1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
30 #include "character.h"
35 #include "intervals.h"
38 #include "blockinput.h"
40 #if defined (HAVE_X_WINDOWS)
43 #endif /* HAVE_MENUS */
46 #define NULL ((POINTER_TYPE *)0)
49 Lisp_Object Qstring_lessp
;
50 static Lisp_Object Qprovide
, Qrequire
;
51 static Lisp_Object Qyes_or_no_p_history
;
52 Lisp_Object Qcursor_in_echo_area
;
53 static Lisp_Object Qwidget_type
;
54 static Lisp_Object Qcodeset
, Qdays
, Qmonths
, Qpaper
;
56 static Lisp_Object Qmd5
, Qsha1
, Qsha224
, Qsha256
, Qsha384
, Qsha512
;
58 static int internal_equal (Lisp_Object
, Lisp_Object
, int, int);
64 DEFUN ("identity", Fidentity
, Sidentity
, 1, 1, 0,
65 doc
: /* Return the argument unchanged. */)
71 DEFUN ("random", Frandom
, Srandom
, 0, 1, 0,
72 doc
: /* Return a pseudo-random number.
73 All integers representable in Lisp are equally likely.
74 On most systems, this is 29 bits' worth.
75 With positive integer LIMIT, return random number in interval [0,LIMIT).
76 With argument t, set the random number seed from the current time and pid.
77 Other values of LIMIT are ignored. */)
81 Lisp_Object lispy_val
;
87 seed_random (getpid () ^ EMACS_SECS (t
) ^ EMACS_USECS (t
));
90 if (NATNUMP (limit
) && XFASTINT (limit
) != 0)
92 /* Try to take our random number from the higher bits of VAL,
93 not the lower, since (says Gentzel) the low bits of `random'
94 are less random than the higher ones. We do this by using the
95 quotient rather than the remainder. At the high end of the RNG
96 it's possible to get a quotient larger than n; discarding
97 these values eliminates the bias that would otherwise appear
98 when using a large n. */
99 EMACS_INT denominator
= (INTMASK
+ 1) / XFASTINT (limit
);
101 val
= get_random () / denominator
;
102 while (val
>= XFASTINT (limit
));
106 XSETINT (lispy_val
, val
);
110 /* Heuristic on how many iterations of a tight loop can be safely done
111 before it's time to do a QUIT. This must be a power of 2. */
112 enum { QUIT_COUNT_HEURISTIC
= 1 << 16 };
114 /* Random data-structure functions */
116 DEFUN ("length", Flength
, Slength
, 1, 1, 0,
117 doc
: /* Return the length of vector, list or string SEQUENCE.
118 A byte-code function object is also allowed.
119 If the string contains multibyte characters, this is not necessarily
120 the number of bytes in the string; it is the number of characters.
121 To get the number of bytes, use `string-bytes'. */)
122 (register Lisp_Object sequence
)
124 register Lisp_Object val
;
126 if (STRINGP (sequence
))
127 XSETFASTINT (val
, SCHARS (sequence
));
128 else if (VECTORP (sequence
))
129 XSETFASTINT (val
, ASIZE (sequence
));
130 else if (CHAR_TABLE_P (sequence
))
131 XSETFASTINT (val
, MAX_CHAR
);
132 else if (BOOL_VECTOR_P (sequence
))
133 XSETFASTINT (val
, XBOOL_VECTOR (sequence
)->size
);
134 else if (COMPILEDP (sequence
))
135 XSETFASTINT (val
, ASIZE (sequence
) & PSEUDOVECTOR_SIZE_MASK
);
136 else if (CONSP (sequence
))
143 if ((i
& (QUIT_COUNT_HEURISTIC
- 1)) == 0)
145 if (MOST_POSITIVE_FIXNUM
< i
)
146 error ("List too long");
149 sequence
= XCDR (sequence
);
151 while (CONSP (sequence
));
153 CHECK_LIST_END (sequence
, sequence
);
155 val
= make_number (i
);
157 else if (NILP (sequence
))
158 XSETFASTINT (val
, 0);
160 wrong_type_argument (Qsequencep
, sequence
);
165 /* This does not check for quits. That is safe since it must terminate. */
167 DEFUN ("safe-length", Fsafe_length
, Ssafe_length
, 1, 1, 0,
168 doc
: /* Return the length of a list, but avoid error or infinite loop.
169 This function never gets an error. If LIST is not really a list,
170 it returns 0. If LIST is circular, it returns a finite value
171 which is at least the number of distinct elements. */)
174 Lisp_Object tail
, halftail
;
179 return make_number (0);
181 /* halftail is used to detect circular lists. */
182 for (tail
= halftail
= list
; ; )
187 if (EQ (tail
, halftail
))
190 if ((lolen
& 1) == 0)
192 halftail
= XCDR (halftail
);
193 if ((lolen
& (QUIT_COUNT_HEURISTIC
- 1)) == 0)
197 hilen
+= UINTMAX_MAX
+ 1.0;
202 /* If the length does not fit into a fixnum, return a float.
203 On all known practical machines this returns an upper bound on
205 return hilen
? make_float (hilen
+ lolen
) : make_fixnum_or_float (lolen
);
208 DEFUN ("string-bytes", Fstring_bytes
, Sstring_bytes
, 1, 1, 0,
209 doc
: /* Return the number of bytes in STRING.
210 If STRING is multibyte, this may be greater than the length of STRING. */)
213 CHECK_STRING (string
);
214 return make_number (SBYTES (string
));
217 DEFUN ("string-equal", Fstring_equal
, Sstring_equal
, 2, 2, 0,
218 doc
: /* Return t if two strings have identical contents.
219 Case is significant, but text properties are ignored.
220 Symbols are also allowed; their print names are used instead. */)
221 (register Lisp_Object s1
, Lisp_Object s2
)
224 s1
= SYMBOL_NAME (s1
);
226 s2
= SYMBOL_NAME (s2
);
230 if (SCHARS (s1
) != SCHARS (s2
)
231 || SBYTES (s1
) != SBYTES (s2
)
232 || memcmp (SDATA (s1
), SDATA (s2
), SBYTES (s1
)))
237 DEFUN ("compare-strings", Fcompare_strings
, Scompare_strings
, 6, 7, 0,
238 doc
: /* Compare the contents of two strings, converting to multibyte if needed.
239 In string STR1, skip the first START1 characters and stop at END1.
240 In string STR2, skip the first START2 characters and stop at END2.
241 END1 and END2 default to the full lengths of the respective strings.
243 Case is significant in this comparison if IGNORE-CASE is nil.
244 Unibyte strings are converted to multibyte for comparison.
246 The value is t if the strings (or specified portions) match.
247 If string STR1 is less, the value is a negative number N;
248 - 1 - N is the number of characters that match at the beginning.
249 If string STR1 is greater, the value is a positive number N;
250 N - 1 is the number of characters that match at the beginning. */)
251 (Lisp_Object str1
, Lisp_Object start1
, Lisp_Object end1
, Lisp_Object str2
, Lisp_Object start2
, Lisp_Object end2
, Lisp_Object ignore_case
)
253 register EMACS_INT end1_char
, end2_char
;
254 register EMACS_INT i1
, i1_byte
, i2
, i2_byte
;
259 start1
= make_number (0);
261 start2
= make_number (0);
262 CHECK_NATNUM (start1
);
263 CHECK_NATNUM (start2
);
272 i1_byte
= string_char_to_byte (str1
, i1
);
273 i2_byte
= string_char_to_byte (str2
, i2
);
275 end1_char
= SCHARS (str1
);
276 if (! NILP (end1
) && end1_char
> XINT (end1
))
277 end1_char
= XINT (end1
);
279 end2_char
= SCHARS (str2
);
280 if (! NILP (end2
) && end2_char
> XINT (end2
))
281 end2_char
= XINT (end2
);
283 while (i1
< end1_char
&& i2
< end2_char
)
285 /* When we find a mismatch, we must compare the
286 characters, not just the bytes. */
289 if (STRING_MULTIBYTE (str1
))
290 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1
, str1
, i1
, i1_byte
);
293 c1
= SREF (str1
, i1
++);
294 MAKE_CHAR_MULTIBYTE (c1
);
297 if (STRING_MULTIBYTE (str2
))
298 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2
, str2
, i2
, i2_byte
);
301 c2
= SREF (str2
, i2
++);
302 MAKE_CHAR_MULTIBYTE (c2
);
308 if (! NILP (ignore_case
))
312 tem
= Fupcase (make_number (c1
));
314 tem
= Fupcase (make_number (c2
));
321 /* Note that I1 has already been incremented
322 past the character that we are comparing;
323 hence we don't add or subtract 1 here. */
325 return make_number (- i1
+ XINT (start1
));
327 return make_number (i1
- XINT (start1
));
331 return make_number (i1
- XINT (start1
) + 1);
333 return make_number (- i1
+ XINT (start1
) - 1);
338 DEFUN ("string-lessp", Fstring_lessp
, Sstring_lessp
, 2, 2, 0,
339 doc
: /* Return t if first arg string is less than second in lexicographic order.
341 Symbols are also allowed; their print names are used instead. */)
342 (register Lisp_Object s1
, Lisp_Object s2
)
344 register EMACS_INT end
;
345 register EMACS_INT i1
, i1_byte
, i2
, i2_byte
;
348 s1
= SYMBOL_NAME (s1
);
350 s2
= SYMBOL_NAME (s2
);
354 i1
= i1_byte
= i2
= i2_byte
= 0;
357 if (end
> SCHARS (s2
))
362 /* When we find a mismatch, we must compare the
363 characters, not just the bytes. */
366 FETCH_STRING_CHAR_ADVANCE (c1
, s1
, i1
, i1_byte
);
367 FETCH_STRING_CHAR_ADVANCE (c2
, s2
, i2
, i2_byte
);
370 return c1
< c2
? Qt
: Qnil
;
372 return i1
< SCHARS (s2
) ? Qt
: Qnil
;
375 static Lisp_Object
concat (ptrdiff_t nargs
, Lisp_Object
*args
,
376 enum Lisp_Type target_type
, int last_special
);
380 concat2 (Lisp_Object s1
, Lisp_Object s2
)
385 return concat (2, args
, Lisp_String
, 0);
390 concat3 (Lisp_Object s1
, Lisp_Object s2
, Lisp_Object s3
)
396 return concat (3, args
, Lisp_String
, 0);
399 DEFUN ("append", Fappend
, Sappend
, 0, MANY
, 0,
400 doc
: /* Concatenate all the arguments and make the result a list.
401 The result is a list whose elements are the elements of all the arguments.
402 Each argument may be a list, vector or string.
403 The last argument is not copied, just used as the tail of the new list.
404 usage: (append &rest SEQUENCES) */)
405 (ptrdiff_t nargs
, Lisp_Object
*args
)
407 return concat (nargs
, args
, Lisp_Cons
, 1);
410 DEFUN ("concat", Fconcat
, Sconcat
, 0, MANY
, 0,
411 doc
: /* Concatenate all the arguments and make the result a string.
412 The result is a string whose elements are the elements of all the arguments.
413 Each argument may be a string or a list or vector of characters (integers).
414 usage: (concat &rest SEQUENCES) */)
415 (ptrdiff_t nargs
, Lisp_Object
*args
)
417 return concat (nargs
, args
, Lisp_String
, 0);
420 DEFUN ("vconcat", Fvconcat
, Svconcat
, 0, MANY
, 0,
421 doc
: /* Concatenate all the arguments and make the result a vector.
422 The result is a vector whose elements are the elements of all the arguments.
423 Each argument may be a list, vector or string.
424 usage: (vconcat &rest SEQUENCES) */)
425 (ptrdiff_t nargs
, Lisp_Object
*args
)
427 return concat (nargs
, args
, Lisp_Vectorlike
, 0);
431 DEFUN ("copy-sequence", Fcopy_sequence
, Scopy_sequence
, 1, 1, 0,
432 doc
: /* Return a copy of a list, vector, string or char-table.
433 The elements of a list or vector are not copied; they are shared
434 with the original. */)
437 if (NILP (arg
)) return arg
;
439 if (CHAR_TABLE_P (arg
))
441 return copy_char_table (arg
);
444 if (BOOL_VECTOR_P (arg
))
447 ptrdiff_t size_in_chars
448 = ((XBOOL_VECTOR (arg
)->size
+ BOOL_VECTOR_BITS_PER_CHAR
- 1)
449 / BOOL_VECTOR_BITS_PER_CHAR
);
451 val
= Fmake_bool_vector (Flength (arg
), Qnil
);
452 memcpy (XBOOL_VECTOR (val
)->data
, XBOOL_VECTOR (arg
)->data
,
457 if (!CONSP (arg
) && !VECTORP (arg
) && !STRINGP (arg
))
458 wrong_type_argument (Qsequencep
, arg
);
460 return concat (1, &arg
, CONSP (arg
) ? Lisp_Cons
: XTYPE (arg
), 0);
463 /* This structure holds information of an argument of `concat' that is
464 a string and has text properties to be copied. */
467 ptrdiff_t argnum
; /* refer to ARGS (arguments of `concat') */
468 EMACS_INT from
; /* refer to ARGS[argnum] (argument string) */
469 EMACS_INT to
; /* refer to VAL (the target string) */
473 concat (ptrdiff_t nargs
, Lisp_Object
*args
,
474 enum Lisp_Type target_type
, int last_special
)
477 register Lisp_Object tail
;
478 register Lisp_Object
this;
480 EMACS_INT toindex_byte
= 0;
481 register EMACS_INT result_len
;
482 register EMACS_INT result_len_byte
;
484 Lisp_Object last_tail
;
487 /* When we make a multibyte string, we can't copy text properties
488 while concatenating each string because the length of resulting
489 string can't be decided until we finish the whole concatenation.
490 So, we record strings that have text properties to be copied
491 here, and copy the text properties after the concatenation. */
492 struct textprop_rec
*textprops
= NULL
;
493 /* Number of elements in textprops. */
494 ptrdiff_t num_textprops
= 0;
499 /* In append, the last arg isn't treated like the others */
500 if (last_special
&& nargs
> 0)
503 last_tail
= args
[nargs
];
508 /* Check each argument. */
509 for (argnum
= 0; argnum
< nargs
; argnum
++)
512 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
513 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
514 wrong_type_argument (Qsequencep
, this);
517 /* Compute total length in chars of arguments in RESULT_LEN.
518 If desired output is a string, also compute length in bytes
519 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
520 whether the result should be a multibyte string. */
524 for (argnum
= 0; argnum
< nargs
; argnum
++)
528 len
= XFASTINT (Flength (this));
529 if (target_type
== Lisp_String
)
531 /* We must count the number of bytes needed in the string
532 as well as the number of characters. */
536 EMACS_INT this_len_byte
;
538 if (VECTORP (this) || COMPILEDP (this))
539 for (i
= 0; i
< len
; i
++)
542 CHECK_CHARACTER (ch
);
544 this_len_byte
= CHAR_BYTES (c
);
545 result_len_byte
+= this_len_byte
;
546 if (! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
549 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size
> 0)
550 wrong_type_argument (Qintegerp
, Faref (this, make_number (0)));
551 else if (CONSP (this))
552 for (; CONSP (this); this = XCDR (this))
555 CHECK_CHARACTER (ch
);
557 this_len_byte
= CHAR_BYTES (c
);
558 result_len_byte
+= this_len_byte
;
559 if (! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
562 else if (STRINGP (this))
564 if (STRING_MULTIBYTE (this))
567 result_len_byte
+= SBYTES (this);
570 result_len_byte
+= count_size_as_multibyte (SDATA (this),
576 if (STRING_BYTES_BOUND
< result_len
)
580 if (! some_multibyte
)
581 result_len_byte
= result_len
;
583 /* Create the output object. */
584 if (target_type
== Lisp_Cons
)
585 val
= Fmake_list (make_number (result_len
), Qnil
);
586 else if (target_type
== Lisp_Vectorlike
)
587 val
= Fmake_vector (make_number (result_len
), Qnil
);
588 else if (some_multibyte
)
589 val
= make_uninit_multibyte_string (result_len
, result_len_byte
);
591 val
= make_uninit_string (result_len
);
593 /* In `append', if all but last arg are nil, return last arg. */
594 if (target_type
== Lisp_Cons
&& EQ (val
, Qnil
))
597 /* Copy the contents of the args into the result. */
599 tail
= val
, toindex
= -1; /* -1 in toindex is flag we are making a list */
601 toindex
= 0, toindex_byte
= 0;
605 SAFE_ALLOCA (textprops
, struct textprop_rec
*, sizeof (struct textprop_rec
) * nargs
);
607 for (argnum
= 0; argnum
< nargs
; argnum
++)
610 EMACS_INT thisleni
= 0;
611 register EMACS_INT thisindex
= 0;
612 register EMACS_INT thisindex_byte
= 0;
616 thislen
= Flength (this), thisleni
= XINT (thislen
);
618 /* Between strings of the same kind, copy fast. */
619 if (STRINGP (this) && STRINGP (val
)
620 && STRING_MULTIBYTE (this) == some_multibyte
)
622 EMACS_INT thislen_byte
= SBYTES (this);
624 memcpy (SDATA (val
) + toindex_byte
, SDATA (this), SBYTES (this));
625 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
627 textprops
[num_textprops
].argnum
= argnum
;
628 textprops
[num_textprops
].from
= 0;
629 textprops
[num_textprops
++].to
= toindex
;
631 toindex_byte
+= thislen_byte
;
634 /* Copy a single-byte string to a multibyte string. */
635 else if (STRINGP (this) && STRINGP (val
))
637 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
639 textprops
[num_textprops
].argnum
= argnum
;
640 textprops
[num_textprops
].from
= 0;
641 textprops
[num_textprops
++].to
= toindex
;
643 toindex_byte
+= copy_text (SDATA (this),
644 SDATA (val
) + toindex_byte
,
645 SCHARS (this), 0, 1);
649 /* Copy element by element. */
652 register Lisp_Object elt
;
654 /* Fetch next element of `this' arg into `elt', or break if
655 `this' is exhausted. */
656 if (NILP (this)) break;
658 elt
= XCAR (this), this = XCDR (this);
659 else if (thisindex
>= thisleni
)
661 else if (STRINGP (this))
664 if (STRING_MULTIBYTE (this))
665 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c
, this,
670 c
= SREF (this, thisindex
); thisindex
++;
671 if (some_multibyte
&& !ASCII_CHAR_P (c
))
672 c
= BYTE8_TO_CHAR (c
);
674 XSETFASTINT (elt
, c
);
676 else if (BOOL_VECTOR_P (this))
679 byte
= XBOOL_VECTOR (this)->data
[thisindex
/ BOOL_VECTOR_BITS_PER_CHAR
];
680 if (byte
& (1 << (thisindex
% BOOL_VECTOR_BITS_PER_CHAR
)))
688 elt
= AREF (this, thisindex
);
692 /* Store this element into the result. */
699 else if (VECTORP (val
))
701 ASET (val
, toindex
, elt
);
707 CHECK_CHARACTER (elt
);
710 toindex_byte
+= CHAR_STRING (c
, SDATA (val
) + toindex_byte
);
712 SSET (val
, toindex_byte
++, c
);
718 XSETCDR (prev
, last_tail
);
720 if (num_textprops
> 0)
723 EMACS_INT last_to_end
= -1;
725 for (argnum
= 0; argnum
< num_textprops
; argnum
++)
727 this = args
[textprops
[argnum
].argnum
];
728 props
= text_property_list (this,
730 make_number (SCHARS (this)),
732 /* If successive arguments have properties, be sure that the
733 value of `composition' property be the copy. */
734 if (last_to_end
== textprops
[argnum
].to
)
735 make_composition_value_copy (props
);
736 add_text_properties_from_list (val
, props
,
737 make_number (textprops
[argnum
].to
));
738 last_to_end
= textprops
[argnum
].to
+ SCHARS (this);
746 static Lisp_Object string_char_byte_cache_string
;
747 static EMACS_INT string_char_byte_cache_charpos
;
748 static EMACS_INT string_char_byte_cache_bytepos
;
751 clear_string_char_byte_cache (void)
753 string_char_byte_cache_string
= Qnil
;
756 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
759 string_char_to_byte (Lisp_Object string
, EMACS_INT char_index
)
762 EMACS_INT best_below
, best_below_byte
;
763 EMACS_INT best_above
, best_above_byte
;
765 best_below
= best_below_byte
= 0;
766 best_above
= SCHARS (string
);
767 best_above_byte
= SBYTES (string
);
768 if (best_above
== best_above_byte
)
771 if (EQ (string
, string_char_byte_cache_string
))
773 if (string_char_byte_cache_charpos
< char_index
)
775 best_below
= string_char_byte_cache_charpos
;
776 best_below_byte
= string_char_byte_cache_bytepos
;
780 best_above
= string_char_byte_cache_charpos
;
781 best_above_byte
= string_char_byte_cache_bytepos
;
785 if (char_index
- best_below
< best_above
- char_index
)
787 unsigned char *p
= SDATA (string
) + best_below_byte
;
789 while (best_below
< char_index
)
791 p
+= BYTES_BY_CHAR_HEAD (*p
);
794 i_byte
= p
- SDATA (string
);
798 unsigned char *p
= SDATA (string
) + best_above_byte
;
800 while (best_above
> char_index
)
803 while (!CHAR_HEAD_P (*p
)) p
--;
806 i_byte
= p
- SDATA (string
);
809 string_char_byte_cache_bytepos
= i_byte
;
810 string_char_byte_cache_charpos
= char_index
;
811 string_char_byte_cache_string
= string
;
816 /* Return the character index corresponding to BYTE_INDEX in STRING. */
819 string_byte_to_char (Lisp_Object string
, EMACS_INT byte_index
)
822 EMACS_INT best_below
, best_below_byte
;
823 EMACS_INT best_above
, best_above_byte
;
825 best_below
= best_below_byte
= 0;
826 best_above
= SCHARS (string
);
827 best_above_byte
= SBYTES (string
);
828 if (best_above
== best_above_byte
)
831 if (EQ (string
, string_char_byte_cache_string
))
833 if (string_char_byte_cache_bytepos
< byte_index
)
835 best_below
= string_char_byte_cache_charpos
;
836 best_below_byte
= string_char_byte_cache_bytepos
;
840 best_above
= string_char_byte_cache_charpos
;
841 best_above_byte
= string_char_byte_cache_bytepos
;
845 if (byte_index
- best_below_byte
< best_above_byte
- byte_index
)
847 unsigned char *p
= SDATA (string
) + best_below_byte
;
848 unsigned char *pend
= SDATA (string
) + byte_index
;
852 p
+= BYTES_BY_CHAR_HEAD (*p
);
856 i_byte
= p
- SDATA (string
);
860 unsigned char *p
= SDATA (string
) + best_above_byte
;
861 unsigned char *pbeg
= SDATA (string
) + byte_index
;
866 while (!CHAR_HEAD_P (*p
)) p
--;
870 i_byte
= p
- SDATA (string
);
873 string_char_byte_cache_bytepos
= i_byte
;
874 string_char_byte_cache_charpos
= i
;
875 string_char_byte_cache_string
= string
;
880 /* Convert STRING to a multibyte string. */
883 string_make_multibyte (Lisp_Object string
)
890 if (STRING_MULTIBYTE (string
))
893 nbytes
= count_size_as_multibyte (SDATA (string
),
895 /* If all the chars are ASCII, they won't need any more bytes
896 once converted. In that case, we can return STRING itself. */
897 if (nbytes
== SBYTES (string
))
900 SAFE_ALLOCA (buf
, unsigned char *, nbytes
);
901 copy_text (SDATA (string
), buf
, SBYTES (string
),
904 ret
= make_multibyte_string ((char *) buf
, SCHARS (string
), nbytes
);
911 /* Convert STRING (if unibyte) to a multibyte string without changing
912 the number of characters. Characters 0200 trough 0237 are
913 converted to eight-bit characters. */
916 string_to_multibyte (Lisp_Object string
)
923 if (STRING_MULTIBYTE (string
))
926 nbytes
= count_size_as_multibyte (SDATA (string
), SBYTES (string
));
927 /* If all the chars are ASCII, they won't need any more bytes once
929 if (nbytes
== SBYTES (string
))
930 return make_multibyte_string (SSDATA (string
), nbytes
, nbytes
);
932 SAFE_ALLOCA (buf
, unsigned char *, nbytes
);
933 memcpy (buf
, SDATA (string
), SBYTES (string
));
934 str_to_multibyte (buf
, nbytes
, SBYTES (string
));
936 ret
= make_multibyte_string ((char *) buf
, SCHARS (string
), nbytes
);
943 /* Convert STRING to a single-byte string. */
946 string_make_unibyte (Lisp_Object string
)
953 if (! STRING_MULTIBYTE (string
))
956 nchars
= SCHARS (string
);
958 SAFE_ALLOCA (buf
, unsigned char *, nchars
);
959 copy_text (SDATA (string
), buf
, SBYTES (string
),
962 ret
= make_unibyte_string ((char *) buf
, nchars
);
968 DEFUN ("string-make-multibyte", Fstring_make_multibyte
, Sstring_make_multibyte
,
970 doc
: /* Return the multibyte equivalent of STRING.
971 If STRING is unibyte and contains non-ASCII characters, the function
972 `unibyte-char-to-multibyte' is used to convert each unibyte character
973 to a multibyte character. In this case, the returned string is a
974 newly created string with no text properties. If STRING is multibyte
975 or entirely ASCII, it is returned unchanged. In particular, when
976 STRING is unibyte and entirely ASCII, the returned string is unibyte.
977 \(When the characters are all ASCII, Emacs primitives will treat the
978 string the same way whether it is unibyte or multibyte.) */)
981 CHECK_STRING (string
);
983 return string_make_multibyte (string
);
986 DEFUN ("string-make-unibyte", Fstring_make_unibyte
, Sstring_make_unibyte
,
988 doc
: /* Return the unibyte equivalent of STRING.
989 Multibyte character codes are converted to unibyte according to
990 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
991 If the lookup in the translation table fails, this function takes just
992 the low 8 bits of each character. */)
995 CHECK_STRING (string
);
997 return string_make_unibyte (string
);
1000 DEFUN ("string-as-unibyte", Fstring_as_unibyte
, Sstring_as_unibyte
,
1002 doc
: /* Return a unibyte string with the same individual bytes as STRING.
1003 If STRING is unibyte, the result is STRING itself.
1004 Otherwise it is a newly created string, with no text properties.
1005 If STRING is multibyte and contains a character of charset
1006 `eight-bit', it is converted to the corresponding single byte. */)
1007 (Lisp_Object string
)
1009 CHECK_STRING (string
);
1011 if (STRING_MULTIBYTE (string
))
1013 EMACS_INT bytes
= SBYTES (string
);
1014 unsigned char *str
= (unsigned char *) xmalloc (bytes
);
1016 memcpy (str
, SDATA (string
), bytes
);
1017 bytes
= str_as_unibyte (str
, bytes
);
1018 string
= make_unibyte_string ((char *) str
, bytes
);
1024 DEFUN ("string-as-multibyte", Fstring_as_multibyte
, Sstring_as_multibyte
,
1026 doc
: /* Return a multibyte string with the same individual bytes as STRING.
1027 If STRING is multibyte, the result is STRING itself.
1028 Otherwise it is a newly created string, with no text properties.
1030 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1031 part of a correct utf-8 sequence), it is converted to the corresponding
1032 multibyte character of charset `eight-bit'.
1033 See also `string-to-multibyte'.
1035 Beware, this often doesn't really do what you think it does.
1036 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1037 If you're not sure, whether to use `string-as-multibyte' or
1038 `string-to-multibyte', use `string-to-multibyte'. */)
1039 (Lisp_Object string
)
1041 CHECK_STRING (string
);
1043 if (! STRING_MULTIBYTE (string
))
1045 Lisp_Object new_string
;
1046 EMACS_INT nchars
, nbytes
;
1048 parse_str_as_multibyte (SDATA (string
),
1051 new_string
= make_uninit_multibyte_string (nchars
, nbytes
);
1052 memcpy (SDATA (new_string
), SDATA (string
), SBYTES (string
));
1053 if (nbytes
!= SBYTES (string
))
1054 str_as_multibyte (SDATA (new_string
), nbytes
,
1055 SBYTES (string
), NULL
);
1056 string
= new_string
;
1057 STRING_SET_INTERVALS (string
, NULL_INTERVAL
);
1062 DEFUN ("string-to-multibyte", Fstring_to_multibyte
, Sstring_to_multibyte
,
1064 doc
: /* Return a multibyte string with the same individual chars as STRING.
1065 If STRING is multibyte, the result is STRING itself.
1066 Otherwise it is a newly created string, with no text properties.
1068 If STRING is unibyte and contains an 8-bit byte, it is converted to
1069 the corresponding multibyte character of charset `eight-bit'.
1071 This differs from `string-as-multibyte' by converting each byte of a correct
1072 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1073 correct sequence. */)
1074 (Lisp_Object string
)
1076 CHECK_STRING (string
);
1078 return string_to_multibyte (string
);
1081 DEFUN ("string-to-unibyte", Fstring_to_unibyte
, Sstring_to_unibyte
,
1083 doc
: /* Return a unibyte string with the same individual chars as STRING.
1084 If STRING is unibyte, the result is STRING itself.
1085 Otherwise it is a newly created string, with no text properties,
1086 where each `eight-bit' character is converted to the corresponding byte.
1087 If STRING contains a non-ASCII, non-`eight-bit' character,
1088 an error is signaled. */)
1089 (Lisp_Object string
)
1091 CHECK_STRING (string
);
1093 if (STRING_MULTIBYTE (string
))
1095 EMACS_INT chars
= SCHARS (string
);
1096 unsigned char *str
= (unsigned char *) xmalloc (chars
);
1097 EMACS_INT converted
= str_to_unibyte (SDATA (string
), str
, chars
, 0);
1099 if (converted
< chars
)
1100 error ("Can't convert the %"pI
"dth character to unibyte", converted
);
1101 string
= make_unibyte_string ((char *) str
, chars
);
1108 DEFUN ("copy-alist", Fcopy_alist
, Scopy_alist
, 1, 1, 0,
1109 doc
: /* Return a copy of ALIST.
1110 This is an alist which represents the same mapping from objects to objects,
1111 but does not share the alist structure with ALIST.
1112 The objects mapped (cars and cdrs of elements of the alist)
1113 are shared, however.
1114 Elements of ALIST that are not conses are also shared. */)
1117 register Lisp_Object tem
;
1122 alist
= concat (1, &alist
, Lisp_Cons
, 0);
1123 for (tem
= alist
; CONSP (tem
); tem
= XCDR (tem
))
1125 register Lisp_Object car
;
1129 XSETCAR (tem
, Fcons (XCAR (car
), XCDR (car
)));
1134 DEFUN ("substring", Fsubstring
, Ssubstring
, 2, 3, 0,
1135 doc
: /* Return a new string whose contents are a substring of STRING.
1136 The returned string consists of the characters between index FROM
1137 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1138 zero-indexed: 0 means the first character of STRING. Negative values
1139 are counted from the end of STRING. If TO is nil, the substring runs
1140 to the end of STRING.
1142 The STRING argument may also be a vector. In that case, the return
1143 value is a new vector that contains the elements between index FROM
1144 \(inclusive) and index TO (exclusive) of that vector argument. */)
1145 (Lisp_Object string
, register Lisp_Object from
, Lisp_Object to
)
1149 EMACS_INT size_byte
= 0;
1150 EMACS_INT from_char
, to_char
;
1151 EMACS_INT from_byte
= 0, to_byte
= 0;
1153 CHECK_VECTOR_OR_STRING (string
);
1154 CHECK_NUMBER (from
);
1156 if (STRINGP (string
))
1158 size
= SCHARS (string
);
1159 size_byte
= SBYTES (string
);
1162 size
= ASIZE (string
);
1167 to_byte
= size_byte
;
1173 to_char
= XINT (to
);
1177 if (STRINGP (string
))
1178 to_byte
= string_char_to_byte (string
, to_char
);
1181 from_char
= XINT (from
);
1184 if (STRINGP (string
))
1185 from_byte
= string_char_to_byte (string
, from_char
);
1187 if (!(0 <= from_char
&& from_char
<= to_char
&& to_char
<= size
))
1188 args_out_of_range_3 (string
, make_number (from_char
),
1189 make_number (to_char
));
1191 if (STRINGP (string
))
1193 res
= make_specified_string (SSDATA (string
) + from_byte
,
1194 to_char
- from_char
, to_byte
- from_byte
,
1195 STRING_MULTIBYTE (string
));
1196 copy_text_properties (make_number (from_char
), make_number (to_char
),
1197 string
, make_number (0), res
, Qnil
);
1200 res
= Fvector (to_char
- from_char
, &AREF (string
, from_char
));
1206 DEFUN ("substring-no-properties", Fsubstring_no_properties
, Ssubstring_no_properties
, 1, 3, 0,
1207 doc
: /* Return a substring of STRING, without text properties.
1208 It starts at index FROM and ends before TO.
1209 TO may be nil or omitted; then the substring runs to the end of STRING.
1210 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1211 If FROM or TO is negative, it counts from the end.
1213 With one argument, just copy STRING without its properties. */)
1214 (Lisp_Object string
, register Lisp_Object from
, Lisp_Object to
)
1216 EMACS_INT size
, size_byte
;
1217 EMACS_INT from_char
, to_char
;
1218 EMACS_INT from_byte
, to_byte
;
1220 CHECK_STRING (string
);
1222 size
= SCHARS (string
);
1223 size_byte
= SBYTES (string
);
1226 from_char
= from_byte
= 0;
1229 CHECK_NUMBER (from
);
1230 from_char
= XINT (from
);
1234 from_byte
= string_char_to_byte (string
, from_char
);
1240 to_byte
= size_byte
;
1246 to_char
= XINT (to
);
1250 to_byte
= string_char_to_byte (string
, to_char
);
1253 if (!(0 <= from_char
&& from_char
<= to_char
&& to_char
<= size
))
1254 args_out_of_range_3 (string
, make_number (from_char
),
1255 make_number (to_char
));
1257 return make_specified_string (SSDATA (string
) + from_byte
,
1258 to_char
- from_char
, to_byte
- from_byte
,
1259 STRING_MULTIBYTE (string
));
1262 /* Extract a substring of STRING, giving start and end positions
1263 both in characters and in bytes. */
1266 substring_both (Lisp_Object string
, EMACS_INT from
, EMACS_INT from_byte
,
1267 EMACS_INT to
, EMACS_INT to_byte
)
1272 CHECK_VECTOR_OR_STRING (string
);
1274 size
= STRINGP (string
) ? SCHARS (string
) : ASIZE (string
);
1276 if (!(0 <= from
&& from
<= to
&& to
<= size
))
1277 args_out_of_range_3 (string
, make_number (from
), make_number (to
));
1279 if (STRINGP (string
))
1281 res
= make_specified_string (SSDATA (string
) + from_byte
,
1282 to
- from
, to_byte
- from_byte
,
1283 STRING_MULTIBYTE (string
));
1284 copy_text_properties (make_number (from
), make_number (to
),
1285 string
, make_number (0), res
, Qnil
);
1288 res
= Fvector (to
- from
, &AREF (string
, from
));
1293 DEFUN ("nthcdr", Fnthcdr
, Snthcdr
, 2, 2, 0,
1294 doc
: /* Take cdr N times on LIST, return the result. */)
1295 (Lisp_Object n
, Lisp_Object list
)
1300 for (i
= 0; i
< num
&& !NILP (list
); i
++)
1303 CHECK_LIST_CONS (list
, list
);
1309 DEFUN ("nth", Fnth
, Snth
, 2, 2, 0,
1310 doc
: /* Return the Nth element of LIST.
1311 N counts from zero. If LIST is not that long, nil is returned. */)
1312 (Lisp_Object n
, Lisp_Object list
)
1314 return Fcar (Fnthcdr (n
, list
));
1317 DEFUN ("elt", Felt
, Selt
, 2, 2, 0,
1318 doc
: /* Return element of SEQUENCE at index N. */)
1319 (register Lisp_Object sequence
, Lisp_Object n
)
1322 if (CONSP (sequence
) || NILP (sequence
))
1323 return Fcar (Fnthcdr (n
, sequence
));
1325 /* Faref signals a "not array" error, so check here. */
1326 CHECK_ARRAY (sequence
, Qsequencep
);
1327 return Faref (sequence
, n
);
1330 DEFUN ("member", Fmember
, Smember
, 2, 2, 0,
1331 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1332 The value is actually the tail of LIST whose car is ELT. */)
1333 (register Lisp_Object elt
, Lisp_Object list
)
1335 register Lisp_Object tail
;
1336 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
1338 register Lisp_Object tem
;
1339 CHECK_LIST_CONS (tail
, list
);
1341 if (! NILP (Fequal (elt
, tem
)))
1348 DEFUN ("memq", Fmemq
, Smemq
, 2, 2, 0,
1349 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1350 The value is actually the tail of LIST whose car is ELT. */)
1351 (register Lisp_Object elt
, Lisp_Object list
)
1355 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1359 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1363 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1374 DEFUN ("memql", Fmemql
, Smemql
, 2, 2, 0,
1375 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1376 The value is actually the tail of LIST whose car is ELT. */)
1377 (register Lisp_Object elt
, Lisp_Object list
)
1379 register Lisp_Object tail
;
1382 return Fmemq (elt
, list
);
1384 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
1386 register Lisp_Object tem
;
1387 CHECK_LIST_CONS (tail
, list
);
1389 if (FLOATP (tem
) && internal_equal (elt
, tem
, 0, 0))
1396 DEFUN ("assq", Fassq
, Sassq
, 2, 2, 0,
1397 doc
: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1398 The value is actually the first element of LIST whose car is KEY.
1399 Elements of LIST that are not conses are ignored. */)
1400 (Lisp_Object key
, Lisp_Object list
)
1405 || (CONSP (XCAR (list
))
1406 && EQ (XCAR (XCAR (list
)), key
)))
1411 || (CONSP (XCAR (list
))
1412 && EQ (XCAR (XCAR (list
)), key
)))
1417 || (CONSP (XCAR (list
))
1418 && EQ (XCAR (XCAR (list
)), key
)))
1428 /* Like Fassq but never report an error and do not allow quits.
1429 Use only on lists known never to be circular. */
1432 assq_no_quit (Lisp_Object key
, Lisp_Object list
)
1435 && (!CONSP (XCAR (list
))
1436 || !EQ (XCAR (XCAR (list
)), key
)))
1439 return CAR_SAFE (list
);
1442 DEFUN ("assoc", Fassoc
, Sassoc
, 2, 2, 0,
1443 doc
: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1444 The value is actually the first element of LIST whose car equals KEY. */)
1445 (Lisp_Object key
, Lisp_Object list
)
1452 || (CONSP (XCAR (list
))
1453 && (car
= XCAR (XCAR (list
)),
1454 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1459 || (CONSP (XCAR (list
))
1460 && (car
= XCAR (XCAR (list
)),
1461 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1466 || (CONSP (XCAR (list
))
1467 && (car
= XCAR (XCAR (list
)),
1468 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1478 /* Like Fassoc but never report an error and do not allow quits.
1479 Use only on lists known never to be circular. */
1482 assoc_no_quit (Lisp_Object key
, Lisp_Object list
)
1485 && (!CONSP (XCAR (list
))
1486 || (!EQ (XCAR (XCAR (list
)), key
)
1487 && NILP (Fequal (XCAR (XCAR (list
)), key
)))))
1490 return CONSP (list
) ? XCAR (list
) : Qnil
;
1493 DEFUN ("rassq", Frassq
, Srassq
, 2, 2, 0,
1494 doc
: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1495 The value is actually the first element of LIST whose cdr is KEY. */)
1496 (register Lisp_Object key
, Lisp_Object list
)
1501 || (CONSP (XCAR (list
))
1502 && EQ (XCDR (XCAR (list
)), key
)))
1507 || (CONSP (XCAR (list
))
1508 && EQ (XCDR (XCAR (list
)), key
)))
1513 || (CONSP (XCAR (list
))
1514 && EQ (XCDR (XCAR (list
)), key
)))
1524 DEFUN ("rassoc", Frassoc
, Srassoc
, 2, 2, 0,
1525 doc
: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1526 The value is actually the first element of LIST whose cdr equals KEY. */)
1527 (Lisp_Object key
, Lisp_Object list
)
1534 || (CONSP (XCAR (list
))
1535 && (cdr
= XCDR (XCAR (list
)),
1536 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1541 || (CONSP (XCAR (list
))
1542 && (cdr
= XCDR (XCAR (list
)),
1543 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1548 || (CONSP (XCAR (list
))
1549 && (cdr
= XCDR (XCAR (list
)),
1550 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1560 DEFUN ("delq", Fdelq
, Sdelq
, 2, 2, 0,
1561 doc
: /* Delete by side effect any occurrences of ELT as a member of LIST.
1562 The modified LIST is returned. Comparison is done with `eq'.
1563 If the first member of LIST is ELT, there is no way to remove it by side effect;
1564 therefore, write `(setq foo (delq element foo))'
1565 to be sure of changing the value of `foo'. */)
1566 (register Lisp_Object elt
, Lisp_Object list
)
1568 register Lisp_Object tail
, prev
;
1569 register Lisp_Object tem
;
1573 while (!NILP (tail
))
1575 CHECK_LIST_CONS (tail
, list
);
1582 Fsetcdr (prev
, XCDR (tail
));
1592 DEFUN ("delete", Fdelete
, Sdelete
, 2, 2, 0,
1593 doc
: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1594 SEQ must be a list, a vector, or a string.
1595 The modified SEQ is returned. Comparison is done with `equal'.
1596 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1597 is not a side effect; it is simply using a different sequence.
1598 Therefore, write `(setq foo (delete element foo))'
1599 to be sure of changing the value of `foo'. */)
1600 (Lisp_Object elt
, Lisp_Object seq
)
1606 for (i
= n
= 0; i
< ASIZE (seq
); ++i
)
1607 if (NILP (Fequal (AREF (seq
, i
), elt
)))
1610 if (n
!= ASIZE (seq
))
1612 struct Lisp_Vector
*p
= allocate_vector (n
);
1614 for (i
= n
= 0; i
< ASIZE (seq
); ++i
)
1615 if (NILP (Fequal (AREF (seq
, i
), elt
)))
1616 p
->contents
[n
++] = AREF (seq
, i
);
1618 XSETVECTOR (seq
, p
);
1621 else if (STRINGP (seq
))
1623 EMACS_INT i
, ibyte
, nchars
, nbytes
, cbytes
;
1626 for (i
= nchars
= nbytes
= ibyte
= 0;
1628 ++i
, ibyte
+= cbytes
)
1630 if (STRING_MULTIBYTE (seq
))
1632 c
= STRING_CHAR (SDATA (seq
) + ibyte
);
1633 cbytes
= CHAR_BYTES (c
);
1641 if (!INTEGERP (elt
) || c
!= XINT (elt
))
1648 if (nchars
!= SCHARS (seq
))
1652 tem
= make_uninit_multibyte_string (nchars
, nbytes
);
1653 if (!STRING_MULTIBYTE (seq
))
1654 STRING_SET_UNIBYTE (tem
);
1656 for (i
= nchars
= nbytes
= ibyte
= 0;
1658 ++i
, ibyte
+= cbytes
)
1660 if (STRING_MULTIBYTE (seq
))
1662 c
= STRING_CHAR (SDATA (seq
) + ibyte
);
1663 cbytes
= CHAR_BYTES (c
);
1671 if (!INTEGERP (elt
) || c
!= XINT (elt
))
1673 unsigned char *from
= SDATA (seq
) + ibyte
;
1674 unsigned char *to
= SDATA (tem
) + nbytes
;
1680 for (n
= cbytes
; n
--; )
1690 Lisp_Object tail
, prev
;
1692 for (tail
= seq
, prev
= Qnil
; CONSP (tail
); tail
= XCDR (tail
))
1694 CHECK_LIST_CONS (tail
, seq
);
1696 if (!NILP (Fequal (elt
, XCAR (tail
))))
1701 Fsetcdr (prev
, XCDR (tail
));
1712 DEFUN ("nreverse", Fnreverse
, Snreverse
, 1, 1, 0,
1713 doc
: /* Reverse LIST by modifying cdr pointers.
1714 Return the reversed list. */)
1717 register Lisp_Object prev
, tail
, next
;
1719 if (NILP (list
)) return list
;
1722 while (!NILP (tail
))
1725 CHECK_LIST_CONS (tail
, list
);
1727 Fsetcdr (tail
, prev
);
1734 DEFUN ("reverse", Freverse
, Sreverse
, 1, 1, 0,
1735 doc
: /* Reverse LIST, copying. Return the reversed list.
1736 See also the function `nreverse', which is used more often. */)
1741 for (new = Qnil
; CONSP (list
); list
= XCDR (list
))
1744 new = Fcons (XCAR (list
), new);
1746 CHECK_LIST_END (list
, list
);
1750 Lisp_Object
merge (Lisp_Object org_l1
, Lisp_Object org_l2
, Lisp_Object pred
);
1752 DEFUN ("sort", Fsort
, Ssort
, 2, 2, 0,
1753 doc
: /* Sort LIST, stably, comparing elements using PREDICATE.
1754 Returns the sorted list. LIST is modified by side effects.
1755 PREDICATE is called with two elements of LIST, and should return non-nil
1756 if the first element should sort before the second. */)
1757 (Lisp_Object list
, Lisp_Object predicate
)
1759 Lisp_Object front
, back
;
1760 register Lisp_Object len
, tem
;
1761 struct gcpro gcpro1
, gcpro2
;
1765 len
= Flength (list
);
1766 length
= XINT (len
);
1770 XSETINT (len
, (length
/ 2) - 1);
1771 tem
= Fnthcdr (len
, list
);
1773 Fsetcdr (tem
, Qnil
);
1775 GCPRO2 (front
, back
);
1776 front
= Fsort (front
, predicate
);
1777 back
= Fsort (back
, predicate
);
1779 return merge (front
, back
, predicate
);
1783 merge (Lisp_Object org_l1
, Lisp_Object org_l2
, Lisp_Object pred
)
1786 register Lisp_Object tail
;
1788 register Lisp_Object l1
, l2
;
1789 struct gcpro gcpro1
, gcpro2
, gcpro3
, gcpro4
;
1796 /* It is sufficient to protect org_l1 and org_l2.
1797 When l1 and l2 are updated, we copy the new values
1798 back into the org_ vars. */
1799 GCPRO4 (org_l1
, org_l2
, pred
, value
);
1819 tem
= call2 (pred
, Fcar (l2
), Fcar (l1
));
1835 Fsetcdr (tail
, tem
);
1841 /* This does not check for quits. That is safe since it must terminate. */
1843 DEFUN ("plist-get", Fplist_get
, Splist_get
, 2, 2, 0,
1844 doc
: /* Extract a value from a property list.
1845 PLIST is a property list, which is a list of the form
1846 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1847 corresponding to the given PROP, or nil if PROP is not one of the
1848 properties on the list. This function never signals an error. */)
1849 (Lisp_Object plist
, Lisp_Object prop
)
1851 Lisp_Object tail
, halftail
;
1853 /* halftail is used to detect circular lists. */
1854 tail
= halftail
= plist
;
1855 while (CONSP (tail
) && CONSP (XCDR (tail
)))
1857 if (EQ (prop
, XCAR (tail
)))
1858 return XCAR (XCDR (tail
));
1860 tail
= XCDR (XCDR (tail
));
1861 halftail
= XCDR (halftail
);
1862 if (EQ (tail
, halftail
))
1865 #if 0 /* Unsafe version. */
1866 /* This function can be called asynchronously
1867 (setup_coding_system). Don't QUIT in that case. */
1868 if (!interrupt_input_blocked
)
1876 DEFUN ("get", Fget
, Sget
, 2, 2, 0,
1877 doc
: /* Return the value of SYMBOL's PROPNAME property.
1878 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1879 (Lisp_Object symbol
, Lisp_Object propname
)
1881 CHECK_SYMBOL (symbol
);
1882 return Fplist_get (XSYMBOL (symbol
)->plist
, propname
);
1885 DEFUN ("plist-put", Fplist_put
, Splist_put
, 3, 3, 0,
1886 doc
: /* Change value in PLIST of PROP to VAL.
1887 PLIST is a property list, which is a list of the form
1888 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1889 If PROP is already a property on the list, its value is set to VAL,
1890 otherwise the new PROP VAL pair is added. The new plist is returned;
1891 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1892 The PLIST is modified by side effects. */)
1893 (Lisp_Object plist
, register Lisp_Object prop
, Lisp_Object val
)
1895 register Lisp_Object tail
, prev
;
1896 Lisp_Object newcell
;
1898 for (tail
= plist
; CONSP (tail
) && CONSP (XCDR (tail
));
1899 tail
= XCDR (XCDR (tail
)))
1901 if (EQ (prop
, XCAR (tail
)))
1903 Fsetcar (XCDR (tail
), val
);
1910 newcell
= Fcons (prop
, Fcons (val
, NILP (prev
) ? plist
: XCDR (XCDR (prev
))));
1914 Fsetcdr (XCDR (prev
), newcell
);
1918 DEFUN ("put", Fput
, Sput
, 3, 3, 0,
1919 doc
: /* Store SYMBOL's PROPNAME property with value VALUE.
1920 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1921 (Lisp_Object symbol
, Lisp_Object propname
, Lisp_Object value
)
1923 CHECK_SYMBOL (symbol
);
1924 XSYMBOL (symbol
)->plist
1925 = Fplist_put (XSYMBOL (symbol
)->plist
, propname
, value
);
1929 DEFUN ("lax-plist-get", Flax_plist_get
, Slax_plist_get
, 2, 2, 0,
1930 doc
: /* Extract a value from a property list, comparing with `equal'.
1931 PLIST is a property list, which is a list of the form
1932 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1933 corresponding to the given PROP, or nil if PROP is not
1934 one of the properties on the list. */)
1935 (Lisp_Object plist
, Lisp_Object prop
)
1940 CONSP (tail
) && CONSP (XCDR (tail
));
1941 tail
= XCDR (XCDR (tail
)))
1943 if (! NILP (Fequal (prop
, XCAR (tail
))))
1944 return XCAR (XCDR (tail
));
1949 CHECK_LIST_END (tail
, prop
);
1954 DEFUN ("lax-plist-put", Flax_plist_put
, Slax_plist_put
, 3, 3, 0,
1955 doc
: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1956 PLIST is a property list, which is a list of the form
1957 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1958 If PROP is already a property on the list, its value is set to VAL,
1959 otherwise the new PROP VAL pair is added. The new plist is returned;
1960 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1961 The PLIST is modified by side effects. */)
1962 (Lisp_Object plist
, register Lisp_Object prop
, Lisp_Object val
)
1964 register Lisp_Object tail
, prev
;
1965 Lisp_Object newcell
;
1967 for (tail
= plist
; CONSP (tail
) && CONSP (XCDR (tail
));
1968 tail
= XCDR (XCDR (tail
)))
1970 if (! NILP (Fequal (prop
, XCAR (tail
))))
1972 Fsetcar (XCDR (tail
), val
);
1979 newcell
= Fcons (prop
, Fcons (val
, Qnil
));
1983 Fsetcdr (XCDR (prev
), newcell
);
1987 DEFUN ("eql", Feql
, Seql
, 2, 2, 0,
1988 doc
: /* Return t if the two args are the same Lisp object.
1989 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1990 (Lisp_Object obj1
, Lisp_Object obj2
)
1993 return internal_equal (obj1
, obj2
, 0, 0) ? Qt
: Qnil
;
1995 return EQ (obj1
, obj2
) ? Qt
: Qnil
;
1998 DEFUN ("equal", Fequal
, Sequal
, 2, 2, 0,
1999 doc
: /* Return t if two Lisp objects have similar structure and contents.
2000 They must have the same data type.
2001 Conses are compared by comparing the cars and the cdrs.
2002 Vectors and strings are compared element by element.
2003 Numbers are compared by value, but integers cannot equal floats.
2004 (Use `=' if you want integers and floats to be able to be equal.)
2005 Symbols must match exactly. */)
2006 (register Lisp_Object o1
, Lisp_Object o2
)
2008 return internal_equal (o1
, o2
, 0, 0) ? Qt
: Qnil
;
2011 DEFUN ("equal-including-properties", Fequal_including_properties
, Sequal_including_properties
, 2, 2, 0,
2012 doc
: /* Return t if two Lisp objects have similar structure and contents.
2013 This is like `equal' except that it compares the text properties
2014 of strings. (`equal' ignores text properties.) */)
2015 (register Lisp_Object o1
, Lisp_Object o2
)
2017 return internal_equal (o1
, o2
, 0, 1) ? Qt
: Qnil
;
2020 /* DEPTH is current depth of recursion. Signal an error if it
2022 PROPS, if non-nil, means compare string text properties too. */
2025 internal_equal (register Lisp_Object o1
, register Lisp_Object o2
, int depth
, int props
)
2028 error ("Stack overflow in equal");
2034 if (XTYPE (o1
) != XTYPE (o2
))
2043 d1
= extract_float (o1
);
2044 d2
= extract_float (o2
);
2045 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2046 though they are not =. */
2047 return d1
== d2
|| (d1
!= d1
&& d2
!= d2
);
2051 if (!internal_equal (XCAR (o1
), XCAR (o2
), depth
+ 1, props
))
2058 if (XMISCTYPE (o1
) != XMISCTYPE (o2
))
2062 if (!internal_equal (OVERLAY_START (o1
), OVERLAY_START (o2
),
2064 || !internal_equal (OVERLAY_END (o1
), OVERLAY_END (o2
),
2067 o1
= XOVERLAY (o1
)->plist
;
2068 o2
= XOVERLAY (o2
)->plist
;
2073 return (XMARKER (o1
)->buffer
== XMARKER (o2
)->buffer
2074 && (XMARKER (o1
)->buffer
== 0
2075 || XMARKER (o1
)->bytepos
== XMARKER (o2
)->bytepos
));
2079 case Lisp_Vectorlike
:
2082 EMACS_INT size
= ASIZE (o1
);
2083 /* Pseudovectors have the type encoded in the size field, so this test
2084 actually checks that the objects have the same type as well as the
2086 if (ASIZE (o2
) != size
)
2088 /* Boolvectors are compared much like strings. */
2089 if (BOOL_VECTOR_P (o1
))
2091 if (XBOOL_VECTOR (o1
)->size
!= XBOOL_VECTOR (o2
)->size
)
2093 if (memcmp (XBOOL_VECTOR (o1
)->data
, XBOOL_VECTOR (o2
)->data
,
2094 ((XBOOL_VECTOR (o1
)->size
2095 + BOOL_VECTOR_BITS_PER_CHAR
- 1)
2096 / BOOL_VECTOR_BITS_PER_CHAR
)))
2100 if (WINDOW_CONFIGURATIONP (o1
))
2101 return compare_window_configurations (o1
, o2
, 0);
2103 /* Aside from them, only true vectors, char-tables, compiled
2104 functions, and fonts (font-spec, font-entity, font-object)
2105 are sensible to compare, so eliminate the others now. */
2106 if (size
& PSEUDOVECTOR_FLAG
)
2108 if (!(size
& (PVEC_COMPILED
2109 | PVEC_CHAR_TABLE
| PVEC_SUB_CHAR_TABLE
| PVEC_FONT
)))
2111 size
&= PSEUDOVECTOR_SIZE_MASK
;
2113 for (i
= 0; i
< size
; i
++)
2118 if (!internal_equal (v1
, v2
, depth
+ 1, props
))
2126 if (SCHARS (o1
) != SCHARS (o2
))
2128 if (SBYTES (o1
) != SBYTES (o2
))
2130 if (memcmp (SDATA (o1
), SDATA (o2
), SBYTES (o1
)))
2132 if (props
&& !compare_string_intervals (o1
, o2
))
2144 DEFUN ("fillarray", Ffillarray
, Sfillarray
, 2, 2, 0,
2145 doc
: /* Store each element of ARRAY with ITEM.
2146 ARRAY is a vector, string, char-table, or bool-vector. */)
2147 (Lisp_Object array
, Lisp_Object item
)
2149 register EMACS_INT size
, idx
;
2151 if (VECTORP (array
))
2153 register Lisp_Object
*p
= XVECTOR (array
)->contents
;
2154 size
= ASIZE (array
);
2155 for (idx
= 0; idx
< size
; idx
++)
2158 else if (CHAR_TABLE_P (array
))
2162 for (i
= 0; i
< (1 << CHARTAB_SIZE_BITS_0
); i
++)
2163 XCHAR_TABLE (array
)->contents
[i
] = item
;
2164 XCHAR_TABLE (array
)->defalt
= item
;
2166 else if (STRINGP (array
))
2168 register unsigned char *p
= SDATA (array
);
2170 CHECK_CHARACTER (item
);
2171 charval
= XFASTINT (item
);
2172 size
= SCHARS (array
);
2173 if (STRING_MULTIBYTE (array
))
2175 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
2176 int len
= CHAR_STRING (charval
, str
);
2177 EMACS_INT size_byte
= SBYTES (array
);
2179 if (INT_MULTIPLY_OVERFLOW (SCHARS (array
), len
)
2180 || SCHARS (array
) * len
!= size_byte
)
2181 error ("Attempt to change byte length of a string");
2182 for (idx
= 0; idx
< size_byte
; idx
++)
2183 *p
++ = str
[idx
% len
];
2186 for (idx
= 0; idx
< size
; idx
++)
2189 else if (BOOL_VECTOR_P (array
))
2191 register unsigned char *p
= XBOOL_VECTOR (array
)->data
;
2192 EMACS_INT size_in_chars
;
2193 size
= XBOOL_VECTOR (array
)->size
;
2195 = ((size
+ BOOL_VECTOR_BITS_PER_CHAR
- 1)
2196 / BOOL_VECTOR_BITS_PER_CHAR
);
2200 memset (p
, ! NILP (item
) ? -1 : 0, size_in_chars
);
2202 /* Clear any extraneous bits in the last byte. */
2203 p
[size_in_chars
- 1] &= (1 << (size
% BOOL_VECTOR_BITS_PER_CHAR
)) - 1;
2207 wrong_type_argument (Qarrayp
, array
);
2211 DEFUN ("clear-string", Fclear_string
, Sclear_string
,
2213 doc
: /* Clear the contents of STRING.
2214 This makes STRING unibyte and may change its length. */)
2215 (Lisp_Object string
)
2218 CHECK_STRING (string
);
2219 len
= SBYTES (string
);
2220 memset (SDATA (string
), 0, len
);
2221 STRING_SET_CHARS (string
, len
);
2222 STRING_SET_UNIBYTE (string
);
2228 nconc2 (Lisp_Object s1
, Lisp_Object s2
)
2230 Lisp_Object args
[2];
2233 return Fnconc (2, args
);
2236 DEFUN ("nconc", Fnconc
, Snconc
, 0, MANY
, 0,
2237 doc
: /* Concatenate any number of lists by altering them.
2238 Only the last argument is not altered, and need not be a list.
2239 usage: (nconc &rest LISTS) */)
2240 (ptrdiff_t nargs
, Lisp_Object
*args
)
2243 register Lisp_Object tail
, tem
, val
;
2247 for (argnum
= 0; argnum
< nargs
; argnum
++)
2250 if (NILP (tem
)) continue;
2255 if (argnum
+ 1 == nargs
) break;
2257 CHECK_LIST_CONS (tem
, tem
);
2266 tem
= args
[argnum
+ 1];
2267 Fsetcdr (tail
, tem
);
2269 args
[argnum
+ 1] = tail
;
2275 /* This is the guts of all mapping functions.
2276 Apply FN to each element of SEQ, one by one,
2277 storing the results into elements of VALS, a C vector of Lisp_Objects.
2278 LENI is the length of VALS, which should also be the length of SEQ. */
2281 mapcar1 (EMACS_INT leni
, Lisp_Object
*vals
, Lisp_Object fn
, Lisp_Object seq
)
2283 register Lisp_Object tail
;
2285 register EMACS_INT i
;
2286 struct gcpro gcpro1
, gcpro2
, gcpro3
;
2290 /* Don't let vals contain any garbage when GC happens. */
2291 for (i
= 0; i
< leni
; i
++)
2294 GCPRO3 (dummy
, fn
, seq
);
2296 gcpro1
.nvars
= leni
;
2300 /* We need not explicitly protect `tail' because it is used only on lists, and
2301 1) lists are not relocated and 2) the list is marked via `seq' so will not
2304 if (VECTORP (seq
) || COMPILEDP (seq
))
2306 for (i
= 0; i
< leni
; i
++)
2308 dummy
= call1 (fn
, AREF (seq
, i
));
2313 else if (BOOL_VECTOR_P (seq
))
2315 for (i
= 0; i
< leni
; i
++)
2318 byte
= XBOOL_VECTOR (seq
)->data
[i
/ BOOL_VECTOR_BITS_PER_CHAR
];
2319 dummy
= (byte
& (1 << (i
% BOOL_VECTOR_BITS_PER_CHAR
))) ? Qt
: Qnil
;
2320 dummy
= call1 (fn
, dummy
);
2325 else if (STRINGP (seq
))
2329 for (i
= 0, i_byte
= 0; i
< leni
;)
2332 EMACS_INT i_before
= i
;
2334 FETCH_STRING_CHAR_ADVANCE (c
, seq
, i
, i_byte
);
2335 XSETFASTINT (dummy
, c
);
2336 dummy
= call1 (fn
, dummy
);
2338 vals
[i_before
] = dummy
;
2341 else /* Must be a list, since Flength did not get an error */
2344 for (i
= 0; i
< leni
&& CONSP (tail
); i
++)
2346 dummy
= call1 (fn
, XCAR (tail
));
2356 DEFUN ("mapconcat", Fmapconcat
, Smapconcat
, 3, 3, 0,
2357 doc
: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2358 In between each pair of results, stick in SEPARATOR. Thus, " " as
2359 SEPARATOR results in spaces between the values returned by FUNCTION.
2360 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2361 (Lisp_Object function
, Lisp_Object sequence
, Lisp_Object separator
)
2364 register EMACS_INT leni
;
2366 register Lisp_Object
*args
;
2367 struct gcpro gcpro1
;
2371 len
= Flength (sequence
);
2372 if (CHAR_TABLE_P (sequence
))
2373 wrong_type_argument (Qlistp
, sequence
);
2375 nargs
= leni
+ leni
- 1;
2376 if (nargs
< 0) return empty_unibyte_string
;
2378 SAFE_ALLOCA_LISP (args
, nargs
);
2381 mapcar1 (leni
, args
, function
, sequence
);
2384 for (i
= leni
- 1; i
> 0; i
--)
2385 args
[i
+ i
] = args
[i
];
2387 for (i
= 1; i
< nargs
; i
+= 2)
2388 args
[i
] = separator
;
2390 ret
= Fconcat (nargs
, args
);
2396 DEFUN ("mapcar", Fmapcar
, Smapcar
, 2, 2, 0,
2397 doc
: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2398 The result is a list just as long as SEQUENCE.
2399 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2400 (Lisp_Object function
, Lisp_Object sequence
)
2402 register Lisp_Object len
;
2403 register EMACS_INT leni
;
2404 register Lisp_Object
*args
;
2408 len
= Flength (sequence
);
2409 if (CHAR_TABLE_P (sequence
))
2410 wrong_type_argument (Qlistp
, sequence
);
2411 leni
= XFASTINT (len
);
2413 SAFE_ALLOCA_LISP (args
, leni
);
2415 mapcar1 (leni
, args
, function
, sequence
);
2417 ret
= Flist (leni
, args
);
2423 DEFUN ("mapc", Fmapc
, Smapc
, 2, 2, 0,
2424 doc
: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2425 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2426 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2427 (Lisp_Object function
, Lisp_Object sequence
)
2429 register EMACS_INT leni
;
2431 leni
= XFASTINT (Flength (sequence
));
2432 if (CHAR_TABLE_P (sequence
))
2433 wrong_type_argument (Qlistp
, sequence
);
2434 mapcar1 (leni
, 0, function
, sequence
);
2439 /* This is how C code calls `yes-or-no-p' and allows the user
2442 Anything that calls this function must protect from GC! */
2445 do_yes_or_no_p (Lisp_Object prompt
)
2447 return call1 (intern ("yes-or-no-p"), prompt
);
2450 /* Anything that calls this function must protect from GC! */
2452 DEFUN ("yes-or-no-p", Fyes_or_no_p
, Syes_or_no_p
, 1, 1, 0,
2453 doc
: /* Ask user a yes-or-no question. Return t if answer is yes.
2454 PROMPT is the string to display to ask the question. It should end in
2455 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2457 The user must confirm the answer with RET, and can edit it until it
2460 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2461 is nil, and `use-dialog-box' is non-nil. */)
2462 (Lisp_Object prompt
)
2464 register Lisp_Object ans
;
2465 Lisp_Object args
[2];
2466 struct gcpro gcpro1
;
2468 CHECK_STRING (prompt
);
2471 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2472 && (NILP (last_nonmenu_event
) || CONSP (last_nonmenu_event
))
2476 Lisp_Object pane
, menu
, obj
;
2477 redisplay_preserve_echo_area (4);
2478 pane
= Fcons (Fcons (build_string ("Yes"), Qt
),
2479 Fcons (Fcons (build_string ("No"), Qnil
),
2482 menu
= Fcons (prompt
, pane
);
2483 obj
= Fx_popup_dialog (Qt
, menu
, Qnil
);
2487 #endif /* HAVE_MENUS */
2490 args
[1] = build_string ("(yes or no) ");
2491 prompt
= Fconcat (2, args
);
2497 ans
= Fdowncase (Fread_from_minibuffer (prompt
, Qnil
, Qnil
, Qnil
,
2498 Qyes_or_no_p_history
, Qnil
,
2500 if (SCHARS (ans
) == 3 && !strcmp (SSDATA (ans
), "yes"))
2505 if (SCHARS (ans
) == 2 && !strcmp (SSDATA (ans
), "no"))
2513 message ("Please answer yes or no.");
2514 Fsleep_for (make_number (2), Qnil
);
2518 DEFUN ("load-average", Fload_average
, Sload_average
, 0, 1, 0,
2519 doc
: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2521 Each of the three load averages is multiplied by 100, then converted
2524 When USE-FLOATS is non-nil, floats will be used instead of integers.
2525 These floats are not multiplied by 100.
2527 If the 5-minute or 15-minute load averages are not available, return a
2528 shortened list, containing only those averages which are available.
2530 An error is thrown if the load average can't be obtained. In some
2531 cases making it work would require Emacs being installed setuid or
2532 setgid so that it can read kernel information, and that usually isn't
2534 (Lisp_Object use_floats
)
2537 int loads
= getloadavg (load_ave
, 3);
2538 Lisp_Object ret
= Qnil
;
2541 error ("load-average not implemented for this operating system");
2545 Lisp_Object load
= (NILP (use_floats
)
2546 ? make_number (100.0 * load_ave
[loads
])
2547 : make_float (load_ave
[loads
]));
2548 ret
= Fcons (load
, ret
);
2554 static Lisp_Object Qsubfeatures
;
2556 DEFUN ("featurep", Ffeaturep
, Sfeaturep
, 1, 2, 0,
2557 doc
: /* Return t if FEATURE is present in this Emacs.
2559 Use this to conditionalize execution of lisp code based on the
2560 presence or absence of Emacs or environment extensions.
2561 Use `provide' to declare that a feature is available. This function
2562 looks at the value of the variable `features'. The optional argument
2563 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2564 (Lisp_Object feature
, Lisp_Object subfeature
)
2566 register Lisp_Object tem
;
2567 CHECK_SYMBOL (feature
);
2568 tem
= Fmemq (feature
, Vfeatures
);
2569 if (!NILP (tem
) && !NILP (subfeature
))
2570 tem
= Fmember (subfeature
, Fget (feature
, Qsubfeatures
));
2571 return (NILP (tem
)) ? Qnil
: Qt
;
2574 DEFUN ("provide", Fprovide
, Sprovide
, 1, 2, 0,
2575 doc
: /* Announce that FEATURE is a feature of the current Emacs.
2576 The optional argument SUBFEATURES should be a list of symbols listing
2577 particular subfeatures supported in this version of FEATURE. */)
2578 (Lisp_Object feature
, Lisp_Object subfeatures
)
2580 register Lisp_Object tem
;
2581 CHECK_SYMBOL (feature
);
2582 CHECK_LIST (subfeatures
);
2583 if (!NILP (Vautoload_queue
))
2584 Vautoload_queue
= Fcons (Fcons (make_number (0), Vfeatures
),
2586 tem
= Fmemq (feature
, Vfeatures
);
2588 Vfeatures
= Fcons (feature
, Vfeatures
);
2589 if (!NILP (subfeatures
))
2590 Fput (feature
, Qsubfeatures
, subfeatures
);
2591 LOADHIST_ATTACH (Fcons (Qprovide
, feature
));
2593 /* Run any load-hooks for this file. */
2594 tem
= Fassq (feature
, Vafter_load_alist
);
2596 Fprogn (XCDR (tem
));
2601 /* `require' and its subroutines. */
2603 /* List of features currently being require'd, innermost first. */
2605 static Lisp_Object require_nesting_list
;
2608 require_unwind (Lisp_Object old_value
)
2610 return require_nesting_list
= old_value
;
2613 DEFUN ("require", Frequire
, Srequire
, 1, 3, 0,
2614 doc
: /* If feature FEATURE is not loaded, load it from FILENAME.
2615 If FEATURE is not a member of the list `features', then the feature
2616 is not loaded; so load the file FILENAME.
2617 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2618 and `load' will try to load this name appended with the suffix `.elc' or
2619 `.el', in that order. The name without appended suffix will not be used.
2620 See `get-load-suffixes' for the complete list of suffixes.
2621 If the optional third argument NOERROR is non-nil,
2622 then return nil if the file is not found instead of signaling an error.
2623 Normally the return value is FEATURE.
2624 The normal messages at start and end of loading FILENAME are suppressed. */)
2625 (Lisp_Object feature
, Lisp_Object filename
, Lisp_Object noerror
)
2627 register Lisp_Object tem
;
2628 struct gcpro gcpro1
, gcpro2
;
2629 int from_file
= load_in_progress
;
2631 CHECK_SYMBOL (feature
);
2633 /* Record the presence of `require' in this file
2634 even if the feature specified is already loaded.
2635 But not more than once in any file,
2636 and not when we aren't loading or reading from a file. */
2638 for (tem
= Vcurrent_load_list
; CONSP (tem
); tem
= XCDR (tem
))
2639 if (NILP (XCDR (tem
)) && STRINGP (XCAR (tem
)))
2644 tem
= Fcons (Qrequire
, feature
);
2645 if (NILP (Fmember (tem
, Vcurrent_load_list
)))
2646 LOADHIST_ATTACH (tem
);
2648 tem
= Fmemq (feature
, Vfeatures
);
2652 int count
= SPECPDL_INDEX ();
2655 /* This is to make sure that loadup.el gives a clear picture
2656 of what files are preloaded and when. */
2657 if (! NILP (Vpurify_flag
))
2658 error ("(require %s) while preparing to dump",
2659 SDATA (SYMBOL_NAME (feature
)));
2661 /* A certain amount of recursive `require' is legitimate,
2662 but if we require the same feature recursively 3 times,
2664 tem
= require_nesting_list
;
2665 while (! NILP (tem
))
2667 if (! NILP (Fequal (feature
, XCAR (tem
))))
2672 error ("Recursive `require' for feature `%s'",
2673 SDATA (SYMBOL_NAME (feature
)));
2675 /* Update the list for any nested `require's that occur. */
2676 record_unwind_protect (require_unwind
, require_nesting_list
);
2677 require_nesting_list
= Fcons (feature
, require_nesting_list
);
2679 /* Value saved here is to be restored into Vautoload_queue */
2680 record_unwind_protect (un_autoload
, Vautoload_queue
);
2681 Vautoload_queue
= Qt
;
2683 /* Load the file. */
2684 GCPRO2 (feature
, filename
);
2685 tem
= Fload (NILP (filename
) ? Fsymbol_name (feature
) : filename
,
2686 noerror
, Qt
, Qnil
, (NILP (filename
) ? Qt
: Qnil
));
2689 /* If load failed entirely, return nil. */
2691 return unbind_to (count
, Qnil
);
2693 tem
= Fmemq (feature
, Vfeatures
);
2695 error ("Required feature `%s' was not provided",
2696 SDATA (SYMBOL_NAME (feature
)));
2698 /* Once loading finishes, don't undo it. */
2699 Vautoload_queue
= Qt
;
2700 feature
= unbind_to (count
, feature
);
2706 /* Primitives for work of the "widget" library.
2707 In an ideal world, this section would not have been necessary.
2708 However, lisp function calls being as slow as they are, it turns
2709 out that some functions in the widget library (wid-edit.el) are the
2710 bottleneck of Widget operation. Here is their translation to C,
2711 for the sole reason of efficiency. */
2713 DEFUN ("plist-member", Fplist_member
, Splist_member
, 2, 2, 0,
2714 doc
: /* Return non-nil if PLIST has the property PROP.
2715 PLIST is a property list, which is a list of the form
2716 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2717 Unlike `plist-get', this allows you to distinguish between a missing
2718 property and a property with the value nil.
2719 The value is actually the tail of PLIST whose car is PROP. */)
2720 (Lisp_Object plist
, Lisp_Object prop
)
2722 while (CONSP (plist
) && !EQ (XCAR (plist
), prop
))
2725 plist
= XCDR (plist
);
2726 plist
= CDR (plist
);
2731 DEFUN ("widget-put", Fwidget_put
, Swidget_put
, 3, 3, 0,
2732 doc
: /* In WIDGET, set PROPERTY to VALUE.
2733 The value can later be retrieved with `widget-get'. */)
2734 (Lisp_Object widget
, Lisp_Object property
, Lisp_Object value
)
2736 CHECK_CONS (widget
);
2737 XSETCDR (widget
, Fplist_put (XCDR (widget
), property
, value
));
2741 DEFUN ("widget-get", Fwidget_get
, Swidget_get
, 2, 2, 0,
2742 doc
: /* In WIDGET, get the value of PROPERTY.
2743 The value could either be specified when the widget was created, or
2744 later with `widget-put'. */)
2745 (Lisp_Object widget
, Lisp_Object property
)
2753 CHECK_CONS (widget
);
2754 tmp
= Fplist_member (XCDR (widget
), property
);
2760 tmp
= XCAR (widget
);
2763 widget
= Fget (tmp
, Qwidget_type
);
2767 DEFUN ("widget-apply", Fwidget_apply
, Swidget_apply
, 2, MANY
, 0,
2768 doc
: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2769 ARGS are passed as extra arguments to the function.
2770 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2771 (ptrdiff_t nargs
, Lisp_Object
*args
)
2773 /* This function can GC. */
2774 Lisp_Object newargs
[3];
2775 struct gcpro gcpro1
, gcpro2
;
2778 newargs
[0] = Fwidget_get (args
[0], args
[1]);
2779 newargs
[1] = args
[0];
2780 newargs
[2] = Flist (nargs
- 2, args
+ 2);
2781 GCPRO2 (newargs
[0], newargs
[2]);
2782 result
= Fapply (3, newargs
);
2787 #ifdef HAVE_LANGINFO_CODESET
2788 #include <langinfo.h>
2791 DEFUN ("locale-info", Flocale_info
, Slocale_info
, 1, 1, 0,
2792 doc
: /* Access locale data ITEM for the current C locale, if available.
2793 ITEM should be one of the following:
2795 `codeset', returning the character set as a string (locale item CODESET);
2797 `days', returning a 7-element vector of day names (locale items DAY_n);
2799 `months', returning a 12-element vector of month names (locale items MON_n);
2801 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2802 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2804 If the system can't provide such information through a call to
2805 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2807 See also Info node `(libc)Locales'.
2809 The data read from the system are decoded using `locale-coding-system'. */)
2813 #ifdef HAVE_LANGINFO_CODESET
2815 if (EQ (item
, Qcodeset
))
2817 str
= nl_langinfo (CODESET
);
2818 return build_string (str
);
2821 else if (EQ (item
, Qdays
)) /* e.g. for calendar-day-name-array */
2823 Lisp_Object v
= Fmake_vector (make_number (7), Qnil
);
2824 const int days
[7] = {DAY_1
, DAY_2
, DAY_3
, DAY_4
, DAY_5
, DAY_6
, DAY_7
};
2826 struct gcpro gcpro1
;
2828 synchronize_system_time_locale ();
2829 for (i
= 0; i
< 7; i
++)
2831 str
= nl_langinfo (days
[i
]);
2832 val
= make_unibyte_string (str
, strlen (str
));
2833 /* Fixme: Is this coding system necessarily right, even if
2834 it is consistent with CODESET? If not, what to do? */
2835 Faset (v
, make_number (i
),
2836 code_convert_string_norecord (val
, Vlocale_coding_system
,
2844 else if (EQ (item
, Qmonths
)) /* e.g. for calendar-month-name-array */
2846 Lisp_Object v
= Fmake_vector (make_number (12), Qnil
);
2847 const int months
[12] = {MON_1
, MON_2
, MON_3
, MON_4
, MON_5
, MON_6
, MON_7
,
2848 MON_8
, MON_9
, MON_10
, MON_11
, MON_12
};
2850 struct gcpro gcpro1
;
2852 synchronize_system_time_locale ();
2853 for (i
= 0; i
< 12; i
++)
2855 str
= nl_langinfo (months
[i
]);
2856 val
= make_unibyte_string (str
, strlen (str
));
2857 Faset (v
, make_number (i
),
2858 code_convert_string_norecord (val
, Vlocale_coding_system
, 0));
2864 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2865 but is in the locale files. This could be used by ps-print. */
2867 else if (EQ (item
, Qpaper
))
2869 return list2 (make_number (nl_langinfo (PAPER_WIDTH
)),
2870 make_number (nl_langinfo (PAPER_HEIGHT
)));
2872 #endif /* PAPER_WIDTH */
2873 #endif /* HAVE_LANGINFO_CODESET*/
2877 /* base64 encode/decode functions (RFC 2045).
2878 Based on code from GNU recode. */
2880 #define MIME_LINE_LENGTH 76
2882 #define IS_ASCII(Character) \
2884 #define IS_BASE64(Character) \
2885 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2886 #define IS_BASE64_IGNORABLE(Character) \
2887 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2888 || (Character) == '\f' || (Character) == '\r')
2890 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2891 character or return retval if there are no characters left to
2893 #define READ_QUADRUPLET_BYTE(retval) \
2898 if (nchars_return) \
2899 *nchars_return = nchars; \
2904 while (IS_BASE64_IGNORABLE (c))
2906 /* Table of characters coding the 64 values. */
2907 static const char base64_value_to_char
[64] =
2909 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2910 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2911 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2912 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2913 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2914 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2915 '8', '9', '+', '/' /* 60-63 */
2918 /* Table of base64 values for first 128 characters. */
2919 static const short base64_char_to_value
[128] =
2921 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2922 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2923 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2924 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2925 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2926 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2927 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2928 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2929 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2930 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2931 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2932 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2933 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2936 /* The following diagram shows the logical steps by which three octets
2937 get transformed into four base64 characters.
2939 .--------. .--------. .--------.
2940 |aaaaaabb| |bbbbcccc| |ccdddddd|
2941 `--------' `--------' `--------'
2943 .--------+--------+--------+--------.
2944 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2945 `--------+--------+--------+--------'
2947 .--------+--------+--------+--------.
2948 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2949 `--------+--------+--------+--------'
2951 The octets are divided into 6 bit chunks, which are then encoded into
2952 base64 characters. */
2955 static EMACS_INT
base64_encode_1 (const char *, char *, EMACS_INT
, int, int);
2956 static EMACS_INT
base64_decode_1 (const char *, char *, EMACS_INT
, int,
2959 DEFUN ("base64-encode-region", Fbase64_encode_region
, Sbase64_encode_region
,
2961 doc
: /* Base64-encode the region between BEG and END.
2962 Return the length of the encoded text.
2963 Optional third argument NO-LINE-BREAK means do not break long lines
2964 into shorter lines. */)
2965 (Lisp_Object beg
, Lisp_Object end
, Lisp_Object no_line_break
)
2968 EMACS_INT allength
, length
;
2969 EMACS_INT ibeg
, iend
, encoded_length
;
2970 EMACS_INT old_pos
= PT
;
2973 validate_region (&beg
, &end
);
2975 ibeg
= CHAR_TO_BYTE (XFASTINT (beg
));
2976 iend
= CHAR_TO_BYTE (XFASTINT (end
));
2977 move_gap_both (XFASTINT (beg
), ibeg
);
2979 /* We need to allocate enough room for encoding the text.
2980 We need 33 1/3% more space, plus a newline every 76
2981 characters, and then we round up. */
2982 length
= iend
- ibeg
;
2983 allength
= length
+ length
/3 + 1;
2984 allength
+= allength
/ MIME_LINE_LENGTH
+ 1 + 6;
2986 SAFE_ALLOCA (encoded
, char *, allength
);
2987 encoded_length
= base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg
),
2988 encoded
, length
, NILP (no_line_break
),
2989 !NILP (BVAR (current_buffer
, enable_multibyte_characters
)));
2990 if (encoded_length
> allength
)
2993 if (encoded_length
< 0)
2995 /* The encoding wasn't possible. */
2997 error ("Multibyte character in data for base64 encoding");
3000 /* Now we have encoded the region, so we insert the new contents
3001 and delete the old. (Insert first in order to preserve markers.) */
3002 SET_PT_BOTH (XFASTINT (beg
), ibeg
);
3003 insert (encoded
, encoded_length
);
3005 del_range_byte (ibeg
+ encoded_length
, iend
+ encoded_length
, 1);
3007 /* If point was outside of the region, restore it exactly; else just
3008 move to the beginning of the region. */
3009 if (old_pos
>= XFASTINT (end
))
3010 old_pos
+= encoded_length
- (XFASTINT (end
) - XFASTINT (beg
));
3011 else if (old_pos
> XFASTINT (beg
))
3012 old_pos
= XFASTINT (beg
);
3015 /* We return the length of the encoded text. */
3016 return make_number (encoded_length
);
3019 DEFUN ("base64-encode-string", Fbase64_encode_string
, Sbase64_encode_string
,
3021 doc
: /* Base64-encode STRING and return the result.
3022 Optional second argument NO-LINE-BREAK means do not break long lines
3023 into shorter lines. */)
3024 (Lisp_Object string
, Lisp_Object no_line_break
)
3026 EMACS_INT allength
, length
, encoded_length
;
3028 Lisp_Object encoded_string
;
3031 CHECK_STRING (string
);
3033 /* We need to allocate enough room for encoding the text.
3034 We need 33 1/3% more space, plus a newline every 76
3035 characters, and then we round up. */
3036 length
= SBYTES (string
);
3037 allength
= length
+ length
/3 + 1;
3038 allength
+= allength
/ MIME_LINE_LENGTH
+ 1 + 6;
3040 /* We need to allocate enough room for decoding the text. */
3041 SAFE_ALLOCA (encoded
, char *, allength
);
3043 encoded_length
= base64_encode_1 (SSDATA (string
),
3044 encoded
, length
, NILP (no_line_break
),
3045 STRING_MULTIBYTE (string
));
3046 if (encoded_length
> allength
)
3049 if (encoded_length
< 0)
3051 /* The encoding wasn't possible. */
3053 error ("Multibyte character in data for base64 encoding");
3056 encoded_string
= make_unibyte_string (encoded
, encoded_length
);
3059 return encoded_string
;
3063 base64_encode_1 (const char *from
, char *to
, EMACS_INT length
,
3064 int line_break
, int multibyte
)
3077 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3078 if (CHAR_BYTE8_P (c
))
3079 c
= CHAR_TO_BYTE8 (c
);
3087 /* Wrap line every 76 characters. */
3091 if (counter
< MIME_LINE_LENGTH
/ 4)
3100 /* Process first byte of a triplet. */
3102 *e
++ = base64_value_to_char
[0x3f & c
>> 2];
3103 value
= (0x03 & c
) << 4;
3105 /* Process second byte of a triplet. */
3109 *e
++ = base64_value_to_char
[value
];
3117 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3118 if (CHAR_BYTE8_P (c
))
3119 c
= CHAR_TO_BYTE8 (c
);
3127 *e
++ = base64_value_to_char
[value
| (0x0f & c
>> 4)];
3128 value
= (0x0f & c
) << 2;
3130 /* Process third byte of a triplet. */
3134 *e
++ = base64_value_to_char
[value
];
3141 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3142 if (CHAR_BYTE8_P (c
))
3143 c
= CHAR_TO_BYTE8 (c
);
3151 *e
++ = base64_value_to_char
[value
| (0x03 & c
>> 6)];
3152 *e
++ = base64_value_to_char
[0x3f & c
];
3159 DEFUN ("base64-decode-region", Fbase64_decode_region
, Sbase64_decode_region
,
3161 doc
: /* Base64-decode the region between BEG and END.
3162 Return the length of the decoded text.
3163 If the region can't be decoded, signal an error and don't modify the buffer. */)
3164 (Lisp_Object beg
, Lisp_Object end
)
3166 EMACS_INT ibeg
, iend
, length
, allength
;
3168 EMACS_INT old_pos
= PT
;
3169 EMACS_INT decoded_length
;
3170 EMACS_INT inserted_chars
;
3171 int multibyte
= !NILP (BVAR (current_buffer
, enable_multibyte_characters
));
3174 validate_region (&beg
, &end
);
3176 ibeg
= CHAR_TO_BYTE (XFASTINT (beg
));
3177 iend
= CHAR_TO_BYTE (XFASTINT (end
));
3179 length
= iend
- ibeg
;
3181 /* We need to allocate enough room for decoding the text. If we are
3182 working on a multibyte buffer, each decoded code may occupy at
3184 allength
= multibyte
? length
* 2 : length
;
3185 SAFE_ALLOCA (decoded
, char *, allength
);
3187 move_gap_both (XFASTINT (beg
), ibeg
);
3188 decoded_length
= base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg
),
3190 multibyte
, &inserted_chars
);
3191 if (decoded_length
> allength
)
3194 if (decoded_length
< 0)
3196 /* The decoding wasn't possible. */
3198 error ("Invalid base64 data");
3201 /* Now we have decoded the region, so we insert the new contents
3202 and delete the old. (Insert first in order to preserve markers.) */
3203 TEMP_SET_PT_BOTH (XFASTINT (beg
), ibeg
);
3204 insert_1_both (decoded
, inserted_chars
, decoded_length
, 0, 1, 0);
3207 /* Delete the original text. */
3208 del_range_both (PT
, PT_BYTE
, XFASTINT (end
) + inserted_chars
,
3209 iend
+ decoded_length
, 1);
3211 /* If point was outside of the region, restore it exactly; else just
3212 move to the beginning of the region. */
3213 if (old_pos
>= XFASTINT (end
))
3214 old_pos
+= inserted_chars
- (XFASTINT (end
) - XFASTINT (beg
));
3215 else if (old_pos
> XFASTINT (beg
))
3216 old_pos
= XFASTINT (beg
);
3217 SET_PT (old_pos
> ZV
? ZV
: old_pos
);
3219 return make_number (inserted_chars
);
3222 DEFUN ("base64-decode-string", Fbase64_decode_string
, Sbase64_decode_string
,
3224 doc
: /* Base64-decode STRING and return the result. */)
3225 (Lisp_Object string
)
3228 EMACS_INT length
, decoded_length
;
3229 Lisp_Object decoded_string
;
3232 CHECK_STRING (string
);
3234 length
= SBYTES (string
);
3235 /* We need to allocate enough room for decoding the text. */
3236 SAFE_ALLOCA (decoded
, char *, length
);
3238 /* The decoded result should be unibyte. */
3239 decoded_length
= base64_decode_1 (SSDATA (string
), decoded
, length
,
3241 if (decoded_length
> length
)
3243 else if (decoded_length
>= 0)
3244 decoded_string
= make_unibyte_string (decoded
, decoded_length
);
3246 decoded_string
= Qnil
;
3249 if (!STRINGP (decoded_string
))
3250 error ("Invalid base64 data");
3252 return decoded_string
;
3255 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3256 MULTIBYTE is nonzero, the decoded result should be in multibyte
3257 form. If NCHARS_RETRUN is not NULL, store the number of produced
3258 characters in *NCHARS_RETURN. */
3261 base64_decode_1 (const char *from
, char *to
, EMACS_INT length
,
3262 int multibyte
, EMACS_INT
*nchars_return
)
3264 EMACS_INT i
= 0; /* Used inside READ_QUADRUPLET_BYTE */
3267 unsigned long value
;
3268 EMACS_INT nchars
= 0;
3272 /* Process first byte of a quadruplet. */
3274 READ_QUADRUPLET_BYTE (e
-to
);
3278 value
= base64_char_to_value
[c
] << 18;
3280 /* Process second byte of a quadruplet. */
3282 READ_QUADRUPLET_BYTE (-1);
3286 value
|= base64_char_to_value
[c
] << 12;
3288 c
= (unsigned char) (value
>> 16);
3289 if (multibyte
&& c
>= 128)
3290 e
+= BYTE8_STRING (c
, e
);
3295 /* Process third byte of a quadruplet. */
3297 READ_QUADRUPLET_BYTE (-1);
3301 READ_QUADRUPLET_BYTE (-1);
3310 value
|= base64_char_to_value
[c
] << 6;
3312 c
= (unsigned char) (0xff & value
>> 8);
3313 if (multibyte
&& c
>= 128)
3314 e
+= BYTE8_STRING (c
, e
);
3319 /* Process fourth byte of a quadruplet. */
3321 READ_QUADRUPLET_BYTE (-1);
3328 value
|= base64_char_to_value
[c
];
3330 c
= (unsigned char) (0xff & value
);
3331 if (multibyte
&& c
>= 128)
3332 e
+= BYTE8_STRING (c
, e
);
3341 /***********************************************************************
3343 ***** Hash Tables *****
3345 ***********************************************************************/
3347 /* Implemented by gerd@gnu.org. This hash table implementation was
3348 inspired by CMUCL hash tables. */
3352 1. For small tables, association lists are probably faster than
3353 hash tables because they have lower overhead.
3355 For uses of hash tables where the O(1) behavior of table
3356 operations is not a requirement, it might therefore be a good idea
3357 not to hash. Instead, we could just do a linear search in the
3358 key_and_value vector of the hash table. This could be done
3359 if a `:linear-search t' argument is given to make-hash-table. */
3362 /* The list of all weak hash tables. Don't staticpro this one. */
3364 static struct Lisp_Hash_Table
*weak_hash_tables
;
3366 /* Various symbols. */
3368 static Lisp_Object Qhash_table_p
, Qkey
, Qvalue
;
3369 Lisp_Object Qeq
, Qeql
, Qequal
;
3370 Lisp_Object QCtest
, QCsize
, QCrehash_size
, QCrehash_threshold
, QCweakness
;
3371 static Lisp_Object Qhash_table_test
, Qkey_or_value
, Qkey_and_value
;
3373 /* Function prototypes. */
3375 static struct Lisp_Hash_Table
*check_hash_table (Lisp_Object
);
3376 static ptrdiff_t get_key_arg (Lisp_Object
, ptrdiff_t, Lisp_Object
*, char *);
3377 static void maybe_resize_hash_table (struct Lisp_Hash_Table
*);
3378 static int sweep_weak_table (struct Lisp_Hash_Table
*, int);
3382 /***********************************************************************
3384 ***********************************************************************/
3386 /* If OBJ is a Lisp hash table, return a pointer to its struct
3387 Lisp_Hash_Table. Otherwise, signal an error. */
3389 static struct Lisp_Hash_Table
*
3390 check_hash_table (Lisp_Object obj
)
3392 CHECK_HASH_TABLE (obj
);
3393 return XHASH_TABLE (obj
);
3397 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3401 next_almost_prime (EMACS_INT n
)
3403 for (n
|= 1; ; n
+= 2)
3404 if (n
% 3 != 0 && n
% 5 != 0 && n
% 7 != 0)
3409 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3410 which USED[I] is non-zero. If found at index I in ARGS, set
3411 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3412 0. This function is used to extract a keyword/argument pair from
3413 a DEFUN parameter list. */
3416 get_key_arg (Lisp_Object key
, ptrdiff_t nargs
, Lisp_Object
*args
, char *used
)
3420 for (i
= 1; i
< nargs
; i
++)
3421 if (!used
[i
- 1] && EQ (args
[i
- 1], key
))
3432 /* Return a Lisp vector which has the same contents as VEC but has
3433 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3434 vector that are not copied from VEC are set to INIT. */
3437 larger_vector (Lisp_Object vec
, EMACS_INT new_size
, Lisp_Object init
)
3439 struct Lisp_Vector
*v
;
3440 EMACS_INT i
, old_size
;
3442 xassert (VECTORP (vec
));
3443 old_size
= ASIZE (vec
);
3444 xassert (new_size
>= old_size
);
3446 v
= allocate_vector (new_size
);
3447 memcpy (v
->contents
, XVECTOR (vec
)->contents
, old_size
* sizeof *v
->contents
);
3448 for (i
= old_size
; i
< new_size
; ++i
)
3449 v
->contents
[i
] = init
;
3450 XSETVECTOR (vec
, v
);
3455 /***********************************************************************
3457 ***********************************************************************/
3459 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3460 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3461 KEY2 are the same. */
3464 cmpfn_eql (struct Lisp_Hash_Table
*h
,
3465 Lisp_Object key1
, EMACS_UINT hash1
,
3466 Lisp_Object key2
, EMACS_UINT hash2
)
3468 return (FLOATP (key1
)
3470 && XFLOAT_DATA (key1
) == XFLOAT_DATA (key2
));
3474 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3475 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3476 KEY2 are the same. */
3479 cmpfn_equal (struct Lisp_Hash_Table
*h
,
3480 Lisp_Object key1
, EMACS_UINT hash1
,
3481 Lisp_Object key2
, EMACS_UINT hash2
)
3483 return hash1
== hash2
&& !NILP (Fequal (key1
, key2
));
3487 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3488 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3489 if KEY1 and KEY2 are the same. */
3492 cmpfn_user_defined (struct Lisp_Hash_Table
*h
,
3493 Lisp_Object key1
, EMACS_UINT hash1
,
3494 Lisp_Object key2
, EMACS_UINT hash2
)
3498 Lisp_Object args
[3];
3500 args
[0] = h
->user_cmp_function
;
3503 return !NILP (Ffuncall (3, args
));
3510 /* Value is a hash code for KEY for use in hash table H which uses
3511 `eq' to compare keys. The hash code returned is guaranteed to fit
3512 in a Lisp integer. */
3515 hashfn_eq (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3517 EMACS_UINT hash
= XUINT (key
) ^ XTYPE (key
);
3518 xassert ((hash
& ~INTMASK
) == 0);
3523 /* Value is a hash code for KEY for use in hash table H which uses
3524 `eql' to compare keys. The hash code returned is guaranteed to fit
3525 in a Lisp integer. */
3528 hashfn_eql (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3532 hash
= sxhash (key
, 0);
3534 hash
= XUINT (key
) ^ XTYPE (key
);
3535 xassert ((hash
& ~INTMASK
) == 0);
3540 /* Value is a hash code for KEY for use in hash table H which uses
3541 `equal' to compare keys. The hash code returned is guaranteed to fit
3542 in a Lisp integer. */
3545 hashfn_equal (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3547 EMACS_UINT hash
= sxhash (key
, 0);
3548 xassert ((hash
& ~INTMASK
) == 0);
3553 /* Value is a hash code for KEY for use in hash table H which uses as
3554 user-defined function to compare keys. The hash code returned is
3555 guaranteed to fit in a Lisp integer. */
3558 hashfn_user_defined (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3560 Lisp_Object args
[2], hash
;
3562 args
[0] = h
->user_hash_function
;
3564 hash
= Ffuncall (2, args
);
3565 if (!INTEGERP (hash
))
3566 signal_error ("Invalid hash code returned from user-supplied hash function", hash
);
3567 return XUINT (hash
);
3571 /* Create and initialize a new hash table.
3573 TEST specifies the test the hash table will use to compare keys.
3574 It must be either one of the predefined tests `eq', `eql' or
3575 `equal' or a symbol denoting a user-defined test named TEST with
3576 test and hash functions USER_TEST and USER_HASH.
3578 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3580 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3581 new size when it becomes full is computed by adding REHASH_SIZE to
3582 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3583 table's new size is computed by multiplying its old size with
3586 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3587 be resized when the ratio of (number of entries in the table) /
3588 (table size) is >= REHASH_THRESHOLD.
3590 WEAK specifies the weakness of the table. If non-nil, it must be
3591 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3594 make_hash_table (Lisp_Object test
, Lisp_Object size
, Lisp_Object rehash_size
,
3595 Lisp_Object rehash_threshold
, Lisp_Object weak
,
3596 Lisp_Object user_test
, Lisp_Object user_hash
)
3598 struct Lisp_Hash_Table
*h
;
3600 EMACS_INT index_size
, i
, sz
;
3603 /* Preconditions. */
3604 xassert (SYMBOLP (test
));
3605 xassert (INTEGERP (size
) && XINT (size
) >= 0);
3606 xassert ((INTEGERP (rehash_size
) && XINT (rehash_size
) > 0)
3607 || (FLOATP (rehash_size
) && 1 < XFLOAT_DATA (rehash_size
)));
3608 xassert (FLOATP (rehash_threshold
)
3609 && 0 < XFLOAT_DATA (rehash_threshold
)
3610 && XFLOAT_DATA (rehash_threshold
) <= 1.0);
3612 if (XFASTINT (size
) == 0)
3613 size
= make_number (1);
3615 sz
= XFASTINT (size
);
3616 index_float
= sz
/ XFLOAT_DATA (rehash_threshold
);
3617 index_size
= (index_float
< MOST_POSITIVE_FIXNUM
+ 1
3618 ? next_almost_prime (index_float
)
3619 : MOST_POSITIVE_FIXNUM
+ 1);
3620 if (MOST_POSITIVE_FIXNUM
< max (index_size
, 2 * sz
))
3621 error ("Hash table too large");
3623 /* Allocate a table and initialize it. */
3624 h
= allocate_hash_table ();
3626 /* Initialize hash table slots. */
3628 if (EQ (test
, Qeql
))
3630 h
->cmpfn
= cmpfn_eql
;
3631 h
->hashfn
= hashfn_eql
;
3633 else if (EQ (test
, Qeq
))
3636 h
->hashfn
= hashfn_eq
;
3638 else if (EQ (test
, Qequal
))
3640 h
->cmpfn
= cmpfn_equal
;
3641 h
->hashfn
= hashfn_equal
;
3645 h
->user_cmp_function
= user_test
;
3646 h
->user_hash_function
= user_hash
;
3647 h
->cmpfn
= cmpfn_user_defined
;
3648 h
->hashfn
= hashfn_user_defined
;
3652 h
->rehash_threshold
= rehash_threshold
;
3653 h
->rehash_size
= rehash_size
;
3655 h
->key_and_value
= Fmake_vector (make_number (2 * sz
), Qnil
);
3656 h
->hash
= Fmake_vector (size
, Qnil
);
3657 h
->next
= Fmake_vector (size
, Qnil
);
3658 h
->index
= Fmake_vector (make_number (index_size
), Qnil
);
3660 /* Set up the free list. */
3661 for (i
= 0; i
< sz
- 1; ++i
)
3662 HASH_NEXT (h
, i
) = make_number (i
+ 1);
3663 h
->next_free
= make_number (0);
3665 XSET_HASH_TABLE (table
, h
);
3666 xassert (HASH_TABLE_P (table
));
3667 xassert (XHASH_TABLE (table
) == h
);
3669 /* Maybe add this hash table to the list of all weak hash tables. */
3671 h
->next_weak
= NULL
;
3674 h
->next_weak
= weak_hash_tables
;
3675 weak_hash_tables
= h
;
3682 /* Return a copy of hash table H1. Keys and values are not copied,
3683 only the table itself is. */
3686 copy_hash_table (struct Lisp_Hash_Table
*h1
)
3689 struct Lisp_Hash_Table
*h2
;
3690 struct Lisp_Vector
*next
;
3692 h2
= allocate_hash_table ();
3693 next
= h2
->header
.next
.vector
;
3694 memcpy (h2
, h1
, sizeof *h2
);
3695 h2
->header
.next
.vector
= next
;
3696 h2
->key_and_value
= Fcopy_sequence (h1
->key_and_value
);
3697 h2
->hash
= Fcopy_sequence (h1
->hash
);
3698 h2
->next
= Fcopy_sequence (h1
->next
);
3699 h2
->index
= Fcopy_sequence (h1
->index
);
3700 XSET_HASH_TABLE (table
, h2
);
3702 /* Maybe add this hash table to the list of all weak hash tables. */
3703 if (!NILP (h2
->weak
))
3705 h2
->next_weak
= weak_hash_tables
;
3706 weak_hash_tables
= h2
;
3713 /* Resize hash table H if it's too full. If H cannot be resized
3714 because it's already too large, throw an error. */
3717 maybe_resize_hash_table (struct Lisp_Hash_Table
*h
)
3719 if (NILP (h
->next_free
))
3721 EMACS_INT old_size
= HASH_TABLE_SIZE (h
);
3722 EMACS_INT i
, new_size
, index_size
;
3726 if (INTEGERP (h
->rehash_size
))
3727 new_size
= old_size
+ XFASTINT (h
->rehash_size
);
3730 double float_new_size
= old_size
* XFLOAT_DATA (h
->rehash_size
);
3731 if (float_new_size
< MOST_POSITIVE_FIXNUM
+ 1)
3733 new_size
= float_new_size
;
3734 if (new_size
<= old_size
)
3735 new_size
= old_size
+ 1;
3738 new_size
= MOST_POSITIVE_FIXNUM
+ 1;
3740 index_float
= new_size
/ XFLOAT_DATA (h
->rehash_threshold
);
3741 index_size
= (index_float
< MOST_POSITIVE_FIXNUM
+ 1
3742 ? next_almost_prime (index_float
)
3743 : MOST_POSITIVE_FIXNUM
+ 1);
3744 nsize
= max (index_size
, 2 * new_size
);
3745 if (nsize
> MOST_POSITIVE_FIXNUM
)
3746 error ("Hash table too large to resize");
3748 h
->key_and_value
= larger_vector (h
->key_and_value
, 2 * new_size
, Qnil
);
3749 h
->next
= larger_vector (h
->next
, new_size
, Qnil
);
3750 h
->hash
= larger_vector (h
->hash
, new_size
, Qnil
);
3751 h
->index
= Fmake_vector (make_number (index_size
), Qnil
);
3753 /* Update the free list. Do it so that new entries are added at
3754 the end of the free list. This makes some operations like
3756 for (i
= old_size
; i
< new_size
- 1; ++i
)
3757 HASH_NEXT (h
, i
) = make_number (i
+ 1);
3759 if (!NILP (h
->next_free
))
3761 Lisp_Object last
, next
;
3763 last
= h
->next_free
;
3764 while (next
= HASH_NEXT (h
, XFASTINT (last
)),
3768 HASH_NEXT (h
, XFASTINT (last
)) = make_number (old_size
);
3771 XSETFASTINT (h
->next_free
, old_size
);
3774 for (i
= 0; i
< old_size
; ++i
)
3775 if (!NILP (HASH_HASH (h
, i
)))
3777 EMACS_UINT hash_code
= XUINT (HASH_HASH (h
, i
));
3778 EMACS_INT start_of_bucket
= hash_code
% ASIZE (h
->index
);
3779 HASH_NEXT (h
, i
) = HASH_INDEX (h
, start_of_bucket
);
3780 HASH_INDEX (h
, start_of_bucket
) = make_number (i
);
3786 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3787 the hash code of KEY. Value is the index of the entry in H
3788 matching KEY, or -1 if not found. */
3791 hash_lookup (struct Lisp_Hash_Table
*h
, Lisp_Object key
, EMACS_UINT
*hash
)
3793 EMACS_UINT hash_code
;
3794 EMACS_INT start_of_bucket
;
3797 hash_code
= h
->hashfn (h
, key
);
3801 start_of_bucket
= hash_code
% ASIZE (h
->index
);
3802 idx
= HASH_INDEX (h
, start_of_bucket
);
3804 /* We need not gcpro idx since it's either an integer or nil. */
3807 EMACS_INT i
= XFASTINT (idx
);
3808 if (EQ (key
, HASH_KEY (h
, i
))
3810 && h
->cmpfn (h
, key
, hash_code
,
3811 HASH_KEY (h
, i
), XUINT (HASH_HASH (h
, i
)))))
3813 idx
= HASH_NEXT (h
, i
);
3816 return NILP (idx
) ? -1 : XFASTINT (idx
);
3820 /* Put an entry into hash table H that associates KEY with VALUE.
3821 HASH is a previously computed hash code of KEY.
3822 Value is the index of the entry in H matching KEY. */
3825 hash_put (struct Lisp_Hash_Table
*h
, Lisp_Object key
, Lisp_Object value
,
3828 EMACS_INT start_of_bucket
, i
;
3830 xassert ((hash
& ~INTMASK
) == 0);
3832 /* Increment count after resizing because resizing may fail. */
3833 maybe_resize_hash_table (h
);
3836 /* Store key/value in the key_and_value vector. */
3837 i
= XFASTINT (h
->next_free
);
3838 h
->next_free
= HASH_NEXT (h
, i
);
3839 HASH_KEY (h
, i
) = key
;
3840 HASH_VALUE (h
, i
) = value
;
3842 /* Remember its hash code. */
3843 HASH_HASH (h
, i
) = make_number (hash
);
3845 /* Add new entry to its collision chain. */
3846 start_of_bucket
= hash
% ASIZE (h
->index
);
3847 HASH_NEXT (h
, i
) = HASH_INDEX (h
, start_of_bucket
);
3848 HASH_INDEX (h
, start_of_bucket
) = make_number (i
);
3853 /* Remove the entry matching KEY from hash table H, if there is one. */
3856 hash_remove_from_table (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3858 EMACS_UINT hash_code
;
3859 EMACS_INT start_of_bucket
;
3860 Lisp_Object idx
, prev
;
3862 hash_code
= h
->hashfn (h
, key
);
3863 start_of_bucket
= hash_code
% ASIZE (h
->index
);
3864 idx
= HASH_INDEX (h
, start_of_bucket
);
3867 /* We need not gcpro idx, prev since they're either integers or nil. */
3870 EMACS_INT i
= XFASTINT (idx
);
3872 if (EQ (key
, HASH_KEY (h
, i
))
3874 && h
->cmpfn (h
, key
, hash_code
,
3875 HASH_KEY (h
, i
), XUINT (HASH_HASH (h
, i
)))))
3877 /* Take entry out of collision chain. */
3879 HASH_INDEX (h
, start_of_bucket
) = HASH_NEXT (h
, i
);
3881 HASH_NEXT (h
, XFASTINT (prev
)) = HASH_NEXT (h
, i
);
3883 /* Clear slots in key_and_value and add the slots to
3885 HASH_KEY (h
, i
) = HASH_VALUE (h
, i
) = HASH_HASH (h
, i
) = Qnil
;
3886 HASH_NEXT (h
, i
) = h
->next_free
;
3887 h
->next_free
= make_number (i
);
3889 xassert (h
->count
>= 0);
3895 idx
= HASH_NEXT (h
, i
);
3901 /* Clear hash table H. */
3904 hash_clear (struct Lisp_Hash_Table
*h
)
3908 EMACS_INT i
, size
= HASH_TABLE_SIZE (h
);
3910 for (i
= 0; i
< size
; ++i
)
3912 HASH_NEXT (h
, i
) = i
< size
- 1 ? make_number (i
+ 1) : Qnil
;
3913 HASH_KEY (h
, i
) = Qnil
;
3914 HASH_VALUE (h
, i
) = Qnil
;
3915 HASH_HASH (h
, i
) = Qnil
;
3918 for (i
= 0; i
< ASIZE (h
->index
); ++i
)
3919 ASET (h
->index
, i
, Qnil
);
3921 h
->next_free
= make_number (0);
3928 /************************************************************************
3930 ************************************************************************/
3933 init_weak_hash_tables (void)
3935 weak_hash_tables
= NULL
;
3938 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3939 entries from the table that don't survive the current GC.
3940 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3941 non-zero if anything was marked. */
3944 sweep_weak_table (struct Lisp_Hash_Table
*h
, int remove_entries_p
)
3946 EMACS_INT bucket
, n
;
3949 n
= ASIZE (h
->index
) & ~ARRAY_MARK_FLAG
;
3952 for (bucket
= 0; bucket
< n
; ++bucket
)
3954 Lisp_Object idx
, next
, prev
;
3956 /* Follow collision chain, removing entries that
3957 don't survive this garbage collection. */
3959 for (idx
= HASH_INDEX (h
, bucket
); !NILP (idx
); idx
= next
)
3961 EMACS_INT i
= XFASTINT (idx
);
3962 int key_known_to_survive_p
= survives_gc_p (HASH_KEY (h
, i
));
3963 int value_known_to_survive_p
= survives_gc_p (HASH_VALUE (h
, i
));
3966 if (EQ (h
->weak
, Qkey
))
3967 remove_p
= !key_known_to_survive_p
;
3968 else if (EQ (h
->weak
, Qvalue
))
3969 remove_p
= !value_known_to_survive_p
;
3970 else if (EQ (h
->weak
, Qkey_or_value
))
3971 remove_p
= !(key_known_to_survive_p
|| value_known_to_survive_p
);
3972 else if (EQ (h
->weak
, Qkey_and_value
))
3973 remove_p
= !(key_known_to_survive_p
&& value_known_to_survive_p
);
3977 next
= HASH_NEXT (h
, i
);
3979 if (remove_entries_p
)
3983 /* Take out of collision chain. */
3985 HASH_INDEX (h
, bucket
) = next
;
3987 HASH_NEXT (h
, XFASTINT (prev
)) = next
;
3989 /* Add to free list. */
3990 HASH_NEXT (h
, i
) = h
->next_free
;
3993 /* Clear key, value, and hash. */
3994 HASH_KEY (h
, i
) = HASH_VALUE (h
, i
) = Qnil
;
3995 HASH_HASH (h
, i
) = Qnil
;
4008 /* Make sure key and value survive. */
4009 if (!key_known_to_survive_p
)
4011 mark_object (HASH_KEY (h
, i
));
4015 if (!value_known_to_survive_p
)
4017 mark_object (HASH_VALUE (h
, i
));
4028 /* Remove elements from weak hash tables that don't survive the
4029 current garbage collection. Remove weak tables that don't survive
4030 from Vweak_hash_tables. Called from gc_sweep. */
4033 sweep_weak_hash_tables (void)
4035 struct Lisp_Hash_Table
*h
, *used
, *next
;
4038 /* Mark all keys and values that are in use. Keep on marking until
4039 there is no more change. This is necessary for cases like
4040 value-weak table A containing an entry X -> Y, where Y is used in a
4041 key-weak table B, Z -> Y. If B comes after A in the list of weak
4042 tables, X -> Y might be removed from A, although when looking at B
4043 one finds that it shouldn't. */
4047 for (h
= weak_hash_tables
; h
; h
= h
->next_weak
)
4049 if (h
->header
.size
& ARRAY_MARK_FLAG
)
4050 marked
|= sweep_weak_table (h
, 0);
4055 /* Remove tables and entries that aren't used. */
4056 for (h
= weak_hash_tables
, used
= NULL
; h
; h
= next
)
4058 next
= h
->next_weak
;
4060 if (h
->header
.size
& ARRAY_MARK_FLAG
)
4062 /* TABLE is marked as used. Sweep its contents. */
4064 sweep_weak_table (h
, 1);
4066 /* Add table to the list of used weak hash tables. */
4067 h
->next_weak
= used
;
4072 weak_hash_tables
= used
;
4077 /***********************************************************************
4078 Hash Code Computation
4079 ***********************************************************************/
4081 /* Maximum depth up to which to dive into Lisp structures. */
4083 #define SXHASH_MAX_DEPTH 3
4085 /* Maximum length up to which to take list and vector elements into
4088 #define SXHASH_MAX_LEN 7
4090 /* Combine two integers X and Y for hashing. The result might not fit
4091 into a Lisp integer. */
4093 #define SXHASH_COMBINE(X, Y) \
4094 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4097 /* Hash X, returning a value that fits into a Lisp integer. */
4098 #define SXHASH_REDUCE(X) \
4099 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4101 /* Return a hash for string PTR which has length LEN. The hash value
4102 can be any EMACS_UINT value. */
4105 hash_string (char const *ptr
, ptrdiff_t len
)
4107 char const *p
= ptr
;
4108 char const *end
= p
+ len
;
4110 EMACS_UINT hash
= 0;
4115 hash
= SXHASH_COMBINE (hash
, c
);
4121 /* Return a hash for string PTR which has length LEN. The hash
4122 code returned is guaranteed to fit in a Lisp integer. */
4125 sxhash_string (char const *ptr
, ptrdiff_t len
)
4127 EMACS_UINT hash
= hash_string (ptr
, len
);
4128 return SXHASH_REDUCE (hash
);
4131 /* Return a hash for the floating point value VAL. */
4134 sxhash_float (double val
)
4136 EMACS_UINT hash
= 0;
4138 WORDS_PER_DOUBLE
= (sizeof val
/ sizeof hash
4139 + (sizeof val
% sizeof hash
!= 0))
4143 EMACS_UINT word
[WORDS_PER_DOUBLE
];
4147 memset (&u
.val
+ 1, 0, sizeof u
- sizeof u
.val
);
4148 for (i
= 0; i
< WORDS_PER_DOUBLE
; i
++)
4149 hash
= SXHASH_COMBINE (hash
, u
.word
[i
]);
4150 return SXHASH_REDUCE (hash
);
4153 /* Return a hash for list LIST. DEPTH is the current depth in the
4154 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4157 sxhash_list (Lisp_Object list
, int depth
)
4159 EMACS_UINT hash
= 0;
4162 if (depth
< SXHASH_MAX_DEPTH
)
4164 CONSP (list
) && i
< SXHASH_MAX_LEN
;
4165 list
= XCDR (list
), ++i
)
4167 EMACS_UINT hash2
= sxhash (XCAR (list
), depth
+ 1);
4168 hash
= SXHASH_COMBINE (hash
, hash2
);
4173 EMACS_UINT hash2
= sxhash (list
, depth
+ 1);
4174 hash
= SXHASH_COMBINE (hash
, hash2
);
4177 return SXHASH_REDUCE (hash
);
4181 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4182 the Lisp structure. */
4185 sxhash_vector (Lisp_Object vec
, int depth
)
4187 EMACS_UINT hash
= ASIZE (vec
);
4190 n
= min (SXHASH_MAX_LEN
, ASIZE (vec
));
4191 for (i
= 0; i
< n
; ++i
)
4193 EMACS_UINT hash2
= sxhash (AREF (vec
, i
), depth
+ 1);
4194 hash
= SXHASH_COMBINE (hash
, hash2
);
4197 return SXHASH_REDUCE (hash
);
4200 /* Return a hash for bool-vector VECTOR. */
4203 sxhash_bool_vector (Lisp_Object vec
)
4205 EMACS_UINT hash
= XBOOL_VECTOR (vec
)->size
;
4208 n
= min (SXHASH_MAX_LEN
, XBOOL_VECTOR (vec
)->header
.size
);
4209 for (i
= 0; i
< n
; ++i
)
4210 hash
= SXHASH_COMBINE (hash
, XBOOL_VECTOR (vec
)->data
[i
]);
4212 return SXHASH_REDUCE (hash
);
4216 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4217 structure. Value is an unsigned integer clipped to INTMASK. */
4220 sxhash (Lisp_Object obj
, int depth
)
4224 if (depth
> SXHASH_MAX_DEPTH
)
4227 switch (XTYPE (obj
))
4238 obj
= SYMBOL_NAME (obj
);
4242 hash
= sxhash_string (SSDATA (obj
), SBYTES (obj
));
4245 /* This can be everything from a vector to an overlay. */
4246 case Lisp_Vectorlike
:
4248 /* According to the CL HyperSpec, two arrays are equal only if
4249 they are `eq', except for strings and bit-vectors. In
4250 Emacs, this works differently. We have to compare element
4252 hash
= sxhash_vector (obj
, depth
);
4253 else if (BOOL_VECTOR_P (obj
))
4254 hash
= sxhash_bool_vector (obj
);
4256 /* Others are `equal' if they are `eq', so let's take their
4262 hash
= sxhash_list (obj
, depth
);
4266 hash
= sxhash_float (XFLOAT_DATA (obj
));
4278 /***********************************************************************
4280 ***********************************************************************/
4283 DEFUN ("sxhash", Fsxhash
, Ssxhash
, 1, 1, 0,
4284 doc
: /* Compute a hash code for OBJ and return it as integer. */)
4287 EMACS_UINT hash
= sxhash (obj
, 0);
4288 return make_number (hash
);
4292 DEFUN ("make-hash-table", Fmake_hash_table
, Smake_hash_table
, 0, MANY
, 0,
4293 doc
: /* Create and return a new hash table.
4295 Arguments are specified as keyword/argument pairs. The following
4296 arguments are defined:
4298 :test TEST -- TEST must be a symbol that specifies how to compare
4299 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4300 `equal'. User-supplied test and hash functions can be specified via
4301 `define-hash-table-test'.
4303 :size SIZE -- A hint as to how many elements will be put in the table.
4306 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4307 fills up. If REHASH-SIZE is an integer, increase the size by that
4308 amount. If it is a float, it must be > 1.0, and the new size is the
4309 old size multiplied by that factor. Default is 1.5.
4311 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4312 Resize the hash table when the ratio (number of entries / table size)
4313 is greater than or equal to THRESHOLD. Default is 0.8.
4315 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4316 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4317 returned is a weak table. Key/value pairs are removed from a weak
4318 hash table when there are no non-weak references pointing to their
4319 key, value, one of key or value, or both key and value, depending on
4320 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4323 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4324 (ptrdiff_t nargs
, Lisp_Object
*args
)
4326 Lisp_Object test
, size
, rehash_size
, rehash_threshold
, weak
;
4327 Lisp_Object user_test
, user_hash
;
4331 /* The vector `used' is used to keep track of arguments that
4332 have been consumed. */
4333 used
= (char *) alloca (nargs
* sizeof *used
);
4334 memset (used
, 0, nargs
* sizeof *used
);
4336 /* See if there's a `:test TEST' among the arguments. */
4337 i
= get_key_arg (QCtest
, nargs
, args
, used
);
4338 test
= i
? args
[i
] : Qeql
;
4339 if (!EQ (test
, Qeq
) && !EQ (test
, Qeql
) && !EQ (test
, Qequal
))
4341 /* See if it is a user-defined test. */
4344 prop
= Fget (test
, Qhash_table_test
);
4345 if (!CONSP (prop
) || !CONSP (XCDR (prop
)))
4346 signal_error ("Invalid hash table test", test
);
4347 user_test
= XCAR (prop
);
4348 user_hash
= XCAR (XCDR (prop
));
4351 user_test
= user_hash
= Qnil
;
4353 /* See if there's a `:size SIZE' argument. */
4354 i
= get_key_arg (QCsize
, nargs
, args
, used
);
4355 size
= i
? args
[i
] : Qnil
;
4357 size
= make_number (DEFAULT_HASH_SIZE
);
4358 else if (!INTEGERP (size
) || XINT (size
) < 0)
4359 signal_error ("Invalid hash table size", size
);
4361 /* Look for `:rehash-size SIZE'. */
4362 i
= get_key_arg (QCrehash_size
, nargs
, args
, used
);
4363 rehash_size
= i
? args
[i
] : make_float (DEFAULT_REHASH_SIZE
);
4364 if (! ((INTEGERP (rehash_size
) && 0 < XINT (rehash_size
))
4365 || (FLOATP (rehash_size
) && 1 < XFLOAT_DATA (rehash_size
))))
4366 signal_error ("Invalid hash table rehash size", rehash_size
);
4368 /* Look for `:rehash-threshold THRESHOLD'. */
4369 i
= get_key_arg (QCrehash_threshold
, nargs
, args
, used
);
4370 rehash_threshold
= i
? args
[i
] : make_float (DEFAULT_REHASH_THRESHOLD
);
4371 if (! (FLOATP (rehash_threshold
)
4372 && 0 < XFLOAT_DATA (rehash_threshold
)
4373 && XFLOAT_DATA (rehash_threshold
) <= 1))
4374 signal_error ("Invalid hash table rehash threshold", rehash_threshold
);
4376 /* Look for `:weakness WEAK'. */
4377 i
= get_key_arg (QCweakness
, nargs
, args
, used
);
4378 weak
= i
? args
[i
] : Qnil
;
4380 weak
= Qkey_and_value
;
4383 && !EQ (weak
, Qvalue
)
4384 && !EQ (weak
, Qkey_or_value
)
4385 && !EQ (weak
, Qkey_and_value
))
4386 signal_error ("Invalid hash table weakness", weak
);
4388 /* Now, all args should have been used up, or there's a problem. */
4389 for (i
= 0; i
< nargs
; ++i
)
4391 signal_error ("Invalid argument list", args
[i
]);
4393 return make_hash_table (test
, size
, rehash_size
, rehash_threshold
, weak
,
4394 user_test
, user_hash
);
4398 DEFUN ("copy-hash-table", Fcopy_hash_table
, Scopy_hash_table
, 1, 1, 0,
4399 doc
: /* Return a copy of hash table TABLE. */)
4402 return copy_hash_table (check_hash_table (table
));
4406 DEFUN ("hash-table-count", Fhash_table_count
, Shash_table_count
, 1, 1, 0,
4407 doc
: /* Return the number of elements in TABLE. */)
4410 return make_number (check_hash_table (table
)->count
);
4414 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size
,
4415 Shash_table_rehash_size
, 1, 1, 0,
4416 doc
: /* Return the current rehash size of TABLE. */)
4419 return check_hash_table (table
)->rehash_size
;
4423 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold
,
4424 Shash_table_rehash_threshold
, 1, 1, 0,
4425 doc
: /* Return the current rehash threshold of TABLE. */)
4428 return check_hash_table (table
)->rehash_threshold
;
4432 DEFUN ("hash-table-size", Fhash_table_size
, Shash_table_size
, 1, 1, 0,
4433 doc
: /* Return the size of TABLE.
4434 The size can be used as an argument to `make-hash-table' to create
4435 a hash table than can hold as many elements as TABLE holds
4436 without need for resizing. */)
4439 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4440 return make_number (HASH_TABLE_SIZE (h
));
4444 DEFUN ("hash-table-test", Fhash_table_test
, Shash_table_test
, 1, 1, 0,
4445 doc
: /* Return the test TABLE uses. */)
4448 return check_hash_table (table
)->test
;
4452 DEFUN ("hash-table-weakness", Fhash_table_weakness
, Shash_table_weakness
,
4454 doc
: /* Return the weakness of TABLE. */)
4457 return check_hash_table (table
)->weak
;
4461 DEFUN ("hash-table-p", Fhash_table_p
, Shash_table_p
, 1, 1, 0,
4462 doc
: /* Return t if OBJ is a Lisp hash table object. */)
4465 return HASH_TABLE_P (obj
) ? Qt
: Qnil
;
4469 DEFUN ("clrhash", Fclrhash
, Sclrhash
, 1, 1, 0,
4470 doc
: /* Clear hash table TABLE and return it. */)
4473 hash_clear (check_hash_table (table
));
4474 /* Be compatible with XEmacs. */
4479 DEFUN ("gethash", Fgethash
, Sgethash
, 2, 3, 0,
4480 doc
: /* Look up KEY in TABLE and return its associated value.
4481 If KEY is not found, return DFLT which defaults to nil. */)
4482 (Lisp_Object key
, Lisp_Object table
, Lisp_Object dflt
)
4484 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4485 EMACS_INT i
= hash_lookup (h
, key
, NULL
);
4486 return i
>= 0 ? HASH_VALUE (h
, i
) : dflt
;
4490 DEFUN ("puthash", Fputhash
, Sputhash
, 3, 3, 0,
4491 doc
: /* Associate KEY with VALUE in hash table TABLE.
4492 If KEY is already present in table, replace its current value with
4493 VALUE. In any case, return VALUE. */)
4494 (Lisp_Object key
, Lisp_Object value
, Lisp_Object table
)
4496 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4500 i
= hash_lookup (h
, key
, &hash
);
4502 HASH_VALUE (h
, i
) = value
;
4504 hash_put (h
, key
, value
, hash
);
4510 DEFUN ("remhash", Fremhash
, Sremhash
, 2, 2, 0,
4511 doc
: /* Remove KEY from TABLE. */)
4512 (Lisp_Object key
, Lisp_Object table
)
4514 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4515 hash_remove_from_table (h
, key
);
4520 DEFUN ("maphash", Fmaphash
, Smaphash
, 2, 2, 0,
4521 doc
: /* Call FUNCTION for all entries in hash table TABLE.
4522 FUNCTION is called with two arguments, KEY and VALUE. */)
4523 (Lisp_Object function
, Lisp_Object table
)
4525 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4526 Lisp_Object args
[3];
4529 for (i
= 0; i
< HASH_TABLE_SIZE (h
); ++i
)
4530 if (!NILP (HASH_HASH (h
, i
)))
4533 args
[1] = HASH_KEY (h
, i
);
4534 args
[2] = HASH_VALUE (h
, i
);
4542 DEFUN ("define-hash-table-test", Fdefine_hash_table_test
,
4543 Sdefine_hash_table_test
, 3, 3, 0,
4544 doc
: /* Define a new hash table test with name NAME, a symbol.
4546 In hash tables created with NAME specified as test, use TEST to
4547 compare keys, and HASH for computing hash codes of keys.
4549 TEST must be a function taking two arguments and returning non-nil if
4550 both arguments are the same. HASH must be a function taking one
4551 argument and return an integer that is the hash code of the argument.
4552 Hash code computation should use the whole value range of integers,
4553 including negative integers. */)
4554 (Lisp_Object name
, Lisp_Object test
, Lisp_Object hash
)
4556 return Fput (name
, Qhash_table_test
, list2 (test
, hash
));
4561 /************************************************************************
4562 MD5, SHA-1, and SHA-2
4563 ************************************************************************/
4570 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4573 secure_hash (Lisp_Object algorithm
, Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object coding_system
, Lisp_Object noerror
, Lisp_Object binary
)
4577 EMACS_INT size_byte
= 0;
4578 EMACS_INT start_char
= 0, end_char
= 0;
4579 EMACS_INT start_byte
= 0, end_byte
= 0;
4580 register EMACS_INT b
, e
;
4581 register struct buffer
*bp
;
4584 void *(*hash_func
) (const char *, size_t, void *);
4587 CHECK_SYMBOL (algorithm
);
4589 if (STRINGP (object
))
4591 if (NILP (coding_system
))
4593 /* Decide the coding-system to encode the data with. */
4595 if (STRING_MULTIBYTE (object
))
4596 /* use default, we can't guess correct value */
4597 coding_system
= preferred_coding_system ();
4599 coding_system
= Qraw_text
;
4602 if (NILP (Fcoding_system_p (coding_system
)))
4604 /* Invalid coding system. */
4606 if (!NILP (noerror
))
4607 coding_system
= Qraw_text
;
4609 xsignal1 (Qcoding_system_error
, coding_system
);
4612 if (STRING_MULTIBYTE (object
))
4613 object
= code_convert_string (object
, coding_system
, Qnil
, 1, 0, 1);
4615 size
= SCHARS (object
);
4616 size_byte
= SBYTES (object
);
4620 CHECK_NUMBER (start
);
4622 start_char
= XINT (start
);
4627 start_byte
= string_char_to_byte (object
, start_char
);
4633 end_byte
= size_byte
;
4639 end_char
= XINT (end
);
4644 end_byte
= string_char_to_byte (object
, end_char
);
4647 if (!(0 <= start_char
&& start_char
<= end_char
&& end_char
<= size
))
4648 args_out_of_range_3 (object
, make_number (start_char
),
4649 make_number (end_char
));
4653 struct buffer
*prev
= current_buffer
;
4655 record_unwind_protect (Fset_buffer
, Fcurrent_buffer ());
4657 CHECK_BUFFER (object
);
4659 bp
= XBUFFER (object
);
4660 if (bp
!= current_buffer
)
4661 set_buffer_internal (bp
);
4667 CHECK_NUMBER_COERCE_MARKER (start
);
4675 CHECK_NUMBER_COERCE_MARKER (end
);
4680 temp
= b
, b
= e
, e
= temp
;
4682 if (!(BEGV
<= b
&& e
<= ZV
))
4683 args_out_of_range (start
, end
);
4685 if (NILP (coding_system
))
4687 /* Decide the coding-system to encode the data with.
4688 See fileio.c:Fwrite-region */
4690 if (!NILP (Vcoding_system_for_write
))
4691 coding_system
= Vcoding_system_for_write
;
4694 int force_raw_text
= 0;
4696 coding_system
= BVAR (XBUFFER (object
), buffer_file_coding_system
);
4697 if (NILP (coding_system
)
4698 || NILP (Flocal_variable_p (Qbuffer_file_coding_system
, Qnil
)))
4700 coding_system
= Qnil
;
4701 if (NILP (BVAR (current_buffer
, enable_multibyte_characters
)))
4705 if (NILP (coding_system
) && !NILP (Fbuffer_file_name(object
)))
4707 /* Check file-coding-system-alist. */
4708 Lisp_Object args
[4], val
;
4710 args
[0] = Qwrite_region
; args
[1] = start
; args
[2] = end
;
4711 args
[3] = Fbuffer_file_name(object
);
4712 val
= Ffind_operation_coding_system (4, args
);
4713 if (CONSP (val
) && !NILP (XCDR (val
)))
4714 coding_system
= XCDR (val
);
4717 if (NILP (coding_system
)
4718 && !NILP (BVAR (XBUFFER (object
), buffer_file_coding_system
)))
4720 /* If we still have not decided a coding system, use the
4721 default value of buffer-file-coding-system. */
4722 coding_system
= BVAR (XBUFFER (object
), buffer_file_coding_system
);
4726 && !NILP (Ffboundp (Vselect_safe_coding_system_function
)))
4727 /* Confirm that VAL can surely encode the current region. */
4728 coding_system
= call4 (Vselect_safe_coding_system_function
,
4729 make_number (b
), make_number (e
),
4730 coding_system
, Qnil
);
4733 coding_system
= Qraw_text
;
4736 if (NILP (Fcoding_system_p (coding_system
)))
4738 /* Invalid coding system. */
4740 if (!NILP (noerror
))
4741 coding_system
= Qraw_text
;
4743 xsignal1 (Qcoding_system_error
, coding_system
);
4747 object
= make_buffer_string (b
, e
, 0);
4748 if (prev
!= current_buffer
)
4749 set_buffer_internal (prev
);
4750 /* Discard the unwind protect for recovering the current
4754 if (STRING_MULTIBYTE (object
))
4755 object
= code_convert_string (object
, coding_system
, Qnil
, 1, 0, 0);
4758 if (EQ (algorithm
, Qmd5
))
4760 digest_size
= MD5_DIGEST_SIZE
;
4761 hash_func
= md5_buffer
;
4763 else if (EQ (algorithm
, Qsha1
))
4765 digest_size
= SHA1_DIGEST_SIZE
;
4766 hash_func
= sha1_buffer
;
4768 else if (EQ (algorithm
, Qsha224
))
4770 digest_size
= SHA224_DIGEST_SIZE
;
4771 hash_func
= sha224_buffer
;
4773 else if (EQ (algorithm
, Qsha256
))
4775 digest_size
= SHA256_DIGEST_SIZE
;
4776 hash_func
= sha256_buffer
;
4778 else if (EQ (algorithm
, Qsha384
))
4780 digest_size
= SHA384_DIGEST_SIZE
;
4781 hash_func
= sha384_buffer
;
4783 else if (EQ (algorithm
, Qsha512
))
4785 digest_size
= SHA512_DIGEST_SIZE
;
4786 hash_func
= sha512_buffer
;
4789 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm
)));
4791 /* allocate 2 x digest_size so that it can be re-used to hold the
4793 digest
= make_uninit_string (digest_size
* 2);
4795 hash_func (SSDATA (object
) + start_byte
,
4796 SBYTES (object
) - (size_byte
- end_byte
),
4801 unsigned char *p
= SDATA (digest
);
4802 for (i
= digest_size
- 1; i
>= 0; i
--)
4804 static char const hexdigit
[16] = "0123456789abcdef";
4806 p
[2 * i
] = hexdigit
[p_i
>> 4];
4807 p
[2 * i
+ 1] = hexdigit
[p_i
& 0xf];
4812 return make_unibyte_string (SSDATA (digest
), digest_size
);
4815 DEFUN ("md5", Fmd5
, Smd5
, 1, 5, 0,
4816 doc
: /* Return MD5 message digest of OBJECT, a buffer or string.
4818 A message digest is a cryptographic checksum of a document, and the
4819 algorithm to calculate it is defined in RFC 1321.
4821 The two optional arguments START and END are character positions
4822 specifying for which part of OBJECT the message digest should be
4823 computed. If nil or omitted, the digest is computed for the whole
4826 The MD5 message digest is computed from the result of encoding the
4827 text in a coding system, not directly from the internal Emacs form of
4828 the text. The optional fourth argument CODING-SYSTEM specifies which
4829 coding system to encode the text with. It should be the same coding
4830 system that you used or will use when actually writing the text into a
4833 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4834 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4835 system would be chosen by default for writing this text into a file.
4837 If OBJECT is a string, the most preferred coding system (see the
4838 command `prefer-coding-system') is used.
4840 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4841 guesswork fails. Normally, an error is signaled in such case. */)
4842 (Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object coding_system
, Lisp_Object noerror
)
4844 return secure_hash (Qmd5
, object
, start
, end
, coding_system
, noerror
, Qnil
);
4847 DEFUN ("secure-hash", Fsecure_hash
, Ssecure_hash
, 2, 5, 0,
4848 doc
: /* Return the secure hash of an OBJECT.
4849 ALGORITHM is a symbol: md5, sha1, sha224, sha256, sha384 or sha512.
4850 OBJECT is either a string or a buffer.
4851 Optional arguments START and END are character positions specifying
4852 which portion of OBJECT for computing the hash. If BINARY is non-nil,
4853 return a string in binary form. */)
4854 (Lisp_Object algorithm
, Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object binary
)
4856 return secure_hash (algorithm
, object
, start
, end
, Qnil
, Qnil
, binary
);
4862 DEFSYM (Qmd5
, "md5");
4863 DEFSYM (Qsha1
, "sha1");
4864 DEFSYM (Qsha224
, "sha224");
4865 DEFSYM (Qsha256
, "sha256");
4866 DEFSYM (Qsha384
, "sha384");
4867 DEFSYM (Qsha512
, "sha512");
4869 /* Hash table stuff. */
4870 DEFSYM (Qhash_table_p
, "hash-table-p");
4872 DEFSYM (Qeql
, "eql");
4873 DEFSYM (Qequal
, "equal");
4874 DEFSYM (QCtest
, ":test");
4875 DEFSYM (QCsize
, ":size");
4876 DEFSYM (QCrehash_size
, ":rehash-size");
4877 DEFSYM (QCrehash_threshold
, ":rehash-threshold");
4878 DEFSYM (QCweakness
, ":weakness");
4879 DEFSYM (Qkey
, "key");
4880 DEFSYM (Qvalue
, "value");
4881 DEFSYM (Qhash_table_test
, "hash-table-test");
4882 DEFSYM (Qkey_or_value
, "key-or-value");
4883 DEFSYM (Qkey_and_value
, "key-and-value");
4886 defsubr (&Smake_hash_table
);
4887 defsubr (&Scopy_hash_table
);
4888 defsubr (&Shash_table_count
);
4889 defsubr (&Shash_table_rehash_size
);
4890 defsubr (&Shash_table_rehash_threshold
);
4891 defsubr (&Shash_table_size
);
4892 defsubr (&Shash_table_test
);
4893 defsubr (&Shash_table_weakness
);
4894 defsubr (&Shash_table_p
);
4895 defsubr (&Sclrhash
);
4896 defsubr (&Sgethash
);
4897 defsubr (&Sputhash
);
4898 defsubr (&Sremhash
);
4899 defsubr (&Smaphash
);
4900 defsubr (&Sdefine_hash_table_test
);
4902 DEFSYM (Qstring_lessp
, "string-lessp");
4903 DEFSYM (Qprovide
, "provide");
4904 DEFSYM (Qrequire
, "require");
4905 DEFSYM (Qyes_or_no_p_history
, "yes-or-no-p-history");
4906 DEFSYM (Qcursor_in_echo_area
, "cursor-in-echo-area");
4907 DEFSYM (Qwidget_type
, "widget-type");
4909 staticpro (&string_char_byte_cache_string
);
4910 string_char_byte_cache_string
= Qnil
;
4912 require_nesting_list
= Qnil
;
4913 staticpro (&require_nesting_list
);
4915 Fset (Qyes_or_no_p_history
, Qnil
);
4917 DEFVAR_LISP ("features", Vfeatures
,
4918 doc
: /* A list of symbols which are the features of the executing Emacs.
4919 Used by `featurep' and `require', and altered by `provide'. */);
4920 Vfeatures
= Fcons (intern_c_string ("emacs"), Qnil
);
4921 DEFSYM (Qsubfeatures
, "subfeatures");
4923 #ifdef HAVE_LANGINFO_CODESET
4924 DEFSYM (Qcodeset
, "codeset");
4925 DEFSYM (Qdays
, "days");
4926 DEFSYM (Qmonths
, "months");
4927 DEFSYM (Qpaper
, "paper");
4928 #endif /* HAVE_LANGINFO_CODESET */
4930 DEFVAR_BOOL ("use-dialog-box", use_dialog_box
,
4931 doc
: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4932 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4933 invoked by mouse clicks and mouse menu items.
4935 On some platforms, file selection dialogs are also enabled if this is
4939 DEFVAR_BOOL ("use-file-dialog", use_file_dialog
,
4940 doc
: /* *Non-nil means mouse commands use a file dialog to ask for files.
4941 This applies to commands from menus and tool bar buttons even when
4942 they are initiated from the keyboard. If `use-dialog-box' is nil,
4943 that disables the use of a file dialog, regardless of the value of
4945 use_file_dialog
= 1;
4947 defsubr (&Sidentity
);
4950 defsubr (&Ssafe_length
);
4951 defsubr (&Sstring_bytes
);
4952 defsubr (&Sstring_equal
);
4953 defsubr (&Scompare_strings
);
4954 defsubr (&Sstring_lessp
);
4957 defsubr (&Svconcat
);
4958 defsubr (&Scopy_sequence
);
4959 defsubr (&Sstring_make_multibyte
);
4960 defsubr (&Sstring_make_unibyte
);
4961 defsubr (&Sstring_as_multibyte
);
4962 defsubr (&Sstring_as_unibyte
);
4963 defsubr (&Sstring_to_multibyte
);
4964 defsubr (&Sstring_to_unibyte
);
4965 defsubr (&Scopy_alist
);
4966 defsubr (&Ssubstring
);
4967 defsubr (&Ssubstring_no_properties
);
4980 defsubr (&Snreverse
);
4981 defsubr (&Sreverse
);
4983 defsubr (&Splist_get
);
4985 defsubr (&Splist_put
);
4987 defsubr (&Slax_plist_get
);
4988 defsubr (&Slax_plist_put
);
4991 defsubr (&Sequal_including_properties
);
4992 defsubr (&Sfillarray
);
4993 defsubr (&Sclear_string
);
4997 defsubr (&Smapconcat
);
4998 defsubr (&Syes_or_no_p
);
4999 defsubr (&Sload_average
);
5000 defsubr (&Sfeaturep
);
5001 defsubr (&Srequire
);
5002 defsubr (&Sprovide
);
5003 defsubr (&Splist_member
);
5004 defsubr (&Swidget_put
);
5005 defsubr (&Swidget_get
);
5006 defsubr (&Swidget_apply
);
5007 defsubr (&Sbase64_encode_region
);
5008 defsubr (&Sbase64_decode_region
);
5009 defsubr (&Sbase64_encode_string
);
5010 defsubr (&Sbase64_decode_string
);
5012 defsubr (&Ssecure_hash
);
5013 defsubr (&Slocale_info
);