* vc/vc-hooks.el (vc-before-save): Clear cache if file has been
[emacs.git] / src / alloc.c
blobbb57d46ee03f1bc4e13264ba8779fd0b0326f4e7
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
26 #include <signal.h>
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "character.h"
42 #include "buffer.h"
43 #include "window.h"
44 #include "keyboard.h"
45 #include "frame.h"
46 #include "blockinput.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
72 #include <fcntl.h>
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
78 #ifdef DOUG_LEA_MALLOC
80 #include <malloc.h>
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
85 #define MMAP_MAX_AREAS 100000000
87 #else /* not DOUG_LEA_MALLOC */
89 /* The following come from gmalloc.c. */
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
96 #endif /* not DOUG_LEA_MALLOC */
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
106 Also, gconf and gsettings may create several threads.
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
120 static pthread_mutex_t alloc_mutex;
122 #define BLOCK_INPUT_ALLOC \
123 do \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
137 while (0)
139 #else /* ! defined HAVE_PTHREAD */
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
164 /* Global variables. */
165 struct emacs_globals globals;
167 /* Number of bytes of consing done since the last gc. */
169 EMACS_INT consing_since_gc;
171 /* Similar minimum, computed from Vgc_cons_percentage. */
173 EMACS_INT gc_relative_threshold;
175 /* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
178 EMACS_INT memory_full_cons_threshold;
180 /* Nonzero during GC. */
182 int gc_in_progress;
184 /* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
188 int abort_on_gc;
190 /* Number of live and free conses etc. */
192 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194 static EMACS_INT total_free_floats, total_floats;
196 /* Points to memory space allocated as "spare", to be freed if we run
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
200 static char *spare_memory[7];
202 /* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
205 #define SPARE_MEMORY (1 << 14)
207 /* Number of extra blocks malloc should get when it needs more core. */
209 static int malloc_hysteresis;
211 /* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
217 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
218 #define PUREBEG (char *) pure
220 /* Pointer to the pure area, and its size. */
222 static char *purebeg;
223 static ptrdiff_t pure_size;
225 /* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
228 static ptrdiff_t pure_bytes_used_before_overflow;
230 /* Value is non-zero if P points into pure space. */
232 #define PURE_POINTER_P(P) \
233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
235 /* Index in pure at which next pure Lisp object will be allocated.. */
237 static ptrdiff_t pure_bytes_used_lisp;
239 /* Number of bytes allocated for non-Lisp objects in pure storage. */
241 static ptrdiff_t pure_bytes_used_non_lisp;
243 /* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
246 const char *pending_malloc_warning;
248 /* Maximum amount of C stack to save when a GC happens. */
250 #ifndef MAX_SAVE_STACK
251 #define MAX_SAVE_STACK 16000
252 #endif
254 /* Buffer in which we save a copy of the C stack at each GC. */
256 #if MAX_SAVE_STACK > 0
257 static char *stack_copy;
258 static ptrdiff_t stack_copy_size;
259 #endif
261 /* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
264 static int ignore_warnings;
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
269 /* Hook run after GC has finished. */
271 static Lisp_Object Qpost_gc_hook;
273 static void mark_buffer (Lisp_Object);
274 static void mark_terminals (void);
275 static void gc_sweep (void);
276 static Lisp_Object make_pure_vector (ptrdiff_t);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static struct Lisp_String *allocate_string (void);
284 static void compact_small_strings (void);
285 static void free_large_strings (void);
286 static void sweep_strings (void);
287 static void free_misc (Lisp_Object);
288 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
290 /* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
294 enum mem_type
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE,
308 /* Special type to denote vector blocks. */
309 MEM_TYPE_VECTOR_BLOCK
312 static void *lisp_malloc (size_t, enum mem_type);
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
324 static Lisp_Object Vdead;
325 #define DEADP(x) EQ (x, Vdead)
327 #ifdef GC_MALLOC_CHECK
329 enum mem_type allocated_mem_type;
331 #endif /* GC_MALLOC_CHECK */
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
338 A red-black tree is a balanced binary tree with the following
339 properties:
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
357 struct mem_node
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
366 /* Start and end of allocated region. */
367 void *start, *end;
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
372 /* Memory type. */
373 enum mem_type type;
376 /* Base address of stack. Set in main. */
378 Lisp_Object *stack_base;
380 /* Root of the tree describing allocated Lisp memory. */
382 static struct mem_node *mem_root;
384 /* Lowest and highest known address in the heap. */
386 static void *min_heap_address, *max_heap_address;
388 /* Sentinel node of the tree. */
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
393 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
394 static void lisp_free (void *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *);
405 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
406 static void mem_init (void);
407 static struct mem_node *mem_insert (void *, void *, enum mem_type);
408 static void mem_insert_fixup (struct mem_node *);
409 #endif
410 static void mem_rotate_left (struct mem_node *);
411 static void mem_rotate_right (struct mem_node *);
412 static void mem_delete (struct mem_node *);
413 static void mem_delete_fixup (struct mem_node *);
414 static inline struct mem_node *mem_find (void *);
417 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
418 static void check_gcpros (void);
419 #endif
421 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
423 #ifndef DEADP
424 # define DEADP(x) 0
425 #endif
427 /* Recording what needs to be marked for gc. */
429 struct gcpro *gcprolist;
431 /* Addresses of staticpro'd variables. Initialize it to a nonzero
432 value; otherwise some compilers put it into BSS. */
434 #define NSTATICS 0x650
435 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
437 /* Index of next unused slot in staticvec. */
439 static int staticidx = 0;
441 static void *pure_alloc (size_t, int);
444 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
445 ALIGNMENT must be a power of 2. */
447 #define ALIGN(ptr, ALIGNMENT) \
448 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
449 & ~ ((ALIGNMENT) - 1)))
453 /************************************************************************
454 Malloc
455 ************************************************************************/
457 /* Function malloc calls this if it finds we are near exhausting storage. */
459 void
460 malloc_warning (const char *str)
462 pending_malloc_warning = str;
466 /* Display an already-pending malloc warning. */
468 void
469 display_malloc_warning (void)
471 call3 (intern ("display-warning"),
472 intern ("alloc"),
473 build_string (pending_malloc_warning),
474 intern ("emergency"));
475 pending_malloc_warning = 0;
478 /* Called if we can't allocate relocatable space for a buffer. */
480 void
481 buffer_memory_full (ptrdiff_t nbytes)
483 /* If buffers use the relocating allocator, no need to free
484 spare_memory, because we may have plenty of malloc space left
485 that we could get, and if we don't, the malloc that fails will
486 itself cause spare_memory to be freed. If buffers don't use the
487 relocating allocator, treat this like any other failing
488 malloc. */
490 #ifndef REL_ALLOC
491 memory_full (nbytes);
492 #endif
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
499 /* A common multiple of the positive integers A and B. Ideally this
500 would be the least common multiple, but there's no way to do that
501 as a constant expression in C, so do the best that we can easily do. */
502 #define COMMON_MULTIPLE(a, b) \
503 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
505 #ifndef XMALLOC_OVERRUN_CHECK
506 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
507 #else
509 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
510 around each block.
512 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
513 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
514 block size in little-endian order. The trailer consists of
515 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
517 The header is used to detect whether this block has been allocated
518 through these functions, as some low-level libc functions may
519 bypass the malloc hooks. */
521 #define XMALLOC_OVERRUN_CHECK_SIZE 16
522 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
523 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
525 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
526 hold a size_t value and (2) the header size is a multiple of the
527 alignment that Emacs needs for C types and for USE_LSB_TAG. */
528 #define XMALLOC_BASE_ALIGNMENT \
529 offsetof ( \
530 struct { \
531 union { long double d; intmax_t i; void *p; } u; \
532 char c; \
533 }, \
536 #if USE_LSB_TAG
537 # define XMALLOC_HEADER_ALIGNMENT \
538 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
539 #else
540 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
541 #endif
542 #define XMALLOC_OVERRUN_SIZE_SIZE \
543 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
544 + XMALLOC_HEADER_ALIGNMENT - 1) \
545 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
546 - XMALLOC_OVERRUN_CHECK_SIZE)
548 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
549 { '\x9a', '\x9b', '\xae', '\xaf',
550 '\xbf', '\xbe', '\xce', '\xcf',
551 '\xea', '\xeb', '\xec', '\xed',
552 '\xdf', '\xde', '\x9c', '\x9d' };
554 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
555 { '\xaa', '\xab', '\xac', '\xad',
556 '\xba', '\xbb', '\xbc', '\xbd',
557 '\xca', '\xcb', '\xcc', '\xcd',
558 '\xda', '\xdb', '\xdc', '\xdd' };
560 /* Insert and extract the block size in the header. */
562 static void
563 xmalloc_put_size (unsigned char *ptr, size_t size)
565 int i;
566 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
568 *--ptr = size & ((1 << CHAR_BIT) - 1);
569 size >>= CHAR_BIT;
573 static size_t
574 xmalloc_get_size (unsigned char *ptr)
576 size_t size = 0;
577 int i;
578 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
579 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
581 size <<= CHAR_BIT;
582 size += *ptr++;
584 return size;
588 /* The call depth in overrun_check functions. For example, this might happen:
589 xmalloc()
590 overrun_check_malloc()
591 -> malloc -> (via hook)_-> emacs_blocked_malloc
592 -> overrun_check_malloc
593 call malloc (hooks are NULL, so real malloc is called).
594 malloc returns 10000.
595 add overhead, return 10016.
596 <- (back in overrun_check_malloc)
597 add overhead again, return 10032
598 xmalloc returns 10032.
600 (time passes).
602 xfree(10032)
603 overrun_check_free(10032)
604 decrease overhead
605 free(10016) <- crash, because 10000 is the original pointer. */
607 static ptrdiff_t check_depth;
609 /* Like malloc, but wraps allocated block with header and trailer. */
611 static void *
612 overrun_check_malloc (size_t size)
614 register unsigned char *val;
615 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
616 if (SIZE_MAX - overhead < size)
617 abort ();
619 val = (unsigned char *) malloc (size + overhead);
620 if (val && check_depth == 1)
622 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
623 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
624 xmalloc_put_size (val, size);
625 memcpy (val + size, xmalloc_overrun_check_trailer,
626 XMALLOC_OVERRUN_CHECK_SIZE);
628 --check_depth;
629 return val;
633 /* Like realloc, but checks old block for overrun, and wraps new block
634 with header and trailer. */
636 static void *
637 overrun_check_realloc (void *block, size_t size)
639 register unsigned char *val = (unsigned char *) block;
640 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
641 if (SIZE_MAX - overhead < size)
642 abort ();
644 if (val
645 && check_depth == 1
646 && memcmp (xmalloc_overrun_check_header,
647 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
648 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
650 size_t osize = xmalloc_get_size (val);
651 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
652 XMALLOC_OVERRUN_CHECK_SIZE))
653 abort ();
654 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
656 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
659 val = realloc (val, size + overhead);
661 if (val && check_depth == 1)
663 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
664 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
665 xmalloc_put_size (val, size);
666 memcpy (val + size, xmalloc_overrun_check_trailer,
667 XMALLOC_OVERRUN_CHECK_SIZE);
669 --check_depth;
670 return val;
673 /* Like free, but checks block for overrun. */
675 static void
676 overrun_check_free (void *block)
678 unsigned char *val = (unsigned char *) block;
680 ++check_depth;
681 if (val
682 && check_depth == 1
683 && memcmp (xmalloc_overrun_check_header,
684 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
685 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
687 size_t osize = xmalloc_get_size (val);
688 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
689 XMALLOC_OVERRUN_CHECK_SIZE))
690 abort ();
691 #ifdef XMALLOC_CLEAR_FREE_MEMORY
692 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
693 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
694 #else
695 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
696 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
697 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
698 #endif
701 free (val);
702 --check_depth;
705 #undef malloc
706 #undef realloc
707 #undef free
708 #define malloc overrun_check_malloc
709 #define realloc overrun_check_realloc
710 #define free overrun_check_free
711 #endif
713 #ifdef SYNC_INPUT
714 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
715 there's no need to block input around malloc. */
716 #define MALLOC_BLOCK_INPUT ((void)0)
717 #define MALLOC_UNBLOCK_INPUT ((void)0)
718 #else
719 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
720 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
721 #endif
723 /* Like malloc but check for no memory and block interrupt input.. */
725 void *
726 xmalloc (size_t size)
728 void *val;
730 MALLOC_BLOCK_INPUT;
731 val = malloc (size);
732 MALLOC_UNBLOCK_INPUT;
734 if (!val && size)
735 memory_full (size);
736 return val;
740 /* Like realloc but check for no memory and block interrupt input.. */
742 void *
743 xrealloc (void *block, size_t size)
745 void *val;
747 MALLOC_BLOCK_INPUT;
748 /* We must call malloc explicitly when BLOCK is 0, since some
749 reallocs don't do this. */
750 if (! block)
751 val = malloc (size);
752 else
753 val = realloc (block, size);
754 MALLOC_UNBLOCK_INPUT;
756 if (!val && size)
757 memory_full (size);
758 return val;
762 /* Like free but block interrupt input. */
764 void
765 xfree (void *block)
767 if (!block)
768 return;
769 MALLOC_BLOCK_INPUT;
770 free (block);
771 MALLOC_UNBLOCK_INPUT;
772 /* We don't call refill_memory_reserve here
773 because that duplicates doing so in emacs_blocked_free
774 and the criterion should go there. */
778 /* Other parts of Emacs pass large int values to allocator functions
779 expecting ptrdiff_t. This is portable in practice, but check it to
780 be safe. */
781 verify (INT_MAX <= PTRDIFF_MAX);
784 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
785 Signal an error on memory exhaustion, and block interrupt input. */
787 void *
788 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
790 eassert (0 <= nitems && 0 < item_size);
791 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
792 memory_full (SIZE_MAX);
793 return xmalloc (nitems * item_size);
797 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
798 Signal an error on memory exhaustion, and block interrupt input. */
800 void *
801 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
803 eassert (0 <= nitems && 0 < item_size);
804 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
805 memory_full (SIZE_MAX);
806 return xrealloc (pa, nitems * item_size);
810 /* Grow PA, which points to an array of *NITEMS items, and return the
811 location of the reallocated array, updating *NITEMS to reflect its
812 new size. The new array will contain at least NITEMS_INCR_MIN more
813 items, but will not contain more than NITEMS_MAX items total.
814 ITEM_SIZE is the size of each item, in bytes.
816 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
817 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
818 infinity.
820 If PA is null, then allocate a new array instead of reallocating
821 the old one. Thus, to grow an array A without saving its old
822 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
823 &NITEMS, ...).
825 Block interrupt input as needed. If memory exhaustion occurs, set
826 *NITEMS to zero if PA is null, and signal an error (i.e., do not
827 return). */
829 void *
830 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
831 ptrdiff_t nitems_max, ptrdiff_t item_size)
833 /* The approximate size to use for initial small allocation
834 requests. This is the largest "small" request for the GNU C
835 library malloc. */
836 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
838 /* If the array is tiny, grow it to about (but no greater than)
839 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
840 ptrdiff_t n = *nitems;
841 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
842 ptrdiff_t half_again = n >> 1;
843 ptrdiff_t incr_estimate = max (tiny_max, half_again);
845 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
846 NITEMS_MAX, and what the C language can represent safely. */
847 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
848 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
849 ? nitems_max : C_language_max);
850 ptrdiff_t nitems_incr_max = n_max - n;
851 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
853 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
854 if (! pa)
855 *nitems = 0;
856 if (nitems_incr_max < incr)
857 memory_full (SIZE_MAX);
858 n += incr;
859 pa = xrealloc (pa, n * item_size);
860 *nitems = n;
861 return pa;
865 /* Like strdup, but uses xmalloc. */
867 char *
868 xstrdup (const char *s)
870 size_t len = strlen (s) + 1;
871 char *p = (char *) xmalloc (len);
872 memcpy (p, s, len);
873 return p;
877 /* Unwind for SAFE_ALLOCA */
879 Lisp_Object
880 safe_alloca_unwind (Lisp_Object arg)
882 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
884 p->dogc = 0;
885 xfree (p->pointer);
886 p->pointer = 0;
887 free_misc (arg);
888 return Qnil;
892 /* Like malloc but used for allocating Lisp data. NBYTES is the
893 number of bytes to allocate, TYPE describes the intended use of the
894 allocated memory block (for strings, for conses, ...). */
896 #if ! USE_LSB_TAG
897 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
898 #endif
900 static void *
901 lisp_malloc (size_t nbytes, enum mem_type type)
903 register void *val;
905 MALLOC_BLOCK_INPUT;
907 #ifdef GC_MALLOC_CHECK
908 allocated_mem_type = type;
909 #endif
911 val = (void *) malloc (nbytes);
913 #if ! USE_LSB_TAG
914 /* If the memory just allocated cannot be addressed thru a Lisp
915 object's pointer, and it needs to be,
916 that's equivalent to running out of memory. */
917 if (val && type != MEM_TYPE_NON_LISP)
919 Lisp_Object tem;
920 XSETCONS (tem, (char *) val + nbytes - 1);
921 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
923 lisp_malloc_loser = val;
924 free (val);
925 val = 0;
928 #endif
930 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
931 if (val && type != MEM_TYPE_NON_LISP)
932 mem_insert (val, (char *) val + nbytes, type);
933 #endif
935 MALLOC_UNBLOCK_INPUT;
936 if (!val && nbytes)
937 memory_full (nbytes);
938 return val;
941 /* Free BLOCK. This must be called to free memory allocated with a
942 call to lisp_malloc. */
944 static void
945 lisp_free (void *block)
947 MALLOC_BLOCK_INPUT;
948 free (block);
949 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
950 mem_delete (mem_find (block));
951 #endif
952 MALLOC_UNBLOCK_INPUT;
955 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
957 /* The entry point is lisp_align_malloc which returns blocks of at most
958 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
960 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
961 #define USE_POSIX_MEMALIGN 1
962 #endif
964 /* BLOCK_ALIGN has to be a power of 2. */
965 #define BLOCK_ALIGN (1 << 10)
967 /* Padding to leave at the end of a malloc'd block. This is to give
968 malloc a chance to minimize the amount of memory wasted to alignment.
969 It should be tuned to the particular malloc library used.
970 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
971 posix_memalign on the other hand would ideally prefer a value of 4
972 because otherwise, there's 1020 bytes wasted between each ablocks.
973 In Emacs, testing shows that those 1020 can most of the time be
974 efficiently used by malloc to place other objects, so a value of 0 can
975 still preferable unless you have a lot of aligned blocks and virtually
976 nothing else. */
977 #define BLOCK_PADDING 0
978 #define BLOCK_BYTES \
979 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
981 /* Internal data structures and constants. */
983 #define ABLOCKS_SIZE 16
985 /* An aligned block of memory. */
986 struct ablock
988 union
990 char payload[BLOCK_BYTES];
991 struct ablock *next_free;
992 } x;
993 /* `abase' is the aligned base of the ablocks. */
994 /* It is overloaded to hold the virtual `busy' field that counts
995 the number of used ablock in the parent ablocks.
996 The first ablock has the `busy' field, the others have the `abase'
997 field. To tell the difference, we assume that pointers will have
998 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
999 is used to tell whether the real base of the parent ablocks is `abase'
1000 (if not, the word before the first ablock holds a pointer to the
1001 real base). */
1002 struct ablocks *abase;
1003 /* The padding of all but the last ablock is unused. The padding of
1004 the last ablock in an ablocks is not allocated. */
1005 #if BLOCK_PADDING
1006 char padding[BLOCK_PADDING];
1007 #endif
1010 /* A bunch of consecutive aligned blocks. */
1011 struct ablocks
1013 struct ablock blocks[ABLOCKS_SIZE];
1016 /* Size of the block requested from malloc or posix_memalign. */
1017 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1019 #define ABLOCK_ABASE(block) \
1020 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1021 ? (struct ablocks *)(block) \
1022 : (block)->abase)
1024 /* Virtual `busy' field. */
1025 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1027 /* Pointer to the (not necessarily aligned) malloc block. */
1028 #ifdef USE_POSIX_MEMALIGN
1029 #define ABLOCKS_BASE(abase) (abase)
1030 #else
1031 #define ABLOCKS_BASE(abase) \
1032 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1033 #endif
1035 /* The list of free ablock. */
1036 static struct ablock *free_ablock;
1038 /* Allocate an aligned block of nbytes.
1039 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1040 smaller or equal to BLOCK_BYTES. */
1041 static void *
1042 lisp_align_malloc (size_t nbytes, enum mem_type type)
1044 void *base, *val;
1045 struct ablocks *abase;
1047 eassert (nbytes <= BLOCK_BYTES);
1049 MALLOC_BLOCK_INPUT;
1051 #ifdef GC_MALLOC_CHECK
1052 allocated_mem_type = type;
1053 #endif
1055 if (!free_ablock)
1057 int i;
1058 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1060 #ifdef DOUG_LEA_MALLOC
1061 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1062 because mapped region contents are not preserved in
1063 a dumped Emacs. */
1064 mallopt (M_MMAP_MAX, 0);
1065 #endif
1067 #ifdef USE_POSIX_MEMALIGN
1069 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1070 if (err)
1071 base = NULL;
1072 abase = base;
1074 #else
1075 base = malloc (ABLOCKS_BYTES);
1076 abase = ALIGN (base, BLOCK_ALIGN);
1077 #endif
1079 if (base == 0)
1081 MALLOC_UNBLOCK_INPUT;
1082 memory_full (ABLOCKS_BYTES);
1085 aligned = (base == abase);
1086 if (!aligned)
1087 ((void**)abase)[-1] = base;
1089 #ifdef DOUG_LEA_MALLOC
1090 /* Back to a reasonable maximum of mmap'ed areas. */
1091 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1092 #endif
1094 #if ! USE_LSB_TAG
1095 /* If the memory just allocated cannot be addressed thru a Lisp
1096 object's pointer, and it needs to be, that's equivalent to
1097 running out of memory. */
1098 if (type != MEM_TYPE_NON_LISP)
1100 Lisp_Object tem;
1101 char *end = (char *) base + ABLOCKS_BYTES - 1;
1102 XSETCONS (tem, end);
1103 if ((char *) XCONS (tem) != end)
1105 lisp_malloc_loser = base;
1106 free (base);
1107 MALLOC_UNBLOCK_INPUT;
1108 memory_full (SIZE_MAX);
1111 #endif
1113 /* Initialize the blocks and put them on the free list.
1114 If `base' was not properly aligned, we can't use the last block. */
1115 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1117 abase->blocks[i].abase = abase;
1118 abase->blocks[i].x.next_free = free_ablock;
1119 free_ablock = &abase->blocks[i];
1121 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1123 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1124 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1125 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1126 eassert (ABLOCKS_BASE (abase) == base);
1127 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1130 abase = ABLOCK_ABASE (free_ablock);
1131 ABLOCKS_BUSY (abase) =
1132 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1133 val = free_ablock;
1134 free_ablock = free_ablock->x.next_free;
1136 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1137 if (type != MEM_TYPE_NON_LISP)
1138 mem_insert (val, (char *) val + nbytes, type);
1139 #endif
1141 MALLOC_UNBLOCK_INPUT;
1143 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1144 return val;
1147 static void
1148 lisp_align_free (void *block)
1150 struct ablock *ablock = block;
1151 struct ablocks *abase = ABLOCK_ABASE (ablock);
1153 MALLOC_BLOCK_INPUT;
1154 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1155 mem_delete (mem_find (block));
1156 #endif
1157 /* Put on free list. */
1158 ablock->x.next_free = free_ablock;
1159 free_ablock = ablock;
1160 /* Update busy count. */
1161 ABLOCKS_BUSY (abase)
1162 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1164 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1165 { /* All the blocks are free. */
1166 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1167 struct ablock **tem = &free_ablock;
1168 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1170 while (*tem)
1172 if (*tem >= (struct ablock *) abase && *tem < atop)
1174 i++;
1175 *tem = (*tem)->x.next_free;
1177 else
1178 tem = &(*tem)->x.next_free;
1180 eassert ((aligned & 1) == aligned);
1181 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1182 #ifdef USE_POSIX_MEMALIGN
1183 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1184 #endif
1185 free (ABLOCKS_BASE (abase));
1187 MALLOC_UNBLOCK_INPUT;
1190 /* Return a new buffer structure allocated from the heap with
1191 a call to lisp_malloc. */
1193 struct buffer *
1194 allocate_buffer (void)
1196 struct buffer *b
1197 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1198 MEM_TYPE_BUFFER);
1199 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1200 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1201 / sizeof (EMACS_INT)));
1202 return b;
1206 #ifndef SYSTEM_MALLOC
1208 /* Arranging to disable input signals while we're in malloc.
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1213 pair; unfortunately, we have no idea what C library functions
1214 might call malloc, so we can't really protect them unless you're
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
1218 #ifndef SYNC_INPUT
1219 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
1222 #ifndef DOUG_LEA_MALLOC
1223 extern void * (*__malloc_hook) (size_t, const void *);
1224 extern void * (*__realloc_hook) (void *, size_t, const void *);
1225 extern void (*__free_hook) (void *, const void *);
1226 /* Else declared in malloc.h, perhaps with an extra arg. */
1227 #endif /* DOUG_LEA_MALLOC */
1228 static void * (*old_malloc_hook) (size_t, const void *);
1229 static void * (*old_realloc_hook) (void *, size_t, const void*);
1230 static void (*old_free_hook) (void*, const void*);
1232 #ifdef DOUG_LEA_MALLOC
1233 # define BYTES_USED (mallinfo ().uordblks)
1234 #else
1235 # define BYTES_USED _bytes_used
1236 #endif
1238 #ifdef GC_MALLOC_CHECK
1239 static int dont_register_blocks;
1240 #endif
1242 static size_t bytes_used_when_reconsidered;
1244 /* Value of _bytes_used, when spare_memory was freed. */
1246 static size_t bytes_used_when_full;
1248 /* This function is used as the hook for free to call. */
1250 static void
1251 emacs_blocked_free (void *ptr, const void *ptr2)
1253 BLOCK_INPUT_ALLOC;
1255 #ifdef GC_MALLOC_CHECK
1256 if (ptr)
1258 struct mem_node *m;
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1267 else
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1273 #endif /* GC_MALLOC_CHECK */
1275 __free_hook = old_free_hook;
1276 free (ptr);
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
1281 if (! NILP (Vmemory_full)
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
1287 > ((bytes_used_when_reconsidered = BYTES_USED)
1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1289 refill_memory_reserve ();
1291 __free_hook = emacs_blocked_free;
1292 UNBLOCK_INPUT_ALLOC;
1296 /* This function is the malloc hook that Emacs uses. */
1298 static void *
1299 emacs_blocked_malloc (size_t size, const void *ptr)
1301 void *value;
1303 BLOCK_INPUT_ALLOC;
1304 __malloc_hook = old_malloc_hook;
1305 #ifdef DOUG_LEA_MALLOC
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1308 #else
1309 __malloc_extra_blocks = malloc_hysteresis;
1310 #endif
1312 value = (void *) malloc (size);
1314 #ifdef GC_MALLOC_CHECK
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1327 if (!dont_register_blocks)
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1333 #endif /* GC_MALLOC_CHECK */
1335 __malloc_hook = emacs_blocked_malloc;
1336 UNBLOCK_INPUT_ALLOC;
1338 /* fprintf (stderr, "%p malloc\n", value); */
1339 return value;
1343 /* This function is the realloc hook that Emacs uses. */
1345 static void *
1346 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1348 void *value;
1350 BLOCK_INPUT_ALLOC;
1351 __realloc_hook = old_realloc_hook;
1353 #ifdef GC_MALLOC_CHECK
1354 if (ptr)
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1365 mem_delete (m);
1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372 #endif /* GC_MALLOC_CHECK */
1374 value = (void *) realloc (ptr, size);
1376 #ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392 #endif /* GC_MALLOC_CHECK */
1394 __realloc_hook = emacs_blocked_realloc;
1395 UNBLOCK_INPUT_ALLOC;
1397 return value;
1401 #ifdef HAVE_PTHREAD
1402 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1407 void
1408 reset_malloc_hooks (void)
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
1414 #endif /* HAVE_PTHREAD */
1417 /* Called from main to set up malloc to use our hooks. */
1419 void
1420 uninterrupt_malloc (void)
1422 #ifdef HAVE_PTHREAD
1423 #ifdef DOUG_LEA_MALLOC
1424 pthread_mutexattr_t attr;
1426 /* GLIBC has a faster way to do this, but let's keep it portable.
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
1431 #else /* !DOUG_LEA_MALLOC */
1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435 #endif /* !DOUG_LEA_MALLOC */
1436 #endif /* HAVE_PTHREAD */
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
1440 __free_hook = emacs_blocked_free;
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
1444 __malloc_hook = emacs_blocked_malloc;
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
1448 __realloc_hook = emacs_blocked_realloc;
1451 #endif /* not SYNC_INPUT */
1452 #endif /* not SYSTEM_MALLOC */
1456 /***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1460 /* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1463 #define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1466 /* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1469 struct interval_block
1471 /* Place `intervals' first, to preserve alignment. */
1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
1473 struct interval_block *next;
1476 /* Current interval block. Its `next' pointer points to older
1477 blocks. */
1479 static struct interval_block *interval_block;
1481 /* Index in interval_block above of the next unused interval
1482 structure. */
1484 static int interval_block_index;
1486 /* Number of free and live intervals. */
1488 static EMACS_INT total_free_intervals, total_intervals;
1490 /* List of free intervals. */
1492 static INTERVAL interval_free_list;
1495 /* Initialize interval allocation. */
1497 static void
1498 init_intervals (void)
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
1502 interval_free_list = 0;
1506 /* Return a new interval. */
1508 INTERVAL
1509 make_interval (void)
1511 INTERVAL val;
1513 /* eassert (!handling_signal); */
1515 MALLOC_BLOCK_INPUT;
1517 if (interval_free_list)
1519 val = interval_free_list;
1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
1522 else
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1526 register struct interval_block *newi;
1528 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1529 MEM_TYPE_NON_LISP);
1531 newi->next = interval_block;
1532 interval_block = newi;
1533 interval_block_index = 0;
1535 val = &interval_block->intervals[interval_block_index++];
1538 MALLOC_UNBLOCK_INPUT;
1540 consing_since_gc += sizeof (struct interval);
1541 intervals_consed++;
1542 RESET_INTERVAL (val);
1543 val->gcmarkbit = 0;
1544 return val;
1548 /* Mark Lisp objects in interval I. */
1550 static void
1551 mark_interval (register INTERVAL i, Lisp_Object dummy)
1553 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1554 i->gcmarkbit = 1;
1555 mark_object (i->plist);
1559 /* Mark the interval tree rooted in TREE. Don't call this directly;
1560 use the macro MARK_INTERVAL_TREE instead. */
1562 static void
1563 mark_interval_tree (register INTERVAL tree)
1565 /* No need to test if this tree has been marked already; this
1566 function is always called through the MARK_INTERVAL_TREE macro,
1567 which takes care of that. */
1569 traverse_intervals_noorder (tree, mark_interval, Qnil);
1573 /* Mark the interval tree rooted in I. */
1575 #define MARK_INTERVAL_TREE(i) \
1576 do { \
1577 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1578 mark_interval_tree (i); \
1579 } while (0)
1582 #define UNMARK_BALANCE_INTERVALS(i) \
1583 do { \
1584 if (! NULL_INTERVAL_P (i)) \
1585 (i) = balance_intervals (i); \
1586 } while (0)
1588 /***********************************************************************
1589 String Allocation
1590 ***********************************************************************/
1592 /* Lisp_Strings are allocated in string_block structures. When a new
1593 string_block is allocated, all the Lisp_Strings it contains are
1594 added to a free-list string_free_list. When a new Lisp_String is
1595 needed, it is taken from that list. During the sweep phase of GC,
1596 string_blocks that are entirely free are freed, except two which
1597 we keep.
1599 String data is allocated from sblock structures. Strings larger
1600 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1601 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1603 Sblocks consist internally of sdata structures, one for each
1604 Lisp_String. The sdata structure points to the Lisp_String it
1605 belongs to. The Lisp_String points back to the `u.data' member of
1606 its sdata structure.
1608 When a Lisp_String is freed during GC, it is put back on
1609 string_free_list, and its `data' member and its sdata's `string'
1610 pointer is set to null. The size of the string is recorded in the
1611 `u.nbytes' member of the sdata. So, sdata structures that are no
1612 longer used, can be easily recognized, and it's easy to compact the
1613 sblocks of small strings which we do in compact_small_strings. */
1615 /* Size in bytes of an sblock structure used for small strings. This
1616 is 8192 minus malloc overhead. */
1618 #define SBLOCK_SIZE 8188
1620 /* Strings larger than this are considered large strings. String data
1621 for large strings is allocated from individual sblocks. */
1623 #define LARGE_STRING_BYTES 1024
1625 /* Structure describing string memory sub-allocated from an sblock.
1626 This is where the contents of Lisp strings are stored. */
1628 struct sdata
1630 /* Back-pointer to the string this sdata belongs to. If null, this
1631 structure is free, and the NBYTES member of the union below
1632 contains the string's byte size (the same value that STRING_BYTES
1633 would return if STRING were non-null). If non-null, STRING_BYTES
1634 (STRING) is the size of the data, and DATA contains the string's
1635 contents. */
1636 struct Lisp_String *string;
1638 #ifdef GC_CHECK_STRING_BYTES
1640 ptrdiff_t nbytes;
1641 unsigned char data[1];
1643 #define SDATA_NBYTES(S) (S)->nbytes
1644 #define SDATA_DATA(S) (S)->data
1645 #define SDATA_SELECTOR(member) member
1647 #else /* not GC_CHECK_STRING_BYTES */
1649 union
1651 /* When STRING is non-null. */
1652 unsigned char data[1];
1654 /* When STRING is null. */
1655 ptrdiff_t nbytes;
1656 } u;
1658 #define SDATA_NBYTES(S) (S)->u.nbytes
1659 #define SDATA_DATA(S) (S)->u.data
1660 #define SDATA_SELECTOR(member) u.member
1662 #endif /* not GC_CHECK_STRING_BYTES */
1664 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1668 /* Structure describing a block of memory which is sub-allocated to
1669 obtain string data memory for strings. Blocks for small strings
1670 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1671 as large as needed. */
1673 struct sblock
1675 /* Next in list. */
1676 struct sblock *next;
1678 /* Pointer to the next free sdata block. This points past the end
1679 of the sblock if there isn't any space left in this block. */
1680 struct sdata *next_free;
1682 /* Start of data. */
1683 struct sdata first_data;
1686 /* Number of Lisp strings in a string_block structure. The 1020 is
1687 1024 minus malloc overhead. */
1689 #define STRING_BLOCK_SIZE \
1690 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1692 /* Structure describing a block from which Lisp_String structures
1693 are allocated. */
1695 struct string_block
1697 /* Place `strings' first, to preserve alignment. */
1698 struct Lisp_String strings[STRING_BLOCK_SIZE];
1699 struct string_block *next;
1702 /* Head and tail of the list of sblock structures holding Lisp string
1703 data. We always allocate from current_sblock. The NEXT pointers
1704 in the sblock structures go from oldest_sblock to current_sblock. */
1706 static struct sblock *oldest_sblock, *current_sblock;
1708 /* List of sblocks for large strings. */
1710 static struct sblock *large_sblocks;
1712 /* List of string_block structures. */
1714 static struct string_block *string_blocks;
1716 /* Free-list of Lisp_Strings. */
1718 static struct Lisp_String *string_free_list;
1720 /* Number of live and free Lisp_Strings. */
1722 static EMACS_INT total_strings, total_free_strings;
1724 /* Number of bytes used by live strings. */
1726 static EMACS_INT total_string_size;
1728 /* Given a pointer to a Lisp_String S which is on the free-list
1729 string_free_list, return a pointer to its successor in the
1730 free-list. */
1732 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1734 /* Return a pointer to the sdata structure belonging to Lisp string S.
1735 S must be live, i.e. S->data must not be null. S->data is actually
1736 a pointer to the `u.data' member of its sdata structure; the
1737 structure starts at a constant offset in front of that. */
1739 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1742 #ifdef GC_CHECK_STRING_OVERRUN
1744 /* We check for overrun in string data blocks by appending a small
1745 "cookie" after each allocated string data block, and check for the
1746 presence of this cookie during GC. */
1748 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1749 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1750 { '\xde', '\xad', '\xbe', '\xef' };
1752 #else
1753 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1754 #endif
1756 /* Value is the size of an sdata structure large enough to hold NBYTES
1757 bytes of string data. The value returned includes a terminating
1758 NUL byte, the size of the sdata structure, and padding. */
1760 #ifdef GC_CHECK_STRING_BYTES
1762 #define SDATA_SIZE(NBYTES) \
1763 ((SDATA_DATA_OFFSET \
1764 + (NBYTES) + 1 \
1765 + sizeof (ptrdiff_t) - 1) \
1766 & ~(sizeof (ptrdiff_t) - 1))
1768 #else /* not GC_CHECK_STRING_BYTES */
1770 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1771 less than the size of that member. The 'max' is not needed when
1772 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1773 alignment code reserves enough space. */
1775 #define SDATA_SIZE(NBYTES) \
1776 ((SDATA_DATA_OFFSET \
1777 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1778 ? NBYTES \
1779 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1780 + 1 \
1781 + sizeof (ptrdiff_t) - 1) \
1782 & ~(sizeof (ptrdiff_t) - 1))
1784 #endif /* not GC_CHECK_STRING_BYTES */
1786 /* Extra bytes to allocate for each string. */
1788 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1790 /* Exact bound on the number of bytes in a string, not counting the
1791 terminating null. A string cannot contain more bytes than
1792 STRING_BYTES_BOUND, nor can it be so long that the size_t
1793 arithmetic in allocate_string_data would overflow while it is
1794 calculating a value to be passed to malloc. */
1795 #define STRING_BYTES_MAX \
1796 min (STRING_BYTES_BOUND, \
1797 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1798 - GC_STRING_EXTRA \
1799 - offsetof (struct sblock, first_data) \
1800 - SDATA_DATA_OFFSET) \
1801 & ~(sizeof (EMACS_INT) - 1)))
1803 /* Initialize string allocation. Called from init_alloc_once. */
1805 static void
1806 init_strings (void)
1808 total_strings = total_free_strings = total_string_size = 0;
1809 oldest_sblock = current_sblock = large_sblocks = NULL;
1810 string_blocks = NULL;
1811 string_free_list = NULL;
1812 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1813 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1817 #ifdef GC_CHECK_STRING_BYTES
1819 static int check_string_bytes_count;
1821 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1824 /* Like GC_STRING_BYTES, but with debugging check. */
1826 ptrdiff_t
1827 string_bytes (struct Lisp_String *s)
1829 ptrdiff_t nbytes =
1830 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1832 if (!PURE_POINTER_P (s)
1833 && s->data
1834 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1835 abort ();
1836 return nbytes;
1839 /* Check validity of Lisp strings' string_bytes member in B. */
1841 static void
1842 check_sblock (struct sblock *b)
1844 struct sdata *from, *end, *from_end;
1846 end = b->next_free;
1848 for (from = &b->first_data; from < end; from = from_end)
1850 /* Compute the next FROM here because copying below may
1851 overwrite data we need to compute it. */
1852 ptrdiff_t nbytes;
1854 /* Check that the string size recorded in the string is the
1855 same as the one recorded in the sdata structure. */
1856 if (from->string)
1857 CHECK_STRING_BYTES (from->string);
1859 if (from->string)
1860 nbytes = GC_STRING_BYTES (from->string);
1861 else
1862 nbytes = SDATA_NBYTES (from);
1864 nbytes = SDATA_SIZE (nbytes);
1865 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1870 /* Check validity of Lisp strings' string_bytes member. ALL_P
1871 non-zero means check all strings, otherwise check only most
1872 recently allocated strings. Used for hunting a bug. */
1874 static void
1875 check_string_bytes (int all_p)
1877 if (all_p)
1879 struct sblock *b;
1881 for (b = large_sblocks; b; b = b->next)
1883 struct Lisp_String *s = b->first_data.string;
1884 if (s)
1885 CHECK_STRING_BYTES (s);
1888 for (b = oldest_sblock; b; b = b->next)
1889 check_sblock (b);
1891 else
1892 check_sblock (current_sblock);
1895 #endif /* GC_CHECK_STRING_BYTES */
1897 #ifdef GC_CHECK_STRING_FREE_LIST
1899 /* Walk through the string free list looking for bogus next pointers.
1900 This may catch buffer overrun from a previous string. */
1902 static void
1903 check_string_free_list (void)
1905 struct Lisp_String *s;
1907 /* Pop a Lisp_String off the free-list. */
1908 s = string_free_list;
1909 while (s != NULL)
1911 if ((uintptr_t) s < 1024)
1912 abort ();
1913 s = NEXT_FREE_LISP_STRING (s);
1916 #else
1917 #define check_string_free_list()
1918 #endif
1920 /* Return a new Lisp_String. */
1922 static struct Lisp_String *
1923 allocate_string (void)
1925 struct Lisp_String *s;
1927 /* eassert (!handling_signal); */
1929 MALLOC_BLOCK_INPUT;
1931 /* If the free-list is empty, allocate a new string_block, and
1932 add all the Lisp_Strings in it to the free-list. */
1933 if (string_free_list == NULL)
1935 struct string_block *b;
1936 int i;
1938 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1939 b->next = string_blocks;
1940 string_blocks = b;
1942 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1944 s = b->strings + i;
1945 /* Every string on a free list should have NULL data pointer. */
1946 s->data = NULL;
1947 NEXT_FREE_LISP_STRING (s) = string_free_list;
1948 string_free_list = s;
1951 total_free_strings += STRING_BLOCK_SIZE;
1954 check_string_free_list ();
1956 /* Pop a Lisp_String off the free-list. */
1957 s = string_free_list;
1958 string_free_list = NEXT_FREE_LISP_STRING (s);
1960 MALLOC_UNBLOCK_INPUT;
1962 --total_free_strings;
1963 ++total_strings;
1964 ++strings_consed;
1965 consing_since_gc += sizeof *s;
1967 #ifdef GC_CHECK_STRING_BYTES
1968 if (!noninteractive)
1970 if (++check_string_bytes_count == 200)
1972 check_string_bytes_count = 0;
1973 check_string_bytes (1);
1975 else
1976 check_string_bytes (0);
1978 #endif /* GC_CHECK_STRING_BYTES */
1980 return s;
1984 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1985 plus a NUL byte at the end. Allocate an sdata structure for S, and
1986 set S->data to its `u.data' member. Store a NUL byte at the end of
1987 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1988 S->data if it was initially non-null. */
1990 void
1991 allocate_string_data (struct Lisp_String *s,
1992 EMACS_INT nchars, EMACS_INT nbytes)
1994 struct sdata *data;
1995 struct sblock *b;
1996 ptrdiff_t needed;
1998 if (STRING_BYTES_MAX < nbytes)
1999 string_overflow ();
2001 /* Determine the number of bytes needed to store NBYTES bytes
2002 of string data. */
2003 needed = SDATA_SIZE (nbytes);
2005 MALLOC_BLOCK_INPUT;
2007 if (nbytes > LARGE_STRING_BYTES)
2009 size_t size = offsetof (struct sblock, first_data) + needed;
2011 #ifdef DOUG_LEA_MALLOC
2012 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2013 because mapped region contents are not preserved in
2014 a dumped Emacs.
2016 In case you think of allowing it in a dumped Emacs at the
2017 cost of not being able to re-dump, there's another reason:
2018 mmap'ed data typically have an address towards the top of the
2019 address space, which won't fit into an EMACS_INT (at least on
2020 32-bit systems with the current tagging scheme). --fx */
2021 mallopt (M_MMAP_MAX, 0);
2022 #endif
2024 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2026 #ifdef DOUG_LEA_MALLOC
2027 /* Back to a reasonable maximum of mmap'ed areas. */
2028 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2029 #endif
2031 b->next_free = &b->first_data;
2032 b->first_data.string = NULL;
2033 b->next = large_sblocks;
2034 large_sblocks = b;
2036 else if (current_sblock == NULL
2037 || (((char *) current_sblock + SBLOCK_SIZE
2038 - (char *) current_sblock->next_free)
2039 < (needed + GC_STRING_EXTRA)))
2041 /* Not enough room in the current sblock. */
2042 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2043 b->next_free = &b->first_data;
2044 b->first_data.string = NULL;
2045 b->next = NULL;
2047 if (current_sblock)
2048 current_sblock->next = b;
2049 else
2050 oldest_sblock = b;
2051 current_sblock = b;
2053 else
2054 b = current_sblock;
2056 data = b->next_free;
2057 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2059 MALLOC_UNBLOCK_INPUT;
2061 data->string = s;
2062 s->data = SDATA_DATA (data);
2063 #ifdef GC_CHECK_STRING_BYTES
2064 SDATA_NBYTES (data) = nbytes;
2065 #endif
2066 s->size = nchars;
2067 s->size_byte = nbytes;
2068 s->data[nbytes] = '\0';
2069 #ifdef GC_CHECK_STRING_OVERRUN
2070 memcpy ((char *) data + needed, string_overrun_cookie,
2071 GC_STRING_OVERRUN_COOKIE_SIZE);
2072 #endif
2073 consing_since_gc += needed;
2077 /* Sweep and compact strings. */
2079 static void
2080 sweep_strings (void)
2082 struct string_block *b, *next;
2083 struct string_block *live_blocks = NULL;
2085 string_free_list = NULL;
2086 total_strings = total_free_strings = 0;
2087 total_string_size = 0;
2089 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2090 for (b = string_blocks; b; b = next)
2092 int i, nfree = 0;
2093 struct Lisp_String *free_list_before = string_free_list;
2095 next = b->next;
2097 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2099 struct Lisp_String *s = b->strings + i;
2101 if (s->data)
2103 /* String was not on free-list before. */
2104 if (STRING_MARKED_P (s))
2106 /* String is live; unmark it and its intervals. */
2107 UNMARK_STRING (s);
2109 if (!NULL_INTERVAL_P (s->intervals))
2110 UNMARK_BALANCE_INTERVALS (s->intervals);
2112 ++total_strings;
2113 total_string_size += STRING_BYTES (s);
2115 else
2117 /* String is dead. Put it on the free-list. */
2118 struct sdata *data = SDATA_OF_STRING (s);
2120 /* Save the size of S in its sdata so that we know
2121 how large that is. Reset the sdata's string
2122 back-pointer so that we know it's free. */
2123 #ifdef GC_CHECK_STRING_BYTES
2124 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2125 abort ();
2126 #else
2127 data->u.nbytes = GC_STRING_BYTES (s);
2128 #endif
2129 data->string = NULL;
2131 /* Reset the strings's `data' member so that we
2132 know it's free. */
2133 s->data = NULL;
2135 /* Put the string on the free-list. */
2136 NEXT_FREE_LISP_STRING (s) = string_free_list;
2137 string_free_list = s;
2138 ++nfree;
2141 else
2143 /* S was on the free-list before. Put it there again. */
2144 NEXT_FREE_LISP_STRING (s) = string_free_list;
2145 string_free_list = s;
2146 ++nfree;
2150 /* Free blocks that contain free Lisp_Strings only, except
2151 the first two of them. */
2152 if (nfree == STRING_BLOCK_SIZE
2153 && total_free_strings > STRING_BLOCK_SIZE)
2155 lisp_free (b);
2156 string_free_list = free_list_before;
2158 else
2160 total_free_strings += nfree;
2161 b->next = live_blocks;
2162 live_blocks = b;
2166 check_string_free_list ();
2168 string_blocks = live_blocks;
2169 free_large_strings ();
2170 compact_small_strings ();
2172 check_string_free_list ();
2176 /* Free dead large strings. */
2178 static void
2179 free_large_strings (void)
2181 struct sblock *b, *next;
2182 struct sblock *live_blocks = NULL;
2184 for (b = large_sblocks; b; b = next)
2186 next = b->next;
2188 if (b->first_data.string == NULL)
2189 lisp_free (b);
2190 else
2192 b->next = live_blocks;
2193 live_blocks = b;
2197 large_sblocks = live_blocks;
2201 /* Compact data of small strings. Free sblocks that don't contain
2202 data of live strings after compaction. */
2204 static void
2205 compact_small_strings (void)
2207 struct sblock *b, *tb, *next;
2208 struct sdata *from, *to, *end, *tb_end;
2209 struct sdata *to_end, *from_end;
2211 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2212 to, and TB_END is the end of TB. */
2213 tb = oldest_sblock;
2214 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2215 to = &tb->first_data;
2217 /* Step through the blocks from the oldest to the youngest. We
2218 expect that old blocks will stabilize over time, so that less
2219 copying will happen this way. */
2220 for (b = oldest_sblock; b; b = b->next)
2222 end = b->next_free;
2223 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2225 for (from = &b->first_data; from < end; from = from_end)
2227 /* Compute the next FROM here because copying below may
2228 overwrite data we need to compute it. */
2229 ptrdiff_t nbytes;
2231 #ifdef GC_CHECK_STRING_BYTES
2232 /* Check that the string size recorded in the string is the
2233 same as the one recorded in the sdata structure. */
2234 if (from->string
2235 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2236 abort ();
2237 #endif /* GC_CHECK_STRING_BYTES */
2239 if (from->string)
2240 nbytes = GC_STRING_BYTES (from->string);
2241 else
2242 nbytes = SDATA_NBYTES (from);
2244 if (nbytes > LARGE_STRING_BYTES)
2245 abort ();
2247 nbytes = SDATA_SIZE (nbytes);
2248 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2250 #ifdef GC_CHECK_STRING_OVERRUN
2251 if (memcmp (string_overrun_cookie,
2252 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2253 GC_STRING_OVERRUN_COOKIE_SIZE))
2254 abort ();
2255 #endif
2257 /* FROM->string non-null means it's alive. Copy its data. */
2258 if (from->string)
2260 /* If TB is full, proceed with the next sblock. */
2261 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2262 if (to_end > tb_end)
2264 tb->next_free = to;
2265 tb = tb->next;
2266 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2267 to = &tb->first_data;
2268 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2271 /* Copy, and update the string's `data' pointer. */
2272 if (from != to)
2274 eassert (tb != b || to < from);
2275 memmove (to, from, nbytes + GC_STRING_EXTRA);
2276 to->string->data = SDATA_DATA (to);
2279 /* Advance past the sdata we copied to. */
2280 to = to_end;
2285 /* The rest of the sblocks following TB don't contain live data, so
2286 we can free them. */
2287 for (b = tb->next; b; b = next)
2289 next = b->next;
2290 lisp_free (b);
2293 tb->next_free = to;
2294 tb->next = NULL;
2295 current_sblock = tb;
2298 void
2299 string_overflow (void)
2301 error ("Maximum string size exceeded");
2304 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2305 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2306 LENGTH must be an integer.
2307 INIT must be an integer that represents a character. */)
2308 (Lisp_Object length, Lisp_Object init)
2310 register Lisp_Object val;
2311 register unsigned char *p, *end;
2312 int c;
2313 EMACS_INT nbytes;
2315 CHECK_NATNUM (length);
2316 CHECK_CHARACTER (init);
2318 c = XFASTINT (init);
2319 if (ASCII_CHAR_P (c))
2321 nbytes = XINT (length);
2322 val = make_uninit_string (nbytes);
2323 p = SDATA (val);
2324 end = p + SCHARS (val);
2325 while (p != end)
2326 *p++ = c;
2328 else
2330 unsigned char str[MAX_MULTIBYTE_LENGTH];
2331 int len = CHAR_STRING (c, str);
2332 EMACS_INT string_len = XINT (length);
2334 if (string_len > STRING_BYTES_MAX / len)
2335 string_overflow ();
2336 nbytes = len * string_len;
2337 val = make_uninit_multibyte_string (string_len, nbytes);
2338 p = SDATA (val);
2339 end = p + nbytes;
2340 while (p != end)
2342 memcpy (p, str, len);
2343 p += len;
2347 *p = 0;
2348 return val;
2352 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2353 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2354 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2355 (Lisp_Object length, Lisp_Object init)
2357 register Lisp_Object val;
2358 struct Lisp_Bool_Vector *p;
2359 ptrdiff_t length_in_chars;
2360 EMACS_INT length_in_elts;
2361 int bits_per_value;
2363 CHECK_NATNUM (length);
2365 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2367 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2369 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2370 slot `size' of the struct Lisp_Bool_Vector. */
2371 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2373 /* No Lisp_Object to trace in there. */
2374 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2376 p = XBOOL_VECTOR (val);
2377 p->size = XFASTINT (length);
2379 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2380 / BOOL_VECTOR_BITS_PER_CHAR);
2381 if (length_in_chars)
2383 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2385 /* Clear any extraneous bits in the last byte. */
2386 p->data[length_in_chars - 1]
2387 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2390 return val;
2394 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2395 of characters from the contents. This string may be unibyte or
2396 multibyte, depending on the contents. */
2398 Lisp_Object
2399 make_string (const char *contents, ptrdiff_t nbytes)
2401 register Lisp_Object val;
2402 ptrdiff_t nchars, multibyte_nbytes;
2404 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2405 &nchars, &multibyte_nbytes);
2406 if (nbytes == nchars || nbytes != multibyte_nbytes)
2407 /* CONTENTS contains no multibyte sequences or contains an invalid
2408 multibyte sequence. We must make unibyte string. */
2409 val = make_unibyte_string (contents, nbytes);
2410 else
2411 val = make_multibyte_string (contents, nchars, nbytes);
2412 return val;
2416 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2418 Lisp_Object
2419 make_unibyte_string (const char *contents, ptrdiff_t length)
2421 register Lisp_Object val;
2422 val = make_uninit_string (length);
2423 memcpy (SDATA (val), contents, length);
2424 return val;
2428 /* Make a multibyte string from NCHARS characters occupying NBYTES
2429 bytes at CONTENTS. */
2431 Lisp_Object
2432 make_multibyte_string (const char *contents,
2433 ptrdiff_t nchars, ptrdiff_t nbytes)
2435 register Lisp_Object val;
2436 val = make_uninit_multibyte_string (nchars, nbytes);
2437 memcpy (SDATA (val), contents, nbytes);
2438 return val;
2442 /* Make a string from NCHARS characters occupying NBYTES bytes at
2443 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2445 Lisp_Object
2446 make_string_from_bytes (const char *contents,
2447 ptrdiff_t nchars, ptrdiff_t nbytes)
2449 register Lisp_Object val;
2450 val = make_uninit_multibyte_string (nchars, nbytes);
2451 memcpy (SDATA (val), contents, nbytes);
2452 if (SBYTES (val) == SCHARS (val))
2453 STRING_SET_UNIBYTE (val);
2454 return val;
2458 /* Make a string from NCHARS characters occupying NBYTES bytes at
2459 CONTENTS. The argument MULTIBYTE controls whether to label the
2460 string as multibyte. If NCHARS is negative, it counts the number of
2461 characters by itself. */
2463 Lisp_Object
2464 make_specified_string (const char *contents,
2465 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2467 register Lisp_Object val;
2469 if (nchars < 0)
2471 if (multibyte)
2472 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2473 nbytes);
2474 else
2475 nchars = nbytes;
2477 val = make_uninit_multibyte_string (nchars, nbytes);
2478 memcpy (SDATA (val), contents, nbytes);
2479 if (!multibyte)
2480 STRING_SET_UNIBYTE (val);
2481 return val;
2485 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2486 occupying LENGTH bytes. */
2488 Lisp_Object
2489 make_uninit_string (EMACS_INT length)
2491 Lisp_Object val;
2493 if (!length)
2494 return empty_unibyte_string;
2495 val = make_uninit_multibyte_string (length, length);
2496 STRING_SET_UNIBYTE (val);
2497 return val;
2501 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2502 which occupy NBYTES bytes. */
2504 Lisp_Object
2505 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2507 Lisp_Object string;
2508 struct Lisp_String *s;
2510 if (nchars < 0)
2511 abort ();
2512 if (!nbytes)
2513 return empty_multibyte_string;
2515 s = allocate_string ();
2516 s->intervals = NULL_INTERVAL;
2517 allocate_string_data (s, nchars, nbytes);
2518 XSETSTRING (string, s);
2519 string_chars_consed += nbytes;
2520 return string;
2525 /***********************************************************************
2526 Float Allocation
2527 ***********************************************************************/
2529 /* We store float cells inside of float_blocks, allocating a new
2530 float_block with malloc whenever necessary. Float cells reclaimed
2531 by GC are put on a free list to be reallocated before allocating
2532 any new float cells from the latest float_block. */
2534 #define FLOAT_BLOCK_SIZE \
2535 (((BLOCK_BYTES - sizeof (struct float_block *) \
2536 /* The compiler might add padding at the end. */ \
2537 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2538 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2540 #define GETMARKBIT(block,n) \
2541 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2542 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2543 & 1)
2545 #define SETMARKBIT(block,n) \
2546 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2547 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2549 #define UNSETMARKBIT(block,n) \
2550 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2551 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2553 #define FLOAT_BLOCK(fptr) \
2554 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2556 #define FLOAT_INDEX(fptr) \
2557 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2559 struct float_block
2561 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2562 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2563 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2564 struct float_block *next;
2567 #define FLOAT_MARKED_P(fptr) \
2568 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2570 #define FLOAT_MARK(fptr) \
2571 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2573 #define FLOAT_UNMARK(fptr) \
2574 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2576 /* Current float_block. */
2578 static struct float_block *float_block;
2580 /* Index of first unused Lisp_Float in the current float_block. */
2582 static int float_block_index;
2584 /* Free-list of Lisp_Floats. */
2586 static struct Lisp_Float *float_free_list;
2589 /* Initialize float allocation. */
2591 static void
2592 init_float (void)
2594 float_block = NULL;
2595 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2596 float_free_list = 0;
2600 /* Return a new float object with value FLOAT_VALUE. */
2602 Lisp_Object
2603 make_float (double float_value)
2605 register Lisp_Object val;
2607 /* eassert (!handling_signal); */
2609 MALLOC_BLOCK_INPUT;
2611 if (float_free_list)
2613 /* We use the data field for chaining the free list
2614 so that we won't use the same field that has the mark bit. */
2615 XSETFLOAT (val, float_free_list);
2616 float_free_list = float_free_list->u.chain;
2618 else
2620 if (float_block_index == FLOAT_BLOCK_SIZE)
2622 register struct float_block *new;
2624 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2625 MEM_TYPE_FLOAT);
2626 new->next = float_block;
2627 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2628 float_block = new;
2629 float_block_index = 0;
2631 XSETFLOAT (val, &float_block->floats[float_block_index]);
2632 float_block_index++;
2635 MALLOC_UNBLOCK_INPUT;
2637 XFLOAT_INIT (val, float_value);
2638 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2639 consing_since_gc += sizeof (struct Lisp_Float);
2640 floats_consed++;
2641 return val;
2646 /***********************************************************************
2647 Cons Allocation
2648 ***********************************************************************/
2650 /* We store cons cells inside of cons_blocks, allocating a new
2651 cons_block with malloc whenever necessary. Cons cells reclaimed by
2652 GC are put on a free list to be reallocated before allocating
2653 any new cons cells from the latest cons_block. */
2655 #define CONS_BLOCK_SIZE \
2656 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2657 /* The compiler might add padding at the end. */ \
2658 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2659 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2661 #define CONS_BLOCK(fptr) \
2662 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2664 #define CONS_INDEX(fptr) \
2665 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2667 struct cons_block
2669 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2670 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2671 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2672 struct cons_block *next;
2675 #define CONS_MARKED_P(fptr) \
2676 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2678 #define CONS_MARK(fptr) \
2679 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2681 #define CONS_UNMARK(fptr) \
2682 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2684 /* Current cons_block. */
2686 static struct cons_block *cons_block;
2688 /* Index of first unused Lisp_Cons in the current block. */
2690 static int cons_block_index;
2692 /* Free-list of Lisp_Cons structures. */
2694 static struct Lisp_Cons *cons_free_list;
2697 /* Initialize cons allocation. */
2699 static void
2700 init_cons (void)
2702 cons_block = NULL;
2703 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2704 cons_free_list = 0;
2708 /* Explicitly free a cons cell by putting it on the free-list. */
2710 void
2711 free_cons (struct Lisp_Cons *ptr)
2713 ptr->u.chain = cons_free_list;
2714 #if GC_MARK_STACK
2715 ptr->car = Vdead;
2716 #endif
2717 cons_free_list = ptr;
2720 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2721 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2722 (Lisp_Object car, Lisp_Object cdr)
2724 register Lisp_Object val;
2726 /* eassert (!handling_signal); */
2728 MALLOC_BLOCK_INPUT;
2730 if (cons_free_list)
2732 /* We use the cdr for chaining the free list
2733 so that we won't use the same field that has the mark bit. */
2734 XSETCONS (val, cons_free_list);
2735 cons_free_list = cons_free_list->u.chain;
2737 else
2739 if (cons_block_index == CONS_BLOCK_SIZE)
2741 register struct cons_block *new;
2742 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2743 MEM_TYPE_CONS);
2744 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2745 new->next = cons_block;
2746 cons_block = new;
2747 cons_block_index = 0;
2749 XSETCONS (val, &cons_block->conses[cons_block_index]);
2750 cons_block_index++;
2753 MALLOC_UNBLOCK_INPUT;
2755 XSETCAR (val, car);
2756 XSETCDR (val, cdr);
2757 eassert (!CONS_MARKED_P (XCONS (val)));
2758 consing_since_gc += sizeof (struct Lisp_Cons);
2759 cons_cells_consed++;
2760 return val;
2763 #ifdef GC_CHECK_CONS_LIST
2764 /* Get an error now if there's any junk in the cons free list. */
2765 void
2766 check_cons_list (void)
2768 struct Lisp_Cons *tail = cons_free_list;
2770 while (tail)
2771 tail = tail->u.chain;
2773 #endif
2775 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2777 Lisp_Object
2778 list1 (Lisp_Object arg1)
2780 return Fcons (arg1, Qnil);
2783 Lisp_Object
2784 list2 (Lisp_Object arg1, Lisp_Object arg2)
2786 return Fcons (arg1, Fcons (arg2, Qnil));
2790 Lisp_Object
2791 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2793 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2797 Lisp_Object
2798 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2800 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2804 Lisp_Object
2805 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2807 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2808 Fcons (arg5, Qnil)))));
2812 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2813 doc: /* Return a newly created list with specified arguments as elements.
2814 Any number of arguments, even zero arguments, are allowed.
2815 usage: (list &rest OBJECTS) */)
2816 (ptrdiff_t nargs, Lisp_Object *args)
2818 register Lisp_Object val;
2819 val = Qnil;
2821 while (nargs > 0)
2823 nargs--;
2824 val = Fcons (args[nargs], val);
2826 return val;
2830 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2831 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2832 (register Lisp_Object length, Lisp_Object init)
2834 register Lisp_Object val;
2835 register EMACS_INT size;
2837 CHECK_NATNUM (length);
2838 size = XFASTINT (length);
2840 val = Qnil;
2841 while (size > 0)
2843 val = Fcons (init, val);
2844 --size;
2846 if (size > 0)
2848 val = Fcons (init, val);
2849 --size;
2851 if (size > 0)
2853 val = Fcons (init, val);
2854 --size;
2856 if (size > 0)
2858 val = Fcons (init, val);
2859 --size;
2861 if (size > 0)
2863 val = Fcons (init, val);
2864 --size;
2870 QUIT;
2873 return val;
2878 /***********************************************************************
2879 Vector Allocation
2880 ***********************************************************************/
2882 /* This value is balanced well enough to avoid too much internal overhead
2883 for the most common cases; it's not required to be a power of two, but
2884 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2886 #define VECTOR_BLOCK_SIZE 4096
2888 /* Handy constants for vectorlike objects. */
2889 enum
2891 header_size = offsetof (struct Lisp_Vector, contents),
2892 word_size = sizeof (Lisp_Object),
2893 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
2894 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2897 /* ROUNDUP_SIZE must be a power of 2. */
2898 verify ((roundup_size & (roundup_size - 1)) == 0);
2900 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2902 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2904 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2906 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2908 /* Size of the minimal vector allocated from block. */
2910 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2912 /* Size of the largest vector allocated from block. */
2914 #define VBLOCK_BYTES_MAX \
2915 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2917 /* We maintain one free list for each possible block-allocated
2918 vector size, and this is the number of free lists we have. */
2920 #define VECTOR_MAX_FREE_LIST_INDEX \
2921 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2923 /* When the vector is on a free list, vectorlike_header.SIZE is set to
2924 this special value ORed with vector's memory footprint size. */
2926 #define VECTOR_FREE_LIST_FLAG (~(ARRAY_MARK_FLAG | PSEUDOVECTOR_FLAG \
2927 | (VECTOR_BLOCK_SIZE - 1)))
2929 /* Common shortcut to advance vector pointer over a block data. */
2931 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2933 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2935 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2937 /* Common shortcut to setup vector on a free list. */
2939 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2940 do { \
2941 (v)->header.size = VECTOR_FREE_LIST_FLAG | (nbytes); \
2942 eassert ((nbytes) % roundup_size == 0); \
2943 (index) = VINDEX (nbytes); \
2944 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2945 (v)->header.next.vector = vector_free_lists[index]; \
2946 vector_free_lists[index] = (v); \
2947 } while (0)
2949 struct vector_block
2951 char data[VECTOR_BLOCK_BYTES];
2952 struct vector_block *next;
2955 /* Chain of vector blocks. */
2957 static struct vector_block *vector_blocks;
2959 /* Vector free lists, where NTH item points to a chain of free
2960 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2962 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2964 /* Singly-linked list of large vectors. */
2966 static struct Lisp_Vector *large_vectors;
2968 /* The only vector with 0 slots, allocated from pure space. */
2970 static struct Lisp_Vector *zero_vector;
2972 /* Get a new vector block. */
2974 static struct vector_block *
2975 allocate_vector_block (void)
2977 struct vector_block *block;
2979 #ifdef DOUG_LEA_MALLOC
2980 mallopt (M_MMAP_MAX, 0);
2981 #endif
2983 block = xmalloc (sizeof (struct vector_block));
2985 #ifdef DOUG_LEA_MALLOC
2986 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2987 #endif
2989 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2990 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2991 MEM_TYPE_VECTOR_BLOCK);
2992 #endif
2994 block->next = vector_blocks;
2995 vector_blocks = block;
2996 return block;
2999 /* Called once to initialize vector allocation. */
3001 static void
3002 init_vectors (void)
3004 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
3005 zero_vector->header.size = 0;
3008 /* Allocate vector from a vector block. */
3010 static struct Lisp_Vector *
3011 allocate_vector_from_block (size_t nbytes)
3013 struct Lisp_Vector *vector, *rest;
3014 struct vector_block *block;
3015 size_t index, restbytes;
3017 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3018 eassert (nbytes % roundup_size == 0);
3020 /* First, try to allocate from a free list
3021 containing vectors of the requested size. */
3022 index = VINDEX (nbytes);
3023 if (vector_free_lists[index])
3025 vector = vector_free_lists[index];
3026 vector_free_lists[index] = vector->header.next.vector;
3027 vector->header.next.nbytes = nbytes;
3028 return vector;
3031 /* Next, check free lists containing larger vectors. Since
3032 we will split the result, we should have remaining space
3033 large enough to use for one-slot vector at least. */
3034 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3035 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3036 if (vector_free_lists[index])
3038 /* This vector is larger than requested. */
3039 vector = vector_free_lists[index];
3040 vector_free_lists[index] = vector->header.next.vector;
3041 vector->header.next.nbytes = nbytes;
3043 /* Excess bytes are used for the smaller vector,
3044 which should be set on an appropriate free list. */
3045 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3046 eassert (restbytes % roundup_size == 0);
3047 rest = ADVANCE (vector, nbytes);
3048 SETUP_ON_FREE_LIST (rest, restbytes, index);
3049 return vector;
3052 /* Finally, need a new vector block. */
3053 block = allocate_vector_block ();
3055 /* New vector will be at the beginning of this block. */
3056 vector = (struct Lisp_Vector *) block->data;
3057 vector->header.next.nbytes = nbytes;
3059 /* If the rest of space from this block is large enough
3060 for one-slot vector at least, set up it on a free list. */
3061 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3062 if (restbytes >= VBLOCK_BYTES_MIN)
3064 eassert (restbytes % roundup_size == 0);
3065 rest = ADVANCE (vector, nbytes);
3066 SETUP_ON_FREE_LIST (rest, restbytes, index);
3068 return vector;
3071 /* Return how many Lisp_Objects can be stored in V. */
3073 #define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3074 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3075 (v)->header.size)
3077 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3079 #define VECTOR_IN_BLOCK(vector, block) \
3080 ((char *) (vector) <= (block)->data \
3081 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3083 /* Reclaim space used by unmarked vectors. */
3085 static void
3086 sweep_vectors (void)
3088 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3089 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3091 total_vector_size = 0;
3092 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3094 /* Looking through vector blocks. */
3096 for (block = vector_blocks; block; block = *bprev)
3098 int free_this_block = 0;
3100 for (vector = (struct Lisp_Vector *) block->data;
3101 VECTOR_IN_BLOCK (vector, block); vector = next)
3103 if (VECTOR_MARKED_P (vector))
3105 VECTOR_UNMARK (vector);
3106 total_vector_size += VECTOR_SIZE (vector);
3107 next = ADVANCE (vector, vector->header.next.nbytes);
3109 else
3111 ptrdiff_t nbytes;
3113 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
3114 == VECTOR_FREE_LIST_FLAG)
3115 vector->header.next.nbytes =
3116 vector->header.size & (VECTOR_BLOCK_SIZE - 1);
3118 next = ADVANCE (vector, vector->header.next.nbytes);
3120 /* While NEXT is not marked, try to coalesce with VECTOR,
3121 thus making VECTOR of the largest possible size. */
3123 while (VECTOR_IN_BLOCK (next, block))
3125 if (VECTOR_MARKED_P (next))
3126 break;
3127 if ((next->header.size & VECTOR_FREE_LIST_FLAG)
3128 == VECTOR_FREE_LIST_FLAG)
3129 nbytes = next->header.size & (VECTOR_BLOCK_SIZE - 1);
3130 else
3131 nbytes = next->header.next.nbytes;
3132 vector->header.next.nbytes += nbytes;
3133 next = ADVANCE (next, nbytes);
3136 eassert (vector->header.next.nbytes % roundup_size == 0);
3138 if (vector == (struct Lisp_Vector *) block->data
3139 && !VECTOR_IN_BLOCK (next, block))
3140 /* This block should be freed because all of it's
3141 space was coalesced into the only free vector. */
3142 free_this_block = 1;
3143 else
3144 SETUP_ON_FREE_LIST (vector, vector->header.next.nbytes, nbytes);
3148 if (free_this_block)
3150 *bprev = block->next;
3151 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3152 mem_delete (mem_find (block->data));
3153 #endif
3154 xfree (block);
3156 else
3157 bprev = &block->next;
3160 /* Sweep large vectors. */
3162 for (vector = large_vectors; vector; vector = *vprev)
3164 if (VECTOR_MARKED_P (vector))
3166 VECTOR_UNMARK (vector);
3167 total_vector_size += VECTOR_SIZE (vector);
3168 vprev = &vector->header.next.vector;
3170 else
3172 *vprev = vector->header.next.vector;
3173 lisp_free (vector);
3178 /* Value is a pointer to a newly allocated Lisp_Vector structure
3179 with room for LEN Lisp_Objects. */
3181 static struct Lisp_Vector *
3182 allocate_vectorlike (ptrdiff_t len)
3184 struct Lisp_Vector *p;
3185 size_t nbytes;
3187 MALLOC_BLOCK_INPUT;
3189 #ifdef DOUG_LEA_MALLOC
3190 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3191 because mapped region contents are not preserved in
3192 a dumped Emacs. */
3193 mallopt (M_MMAP_MAX, 0);
3194 #endif
3196 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3197 /* eassert (!handling_signal); */
3199 if (len == 0)
3201 MALLOC_UNBLOCK_INPUT;
3202 return zero_vector;
3205 nbytes = header_size + len * word_size;
3207 if (nbytes <= VBLOCK_BYTES_MAX)
3208 p = allocate_vector_from_block (vroundup (nbytes));
3209 else
3211 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3212 p->header.next.vector = large_vectors;
3213 large_vectors = p;
3216 #ifdef DOUG_LEA_MALLOC
3217 /* Back to a reasonable maximum of mmap'ed areas. */
3218 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3219 #endif
3221 consing_since_gc += nbytes;
3222 vector_cells_consed += len;
3224 MALLOC_UNBLOCK_INPUT;
3226 return p;
3230 /* Allocate a vector with LEN slots. */
3232 struct Lisp_Vector *
3233 allocate_vector (EMACS_INT len)
3235 struct Lisp_Vector *v;
3236 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3238 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3239 memory_full (SIZE_MAX);
3240 v = allocate_vectorlike (len);
3241 v->header.size = len;
3242 return v;
3246 /* Allocate other vector-like structures. */
3248 struct Lisp_Vector *
3249 allocate_pseudovector (int memlen, int lisplen, int tag)
3251 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3252 int i;
3254 /* Only the first lisplen slots will be traced normally by the GC. */
3255 for (i = 0; i < lisplen; ++i)
3256 v->contents[i] = Qnil;
3258 XSETPVECTYPESIZE (v, tag, lisplen);
3259 return v;
3262 struct Lisp_Hash_Table *
3263 allocate_hash_table (void)
3265 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3268 struct window *
3269 allocate_window (void)
3271 struct window *w;
3273 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3274 /* Users assumes that non-Lisp data is zeroed. */
3275 memset (&w->current_matrix, 0,
3276 sizeof (*w) - offsetof (struct window, current_matrix));
3277 return w;
3280 struct terminal *
3281 allocate_terminal (void)
3283 struct terminal *t;
3285 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3286 /* Users assumes that non-Lisp data is zeroed. */
3287 memset (&t->next_terminal, 0,
3288 sizeof (*t) - offsetof (struct terminal, next_terminal));
3289 return t;
3292 struct frame *
3293 allocate_frame (void)
3295 struct frame *f;
3297 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3298 /* Users assumes that non-Lisp data is zeroed. */
3299 memset (&f->face_cache, 0,
3300 sizeof (*f) - offsetof (struct frame, face_cache));
3301 return f;
3304 struct Lisp_Process *
3305 allocate_process (void)
3307 struct Lisp_Process *p;
3309 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3310 /* Users assumes that non-Lisp data is zeroed. */
3311 memset (&p->pid, 0,
3312 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3313 return p;
3316 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3317 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3318 See also the function `vector'. */)
3319 (register Lisp_Object length, Lisp_Object init)
3321 Lisp_Object vector;
3322 register ptrdiff_t sizei;
3323 register ptrdiff_t i;
3324 register struct Lisp_Vector *p;
3326 CHECK_NATNUM (length);
3328 p = allocate_vector (XFASTINT (length));
3329 sizei = XFASTINT (length);
3330 for (i = 0; i < sizei; i++)
3331 p->contents[i] = init;
3333 XSETVECTOR (vector, p);
3334 return vector;
3338 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3339 doc: /* Return a newly created vector with specified arguments as elements.
3340 Any number of arguments, even zero arguments, are allowed.
3341 usage: (vector &rest OBJECTS) */)
3342 (ptrdiff_t nargs, Lisp_Object *args)
3344 register Lisp_Object len, val;
3345 ptrdiff_t i;
3346 register struct Lisp_Vector *p;
3348 XSETFASTINT (len, nargs);
3349 val = Fmake_vector (len, Qnil);
3350 p = XVECTOR (val);
3351 for (i = 0; i < nargs; i++)
3352 p->contents[i] = args[i];
3353 return val;
3356 void
3357 make_byte_code (struct Lisp_Vector *v)
3359 if (v->header.size > 1 && STRINGP (v->contents[1])
3360 && STRING_MULTIBYTE (v->contents[1]))
3361 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3362 earlier because they produced a raw 8-bit string for byte-code
3363 and now such a byte-code string is loaded as multibyte while
3364 raw 8-bit characters converted to multibyte form. Thus, now we
3365 must convert them back to the original unibyte form. */
3366 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3367 XSETPVECTYPE (v, PVEC_COMPILED);
3370 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3371 doc: /* Create a byte-code object with specified arguments as elements.
3372 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3373 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3374 and (optional) INTERACTIVE-SPEC.
3375 The first four arguments are required; at most six have any
3376 significance.
3377 The ARGLIST can be either like the one of `lambda', in which case the arguments
3378 will be dynamically bound before executing the byte code, or it can be an
3379 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3380 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3381 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3382 argument to catch the left-over arguments. If such an integer is used, the
3383 arguments will not be dynamically bound but will be instead pushed on the
3384 stack before executing the byte-code.
3385 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3386 (ptrdiff_t nargs, Lisp_Object *args)
3388 register Lisp_Object len, val;
3389 ptrdiff_t i;
3390 register struct Lisp_Vector *p;
3392 /* We used to purecopy everything here, if purify-flga was set. This worked
3393 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3394 dangerous, since make-byte-code is used during execution to build
3395 closures, so any closure built during the preload phase would end up
3396 copied into pure space, including its free variables, which is sometimes
3397 just wasteful and other times plainly wrong (e.g. those free vars may want
3398 to be setcar'd). */
3400 XSETFASTINT (len, nargs);
3401 val = Fmake_vector (len, Qnil);
3403 p = XVECTOR (val);
3404 for (i = 0; i < nargs; i++)
3405 p->contents[i] = args[i];
3406 make_byte_code (p);
3407 XSETCOMPILED (val, p);
3408 return val;
3413 /***********************************************************************
3414 Symbol Allocation
3415 ***********************************************************************/
3417 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3418 of the required alignment if LSB tags are used. */
3420 union aligned_Lisp_Symbol
3422 struct Lisp_Symbol s;
3423 #if USE_LSB_TAG
3424 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3425 & -(1 << GCTYPEBITS)];
3426 #endif
3429 /* Each symbol_block is just under 1020 bytes long, since malloc
3430 really allocates in units of powers of two and uses 4 bytes for its
3431 own overhead. */
3433 #define SYMBOL_BLOCK_SIZE \
3434 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3436 struct symbol_block
3438 /* Place `symbols' first, to preserve alignment. */
3439 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3440 struct symbol_block *next;
3443 /* Current symbol block and index of first unused Lisp_Symbol
3444 structure in it. */
3446 static struct symbol_block *symbol_block;
3447 static int symbol_block_index;
3449 /* List of free symbols. */
3451 static struct Lisp_Symbol *symbol_free_list;
3454 /* Initialize symbol allocation. */
3456 static void
3457 init_symbol (void)
3459 symbol_block = NULL;
3460 symbol_block_index = SYMBOL_BLOCK_SIZE;
3461 symbol_free_list = 0;
3465 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3466 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3467 Its value and function definition are void, and its property list is nil. */)
3468 (Lisp_Object name)
3470 register Lisp_Object val;
3471 register struct Lisp_Symbol *p;
3473 CHECK_STRING (name);
3475 /* eassert (!handling_signal); */
3477 MALLOC_BLOCK_INPUT;
3479 if (symbol_free_list)
3481 XSETSYMBOL (val, symbol_free_list);
3482 symbol_free_list = symbol_free_list->next;
3484 else
3486 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3488 struct symbol_block *new;
3489 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3490 MEM_TYPE_SYMBOL);
3491 new->next = symbol_block;
3492 symbol_block = new;
3493 symbol_block_index = 0;
3495 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3496 symbol_block_index++;
3499 MALLOC_UNBLOCK_INPUT;
3501 p = XSYMBOL (val);
3502 p->xname = name;
3503 p->plist = Qnil;
3504 p->redirect = SYMBOL_PLAINVAL;
3505 SET_SYMBOL_VAL (p, Qunbound);
3506 p->function = Qunbound;
3507 p->next = NULL;
3508 p->gcmarkbit = 0;
3509 p->interned = SYMBOL_UNINTERNED;
3510 p->constant = 0;
3511 p->declared_special = 0;
3512 consing_since_gc += sizeof (struct Lisp_Symbol);
3513 symbols_consed++;
3514 return val;
3519 /***********************************************************************
3520 Marker (Misc) Allocation
3521 ***********************************************************************/
3523 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3524 the required alignment when LSB tags are used. */
3526 union aligned_Lisp_Misc
3528 union Lisp_Misc m;
3529 #if USE_LSB_TAG
3530 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3531 & -(1 << GCTYPEBITS)];
3532 #endif
3535 /* Allocation of markers and other objects that share that structure.
3536 Works like allocation of conses. */
3538 #define MARKER_BLOCK_SIZE \
3539 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3541 struct marker_block
3543 /* Place `markers' first, to preserve alignment. */
3544 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3545 struct marker_block *next;
3548 static struct marker_block *marker_block;
3549 static int marker_block_index;
3551 static union Lisp_Misc *marker_free_list;
3553 static void
3554 init_marker (void)
3556 marker_block = NULL;
3557 marker_block_index = MARKER_BLOCK_SIZE;
3558 marker_free_list = 0;
3561 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3563 Lisp_Object
3564 allocate_misc (void)
3566 Lisp_Object val;
3568 /* eassert (!handling_signal); */
3570 MALLOC_BLOCK_INPUT;
3572 if (marker_free_list)
3574 XSETMISC (val, marker_free_list);
3575 marker_free_list = marker_free_list->u_free.chain;
3577 else
3579 if (marker_block_index == MARKER_BLOCK_SIZE)
3581 struct marker_block *new;
3582 new = (struct marker_block *) lisp_malloc (sizeof *new,
3583 MEM_TYPE_MISC);
3584 new->next = marker_block;
3585 marker_block = new;
3586 marker_block_index = 0;
3587 total_free_markers += MARKER_BLOCK_SIZE;
3589 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3590 marker_block_index++;
3593 MALLOC_UNBLOCK_INPUT;
3595 --total_free_markers;
3596 consing_since_gc += sizeof (union Lisp_Misc);
3597 misc_objects_consed++;
3598 XMISCANY (val)->gcmarkbit = 0;
3599 return val;
3602 /* Free a Lisp_Misc object */
3604 static void
3605 free_misc (Lisp_Object misc)
3607 XMISCTYPE (misc) = Lisp_Misc_Free;
3608 XMISC (misc)->u_free.chain = marker_free_list;
3609 marker_free_list = XMISC (misc);
3611 total_free_markers++;
3614 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3615 INTEGER. This is used to package C values to call record_unwind_protect.
3616 The unwind function can get the C values back using XSAVE_VALUE. */
3618 Lisp_Object
3619 make_save_value (void *pointer, ptrdiff_t integer)
3621 register Lisp_Object val;
3622 register struct Lisp_Save_Value *p;
3624 val = allocate_misc ();
3625 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3626 p = XSAVE_VALUE (val);
3627 p->pointer = pointer;
3628 p->integer = integer;
3629 p->dogc = 0;
3630 return val;
3633 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3634 doc: /* Return a newly allocated marker which does not point at any place. */)
3635 (void)
3637 register Lisp_Object val;
3638 register struct Lisp_Marker *p;
3640 val = allocate_misc ();
3641 XMISCTYPE (val) = Lisp_Misc_Marker;
3642 p = XMARKER (val);
3643 p->buffer = 0;
3644 p->bytepos = 0;
3645 p->charpos = 0;
3646 p->next = NULL;
3647 p->insertion_type = 0;
3648 return val;
3651 /* Put MARKER back on the free list after using it temporarily. */
3653 void
3654 free_marker (Lisp_Object marker)
3656 unchain_marker (XMARKER (marker));
3657 free_misc (marker);
3661 /* Return a newly created vector or string with specified arguments as
3662 elements. If all the arguments are characters that can fit
3663 in a string of events, make a string; otherwise, make a vector.
3665 Any number of arguments, even zero arguments, are allowed. */
3667 Lisp_Object
3668 make_event_array (register int nargs, Lisp_Object *args)
3670 int i;
3672 for (i = 0; i < nargs; i++)
3673 /* The things that fit in a string
3674 are characters that are in 0...127,
3675 after discarding the meta bit and all the bits above it. */
3676 if (!INTEGERP (args[i])
3677 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3678 return Fvector (nargs, args);
3680 /* Since the loop exited, we know that all the things in it are
3681 characters, so we can make a string. */
3683 Lisp_Object result;
3685 result = Fmake_string (make_number (nargs), make_number (0));
3686 for (i = 0; i < nargs; i++)
3688 SSET (result, i, XINT (args[i]));
3689 /* Move the meta bit to the right place for a string char. */
3690 if (XINT (args[i]) & CHAR_META)
3691 SSET (result, i, SREF (result, i) | 0x80);
3694 return result;
3700 /************************************************************************
3701 Memory Full Handling
3702 ************************************************************************/
3705 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3706 there may have been size_t overflow so that malloc was never
3707 called, or perhaps malloc was invoked successfully but the
3708 resulting pointer had problems fitting into a tagged EMACS_INT. In
3709 either case this counts as memory being full even though malloc did
3710 not fail. */
3712 void
3713 memory_full (size_t nbytes)
3715 /* Do not go into hysterics merely because a large request failed. */
3716 int enough_free_memory = 0;
3717 if (SPARE_MEMORY < nbytes)
3719 void *p;
3721 MALLOC_BLOCK_INPUT;
3722 p = malloc (SPARE_MEMORY);
3723 if (p)
3725 free (p);
3726 enough_free_memory = 1;
3728 MALLOC_UNBLOCK_INPUT;
3731 if (! enough_free_memory)
3733 int i;
3735 Vmemory_full = Qt;
3737 memory_full_cons_threshold = sizeof (struct cons_block);
3739 /* The first time we get here, free the spare memory. */
3740 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3741 if (spare_memory[i])
3743 if (i == 0)
3744 free (spare_memory[i]);
3745 else if (i >= 1 && i <= 4)
3746 lisp_align_free (spare_memory[i]);
3747 else
3748 lisp_free (spare_memory[i]);
3749 spare_memory[i] = 0;
3752 /* Record the space now used. When it decreases substantially,
3753 we can refill the memory reserve. */
3754 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3755 bytes_used_when_full = BYTES_USED;
3756 #endif
3759 /* This used to call error, but if we've run out of memory, we could
3760 get infinite recursion trying to build the string. */
3761 xsignal (Qnil, Vmemory_signal_data);
3764 /* If we released our reserve (due to running out of memory),
3765 and we have a fair amount free once again,
3766 try to set aside another reserve in case we run out once more.
3768 This is called when a relocatable block is freed in ralloc.c,
3769 and also directly from this file, in case we're not using ralloc.c. */
3771 void
3772 refill_memory_reserve (void)
3774 #ifndef SYSTEM_MALLOC
3775 if (spare_memory[0] == 0)
3776 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
3777 if (spare_memory[1] == 0)
3778 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3779 MEM_TYPE_CONS);
3780 if (spare_memory[2] == 0)
3781 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3782 MEM_TYPE_CONS);
3783 if (spare_memory[3] == 0)
3784 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3785 MEM_TYPE_CONS);
3786 if (spare_memory[4] == 0)
3787 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3788 MEM_TYPE_CONS);
3789 if (spare_memory[5] == 0)
3790 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3791 MEM_TYPE_STRING);
3792 if (spare_memory[6] == 0)
3793 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3794 MEM_TYPE_STRING);
3795 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3796 Vmemory_full = Qnil;
3797 #endif
3800 /************************************************************************
3801 C Stack Marking
3802 ************************************************************************/
3804 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3806 /* Conservative C stack marking requires a method to identify possibly
3807 live Lisp objects given a pointer value. We do this by keeping
3808 track of blocks of Lisp data that are allocated in a red-black tree
3809 (see also the comment of mem_node which is the type of nodes in
3810 that tree). Function lisp_malloc adds information for an allocated
3811 block to the red-black tree with calls to mem_insert, and function
3812 lisp_free removes it with mem_delete. Functions live_string_p etc
3813 call mem_find to lookup information about a given pointer in the
3814 tree, and use that to determine if the pointer points to a Lisp
3815 object or not. */
3817 /* Initialize this part of alloc.c. */
3819 static void
3820 mem_init (void)
3822 mem_z.left = mem_z.right = MEM_NIL;
3823 mem_z.parent = NULL;
3824 mem_z.color = MEM_BLACK;
3825 mem_z.start = mem_z.end = NULL;
3826 mem_root = MEM_NIL;
3830 /* Value is a pointer to the mem_node containing START. Value is
3831 MEM_NIL if there is no node in the tree containing START. */
3833 static inline struct mem_node *
3834 mem_find (void *start)
3836 struct mem_node *p;
3838 if (start < min_heap_address || start > max_heap_address)
3839 return MEM_NIL;
3841 /* Make the search always successful to speed up the loop below. */
3842 mem_z.start = start;
3843 mem_z.end = (char *) start + 1;
3845 p = mem_root;
3846 while (start < p->start || start >= p->end)
3847 p = start < p->start ? p->left : p->right;
3848 return p;
3852 /* Insert a new node into the tree for a block of memory with start
3853 address START, end address END, and type TYPE. Value is a
3854 pointer to the node that was inserted. */
3856 static struct mem_node *
3857 mem_insert (void *start, void *end, enum mem_type type)
3859 struct mem_node *c, *parent, *x;
3861 if (min_heap_address == NULL || start < min_heap_address)
3862 min_heap_address = start;
3863 if (max_heap_address == NULL || end > max_heap_address)
3864 max_heap_address = end;
3866 /* See where in the tree a node for START belongs. In this
3867 particular application, it shouldn't happen that a node is already
3868 present. For debugging purposes, let's check that. */
3869 c = mem_root;
3870 parent = NULL;
3872 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3874 while (c != MEM_NIL)
3876 if (start >= c->start && start < c->end)
3877 abort ();
3878 parent = c;
3879 c = start < c->start ? c->left : c->right;
3882 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3884 while (c != MEM_NIL)
3886 parent = c;
3887 c = start < c->start ? c->left : c->right;
3890 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3892 /* Create a new node. */
3893 #ifdef GC_MALLOC_CHECK
3894 x = (struct mem_node *) _malloc_internal (sizeof *x);
3895 if (x == NULL)
3896 abort ();
3897 #else
3898 x = (struct mem_node *) xmalloc (sizeof *x);
3899 #endif
3900 x->start = start;
3901 x->end = end;
3902 x->type = type;
3903 x->parent = parent;
3904 x->left = x->right = MEM_NIL;
3905 x->color = MEM_RED;
3907 /* Insert it as child of PARENT or install it as root. */
3908 if (parent)
3910 if (start < parent->start)
3911 parent->left = x;
3912 else
3913 parent->right = x;
3915 else
3916 mem_root = x;
3918 /* Re-establish red-black tree properties. */
3919 mem_insert_fixup (x);
3921 return x;
3925 /* Re-establish the red-black properties of the tree, and thereby
3926 balance the tree, after node X has been inserted; X is always red. */
3928 static void
3929 mem_insert_fixup (struct mem_node *x)
3931 while (x != mem_root && x->parent->color == MEM_RED)
3933 /* X is red and its parent is red. This is a violation of
3934 red-black tree property #3. */
3936 if (x->parent == x->parent->parent->left)
3938 /* We're on the left side of our grandparent, and Y is our
3939 "uncle". */
3940 struct mem_node *y = x->parent->parent->right;
3942 if (y->color == MEM_RED)
3944 /* Uncle and parent are red but should be black because
3945 X is red. Change the colors accordingly and proceed
3946 with the grandparent. */
3947 x->parent->color = MEM_BLACK;
3948 y->color = MEM_BLACK;
3949 x->parent->parent->color = MEM_RED;
3950 x = x->parent->parent;
3952 else
3954 /* Parent and uncle have different colors; parent is
3955 red, uncle is black. */
3956 if (x == x->parent->right)
3958 x = x->parent;
3959 mem_rotate_left (x);
3962 x->parent->color = MEM_BLACK;
3963 x->parent->parent->color = MEM_RED;
3964 mem_rotate_right (x->parent->parent);
3967 else
3969 /* This is the symmetrical case of above. */
3970 struct mem_node *y = x->parent->parent->left;
3972 if (y->color == MEM_RED)
3974 x->parent->color = MEM_BLACK;
3975 y->color = MEM_BLACK;
3976 x->parent->parent->color = MEM_RED;
3977 x = x->parent->parent;
3979 else
3981 if (x == x->parent->left)
3983 x = x->parent;
3984 mem_rotate_right (x);
3987 x->parent->color = MEM_BLACK;
3988 x->parent->parent->color = MEM_RED;
3989 mem_rotate_left (x->parent->parent);
3994 /* The root may have been changed to red due to the algorithm. Set
3995 it to black so that property #5 is satisfied. */
3996 mem_root->color = MEM_BLACK;
4000 /* (x) (y)
4001 / \ / \
4002 a (y) ===> (x) c
4003 / \ / \
4004 b c a b */
4006 static void
4007 mem_rotate_left (struct mem_node *x)
4009 struct mem_node *y;
4011 /* Turn y's left sub-tree into x's right sub-tree. */
4012 y = x->right;
4013 x->right = y->left;
4014 if (y->left != MEM_NIL)
4015 y->left->parent = x;
4017 /* Y's parent was x's parent. */
4018 if (y != MEM_NIL)
4019 y->parent = x->parent;
4021 /* Get the parent to point to y instead of x. */
4022 if (x->parent)
4024 if (x == x->parent->left)
4025 x->parent->left = y;
4026 else
4027 x->parent->right = y;
4029 else
4030 mem_root = y;
4032 /* Put x on y's left. */
4033 y->left = x;
4034 if (x != MEM_NIL)
4035 x->parent = y;
4039 /* (x) (Y)
4040 / \ / \
4041 (y) c ===> a (x)
4042 / \ / \
4043 a b b c */
4045 static void
4046 mem_rotate_right (struct mem_node *x)
4048 struct mem_node *y = x->left;
4050 x->left = y->right;
4051 if (y->right != MEM_NIL)
4052 y->right->parent = x;
4054 if (y != MEM_NIL)
4055 y->parent = x->parent;
4056 if (x->parent)
4058 if (x == x->parent->right)
4059 x->parent->right = y;
4060 else
4061 x->parent->left = y;
4063 else
4064 mem_root = y;
4066 y->right = x;
4067 if (x != MEM_NIL)
4068 x->parent = y;
4072 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4074 static void
4075 mem_delete (struct mem_node *z)
4077 struct mem_node *x, *y;
4079 if (!z || z == MEM_NIL)
4080 return;
4082 if (z->left == MEM_NIL || z->right == MEM_NIL)
4083 y = z;
4084 else
4086 y = z->right;
4087 while (y->left != MEM_NIL)
4088 y = y->left;
4091 if (y->left != MEM_NIL)
4092 x = y->left;
4093 else
4094 x = y->right;
4096 x->parent = y->parent;
4097 if (y->parent)
4099 if (y == y->parent->left)
4100 y->parent->left = x;
4101 else
4102 y->parent->right = x;
4104 else
4105 mem_root = x;
4107 if (y != z)
4109 z->start = y->start;
4110 z->end = y->end;
4111 z->type = y->type;
4114 if (y->color == MEM_BLACK)
4115 mem_delete_fixup (x);
4117 #ifdef GC_MALLOC_CHECK
4118 _free_internal (y);
4119 #else
4120 xfree (y);
4121 #endif
4125 /* Re-establish the red-black properties of the tree, after a
4126 deletion. */
4128 static void
4129 mem_delete_fixup (struct mem_node *x)
4131 while (x != mem_root && x->color == MEM_BLACK)
4133 if (x == x->parent->left)
4135 struct mem_node *w = x->parent->right;
4137 if (w->color == MEM_RED)
4139 w->color = MEM_BLACK;
4140 x->parent->color = MEM_RED;
4141 mem_rotate_left (x->parent);
4142 w = x->parent->right;
4145 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4147 w->color = MEM_RED;
4148 x = x->parent;
4150 else
4152 if (w->right->color == MEM_BLACK)
4154 w->left->color = MEM_BLACK;
4155 w->color = MEM_RED;
4156 mem_rotate_right (w);
4157 w = x->parent->right;
4159 w->color = x->parent->color;
4160 x->parent->color = MEM_BLACK;
4161 w->right->color = MEM_BLACK;
4162 mem_rotate_left (x->parent);
4163 x = mem_root;
4166 else
4168 struct mem_node *w = x->parent->left;
4170 if (w->color == MEM_RED)
4172 w->color = MEM_BLACK;
4173 x->parent->color = MEM_RED;
4174 mem_rotate_right (x->parent);
4175 w = x->parent->left;
4178 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4180 w->color = MEM_RED;
4181 x = x->parent;
4183 else
4185 if (w->left->color == MEM_BLACK)
4187 w->right->color = MEM_BLACK;
4188 w->color = MEM_RED;
4189 mem_rotate_left (w);
4190 w = x->parent->left;
4193 w->color = x->parent->color;
4194 x->parent->color = MEM_BLACK;
4195 w->left->color = MEM_BLACK;
4196 mem_rotate_right (x->parent);
4197 x = mem_root;
4202 x->color = MEM_BLACK;
4206 /* Value is non-zero if P is a pointer to a live Lisp string on
4207 the heap. M is a pointer to the mem_block for P. */
4209 static inline int
4210 live_string_p (struct mem_node *m, void *p)
4212 if (m->type == MEM_TYPE_STRING)
4214 struct string_block *b = (struct string_block *) m->start;
4215 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4217 /* P must point to the start of a Lisp_String structure, and it
4218 must not be on the free-list. */
4219 return (offset >= 0
4220 && offset % sizeof b->strings[0] == 0
4221 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4222 && ((struct Lisp_String *) p)->data != NULL);
4224 else
4225 return 0;
4229 /* Value is non-zero if P is a pointer to a live Lisp cons on
4230 the heap. M is a pointer to the mem_block for P. */
4232 static inline int
4233 live_cons_p (struct mem_node *m, void *p)
4235 if (m->type == MEM_TYPE_CONS)
4237 struct cons_block *b = (struct cons_block *) m->start;
4238 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4240 /* P must point to the start of a Lisp_Cons, not be
4241 one of the unused cells in the current cons block,
4242 and not be on the free-list. */
4243 return (offset >= 0
4244 && offset % sizeof b->conses[0] == 0
4245 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4246 && (b != cons_block
4247 || offset / sizeof b->conses[0] < cons_block_index)
4248 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4250 else
4251 return 0;
4255 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4256 the heap. M is a pointer to the mem_block for P. */
4258 static inline int
4259 live_symbol_p (struct mem_node *m, void *p)
4261 if (m->type == MEM_TYPE_SYMBOL)
4263 struct symbol_block *b = (struct symbol_block *) m->start;
4264 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4266 /* P must point to the start of a Lisp_Symbol, not be
4267 one of the unused cells in the current symbol block,
4268 and not be on the free-list. */
4269 return (offset >= 0
4270 && offset % sizeof b->symbols[0] == 0
4271 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4272 && (b != symbol_block
4273 || offset / sizeof b->symbols[0] < symbol_block_index)
4274 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4276 else
4277 return 0;
4281 /* Value is non-zero if P is a pointer to a live Lisp float on
4282 the heap. M is a pointer to the mem_block for P. */
4284 static inline int
4285 live_float_p (struct mem_node *m, void *p)
4287 if (m->type == MEM_TYPE_FLOAT)
4289 struct float_block *b = (struct float_block *) m->start;
4290 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4292 /* P must point to the start of a Lisp_Float and not be
4293 one of the unused cells in the current float block. */
4294 return (offset >= 0
4295 && offset % sizeof b->floats[0] == 0
4296 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4297 && (b != float_block
4298 || offset / sizeof b->floats[0] < float_block_index));
4300 else
4301 return 0;
4305 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4306 the heap. M is a pointer to the mem_block for P. */
4308 static inline int
4309 live_misc_p (struct mem_node *m, void *p)
4311 if (m->type == MEM_TYPE_MISC)
4313 struct marker_block *b = (struct marker_block *) m->start;
4314 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4316 /* P must point to the start of a Lisp_Misc, not be
4317 one of the unused cells in the current misc block,
4318 and not be on the free-list. */
4319 return (offset >= 0
4320 && offset % sizeof b->markers[0] == 0
4321 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4322 && (b != marker_block
4323 || offset / sizeof b->markers[0] < marker_block_index)
4324 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4326 else
4327 return 0;
4331 /* Value is non-zero if P is a pointer to a live vector-like object.
4332 M is a pointer to the mem_block for P. */
4334 static inline int
4335 live_vector_p (struct mem_node *m, void *p)
4337 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4339 /* This memory node corresponds to a vector block. */
4340 struct vector_block *block = (struct vector_block *) m->start;
4341 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4343 /* P is in the block's allocation range. Scan the block
4344 up to P and see whether P points to the start of some
4345 vector which is not on a free list. FIXME: check whether
4346 some allocation patterns (probably a lot of short vectors)
4347 may cause a substantial overhead of this loop. */
4348 while (VECTOR_IN_BLOCK (vector, block)
4349 && vector <= (struct Lisp_Vector *) p)
4351 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
4352 == VECTOR_FREE_LIST_FLAG)
4353 vector = ADVANCE (vector, (vector->header.size
4354 & (VECTOR_BLOCK_SIZE - 1)));
4355 else if (vector == p)
4356 return 1;
4357 else
4358 vector = ADVANCE (vector, vector->header.next.nbytes);
4361 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4362 /* This memory node corresponds to a large vector. */
4363 return 1;
4364 return 0;
4368 /* Value is non-zero if P is a pointer to a live buffer. M is a
4369 pointer to the mem_block for P. */
4371 static inline int
4372 live_buffer_p (struct mem_node *m, void *p)
4374 /* P must point to the start of the block, and the buffer
4375 must not have been killed. */
4376 return (m->type == MEM_TYPE_BUFFER
4377 && p == m->start
4378 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4381 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4383 #if GC_MARK_STACK
4385 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4387 /* Array of objects that are kept alive because the C stack contains
4388 a pattern that looks like a reference to them . */
4390 #define MAX_ZOMBIES 10
4391 static Lisp_Object zombies[MAX_ZOMBIES];
4393 /* Number of zombie objects. */
4395 static EMACS_INT nzombies;
4397 /* Number of garbage collections. */
4399 static EMACS_INT ngcs;
4401 /* Average percentage of zombies per collection. */
4403 static double avg_zombies;
4405 /* Max. number of live and zombie objects. */
4407 static EMACS_INT max_live, max_zombies;
4409 /* Average number of live objects per GC. */
4411 static double avg_live;
4413 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4414 doc: /* Show information about live and zombie objects. */)
4415 (void)
4417 Lisp_Object args[8], zombie_list = Qnil;
4418 EMACS_INT i;
4419 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4420 zombie_list = Fcons (zombies[i], zombie_list);
4421 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4422 args[1] = make_number (ngcs);
4423 args[2] = make_float (avg_live);
4424 args[3] = make_float (avg_zombies);
4425 args[4] = make_float (avg_zombies / avg_live / 100);
4426 args[5] = make_number (max_live);
4427 args[6] = make_number (max_zombies);
4428 args[7] = zombie_list;
4429 return Fmessage (8, args);
4432 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4435 /* Mark OBJ if we can prove it's a Lisp_Object. */
4437 static inline void
4438 mark_maybe_object (Lisp_Object obj)
4440 void *po;
4441 struct mem_node *m;
4443 if (INTEGERP (obj))
4444 return;
4446 po = (void *) XPNTR (obj);
4447 m = mem_find (po);
4449 if (m != MEM_NIL)
4451 int mark_p = 0;
4453 switch (XTYPE (obj))
4455 case Lisp_String:
4456 mark_p = (live_string_p (m, po)
4457 && !STRING_MARKED_P ((struct Lisp_String *) po));
4458 break;
4460 case Lisp_Cons:
4461 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4462 break;
4464 case Lisp_Symbol:
4465 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4466 break;
4468 case Lisp_Float:
4469 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4470 break;
4472 case Lisp_Vectorlike:
4473 /* Note: can't check BUFFERP before we know it's a
4474 buffer because checking that dereferences the pointer
4475 PO which might point anywhere. */
4476 if (live_vector_p (m, po))
4477 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4478 else if (live_buffer_p (m, po))
4479 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4480 break;
4482 case Lisp_Misc:
4483 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4484 break;
4486 default:
4487 break;
4490 if (mark_p)
4492 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4493 if (nzombies < MAX_ZOMBIES)
4494 zombies[nzombies] = obj;
4495 ++nzombies;
4496 #endif
4497 mark_object (obj);
4503 /* If P points to Lisp data, mark that as live if it isn't already
4504 marked. */
4506 static inline void
4507 mark_maybe_pointer (void *p)
4509 struct mem_node *m;
4511 /* Quickly rule out some values which can't point to Lisp data.
4512 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4513 Otherwise, assume that Lisp data is aligned on even addresses. */
4514 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4515 return;
4517 m = mem_find (p);
4518 if (m != MEM_NIL)
4520 Lisp_Object obj = Qnil;
4522 switch (m->type)
4524 case MEM_TYPE_NON_LISP:
4525 /* Nothing to do; not a pointer to Lisp memory. */
4526 break;
4528 case MEM_TYPE_BUFFER:
4529 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4530 XSETVECTOR (obj, p);
4531 break;
4533 case MEM_TYPE_CONS:
4534 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4535 XSETCONS (obj, p);
4536 break;
4538 case MEM_TYPE_STRING:
4539 if (live_string_p (m, p)
4540 && !STRING_MARKED_P ((struct Lisp_String *) p))
4541 XSETSTRING (obj, p);
4542 break;
4544 case MEM_TYPE_MISC:
4545 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4546 XSETMISC (obj, p);
4547 break;
4549 case MEM_TYPE_SYMBOL:
4550 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4551 XSETSYMBOL (obj, p);
4552 break;
4554 case MEM_TYPE_FLOAT:
4555 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4556 XSETFLOAT (obj, p);
4557 break;
4559 case MEM_TYPE_VECTORLIKE:
4560 case MEM_TYPE_VECTOR_BLOCK:
4561 if (live_vector_p (m, p))
4563 Lisp_Object tem;
4564 XSETVECTOR (tem, p);
4565 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4566 obj = tem;
4568 break;
4570 default:
4571 abort ();
4574 if (!NILP (obj))
4575 mark_object (obj);
4580 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4581 a smaller alignment than GCC's __alignof__ and mark_memory might
4582 miss objects if __alignof__ were used. */
4583 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4585 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4586 not suffice, which is the typical case. A host where a Lisp_Object is
4587 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4588 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4589 suffice to widen it to to a Lisp_Object and check it that way. */
4590 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4591 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4592 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4593 nor mark_maybe_object can follow the pointers. This should not occur on
4594 any practical porting target. */
4595 # error "MSB type bits straddle pointer-word boundaries"
4596 # endif
4597 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4598 pointer words that hold pointers ORed with type bits. */
4599 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4600 #else
4601 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4602 words that hold unmodified pointers. */
4603 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4604 #endif
4606 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4607 or END+OFFSET..START. */
4609 static void
4610 mark_memory (void *start, void *end)
4611 #ifdef __clang__
4612 /* Do not allow -faddress-sanitizer to check this function, since it
4613 crosses the function stack boundary, and thus would yield many
4614 false positives. */
4615 __attribute__((no_address_safety_analysis))
4616 #endif
4618 void **pp;
4619 int i;
4621 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4622 nzombies = 0;
4623 #endif
4625 /* Make START the pointer to the start of the memory region,
4626 if it isn't already. */
4627 if (end < start)
4629 void *tem = start;
4630 start = end;
4631 end = tem;
4634 /* Mark Lisp data pointed to. This is necessary because, in some
4635 situations, the C compiler optimizes Lisp objects away, so that
4636 only a pointer to them remains. Example:
4638 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4641 Lisp_Object obj = build_string ("test");
4642 struct Lisp_String *s = XSTRING (obj);
4643 Fgarbage_collect ();
4644 fprintf (stderr, "test `%s'\n", s->data);
4645 return Qnil;
4648 Here, `obj' isn't really used, and the compiler optimizes it
4649 away. The only reference to the life string is through the
4650 pointer `s'. */
4652 for (pp = start; (void *) pp < end; pp++)
4653 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4655 void *p = *(void **) ((char *) pp + i);
4656 mark_maybe_pointer (p);
4657 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4658 mark_maybe_object (XIL ((intptr_t) p));
4662 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4663 the GCC system configuration. In gcc 3.2, the only systems for
4664 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4665 by others?) and ns32k-pc532-min. */
4667 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4669 static int setjmp_tested_p, longjmps_done;
4671 #define SETJMP_WILL_LIKELY_WORK "\
4673 Emacs garbage collector has been changed to use conservative stack\n\
4674 marking. Emacs has determined that the method it uses to do the\n\
4675 marking will likely work on your system, but this isn't sure.\n\
4677 If you are a system-programmer, or can get the help of a local wizard\n\
4678 who is, please take a look at the function mark_stack in alloc.c, and\n\
4679 verify that the methods used are appropriate for your system.\n\
4681 Please mail the result to <emacs-devel@gnu.org>.\n\
4684 #define SETJMP_WILL_NOT_WORK "\
4686 Emacs garbage collector has been changed to use conservative stack\n\
4687 marking. Emacs has determined that the default method it uses to do the\n\
4688 marking will not work on your system. We will need a system-dependent\n\
4689 solution for your system.\n\
4691 Please take a look at the function mark_stack in alloc.c, and\n\
4692 try to find a way to make it work on your system.\n\
4694 Note that you may get false negatives, depending on the compiler.\n\
4695 In particular, you need to use -O with GCC for this test.\n\
4697 Please mail the result to <emacs-devel@gnu.org>.\n\
4701 /* Perform a quick check if it looks like setjmp saves registers in a
4702 jmp_buf. Print a message to stderr saying so. When this test
4703 succeeds, this is _not_ a proof that setjmp is sufficient for
4704 conservative stack marking. Only the sources or a disassembly
4705 can prove that. */
4707 static void
4708 test_setjmp (void)
4710 char buf[10];
4711 register int x;
4712 jmp_buf jbuf;
4713 int result = 0;
4715 /* Arrange for X to be put in a register. */
4716 sprintf (buf, "1");
4717 x = strlen (buf);
4718 x = 2 * x - 1;
4720 setjmp (jbuf);
4721 if (longjmps_done == 1)
4723 /* Came here after the longjmp at the end of the function.
4725 If x == 1, the longjmp has restored the register to its
4726 value before the setjmp, and we can hope that setjmp
4727 saves all such registers in the jmp_buf, although that
4728 isn't sure.
4730 For other values of X, either something really strange is
4731 taking place, or the setjmp just didn't save the register. */
4733 if (x == 1)
4734 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4735 else
4737 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4738 exit (1);
4742 ++longjmps_done;
4743 x = 2;
4744 if (longjmps_done == 1)
4745 longjmp (jbuf, 1);
4748 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4751 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4753 /* Abort if anything GCPRO'd doesn't survive the GC. */
4755 static void
4756 check_gcpros (void)
4758 struct gcpro *p;
4759 ptrdiff_t i;
4761 for (p = gcprolist; p; p = p->next)
4762 for (i = 0; i < p->nvars; ++i)
4763 if (!survives_gc_p (p->var[i]))
4764 /* FIXME: It's not necessarily a bug. It might just be that the
4765 GCPRO is unnecessary or should release the object sooner. */
4766 abort ();
4769 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4771 static void
4772 dump_zombies (void)
4774 int i;
4776 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4777 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4779 fprintf (stderr, " %d = ", i);
4780 debug_print (zombies[i]);
4784 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4787 /* Mark live Lisp objects on the C stack.
4789 There are several system-dependent problems to consider when
4790 porting this to new architectures:
4792 Processor Registers
4794 We have to mark Lisp objects in CPU registers that can hold local
4795 variables or are used to pass parameters.
4797 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4798 something that either saves relevant registers on the stack, or
4799 calls mark_maybe_object passing it each register's contents.
4801 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4802 implementation assumes that calling setjmp saves registers we need
4803 to see in a jmp_buf which itself lies on the stack. This doesn't
4804 have to be true! It must be verified for each system, possibly
4805 by taking a look at the source code of setjmp.
4807 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4808 can use it as a machine independent method to store all registers
4809 to the stack. In this case the macros described in the previous
4810 two paragraphs are not used.
4812 Stack Layout
4814 Architectures differ in the way their processor stack is organized.
4815 For example, the stack might look like this
4817 +----------------+
4818 | Lisp_Object | size = 4
4819 +----------------+
4820 | something else | size = 2
4821 +----------------+
4822 | Lisp_Object | size = 4
4823 +----------------+
4824 | ... |
4826 In such a case, not every Lisp_Object will be aligned equally. To
4827 find all Lisp_Object on the stack it won't be sufficient to walk
4828 the stack in steps of 4 bytes. Instead, two passes will be
4829 necessary, one starting at the start of the stack, and a second
4830 pass starting at the start of the stack + 2. Likewise, if the
4831 minimal alignment of Lisp_Objects on the stack is 1, four passes
4832 would be necessary, each one starting with one byte more offset
4833 from the stack start. */
4835 static void
4836 mark_stack (void)
4838 void *end;
4840 #ifdef HAVE___BUILTIN_UNWIND_INIT
4841 /* Force callee-saved registers and register windows onto the stack.
4842 This is the preferred method if available, obviating the need for
4843 machine dependent methods. */
4844 __builtin_unwind_init ();
4845 end = &end;
4846 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4847 #ifndef GC_SAVE_REGISTERS_ON_STACK
4848 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4849 union aligned_jmpbuf {
4850 Lisp_Object o;
4851 jmp_buf j;
4852 } j;
4853 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4854 #endif
4855 /* This trick flushes the register windows so that all the state of
4856 the process is contained in the stack. */
4857 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4858 needed on ia64 too. See mach_dep.c, where it also says inline
4859 assembler doesn't work with relevant proprietary compilers. */
4860 #ifdef __sparc__
4861 #if defined (__sparc64__) && defined (__FreeBSD__)
4862 /* FreeBSD does not have a ta 3 handler. */
4863 asm ("flushw");
4864 #else
4865 asm ("ta 3");
4866 #endif
4867 #endif
4869 /* Save registers that we need to see on the stack. We need to see
4870 registers used to hold register variables and registers used to
4871 pass parameters. */
4872 #ifdef GC_SAVE_REGISTERS_ON_STACK
4873 GC_SAVE_REGISTERS_ON_STACK (end);
4874 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4876 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4877 setjmp will definitely work, test it
4878 and print a message with the result
4879 of the test. */
4880 if (!setjmp_tested_p)
4882 setjmp_tested_p = 1;
4883 test_setjmp ();
4885 #endif /* GC_SETJMP_WORKS */
4887 setjmp (j.j);
4888 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4889 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4890 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4892 /* This assumes that the stack is a contiguous region in memory. If
4893 that's not the case, something has to be done here to iterate
4894 over the stack segments. */
4895 mark_memory (stack_base, end);
4897 /* Allow for marking a secondary stack, like the register stack on the
4898 ia64. */
4899 #ifdef GC_MARK_SECONDARY_STACK
4900 GC_MARK_SECONDARY_STACK ();
4901 #endif
4903 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4904 check_gcpros ();
4905 #endif
4908 #endif /* GC_MARK_STACK != 0 */
4911 /* Determine whether it is safe to access memory at address P. */
4912 static int
4913 valid_pointer_p (void *p)
4915 #ifdef WINDOWSNT
4916 return w32_valid_pointer_p (p, 16);
4917 #else
4918 int fd[2];
4920 /* Obviously, we cannot just access it (we would SEGV trying), so we
4921 trick the o/s to tell us whether p is a valid pointer.
4922 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4923 not validate p in that case. */
4925 if (pipe (fd) == 0)
4927 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4928 emacs_close (fd[1]);
4929 emacs_close (fd[0]);
4930 return valid;
4933 return -1;
4934 #endif
4937 /* Return 1 if OBJ is a valid lisp object.
4938 Return 0 if OBJ is NOT a valid lisp object.
4939 Return -1 if we cannot validate OBJ.
4940 This function can be quite slow,
4941 so it should only be used in code for manual debugging. */
4944 valid_lisp_object_p (Lisp_Object obj)
4946 void *p;
4947 #if GC_MARK_STACK
4948 struct mem_node *m;
4949 #endif
4951 if (INTEGERP (obj))
4952 return 1;
4954 p = (void *) XPNTR (obj);
4955 if (PURE_POINTER_P (p))
4956 return 1;
4958 #if !GC_MARK_STACK
4959 return valid_pointer_p (p);
4960 #else
4962 m = mem_find (p);
4964 if (m == MEM_NIL)
4966 int valid = valid_pointer_p (p);
4967 if (valid <= 0)
4968 return valid;
4970 if (SUBRP (obj))
4971 return 1;
4973 return 0;
4976 switch (m->type)
4978 case MEM_TYPE_NON_LISP:
4979 return 0;
4981 case MEM_TYPE_BUFFER:
4982 return live_buffer_p (m, p);
4984 case MEM_TYPE_CONS:
4985 return live_cons_p (m, p);
4987 case MEM_TYPE_STRING:
4988 return live_string_p (m, p);
4990 case MEM_TYPE_MISC:
4991 return live_misc_p (m, p);
4993 case MEM_TYPE_SYMBOL:
4994 return live_symbol_p (m, p);
4996 case MEM_TYPE_FLOAT:
4997 return live_float_p (m, p);
4999 case MEM_TYPE_VECTORLIKE:
5000 case MEM_TYPE_VECTOR_BLOCK:
5001 return live_vector_p (m, p);
5003 default:
5004 break;
5007 return 0;
5008 #endif
5014 /***********************************************************************
5015 Pure Storage Management
5016 ***********************************************************************/
5018 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5019 pointer to it. TYPE is the Lisp type for which the memory is
5020 allocated. TYPE < 0 means it's not used for a Lisp object. */
5022 static void *
5023 pure_alloc (size_t size, int type)
5025 void *result;
5026 #if USE_LSB_TAG
5027 size_t alignment = (1 << GCTYPEBITS);
5028 #else
5029 size_t alignment = sizeof (EMACS_INT);
5031 /* Give Lisp_Floats an extra alignment. */
5032 if (type == Lisp_Float)
5034 #if defined __GNUC__ && __GNUC__ >= 2
5035 alignment = __alignof (struct Lisp_Float);
5036 #else
5037 alignment = sizeof (struct Lisp_Float);
5038 #endif
5040 #endif
5042 again:
5043 if (type >= 0)
5045 /* Allocate space for a Lisp object from the beginning of the free
5046 space with taking account of alignment. */
5047 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5048 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5050 else
5052 /* Allocate space for a non-Lisp object from the end of the free
5053 space. */
5054 pure_bytes_used_non_lisp += size;
5055 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5057 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5059 if (pure_bytes_used <= pure_size)
5060 return result;
5062 /* Don't allocate a large amount here,
5063 because it might get mmap'd and then its address
5064 might not be usable. */
5065 purebeg = (char *) xmalloc (10000);
5066 pure_size = 10000;
5067 pure_bytes_used_before_overflow += pure_bytes_used - size;
5068 pure_bytes_used = 0;
5069 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5070 goto again;
5074 /* Print a warning if PURESIZE is too small. */
5076 void
5077 check_pure_size (void)
5079 if (pure_bytes_used_before_overflow)
5080 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5081 " bytes needed)"),
5082 pure_bytes_used + pure_bytes_used_before_overflow);
5086 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5087 the non-Lisp data pool of the pure storage, and return its start
5088 address. Return NULL if not found. */
5090 static char *
5091 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5093 int i;
5094 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5095 const unsigned char *p;
5096 char *non_lisp_beg;
5098 if (pure_bytes_used_non_lisp <= nbytes)
5099 return NULL;
5101 /* Set up the Boyer-Moore table. */
5102 skip = nbytes + 1;
5103 for (i = 0; i < 256; i++)
5104 bm_skip[i] = skip;
5106 p = (const unsigned char *) data;
5107 while (--skip > 0)
5108 bm_skip[*p++] = skip;
5110 last_char_skip = bm_skip['\0'];
5112 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5113 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5115 /* See the comments in the function `boyer_moore' (search.c) for the
5116 use of `infinity'. */
5117 infinity = pure_bytes_used_non_lisp + 1;
5118 bm_skip['\0'] = infinity;
5120 p = (const unsigned char *) non_lisp_beg + nbytes;
5121 start = 0;
5124 /* Check the last character (== '\0'). */
5127 start += bm_skip[*(p + start)];
5129 while (start <= start_max);
5131 if (start < infinity)
5132 /* Couldn't find the last character. */
5133 return NULL;
5135 /* No less than `infinity' means we could find the last
5136 character at `p[start - infinity]'. */
5137 start -= infinity;
5139 /* Check the remaining characters. */
5140 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5141 /* Found. */
5142 return non_lisp_beg + start;
5144 start += last_char_skip;
5146 while (start <= start_max);
5148 return NULL;
5152 /* Return a string allocated in pure space. DATA is a buffer holding
5153 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5154 non-zero means make the result string multibyte.
5156 Must get an error if pure storage is full, since if it cannot hold
5157 a large string it may be able to hold conses that point to that
5158 string; then the string is not protected from gc. */
5160 Lisp_Object
5161 make_pure_string (const char *data,
5162 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5164 Lisp_Object string;
5165 struct Lisp_String *s;
5167 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5168 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5169 if (s->data == NULL)
5171 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5172 memcpy (s->data, data, nbytes);
5173 s->data[nbytes] = '\0';
5175 s->size = nchars;
5176 s->size_byte = multibyte ? nbytes : -1;
5177 s->intervals = NULL_INTERVAL;
5178 XSETSTRING (string, s);
5179 return string;
5182 /* Return a string a string allocated in pure space. Do not allocate
5183 the string data, just point to DATA. */
5185 Lisp_Object
5186 make_pure_c_string (const char *data)
5188 Lisp_Object string;
5189 struct Lisp_String *s;
5190 ptrdiff_t nchars = strlen (data);
5192 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5193 s->size = nchars;
5194 s->size_byte = -1;
5195 s->data = (unsigned char *) data;
5196 s->intervals = NULL_INTERVAL;
5197 XSETSTRING (string, s);
5198 return string;
5201 /* Return a cons allocated from pure space. Give it pure copies
5202 of CAR as car and CDR as cdr. */
5204 Lisp_Object
5205 pure_cons (Lisp_Object car, Lisp_Object cdr)
5207 register Lisp_Object new;
5208 struct Lisp_Cons *p;
5210 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5211 XSETCONS (new, p);
5212 XSETCAR (new, Fpurecopy (car));
5213 XSETCDR (new, Fpurecopy (cdr));
5214 return new;
5218 /* Value is a float object with value NUM allocated from pure space. */
5220 static Lisp_Object
5221 make_pure_float (double num)
5223 register Lisp_Object new;
5224 struct Lisp_Float *p;
5226 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5227 XSETFLOAT (new, p);
5228 XFLOAT_INIT (new, num);
5229 return new;
5233 /* Return a vector with room for LEN Lisp_Objects allocated from
5234 pure space. */
5236 static Lisp_Object
5237 make_pure_vector (ptrdiff_t len)
5239 Lisp_Object new;
5240 struct Lisp_Vector *p;
5241 size_t size = (offsetof (struct Lisp_Vector, contents)
5242 + len * sizeof (Lisp_Object));
5244 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5245 XSETVECTOR (new, p);
5246 XVECTOR (new)->header.size = len;
5247 return new;
5251 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5252 doc: /* Make a copy of object OBJ in pure storage.
5253 Recursively copies contents of vectors and cons cells.
5254 Does not copy symbols. Copies strings without text properties. */)
5255 (register Lisp_Object obj)
5257 if (NILP (Vpurify_flag))
5258 return obj;
5260 if (PURE_POINTER_P (XPNTR (obj)))
5261 return obj;
5263 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5265 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5266 if (!NILP (tmp))
5267 return tmp;
5270 if (CONSP (obj))
5271 obj = pure_cons (XCAR (obj), XCDR (obj));
5272 else if (FLOATP (obj))
5273 obj = make_pure_float (XFLOAT_DATA (obj));
5274 else if (STRINGP (obj))
5275 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5276 SBYTES (obj),
5277 STRING_MULTIBYTE (obj));
5278 else if (COMPILEDP (obj) || VECTORP (obj))
5280 register struct Lisp_Vector *vec;
5281 register ptrdiff_t i;
5282 ptrdiff_t size;
5284 size = ASIZE (obj);
5285 if (size & PSEUDOVECTOR_FLAG)
5286 size &= PSEUDOVECTOR_SIZE_MASK;
5287 vec = XVECTOR (make_pure_vector (size));
5288 for (i = 0; i < size; i++)
5289 vec->contents[i] = Fpurecopy (AREF (obj, i));
5290 if (COMPILEDP (obj))
5292 XSETPVECTYPE (vec, PVEC_COMPILED);
5293 XSETCOMPILED (obj, vec);
5295 else
5296 XSETVECTOR (obj, vec);
5298 else if (MARKERP (obj))
5299 error ("Attempt to copy a marker to pure storage");
5300 else
5301 /* Not purified, don't hash-cons. */
5302 return obj;
5304 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5305 Fputhash (obj, obj, Vpurify_flag);
5307 return obj;
5312 /***********************************************************************
5313 Protection from GC
5314 ***********************************************************************/
5316 /* Put an entry in staticvec, pointing at the variable with address
5317 VARADDRESS. */
5319 void
5320 staticpro (Lisp_Object *varaddress)
5322 staticvec[staticidx++] = varaddress;
5323 if (staticidx >= NSTATICS)
5324 abort ();
5328 /***********************************************************************
5329 Protection from GC
5330 ***********************************************************************/
5332 /* Temporarily prevent garbage collection. */
5334 ptrdiff_t
5335 inhibit_garbage_collection (void)
5337 ptrdiff_t count = SPECPDL_INDEX ();
5339 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5340 return count;
5344 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5345 doc: /* Reclaim storage for Lisp objects no longer needed.
5346 Garbage collection happens automatically if you cons more than
5347 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5348 `garbage-collect' normally returns a list with info on amount of space in use:
5349 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5350 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
5351 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5352 (USED-STRINGS . FREE-STRINGS))
5353 However, if there was overflow in pure space, `garbage-collect'
5354 returns nil, because real GC can't be done.
5355 See Info node `(elisp)Garbage Collection'. */)
5356 (void)
5358 register struct specbinding *bind;
5359 char stack_top_variable;
5360 ptrdiff_t i;
5361 int message_p;
5362 Lisp_Object total[8];
5363 ptrdiff_t count = SPECPDL_INDEX ();
5364 EMACS_TIME t1, t2, t3;
5366 if (abort_on_gc)
5367 abort ();
5369 /* Can't GC if pure storage overflowed because we can't determine
5370 if something is a pure object or not. */
5371 if (pure_bytes_used_before_overflow)
5372 return Qnil;
5374 CHECK_CONS_LIST ();
5376 /* Don't keep undo information around forever.
5377 Do this early on, so it is no problem if the user quits. */
5379 register struct buffer *nextb = all_buffers;
5381 while (nextb)
5383 /* If a buffer's undo list is Qt, that means that undo is
5384 turned off in that buffer. Calling truncate_undo_list on
5385 Qt tends to return NULL, which effectively turns undo back on.
5386 So don't call truncate_undo_list if undo_list is Qt. */
5387 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5388 && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5389 truncate_undo_list (nextb);
5391 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5392 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5393 && ! nextb->text->inhibit_shrinking)
5395 /* If a buffer's gap size is more than 10% of the buffer
5396 size, or larger than 2000 bytes, then shrink it
5397 accordingly. Keep a minimum size of 20 bytes. */
5398 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5400 if (nextb->text->gap_size > size)
5402 struct buffer *save_current = current_buffer;
5403 current_buffer = nextb;
5404 make_gap (-(nextb->text->gap_size - size));
5405 current_buffer = save_current;
5409 nextb = nextb->header.next.buffer;
5413 EMACS_GET_TIME (t1);
5415 /* In case user calls debug_print during GC,
5416 don't let that cause a recursive GC. */
5417 consing_since_gc = 0;
5419 /* Save what's currently displayed in the echo area. */
5420 message_p = push_message ();
5421 record_unwind_protect (pop_message_unwind, Qnil);
5423 /* Save a copy of the contents of the stack, for debugging. */
5424 #if MAX_SAVE_STACK > 0
5425 if (NILP (Vpurify_flag))
5427 char *stack;
5428 ptrdiff_t stack_size;
5429 if (&stack_top_variable < stack_bottom)
5431 stack = &stack_top_variable;
5432 stack_size = stack_bottom - &stack_top_variable;
5434 else
5436 stack = stack_bottom;
5437 stack_size = &stack_top_variable - stack_bottom;
5439 if (stack_size <= MAX_SAVE_STACK)
5441 if (stack_copy_size < stack_size)
5443 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5444 stack_copy_size = stack_size;
5446 memcpy (stack_copy, stack, stack_size);
5449 #endif /* MAX_SAVE_STACK > 0 */
5451 if (garbage_collection_messages)
5452 message1_nolog ("Garbage collecting...");
5454 BLOCK_INPUT;
5456 shrink_regexp_cache ();
5458 gc_in_progress = 1;
5460 /* clear_marks (); */
5462 /* Mark all the special slots that serve as the roots of accessibility. */
5464 for (i = 0; i < staticidx; i++)
5465 mark_object (*staticvec[i]);
5467 for (bind = specpdl; bind != specpdl_ptr; bind++)
5469 mark_object (bind->symbol);
5470 mark_object (bind->old_value);
5472 mark_terminals ();
5473 mark_kboards ();
5474 mark_ttys ();
5476 #ifdef USE_GTK
5478 extern void xg_mark_data (void);
5479 xg_mark_data ();
5481 #endif
5483 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5484 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5485 mark_stack ();
5486 #else
5488 register struct gcpro *tail;
5489 for (tail = gcprolist; tail; tail = tail->next)
5490 for (i = 0; i < tail->nvars; i++)
5491 mark_object (tail->var[i]);
5493 mark_byte_stack ();
5495 struct catchtag *catch;
5496 struct handler *handler;
5498 for (catch = catchlist; catch; catch = catch->next)
5500 mark_object (catch->tag);
5501 mark_object (catch->val);
5503 for (handler = handlerlist; handler; handler = handler->next)
5505 mark_object (handler->handler);
5506 mark_object (handler->var);
5509 mark_backtrace ();
5510 #endif
5512 #ifdef HAVE_WINDOW_SYSTEM
5513 mark_fringe_data ();
5514 #endif
5516 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5517 mark_stack ();
5518 #endif
5520 /* Everything is now marked, except for the things that require special
5521 finalization, i.e. the undo_list.
5522 Look thru every buffer's undo list
5523 for elements that update markers that were not marked,
5524 and delete them. */
5526 register struct buffer *nextb = all_buffers;
5528 while (nextb)
5530 /* If a buffer's undo list is Qt, that means that undo is
5531 turned off in that buffer. Calling truncate_undo_list on
5532 Qt tends to return NULL, which effectively turns undo back on.
5533 So don't call truncate_undo_list if undo_list is Qt. */
5534 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5536 Lisp_Object tail, prev;
5537 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5538 prev = Qnil;
5539 while (CONSP (tail))
5541 if (CONSP (XCAR (tail))
5542 && MARKERP (XCAR (XCAR (tail)))
5543 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5545 if (NILP (prev))
5546 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5547 else
5549 tail = XCDR (tail);
5550 XSETCDR (prev, tail);
5553 else
5555 prev = tail;
5556 tail = XCDR (tail);
5560 /* Now that we have stripped the elements that need not be in the
5561 undo_list any more, we can finally mark the list. */
5562 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5564 nextb = nextb->header.next.buffer;
5568 gc_sweep ();
5570 /* Clear the mark bits that we set in certain root slots. */
5572 unmark_byte_stack ();
5573 VECTOR_UNMARK (&buffer_defaults);
5574 VECTOR_UNMARK (&buffer_local_symbols);
5576 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5577 dump_zombies ();
5578 #endif
5580 UNBLOCK_INPUT;
5582 CHECK_CONS_LIST ();
5584 /* clear_marks (); */
5585 gc_in_progress = 0;
5587 consing_since_gc = 0;
5588 if (gc_cons_threshold < 10000)
5589 gc_cons_threshold = 10000;
5591 gc_relative_threshold = 0;
5592 if (FLOATP (Vgc_cons_percentage))
5593 { /* Set gc_cons_combined_threshold. */
5594 double tot = 0;
5596 tot += total_conses * sizeof (struct Lisp_Cons);
5597 tot += total_symbols * sizeof (struct Lisp_Symbol);
5598 tot += total_markers * sizeof (union Lisp_Misc);
5599 tot += total_string_size;
5600 tot += total_vector_size * sizeof (Lisp_Object);
5601 tot += total_floats * sizeof (struct Lisp_Float);
5602 tot += total_intervals * sizeof (struct interval);
5603 tot += total_strings * sizeof (struct Lisp_String);
5605 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5606 if (0 < tot)
5608 if (tot < TYPE_MAXIMUM (EMACS_INT))
5609 gc_relative_threshold = tot;
5610 else
5611 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5615 if (garbage_collection_messages)
5617 if (message_p || minibuf_level > 0)
5618 restore_message ();
5619 else
5620 message1_nolog ("Garbage collecting...done");
5623 unbind_to (count, Qnil);
5625 total[0] = Fcons (make_number (total_conses),
5626 make_number (total_free_conses));
5627 total[1] = Fcons (make_number (total_symbols),
5628 make_number (total_free_symbols));
5629 total[2] = Fcons (make_number (total_markers),
5630 make_number (total_free_markers));
5631 total[3] = make_number (total_string_size);
5632 total[4] = make_number (total_vector_size);
5633 total[5] = Fcons (make_number (total_floats),
5634 make_number (total_free_floats));
5635 total[6] = Fcons (make_number (total_intervals),
5636 make_number (total_free_intervals));
5637 total[7] = Fcons (make_number (total_strings),
5638 make_number (total_free_strings));
5640 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5642 /* Compute average percentage of zombies. */
5643 double nlive = 0;
5645 for (i = 0; i < 7; ++i)
5646 if (CONSP (total[i]))
5647 nlive += XFASTINT (XCAR (total[i]));
5649 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5650 max_live = max (nlive, max_live);
5651 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5652 max_zombies = max (nzombies, max_zombies);
5653 ++ngcs;
5655 #endif
5657 if (!NILP (Vpost_gc_hook))
5659 ptrdiff_t gc_count = inhibit_garbage_collection ();
5660 safe_run_hooks (Qpost_gc_hook);
5661 unbind_to (gc_count, Qnil);
5664 /* Accumulate statistics. */
5665 if (FLOATP (Vgc_elapsed))
5667 EMACS_GET_TIME (t2);
5668 EMACS_SUB_TIME (t3, t2, t1);
5669 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5670 + EMACS_TIME_TO_DOUBLE (t3));
5673 gcs_done++;
5675 return Flist (sizeof total / sizeof *total, total);
5679 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5680 only interesting objects referenced from glyphs are strings. */
5682 static void
5683 mark_glyph_matrix (struct glyph_matrix *matrix)
5685 struct glyph_row *row = matrix->rows;
5686 struct glyph_row *end = row + matrix->nrows;
5688 for (; row < end; ++row)
5689 if (row->enabled_p)
5691 int area;
5692 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5694 struct glyph *glyph = row->glyphs[area];
5695 struct glyph *end_glyph = glyph + row->used[area];
5697 for (; glyph < end_glyph; ++glyph)
5698 if (STRINGP (glyph->object)
5699 && !STRING_MARKED_P (XSTRING (glyph->object)))
5700 mark_object (glyph->object);
5706 /* Mark Lisp faces in the face cache C. */
5708 static void
5709 mark_face_cache (struct face_cache *c)
5711 if (c)
5713 int i, j;
5714 for (i = 0; i < c->used; ++i)
5716 struct face *face = FACE_FROM_ID (c->f, i);
5718 if (face)
5720 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5721 mark_object (face->lface[j]);
5729 /* Mark reference to a Lisp_Object.
5730 If the object referred to has not been seen yet, recursively mark
5731 all the references contained in it. */
5733 #define LAST_MARKED_SIZE 500
5734 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5735 static int last_marked_index;
5737 /* For debugging--call abort when we cdr down this many
5738 links of a list, in mark_object. In debugging,
5739 the call to abort will hit a breakpoint.
5740 Normally this is zero and the check never goes off. */
5741 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5743 static void
5744 mark_vectorlike (struct Lisp_Vector *ptr)
5746 ptrdiff_t size = ptr->header.size;
5747 ptrdiff_t i;
5749 eassert (!VECTOR_MARKED_P (ptr));
5750 VECTOR_MARK (ptr); /* Else mark it */
5751 if (size & PSEUDOVECTOR_FLAG)
5752 size &= PSEUDOVECTOR_SIZE_MASK;
5754 /* Note that this size is not the memory-footprint size, but only
5755 the number of Lisp_Object fields that we should trace.
5756 The distinction is used e.g. by Lisp_Process which places extra
5757 non-Lisp_Object fields at the end of the structure. */
5758 for (i = 0; i < size; i++) /* and then mark its elements */
5759 mark_object (ptr->contents[i]);
5762 /* Like mark_vectorlike but optimized for char-tables (and
5763 sub-char-tables) assuming that the contents are mostly integers or
5764 symbols. */
5766 static void
5767 mark_char_table (struct Lisp_Vector *ptr)
5769 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5770 int i;
5772 eassert (!VECTOR_MARKED_P (ptr));
5773 VECTOR_MARK (ptr);
5774 for (i = 0; i < size; i++)
5776 Lisp_Object val = ptr->contents[i];
5778 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5779 continue;
5780 if (SUB_CHAR_TABLE_P (val))
5782 if (! VECTOR_MARKED_P (XVECTOR (val)))
5783 mark_char_table (XVECTOR (val));
5785 else
5786 mark_object (val);
5790 void
5791 mark_object (Lisp_Object arg)
5793 register Lisp_Object obj = arg;
5794 #ifdef GC_CHECK_MARKED_OBJECTS
5795 void *po;
5796 struct mem_node *m;
5797 #endif
5798 ptrdiff_t cdr_count = 0;
5800 loop:
5802 if (PURE_POINTER_P (XPNTR (obj)))
5803 return;
5805 last_marked[last_marked_index++] = obj;
5806 if (last_marked_index == LAST_MARKED_SIZE)
5807 last_marked_index = 0;
5809 /* Perform some sanity checks on the objects marked here. Abort if
5810 we encounter an object we know is bogus. This increases GC time
5811 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5812 #ifdef GC_CHECK_MARKED_OBJECTS
5814 po = (void *) XPNTR (obj);
5816 /* Check that the object pointed to by PO is known to be a Lisp
5817 structure allocated from the heap. */
5818 #define CHECK_ALLOCATED() \
5819 do { \
5820 m = mem_find (po); \
5821 if (m == MEM_NIL) \
5822 abort (); \
5823 } while (0)
5825 /* Check that the object pointed to by PO is live, using predicate
5826 function LIVEP. */
5827 #define CHECK_LIVE(LIVEP) \
5828 do { \
5829 if (!LIVEP (m, po)) \
5830 abort (); \
5831 } while (0)
5833 /* Check both of the above conditions. */
5834 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5835 do { \
5836 CHECK_ALLOCATED (); \
5837 CHECK_LIVE (LIVEP); \
5838 } while (0) \
5840 #else /* not GC_CHECK_MARKED_OBJECTS */
5842 #define CHECK_LIVE(LIVEP) (void) 0
5843 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5845 #endif /* not GC_CHECK_MARKED_OBJECTS */
5847 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5849 case Lisp_String:
5851 register struct Lisp_String *ptr = XSTRING (obj);
5852 if (STRING_MARKED_P (ptr))
5853 break;
5854 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5855 MARK_INTERVAL_TREE (ptr->intervals);
5856 MARK_STRING (ptr);
5857 #ifdef GC_CHECK_STRING_BYTES
5858 /* Check that the string size recorded in the string is the
5859 same as the one recorded in the sdata structure. */
5860 CHECK_STRING_BYTES (ptr);
5861 #endif /* GC_CHECK_STRING_BYTES */
5863 break;
5865 case Lisp_Vectorlike:
5866 if (VECTOR_MARKED_P (XVECTOR (obj)))
5867 break;
5868 #ifdef GC_CHECK_MARKED_OBJECTS
5869 m = mem_find (po);
5870 if (m == MEM_NIL && !SUBRP (obj)
5871 && po != &buffer_defaults
5872 && po != &buffer_local_symbols)
5873 abort ();
5874 #endif /* GC_CHECK_MARKED_OBJECTS */
5876 if (BUFFERP (obj))
5878 #ifdef GC_CHECK_MARKED_OBJECTS
5879 if (po != &buffer_defaults && po != &buffer_local_symbols)
5881 struct buffer *b;
5882 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5884 if (b == NULL)
5885 abort ();
5887 #endif /* GC_CHECK_MARKED_OBJECTS */
5888 mark_buffer (obj);
5890 else if (SUBRP (obj))
5891 break;
5892 else if (COMPILEDP (obj))
5893 /* We could treat this just like a vector, but it is better to
5894 save the COMPILED_CONSTANTS element for last and avoid
5895 recursion there. */
5897 register struct Lisp_Vector *ptr = XVECTOR (obj);
5898 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5899 int i;
5901 CHECK_LIVE (live_vector_p);
5902 VECTOR_MARK (ptr); /* Else mark it */
5903 for (i = 0; i < size; i++) /* and then mark its elements */
5905 if (i != COMPILED_CONSTANTS)
5906 mark_object (ptr->contents[i]);
5908 obj = ptr->contents[COMPILED_CONSTANTS];
5909 goto loop;
5911 else if (FRAMEP (obj))
5913 register struct frame *ptr = XFRAME (obj);
5914 mark_vectorlike (XVECTOR (obj));
5915 mark_face_cache (ptr->face_cache);
5917 else if (WINDOWP (obj))
5919 register struct Lisp_Vector *ptr = XVECTOR (obj);
5920 struct window *w = XWINDOW (obj);
5921 mark_vectorlike (ptr);
5922 /* Mark glyphs for leaf windows. Marking window matrices is
5923 sufficient because frame matrices use the same glyph
5924 memory. */
5925 if (NILP (w->hchild)
5926 && NILP (w->vchild)
5927 && w->current_matrix)
5929 mark_glyph_matrix (w->current_matrix);
5930 mark_glyph_matrix (w->desired_matrix);
5933 else if (HASH_TABLE_P (obj))
5935 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5936 mark_vectorlike ((struct Lisp_Vector *)h);
5937 /* If hash table is not weak, mark all keys and values.
5938 For weak tables, mark only the vector. */
5939 if (NILP (h->weak))
5940 mark_object (h->key_and_value);
5941 else
5942 VECTOR_MARK (XVECTOR (h->key_and_value));
5944 else if (CHAR_TABLE_P (obj))
5945 mark_char_table (XVECTOR (obj));
5946 else
5947 mark_vectorlike (XVECTOR (obj));
5948 break;
5950 case Lisp_Symbol:
5952 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5953 struct Lisp_Symbol *ptrx;
5955 if (ptr->gcmarkbit)
5956 break;
5957 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5958 ptr->gcmarkbit = 1;
5959 mark_object (ptr->function);
5960 mark_object (ptr->plist);
5961 switch (ptr->redirect)
5963 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5964 case SYMBOL_VARALIAS:
5966 Lisp_Object tem;
5967 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5968 mark_object (tem);
5969 break;
5971 case SYMBOL_LOCALIZED:
5973 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5974 /* If the value is forwarded to a buffer or keyboard field,
5975 these are marked when we see the corresponding object.
5976 And if it's forwarded to a C variable, either it's not
5977 a Lisp_Object var, or it's staticpro'd already. */
5978 mark_object (blv->where);
5979 mark_object (blv->valcell);
5980 mark_object (blv->defcell);
5981 break;
5983 case SYMBOL_FORWARDED:
5984 /* If the value is forwarded to a buffer or keyboard field,
5985 these are marked when we see the corresponding object.
5986 And if it's forwarded to a C variable, either it's not
5987 a Lisp_Object var, or it's staticpro'd already. */
5988 break;
5989 default: abort ();
5991 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5992 MARK_STRING (XSTRING (ptr->xname));
5993 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5995 ptr = ptr->next;
5996 if (ptr)
5998 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5999 XSETSYMBOL (obj, ptrx);
6000 goto loop;
6003 break;
6005 case Lisp_Misc:
6006 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6007 if (XMISCANY (obj)->gcmarkbit)
6008 break;
6009 XMISCANY (obj)->gcmarkbit = 1;
6011 switch (XMISCTYPE (obj))
6014 case Lisp_Misc_Marker:
6015 /* DO NOT mark thru the marker's chain.
6016 The buffer's markers chain does not preserve markers from gc;
6017 instead, markers are removed from the chain when freed by gc. */
6018 break;
6020 case Lisp_Misc_Save_Value:
6021 #if GC_MARK_STACK
6023 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6024 /* If DOGC is set, POINTER is the address of a memory
6025 area containing INTEGER potential Lisp_Objects. */
6026 if (ptr->dogc)
6028 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6029 ptrdiff_t nelt;
6030 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6031 mark_maybe_object (*p);
6034 #endif
6035 break;
6037 case Lisp_Misc_Overlay:
6039 struct Lisp_Overlay *ptr = XOVERLAY (obj);
6040 mark_object (ptr->start);
6041 mark_object (ptr->end);
6042 mark_object (ptr->plist);
6043 if (ptr->next)
6045 XSETMISC (obj, ptr->next);
6046 goto loop;
6049 break;
6051 default:
6052 abort ();
6054 break;
6056 case Lisp_Cons:
6058 register struct Lisp_Cons *ptr = XCONS (obj);
6059 if (CONS_MARKED_P (ptr))
6060 break;
6061 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6062 CONS_MARK (ptr);
6063 /* If the cdr is nil, avoid recursion for the car. */
6064 if (EQ (ptr->u.cdr, Qnil))
6066 obj = ptr->car;
6067 cdr_count = 0;
6068 goto loop;
6070 mark_object (ptr->car);
6071 obj = ptr->u.cdr;
6072 cdr_count++;
6073 if (cdr_count == mark_object_loop_halt)
6074 abort ();
6075 goto loop;
6078 case Lisp_Float:
6079 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6080 FLOAT_MARK (XFLOAT (obj));
6081 break;
6083 case_Lisp_Int:
6084 break;
6086 default:
6087 abort ();
6090 #undef CHECK_LIVE
6091 #undef CHECK_ALLOCATED
6092 #undef CHECK_ALLOCATED_AND_LIVE
6095 /* Mark the pointers in a buffer structure. */
6097 static void
6098 mark_buffer (Lisp_Object buf)
6100 register struct buffer *buffer = XBUFFER (buf);
6101 register Lisp_Object *ptr, tmp;
6102 Lisp_Object base_buffer;
6104 eassert (!VECTOR_MARKED_P (buffer));
6105 VECTOR_MARK (buffer);
6107 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
6109 /* For now, we just don't mark the undo_list. It's done later in
6110 a special way just before the sweep phase, and after stripping
6111 some of its elements that are not needed any more. */
6113 if (buffer->overlays_before)
6115 XSETMISC (tmp, buffer->overlays_before);
6116 mark_object (tmp);
6118 if (buffer->overlays_after)
6120 XSETMISC (tmp, buffer->overlays_after);
6121 mark_object (tmp);
6124 /* buffer-local Lisp variables start at `undo_list',
6125 tho only the ones from `name' on are GC'd normally. */
6126 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
6127 ptr <= &PER_BUFFER_VALUE (buffer,
6128 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
6129 ptr++)
6130 mark_object (*ptr);
6132 /* If this is an indirect buffer, mark its base buffer. */
6133 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6135 XSETBUFFER (base_buffer, buffer->base_buffer);
6136 mark_buffer (base_buffer);
6140 /* Mark the Lisp pointers in the terminal objects.
6141 Called by Fgarbage_collect. */
6143 static void
6144 mark_terminals (void)
6146 struct terminal *t;
6147 for (t = terminal_list; t; t = t->next_terminal)
6149 eassert (t->name != NULL);
6150 #ifdef HAVE_WINDOW_SYSTEM
6151 /* If a terminal object is reachable from a stacpro'ed object,
6152 it might have been marked already. Make sure the image cache
6153 gets marked. */
6154 mark_image_cache (t->image_cache);
6155 #endif /* HAVE_WINDOW_SYSTEM */
6156 if (!VECTOR_MARKED_P (t))
6157 mark_vectorlike ((struct Lisp_Vector *)t);
6163 /* Value is non-zero if OBJ will survive the current GC because it's
6164 either marked or does not need to be marked to survive. */
6167 survives_gc_p (Lisp_Object obj)
6169 int survives_p;
6171 switch (XTYPE (obj))
6173 case_Lisp_Int:
6174 survives_p = 1;
6175 break;
6177 case Lisp_Symbol:
6178 survives_p = XSYMBOL (obj)->gcmarkbit;
6179 break;
6181 case Lisp_Misc:
6182 survives_p = XMISCANY (obj)->gcmarkbit;
6183 break;
6185 case Lisp_String:
6186 survives_p = STRING_MARKED_P (XSTRING (obj));
6187 break;
6189 case Lisp_Vectorlike:
6190 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6191 break;
6193 case Lisp_Cons:
6194 survives_p = CONS_MARKED_P (XCONS (obj));
6195 break;
6197 case Lisp_Float:
6198 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6199 break;
6201 default:
6202 abort ();
6205 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6210 /* Sweep: find all structures not marked, and free them. */
6212 static void
6213 gc_sweep (void)
6215 /* Remove or mark entries in weak hash tables.
6216 This must be done before any object is unmarked. */
6217 sweep_weak_hash_tables ();
6219 sweep_strings ();
6220 #ifdef GC_CHECK_STRING_BYTES
6221 if (!noninteractive)
6222 check_string_bytes (1);
6223 #endif
6225 /* Put all unmarked conses on free list */
6227 register struct cons_block *cblk;
6228 struct cons_block **cprev = &cons_block;
6229 register int lim = cons_block_index;
6230 EMACS_INT num_free = 0, num_used = 0;
6232 cons_free_list = 0;
6234 for (cblk = cons_block; cblk; cblk = *cprev)
6236 register int i = 0;
6237 int this_free = 0;
6238 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6240 /* Scan the mark bits an int at a time. */
6241 for (i = 0; i < ilim; i++)
6243 if (cblk->gcmarkbits[i] == -1)
6245 /* Fast path - all cons cells for this int are marked. */
6246 cblk->gcmarkbits[i] = 0;
6247 num_used += BITS_PER_INT;
6249 else
6251 /* Some cons cells for this int are not marked.
6252 Find which ones, and free them. */
6253 int start, pos, stop;
6255 start = i * BITS_PER_INT;
6256 stop = lim - start;
6257 if (stop > BITS_PER_INT)
6258 stop = BITS_PER_INT;
6259 stop += start;
6261 for (pos = start; pos < stop; pos++)
6263 if (!CONS_MARKED_P (&cblk->conses[pos]))
6265 this_free++;
6266 cblk->conses[pos].u.chain = cons_free_list;
6267 cons_free_list = &cblk->conses[pos];
6268 #if GC_MARK_STACK
6269 cons_free_list->car = Vdead;
6270 #endif
6272 else
6274 num_used++;
6275 CONS_UNMARK (&cblk->conses[pos]);
6281 lim = CONS_BLOCK_SIZE;
6282 /* If this block contains only free conses and we have already
6283 seen more than two blocks worth of free conses then deallocate
6284 this block. */
6285 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6287 *cprev = cblk->next;
6288 /* Unhook from the free list. */
6289 cons_free_list = cblk->conses[0].u.chain;
6290 lisp_align_free (cblk);
6292 else
6294 num_free += this_free;
6295 cprev = &cblk->next;
6298 total_conses = num_used;
6299 total_free_conses = num_free;
6302 /* Put all unmarked floats on free list */
6304 register struct float_block *fblk;
6305 struct float_block **fprev = &float_block;
6306 register int lim = float_block_index;
6307 EMACS_INT num_free = 0, num_used = 0;
6309 float_free_list = 0;
6311 for (fblk = float_block; fblk; fblk = *fprev)
6313 register int i;
6314 int this_free = 0;
6315 for (i = 0; i < lim; i++)
6316 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6318 this_free++;
6319 fblk->floats[i].u.chain = float_free_list;
6320 float_free_list = &fblk->floats[i];
6322 else
6324 num_used++;
6325 FLOAT_UNMARK (&fblk->floats[i]);
6327 lim = FLOAT_BLOCK_SIZE;
6328 /* If this block contains only free floats and we have already
6329 seen more than two blocks worth of free floats then deallocate
6330 this block. */
6331 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6333 *fprev = fblk->next;
6334 /* Unhook from the free list. */
6335 float_free_list = fblk->floats[0].u.chain;
6336 lisp_align_free (fblk);
6338 else
6340 num_free += this_free;
6341 fprev = &fblk->next;
6344 total_floats = num_used;
6345 total_free_floats = num_free;
6348 /* Put all unmarked intervals on free list */
6350 register struct interval_block *iblk;
6351 struct interval_block **iprev = &interval_block;
6352 register int lim = interval_block_index;
6353 EMACS_INT num_free = 0, num_used = 0;
6355 interval_free_list = 0;
6357 for (iblk = interval_block; iblk; iblk = *iprev)
6359 register int i;
6360 int this_free = 0;
6362 for (i = 0; i < lim; i++)
6364 if (!iblk->intervals[i].gcmarkbit)
6366 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6367 interval_free_list = &iblk->intervals[i];
6368 this_free++;
6370 else
6372 num_used++;
6373 iblk->intervals[i].gcmarkbit = 0;
6376 lim = INTERVAL_BLOCK_SIZE;
6377 /* If this block contains only free intervals and we have already
6378 seen more than two blocks worth of free intervals then
6379 deallocate this block. */
6380 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6382 *iprev = iblk->next;
6383 /* Unhook from the free list. */
6384 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6385 lisp_free (iblk);
6387 else
6389 num_free += this_free;
6390 iprev = &iblk->next;
6393 total_intervals = num_used;
6394 total_free_intervals = num_free;
6397 /* Put all unmarked symbols on free list */
6399 register struct symbol_block *sblk;
6400 struct symbol_block **sprev = &symbol_block;
6401 register int lim = symbol_block_index;
6402 EMACS_INT num_free = 0, num_used = 0;
6404 symbol_free_list = NULL;
6406 for (sblk = symbol_block; sblk; sblk = *sprev)
6408 int this_free = 0;
6409 union aligned_Lisp_Symbol *sym = sblk->symbols;
6410 union aligned_Lisp_Symbol *end = sym + lim;
6412 for (; sym < end; ++sym)
6414 /* Check if the symbol was created during loadup. In such a case
6415 it might be pointed to by pure bytecode which we don't trace,
6416 so we conservatively assume that it is live. */
6417 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6419 if (!sym->s.gcmarkbit && !pure_p)
6421 if (sym->s.redirect == SYMBOL_LOCALIZED)
6422 xfree (SYMBOL_BLV (&sym->s));
6423 sym->s.next = symbol_free_list;
6424 symbol_free_list = &sym->s;
6425 #if GC_MARK_STACK
6426 symbol_free_list->function = Vdead;
6427 #endif
6428 ++this_free;
6430 else
6432 ++num_used;
6433 if (!pure_p)
6434 UNMARK_STRING (XSTRING (sym->s.xname));
6435 sym->s.gcmarkbit = 0;
6439 lim = SYMBOL_BLOCK_SIZE;
6440 /* If this block contains only free symbols and we have already
6441 seen more than two blocks worth of free symbols then deallocate
6442 this block. */
6443 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6445 *sprev = sblk->next;
6446 /* Unhook from the free list. */
6447 symbol_free_list = sblk->symbols[0].s.next;
6448 lisp_free (sblk);
6450 else
6452 num_free += this_free;
6453 sprev = &sblk->next;
6456 total_symbols = num_used;
6457 total_free_symbols = num_free;
6460 /* Put all unmarked misc's on free list.
6461 For a marker, first unchain it from the buffer it points into. */
6463 register struct marker_block *mblk;
6464 struct marker_block **mprev = &marker_block;
6465 register int lim = marker_block_index;
6466 EMACS_INT num_free = 0, num_used = 0;
6468 marker_free_list = 0;
6470 for (mblk = marker_block; mblk; mblk = *mprev)
6472 register int i;
6473 int this_free = 0;
6475 for (i = 0; i < lim; i++)
6477 if (!mblk->markers[i].m.u_any.gcmarkbit)
6479 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6480 unchain_marker (&mblk->markers[i].m.u_marker);
6481 /* Set the type of the freed object to Lisp_Misc_Free.
6482 We could leave the type alone, since nobody checks it,
6483 but this might catch bugs faster. */
6484 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6485 mblk->markers[i].m.u_free.chain = marker_free_list;
6486 marker_free_list = &mblk->markers[i].m;
6487 this_free++;
6489 else
6491 num_used++;
6492 mblk->markers[i].m.u_any.gcmarkbit = 0;
6495 lim = MARKER_BLOCK_SIZE;
6496 /* If this block contains only free markers and we have already
6497 seen more than two blocks worth of free markers then deallocate
6498 this block. */
6499 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6501 *mprev = mblk->next;
6502 /* Unhook from the free list. */
6503 marker_free_list = mblk->markers[0].m.u_free.chain;
6504 lisp_free (mblk);
6506 else
6508 num_free += this_free;
6509 mprev = &mblk->next;
6513 total_markers = num_used;
6514 total_free_markers = num_free;
6517 /* Free all unmarked buffers */
6519 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6521 while (buffer)
6522 if (!VECTOR_MARKED_P (buffer))
6524 if (prev)
6525 prev->header.next = buffer->header.next;
6526 else
6527 all_buffers = buffer->header.next.buffer;
6528 next = buffer->header.next.buffer;
6529 lisp_free (buffer);
6530 buffer = next;
6532 else
6534 VECTOR_UNMARK (buffer);
6535 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6536 prev = buffer, buffer = buffer->header.next.buffer;
6540 sweep_vectors ();
6542 #ifdef GC_CHECK_STRING_BYTES
6543 if (!noninteractive)
6544 check_string_bytes (1);
6545 #endif
6551 /* Debugging aids. */
6553 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6554 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6555 This may be helpful in debugging Emacs's memory usage.
6556 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6557 (void)
6559 Lisp_Object end;
6561 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6563 return end;
6566 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6567 doc: /* Return a list of counters that measure how much consing there has been.
6568 Each of these counters increments for a certain kind of object.
6569 The counters wrap around from the largest positive integer to zero.
6570 Garbage collection does not decrease them.
6571 The elements of the value are as follows:
6572 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6573 All are in units of 1 = one object consed
6574 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6575 objects consed.
6576 MISCS include overlays, markers, and some internal types.
6577 Frames, windows, buffers, and subprocesses count as vectors
6578 (but the contents of a buffer's text do not count here). */)
6579 (void)
6581 Lisp_Object consed[8];
6583 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6584 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6585 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6586 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6587 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6588 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6589 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6590 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6592 return Flist (8, consed);
6595 /* Find at most FIND_MAX symbols which have OBJ as their value or
6596 function. This is used in gdbinit's `xwhichsymbols' command. */
6598 Lisp_Object
6599 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6601 struct symbol_block *sblk;
6602 ptrdiff_t gc_count = inhibit_garbage_collection ();
6603 Lisp_Object found = Qnil;
6605 if (! DEADP (obj))
6607 for (sblk = symbol_block; sblk; sblk = sblk->next)
6609 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6610 int bn;
6612 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6614 struct Lisp_Symbol *sym = &aligned_sym->s;
6615 Lisp_Object val;
6616 Lisp_Object tem;
6618 if (sblk == symbol_block && bn >= symbol_block_index)
6619 break;
6621 XSETSYMBOL (tem, sym);
6622 val = find_symbol_value (tem);
6623 if (EQ (val, obj)
6624 || EQ (sym->function, obj)
6625 || (!NILP (sym->function)
6626 && COMPILEDP (sym->function)
6627 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6628 || (!NILP (val)
6629 && COMPILEDP (val)
6630 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6632 found = Fcons (tem, found);
6633 if (--find_max == 0)
6634 goto out;
6640 out:
6641 unbind_to (gc_count, Qnil);
6642 return found;
6645 #ifdef ENABLE_CHECKING
6646 int suppress_checking;
6648 void
6649 die (const char *msg, const char *file, int line)
6651 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6652 file, line, msg);
6653 abort ();
6655 #endif
6657 /* Initialization */
6659 void
6660 init_alloc_once (void)
6662 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6663 purebeg = PUREBEG;
6664 pure_size = PURESIZE;
6665 pure_bytes_used = 0;
6666 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6667 pure_bytes_used_before_overflow = 0;
6669 /* Initialize the list of free aligned blocks. */
6670 free_ablock = NULL;
6672 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6673 mem_init ();
6674 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6675 #endif
6677 ignore_warnings = 1;
6678 #ifdef DOUG_LEA_MALLOC
6679 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6680 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6681 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6682 #endif
6683 init_strings ();
6684 init_cons ();
6685 init_symbol ();
6686 init_marker ();
6687 init_float ();
6688 init_intervals ();
6689 init_vectors ();
6690 init_weak_hash_tables ();
6692 #ifdef REL_ALLOC
6693 malloc_hysteresis = 32;
6694 #else
6695 malloc_hysteresis = 0;
6696 #endif
6698 refill_memory_reserve ();
6700 ignore_warnings = 0;
6701 gcprolist = 0;
6702 byte_stack_list = 0;
6703 staticidx = 0;
6704 consing_since_gc = 0;
6705 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6706 gc_relative_threshold = 0;
6709 void
6710 init_alloc (void)
6712 gcprolist = 0;
6713 byte_stack_list = 0;
6714 #if GC_MARK_STACK
6715 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6716 setjmp_tested_p = longjmps_done = 0;
6717 #endif
6718 #endif
6719 Vgc_elapsed = make_float (0.0);
6720 gcs_done = 0;
6723 void
6724 syms_of_alloc (void)
6726 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6727 doc: /* Number of bytes of consing between garbage collections.
6728 Garbage collection can happen automatically once this many bytes have been
6729 allocated since the last garbage collection. All data types count.
6731 Garbage collection happens automatically only when `eval' is called.
6733 By binding this temporarily to a large number, you can effectively
6734 prevent garbage collection during a part of the program.
6735 See also `gc-cons-percentage'. */);
6737 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6738 doc: /* Portion of the heap used for allocation.
6739 Garbage collection can happen automatically once this portion of the heap
6740 has been allocated since the last garbage collection.
6741 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6742 Vgc_cons_percentage = make_float (0.1);
6744 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6745 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6747 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6748 doc: /* Number of cons cells that have been consed so far. */);
6750 DEFVAR_INT ("floats-consed", floats_consed,
6751 doc: /* Number of floats that have been consed so far. */);
6753 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6754 doc: /* Number of vector cells that have been consed so far. */);
6756 DEFVAR_INT ("symbols-consed", symbols_consed,
6757 doc: /* Number of symbols that have been consed so far. */);
6759 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6760 doc: /* Number of string characters that have been consed so far. */);
6762 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6763 doc: /* Number of miscellaneous objects that have been consed so far.
6764 These include markers and overlays, plus certain objects not visible
6765 to users. */);
6767 DEFVAR_INT ("intervals-consed", intervals_consed,
6768 doc: /* Number of intervals that have been consed so far. */);
6770 DEFVAR_INT ("strings-consed", strings_consed,
6771 doc: /* Number of strings that have been consed so far. */);
6773 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6774 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6775 This means that certain objects should be allocated in shared (pure) space.
6776 It can also be set to a hash-table, in which case this table is used to
6777 do hash-consing of the objects allocated to pure space. */);
6779 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6780 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6781 garbage_collection_messages = 0;
6783 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6784 doc: /* Hook run after garbage collection has finished. */);
6785 Vpost_gc_hook = Qnil;
6786 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6788 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6789 doc: /* Precomputed `signal' argument for memory-full error. */);
6790 /* We build this in advance because if we wait until we need it, we might
6791 not be able to allocate the memory to hold it. */
6792 Vmemory_signal_data
6793 = pure_cons (Qerror,
6794 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6796 DEFVAR_LISP ("memory-full", Vmemory_full,
6797 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6798 Vmemory_full = Qnil;
6800 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6801 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6803 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6804 doc: /* Accumulated time elapsed in garbage collections.
6805 The time is in seconds as a floating point value. */);
6806 DEFVAR_INT ("gcs-done", gcs_done,
6807 doc: /* Accumulated number of garbage collections done. */);
6809 defsubr (&Scons);
6810 defsubr (&Slist);
6811 defsubr (&Svector);
6812 defsubr (&Smake_byte_code);
6813 defsubr (&Smake_list);
6814 defsubr (&Smake_vector);
6815 defsubr (&Smake_string);
6816 defsubr (&Smake_bool_vector);
6817 defsubr (&Smake_symbol);
6818 defsubr (&Smake_marker);
6819 defsubr (&Spurecopy);
6820 defsubr (&Sgarbage_collect);
6821 defsubr (&Smemory_limit);
6822 defsubr (&Smemory_use_counts);
6824 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6825 defsubr (&Sgc_status);
6826 #endif