ffap: Don't switch window unless needed
[emacs.git] / src / fns.c
blob10d35b6112a8306f1247fb9084dd76a2de3abfd2
1 /* Random utility Lisp functions.
3 Copyright (C) 1985-1987, 1993-1995, 1997-2017 Free Software Foundation,
4 Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include <filevercmp.h>
26 #include <intprops.h>
27 #include <vla.h>
28 #include <errno.h>
30 #include "lisp.h"
31 #include "character.h"
32 #include "coding.h"
33 #include "composite.h"
34 #include "buffer.h"
35 #include "intervals.h"
36 #include "window.h"
37 #include "puresize.h"
39 static void sort_vector_copy (Lisp_Object, ptrdiff_t,
40 Lisp_Object *restrict, Lisp_Object *restrict);
41 enum equal_kind { EQUAL_NO_QUIT, EQUAL_PLAIN, EQUAL_INCLUDING_PROPERTIES };
42 static bool internal_equal (Lisp_Object, Lisp_Object,
43 enum equal_kind, int, Lisp_Object);
45 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
46 doc: /* Return the argument unchanged. */
47 attributes: const)
48 (Lisp_Object arg)
50 return arg;
53 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
54 doc: /* Return a pseudo-random number.
55 All integers representable in Lisp, i.e. between `most-negative-fixnum'
56 and `most-positive-fixnum', inclusive, are equally likely.
58 With positive integer LIMIT, return random number in interval [0,LIMIT).
59 With argument t, set the random number seed from the system's entropy
60 pool if available, otherwise from less-random volatile data such as the time.
61 With a string argument, set the seed based on the string's contents.
62 Other values of LIMIT are ignored.
64 See Info node `(elisp)Random Numbers' for more details. */)
65 (Lisp_Object limit)
67 EMACS_INT val;
69 if (EQ (limit, Qt))
70 init_random ();
71 else if (STRINGP (limit))
72 seed_random (SSDATA (limit), SBYTES (limit));
74 val = get_random ();
75 if (INTEGERP (limit) && 0 < XINT (limit))
76 while (true)
78 /* Return the remainder, except reject the rare case where
79 get_random returns a number so close to INTMASK that the
80 remainder isn't random. */
81 EMACS_INT remainder = val % XINT (limit);
82 if (val - remainder <= INTMASK - XINT (limit) + 1)
83 return make_number (remainder);
84 val = get_random ();
86 return make_number (val);
89 /* Random data-structure functions. */
91 DEFUN ("length", Flength, Slength, 1, 1, 0,
92 doc: /* Return the length of vector, list or string SEQUENCE.
93 A byte-code function object is also allowed.
94 If the string contains multibyte characters, this is not necessarily
95 the number of bytes in the string; it is the number of characters.
96 To get the number of bytes, use `string-bytes'. */)
97 (register Lisp_Object sequence)
99 register Lisp_Object val;
101 if (STRINGP (sequence))
102 XSETFASTINT (val, SCHARS (sequence));
103 else if (VECTORP (sequence))
104 XSETFASTINT (val, ASIZE (sequence));
105 else if (CHAR_TABLE_P (sequence))
106 XSETFASTINT (val, MAX_CHAR);
107 else if (BOOL_VECTOR_P (sequence))
108 XSETFASTINT (val, bool_vector_size (sequence));
109 else if (COMPILEDP (sequence) || RECORDP (sequence))
110 XSETFASTINT (val, PVSIZE (sequence));
111 else if (CONSP (sequence))
113 intptr_t i = 0;
114 FOR_EACH_TAIL (sequence)
115 i++;
116 CHECK_LIST_END (sequence, sequence);
117 if (MOST_POSITIVE_FIXNUM < i)
118 error ("List too long");
119 val = make_number (i);
121 else if (NILP (sequence))
122 XSETFASTINT (val, 0);
123 else
124 wrong_type_argument (Qsequencep, sequence);
126 return val;
129 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
130 doc: /* Return the length of a list, but avoid error or infinite loop.
131 This function never gets an error. If LIST is not really a list,
132 it returns 0. If LIST is circular, it returns a finite value
133 which is at least the number of distinct elements. */)
134 (Lisp_Object list)
136 intptr_t len = 0;
137 FOR_EACH_TAIL_SAFE (list)
138 len++;
139 return make_fixnum_or_float (len);
142 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
143 doc: /* Return the number of bytes in STRING.
144 If STRING is multibyte, this may be greater than the length of STRING. */)
145 (Lisp_Object string)
147 CHECK_STRING (string);
148 return make_number (SBYTES (string));
151 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
152 doc: /* Return t if two strings have identical contents.
153 Case is significant, but text properties are ignored.
154 Symbols are also allowed; their print names are used instead. */)
155 (register Lisp_Object s1, Lisp_Object s2)
157 if (SYMBOLP (s1))
158 s1 = SYMBOL_NAME (s1);
159 if (SYMBOLP (s2))
160 s2 = SYMBOL_NAME (s2);
161 CHECK_STRING (s1);
162 CHECK_STRING (s2);
164 if (SCHARS (s1) != SCHARS (s2)
165 || SBYTES (s1) != SBYTES (s2)
166 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
167 return Qnil;
168 return Qt;
171 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
172 doc: /* Compare the contents of two strings, converting to multibyte if needed.
173 The arguments START1, END1, START2, and END2, if non-nil, are
174 positions specifying which parts of STR1 or STR2 to compare. In
175 string STR1, compare the part between START1 (inclusive) and END1
176 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
177 the string; if END1 is nil, it defaults to the length of the string.
178 Likewise, in string STR2, compare the part between START2 and END2.
179 Like in `substring', negative values are counted from the end.
181 The strings are compared by the numeric values of their characters.
182 For instance, STR1 is "less than" STR2 if its first differing
183 character has a smaller numeric value. If IGNORE-CASE is non-nil,
184 characters are converted to upper-case before comparing them. Unibyte
185 strings are converted to multibyte for comparison.
187 The value is t if the strings (or specified portions) match.
188 If string STR1 is less, the value is a negative number N;
189 - 1 - N is the number of characters that match at the beginning.
190 If string STR1 is greater, the value is a positive number N;
191 N - 1 is the number of characters that match at the beginning. */)
192 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2,
193 Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
195 ptrdiff_t from1, to1, from2, to2, i1, i1_byte, i2, i2_byte;
197 CHECK_STRING (str1);
198 CHECK_STRING (str2);
200 /* For backward compatibility, silently bring too-large positive end
201 values into range. */
202 if (INTEGERP (end1) && SCHARS (str1) < XINT (end1))
203 end1 = make_number (SCHARS (str1));
204 if (INTEGERP (end2) && SCHARS (str2) < XINT (end2))
205 end2 = make_number (SCHARS (str2));
207 validate_subarray (str1, start1, end1, SCHARS (str1), &from1, &to1);
208 validate_subarray (str2, start2, end2, SCHARS (str2), &from2, &to2);
210 i1 = from1;
211 i2 = from2;
213 i1_byte = string_char_to_byte (str1, i1);
214 i2_byte = string_char_to_byte (str2, i2);
216 while (i1 < to1 && i2 < to2)
218 /* When we find a mismatch, we must compare the
219 characters, not just the bytes. */
220 int c1, c2;
222 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c1, str1, i1, i1_byte);
223 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c2, str2, i2, i2_byte);
225 if (c1 == c2)
226 continue;
228 if (! NILP (ignore_case))
230 c1 = XINT (Fupcase (make_number (c1)));
231 c2 = XINT (Fupcase (make_number (c2)));
234 if (c1 == c2)
235 continue;
237 /* Note that I1 has already been incremented
238 past the character that we are comparing;
239 hence we don't add or subtract 1 here. */
240 if (c1 < c2)
241 return make_number (- i1 + from1);
242 else
243 return make_number (i1 - from1);
246 if (i1 < to1)
247 return make_number (i1 - from1 + 1);
248 if (i2 < to2)
249 return make_number (- i1 + from1 - 1);
251 return Qt;
254 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
255 doc: /* Return non-nil if STRING1 is less than STRING2 in lexicographic order.
256 Case is significant.
257 Symbols are also allowed; their print names are used instead. */)
258 (register Lisp_Object string1, Lisp_Object string2)
260 register ptrdiff_t end;
261 register ptrdiff_t i1, i1_byte, i2, i2_byte;
263 if (SYMBOLP (string1))
264 string1 = SYMBOL_NAME (string1);
265 if (SYMBOLP (string2))
266 string2 = SYMBOL_NAME (string2);
267 CHECK_STRING (string1);
268 CHECK_STRING (string2);
270 i1 = i1_byte = i2 = i2_byte = 0;
272 end = SCHARS (string1);
273 if (end > SCHARS (string2))
274 end = SCHARS (string2);
276 while (i1 < end)
278 /* When we find a mismatch, we must compare the
279 characters, not just the bytes. */
280 int c1, c2;
282 FETCH_STRING_CHAR_ADVANCE (c1, string1, i1, i1_byte);
283 FETCH_STRING_CHAR_ADVANCE (c2, string2, i2, i2_byte);
285 if (c1 != c2)
286 return c1 < c2 ? Qt : Qnil;
288 return i1 < SCHARS (string2) ? Qt : Qnil;
291 DEFUN ("string-version-lessp", Fstring_version_lessp,
292 Sstring_version_lessp, 2, 2, 0,
293 doc: /* Return non-nil if S1 is less than S2, as version strings.
295 This function compares version strings S1 and S2:
296 1) By prefix lexicographically.
297 2) Then by version (similarly to version comparison of Debian's dpkg).
298 Leading zeros in version numbers are ignored.
299 3) If both prefix and version are equal, compare as ordinary strings.
301 For example, \"foo2.png\" compares less than \"foo12.png\".
302 Case is significant.
303 Symbols are also allowed; their print names are used instead. */)
304 (Lisp_Object string1, Lisp_Object string2)
306 if (SYMBOLP (string1))
307 string1 = SYMBOL_NAME (string1);
308 if (SYMBOLP (string2))
309 string2 = SYMBOL_NAME (string2);
310 CHECK_STRING (string1);
311 CHECK_STRING (string2);
313 char *p1 = SSDATA (string1);
314 char *p2 = SSDATA (string2);
315 char *lim1 = p1 + SBYTES (string1);
316 char *lim2 = p2 + SBYTES (string2);
317 int cmp;
319 while ((cmp = filevercmp (p1, p2)) == 0)
321 /* If the strings are identical through their first null bytes,
322 skip past identical prefixes and try again. */
323 ptrdiff_t size = strlen (p1) + 1;
324 p1 += size;
325 p2 += size;
326 if (lim1 < p1)
327 return lim2 < p2 ? Qnil : Qt;
328 if (lim2 < p2)
329 return Qnil;
332 return cmp < 0 ? Qt : Qnil;
335 DEFUN ("string-collate-lessp", Fstring_collate_lessp, Sstring_collate_lessp, 2, 4, 0,
336 doc: /* Return t if first arg string is less than second in collation order.
337 Symbols are also allowed; their print names are used instead.
339 This function obeys the conventions for collation order in your
340 locale settings. For example, punctuation and whitespace characters
341 might be considered less significant for sorting:
343 \(sort \\='("11" "12" "1 1" "1 2" "1.1" "1.2") \\='string-collate-lessp)
344 => ("11" "1 1" "1.1" "12" "1 2" "1.2")
346 The optional argument LOCALE, a string, overrides the setting of your
347 current locale identifier for collation. The value is system
348 dependent; a LOCALE \"en_US.UTF-8\" is applicable on POSIX systems,
349 while it would be, e.g., \"enu_USA.1252\" on MS-Windows systems.
351 If IGNORE-CASE is non-nil, characters are converted to lower-case
352 before comparing them.
354 To emulate Unicode-compliant collation on MS-Windows systems,
355 bind `w32-collate-ignore-punctuation' to a non-nil value, since
356 the codeset part of the locale cannot be \"UTF-8\" on MS-Windows.
358 If your system does not support a locale environment, this function
359 behaves like `string-lessp'. */)
360 (Lisp_Object s1, Lisp_Object s2, Lisp_Object locale, Lisp_Object ignore_case)
362 #if defined __STDC_ISO_10646__ || defined WINDOWSNT
363 /* Check parameters. */
364 if (SYMBOLP (s1))
365 s1 = SYMBOL_NAME (s1);
366 if (SYMBOLP (s2))
367 s2 = SYMBOL_NAME (s2);
368 CHECK_STRING (s1);
369 CHECK_STRING (s2);
370 if (!NILP (locale))
371 CHECK_STRING (locale);
373 return (str_collate (s1, s2, locale, ignore_case) < 0) ? Qt : Qnil;
375 #else /* !__STDC_ISO_10646__, !WINDOWSNT */
376 return Fstring_lessp (s1, s2);
377 #endif /* !__STDC_ISO_10646__, !WINDOWSNT */
380 DEFUN ("string-collate-equalp", Fstring_collate_equalp, Sstring_collate_equalp, 2, 4, 0,
381 doc: /* Return t if two strings have identical contents.
382 Symbols are also allowed; their print names are used instead.
384 This function obeys the conventions for collation order in your locale
385 settings. For example, characters with different coding points but
386 the same meaning might be considered as equal, like different grave
387 accent Unicode characters:
389 \(string-collate-equalp (string ?\\uFF40) (string ?\\u1FEF))
390 => t
392 The optional argument LOCALE, a string, overrides the setting of your
393 current locale identifier for collation. The value is system
394 dependent; a LOCALE \"en_US.UTF-8\" is applicable on POSIX systems,
395 while it would be \"enu_USA.1252\" on MS Windows systems.
397 If IGNORE-CASE is non-nil, characters are converted to lower-case
398 before comparing them.
400 To emulate Unicode-compliant collation on MS-Windows systems,
401 bind `w32-collate-ignore-punctuation' to a non-nil value, since
402 the codeset part of the locale cannot be \"UTF-8\" on MS-Windows.
404 If your system does not support a locale environment, this function
405 behaves like `string-equal'.
407 Do NOT use this function to compare file names for equality. */)
408 (Lisp_Object s1, Lisp_Object s2, Lisp_Object locale, Lisp_Object ignore_case)
410 #if defined __STDC_ISO_10646__ || defined WINDOWSNT
411 /* Check parameters. */
412 if (SYMBOLP (s1))
413 s1 = SYMBOL_NAME (s1);
414 if (SYMBOLP (s2))
415 s2 = SYMBOL_NAME (s2);
416 CHECK_STRING (s1);
417 CHECK_STRING (s2);
418 if (!NILP (locale))
419 CHECK_STRING (locale);
421 return (str_collate (s1, s2, locale, ignore_case) == 0) ? Qt : Qnil;
423 #else /* !__STDC_ISO_10646__, !WINDOWSNT */
424 return Fstring_equal (s1, s2);
425 #endif /* !__STDC_ISO_10646__, !WINDOWSNT */
428 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
429 enum Lisp_Type target_type, bool last_special);
431 /* ARGSUSED */
432 Lisp_Object
433 concat2 (Lisp_Object s1, Lisp_Object s2)
435 return concat (2, ((Lisp_Object []) {s1, s2}), Lisp_String, 0);
438 /* ARGSUSED */
439 Lisp_Object
440 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
442 return concat (3, ((Lisp_Object []) {s1, s2, s3}), Lisp_String, 0);
445 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
446 doc: /* Concatenate all the arguments and make the result a list.
447 The result is a list whose elements are the elements of all the arguments.
448 Each argument may be a list, vector or string.
449 The last argument is not copied, just used as the tail of the new list.
450 usage: (append &rest SEQUENCES) */)
451 (ptrdiff_t nargs, Lisp_Object *args)
453 return concat (nargs, args, Lisp_Cons, 1);
456 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
457 doc: /* Concatenate all the arguments and make the result a string.
458 The result is a string whose elements are the elements of all the arguments.
459 Each argument may be a string or a list or vector of characters (integers).
460 usage: (concat &rest SEQUENCES) */)
461 (ptrdiff_t nargs, Lisp_Object *args)
463 return concat (nargs, args, Lisp_String, 0);
466 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
467 doc: /* Concatenate all the arguments and make the result a vector.
468 The result is a vector whose elements are the elements of all the arguments.
469 Each argument may be a list, vector or string.
470 usage: (vconcat &rest SEQUENCES) */)
471 (ptrdiff_t nargs, Lisp_Object *args)
473 return concat (nargs, args, Lisp_Vectorlike, 0);
477 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
478 doc: /* Return a copy of a list, vector, string, char-table or record.
479 The elements of a list, vector or record are not copied; they are
480 shared with the original. */)
481 (Lisp_Object arg)
483 if (NILP (arg)) return arg;
485 if (RECORDP (arg))
487 return Frecord (PVSIZE (arg), XVECTOR (arg)->contents);
490 if (CHAR_TABLE_P (arg))
492 return copy_char_table (arg);
495 if (BOOL_VECTOR_P (arg))
497 EMACS_INT nbits = bool_vector_size (arg);
498 ptrdiff_t nbytes = bool_vector_bytes (nbits);
499 Lisp_Object val = make_uninit_bool_vector (nbits);
500 memcpy (bool_vector_data (val), bool_vector_data (arg), nbytes);
501 return val;
504 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
505 wrong_type_argument (Qsequencep, arg);
507 return concat (1, &arg, XTYPE (arg), 0);
510 /* This structure holds information of an argument of `concat' that is
511 a string and has text properties to be copied. */
512 struct textprop_rec
514 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
515 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
516 ptrdiff_t to; /* refer to VAL (the target string) */
519 static Lisp_Object
520 concat (ptrdiff_t nargs, Lisp_Object *args,
521 enum Lisp_Type target_type, bool last_special)
523 Lisp_Object val;
524 Lisp_Object tail;
525 Lisp_Object this;
526 ptrdiff_t toindex;
527 ptrdiff_t toindex_byte = 0;
528 EMACS_INT result_len;
529 EMACS_INT result_len_byte;
530 ptrdiff_t argnum;
531 Lisp_Object last_tail;
532 Lisp_Object prev;
533 bool some_multibyte;
534 /* When we make a multibyte string, we can't copy text properties
535 while concatenating each string because the length of resulting
536 string can't be decided until we finish the whole concatenation.
537 So, we record strings that have text properties to be copied
538 here, and copy the text properties after the concatenation. */
539 struct textprop_rec *textprops = NULL;
540 /* Number of elements in textprops. */
541 ptrdiff_t num_textprops = 0;
542 USE_SAFE_ALLOCA;
544 tail = Qnil;
546 /* In append, the last arg isn't treated like the others */
547 if (last_special && nargs > 0)
549 nargs--;
550 last_tail = args[nargs];
552 else
553 last_tail = Qnil;
555 /* Check each argument. */
556 for (argnum = 0; argnum < nargs; argnum++)
558 this = args[argnum];
559 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
560 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
561 wrong_type_argument (Qsequencep, this);
564 /* Compute total length in chars of arguments in RESULT_LEN.
565 If desired output is a string, also compute length in bytes
566 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
567 whether the result should be a multibyte string. */
568 result_len_byte = 0;
569 result_len = 0;
570 some_multibyte = 0;
571 for (argnum = 0; argnum < nargs; argnum++)
573 EMACS_INT len;
574 this = args[argnum];
575 len = XFASTINT (Flength (this));
576 if (target_type == Lisp_String)
578 /* We must count the number of bytes needed in the string
579 as well as the number of characters. */
580 ptrdiff_t i;
581 Lisp_Object ch;
582 int c;
583 ptrdiff_t this_len_byte;
585 if (VECTORP (this) || COMPILEDP (this))
586 for (i = 0; i < len; i++)
588 ch = AREF (this, i);
589 CHECK_CHARACTER (ch);
590 c = XFASTINT (ch);
591 this_len_byte = CHAR_BYTES (c);
592 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
593 string_overflow ();
594 result_len_byte += this_len_byte;
595 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
596 some_multibyte = 1;
598 else if (BOOL_VECTOR_P (this) && bool_vector_size (this) > 0)
599 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
600 else if (CONSP (this))
601 for (; CONSP (this); this = XCDR (this))
603 ch = XCAR (this);
604 CHECK_CHARACTER (ch);
605 c = XFASTINT (ch);
606 this_len_byte = CHAR_BYTES (c);
607 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
608 string_overflow ();
609 result_len_byte += this_len_byte;
610 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
611 some_multibyte = 1;
613 else if (STRINGP (this))
615 if (STRING_MULTIBYTE (this))
617 some_multibyte = 1;
618 this_len_byte = SBYTES (this);
620 else
621 this_len_byte = count_size_as_multibyte (SDATA (this),
622 SCHARS (this));
623 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
624 string_overflow ();
625 result_len_byte += this_len_byte;
629 result_len += len;
630 if (MOST_POSITIVE_FIXNUM < result_len)
631 memory_full (SIZE_MAX);
634 if (! some_multibyte)
635 result_len_byte = result_len;
637 /* Create the output object. */
638 if (target_type == Lisp_Cons)
639 val = Fmake_list (make_number (result_len), Qnil);
640 else if (target_type == Lisp_Vectorlike)
641 val = Fmake_vector (make_number (result_len), Qnil);
642 else if (some_multibyte)
643 val = make_uninit_multibyte_string (result_len, result_len_byte);
644 else
645 val = make_uninit_string (result_len);
647 /* In `append', if all but last arg are nil, return last arg. */
648 if (target_type == Lisp_Cons && EQ (val, Qnil))
649 return last_tail;
651 /* Copy the contents of the args into the result. */
652 if (CONSP (val))
653 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
654 else
655 toindex = 0, toindex_byte = 0;
657 prev = Qnil;
658 if (STRINGP (val))
659 SAFE_NALLOCA (textprops, 1, nargs);
661 for (argnum = 0; argnum < nargs; argnum++)
663 Lisp_Object thislen;
664 ptrdiff_t thisleni = 0;
665 register ptrdiff_t thisindex = 0;
666 register ptrdiff_t thisindex_byte = 0;
668 this = args[argnum];
669 if (!CONSP (this))
670 thislen = Flength (this), thisleni = XINT (thislen);
672 /* Between strings of the same kind, copy fast. */
673 if (STRINGP (this) && STRINGP (val)
674 && STRING_MULTIBYTE (this) == some_multibyte)
676 ptrdiff_t thislen_byte = SBYTES (this);
678 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
679 if (string_intervals (this))
681 textprops[num_textprops].argnum = argnum;
682 textprops[num_textprops].from = 0;
683 textprops[num_textprops++].to = toindex;
685 toindex_byte += thislen_byte;
686 toindex += thisleni;
688 /* Copy a single-byte string to a multibyte string. */
689 else if (STRINGP (this) && STRINGP (val))
691 if (string_intervals (this))
693 textprops[num_textprops].argnum = argnum;
694 textprops[num_textprops].from = 0;
695 textprops[num_textprops++].to = toindex;
697 toindex_byte += copy_text (SDATA (this),
698 SDATA (val) + toindex_byte,
699 SCHARS (this), 0, 1);
700 toindex += thisleni;
702 else
703 /* Copy element by element. */
704 while (1)
706 register Lisp_Object elt;
708 /* Fetch next element of `this' arg into `elt', or break if
709 `this' is exhausted. */
710 if (NILP (this)) break;
711 if (CONSP (this))
712 elt = XCAR (this), this = XCDR (this);
713 else if (thisindex >= thisleni)
714 break;
715 else if (STRINGP (this))
717 int c;
718 if (STRING_MULTIBYTE (this))
719 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
720 thisindex,
721 thisindex_byte);
722 else
724 c = SREF (this, thisindex); thisindex++;
725 if (some_multibyte && !ASCII_CHAR_P (c))
726 c = BYTE8_TO_CHAR (c);
728 XSETFASTINT (elt, c);
730 else if (BOOL_VECTOR_P (this))
732 elt = bool_vector_ref (this, thisindex);
733 thisindex++;
735 else
737 elt = AREF (this, thisindex);
738 thisindex++;
741 /* Store this element into the result. */
742 if (toindex < 0)
744 XSETCAR (tail, elt);
745 prev = tail;
746 tail = XCDR (tail);
748 else if (VECTORP (val))
750 ASET (val, toindex, elt);
751 toindex++;
753 else
755 int c;
756 CHECK_CHARACTER (elt);
757 c = XFASTINT (elt);
758 if (some_multibyte)
759 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
760 else
761 SSET (val, toindex_byte++, c);
762 toindex++;
766 if (!NILP (prev))
767 XSETCDR (prev, last_tail);
769 if (num_textprops > 0)
771 Lisp_Object props;
772 ptrdiff_t last_to_end = -1;
774 for (argnum = 0; argnum < num_textprops; argnum++)
776 this = args[textprops[argnum].argnum];
777 props = text_property_list (this,
778 make_number (0),
779 make_number (SCHARS (this)),
780 Qnil);
781 /* If successive arguments have properties, be sure that the
782 value of `composition' property be the copy. */
783 if (last_to_end == textprops[argnum].to)
784 make_composition_value_copy (props);
785 add_text_properties_from_list (val, props,
786 make_number (textprops[argnum].to));
787 last_to_end = textprops[argnum].to + SCHARS (this);
791 SAFE_FREE ();
792 return val;
795 static Lisp_Object string_char_byte_cache_string;
796 static ptrdiff_t string_char_byte_cache_charpos;
797 static ptrdiff_t string_char_byte_cache_bytepos;
799 void
800 clear_string_char_byte_cache (void)
802 string_char_byte_cache_string = Qnil;
805 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
807 ptrdiff_t
808 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
810 ptrdiff_t i_byte;
811 ptrdiff_t best_below, best_below_byte;
812 ptrdiff_t best_above, best_above_byte;
814 best_below = best_below_byte = 0;
815 best_above = SCHARS (string);
816 best_above_byte = SBYTES (string);
817 if (best_above == best_above_byte)
818 return char_index;
820 if (EQ (string, string_char_byte_cache_string))
822 if (string_char_byte_cache_charpos < char_index)
824 best_below = string_char_byte_cache_charpos;
825 best_below_byte = string_char_byte_cache_bytepos;
827 else
829 best_above = string_char_byte_cache_charpos;
830 best_above_byte = string_char_byte_cache_bytepos;
834 if (char_index - best_below < best_above - char_index)
836 unsigned char *p = SDATA (string) + best_below_byte;
838 while (best_below < char_index)
840 p += BYTES_BY_CHAR_HEAD (*p);
841 best_below++;
843 i_byte = p - SDATA (string);
845 else
847 unsigned char *p = SDATA (string) + best_above_byte;
849 while (best_above > char_index)
851 p--;
852 while (!CHAR_HEAD_P (*p)) p--;
853 best_above--;
855 i_byte = p - SDATA (string);
858 string_char_byte_cache_bytepos = i_byte;
859 string_char_byte_cache_charpos = char_index;
860 string_char_byte_cache_string = string;
862 return i_byte;
865 /* Return the character index corresponding to BYTE_INDEX in STRING. */
867 ptrdiff_t
868 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
870 ptrdiff_t i, i_byte;
871 ptrdiff_t best_below, best_below_byte;
872 ptrdiff_t best_above, best_above_byte;
874 best_below = best_below_byte = 0;
875 best_above = SCHARS (string);
876 best_above_byte = SBYTES (string);
877 if (best_above == best_above_byte)
878 return byte_index;
880 if (EQ (string, string_char_byte_cache_string))
882 if (string_char_byte_cache_bytepos < byte_index)
884 best_below = string_char_byte_cache_charpos;
885 best_below_byte = string_char_byte_cache_bytepos;
887 else
889 best_above = string_char_byte_cache_charpos;
890 best_above_byte = string_char_byte_cache_bytepos;
894 if (byte_index - best_below_byte < best_above_byte - byte_index)
896 unsigned char *p = SDATA (string) + best_below_byte;
897 unsigned char *pend = SDATA (string) + byte_index;
899 while (p < pend)
901 p += BYTES_BY_CHAR_HEAD (*p);
902 best_below++;
904 i = best_below;
905 i_byte = p - SDATA (string);
907 else
909 unsigned char *p = SDATA (string) + best_above_byte;
910 unsigned char *pbeg = SDATA (string) + byte_index;
912 while (p > pbeg)
914 p--;
915 while (!CHAR_HEAD_P (*p)) p--;
916 best_above--;
918 i = best_above;
919 i_byte = p - SDATA (string);
922 string_char_byte_cache_bytepos = i_byte;
923 string_char_byte_cache_charpos = i;
924 string_char_byte_cache_string = string;
926 return i;
929 /* Convert STRING to a multibyte string. */
931 static Lisp_Object
932 string_make_multibyte (Lisp_Object string)
934 unsigned char *buf;
935 ptrdiff_t nbytes;
936 Lisp_Object ret;
937 USE_SAFE_ALLOCA;
939 if (STRING_MULTIBYTE (string))
940 return string;
942 nbytes = count_size_as_multibyte (SDATA (string),
943 SCHARS (string));
944 /* If all the chars are ASCII, they won't need any more bytes
945 once converted. In that case, we can return STRING itself. */
946 if (nbytes == SBYTES (string))
947 return string;
949 buf = SAFE_ALLOCA (nbytes);
950 copy_text (SDATA (string), buf, SBYTES (string),
951 0, 1);
953 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
954 SAFE_FREE ();
956 return ret;
960 /* Convert STRING (if unibyte) to a multibyte string without changing
961 the number of characters. Characters 0200 trough 0237 are
962 converted to eight-bit characters. */
964 Lisp_Object
965 string_to_multibyte (Lisp_Object string)
967 unsigned char *buf;
968 ptrdiff_t nbytes;
969 Lisp_Object ret;
970 USE_SAFE_ALLOCA;
972 if (STRING_MULTIBYTE (string))
973 return string;
975 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
976 /* If all the chars are ASCII, they won't need any more bytes once
977 converted. */
978 if (nbytes == SBYTES (string))
979 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
981 buf = SAFE_ALLOCA (nbytes);
982 memcpy (buf, SDATA (string), SBYTES (string));
983 str_to_multibyte (buf, nbytes, SBYTES (string));
985 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
986 SAFE_FREE ();
988 return ret;
992 /* Convert STRING to a single-byte string. */
994 Lisp_Object
995 string_make_unibyte (Lisp_Object string)
997 ptrdiff_t nchars;
998 unsigned char *buf;
999 Lisp_Object ret;
1000 USE_SAFE_ALLOCA;
1002 if (! STRING_MULTIBYTE (string))
1003 return string;
1005 nchars = SCHARS (string);
1007 buf = SAFE_ALLOCA (nchars);
1008 copy_text (SDATA (string), buf, SBYTES (string),
1009 1, 0);
1011 ret = make_unibyte_string ((char *) buf, nchars);
1012 SAFE_FREE ();
1014 return ret;
1017 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1018 1, 1, 0,
1019 doc: /* Return the multibyte equivalent of STRING.
1020 If STRING is unibyte and contains non-ASCII characters, the function
1021 `unibyte-char-to-multibyte' is used to convert each unibyte character
1022 to a multibyte character. In this case, the returned string is a
1023 newly created string with no text properties. If STRING is multibyte
1024 or entirely ASCII, it is returned unchanged. In particular, when
1025 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1026 \(When the characters are all ASCII, Emacs primitives will treat the
1027 string the same way whether it is unibyte or multibyte.) */)
1028 (Lisp_Object string)
1030 CHECK_STRING (string);
1032 return string_make_multibyte (string);
1035 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1036 1, 1, 0,
1037 doc: /* Return the unibyte equivalent of STRING.
1038 Multibyte character codes are converted to unibyte according to
1039 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1040 If the lookup in the translation table fails, this function takes just
1041 the low 8 bits of each character. */)
1042 (Lisp_Object string)
1044 CHECK_STRING (string);
1046 return string_make_unibyte (string);
1049 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1050 1, 1, 0,
1051 doc: /* Return a unibyte string with the same individual bytes as STRING.
1052 If STRING is unibyte, the result is STRING itself.
1053 Otherwise it is a newly created string, with no text properties.
1054 If STRING is multibyte and contains a character of charset
1055 `eight-bit', it is converted to the corresponding single byte. */)
1056 (Lisp_Object string)
1058 CHECK_STRING (string);
1060 if (STRING_MULTIBYTE (string))
1062 unsigned char *str = (unsigned char *) xlispstrdup (string);
1063 ptrdiff_t bytes = str_as_unibyte (str, SBYTES (string));
1065 string = make_unibyte_string ((char *) str, bytes);
1066 xfree (str);
1068 return string;
1071 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1072 1, 1, 0,
1073 doc: /* Return a multibyte string with the same individual bytes as STRING.
1074 If STRING is multibyte, the result is STRING itself.
1075 Otherwise it is a newly created string, with no text properties.
1077 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1078 part of a correct utf-8 sequence), it is converted to the corresponding
1079 multibyte character of charset `eight-bit'.
1080 See also `string-to-multibyte'.
1082 Beware, this often doesn't really do what you think it does.
1083 It is similar to (decode-coding-string STRING \\='utf-8-emacs).
1084 If you're not sure, whether to use `string-as-multibyte' or
1085 `string-to-multibyte', use `string-to-multibyte'. */)
1086 (Lisp_Object string)
1088 CHECK_STRING (string);
1090 if (! STRING_MULTIBYTE (string))
1092 Lisp_Object new_string;
1093 ptrdiff_t nchars, nbytes;
1095 parse_str_as_multibyte (SDATA (string),
1096 SBYTES (string),
1097 &nchars, &nbytes);
1098 new_string = make_uninit_multibyte_string (nchars, nbytes);
1099 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1100 if (nbytes != SBYTES (string))
1101 str_as_multibyte (SDATA (new_string), nbytes,
1102 SBYTES (string), NULL);
1103 string = new_string;
1104 set_string_intervals (string, NULL);
1106 return string;
1109 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1110 1, 1, 0,
1111 doc: /* Return a multibyte string with the same individual chars as STRING.
1112 If STRING is multibyte, the result is STRING itself.
1113 Otherwise it is a newly created string, with no text properties.
1115 If STRING is unibyte and contains an 8-bit byte, it is converted to
1116 the corresponding multibyte character of charset `eight-bit'.
1118 This differs from `string-as-multibyte' by converting each byte of a correct
1119 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1120 correct sequence. */)
1121 (Lisp_Object string)
1123 CHECK_STRING (string);
1125 return string_to_multibyte (string);
1128 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1129 1, 1, 0,
1130 doc: /* Return a unibyte string with the same individual chars as STRING.
1131 If STRING is unibyte, the result is STRING itself.
1132 Otherwise it is a newly created string, with no text properties,
1133 where each `eight-bit' character is converted to the corresponding byte.
1134 If STRING contains a non-ASCII, non-`eight-bit' character,
1135 an error is signaled. */)
1136 (Lisp_Object string)
1138 CHECK_STRING (string);
1140 if (STRING_MULTIBYTE (string))
1142 ptrdiff_t chars = SCHARS (string);
1143 unsigned char *str = xmalloc (chars);
1144 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1146 if (converted < chars)
1147 error ("Can't convert the %"pD"dth character to unibyte", converted);
1148 string = make_unibyte_string ((char *) str, chars);
1149 xfree (str);
1151 return string;
1155 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1156 doc: /* Return a copy of ALIST.
1157 This is an alist which represents the same mapping from objects to objects,
1158 but does not share the alist structure with ALIST.
1159 The objects mapped (cars and cdrs of elements of the alist)
1160 are shared, however.
1161 Elements of ALIST that are not conses are also shared. */)
1162 (Lisp_Object alist)
1164 if (NILP (alist))
1165 return alist;
1166 alist = concat (1, &alist, Lisp_Cons, false);
1167 for (Lisp_Object tem = alist; !NILP (tem); tem = XCDR (tem))
1169 Lisp_Object car = XCAR (tem);
1170 if (CONSP (car))
1171 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1173 return alist;
1176 /* Check that ARRAY can have a valid subarray [FROM..TO),
1177 given that its size is SIZE.
1178 If FROM is nil, use 0; if TO is nil, use SIZE.
1179 Count negative values backwards from the end.
1180 Set *IFROM and *ITO to the two indexes used. */
1182 void
1183 validate_subarray (Lisp_Object array, Lisp_Object from, Lisp_Object to,
1184 ptrdiff_t size, ptrdiff_t *ifrom, ptrdiff_t *ito)
1186 EMACS_INT f, t;
1188 if (INTEGERP (from))
1190 f = XINT (from);
1191 if (f < 0)
1192 f += size;
1194 else if (NILP (from))
1195 f = 0;
1196 else
1197 wrong_type_argument (Qintegerp, from);
1199 if (INTEGERP (to))
1201 t = XINT (to);
1202 if (t < 0)
1203 t += size;
1205 else if (NILP (to))
1206 t = size;
1207 else
1208 wrong_type_argument (Qintegerp, to);
1210 if (! (0 <= f && f <= t && t <= size))
1211 args_out_of_range_3 (array, from, to);
1213 *ifrom = f;
1214 *ito = t;
1217 DEFUN ("substring", Fsubstring, Ssubstring, 1, 3, 0,
1218 doc: /* Return a new string whose contents are a substring of STRING.
1219 The returned string consists of the characters between index FROM
1220 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1221 zero-indexed: 0 means the first character of STRING. Negative values
1222 are counted from the end of STRING. If TO is nil, the substring runs
1223 to the end of STRING.
1225 The STRING argument may also be a vector. In that case, the return
1226 value is a new vector that contains the elements between index FROM
1227 \(inclusive) and index TO (exclusive) of that vector argument.
1229 With one argument, just copy STRING (with properties, if any). */)
1230 (Lisp_Object string, Lisp_Object from, Lisp_Object to)
1232 Lisp_Object res;
1233 ptrdiff_t size, ifrom, ito;
1235 size = CHECK_VECTOR_OR_STRING (string);
1236 validate_subarray (string, from, to, size, &ifrom, &ito);
1238 if (STRINGP (string))
1240 ptrdiff_t from_byte
1241 = !ifrom ? 0 : string_char_to_byte (string, ifrom);
1242 ptrdiff_t to_byte
1243 = ito == size ? SBYTES (string) : string_char_to_byte (string, ito);
1244 res = make_specified_string (SSDATA (string) + from_byte,
1245 ito - ifrom, to_byte - from_byte,
1246 STRING_MULTIBYTE (string));
1247 copy_text_properties (make_number (ifrom), make_number (ito),
1248 string, make_number (0), res, Qnil);
1250 else
1251 res = Fvector (ito - ifrom, aref_addr (string, ifrom));
1253 return res;
1257 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1258 doc: /* Return a substring of STRING, without text properties.
1259 It starts at index FROM and ends before TO.
1260 TO may be nil or omitted; then the substring runs to the end of STRING.
1261 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1262 If FROM or TO is negative, it counts from the end.
1264 With one argument, just copy STRING without its properties. */)
1265 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1267 ptrdiff_t from_char, to_char, from_byte, to_byte, size;
1269 CHECK_STRING (string);
1271 size = SCHARS (string);
1272 validate_subarray (string, from, to, size, &from_char, &to_char);
1274 from_byte = !from_char ? 0 : string_char_to_byte (string, from_char);
1275 to_byte =
1276 to_char == size ? SBYTES (string) : string_char_to_byte (string, to_char);
1277 return make_specified_string (SSDATA (string) + from_byte,
1278 to_char - from_char, to_byte - from_byte,
1279 STRING_MULTIBYTE (string));
1282 /* Extract a substring of STRING, giving start and end positions
1283 both in characters and in bytes. */
1285 Lisp_Object
1286 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1287 ptrdiff_t to, ptrdiff_t to_byte)
1289 Lisp_Object res;
1290 ptrdiff_t size = CHECK_VECTOR_OR_STRING (string);
1292 if (!(0 <= from && from <= to && to <= size))
1293 args_out_of_range_3 (string, make_number (from), make_number (to));
1295 if (STRINGP (string))
1297 res = make_specified_string (SSDATA (string) + from_byte,
1298 to - from, to_byte - from_byte,
1299 STRING_MULTIBYTE (string));
1300 copy_text_properties (make_number (from), make_number (to),
1301 string, make_number (0), res, Qnil);
1303 else
1304 res = Fvector (to - from, aref_addr (string, from));
1306 return res;
1309 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1310 doc: /* Take cdr N times on LIST, return the result. */)
1311 (Lisp_Object n, Lisp_Object list)
1313 CHECK_NUMBER (n);
1314 Lisp_Object tail = list;
1315 for (EMACS_INT num = XINT (n); 0 < num; num--)
1317 if (! CONSP (tail))
1319 CHECK_LIST_END (tail, list);
1320 return Qnil;
1322 tail = XCDR (tail);
1323 rarely_quit (num);
1325 return tail;
1328 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1329 doc: /* Return the Nth element of LIST.
1330 N counts from zero. If LIST is not that long, nil is returned. */)
1331 (Lisp_Object n, Lisp_Object list)
1333 return Fcar (Fnthcdr (n, list));
1336 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1337 doc: /* Return element of SEQUENCE at index N. */)
1338 (register Lisp_Object sequence, Lisp_Object n)
1340 CHECK_NUMBER (n);
1341 if (CONSP (sequence) || NILP (sequence))
1342 return Fcar (Fnthcdr (n, sequence));
1344 /* Faref signals a "not array" error, so check here. */
1345 CHECK_ARRAY (sequence, Qsequencep);
1346 return Faref (sequence, n);
1349 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1350 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1351 The value is actually the tail of LIST whose car is ELT. */)
1352 (Lisp_Object elt, Lisp_Object list)
1354 Lisp_Object tail = list;
1355 FOR_EACH_TAIL (tail)
1356 if (! NILP (Fequal (elt, XCAR (tail))))
1357 return tail;
1358 CHECK_LIST_END (tail, list);
1359 return Qnil;
1362 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1363 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1364 The value is actually the tail of LIST whose car is ELT. */)
1365 (Lisp_Object elt, Lisp_Object list)
1367 Lisp_Object tail = list;
1368 FOR_EACH_TAIL (tail)
1369 if (EQ (XCAR (tail), elt))
1370 return tail;
1371 CHECK_LIST_END (tail, list);
1372 return Qnil;
1375 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1376 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1377 The value is actually the tail of LIST whose car is ELT. */)
1378 (Lisp_Object elt, Lisp_Object list)
1380 if (!FLOATP (elt))
1381 return Fmemq (elt, list);
1383 Lisp_Object tail = list;
1384 FOR_EACH_TAIL (tail)
1386 Lisp_Object tem = XCAR (tail);
1387 if (FLOATP (tem) && equal_no_quit (elt, tem))
1388 return tail;
1390 CHECK_LIST_END (tail, list);
1391 return Qnil;
1394 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1395 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1396 The value is actually the first element of LIST whose car is KEY.
1397 Elements of LIST that are not conses are ignored. */)
1398 (Lisp_Object key, Lisp_Object list)
1400 Lisp_Object tail = list;
1401 FOR_EACH_TAIL (tail)
1402 if (CONSP (XCAR (tail)) && EQ (XCAR (XCAR (tail)), key))
1403 return XCAR (tail);
1404 CHECK_LIST_END (tail, list);
1405 return Qnil;
1408 /* Like Fassq but never report an error and do not allow quits.
1409 Use only on objects known to be non-circular lists. */
1411 Lisp_Object
1412 assq_no_quit (Lisp_Object key, Lisp_Object list)
1414 for (; ! NILP (list); list = XCDR (list))
1415 if (CONSP (XCAR (list)) && EQ (XCAR (XCAR (list)), key))
1416 return XCAR (list);
1417 return Qnil;
1420 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1421 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1422 The value is actually the first element of LIST whose car equals KEY. */)
1423 (Lisp_Object key, Lisp_Object list)
1425 Lisp_Object tail = list;
1426 FOR_EACH_TAIL (tail)
1428 Lisp_Object car = XCAR (tail);
1429 if (CONSP (car)
1430 && (EQ (XCAR (car), key) || !NILP (Fequal (XCAR (car), key))))
1431 return car;
1433 CHECK_LIST_END (tail, list);
1434 return Qnil;
1437 /* Like Fassoc but never report an error and do not allow quits.
1438 Use only on keys and lists known to be non-circular, and on keys
1439 that are not too deep and are not window configurations. */
1441 Lisp_Object
1442 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1444 for (; ! NILP (list); list = XCDR (list))
1446 Lisp_Object car = XCAR (list);
1447 if (CONSP (car)
1448 && (EQ (XCAR (car), key) || equal_no_quit (XCAR (car), key)))
1449 return car;
1451 return Qnil;
1454 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1455 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1456 The value is actually the first element of LIST whose cdr is KEY. */)
1457 (Lisp_Object key, Lisp_Object list)
1459 Lisp_Object tail = list;
1460 FOR_EACH_TAIL (tail)
1461 if (CONSP (XCAR (tail)) && EQ (XCDR (XCAR (tail)), key))
1462 return XCAR (tail);
1463 CHECK_LIST_END (tail, list);
1464 return Qnil;
1467 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1468 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1469 The value is actually the first element of LIST whose cdr equals KEY. */)
1470 (Lisp_Object key, Lisp_Object list)
1472 Lisp_Object tail = list;
1473 FOR_EACH_TAIL (tail)
1475 Lisp_Object car = XCAR (tail);
1476 if (CONSP (car)
1477 && (EQ (XCDR (car), key) || !NILP (Fequal (XCDR (car), key))))
1478 return car;
1480 CHECK_LIST_END (tail, list);
1481 return Qnil;
1484 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1485 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1486 More precisely, this function skips any members `eq' to ELT at the
1487 front of LIST, then removes members `eq' to ELT from the remaining
1488 sublist by modifying its list structure, then returns the resulting
1489 list.
1491 Write `(setq foo (delq element foo))' to be sure of correctly changing
1492 the value of a list `foo'. See also `remq', which does not modify the
1493 argument. */)
1494 (Lisp_Object elt, Lisp_Object list)
1496 Lisp_Object prev = Qnil, tail = list;
1498 FOR_EACH_TAIL (tail)
1500 Lisp_Object tem = XCAR (tail);
1501 if (EQ (elt, tem))
1503 if (NILP (prev))
1504 list = XCDR (tail);
1505 else
1506 Fsetcdr (prev, XCDR (tail));
1508 else
1509 prev = tail;
1511 CHECK_LIST_END (tail, list);
1512 return list;
1515 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1516 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1517 SEQ must be a sequence (i.e. a list, a vector, or a string).
1518 The return value is a sequence of the same type.
1520 If SEQ is a list, this behaves like `delq', except that it compares
1521 with `equal' instead of `eq'. In particular, it may remove elements
1522 by altering the list structure.
1524 If SEQ is not a list, deletion is never performed destructively;
1525 instead this function creates and returns a new vector or string.
1527 Write `(setq foo (delete element foo))' to be sure of correctly
1528 changing the value of a sequence `foo'. */)
1529 (Lisp_Object elt, Lisp_Object seq)
1531 if (VECTORP (seq))
1533 ptrdiff_t i, n;
1535 for (i = n = 0; i < ASIZE (seq); ++i)
1536 if (NILP (Fequal (AREF (seq, i), elt)))
1537 ++n;
1539 if (n != ASIZE (seq))
1541 struct Lisp_Vector *p = allocate_vector (n);
1543 for (i = n = 0; i < ASIZE (seq); ++i)
1544 if (NILP (Fequal (AREF (seq, i), elt)))
1545 p->contents[n++] = AREF (seq, i);
1547 XSETVECTOR (seq, p);
1550 else if (STRINGP (seq))
1552 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1553 int c;
1555 for (i = nchars = nbytes = ibyte = 0;
1556 i < SCHARS (seq);
1557 ++i, ibyte += cbytes)
1559 if (STRING_MULTIBYTE (seq))
1561 c = STRING_CHAR (SDATA (seq) + ibyte);
1562 cbytes = CHAR_BYTES (c);
1564 else
1566 c = SREF (seq, i);
1567 cbytes = 1;
1570 if (!INTEGERP (elt) || c != XINT (elt))
1572 ++nchars;
1573 nbytes += cbytes;
1577 if (nchars != SCHARS (seq))
1579 Lisp_Object tem;
1581 tem = make_uninit_multibyte_string (nchars, nbytes);
1582 if (!STRING_MULTIBYTE (seq))
1583 STRING_SET_UNIBYTE (tem);
1585 for (i = nchars = nbytes = ibyte = 0;
1586 i < SCHARS (seq);
1587 ++i, ibyte += cbytes)
1589 if (STRING_MULTIBYTE (seq))
1591 c = STRING_CHAR (SDATA (seq) + ibyte);
1592 cbytes = CHAR_BYTES (c);
1594 else
1596 c = SREF (seq, i);
1597 cbytes = 1;
1600 if (!INTEGERP (elt) || c != XINT (elt))
1602 unsigned char *from = SDATA (seq) + ibyte;
1603 unsigned char *to = SDATA (tem) + nbytes;
1604 ptrdiff_t n;
1606 ++nchars;
1607 nbytes += cbytes;
1609 for (n = cbytes; n--; )
1610 *to++ = *from++;
1614 seq = tem;
1617 else
1619 Lisp_Object prev = Qnil, tail = seq;
1621 FOR_EACH_TAIL (tail)
1623 if (!NILP (Fequal (elt, XCAR (tail))))
1625 if (NILP (prev))
1626 seq = XCDR (tail);
1627 else
1628 Fsetcdr (prev, XCDR (tail));
1630 else
1631 prev = tail;
1633 CHECK_LIST_END (tail, seq);
1636 return seq;
1639 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1640 doc: /* Reverse order of items in a list, vector or string SEQ.
1641 If SEQ is a list, it should be nil-terminated.
1642 This function may destructively modify SEQ to produce the value. */)
1643 (Lisp_Object seq)
1645 if (NILP (seq))
1646 return seq;
1647 else if (STRINGP (seq))
1648 return Freverse (seq);
1649 else if (CONSP (seq))
1651 Lisp_Object prev, tail, next;
1653 for (prev = Qnil, tail = seq; CONSP (tail); tail = next)
1655 next = XCDR (tail);
1656 /* If SEQ contains a cycle, attempting to reverse it
1657 in-place will inevitably come back to SEQ. */
1658 if (EQ (next, seq))
1659 circular_list (seq);
1660 Fsetcdr (tail, prev);
1661 prev = tail;
1663 CHECK_LIST_END (tail, seq);
1664 seq = prev;
1666 else if (VECTORP (seq))
1668 ptrdiff_t i, size = ASIZE (seq);
1670 for (i = 0; i < size / 2; i++)
1672 Lisp_Object tem = AREF (seq, i);
1673 ASET (seq, i, AREF (seq, size - i - 1));
1674 ASET (seq, size - i - 1, tem);
1677 else if (BOOL_VECTOR_P (seq))
1679 ptrdiff_t i, size = bool_vector_size (seq);
1681 for (i = 0; i < size / 2; i++)
1683 bool tem = bool_vector_bitref (seq, i);
1684 bool_vector_set (seq, i, bool_vector_bitref (seq, size - i - 1));
1685 bool_vector_set (seq, size - i - 1, tem);
1688 else
1689 wrong_type_argument (Qarrayp, seq);
1690 return seq;
1693 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1694 doc: /* Return the reversed copy of list, vector, or string SEQ.
1695 See also the function `nreverse', which is used more often. */)
1696 (Lisp_Object seq)
1698 Lisp_Object new;
1700 if (NILP (seq))
1701 return Qnil;
1702 else if (CONSP (seq))
1704 new = Qnil;
1705 FOR_EACH_TAIL (seq)
1706 new = Fcons (XCAR (seq), new);
1707 CHECK_LIST_END (seq, seq);
1709 else if (VECTORP (seq))
1711 ptrdiff_t i, size = ASIZE (seq);
1713 new = make_uninit_vector (size);
1714 for (i = 0; i < size; i++)
1715 ASET (new, i, AREF (seq, size - i - 1));
1717 else if (BOOL_VECTOR_P (seq))
1719 ptrdiff_t i;
1720 EMACS_INT nbits = bool_vector_size (seq);
1722 new = make_uninit_bool_vector (nbits);
1723 for (i = 0; i < nbits; i++)
1724 bool_vector_set (new, i, bool_vector_bitref (seq, nbits - i - 1));
1726 else if (STRINGP (seq))
1728 ptrdiff_t size = SCHARS (seq), bytes = SBYTES (seq);
1730 if (size == bytes)
1732 ptrdiff_t i;
1734 new = make_uninit_string (size);
1735 for (i = 0; i < size; i++)
1736 SSET (new, i, SREF (seq, size - i - 1));
1738 else
1740 unsigned char *p, *q;
1742 new = make_uninit_multibyte_string (size, bytes);
1743 p = SDATA (seq), q = SDATA (new) + bytes;
1744 while (q > SDATA (new))
1746 int ch, len;
1748 ch = STRING_CHAR_AND_LENGTH (p, len);
1749 p += len, q -= len;
1750 CHAR_STRING (ch, q);
1754 else
1755 wrong_type_argument (Qsequencep, seq);
1756 return new;
1759 /* Sort LIST using PREDICATE, preserving original order of elements
1760 considered as equal. */
1762 static Lisp_Object
1763 sort_list (Lisp_Object list, Lisp_Object predicate)
1765 Lisp_Object front, back;
1766 Lisp_Object len, tem;
1767 EMACS_INT length;
1769 front = list;
1770 len = Flength (list);
1771 length = XINT (len);
1772 if (length < 2)
1773 return list;
1775 XSETINT (len, (length / 2) - 1);
1776 tem = Fnthcdr (len, list);
1777 back = Fcdr (tem);
1778 Fsetcdr (tem, Qnil);
1780 front = Fsort (front, predicate);
1781 back = Fsort (back, predicate);
1782 return merge (front, back, predicate);
1785 /* Using PRED to compare, return whether A and B are in order.
1786 Compare stably when A appeared before B in the input. */
1787 static bool
1788 inorder (Lisp_Object pred, Lisp_Object a, Lisp_Object b)
1790 return NILP (call2 (pred, b, a));
1793 /* Using PRED to compare, merge from ALEN-length A and BLEN-length B
1794 into DEST. Argument arrays must be nonempty and must not overlap,
1795 except that B might be the last part of DEST. */
1796 static void
1797 merge_vectors (Lisp_Object pred,
1798 ptrdiff_t alen, Lisp_Object const a[restrict VLA_ELEMS (alen)],
1799 ptrdiff_t blen, Lisp_Object const b[VLA_ELEMS (blen)],
1800 Lisp_Object dest[VLA_ELEMS (alen + blen)])
1802 eassume (0 < alen && 0 < blen);
1803 Lisp_Object const *alim = a + alen;
1804 Lisp_Object const *blim = b + blen;
1806 while (true)
1808 if (inorder (pred, a[0], b[0]))
1810 *dest++ = *a++;
1811 if (a == alim)
1813 if (dest != b)
1814 memcpy (dest, b, (blim - b) * sizeof *dest);
1815 return;
1818 else
1820 *dest++ = *b++;
1821 if (b == blim)
1823 memcpy (dest, a, (alim - a) * sizeof *dest);
1824 return;
1830 /* Using PRED to compare, sort LEN-length VEC in place, using TMP for
1831 temporary storage. LEN must be at least 2. */
1832 static void
1833 sort_vector_inplace (Lisp_Object pred, ptrdiff_t len,
1834 Lisp_Object vec[restrict VLA_ELEMS (len)],
1835 Lisp_Object tmp[restrict VLA_ELEMS (len >> 1)])
1837 eassume (2 <= len);
1838 ptrdiff_t halflen = len >> 1;
1839 sort_vector_copy (pred, halflen, vec, tmp);
1840 if (1 < len - halflen)
1841 sort_vector_inplace (pred, len - halflen, vec + halflen, vec);
1842 merge_vectors (pred, halflen, tmp, len - halflen, vec + halflen, vec);
1845 /* Using PRED to compare, sort from LEN-length SRC into DST.
1846 Len must be positive. */
1847 static void
1848 sort_vector_copy (Lisp_Object pred, ptrdiff_t len,
1849 Lisp_Object src[restrict VLA_ELEMS (len)],
1850 Lisp_Object dest[restrict VLA_ELEMS (len)])
1852 eassume (0 < len);
1853 ptrdiff_t halflen = len >> 1;
1854 if (halflen < 1)
1855 dest[0] = src[0];
1856 else
1858 if (1 < halflen)
1859 sort_vector_inplace (pred, halflen, src, dest);
1860 if (1 < len - halflen)
1861 sort_vector_inplace (pred, len - halflen, src + halflen, dest);
1862 merge_vectors (pred, halflen, src, len - halflen, src + halflen, dest);
1866 /* Sort VECTOR in place using PREDICATE, preserving original order of
1867 elements considered as equal. */
1869 static void
1870 sort_vector (Lisp_Object vector, Lisp_Object predicate)
1872 ptrdiff_t len = ASIZE (vector);
1873 if (len < 2)
1874 return;
1875 ptrdiff_t halflen = len >> 1;
1876 Lisp_Object *tmp;
1877 USE_SAFE_ALLOCA;
1878 SAFE_ALLOCA_LISP (tmp, halflen);
1879 for (ptrdiff_t i = 0; i < halflen; i++)
1880 tmp[i] = make_number (0);
1881 sort_vector_inplace (predicate, len, XVECTOR (vector)->contents, tmp);
1882 SAFE_FREE ();
1885 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1886 doc: /* Sort SEQ, stably, comparing elements using PREDICATE.
1887 Returns the sorted sequence. SEQ should be a list or vector. SEQ is
1888 modified by side effects. PREDICATE is called with two elements of
1889 SEQ, and should return non-nil if the first element should sort before
1890 the second. */)
1891 (Lisp_Object seq, Lisp_Object predicate)
1893 if (CONSP (seq))
1894 seq = sort_list (seq, predicate);
1895 else if (VECTORP (seq))
1896 sort_vector (seq, predicate);
1897 else if (!NILP (seq))
1898 wrong_type_argument (Qsequencep, seq);
1899 return seq;
1902 Lisp_Object
1903 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1905 Lisp_Object l1 = org_l1;
1906 Lisp_Object l2 = org_l2;
1907 Lisp_Object tail = Qnil;
1908 Lisp_Object value = Qnil;
1910 while (1)
1912 if (NILP (l1))
1914 if (NILP (tail))
1915 return l2;
1916 Fsetcdr (tail, l2);
1917 return value;
1919 if (NILP (l2))
1921 if (NILP (tail))
1922 return l1;
1923 Fsetcdr (tail, l1);
1924 return value;
1927 Lisp_Object tem;
1928 if (inorder (pred, Fcar (l1), Fcar (l2)))
1930 tem = l1;
1931 l1 = Fcdr (l1);
1932 org_l1 = l1;
1934 else
1936 tem = l2;
1937 l2 = Fcdr (l2);
1938 org_l2 = l2;
1940 if (NILP (tail))
1941 value = tem;
1942 else
1943 Fsetcdr (tail, tem);
1944 tail = tem;
1949 /* This does not check for quits. That is safe since it must terminate. */
1951 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1952 doc: /* Extract a value from a property list.
1953 PLIST is a property list, which is a list of the form
1954 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1955 corresponding to the given PROP, or nil if PROP is not one of the
1956 properties on the list. This function never signals an error. */)
1957 (Lisp_Object plist, Lisp_Object prop)
1959 Lisp_Object tail = plist;
1960 FOR_EACH_TAIL_SAFE (tail)
1962 if (! CONSP (XCDR (tail)))
1963 break;
1964 if (EQ (prop, XCAR (tail)))
1965 return XCAR (XCDR (tail));
1966 tail = XCDR (tail);
1967 if (EQ (tail, li.tortoise))
1968 break;
1971 return Qnil;
1974 DEFUN ("get", Fget, Sget, 2, 2, 0,
1975 doc: /* Return the value of SYMBOL's PROPNAME property.
1976 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1977 (Lisp_Object symbol, Lisp_Object propname)
1979 CHECK_SYMBOL (symbol);
1980 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1983 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1984 doc: /* Change value in PLIST of PROP to VAL.
1985 PLIST is a property list, which is a list of the form
1986 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1987 If PROP is already a property on the list, its value is set to VAL,
1988 otherwise the new PROP VAL pair is added. The new plist is returned;
1989 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1990 The PLIST is modified by side effects. */)
1991 (Lisp_Object plist, Lisp_Object prop, Lisp_Object val)
1993 Lisp_Object prev = Qnil, tail = plist;
1994 FOR_EACH_TAIL (tail)
1996 if (! CONSP (XCDR (tail)))
1997 break;
1999 if (EQ (prop, XCAR (tail)))
2001 Fsetcar (XCDR (tail), val);
2002 return plist;
2005 prev = tail;
2006 tail = XCDR (tail);
2007 if (EQ (tail, li.tortoise))
2008 circular_list (plist);
2010 CHECK_LIST_END (tail, plist);
2011 Lisp_Object newcell
2012 = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
2013 if (NILP (prev))
2014 return newcell;
2015 Fsetcdr (XCDR (prev), newcell);
2016 return plist;
2019 DEFUN ("put", Fput, Sput, 3, 3, 0,
2020 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2021 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2022 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
2024 CHECK_SYMBOL (symbol);
2025 set_symbol_plist
2026 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
2027 return value;
2030 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2031 doc: /* Extract a value from a property list, comparing with `equal'.
2032 PLIST is a property list, which is a list of the form
2033 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2034 corresponding to the given PROP, or nil if PROP is not
2035 one of the properties on the list. */)
2036 (Lisp_Object plist, Lisp_Object prop)
2038 Lisp_Object tail = plist;
2039 FOR_EACH_TAIL (tail)
2041 if (! CONSP (XCDR (tail)))
2042 break;
2043 if (! NILP (Fequal (prop, XCAR (tail))))
2044 return XCAR (XCDR (tail));
2045 tail = XCDR (tail);
2046 if (EQ (tail, li.tortoise))
2047 circular_list (plist);
2050 CHECK_LIST_END (tail, plist);
2052 return Qnil;
2055 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2056 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2057 PLIST is a property list, which is a list of the form
2058 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2059 If PROP is already a property on the list, its value is set to VAL,
2060 otherwise the new PROP VAL pair is added. The new plist is returned;
2061 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2062 The PLIST is modified by side effects. */)
2063 (Lisp_Object plist, Lisp_Object prop, Lisp_Object val)
2065 Lisp_Object prev = Qnil, tail = plist;
2066 FOR_EACH_TAIL (tail)
2068 if (! CONSP (XCDR (tail)))
2069 break;
2071 if (! NILP (Fequal (prop, XCAR (tail))))
2073 Fsetcar (XCDR (tail), val);
2074 return plist;
2077 prev = tail;
2078 tail = XCDR (tail);
2079 if (EQ (tail, li.tortoise))
2080 circular_list (plist);
2082 CHECK_LIST_END (tail, plist);
2083 Lisp_Object newcell = list2 (prop, val);
2084 if (NILP (prev))
2085 return newcell;
2086 Fsetcdr (XCDR (prev), newcell);
2087 return plist;
2090 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2091 doc: /* Return t if the two args are the same Lisp object.
2092 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2093 (Lisp_Object obj1, Lisp_Object obj2)
2095 if (FLOATP (obj1))
2096 return equal_no_quit (obj1, obj2) ? Qt : Qnil;
2097 else
2098 return EQ (obj1, obj2) ? Qt : Qnil;
2101 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2102 doc: /* Return t if two Lisp objects have similar structure and contents.
2103 They must have the same data type.
2104 Conses are compared by comparing the cars and the cdrs.
2105 Vectors and strings are compared element by element.
2106 Numbers are compared by value, but integers cannot equal floats.
2107 (Use `=' if you want integers and floats to be able to be equal.)
2108 Symbols must match exactly. */)
2109 (Lisp_Object o1, Lisp_Object o2)
2111 return internal_equal (o1, o2, EQUAL_PLAIN, 0, Qnil) ? Qt : Qnil;
2114 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2115 doc: /* Return t if two Lisp objects have similar structure and contents.
2116 This is like `equal' except that it compares the text properties
2117 of strings. (`equal' ignores text properties.) */)
2118 (Lisp_Object o1, Lisp_Object o2)
2120 return (internal_equal (o1, o2, EQUAL_INCLUDING_PROPERTIES, 0, Qnil)
2121 ? Qt : Qnil);
2124 /* Return true if O1 and O2 are equal. Do not quit or check for cycles.
2125 Use this only on arguments that are cycle-free and not too large and
2126 are not window configurations. */
2128 bool
2129 equal_no_quit (Lisp_Object o1, Lisp_Object o2)
2131 return internal_equal (o1, o2, EQUAL_NO_QUIT, 0, Qnil);
2134 /* Return true if O1 and O2 are equal. EQUAL_KIND specifies what kind
2135 of equality test to use: if it is EQUAL_NO_QUIT, do not check for
2136 cycles or large arguments or quits; if EQUAL_PLAIN, do ordinary
2137 Lisp equality; and if EQUAL_INCLUDING_PROPERTIES, do
2138 equal-including-properties.
2140 If DEPTH is the current depth of recursion; signal an error if it
2141 gets too deep. HT is a hash table used to detect cycles; if nil,
2142 it has not been allocated yet. But ignore the last two arguments
2143 if EQUAL_KIND == EQUAL_NO_QUIT. */
2145 static bool
2146 internal_equal (Lisp_Object o1, Lisp_Object o2, enum equal_kind equal_kind,
2147 int depth, Lisp_Object ht)
2149 tail_recurse:
2150 if (depth > 10)
2152 eassert (equal_kind != EQUAL_NO_QUIT);
2153 if (depth > 200)
2154 error ("Stack overflow in equal");
2155 if (NILP (ht))
2156 ht = CALLN (Fmake_hash_table, QCtest, Qeq);
2157 switch (XTYPE (o1))
2159 case Lisp_Cons: case Lisp_Misc: case Lisp_Vectorlike:
2161 struct Lisp_Hash_Table *h = XHASH_TABLE (ht);
2162 EMACS_UINT hash;
2163 ptrdiff_t i = hash_lookup (h, o1, &hash);
2164 if (i >= 0)
2165 { /* `o1' was seen already. */
2166 Lisp_Object o2s = HASH_VALUE (h, i);
2167 if (!NILP (Fmemq (o2, o2s)))
2168 return true;
2169 else
2170 set_hash_value_slot (h, i, Fcons (o2, o2s));
2172 else
2173 hash_put (h, o1, Fcons (o2, Qnil), hash);
2175 default: ;
2179 if (EQ (o1, o2))
2180 return true;
2181 if (XTYPE (o1) != XTYPE (o2))
2182 return false;
2184 switch (XTYPE (o1))
2186 case Lisp_Float:
2188 double d1 = XFLOAT_DATA (o1);
2189 double d2 = XFLOAT_DATA (o2);
2190 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2191 though they are not =. */
2192 return d1 == d2 || (d1 != d1 && d2 != d2);
2195 case Lisp_Cons:
2196 if (equal_kind == EQUAL_NO_QUIT)
2197 for (; CONSP (o1); o1 = XCDR (o1))
2199 if (! CONSP (o2))
2200 return false;
2201 if (! equal_no_quit (XCAR (o1), XCAR (o2)))
2202 return false;
2203 o2 = XCDR (o2);
2204 if (EQ (XCDR (o1), o2))
2205 return true;
2207 else
2208 FOR_EACH_TAIL (o1)
2210 if (! CONSP (o2))
2211 return false;
2212 if (! internal_equal (XCAR (o1), XCAR (o2),
2213 equal_kind, depth + 1, ht))
2214 return false;
2215 o2 = XCDR (o2);
2216 if (EQ (XCDR (o1), o2))
2217 return true;
2219 depth++;
2220 goto tail_recurse;
2222 case Lisp_Misc:
2223 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2224 return false;
2225 if (OVERLAYP (o1))
2227 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2228 equal_kind, depth + 1, ht)
2229 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2230 equal_kind, depth + 1, ht))
2231 return false;
2232 o1 = XOVERLAY (o1)->plist;
2233 o2 = XOVERLAY (o2)->plist;
2234 depth++;
2235 goto tail_recurse;
2237 if (MARKERP (o1))
2239 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2240 && (XMARKER (o1)->buffer == 0
2241 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2243 break;
2245 case Lisp_Vectorlike:
2247 register int i;
2248 ptrdiff_t size = ASIZE (o1);
2249 /* Pseudovectors have the type encoded in the size field, so this test
2250 actually checks that the objects have the same type as well as the
2251 same size. */
2252 if (ASIZE (o2) != size)
2253 return false;
2254 /* Boolvectors are compared much like strings. */
2255 if (BOOL_VECTOR_P (o1))
2257 EMACS_INT size = bool_vector_size (o1);
2258 if (size != bool_vector_size (o2))
2259 return false;
2260 if (memcmp (bool_vector_data (o1), bool_vector_data (o2),
2261 bool_vector_bytes (size)))
2262 return false;
2263 return true;
2265 if (WINDOW_CONFIGURATIONP (o1))
2267 eassert (equal_kind != EQUAL_NO_QUIT);
2268 return compare_window_configurations (o1, o2, false);
2271 /* Aside from them, only true vectors, char-tables, compiled
2272 functions, and fonts (font-spec, font-entity, font-object)
2273 are sensible to compare, so eliminate the others now. */
2274 if (size & PSEUDOVECTOR_FLAG)
2276 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2277 < PVEC_COMPILED)
2278 return false;
2279 size &= PSEUDOVECTOR_SIZE_MASK;
2281 for (i = 0; i < size; i++)
2283 Lisp_Object v1, v2;
2284 v1 = AREF (o1, i);
2285 v2 = AREF (o2, i);
2286 if (!internal_equal (v1, v2, equal_kind, depth + 1, ht))
2287 return false;
2289 return true;
2291 break;
2293 case Lisp_String:
2294 if (SCHARS (o1) != SCHARS (o2))
2295 return false;
2296 if (SBYTES (o1) != SBYTES (o2))
2297 return false;
2298 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2299 return false;
2300 if (equal_kind == EQUAL_INCLUDING_PROPERTIES
2301 && !compare_string_intervals (o1, o2))
2302 return false;
2303 return true;
2305 default:
2306 break;
2309 return false;
2313 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2314 doc: /* Store each element of ARRAY with ITEM.
2315 ARRAY is a vector, string, char-table, or bool-vector. */)
2316 (Lisp_Object array, Lisp_Object item)
2318 register ptrdiff_t size, idx;
2320 if (VECTORP (array))
2321 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2322 ASET (array, idx, item);
2323 else if (CHAR_TABLE_P (array))
2325 int i;
2327 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2328 set_char_table_contents (array, i, item);
2329 set_char_table_defalt (array, item);
2331 else if (STRINGP (array))
2333 register unsigned char *p = SDATA (array);
2334 int charval;
2335 CHECK_CHARACTER (item);
2336 charval = XFASTINT (item);
2337 size = SCHARS (array);
2338 if (STRING_MULTIBYTE (array))
2340 unsigned char str[MAX_MULTIBYTE_LENGTH];
2341 int len = CHAR_STRING (charval, str);
2342 ptrdiff_t size_byte = SBYTES (array);
2343 ptrdiff_t product;
2345 if (INT_MULTIPLY_WRAPV (size, len, &product) || product != size_byte)
2346 error ("Attempt to change byte length of a string");
2347 for (idx = 0; idx < size_byte; idx++)
2348 *p++ = str[idx % len];
2350 else
2351 for (idx = 0; idx < size; idx++)
2352 p[idx] = charval;
2354 else if (BOOL_VECTOR_P (array))
2355 return bool_vector_fill (array, item);
2356 else
2357 wrong_type_argument (Qarrayp, array);
2358 return array;
2361 DEFUN ("clear-string", Fclear_string, Sclear_string,
2362 1, 1, 0,
2363 doc: /* Clear the contents of STRING.
2364 This makes STRING unibyte and may change its length. */)
2365 (Lisp_Object string)
2367 ptrdiff_t len;
2368 CHECK_STRING (string);
2369 len = SBYTES (string);
2370 memset (SDATA (string), 0, len);
2371 STRING_SET_CHARS (string, len);
2372 STRING_SET_UNIBYTE (string);
2373 return Qnil;
2376 /* ARGSUSED */
2377 Lisp_Object
2378 nconc2 (Lisp_Object s1, Lisp_Object s2)
2380 return CALLN (Fnconc, s1, s2);
2383 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2384 doc: /* Concatenate any number of lists by altering them.
2385 Only the last argument is not altered, and need not be a list.
2386 usage: (nconc &rest LISTS) */)
2387 (ptrdiff_t nargs, Lisp_Object *args)
2389 Lisp_Object val = Qnil;
2391 for (ptrdiff_t argnum = 0; argnum < nargs; argnum++)
2393 Lisp_Object tem = args[argnum];
2394 if (NILP (tem)) continue;
2396 if (NILP (val))
2397 val = tem;
2399 if (argnum + 1 == nargs) break;
2401 CHECK_CONS (tem);
2403 Lisp_Object tail;
2404 FOR_EACH_TAIL (tem)
2405 tail = tem;
2407 tem = args[argnum + 1];
2408 Fsetcdr (tail, tem);
2409 if (NILP (tem))
2410 args[argnum + 1] = tail;
2413 return val;
2416 /* This is the guts of all mapping functions.
2417 Apply FN to each element of SEQ, one by one, storing the results
2418 into elements of VALS, a C vector of Lisp_Objects. LENI is the
2419 length of VALS, which should also be the length of SEQ. Return the
2420 number of results; although this is normally LENI, it can be less
2421 if SEQ is made shorter as a side effect of FN. */
2423 static EMACS_INT
2424 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2426 Lisp_Object tail, dummy;
2427 EMACS_INT i;
2429 if (VECTORP (seq) || COMPILEDP (seq))
2431 for (i = 0; i < leni; i++)
2433 dummy = call1 (fn, AREF (seq, i));
2434 if (vals)
2435 vals[i] = dummy;
2438 else if (BOOL_VECTOR_P (seq))
2440 for (i = 0; i < leni; i++)
2442 dummy = call1 (fn, bool_vector_ref (seq, i));
2443 if (vals)
2444 vals[i] = dummy;
2447 else if (STRINGP (seq))
2449 ptrdiff_t i_byte;
2451 for (i = 0, i_byte = 0; i < leni;)
2453 int c;
2454 ptrdiff_t i_before = i;
2456 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2457 XSETFASTINT (dummy, c);
2458 dummy = call1 (fn, dummy);
2459 if (vals)
2460 vals[i_before] = dummy;
2463 else /* Must be a list, since Flength did not get an error */
2465 tail = seq;
2466 for (i = 0; i < leni; i++)
2468 if (! CONSP (tail))
2469 return i;
2470 dummy = call1 (fn, XCAR (tail));
2471 if (vals)
2472 vals[i] = dummy;
2473 tail = XCDR (tail);
2477 return leni;
2480 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2481 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2482 In between each pair of results, stick in SEPARATOR. Thus, " " as
2483 SEPARATOR results in spaces between the values returned by FUNCTION.
2484 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2485 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2487 USE_SAFE_ALLOCA;
2488 EMACS_INT leni = XFASTINT (Flength (sequence));
2489 if (CHAR_TABLE_P (sequence))
2490 wrong_type_argument (Qlistp, sequence);
2491 EMACS_INT args_alloc = 2 * leni - 1;
2492 if (args_alloc < 0)
2493 return empty_unibyte_string;
2494 Lisp_Object *args;
2495 SAFE_ALLOCA_LISP (args, args_alloc);
2496 ptrdiff_t nmapped = mapcar1 (leni, args, function, sequence);
2497 ptrdiff_t nargs = 2 * nmapped - 1;
2499 for (ptrdiff_t i = nmapped - 1; i > 0; i--)
2500 args[i + i] = args[i];
2502 for (ptrdiff_t i = 1; i < nargs; i += 2)
2503 args[i] = separator;
2505 Lisp_Object ret = Fconcat (nargs, args);
2506 SAFE_FREE ();
2507 return ret;
2510 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2511 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2512 The result is a list just as long as SEQUENCE.
2513 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2514 (Lisp_Object function, Lisp_Object sequence)
2516 USE_SAFE_ALLOCA;
2517 EMACS_INT leni = XFASTINT (Flength (sequence));
2518 if (CHAR_TABLE_P (sequence))
2519 wrong_type_argument (Qlistp, sequence);
2520 Lisp_Object *args;
2521 SAFE_ALLOCA_LISP (args, leni);
2522 ptrdiff_t nmapped = mapcar1 (leni, args, function, sequence);
2523 Lisp_Object ret = Flist (nmapped, args);
2524 SAFE_FREE ();
2525 return ret;
2528 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2529 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2530 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2531 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2532 (Lisp_Object function, Lisp_Object sequence)
2534 register EMACS_INT leni;
2536 leni = XFASTINT (Flength (sequence));
2537 if (CHAR_TABLE_P (sequence))
2538 wrong_type_argument (Qlistp, sequence);
2539 mapcar1 (leni, 0, function, sequence);
2541 return sequence;
2544 DEFUN ("mapcan", Fmapcan, Smapcan, 2, 2, 0,
2545 doc: /* Apply FUNCTION to each element of SEQUENCE, and concatenate
2546 the results by altering them (using `nconc').
2547 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2548 (Lisp_Object function, Lisp_Object sequence)
2550 USE_SAFE_ALLOCA;
2551 EMACS_INT leni = XFASTINT (Flength (sequence));
2552 if (CHAR_TABLE_P (sequence))
2553 wrong_type_argument (Qlistp, sequence);
2554 Lisp_Object *args;
2555 SAFE_ALLOCA_LISP (args, leni);
2556 ptrdiff_t nmapped = mapcar1 (leni, args, function, sequence);
2557 Lisp_Object ret = Fnconc (nmapped, args);
2558 SAFE_FREE ();
2559 return ret;
2562 /* This is how C code calls `yes-or-no-p' and allows the user
2563 to redefine it. */
2565 Lisp_Object
2566 do_yes_or_no_p (Lisp_Object prompt)
2568 return call1 (intern ("yes-or-no-p"), prompt);
2571 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2572 doc: /* Ask user a yes-or-no question.
2573 Return t if answer is yes, and nil if the answer is no.
2574 PROMPT is the string to display to ask the question. It should end in
2575 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2577 The user must confirm the answer with RET, and can edit it until it
2578 has been confirmed.
2580 If dialog boxes are supported, a dialog box will be used
2581 if `last-nonmenu-event' is nil, and `use-dialog-box' is non-nil. */)
2582 (Lisp_Object prompt)
2584 Lisp_Object ans;
2586 CHECK_STRING (prompt);
2588 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2589 && use_dialog_box && ! NILP (last_input_event))
2591 Lisp_Object pane, menu, obj;
2592 redisplay_preserve_echo_area (4);
2593 pane = list2 (Fcons (build_string ("Yes"), Qt),
2594 Fcons (build_string ("No"), Qnil));
2595 menu = Fcons (prompt, pane);
2596 obj = Fx_popup_dialog (Qt, menu, Qnil);
2597 return obj;
2600 AUTO_STRING (yes_or_no, "(yes or no) ");
2601 prompt = CALLN (Fconcat, prompt, yes_or_no);
2603 while (1)
2605 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2606 Qyes_or_no_p_history, Qnil,
2607 Qnil));
2608 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2609 return Qt;
2610 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2611 return Qnil;
2613 Fding (Qnil);
2614 Fdiscard_input ();
2615 message1 ("Please answer yes or no.");
2616 Fsleep_for (make_number (2), Qnil);
2620 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2621 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2623 Each of the three load averages is multiplied by 100, then converted
2624 to integer.
2626 When USE-FLOATS is non-nil, floats will be used instead of integers.
2627 These floats are not multiplied by 100.
2629 If the 5-minute or 15-minute load averages are not available, return a
2630 shortened list, containing only those averages which are available.
2632 An error is thrown if the load average can't be obtained. In some
2633 cases making it work would require Emacs being installed setuid or
2634 setgid so that it can read kernel information, and that usually isn't
2635 advisable. */)
2636 (Lisp_Object use_floats)
2638 double load_ave[3];
2639 int loads = getloadavg (load_ave, 3);
2640 Lisp_Object ret = Qnil;
2642 if (loads < 0)
2643 error ("load-average not implemented for this operating system");
2645 while (loads-- > 0)
2647 Lisp_Object load = (NILP (use_floats)
2648 ? make_number (100.0 * load_ave[loads])
2649 : make_float (load_ave[loads]));
2650 ret = Fcons (load, ret);
2653 return ret;
2656 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2657 doc: /* Return t if FEATURE is present in this Emacs.
2659 Use this to conditionalize execution of lisp code based on the
2660 presence or absence of Emacs or environment extensions.
2661 Use `provide' to declare that a feature is available. This function
2662 looks at the value of the variable `features'. The optional argument
2663 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2664 (Lisp_Object feature, Lisp_Object subfeature)
2666 register Lisp_Object tem;
2667 CHECK_SYMBOL (feature);
2668 tem = Fmemq (feature, Vfeatures);
2669 if (!NILP (tem) && !NILP (subfeature))
2670 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2671 return (NILP (tem)) ? Qnil : Qt;
2674 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2675 doc: /* Announce that FEATURE is a feature of the current Emacs.
2676 The optional argument SUBFEATURES should be a list of symbols listing
2677 particular subfeatures supported in this version of FEATURE. */)
2678 (Lisp_Object feature, Lisp_Object subfeatures)
2680 register Lisp_Object tem;
2681 CHECK_SYMBOL (feature);
2682 CHECK_LIST (subfeatures);
2683 if (!NILP (Vautoload_queue))
2684 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2685 Vautoload_queue);
2686 tem = Fmemq (feature, Vfeatures);
2687 if (NILP (tem))
2688 Vfeatures = Fcons (feature, Vfeatures);
2689 if (!NILP (subfeatures))
2690 Fput (feature, Qsubfeatures, subfeatures);
2691 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2693 /* Run any load-hooks for this file. */
2694 tem = Fassq (feature, Vafter_load_alist);
2695 if (CONSP (tem))
2696 Fmapc (Qfuncall, XCDR (tem));
2698 return feature;
2701 /* `require' and its subroutines. */
2703 /* List of features currently being require'd, innermost first. */
2705 static Lisp_Object require_nesting_list;
2707 static void
2708 require_unwind (Lisp_Object old_value)
2710 require_nesting_list = old_value;
2713 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2714 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2715 If FEATURE is not a member of the list `features', then the feature is
2716 not loaded; so load the file FILENAME.
2718 If FILENAME is omitted, the printname of FEATURE is used as the file
2719 name, and `load' will try to load this name appended with the suffix
2720 `.elc', `.el', or the system-dependent suffix for dynamic module
2721 files, in that order. The name without appended suffix will not be
2722 used. See `get-load-suffixes' for the complete list of suffixes.
2724 The directories in `load-path' are searched when trying to find the
2725 file name.
2727 If the optional third argument NOERROR is non-nil, then return nil if
2728 the file is not found instead of signaling an error. Normally the
2729 return value is FEATURE.
2731 The normal messages at start and end of loading FILENAME are
2732 suppressed. */)
2733 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2735 Lisp_Object tem;
2736 bool from_file = load_in_progress;
2738 CHECK_SYMBOL (feature);
2740 /* Record the presence of `require' in this file
2741 even if the feature specified is already loaded.
2742 But not more than once in any file,
2743 and not when we aren't loading or reading from a file. */
2744 if (!from_file)
2745 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2746 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2747 from_file = 1;
2749 if (from_file)
2751 tem = Fcons (Qrequire, feature);
2752 if (NILP (Fmember (tem, Vcurrent_load_list)))
2753 LOADHIST_ATTACH (tem);
2755 tem = Fmemq (feature, Vfeatures);
2757 if (NILP (tem))
2759 ptrdiff_t count = SPECPDL_INDEX ();
2760 int nesting = 0;
2762 /* This is to make sure that loadup.el gives a clear picture
2763 of what files are preloaded and when. */
2764 if (! NILP (Vpurify_flag))
2765 error ("(require %s) while preparing to dump",
2766 SDATA (SYMBOL_NAME (feature)));
2768 /* A certain amount of recursive `require' is legitimate,
2769 but if we require the same feature recursively 3 times,
2770 signal an error. */
2771 tem = require_nesting_list;
2772 while (! NILP (tem))
2774 if (! NILP (Fequal (feature, XCAR (tem))))
2775 nesting++;
2776 tem = XCDR (tem);
2778 if (nesting > 3)
2779 error ("Recursive `require' for feature `%s'",
2780 SDATA (SYMBOL_NAME (feature)));
2782 /* Update the list for any nested `require's that occur. */
2783 record_unwind_protect (require_unwind, require_nesting_list);
2784 require_nesting_list = Fcons (feature, require_nesting_list);
2786 /* Value saved here is to be restored into Vautoload_queue */
2787 record_unwind_protect (un_autoload, Vautoload_queue);
2788 Vautoload_queue = Qt;
2790 /* Load the file. */
2791 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2792 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2794 /* If load failed entirely, return nil. */
2795 if (NILP (tem))
2796 return unbind_to (count, Qnil);
2798 tem = Fmemq (feature, Vfeatures);
2799 if (NILP (tem))
2800 error ("Required feature `%s' was not provided",
2801 SDATA (SYMBOL_NAME (feature)));
2803 /* Once loading finishes, don't undo it. */
2804 Vautoload_queue = Qt;
2805 feature = unbind_to (count, feature);
2808 return feature;
2811 /* Primitives for work of the "widget" library.
2812 In an ideal world, this section would not have been necessary.
2813 However, lisp function calls being as slow as they are, it turns
2814 out that some functions in the widget library (wid-edit.el) are the
2815 bottleneck of Widget operation. Here is their translation to C,
2816 for the sole reason of efficiency. */
2818 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2819 doc: /* Return non-nil if PLIST has the property PROP.
2820 PLIST is a property list, which is a list of the form
2821 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol.
2822 Unlike `plist-get', this allows you to distinguish between a missing
2823 property and a property with the value nil.
2824 The value is actually the tail of PLIST whose car is PROP. */)
2825 (Lisp_Object plist, Lisp_Object prop)
2827 Lisp_Object tail = plist;
2828 FOR_EACH_TAIL (tail)
2830 if (EQ (XCAR (tail), prop))
2831 return tail;
2832 tail = XCDR (tail);
2833 if (! CONSP (tail))
2834 break;
2835 if (EQ (tail, li.tortoise))
2836 circular_list (tail);
2838 CHECK_LIST_END (tail, plist);
2839 return Qnil;
2842 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2843 doc: /* In WIDGET, set PROPERTY to VALUE.
2844 The value can later be retrieved with `widget-get'. */)
2845 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2847 CHECK_CONS (widget);
2848 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2849 return value;
2852 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2853 doc: /* In WIDGET, get the value of PROPERTY.
2854 The value could either be specified when the widget was created, or
2855 later with `widget-put'. */)
2856 (Lisp_Object widget, Lisp_Object property)
2858 Lisp_Object tmp;
2860 while (1)
2862 if (NILP (widget))
2863 return Qnil;
2864 CHECK_CONS (widget);
2865 tmp = Fplist_member (XCDR (widget), property);
2866 if (CONSP (tmp))
2868 tmp = XCDR (tmp);
2869 return CAR (tmp);
2871 tmp = XCAR (widget);
2872 if (NILP (tmp))
2873 return Qnil;
2874 widget = Fget (tmp, Qwidget_type);
2878 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2879 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2880 ARGS are passed as extra arguments to the function.
2881 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2882 (ptrdiff_t nargs, Lisp_Object *args)
2884 Lisp_Object widget = args[0];
2885 Lisp_Object property = args[1];
2886 Lisp_Object propval = Fwidget_get (widget, property);
2887 Lisp_Object trailing_args = Flist (nargs - 2, args + 2);
2888 Lisp_Object result = CALLN (Fapply, propval, widget, trailing_args);
2889 return result;
2892 #ifdef HAVE_LANGINFO_CODESET
2893 #include <langinfo.h>
2894 #endif
2896 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2897 doc: /* Access locale data ITEM for the current C locale, if available.
2898 ITEM should be one of the following:
2900 `codeset', returning the character set as a string (locale item CODESET);
2902 `days', returning a 7-element vector of day names (locale items DAY_n);
2904 `months', returning a 12-element vector of month names (locale items MON_n);
2906 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2907 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2909 If the system can't provide such information through a call to
2910 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2912 See also Info node `(libc)Locales'.
2914 The data read from the system are decoded using `locale-coding-system'. */)
2915 (Lisp_Object item)
2917 char *str = NULL;
2918 #ifdef HAVE_LANGINFO_CODESET
2919 if (EQ (item, Qcodeset))
2921 str = nl_langinfo (CODESET);
2922 return build_string (str);
2924 #ifdef DAY_1
2925 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2927 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2928 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2929 int i;
2930 synchronize_system_time_locale ();
2931 for (i = 0; i < 7; i++)
2933 str = nl_langinfo (days[i]);
2934 AUTO_STRING (val, str);
2935 /* Fixme: Is this coding system necessarily right, even if
2936 it is consistent with CODESET? If not, what to do? */
2937 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2938 0));
2940 return v;
2942 #endif /* DAY_1 */
2943 #ifdef MON_1
2944 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2946 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2947 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2948 MON_8, MON_9, MON_10, MON_11, MON_12};
2949 int i;
2950 synchronize_system_time_locale ();
2951 for (i = 0; i < 12; i++)
2953 str = nl_langinfo (months[i]);
2954 AUTO_STRING (val, str);
2955 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2956 0));
2958 return v;
2960 #endif /* MON_1 */
2961 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2962 but is in the locale files. This could be used by ps-print. */
2963 #ifdef PAPER_WIDTH
2964 else if (EQ (item, Qpaper))
2965 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
2966 #endif /* PAPER_WIDTH */
2967 #endif /* HAVE_LANGINFO_CODESET*/
2968 return Qnil;
2971 /* base64 encode/decode functions (RFC 2045).
2972 Based on code from GNU recode. */
2974 #define MIME_LINE_LENGTH 76
2976 #define IS_ASCII(Character) \
2977 ((Character) < 128)
2978 #define IS_BASE64(Character) \
2979 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2980 #define IS_BASE64_IGNORABLE(Character) \
2981 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2982 || (Character) == '\f' || (Character) == '\r')
2984 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2985 character or return retval if there are no characters left to
2986 process. */
2987 #define READ_QUADRUPLET_BYTE(retval) \
2988 do \
2990 if (i == length) \
2992 if (nchars_return) \
2993 *nchars_return = nchars; \
2994 return (retval); \
2996 c = from[i++]; \
2998 while (IS_BASE64_IGNORABLE (c))
3000 /* Table of characters coding the 64 values. */
3001 static const char base64_value_to_char[64] =
3003 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3004 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3005 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3006 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3007 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3008 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3009 '8', '9', '+', '/' /* 60-63 */
3012 /* Table of base64 values for first 128 characters. */
3013 static const short base64_char_to_value[128] =
3015 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3016 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3017 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3018 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3019 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3020 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3021 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3022 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3023 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3024 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3025 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3026 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3027 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3030 /* The following diagram shows the logical steps by which three octets
3031 get transformed into four base64 characters.
3033 .--------. .--------. .--------.
3034 |aaaaaabb| |bbbbcccc| |ccdddddd|
3035 `--------' `--------' `--------'
3036 6 2 4 4 2 6
3037 .--------+--------+--------+--------.
3038 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3039 `--------+--------+--------+--------'
3041 .--------+--------+--------+--------.
3042 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3043 `--------+--------+--------+--------'
3045 The octets are divided into 6 bit chunks, which are then encoded into
3046 base64 characters. */
3049 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
3050 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
3051 ptrdiff_t *);
3053 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3054 2, 3, "r",
3055 doc: /* Base64-encode the region between BEG and END.
3056 Return the length of the encoded text.
3057 Optional third argument NO-LINE-BREAK means do not break long lines
3058 into shorter lines. */)
3059 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
3061 char *encoded;
3062 ptrdiff_t allength, length;
3063 ptrdiff_t ibeg, iend, encoded_length;
3064 ptrdiff_t old_pos = PT;
3065 USE_SAFE_ALLOCA;
3067 validate_region (&beg, &end);
3069 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3070 iend = CHAR_TO_BYTE (XFASTINT (end));
3071 move_gap_both (XFASTINT (beg), ibeg);
3073 /* We need to allocate enough room for encoding the text.
3074 We need 33 1/3% more space, plus a newline every 76
3075 characters, and then we round up. */
3076 length = iend - ibeg;
3077 allength = length + length/3 + 1;
3078 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3080 encoded = SAFE_ALLOCA (allength);
3081 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
3082 encoded, length, NILP (no_line_break),
3083 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
3084 if (encoded_length > allength)
3085 emacs_abort ();
3087 if (encoded_length < 0)
3089 /* The encoding wasn't possible. */
3090 SAFE_FREE ();
3091 error ("Multibyte character in data for base64 encoding");
3094 /* Now we have encoded the region, so we insert the new contents
3095 and delete the old. (Insert first in order to preserve markers.) */
3096 SET_PT_BOTH (XFASTINT (beg), ibeg);
3097 insert (encoded, encoded_length);
3098 SAFE_FREE ();
3099 del_range_byte (ibeg + encoded_length, iend + encoded_length);
3101 /* If point was outside of the region, restore it exactly; else just
3102 move to the beginning of the region. */
3103 if (old_pos >= XFASTINT (end))
3104 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3105 else if (old_pos > XFASTINT (beg))
3106 old_pos = XFASTINT (beg);
3107 SET_PT (old_pos);
3109 /* We return the length of the encoded text. */
3110 return make_number (encoded_length);
3113 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3114 1, 2, 0,
3115 doc: /* Base64-encode STRING and return the result.
3116 Optional second argument NO-LINE-BREAK means do not break long lines
3117 into shorter lines. */)
3118 (Lisp_Object string, Lisp_Object no_line_break)
3120 ptrdiff_t allength, length, encoded_length;
3121 char *encoded;
3122 Lisp_Object encoded_string;
3123 USE_SAFE_ALLOCA;
3125 CHECK_STRING (string);
3127 /* We need to allocate enough room for encoding the text.
3128 We need 33 1/3% more space, plus a newline every 76
3129 characters, and then we round up. */
3130 length = SBYTES (string);
3131 allength = length + length/3 + 1;
3132 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3134 /* We need to allocate enough room for decoding the text. */
3135 encoded = SAFE_ALLOCA (allength);
3137 encoded_length = base64_encode_1 (SSDATA (string),
3138 encoded, length, NILP (no_line_break),
3139 STRING_MULTIBYTE (string));
3140 if (encoded_length > allength)
3141 emacs_abort ();
3143 if (encoded_length < 0)
3145 /* The encoding wasn't possible. */
3146 error ("Multibyte character in data for base64 encoding");
3149 encoded_string = make_unibyte_string (encoded, encoded_length);
3150 SAFE_FREE ();
3152 return encoded_string;
3155 static ptrdiff_t
3156 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3157 bool line_break, bool multibyte)
3159 int counter = 0;
3160 ptrdiff_t i = 0;
3161 char *e = to;
3162 int c;
3163 unsigned int value;
3164 int bytes;
3166 while (i < length)
3168 if (multibyte)
3170 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3171 if (CHAR_BYTE8_P (c))
3172 c = CHAR_TO_BYTE8 (c);
3173 else if (c >= 256)
3174 return -1;
3175 i += bytes;
3177 else
3178 c = from[i++];
3180 /* Wrap line every 76 characters. */
3182 if (line_break)
3184 if (counter < MIME_LINE_LENGTH / 4)
3185 counter++;
3186 else
3188 *e++ = '\n';
3189 counter = 1;
3193 /* Process first byte of a triplet. */
3195 *e++ = base64_value_to_char[0x3f & c >> 2];
3196 value = (0x03 & c) << 4;
3198 /* Process second byte of a triplet. */
3200 if (i == length)
3202 *e++ = base64_value_to_char[value];
3203 *e++ = '=';
3204 *e++ = '=';
3205 break;
3208 if (multibyte)
3210 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3211 if (CHAR_BYTE8_P (c))
3212 c = CHAR_TO_BYTE8 (c);
3213 else if (c >= 256)
3214 return -1;
3215 i += bytes;
3217 else
3218 c = from[i++];
3220 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3221 value = (0x0f & c) << 2;
3223 /* Process third byte of a triplet. */
3225 if (i == length)
3227 *e++ = base64_value_to_char[value];
3228 *e++ = '=';
3229 break;
3232 if (multibyte)
3234 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3235 if (CHAR_BYTE8_P (c))
3236 c = CHAR_TO_BYTE8 (c);
3237 else if (c >= 256)
3238 return -1;
3239 i += bytes;
3241 else
3242 c = from[i++];
3244 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3245 *e++ = base64_value_to_char[0x3f & c];
3248 return e - to;
3252 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3253 2, 2, "r",
3254 doc: /* Base64-decode the region between BEG and END.
3255 Return the length of the decoded text.
3256 If the region can't be decoded, signal an error and don't modify the buffer. */)
3257 (Lisp_Object beg, Lisp_Object end)
3259 ptrdiff_t ibeg, iend, length, allength;
3260 char *decoded;
3261 ptrdiff_t old_pos = PT;
3262 ptrdiff_t decoded_length;
3263 ptrdiff_t inserted_chars;
3264 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3265 USE_SAFE_ALLOCA;
3267 validate_region (&beg, &end);
3269 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3270 iend = CHAR_TO_BYTE (XFASTINT (end));
3272 length = iend - ibeg;
3274 /* We need to allocate enough room for decoding the text. If we are
3275 working on a multibyte buffer, each decoded code may occupy at
3276 most two bytes. */
3277 allength = multibyte ? length * 2 : length;
3278 decoded = SAFE_ALLOCA (allength);
3280 move_gap_both (XFASTINT (beg), ibeg);
3281 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3282 decoded, length,
3283 multibyte, &inserted_chars);
3284 if (decoded_length > allength)
3285 emacs_abort ();
3287 if (decoded_length < 0)
3289 /* The decoding wasn't possible. */
3290 error ("Invalid base64 data");
3293 /* Now we have decoded the region, so we insert the new contents
3294 and delete the old. (Insert first in order to preserve markers.) */
3295 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3296 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3297 SAFE_FREE ();
3299 /* Delete the original text. */
3300 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3301 iend + decoded_length, 1);
3303 /* If point was outside of the region, restore it exactly; else just
3304 move to the beginning of the region. */
3305 if (old_pos >= XFASTINT (end))
3306 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3307 else if (old_pos > XFASTINT (beg))
3308 old_pos = XFASTINT (beg);
3309 SET_PT (old_pos > ZV ? ZV : old_pos);
3311 return make_number (inserted_chars);
3314 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3315 1, 1, 0,
3316 doc: /* Base64-decode STRING and return the result. */)
3317 (Lisp_Object string)
3319 char *decoded;
3320 ptrdiff_t length, decoded_length;
3321 Lisp_Object decoded_string;
3322 USE_SAFE_ALLOCA;
3324 CHECK_STRING (string);
3326 length = SBYTES (string);
3327 /* We need to allocate enough room for decoding the text. */
3328 decoded = SAFE_ALLOCA (length);
3330 /* The decoded result should be unibyte. */
3331 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3332 0, NULL);
3333 if (decoded_length > length)
3334 emacs_abort ();
3335 else if (decoded_length >= 0)
3336 decoded_string = make_unibyte_string (decoded, decoded_length);
3337 else
3338 decoded_string = Qnil;
3340 SAFE_FREE ();
3341 if (!STRINGP (decoded_string))
3342 error ("Invalid base64 data");
3344 return decoded_string;
3347 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3348 MULTIBYTE, the decoded result should be in multibyte
3349 form. If NCHARS_RETURN is not NULL, store the number of produced
3350 characters in *NCHARS_RETURN. */
3352 static ptrdiff_t
3353 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3354 bool multibyte, ptrdiff_t *nchars_return)
3356 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3357 char *e = to;
3358 unsigned char c;
3359 unsigned long value;
3360 ptrdiff_t nchars = 0;
3362 while (1)
3364 /* Process first byte of a quadruplet. */
3366 READ_QUADRUPLET_BYTE (e-to);
3368 if (!IS_BASE64 (c))
3369 return -1;
3370 value = base64_char_to_value[c] << 18;
3372 /* Process second byte of a quadruplet. */
3374 READ_QUADRUPLET_BYTE (-1);
3376 if (!IS_BASE64 (c))
3377 return -1;
3378 value |= base64_char_to_value[c] << 12;
3380 c = (unsigned char) (value >> 16);
3381 if (multibyte && c >= 128)
3382 e += BYTE8_STRING (c, e);
3383 else
3384 *e++ = c;
3385 nchars++;
3387 /* Process third byte of a quadruplet. */
3389 READ_QUADRUPLET_BYTE (-1);
3391 if (c == '=')
3393 READ_QUADRUPLET_BYTE (-1);
3395 if (c != '=')
3396 return -1;
3397 continue;
3400 if (!IS_BASE64 (c))
3401 return -1;
3402 value |= base64_char_to_value[c] << 6;
3404 c = (unsigned char) (0xff & value >> 8);
3405 if (multibyte && c >= 128)
3406 e += BYTE8_STRING (c, e);
3407 else
3408 *e++ = c;
3409 nchars++;
3411 /* Process fourth byte of a quadruplet. */
3413 READ_QUADRUPLET_BYTE (-1);
3415 if (c == '=')
3416 continue;
3418 if (!IS_BASE64 (c))
3419 return -1;
3420 value |= base64_char_to_value[c];
3422 c = (unsigned char) (0xff & value);
3423 if (multibyte && c >= 128)
3424 e += BYTE8_STRING (c, e);
3425 else
3426 *e++ = c;
3427 nchars++;
3433 /***********************************************************************
3434 ***** *****
3435 ***** Hash Tables *****
3436 ***** *****
3437 ***********************************************************************/
3439 /* Implemented by gerd@gnu.org. This hash table implementation was
3440 inspired by CMUCL hash tables. */
3442 /* Ideas:
3444 1. For small tables, association lists are probably faster than
3445 hash tables because they have lower overhead.
3447 For uses of hash tables where the O(1) behavior of table
3448 operations is not a requirement, it might therefore be a good idea
3449 not to hash. Instead, we could just do a linear search in the
3450 key_and_value vector of the hash table. This could be done
3451 if a `:linear-search t' argument is given to make-hash-table. */
3454 /* The list of all weak hash tables. Don't staticpro this one. */
3456 static struct Lisp_Hash_Table *weak_hash_tables;
3459 /***********************************************************************
3460 Utilities
3461 ***********************************************************************/
3463 static void
3464 CHECK_HASH_TABLE (Lisp_Object x)
3466 CHECK_TYPE (HASH_TABLE_P (x), Qhash_table_p, x);
3469 static void
3470 set_hash_key_and_value (struct Lisp_Hash_Table *h, Lisp_Object key_and_value)
3472 h->key_and_value = key_and_value;
3474 static void
3475 set_hash_next (struct Lisp_Hash_Table *h, Lisp_Object next)
3477 h->next = next;
3479 static void
3480 set_hash_next_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, ptrdiff_t val)
3482 gc_aset (h->next, idx, make_number (val));
3484 static void
3485 set_hash_hash (struct Lisp_Hash_Table *h, Lisp_Object hash)
3487 h->hash = hash;
3489 static void
3490 set_hash_hash_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3492 gc_aset (h->hash, idx, val);
3494 static void
3495 set_hash_index (struct Lisp_Hash_Table *h, Lisp_Object index)
3497 h->index = index;
3499 static void
3500 set_hash_index_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, ptrdiff_t val)
3502 gc_aset (h->index, idx, make_number (val));
3505 /* If OBJ is a Lisp hash table, return a pointer to its struct
3506 Lisp_Hash_Table. Otherwise, signal an error. */
3508 static struct Lisp_Hash_Table *
3509 check_hash_table (Lisp_Object obj)
3511 CHECK_HASH_TABLE (obj);
3512 return XHASH_TABLE (obj);
3516 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3517 number. A number is "almost" a prime number if it is not divisible
3518 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3520 EMACS_INT
3521 next_almost_prime (EMACS_INT n)
3523 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3524 for (n |= 1; ; n += 2)
3525 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3526 return n;
3530 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3531 which USED[I] is non-zero. If found at index I in ARGS, set
3532 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3533 0. This function is used to extract a keyword/argument pair from
3534 a DEFUN parameter list. */
3536 static ptrdiff_t
3537 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3539 ptrdiff_t i;
3541 for (i = 1; i < nargs; i++)
3542 if (!used[i - 1] && EQ (args[i - 1], key))
3544 used[i - 1] = 1;
3545 used[i] = 1;
3546 return i;
3549 return 0;
3553 /* Return a Lisp vector which has the same contents as VEC but has
3554 at least INCR_MIN more entries, where INCR_MIN is positive.
3555 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3556 than NITEMS_MAX. New entries in the resulting vector are
3557 uninitialized. */
3559 static Lisp_Object
3560 larger_vecalloc (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3562 struct Lisp_Vector *v;
3563 ptrdiff_t incr, incr_max, old_size, new_size;
3564 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3565 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3566 ? nitems_max : C_language_max);
3567 eassert (VECTORP (vec));
3568 eassert (0 < incr_min && -1 <= nitems_max);
3569 old_size = ASIZE (vec);
3570 incr_max = n_max - old_size;
3571 incr = max (incr_min, min (old_size >> 1, incr_max));
3572 if (incr_max < incr)
3573 memory_full (SIZE_MAX);
3574 new_size = old_size + incr;
3575 v = allocate_vector (new_size);
3576 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3577 XSETVECTOR (vec, v);
3578 return vec;
3581 /* Likewise, except set new entries in the resulting vector to nil. */
3583 Lisp_Object
3584 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3586 ptrdiff_t old_size = ASIZE (vec);
3587 Lisp_Object v = larger_vecalloc (vec, incr_min, nitems_max);
3588 ptrdiff_t new_size = ASIZE (v);
3589 memclear (XVECTOR (v)->contents + old_size,
3590 (new_size - old_size) * word_size);
3591 return v;
3595 /***********************************************************************
3596 Low-level Functions
3597 ***********************************************************************/
3599 /* Return the index of the next entry in H following the one at IDX,
3600 or -1 if none. */
3602 static ptrdiff_t
3603 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
3605 return XINT (AREF (h->next, idx));
3608 /* Return the index of the element in hash table H that is the start
3609 of the collision list at index IDX, or -1 if the list is empty. */
3611 static ptrdiff_t
3612 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
3614 return XINT (AREF (h->index, idx));
3617 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3618 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3619 KEY2 are the same. */
3621 static bool
3622 cmpfn_eql (struct hash_table_test *ht,
3623 Lisp_Object key1,
3624 Lisp_Object key2)
3626 return (FLOATP (key1)
3627 && FLOATP (key2)
3628 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3632 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3633 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3634 KEY2 are the same. */
3636 static bool
3637 cmpfn_equal (struct hash_table_test *ht,
3638 Lisp_Object key1,
3639 Lisp_Object key2)
3641 return !NILP (Fequal (key1, key2));
3645 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3646 HASH2 in hash table H using H->user_cmp_function. Value is true
3647 if KEY1 and KEY2 are the same. */
3649 static bool
3650 cmpfn_user_defined (struct hash_table_test *ht,
3651 Lisp_Object key1,
3652 Lisp_Object key2)
3654 return !NILP (call2 (ht->user_cmp_function, key1, key2));
3657 /* Value is a hash code for KEY for use in hash table H which uses
3658 `eq' to compare keys. The hash code returned is guaranteed to fit
3659 in a Lisp integer. */
3661 static EMACS_UINT
3662 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3664 return XHASH (key) ^ XTYPE (key);
3667 /* Value is a hash code for KEY for use in hash table H which uses
3668 `equal' to compare keys. The hash code returned is guaranteed to fit
3669 in a Lisp integer. */
3671 static EMACS_UINT
3672 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3674 return sxhash (key, 0);
3677 /* Value is a hash code for KEY for use in hash table H which uses
3678 `eql' to compare keys. The hash code returned is guaranteed to fit
3679 in a Lisp integer. */
3681 static EMACS_UINT
3682 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3684 return FLOATP (key) ? hashfn_equal (ht, key) : hashfn_eq (ht, key);
3687 /* Value is a hash code for KEY for use in hash table H which uses as
3688 user-defined function to compare keys. The hash code returned is
3689 guaranteed to fit in a Lisp integer. */
3691 static EMACS_UINT
3692 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3694 Lisp_Object hash = call1 (ht->user_hash_function, key);
3695 return hashfn_eq (ht, hash);
3698 struct hash_table_test const
3699 hashtest_eq = { LISPSYM_INITIALLY (Qeq), LISPSYM_INITIALLY (Qnil),
3700 LISPSYM_INITIALLY (Qnil), 0, hashfn_eq },
3701 hashtest_eql = { LISPSYM_INITIALLY (Qeql), LISPSYM_INITIALLY (Qnil),
3702 LISPSYM_INITIALLY (Qnil), cmpfn_eql, hashfn_eql },
3703 hashtest_equal = { LISPSYM_INITIALLY (Qequal), LISPSYM_INITIALLY (Qnil),
3704 LISPSYM_INITIALLY (Qnil), cmpfn_equal, hashfn_equal };
3706 /* Allocate basically initialized hash table. */
3708 static struct Lisp_Hash_Table *
3709 allocate_hash_table (void)
3711 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table,
3712 count, PVEC_HASH_TABLE);
3715 /* An upper bound on the size of a hash table index. It must fit in
3716 ptrdiff_t and be a valid Emacs fixnum. */
3717 #define INDEX_SIZE_BOUND \
3718 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3720 /* Create and initialize a new hash table.
3722 TEST specifies the test the hash table will use to compare keys.
3723 It must be either one of the predefined tests `eq', `eql' or
3724 `equal' or a symbol denoting a user-defined test named TEST with
3725 test and hash functions USER_TEST and USER_HASH.
3727 Give the table initial capacity SIZE, 0 <= SIZE <= MOST_POSITIVE_FIXNUM.
3729 If REHASH_SIZE is equal to a negative integer, this hash table's
3730 new size when it becomes full is computed by subtracting
3731 REHASH_SIZE from its old size. Otherwise it must be positive, and
3732 the table's new size is computed by multiplying its old size by
3733 REHASH_SIZE + 1.
3735 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3736 be resized when the approximate ratio of table entries to table
3737 size exceeds REHASH_THRESHOLD.
3739 WEAK specifies the weakness of the table. If non-nil, it must be
3740 one of the symbols `key', `value', `key-or-value', or `key-and-value'.
3742 If PURECOPY is non-nil, the table can be copied to pure storage via
3743 `purecopy' when Emacs is being dumped. Such tables can no longer be
3744 changed after purecopy. */
3746 Lisp_Object
3747 make_hash_table (struct hash_table_test test, EMACS_INT size,
3748 float rehash_size, float rehash_threshold,
3749 Lisp_Object weak, bool pure)
3751 struct Lisp_Hash_Table *h;
3752 Lisp_Object table;
3753 EMACS_INT index_size;
3754 ptrdiff_t i;
3755 double index_float;
3757 /* Preconditions. */
3758 eassert (SYMBOLP (test.name));
3759 eassert (0 <= size && size <= MOST_POSITIVE_FIXNUM);
3760 eassert (rehash_size <= -1 || 0 < rehash_size);
3761 eassert (0 < rehash_threshold && rehash_threshold <= 1);
3763 if (size == 0)
3764 size = 1;
3766 double threshold = rehash_threshold;
3767 index_float = size / threshold;
3768 index_size = (index_float < INDEX_SIZE_BOUND + 1
3769 ? next_almost_prime (index_float)
3770 : INDEX_SIZE_BOUND + 1);
3771 if (INDEX_SIZE_BOUND < max (index_size, 2 * size))
3772 error ("Hash table too large");
3774 /* Allocate a table and initialize it. */
3775 h = allocate_hash_table ();
3777 /* Initialize hash table slots. */
3778 h->test = test;
3779 h->weak = weak;
3780 h->rehash_threshold = rehash_threshold;
3781 h->rehash_size = rehash_size;
3782 h->count = 0;
3783 h->key_and_value = Fmake_vector (make_number (2 * size), Qnil);
3784 h->hash = Fmake_vector (make_number (size), Qnil);
3785 h->next = Fmake_vector (make_number (size), make_number (-1));
3786 h->index = Fmake_vector (make_number (index_size), make_number (-1));
3787 h->pure = pure;
3789 /* Set up the free list. */
3790 for (i = 0; i < size - 1; ++i)
3791 set_hash_next_slot (h, i, i + 1);
3792 h->next_free = 0;
3794 XSET_HASH_TABLE (table, h);
3795 eassert (HASH_TABLE_P (table));
3796 eassert (XHASH_TABLE (table) == h);
3798 /* Maybe add this hash table to the list of all weak hash tables. */
3799 if (! NILP (weak))
3801 h->next_weak = weak_hash_tables;
3802 weak_hash_tables = h;
3805 return table;
3809 /* Return a copy of hash table H1. Keys and values are not copied,
3810 only the table itself is. */
3812 static Lisp_Object
3813 copy_hash_table (struct Lisp_Hash_Table *h1)
3815 Lisp_Object table;
3816 struct Lisp_Hash_Table *h2;
3818 h2 = allocate_hash_table ();
3819 *h2 = *h1;
3820 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3821 h2->hash = Fcopy_sequence (h1->hash);
3822 h2->next = Fcopy_sequence (h1->next);
3823 h2->index = Fcopy_sequence (h1->index);
3824 XSET_HASH_TABLE (table, h2);
3826 /* Maybe add this hash table to the list of all weak hash tables. */
3827 if (!NILP (h2->weak))
3829 h2->next_weak = h1->next_weak;
3830 h1->next_weak = h2;
3833 return table;
3837 /* Resize hash table H if it's too full. If H cannot be resized
3838 because it's already too large, throw an error. */
3840 static void
3841 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3843 if (h->next_free < 0)
3845 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3846 EMACS_INT new_size, index_size, nsize;
3847 ptrdiff_t i;
3848 double rehash_size = h->rehash_size;
3849 double index_float;
3851 if (rehash_size < 0)
3852 new_size = old_size - rehash_size;
3853 else
3855 double float_new_size = old_size * (rehash_size + 1);
3856 if (float_new_size < INDEX_SIZE_BOUND + 1)
3857 new_size = float_new_size;
3858 else
3859 new_size = INDEX_SIZE_BOUND + 1;
3861 if (new_size <= old_size)
3862 new_size = old_size + 1;
3863 double threshold = h->rehash_threshold;
3864 index_float = new_size / threshold;
3865 index_size = (index_float < INDEX_SIZE_BOUND + 1
3866 ? next_almost_prime (index_float)
3867 : INDEX_SIZE_BOUND + 1);
3868 nsize = max (index_size, 2 * new_size);
3869 if (INDEX_SIZE_BOUND < nsize)
3870 error ("Hash table too large to resize");
3872 #ifdef ENABLE_CHECKING
3873 if (HASH_TABLE_P (Vpurify_flag)
3874 && XHASH_TABLE (Vpurify_flag) == h)
3875 message ("Growing hash table to: %"pI"d", new_size);
3876 #endif
3878 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3879 2 * (new_size - old_size), -1));
3880 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3881 set_hash_index (h, Fmake_vector (make_number (index_size),
3882 make_number (-1)));
3883 set_hash_next (h, larger_vecalloc (h->next, new_size - old_size, -1));
3885 /* Update the free list. Do it so that new entries are added at
3886 the end of the free list. This makes some operations like
3887 maphash faster. */
3888 for (i = old_size; i < new_size - 1; ++i)
3889 set_hash_next_slot (h, i, i + 1);
3890 set_hash_next_slot (h, i, -1);
3892 if (h->next_free < 0)
3893 h->next_free = old_size;
3894 else
3896 ptrdiff_t last = h->next_free;
3897 while (true)
3899 ptrdiff_t next = HASH_NEXT (h, last);
3900 if (next < 0)
3901 break;
3902 last = next;
3904 set_hash_next_slot (h, last, old_size);
3907 /* Rehash. */
3908 for (i = 0; i < old_size; ++i)
3909 if (!NILP (HASH_HASH (h, i)))
3911 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3912 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3913 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3914 set_hash_index_slot (h, start_of_bucket, i);
3920 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3921 the hash code of KEY. Value is the index of the entry in H
3922 matching KEY, or -1 if not found. */
3924 ptrdiff_t
3925 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3927 EMACS_UINT hash_code;
3928 ptrdiff_t start_of_bucket, i;
3930 hash_code = h->test.hashfn (&h->test, key);
3931 eassert ((hash_code & ~INTMASK) == 0);
3932 if (hash)
3933 *hash = hash_code;
3935 start_of_bucket = hash_code % ASIZE (h->index);
3937 for (i = HASH_INDEX (h, start_of_bucket); 0 <= i; i = HASH_NEXT (h, i))
3938 if (EQ (key, HASH_KEY (h, i))
3939 || (h->test.cmpfn
3940 && hash_code == XUINT (HASH_HASH (h, i))
3941 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3942 break;
3944 return i;
3948 /* Put an entry into hash table H that associates KEY with VALUE.
3949 HASH is a previously computed hash code of KEY.
3950 Value is the index of the entry in H matching KEY. */
3952 ptrdiff_t
3953 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3954 EMACS_UINT hash)
3956 ptrdiff_t start_of_bucket, i;
3958 eassert ((hash & ~INTMASK) == 0);
3960 /* Increment count after resizing because resizing may fail. */
3961 maybe_resize_hash_table (h);
3962 h->count++;
3964 /* Store key/value in the key_and_value vector. */
3965 i = h->next_free;
3966 h->next_free = HASH_NEXT (h, i);
3967 set_hash_key_slot (h, i, key);
3968 set_hash_value_slot (h, i, value);
3970 /* Remember its hash code. */
3971 set_hash_hash_slot (h, i, make_number (hash));
3973 /* Add new entry to its collision chain. */
3974 start_of_bucket = hash % ASIZE (h->index);
3975 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3976 set_hash_index_slot (h, start_of_bucket, i);
3977 return i;
3981 /* Remove the entry matching KEY from hash table H, if there is one. */
3983 void
3984 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3986 EMACS_UINT hash_code = h->test.hashfn (&h->test, key);
3987 eassert ((hash_code & ~INTMASK) == 0);
3988 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3989 ptrdiff_t prev = -1;
3991 for (ptrdiff_t i = HASH_INDEX (h, start_of_bucket);
3992 0 <= i;
3993 i = HASH_NEXT (h, i))
3995 if (EQ (key, HASH_KEY (h, i))
3996 || (h->test.cmpfn
3997 && hash_code == XUINT (HASH_HASH (h, i))
3998 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
4000 /* Take entry out of collision chain. */
4001 if (prev < 0)
4002 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
4003 else
4004 set_hash_next_slot (h, prev, HASH_NEXT (h, i));
4006 /* Clear slots in key_and_value and add the slots to
4007 the free list. */
4008 set_hash_key_slot (h, i, Qnil);
4009 set_hash_value_slot (h, i, Qnil);
4010 set_hash_hash_slot (h, i, Qnil);
4011 set_hash_next_slot (h, i, h->next_free);
4012 h->next_free = i;
4013 h->count--;
4014 eassert (h->count >= 0);
4015 break;
4018 prev = i;
4023 /* Clear hash table H. */
4025 static void
4026 hash_clear (struct Lisp_Hash_Table *h)
4028 if (h->count > 0)
4030 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
4032 for (i = 0; i < size; ++i)
4034 set_hash_next_slot (h, i, i < size - 1 ? i + 1 : -1);
4035 set_hash_key_slot (h, i, Qnil);
4036 set_hash_value_slot (h, i, Qnil);
4037 set_hash_hash_slot (h, i, Qnil);
4040 for (i = 0; i < ASIZE (h->index); ++i)
4041 ASET (h->index, i, make_number (-1));
4043 h->next_free = 0;
4044 h->count = 0;
4050 /************************************************************************
4051 Weak Hash Tables
4052 ************************************************************************/
4054 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
4055 entries from the table that don't survive the current GC.
4056 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
4057 true if anything was marked. */
4059 static bool
4060 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
4062 ptrdiff_t n = gc_asize (h->index);
4063 bool marked = false;
4065 for (ptrdiff_t bucket = 0; bucket < n; ++bucket)
4067 /* Follow collision chain, removing entries that
4068 don't survive this garbage collection. */
4069 ptrdiff_t prev = -1;
4070 ptrdiff_t next;
4071 for (ptrdiff_t i = HASH_INDEX (h, bucket); 0 <= i; i = next)
4073 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4074 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4075 bool remove_p;
4077 if (EQ (h->weak, Qkey))
4078 remove_p = !key_known_to_survive_p;
4079 else if (EQ (h->weak, Qvalue))
4080 remove_p = !value_known_to_survive_p;
4081 else if (EQ (h->weak, Qkey_or_value))
4082 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4083 else if (EQ (h->weak, Qkey_and_value))
4084 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4085 else
4086 emacs_abort ();
4088 next = HASH_NEXT (h, i);
4090 if (remove_entries_p)
4092 if (remove_p)
4094 /* Take out of collision chain. */
4095 if (prev < 0)
4096 set_hash_index_slot (h, bucket, next);
4097 else
4098 set_hash_next_slot (h, prev, next);
4100 /* Add to free list. */
4101 set_hash_next_slot (h, i, h->next_free);
4102 h->next_free = i;
4104 /* Clear key, value, and hash. */
4105 set_hash_key_slot (h, i, Qnil);
4106 set_hash_value_slot (h, i, Qnil);
4107 set_hash_hash_slot (h, i, Qnil);
4109 h->count--;
4111 else
4113 prev = i;
4116 else
4118 if (!remove_p)
4120 /* Make sure key and value survive. */
4121 if (!key_known_to_survive_p)
4123 mark_object (HASH_KEY (h, i));
4124 marked = 1;
4127 if (!value_known_to_survive_p)
4129 mark_object (HASH_VALUE (h, i));
4130 marked = 1;
4137 return marked;
4140 /* Remove elements from weak hash tables that don't survive the
4141 current garbage collection. Remove weak tables that don't survive
4142 from Vweak_hash_tables. Called from gc_sweep. */
4144 NO_INLINE /* For better stack traces */
4145 void
4146 sweep_weak_hash_tables (void)
4148 struct Lisp_Hash_Table *h, *used, *next;
4149 bool marked;
4151 /* Mark all keys and values that are in use. Keep on marking until
4152 there is no more change. This is necessary for cases like
4153 value-weak table A containing an entry X -> Y, where Y is used in a
4154 key-weak table B, Z -> Y. If B comes after A in the list of weak
4155 tables, X -> Y might be removed from A, although when looking at B
4156 one finds that it shouldn't. */
4159 marked = 0;
4160 for (h = weak_hash_tables; h; h = h->next_weak)
4162 if (h->header.size & ARRAY_MARK_FLAG)
4163 marked |= sweep_weak_table (h, 0);
4166 while (marked);
4168 /* Remove tables and entries that aren't used. */
4169 for (h = weak_hash_tables, used = NULL; h; h = next)
4171 next = h->next_weak;
4173 if (h->header.size & ARRAY_MARK_FLAG)
4175 /* TABLE is marked as used. Sweep its contents. */
4176 if (h->count > 0)
4177 sweep_weak_table (h, 1);
4179 /* Add table to the list of used weak hash tables. */
4180 h->next_weak = used;
4181 used = h;
4185 weak_hash_tables = used;
4190 /***********************************************************************
4191 Hash Code Computation
4192 ***********************************************************************/
4194 /* Maximum depth up to which to dive into Lisp structures. */
4196 #define SXHASH_MAX_DEPTH 3
4198 /* Maximum length up to which to take list and vector elements into
4199 account. */
4201 #define SXHASH_MAX_LEN 7
4203 /* Return a hash for string PTR which has length LEN. The hash value
4204 can be any EMACS_UINT value. */
4206 EMACS_UINT
4207 hash_string (char const *ptr, ptrdiff_t len)
4209 char const *p = ptr;
4210 char const *end = p + len;
4211 unsigned char c;
4212 EMACS_UINT hash = 0;
4214 while (p != end)
4216 c = *p++;
4217 hash = sxhash_combine (hash, c);
4220 return hash;
4223 /* Return a hash for string PTR which has length LEN. The hash
4224 code returned is guaranteed to fit in a Lisp integer. */
4226 static EMACS_UINT
4227 sxhash_string (char const *ptr, ptrdiff_t len)
4229 EMACS_UINT hash = hash_string (ptr, len);
4230 return SXHASH_REDUCE (hash);
4233 /* Return a hash for the floating point value VAL. */
4235 static EMACS_UINT
4236 sxhash_float (double val)
4238 EMACS_UINT hash = 0;
4239 enum {
4240 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4241 + (sizeof val % sizeof hash != 0))
4243 union {
4244 double val;
4245 EMACS_UINT word[WORDS_PER_DOUBLE];
4246 } u;
4247 int i;
4248 u.val = val;
4249 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4250 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4251 hash = sxhash_combine (hash, u.word[i]);
4252 return SXHASH_REDUCE (hash);
4255 /* Return a hash for list LIST. DEPTH is the current depth in the
4256 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4258 static EMACS_UINT
4259 sxhash_list (Lisp_Object list, int depth)
4261 EMACS_UINT hash = 0;
4262 int i;
4264 if (depth < SXHASH_MAX_DEPTH)
4265 for (i = 0;
4266 CONSP (list) && i < SXHASH_MAX_LEN;
4267 list = XCDR (list), ++i)
4269 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4270 hash = sxhash_combine (hash, hash2);
4273 if (!NILP (list))
4275 EMACS_UINT hash2 = sxhash (list, depth + 1);
4276 hash = sxhash_combine (hash, hash2);
4279 return SXHASH_REDUCE (hash);
4283 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4284 the Lisp structure. */
4286 static EMACS_UINT
4287 sxhash_vector (Lisp_Object vec, int depth)
4289 EMACS_UINT hash = ASIZE (vec);
4290 int i, n;
4292 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4293 for (i = 0; i < n; ++i)
4295 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4296 hash = sxhash_combine (hash, hash2);
4299 return SXHASH_REDUCE (hash);
4302 /* Return a hash for bool-vector VECTOR. */
4304 static EMACS_UINT
4305 sxhash_bool_vector (Lisp_Object vec)
4307 EMACS_INT size = bool_vector_size (vec);
4308 EMACS_UINT hash = size;
4309 int i, n;
4311 n = min (SXHASH_MAX_LEN, bool_vector_words (size));
4312 for (i = 0; i < n; ++i)
4313 hash = sxhash_combine (hash, bool_vector_data (vec)[i]);
4315 return SXHASH_REDUCE (hash);
4319 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4320 structure. Value is an unsigned integer clipped to INTMASK. */
4322 EMACS_UINT
4323 sxhash (Lisp_Object obj, int depth)
4325 EMACS_UINT hash;
4327 if (depth > SXHASH_MAX_DEPTH)
4328 return 0;
4330 switch (XTYPE (obj))
4332 case_Lisp_Int:
4333 hash = XUINT (obj);
4334 break;
4336 case Lisp_Misc:
4337 case Lisp_Symbol:
4338 hash = XHASH (obj);
4339 break;
4341 case Lisp_String:
4342 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4343 break;
4345 /* This can be everything from a vector to an overlay. */
4346 case Lisp_Vectorlike:
4347 if (VECTORP (obj))
4348 /* According to the CL HyperSpec, two arrays are equal only if
4349 they are `eq', except for strings and bit-vectors. In
4350 Emacs, this works differently. We have to compare element
4351 by element. */
4352 hash = sxhash_vector (obj, depth);
4353 else if (BOOL_VECTOR_P (obj))
4354 hash = sxhash_bool_vector (obj);
4355 else
4356 /* Others are `equal' if they are `eq', so let's take their
4357 address as hash. */
4358 hash = XHASH (obj);
4359 break;
4361 case Lisp_Cons:
4362 hash = sxhash_list (obj, depth);
4363 break;
4365 case Lisp_Float:
4366 hash = sxhash_float (XFLOAT_DATA (obj));
4367 break;
4369 default:
4370 emacs_abort ();
4373 return hash;
4378 /***********************************************************************
4379 Lisp Interface
4380 ***********************************************************************/
4382 DEFUN ("sxhash-eq", Fsxhash_eq, Ssxhash_eq, 1, 1, 0,
4383 doc: /* Return an integer hash code for OBJ suitable for `eq'.
4384 If (eq A B), then (= (sxhash-eq A) (sxhash-eq B)). */)
4385 (Lisp_Object obj)
4387 return make_number (hashfn_eq (NULL, obj));
4390 DEFUN ("sxhash-eql", Fsxhash_eql, Ssxhash_eql, 1, 1, 0,
4391 doc: /* Return an integer hash code for OBJ suitable for `eql'.
4392 If (eql A B), then (= (sxhash-eql A) (sxhash-eql B)). */)
4393 (Lisp_Object obj)
4395 return make_number (hashfn_eql (NULL, obj));
4398 DEFUN ("sxhash-equal", Fsxhash_equal, Ssxhash_equal, 1, 1, 0,
4399 doc: /* Return an integer hash code for OBJ suitable for `equal'.
4400 If (equal A B), then (= (sxhash-equal A) (sxhash-equal B)). */)
4401 (Lisp_Object obj)
4403 return make_number (hashfn_equal (NULL, obj));
4406 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4407 doc: /* Create and return a new hash table.
4409 Arguments are specified as keyword/argument pairs. The following
4410 arguments are defined:
4412 :test TEST -- TEST must be a symbol that specifies how to compare
4413 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4414 `equal'. User-supplied test and hash functions can be specified via
4415 `define-hash-table-test'.
4417 :size SIZE -- A hint as to how many elements will be put in the table.
4418 Default is 65.
4420 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4421 fills up. If REHASH-SIZE is an integer, increase the size by that
4422 amount. If it is a float, it must be > 1.0, and the new size is the
4423 old size multiplied by that factor. Default is 1.5.
4425 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4426 Resize the hash table when the ratio (table entries / table size)
4427 exceeds an approximation to THRESHOLD. Default is 0.8125.
4429 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4430 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4431 returned is a weak table. Key/value pairs are removed from a weak
4432 hash table when there are no non-weak references pointing to their
4433 key, value, one of key or value, or both key and value, depending on
4434 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4435 is nil.
4437 :purecopy PURECOPY -- If PURECOPY is non-nil, the table can be copied
4438 to pure storage when Emacs is being dumped, making the contents of the
4439 table read only. Any further changes to purified tables will result
4440 in an error.
4442 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4443 (ptrdiff_t nargs, Lisp_Object *args)
4445 Lisp_Object test, weak;
4446 bool pure;
4447 struct hash_table_test testdesc;
4448 ptrdiff_t i;
4449 USE_SAFE_ALLOCA;
4451 /* The vector `used' is used to keep track of arguments that
4452 have been consumed. */
4453 char *used = SAFE_ALLOCA (nargs * sizeof *used);
4454 memset (used, 0, nargs * sizeof *used);
4456 /* See if there's a `:test TEST' among the arguments. */
4457 i = get_key_arg (QCtest, nargs, args, used);
4458 test = i ? args[i] : Qeql;
4459 if (EQ (test, Qeq))
4460 testdesc = hashtest_eq;
4461 else if (EQ (test, Qeql))
4462 testdesc = hashtest_eql;
4463 else if (EQ (test, Qequal))
4464 testdesc = hashtest_equal;
4465 else
4467 /* See if it is a user-defined test. */
4468 Lisp_Object prop;
4470 prop = Fget (test, Qhash_table_test);
4471 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4472 signal_error ("Invalid hash table test", test);
4473 testdesc.name = test;
4474 testdesc.user_cmp_function = XCAR (prop);
4475 testdesc.user_hash_function = XCAR (XCDR (prop));
4476 testdesc.hashfn = hashfn_user_defined;
4477 testdesc.cmpfn = cmpfn_user_defined;
4480 /* See if there's a `:purecopy PURECOPY' argument. */
4481 i = get_key_arg (QCpurecopy, nargs, args, used);
4482 pure = i && !NILP (args[i]);
4483 /* See if there's a `:size SIZE' argument. */
4484 i = get_key_arg (QCsize, nargs, args, used);
4485 Lisp_Object size_arg = i ? args[i] : Qnil;
4486 EMACS_INT size;
4487 if (NILP (size_arg))
4488 size = DEFAULT_HASH_SIZE;
4489 else if (NATNUMP (size_arg))
4490 size = XFASTINT (size_arg);
4491 else
4492 signal_error ("Invalid hash table size", size_arg);
4494 /* Look for `:rehash-size SIZE'. */
4495 float rehash_size;
4496 i = get_key_arg (QCrehash_size, nargs, args, used);
4497 if (!i)
4498 rehash_size = DEFAULT_REHASH_SIZE;
4499 else if (INTEGERP (args[i]) && 0 < XINT (args[i]))
4500 rehash_size = - XINT (args[i]);
4501 else if (FLOATP (args[i]) && 0 < (float) (XFLOAT_DATA (args[i]) - 1))
4502 rehash_size = (float) (XFLOAT_DATA (args[i]) - 1);
4503 else
4504 signal_error ("Invalid hash table rehash size", args[i]);
4506 /* Look for `:rehash-threshold THRESHOLD'. */
4507 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4508 float rehash_threshold = (!i ? DEFAULT_REHASH_THRESHOLD
4509 : !FLOATP (args[i]) ? 0
4510 : (float) XFLOAT_DATA (args[i]));
4511 if (! (0 < rehash_threshold && rehash_threshold <= 1))
4512 signal_error ("Invalid hash table rehash threshold", args[i]);
4514 /* Look for `:weakness WEAK'. */
4515 i = get_key_arg (QCweakness, nargs, args, used);
4516 weak = i ? args[i] : Qnil;
4517 if (EQ (weak, Qt))
4518 weak = Qkey_and_value;
4519 if (!NILP (weak)
4520 && !EQ (weak, Qkey)
4521 && !EQ (weak, Qvalue)
4522 && !EQ (weak, Qkey_or_value)
4523 && !EQ (weak, Qkey_and_value))
4524 signal_error ("Invalid hash table weakness", weak);
4526 /* Now, all args should have been used up, or there's a problem. */
4527 for (i = 0; i < nargs; ++i)
4528 if (!used[i])
4529 signal_error ("Invalid argument list", args[i]);
4531 SAFE_FREE ();
4532 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak,
4533 pure);
4537 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4538 doc: /* Return a copy of hash table TABLE. */)
4539 (Lisp_Object table)
4541 return copy_hash_table (check_hash_table (table));
4545 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4546 doc: /* Return the number of elements in TABLE. */)
4547 (Lisp_Object table)
4549 return make_number (check_hash_table (table)->count);
4553 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4554 Shash_table_rehash_size, 1, 1, 0,
4555 doc: /* Return the current rehash size of TABLE. */)
4556 (Lisp_Object table)
4558 double rehash_size = check_hash_table (table)->rehash_size;
4559 if (rehash_size < 0)
4561 EMACS_INT s = -rehash_size;
4562 return make_number (min (s, MOST_POSITIVE_FIXNUM));
4564 else
4565 return make_float (rehash_size + 1);
4569 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4570 Shash_table_rehash_threshold, 1, 1, 0,
4571 doc: /* Return the current rehash threshold of TABLE. */)
4572 (Lisp_Object table)
4574 return make_float (check_hash_table (table)->rehash_threshold);
4578 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4579 doc: /* Return the size of TABLE.
4580 The size can be used as an argument to `make-hash-table' to create
4581 a hash table than can hold as many elements as TABLE holds
4582 without need for resizing. */)
4583 (Lisp_Object table)
4585 struct Lisp_Hash_Table *h = check_hash_table (table);
4586 return make_number (HASH_TABLE_SIZE (h));
4590 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4591 doc: /* Return the test TABLE uses. */)
4592 (Lisp_Object table)
4594 return check_hash_table (table)->test.name;
4598 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4599 1, 1, 0,
4600 doc: /* Return the weakness of TABLE. */)
4601 (Lisp_Object table)
4603 return check_hash_table (table)->weak;
4607 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4608 doc: /* Return t if OBJ is a Lisp hash table object. */)
4609 (Lisp_Object obj)
4611 return HASH_TABLE_P (obj) ? Qt : Qnil;
4615 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4616 doc: /* Clear hash table TABLE and return it. */)
4617 (Lisp_Object table)
4619 struct Lisp_Hash_Table *h = check_hash_table (table);
4620 CHECK_IMPURE (table, h);
4621 hash_clear (h);
4622 /* Be compatible with XEmacs. */
4623 return table;
4627 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4628 doc: /* Look up KEY in TABLE and return its associated value.
4629 If KEY is not found, return DFLT which defaults to nil. */)
4630 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4632 struct Lisp_Hash_Table *h = check_hash_table (table);
4633 ptrdiff_t i = hash_lookup (h, key, NULL);
4634 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4638 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4639 doc: /* Associate KEY with VALUE in hash table TABLE.
4640 If KEY is already present in table, replace its current value with
4641 VALUE. In any case, return VALUE. */)
4642 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4644 struct Lisp_Hash_Table *h = check_hash_table (table);
4645 CHECK_IMPURE (table, h);
4647 ptrdiff_t i;
4648 EMACS_UINT hash;
4649 i = hash_lookup (h, key, &hash);
4650 if (i >= 0)
4651 set_hash_value_slot (h, i, value);
4652 else
4653 hash_put (h, key, value, hash);
4655 return value;
4659 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4660 doc: /* Remove KEY from TABLE. */)
4661 (Lisp_Object key, Lisp_Object table)
4663 struct Lisp_Hash_Table *h = check_hash_table (table);
4664 CHECK_IMPURE (table, h);
4665 hash_remove_from_table (h, key);
4666 return Qnil;
4670 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4671 doc: /* Call FUNCTION for all entries in hash table TABLE.
4672 FUNCTION is called with two arguments, KEY and VALUE.
4673 `maphash' always returns nil. */)
4674 (Lisp_Object function, Lisp_Object table)
4676 struct Lisp_Hash_Table *h = check_hash_table (table);
4678 for (ptrdiff_t i = 0; i < HASH_TABLE_SIZE (h); ++i)
4679 if (!NILP (HASH_HASH (h, i)))
4680 call2 (function, HASH_KEY (h, i), HASH_VALUE (h, i));
4682 return Qnil;
4686 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4687 Sdefine_hash_table_test, 3, 3, 0,
4688 doc: /* Define a new hash table test with name NAME, a symbol.
4690 In hash tables created with NAME specified as test, use TEST to
4691 compare keys, and HASH for computing hash codes of keys.
4693 TEST must be a function taking two arguments and returning non-nil if
4694 both arguments are the same. HASH must be a function taking one
4695 argument and returning an object that is the hash code of the argument.
4696 It should be the case that if (eq (funcall HASH x1) (funcall HASH x2))
4697 returns nil, then (funcall TEST x1 x2) also returns nil. */)
4698 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4700 return Fput (name, Qhash_table_test, list2 (test, hash));
4705 /************************************************************************
4706 MD5, SHA-1, and SHA-2
4707 ************************************************************************/
4709 #include "md5.h"
4710 #include "sha1.h"
4711 #include "sha256.h"
4712 #include "sha512.h"
4714 static Lisp_Object
4715 make_digest_string (Lisp_Object digest, int digest_size)
4717 unsigned char *p = SDATA (digest);
4719 for (int i = digest_size - 1; i >= 0; i--)
4721 static char const hexdigit[16] = "0123456789abcdef";
4722 int p_i = p[i];
4723 p[2 * i] = hexdigit[p_i >> 4];
4724 p[2 * i + 1] = hexdigit[p_i & 0xf];
4726 return digest;
4729 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4731 static Lisp_Object
4732 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start,
4733 Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror,
4734 Lisp_Object binary)
4736 ptrdiff_t size, start_char = 0, start_byte, end_char = 0, end_byte;
4737 register EMACS_INT b, e;
4738 register struct buffer *bp;
4739 EMACS_INT temp;
4740 int digest_size;
4741 void *(*hash_func) (const char *, size_t, void *);
4742 Lisp_Object digest;
4744 CHECK_SYMBOL (algorithm);
4746 if (STRINGP (object))
4748 if (NILP (coding_system))
4750 /* Decide the coding-system to encode the data with. */
4752 if (STRING_MULTIBYTE (object))
4753 /* use default, we can't guess correct value */
4754 coding_system = preferred_coding_system ();
4755 else
4756 coding_system = Qraw_text;
4759 if (NILP (Fcoding_system_p (coding_system)))
4761 /* Invalid coding system. */
4763 if (!NILP (noerror))
4764 coding_system = Qraw_text;
4765 else
4766 xsignal1 (Qcoding_system_error, coding_system);
4769 if (STRING_MULTIBYTE (object))
4770 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4772 size = SCHARS (object);
4773 validate_subarray (object, start, end, size, &start_char, &end_char);
4775 start_byte = !start_char ? 0 : string_char_to_byte (object, start_char);
4776 end_byte = (end_char == size
4777 ? SBYTES (object)
4778 : string_char_to_byte (object, end_char));
4780 else
4782 struct buffer *prev = current_buffer;
4784 record_unwind_current_buffer ();
4786 CHECK_BUFFER (object);
4788 bp = XBUFFER (object);
4789 set_buffer_internal (bp);
4791 if (NILP (start))
4792 b = BEGV;
4793 else
4795 CHECK_NUMBER_COERCE_MARKER (start);
4796 b = XINT (start);
4799 if (NILP (end))
4800 e = ZV;
4801 else
4803 CHECK_NUMBER_COERCE_MARKER (end);
4804 e = XINT (end);
4807 if (b > e)
4808 temp = b, b = e, e = temp;
4810 if (!(BEGV <= b && e <= ZV))
4811 args_out_of_range (start, end);
4813 if (NILP (coding_system))
4815 /* Decide the coding-system to encode the data with.
4816 See fileio.c:Fwrite-region */
4818 if (!NILP (Vcoding_system_for_write))
4819 coding_system = Vcoding_system_for_write;
4820 else
4822 bool force_raw_text = 0;
4824 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4825 if (NILP (coding_system)
4826 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4828 coding_system = Qnil;
4829 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4830 force_raw_text = 1;
4833 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4835 /* Check file-coding-system-alist. */
4836 Lisp_Object val = CALLN (Ffind_operation_coding_system,
4837 Qwrite_region, start, end,
4838 Fbuffer_file_name (object));
4839 if (CONSP (val) && !NILP (XCDR (val)))
4840 coding_system = XCDR (val);
4843 if (NILP (coding_system)
4844 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4846 /* If we still have not decided a coding system, use the
4847 default value of buffer-file-coding-system. */
4848 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4851 if (!force_raw_text
4852 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4853 /* Confirm that VAL can surely encode the current region. */
4854 coding_system = call4 (Vselect_safe_coding_system_function,
4855 make_number (b), make_number (e),
4856 coding_system, Qnil);
4858 if (force_raw_text)
4859 coding_system = Qraw_text;
4862 if (NILP (Fcoding_system_p (coding_system)))
4864 /* Invalid coding system. */
4866 if (!NILP (noerror))
4867 coding_system = Qraw_text;
4868 else
4869 xsignal1 (Qcoding_system_error, coding_system);
4873 object = make_buffer_string (b, e, 0);
4874 set_buffer_internal (prev);
4875 /* Discard the unwind protect for recovering the current
4876 buffer. */
4877 specpdl_ptr--;
4879 if (STRING_MULTIBYTE (object))
4880 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4881 start_byte = 0;
4882 end_byte = SBYTES (object);
4885 if (EQ (algorithm, Qmd5))
4887 digest_size = MD5_DIGEST_SIZE;
4888 hash_func = md5_buffer;
4890 else if (EQ (algorithm, Qsha1))
4892 digest_size = SHA1_DIGEST_SIZE;
4893 hash_func = sha1_buffer;
4895 else if (EQ (algorithm, Qsha224))
4897 digest_size = SHA224_DIGEST_SIZE;
4898 hash_func = sha224_buffer;
4900 else if (EQ (algorithm, Qsha256))
4902 digest_size = SHA256_DIGEST_SIZE;
4903 hash_func = sha256_buffer;
4905 else if (EQ (algorithm, Qsha384))
4907 digest_size = SHA384_DIGEST_SIZE;
4908 hash_func = sha384_buffer;
4910 else if (EQ (algorithm, Qsha512))
4912 digest_size = SHA512_DIGEST_SIZE;
4913 hash_func = sha512_buffer;
4915 else
4916 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4918 /* allocate 2 x digest_size so that it can be re-used to hold the
4919 hexified value */
4920 digest = make_uninit_string (digest_size * 2);
4922 hash_func (SSDATA (object) + start_byte,
4923 end_byte - start_byte,
4924 SSDATA (digest));
4926 if (NILP (binary))
4927 return make_digest_string (digest, digest_size);
4928 else
4929 return make_unibyte_string (SSDATA (digest), digest_size);
4932 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4933 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4935 A message digest is a cryptographic checksum of a document, and the
4936 algorithm to calculate it is defined in RFC 1321.
4938 The two optional arguments START and END are character positions
4939 specifying for which part of OBJECT the message digest should be
4940 computed. If nil or omitted, the digest is computed for the whole
4941 OBJECT.
4943 The MD5 message digest is computed from the result of encoding the
4944 text in a coding system, not directly from the internal Emacs form of
4945 the text. The optional fourth argument CODING-SYSTEM specifies which
4946 coding system to encode the text with. It should be the same coding
4947 system that you used or will use when actually writing the text into a
4948 file.
4950 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4951 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4952 system would be chosen by default for writing this text into a file.
4954 If OBJECT is a string, the most preferred coding system (see the
4955 command `prefer-coding-system') is used.
4957 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4958 guesswork fails. Normally, an error is signaled in such case. */)
4959 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4961 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4964 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4965 doc: /* Return the secure hash of OBJECT, a buffer or string.
4966 ALGORITHM is a symbol specifying the hash to use:
4967 md5, sha1, sha224, sha256, sha384 or sha512.
4969 The two optional arguments START and END are positions specifying for
4970 which part of OBJECT to compute the hash. If nil or omitted, uses the
4971 whole OBJECT.
4973 If BINARY is non-nil, returns a string in binary form. */)
4974 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4976 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4979 DEFUN ("buffer-hash", Fbuffer_hash, Sbuffer_hash, 0, 1, 0,
4980 doc: /* Return a hash of the contents of BUFFER-OR-NAME.
4981 This hash is performed on the raw internal format of the buffer,
4982 disregarding any coding systems. If nil, use the current buffer. */ )
4983 (Lisp_Object buffer_or_name)
4985 Lisp_Object buffer;
4986 struct buffer *b;
4987 struct sha1_ctx ctx;
4989 if (NILP (buffer_or_name))
4990 buffer = Fcurrent_buffer ();
4991 else
4992 buffer = Fget_buffer (buffer_or_name);
4993 if (NILP (buffer))
4994 nsberror (buffer_or_name);
4996 b = XBUFFER (buffer);
4997 sha1_init_ctx (&ctx);
4999 /* Process the first part of the buffer. */
5000 sha1_process_bytes (BUF_BEG_ADDR (b),
5001 BUF_GPT_BYTE (b) - BUF_BEG_BYTE (b),
5002 &ctx);
5004 /* If the gap is before the end of the buffer, process the last half
5005 of the buffer. */
5006 if (BUF_GPT_BYTE (b) < BUF_Z_BYTE (b))
5007 sha1_process_bytes (BUF_GAP_END_ADDR (b),
5008 BUF_Z_ADDR (b) - BUF_GAP_END_ADDR (b),
5009 &ctx);
5011 Lisp_Object digest = make_uninit_string (SHA1_DIGEST_SIZE * 2);
5012 sha1_finish_ctx (&ctx, SSDATA (digest));
5013 return make_digest_string (digest, SHA1_DIGEST_SIZE);
5017 void
5018 syms_of_fns (void)
5020 DEFSYM (Qmd5, "md5");
5021 DEFSYM (Qsha1, "sha1");
5022 DEFSYM (Qsha224, "sha224");
5023 DEFSYM (Qsha256, "sha256");
5024 DEFSYM (Qsha384, "sha384");
5025 DEFSYM (Qsha512, "sha512");
5027 /* Hash table stuff. */
5028 DEFSYM (Qhash_table_p, "hash-table-p");
5029 DEFSYM (Qeq, "eq");
5030 DEFSYM (Qeql, "eql");
5031 DEFSYM (Qequal, "equal");
5032 DEFSYM (QCtest, ":test");
5033 DEFSYM (QCsize, ":size");
5034 DEFSYM (QCpurecopy, ":purecopy");
5035 DEFSYM (QCrehash_size, ":rehash-size");
5036 DEFSYM (QCrehash_threshold, ":rehash-threshold");
5037 DEFSYM (QCweakness, ":weakness");
5038 DEFSYM (Qkey, "key");
5039 DEFSYM (Qvalue, "value");
5040 DEFSYM (Qhash_table_test, "hash-table-test");
5041 DEFSYM (Qkey_or_value, "key-or-value");
5042 DEFSYM (Qkey_and_value, "key-and-value");
5044 defsubr (&Ssxhash_eq);
5045 defsubr (&Ssxhash_eql);
5046 defsubr (&Ssxhash_equal);
5047 defsubr (&Smake_hash_table);
5048 defsubr (&Scopy_hash_table);
5049 defsubr (&Shash_table_count);
5050 defsubr (&Shash_table_rehash_size);
5051 defsubr (&Shash_table_rehash_threshold);
5052 defsubr (&Shash_table_size);
5053 defsubr (&Shash_table_test);
5054 defsubr (&Shash_table_weakness);
5055 defsubr (&Shash_table_p);
5056 defsubr (&Sclrhash);
5057 defsubr (&Sgethash);
5058 defsubr (&Sputhash);
5059 defsubr (&Sremhash);
5060 defsubr (&Smaphash);
5061 defsubr (&Sdefine_hash_table_test);
5063 DEFSYM (Qstring_lessp, "string-lessp");
5064 DEFSYM (Qprovide, "provide");
5065 DEFSYM (Qrequire, "require");
5066 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
5067 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
5068 DEFSYM (Qwidget_type, "widget-type");
5070 staticpro (&string_char_byte_cache_string);
5071 string_char_byte_cache_string = Qnil;
5073 require_nesting_list = Qnil;
5074 staticpro (&require_nesting_list);
5076 Fset (Qyes_or_no_p_history, Qnil);
5078 DEFVAR_LISP ("features", Vfeatures,
5079 doc: /* A list of symbols which are the features of the executing Emacs.
5080 Used by `featurep' and `require', and altered by `provide'. */);
5081 Vfeatures = list1 (Qemacs);
5082 DEFSYM (Qfeatures, "features");
5083 /* Let people use lexically scoped vars named `features'. */
5084 Fmake_var_non_special (Qfeatures);
5085 DEFSYM (Qsubfeatures, "subfeatures");
5086 DEFSYM (Qfuncall, "funcall");
5088 #ifdef HAVE_LANGINFO_CODESET
5089 DEFSYM (Qcodeset, "codeset");
5090 DEFSYM (Qdays, "days");
5091 DEFSYM (Qmonths, "months");
5092 DEFSYM (Qpaper, "paper");
5093 #endif /* HAVE_LANGINFO_CODESET */
5095 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
5096 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
5097 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5098 invoked by mouse clicks and mouse menu items.
5100 On some platforms, file selection dialogs are also enabled if this is
5101 non-nil. */);
5102 use_dialog_box = 1;
5104 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
5105 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
5106 This applies to commands from menus and tool bar buttons even when
5107 they are initiated from the keyboard. If `use-dialog-box' is nil,
5108 that disables the use of a file dialog, regardless of the value of
5109 this variable. */);
5110 use_file_dialog = 1;
5112 defsubr (&Sidentity);
5113 defsubr (&Srandom);
5114 defsubr (&Slength);
5115 defsubr (&Ssafe_length);
5116 defsubr (&Sstring_bytes);
5117 defsubr (&Sstring_equal);
5118 defsubr (&Scompare_strings);
5119 defsubr (&Sstring_lessp);
5120 defsubr (&Sstring_version_lessp);
5121 defsubr (&Sstring_collate_lessp);
5122 defsubr (&Sstring_collate_equalp);
5123 defsubr (&Sappend);
5124 defsubr (&Sconcat);
5125 defsubr (&Svconcat);
5126 defsubr (&Scopy_sequence);
5127 defsubr (&Sstring_make_multibyte);
5128 defsubr (&Sstring_make_unibyte);
5129 defsubr (&Sstring_as_multibyte);
5130 defsubr (&Sstring_as_unibyte);
5131 defsubr (&Sstring_to_multibyte);
5132 defsubr (&Sstring_to_unibyte);
5133 defsubr (&Scopy_alist);
5134 defsubr (&Ssubstring);
5135 defsubr (&Ssubstring_no_properties);
5136 defsubr (&Snthcdr);
5137 defsubr (&Snth);
5138 defsubr (&Selt);
5139 defsubr (&Smember);
5140 defsubr (&Smemq);
5141 defsubr (&Smemql);
5142 defsubr (&Sassq);
5143 defsubr (&Sassoc);
5144 defsubr (&Srassq);
5145 defsubr (&Srassoc);
5146 defsubr (&Sdelq);
5147 defsubr (&Sdelete);
5148 defsubr (&Snreverse);
5149 defsubr (&Sreverse);
5150 defsubr (&Ssort);
5151 defsubr (&Splist_get);
5152 defsubr (&Sget);
5153 defsubr (&Splist_put);
5154 defsubr (&Sput);
5155 defsubr (&Slax_plist_get);
5156 defsubr (&Slax_plist_put);
5157 defsubr (&Seql);
5158 defsubr (&Sequal);
5159 defsubr (&Sequal_including_properties);
5160 defsubr (&Sfillarray);
5161 defsubr (&Sclear_string);
5162 defsubr (&Snconc);
5163 defsubr (&Smapcar);
5164 defsubr (&Smapc);
5165 defsubr (&Smapcan);
5166 defsubr (&Smapconcat);
5167 defsubr (&Syes_or_no_p);
5168 defsubr (&Sload_average);
5169 defsubr (&Sfeaturep);
5170 defsubr (&Srequire);
5171 defsubr (&Sprovide);
5172 defsubr (&Splist_member);
5173 defsubr (&Swidget_put);
5174 defsubr (&Swidget_get);
5175 defsubr (&Swidget_apply);
5176 defsubr (&Sbase64_encode_region);
5177 defsubr (&Sbase64_decode_region);
5178 defsubr (&Sbase64_encode_string);
5179 defsubr (&Sbase64_decode_string);
5180 defsubr (&Smd5);
5181 defsubr (&Ssecure_hash);
5182 defsubr (&Sbuffer_hash);
5183 defsubr (&Slocale_info);