* simple.el (kill-visual-line): Rewrite (Bug#3437). Don't try to
[emacs.git] / lisp / simple.el
blob44d3ae5040db1bd6b23309d901cd6e56b341a298
1 ;;; simple.el --- basic editing commands for Emacs
3 ;; Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 ;; 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 ;; Free Software Foundation, Inc.
7 ;; Maintainer: FSF
8 ;; Keywords: internal
10 ;; This file is part of GNU Emacs.
12 ;; GNU Emacs is free software: you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation, either version 3 of the License, or
15 ;; (at your option) any later version.
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
25 ;;; Commentary:
27 ;; A grab-bag of basic Emacs commands not specifically related to some
28 ;; major mode or to file-handling.
30 ;;; Code:
32 ;; This is for lexical-let in apply-partially.
33 (eval-when-compile (require 'cl))
35 (declare-function widget-convert "wid-edit" (type &rest args))
36 (declare-function shell-mode "shell" ())
38 (defvar compilation-current-error)
40 (defcustom idle-update-delay 0.5
41 "Idle time delay before updating various things on the screen.
42 Various Emacs features that update auxiliary information when point moves
43 wait this many seconds after Emacs becomes idle before doing an update."
44 :type 'number
45 :group 'display
46 :version "22.1")
48 (defgroup killing nil
49 "Killing and yanking commands."
50 :group 'editing)
52 (defgroup paren-matching nil
53 "Highlight (un)matching of parens and expressions."
54 :group 'matching)
56 (defun get-next-valid-buffer (list &optional buffer visible-ok frame)
57 "Search LIST for a valid buffer to display in FRAME.
58 Return nil when all buffers in LIST are undesirable for display,
59 otherwise return the first suitable buffer in LIST.
61 Buffers not visible in windows are preferred to visible buffers,
62 unless VISIBLE-OK is non-nil.
63 If the optional argument FRAME is nil, it defaults to the selected frame.
64 If BUFFER is non-nil, ignore occurrences of that buffer in LIST."
65 ;; This logic is more or less copied from other-buffer.
66 (setq frame (or frame (selected-frame)))
67 (let ((pred (frame-parameter frame 'buffer-predicate))
68 found buf)
69 (while (and (not found) list)
70 (setq buf (car list))
71 (if (and (not (eq buffer buf))
72 (buffer-live-p buf)
73 (or (null pred) (funcall pred buf))
74 (not (eq (aref (buffer-name buf) 0) ?\s))
75 (or visible-ok (null (get-buffer-window buf 'visible))))
76 (setq found buf)
77 (setq list (cdr list))))
78 (car list)))
80 (defun last-buffer (&optional buffer visible-ok frame)
81 "Return the last buffer in FRAME's buffer list.
82 If BUFFER is the last buffer, return the preceding buffer instead.
83 Buffers not visible in windows are preferred to visible buffers,
84 unless optional argument VISIBLE-OK is non-nil.
85 Optional third argument FRAME nil or omitted means use the
86 selected frame's buffer list.
87 If no such buffer exists, return the buffer `*scratch*', creating
88 it if necessary."
89 (setq frame (or frame (selected-frame)))
90 (or (get-next-valid-buffer (nreverse (buffer-list frame))
91 buffer visible-ok frame)
92 (get-buffer "*scratch*")
93 (let ((scratch (get-buffer-create "*scratch*")))
94 (set-buffer-major-mode scratch)
95 scratch)))
97 (defun next-buffer ()
98 "Switch to the next buffer in cyclic order."
99 (interactive)
100 (let ((buffer (current-buffer)))
101 (switch-to-buffer (other-buffer buffer t))
102 (bury-buffer buffer)))
104 (defun previous-buffer ()
105 "Switch to the previous buffer in cyclic order."
106 (interactive)
107 (switch-to-buffer (last-buffer (current-buffer) t)))
110 ;;; next-error support framework
112 (defgroup next-error nil
113 "`next-error' support framework."
114 :group 'compilation
115 :version "22.1")
117 (defface next-error
118 '((t (:inherit region)))
119 "Face used to highlight next error locus."
120 :group 'next-error
121 :version "22.1")
123 (defcustom next-error-highlight 0.5
124 "Highlighting of locations in selected source buffers.
125 If a number, highlight the locus in `next-error' face for the given time
126 in seconds, or until the next command is executed.
127 If t, highlight the locus until the next command is executed, or until
128 some other locus replaces it.
129 If nil, don't highlight the locus in the source buffer.
130 If `fringe-arrow', indicate the locus by the fringe arrow."
131 :type '(choice (number :tag "Highlight for specified time")
132 (const :tag "Semipermanent highlighting" t)
133 (const :tag "No highlighting" nil)
134 (const :tag "Fringe arrow" fringe-arrow))
135 :group 'next-error
136 :version "22.1")
138 (defcustom next-error-highlight-no-select 0.5
139 "Highlighting of locations in `next-error-no-select'.
140 If number, highlight the locus in `next-error' face for given time in seconds.
141 If t, highlight the locus indefinitely until some other locus replaces it.
142 If nil, don't highlight the locus in the source buffer.
143 If `fringe-arrow', indicate the locus by the fringe arrow."
144 :type '(choice (number :tag "Highlight for specified time")
145 (const :tag "Semipermanent highlighting" t)
146 (const :tag "No highlighting" nil)
147 (const :tag "Fringe arrow" fringe-arrow))
148 :group 'next-error
149 :version "22.1")
151 (defcustom next-error-recenter nil
152 "Display the line in the visited source file recentered as specified.
153 If non-nil, the value is passed directly to `recenter'."
154 :type '(choice (integer :tag "Line to recenter to")
155 (const :tag "Center of window" (4))
156 (const :tag "No recentering" nil))
157 :group 'next-error
158 :version "23.1")
160 (defcustom next-error-hook nil
161 "List of hook functions run by `next-error' after visiting source file."
162 :type 'hook
163 :group 'next-error)
165 (defvar next-error-highlight-timer nil)
167 (defvar next-error-overlay-arrow-position nil)
168 (put 'next-error-overlay-arrow-position 'overlay-arrow-string "=>")
169 (add-to-list 'overlay-arrow-variable-list 'next-error-overlay-arrow-position)
171 (defvar next-error-last-buffer nil
172 "The most recent `next-error' buffer.
173 A buffer becomes most recent when its compilation, grep, or
174 similar mode is started, or when it is used with \\[next-error]
175 or \\[compile-goto-error].")
177 (defvar next-error-function nil
178 "Function to use to find the next error in the current buffer.
179 The function is called with 2 parameters:
180 ARG is an integer specifying by how many errors to move.
181 RESET is a boolean which, if non-nil, says to go back to the beginning
182 of the errors before moving.
183 Major modes providing compile-like functionality should set this variable
184 to indicate to `next-error' that this is a candidate buffer and how
185 to navigate in it.")
187 (make-variable-buffer-local 'next-error-function)
189 (defsubst next-error-buffer-p (buffer
190 &optional avoid-current
191 extra-test-inclusive
192 extra-test-exclusive)
193 "Test if BUFFER is a `next-error' capable buffer.
195 If AVOID-CURRENT is non-nil, treat the current buffer
196 as an absolute last resort only.
198 The function EXTRA-TEST-INCLUSIVE, if non-nil, is called in each buffer
199 that normally would not qualify. If it returns t, the buffer
200 in question is treated as usable.
202 The function EXTRA-TEST-EXCLUSIVE, if non-nil, is called in each buffer
203 that would normally be considered usable. If it returns nil,
204 that buffer is rejected."
205 (and (buffer-name buffer) ;First make sure it's live.
206 (not (and avoid-current (eq buffer (current-buffer))))
207 (with-current-buffer buffer
208 (if next-error-function ; This is the normal test.
209 ;; Optionally reject some buffers.
210 (if extra-test-exclusive
211 (funcall extra-test-exclusive)
213 ;; Optionally accept some other buffers.
214 (and extra-test-inclusive
215 (funcall extra-test-inclusive))))))
217 (defun next-error-find-buffer (&optional avoid-current
218 extra-test-inclusive
219 extra-test-exclusive)
220 "Return a `next-error' capable buffer.
222 If AVOID-CURRENT is non-nil, treat the current buffer
223 as an absolute last resort only.
225 The function EXTRA-TEST-INCLUSIVE, if non-nil, is called in each buffer
226 that normally would not qualify. If it returns t, the buffer
227 in question is treated as usable.
229 The function EXTRA-TEST-EXCLUSIVE, if non-nil, is called in each buffer
230 that would normally be considered usable. If it returns nil,
231 that buffer is rejected."
233 ;; 1. If one window on the selected frame displays such buffer, return it.
234 (let ((window-buffers
235 (delete-dups
236 (delq nil (mapcar (lambda (w)
237 (if (next-error-buffer-p
238 (window-buffer w)
239 avoid-current
240 extra-test-inclusive extra-test-exclusive)
241 (window-buffer w)))
242 (window-list))))))
243 (if (eq (length window-buffers) 1)
244 (car window-buffers)))
245 ;; 2. If next-error-last-buffer is an acceptable buffer, use that.
246 (if (and next-error-last-buffer
247 (next-error-buffer-p next-error-last-buffer avoid-current
248 extra-test-inclusive extra-test-exclusive))
249 next-error-last-buffer)
250 ;; 3. If the current buffer is acceptable, choose it.
251 (if (next-error-buffer-p (current-buffer) avoid-current
252 extra-test-inclusive extra-test-exclusive)
253 (current-buffer))
254 ;; 4. Look for any acceptable buffer.
255 (let ((buffers (buffer-list)))
256 (while (and buffers
257 (not (next-error-buffer-p
258 (car buffers) avoid-current
259 extra-test-inclusive extra-test-exclusive)))
260 (setq buffers (cdr buffers)))
261 (car buffers))
262 ;; 5. Use the current buffer as a last resort if it qualifies,
263 ;; even despite AVOID-CURRENT.
264 (and avoid-current
265 (next-error-buffer-p (current-buffer) nil
266 extra-test-inclusive extra-test-exclusive)
267 (progn
268 (message "This is the only buffer with error message locations")
269 (current-buffer)))
270 ;; 6. Give up.
271 (error "No buffers contain error message locations")))
273 (defun next-error (&optional arg reset)
274 "Visit next `next-error' message and corresponding source code.
276 If all the error messages parsed so far have been processed already,
277 the message buffer is checked for new ones.
279 A prefix ARG specifies how many error messages to move;
280 negative means move back to previous error messages.
281 Just \\[universal-argument] as a prefix means reparse the error message buffer
282 and start at the first error.
284 The RESET argument specifies that we should restart from the beginning.
286 \\[next-error] normally uses the most recently started
287 compilation, grep, or occur buffer. It can also operate on any
288 buffer with output from the \\[compile], \\[grep] commands, or,
289 more generally, on any buffer in Compilation mode or with
290 Compilation Minor mode enabled, or any buffer in which
291 `next-error-function' is bound to an appropriate function.
292 To specify use of a particular buffer for error messages, type
293 \\[next-error] in that buffer when it is the only one displayed
294 in the current frame.
296 Once \\[next-error] has chosen the buffer for error messages, it
297 runs `next-error-hook' with `run-hooks', and stays with that buffer
298 until you use it in some other buffer which uses Compilation mode
299 or Compilation Minor mode.
301 See variables `compilation-parse-errors-function' and
302 \`compilation-error-regexp-alist' for customization ideas."
303 (interactive "P")
304 (if (consp arg) (setq reset t arg nil))
305 (when (setq next-error-last-buffer (next-error-find-buffer))
306 ;; we know here that next-error-function is a valid symbol we can funcall
307 (with-current-buffer next-error-last-buffer
308 (funcall next-error-function (prefix-numeric-value arg) reset)
309 (when next-error-recenter
310 (recenter next-error-recenter))
311 (run-hooks 'next-error-hook))))
313 (defun next-error-internal ()
314 "Visit the source code corresponding to the `next-error' message at point."
315 (setq next-error-last-buffer (current-buffer))
316 ;; we know here that next-error-function is a valid symbol we can funcall
317 (with-current-buffer next-error-last-buffer
318 (funcall next-error-function 0 nil)
319 (when next-error-recenter
320 (recenter next-error-recenter))
321 (run-hooks 'next-error-hook)))
323 (defalias 'goto-next-locus 'next-error)
324 (defalias 'next-match 'next-error)
326 (defun previous-error (&optional n)
327 "Visit previous `next-error' message and corresponding source code.
329 Prefix arg N says how many error messages to move backwards (or
330 forwards, if negative).
332 This operates on the output from the \\[compile] and \\[grep] commands."
333 (interactive "p")
334 (next-error (- (or n 1))))
336 (defun first-error (&optional n)
337 "Restart at the first error.
338 Visit corresponding source code.
339 With prefix arg N, visit the source code of the Nth error.
340 This operates on the output from the \\[compile] command, for instance."
341 (interactive "p")
342 (next-error n t))
344 (defun next-error-no-select (&optional n)
345 "Move point to the next error in the `next-error' buffer and highlight match.
346 Prefix arg N says how many error messages to move forwards (or
347 backwards, if negative).
348 Finds and highlights the source line like \\[next-error], but does not
349 select the source buffer."
350 (interactive "p")
351 (let ((next-error-highlight next-error-highlight-no-select))
352 (next-error n))
353 (pop-to-buffer next-error-last-buffer))
355 (defun previous-error-no-select (&optional n)
356 "Move point to the previous error in the `next-error' buffer and highlight match.
357 Prefix arg N says how many error messages to move backwards (or
358 forwards, if negative).
359 Finds and highlights the source line like \\[previous-error], but does not
360 select the source buffer."
361 (interactive "p")
362 (next-error-no-select (- (or n 1))))
364 ;;; Internal variable for `next-error-follow-mode-post-command-hook'.
365 (defvar next-error-follow-last-line nil)
367 (define-minor-mode next-error-follow-minor-mode
368 "Minor mode for compilation, occur and diff modes.
369 When turned on, cursor motion in the compilation, grep, occur or diff
370 buffer causes automatic display of the corresponding source code
371 location."
372 :group 'next-error :init-value nil :lighter " Fol"
373 (if (not next-error-follow-minor-mode)
374 (remove-hook 'post-command-hook 'next-error-follow-mode-post-command-hook t)
375 (add-hook 'post-command-hook 'next-error-follow-mode-post-command-hook nil t)
376 (make-local-variable 'next-error-follow-last-line)))
378 ;;; Used as a `post-command-hook' by `next-error-follow-mode'
379 ;;; for the *Compilation* *grep* and *Occur* buffers.
380 (defun next-error-follow-mode-post-command-hook ()
381 (unless (equal next-error-follow-last-line (line-number-at-pos))
382 (setq next-error-follow-last-line (line-number-at-pos))
383 (condition-case nil
384 (let ((compilation-context-lines nil))
385 (setq compilation-current-error (point))
386 (next-error-no-select 0))
387 (error t))))
392 (defun fundamental-mode ()
393 "Major mode not specialized for anything in particular.
394 Other major modes are defined by comparison with this one."
395 (interactive)
396 (kill-all-local-variables)
397 (unless delay-mode-hooks
398 (run-hooks 'after-change-major-mode-hook)))
400 ;; Special major modes to view specially formatted data rather than files.
402 (defvar special-mode-map
403 (let ((map (make-sparse-keymap)))
404 (suppress-keymap map)
405 (define-key map "q" 'quit-window)
406 (define-key map " " 'scroll-up)
407 (define-key map "\C-?" 'scroll-down)
408 (define-key map "?" 'describe-mode)
409 (define-key map ">" 'end-of-buffer)
410 (define-key map "<" 'beginning-of-buffer)
411 (define-key map "g" 'revert-buffer)
412 map))
414 (put 'special-mode 'mode-class 'special)
415 (define-derived-mode special-mode nil "Special"
416 "Parent major mode from which special major modes should inherit."
417 (setq buffer-read-only t))
419 ;; Making and deleting lines.
421 (defvar hard-newline (propertize "\n" 'hard t 'rear-nonsticky '(hard)))
423 (defun newline (&optional arg)
424 "Insert a newline, and move to left margin of the new line if it's blank.
425 If `use-hard-newlines' is non-nil, the newline is marked with the
426 text-property `hard'.
427 With ARG, insert that many newlines.
428 Call `auto-fill-function' if the current column number is greater
429 than the value of `fill-column' and ARG is nil."
430 (interactive "*P")
431 (barf-if-buffer-read-only)
432 ;; Inserting a newline at the end of a line produces better redisplay in
433 ;; try_window_id than inserting at the beginning of a line, and the textual
434 ;; result is the same. So, if we're at beginning of line, pretend to be at
435 ;; the end of the previous line.
436 (let ((flag (and (not (bobp))
437 (bolp)
438 ;; Make sure no functions want to be told about
439 ;; the range of the changes.
440 (not after-change-functions)
441 (not before-change-functions)
442 ;; Make sure there are no markers here.
443 (not (buffer-has-markers-at (1- (point))))
444 (not (buffer-has-markers-at (point)))
445 ;; Make sure no text properties want to know
446 ;; where the change was.
447 (not (get-char-property (1- (point)) 'modification-hooks))
448 (not (get-char-property (1- (point)) 'insert-behind-hooks))
449 (or (eobp)
450 (not (get-char-property (point) 'insert-in-front-hooks)))
451 ;; Make sure the newline before point isn't intangible.
452 (not (get-char-property (1- (point)) 'intangible))
453 ;; Make sure the newline before point isn't read-only.
454 (not (get-char-property (1- (point)) 'read-only))
455 ;; Make sure the newline before point isn't invisible.
456 (not (get-char-property (1- (point)) 'invisible))
457 ;; Make sure the newline before point has the same
458 ;; properties as the char before it (if any).
459 (< (or (previous-property-change (point)) -2)
460 (- (point) 2))))
461 (was-page-start (and (bolp)
462 (looking-at page-delimiter)))
463 (beforepos (point)))
464 (if flag (backward-char 1))
465 ;; Call self-insert so that auto-fill, abbrev expansion etc. happens.
466 ;; Set last-command-event to tell self-insert what to insert.
467 (let ((last-command-event ?\n)
468 ;; Don't auto-fill if we have a numeric argument.
469 ;; Also not if flag is true (it would fill wrong line);
470 ;; there is no need to since we're at BOL.
471 (auto-fill-function (if (or arg flag) nil auto-fill-function)))
472 (unwind-protect
473 (self-insert-command (prefix-numeric-value arg))
474 ;; If we get an error in self-insert-command, put point at right place.
475 (if flag (forward-char 1))))
476 ;; Even if we did *not* get an error, keep that forward-char;
477 ;; all further processing should apply to the newline that the user
478 ;; thinks he inserted.
480 ;; Mark the newline(s) `hard'.
481 (if use-hard-newlines
482 (set-hard-newline-properties
483 (- (point) (prefix-numeric-value arg)) (point)))
484 ;; If the newline leaves the previous line blank,
485 ;; and we have a left margin, delete that from the blank line.
486 (or flag
487 (save-excursion
488 (goto-char beforepos)
489 (beginning-of-line)
490 (and (looking-at "[ \t]$")
491 (> (current-left-margin) 0)
492 (delete-region (point) (progn (end-of-line) (point))))))
493 ;; Indent the line after the newline, except in one case:
494 ;; when we added the newline at the beginning of a line
495 ;; which starts a page.
496 (or was-page-start
497 (move-to-left-margin nil t)))
498 nil)
500 (defun set-hard-newline-properties (from to)
501 (let ((sticky (get-text-property from 'rear-nonsticky)))
502 (put-text-property from to 'hard 't)
503 ;; If rear-nonsticky is not "t", add 'hard to rear-nonsticky list
504 (if (and (listp sticky) (not (memq 'hard sticky)))
505 (put-text-property from (point) 'rear-nonsticky
506 (cons 'hard sticky)))))
508 (defun open-line (n)
509 "Insert a newline and leave point before it.
510 If there is a fill prefix and/or a `left-margin', insert them
511 on the new line if the line would have been blank.
512 With arg N, insert N newlines."
513 (interactive "*p")
514 (let* ((do-fill-prefix (and fill-prefix (bolp)))
515 (do-left-margin (and (bolp) (> (current-left-margin) 0)))
516 (loc (point))
517 ;; Don't expand an abbrev before point.
518 (abbrev-mode nil))
519 (newline n)
520 (goto-char loc)
521 (while (> n 0)
522 (cond ((bolp)
523 (if do-left-margin (indent-to (current-left-margin)))
524 (if do-fill-prefix (insert-and-inherit fill-prefix))))
525 (forward-line 1)
526 (setq n (1- n)))
527 (goto-char loc)
528 (end-of-line)))
530 (defun split-line (&optional arg)
531 "Split current line, moving portion beyond point vertically down.
532 If the current line starts with `fill-prefix', insert it on the new
533 line as well. With prefix ARG, don't insert `fill-prefix' on new line.
535 When called from Lisp code, ARG may be a prefix string to copy."
536 (interactive "*P")
537 (skip-chars-forward " \t")
538 (let* ((col (current-column))
539 (pos (point))
540 ;; What prefix should we check for (nil means don't).
541 (prefix (cond ((stringp arg) arg)
542 (arg nil)
543 (t fill-prefix)))
544 ;; Does this line start with it?
545 (have-prfx (and prefix
546 (save-excursion
547 (beginning-of-line)
548 (looking-at (regexp-quote prefix))))))
549 (newline 1)
550 (if have-prfx (insert-and-inherit prefix))
551 (indent-to col 0)
552 (goto-char pos)))
554 (defun delete-indentation (&optional arg)
555 "Join this line to previous and fix up whitespace at join.
556 If there is a fill prefix, delete it from the beginning of this line.
557 With argument, join this line to following line."
558 (interactive "*P")
559 (beginning-of-line)
560 (if arg (forward-line 1))
561 (if (eq (preceding-char) ?\n)
562 (progn
563 (delete-region (point) (1- (point)))
564 ;; If the second line started with the fill prefix,
565 ;; delete the prefix.
566 (if (and fill-prefix
567 (<= (+ (point) (length fill-prefix)) (point-max))
568 (string= fill-prefix
569 (buffer-substring (point)
570 (+ (point) (length fill-prefix)))))
571 (delete-region (point) (+ (point) (length fill-prefix))))
572 (fixup-whitespace))))
574 (defalias 'join-line #'delete-indentation) ; easier to find
576 (defun delete-blank-lines ()
577 "On blank line, delete all surrounding blank lines, leaving just one.
578 On isolated blank line, delete that one.
579 On nonblank line, delete any immediately following blank lines."
580 (interactive "*")
581 (let (thisblank singleblank)
582 (save-excursion
583 (beginning-of-line)
584 (setq thisblank (looking-at "[ \t]*$"))
585 ;; Set singleblank if there is just one blank line here.
586 (setq singleblank
587 (and thisblank
588 (not (looking-at "[ \t]*\n[ \t]*$"))
589 (or (bobp)
590 (progn (forward-line -1)
591 (not (looking-at "[ \t]*$")))))))
592 ;; Delete preceding blank lines, and this one too if it's the only one.
593 (if thisblank
594 (progn
595 (beginning-of-line)
596 (if singleblank (forward-line 1))
597 (delete-region (point)
598 (if (re-search-backward "[^ \t\n]" nil t)
599 (progn (forward-line 1) (point))
600 (point-min)))))
601 ;; Delete following blank lines, unless the current line is blank
602 ;; and there are no following blank lines.
603 (if (not (and thisblank singleblank))
604 (save-excursion
605 (end-of-line)
606 (forward-line 1)
607 (delete-region (point)
608 (if (re-search-forward "[^ \t\n]" nil t)
609 (progn (beginning-of-line) (point))
610 (point-max)))))
611 ;; Handle the special case where point is followed by newline and eob.
612 ;; Delete the line, leaving point at eob.
613 (if (looking-at "^[ \t]*\n\\'")
614 (delete-region (point) (point-max)))))
616 (defun delete-trailing-whitespace ()
617 "Delete all the trailing whitespace across the current buffer.
618 All whitespace after the last non-whitespace character in a line is deleted.
619 This respects narrowing, created by \\[narrow-to-region] and friends.
620 A formfeed is not considered whitespace by this function."
621 (interactive "*")
622 (save-match-data
623 (save-excursion
624 (goto-char (point-min))
625 (while (re-search-forward "\\s-$" nil t)
626 (skip-syntax-backward "-" (save-excursion (forward-line 0) (point)))
627 ;; Don't delete formfeeds, even if they are considered whitespace.
628 (save-match-data
629 (if (looking-at ".*\f")
630 (goto-char (match-end 0))))
631 (delete-region (point) (match-end 0))))))
633 (defun newline-and-indent ()
634 "Insert a newline, then indent according to major mode.
635 Indentation is done using the value of `indent-line-function'.
636 In programming language modes, this is the same as TAB.
637 In some text modes, where TAB inserts a tab, this command indents to the
638 column specified by the function `current-left-margin'."
639 (interactive "*")
640 (delete-horizontal-space t)
641 (newline)
642 (indent-according-to-mode))
644 (defun reindent-then-newline-and-indent ()
645 "Reindent current line, insert newline, then indent the new line.
646 Indentation of both lines is done according to the current major mode,
647 which means calling the current value of `indent-line-function'.
648 In programming language modes, this is the same as TAB.
649 In some text modes, where TAB inserts a tab, this indents to the
650 column specified by the function `current-left-margin'."
651 (interactive "*")
652 (let ((pos (point)))
653 ;; Be careful to insert the newline before indenting the line.
654 ;; Otherwise, the indentation might be wrong.
655 (newline)
656 (save-excursion
657 (goto-char pos)
658 ;; We are at EOL before the call to indent-according-to-mode, and
659 ;; after it we usually are as well, but not always. We tried to
660 ;; address it with `save-excursion' but that uses a normal marker
661 ;; whereas we need `move after insertion', so we do the save/restore
662 ;; by hand.
663 (setq pos (copy-marker pos t))
664 (indent-according-to-mode)
665 (goto-char pos)
666 ;; Remove the trailing white-space after indentation because
667 ;; indentation may introduce the whitespace.
668 (delete-horizontal-space t))
669 (indent-according-to-mode)))
671 (defun quoted-insert (arg)
672 "Read next input character and insert it.
673 This is useful for inserting control characters.
674 With argument, insert ARG copies of the character.
676 If the first character you type after this command is an octal digit,
677 you should type a sequence of octal digits which specify a character code.
678 Any nondigit terminates the sequence. If the terminator is a RET,
679 it is discarded; any other terminator is used itself as input.
680 The variable `read-quoted-char-radix' specifies the radix for this feature;
681 set it to 10 or 16 to use decimal or hex instead of octal.
683 In overwrite mode, this function inserts the character anyway, and
684 does not handle octal digits specially. This means that if you use
685 overwrite as your normal editing mode, you can use this function to
686 insert characters when necessary.
688 In binary overwrite mode, this function does overwrite, and octal
689 digits are interpreted as a character code. This is intended to be
690 useful for editing binary files."
691 (interactive "*p")
692 (let* ((char
693 ;; Avoid "obsolete" warnings for translation-table-for-input.
694 (with-no-warnings
695 (let (translation-table-for-input input-method-function)
696 (if (or (not overwrite-mode)
697 (eq overwrite-mode 'overwrite-mode-binary))
698 (read-quoted-char)
699 (read-char))))))
700 ;; This used to assume character codes 0240 - 0377 stand for
701 ;; characters in some single-byte character set, and converted them
702 ;; to Emacs characters. But in 23.1 this feature is deprecated
703 ;; in favor of inserting the corresponding Unicode characters.
704 ;; (if (and enable-multibyte-characters
705 ;; (>= char ?\240)
706 ;; (<= char ?\377))
707 ;; (setq char (unibyte-char-to-multibyte char)))
708 (if (> arg 0)
709 (if (eq overwrite-mode 'overwrite-mode-binary)
710 (delete-char arg)))
711 (while (> arg 0)
712 (insert-and-inherit char)
713 (setq arg (1- arg)))))
715 (defun forward-to-indentation (&optional arg)
716 "Move forward ARG lines and position at first nonblank character."
717 (interactive "^p")
718 (forward-line (or arg 1))
719 (skip-chars-forward " \t"))
721 (defun backward-to-indentation (&optional arg)
722 "Move backward ARG lines and position at first nonblank character."
723 (interactive "^p")
724 (forward-line (- (or arg 1)))
725 (skip-chars-forward " \t"))
727 (defun back-to-indentation ()
728 "Move point to the first non-whitespace character on this line."
729 (interactive "^")
730 (beginning-of-line 1)
731 (skip-syntax-forward " " (line-end-position))
732 ;; Move back over chars that have whitespace syntax but have the p flag.
733 (backward-prefix-chars))
735 (defun fixup-whitespace ()
736 "Fixup white space between objects around point.
737 Leave one space or none, according to the context."
738 (interactive "*")
739 (save-excursion
740 (delete-horizontal-space)
741 (if (or (looking-at "^\\|\\s)")
742 (save-excursion (forward-char -1)
743 (looking-at "$\\|\\s(\\|\\s'")))
745 (insert ?\s))))
747 (defun delete-horizontal-space (&optional backward-only)
748 "Delete all spaces and tabs around point.
749 If BACKWARD-ONLY is non-nil, only delete them before point."
750 (interactive "*P")
751 (let ((orig-pos (point)))
752 (delete-region
753 (if backward-only
754 orig-pos
755 (progn
756 (skip-chars-forward " \t")
757 (constrain-to-field nil orig-pos t)))
758 (progn
759 (skip-chars-backward " \t")
760 (constrain-to-field nil orig-pos)))))
762 (defun just-one-space (&optional n)
763 "Delete all spaces and tabs around point, leaving one space (or N spaces)."
764 (interactive "*p")
765 (let ((orig-pos (point)))
766 (skip-chars-backward " \t")
767 (constrain-to-field nil orig-pos)
768 (dotimes (i (or n 1))
769 (if (= (following-char) ?\s)
770 (forward-char 1)
771 (insert ?\s)))
772 (delete-region
773 (point)
774 (progn
775 (skip-chars-forward " \t")
776 (constrain-to-field nil orig-pos t)))))
778 (defun beginning-of-buffer (&optional arg)
779 "Move point to the beginning of the buffer; leave mark at previous position.
780 With \\[universal-argument] prefix, do not set mark at previous position.
781 With numeric arg N, put point N/10 of the way from the beginning.
783 If the buffer is narrowed, this command uses the beginning and size
784 of the accessible part of the buffer.
786 Don't use this command in Lisp programs!
787 \(goto-char (point-min)) is faster and avoids clobbering the mark."
788 (interactive "^P")
789 (or (consp arg)
790 (region-active-p)
791 (push-mark))
792 (let ((size (- (point-max) (point-min))))
793 (goto-char (if (and arg (not (consp arg)))
794 (+ (point-min)
795 (if (> size 10000)
796 ;; Avoid overflow for large buffer sizes!
797 (* (prefix-numeric-value arg)
798 (/ size 10))
799 (/ (+ 10 (* size (prefix-numeric-value arg))) 10)))
800 (point-min))))
801 (if (and arg (not (consp arg))) (forward-line 1)))
803 (defun end-of-buffer (&optional arg)
804 "Move point to the end of the buffer; leave mark at previous position.
805 With \\[universal-argument] prefix, do not set mark at previous position.
806 With numeric arg N, put point N/10 of the way from the end.
808 If the buffer is narrowed, this command uses the beginning and size
809 of the accessible part of the buffer.
811 Don't use this command in Lisp programs!
812 \(goto-char (point-max)) is faster and avoids clobbering the mark."
813 (interactive "^P")
814 (or (consp arg) (region-active-p) (push-mark))
815 (let ((size (- (point-max) (point-min))))
816 (goto-char (if (and arg (not (consp arg)))
817 (- (point-max)
818 (if (> size 10000)
819 ;; Avoid overflow for large buffer sizes!
820 (* (prefix-numeric-value arg)
821 (/ size 10))
822 (/ (* size (prefix-numeric-value arg)) 10)))
823 (point-max))))
824 ;; If we went to a place in the middle of the buffer,
825 ;; adjust it to the beginning of a line.
826 (cond ((and arg (not (consp arg))) (forward-line 1))
827 ((> (point) (window-end nil t))
828 ;; If the end of the buffer is not already on the screen,
829 ;; then scroll specially to put it near, but not at, the bottom.
830 (overlay-recenter (point))
831 (recenter -3))))
833 (defun mark-whole-buffer ()
834 "Put point at beginning and mark at end of buffer.
835 You probably should not use this function in Lisp programs;
836 it is usually a mistake for a Lisp function to use any subroutine
837 that uses or sets the mark."
838 (interactive)
839 (push-mark (point))
840 (push-mark (point-max) nil t)
841 (goto-char (point-min)))
844 ;; Counting lines, one way or another.
846 (defun goto-line (line &optional buffer)
847 "Goto LINE, counting from line 1 at beginning of buffer.
848 Normally, move point in the current buffer, and leave mark at the
849 previous position. With just \\[universal-argument] as argument,
850 move point in the most recently selected other buffer, and switch
851 to it. When called from Lisp code, the optional argument BUFFER
852 specifies a buffer to switch to.
854 If there's a number in the buffer at point, it is the default for
855 LINE."
856 (interactive
857 (if (and current-prefix-arg (not (consp current-prefix-arg)))
858 (list (prefix-numeric-value current-prefix-arg))
859 ;; Look for a default, a number in the buffer at point.
860 (let* ((default
861 (save-excursion
862 (skip-chars-backward "0-9")
863 (if (looking-at "[0-9]")
864 (buffer-substring-no-properties
865 (point)
866 (progn (skip-chars-forward "0-9")
867 (point))))))
868 ;; Decide if we're switching buffers.
869 (buffer
870 (if (consp current-prefix-arg)
871 (other-buffer (current-buffer) t)))
872 (buffer-prompt
873 (if buffer
874 (concat " in " (buffer-name buffer))
875 "")))
876 ;; Read the argument, offering that number (if any) as default.
877 (list (read-from-minibuffer (format (if default "Goto line%s (%s): "
878 "Goto line%s: ")
879 buffer-prompt
880 default)
881 nil nil t
882 'minibuffer-history
883 default)
884 buffer))))
885 ;; Switch to the desired buffer, one way or another.
886 (if buffer
887 (let ((window (get-buffer-window buffer)))
888 (if window (select-window window)
889 (switch-to-buffer-other-window buffer))))
890 ;; Leave mark at previous position
891 (or (region-active-p) (push-mark))
892 ;; Move to the specified line number in that buffer.
893 (save-restriction
894 (widen)
895 (goto-char 1)
896 (if (eq selective-display t)
897 (re-search-forward "[\n\C-m]" nil 'end (1- line))
898 (forward-line (1- line)))))
900 (defun count-lines-region (start end)
901 "Print number of lines and characters in the region."
902 (interactive "r")
903 (message "Region has %d lines, %d characters"
904 (count-lines start end) (- end start)))
906 (defun what-line ()
907 "Print the current buffer line number and narrowed line number of point."
908 (interactive)
909 (let ((start (point-min))
910 (n (line-number-at-pos)))
911 (if (= start 1)
912 (message "Line %d" n)
913 (save-excursion
914 (save-restriction
915 (widen)
916 (message "line %d (narrowed line %d)"
917 (+ n (line-number-at-pos start) -1) n))))))
919 (defun count-lines (start end)
920 "Return number of lines between START and END.
921 This is usually the number of newlines between them,
922 but can be one more if START is not equal to END
923 and the greater of them is not at the start of a line."
924 (save-excursion
925 (save-restriction
926 (narrow-to-region start end)
927 (goto-char (point-min))
928 (if (eq selective-display t)
929 (save-match-data
930 (let ((done 0))
931 (while (re-search-forward "[\n\C-m]" nil t 40)
932 (setq done (+ 40 done)))
933 (while (re-search-forward "[\n\C-m]" nil t 1)
934 (setq done (+ 1 done)))
935 (goto-char (point-max))
936 (if (and (/= start end)
937 (not (bolp)))
938 (1+ done)
939 done)))
940 (- (buffer-size) (forward-line (buffer-size)))))))
942 (defun line-number-at-pos (&optional pos)
943 "Return (narrowed) buffer line number at position POS.
944 If POS is nil, use current buffer location.
945 Counting starts at (point-min), so the value refers
946 to the contents of the accessible portion of the buffer."
947 (let ((opoint (or pos (point))) start)
948 (save-excursion
949 (goto-char (point-min))
950 (setq start (point))
951 (goto-char opoint)
952 (forward-line 0)
953 (1+ (count-lines start (point))))))
955 (defun what-cursor-position (&optional detail)
956 "Print info on cursor position (on screen and within buffer).
957 Also describe the character after point, and give its character code
958 in octal, decimal and hex.
960 For a non-ASCII multibyte character, also give its encoding in the
961 buffer's selected coding system if the coding system encodes the
962 character safely. If the character is encoded into one byte, that
963 code is shown in hex. If the character is encoded into more than one
964 byte, just \"...\" is shown.
966 In addition, with prefix argument, show details about that character
967 in *Help* buffer. See also the command `describe-char'."
968 (interactive "P")
969 (let* ((char (following-char))
970 (beg (point-min))
971 (end (point-max))
972 (pos (point))
973 (total (buffer-size))
974 (percent (if (> total 50000)
975 ;; Avoid overflow from multiplying by 100!
976 (/ (+ (/ total 200) (1- pos)) (max (/ total 100) 1))
977 (/ (+ (/ total 2) (* 100 (1- pos))) (max total 1))))
978 (hscroll (if (= (window-hscroll) 0)
980 (format " Hscroll=%d" (window-hscroll))))
981 (col (current-column)))
982 (if (= pos end)
983 (if (or (/= beg 1) (/= end (1+ total)))
984 (message "point=%d of %d (%d%%) <%d-%d> column=%d%s"
985 pos total percent beg end col hscroll)
986 (message "point=%d of %d (EOB) column=%d%s"
987 pos total col hscroll))
988 (let ((coding buffer-file-coding-system)
989 encoded encoding-msg display-prop under-display)
990 (if (or (not coding)
991 (eq (coding-system-type coding) t))
992 (setq coding default-buffer-file-coding-system))
993 (if (eq (char-charset char) 'eight-bit)
994 (setq encoding-msg
995 (format "(%d, #o%o, #x%x, raw-byte)" char char char))
996 ;; Check if the character is displayed with some `display'
997 ;; text property. In that case, set under-display to the
998 ;; buffer substring covered by that property.
999 (setq display-prop (get-text-property pos 'display))
1000 (if display-prop
1001 (let ((to (or (next-single-property-change pos 'display)
1002 (point-max))))
1003 (if (< to (+ pos 4))
1004 (setq under-display "")
1005 (setq under-display "..."
1006 to (+ pos 4)))
1007 (setq under-display
1008 (concat (buffer-substring-no-properties pos to)
1009 under-display)))
1010 (setq encoded (and (>= char 128) (encode-coding-char char coding))))
1011 (setq encoding-msg
1012 (if display-prop
1013 (if (not (stringp display-prop))
1014 (format "(%d, #o%o, #x%x, part of display \"%s\")"
1015 char char char under-display)
1016 (format "(%d, #o%o, #x%x, part of display \"%s\"->\"%s\")"
1017 char char char under-display display-prop))
1018 (if encoded
1019 (format "(%d, #o%o, #x%x, file %s)"
1020 char char char
1021 (if (> (length encoded) 1)
1022 "..."
1023 (encoded-string-description encoded coding)))
1024 (format "(%d, #o%o, #x%x)" char char char)))))
1025 (if detail
1026 ;; We show the detailed information about CHAR.
1027 (describe-char (point)))
1028 (if (or (/= beg 1) (/= end (1+ total)))
1029 (message "Char: %s %s point=%d of %d (%d%%) <%d-%d> column=%d%s"
1030 (if (< char 256)
1031 (single-key-description char)
1032 (buffer-substring-no-properties (point) (1+ (point))))
1033 encoding-msg pos total percent beg end col hscroll)
1034 (message "Char: %s %s point=%d of %d (%d%%) column=%d%s"
1035 (if enable-multibyte-characters
1036 (if (< char 128)
1037 (single-key-description char)
1038 (buffer-substring-no-properties (point) (1+ (point))))
1039 (single-key-description char))
1040 encoding-msg pos total percent col hscroll))))))
1042 ;; Initialize read-expression-map. It is defined at C level.
1043 (let ((m (make-sparse-keymap)))
1044 (define-key m "\M-\t" 'lisp-complete-symbol)
1045 (set-keymap-parent m minibuffer-local-map)
1046 (setq read-expression-map m))
1048 (defvar read-expression-history nil)
1050 (defvar minibuffer-completing-symbol nil
1051 "Non-nil means completing a Lisp symbol in the minibuffer.")
1053 (defvar minibuffer-default nil
1054 "The current default value or list of default values in the minibuffer.
1055 The functions `read-from-minibuffer' and `completing-read' bind
1056 this variable locally.")
1058 (defcustom eval-expression-print-level 4
1059 "Value for `print-level' while printing value in `eval-expression'.
1060 A value of nil means no limit."
1061 :group 'lisp
1062 :type '(choice (const :tag "No Limit" nil) integer)
1063 :version "21.1")
1065 (defcustom eval-expression-print-length 12
1066 "Value for `print-length' while printing value in `eval-expression'.
1067 A value of nil means no limit."
1068 :group 'lisp
1069 :type '(choice (const :tag "No Limit" nil) integer)
1070 :version "21.1")
1072 (defcustom eval-expression-debug-on-error t
1073 "If non-nil set `debug-on-error' to t in `eval-expression'.
1074 If nil, don't change the value of `debug-on-error'."
1075 :group 'lisp
1076 :type 'boolean
1077 :version "21.1")
1079 (defun eval-expression-print-format (value)
1080 "Format VALUE as a result of evaluated expression.
1081 Return a formatted string which is displayed in the echo area
1082 in addition to the value printed by prin1 in functions which
1083 display the result of expression evaluation."
1084 (if (and (integerp value)
1085 (or (not (memq this-command '(eval-last-sexp eval-print-last-sexp)))
1086 (eq this-command last-command)
1087 (if (boundp 'edebug-active) edebug-active)))
1088 (let ((char-string
1089 (if (or (if (boundp 'edebug-active) edebug-active)
1090 (memq this-command '(eval-last-sexp eval-print-last-sexp)))
1091 (prin1-char value))))
1092 (if char-string
1093 (format " (#o%o, #x%x, %s)" value value char-string)
1094 (format " (#o%o, #x%x)" value value)))))
1096 ;; We define this, rather than making `eval' interactive,
1097 ;; for the sake of completion of names like eval-region, eval-buffer.
1098 (defun eval-expression (eval-expression-arg
1099 &optional eval-expression-insert-value)
1100 "Evaluate EVAL-EXPRESSION-ARG and print value in the echo area.
1101 Value is also consed on to front of the variable `values'.
1102 Optional argument EVAL-EXPRESSION-INSERT-VALUE, if non-nil, means
1103 insert the result into the current buffer instead of printing it in
1104 the echo area. Truncates long output according to the value of the
1105 variables `eval-expression-print-length' and `eval-expression-print-level'.
1107 If `eval-expression-debug-on-error' is non-nil, which is the default,
1108 this command arranges for all errors to enter the debugger."
1109 (interactive
1110 (list (let ((minibuffer-completing-symbol t))
1111 (read-from-minibuffer "Eval: "
1112 nil read-expression-map t
1113 'read-expression-history))
1114 current-prefix-arg))
1116 (if (null eval-expression-debug-on-error)
1117 (setq values (cons (eval eval-expression-arg) values))
1118 (let ((old-value (make-symbol "t")) new-value)
1119 ;; Bind debug-on-error to something unique so that we can
1120 ;; detect when evaled code changes it.
1121 (let ((debug-on-error old-value))
1122 (setq values (cons (eval eval-expression-arg) values))
1123 (setq new-value debug-on-error))
1124 ;; If evaled code has changed the value of debug-on-error,
1125 ;; propagate that change to the global binding.
1126 (unless (eq old-value new-value)
1127 (setq debug-on-error new-value))))
1129 (let ((print-length eval-expression-print-length)
1130 (print-level eval-expression-print-level))
1131 (if eval-expression-insert-value
1132 (with-no-warnings
1133 (let ((standard-output (current-buffer)))
1134 (prin1 (car values))))
1135 (prog1
1136 (prin1 (car values) t)
1137 (let ((str (eval-expression-print-format (car values))))
1138 (if str (princ str t)))))))
1140 (defun edit-and-eval-command (prompt command)
1141 "Prompting with PROMPT, let user edit COMMAND and eval result.
1142 COMMAND is a Lisp expression. Let user edit that expression in
1143 the minibuffer, then read and evaluate the result."
1144 (let ((command
1145 (let ((print-level nil)
1146 (minibuffer-history-sexp-flag (1+ (minibuffer-depth))))
1147 (unwind-protect
1148 (read-from-minibuffer prompt
1149 (prin1-to-string command)
1150 read-expression-map t
1151 'command-history)
1152 ;; If command was added to command-history as a string,
1153 ;; get rid of that. We want only evaluable expressions there.
1154 (if (stringp (car command-history))
1155 (setq command-history (cdr command-history)))))))
1157 ;; If command to be redone does not match front of history,
1158 ;; add it to the history.
1159 (or (equal command (car command-history))
1160 (setq command-history (cons command command-history)))
1161 (eval command)))
1163 (defun repeat-complex-command (arg)
1164 "Edit and re-evaluate last complex command, or ARGth from last.
1165 A complex command is one which used the minibuffer.
1166 The command is placed in the minibuffer as a Lisp form for editing.
1167 The result is executed, repeating the command as changed.
1168 If the command has been changed or is not the most recent previous
1169 command it is added to the front of the command history.
1170 You can use the minibuffer history commands \
1171 \\<minibuffer-local-map>\\[next-history-element] and \\[previous-history-element]
1172 to get different commands to edit and resubmit."
1173 (interactive "p")
1174 (let ((elt (nth (1- arg) command-history))
1175 newcmd)
1176 (if elt
1177 (progn
1178 (setq newcmd
1179 (let ((print-level nil)
1180 (minibuffer-history-position arg)
1181 (minibuffer-history-sexp-flag (1+ (minibuffer-depth))))
1182 (unwind-protect
1183 (read-from-minibuffer
1184 "Redo: " (prin1-to-string elt) read-expression-map t
1185 (cons 'command-history arg))
1187 ;; If command was added to command-history as a
1188 ;; string, get rid of that. We want only
1189 ;; evaluable expressions there.
1190 (if (stringp (car command-history))
1191 (setq command-history (cdr command-history))))))
1193 ;; If command to be redone does not match front of history,
1194 ;; add it to the history.
1195 (or (equal newcmd (car command-history))
1196 (setq command-history (cons newcmd command-history)))
1197 (eval newcmd))
1198 (if command-history
1199 (error "Argument %d is beyond length of command history" arg)
1200 (error "There are no previous complex commands to repeat")))))
1202 (defvar minibuffer-history nil
1203 "Default minibuffer history list.
1204 This is used for all minibuffer input
1205 except when an alternate history list is specified.
1207 Maximum length of the history list is determined by the value
1208 of `history-length', which see.")
1209 (defvar minibuffer-history-sexp-flag nil
1210 "Control whether history list elements are expressions or strings.
1211 If the value of this variable equals current minibuffer depth,
1212 they are expressions; otherwise they are strings.
1213 \(That convention is designed to do the right thing for
1214 recursive uses of the minibuffer.)")
1215 (setq minibuffer-history-variable 'minibuffer-history)
1216 (setq minibuffer-history-position nil) ;; Defvar is in C code.
1217 (defvar minibuffer-history-search-history nil)
1219 (defvar minibuffer-text-before-history nil
1220 "Text that was in this minibuffer before any history commands.
1221 This is nil if there have not yet been any history commands
1222 in this use of the minibuffer.")
1224 (add-hook 'minibuffer-setup-hook 'minibuffer-history-initialize)
1226 (defun minibuffer-history-initialize ()
1227 (setq minibuffer-text-before-history nil))
1229 (defun minibuffer-avoid-prompt (new old)
1230 "A point-motion hook for the minibuffer, that moves point out of the prompt."
1231 (constrain-to-field nil (point-max)))
1233 (defcustom minibuffer-history-case-insensitive-variables nil
1234 "Minibuffer history variables for which matching should ignore case.
1235 If a history variable is a member of this list, then the
1236 \\[previous-matching-history-element] and \\[next-matching-history-element]\
1237 commands ignore case when searching it, regardless of `case-fold-search'."
1238 :type '(repeat variable)
1239 :group 'minibuffer)
1241 (defun previous-matching-history-element (regexp n)
1242 "Find the previous history element that matches REGEXP.
1243 \(Previous history elements refer to earlier actions.)
1244 With prefix argument N, search for Nth previous match.
1245 If N is negative, find the next or Nth next match.
1246 Normally, history elements are matched case-insensitively if
1247 `case-fold-search' is non-nil, but an uppercase letter in REGEXP
1248 makes the search case-sensitive.
1249 See also `minibuffer-history-case-insensitive-variables'."
1250 (interactive
1251 (let* ((enable-recursive-minibuffers t)
1252 (regexp (read-from-minibuffer "Previous element matching (regexp): "
1254 minibuffer-local-map
1256 'minibuffer-history-search-history
1257 (car minibuffer-history-search-history))))
1258 ;; Use the last regexp specified, by default, if input is empty.
1259 (list (if (string= regexp "")
1260 (if minibuffer-history-search-history
1261 (car minibuffer-history-search-history)
1262 (error "No previous history search regexp"))
1263 regexp)
1264 (prefix-numeric-value current-prefix-arg))))
1265 (unless (zerop n)
1266 (if (and (zerop minibuffer-history-position)
1267 (null minibuffer-text-before-history))
1268 (setq minibuffer-text-before-history
1269 (minibuffer-contents-no-properties)))
1270 (let ((history (symbol-value minibuffer-history-variable))
1271 (case-fold-search
1272 (if (isearch-no-upper-case-p regexp t) ; assume isearch.el is dumped
1273 ;; On some systems, ignore case for file names.
1274 (if (memq minibuffer-history-variable
1275 minibuffer-history-case-insensitive-variables)
1277 ;; Respect the user's setting for case-fold-search:
1278 case-fold-search)
1279 nil))
1280 prevpos
1281 match-string
1282 match-offset
1283 (pos minibuffer-history-position))
1284 (while (/= n 0)
1285 (setq prevpos pos)
1286 (setq pos (min (max 1 (+ pos (if (< n 0) -1 1))) (length history)))
1287 (when (= pos prevpos)
1288 (error (if (= pos 1)
1289 "No later matching history item"
1290 "No earlier matching history item")))
1291 (setq match-string
1292 (if (eq minibuffer-history-sexp-flag (minibuffer-depth))
1293 (let ((print-level nil))
1294 (prin1-to-string (nth (1- pos) history)))
1295 (nth (1- pos) history)))
1296 (setq match-offset
1297 (if (< n 0)
1298 (and (string-match regexp match-string)
1299 (match-end 0))
1300 (and (string-match (concat ".*\\(" regexp "\\)") match-string)
1301 (match-beginning 1))))
1302 (when match-offset
1303 (setq n (+ n (if (< n 0) 1 -1)))))
1304 (setq minibuffer-history-position pos)
1305 (goto-char (point-max))
1306 (delete-minibuffer-contents)
1307 (insert match-string)
1308 (goto-char (+ (minibuffer-prompt-end) match-offset))))
1309 (if (memq (car (car command-history)) '(previous-matching-history-element
1310 next-matching-history-element))
1311 (setq command-history (cdr command-history))))
1313 (defun next-matching-history-element (regexp n)
1314 "Find the next history element that matches REGEXP.
1315 \(The next history element refers to a more recent action.)
1316 With prefix argument N, search for Nth next match.
1317 If N is negative, find the previous or Nth previous match.
1318 Normally, history elements are matched case-insensitively if
1319 `case-fold-search' is non-nil, but an uppercase letter in REGEXP
1320 makes the search case-sensitive."
1321 (interactive
1322 (let* ((enable-recursive-minibuffers t)
1323 (regexp (read-from-minibuffer "Next element matching (regexp): "
1325 minibuffer-local-map
1327 'minibuffer-history-search-history
1328 (car minibuffer-history-search-history))))
1329 ;; Use the last regexp specified, by default, if input is empty.
1330 (list (if (string= regexp "")
1331 (if minibuffer-history-search-history
1332 (car minibuffer-history-search-history)
1333 (error "No previous history search regexp"))
1334 regexp)
1335 (prefix-numeric-value current-prefix-arg))))
1336 (previous-matching-history-element regexp (- n)))
1338 (defvar minibuffer-temporary-goal-position nil)
1340 (defvar minibuffer-default-add-function 'minibuffer-default-add-completions
1341 "Function run by `goto-history-element' before consuming default values.
1342 This is useful to dynamically add more elements to the list of default values
1343 when `goto-history-element' reaches the end of this list.
1344 Before calling this function `goto-history-element' sets the variable
1345 `minibuffer-default-add-done' to t, so it will call this function only
1346 once. In special cases, when this function needs to be called more
1347 than once, it can set `minibuffer-default-add-done' to nil explicitly,
1348 overriding the setting of this variable to t in `goto-history-element'.")
1350 (defvar minibuffer-default-add-done nil
1351 "When nil, add more elements to the end of the list of default values.
1352 The value nil causes `goto-history-element' to add more elements to
1353 the list of defaults when it reaches the end of this list. It does
1354 this by calling a function defined by `minibuffer-default-add-function'.")
1356 (make-variable-buffer-local 'minibuffer-default-add-done)
1358 (defun minibuffer-default-add-completions ()
1359 "Return a list of all completions without the default value.
1360 This function is used to add all elements of the completion table to
1361 the end of the list of defaults just after the default value."
1362 (let ((def minibuffer-default)
1363 (all (all-completions ""
1364 minibuffer-completion-table
1365 minibuffer-completion-predicate
1366 t)))
1367 (if (listp def)
1368 (append def all)
1369 (cons def (delete def all)))))
1371 (defun goto-history-element (nabs)
1372 "Puts element of the minibuffer history in the minibuffer.
1373 The argument NABS specifies the absolute history position."
1374 (interactive "p")
1375 (when (and (not minibuffer-default-add-done)
1376 (functionp minibuffer-default-add-function)
1377 (< nabs (- (if (listp minibuffer-default)
1378 (length minibuffer-default)
1379 1))))
1380 (setq minibuffer-default-add-done t
1381 minibuffer-default (funcall minibuffer-default-add-function)))
1382 (let ((minimum (if minibuffer-default
1383 (- (if (listp minibuffer-default)
1384 (length minibuffer-default)
1387 elt minibuffer-returned-to-present)
1388 (if (and (zerop minibuffer-history-position)
1389 (null minibuffer-text-before-history))
1390 (setq minibuffer-text-before-history
1391 (minibuffer-contents-no-properties)))
1392 (if (< nabs minimum)
1393 (if minibuffer-default
1394 (error "End of defaults; no next item")
1395 (error "End of history; no default available")))
1396 (if (> nabs (length (symbol-value minibuffer-history-variable)))
1397 (error "Beginning of history; no preceding item"))
1398 (unless (memq last-command '(next-history-element
1399 previous-history-element))
1400 (let ((prompt-end (minibuffer-prompt-end)))
1401 (set (make-local-variable 'minibuffer-temporary-goal-position)
1402 (cond ((<= (point) prompt-end) prompt-end)
1403 ((eobp) nil)
1404 (t (point))))))
1405 (goto-char (point-max))
1406 (delete-minibuffer-contents)
1407 (setq minibuffer-history-position nabs)
1408 (cond ((< nabs 0)
1409 (setq elt (if (listp minibuffer-default)
1410 (nth (1- (abs nabs)) minibuffer-default)
1411 minibuffer-default)))
1412 ((= nabs 0)
1413 (setq elt (or minibuffer-text-before-history ""))
1414 (setq minibuffer-returned-to-present t)
1415 (setq minibuffer-text-before-history nil))
1416 (t (setq elt (nth (1- minibuffer-history-position)
1417 (symbol-value minibuffer-history-variable)))))
1418 (insert
1419 (if (and (eq minibuffer-history-sexp-flag (minibuffer-depth))
1420 (not minibuffer-returned-to-present))
1421 (let ((print-level nil))
1422 (prin1-to-string elt))
1423 elt))
1424 (goto-char (or minibuffer-temporary-goal-position (point-max)))))
1426 (defun next-history-element (n)
1427 "Puts next element of the minibuffer history in the minibuffer.
1428 With argument N, it uses the Nth following element."
1429 (interactive "p")
1430 (or (zerop n)
1431 (goto-history-element (- minibuffer-history-position n))))
1433 (defun previous-history-element (n)
1434 "Puts previous element of the minibuffer history in the minibuffer.
1435 With argument N, it uses the Nth previous element."
1436 (interactive "p")
1437 (or (zerop n)
1438 (goto-history-element (+ minibuffer-history-position n))))
1440 (defun next-complete-history-element (n)
1441 "Get next history element which completes the minibuffer before the point.
1442 The contents of the minibuffer after the point are deleted, and replaced
1443 by the new completion."
1444 (interactive "p")
1445 (let ((point-at-start (point)))
1446 (next-matching-history-element
1447 (concat
1448 "^" (regexp-quote (buffer-substring (minibuffer-prompt-end) (point))))
1450 ;; next-matching-history-element always puts us at (point-min).
1451 ;; Move to the position we were at before changing the buffer contents.
1452 ;; This is still sensical, because the text before point has not changed.
1453 (goto-char point-at-start)))
1455 (defun previous-complete-history-element (n)
1457 Get previous history element which completes the minibuffer before the point.
1458 The contents of the minibuffer after the point are deleted, and replaced
1459 by the new completion."
1460 (interactive "p")
1461 (next-complete-history-element (- n)))
1463 ;; For compatibility with the old subr of the same name.
1464 (defun minibuffer-prompt-width ()
1465 "Return the display width of the minibuffer prompt.
1466 Return 0 if current buffer is not a minibuffer."
1467 ;; Return the width of everything before the field at the end of
1468 ;; the buffer; this should be 0 for normal buffers.
1469 (1- (minibuffer-prompt-end)))
1471 ;; isearch minibuffer history
1472 (add-hook 'minibuffer-setup-hook 'minibuffer-history-isearch-setup)
1474 (defvar minibuffer-history-isearch-message-overlay)
1475 (make-variable-buffer-local 'minibuffer-history-isearch-message-overlay)
1477 (defun minibuffer-history-isearch-setup ()
1478 "Set up a minibuffer for using isearch to search the minibuffer history.
1479 Intended to be added to `minibuffer-setup-hook'."
1480 (set (make-local-variable 'isearch-search-fun-function)
1481 'minibuffer-history-isearch-search)
1482 (set (make-local-variable 'isearch-message-function)
1483 'minibuffer-history-isearch-message)
1484 (set (make-local-variable 'isearch-wrap-function)
1485 'minibuffer-history-isearch-wrap)
1486 (set (make-local-variable 'isearch-push-state-function)
1487 'minibuffer-history-isearch-push-state)
1488 (add-hook 'isearch-mode-end-hook 'minibuffer-history-isearch-end nil t))
1490 (defun minibuffer-history-isearch-end ()
1491 "Clean up the minibuffer after terminating isearch in the minibuffer."
1492 (if minibuffer-history-isearch-message-overlay
1493 (delete-overlay minibuffer-history-isearch-message-overlay)))
1495 (defun minibuffer-history-isearch-search ()
1496 "Return the proper search function, for isearch in minibuffer history."
1497 (cond
1498 (isearch-word
1499 (if isearch-forward 'word-search-forward 'word-search-backward))
1501 (lambda (string bound noerror)
1502 (let ((search-fun
1503 ;; Use standard functions to search within minibuffer text
1504 (cond
1505 (isearch-regexp
1506 (if isearch-forward 're-search-forward 're-search-backward))
1508 (if isearch-forward 'search-forward 'search-backward))))
1509 found)
1510 ;; Avoid lazy-highlighting matches in the minibuffer prompt when
1511 ;; searching forward. Lazy-highlight calls this lambda with the
1512 ;; bound arg, so skip the minibuffer prompt.
1513 (if (and bound isearch-forward (< (point) (minibuffer-prompt-end)))
1514 (goto-char (minibuffer-prompt-end)))
1516 ;; 1. First try searching in the initial minibuffer text
1517 (funcall search-fun string
1518 (if isearch-forward bound (minibuffer-prompt-end))
1519 noerror)
1520 ;; 2. If the above search fails, start putting next/prev history
1521 ;; elements in the minibuffer successively, and search the string
1522 ;; in them. Do this only when bound is nil (i.e. not while
1523 ;; lazy-highlighting search strings in the current minibuffer text).
1524 (unless bound
1525 (condition-case nil
1526 (progn
1527 (while (not found)
1528 (cond (isearch-forward
1529 (next-history-element 1)
1530 (goto-char (minibuffer-prompt-end)))
1532 (previous-history-element 1)
1533 (goto-char (point-max))))
1534 (setq isearch-barrier (point) isearch-opoint (point))
1535 ;; After putting the next/prev history element, search
1536 ;; the string in them again, until next-history-element
1537 ;; or previous-history-element raises an error at the
1538 ;; beginning/end of history.
1539 (setq found (funcall search-fun string
1540 (unless isearch-forward
1541 ;; For backward search, don't search
1542 ;; in the minibuffer prompt
1543 (minibuffer-prompt-end))
1544 noerror)))
1545 ;; Return point of the new search result
1546 (point))
1547 ;; Return nil when next(prev)-history-element fails
1548 (error nil)))))))))
1550 (defun minibuffer-history-isearch-message (&optional c-q-hack ellipsis)
1551 "Display the minibuffer history search prompt.
1552 If there are no search errors, this function displays an overlay with
1553 the isearch prompt which replaces the original minibuffer prompt.
1554 Otherwise, it displays the standard isearch message returned from
1555 `isearch-message'."
1556 (if (not (and (minibufferp) isearch-success (not isearch-error)))
1557 ;; Use standard function `isearch-message' when not in the minibuffer,
1558 ;; or search fails, or has an error (like incomplete regexp).
1559 ;; This function overwrites minibuffer text with isearch message,
1560 ;; so it's possible to see what is wrong in the search string.
1561 (isearch-message c-q-hack ellipsis)
1562 ;; Otherwise, put the overlay with the standard isearch prompt over
1563 ;; the initial minibuffer prompt.
1564 (if (overlayp minibuffer-history-isearch-message-overlay)
1565 (move-overlay minibuffer-history-isearch-message-overlay
1566 (point-min) (minibuffer-prompt-end))
1567 (setq minibuffer-history-isearch-message-overlay
1568 (make-overlay (point-min) (minibuffer-prompt-end)))
1569 (overlay-put minibuffer-history-isearch-message-overlay 'evaporate t))
1570 (overlay-put minibuffer-history-isearch-message-overlay
1571 'display (isearch-message-prefix c-q-hack ellipsis))
1572 ;; And clear any previous isearch message.
1573 (message "")))
1575 (defun minibuffer-history-isearch-wrap ()
1576 "Wrap the minibuffer history search when search fails.
1577 Move point to the first history element for a forward search,
1578 or to the last history element for a backward search."
1579 (unless isearch-word
1580 ;; When `minibuffer-history-isearch-search' fails on reaching the
1581 ;; beginning/end of the history, wrap the search to the first/last
1582 ;; minibuffer history element.
1583 (if isearch-forward
1584 (goto-history-element (length (symbol-value minibuffer-history-variable)))
1585 (goto-history-element 0))
1586 (setq isearch-success t))
1587 (goto-char (if isearch-forward (minibuffer-prompt-end) (point-max))))
1589 (defun minibuffer-history-isearch-push-state ()
1590 "Save a function restoring the state of minibuffer history search.
1591 Save `minibuffer-history-position' to the additional state parameter
1592 in the search status stack."
1593 `(lambda (cmd)
1594 (minibuffer-history-isearch-pop-state cmd ,minibuffer-history-position)))
1596 (defun minibuffer-history-isearch-pop-state (cmd hist-pos)
1597 "Restore the minibuffer history search state.
1598 Go to the history element by the absolute history position HIST-POS."
1599 (goto-history-element hist-pos))
1602 ;Put this on C-x u, so we can force that rather than C-_ into startup msg
1603 (defalias 'advertised-undo 'undo)
1605 (defconst undo-equiv-table (make-hash-table :test 'eq :weakness t)
1606 "Table mapping redo records to the corresponding undo one.
1607 A redo record for undo-in-region maps to t.
1608 A redo record for ordinary undo maps to the following (earlier) undo.")
1610 (defvar undo-in-region nil
1611 "Non-nil if `pending-undo-list' is not just a tail of `buffer-undo-list'.")
1613 (defvar undo-no-redo nil
1614 "If t, `undo' doesn't go through redo entries.")
1616 (defvar pending-undo-list nil
1617 "Within a run of consecutive undo commands, list remaining to be undone.
1618 If t, we undid all the way to the end of it.")
1620 (defun undo (&optional arg)
1621 "Undo some previous changes.
1622 Repeat this command to undo more changes.
1623 A numeric ARG serves as a repeat count.
1625 In Transient Mark mode when the mark is active, only undo changes within
1626 the current region. Similarly, when not in Transient Mark mode, just \\[universal-argument]
1627 as an argument limits undo to changes within the current region."
1628 (interactive "*P")
1629 ;; Make last-command indicate for the next command that this was an undo.
1630 ;; That way, another undo will undo more.
1631 ;; If we get to the end of the undo history and get an error,
1632 ;; another undo command will find the undo history empty
1633 ;; and will get another error. To begin undoing the undos,
1634 ;; you must type some other command.
1635 (let ((modified (buffer-modified-p))
1636 (recent-save (recent-auto-save-p))
1637 message)
1638 ;; If we get an error in undo-start,
1639 ;; the next command should not be a "consecutive undo".
1640 ;; So set `this-command' to something other than `undo'.
1641 (setq this-command 'undo-start)
1643 (unless (and (eq last-command 'undo)
1644 (or (eq pending-undo-list t)
1645 ;; If something (a timer or filter?) changed the buffer
1646 ;; since the previous command, don't continue the undo seq.
1647 (let ((list buffer-undo-list))
1648 (while (eq (car list) nil)
1649 (setq list (cdr list)))
1650 ;; If the last undo record made was made by undo
1651 ;; it shows nothing else happened in between.
1652 (gethash list undo-equiv-table))))
1653 (setq undo-in-region
1654 (or (region-active-p) (and arg (not (numberp arg)))))
1655 (if undo-in-region
1656 (undo-start (region-beginning) (region-end))
1657 (undo-start))
1658 ;; get rid of initial undo boundary
1659 (undo-more 1))
1660 ;; If we got this far, the next command should be a consecutive undo.
1661 (setq this-command 'undo)
1662 ;; Check to see whether we're hitting a redo record, and if
1663 ;; so, ask the user whether she wants to skip the redo/undo pair.
1664 (let ((equiv (gethash pending-undo-list undo-equiv-table)))
1665 (or (eq (selected-window) (minibuffer-window))
1666 (setq message (if undo-in-region
1667 (if equiv "Redo in region!" "Undo in region!")
1668 (if equiv "Redo!" "Undo!"))))
1669 (when (and (consp equiv) undo-no-redo)
1670 ;; The equiv entry might point to another redo record if we have done
1671 ;; undo-redo-undo-redo-... so skip to the very last equiv.
1672 (while (let ((next (gethash equiv undo-equiv-table)))
1673 (if next (setq equiv next))))
1674 (setq pending-undo-list equiv)))
1675 (undo-more
1676 (if (numberp arg)
1677 (prefix-numeric-value arg)
1679 ;; Record the fact that the just-generated undo records come from an
1680 ;; undo operation--that is, they are redo records.
1681 ;; In the ordinary case (not within a region), map the redo
1682 ;; record to the following undos.
1683 ;; I don't know how to do that in the undo-in-region case.
1684 (let ((list buffer-undo-list))
1685 ;; Strip any leading undo boundaries there might be, like we do
1686 ;; above when checking.
1687 (while (eq (car list) nil)
1688 (setq list (cdr list)))
1689 (puthash list (if undo-in-region t pending-undo-list)
1690 undo-equiv-table))
1691 ;; Don't specify a position in the undo record for the undo command.
1692 ;; Instead, undoing this should move point to where the change is.
1693 (let ((tail buffer-undo-list)
1694 (prev nil))
1695 (while (car tail)
1696 (when (integerp (car tail))
1697 (let ((pos (car tail)))
1698 (if prev
1699 (setcdr prev (cdr tail))
1700 (setq buffer-undo-list (cdr tail)))
1701 (setq tail (cdr tail))
1702 (while (car tail)
1703 (if (eq pos (car tail))
1704 (if prev
1705 (setcdr prev (cdr tail))
1706 (setq buffer-undo-list (cdr tail)))
1707 (setq prev tail))
1708 (setq tail (cdr tail)))
1709 (setq tail nil)))
1710 (setq prev tail tail (cdr tail))))
1711 ;; Record what the current undo list says,
1712 ;; so the next command can tell if the buffer was modified in between.
1713 (and modified (not (buffer-modified-p))
1714 (delete-auto-save-file-if-necessary recent-save))
1715 ;; Display a message announcing success.
1716 (if message
1717 (message "%s" message))))
1719 (defun buffer-disable-undo (&optional buffer)
1720 "Make BUFFER stop keeping undo information.
1721 No argument or nil as argument means do this for the current buffer."
1722 (interactive)
1723 (with-current-buffer (if buffer (get-buffer buffer) (current-buffer))
1724 (setq buffer-undo-list t)))
1726 (defun undo-only (&optional arg)
1727 "Undo some previous changes.
1728 Repeat this command to undo more changes.
1729 A numeric ARG serves as a repeat count.
1730 Contrary to `undo', this will not redo a previous undo."
1731 (interactive "*p")
1732 (let ((undo-no-redo t)) (undo arg)))
1734 (defvar undo-in-progress nil
1735 "Non-nil while performing an undo.
1736 Some change-hooks test this variable to do something different.")
1738 (defun undo-more (n)
1739 "Undo back N undo-boundaries beyond what was already undone recently.
1740 Call `undo-start' to get ready to undo recent changes,
1741 then call `undo-more' one or more times to undo them."
1742 (or (listp pending-undo-list)
1743 (error (concat "No further undo information"
1744 (and undo-in-region " for region"))))
1745 (let ((undo-in-progress t))
1746 ;; Note: The following, while pulling elements off
1747 ;; `pending-undo-list' will call primitive change functions which
1748 ;; will push more elements onto `buffer-undo-list'.
1749 (setq pending-undo-list (primitive-undo n pending-undo-list))
1750 (if (null pending-undo-list)
1751 (setq pending-undo-list t))))
1753 ;; Deep copy of a list
1754 (defun undo-copy-list (list)
1755 "Make a copy of undo list LIST."
1756 (mapcar 'undo-copy-list-1 list))
1758 (defun undo-copy-list-1 (elt)
1759 (if (consp elt)
1760 (cons (car elt) (undo-copy-list-1 (cdr elt)))
1761 elt))
1763 (defun undo-start (&optional beg end)
1764 "Set `pending-undo-list' to the front of the undo list.
1765 The next call to `undo-more' will undo the most recently made change.
1766 If BEG and END are specified, then only undo elements
1767 that apply to text between BEG and END are used; other undo elements
1768 are ignored. If BEG and END are nil, all undo elements are used."
1769 (if (eq buffer-undo-list t)
1770 (error "No undo information in this buffer"))
1771 (setq pending-undo-list
1772 (if (and beg end (not (= beg end)))
1773 (undo-make-selective-list (min beg end) (max beg end))
1774 buffer-undo-list)))
1776 (defvar undo-adjusted-markers)
1778 (defun undo-make-selective-list (start end)
1779 "Return a list of undo elements for the region START to END.
1780 The elements come from `buffer-undo-list', but we keep only
1781 the elements inside this region, and discard those outside this region.
1782 If we find an element that crosses an edge of this region,
1783 we stop and ignore all further elements."
1784 (let ((undo-list-copy (undo-copy-list buffer-undo-list))
1785 (undo-list (list nil))
1786 undo-adjusted-markers
1787 some-rejected
1788 undo-elt undo-elt temp-undo-list delta)
1789 (while undo-list-copy
1790 (setq undo-elt (car undo-list-copy))
1791 (let ((keep-this
1792 (cond ((and (consp undo-elt) (eq (car undo-elt) t))
1793 ;; This is a "was unmodified" element.
1794 ;; Keep it if we have kept everything thus far.
1795 (not some-rejected))
1797 (undo-elt-in-region undo-elt start end)))))
1798 (if keep-this
1799 (progn
1800 (setq end (+ end (cdr (undo-delta undo-elt))))
1801 ;; Don't put two nils together in the list
1802 (if (not (and (eq (car undo-list) nil)
1803 (eq undo-elt nil)))
1804 (setq undo-list (cons undo-elt undo-list))))
1805 (if (undo-elt-crosses-region undo-elt start end)
1806 (setq undo-list-copy nil)
1807 (setq some-rejected t)
1808 (setq temp-undo-list (cdr undo-list-copy))
1809 (setq delta (undo-delta undo-elt))
1811 (when (/= (cdr delta) 0)
1812 (let ((position (car delta))
1813 (offset (cdr delta)))
1815 ;; Loop down the earlier events adjusting their buffer
1816 ;; positions to reflect the fact that a change to the buffer
1817 ;; isn't being undone. We only need to process those element
1818 ;; types which undo-elt-in-region will return as being in
1819 ;; the region since only those types can ever get into the
1820 ;; output
1822 (while temp-undo-list
1823 (setq undo-elt (car temp-undo-list))
1824 (cond ((integerp undo-elt)
1825 (if (>= undo-elt position)
1826 (setcar temp-undo-list (- undo-elt offset))))
1827 ((atom undo-elt) nil)
1828 ((stringp (car undo-elt))
1829 ;; (TEXT . POSITION)
1830 (let ((text-pos (abs (cdr undo-elt)))
1831 (point-at-end (< (cdr undo-elt) 0 )))
1832 (if (>= text-pos position)
1833 (setcdr undo-elt (* (if point-at-end -1 1)
1834 (- text-pos offset))))))
1835 ((integerp (car undo-elt))
1836 ;; (BEGIN . END)
1837 (when (>= (car undo-elt) position)
1838 (setcar undo-elt (- (car undo-elt) offset))
1839 (setcdr undo-elt (- (cdr undo-elt) offset))))
1840 ((null (car undo-elt))
1841 ;; (nil PROPERTY VALUE BEG . END)
1842 (let ((tail (nthcdr 3 undo-elt)))
1843 (when (>= (car tail) position)
1844 (setcar tail (- (car tail) offset))
1845 (setcdr tail (- (cdr tail) offset))))))
1846 (setq temp-undo-list (cdr temp-undo-list))))))))
1847 (setq undo-list-copy (cdr undo-list-copy)))
1848 (nreverse undo-list)))
1850 (defun undo-elt-in-region (undo-elt start end)
1851 "Determine whether UNDO-ELT falls inside the region START ... END.
1852 If it crosses the edge, we return nil."
1853 (cond ((integerp undo-elt)
1854 (and (>= undo-elt start)
1855 (<= undo-elt end)))
1856 ((eq undo-elt nil)
1858 ((atom undo-elt)
1859 nil)
1860 ((stringp (car undo-elt))
1861 ;; (TEXT . POSITION)
1862 (and (>= (abs (cdr undo-elt)) start)
1863 (< (abs (cdr undo-elt)) end)))
1864 ((and (consp undo-elt) (markerp (car undo-elt)))
1865 ;; This is a marker-adjustment element (MARKER . ADJUSTMENT).
1866 ;; See if MARKER is inside the region.
1867 (let ((alist-elt (assq (car undo-elt) undo-adjusted-markers)))
1868 (unless alist-elt
1869 (setq alist-elt (cons (car undo-elt)
1870 (marker-position (car undo-elt))))
1871 (setq undo-adjusted-markers
1872 (cons alist-elt undo-adjusted-markers)))
1873 (and (cdr alist-elt)
1874 (>= (cdr alist-elt) start)
1875 (<= (cdr alist-elt) end))))
1876 ((null (car undo-elt))
1877 ;; (nil PROPERTY VALUE BEG . END)
1878 (let ((tail (nthcdr 3 undo-elt)))
1879 (and (>= (car tail) start)
1880 (<= (cdr tail) end))))
1881 ((integerp (car undo-elt))
1882 ;; (BEGIN . END)
1883 (and (>= (car undo-elt) start)
1884 (<= (cdr undo-elt) end)))))
1886 (defun undo-elt-crosses-region (undo-elt start end)
1887 "Test whether UNDO-ELT crosses one edge of that region START ... END.
1888 This assumes we have already decided that UNDO-ELT
1889 is not *inside* the region START...END."
1890 (cond ((atom undo-elt) nil)
1891 ((null (car undo-elt))
1892 ;; (nil PROPERTY VALUE BEG . END)
1893 (let ((tail (nthcdr 3 undo-elt)))
1894 (and (< (car tail) end)
1895 (> (cdr tail) start))))
1896 ((integerp (car undo-elt))
1897 ;; (BEGIN . END)
1898 (and (< (car undo-elt) end)
1899 (> (cdr undo-elt) start)))))
1901 ;; Return the first affected buffer position and the delta for an undo element
1902 ;; delta is defined as the change in subsequent buffer positions if we *did*
1903 ;; the undo.
1904 (defun undo-delta (undo-elt)
1905 (if (consp undo-elt)
1906 (cond ((stringp (car undo-elt))
1907 ;; (TEXT . POSITION)
1908 (cons (abs (cdr undo-elt)) (length (car undo-elt))))
1909 ((integerp (car undo-elt))
1910 ;; (BEGIN . END)
1911 (cons (car undo-elt) (- (car undo-elt) (cdr undo-elt))))
1913 '(0 . 0)))
1914 '(0 . 0)))
1916 (defcustom undo-ask-before-discard nil
1917 "If non-nil ask about discarding undo info for the current command.
1918 Normally, Emacs discards the undo info for the current command if
1919 it exceeds `undo-outer-limit'. But if you set this option
1920 non-nil, it asks in the echo area whether to discard the info.
1921 If you answer no, there is a slight risk that Emacs might crash, so
1922 only do it if you really want to undo the command.
1924 This option is mainly intended for debugging. You have to be
1925 careful if you use it for other purposes. Garbage collection is
1926 inhibited while the question is asked, meaning that Emacs might
1927 leak memory. So you should make sure that you do not wait
1928 excessively long before answering the question."
1929 :type 'boolean
1930 :group 'undo
1931 :version "22.1")
1933 (defvar undo-extra-outer-limit nil
1934 "If non-nil, an extra level of size that's ok in an undo item.
1935 We don't ask the user about truncating the undo list until the
1936 current item gets bigger than this amount.
1938 This variable only matters if `undo-ask-before-discard' is non-nil.")
1939 (make-variable-buffer-local 'undo-extra-outer-limit)
1941 ;; When the first undo batch in an undo list is longer than
1942 ;; undo-outer-limit, this function gets called to warn the user that
1943 ;; the undo info for the current command was discarded. Garbage
1944 ;; collection is inhibited around the call, so it had better not do a
1945 ;; lot of consing.
1946 (setq undo-outer-limit-function 'undo-outer-limit-truncate)
1947 (defun undo-outer-limit-truncate (size)
1948 (if undo-ask-before-discard
1949 (when (or (null undo-extra-outer-limit)
1950 (> size undo-extra-outer-limit))
1951 ;; Don't ask the question again unless it gets even bigger.
1952 ;; This applies, in particular, if the user quits from the question.
1953 ;; Such a quit quits out of GC, but something else will call GC
1954 ;; again momentarily. It will call this function again,
1955 ;; but we don't want to ask the question again.
1956 (setq undo-extra-outer-limit (+ size 50000))
1957 (if (let (use-dialog-box track-mouse executing-kbd-macro )
1958 (yes-or-no-p (format "Buffer `%s' undo info is %d bytes long; discard it? "
1959 (buffer-name) size)))
1960 (progn (setq buffer-undo-list nil)
1961 (setq undo-extra-outer-limit nil)
1963 nil))
1964 (display-warning '(undo discard-info)
1965 (concat
1966 (format "Buffer `%s' undo info was %d bytes long.\n"
1967 (buffer-name) size)
1968 "The undo info was discarded because it exceeded \
1969 `undo-outer-limit'.
1971 This is normal if you executed a command that made a huge change
1972 to the buffer. In that case, to prevent similar problems in the
1973 future, set `undo-outer-limit' to a value that is large enough to
1974 cover the maximum size of normal changes you expect a single
1975 command to make, but not so large that it might exceed the
1976 maximum memory allotted to Emacs.
1978 If you did not execute any such command, the situation is
1979 probably due to a bug and you should report it.
1981 You can disable the popping up of this buffer by adding the entry
1982 \(undo discard-info) to the user option `warning-suppress-types',
1983 which is defined in the `warnings' library.\n")
1984 :warning)
1985 (setq buffer-undo-list nil)
1988 (defvar shell-command-history nil
1989 "History list for some commands that read shell commands.
1991 Maximum length of the history list is determined by the value
1992 of `history-length', which see.")
1994 (defvar shell-command-switch "-c"
1995 "Switch used to have the shell execute its command line argument.")
1997 (defvar shell-command-default-error-buffer nil
1998 "*Buffer name for `shell-command' and `shell-command-on-region' error output.
1999 This buffer is used when `shell-command' or `shell-command-on-region'
2000 is run interactively. A value of nil means that output to stderr and
2001 stdout will be intermixed in the output stream.")
2003 (declare-function mailcap-file-default-commands "mailcap" (files))
2005 (defun minibuffer-default-add-shell-commands ()
2006 "Return a list of all commands associated with the current file.
2007 This function is used to add all related commands retrieved by `mailcap'
2008 to the end of the list of defaults just after the default value."
2009 (interactive)
2010 (let* ((filename (if (listp minibuffer-default)
2011 (car minibuffer-default)
2012 minibuffer-default))
2013 (commands (and filename (require 'mailcap nil t)
2014 (mailcap-file-default-commands (list filename)))))
2015 (setq commands (mapcar (lambda (command)
2016 (concat command " " filename))
2017 commands))
2018 (if (listp minibuffer-default)
2019 (append minibuffer-default commands)
2020 (cons minibuffer-default commands))))
2022 (defvar shell-delimiter-argument-list)
2023 (defvar shell-file-name-chars)
2024 (defvar shell-file-name-quote-list)
2026 (defun minibuffer-complete-shell-command ()
2027 "Dynamically complete shell command at point."
2028 (interactive)
2029 (require 'shell)
2030 (let ((comint-delimiter-argument-list shell-delimiter-argument-list)
2031 (comint-file-name-chars shell-file-name-chars)
2032 (comint-file-name-quote-list shell-file-name-quote-list))
2033 (run-hook-with-args-until-success 'shell-dynamic-complete-functions)))
2035 (defvar minibuffer-local-shell-command-map
2036 (let ((map (make-sparse-keymap)))
2037 (set-keymap-parent map minibuffer-local-map)
2038 (define-key map "\t" 'minibuffer-complete-shell-command)
2039 map)
2040 "Keymap used for completing shell commands in minibuffer.")
2042 (defun read-shell-command (prompt &optional initial-contents hist &rest args)
2043 "Read a shell command from the minibuffer.
2044 The arguments are the same as the ones of `read-from-minibuffer',
2045 except READ and KEYMAP are missing and HIST defaults
2046 to `shell-command-history'."
2047 (minibuffer-with-setup-hook
2048 (lambda ()
2049 (set (make-local-variable 'minibuffer-default-add-function)
2050 'minibuffer-default-add-shell-commands))
2051 (apply 'read-from-minibuffer prompt initial-contents
2052 minibuffer-local-shell-command-map
2054 (or hist 'shell-command-history)
2055 args)))
2057 (defun shell-command (command &optional output-buffer error-buffer)
2058 "Execute string COMMAND in inferior shell; display output, if any.
2059 With prefix argument, insert the COMMAND's output at point.
2061 If COMMAND ends in ampersand, execute it asynchronously.
2062 The output appears in the buffer `*Async Shell Command*'.
2063 That buffer is in shell mode.
2065 Otherwise, COMMAND is executed synchronously. The output appears in
2066 the buffer `*Shell Command Output*'. If the output is short enough to
2067 display in the echo area (which is determined by the variables
2068 `resize-mini-windows' and `max-mini-window-height'), it is shown
2069 there, but it is nonetheless available in buffer `*Shell Command
2070 Output*' even though that buffer is not automatically displayed.
2072 To specify a coding system for converting non-ASCII characters
2073 in the shell command output, use \\[universal-coding-system-argument] \
2074 before this command.
2076 Noninteractive callers can specify coding systems by binding
2077 `coding-system-for-read' and `coding-system-for-write'.
2079 The optional second argument OUTPUT-BUFFER, if non-nil,
2080 says to put the output in some other buffer.
2081 If OUTPUT-BUFFER is a buffer or buffer name, put the output there.
2082 If OUTPUT-BUFFER is not a buffer and not nil,
2083 insert output in current buffer. (This cannot be done asynchronously.)
2084 In either case, the output is inserted after point (leaving mark after it).
2086 If the command terminates without error, but generates output,
2087 and you did not specify \"insert it in the current buffer\",
2088 the output can be displayed in the echo area or in its buffer.
2089 If the output is short enough to display in the echo area
2090 \(determined by the variable `max-mini-window-height' if
2091 `resize-mini-windows' is non-nil), it is shown there.
2092 Otherwise,the buffer containing the output is displayed.
2094 If there is output and an error, and you did not specify \"insert it
2095 in the current buffer\", a message about the error goes at the end
2096 of the output.
2098 If there is no output, or if output is inserted in the current buffer,
2099 then `*Shell Command Output*' is deleted.
2101 If the optional third argument ERROR-BUFFER is non-nil, it is a buffer
2102 or buffer name to which to direct the command's standard error output.
2103 If it is nil, error output is mingled with regular output.
2104 In an interactive call, the variable `shell-command-default-error-buffer'
2105 specifies the value of ERROR-BUFFER."
2107 (interactive
2108 (list
2109 (read-shell-command "Shell command: " nil nil
2110 (and buffer-file-name
2111 (file-relative-name buffer-file-name)))
2112 current-prefix-arg
2113 shell-command-default-error-buffer))
2114 ;; Look for a handler in case default-directory is a remote file name.
2115 (let ((handler
2116 (find-file-name-handler (directory-file-name default-directory)
2117 'shell-command)))
2118 (if handler
2119 (funcall handler 'shell-command command output-buffer error-buffer)
2120 (if (and output-buffer
2121 (not (or (bufferp output-buffer) (stringp output-buffer))))
2122 ;; Output goes in current buffer.
2123 (let ((error-file
2124 (if error-buffer
2125 (make-temp-file
2126 (expand-file-name "scor"
2127 (or small-temporary-file-directory
2128 temporary-file-directory)))
2129 nil)))
2130 (barf-if-buffer-read-only)
2131 (push-mark nil t)
2132 ;; We do not use -f for csh; we will not support broken use of
2133 ;; .cshrcs. Even the BSD csh manual says to use
2134 ;; "if ($?prompt) exit" before things which are not useful
2135 ;; non-interactively. Besides, if someone wants their other
2136 ;; aliases for shell commands then they can still have them.
2137 (call-process shell-file-name nil
2138 (if error-file
2139 (list t error-file)
2141 nil shell-command-switch command)
2142 (when (and error-file (file-exists-p error-file))
2143 (if (< 0 (nth 7 (file-attributes error-file)))
2144 (with-current-buffer (get-buffer-create error-buffer)
2145 (let ((pos-from-end (- (point-max) (point))))
2146 (or (bobp)
2147 (insert "\f\n"))
2148 ;; Do no formatting while reading error file,
2149 ;; because that can run a shell command, and we
2150 ;; don't want that to cause an infinite recursion.
2151 (format-insert-file error-file nil)
2152 ;; Put point after the inserted errors.
2153 (goto-char (- (point-max) pos-from-end)))
2154 (display-buffer (current-buffer))))
2155 (delete-file error-file))
2156 ;; This is like exchange-point-and-mark, but doesn't
2157 ;; activate the mark. It is cleaner to avoid activation,
2158 ;; even though the command loop would deactivate the mark
2159 ;; because we inserted text.
2160 (goto-char (prog1 (mark t)
2161 (set-marker (mark-marker) (point)
2162 (current-buffer)))))
2163 ;; Output goes in a separate buffer.
2164 ;; Preserve the match data in case called from a program.
2165 (save-match-data
2166 (if (string-match "[ \t]*&[ \t]*\\'" command)
2167 ;; Command ending with ampersand means asynchronous.
2168 (let ((buffer (get-buffer-create
2169 (or output-buffer "*Async Shell Command*")))
2170 (directory default-directory)
2171 proc)
2172 ;; Remove the ampersand.
2173 (setq command (substring command 0 (match-beginning 0)))
2174 ;; If will kill a process, query first.
2175 (setq proc (get-buffer-process buffer))
2176 (if proc
2177 (if (yes-or-no-p "A command is running. Kill it? ")
2178 (kill-process proc)
2179 (error "Shell command in progress")))
2180 (with-current-buffer buffer
2181 (setq buffer-read-only nil)
2182 (erase-buffer)
2183 (display-buffer buffer)
2184 (setq default-directory directory)
2185 (setq proc (start-process "Shell" buffer shell-file-name
2186 shell-command-switch command))
2187 (setq mode-line-process '(":%s"))
2188 (require 'shell) (shell-mode)
2189 (set-process-sentinel proc 'shell-command-sentinel)
2191 (shell-command-on-region (point) (point) command
2192 output-buffer nil error-buffer)))))))
2194 (defun display-message-or-buffer (message
2195 &optional buffer-name not-this-window frame)
2196 "Display MESSAGE in the echo area if possible, otherwise in a pop-up buffer.
2197 MESSAGE may be either a string or a buffer.
2199 A buffer is displayed using `display-buffer' if MESSAGE is too long for
2200 the maximum height of the echo area, as defined by `max-mini-window-height'
2201 if `resize-mini-windows' is non-nil.
2203 Returns either the string shown in the echo area, or when a pop-up
2204 buffer is used, the window used to display it.
2206 If MESSAGE is a string, then the optional argument BUFFER-NAME is the
2207 name of the buffer used to display it in the case where a pop-up buffer
2208 is used, defaulting to `*Message*'. In the case where MESSAGE is a
2209 string and it is displayed in the echo area, it is not specified whether
2210 the contents are inserted into the buffer anyway.
2212 Optional arguments NOT-THIS-WINDOW and FRAME are as for `display-buffer',
2213 and only used if a buffer is displayed."
2214 (cond ((and (stringp message) (not (string-match "\n" message)))
2215 ;; Trivial case where we can use the echo area
2216 (message "%s" message))
2217 ((and (stringp message)
2218 (= (string-match "\n" message) (1- (length message))))
2219 ;; Trivial case where we can just remove single trailing newline
2220 (message "%s" (substring message 0 (1- (length message)))))
2222 ;; General case
2223 (with-current-buffer
2224 (if (bufferp message)
2225 message
2226 (get-buffer-create (or buffer-name "*Message*")))
2228 (unless (bufferp message)
2229 (erase-buffer)
2230 (insert message))
2232 (let ((lines
2233 (if (= (buffer-size) 0)
2235 (count-screen-lines nil nil nil (minibuffer-window)))))
2236 (cond ((= lines 0))
2237 ((and (or (<= lines 1)
2238 (<= lines
2239 (if resize-mini-windows
2240 (cond ((floatp max-mini-window-height)
2241 (* (frame-height)
2242 max-mini-window-height))
2243 ((integerp max-mini-window-height)
2244 max-mini-window-height)
2247 1)))
2248 ;; Don't use the echo area if the output buffer is
2249 ;; already dispayed in the selected frame.
2250 (not (get-buffer-window (current-buffer))))
2251 ;; Echo area
2252 (goto-char (point-max))
2253 (when (bolp)
2254 (backward-char 1))
2255 (message "%s" (buffer-substring (point-min) (point))))
2257 ;; Buffer
2258 (goto-char (point-min))
2259 (display-buffer (current-buffer)
2260 not-this-window frame))))))))
2263 ;; We have a sentinel to prevent insertion of a termination message
2264 ;; in the buffer itself.
2265 (defun shell-command-sentinel (process signal)
2266 (if (memq (process-status process) '(exit signal))
2267 (message "%s: %s."
2268 (car (cdr (cdr (process-command process))))
2269 (substring signal 0 -1))))
2271 (defun shell-command-on-region (start end command
2272 &optional output-buffer replace
2273 error-buffer display-error-buffer)
2274 "Execute string COMMAND in inferior shell with region as input.
2275 Normally display output (if any) in temp buffer `*Shell Command Output*';
2276 Prefix arg means replace the region with it. Return the exit code of
2277 COMMAND.
2279 To specify a coding system for converting non-ASCII characters
2280 in the input and output to the shell command, use \\[universal-coding-system-argument]
2281 before this command. By default, the input (from the current buffer)
2282 is encoded in the same coding system that will be used to save the file,
2283 `buffer-file-coding-system'. If the output is going to replace the region,
2284 then it is decoded from that same coding system.
2286 The noninteractive arguments are START, END, COMMAND,
2287 OUTPUT-BUFFER, REPLACE, ERROR-BUFFER, and DISPLAY-ERROR-BUFFER.
2288 Noninteractive callers can specify coding systems by binding
2289 `coding-system-for-read' and `coding-system-for-write'.
2291 If the command generates output, the output may be displayed
2292 in the echo area or in a buffer.
2293 If the output is short enough to display in the echo area
2294 \(determined by the variable `max-mini-window-height' if
2295 `resize-mini-windows' is non-nil), it is shown there. Otherwise
2296 it is displayed in the buffer `*Shell Command Output*'. The output
2297 is available in that buffer in both cases.
2299 If there is output and an error, a message about the error
2300 appears at the end of the output.
2302 If there is no output, or if output is inserted in the current buffer,
2303 then `*Shell Command Output*' is deleted.
2305 If the optional fourth argument OUTPUT-BUFFER is non-nil,
2306 that says to put the output in some other buffer.
2307 If OUTPUT-BUFFER is a buffer or buffer name, put the output there.
2308 If OUTPUT-BUFFER is not a buffer and not nil,
2309 insert output in the current buffer.
2310 In either case, the output is inserted after point (leaving mark after it).
2312 If REPLACE, the optional fifth argument, is non-nil, that means insert
2313 the output in place of text from START to END, putting point and mark
2314 around it.
2316 If optional sixth argument ERROR-BUFFER is non-nil, it is a buffer
2317 or buffer name to which to direct the command's standard error output.
2318 If it is nil, error output is mingled with regular output.
2319 If DISPLAY-ERROR-BUFFER is non-nil, display the error buffer if there
2320 were any errors. (This is always t, interactively.)
2321 In an interactive call, the variable `shell-command-default-error-buffer'
2322 specifies the value of ERROR-BUFFER."
2323 (interactive (let (string)
2324 (unless (mark)
2325 (error "The mark is not set now, so there is no region"))
2326 ;; Do this before calling region-beginning
2327 ;; and region-end, in case subprocess output
2328 ;; relocates them while we are in the minibuffer.
2329 (setq string (read-shell-command "Shell command on region: "))
2330 ;; call-interactively recognizes region-beginning and
2331 ;; region-end specially, leaving them in the history.
2332 (list (region-beginning) (region-end)
2333 string
2334 current-prefix-arg
2335 current-prefix-arg
2336 shell-command-default-error-buffer
2337 t)))
2338 (let ((error-file
2339 (if error-buffer
2340 (make-temp-file
2341 (expand-file-name "scor"
2342 (or small-temporary-file-directory
2343 temporary-file-directory)))
2344 nil))
2345 exit-status)
2346 (if (or replace
2347 (and output-buffer
2348 (not (or (bufferp output-buffer) (stringp output-buffer)))))
2349 ;; Replace specified region with output from command.
2350 (let ((swap (and replace (< start end))))
2351 ;; Don't muck with mark unless REPLACE says we should.
2352 (goto-char start)
2353 (and replace (push-mark (point) 'nomsg))
2354 (setq exit-status
2355 (call-process-region start end shell-file-name t
2356 (if error-file
2357 (list t error-file)
2359 nil shell-command-switch command))
2360 ;; It is rude to delete a buffer which the command is not using.
2361 ;; (let ((shell-buffer (get-buffer "*Shell Command Output*")))
2362 ;; (and shell-buffer (not (eq shell-buffer (current-buffer)))
2363 ;; (kill-buffer shell-buffer)))
2364 ;; Don't muck with mark unless REPLACE says we should.
2365 (and replace swap (exchange-point-and-mark)))
2366 ;; No prefix argument: put the output in a temp buffer,
2367 ;; replacing its entire contents.
2368 (let ((buffer (get-buffer-create
2369 (or output-buffer "*Shell Command Output*"))))
2370 (unwind-protect
2371 (if (eq buffer (current-buffer))
2372 ;; If the input is the same buffer as the output,
2373 ;; delete everything but the specified region,
2374 ;; then replace that region with the output.
2375 (progn (setq buffer-read-only nil)
2376 (delete-region (max start end) (point-max))
2377 (delete-region (point-min) (min start end))
2378 (setq exit-status
2379 (call-process-region (point-min) (point-max)
2380 shell-file-name t
2381 (if error-file
2382 (list t error-file)
2384 nil shell-command-switch
2385 command)))
2386 ;; Clear the output buffer, then run the command with
2387 ;; output there.
2388 (let ((directory default-directory))
2389 (save-excursion
2390 (set-buffer buffer)
2391 (setq buffer-read-only nil)
2392 (if (not output-buffer)
2393 (setq default-directory directory))
2394 (erase-buffer)))
2395 (setq exit-status
2396 (call-process-region start end shell-file-name nil
2397 (if error-file
2398 (list buffer error-file)
2399 buffer)
2400 nil shell-command-switch command)))
2401 ;; Report the output.
2402 (with-current-buffer buffer
2403 (setq mode-line-process
2404 (cond ((null exit-status)
2405 " - Error")
2406 ((stringp exit-status)
2407 (format " - Signal [%s]" exit-status))
2408 ((not (equal 0 exit-status))
2409 (format " - Exit [%d]" exit-status)))))
2410 (if (with-current-buffer buffer (> (point-max) (point-min)))
2411 ;; There's some output, display it
2412 (display-message-or-buffer buffer)
2413 ;; No output; error?
2414 (let ((output
2415 (if (and error-file
2416 (< 0 (nth 7 (file-attributes error-file))))
2417 "some error output"
2418 "no output")))
2419 (cond ((null exit-status)
2420 (message "(Shell command failed with error)"))
2421 ((equal 0 exit-status)
2422 (message "(Shell command succeeded with %s)"
2423 output))
2424 ((stringp exit-status)
2425 (message "(Shell command killed by signal %s)"
2426 exit-status))
2428 (message "(Shell command failed with code %d and %s)"
2429 exit-status output))))
2430 ;; Don't kill: there might be useful info in the undo-log.
2431 ;; (kill-buffer buffer)
2432 ))))
2434 (when (and error-file (file-exists-p error-file))
2435 (if (< 0 (nth 7 (file-attributes error-file)))
2436 (with-current-buffer (get-buffer-create error-buffer)
2437 (let ((pos-from-end (- (point-max) (point))))
2438 (or (bobp)
2439 (insert "\f\n"))
2440 ;; Do no formatting while reading error file,
2441 ;; because that can run a shell command, and we
2442 ;; don't want that to cause an infinite recursion.
2443 (format-insert-file error-file nil)
2444 ;; Put point after the inserted errors.
2445 (goto-char (- (point-max) pos-from-end)))
2446 (and display-error-buffer
2447 (display-buffer (current-buffer)))))
2448 (delete-file error-file))
2449 exit-status))
2451 (defun shell-command-to-string (command)
2452 "Execute shell command COMMAND and return its output as a string."
2453 (with-output-to-string
2454 (with-current-buffer
2455 standard-output
2456 (call-process shell-file-name nil t nil shell-command-switch command))))
2458 (defun process-file (program &optional infile buffer display &rest args)
2459 "Process files synchronously in a separate process.
2460 Similar to `call-process', but may invoke a file handler based on
2461 `default-directory'. The current working directory of the
2462 subprocess is `default-directory'.
2464 File names in INFILE and BUFFER are handled normally, but file
2465 names in ARGS should be relative to `default-directory', as they
2466 are passed to the process verbatim. \(This is a difference to
2467 `call-process' which does not support file handlers for INFILE
2468 and BUFFER.\)
2470 Some file handlers might not support all variants, for example
2471 they might behave as if DISPLAY was nil, regardless of the actual
2472 value passed."
2473 (let ((fh (find-file-name-handler default-directory 'process-file))
2474 lc stderr-file)
2475 (unwind-protect
2476 (if fh (apply fh 'process-file program infile buffer display args)
2477 (when infile (setq lc (file-local-copy infile)))
2478 (setq stderr-file (when (and (consp buffer) (stringp (cadr buffer)))
2479 (make-temp-file "emacs")))
2480 (prog1
2481 (apply 'call-process program
2482 (or lc infile)
2483 (if stderr-file (list (car buffer) stderr-file) buffer)
2484 display args)
2485 (when stderr-file (copy-file stderr-file (cadr buffer)))))
2486 (when stderr-file (delete-file stderr-file))
2487 (when lc (delete-file lc)))))
2489 (defun start-file-process (name buffer program &rest program-args)
2490 "Start a program in a subprocess. Return the process object for it.
2492 Similar to `start-process', but may invoke a file handler based on
2493 `default-directory'. See Info node `(elisp)Magic File Names'.
2495 This handler ought to run PROGRAM, perhaps on the local host,
2496 perhaps on a remote host that corresponds to `default-directory'.
2497 In the latter case, the local part of `default-directory' becomes
2498 the working directory of the process.
2500 PROGRAM and PROGRAM-ARGS might be file names. They are not
2501 objects of file handler invocation."
2502 (let ((fh (find-file-name-handler default-directory 'start-file-process)))
2503 (if fh (apply fh 'start-file-process name buffer program program-args)
2504 (apply 'start-process name buffer program program-args))))
2507 (defvar universal-argument-map
2508 (let ((map (make-sparse-keymap)))
2509 (define-key map [t] 'universal-argument-other-key)
2510 (define-key map (vector meta-prefix-char t) 'universal-argument-other-key)
2511 (define-key map [switch-frame] nil)
2512 (define-key map [?\C-u] 'universal-argument-more)
2513 (define-key map [?-] 'universal-argument-minus)
2514 (define-key map [?0] 'digit-argument)
2515 (define-key map [?1] 'digit-argument)
2516 (define-key map [?2] 'digit-argument)
2517 (define-key map [?3] 'digit-argument)
2518 (define-key map [?4] 'digit-argument)
2519 (define-key map [?5] 'digit-argument)
2520 (define-key map [?6] 'digit-argument)
2521 (define-key map [?7] 'digit-argument)
2522 (define-key map [?8] 'digit-argument)
2523 (define-key map [?9] 'digit-argument)
2524 (define-key map [kp-0] 'digit-argument)
2525 (define-key map [kp-1] 'digit-argument)
2526 (define-key map [kp-2] 'digit-argument)
2527 (define-key map [kp-3] 'digit-argument)
2528 (define-key map [kp-4] 'digit-argument)
2529 (define-key map [kp-5] 'digit-argument)
2530 (define-key map [kp-6] 'digit-argument)
2531 (define-key map [kp-7] 'digit-argument)
2532 (define-key map [kp-8] 'digit-argument)
2533 (define-key map [kp-9] 'digit-argument)
2534 (define-key map [kp-subtract] 'universal-argument-minus)
2535 map)
2536 "Keymap used while processing \\[universal-argument].")
2538 (defvar universal-argument-num-events nil
2539 "Number of argument-specifying events read by `universal-argument'.
2540 `universal-argument-other-key' uses this to discard those events
2541 from (this-command-keys), and reread only the final command.")
2543 (defvar overriding-map-is-bound nil
2544 "Non-nil when `overriding-terminal-local-map' is `universal-argument-map'.")
2546 (defvar saved-overriding-map nil
2547 "The saved value of `overriding-terminal-local-map'.
2548 That variable gets restored to this value on exiting \"universal
2549 argument mode\".")
2551 (defun ensure-overriding-map-is-bound ()
2552 "Check `overriding-terminal-local-map' is `universal-argument-map'."
2553 (unless overriding-map-is-bound
2554 (setq saved-overriding-map overriding-terminal-local-map)
2555 (setq overriding-terminal-local-map universal-argument-map)
2556 (setq overriding-map-is-bound t)))
2558 (defun restore-overriding-map ()
2559 "Restore `overriding-terminal-local-map' to its saved value."
2560 (setq overriding-terminal-local-map saved-overriding-map)
2561 (setq overriding-map-is-bound nil))
2563 (defun universal-argument ()
2564 "Begin a numeric argument for the following command.
2565 Digits or minus sign following \\[universal-argument] make up the numeric argument.
2566 \\[universal-argument] following the digits or minus sign ends the argument.
2567 \\[universal-argument] without digits or minus sign provides 4 as argument.
2568 Repeating \\[universal-argument] without digits or minus sign
2569 multiplies the argument by 4 each time.
2570 For some commands, just \\[universal-argument] by itself serves as a flag
2571 which is different in effect from any particular numeric argument.
2572 These commands include \\[set-mark-command] and \\[start-kbd-macro]."
2573 (interactive)
2574 (setq prefix-arg (list 4))
2575 (setq universal-argument-num-events (length (this-command-keys)))
2576 (ensure-overriding-map-is-bound))
2578 ;; A subsequent C-u means to multiply the factor by 4 if we've typed
2579 ;; nothing but C-u's; otherwise it means to terminate the prefix arg.
2580 (defun universal-argument-more (arg)
2581 (interactive "P")
2582 (if (consp arg)
2583 (setq prefix-arg (list (* 4 (car arg))))
2584 (if (eq arg '-)
2585 (setq prefix-arg (list -4))
2586 (setq prefix-arg arg)
2587 (restore-overriding-map)))
2588 (setq universal-argument-num-events (length (this-command-keys))))
2590 (defun negative-argument (arg)
2591 "Begin a negative numeric argument for the next command.
2592 \\[universal-argument] following digits or minus sign ends the argument."
2593 (interactive "P")
2594 (cond ((integerp arg)
2595 (setq prefix-arg (- arg)))
2596 ((eq arg '-)
2597 (setq prefix-arg nil))
2599 (setq prefix-arg '-)))
2600 (setq universal-argument-num-events (length (this-command-keys)))
2601 (ensure-overriding-map-is-bound))
2603 (defun digit-argument (arg)
2604 "Part of the numeric argument for the next command.
2605 \\[universal-argument] following digits or minus sign ends the argument."
2606 (interactive "P")
2607 (let* ((char (if (integerp last-command-event)
2608 last-command-event
2609 (get last-command-event 'ascii-character)))
2610 (digit (- (logand char ?\177) ?0)))
2611 (cond ((integerp arg)
2612 (setq prefix-arg (+ (* arg 10)
2613 (if (< arg 0) (- digit) digit))))
2614 ((eq arg '-)
2615 ;; Treat -0 as just -, so that -01 will work.
2616 (setq prefix-arg (if (zerop digit) '- (- digit))))
2618 (setq prefix-arg digit))))
2619 (setq universal-argument-num-events (length (this-command-keys)))
2620 (ensure-overriding-map-is-bound))
2622 ;; For backward compatibility, minus with no modifiers is an ordinary
2623 ;; command if digits have already been entered.
2624 (defun universal-argument-minus (arg)
2625 (interactive "P")
2626 (if (integerp arg)
2627 (universal-argument-other-key arg)
2628 (negative-argument arg)))
2630 ;; Anything else terminates the argument and is left in the queue to be
2631 ;; executed as a command.
2632 (defun universal-argument-other-key (arg)
2633 (interactive "P")
2634 (setq prefix-arg arg)
2635 (let* ((key (this-command-keys))
2636 (keylist (listify-key-sequence key)))
2637 (setq unread-command-events
2638 (append (nthcdr universal-argument-num-events keylist)
2639 unread-command-events)))
2640 (reset-this-command-lengths)
2641 (restore-overriding-map))
2643 (defvar buffer-substring-filters nil
2644 "List of filter functions for `filter-buffer-substring'.
2645 Each function must accept a single argument, a string, and return
2646 a string. The buffer substring is passed to the first function
2647 in the list, and the return value of each function is passed to
2648 the next. The return value of the last function is used as the
2649 return value of `filter-buffer-substring'.
2651 If this variable is nil, no filtering is performed.")
2653 (defun filter-buffer-substring (beg end &optional delete noprops)
2654 "Return the buffer substring between BEG and END, after filtering.
2655 The buffer substring is passed through each of the filter
2656 functions in `buffer-substring-filters', and the value from the
2657 last filter function is returned. If `buffer-substring-filters'
2658 is nil, the buffer substring is returned unaltered.
2660 If DELETE is non-nil, the text between BEG and END is deleted
2661 from the buffer.
2663 If NOPROPS is non-nil, final string returned does not include
2664 text properties, while the string passed to the filters still
2665 includes text properties from the buffer text.
2667 Point is temporarily set to BEG before calling
2668 `buffer-substring-filters', in case the functions need to know
2669 where the text came from.
2671 This function should be used instead of `buffer-substring',
2672 `buffer-substring-no-properties', or `delete-and-extract-region'
2673 when you want to allow filtering to take place. For example,
2674 major or minor modes can use `buffer-substring-filters' to
2675 extract characters that are special to a buffer, and should not
2676 be copied into other buffers."
2677 (cond
2678 ((or delete buffer-substring-filters)
2679 (save-excursion
2680 (goto-char beg)
2681 (let ((string (if delete (delete-and-extract-region beg end)
2682 (buffer-substring beg end))))
2683 (dolist (filter buffer-substring-filters)
2684 (setq string (funcall filter string)))
2685 (if noprops
2686 (set-text-properties 0 (length string) nil string))
2687 string)))
2688 (noprops
2689 (buffer-substring-no-properties beg end))
2691 (buffer-substring beg end))))
2694 ;;;; Window system cut and paste hooks.
2696 (defvar interprogram-cut-function nil
2697 "Function to call to make a killed region available to other programs.
2699 Most window systems provide some sort of facility for cutting and
2700 pasting text between the windows of different programs.
2701 This variable holds a function that Emacs calls whenever text
2702 is put in the kill ring, to make the new kill available to other
2703 programs.
2705 The function takes one or two arguments.
2706 The first argument, TEXT, is a string containing
2707 the text which should be made available.
2708 The second, optional, argument PUSH, has the same meaning as the
2709 similar argument to `x-set-cut-buffer', which see.")
2711 (defvar interprogram-paste-function nil
2712 "Function to call to get text cut from other programs.
2714 Most window systems provide some sort of facility for cutting and
2715 pasting text between the windows of different programs.
2716 This variable holds a function that Emacs calls to obtain
2717 text that other programs have provided for pasting.
2719 The function should be called with no arguments. If the function
2720 returns nil, then no other program has provided such text, and the top
2721 of the Emacs kill ring should be used. If the function returns a
2722 string, then the caller of the function \(usually `current-kill')
2723 should put this string in the kill ring as the latest kill.
2725 This function may also return a list of strings if the window
2726 system supports multiple selections. The first string will be
2727 used as the pasted text, but the other will be placed in the
2728 kill ring for easy access via `yank-pop'.
2730 Note that the function should return a string only if a program other
2731 than Emacs has provided a string for pasting; if Emacs provided the
2732 most recent string, the function should return nil. If it is
2733 difficult to tell whether Emacs or some other program provided the
2734 current string, it is probably good enough to return nil if the string
2735 is equal (according to `string=') to the last text Emacs provided.")
2739 ;;;; The kill ring data structure.
2741 (defvar kill-ring nil
2742 "List of killed text sequences.
2743 Since the kill ring is supposed to interact nicely with cut-and-paste
2744 facilities offered by window systems, use of this variable should
2745 interact nicely with `interprogram-cut-function' and
2746 `interprogram-paste-function'. The functions `kill-new',
2747 `kill-append', and `current-kill' are supposed to implement this
2748 interaction; you may want to use them instead of manipulating the kill
2749 ring directly.")
2751 (defcustom kill-ring-max 60
2752 "Maximum length of kill ring before oldest elements are thrown away."
2753 :type 'integer
2754 :group 'killing)
2756 (defvar kill-ring-yank-pointer nil
2757 "The tail of the kill ring whose car is the last thing yanked.")
2759 (defun kill-new (string &optional replace yank-handler)
2760 "Make STRING the latest kill in the kill ring.
2761 Set `kill-ring-yank-pointer' to point to it.
2762 If `interprogram-cut-function' is non-nil, apply it to STRING.
2763 Optional second argument REPLACE non-nil means that STRING will replace
2764 the front of the kill ring, rather than being added to the list.
2766 Optional third arguments YANK-HANDLER controls how the STRING is later
2767 inserted into a buffer; see `insert-for-yank' for details.
2768 When a yank handler is specified, STRING must be non-empty (the yank
2769 handler, if non-nil, is stored as a `yank-handler' text property on STRING).
2771 When the yank handler has a non-nil PARAM element, the original STRING
2772 argument is not used by `insert-for-yank'. However, since Lisp code
2773 may access and use elements from the kill ring directly, the STRING
2774 argument should still be a \"useful\" string for such uses."
2775 (if (> (length string) 0)
2776 (if yank-handler
2777 (put-text-property 0 (length string)
2778 'yank-handler yank-handler string))
2779 (if yank-handler
2780 (signal 'args-out-of-range
2781 (list string "yank-handler specified for empty string"))))
2782 (if (fboundp 'menu-bar-update-yank-menu)
2783 (menu-bar-update-yank-menu string (and replace (car kill-ring))))
2784 (if (and replace kill-ring)
2785 (setcar kill-ring string)
2786 (push string kill-ring)
2787 (if (> (length kill-ring) kill-ring-max)
2788 (setcdr (nthcdr (1- kill-ring-max) kill-ring) nil)))
2789 (setq kill-ring-yank-pointer kill-ring)
2790 (if interprogram-cut-function
2791 (funcall interprogram-cut-function string (not replace))))
2793 (defun kill-append (string before-p &optional yank-handler)
2794 "Append STRING to the end of the latest kill in the kill ring.
2795 If BEFORE-P is non-nil, prepend STRING to the kill.
2796 Optional third argument YANK-HANDLER, if non-nil, specifies the
2797 yank-handler text property to be set on the combined kill ring
2798 string. If the specified yank-handler arg differs from the
2799 yank-handler property of the latest kill string, this function
2800 adds the combined string to the kill ring as a new element,
2801 instead of replacing the last kill with it.
2802 If `interprogram-cut-function' is set, pass the resulting kill to it."
2803 (let* ((cur (car kill-ring)))
2804 (kill-new (if before-p (concat string cur) (concat cur string))
2805 (or (= (length cur) 0)
2806 (equal yank-handler (get-text-property 0 'yank-handler cur)))
2807 yank-handler)))
2809 (defcustom yank-pop-change-selection nil
2810 "If non-nil, rotating the kill ring changes the window system selection."
2811 :type 'boolean
2812 :group 'killing
2813 :version "23.1")
2815 (defun current-kill (n &optional do-not-move)
2816 "Rotate the yanking point by N places, and then return that kill.
2817 If N is zero, `interprogram-paste-function' is set, and calling
2818 it returns a string or list of strings, then that string (or
2819 list) is added to the front of the kill ring and the string (or
2820 first string in the list) is returned as the latest kill.
2822 If N is not zero, and if `yank-pop-change-selection' is
2823 non-nil, use `interprogram-cut-function' to transfer the
2824 kill at the new yank point into the window system selection.
2826 If optional arg DO-NOT-MOVE is non-nil, then don't actually
2827 move the yanking point; just return the Nth kill forward."
2829 (let ((interprogram-paste (and (= n 0)
2830 interprogram-paste-function
2831 (funcall interprogram-paste-function))))
2832 (if interprogram-paste
2833 (progn
2834 ;; Disable the interprogram cut function when we add the new
2835 ;; text to the kill ring, so Emacs doesn't try to own the
2836 ;; selection, with identical text.
2837 (let ((interprogram-cut-function nil))
2838 (if (listp interprogram-paste)
2839 (mapc 'kill-new (nreverse interprogram-paste))
2840 (kill-new interprogram-paste)))
2841 (car kill-ring))
2842 (or kill-ring (error "Kill ring is empty"))
2843 (let ((ARGth-kill-element
2844 (nthcdr (mod (- n (length kill-ring-yank-pointer))
2845 (length kill-ring))
2846 kill-ring)))
2847 (unless do-not-move
2848 (setq kill-ring-yank-pointer ARGth-kill-element)
2849 (when (and yank-pop-change-selection
2850 (> n 0)
2851 interprogram-cut-function)
2852 (funcall interprogram-cut-function (car ARGth-kill-element))))
2853 (car ARGth-kill-element)))))
2857 ;;;; Commands for manipulating the kill ring.
2859 (defcustom kill-read-only-ok nil
2860 "Non-nil means don't signal an error for killing read-only text."
2861 :type 'boolean
2862 :group 'killing)
2864 (put 'text-read-only 'error-conditions
2865 '(text-read-only buffer-read-only error))
2866 (put 'text-read-only 'error-message "Text is read-only")
2868 (defun kill-region (beg end &optional yank-handler)
2869 "Kill (\"cut\") text between point and mark.
2870 This deletes the text from the buffer and saves it in the kill ring.
2871 The command \\[yank] can retrieve it from there.
2872 \(If you want to save the region without killing it, use \\[kill-ring-save].)
2874 If you want to append the killed region to the last killed text,
2875 use \\[append-next-kill] before \\[kill-region].
2877 If the buffer is read-only, Emacs will beep and refrain from deleting
2878 the text, but put the text in the kill ring anyway. This means that
2879 you can use the killing commands to copy text from a read-only buffer.
2881 This is the primitive for programs to kill text (as opposed to deleting it).
2882 Supply two arguments, character positions indicating the stretch of text
2883 to be killed.
2884 Any command that calls this function is a \"kill command\".
2885 If the previous command was also a kill command,
2886 the text killed this time appends to the text killed last time
2887 to make one entry in the kill ring.
2889 In Lisp code, optional third arg YANK-HANDLER, if non-nil,
2890 specifies the yank-handler text property to be set on the killed
2891 text. See `insert-for-yank'."
2892 ;; Pass point first, then mark, because the order matters
2893 ;; when calling kill-append.
2894 (interactive (list (point) (mark)))
2895 (unless (and beg end)
2896 (error "The mark is not set now, so there is no region"))
2897 (condition-case nil
2898 (let ((string (filter-buffer-substring beg end t)))
2899 (when string ;STRING is nil if BEG = END
2900 ;; Add that string to the kill ring, one way or another.
2901 (if (eq last-command 'kill-region)
2902 (kill-append string (< end beg) yank-handler)
2903 (kill-new string nil yank-handler)))
2904 (when (or string (eq last-command 'kill-region))
2905 (setq this-command 'kill-region))
2906 nil)
2907 ((buffer-read-only text-read-only)
2908 ;; The code above failed because the buffer, or some of the characters
2909 ;; in the region, are read-only.
2910 ;; We should beep, in case the user just isn't aware of this.
2911 ;; However, there's no harm in putting
2912 ;; the region's text in the kill ring, anyway.
2913 (copy-region-as-kill beg end)
2914 ;; Set this-command now, so it will be set even if we get an error.
2915 (setq this-command 'kill-region)
2916 ;; This should barf, if appropriate, and give us the correct error.
2917 (if kill-read-only-ok
2918 (progn (message "Read only text copied to kill ring") nil)
2919 ;; Signal an error if the buffer is read-only.
2920 (barf-if-buffer-read-only)
2921 ;; If the buffer isn't read-only, the text is.
2922 (signal 'text-read-only (list (current-buffer)))))))
2924 ;; copy-region-as-kill no longer sets this-command, because it's confusing
2925 ;; to get two copies of the text when the user accidentally types M-w and
2926 ;; then corrects it with the intended C-w.
2927 (defun copy-region-as-kill (beg end)
2928 "Save the region as if killed, but don't kill it.
2929 In Transient Mark mode, deactivate the mark.
2930 If `interprogram-cut-function' is non-nil, also save the text for a window
2931 system cut and paste.
2933 This command's old key binding has been given to `kill-ring-save'."
2934 (interactive "r")
2935 (if (eq last-command 'kill-region)
2936 (kill-append (filter-buffer-substring beg end) (< end beg))
2937 (kill-new (filter-buffer-substring beg end)))
2938 (setq deactivate-mark t)
2939 nil)
2941 (defun kill-ring-save (beg end)
2942 "Save the region as if killed, but don't kill it.
2943 In Transient Mark mode, deactivate the mark.
2944 If `interprogram-cut-function' is non-nil, also save the text for a window
2945 system cut and paste.
2947 If you want to append the killed line to the last killed text,
2948 use \\[append-next-kill] before \\[kill-ring-save].
2950 This command is similar to `copy-region-as-kill', except that it gives
2951 visual feedback indicating the extent of the region being copied."
2952 (interactive "r")
2953 (copy-region-as-kill beg end)
2954 ;; This use of interactive-p is correct
2955 ;; because the code it controls just gives the user visual feedback.
2956 (if (interactive-p)
2957 (let ((other-end (if (= (point) beg) end beg))
2958 (opoint (point))
2959 ;; Inhibit quitting so we can make a quit here
2960 ;; look like a C-g typed as a command.
2961 (inhibit-quit t))
2962 (if (pos-visible-in-window-p other-end (selected-window))
2963 ;; Swap point-and-mark quickly so as to show the region that
2964 ;; was selected. Don't do it if the region is highlighted.
2965 (unless (and (region-active-p)
2966 (face-background 'region))
2967 ;; Swap point and mark.
2968 (set-marker (mark-marker) (point) (current-buffer))
2969 (goto-char other-end)
2970 (sit-for blink-matching-delay)
2971 ;; Swap back.
2972 (set-marker (mark-marker) other-end (current-buffer))
2973 (goto-char opoint)
2974 ;; If user quit, deactivate the mark
2975 ;; as C-g would as a command.
2976 (and quit-flag mark-active
2977 (deactivate-mark)))
2978 (let* ((killed-text (current-kill 0))
2979 (message-len (min (length killed-text) 40)))
2980 (if (= (point) beg)
2981 ;; Don't say "killed"; that is misleading.
2982 (message "Saved text until \"%s\""
2983 (substring killed-text (- message-len)))
2984 (message "Saved text from \"%s\""
2985 (substring killed-text 0 message-len))))))))
2987 (defun append-next-kill (&optional interactive)
2988 "Cause following command, if it kills, to append to previous kill.
2989 The argument is used for internal purposes; do not supply one."
2990 (interactive "p")
2991 ;; We don't use (interactive-p), since that breaks kbd macros.
2992 (if interactive
2993 (progn
2994 (setq this-command 'kill-region)
2995 (message "If the next command is a kill, it will append"))
2996 (setq last-command 'kill-region)))
2998 ;; Yanking.
3000 ;; This is actually used in subr.el but defcustom does not work there.
3001 (defcustom yank-excluded-properties
3002 '(read-only invisible intangible field mouse-face help-echo local-map keymap
3003 yank-handler follow-link fontified)
3004 "Text properties to discard when yanking.
3005 The value should be a list of text properties to discard or t,
3006 which means to discard all text properties."
3007 :type '(choice (const :tag "All" t) (repeat symbol))
3008 :group 'killing
3009 :version "22.1")
3011 (defvar yank-window-start nil)
3012 (defvar yank-undo-function nil
3013 "If non-nil, function used by `yank-pop' to delete last stretch of yanked text.
3014 Function is called with two parameters, START and END corresponding to
3015 the value of the mark and point; it is guaranteed that START <= END.
3016 Normally set from the UNDO element of a yank-handler; see `insert-for-yank'.")
3018 (defun yank-pop (&optional arg)
3019 "Replace just-yanked stretch of killed text with a different stretch.
3020 This command is allowed only immediately after a `yank' or a `yank-pop'.
3021 At such a time, the region contains a stretch of reinserted
3022 previously-killed text. `yank-pop' deletes that text and inserts in its
3023 place a different stretch of killed text.
3025 With no argument, the previous kill is inserted.
3026 With argument N, insert the Nth previous kill.
3027 If N is negative, this is a more recent kill.
3029 The sequence of kills wraps around, so that after the oldest one
3030 comes the newest one.
3032 When this command inserts killed text into the buffer, it honors
3033 `yank-excluded-properties' and `yank-handler' as described in the
3034 doc string for `insert-for-yank-1', which see."
3035 (interactive "*p")
3036 (if (not (eq last-command 'yank))
3037 (error "Previous command was not a yank"))
3038 (setq this-command 'yank)
3039 (unless arg (setq arg 1))
3040 (let ((inhibit-read-only t)
3041 (before (< (point) (mark t))))
3042 (if before
3043 (funcall (or yank-undo-function 'delete-region) (point) (mark t))
3044 (funcall (or yank-undo-function 'delete-region) (mark t) (point)))
3045 (setq yank-undo-function nil)
3046 (set-marker (mark-marker) (point) (current-buffer))
3047 (insert-for-yank (current-kill arg))
3048 ;; Set the window start back where it was in the yank command,
3049 ;; if possible.
3050 (set-window-start (selected-window) yank-window-start t)
3051 (if before
3052 ;; This is like exchange-point-and-mark, but doesn't activate the mark.
3053 ;; It is cleaner to avoid activation, even though the command
3054 ;; loop would deactivate the mark because we inserted text.
3055 (goto-char (prog1 (mark t)
3056 (set-marker (mark-marker) (point) (current-buffer))))))
3057 nil)
3059 (defun yank (&optional arg)
3060 "Reinsert (\"paste\") the last stretch of killed text.
3061 More precisely, reinsert the stretch of killed text most recently
3062 killed OR yanked. Put point at end, and set mark at beginning.
3063 With just \\[universal-argument] as argument, same but put point at beginning (and mark at end).
3064 With argument N, reinsert the Nth most recently killed stretch of killed
3065 text.
3067 When this command inserts killed text into the buffer, it honors
3068 `yank-excluded-properties' and `yank-handler' as described in the
3069 doc string for `insert-for-yank-1', which see.
3071 See also the command `yank-pop' (\\[yank-pop])."
3072 (interactive "*P")
3073 (setq yank-window-start (window-start))
3074 ;; If we don't get all the way thru, make last-command indicate that
3075 ;; for the following command.
3076 (setq this-command t)
3077 (push-mark (point))
3078 (insert-for-yank (current-kill (cond
3079 ((listp arg) 0)
3080 ((eq arg '-) -2)
3081 (t (1- arg)))))
3082 (if (consp arg)
3083 ;; This is like exchange-point-and-mark, but doesn't activate the mark.
3084 ;; It is cleaner to avoid activation, even though the command
3085 ;; loop would deactivate the mark because we inserted text.
3086 (goto-char (prog1 (mark t)
3087 (set-marker (mark-marker) (point) (current-buffer)))))
3088 ;; If we do get all the way thru, make this-command indicate that.
3089 (if (eq this-command t)
3090 (setq this-command 'yank))
3091 nil)
3093 (defun rotate-yank-pointer (arg)
3094 "Rotate the yanking point in the kill ring.
3095 With ARG, rotate that many kills forward (or backward, if negative)."
3096 (interactive "p")
3097 (current-kill arg))
3099 ;; Some kill commands.
3101 ;; Internal subroutine of delete-char
3102 (defun kill-forward-chars (arg)
3103 (if (listp arg) (setq arg (car arg)))
3104 (if (eq arg '-) (setq arg -1))
3105 (kill-region (point) (+ (point) arg)))
3107 ;; Internal subroutine of backward-delete-char
3108 (defun kill-backward-chars (arg)
3109 (if (listp arg) (setq arg (car arg)))
3110 (if (eq arg '-) (setq arg -1))
3111 (kill-region (point) (- (point) arg)))
3113 (defcustom backward-delete-char-untabify-method 'untabify
3114 "The method for untabifying when deleting backward.
3115 Can be `untabify' -- turn a tab to many spaces, then delete one space;
3116 `hungry' -- delete all whitespace, both tabs and spaces;
3117 `all' -- delete all whitespace, including tabs, spaces and newlines;
3118 nil -- just delete one character."
3119 :type '(choice (const untabify) (const hungry) (const all) (const nil))
3120 :version "20.3"
3121 :group 'killing)
3123 (defun backward-delete-char-untabify (arg &optional killp)
3124 "Delete characters backward, changing tabs into spaces.
3125 The exact behavior depends on `backward-delete-char-untabify-method'.
3126 Delete ARG chars, and kill (save in kill ring) if KILLP is non-nil.
3127 Interactively, ARG is the prefix arg (default 1)
3128 and KILLP is t if a prefix arg was specified."
3129 (interactive "*p\nP")
3130 (when (eq backward-delete-char-untabify-method 'untabify)
3131 (let ((count arg))
3132 (save-excursion
3133 (while (and (> count 0) (not (bobp)))
3134 (if (= (preceding-char) ?\t)
3135 (let ((col (current-column)))
3136 (forward-char -1)
3137 (setq col (- col (current-column)))
3138 (insert-char ?\s col)
3139 (delete-char 1)))
3140 (forward-char -1)
3141 (setq count (1- count))))))
3142 (delete-backward-char
3143 (let ((skip (cond ((eq backward-delete-char-untabify-method 'hungry) " \t")
3144 ((eq backward-delete-char-untabify-method 'all)
3145 " \t\n\r"))))
3146 (if skip
3147 (let ((wh (- (point) (save-excursion (skip-chars-backward skip)
3148 (point)))))
3149 (+ arg (if (zerop wh) 0 (1- wh))))
3150 arg))
3151 killp))
3153 (defun zap-to-char (arg char)
3154 "Kill up to and including ARGth occurrence of CHAR.
3155 Case is ignored if `case-fold-search' is non-nil in the current buffer.
3156 Goes backward if ARG is negative; error if CHAR not found."
3157 (interactive "p\ncZap to char: ")
3158 ;; Avoid "obsolete" warnings for translation-table-for-input.
3159 (with-no-warnings
3160 (if (char-table-p translation-table-for-input)
3161 (setq char (or (aref translation-table-for-input char) char))))
3162 (kill-region (point) (progn
3163 (search-forward (char-to-string char) nil nil arg)
3164 ; (goto-char (if (> arg 0) (1- (point)) (1+ (point))))
3165 (point))))
3167 ;; kill-line and its subroutines.
3169 (defcustom kill-whole-line nil
3170 "If non-nil, `kill-line' with no arg at beg of line kills the whole line."
3171 :type 'boolean
3172 :group 'killing)
3174 (defun kill-line (&optional arg)
3175 "Kill the rest of the current line; if no nonblanks there, kill thru newline.
3176 With prefix argument ARG, kill that many lines from point.
3177 Negative arguments kill lines backward.
3178 With zero argument, kills the text before point on the current line.
3180 When calling from a program, nil means \"no arg\",
3181 a number counts as a prefix arg.
3183 To kill a whole line, when point is not at the beginning, type \
3184 \\[move-beginning-of-line] \\[kill-line] \\[kill-line].
3186 If `kill-whole-line' is non-nil, then this command kills the whole line
3187 including its terminating newline, when used at the beginning of a line
3188 with no argument. As a consequence, you can always kill a whole line
3189 by typing \\[move-beginning-of-line] \\[kill-line].
3191 If you want to append the killed line to the last killed text,
3192 use \\[append-next-kill] before \\[kill-line].
3194 If the buffer is read-only, Emacs will beep and refrain from deleting
3195 the line, but put the line in the kill ring anyway. This means that
3196 you can use this command to copy text from a read-only buffer.
3197 \(If the variable `kill-read-only-ok' is non-nil, then this won't
3198 even beep.)"
3199 (interactive "P")
3200 (kill-region (point)
3201 ;; It is better to move point to the other end of the kill
3202 ;; before killing. That way, in a read-only buffer, point
3203 ;; moves across the text that is copied to the kill ring.
3204 ;; The choice has no effect on undo now that undo records
3205 ;; the value of point from before the command was run.
3206 (progn
3207 (if arg
3208 (forward-visible-line (prefix-numeric-value arg))
3209 (if (eobp)
3210 (signal 'end-of-buffer nil))
3211 (let ((end
3212 (save-excursion
3213 (end-of-visible-line) (point))))
3214 (if (or (save-excursion
3215 ;; If trailing whitespace is visible,
3216 ;; don't treat it as nothing.
3217 (unless show-trailing-whitespace
3218 (skip-chars-forward " \t" end))
3219 (= (point) end))
3220 (and kill-whole-line (bolp)))
3221 (forward-visible-line 1)
3222 (goto-char end))))
3223 (point))))
3225 (defun kill-whole-line (&optional arg)
3226 "Kill current line.
3227 With prefix ARG, kill that many lines starting from the current line.
3228 If ARG is negative, kill backward. Also kill the preceding newline.
3229 \(This is meant to make \\[repeat] work well with negative arguments.\)
3230 If ARG is zero, kill current line but exclude the trailing newline."
3231 (interactive "p")
3232 (or arg (setq arg 1))
3233 (if (and (> arg 0) (eobp) (save-excursion (forward-visible-line 0) (eobp)))
3234 (signal 'end-of-buffer nil))
3235 (if (and (< arg 0) (bobp) (save-excursion (end-of-visible-line) (bobp)))
3236 (signal 'beginning-of-buffer nil))
3237 (unless (eq last-command 'kill-region)
3238 (kill-new "")
3239 (setq last-command 'kill-region))
3240 (cond ((zerop arg)
3241 ;; We need to kill in two steps, because the previous command
3242 ;; could have been a kill command, in which case the text
3243 ;; before point needs to be prepended to the current kill
3244 ;; ring entry and the text after point appended. Also, we
3245 ;; need to use save-excursion to avoid copying the same text
3246 ;; twice to the kill ring in read-only buffers.
3247 (save-excursion
3248 (kill-region (point) (progn (forward-visible-line 0) (point))))
3249 (kill-region (point) (progn (end-of-visible-line) (point))))
3250 ((< arg 0)
3251 (save-excursion
3252 (kill-region (point) (progn (end-of-visible-line) (point))))
3253 (kill-region (point)
3254 (progn (forward-visible-line (1+ arg))
3255 (unless (bobp) (backward-char))
3256 (point))))
3258 (save-excursion
3259 (kill-region (point) (progn (forward-visible-line 0) (point))))
3260 (kill-region (point)
3261 (progn (forward-visible-line arg) (point))))))
3263 (defun forward-visible-line (arg)
3264 "Move forward by ARG lines, ignoring currently invisible newlines only.
3265 If ARG is negative, move backward -ARG lines.
3266 If ARG is zero, move to the beginning of the current line."
3267 (condition-case nil
3268 (if (> arg 0)
3269 (progn
3270 (while (> arg 0)
3271 (or (zerop (forward-line 1))
3272 (signal 'end-of-buffer nil))
3273 ;; If the newline we just skipped is invisible,
3274 ;; don't count it.
3275 (let ((prop
3276 (get-char-property (1- (point)) 'invisible)))
3277 (if (if (eq buffer-invisibility-spec t)
3278 prop
3279 (or (memq prop buffer-invisibility-spec)
3280 (assq prop buffer-invisibility-spec)))
3281 (setq arg (1+ arg))))
3282 (setq arg (1- arg)))
3283 ;; If invisible text follows, and it is a number of complete lines,
3284 ;; skip it.
3285 (let ((opoint (point)))
3286 (while (and (not (eobp))
3287 (let ((prop
3288 (get-char-property (point) 'invisible)))
3289 (if (eq buffer-invisibility-spec t)
3290 prop
3291 (or (memq prop buffer-invisibility-spec)
3292 (assq prop buffer-invisibility-spec)))))
3293 (goto-char
3294 (if (get-text-property (point) 'invisible)
3295 (or (next-single-property-change (point) 'invisible)
3296 (point-max))
3297 (next-overlay-change (point)))))
3298 (unless (bolp)
3299 (goto-char opoint))))
3300 (let ((first t))
3301 (while (or first (<= arg 0))
3302 (if first
3303 (beginning-of-line)
3304 (or (zerop (forward-line -1))
3305 (signal 'beginning-of-buffer nil)))
3306 ;; If the newline we just moved to is invisible,
3307 ;; don't count it.
3308 (unless (bobp)
3309 (let ((prop
3310 (get-char-property (1- (point)) 'invisible)))
3311 (unless (if (eq buffer-invisibility-spec t)
3312 prop
3313 (or (memq prop buffer-invisibility-spec)
3314 (assq prop buffer-invisibility-spec)))
3315 (setq arg (1+ arg)))))
3316 (setq first nil))
3317 ;; If invisible text follows, and it is a number of complete lines,
3318 ;; skip it.
3319 (let ((opoint (point)))
3320 (while (and (not (bobp))
3321 (let ((prop
3322 (get-char-property (1- (point)) 'invisible)))
3323 (if (eq buffer-invisibility-spec t)
3324 prop
3325 (or (memq prop buffer-invisibility-spec)
3326 (assq prop buffer-invisibility-spec)))))
3327 (goto-char
3328 (if (get-text-property (1- (point)) 'invisible)
3329 (or (previous-single-property-change (point) 'invisible)
3330 (point-min))
3331 (previous-overlay-change (point)))))
3332 (unless (bolp)
3333 (goto-char opoint)))))
3334 ((beginning-of-buffer end-of-buffer)
3335 nil)))
3337 (defun end-of-visible-line ()
3338 "Move to end of current visible line."
3339 (end-of-line)
3340 ;; If the following character is currently invisible,
3341 ;; skip all characters with that same `invisible' property value,
3342 ;; then find the next newline.
3343 (while (and (not (eobp))
3344 (save-excursion
3345 (skip-chars-forward "^\n")
3346 (let ((prop
3347 (get-char-property (point) 'invisible)))
3348 (if (eq buffer-invisibility-spec t)
3349 prop
3350 (or (memq prop buffer-invisibility-spec)
3351 (assq prop buffer-invisibility-spec))))))
3352 (skip-chars-forward "^\n")
3353 (if (get-text-property (point) 'invisible)
3354 (goto-char (next-single-property-change (point) 'invisible))
3355 (goto-char (next-overlay-change (point))))
3356 (end-of-line)))
3358 (defun insert-buffer (buffer)
3359 "Insert after point the contents of BUFFER.
3360 Puts mark after the inserted text.
3361 BUFFER may be a buffer or a buffer name.
3363 This function is meant for the user to run interactively.
3364 Don't call it from programs: use `insert-buffer-substring' instead!"
3365 (interactive
3366 (list
3367 (progn
3368 (barf-if-buffer-read-only)
3369 (read-buffer "Insert buffer: "
3370 (if (eq (selected-window) (next-window (selected-window)))
3371 (other-buffer (current-buffer))
3372 (window-buffer (next-window (selected-window))))
3373 t))))
3374 (push-mark
3375 (save-excursion
3376 (insert-buffer-substring (get-buffer buffer))
3377 (point)))
3378 nil)
3380 (defun append-to-buffer (buffer start end)
3381 "Append to specified buffer the text of the region.
3382 It is inserted into that buffer before its point.
3384 When calling from a program, give three arguments:
3385 BUFFER (or buffer name), START and END.
3386 START and END specify the portion of the current buffer to be copied."
3387 (interactive
3388 (list (read-buffer "Append to buffer: " (other-buffer (current-buffer) t))
3389 (region-beginning) (region-end)))
3390 (let ((oldbuf (current-buffer)))
3391 (save-excursion
3392 (let* ((append-to (get-buffer-create buffer))
3393 (windows (get-buffer-window-list append-to t t))
3394 point)
3395 (set-buffer append-to)
3396 (setq point (point))
3397 (barf-if-buffer-read-only)
3398 (insert-buffer-substring oldbuf start end)
3399 (dolist (window windows)
3400 (when (= (window-point window) point)
3401 (set-window-point window (point))))))))
3403 (defun prepend-to-buffer (buffer start end)
3404 "Prepend to specified buffer the text of the region.
3405 It is inserted into that buffer after its point.
3407 When calling from a program, give three arguments:
3408 BUFFER (or buffer name), START and END.
3409 START and END specify the portion of the current buffer to be copied."
3410 (interactive "BPrepend to buffer: \nr")
3411 (let ((oldbuf (current-buffer)))
3412 (save-excursion
3413 (set-buffer (get-buffer-create buffer))
3414 (barf-if-buffer-read-only)
3415 (save-excursion
3416 (insert-buffer-substring oldbuf start end)))))
3418 (defun copy-to-buffer (buffer start end)
3419 "Copy to specified buffer the text of the region.
3420 It is inserted into that buffer, replacing existing text there.
3422 When calling from a program, give three arguments:
3423 BUFFER (or buffer name), START and END.
3424 START and END specify the portion of the current buffer to be copied."
3425 (interactive "BCopy to buffer: \nr")
3426 (let ((oldbuf (current-buffer)))
3427 (with-current-buffer (get-buffer-create buffer)
3428 (barf-if-buffer-read-only)
3429 (erase-buffer)
3430 (save-excursion
3431 (insert-buffer-substring oldbuf start end)))))
3433 (put 'mark-inactive 'error-conditions '(mark-inactive error))
3434 (put 'mark-inactive 'error-message "The mark is not active now")
3436 (defvar activate-mark-hook nil
3437 "Hook run when the mark becomes active.
3438 It is also run at the end of a command, if the mark is active and
3439 it is possible that the region may have changed.")
3441 (defvar deactivate-mark-hook nil
3442 "Hook run when the mark becomes inactive.")
3444 (defun mark (&optional force)
3445 "Return this buffer's mark value as integer, or nil if never set.
3447 In Transient Mark mode, this function signals an error if
3448 the mark is not active. However, if `mark-even-if-inactive' is non-nil,
3449 or the argument FORCE is non-nil, it disregards whether the mark
3450 is active, and returns an integer or nil in the usual way.
3452 If you are using this in an editing command, you are most likely making
3453 a mistake; see the documentation of `set-mark'."
3454 (if (or force (not transient-mark-mode) mark-active mark-even-if-inactive)
3455 (marker-position (mark-marker))
3456 (signal 'mark-inactive nil)))
3458 ;; Many places set mark-active directly, and several of them failed to also
3459 ;; run deactivate-mark-hook. This shorthand should simplify.
3460 (defsubst deactivate-mark ()
3461 "Deactivate the mark by setting `mark-active' to nil.
3462 \(That makes a difference only in Transient Mark mode.)
3463 Also runs the hook `deactivate-mark-hook'."
3464 (when transient-mark-mode
3465 (if (or (eq transient-mark-mode 'lambda)
3466 (and (eq (car-safe transient-mark-mode) 'only)
3467 (null (cdr transient-mark-mode))))
3468 (setq transient-mark-mode nil)
3469 (if (eq (car-safe transient-mark-mode) 'only)
3470 (setq transient-mark-mode (cdr transient-mark-mode)))
3471 (setq mark-active nil)
3472 (run-hooks 'deactivate-mark-hook))))
3474 (defun activate-mark ()
3475 "Activate the mark."
3476 (when (mark t)
3477 (setq mark-active t)
3478 (unless transient-mark-mode
3479 (setq transient-mark-mode 'lambda))))
3481 (defcustom select-active-regions nil
3482 "If non-nil, an active region automatically becomes the window selection."
3483 :type 'boolean
3484 :group 'killing
3485 :version "23.1")
3487 (defun set-mark (pos)
3488 "Set this buffer's mark to POS. Don't use this function!
3489 That is to say, don't use this function unless you want
3490 the user to see that the mark has moved, and you want the previous
3491 mark position to be lost.
3493 Normally, when a new mark is set, the old one should go on the stack.
3494 This is why most applications should use `push-mark', not `set-mark'.
3496 Novice Emacs Lisp programmers often try to use the mark for the wrong
3497 purposes. The mark saves a location for the user's convenience.
3498 Most editing commands should not alter the mark.
3499 To remember a location for internal use in the Lisp program,
3500 store it in a Lisp variable. Example:
3502 (let ((beg (point))) (forward-line 1) (delete-region beg (point)))."
3504 (if pos
3505 (progn
3506 (setq mark-active t)
3507 (run-hooks 'activate-mark-hook)
3508 (and select-active-regions
3509 (x-set-selection
3510 nil (buffer-substring (region-beginning) (region-end))))
3511 (set-marker (mark-marker) pos (current-buffer)))
3512 ;; Normally we never clear mark-active except in Transient Mark mode.
3513 ;; But when we actually clear out the mark value too,
3514 ;; we must clear mark-active in any mode.
3515 (setq mark-active nil)
3516 (run-hooks 'deactivate-mark-hook)
3517 (set-marker (mark-marker) nil)))
3519 (defcustom use-empty-active-region nil
3520 "Whether \"region-aware\" commands should act on empty regions.
3521 If nil, region-aware commands treat empty regions as inactive.
3522 If non-nil, region-aware commands treat the region as active as
3523 long as the mark is active, even if the region is empty.
3525 Region-aware commands are those that act on the region if it is
3526 active and Transient Mark mode is enabled, and on the text near
3527 point otherwise."
3528 :type 'boolean
3529 :version "23.1"
3530 :group 'editing-basics)
3532 (defun use-region-p ()
3533 "Return t if the region is active and it is appropriate to act on it.
3534 This is used by commands that act specially on the region under
3535 Transient Mark mode. It returns t if and only if Transient Mark
3536 mode is enabled, the mark is active, and the region is non-empty.
3537 If `use-empty-active-region' is non-nil, it returns t even if the
3538 region is empty.
3540 For some commands, it may be appropriate to disregard the value
3541 of `use-empty-active-region'; in that case, use `region-active-p'."
3542 (and (region-active-p)
3543 (or use-empty-active-region (> (region-end) (region-beginning)))))
3545 (defun region-active-p ()
3546 "Return t if Transient Mark mode is enabled and the mark is active.
3548 Most commands that act on the region if it is active and
3549 Transient Mark mode is enabled, and on the text near point
3550 otherwise, should use `use-region-p' instead. That function
3551 checks the value of `use-empty-active-region' as well."
3552 (and transient-mark-mode mark-active))
3554 (defvar mark-ring nil
3555 "The list of former marks of the current buffer, most recent first.")
3556 (make-variable-buffer-local 'mark-ring)
3557 (put 'mark-ring 'permanent-local t)
3559 (defcustom mark-ring-max 16
3560 "Maximum size of mark ring. Start discarding off end if gets this big."
3561 :type 'integer
3562 :group 'editing-basics)
3564 (defvar global-mark-ring nil
3565 "The list of saved global marks, most recent first.")
3567 (defcustom global-mark-ring-max 16
3568 "Maximum size of global mark ring. \
3569 Start discarding off end if gets this big."
3570 :type 'integer
3571 :group 'editing-basics)
3573 (defun pop-to-mark-command ()
3574 "Jump to mark, and pop a new position for mark off the ring.
3575 \(Does not affect global mark ring\)."
3576 (interactive)
3577 (if (null (mark t))
3578 (error "No mark set in this buffer")
3579 (if (= (point) (mark t))
3580 (message "Mark popped"))
3581 (goto-char (mark t))
3582 (pop-mark)))
3584 (defun push-mark-command (arg &optional nomsg)
3585 "Set mark at where point is.
3586 If no prefix ARG and mark is already set there, just activate it.
3587 Display `Mark set' unless the optional second arg NOMSG is non-nil."
3588 (interactive "P")
3589 (let ((mark (marker-position (mark-marker))))
3590 (if (or arg (null mark) (/= mark (point)))
3591 (push-mark nil nomsg t)
3592 (setq mark-active t)
3593 (run-hooks 'activate-mark-hook)
3594 (unless nomsg
3595 (message "Mark activated")))))
3597 (defcustom set-mark-command-repeat-pop nil
3598 "Non-nil means repeating \\[set-mark-command] after popping mark pops it again.
3599 That means that C-u \\[set-mark-command] \\[set-mark-command]
3600 will pop the mark twice, and
3601 C-u \\[set-mark-command] \\[set-mark-command] \\[set-mark-command]
3602 will pop the mark three times.
3604 A value of nil means \\[set-mark-command]'s behavior does not change
3605 after C-u \\[set-mark-command]."
3606 :type 'boolean
3607 :group 'editing-basics)
3609 (defcustom set-mark-default-inactive nil
3610 "If non-nil, setting the mark does not activate it.
3611 This causes \\[set-mark-command] and \\[exchange-point-and-mark] to
3612 behave the same whether or not `transient-mark-mode' is enabled.")
3614 (defun set-mark-command (arg)
3615 "Set the mark where point is, or jump to the mark.
3616 Setting the mark also alters the region, which is the text
3617 between point and mark; this is the closest equivalent in
3618 Emacs to what some editors call the \"selection\".
3620 With no prefix argument, set the mark at point, and push the
3621 old mark position on local mark ring. Also push the old mark on
3622 global mark ring, if the previous mark was set in another buffer.
3624 When Transient Mark Mode is off, immediately repeating this
3625 command activates `transient-mark-mode' temporarily.
3627 With prefix argument \(e.g., \\[universal-argument] \\[set-mark-command]\), \
3628 jump to the mark, and set the mark from
3629 position popped off the local mark ring \(this does not affect the global
3630 mark ring\). Use \\[pop-global-mark] to jump to a mark popped off the global
3631 mark ring \(see `pop-global-mark'\).
3633 If `set-mark-command-repeat-pop' is non-nil, repeating
3634 the \\[set-mark-command] command with no prefix argument pops the next position
3635 off the local (or global) mark ring and jumps there.
3637 With \\[universal-argument] \\[universal-argument] as prefix
3638 argument, unconditionally set mark where point is, even if
3639 `set-mark-command-repeat-pop' is non-nil.
3641 Novice Emacs Lisp programmers often try to use the mark for the wrong
3642 purposes. See the documentation of `set-mark' for more information."
3643 (interactive "P")
3644 (cond ((eq transient-mark-mode 'lambda)
3645 (setq transient-mark-mode nil))
3646 ((eq (car-safe transient-mark-mode) 'only)
3647 (deactivate-mark)))
3648 (cond
3649 ((and (consp arg) (> (prefix-numeric-value arg) 4))
3650 (push-mark-command nil))
3651 ((not (eq this-command 'set-mark-command))
3652 (if arg
3653 (pop-to-mark-command)
3654 (push-mark-command t)))
3655 ((and set-mark-command-repeat-pop
3656 (eq last-command 'pop-to-mark-command))
3657 (setq this-command 'pop-to-mark-command)
3658 (pop-to-mark-command))
3659 ((and set-mark-command-repeat-pop
3660 (eq last-command 'pop-global-mark)
3661 (not arg))
3662 (setq this-command 'pop-global-mark)
3663 (pop-global-mark))
3664 (arg
3665 (setq this-command 'pop-to-mark-command)
3666 (pop-to-mark-command))
3667 ((eq last-command 'set-mark-command)
3668 (if (region-active-p)
3669 (progn
3670 (deactivate-mark)
3671 (message "Mark deactivated"))
3672 (activate-mark)
3673 (message "Mark activated")))
3675 (push-mark-command nil)
3676 (if set-mark-default-inactive (deactivate-mark)))))
3678 (defun push-mark (&optional location nomsg activate)
3679 "Set mark at LOCATION (point, by default) and push old mark on mark ring.
3680 If the last global mark pushed was not in the current buffer,
3681 also push LOCATION on the global mark ring.
3682 Display `Mark set' unless the optional second arg NOMSG is non-nil.
3684 Novice Emacs Lisp programmers often try to use the mark for the wrong
3685 purposes. See the documentation of `set-mark' for more information.
3687 In Transient Mark mode, activate mark if optional third arg ACTIVATE non-nil."
3688 (unless (null (mark t))
3689 (setq mark-ring (cons (copy-marker (mark-marker)) mark-ring))
3690 (when (> (length mark-ring) mark-ring-max)
3691 (move-marker (car (nthcdr mark-ring-max mark-ring)) nil)
3692 (setcdr (nthcdr (1- mark-ring-max) mark-ring) nil)))
3693 (set-marker (mark-marker) (or location (point)) (current-buffer))
3694 ;; Now push the mark on the global mark ring.
3695 (if (and global-mark-ring
3696 (eq (marker-buffer (car global-mark-ring)) (current-buffer)))
3697 ;; The last global mark pushed was in this same buffer.
3698 ;; Don't push another one.
3700 (setq global-mark-ring (cons (copy-marker (mark-marker)) global-mark-ring))
3701 (when (> (length global-mark-ring) global-mark-ring-max)
3702 (move-marker (car (nthcdr global-mark-ring-max global-mark-ring)) nil)
3703 (setcdr (nthcdr (1- global-mark-ring-max) global-mark-ring) nil)))
3704 (or nomsg executing-kbd-macro (> (minibuffer-depth) 0)
3705 (message "Mark set"))
3706 (if (or activate (not transient-mark-mode))
3707 (set-mark (mark t)))
3708 nil)
3710 (defun pop-mark ()
3711 "Pop off mark ring into the buffer's actual mark.
3712 Does not set point. Does nothing if mark ring is empty."
3713 (when mark-ring
3714 (setq mark-ring (nconc mark-ring (list (copy-marker (mark-marker)))))
3715 (set-marker (mark-marker) (+ 0 (car mark-ring)) (current-buffer))
3716 (move-marker (car mark-ring) nil)
3717 (if (null (mark t)) (ding))
3718 (setq mark-ring (cdr mark-ring)))
3719 (deactivate-mark))
3721 (defalias 'exchange-dot-and-mark 'exchange-point-and-mark)
3722 (defun exchange-point-and-mark (&optional arg)
3723 "Put the mark where point is now, and point where the mark is now.
3724 This command works even when the mark is not active,
3725 and it reactivates the mark.
3727 If Transient Mark mode is on, a prefix ARG deactivates the mark
3728 if it is active, and otherwise avoids reactivating it. If
3729 Transient Mark mode is off, a prefix ARG enables Transient Mark
3730 mode temporarily."
3731 (interactive "P")
3732 (let ((omark (mark t))
3733 (temp-highlight (eq (car-safe transient-mark-mode) 'only)))
3734 (if (null omark)
3735 (error "No mark set in this buffer"))
3736 (deactivate-mark)
3737 (set-mark (point))
3738 (goto-char omark)
3739 (if set-mark-default-inactive (deactivate-mark))
3740 (cond (temp-highlight
3741 (setq transient-mark-mode (cons 'only transient-mark-mode)))
3742 ((or (and arg (region-active-p)) ; (xor arg (not (region-active-p)))
3743 (not (or arg (region-active-p))))
3744 (deactivate-mark))
3745 (t (activate-mark)))
3746 nil))
3748 (defcustom shift-select-mode t
3749 "When non-nil, shifted motion keys activate the mark momentarily.
3751 While the mark is activated in this way, any shift-translated point
3752 motion key extends the region, and if Transient Mark mode was off, it
3753 is temporarily turned on. Furthermore, the mark will be deactivated
3754 by any subsequent point motion key that was not shift-translated, or
3755 by any action that normally deactivates the mark in Transient Mark mode.
3757 See `this-command-keys-shift-translated' for the meaning of
3758 shift-translation."
3759 :type 'boolean
3760 :group 'editing-basics)
3762 (defun handle-shift-selection ()
3763 "Activate/deactivate mark depending on invocation thru shift translation.
3764 This function is called by `call-interactively' when a command
3765 with a `^' character in its `interactive' spec is invoked, before
3766 running the command itself.
3768 If `shift-select-mode' is enabled and the command was invoked
3769 through shift translation, set the mark and activate the region
3770 temporarily, unless it was already set in this way. See
3771 `this-command-keys-shift-translated' for the meaning of shift
3772 translation.
3774 Otherwise, if the region has been activated temporarily,
3775 deactivate it, and restore the variable `transient-mark-mode' to
3776 its earlier value."
3777 (cond ((and shift-select-mode this-command-keys-shift-translated)
3778 (unless (and mark-active
3779 (eq (car-safe transient-mark-mode) 'only))
3780 (setq transient-mark-mode
3781 (cons 'only
3782 (unless (eq transient-mark-mode 'lambda)
3783 transient-mark-mode)))
3784 (push-mark nil nil t)))
3785 ((eq (car-safe transient-mark-mode) 'only)
3786 (setq transient-mark-mode (cdr transient-mark-mode))
3787 (deactivate-mark))))
3789 (define-minor-mode transient-mark-mode
3790 "Toggle Transient Mark mode.
3791 With ARG, turn Transient Mark mode on if ARG is positive, off otherwise.
3793 In Transient Mark mode, when the mark is active, the region is highlighted.
3794 Changing the buffer \"deactivates\" the mark.
3795 So do certain other operations that set the mark
3796 but whose main purpose is something else--for example,
3797 incremental search, \\[beginning-of-buffer], and \\[end-of-buffer].
3799 You can also deactivate the mark by typing \\[keyboard-quit] or
3800 \\[keyboard-escape-quit].
3802 Many commands change their behavior when Transient Mark mode is in effect
3803 and the mark is active, by acting on the region instead of their usual
3804 default part of the buffer's text. Examples of such commands include
3805 \\[comment-dwim], \\[flush-lines], \\[keep-lines], \
3806 \\[query-replace], \\[query-replace-regexp], \\[ispell], and \\[undo].
3807 Invoke \\[apropos-documentation] and type \"transient\" or
3808 \"mark.*active\" at the prompt, to see the documentation of
3809 commands which are sensitive to the Transient Mark mode."
3810 :global t
3811 :init-value (not noninteractive)
3812 :group 'editing-basics)
3814 ;; The variable transient-mark-mode is ugly: it can take on special
3815 ;; values. Document these here.
3816 (defvar transient-mark-mode t
3817 "*Non-nil if Transient Mark mode is enabled.
3818 See the command `transient-mark-mode' for a description of this minor mode.
3820 Non-nil also enables highlighting of the region whenever the mark is active.
3821 The variable `highlight-nonselected-windows' controls whether to highlight
3822 all windows or just the selected window.
3824 If the value is `lambda', that enables Transient Mark mode temporarily.
3825 After any subsequent action that would normally deactivate the mark
3826 \(such as buffer modification), Transient Mark mode is turned off.
3828 If the value is (only . OLDVAL), that enables Transient Mark mode
3829 temporarily. After any subsequent point motion command that is not
3830 shift-translated, or any other action that would normally deactivate
3831 the mark (such as buffer modification), the value of
3832 `transient-mark-mode' is set to OLDVAL.")
3834 (defvar widen-automatically t
3835 "Non-nil means it is ok for commands to call `widen' when they want to.
3836 Some commands will do this in order to go to positions outside
3837 the current accessible part of the buffer.
3839 If `widen-automatically' is nil, these commands will do something else
3840 as a fallback, and won't change the buffer bounds.")
3842 (defun pop-global-mark ()
3843 "Pop off global mark ring and jump to the top location."
3844 (interactive)
3845 ;; Pop entries which refer to non-existent buffers.
3846 (while (and global-mark-ring (not (marker-buffer (car global-mark-ring))))
3847 (setq global-mark-ring (cdr global-mark-ring)))
3848 (or global-mark-ring
3849 (error "No global mark set"))
3850 (let* ((marker (car global-mark-ring))
3851 (buffer (marker-buffer marker))
3852 (position (marker-position marker)))
3853 (setq global-mark-ring (nconc (cdr global-mark-ring)
3854 (list (car global-mark-ring))))
3855 (set-buffer buffer)
3856 (or (and (>= position (point-min))
3857 (<= position (point-max)))
3858 (if widen-automatically
3859 (widen)
3860 (error "Global mark position is outside accessible part of buffer")))
3861 (goto-char position)
3862 (switch-to-buffer buffer)))
3864 (defcustom next-line-add-newlines nil
3865 "If non-nil, `next-line' inserts newline to avoid `end of buffer' error."
3866 :type 'boolean
3867 :version "21.1"
3868 :group 'editing-basics)
3870 (defun next-line (&optional arg try-vscroll)
3871 "Move cursor vertically down ARG lines.
3872 Interactively, vscroll tall lines if `auto-window-vscroll' is enabled.
3873 If there is no character in the target line exactly under the current column,
3874 the cursor is positioned after the character in that line which spans this
3875 column, or at the end of the line if it is not long enough.
3876 If there is no line in the buffer after this one, behavior depends on the
3877 value of `next-line-add-newlines'. If non-nil, it inserts a newline character
3878 to create a line, and moves the cursor to that line. Otherwise it moves the
3879 cursor to the end of the buffer.
3881 If the variable `line-move-visual' is non-nil, this command moves
3882 by display lines. Otherwise, it moves by buffer lines, without
3883 taking variable-width characters or continued lines into account.
3885 The command \\[set-goal-column] can be used to create
3886 a semipermanent goal column for this command.
3887 Then instead of trying to move exactly vertically (or as close as possible),
3888 this command moves to the specified goal column (or as close as possible).
3889 The goal column is stored in the variable `goal-column', which is nil
3890 when there is no goal column.
3892 If you are thinking of using this in a Lisp program, consider
3893 using `forward-line' instead. It is usually easier to use
3894 and more reliable (no dependence on goal column, etc.)."
3895 (interactive "^p\np")
3896 (or arg (setq arg 1))
3897 (if (and next-line-add-newlines (= arg 1))
3898 (if (save-excursion (end-of-line) (eobp))
3899 ;; When adding a newline, don't expand an abbrev.
3900 (let ((abbrev-mode nil))
3901 (end-of-line)
3902 (insert (if use-hard-newlines hard-newline "\n")))
3903 (line-move arg nil nil try-vscroll))
3904 (if (interactive-p)
3905 (condition-case nil
3906 (line-move arg nil nil try-vscroll)
3907 ((beginning-of-buffer end-of-buffer) (ding)))
3908 (line-move arg nil nil try-vscroll)))
3909 nil)
3911 (defun previous-line (&optional arg try-vscroll)
3912 "Move cursor vertically up ARG lines.
3913 Interactively, vscroll tall lines if `auto-window-vscroll' is enabled.
3914 If there is no character in the target line exactly over the current column,
3915 the cursor is positioned after the character in that line which spans this
3916 column, or at the end of the line if it is not long enough.
3918 If the variable `line-move-visual' is non-nil, this command moves
3919 by display lines. Otherwise, it moves by buffer lines, without
3920 taking variable-width characters or continued lines into account.
3922 The command \\[set-goal-column] can be used to create
3923 a semipermanent goal column for this command.
3924 Then instead of trying to move exactly vertically (or as close as possible),
3925 this command moves to the specified goal column (or as close as possible).
3926 The goal column is stored in the variable `goal-column', which is nil
3927 when there is no goal column.
3929 If you are thinking of using this in a Lisp program, consider using
3930 `forward-line' with a negative argument instead. It is usually easier
3931 to use and more reliable (no dependence on goal column, etc.)."
3932 (interactive "^p\np")
3933 (or arg (setq arg 1))
3934 (if (interactive-p)
3935 (condition-case nil
3936 (line-move (- arg) nil nil try-vscroll)
3937 ((beginning-of-buffer end-of-buffer) (ding)))
3938 (line-move (- arg) nil nil try-vscroll))
3939 nil)
3941 (defcustom track-eol nil
3942 "Non-nil means vertical motion starting at end of line keeps to ends of lines.
3943 This means moving to the end of each line moved onto.
3944 The beginning of a blank line does not count as the end of a line.
3945 This has no effect when `line-move-visual' is non-nil."
3946 :type 'boolean
3947 :group 'editing-basics)
3949 (defcustom goal-column nil
3950 "Semipermanent goal column for vertical motion, as set by \\[set-goal-column], or nil."
3951 :type '(choice integer
3952 (const :tag "None" nil))
3953 :group 'editing-basics)
3954 (make-variable-buffer-local 'goal-column)
3956 (defvar temporary-goal-column 0
3957 "Current goal column for vertical motion.
3958 It is the column where point was at the start of the current run
3959 of vertical motion commands. It is a floating point number when
3960 moving by visual lines via `line-move-visual'; this is the
3961 x-position, in pixels, divided by the default column width. When
3962 the `track-eol' feature is doing its job, the value is
3963 `most-positive-fixnum'.")
3965 (defcustom line-move-ignore-invisible t
3966 "Non-nil means \\[next-line] and \\[previous-line] ignore invisible lines.
3967 Outline mode sets this."
3968 :type 'boolean
3969 :group 'editing-basics)
3971 (defcustom line-move-visual t
3972 "When non-nil, `line-move' moves point by visual lines.
3973 This movement is based on where the cursor is displayed on the
3974 screen, instead of relying on buffer contents alone. It takes
3975 into account variable-width characters and line continuation."
3976 :type 'boolean
3977 :group 'editing-basics)
3979 ;; Returns non-nil if partial move was done.
3980 (defun line-move-partial (arg noerror to-end)
3981 (if (< arg 0)
3982 ;; Move backward (up).
3983 ;; If already vscrolled, reduce vscroll
3984 (let ((vs (window-vscroll nil t)))
3985 (when (> vs (frame-char-height))
3986 (set-window-vscroll nil (- vs (frame-char-height)) t)))
3988 ;; Move forward (down).
3989 (let* ((lh (window-line-height -1))
3990 (vpos (nth 1 lh))
3991 (ypos (nth 2 lh))
3992 (rbot (nth 3 lh))
3993 py vs)
3994 (when (or (null lh)
3995 (>= rbot (frame-char-height))
3996 (<= ypos (- (frame-char-height))))
3997 (unless lh
3998 (let ((wend (pos-visible-in-window-p t nil t)))
3999 (setq rbot (nth 3 wend)
4000 vpos (nth 5 wend))))
4001 (cond
4002 ;; If last line of window is fully visible, move forward.
4003 ((or (null rbot) (= rbot 0))
4004 nil)
4005 ;; If cursor is not in the bottom scroll margin, move forward.
4006 ((and (> vpos 0)
4007 (< (setq py
4008 (or (nth 1 (window-line-height))
4009 (let ((ppos (posn-at-point)))
4010 (cdr (or (posn-actual-col-row ppos)
4011 (posn-col-row ppos))))))
4012 (min (- (window-text-height) scroll-margin 1) (1- vpos))))
4013 nil)
4014 ;; When already vscrolled, we vscroll some more if we can,
4015 ;; or clear vscroll and move forward at end of tall image.
4016 ((> (setq vs (window-vscroll nil t)) 0)
4017 (when (> rbot 0)
4018 (set-window-vscroll nil (+ vs (min rbot (frame-char-height))) t)))
4019 ;; If cursor just entered the bottom scroll margin, move forward,
4020 ;; but also vscroll one line so redisplay wont recenter.
4021 ((and (> vpos 0)
4022 (= py (min (- (window-text-height) scroll-margin 1)
4023 (1- vpos))))
4024 (set-window-vscroll nil (frame-char-height) t)
4025 (line-move-1 arg noerror to-end)
4027 ;; If there are lines above the last line, scroll-up one line.
4028 ((> vpos 0)
4029 (scroll-up 1)
4031 ;; Finally, start vscroll.
4033 (set-window-vscroll nil (frame-char-height) t)))))))
4036 ;; This is like line-move-1 except that it also performs
4037 ;; vertical scrolling of tall images if appropriate.
4038 ;; That is not really a clean thing to do, since it mixes
4039 ;; scrolling with cursor motion. But so far we don't have
4040 ;; a cleaner solution to the problem of making C-n do something
4041 ;; useful given a tall image.
4042 (defun line-move (arg &optional noerror to-end try-vscroll)
4043 (unless (and auto-window-vscroll try-vscroll
4044 ;; Only vscroll for single line moves
4045 (= (abs arg) 1)
4046 ;; But don't vscroll in a keyboard macro.
4047 (not defining-kbd-macro)
4048 (not executing-kbd-macro)
4049 (line-move-partial arg noerror to-end))
4050 (set-window-vscroll nil 0 t)
4051 (if line-move-visual
4052 (line-move-visual arg noerror)
4053 (line-move-1 arg noerror to-end))))
4055 ;; Display-based alternative to line-move-1.
4056 ;; Arg says how many lines to move. The value is t if we can move the
4057 ;; specified number of lines.
4058 (defun line-move-visual (arg &optional noerror)
4059 (let ((posn (posn-at-point))
4060 (opoint (point))
4062 ;; Reset temporary-goal-column, unless the previous command was a
4063 ;; line-motion command or we were called from some other command.
4064 (unless (and (floatp temporary-goal-column)
4065 (memq last-command `(next-line previous-line ,this-command)))
4066 (cond ((eq (nth 1 posn) 'right-fringe) ; overflow-newline-into-fringe
4067 (setq temporary-goal-column (- (window-width) 1)))
4068 ((setq x (car (posn-x-y posn)))
4069 (setq temporary-goal-column (/ (float x) (frame-char-width))))))
4070 ;; Move using `vertical-motion'.
4071 (or (and (= (vertical-motion
4072 (cons (or goal-column (truncate temporary-goal-column)) arg))
4073 arg)
4074 (or (>= arg 0)
4075 (/= (point) opoint)
4076 ;; If the goal column lies on a display string,
4077 ;; `vertical-motion' advances the cursor to the end
4078 ;; of the string. For arg < 0, this can cause the
4079 ;; cursor to get stuck. (Bug#3020).
4080 (= (vertical-motion arg) arg)))
4081 (unless noerror
4082 (signal (if (< arg 0) 'beginning-of-buffer 'end-of-buffer)
4083 nil)))))
4085 ;; This is the guts of next-line and previous-line.
4086 ;; Arg says how many lines to move.
4087 ;; The value is t if we can move the specified number of lines.
4088 (defun line-move-1 (arg &optional noerror to-end)
4089 ;; Don't run any point-motion hooks, and disregard intangibility,
4090 ;; for intermediate positions.
4091 (let ((inhibit-point-motion-hooks t)
4092 (opoint (point))
4093 (orig-arg arg))
4094 (if (floatp temporary-goal-column)
4095 (setq temporary-goal-column (truncate temporary-goal-column)))
4096 (unwind-protect
4097 (progn
4098 (if (not (memq last-command '(next-line previous-line)))
4099 (setq temporary-goal-column
4100 (if (and track-eol (eolp)
4101 ;; Don't count beg of empty line as end of line
4102 ;; unless we just did explicit end-of-line.
4103 (or (not (bolp)) (eq last-command 'move-end-of-line)))
4104 most-positive-fixnum
4105 (current-column))))
4107 (if (not (or (integerp selective-display)
4108 line-move-ignore-invisible))
4109 ;; Use just newline characters.
4110 ;; Set ARG to 0 if we move as many lines as requested.
4111 (or (if (> arg 0)
4112 (progn (if (> arg 1) (forward-line (1- arg)))
4113 ;; This way of moving forward ARG lines
4114 ;; verifies that we have a newline after the last one.
4115 ;; It doesn't get confused by intangible text.
4116 (end-of-line)
4117 (if (zerop (forward-line 1))
4118 (setq arg 0)))
4119 (and (zerop (forward-line arg))
4120 (bolp)
4121 (setq arg 0)))
4122 (unless noerror
4123 (signal (if (< arg 0)
4124 'beginning-of-buffer
4125 'end-of-buffer)
4126 nil)))
4127 ;; Move by arg lines, but ignore invisible ones.
4128 (let (done)
4129 (while (and (> arg 0) (not done))
4130 ;; If the following character is currently invisible,
4131 ;; skip all characters with that same `invisible' property value.
4132 (while (and (not (eobp)) (invisible-p (point)))
4133 (goto-char (next-char-property-change (point))))
4134 ;; Move a line.
4135 ;; We don't use `end-of-line', since we want to escape
4136 ;; from field boundaries ocurring exactly at point.
4137 (goto-char (constrain-to-field
4138 (let ((inhibit-field-text-motion t))
4139 (line-end-position))
4140 (point) t t
4141 'inhibit-line-move-field-capture))
4142 ;; If there's no invisibility here, move over the newline.
4143 (cond
4144 ((eobp)
4145 (if (not noerror)
4146 (signal 'end-of-buffer nil)
4147 (setq done t)))
4148 ((and (> arg 1) ;; Use vertical-motion for last move
4149 (not (integerp selective-display))
4150 (not (invisible-p (point))))
4151 ;; We avoid vertical-motion when possible
4152 ;; because that has to fontify.
4153 (forward-line 1))
4154 ;; Otherwise move a more sophisticated way.
4155 ((zerop (vertical-motion 1))
4156 (if (not noerror)
4157 (signal 'end-of-buffer nil)
4158 (setq done t))))
4159 (unless done
4160 (setq arg (1- arg))))
4161 ;; The logic of this is the same as the loop above,
4162 ;; it just goes in the other direction.
4163 (while (and (< arg 0) (not done))
4164 ;; For completely consistency with the forward-motion
4165 ;; case, we should call beginning-of-line here.
4166 ;; However, if point is inside a field and on a
4167 ;; continued line, the call to (vertical-motion -1)
4168 ;; below won't move us back far enough; then we return
4169 ;; to the same column in line-move-finish, and point
4170 ;; gets stuck -- cyd
4171 (forward-line 0)
4172 (cond
4173 ((bobp)
4174 (if (not noerror)
4175 (signal 'beginning-of-buffer nil)
4176 (setq done t)))
4177 ((and (< arg -1) ;; Use vertical-motion for last move
4178 (not (integerp selective-display))
4179 (not (invisible-p (1- (point)))))
4180 (forward-line -1))
4181 ((zerop (vertical-motion -1))
4182 (if (not noerror)
4183 (signal 'beginning-of-buffer nil)
4184 (setq done t))))
4185 (unless done
4186 (setq arg (1+ arg))
4187 (while (and ;; Don't move over previous invis lines
4188 ;; if our target is the middle of this line.
4189 (or (zerop (or goal-column temporary-goal-column))
4190 (< arg 0))
4191 (not (bobp)) (invisible-p (1- (point))))
4192 (goto-char (previous-char-property-change (point))))))))
4193 ;; This is the value the function returns.
4194 (= arg 0))
4196 (cond ((> arg 0)
4197 ;; If we did not move down as far as desired, at least go
4198 ;; to end of line. Be sure to call point-entered and
4199 ;; point-left-hooks.
4200 (let* ((npoint (prog1 (line-end-position)
4201 (goto-char opoint)))
4202 (inhibit-point-motion-hooks nil))
4203 (goto-char npoint)))
4204 ((< arg 0)
4205 ;; If we did not move up as far as desired,
4206 ;; at least go to beginning of line.
4207 (let* ((npoint (prog1 (line-beginning-position)
4208 (goto-char opoint)))
4209 (inhibit-point-motion-hooks nil))
4210 (goto-char npoint)))
4212 (line-move-finish (or goal-column temporary-goal-column)
4213 opoint (> orig-arg 0)))))))
4215 (defun line-move-finish (column opoint forward)
4216 (let ((repeat t))
4217 (while repeat
4218 ;; Set REPEAT to t to repeat the whole thing.
4219 (setq repeat nil)
4221 (let (new
4222 (old (point))
4223 (line-beg (save-excursion (beginning-of-line) (point)))
4224 (line-end
4225 ;; Compute the end of the line
4226 ;; ignoring effectively invisible newlines.
4227 (save-excursion
4228 ;; Like end-of-line but ignores fields.
4229 (skip-chars-forward "^\n")
4230 (while (and (not (eobp)) (invisible-p (point)))
4231 (goto-char (next-char-property-change (point)))
4232 (skip-chars-forward "^\n"))
4233 (point))))
4235 ;; Move to the desired column.
4236 (line-move-to-column column)
4238 ;; Corner case: suppose we start out in a field boundary in
4239 ;; the middle of a continued line. When we get to
4240 ;; line-move-finish, point is at the start of a new *screen*
4241 ;; line but the same text line; then line-move-to-column would
4242 ;; move us backwards. Test using C-n with point on the "x" in
4243 ;; (insert "a" (propertize "x" 'field t) (make-string 89 ?y))
4244 (and forward
4245 (< (point) old)
4246 (goto-char old))
4248 (setq new (point))
4250 ;; Process intangibility within a line.
4251 ;; With inhibit-point-motion-hooks bound to nil, a call to
4252 ;; goto-char moves point past intangible text.
4254 ;; However, inhibit-point-motion-hooks controls both the
4255 ;; intangibility and the point-entered/point-left hooks. The
4256 ;; following hack avoids calling the point-* hooks
4257 ;; unnecessarily. Note that we move *forward* past intangible
4258 ;; text when the initial and final points are the same.
4259 (goto-char new)
4260 (let ((inhibit-point-motion-hooks nil))
4261 (goto-char new)
4263 ;; If intangibility moves us to a different (later) place
4264 ;; in the same line, use that as the destination.
4265 (if (<= (point) line-end)
4266 (setq new (point))
4267 ;; If that position is "too late",
4268 ;; try the previous allowable position.
4269 ;; See if it is ok.
4270 (backward-char)
4271 (if (if forward
4272 ;; If going forward, don't accept the previous
4273 ;; allowable position if it is before the target line.
4274 (< line-beg (point))
4275 ;; If going backward, don't accept the previous
4276 ;; allowable position if it is still after the target line.
4277 (<= (point) line-end))
4278 (setq new (point))
4279 ;; As a last resort, use the end of the line.
4280 (setq new line-end))))
4282 ;; Now move to the updated destination, processing fields
4283 ;; as well as intangibility.
4284 (goto-char opoint)
4285 (let ((inhibit-point-motion-hooks nil))
4286 (goto-char
4287 ;; Ignore field boundaries if the initial and final
4288 ;; positions have the same `field' property, even if the
4289 ;; fields are non-contiguous. This seems to be "nicer"
4290 ;; behavior in many situations.
4291 (if (eq (get-char-property new 'field)
4292 (get-char-property opoint 'field))
4294 (constrain-to-field new opoint t t
4295 'inhibit-line-move-field-capture))))
4297 ;; If all this moved us to a different line,
4298 ;; retry everything within that new line.
4299 (when (or (< (point) line-beg) (> (point) line-end))
4300 ;; Repeat the intangibility and field processing.
4301 (setq repeat t))))))
4303 (defun line-move-to-column (col)
4304 "Try to find column COL, considering invisibility.
4305 This function works only in certain cases,
4306 because what we really need is for `move-to-column'
4307 and `current-column' to be able to ignore invisible text."
4308 (if (zerop col)
4309 (beginning-of-line)
4310 (move-to-column col))
4312 (when (and line-move-ignore-invisible
4313 (not (bolp)) (invisible-p (1- (point))))
4314 (let ((normal-location (point))
4315 (normal-column (current-column)))
4316 ;; If the following character is currently invisible,
4317 ;; skip all characters with that same `invisible' property value.
4318 (while (and (not (eobp))
4319 (invisible-p (point)))
4320 (goto-char (next-char-property-change (point))))
4321 ;; Have we advanced to a larger column position?
4322 (if (> (current-column) normal-column)
4323 ;; We have made some progress towards the desired column.
4324 ;; See if we can make any further progress.
4325 (line-move-to-column (+ (current-column) (- col normal-column)))
4326 ;; Otherwise, go to the place we originally found
4327 ;; and move back over invisible text.
4328 ;; that will get us to the same place on the screen
4329 ;; but with a more reasonable buffer position.
4330 (goto-char normal-location)
4331 (let ((line-beg (save-excursion (beginning-of-line) (point))))
4332 (while (and (not (bolp)) (invisible-p (1- (point))))
4333 (goto-char (previous-char-property-change (point) line-beg))))))))
4335 (defun move-end-of-line (arg)
4336 "Move point to end of current line as displayed.
4337 With argument ARG not nil or 1, move forward ARG - 1 lines first.
4338 If point reaches the beginning or end of buffer, it stops there.
4340 To ignore the effects of the `intangible' text or overlay
4341 property, bind `inhibit-point-motion-hooks' to t.
4342 If there is an image in the current line, this function
4343 disregards newlines that are part of the text on which the image
4344 rests."
4345 (interactive "^p")
4346 (or arg (setq arg 1))
4347 (let (done)
4348 (while (not done)
4349 (let ((newpos
4350 (save-excursion
4351 (let ((goal-column 0)
4352 (line-move-visual nil))
4353 (and (line-move arg t)
4354 (not (bobp))
4355 (progn
4356 (while (and (not (bobp)) (invisible-p (1- (point))))
4357 (goto-char (previous-single-char-property-change
4358 (point) 'invisible)))
4359 (backward-char 1)))
4360 (point)))))
4361 (goto-char newpos)
4362 (if (and (> (point) newpos)
4363 (eq (preceding-char) ?\n))
4364 (backward-char 1)
4365 (if (and (> (point) newpos) (not (eobp))
4366 (not (eq (following-char) ?\n)))
4367 ;; If we skipped something intangible and now we're not
4368 ;; really at eol, keep going.
4369 (setq arg 1)
4370 (setq done t)))))))
4372 (defun move-beginning-of-line (arg)
4373 "Move point to beginning of current line as displayed.
4374 \(If there's an image in the line, this disregards newlines
4375 which are part of the text that the image rests on.)
4377 With argument ARG not nil or 1, move forward ARG - 1 lines first.
4378 If point reaches the beginning or end of buffer, it stops there.
4379 To ignore intangibility, bind `inhibit-point-motion-hooks' to t."
4380 (interactive "^p")
4381 (or arg (setq arg 1))
4383 (let ((orig (point))
4384 first-vis first-vis-field-value)
4386 ;; Move by lines, if ARG is not 1 (the default).
4387 (if (/= arg 1)
4388 (let ((line-move-visual nil))
4389 (line-move (1- arg) t)))
4391 ;; Move to beginning-of-line, ignoring fields and invisibles.
4392 (skip-chars-backward "^\n")
4393 (while (and (not (bobp)) (invisible-p (1- (point))))
4394 (goto-char (previous-char-property-change (point)))
4395 (skip-chars-backward "^\n"))
4397 ;; Now find first visible char in the line
4398 (while (and (not (eobp)) (invisible-p (point)))
4399 (goto-char (next-char-property-change (point))))
4400 (setq first-vis (point))
4402 ;; See if fields would stop us from reaching FIRST-VIS.
4403 (setq first-vis-field-value
4404 (constrain-to-field first-vis orig (/= arg 1) t nil))
4406 (goto-char (if (/= first-vis-field-value first-vis)
4407 ;; If yes, obey them.
4408 first-vis-field-value
4409 ;; Otherwise, move to START with attention to fields.
4410 ;; (It is possible that fields never matter in this case.)
4411 (constrain-to-field (point) orig
4412 (/= arg 1) t nil)))))
4415 ;;; Many people have said they rarely use this feature, and often type
4416 ;;; it by accident. Maybe it shouldn't even be on a key.
4417 (put 'set-goal-column 'disabled t)
4419 (defun set-goal-column (arg)
4420 "Set the current horizontal position as a goal for \\[next-line] and \\[previous-line].
4421 Those commands will move to this position in the line moved to
4422 rather than trying to keep the same horizontal position.
4423 With a non-nil argument ARG, clears out the goal column
4424 so that \\[next-line] and \\[previous-line] resume vertical motion.
4425 The goal column is stored in the variable `goal-column'."
4426 (interactive "P")
4427 (if arg
4428 (progn
4429 (setq goal-column nil)
4430 (message "No goal column"))
4431 (setq goal-column (current-column))
4432 ;; The older method below can be erroneous if `set-goal-column' is bound
4433 ;; to a sequence containing %
4434 ;;(message (substitute-command-keys
4435 ;;"Goal column %d (use \\[set-goal-column] with an arg to unset it)")
4436 ;;goal-column)
4437 (message "%s"
4438 (concat
4439 (format "Goal column %d " goal-column)
4440 (substitute-command-keys
4441 "(use \\[set-goal-column] with an arg to unset it)")))
4444 nil)
4446 ;;; Editing based on visual lines, as opposed to logical lines.
4448 (defun end-of-visual-line (&optional n)
4449 "Move point to end of current visual line.
4450 With argument N not nil or 1, move forward N - 1 visual lines first.
4451 If point reaches the beginning or end of buffer, it stops there.
4452 To ignore intangibility, bind `inhibit-point-motion-hooks' to t."
4453 (interactive "^p")
4454 (or n (setq n 1))
4455 (if (/= n 1)
4456 (let ((line-move-visual t))
4457 (line-move (1- n) t)))
4458 (vertical-motion (cons (window-width) 0)))
4460 (defun beginning-of-visual-line (&optional n)
4461 "Move point to beginning of current visual line.
4462 With argument N not nil or 1, move forward N - 1 visual lines first.
4463 If point reaches the beginning or end of buffer, it stops there.
4464 To ignore intangibility, bind `inhibit-point-motion-hooks' to t."
4465 (interactive "^p")
4466 (or n (setq n 1))
4467 (if (/= n 1)
4468 (let ((line-move-visual t))
4469 (line-move (1- n) t)))
4470 (vertical-motion 0))
4472 (defun kill-visual-line (&optional arg)
4473 "Kill the rest of the visual line.
4474 With prefix argument ARG, kill that many visual lines from point.
4475 If ARG is negative, kill visual lines backward.
4476 If ARG is zero, kill the text before point on the current visual
4477 line.
4479 If you want to append the killed line to the last killed text,
4480 use \\[append-next-kill] before \\[kill-line].
4482 If the buffer is read-only, Emacs will beep and refrain from deleting
4483 the line, but put the line in the kill ring anyway. This means that
4484 you can use this command to copy text from a read-only buffer.
4485 \(If the variable `kill-read-only-ok' is non-nil, then this won't
4486 even beep.)"
4487 (interactive "P")
4488 ;; Like in `kill-line', it's better to move point to the other end
4489 ;; of the kill before killing.
4490 (let ((opoint (point)))
4491 (if arg
4492 (vertical-motion (prefix-numeric-value arg))
4493 (end-of-visual-line 1)
4494 (if (= (point) opoint)
4495 (vertical-motion 1)
4496 ;; Skip any trailing whitespace at the end of the visual line.
4497 ;; We used to do this only if `show-trailing-whitespace' is
4498 ;; nil, but that's wrong; the correct thing would be to check
4499 ;; whether the trailing whitespace is highlighted. But, it's
4500 ;; OK to just do this unconditionally.
4501 (skip-chars-forward " \t")))
4502 (kill-region opoint (point))))
4504 (defun next-logical-line (&optional arg try-vscroll)
4505 "Move cursor vertically down ARG lines.
4506 This is identical to `next-line', except that it always moves
4507 by logical lines instead of visual lines, ignoring the value of
4508 the variable `line-move-visual'."
4509 (interactive "^p\np")
4510 (let ((line-move-visual nil))
4511 (with-no-warnings
4512 (next-line arg try-vscroll))))
4514 (defun previous-logical-line (&optional arg try-vscroll)
4515 "Move cursor vertically up ARG lines.
4516 This is identical to `previous-line', except that it always moves
4517 by logical lines instead of visual lines, ignoring the value of
4518 the variable `line-move-visual'."
4519 (interactive "^p\np")
4520 (let ((line-move-visual nil))
4521 (with-no-warnings
4522 (previous-line arg try-vscroll))))
4524 (defgroup visual-line nil
4525 "Editing based on visual lines."
4526 :group 'convenience
4527 :version "23.1")
4529 (defvar visual-line-mode-map
4530 (let ((map (make-sparse-keymap)))
4531 (define-key map [remap kill-line] 'kill-visual-line)
4532 (define-key map [remap move-beginning-of-line] 'beginning-of-visual-line)
4533 (define-key map [remap move-end-of-line] 'end-of-visual-line)
4534 ;; These keybindings interfere with xterm function keys. Are
4535 ;; there any other suitable bindings?
4536 ;; (define-key map "\M-[" 'previous-logical-line)
4537 ;; (define-key map "\M-]" 'next-logical-line)
4538 map))
4540 (defcustom visual-line-fringe-indicators '(nil nil)
4541 "How fringe indicators are shown for wrapped lines in `visual-line-mode'.
4542 The value should be a list of the form (LEFT RIGHT), where LEFT
4543 and RIGHT are symbols representing the bitmaps to display, to
4544 indicate wrapped lines, in the left and right fringes respectively.
4545 See also `fringe-indicator-alist'.
4546 The default is not to display fringe indicators for wrapped lines.
4547 This variable does not affect fringe indicators displayed for
4548 other purposes."
4549 :type '(list (choice (const :tag "Hide left indicator" nil)
4550 (const :tag "Left curly arrow" left-curly-arrow)
4551 (symbol :tag "Other bitmap"))
4552 (choice (const :tag "Hide right indicator" nil)
4553 (const :tag "Right curly arrow" right-curly-arrow)
4554 (symbol :tag "Other bitmap")))
4555 :set (lambda (symbol value)
4556 (dolist (buf (buffer-list))
4557 (with-current-buffer buf
4558 (when (and (boundp 'visual-line-mode)
4559 (symbol-value 'visual-line-mode))
4560 (setq fringe-indicator-alist
4561 (cons (cons 'continuation value)
4562 (assq-delete-all
4563 'continuation
4564 (copy-tree fringe-indicator-alist)))))))
4565 (set-default symbol value)))
4567 (defvar visual-line--saved-state nil)
4569 (define-minor-mode visual-line-mode
4570 "Redefine simple editing commands to act on visual lines, not logical lines.
4571 This also turns on `word-wrap' in the buffer."
4572 :keymap visual-line-mode-map
4573 :group 'visual-line
4574 :lighter " wrap"
4575 (if visual-line-mode
4576 (progn
4577 (set (make-local-variable 'visual-line--saved-state) nil)
4578 ;; Save the local values of some variables, to be restored if
4579 ;; visual-line-mode is turned off.
4580 (dolist (var '(line-move-visual truncate-lines
4581 truncate-partial-width-windows
4582 word-wrap fringe-indicator-alist))
4583 (if (local-variable-p var)
4584 (push (cons var (symbol-value var))
4585 visual-line--saved-state)))
4586 (set (make-local-variable 'line-move-visual) t)
4587 (set (make-local-variable 'truncate-partial-width-windows) nil)
4588 (setq truncate-lines nil
4589 word-wrap t
4590 fringe-indicator-alist
4591 (cons (cons 'continuation visual-line-fringe-indicators)
4592 fringe-indicator-alist)))
4593 (kill-local-variable 'line-move-visual)
4594 (kill-local-variable 'word-wrap)
4595 (kill-local-variable 'truncate-lines)
4596 (kill-local-variable 'truncate-partial-width-windows)
4597 (kill-local-variable 'fringe-indicator-alist)
4598 (dolist (saved visual-line--saved-state)
4599 (set (make-local-variable (car saved)) (cdr saved)))
4600 (kill-local-variable 'visual-line--saved-state)))
4602 (defun turn-on-visual-line-mode ()
4603 (visual-line-mode 1))
4605 (define-globalized-minor-mode global-visual-line-mode
4606 visual-line-mode turn-on-visual-line-mode
4607 :lighter " vl")
4609 (defun scroll-other-window-down (lines)
4610 "Scroll the \"other window\" down.
4611 For more details, see the documentation for `scroll-other-window'."
4612 (interactive "P")
4613 (scroll-other-window
4614 ;; Just invert the argument's meaning.
4615 ;; We can do that without knowing which window it will be.
4616 (if (eq lines '-) nil
4617 (if (null lines) '-
4618 (- (prefix-numeric-value lines))))))
4620 (defun beginning-of-buffer-other-window (arg)
4621 "Move point to the beginning of the buffer in the other window.
4622 Leave mark at previous position.
4623 With arg N, put point N/10 of the way from the true beginning."
4624 (interactive "P")
4625 (let ((orig-window (selected-window))
4626 (window (other-window-for-scrolling)))
4627 ;; We use unwind-protect rather than save-window-excursion
4628 ;; because the latter would preserve the things we want to change.
4629 (unwind-protect
4630 (progn
4631 (select-window window)
4632 ;; Set point and mark in that window's buffer.
4633 (with-no-warnings
4634 (beginning-of-buffer arg))
4635 ;; Set point accordingly.
4636 (recenter '(t)))
4637 (select-window orig-window))))
4639 (defun end-of-buffer-other-window (arg)
4640 "Move point to the end of the buffer in the other window.
4641 Leave mark at previous position.
4642 With arg N, put point N/10 of the way from the true end."
4643 (interactive "P")
4644 ;; See beginning-of-buffer-other-window for comments.
4645 (let ((orig-window (selected-window))
4646 (window (other-window-for-scrolling)))
4647 (unwind-protect
4648 (progn
4649 (select-window window)
4650 (with-no-warnings
4651 (end-of-buffer arg))
4652 (recenter '(t)))
4653 (select-window orig-window))))
4655 (defun transpose-chars (arg)
4656 "Interchange characters around point, moving forward one character.
4657 With prefix arg ARG, effect is to take character before point
4658 and drag it forward past ARG other characters (backward if ARG negative).
4659 If no argument and at end of line, the previous two chars are exchanged."
4660 (interactive "*P")
4661 (and (null arg) (eolp) (forward-char -1))
4662 (transpose-subr 'forward-char (prefix-numeric-value arg)))
4664 (defun transpose-words (arg)
4665 "Interchange words around point, leaving point at end of them.
4666 With prefix arg ARG, effect is to take word before or around point
4667 and drag it forward past ARG other words (backward if ARG negative).
4668 If ARG is zero, the words around or after point and around or after mark
4669 are interchanged."
4670 ;; FIXME: `foo a!nd bar' should transpose into `bar and foo'.
4671 (interactive "*p")
4672 (transpose-subr 'forward-word arg))
4674 (defun transpose-sexps (arg)
4675 "Like \\[transpose-words] but applies to sexps.
4676 Does not work on a sexp that point is in the middle of
4677 if it is a list or string."
4678 (interactive "*p")
4679 (transpose-subr
4680 (lambda (arg)
4681 ;; Here we should try to simulate the behavior of
4682 ;; (cons (progn (forward-sexp x) (point))
4683 ;; (progn (forward-sexp (- x)) (point)))
4684 ;; Except that we don't want to rely on the second forward-sexp
4685 ;; putting us back to where we want to be, since forward-sexp-function
4686 ;; might do funny things like infix-precedence.
4687 (if (if (> arg 0)
4688 (looking-at "\\sw\\|\\s_")
4689 (and (not (bobp))
4690 (save-excursion (forward-char -1) (looking-at "\\sw\\|\\s_"))))
4691 ;; Jumping over a symbol. We might be inside it, mind you.
4692 (progn (funcall (if (> arg 0)
4693 'skip-syntax-backward 'skip-syntax-forward)
4694 "w_")
4695 (cons (save-excursion (forward-sexp arg) (point)) (point)))
4696 ;; Otherwise, we're between sexps. Take a step back before jumping
4697 ;; to make sure we'll obey the same precedence no matter which direction
4698 ;; we're going.
4699 (funcall (if (> arg 0) 'skip-syntax-backward 'skip-syntax-forward) " .")
4700 (cons (save-excursion (forward-sexp arg) (point))
4701 (progn (while (or (forward-comment (if (> arg 0) 1 -1))
4702 (not (zerop (funcall (if (> arg 0)
4703 'skip-syntax-forward
4704 'skip-syntax-backward)
4705 ".")))))
4706 (point)))))
4707 arg 'special))
4709 (defun transpose-lines (arg)
4710 "Exchange current line and previous line, leaving point after both.
4711 With argument ARG, takes previous line and moves it past ARG lines.
4712 With argument 0, interchanges line point is in with line mark is in."
4713 (interactive "*p")
4714 (transpose-subr (function
4715 (lambda (arg)
4716 (if (> arg 0)
4717 (progn
4718 ;; Move forward over ARG lines,
4719 ;; but create newlines if necessary.
4720 (setq arg (forward-line arg))
4721 (if (/= (preceding-char) ?\n)
4722 (setq arg (1+ arg)))
4723 (if (> arg 0)
4724 (newline arg)))
4725 (forward-line arg))))
4726 arg))
4728 (defun transpose-subr (mover arg &optional special)
4729 (let ((aux (if special mover
4730 (lambda (x)
4731 (cons (progn (funcall mover x) (point))
4732 (progn (funcall mover (- x)) (point))))))
4733 pos1 pos2)
4734 (cond
4735 ((= arg 0)
4736 (save-excursion
4737 (setq pos1 (funcall aux 1))
4738 (goto-char (mark))
4739 (setq pos2 (funcall aux 1))
4740 (transpose-subr-1 pos1 pos2))
4741 (exchange-point-and-mark))
4742 ((> arg 0)
4743 (setq pos1 (funcall aux -1))
4744 (setq pos2 (funcall aux arg))
4745 (transpose-subr-1 pos1 pos2)
4746 (goto-char (car pos2)))
4748 (setq pos1 (funcall aux -1))
4749 (goto-char (car pos1))
4750 (setq pos2 (funcall aux arg))
4751 (transpose-subr-1 pos1 pos2)))))
4753 (defun transpose-subr-1 (pos1 pos2)
4754 (when (> (car pos1) (cdr pos1)) (setq pos1 (cons (cdr pos1) (car pos1))))
4755 (when (> (car pos2) (cdr pos2)) (setq pos2 (cons (cdr pos2) (car pos2))))
4756 (when (> (car pos1) (car pos2))
4757 (let ((swap pos1))
4758 (setq pos1 pos2 pos2 swap)))
4759 (if (> (cdr pos1) (car pos2)) (error "Don't have two things to transpose"))
4760 (atomic-change-group
4761 (let (word2)
4762 ;; FIXME: We first delete the two pieces of text, so markers that
4763 ;; used to point to after the text end up pointing to before it :-(
4764 (setq word2 (delete-and-extract-region (car pos2) (cdr pos2)))
4765 (goto-char (car pos2))
4766 (insert (delete-and-extract-region (car pos1) (cdr pos1)))
4767 (goto-char (car pos1))
4768 (insert word2))))
4770 (defun backward-word (&optional arg)
4771 "Move backward until encountering the beginning of a word.
4772 With argument ARG, do this that many times."
4773 (interactive "^p")
4774 (forward-word (- (or arg 1))))
4776 (defun mark-word (&optional arg allow-extend)
4777 "Set mark ARG words away from point.
4778 The place mark goes is the same place \\[forward-word] would
4779 move to with the same argument.
4780 Interactively, if this command is repeated
4781 or (in Transient Mark mode) if the mark is active,
4782 it marks the next ARG words after the ones already marked."
4783 (interactive "P\np")
4784 (cond ((and allow-extend
4785 (or (and (eq last-command this-command) (mark t))
4786 (region-active-p)))
4787 (setq arg (if arg (prefix-numeric-value arg)
4788 (if (< (mark) (point)) -1 1)))
4789 (set-mark
4790 (save-excursion
4791 (goto-char (mark))
4792 (forward-word arg)
4793 (point))))
4795 (push-mark
4796 (save-excursion
4797 (forward-word (prefix-numeric-value arg))
4798 (point))
4799 nil t))))
4801 (defun kill-word (arg)
4802 "Kill characters forward until encountering the end of a word.
4803 With argument ARG, do this that many times."
4804 (interactive "p")
4805 (kill-region (point) (progn (forward-word arg) (point))))
4807 (defun backward-kill-word (arg)
4808 "Kill characters backward until encountering the beginning of a word.
4809 With argument ARG, do this that many times."
4810 (interactive "p")
4811 (kill-word (- arg)))
4813 (defun current-word (&optional strict really-word)
4814 "Return the symbol or word that point is on (or a nearby one) as a string.
4815 The return value includes no text properties.
4816 If optional arg STRICT is non-nil, return nil unless point is within
4817 or adjacent to a symbol or word. In all cases the value can be nil
4818 if there is no word nearby.
4819 The function, belying its name, normally finds a symbol.
4820 If optional arg REALLY-WORD is non-nil, it finds just a word."
4821 (save-excursion
4822 (let* ((oldpoint (point)) (start (point)) (end (point))
4823 (syntaxes (if really-word "w" "w_"))
4824 (not-syntaxes (concat "^" syntaxes)))
4825 (skip-syntax-backward syntaxes) (setq start (point))
4826 (goto-char oldpoint)
4827 (skip-syntax-forward syntaxes) (setq end (point))
4828 (when (and (eq start oldpoint) (eq end oldpoint)
4829 ;; Point is neither within nor adjacent to a word.
4830 (not strict))
4831 ;; Look for preceding word in same line.
4832 (skip-syntax-backward not-syntaxes
4833 (save-excursion (beginning-of-line)
4834 (point)))
4835 (if (bolp)
4836 ;; No preceding word in same line.
4837 ;; Look for following word in same line.
4838 (progn
4839 (skip-syntax-forward not-syntaxes
4840 (save-excursion (end-of-line)
4841 (point)))
4842 (setq start (point))
4843 (skip-syntax-forward syntaxes)
4844 (setq end (point)))
4845 (setq end (point))
4846 (skip-syntax-backward syntaxes)
4847 (setq start (point))))
4848 ;; If we found something nonempty, return it as a string.
4849 (unless (= start end)
4850 (buffer-substring-no-properties start end)))))
4852 (defcustom fill-prefix nil
4853 "String for filling to insert at front of new line, or nil for none."
4854 :type '(choice (const :tag "None" nil)
4855 string)
4856 :group 'fill)
4857 (make-variable-buffer-local 'fill-prefix)
4858 (put 'fill-prefix 'safe-local-variable 'string-or-null-p)
4860 (defcustom auto-fill-inhibit-regexp nil
4861 "Regexp to match lines which should not be auto-filled."
4862 :type '(choice (const :tag "None" nil)
4863 regexp)
4864 :group 'fill)
4866 ;; This function is used as the auto-fill-function of a buffer
4867 ;; when Auto-Fill mode is enabled.
4868 ;; It returns t if it really did any work.
4869 ;; (Actually some major modes use a different auto-fill function,
4870 ;; but this one is the default one.)
4871 (defun do-auto-fill ()
4872 (let (fc justify give-up
4873 (fill-prefix fill-prefix))
4874 (if (or (not (setq justify (current-justification)))
4875 (null (setq fc (current-fill-column)))
4876 (and (eq justify 'left)
4877 (<= (current-column) fc))
4878 (and auto-fill-inhibit-regexp
4879 (save-excursion (beginning-of-line)
4880 (looking-at auto-fill-inhibit-regexp))))
4881 nil ;; Auto-filling not required
4882 (if (memq justify '(full center right))
4883 (save-excursion (unjustify-current-line)))
4885 ;; Choose a fill-prefix automatically.
4886 (when (and adaptive-fill-mode
4887 (or (null fill-prefix) (string= fill-prefix "")))
4888 (let ((prefix
4889 (fill-context-prefix
4890 (save-excursion (backward-paragraph 1) (point))
4891 (save-excursion (forward-paragraph 1) (point)))))
4892 (and prefix (not (equal prefix ""))
4893 ;; Use auto-indentation rather than a guessed empty prefix.
4894 (not (and fill-indent-according-to-mode
4895 (string-match "\\`[ \t]*\\'" prefix)))
4896 (setq fill-prefix prefix))))
4898 (while (and (not give-up) (> (current-column) fc))
4899 ;; Determine where to split the line.
4900 (let* (after-prefix
4901 (fill-point
4902 (save-excursion
4903 (beginning-of-line)
4904 (setq after-prefix (point))
4905 (and fill-prefix
4906 (looking-at (regexp-quote fill-prefix))
4907 (setq after-prefix (match-end 0)))
4908 (move-to-column (1+ fc))
4909 (fill-move-to-break-point after-prefix)
4910 (point))))
4912 ;; See whether the place we found is any good.
4913 (if (save-excursion
4914 (goto-char fill-point)
4915 (or (bolp)
4916 ;; There is no use breaking at end of line.
4917 (save-excursion (skip-chars-forward " ") (eolp))
4918 ;; It is futile to split at the end of the prefix
4919 ;; since we would just insert the prefix again.
4920 (and after-prefix (<= (point) after-prefix))
4921 ;; Don't split right after a comment starter
4922 ;; since we would just make another comment starter.
4923 (and comment-start-skip
4924 (let ((limit (point)))
4925 (beginning-of-line)
4926 (and (re-search-forward comment-start-skip
4927 limit t)
4928 (eq (point) limit))))))
4929 ;; No good place to break => stop trying.
4930 (setq give-up t)
4931 ;; Ok, we have a useful place to break the line. Do it.
4932 (let ((prev-column (current-column)))
4933 ;; If point is at the fill-point, do not `save-excursion'.
4934 ;; Otherwise, if a comment prefix or fill-prefix is inserted,
4935 ;; point will end up before it rather than after it.
4936 (if (save-excursion
4937 (skip-chars-backward " \t")
4938 (= (point) fill-point))
4939 (default-indent-new-line t)
4940 (save-excursion
4941 (goto-char fill-point)
4942 (default-indent-new-line t)))
4943 ;; Now do justification, if required
4944 (if (not (eq justify 'left))
4945 (save-excursion
4946 (end-of-line 0)
4947 (justify-current-line justify nil t)))
4948 ;; If making the new line didn't reduce the hpos of
4949 ;; the end of the line, then give up now;
4950 ;; trying again will not help.
4951 (if (>= (current-column) prev-column)
4952 (setq give-up t))))))
4953 ;; Justify last line.
4954 (justify-current-line justify t t)
4955 t)))
4957 (defvar comment-line-break-function 'comment-indent-new-line
4958 "*Mode-specific function which line breaks and continues a comment.
4959 This function is called during auto-filling when a comment syntax
4960 is defined.
4961 The function should take a single optional argument, which is a flag
4962 indicating whether it should use soft newlines.")
4964 (defun default-indent-new-line (&optional soft)
4965 "Break line at point and indent.
4966 If a comment syntax is defined, call `comment-indent-new-line'.
4968 The inserted newline is marked hard if variable `use-hard-newlines' is true,
4969 unless optional argument SOFT is non-nil."
4970 (interactive)
4971 (if comment-start
4972 (funcall comment-line-break-function soft)
4973 ;; Insert the newline before removing empty space so that markers
4974 ;; get preserved better.
4975 (if soft (insert-and-inherit ?\n) (newline 1))
4976 (save-excursion (forward-char -1) (delete-horizontal-space))
4977 (delete-horizontal-space)
4979 (if (and fill-prefix (not adaptive-fill-mode))
4980 ;; Blindly trust a non-adaptive fill-prefix.
4981 (progn
4982 (indent-to-left-margin)
4983 (insert-before-markers-and-inherit fill-prefix))
4985 (cond
4986 ;; If there's an adaptive prefix, use it unless we're inside
4987 ;; a comment and the prefix is not a comment starter.
4988 (fill-prefix
4989 (indent-to-left-margin)
4990 (insert-and-inherit fill-prefix))
4991 ;; If we're not inside a comment, just try to indent.
4992 (t (indent-according-to-mode))))))
4994 (defvar normal-auto-fill-function 'do-auto-fill
4995 "The function to use for `auto-fill-function' if Auto Fill mode is turned on.
4996 Some major modes set this.")
4998 (put 'auto-fill-function :minor-mode-function 'auto-fill-mode)
4999 ;; `functions' and `hooks' are usually unsafe to set, but setting
5000 ;; auto-fill-function to nil in a file-local setting is safe and
5001 ;; can be useful to prevent auto-filling.
5002 (put 'auto-fill-function 'safe-local-variable 'null)
5003 ;; FIXME: turn into a proper minor mode.
5004 ;; Add a global minor mode version of it.
5005 (defun auto-fill-mode (&optional arg)
5006 "Toggle Auto Fill mode.
5007 With ARG, turn Auto Fill mode on if and only if ARG is positive.
5008 In Auto Fill mode, inserting a space at a column beyond `current-fill-column'
5009 automatically breaks the line at a previous space.
5011 The value of `normal-auto-fill-function' specifies the function to use
5012 for `auto-fill-function' when turning Auto Fill mode on."
5013 (interactive "P")
5014 (prog1 (setq auto-fill-function
5015 (if (if (null arg)
5016 (not auto-fill-function)
5017 (> (prefix-numeric-value arg) 0))
5018 normal-auto-fill-function
5019 nil))
5020 (force-mode-line-update)))
5022 ;; This holds a document string used to document auto-fill-mode.
5023 (defun auto-fill-function ()
5024 "Automatically break line at a previous space, in insertion of text."
5025 nil)
5027 (defun turn-on-auto-fill ()
5028 "Unconditionally turn on Auto Fill mode."
5029 (auto-fill-mode 1))
5031 (defun turn-off-auto-fill ()
5032 "Unconditionally turn off Auto Fill mode."
5033 (auto-fill-mode -1))
5035 (custom-add-option 'text-mode-hook 'turn-on-auto-fill)
5037 (defun set-fill-column (arg)
5038 "Set `fill-column' to specified argument.
5039 Use \\[universal-argument] followed by a number to specify a column.
5040 Just \\[universal-argument] as argument means to use the current column."
5041 (interactive
5042 (list (or current-prefix-arg
5043 ;; We used to use current-column silently, but C-x f is too easily
5044 ;; typed as a typo for C-x C-f, so we turned it into an error and
5045 ;; now an interactive prompt.
5046 (read-number "Set fill-column to: " (current-column)))))
5047 (if (consp arg)
5048 (setq arg (current-column)))
5049 (if (not (integerp arg))
5050 ;; Disallow missing argument; it's probably a typo for C-x C-f.
5051 (error "set-fill-column requires an explicit argument")
5052 (message "Fill column set to %d (was %d)" arg fill-column)
5053 (setq fill-column arg)))
5055 (defun set-selective-display (arg)
5056 "Set `selective-display' to ARG; clear it if no arg.
5057 When the value of `selective-display' is a number > 0,
5058 lines whose indentation is >= that value are not displayed.
5059 The variable `selective-display' has a separate value for each buffer."
5060 (interactive "P")
5061 (if (eq selective-display t)
5062 (error "selective-display already in use for marked lines"))
5063 (let ((current-vpos
5064 (save-restriction
5065 (narrow-to-region (point-min) (point))
5066 (goto-char (window-start))
5067 (vertical-motion (window-height)))))
5068 (setq selective-display
5069 (and arg (prefix-numeric-value arg)))
5070 (recenter current-vpos))
5071 (set-window-start (selected-window) (window-start (selected-window)))
5072 (princ "selective-display set to " t)
5073 (prin1 selective-display t)
5074 (princ "." t))
5076 (defvaralias 'indicate-unused-lines 'indicate-empty-lines)
5078 (defun toggle-truncate-lines (&optional arg)
5079 "Toggle whether to fold or truncate long lines for the current buffer.
5080 With prefix argument ARG, truncate long lines if ARG is positive,
5081 otherwise don't truncate them. Note that in side-by-side windows,
5082 this command has no effect if `truncate-partial-width-windows'
5083 is non-nil."
5084 (interactive "P")
5085 (setq truncate-lines
5086 (if (null arg)
5087 (not truncate-lines)
5088 (> (prefix-numeric-value arg) 0)))
5089 (force-mode-line-update)
5090 (unless truncate-lines
5091 (let ((buffer (current-buffer)))
5092 (walk-windows (lambda (window)
5093 (if (eq buffer (window-buffer window))
5094 (set-window-hscroll window 0)))
5095 nil t)))
5096 (message "Truncate long lines %s"
5097 (if truncate-lines "enabled" "disabled")))
5099 (defun toggle-word-wrap (&optional arg)
5100 "Toggle whether to use word-wrapping for continuation lines.
5101 With prefix argument ARG, wrap continuation lines at word boundaries
5102 if ARG is positive, otherwise wrap them at the right screen edge.
5103 This command toggles the value of `word-wrap'. It has no effect
5104 if long lines are truncated."
5105 (interactive "P")
5106 (setq word-wrap
5107 (if (null arg)
5108 (not word-wrap)
5109 (> (prefix-numeric-value arg) 0)))
5110 (force-mode-line-update)
5111 (message "Word wrapping %s"
5112 (if word-wrap "enabled" "disabled")))
5114 (defvar overwrite-mode-textual " Ovwrt"
5115 "The string displayed in the mode line when in overwrite mode.")
5116 (defvar overwrite-mode-binary " Bin Ovwrt"
5117 "The string displayed in the mode line when in binary overwrite mode.")
5119 (defun overwrite-mode (arg)
5120 "Toggle overwrite mode.
5121 With prefix argument ARG, turn overwrite mode on if ARG is positive,
5122 otherwise turn it off. In overwrite mode, printing characters typed
5123 in replace existing text on a one-for-one basis, rather than pushing
5124 it to the right. At the end of a line, such characters extend the line.
5125 Before a tab, such characters insert until the tab is filled in.
5126 \\[quoted-insert] still inserts characters in overwrite mode; this
5127 is supposed to make it easier to insert characters when necessary."
5128 (interactive "P")
5129 (setq overwrite-mode
5130 (if (if (null arg) (not overwrite-mode)
5131 (> (prefix-numeric-value arg) 0))
5132 'overwrite-mode-textual))
5133 (force-mode-line-update))
5135 (defun binary-overwrite-mode (arg)
5136 "Toggle binary overwrite mode.
5137 With prefix argument ARG, turn binary overwrite mode on if ARG is
5138 positive, otherwise turn it off. In binary overwrite mode, printing
5139 characters typed in replace existing text. Newlines are not treated
5140 specially, so typing at the end of a line joins the line to the next,
5141 with the typed character between them. Typing before a tab character
5142 simply replaces the tab with the character typed. \\[quoted-insert]
5143 replaces the text at the cursor, just as ordinary typing characters do.
5145 Note that binary overwrite mode is not its own minor mode; it is a
5146 specialization of overwrite mode, entered by setting the
5147 `overwrite-mode' variable to `overwrite-mode-binary'."
5148 (interactive "P")
5149 (setq overwrite-mode
5150 (if (if (null arg)
5151 (not (eq overwrite-mode 'overwrite-mode-binary))
5152 (> (prefix-numeric-value arg) 0))
5153 'overwrite-mode-binary))
5154 (force-mode-line-update))
5156 (define-minor-mode line-number-mode
5157 "Toggle Line Number mode.
5158 With ARG, turn Line Number mode on if ARG is positive, otherwise
5159 turn it off. When Line Number mode is enabled, the line number
5160 appears in the mode line.
5162 Line numbers do not appear for very large buffers and buffers
5163 with very long lines; see variables `line-number-display-limit'
5164 and `line-number-display-limit-width'."
5165 :init-value t :global t :group 'mode-line)
5167 (define-minor-mode column-number-mode
5168 "Toggle Column Number mode.
5169 With ARG, turn Column Number mode on if ARG is positive,
5170 otherwise turn it off. When Column Number mode is enabled, the
5171 column number appears in the mode line."
5172 :global t :group 'mode-line)
5174 (define-minor-mode size-indication-mode
5175 "Toggle Size Indication mode.
5176 With ARG, turn Size Indication mode on if ARG is positive,
5177 otherwise turn it off. When Size Indication mode is enabled, the
5178 size of the accessible part of the buffer appears in the mode line."
5179 :global t :group 'mode-line)
5181 (defgroup paren-blinking nil
5182 "Blinking matching of parens and expressions."
5183 :prefix "blink-matching-"
5184 :group 'paren-matching)
5186 (defcustom blink-matching-paren t
5187 "Non-nil means show matching open-paren when close-paren is inserted."
5188 :type 'boolean
5189 :group 'paren-blinking)
5191 (defcustom blink-matching-paren-on-screen t
5192 "Non-nil means show matching open-paren when it is on screen.
5193 If nil, don't show it (but the open-paren can still be shown
5194 when it is off screen).
5196 This variable has no effect if `blink-matching-paren' is nil.
5197 \(In that case, the open-paren is never shown.)
5198 It is also ignored if `show-paren-mode' is enabled."
5199 :type 'boolean
5200 :group 'paren-blinking)
5202 (defcustom blink-matching-paren-distance (* 25 1024)
5203 "If non-nil, maximum distance to search backwards for matching open-paren.
5204 If nil, search stops at the beginning of the accessible portion of the buffer."
5205 :type '(choice (const nil) integer)
5206 :group 'paren-blinking)
5208 (defcustom blink-matching-delay 1
5209 "Time in seconds to delay after showing a matching paren."
5210 :type 'number
5211 :group 'paren-blinking)
5213 (defcustom blink-matching-paren-dont-ignore-comments nil
5214 "If nil, `blink-matching-paren' ignores comments.
5215 More precisely, when looking for the matching parenthesis,
5216 it skips the contents of comments that end before point."
5217 :type 'boolean
5218 :group 'paren-blinking)
5220 (defun blink-matching-open ()
5221 "Move cursor momentarily to the beginning of the sexp before point."
5222 (interactive)
5223 (when (and (> (point) (point-min))
5224 blink-matching-paren
5225 ;; Verify an even number of quoting characters precede the close.
5226 (= 1 (logand 1 (- (point)
5227 (save-excursion
5228 (forward-char -1)
5229 (skip-syntax-backward "/\\")
5230 (point))))))
5231 (let* ((oldpos (point))
5232 (message-log-max nil) ; Don't log messages about paren matching.
5233 (atdollar (eq (syntax-class (syntax-after (1- oldpos))) 8))
5234 (isdollar)
5235 (blinkpos
5236 (save-excursion
5237 (save-restriction
5238 (if blink-matching-paren-distance
5239 (narrow-to-region
5240 (max (minibuffer-prompt-end) ;(point-min) unless minibuf.
5241 (- (point) blink-matching-paren-distance))
5242 oldpos))
5243 (let ((parse-sexp-ignore-comments
5244 (and parse-sexp-ignore-comments
5245 (not blink-matching-paren-dont-ignore-comments))))
5246 (condition-case ()
5247 (scan-sexps oldpos -1)
5248 (error nil))))))
5249 (matching-paren
5250 (and blinkpos
5251 ;; Not syntax '$'.
5252 (not (setq isdollar
5253 (eq (syntax-class (syntax-after blinkpos)) 8)))
5254 (let ((syntax (syntax-after blinkpos)))
5255 (and (consp syntax)
5256 (eq (syntax-class syntax) 4)
5257 (cdr syntax))))))
5258 (cond
5259 ;; isdollar is for:
5260 ;; http://lists.gnu.org/archive/html/emacs-devel/2007-10/msg00871.html
5261 ((not (or (and isdollar blinkpos)
5262 (and atdollar (not blinkpos)) ; see below
5263 (eq matching-paren (char-before oldpos))
5264 ;; The cdr might hold a new paren-class info rather than
5265 ;; a matching-char info, in which case the two CDRs
5266 ;; should match.
5267 (eq matching-paren (cdr (syntax-after (1- oldpos))))))
5268 (if (minibufferp)
5269 (minibuffer-message " [Mismatched parentheses]")
5270 (message "Mismatched parentheses")))
5271 ((not blinkpos)
5272 (or blink-matching-paren-distance
5273 ;; Don't complain when `$' with no blinkpos, because it
5274 ;; could just be the first one typed in the buffer.
5275 atdollar
5276 (if (minibufferp)
5277 (minibuffer-message " [Unmatched parenthesis]")
5278 (message "Unmatched parenthesis"))))
5279 ((pos-visible-in-window-p blinkpos)
5280 ;; Matching open within window, temporarily move to blinkpos but only
5281 ;; if `blink-matching-paren-on-screen' is non-nil.
5282 (and blink-matching-paren-on-screen
5283 (not show-paren-mode)
5284 (save-excursion
5285 (goto-char blinkpos)
5286 (sit-for blink-matching-delay))))
5288 (save-excursion
5289 (goto-char blinkpos)
5290 (let ((open-paren-line-string
5291 ;; Show what precedes the open in its line, if anything.
5292 (cond
5293 ((save-excursion (skip-chars-backward " \t") (not (bolp)))
5294 (buffer-substring (line-beginning-position)
5295 (1+ blinkpos)))
5296 ;; Show what follows the open in its line, if anything.
5297 ((save-excursion
5298 (forward-char 1)
5299 (skip-chars-forward " \t")
5300 (not (eolp)))
5301 (buffer-substring blinkpos
5302 (line-end-position)))
5303 ;; Otherwise show the previous nonblank line,
5304 ;; if there is one.
5305 ((save-excursion (skip-chars-backward "\n \t") (not (bobp)))
5306 (concat
5307 (buffer-substring (progn
5308 (skip-chars-backward "\n \t")
5309 (line-beginning-position))
5310 (progn (end-of-line)
5311 (skip-chars-backward " \t")
5312 (point)))
5313 ;; Replace the newline and other whitespace with `...'.
5314 "..."
5315 (buffer-substring blinkpos (1+ blinkpos))))
5316 ;; There is nothing to show except the char itself.
5317 (t (buffer-substring blinkpos (1+ blinkpos))))))
5318 (message "Matches %s"
5319 (substring-no-properties open-paren-line-string)))))))))
5321 (setq blink-paren-function 'blink-matching-open)
5323 ;; This executes C-g typed while Emacs is waiting for a command.
5324 ;; Quitting out of a program does not go through here;
5325 ;; that happens in the QUIT macro at the C code level.
5326 (defun keyboard-quit ()
5327 "Signal a `quit' condition.
5328 During execution of Lisp code, this character causes a quit directly.
5329 At top-level, as an editor command, this simply beeps."
5330 (interactive)
5331 (deactivate-mark)
5332 (if (fboundp 'kmacro-keyboard-quit)
5333 (kmacro-keyboard-quit))
5334 (setq defining-kbd-macro nil)
5335 (signal 'quit nil))
5337 (defvar buffer-quit-function nil
5338 "Function to call to \"quit\" the current buffer, or nil if none.
5339 \\[keyboard-escape-quit] calls this function when its more local actions
5340 \(such as cancelling a prefix argument, minibuffer or region) do not apply.")
5342 (defun keyboard-escape-quit ()
5343 "Exit the current \"mode\" (in a generalized sense of the word).
5344 This command can exit an interactive command such as `query-replace',
5345 can clear out a prefix argument or a region,
5346 can get out of the minibuffer or other recursive edit,
5347 cancel the use of the current buffer (for special-purpose buffers),
5348 or go back to just one window (by deleting all but the selected window)."
5349 (interactive)
5350 (cond ((eq last-command 'mode-exited) nil)
5351 ((> (minibuffer-depth) 0)
5352 (abort-recursive-edit))
5353 (current-prefix-arg
5354 nil)
5355 ((region-active-p)
5356 (deactivate-mark))
5357 ((> (recursion-depth) 0)
5358 (exit-recursive-edit))
5359 (buffer-quit-function
5360 (funcall buffer-quit-function))
5361 ((not (one-window-p t))
5362 (delete-other-windows))
5363 ((string-match "^ \\*" (buffer-name (current-buffer)))
5364 (bury-buffer))))
5366 (defun play-sound-file (file &optional volume device)
5367 "Play sound stored in FILE.
5368 VOLUME and DEVICE correspond to the keywords of the sound
5369 specification for `play-sound'."
5370 (interactive "fPlay sound file: ")
5371 (let ((sound (list :file file)))
5372 (if volume
5373 (plist-put sound :volume volume))
5374 (if device
5375 (plist-put sound :device device))
5376 (push 'sound sound)
5377 (play-sound sound)))
5380 (defcustom read-mail-command 'rmail
5381 "Your preference for a mail reading package.
5382 This is used by some keybindings which support reading mail.
5383 See also `mail-user-agent' concerning sending mail."
5384 :type '(choice (function-item rmail)
5385 (function-item gnus)
5386 (function-item mh-rmail)
5387 (function :tag "Other"))
5388 :version "21.1"
5389 :group 'mail)
5391 (defcustom mail-user-agent 'sendmail-user-agent
5392 "Your preference for a mail composition package.
5393 Various Emacs Lisp packages (e.g. Reporter) require you to compose an
5394 outgoing email message. This variable lets you specify which
5395 mail-sending package you prefer.
5397 Valid values include:
5399 `sendmail-user-agent' -- use the default Emacs Mail package.
5400 See Info node `(emacs)Sending Mail'.
5401 `mh-e-user-agent' -- use the Emacs interface to the MH mail system.
5402 See Info node `(mh-e)'.
5403 `message-user-agent' -- use the Gnus Message package.
5404 See Info node `(message)'.
5405 `gnus-user-agent' -- like `message-user-agent', but with Gnus
5406 paraphernalia, particularly the Gcc: header for
5407 archiving.
5409 Additional valid symbols may be available; check with the author of
5410 your package for details. The function should return non-nil if it
5411 succeeds.
5413 See also `read-mail-command' concerning reading mail."
5414 :type '(radio (function-item :tag "Default Emacs mail"
5415 :format "%t\n"
5416 sendmail-user-agent)
5417 (function-item :tag "Emacs interface to MH"
5418 :format "%t\n"
5419 mh-e-user-agent)
5420 (function-item :tag "Gnus Message package"
5421 :format "%t\n"
5422 message-user-agent)
5423 (function-item :tag "Gnus Message with full Gnus features"
5424 :format "%t\n"
5425 gnus-user-agent)
5426 (function :tag "Other"))
5427 :group 'mail)
5429 (define-mail-user-agent 'sendmail-user-agent
5430 'sendmail-user-agent-compose
5431 'mail-send-and-exit)
5433 (defun rfc822-goto-eoh ()
5434 ;; Go to header delimiter line in a mail message, following RFC822 rules
5435 (goto-char (point-min))
5436 (when (re-search-forward
5437 "^\\([:\n]\\|[^: \t\n]+[ \t\n]\\)" nil 'move)
5438 (goto-char (match-beginning 0))))
5440 (defun sendmail-user-agent-compose (&optional to subject other-headers continue
5441 switch-function yank-action
5442 send-actions)
5443 (if switch-function
5444 (let ((special-display-buffer-names nil)
5445 (special-display-regexps nil)
5446 (same-window-buffer-names nil)
5447 (same-window-regexps nil))
5448 (funcall switch-function "*mail*")))
5449 (let ((cc (cdr (assoc-string "cc" other-headers t)))
5450 (in-reply-to (cdr (assoc-string "in-reply-to" other-headers t)))
5451 (body (cdr (assoc-string "body" other-headers t))))
5452 (or (mail continue to subject in-reply-to cc yank-action send-actions)
5453 continue
5454 (error "Message aborted"))
5455 (save-excursion
5456 (rfc822-goto-eoh)
5457 (while other-headers
5458 (unless (member-ignore-case (car (car other-headers))
5459 '("in-reply-to" "cc" "body"))
5460 (insert (car (car other-headers)) ": "
5461 (cdr (car other-headers))
5462 (if use-hard-newlines hard-newline "\n")))
5463 (setq other-headers (cdr other-headers)))
5464 (when body
5465 (forward-line 1)
5466 (insert body))
5467 t)))
5469 (defun compose-mail (&optional to subject other-headers continue
5470 switch-function yank-action send-actions)
5471 "Start composing a mail message to send.
5472 This uses the user's chosen mail composition package
5473 as selected with the variable `mail-user-agent'.
5474 The optional arguments TO and SUBJECT specify recipients
5475 and the initial Subject field, respectively.
5477 OTHER-HEADERS is an alist specifying additional
5478 header fields. Elements look like (HEADER . VALUE) where both
5479 HEADER and VALUE are strings.
5481 CONTINUE, if non-nil, says to continue editing a message already
5482 being composed. Interactively, CONTINUE is the prefix argument.
5484 SWITCH-FUNCTION, if non-nil, is a function to use to
5485 switch to and display the buffer used for mail composition.
5487 YANK-ACTION, if non-nil, is an action to perform, if and when necessary,
5488 to insert the raw text of the message being replied to.
5489 It has the form (FUNCTION . ARGS). The user agent will apply
5490 FUNCTION to ARGS, to insert the raw text of the original message.
5491 \(The user agent will also run `mail-citation-hook', *after* the
5492 original text has been inserted in this way.)
5494 SEND-ACTIONS is a list of actions to call when the message is sent.
5495 Each action has the form (FUNCTION . ARGS)."
5496 (interactive
5497 (list nil nil nil current-prefix-arg))
5498 (let ((function (get mail-user-agent 'composefunc)))
5499 (funcall function to subject other-headers continue
5500 switch-function yank-action send-actions)))
5502 (defun compose-mail-other-window (&optional to subject other-headers continue
5503 yank-action send-actions)
5504 "Like \\[compose-mail], but edit the outgoing message in another window."
5505 (interactive
5506 (list nil nil nil current-prefix-arg))
5507 (compose-mail to subject other-headers continue
5508 'switch-to-buffer-other-window yank-action send-actions))
5511 (defun compose-mail-other-frame (&optional to subject other-headers continue
5512 yank-action send-actions)
5513 "Like \\[compose-mail], but edit the outgoing message in another frame."
5514 (interactive
5515 (list nil nil nil current-prefix-arg))
5516 (compose-mail to subject other-headers continue
5517 'switch-to-buffer-other-frame yank-action send-actions))
5519 (defvar set-variable-value-history nil
5520 "History of values entered with `set-variable'.
5522 Maximum length of the history list is determined by the value
5523 of `history-length', which see.")
5525 (defun set-variable (variable value &optional make-local)
5526 "Set VARIABLE to VALUE. VALUE is a Lisp object.
5527 VARIABLE should be a user option variable name, a Lisp variable
5528 meant to be customized by users. You should enter VALUE in Lisp syntax,
5529 so if you want VALUE to be a string, you must surround it with doublequotes.
5530 VALUE is used literally, not evaluated.
5532 If VARIABLE has a `variable-interactive' property, that is used as if
5533 it were the arg to `interactive' (which see) to interactively read VALUE.
5535 If VARIABLE has been defined with `defcustom', then the type information
5536 in the definition is used to check that VALUE is valid.
5538 With a prefix argument, set VARIABLE to VALUE buffer-locally."
5539 (interactive
5540 (let* ((default-var (variable-at-point))
5541 (var (if (user-variable-p default-var)
5542 (read-variable (format "Set variable (default %s): " default-var)
5543 default-var)
5544 (read-variable "Set variable: ")))
5545 (minibuffer-help-form '(describe-variable var))
5546 (prop (get var 'variable-interactive))
5547 (obsolete (car (get var 'byte-obsolete-variable)))
5548 (prompt (format "Set %s %s to value: " var
5549 (cond ((local-variable-p var)
5550 "(buffer-local)")
5551 ((or current-prefix-arg
5552 (local-variable-if-set-p var))
5553 "buffer-locally")
5554 (t "globally"))))
5555 (val (progn
5556 (when obsolete
5557 (message (concat "`%S' is obsolete; "
5558 (if (symbolp obsolete) "use `%S' instead" "%s"))
5559 var obsolete)
5560 (sit-for 3))
5561 (if prop
5562 ;; Use VAR's `variable-interactive' property
5563 ;; as an interactive spec for prompting.
5564 (call-interactively `(lambda (arg)
5565 (interactive ,prop)
5566 arg))
5567 (read
5568 (read-string prompt nil
5569 'set-variable-value-history
5570 (format "%S" (symbol-value var))))))))
5571 (list var val current-prefix-arg)))
5573 (and (custom-variable-p variable)
5574 (not (get variable 'custom-type))
5575 (custom-load-symbol variable))
5576 (let ((type (get variable 'custom-type)))
5577 (when type
5578 ;; Match with custom type.
5579 (require 'cus-edit)
5580 (setq type (widget-convert type))
5581 (unless (widget-apply type :match value)
5582 (error "Value `%S' does not match type %S of %S"
5583 value (car type) variable))))
5585 (if make-local
5586 (make-local-variable variable))
5588 (set variable value)
5590 ;; Force a thorough redisplay for the case that the variable
5591 ;; has an effect on the display, like `tab-width' has.
5592 (force-mode-line-update))
5594 ;; Define the major mode for lists of completions.
5596 (defvar completion-list-mode-map
5597 (let ((map (make-sparse-keymap)))
5598 (define-key map [mouse-2] 'mouse-choose-completion)
5599 (define-key map [follow-link] 'mouse-face)
5600 (define-key map [down-mouse-2] nil)
5601 (define-key map "\C-m" 'choose-completion)
5602 (define-key map "\e\e\e" 'delete-completion-window)
5603 (define-key map [left] 'previous-completion)
5604 (define-key map [right] 'next-completion)
5605 (define-key map "q" 'quit-window)
5606 map)
5607 "Local map for completion list buffers.")
5609 ;; Completion mode is suitable only for specially formatted data.
5610 (put 'completion-list-mode 'mode-class 'special)
5612 (defvar completion-reference-buffer nil
5613 "Record the buffer that was current when the completion list was requested.
5614 This is a local variable in the completion list buffer.
5615 Initial value is nil to avoid some compiler warnings.")
5617 (defvar completion-no-auto-exit nil
5618 "Non-nil means `choose-completion-string' should never exit the minibuffer.
5619 This also applies to other functions such as `choose-completion'
5620 and `mouse-choose-completion'.")
5622 (defvar completion-base-size nil
5623 "Number of chars before point not involved in completion.
5624 This is a local variable in the completion list buffer.
5625 It refers to the chars in the minibuffer if completing in the
5626 minibuffer, or in `completion-reference-buffer' otherwise.
5627 Only characters in the field at point are included.
5629 If nil, Emacs determines which part of the tail end of the
5630 buffer's text is involved in completion by comparing the text
5631 directly.")
5633 (defun delete-completion-window ()
5634 "Delete the completion list window.
5635 Go to the window from which completion was requested."
5636 (interactive)
5637 (let ((buf completion-reference-buffer))
5638 (if (one-window-p t)
5639 (if (window-dedicated-p (selected-window))
5640 (delete-frame (selected-frame)))
5641 (delete-window (selected-window))
5642 (if (get-buffer-window buf)
5643 (select-window (get-buffer-window buf))))))
5645 (defun previous-completion (n)
5646 "Move to the previous item in the completion list."
5647 (interactive "p")
5648 (next-completion (- n)))
5650 (defun next-completion (n)
5651 "Move to the next item in the completion list.
5652 With prefix argument N, move N items (negative N means move backward)."
5653 (interactive "p")
5654 (let ((beg (point-min)) (end (point-max)))
5655 (while (and (> n 0) (not (eobp)))
5656 ;; If in a completion, move to the end of it.
5657 (when (get-text-property (point) 'mouse-face)
5658 (goto-char (next-single-property-change (point) 'mouse-face nil end)))
5659 ;; Move to start of next one.
5660 (unless (get-text-property (point) 'mouse-face)
5661 (goto-char (next-single-property-change (point) 'mouse-face nil end)))
5662 (setq n (1- n)))
5663 (while (and (< n 0) (not (bobp)))
5664 (let ((prop (get-text-property (1- (point)) 'mouse-face)))
5665 ;; If in a completion, move to the start of it.
5666 (when (and prop (eq prop (get-text-property (point) 'mouse-face)))
5667 (goto-char (previous-single-property-change
5668 (point) 'mouse-face nil beg)))
5669 ;; Move to end of the previous completion.
5670 (unless (or (bobp) (get-text-property (1- (point)) 'mouse-face))
5671 (goto-char (previous-single-property-change
5672 (point) 'mouse-face nil beg)))
5673 ;; Move to the start of that one.
5674 (goto-char (previous-single-property-change
5675 (point) 'mouse-face nil beg))
5676 (setq n (1+ n))))))
5678 (defun choose-completion ()
5679 "Choose the completion that point is in or next to."
5680 (interactive)
5681 (let (beg end completion (buffer completion-reference-buffer)
5682 (base-size completion-base-size))
5683 (if (and (not (eobp)) (get-text-property (point) 'mouse-face))
5684 (setq end (point) beg (1+ (point))))
5685 (if (and (not (bobp)) (get-text-property (1- (point)) 'mouse-face))
5686 (setq end (1- (point)) beg (point)))
5687 (if (null beg)
5688 (error "No completion here"))
5689 (setq beg (previous-single-property-change beg 'mouse-face))
5690 (setq end (or (next-single-property-change end 'mouse-face) (point-max)))
5691 (setq completion (buffer-substring-no-properties beg end))
5692 (let ((owindow (selected-window)))
5693 (if (and (one-window-p t 'selected-frame)
5694 (window-dedicated-p owindow))
5695 ;; This is a special buffer's frame
5696 (iconify-frame (selected-frame))
5697 (or (window-dedicated-p (selected-window))
5698 (bury-buffer)))
5699 (select-window
5700 (or (and (buffer-live-p buffer)
5701 (get-buffer-window buffer))
5702 owindow)))
5703 (choose-completion-string completion buffer base-size)))
5705 ;; Delete the longest partial match for STRING
5706 ;; that can be found before POINT.
5707 (defun choose-completion-delete-max-match (string)
5708 (let ((opoint (point))
5709 len)
5710 ;; Try moving back by the length of the string.
5711 (goto-char (max (- (point) (length string))
5712 (minibuffer-prompt-end)))
5713 ;; See how far back we were actually able to move. That is the
5714 ;; upper bound on how much we can match and delete.
5715 (setq len (- opoint (point)))
5716 (if completion-ignore-case
5717 (setq string (downcase string)))
5718 (while (and (> len 0)
5719 (let ((tail (buffer-substring (point) opoint)))
5720 (if completion-ignore-case
5721 (setq tail (downcase tail)))
5722 (not (string= tail (substring string 0 len)))))
5723 (setq len (1- len))
5724 (forward-char 1))
5725 (delete-char len)))
5727 (defvar choose-completion-string-functions nil
5728 "Functions that may override the normal insertion of a completion choice.
5729 These functions are called in order with four arguments:
5730 CHOICE - the string to insert in the buffer,
5731 BUFFER - the buffer in which the choice should be inserted,
5732 MINI-P - non-nil if BUFFER is a minibuffer, and
5733 BASE-SIZE - the number of characters in BUFFER before
5734 the string being completed.
5736 If a function in the list returns non-nil, that function is supposed
5737 to have inserted the CHOICE in the BUFFER, and possibly exited
5738 the minibuffer; no further functions will be called.
5740 If all functions in the list return nil, that means to use
5741 the default method of inserting the completion in BUFFER.")
5743 (defun choose-completion-string (choice &optional buffer base-size)
5744 "Switch to BUFFER and insert the completion choice CHOICE.
5745 BASE-SIZE, if non-nil, says how many characters of BUFFER's text
5746 to keep. If it is nil, we call `choose-completion-delete-max-match'
5747 to decide what to delete."
5749 ;; If BUFFER is the minibuffer, exit the minibuffer
5750 ;; unless it is reading a file name and CHOICE is a directory,
5751 ;; or completion-no-auto-exit is non-nil.
5753 (let* ((buffer (or buffer completion-reference-buffer))
5754 (mini-p (minibufferp buffer)))
5755 ;; If BUFFER is a minibuffer, barf unless it's the currently
5756 ;; active minibuffer.
5757 (if (and mini-p
5758 (or (not (active-minibuffer-window))
5759 (not (equal buffer
5760 (window-buffer (active-minibuffer-window))))))
5761 (error "Minibuffer is not active for completion")
5762 ;; Set buffer so buffer-local choose-completion-string-functions works.
5763 (set-buffer buffer)
5764 (unless (run-hook-with-args-until-success
5765 'choose-completion-string-functions
5766 choice buffer mini-p base-size)
5767 ;; Insert the completion into the buffer where it was requested.
5768 ;; FIXME:
5769 ;; - There may not be a field at point, or there may be a field but
5770 ;; it's not a "completion field", in which case we have to
5771 ;; call choose-completion-delete-max-match even if base-size is set.
5772 ;; - we may need to delete further than (point) to (field-end),
5773 ;; depending on the completion-style, and for that we need to
5774 ;; extra data `completion-extra-size'.
5775 (if base-size
5776 (delete-region (+ base-size (field-beginning)) (point))
5777 (choose-completion-delete-max-match choice))
5778 (insert choice)
5779 (remove-text-properties (- (point) (length choice)) (point)
5780 '(mouse-face nil))
5781 ;; Update point in the window that BUFFER is showing in.
5782 (let ((window (get-buffer-window buffer t)))
5783 (set-window-point window (point)))
5784 ;; If completing for the minibuffer, exit it with this choice.
5785 (and (not completion-no-auto-exit)
5786 (minibufferp buffer)
5787 minibuffer-completion-table
5788 ;; If this is reading a file name, and the file name chosen
5789 ;; is a directory, don't exit the minibuffer.
5790 (if (and minibuffer-completing-file-name
5791 (file-directory-p (field-string (point-max))))
5792 (let ((mini (active-minibuffer-window)))
5793 (select-window mini)
5794 (when minibuffer-auto-raise
5795 (raise-frame (window-frame mini))))
5796 (exit-minibuffer)))))))
5798 (define-derived-mode completion-list-mode nil "Completion List"
5799 "Major mode for buffers showing lists of possible completions.
5800 Type \\<completion-list-mode-map>\\[choose-completion] in the completion list\
5801 to select the completion near point.
5802 Use \\<completion-list-mode-map>\\[mouse-choose-completion] to select one\
5803 with the mouse.
5805 \\{completion-list-mode-map}"
5806 (set (make-local-variable 'completion-base-size) nil))
5808 (defun completion-list-mode-finish ()
5809 "Finish setup of the completions buffer.
5810 Called from `temp-buffer-show-hook'."
5811 (when (eq major-mode 'completion-list-mode)
5812 (toggle-read-only 1)))
5814 (add-hook 'temp-buffer-show-hook 'completion-list-mode-finish)
5817 ;; Variables and faces used in `completion-setup-function'.
5819 (defcustom completion-show-help t
5820 "Non-nil means show help message in *Completions* buffer."
5821 :type 'boolean
5822 :version "22.1"
5823 :group 'completion)
5825 ;; This is for packages that need to bind it to a non-default regexp
5826 ;; in order to make the first-differing character highlight work
5827 ;; to their liking
5828 (defvar completion-root-regexp "^/"
5829 "Regexp to use in `completion-setup-function' to find the root directory.")
5831 ;; This function goes in completion-setup-hook, so that it is called
5832 ;; after the text of the completion list buffer is written.
5833 (defun completion-setup-function ()
5834 (let* ((mainbuf (current-buffer))
5835 (base-dir
5836 ;; When reading a file name in the minibuffer,
5837 ;; try and find the right default-directory to set in the
5838 ;; completion list buffer.
5839 ;; FIXME: Why do we do that, actually? --Stef
5840 (if minibuffer-completing-file-name
5841 (file-name-as-directory
5842 (expand-file-name
5843 (substring (minibuffer-completion-contents)
5844 0 (or completion-base-size 0)))))))
5845 (with-current-buffer standard-output
5846 (let ((base-size completion-base-size)) ;Read before killing localvars.
5847 (completion-list-mode)
5848 (set (make-local-variable 'completion-base-size) base-size))
5849 (set (make-local-variable 'completion-reference-buffer) mainbuf)
5850 (if base-dir (setq default-directory base-dir))
5851 (unless completion-base-size
5852 ;; This shouldn't be needed any more, but further analysis is needed
5853 ;; to make sure it's the case.
5854 (setq completion-base-size
5855 (cond
5856 (minibuffer-completing-file-name
5857 ;; For file name completion, use the number of chars before
5858 ;; the start of the file name component at point.
5859 (with-current-buffer mainbuf
5860 (save-excursion
5861 (skip-chars-backward completion-root-regexp)
5862 (- (point) (minibuffer-prompt-end)))))
5863 (minibuffer-completing-symbol nil)
5864 ;; Otherwise, in minibuffer, the base size is 0.
5865 ((minibufferp mainbuf) 0))))
5866 ;; Maybe insert help string.
5867 (when completion-show-help
5868 (goto-char (point-min))
5869 (if (display-mouse-p)
5870 (insert (substitute-command-keys
5871 "Click \\[mouse-choose-completion] on a completion to select it.\n")))
5872 (insert (substitute-command-keys
5873 "In this buffer, type \\[choose-completion] to \
5874 select the completion near point.\n\n"))))))
5876 (add-hook 'completion-setup-hook 'completion-setup-function)
5878 (define-key minibuffer-local-completion-map [prior] 'switch-to-completions)
5879 (define-key minibuffer-local-completion-map "\M-v" 'switch-to-completions)
5881 (defun switch-to-completions ()
5882 "Select the completion list window."
5883 (interactive)
5884 ;; Make sure we have a completions window.
5885 (or (get-buffer-window "*Completions*")
5886 (minibuffer-completion-help))
5887 (let ((window (get-buffer-window "*Completions*")))
5888 (when window
5889 (select-window window)
5890 (goto-char (point-min))
5891 (search-forward "\n\n" nil t)
5892 (forward-line 1))))
5894 ;;; Support keyboard commands to turn on various modifiers.
5896 ;; These functions -- which are not commands -- each add one modifier
5897 ;; to the following event.
5899 (defun event-apply-alt-modifier (ignore-prompt)
5900 "\\<function-key-map>Add the Alt modifier to the following event.
5901 For example, type \\[event-apply-alt-modifier] & to enter Alt-&."
5902 (vector (event-apply-modifier (read-event) 'alt 22 "A-")))
5903 (defun event-apply-super-modifier (ignore-prompt)
5904 "\\<function-key-map>Add the Super modifier to the following event.
5905 For example, type \\[event-apply-super-modifier] & to enter Super-&."
5906 (vector (event-apply-modifier (read-event) 'super 23 "s-")))
5907 (defun event-apply-hyper-modifier (ignore-prompt)
5908 "\\<function-key-map>Add the Hyper modifier to the following event.
5909 For example, type \\[event-apply-hyper-modifier] & to enter Hyper-&."
5910 (vector (event-apply-modifier (read-event) 'hyper 24 "H-")))
5911 (defun event-apply-shift-modifier (ignore-prompt)
5912 "\\<function-key-map>Add the Shift modifier to the following event.
5913 For example, type \\[event-apply-shift-modifier] & to enter Shift-&."
5914 (vector (event-apply-modifier (read-event) 'shift 25 "S-")))
5915 (defun event-apply-control-modifier (ignore-prompt)
5916 "\\<function-key-map>Add the Ctrl modifier to the following event.
5917 For example, type \\[event-apply-control-modifier] & to enter Ctrl-&."
5918 (vector (event-apply-modifier (read-event) 'control 26 "C-")))
5919 (defun event-apply-meta-modifier (ignore-prompt)
5920 "\\<function-key-map>Add the Meta modifier to the following event.
5921 For example, type \\[event-apply-meta-modifier] & to enter Meta-&."
5922 (vector (event-apply-modifier (read-event) 'meta 27 "M-")))
5924 (defun event-apply-modifier (event symbol lshiftby prefix)
5925 "Apply a modifier flag to event EVENT.
5926 SYMBOL is the name of this modifier, as a symbol.
5927 LSHIFTBY is the numeric value of this modifier, in keyboard events.
5928 PREFIX is the string that represents this modifier in an event type symbol."
5929 (if (numberp event)
5930 (cond ((eq symbol 'control)
5931 (if (and (<= (downcase event) ?z)
5932 (>= (downcase event) ?a))
5933 (- (downcase event) ?a -1)
5934 (if (and (<= (downcase event) ?Z)
5935 (>= (downcase event) ?A))
5936 (- (downcase event) ?A -1)
5937 (logior (lsh 1 lshiftby) event))))
5938 ((eq symbol 'shift)
5939 (if (and (<= (downcase event) ?z)
5940 (>= (downcase event) ?a))
5941 (upcase event)
5942 (logior (lsh 1 lshiftby) event)))
5944 (logior (lsh 1 lshiftby) event)))
5945 (if (memq symbol (event-modifiers event))
5946 event
5947 (let ((event-type (if (symbolp event) event (car event))))
5948 (setq event-type (intern (concat prefix (symbol-name event-type))))
5949 (if (symbolp event)
5950 event-type
5951 (cons event-type (cdr event)))))))
5953 (define-key function-key-map [?\C-x ?@ ?h] 'event-apply-hyper-modifier)
5954 (define-key function-key-map [?\C-x ?@ ?s] 'event-apply-super-modifier)
5955 (define-key function-key-map [?\C-x ?@ ?m] 'event-apply-meta-modifier)
5956 (define-key function-key-map [?\C-x ?@ ?a] 'event-apply-alt-modifier)
5957 (define-key function-key-map [?\C-x ?@ ?S] 'event-apply-shift-modifier)
5958 (define-key function-key-map [?\C-x ?@ ?c] 'event-apply-control-modifier)
5960 ;;;; Keypad support.
5962 ;; Make the keypad keys act like ordinary typing keys. If people add
5963 ;; bindings for the function key symbols, then those bindings will
5964 ;; override these, so this shouldn't interfere with any existing
5965 ;; bindings.
5967 ;; Also tell read-char how to handle these keys.
5968 (mapc
5969 (lambda (keypad-normal)
5970 (let ((keypad (nth 0 keypad-normal))
5971 (normal (nth 1 keypad-normal)))
5972 (put keypad 'ascii-character normal)
5973 (define-key function-key-map (vector keypad) (vector normal))))
5974 '((kp-0 ?0) (kp-1 ?1) (kp-2 ?2) (kp-3 ?3) (kp-4 ?4)
5975 (kp-5 ?5) (kp-6 ?6) (kp-7 ?7) (kp-8 ?8) (kp-9 ?9)
5976 (kp-space ?\s)
5977 (kp-tab ?\t)
5978 (kp-enter ?\r)
5979 (kp-multiply ?*)
5980 (kp-add ?+)
5981 (kp-separator ?,)
5982 (kp-subtract ?-)
5983 (kp-decimal ?.)
5984 (kp-divide ?/)
5985 (kp-equal ?=)))
5987 ;;;;
5988 ;;;; forking a twin copy of a buffer.
5989 ;;;;
5991 (defvar clone-buffer-hook nil
5992 "Normal hook to run in the new buffer at the end of `clone-buffer'.")
5994 (defvar clone-indirect-buffer-hook nil
5995 "Normal hook to run in the new buffer at the end of `clone-indirect-buffer'.")
5997 (defun clone-process (process &optional newname)
5998 "Create a twin copy of PROCESS.
5999 If NEWNAME is nil, it defaults to PROCESS' name;
6000 NEWNAME is modified by adding or incrementing <N> at the end as necessary.
6001 If PROCESS is associated with a buffer, the new process will be associated
6002 with the current buffer instead.
6003 Returns nil if PROCESS has already terminated."
6004 (setq newname (or newname (process-name process)))
6005 (if (string-match "<[0-9]+>\\'" newname)
6006 (setq newname (substring newname 0 (match-beginning 0))))
6007 (when (memq (process-status process) '(run stop open))
6008 (let* ((process-connection-type (process-tty-name process))
6009 (new-process
6010 (if (memq (process-status process) '(open))
6011 (let ((args (process-contact process t)))
6012 (setq args (plist-put args :name newname))
6013 (setq args (plist-put args :buffer
6014 (if (process-buffer process)
6015 (current-buffer))))
6016 (apply 'make-network-process args))
6017 (apply 'start-process newname
6018 (if (process-buffer process) (current-buffer))
6019 (process-command process)))))
6020 (set-process-query-on-exit-flag
6021 new-process (process-query-on-exit-flag process))
6022 (set-process-inherit-coding-system-flag
6023 new-process (process-inherit-coding-system-flag process))
6024 (set-process-filter new-process (process-filter process))
6025 (set-process-sentinel new-process (process-sentinel process))
6026 (set-process-plist new-process (copy-sequence (process-plist process)))
6027 new-process)))
6029 ;; things to maybe add (currently partly covered by `funcall mode'):
6030 ;; - syntax-table
6031 ;; - overlays
6032 (defun clone-buffer (&optional newname display-flag)
6033 "Create and return a twin copy of the current buffer.
6034 Unlike an indirect buffer, the new buffer can be edited
6035 independently of the old one (if it is not read-only).
6036 NEWNAME is the name of the new buffer. It may be modified by
6037 adding or incrementing <N> at the end as necessary to create a
6038 unique buffer name. If nil, it defaults to the name of the
6039 current buffer, with the proper suffix. If DISPLAY-FLAG is
6040 non-nil, the new buffer is shown with `pop-to-buffer'. Trying to
6041 clone a file-visiting buffer, or a buffer whose major mode symbol
6042 has a non-nil `no-clone' property, results in an error.
6044 Interactively, DISPLAY-FLAG is t and NEWNAME is the name of the
6045 current buffer with appropriate suffix. However, if a prefix
6046 argument is given, then the command prompts for NEWNAME in the
6047 minibuffer.
6049 This runs the normal hook `clone-buffer-hook' in the new buffer
6050 after it has been set up properly in other respects."
6051 (interactive
6052 (progn
6053 (if buffer-file-name
6054 (error "Cannot clone a file-visiting buffer"))
6055 (if (get major-mode 'no-clone)
6056 (error "Cannot clone a buffer in %s mode" mode-name))
6057 (list (if current-prefix-arg
6058 (read-buffer "Name of new cloned buffer: " (current-buffer)))
6059 t)))
6060 (if buffer-file-name
6061 (error "Cannot clone a file-visiting buffer"))
6062 (if (get major-mode 'no-clone)
6063 (error "Cannot clone a buffer in %s mode" mode-name))
6064 (setq newname (or newname (buffer-name)))
6065 (if (string-match "<[0-9]+>\\'" newname)
6066 (setq newname (substring newname 0 (match-beginning 0))))
6067 (let ((buf (current-buffer))
6068 (ptmin (point-min))
6069 (ptmax (point-max))
6070 (pt (point))
6071 (mk (if mark-active (mark t)))
6072 (modified (buffer-modified-p))
6073 (mode major-mode)
6074 (lvars (buffer-local-variables))
6075 (process (get-buffer-process (current-buffer)))
6076 (new (generate-new-buffer (or newname (buffer-name)))))
6077 (save-restriction
6078 (widen)
6079 (with-current-buffer new
6080 (insert-buffer-substring buf)))
6081 (with-current-buffer new
6082 (narrow-to-region ptmin ptmax)
6083 (goto-char pt)
6084 (if mk (set-mark mk))
6085 (set-buffer-modified-p modified)
6087 ;; Clone the old buffer's process, if any.
6088 (when process (clone-process process))
6090 ;; Now set up the major mode.
6091 (funcall mode)
6093 ;; Set up other local variables.
6094 (mapc (lambda (v)
6095 (condition-case () ;in case var is read-only
6096 (if (symbolp v)
6097 (makunbound v)
6098 (set (make-local-variable (car v)) (cdr v)))
6099 (error nil)))
6100 lvars)
6102 ;; Run any hooks (typically set up by the major mode
6103 ;; for cloning to work properly).
6104 (run-hooks 'clone-buffer-hook))
6105 (if display-flag
6106 ;; Presumably the current buffer is shown in the selected frame, so
6107 ;; we want to display the clone elsewhere.
6108 (let ((same-window-regexps nil)
6109 (same-window-buffer-names))
6110 (pop-to-buffer new)))
6111 new))
6114 (defun clone-indirect-buffer (newname display-flag &optional norecord)
6115 "Create an indirect buffer that is a twin copy of the current buffer.
6117 Give the indirect buffer name NEWNAME. Interactively, read NEWNAME
6118 from the minibuffer when invoked with a prefix arg. If NEWNAME is nil
6119 or if not called with a prefix arg, NEWNAME defaults to the current
6120 buffer's name. The name is modified by adding a `<N>' suffix to it
6121 or by incrementing the N in an existing suffix. Trying to clone a
6122 buffer whose major mode symbol has a non-nil `no-clone-indirect'
6123 property results in an error.
6125 DISPLAY-FLAG non-nil means show the new buffer with `pop-to-buffer'.
6126 This is always done when called interactively.
6128 Optional third arg NORECORD non-nil means do not put this buffer at the
6129 front of the list of recently selected ones."
6130 (interactive
6131 (progn
6132 (if (get major-mode 'no-clone-indirect)
6133 (error "Cannot indirectly clone a buffer in %s mode" mode-name))
6134 (list (if current-prefix-arg
6135 (read-buffer "Name of indirect buffer: " (current-buffer)))
6136 t)))
6137 (if (get major-mode 'no-clone-indirect)
6138 (error "Cannot indirectly clone a buffer in %s mode" mode-name))
6139 (setq newname (or newname (buffer-name)))
6140 (if (string-match "<[0-9]+>\\'" newname)
6141 (setq newname (substring newname 0 (match-beginning 0))))
6142 (let* ((name (generate-new-buffer-name newname))
6143 (buffer (make-indirect-buffer (current-buffer) name t)))
6144 (with-current-buffer buffer
6145 (run-hooks 'clone-indirect-buffer-hook))
6146 (when display-flag
6147 (pop-to-buffer buffer norecord))
6148 buffer))
6151 (defun clone-indirect-buffer-other-window (newname display-flag &optional norecord)
6152 "Like `clone-indirect-buffer' but display in another window."
6153 (interactive
6154 (progn
6155 (if (get major-mode 'no-clone-indirect)
6156 (error "Cannot indirectly clone a buffer in %s mode" mode-name))
6157 (list (if current-prefix-arg
6158 (read-buffer "Name of indirect buffer: " (current-buffer)))
6159 t)))
6160 (let ((pop-up-windows t))
6161 (clone-indirect-buffer newname display-flag norecord)))
6164 ;;; Handling of Backspace and Delete keys.
6166 (defcustom normal-erase-is-backspace 'maybe
6167 "Set the default behavior of the Delete and Backspace keys.
6169 If set to t, Delete key deletes forward and Backspace key deletes
6170 backward.
6172 If set to nil, both Delete and Backspace keys delete backward.
6174 If set to 'maybe (which is the default), Emacs automatically
6175 selects a behavior. On window systems, the behavior depends on
6176 the keyboard used. If the keyboard has both a Backspace key and
6177 a Delete key, and both are mapped to their usual meanings, the
6178 option's default value is set to t, so that Backspace can be used
6179 to delete backward, and Delete can be used to delete forward.
6181 If not running under a window system, customizing this option
6182 accomplishes a similar effect by mapping C-h, which is usually
6183 generated by the Backspace key, to DEL, and by mapping DEL to C-d
6184 via `keyboard-translate'. The former functionality of C-h is
6185 available on the F1 key. You should probably not use this
6186 setting if you don't have both Backspace, Delete and F1 keys.
6188 Setting this variable with setq doesn't take effect. Programmatically,
6189 call `normal-erase-is-backspace-mode' (which see) instead."
6190 :type '(choice (const :tag "Off" nil)
6191 (const :tag "Maybe" maybe)
6192 (other :tag "On" t))
6193 :group 'editing-basics
6194 :version "21.1"
6195 :set (lambda (symbol value)
6196 ;; The fboundp is because of a problem with :set when
6197 ;; dumping Emacs. It doesn't really matter.
6198 (if (fboundp 'normal-erase-is-backspace-mode)
6199 (normal-erase-is-backspace-mode (or value 0))
6200 (set-default symbol value))))
6202 (defun normal-erase-is-backspace-setup-frame (&optional frame)
6203 "Set up `normal-erase-is-backspace-mode' on FRAME, if necessary."
6204 (unless frame (setq frame (selected-frame)))
6205 (with-selected-frame frame
6206 (unless (terminal-parameter nil 'normal-erase-is-backspace)
6207 (normal-erase-is-backspace-mode
6208 (if (if (eq normal-erase-is-backspace 'maybe)
6209 (and (not noninteractive)
6210 (or (memq system-type '(ms-dos windows-nt))
6211 (and (memq window-system '(x))
6212 (fboundp 'x-backspace-delete-keys-p)
6213 (x-backspace-delete-keys-p))
6214 ;; If the terminal Emacs is running on has erase char
6215 ;; set to ^H, use the Backspace key for deleting
6216 ;; backward, and the Delete key for deleting forward.
6217 (and (null window-system)
6218 (eq tty-erase-char ?\^H))))
6219 normal-erase-is-backspace)
6220 1 0)))))
6222 (defun normal-erase-is-backspace-mode (&optional arg)
6223 "Toggle the Erase and Delete mode of the Backspace and Delete keys.
6225 With numeric ARG, turn the mode on if and only if ARG is positive.
6227 On window systems, when this mode is on, Delete is mapped to C-d
6228 and Backspace is mapped to DEL; when this mode is off, both
6229 Delete and Backspace are mapped to DEL. (The remapping goes via
6230 `local-function-key-map', so binding Delete or Backspace in the
6231 global or local keymap will override that.)
6233 In addition, on window systems, the bindings of C-Delete, M-Delete,
6234 C-M-Delete, C-Backspace, M-Backspace, and C-M-Backspace are changed in
6235 the global keymap in accordance with the functionality of Delete and
6236 Backspace. For example, if Delete is remapped to C-d, which deletes
6237 forward, C-Delete is bound to `kill-word', but if Delete is remapped
6238 to DEL, which deletes backward, C-Delete is bound to
6239 `backward-kill-word'.
6241 If not running on a window system, a similar effect is accomplished by
6242 remapping C-h (normally produced by the Backspace key) and DEL via
6243 `keyboard-translate': if this mode is on, C-h is mapped to DEL and DEL
6244 to C-d; if it's off, the keys are not remapped.
6246 When not running on a window system, and this mode is turned on, the
6247 former functionality of C-h is available on the F1 key. You should
6248 probably not turn on this mode on a text-only terminal if you don't
6249 have both Backspace, Delete and F1 keys.
6251 See also `normal-erase-is-backspace'."
6252 (interactive "P")
6253 (let ((enabled (or (and arg (> (prefix-numeric-value arg) 0))
6254 (and (not arg)
6255 (not (eq 1 (terminal-parameter
6256 nil 'normal-erase-is-backspace)))))))
6257 (set-terminal-parameter nil 'normal-erase-is-backspace
6258 (if enabled 1 0))
6260 (cond ((or (memq window-system '(x w32 ns pc))
6261 (memq system-type '(ms-dos windows-nt)))
6262 (let* ((bindings
6263 `(([M-delete] [M-backspace])
6264 ([C-M-delete] [C-M-backspace])
6265 (,esc-map
6266 [C-delete] [C-backspace])))
6267 (old-state (lookup-key local-function-key-map [delete])))
6269 (if enabled
6270 (progn
6271 (define-key local-function-key-map [delete] [?\C-d])
6272 (define-key local-function-key-map [kp-delete] [?\C-d])
6273 (define-key local-function-key-map [backspace] [?\C-?]))
6274 (define-key local-function-key-map [delete] [?\C-?])
6275 (define-key local-function-key-map [kp-delete] [?\C-?])
6276 (define-key local-function-key-map [backspace] [?\C-?]))
6278 ;; Maybe swap bindings of C-delete and C-backspace, etc.
6279 (unless (equal old-state (lookup-key local-function-key-map [delete]))
6280 (dolist (binding bindings)
6281 (let ((map global-map))
6282 (when (keymapp (car binding))
6283 (setq map (car binding) binding (cdr binding)))
6284 (let* ((key1 (nth 0 binding))
6285 (key2 (nth 1 binding))
6286 (binding1 (lookup-key map key1))
6287 (binding2 (lookup-key map key2)))
6288 (define-key map key1 binding2)
6289 (define-key map key2 binding1)))))))
6291 (if enabled
6292 (progn
6293 (keyboard-translate ?\C-h ?\C-?)
6294 (keyboard-translate ?\C-? ?\C-d))
6295 (keyboard-translate ?\C-h ?\C-h)
6296 (keyboard-translate ?\C-? ?\C-?))))
6298 (run-hooks 'normal-erase-is-backspace-hook)
6299 (if (interactive-p)
6300 (message "Delete key deletes %s"
6301 (if (terminal-parameter nil 'normal-erase-is-backspace)
6302 "forward" "backward")))))
6304 (defvar vis-mode-saved-buffer-invisibility-spec nil
6305 "Saved value of `buffer-invisibility-spec' when Visible mode is on.")
6307 (define-minor-mode visible-mode
6308 "Toggle Visible mode.
6309 With argument ARG turn Visible mode on if ARG is positive, otherwise
6310 turn it off.
6312 Enabling Visible mode makes all invisible text temporarily visible.
6313 Disabling Visible mode turns off that effect. Visible mode works by
6314 saving the value of `buffer-invisibility-spec' and setting it to nil."
6315 :lighter " Vis"
6316 :group 'editing-basics
6317 (when (local-variable-p 'vis-mode-saved-buffer-invisibility-spec)
6318 (setq buffer-invisibility-spec vis-mode-saved-buffer-invisibility-spec)
6319 (kill-local-variable 'vis-mode-saved-buffer-invisibility-spec))
6320 (when visible-mode
6321 (set (make-local-variable 'vis-mode-saved-buffer-invisibility-spec)
6322 buffer-invisibility-spec)
6323 (setq buffer-invisibility-spec nil)))
6325 ;; Partial application of functions (similar to "currying").
6326 (defun apply-partially (fun &rest args)
6327 "Return a function that is a partial application of FUN to ARGS.
6328 ARGS is a list of the first N arguments to pass to FUN.
6329 The result is a new function which does the same as FUN, except that
6330 the first N arguments are fixed at the values with which this function
6331 was called."
6332 (lexical-let ((fun fun) (args1 args))
6333 (lambda (&rest args2) (apply fun (append args1 args2)))))
6335 ;; Minibuffer prompt stuff.
6337 ;(defun minibuffer-prompt-modification (start end)
6338 ; (error "You cannot modify the prompt"))
6341 ;(defun minibuffer-prompt-insertion (start end)
6342 ; (let ((inhibit-modification-hooks t))
6343 ; (delete-region start end)
6344 ; ;; Discard undo information for the text insertion itself
6345 ; ;; and for the text deletion.above.
6346 ; (when (consp buffer-undo-list)
6347 ; (setq buffer-undo-list (cddr buffer-undo-list)))
6348 ; (message "You cannot modify the prompt")))
6351 ;(setq minibuffer-prompt-properties
6352 ; (list 'modification-hooks '(minibuffer-prompt-modification)
6353 ; 'insert-in-front-hooks '(minibuffer-prompt-insertion)))
6357 ;;;; Problematic external packages.
6359 ;; rms says this should be done by specifying symbols that define
6360 ;; versions together with bad values. This is therefore not as
6361 ;; flexible as it could be. See the thread:
6362 ;; http://lists.gnu.org/archive/html/emacs-devel/2007-08/msg00300.html
6363 (defconst bad-packages-alist
6364 ;; Not sure exactly which semantic versions have problems.
6365 ;; Definitely 2.0pre3, probably all 2.0pre's before this.
6366 '((semantic semantic-version "\\`2\\.0pre[1-3]\\'"
6367 "The version of `semantic' loaded does not work in Emacs 22.
6368 It can cause constant high CPU load.
6369 Upgrade to at least Semantic 2.0pre4 (distributed with CEDET 1.0pre4).")
6370 ;; CUA-mode does not work with GNU Emacs version 22.1 and newer.
6371 ;; Except for version 1.2, all of the 1.x and 2.x version of cua-mode
6372 ;; provided the `CUA-mode' feature. Since this is no longer true,
6373 ;; we can warn the user if the `CUA-mode' feature is ever provided.
6374 (CUA-mode t nil
6375 "CUA-mode is now part of the standard GNU Emacs distribution,
6376 so you can now enable CUA via the Options menu or by customizing `cua-mode'.
6378 You have loaded an older version of CUA-mode which does not work
6379 correctly with this version of Emacs. You should remove the old
6380 version and use the one distributed with Emacs."))
6381 "Alist of packages known to cause problems in this version of Emacs.
6382 Each element has the form (PACKAGE SYMBOL REGEXP STRING).
6383 PACKAGE is either a regular expression to match file names, or a
6384 symbol (a feature name); see the documentation of
6385 `after-load-alist', to which this variable adds functions.
6386 SYMBOL is either the name of a string variable, or `t'. Upon
6387 loading PACKAGE, if SYMBOL is t or matches REGEXP, display a
6388 warning using STRING as the message.")
6390 (defun bad-package-check (package)
6391 "Run a check using the element from `bad-packages-alist' matching PACKAGE."
6392 (condition-case nil
6393 (let* ((list (assoc package bad-packages-alist))
6394 (symbol (nth 1 list)))
6395 (and list
6396 (boundp symbol)
6397 (or (eq symbol t)
6398 (and (stringp (setq symbol (eval symbol)))
6399 (string-match-p (nth 2 list) symbol)))
6400 (display-warning package (nth 3 list) :warning)))
6401 (error nil)))
6403 (mapc (lambda (elem)
6404 (eval-after-load (car elem) `(bad-package-check ',(car elem))))
6405 bad-packages-alist)
6408 (provide 'simple)
6410 ;; arch-tag: 24af67c0-2a49-44f6-b3b1-312d8b570dfd
6411 ;;; simple.el ends here