4239 else
4241 prev = idx;
4242 idx = HASH_NEXT (h, i);
4248 /* Clear hash table H. */
4250 void
4251 hash_clear (h)
4252 struct Lisp_Hash_Table *h;
4254 if (h->count > 0)
4256 int i, size = HASH_TABLE_SIZE (h);
4258 for (i = 0; i < size; ++i)
4260 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4261 HASH_KEY (h, i) = Qnil;
4262 HASH_VALUE (h, i) = Qnil;
4263 HASH_HASH (h, i) = Qnil;
4266 for (i = 0; i < ASIZE (h->index); ++i)
4267 ASET (h->index, i, Qnil);
4269 h->next_free = make_number (0);
4270 h->count = 0;
4276 /************************************************************************
4277 Weak Hash Tables
4278 ************************************************************************/
4280 void
4281 init_weak_hash_tables ()
4283 weak_hash_tables = NULL;
4286 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4287 entries from the table that don't survive the current GC.
4288 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4289 non-zero if anything was marked. */
4291 static int
4292 sweep_weak_table (h, remove_entries_p)
4293 struct Lisp_Hash_Table *h;
4294 int remove_entries_p;
4296 int bucket, n, marked;
4298 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
4299 marked = 0;
4301 for (bucket = 0; bucket < n; ++bucket)
4303 Lisp_Object idx, next, prev;
4305 /* Follow collision chain, removing entries that
4306 don't survive this garbage collection. */
4307 prev = Qnil;
4308 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
4310 int i = XFASTINT (idx);
4311 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4312 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4313 int remove_p;
4315 if (EQ (h->weak, Qkey))
4316 remove_p = !key_known_to_survive_p;
4317 else if (EQ (h->weak, Qvalue))
4318 remove_p = !value_known_to_survive_p;
4319 else if (EQ (h->weak, Qkey_or_value))
4320 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4321 else if (EQ (h->weak, Qkey_and_value))
4322 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4323 else
4324 abort ();
4326 next = HASH_NEXT (h, i);
4328 if (remove_entries_p)
4330 if (remove_p)
4332 /* Take out of collision chain. */
4333 if (NILP (prev))
4334 HASH_INDEX (h, bucket) = next;
4335 else
4336 HASH_NEXT (h, XFASTINT (prev)) = next;
4338 /* Add to free list. */
4339 HASH_NEXT (h, i) = h->next_free;
4340 h->next_free = idx;
4342 /* Clear key, value, and hash. */
4343 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4344 HASH_HASH (h, i) = Qnil;
4346 h->count--;
4348 else
4350 prev = idx;
4353 else
4355 if (!remove_p)
4357 /* Make sure key and value survive. */
4358 if (!key_known_to_survive_p)
4360 mark_object (HASH_KEY (h, i));
4361 marked = 1;
4364 if (!value_known_to_survive_p)
4366 mark_object (HASH_VALUE (h, i));
4367 marked = 1;
4374 return marked;
4377 /* Remove elements from weak hash tables that don't survive the
4378 current garbage collection. Remove weak tables that don't survive
4379 from Vweak_hash_tables. Called from gc_sweep. */
4381 void
4382 sweep_weak_hash_tables ()
4384 struct Lisp_Hash_Table *h, *used, *next;
4385 int marked;
4387 /* Mark all keys and values that are in use. Keep on marking until
4388 there is no more change. This is necessary for cases like
4389 value-weak table A containing an entry X -> Y, where Y is used in a
4390 key-weak table B, Z -> Y. If B comes after A in the list of weak
4391 tables, X -> Y might be removed from A, although when looking at B
4392 one finds that it shouldn't. */
4395 marked = 0;
4396 for (h = weak_hash_tables; h; h = h->next_weak)
4398 if (h->size & ARRAY_MARK_FLAG)
4399 marked |= sweep_weak_table (h, 0);
4402 while (marked);
4404 /* Remove tables and entries that aren't used. */
4405 for (h = weak_hash_tables, used = NULL; h; h = next)
4407 next = h->next_weak;
4409 if (h->size & ARRAY_MARK_FLAG)
4411 /* TABLE is marked as used. Sweep its contents. */
4412 if (h->count > 0)
4413 sweep_weak_table (h, 1);
4415 /* Add table to the list of used weak hash tables. */
4416 h->next_weak = used;
4417 used = h;
4421 weak_hash_tables = used;
4426 /***********************************************************************
4427 Hash Code Computation
4428 ***********************************************************************/
4430 /* Maximum depth up to which to dive into Lisp structures. */
4432 #define SXHASH_MAX_DEPTH 3
4434 /* Maximum length up to which to take list and vector elements into
4435 account. */
4437 #define SXHASH_MAX_LEN 7
4439 /* Combine two integers X and Y for hashing. */
4441 #define SXHASH_COMBINE(X, Y) \
4442 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4443 + (unsigned)(Y))
4446 /* Return a hash for string PTR which has length LEN. The hash
4447 code returned is guaranteed to fit in a Lisp integer. */
4449 static unsigned
4450 sxhash_string (ptr, len)
4451 unsigned char *ptr;
4452 int len;
4454 unsigned char *p = ptr;
4455 unsigned char *end = p + len;
4456 unsigned char c;
4457 unsigned hash = 0;
4459 while (p != end)
4461 c = *p++;
4462 if (c >= 0140)
4463 c -= 40;
4464 hash = ((hash << 4) + (hash >> 28) + c);
4467 return hash & INTMASK;
4471 /* Return a hash for list LIST. DEPTH is the current depth in the
4472 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4474 static unsigned
4475 sxhash_list (list, depth)
4476 Lisp_Object list;
4477 int depth;
4479 unsigned hash = 0;
4480 int i;
4482 if (depth < SXHASH_MAX_DEPTH)
4483 for (i = 0;
4484 CONSP (list) && i < SXHASH_MAX_LEN;
4485 list = XCDR (list), ++i)
4487 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4488 hash = SXHASH_COMBINE (hash, hash2);
4491 if (!NILP (list))
4493 unsigned hash2 = sxhash (list, depth + 1);
4494 hash = SXHASH_COMBINE (hash, hash2);
4497 return hash;
4501 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4502 the Lisp structure. */
4504 static unsigned
4505 sxhash_vector (vec, depth)
4506 Lisp_Object vec;
4507 int depth;
4509 unsigned hash = ASIZE (vec);
4510 int i, n;
4512 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4513 for (i = 0; i < n; ++i)
4515 unsigned hash2 = sxhash (AREF (vec, i), depth + 1);
4516 hash = SXHASH_COMBINE (hash, hash2);
4519 return hash;
4523 /* Return a hash for bool-vector VECTOR. */
4525 static unsigned
4526 sxhash_bool_vector (vec)
4527 Lisp_Object vec;
4529 unsigned hash = XBOOL_VECTOR (vec)->size;
4530 int i, n;
4532 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4533 for (i = 0; i < n; ++i)
4534 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4536 return hash;
4540 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4541 structure. Value is an unsigned integer clipped to INTMASK. */
4543 unsigned
4544 sxhash (obj, depth)
4545 Lisp_Object obj;
4546 int depth;
4548 unsigned hash;
4550 if (depth > SXHASH_MAX_DEPTH)
4551 return 0;
4553 switch (XTYPE (obj))
4555 case_Lisp_Int:
4556 hash = XUINT (obj);
4557 break;
4559 case Lisp_Misc:
4560 hash = XUINT (obj);
4561 break;
4563 case Lisp_Symbol:
4564 obj = SYMBOL_NAME (obj);
4565 /* Fall through. */
4567 case Lisp_String:
4568 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4569 break;
4571 /* This can be everything from a vector to an overlay. */
4572 case Lisp_Vectorlike:
4573 if (VECTORP (obj))
4574 /* According to the CL HyperSpec, two arrays are equal only if
4575 they are `eq', except for strings and bit-vectors. In
4576 Emacs, this works differently. We have to compare element
4577 by element. */
4578 hash = sxhash_vector (obj, depth);
4579 else if (BOOL_VECTOR_P (obj))
4580 hash = sxhash_bool_vector (obj);
4581 else
4582 /* Others are `equal' if they are `eq', so let's take their
4583 address as hash. */
4584 hash = XUINT (obj);
4585 break;
4587 case Lisp_Cons:
4588 hash = sxhash_list (obj, depth);
4589 break;
4591 case Lisp_Float:
4593 double val = XFLOAT_DATA (obj);
4594 unsigned char *p = (unsigned char *) &val;
4595 unsigned char *e = p + sizeof val;
4596 for (hash = 0; p < e; ++p)
4597 hash = SXHASH_COMBINE (hash, *p);
4598 break;
4601 default:
4602 abort ();
4605 return hash & INTMASK;
4610 /***********************************************************************
4611 Lisp Interface
4612 ***********************************************************************/
4615 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4616 doc: /* Compute a hash code for OBJ and return it as integer. */)
4617 (obj)
4618 Lisp_Object obj;
4620 unsigned hash = sxhash (obj, 0);
4621 return make_number (hash);
4625 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4626 doc: /* Create and return a new hash table.
4628 Arguments are specified as keyword/argument pairs. The following
4629 arguments are defined:
4631 :test TEST -- TEST must be a symbol that specifies how to compare
4632 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4633 `equal'. User-supplied test and hash functions can be specified via
4634 `define-hash-table-test'.
4636 :size SIZE -- A hint as to how many elements will be put in the table.
4637 Default is 65.
4639 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4640 fills up. If REHASH-SIZE is an integer, add that many space. If it
4641 is a float, it must be > 1.0, and the new size is computed by
4642 multiplying the old size with that factor. Default is 1.5.
4644 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4645 Resize the hash table when ratio of the number of entries in the
4646 table. Default is 0.8.
4648 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4649 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4650 returned is a weak table. Key/value pairs are removed from a weak
4651 hash table when there are no non-weak references pointing to their
4652 key, value, one of key or value, or both key and value, depending on
4653 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4654 is nil.
4656 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4657 (nargs, args)
4658 int nargs;
4659 Lisp_Object *args;
4661 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4662 Lisp_Object user_test, user_hash;
4663 char *used;
4664 int i;
4666 /* The vector `used' is used to keep track of arguments that
4667 have been consumed. */
4668 used = (char *) alloca (nargs * sizeof *used);
4669 bzero (used, nargs * sizeof *used);
4671 /* See if there's a `:test TEST' among the arguments. */
4672 i = get_key_arg (QCtest, nargs, args, used);
4673 test = i < 0 ? Qeql : args[i];
4674 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4676 /* See if it is a user-defined test. */
4677 Lisp_Object prop;
4679 prop = Fget (test, Qhash_table_test);
4680 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4681 signal_error ("Invalid hash table test", test);
4682 user_test = XCAR (prop);
4683 user_hash = XCAR (XCDR (prop));
4685 else
4686 user_test = user_hash = Qnil;
4688 /* See if there's a `:size SIZE' argument. */
4689 i = get_key_arg (QCsize, nargs, args, used);
4690 size = i < 0 ? Qnil : args[i];
4691 if (NILP (size))
4692 size = make_number (DEFAULT_HASH_SIZE);
4693 else if (!INTEGERP (size) || XINT (size) < 0)
4694 signal_error ("Invalid hash table size", size);
4696 /* Look for `:rehash-size SIZE'. */
4697 i = get_key_arg (QCrehash_size, nargs, args, used);
4698 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
4699 if (!NUMBERP (rehash_size)
4700 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
4701 || XFLOATINT (rehash_size) <= 1.0)
4702 signal_error ("Invalid hash table rehash size", rehash_size);
4704 /* Look for `:rehash-threshold THRESHOLD'. */
4705 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4706 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
4707 if (!FLOATP (rehash_threshold)
4708 || XFLOATINT (rehash_threshold) <= 0.0
4709 || XFLOATINT (rehash_threshold) > 1.0)
4710 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4712 /* Look for `:weakness WEAK'. */
4713 i = get_key_arg (QCweakness, nargs, args, used);
4714 weak = i < 0 ? Qnil : args[i];
4715 if (EQ (weak, Qt))
4716 weak = Qkey_and_value;
4717 if (!NILP (weak)
4718 && !EQ (weak, Qkey)
4719 && !EQ (weak, Qvalue)
4720 && !EQ (weak, Qkey_or_value)
4721 && !EQ (weak, Qkey_and_value))
4722 signal_error ("Invalid hash table weakness", weak);
4724 /* Now, all args should have been used up, or there's a problem. */
4725 for (i = 0; i < nargs; ++i)
4726 if (!used[i])
4727 signal_error ("Invalid argument list", args[i]);
4729 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4730 user_test, user_hash);
4734 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4735 doc: /* Return a copy of hash table TABLE. */)
4736 (table)
4737 Lisp_Object table;
4739 return copy_hash_table (check_hash_table (table));
4743 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4744 doc: /* Return the number of elements in TABLE. */)
4745 (table)
4746 Lisp_Object table;
4748 return make_number (check_hash_table (table)->count);
4752 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4753 Shash_table_rehash_size, 1, 1, 0,
4754 doc: /* Return the current rehash size of TABLE. */)
4755 (table)
4756 Lisp_Object table;
4758 return check_hash_table (table)->rehash_size;
4762 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4763 Shash_table_rehash_threshold, 1, 1, 0,
4764 doc: /* Return the current rehash threshold of TABLE. */)
4765 (table)
4766 Lisp_Object table;
4768 return check_hash_table (table)->rehash_threshold;
4772 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4773 doc: /* Return the size of TABLE.
4774 The size can be used as an argument to `make-hash-table' to create
4775 a hash table than can hold as many elements of TABLE holds
4776 without need for resizing. */)
4777 (table)
4778 Lisp_Object table;
4780 struct Lisp_Hash_Table *h = check_hash_table (table);
4781 return make_number (HASH_TABLE_SIZE (h));
4785 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4786 doc: /* Return the test TABLE uses. */)
4787 (table)
4788 Lisp_Object table;
4790 return check_hash_table (table)->test;
4794 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4795 1, 1, 0,
4796 doc: /* Return the weakness of TABLE. */)
4797 (table)
4798 Lisp_Object table;
4800 return check_hash_table (table)->weak;
4804 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4805 doc: /* Return t if OBJ is a Lisp hash table object. */)
4806 (obj)
4807 Lisp_Object obj;
4809 return HASH_TABLE_P (obj) ? Qt : Qnil;
4813 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4814 doc: /* Clear hash table TABLE and return it. */)
4815 (table)
4816 Lisp_Object table;
4818 hash_clear (check_hash_table (table));
4819 /* Be compatible with XEmacs. */
4820 return table;
4824 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4825 doc: /* Look up KEY in TABLE and return its associated value.
4826 If KEY is not found, return DFLT which defaults to nil. */)
4827 (key, table, dflt)
4828 Lisp_Object key, table, dflt;
4830 struct Lisp_Hash_Table *h = check_hash_table (table);
4831 int i = hash_lookup (h, key, NULL);
4832 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4836 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4837 doc: /* Associate KEY with VALUE in hash table TABLE.
4838 If KEY is already present in table, replace its current value with
4839 VALUE. */)
4840 (key, value, table)
4841 Lisp_Object key, value, table;
4843 struct Lisp_Hash_Table *h = check_hash_table (table);
4844 int i;
4845 unsigned hash;
4847 i = hash_lookup (h, key, &hash);
4848 if (i >= 0)
4849 HASH_VALUE (h, i) = value;
4850 else
4851 hash_put (h, key, value, hash);
4853 return value;
4857 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4858 doc: /* Remove KEY from TABLE. */)
4859 (key, table)
4860 Lisp_Object key, table;
4862 struct Lisp_Hash_Table *h = check_hash_table (table);
4863 hash_remove_from_table (h, key);
4864 return Qnil;
4868 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4869 doc: /* Call FUNCTION for all entries in hash table TABLE.
4870 FUNCTION is called with two arguments, KEY and VALUE. */)
4871 (function, table)
4872 Lisp_Object function, table;
4874 struct Lisp_Hash_Table *h = check_hash_table (table);
4875 Lisp_Object args[3];
4876 int i;
4878 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4879 if (!NILP (HASH_HASH (h, i)))
4881 args[0] = function;
4882 args[1] = HASH_KEY (h, i);
4883 args[2] = HASH_VALUE (h, i);
4884 Ffuncall (3, args);
4887 return Qnil;
4891 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4892 Sdefine_hash_table_test, 3, 3, 0,
4893 doc: /* Define a new hash table test with name NAME, a symbol.
4895 In hash tables created with NAME specified as test, use TEST to
4896 compare keys, and HASH for computing hash codes of keys.
4898 TEST must be a function taking two arguments and returning non-nil if
4899 both arguments are the same. HASH must be a function taking one
4900 argument and return an integer that is the hash code of the argument.
4901 Hash code computation should use the whole value range of integers,
4902 including negative integers. */)
4903 (name, test, hash)
4904 Lisp_Object name, test, hash;
4906 return Fput (name, Qhash_table_test, list2 (test, hash));
4911 /************************************************************************
4913 ************************************************************************/
4915 #include "md5.h"
4917 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4918 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4920 A message digest is a cryptographic checksum of a document, and the
4921 algorithm to calculate it is defined in RFC 1321.
4923 The two optional arguments START and END are character positions
4924 specifying for which part of OBJECT the message digest should be
4925 computed. If nil or omitted, the digest is computed for the whole
4926 OBJECT.
4928 The MD5 message digest is computed from the result of encoding the
4929 text in a coding system, not directly from the internal Emacs form of
4930 the text. The optional fourth argument CODING-SYSTEM specifies which
4931 coding system to encode the text with. It should be the same coding
4932 system that you used or will use when actually writing the text into a
4933 file.
4935 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4936 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4937 system would be chosen by default for writing this text into a file.
4939 If OBJECT is a string, the most preferred coding system (see the
4940 command `prefer-coding-system') is used.
4942 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4943 guesswork fails. Normally, an error is signaled in such case. */)
4944 (object, start, end, coding_system, noerror)
4945 Lisp_Object object, start, end, coding_system, noerror;
4947 unsigned char digest[16];
4948 unsigned char value[33];
4949 int i;
4950 int size;
4951 int size_byte = 0;
4952 int start_char = 0, end_char = 0;
4953 int start_byte = 0, end_byte = 0;
4954 register int b, e;
4955 register struct buffer *bp;
4956 int temp;
4958 if (STRINGP (object))
4960 if (NILP (coding_system))
4962 /* Decide the coding-system to encode the data with. */
4964 if (STRING_MULTIBYTE (object))
4965 /* use default, we can't guess correct value */
4966 coding_system = preferred_coding_system ();
4967 else
4968 coding_system = Qraw_text;
4971 if (NILP (Fcoding_system_p (coding_system)))
4973 /* Invalid coding system. */
4975 if (!NILP (noerror))
4976 coding_system = Qraw_text;
4977 else
4978 xsignal1 (Qcoding_system_error, coding_system);
4981 if (STRING_MULTIBYTE (object))
4982 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4984 size = SCHARS (object);
4985 size_byte = SBYTES (object);
4987 if (!NILP (start))
4989 CHECK_NUMBER (start);
4991 start_char = XINT (start);
4993 if (start_char < 0)
4994 start_char += size;
4996 start_byte = string_char_to_byte (object, start_char);
4999 if (NILP (end))
5001 end_char = size;
5002 end_byte = size_byte;
5004 else
5006 CHECK_NUMBER (end);
5008 end_char = XINT (end);
5010 if (end_char < 0)
5011 end_char += size;
5013 end_byte = string_char_to_byte (object, end_char);
5016 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5017 args_out_of_range_3 (object, make_number (start_char),
5018 make_number (end_char));
5020 else
5022 struct buffer *prev = current_buffer;
5024 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5026 CHECK_BUFFER (object);
5028 bp = XBUFFER (object);
5029 if (bp != current_buffer)
5030 set_buffer_internal (bp);
5032 if (NILP (start))
5033 b = BEGV;
5034 else
5036 CHECK_NUMBER_COERCE_MARKER (start);
5037 b = XINT (start);
5040 if (NILP (end))
5041 e = ZV;
5042 else
5044 CHECK_NUMBER_COERCE_MARKER (end);
5045 e = XINT (end);
5048 if (b > e)
5049 temp = b, b = e, e = temp;
5051 if (!(BEGV <= b && e <= ZV))
5052 args_out_of_range (start, end);
5054 if (NILP (coding_system))
5056 /* Decide the coding-system to encode the data with.
5057 See fileio.c:Fwrite-region */
5059 if (!NILP (Vcoding_system_for_write))
5060 coding_system = Vcoding_system_for_write;
5061 else
5063 int force_raw_text = 0;
5065 coding_system = XBUFFER (object)->buffer_file_coding_system;
5066 if (NILP (coding_system)
5067 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5069 coding_system = Qnil;
5070 if (NILP (current_buffer->enable_multibyte_characters))
5071 force_raw_text = 1;
5074 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5076 /* Check file-coding-system-alist. */
5077 Lisp_Object args[4], val;
5079 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5080 args[3] = Fbuffer_file_name(object);
5081 val = Ffind_operation_coding_system (4, args);
5082 if (CONSP (val) && !NILP (XCDR (val)))
5083 coding_system = XCDR (val);
5086 if (NILP (coding_system)
5087 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5089 /* If we still have not decided a coding system, use the
5090 default value of buffer-file-coding-system. */
5091 coding_system = XBUFFER (object)->buffer_file_coding_system;
5094 if (!force_raw_text
5095 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5096 /* Confirm that VAL can surely encode the current region. */
5097 coding_system = call4 (Vselect_safe_coding_system_function,
5098 make_number (b), make_number (e),
5099 coding_system, Qnil);
5101 if (force_raw_text)
5102 coding_system = Qraw_text;
5105 if (NILP (Fcoding_system_p (coding_system)))
5107 /* Invalid coding system. */
5109 if (!NILP (noerror))
5110 coding_system = Qraw_text;
5111 else
5112 xsignal1 (Qcoding_system_error, coding_system);
5116 object = make_buffer_string (b, e, 0);
5117 if (prev != current_buffer)
5118 set_buffer_internal (prev);
5119 /* Discard the unwind protect for recovering the current
5120 buffer. */
5121 specpdl_ptr--;
5123 if (STRING_MULTIBYTE (object))
5124 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
5127 md5_buffer (SDATA (object) + start_byte,
5128 SBYTES (object) - (size_byte - end_byte),
5129 digest);
5131 for (i = 0; i < 16; i++)
5132 sprintf (&value[2 * i], "%02x", digest[i]);
5133 value[32] = '\0';
5135 return make_string (value, 32);
5139 void
5140 syms_of_fns ()
5142 /* Hash table stuff. */
5143 Qhash_table_p = intern_c_string ("hash-table-p");
5144 staticpro (&Qhash_table_p);
5145 Qeq = intern_c_string ("eq");
5146 staticpro (&Qeq);
5147 Qeql = intern_c_string ("eql");
5148 staticpro (&Qeql);
5149 Qequal = intern_c_string ("equal");
5150 staticpro (&Qequal);
5151 QCtest = intern_c_string (":test");
5152 staticpro (&QCtest);
5153 QCsize = intern_c_string (":size");
5154 staticpro (&QCsize);
5155 QCrehash_size = intern_c_string (":rehash-size");
5156 staticpro (&QCrehash_size);
5157 QCrehash_threshold = intern_c_string (":rehash-threshold");
5158 staticpro (&QCrehash_threshold);
5159 QCweakness = intern_c_string (":weakness");
5160 staticpro (&QCweakness);
5161 Qkey = intern_c_string ("key");
5162 staticpro (&Qkey);
5163 Qvalue = intern_c_string ("value");
5164 staticpro (&Qvalue);
5165 Qhash_table_test = intern_c_string ("hash-table-test");
5166 staticpro (&Qhash_table_test);
5167 Qkey_or_value = intern_c_string ("key-or-value");
5168 staticpro (&Qkey_or_value);
5169 Qkey_and_value = intern_c_string ("key-and-value");
5170 staticpro (&Qkey_and_value);
5172 defsubr (&Ssxhash);
5173 defsubr (&Smake_hash_table);
5174 defsubr (&Scopy_hash_table);
5175 defsubr (&Shash_table_count);
5176 defsubr (&Shash_table_rehash_size);
5177 defsubr (&Shash_table_rehash_threshold);
5178 defsubr (&Shash_table_size);
5179 defsubr (&Shash_table_test);
5180 defsubr (&Shash_table_weakness);
5181 defsubr (&Shash_table_p);
5182 defsubr (&Sclrhash);
5183 defsubr (&Sgethash);
5184 defsubr (&Sputhash);
5185 defsubr (&Sremhash);
5186 defsubr (&Smaphash);
5187 defsubr (&Sdefine_hash_table_test);
5189 Qstring_lessp = intern_c_string ("string-lessp");
5190 staticpro (&Qstring_lessp);
5191 Qprovide = intern_c_string ("provide");
5192 staticpro (&Qprovide);
5193 Qrequire = intern_c_string ("require");
5194 staticpro (&Qrequire);
5195 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
5196 staticpro (&Qyes_or_no_p_history);
5197 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
5198 staticpro (&Qcursor_in_echo_area);
5199 Qwidget_type = intern_c_string ("widget-type");
5200 staticpro (&Qwidget_type);
5202 staticpro (&string_char_byte_cache_string);
5203 string_char_byte_cache_string = Qnil;
5205 require_nesting_list = Qnil;
5206 staticpro (&require_nesting_list);
5208 Fset (Qyes_or_no_p_history, Qnil);
5210 DEFVAR_LISP ("features", &Vfeatures,
5211 doc: /* A list of symbols which are the features of the executing Emacs.
5212 Used by `featurep' and `require', and altered by `provide'. */);
5213 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
5214 Qsubfeatures = intern_c_string ("subfeatures");
5215 staticpro (&Qsubfeatures);
5217 #ifdef HAVE_LANGINFO_CODESET
5218 Qcodeset = intern_c_string ("codeset");
5219 staticpro (&Qcodeset);
5220 Qdays = intern_c_string ("days");
5221 staticpro (&Qdays);
5222 Qmonths = intern_c_string ("months");
5223 staticpro (&Qmonths);
5224 Qpaper = intern_c_string ("paper");
5225 staticpro (&Qpaper);
5226 #endif /* HAVE_LANGINFO_CODESET */
5228 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5229 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5230 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5231 invoked by mouse clicks and mouse menu items.
5233 On some platforms, file selection dialogs are also enabled if this is
5234 non-nil. */);
5235 use_dialog_box = 1;
5237 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5238 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5239 This applies to commands from menus and tool bar buttons even when
5240 they are initiated from the keyboard. If `use-dialog-box' is nil,
5241 that disables the use of a file dialog, regardless of the value of
5242 this variable. */);
5243 use_file_dialog = 1;
5245 defsubr (&Sidentity);
5246 defsubr (&Srandom);
5247 defsubr (&Slength);
5248 defsubr (&Ssafe_length);
5249 defsubr (&Sstring_bytes);
5250 defsubr (&Sstring_equal);
5251 defsubr (&Scompare_strings);
5252 defsubr (&Sstring_lessp);
5253 defsubr (&Sappend);
5254 defsubr (&Sconcat);
5255 defsubr (&Svconcat);
5256 defsubr (&Scopy_sequence);
5257 defsubr (&Sstring_make_multibyte);
5258 defsubr (&Sstring_make_unibyte);
5259 defsubr (&Sstring_as_multibyte);
5260 defsubr (&Sstring_as_unibyte);
5261 defsubr (&Sstring_to_multibyte);
5262 defsubr (&Sstring_to_unibyte);
5263 defsubr (&Scopy_alist);
5264 defsubr (&Ssubstring);
5265 defsubr (&Ssubstring_no_properties);
5266 defsubr (&Snthcdr);
5267 defsubr (&Snth);
5268 defsubr (&Selt);
5269 defsubr (&Smember);
5270 defsubr (&Smemq);
5271 defsubr (&Smemql);
5272 defsubr (&Sassq);
5273 defsubr (&Sassoc);
5274 defsubr (&Srassq);
5275 defsubr (&Srassoc);
5276 defsubr (&Sdelq);
5277 defsubr (&Sdelete);
5278 defsubr (&Snreverse);
5279 defsubr (&Sreverse);
5280 defsubr (&Ssort);
5281 defsubr (&Splist_get);
5282 defsubr (&Sget);
5283 defsubr (&Splist_put);
5284 defsubr (&Sput);
5285 defsubr (&Slax_plist_get);
5286 defsubr (&Slax_plist_put);
5287 defsubr (&Seql);
5288 defsubr (&Sequal);
5289 defsubr (&Sequal_including_properties);
5290 defsubr (&Sfillarray);
5291 defsubr (&Sclear_string);
5292 defsubr (&Snconc);
5293 defsubr (&Smapcar);
5294 defsubr (&Smapc);
5295 defsubr (&Smapconcat);
5296 defsubr (&Sy_or_n_p);
5297 defsubr (&Syes_or_no_p);
5298 defsubr (&Sload_average);
5299 defsubr (&Sfeaturep);
5300 defsubr (&Srequire);
5301 defsubr (&Sprovide);
5302 defsubr (&Splist_member);
5303 defsubr (&Swidget_put);
5304 defsubr (&Swidget_get);
5305 defsubr (&Swidget_apply);
5306 defsubr (&Sbase64_encode_region);
5307 defsubr (&Sbase64_decode_region);
5308 defsubr (&Sbase64_encode_string);
5309 defsubr (&Sbase64_decode_string);
5310 defsubr (&Smd5);
5311 defsubr (&Slocale_info);
5315 void
5316 init_fns ()
5320 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5321 (do not change this comment) */