1 /* Random utility Lisp functions.
3 Copyright (C) 1985-1987, 1993-1995, 1997-2013 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
29 #include "character.h"
34 #include "intervals.h"
37 #include "blockinput.h"
39 #if defined (HAVE_X_WINDOWS)
42 #endif /* HAVE_MENUS */
44 Lisp_Object Qstring_lessp
;
45 static Lisp_Object Qprovide
, Qrequire
;
46 static Lisp_Object Qyes_or_no_p_history
;
47 Lisp_Object Qcursor_in_echo_area
;
48 static Lisp_Object Qwidget_type
;
49 static Lisp_Object Qcodeset
, Qdays
, Qmonths
, Qpaper
;
51 static Lisp_Object Qmd5
, Qsha1
, Qsha224
, Qsha256
, Qsha384
, Qsha512
;
53 static bool internal_equal (Lisp_Object
, Lisp_Object
, int, bool);
55 DEFUN ("identity", Fidentity
, Sidentity
, 1, 1, 0,
56 doc
: /* Return the argument unchanged. */)
62 DEFUN ("random", Frandom
, Srandom
, 0, 1, 0,
63 doc
: /* Return a pseudo-random number.
64 All integers representable in Lisp, i.e. between `most-negative-fixnum'
65 and `most-positive-fixnum', inclusive, are equally likely.
67 With positive integer LIMIT, return random number in interval [0,LIMIT).
68 With argument t, set the random number seed from the current time and pid.
69 With a string argument, set the seed based on the string's contents.
70 Other values of LIMIT are ignored.
72 See Info node `(elisp)Random Numbers' for more details. */)
79 else if (STRINGP (limit
))
80 seed_random (SSDATA (limit
), SBYTES (limit
));
83 if (NATNUMP (limit
) && XFASTINT (limit
) != 0)
84 val
%= XFASTINT (limit
);
85 return make_number (val
);
88 /* Heuristic on how many iterations of a tight loop can be safely done
89 before it's time to do a QUIT. This must be a power of 2. */
90 enum { QUIT_COUNT_HEURISTIC
= 1 << 16 };
92 /* Random data-structure functions. */
95 CHECK_LIST_END (Lisp_Object x
, Lisp_Object y
)
97 CHECK_TYPE (NILP (x
), Qlistp
, y
);
100 DEFUN ("length", Flength
, Slength
, 1, 1, 0,
101 doc
: /* Return the length of vector, list or string SEQUENCE.
102 A byte-code function object is also allowed.
103 If the string contains multibyte characters, this is not necessarily
104 the number of bytes in the string; it is the number of characters.
105 To get the number of bytes, use `string-bytes'. */)
106 (register Lisp_Object sequence
)
108 register Lisp_Object val
;
110 if (STRINGP (sequence
))
111 XSETFASTINT (val
, SCHARS (sequence
));
112 else if (VECTORP (sequence
))
113 XSETFASTINT (val
, ASIZE (sequence
));
114 else if (CHAR_TABLE_P (sequence
))
115 XSETFASTINT (val
, MAX_CHAR
);
116 else if (BOOL_VECTOR_P (sequence
))
117 XSETFASTINT (val
, XBOOL_VECTOR (sequence
)->size
);
118 else if (COMPILEDP (sequence
))
119 XSETFASTINT (val
, ASIZE (sequence
) & PSEUDOVECTOR_SIZE_MASK
);
120 else if (CONSP (sequence
))
127 if ((i
& (QUIT_COUNT_HEURISTIC
- 1)) == 0)
129 if (MOST_POSITIVE_FIXNUM
< i
)
130 error ("List too long");
133 sequence
= XCDR (sequence
);
135 while (CONSP (sequence
));
137 CHECK_LIST_END (sequence
, sequence
);
139 val
= make_number (i
);
141 else if (NILP (sequence
))
142 XSETFASTINT (val
, 0);
144 wrong_type_argument (Qsequencep
, sequence
);
149 DEFUN ("safe-length", Fsafe_length
, Ssafe_length
, 1, 1, 0,
150 doc
: /* Return the length of a list, but avoid error or infinite loop.
151 This function never gets an error. If LIST is not really a list,
152 it returns 0. If LIST is circular, it returns a finite value
153 which is at least the number of distinct elements. */)
156 Lisp_Object tail
, halftail
;
161 return make_number (0);
163 /* halftail is used to detect circular lists. */
164 for (tail
= halftail
= list
; ; )
169 if (EQ (tail
, halftail
))
172 if ((lolen
& 1) == 0)
174 halftail
= XCDR (halftail
);
175 if ((lolen
& (QUIT_COUNT_HEURISTIC
- 1)) == 0)
179 hilen
+= UINTMAX_MAX
+ 1.0;
184 /* If the length does not fit into a fixnum, return a float.
185 On all known practical machines this returns an upper bound on
187 return hilen
? make_float (hilen
+ lolen
) : make_fixnum_or_float (lolen
);
190 DEFUN ("string-bytes", Fstring_bytes
, Sstring_bytes
, 1, 1, 0,
191 doc
: /* Return the number of bytes in STRING.
192 If STRING is multibyte, this may be greater than the length of STRING. */)
195 CHECK_STRING (string
);
196 return make_number (SBYTES (string
));
199 DEFUN ("string-equal", Fstring_equal
, Sstring_equal
, 2, 2, 0,
200 doc
: /* Return t if two strings have identical contents.
201 Case is significant, but text properties are ignored.
202 Symbols are also allowed; their print names are used instead. */)
203 (register Lisp_Object s1
, Lisp_Object s2
)
206 s1
= SYMBOL_NAME (s1
);
208 s2
= SYMBOL_NAME (s2
);
212 if (SCHARS (s1
) != SCHARS (s2
)
213 || SBYTES (s1
) != SBYTES (s2
)
214 || memcmp (SDATA (s1
), SDATA (s2
), SBYTES (s1
)))
219 DEFUN ("compare-strings", Fcompare_strings
, Scompare_strings
, 6, 7, 0,
220 doc
: /* Compare the contents of two strings, converting to multibyte if needed.
221 The arguments START1, END1, START2, and END2, if non-nil, are
222 positions specifying which parts of STR1 or STR2 to compare. In
223 string STR1, compare the part between START1 (inclusive) and END1
224 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
225 the string; if END1 is nil, it defaults to the length of the string.
226 Likewise, in string STR2, compare the part between START2 and END2.
228 The strings are compared by the numeric values of their characters.
229 For instance, STR1 is "less than" STR2 if its first differing
230 character has a smaller numeric value. If IGNORE-CASE is non-nil,
231 characters are converted to lower-case before comparing them. Unibyte
232 strings are converted to multibyte for comparison.
234 The value is t if the strings (or specified portions) match.
235 If string STR1 is less, the value is a negative number N;
236 - 1 - N is the number of characters that match at the beginning.
237 If string STR1 is greater, the value is a positive number N;
238 N - 1 is the number of characters that match at the beginning. */)
239 (Lisp_Object str1
, Lisp_Object start1
, Lisp_Object end1
, Lisp_Object str2
, Lisp_Object start2
, Lisp_Object end2
, Lisp_Object ignore_case
)
241 register ptrdiff_t end1_char
, end2_char
;
242 register ptrdiff_t i1
, i1_byte
, i2
, i2_byte
;
247 start1
= make_number (0);
249 start2
= make_number (0);
250 CHECK_NATNUM (start1
);
251 CHECK_NATNUM (start2
);
257 end1_char
= SCHARS (str1
);
258 if (! NILP (end1
) && end1_char
> XINT (end1
))
259 end1_char
= XINT (end1
);
260 if (end1_char
< XINT (start1
))
261 args_out_of_range (str1
, start1
);
263 end2_char
= SCHARS (str2
);
264 if (! NILP (end2
) && end2_char
> XINT (end2
))
265 end2_char
= XINT (end2
);
266 if (end2_char
< XINT (start2
))
267 args_out_of_range (str2
, start2
);
272 i1_byte
= string_char_to_byte (str1
, i1
);
273 i2_byte
= string_char_to_byte (str2
, i2
);
275 while (i1
< end1_char
&& i2
< end2_char
)
277 /* When we find a mismatch, we must compare the
278 characters, not just the bytes. */
281 if (STRING_MULTIBYTE (str1
))
282 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1
, str1
, i1
, i1_byte
);
285 c1
= SREF (str1
, i1
++);
286 MAKE_CHAR_MULTIBYTE (c1
);
289 if (STRING_MULTIBYTE (str2
))
290 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2
, str2
, i2
, i2_byte
);
293 c2
= SREF (str2
, i2
++);
294 MAKE_CHAR_MULTIBYTE (c2
);
300 if (! NILP (ignore_case
))
304 tem
= Fupcase (make_number (c1
));
306 tem
= Fupcase (make_number (c2
));
313 /* Note that I1 has already been incremented
314 past the character that we are comparing;
315 hence we don't add or subtract 1 here. */
317 return make_number (- i1
+ XINT (start1
));
319 return make_number (i1
- XINT (start1
));
323 return make_number (i1
- XINT (start1
) + 1);
325 return make_number (- i1
+ XINT (start1
) - 1);
330 DEFUN ("string-lessp", Fstring_lessp
, Sstring_lessp
, 2, 2, 0,
331 doc
: /* Return t if first arg string is less than second in lexicographic order.
333 Symbols are also allowed; their print names are used instead. */)
334 (register Lisp_Object s1
, Lisp_Object s2
)
336 register ptrdiff_t end
;
337 register ptrdiff_t i1
, i1_byte
, i2
, i2_byte
;
340 s1
= SYMBOL_NAME (s1
);
342 s2
= SYMBOL_NAME (s2
);
346 i1
= i1_byte
= i2
= i2_byte
= 0;
349 if (end
> SCHARS (s2
))
354 /* When we find a mismatch, we must compare the
355 characters, not just the bytes. */
358 FETCH_STRING_CHAR_ADVANCE (c1
, s1
, i1
, i1_byte
);
359 FETCH_STRING_CHAR_ADVANCE (c2
, s2
, i2
, i2_byte
);
362 return c1
< c2
? Qt
: Qnil
;
364 return i1
< SCHARS (s2
) ? Qt
: Qnil
;
367 static Lisp_Object
concat (ptrdiff_t nargs
, Lisp_Object
*args
,
368 enum Lisp_Type target_type
, bool last_special
);
372 concat2 (Lisp_Object s1
, Lisp_Object s2
)
377 return concat (2, args
, Lisp_String
, 0);
382 concat3 (Lisp_Object s1
, Lisp_Object s2
, Lisp_Object s3
)
388 return concat (3, args
, Lisp_String
, 0);
391 DEFUN ("append", Fappend
, Sappend
, 0, MANY
, 0,
392 doc
: /* Concatenate all the arguments and make the result a list.
393 The result is a list whose elements are the elements of all the arguments.
394 Each argument may be a list, vector or string.
395 The last argument is not copied, just used as the tail of the new list.
396 usage: (append &rest SEQUENCES) */)
397 (ptrdiff_t nargs
, Lisp_Object
*args
)
399 return concat (nargs
, args
, Lisp_Cons
, 1);
402 DEFUN ("concat", Fconcat
, Sconcat
, 0, MANY
, 0,
403 doc
: /* Concatenate all the arguments and make the result a string.
404 The result is a string whose elements are the elements of all the arguments.
405 Each argument may be a string or a list or vector of characters (integers).
406 usage: (concat &rest SEQUENCES) */)
407 (ptrdiff_t nargs
, Lisp_Object
*args
)
409 return concat (nargs
, args
, Lisp_String
, 0);
412 DEFUN ("vconcat", Fvconcat
, Svconcat
, 0, MANY
, 0,
413 doc
: /* Concatenate all the arguments and make the result a vector.
414 The result is a vector whose elements are the elements of all the arguments.
415 Each argument may be a list, vector or string.
416 usage: (vconcat &rest SEQUENCES) */)
417 (ptrdiff_t nargs
, Lisp_Object
*args
)
419 return concat (nargs
, args
, Lisp_Vectorlike
, 0);
423 DEFUN ("copy-sequence", Fcopy_sequence
, Scopy_sequence
, 1, 1, 0,
424 doc
: /* Return a copy of a list, vector, string or char-table.
425 The elements of a list or vector are not copied; they are shared
426 with the original. */)
429 if (NILP (arg
)) return arg
;
431 if (CHAR_TABLE_P (arg
))
433 return copy_char_table (arg
);
436 if (BOOL_VECTOR_P (arg
))
439 ptrdiff_t size_in_chars
440 = ((XBOOL_VECTOR (arg
)->size
+ BOOL_VECTOR_BITS_PER_CHAR
- 1)
441 / BOOL_VECTOR_BITS_PER_CHAR
);
443 val
= Fmake_bool_vector (Flength (arg
), Qnil
);
444 memcpy (XBOOL_VECTOR (val
)->data
, XBOOL_VECTOR (arg
)->data
,
449 if (!CONSP (arg
) && !VECTORP (arg
) && !STRINGP (arg
))
450 wrong_type_argument (Qsequencep
, arg
);
452 return concat (1, &arg
, XTYPE (arg
), 0);
455 /* This structure holds information of an argument of `concat' that is
456 a string and has text properties to be copied. */
459 ptrdiff_t argnum
; /* refer to ARGS (arguments of `concat') */
460 ptrdiff_t from
; /* refer to ARGS[argnum] (argument string) */
461 ptrdiff_t to
; /* refer to VAL (the target string) */
465 concat (ptrdiff_t nargs
, Lisp_Object
*args
,
466 enum Lisp_Type target_type
, bool last_special
)
472 ptrdiff_t toindex_byte
= 0;
473 EMACS_INT result_len
;
474 EMACS_INT result_len_byte
;
476 Lisp_Object last_tail
;
479 /* When we make a multibyte string, we can't copy text properties
480 while concatenating each string because the length of resulting
481 string can't be decided until we finish the whole concatenation.
482 So, we record strings that have text properties to be copied
483 here, and copy the text properties after the concatenation. */
484 struct textprop_rec
*textprops
= NULL
;
485 /* Number of elements in textprops. */
486 ptrdiff_t num_textprops
= 0;
491 /* In append, the last arg isn't treated like the others */
492 if (last_special
&& nargs
> 0)
495 last_tail
= args
[nargs
];
500 /* Check each argument. */
501 for (argnum
= 0; argnum
< nargs
; argnum
++)
504 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
505 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
506 wrong_type_argument (Qsequencep
, this);
509 /* Compute total length in chars of arguments in RESULT_LEN.
510 If desired output is a string, also compute length in bytes
511 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
512 whether the result should be a multibyte string. */
516 for (argnum
= 0; argnum
< nargs
; argnum
++)
520 len
= XFASTINT (Flength (this));
521 if (target_type
== Lisp_String
)
523 /* We must count the number of bytes needed in the string
524 as well as the number of characters. */
528 ptrdiff_t this_len_byte
;
530 if (VECTORP (this) || COMPILEDP (this))
531 for (i
= 0; i
< len
; i
++)
534 CHECK_CHARACTER (ch
);
536 this_len_byte
= CHAR_BYTES (c
);
537 if (STRING_BYTES_BOUND
- result_len_byte
< this_len_byte
)
539 result_len_byte
+= this_len_byte
;
540 if (! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
543 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size
> 0)
544 wrong_type_argument (Qintegerp
, Faref (this, make_number (0)));
545 else if (CONSP (this))
546 for (; CONSP (this); this = XCDR (this))
549 CHECK_CHARACTER (ch
);
551 this_len_byte
= CHAR_BYTES (c
);
552 if (STRING_BYTES_BOUND
- result_len_byte
< this_len_byte
)
554 result_len_byte
+= this_len_byte
;
555 if (! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
558 else if (STRINGP (this))
560 if (STRING_MULTIBYTE (this))
563 this_len_byte
= SBYTES (this);
566 this_len_byte
= count_size_as_multibyte (SDATA (this),
568 if (STRING_BYTES_BOUND
- result_len_byte
< this_len_byte
)
570 result_len_byte
+= this_len_byte
;
575 if (MOST_POSITIVE_FIXNUM
< result_len
)
576 memory_full (SIZE_MAX
);
579 if (! some_multibyte
)
580 result_len_byte
= result_len
;
582 /* Create the output object. */
583 if (target_type
== Lisp_Cons
)
584 val
= Fmake_list (make_number (result_len
), Qnil
);
585 else if (target_type
== Lisp_Vectorlike
)
586 val
= Fmake_vector (make_number (result_len
), Qnil
);
587 else if (some_multibyte
)
588 val
= make_uninit_multibyte_string (result_len
, result_len_byte
);
590 val
= make_uninit_string (result_len
);
592 /* In `append', if all but last arg are nil, return last arg. */
593 if (target_type
== Lisp_Cons
&& EQ (val
, Qnil
))
596 /* Copy the contents of the args into the result. */
598 tail
= val
, toindex
= -1; /* -1 in toindex is flag we are making a list */
600 toindex
= 0, toindex_byte
= 0;
604 SAFE_NALLOCA (textprops
, 1, nargs
);
606 for (argnum
= 0; argnum
< nargs
; argnum
++)
609 ptrdiff_t thisleni
= 0;
610 register ptrdiff_t thisindex
= 0;
611 register ptrdiff_t thisindex_byte
= 0;
615 thislen
= Flength (this), thisleni
= XINT (thislen
);
617 /* Between strings of the same kind, copy fast. */
618 if (STRINGP (this) && STRINGP (val
)
619 && STRING_MULTIBYTE (this) == some_multibyte
)
621 ptrdiff_t thislen_byte
= SBYTES (this);
623 memcpy (SDATA (val
) + toindex_byte
, SDATA (this), SBYTES (this));
624 if (string_intervals (this))
626 textprops
[num_textprops
].argnum
= argnum
;
627 textprops
[num_textprops
].from
= 0;
628 textprops
[num_textprops
++].to
= toindex
;
630 toindex_byte
+= thislen_byte
;
633 /* Copy a single-byte string to a multibyte string. */
634 else if (STRINGP (this) && STRINGP (val
))
636 if (string_intervals (this))
638 textprops
[num_textprops
].argnum
= argnum
;
639 textprops
[num_textprops
].from
= 0;
640 textprops
[num_textprops
++].to
= toindex
;
642 toindex_byte
+= copy_text (SDATA (this),
643 SDATA (val
) + toindex_byte
,
644 SCHARS (this), 0, 1);
648 /* Copy element by element. */
651 register Lisp_Object elt
;
653 /* Fetch next element of `this' arg into `elt', or break if
654 `this' is exhausted. */
655 if (NILP (this)) break;
657 elt
= XCAR (this), this = XCDR (this);
658 else if (thisindex
>= thisleni
)
660 else if (STRINGP (this))
663 if (STRING_MULTIBYTE (this))
664 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c
, this,
669 c
= SREF (this, thisindex
); thisindex
++;
670 if (some_multibyte
&& !ASCII_CHAR_P (c
))
671 c
= BYTE8_TO_CHAR (c
);
673 XSETFASTINT (elt
, c
);
675 else if (BOOL_VECTOR_P (this))
678 byte
= XBOOL_VECTOR (this)->data
[thisindex
/ BOOL_VECTOR_BITS_PER_CHAR
];
679 if (byte
& (1 << (thisindex
% BOOL_VECTOR_BITS_PER_CHAR
)))
687 elt
= AREF (this, thisindex
);
691 /* Store this element into the result. */
698 else if (VECTORP (val
))
700 ASET (val
, toindex
, elt
);
706 CHECK_CHARACTER (elt
);
709 toindex_byte
+= CHAR_STRING (c
, SDATA (val
) + toindex_byte
);
711 SSET (val
, toindex_byte
++, c
);
717 XSETCDR (prev
, last_tail
);
719 if (num_textprops
> 0)
722 ptrdiff_t last_to_end
= -1;
724 for (argnum
= 0; argnum
< num_textprops
; argnum
++)
726 this = args
[textprops
[argnum
].argnum
];
727 props
= text_property_list (this,
729 make_number (SCHARS (this)),
731 /* If successive arguments have properties, be sure that the
732 value of `composition' property be the copy. */
733 if (last_to_end
== textprops
[argnum
].to
)
734 make_composition_value_copy (props
);
735 add_text_properties_from_list (val
, props
,
736 make_number (textprops
[argnum
].to
));
737 last_to_end
= textprops
[argnum
].to
+ SCHARS (this);
745 static Lisp_Object string_char_byte_cache_string
;
746 static ptrdiff_t string_char_byte_cache_charpos
;
747 static ptrdiff_t string_char_byte_cache_bytepos
;
750 clear_string_char_byte_cache (void)
752 string_char_byte_cache_string
= Qnil
;
755 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
758 string_char_to_byte (Lisp_Object string
, ptrdiff_t char_index
)
761 ptrdiff_t best_below
, best_below_byte
;
762 ptrdiff_t best_above
, best_above_byte
;
764 best_below
= best_below_byte
= 0;
765 best_above
= SCHARS (string
);
766 best_above_byte
= SBYTES (string
);
767 if (best_above
== best_above_byte
)
770 if (EQ (string
, string_char_byte_cache_string
))
772 if (string_char_byte_cache_charpos
< char_index
)
774 best_below
= string_char_byte_cache_charpos
;
775 best_below_byte
= string_char_byte_cache_bytepos
;
779 best_above
= string_char_byte_cache_charpos
;
780 best_above_byte
= string_char_byte_cache_bytepos
;
784 if (char_index
- best_below
< best_above
- char_index
)
786 unsigned char *p
= SDATA (string
) + best_below_byte
;
788 while (best_below
< char_index
)
790 p
+= BYTES_BY_CHAR_HEAD (*p
);
793 i_byte
= p
- SDATA (string
);
797 unsigned char *p
= SDATA (string
) + best_above_byte
;
799 while (best_above
> char_index
)
802 while (!CHAR_HEAD_P (*p
)) p
--;
805 i_byte
= p
- SDATA (string
);
808 string_char_byte_cache_bytepos
= i_byte
;
809 string_char_byte_cache_charpos
= char_index
;
810 string_char_byte_cache_string
= string
;
815 /* Return the character index corresponding to BYTE_INDEX in STRING. */
818 string_byte_to_char (Lisp_Object string
, ptrdiff_t byte_index
)
821 ptrdiff_t best_below
, best_below_byte
;
822 ptrdiff_t best_above
, best_above_byte
;
824 best_below
= best_below_byte
= 0;
825 best_above
= SCHARS (string
);
826 best_above_byte
= SBYTES (string
);
827 if (best_above
== best_above_byte
)
830 if (EQ (string
, string_char_byte_cache_string
))
832 if (string_char_byte_cache_bytepos
< byte_index
)
834 best_below
= string_char_byte_cache_charpos
;
835 best_below_byte
= string_char_byte_cache_bytepos
;
839 best_above
= string_char_byte_cache_charpos
;
840 best_above_byte
= string_char_byte_cache_bytepos
;
844 if (byte_index
- best_below_byte
< best_above_byte
- byte_index
)
846 unsigned char *p
= SDATA (string
) + best_below_byte
;
847 unsigned char *pend
= SDATA (string
) + byte_index
;
851 p
+= BYTES_BY_CHAR_HEAD (*p
);
855 i_byte
= p
- SDATA (string
);
859 unsigned char *p
= SDATA (string
) + best_above_byte
;
860 unsigned char *pbeg
= SDATA (string
) + byte_index
;
865 while (!CHAR_HEAD_P (*p
)) p
--;
869 i_byte
= p
- SDATA (string
);
872 string_char_byte_cache_bytepos
= i_byte
;
873 string_char_byte_cache_charpos
= i
;
874 string_char_byte_cache_string
= string
;
879 /* Convert STRING to a multibyte string. */
882 string_make_multibyte (Lisp_Object string
)
889 if (STRING_MULTIBYTE (string
))
892 nbytes
= count_size_as_multibyte (SDATA (string
),
894 /* If all the chars are ASCII, they won't need any more bytes
895 once converted. In that case, we can return STRING itself. */
896 if (nbytes
== SBYTES (string
))
899 buf
= SAFE_ALLOCA (nbytes
);
900 copy_text (SDATA (string
), buf
, SBYTES (string
),
903 ret
= make_multibyte_string ((char *) buf
, SCHARS (string
), nbytes
);
910 /* Convert STRING (if unibyte) to a multibyte string without changing
911 the number of characters. Characters 0200 trough 0237 are
912 converted to eight-bit characters. */
915 string_to_multibyte (Lisp_Object string
)
922 if (STRING_MULTIBYTE (string
))
925 nbytes
= count_size_as_multibyte (SDATA (string
), SBYTES (string
));
926 /* If all the chars are ASCII, they won't need any more bytes once
928 if (nbytes
== SBYTES (string
))
929 return make_multibyte_string (SSDATA (string
), nbytes
, nbytes
);
931 buf
= SAFE_ALLOCA (nbytes
);
932 memcpy (buf
, SDATA (string
), SBYTES (string
));
933 str_to_multibyte (buf
, nbytes
, SBYTES (string
));
935 ret
= make_multibyte_string ((char *) buf
, SCHARS (string
), nbytes
);
942 /* Convert STRING to a single-byte string. */
945 string_make_unibyte (Lisp_Object string
)
952 if (! STRING_MULTIBYTE (string
))
955 nchars
= SCHARS (string
);
957 buf
= SAFE_ALLOCA (nchars
);
958 copy_text (SDATA (string
), buf
, SBYTES (string
),
961 ret
= make_unibyte_string ((char *) buf
, nchars
);
967 DEFUN ("string-make-multibyte", Fstring_make_multibyte
, Sstring_make_multibyte
,
969 doc
: /* Return the multibyte equivalent of STRING.
970 If STRING is unibyte and contains non-ASCII characters, the function
971 `unibyte-char-to-multibyte' is used to convert each unibyte character
972 to a multibyte character. In this case, the returned string is a
973 newly created string with no text properties. If STRING is multibyte
974 or entirely ASCII, it is returned unchanged. In particular, when
975 STRING is unibyte and entirely ASCII, the returned string is unibyte.
976 \(When the characters are all ASCII, Emacs primitives will treat the
977 string the same way whether it is unibyte or multibyte.) */)
980 CHECK_STRING (string
);
982 return string_make_multibyte (string
);
985 DEFUN ("string-make-unibyte", Fstring_make_unibyte
, Sstring_make_unibyte
,
987 doc
: /* Return the unibyte equivalent of STRING.
988 Multibyte character codes are converted to unibyte according to
989 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
990 If the lookup in the translation table fails, this function takes just
991 the low 8 bits of each character. */)
994 CHECK_STRING (string
);
996 return string_make_unibyte (string
);
999 DEFUN ("string-as-unibyte", Fstring_as_unibyte
, Sstring_as_unibyte
,
1001 doc
: /* Return a unibyte string with the same individual bytes as STRING.
1002 If STRING is unibyte, the result is STRING itself.
1003 Otherwise it is a newly created string, with no text properties.
1004 If STRING is multibyte and contains a character of charset
1005 `eight-bit', it is converted to the corresponding single byte. */)
1006 (Lisp_Object string
)
1008 CHECK_STRING (string
);
1010 if (STRING_MULTIBYTE (string
))
1012 ptrdiff_t bytes
= SBYTES (string
);
1013 unsigned char *str
= xmalloc (bytes
);
1015 memcpy (str
, SDATA (string
), bytes
);
1016 bytes
= str_as_unibyte (str
, bytes
);
1017 string
= make_unibyte_string ((char *) str
, bytes
);
1023 DEFUN ("string-as-multibyte", Fstring_as_multibyte
, Sstring_as_multibyte
,
1025 doc
: /* Return a multibyte string with the same individual bytes as STRING.
1026 If STRING is multibyte, the result is STRING itself.
1027 Otherwise it is a newly created string, with no text properties.
1029 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1030 part of a correct utf-8 sequence), it is converted to the corresponding
1031 multibyte character of charset `eight-bit'.
1032 See also `string-to-multibyte'.
1034 Beware, this often doesn't really do what you think it does.
1035 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1036 If you're not sure, whether to use `string-as-multibyte' or
1037 `string-to-multibyte', use `string-to-multibyte'. */)
1038 (Lisp_Object string
)
1040 CHECK_STRING (string
);
1042 if (! STRING_MULTIBYTE (string
))
1044 Lisp_Object new_string
;
1045 ptrdiff_t nchars
, nbytes
;
1047 parse_str_as_multibyte (SDATA (string
),
1050 new_string
= make_uninit_multibyte_string (nchars
, nbytes
);
1051 memcpy (SDATA (new_string
), SDATA (string
), SBYTES (string
));
1052 if (nbytes
!= SBYTES (string
))
1053 str_as_multibyte (SDATA (new_string
), nbytes
,
1054 SBYTES (string
), NULL
);
1055 string
= new_string
;
1056 set_string_intervals (string
, NULL
);
1061 DEFUN ("string-to-multibyte", Fstring_to_multibyte
, Sstring_to_multibyte
,
1063 doc
: /* Return a multibyte string with the same individual chars as STRING.
1064 If STRING is multibyte, the result is STRING itself.
1065 Otherwise it is a newly created string, with no text properties.
1067 If STRING is unibyte and contains an 8-bit byte, it is converted to
1068 the corresponding multibyte character of charset `eight-bit'.
1070 This differs from `string-as-multibyte' by converting each byte of a correct
1071 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1072 correct sequence. */)
1073 (Lisp_Object string
)
1075 CHECK_STRING (string
);
1077 return string_to_multibyte (string
);
1080 DEFUN ("string-to-unibyte", Fstring_to_unibyte
, Sstring_to_unibyte
,
1082 doc
: /* Return a unibyte string with the same individual chars as STRING.
1083 If STRING is unibyte, the result is STRING itself.
1084 Otherwise it is a newly created string, with no text properties,
1085 where each `eight-bit' character is converted to the corresponding byte.
1086 If STRING contains a non-ASCII, non-`eight-bit' character,
1087 an error is signaled. */)
1088 (Lisp_Object string
)
1090 CHECK_STRING (string
);
1092 if (STRING_MULTIBYTE (string
))
1094 ptrdiff_t chars
= SCHARS (string
);
1095 unsigned char *str
= xmalloc (chars
);
1096 ptrdiff_t converted
= str_to_unibyte (SDATA (string
), str
, chars
);
1098 if (converted
< chars
)
1099 error ("Can't convert the %"pD
"dth character to unibyte", converted
);
1100 string
= make_unibyte_string ((char *) str
, chars
);
1107 DEFUN ("copy-alist", Fcopy_alist
, Scopy_alist
, 1, 1, 0,
1108 doc
: /* Return a copy of ALIST.
1109 This is an alist which represents the same mapping from objects to objects,
1110 but does not share the alist structure with ALIST.
1111 The objects mapped (cars and cdrs of elements of the alist)
1112 are shared, however.
1113 Elements of ALIST that are not conses are also shared. */)
1116 register Lisp_Object tem
;
1121 alist
= concat (1, &alist
, Lisp_Cons
, 0);
1122 for (tem
= alist
; CONSP (tem
); tem
= XCDR (tem
))
1124 register Lisp_Object car
;
1128 XSETCAR (tem
, Fcons (XCAR (car
), XCDR (car
)));
1133 DEFUN ("substring", Fsubstring
, Ssubstring
, 2, 3, 0,
1134 doc
: /* Return a new string whose contents are a substring of STRING.
1135 The returned string consists of the characters between index FROM
1136 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1137 zero-indexed: 0 means the first character of STRING. Negative values
1138 are counted from the end of STRING. If TO is nil, the substring runs
1139 to the end of STRING.
1141 The STRING argument may also be a vector. In that case, the return
1142 value is a new vector that contains the elements between index FROM
1143 \(inclusive) and index TO (exclusive) of that vector argument. */)
1144 (Lisp_Object string
, register Lisp_Object from
, Lisp_Object to
)
1148 EMACS_INT from_char
, to_char
;
1150 CHECK_VECTOR_OR_STRING (string
);
1151 CHECK_NUMBER (from
);
1153 if (STRINGP (string
))
1154 size
= SCHARS (string
);
1156 size
= ASIZE (string
);
1164 to_char
= XINT (to
);
1169 from_char
= XINT (from
);
1172 if (!(0 <= from_char
&& from_char
<= to_char
&& to_char
<= size
))
1173 args_out_of_range_3 (string
, make_number (from_char
),
1174 make_number (to_char
));
1176 if (STRINGP (string
))
1179 (NILP (to
) ? SBYTES (string
) : string_char_to_byte (string
, to_char
));
1180 ptrdiff_t from_byte
= string_char_to_byte (string
, from_char
);
1181 res
= make_specified_string (SSDATA (string
) + from_byte
,
1182 to_char
- from_char
, to_byte
- from_byte
,
1183 STRING_MULTIBYTE (string
));
1184 copy_text_properties (make_number (from_char
), make_number (to_char
),
1185 string
, make_number (0), res
, Qnil
);
1188 res
= Fvector (to_char
- from_char
, aref_addr (string
, from_char
));
1194 DEFUN ("substring-no-properties", Fsubstring_no_properties
, Ssubstring_no_properties
, 1, 3, 0,
1195 doc
: /* Return a substring of STRING, without text properties.
1196 It starts at index FROM and ends before TO.
1197 TO may be nil or omitted; then the substring runs to the end of STRING.
1198 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1199 If FROM or TO is negative, it counts from the end.
1201 With one argument, just copy STRING without its properties. */)
1202 (Lisp_Object string
, register Lisp_Object from
, Lisp_Object to
)
1205 EMACS_INT from_char
, to_char
;
1206 ptrdiff_t from_byte
, to_byte
;
1208 CHECK_STRING (string
);
1210 size
= SCHARS (string
);
1216 CHECK_NUMBER (from
);
1217 from_char
= XINT (from
);
1227 to_char
= XINT (to
);
1232 if (!(0 <= from_char
&& from_char
<= to_char
&& to_char
<= size
))
1233 args_out_of_range_3 (string
, make_number (from_char
),
1234 make_number (to_char
));
1236 from_byte
= NILP (from
) ? 0 : string_char_to_byte (string
, from_char
);
1238 NILP (to
) ? SBYTES (string
) : string_char_to_byte (string
, to_char
);
1239 return make_specified_string (SSDATA (string
) + from_byte
,
1240 to_char
- from_char
, to_byte
- from_byte
,
1241 STRING_MULTIBYTE (string
));
1244 /* Extract a substring of STRING, giving start and end positions
1245 both in characters and in bytes. */
1248 substring_both (Lisp_Object string
, ptrdiff_t from
, ptrdiff_t from_byte
,
1249 ptrdiff_t to
, ptrdiff_t to_byte
)
1254 CHECK_VECTOR_OR_STRING (string
);
1256 size
= STRINGP (string
) ? SCHARS (string
) : ASIZE (string
);
1258 if (!(0 <= from
&& from
<= to
&& to
<= size
))
1259 args_out_of_range_3 (string
, make_number (from
), make_number (to
));
1261 if (STRINGP (string
))
1263 res
= make_specified_string (SSDATA (string
) + from_byte
,
1264 to
- from
, to_byte
- from_byte
,
1265 STRING_MULTIBYTE (string
));
1266 copy_text_properties (make_number (from
), make_number (to
),
1267 string
, make_number (0), res
, Qnil
);
1270 res
= Fvector (to
- from
, aref_addr (string
, from
));
1275 DEFUN ("nthcdr", Fnthcdr
, Snthcdr
, 2, 2, 0,
1276 doc
: /* Take cdr N times on LIST, return the result. */)
1277 (Lisp_Object n
, Lisp_Object list
)
1282 for (i
= 0; i
< num
&& !NILP (list
); i
++)
1285 CHECK_LIST_CONS (list
, list
);
1291 DEFUN ("nth", Fnth
, Snth
, 2, 2, 0,
1292 doc
: /* Return the Nth element of LIST.
1293 N counts from zero. If LIST is not that long, nil is returned. */)
1294 (Lisp_Object n
, Lisp_Object list
)
1296 return Fcar (Fnthcdr (n
, list
));
1299 DEFUN ("elt", Felt
, Selt
, 2, 2, 0,
1300 doc
: /* Return element of SEQUENCE at index N. */)
1301 (register Lisp_Object sequence
, Lisp_Object n
)
1304 if (CONSP (sequence
) || NILP (sequence
))
1305 return Fcar (Fnthcdr (n
, sequence
));
1307 /* Faref signals a "not array" error, so check here. */
1308 CHECK_ARRAY (sequence
, Qsequencep
);
1309 return Faref (sequence
, n
);
1312 DEFUN ("member", Fmember
, Smember
, 2, 2, 0,
1313 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1314 The value is actually the tail of LIST whose car is ELT. */)
1315 (register Lisp_Object elt
, Lisp_Object list
)
1317 register Lisp_Object tail
;
1318 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
1320 register Lisp_Object tem
;
1321 CHECK_LIST_CONS (tail
, list
);
1323 if (! NILP (Fequal (elt
, tem
)))
1330 DEFUN ("memq", Fmemq
, Smemq
, 2, 2, 0,
1331 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1332 The value is actually the tail of LIST whose car is ELT. */)
1333 (register Lisp_Object elt
, Lisp_Object list
)
1337 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1341 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1345 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1356 DEFUN ("memql", Fmemql
, Smemql
, 2, 2, 0,
1357 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1358 The value is actually the tail of LIST whose car is ELT. */)
1359 (register Lisp_Object elt
, Lisp_Object list
)
1361 register Lisp_Object tail
;
1364 return Fmemq (elt
, list
);
1366 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
1368 register Lisp_Object tem
;
1369 CHECK_LIST_CONS (tail
, list
);
1371 if (FLOATP (tem
) && internal_equal (elt
, tem
, 0, 0))
1378 DEFUN ("assq", Fassq
, Sassq
, 2, 2, 0,
1379 doc
: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1380 The value is actually the first element of LIST whose car is KEY.
1381 Elements of LIST that are not conses are ignored. */)
1382 (Lisp_Object key
, Lisp_Object list
)
1387 || (CONSP (XCAR (list
))
1388 && EQ (XCAR (XCAR (list
)), key
)))
1393 || (CONSP (XCAR (list
))
1394 && EQ (XCAR (XCAR (list
)), key
)))
1399 || (CONSP (XCAR (list
))
1400 && EQ (XCAR (XCAR (list
)), key
)))
1410 /* Like Fassq but never report an error and do not allow quits.
1411 Use only on lists known never to be circular. */
1414 assq_no_quit (Lisp_Object key
, Lisp_Object list
)
1417 && (!CONSP (XCAR (list
))
1418 || !EQ (XCAR (XCAR (list
)), key
)))
1421 return CAR_SAFE (list
);
1424 DEFUN ("assoc", Fassoc
, Sassoc
, 2, 2, 0,
1425 doc
: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1426 The value is actually the first element of LIST whose car equals KEY. */)
1427 (Lisp_Object key
, Lisp_Object list
)
1434 || (CONSP (XCAR (list
))
1435 && (car
= XCAR (XCAR (list
)),
1436 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1441 || (CONSP (XCAR (list
))
1442 && (car
= XCAR (XCAR (list
)),
1443 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1448 || (CONSP (XCAR (list
))
1449 && (car
= XCAR (XCAR (list
)),
1450 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1460 /* Like Fassoc but never report an error and do not allow quits.
1461 Use only on lists known never to be circular. */
1464 assoc_no_quit (Lisp_Object key
, Lisp_Object list
)
1467 && (!CONSP (XCAR (list
))
1468 || (!EQ (XCAR (XCAR (list
)), key
)
1469 && NILP (Fequal (XCAR (XCAR (list
)), key
)))))
1472 return CONSP (list
) ? XCAR (list
) : Qnil
;
1475 DEFUN ("rassq", Frassq
, Srassq
, 2, 2, 0,
1476 doc
: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1477 The value is actually the first element of LIST whose cdr is KEY. */)
1478 (register Lisp_Object key
, Lisp_Object list
)
1483 || (CONSP (XCAR (list
))
1484 && EQ (XCDR (XCAR (list
)), key
)))
1489 || (CONSP (XCAR (list
))
1490 && EQ (XCDR (XCAR (list
)), key
)))
1495 || (CONSP (XCAR (list
))
1496 && EQ (XCDR (XCAR (list
)), key
)))
1506 DEFUN ("rassoc", Frassoc
, Srassoc
, 2, 2, 0,
1507 doc
: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1508 The value is actually the first element of LIST whose cdr equals KEY. */)
1509 (Lisp_Object key
, Lisp_Object list
)
1516 || (CONSP (XCAR (list
))
1517 && (cdr
= XCDR (XCAR (list
)),
1518 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1523 || (CONSP (XCAR (list
))
1524 && (cdr
= XCDR (XCAR (list
)),
1525 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1530 || (CONSP (XCAR (list
))
1531 && (cdr
= XCDR (XCAR (list
)),
1532 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1542 DEFUN ("delq", Fdelq
, Sdelq
, 2, 2, 0,
1543 doc
: /* Delete members of LIST which are `eq' to ELT, and return the result.
1544 More precisely, this function skips any members `eq' to ELT at the
1545 front of LIST, then removes members `eq' to ELT from the remaining
1546 sublist by modifying its list structure, then returns the resulting
1549 Write `(setq foo (delq element foo))' to be sure of correctly changing
1550 the value of a list `foo'. */)
1551 (register Lisp_Object elt
, Lisp_Object list
)
1553 register Lisp_Object tail
, prev
;
1554 register Lisp_Object tem
;
1558 while (CONSP (tail
))
1560 CHECK_LIST_CONS (tail
, list
);
1567 Fsetcdr (prev
, XCDR (tail
));
1577 DEFUN ("delete", Fdelete
, Sdelete
, 2, 2, 0,
1578 doc
: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1579 SEQ must be a sequence (i.e. a list, a vector, or a string).
1580 The return value is a sequence of the same type.
1582 If SEQ is a list, this behaves like `delq', except that it compares
1583 with `equal' instead of `eq'. In particular, it may remove elements
1584 by altering the list structure.
1586 If SEQ is not a list, deletion is never performed destructively;
1587 instead this function creates and returns a new vector or string.
1589 Write `(setq foo (delete element foo))' to be sure of correctly
1590 changing the value of a sequence `foo'. */)
1591 (Lisp_Object elt
, Lisp_Object seq
)
1597 for (i
= n
= 0; i
< ASIZE (seq
); ++i
)
1598 if (NILP (Fequal (AREF (seq
, i
), elt
)))
1601 if (n
!= ASIZE (seq
))
1603 struct Lisp_Vector
*p
= allocate_vector (n
);
1605 for (i
= n
= 0; i
< ASIZE (seq
); ++i
)
1606 if (NILP (Fequal (AREF (seq
, i
), elt
)))
1607 p
->contents
[n
++] = AREF (seq
, i
);
1609 XSETVECTOR (seq
, p
);
1612 else if (STRINGP (seq
))
1614 ptrdiff_t i
, ibyte
, nchars
, nbytes
, cbytes
;
1617 for (i
= nchars
= nbytes
= ibyte
= 0;
1619 ++i
, ibyte
+= cbytes
)
1621 if (STRING_MULTIBYTE (seq
))
1623 c
= STRING_CHAR (SDATA (seq
) + ibyte
);
1624 cbytes
= CHAR_BYTES (c
);
1632 if (!INTEGERP (elt
) || c
!= XINT (elt
))
1639 if (nchars
!= SCHARS (seq
))
1643 tem
= make_uninit_multibyte_string (nchars
, nbytes
);
1644 if (!STRING_MULTIBYTE (seq
))
1645 STRING_SET_UNIBYTE (tem
);
1647 for (i
= nchars
= nbytes
= ibyte
= 0;
1649 ++i
, ibyte
+= cbytes
)
1651 if (STRING_MULTIBYTE (seq
))
1653 c
= STRING_CHAR (SDATA (seq
) + ibyte
);
1654 cbytes
= CHAR_BYTES (c
);
1662 if (!INTEGERP (elt
) || c
!= XINT (elt
))
1664 unsigned char *from
= SDATA (seq
) + ibyte
;
1665 unsigned char *to
= SDATA (tem
) + nbytes
;
1671 for (n
= cbytes
; n
--; )
1681 Lisp_Object tail
, prev
;
1683 for (tail
= seq
, prev
= Qnil
; CONSP (tail
); tail
= XCDR (tail
))
1685 CHECK_LIST_CONS (tail
, seq
);
1687 if (!NILP (Fequal (elt
, XCAR (tail
))))
1692 Fsetcdr (prev
, XCDR (tail
));
1703 DEFUN ("nreverse", Fnreverse
, Snreverse
, 1, 1, 0,
1704 doc
: /* Reverse LIST by modifying cdr pointers.
1705 Return the reversed list. Expects a properly nil-terminated list. */)
1708 register Lisp_Object prev
, tail
, next
;
1710 if (NILP (list
)) return list
;
1713 while (!NILP (tail
))
1716 CHECK_LIST_CONS (tail
, tail
);
1718 Fsetcdr (tail
, prev
);
1725 DEFUN ("reverse", Freverse
, Sreverse
, 1, 1, 0,
1726 doc
: /* Reverse LIST, copying. Return the reversed list.
1727 See also the function `nreverse', which is used more often. */)
1732 for (new = Qnil
; CONSP (list
); list
= XCDR (list
))
1735 new = Fcons (XCAR (list
), new);
1737 CHECK_LIST_END (list
, list
);
1741 Lisp_Object
merge (Lisp_Object org_l1
, Lisp_Object org_l2
, Lisp_Object pred
);
1743 DEFUN ("sort", Fsort
, Ssort
, 2, 2, 0,
1744 doc
: /* Sort LIST, stably, comparing elements using PREDICATE.
1745 Returns the sorted list. LIST is modified by side effects.
1746 PREDICATE is called with two elements of LIST, and should return non-nil
1747 if the first element should sort before the second. */)
1748 (Lisp_Object list
, Lisp_Object predicate
)
1750 Lisp_Object front
, back
;
1751 register Lisp_Object len
, tem
;
1752 struct gcpro gcpro1
, gcpro2
;
1756 len
= Flength (list
);
1757 length
= XINT (len
);
1761 XSETINT (len
, (length
/ 2) - 1);
1762 tem
= Fnthcdr (len
, list
);
1764 Fsetcdr (tem
, Qnil
);
1766 GCPRO2 (front
, back
);
1767 front
= Fsort (front
, predicate
);
1768 back
= Fsort (back
, predicate
);
1770 return merge (front
, back
, predicate
);
1774 merge (Lisp_Object org_l1
, Lisp_Object org_l2
, Lisp_Object pred
)
1777 register Lisp_Object tail
;
1779 register Lisp_Object l1
, l2
;
1780 struct gcpro gcpro1
, gcpro2
, gcpro3
, gcpro4
;
1787 /* It is sufficient to protect org_l1 and org_l2.
1788 When l1 and l2 are updated, we copy the new values
1789 back into the org_ vars. */
1790 GCPRO4 (org_l1
, org_l2
, pred
, value
);
1810 tem
= call2 (pred
, Fcar (l2
), Fcar (l1
));
1826 Fsetcdr (tail
, tem
);
1832 /* This does not check for quits. That is safe since it must terminate. */
1834 DEFUN ("plist-get", Fplist_get
, Splist_get
, 2, 2, 0,
1835 doc
: /* Extract a value from a property list.
1836 PLIST is a property list, which is a list of the form
1837 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1838 corresponding to the given PROP, or nil if PROP is not one of the
1839 properties on the list. This function never signals an error. */)
1840 (Lisp_Object plist
, Lisp_Object prop
)
1842 Lisp_Object tail
, halftail
;
1844 /* halftail is used to detect circular lists. */
1845 tail
= halftail
= plist
;
1846 while (CONSP (tail
) && CONSP (XCDR (tail
)))
1848 if (EQ (prop
, XCAR (tail
)))
1849 return XCAR (XCDR (tail
));
1851 tail
= XCDR (XCDR (tail
));
1852 halftail
= XCDR (halftail
);
1853 if (EQ (tail
, halftail
))
1860 DEFUN ("get", Fget
, Sget
, 2, 2, 0,
1861 doc
: /* Return the value of SYMBOL's PROPNAME property.
1862 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1863 (Lisp_Object symbol
, Lisp_Object propname
)
1865 CHECK_SYMBOL (symbol
);
1866 return Fplist_get (XSYMBOL (symbol
)->plist
, propname
);
1869 DEFUN ("plist-put", Fplist_put
, Splist_put
, 3, 3, 0,
1870 doc
: /* Change value in PLIST of PROP to VAL.
1871 PLIST is a property list, which is a list of the form
1872 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1873 If PROP is already a property on the list, its value is set to VAL,
1874 otherwise the new PROP VAL pair is added. The new plist is returned;
1875 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1876 The PLIST is modified by side effects. */)
1877 (Lisp_Object plist
, register Lisp_Object prop
, Lisp_Object val
)
1879 register Lisp_Object tail
, prev
;
1880 Lisp_Object newcell
;
1882 for (tail
= plist
; CONSP (tail
) && CONSP (XCDR (tail
));
1883 tail
= XCDR (XCDR (tail
)))
1885 if (EQ (prop
, XCAR (tail
)))
1887 Fsetcar (XCDR (tail
), val
);
1894 newcell
= Fcons (prop
, Fcons (val
, NILP (prev
) ? plist
: XCDR (XCDR (prev
))));
1898 Fsetcdr (XCDR (prev
), newcell
);
1902 DEFUN ("put", Fput
, Sput
, 3, 3, 0,
1903 doc
: /* Store SYMBOL's PROPNAME property with value VALUE.
1904 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1905 (Lisp_Object symbol
, Lisp_Object propname
, Lisp_Object value
)
1907 CHECK_SYMBOL (symbol
);
1909 (symbol
, Fplist_put (XSYMBOL (symbol
)->plist
, propname
, value
));
1913 DEFUN ("lax-plist-get", Flax_plist_get
, Slax_plist_get
, 2, 2, 0,
1914 doc
: /* Extract a value from a property list, comparing with `equal'.
1915 PLIST is a property list, which is a list of the form
1916 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1917 corresponding to the given PROP, or nil if PROP is not
1918 one of the properties on the list. */)
1919 (Lisp_Object plist
, Lisp_Object prop
)
1924 CONSP (tail
) && CONSP (XCDR (tail
));
1925 tail
= XCDR (XCDR (tail
)))
1927 if (! NILP (Fequal (prop
, XCAR (tail
))))
1928 return XCAR (XCDR (tail
));
1933 CHECK_LIST_END (tail
, prop
);
1938 DEFUN ("lax-plist-put", Flax_plist_put
, Slax_plist_put
, 3, 3, 0,
1939 doc
: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1940 PLIST is a property list, which is a list of the form
1941 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1942 If PROP is already a property on the list, its value is set to VAL,
1943 otherwise the new PROP VAL pair is added. The new plist is returned;
1944 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1945 The PLIST is modified by side effects. */)
1946 (Lisp_Object plist
, register Lisp_Object prop
, Lisp_Object val
)
1948 register Lisp_Object tail
, prev
;
1949 Lisp_Object newcell
;
1951 for (tail
= plist
; CONSP (tail
) && CONSP (XCDR (tail
));
1952 tail
= XCDR (XCDR (tail
)))
1954 if (! NILP (Fequal (prop
, XCAR (tail
))))
1956 Fsetcar (XCDR (tail
), val
);
1963 newcell
= list2 (prop
, val
);
1967 Fsetcdr (XCDR (prev
), newcell
);
1971 DEFUN ("eql", Feql
, Seql
, 2, 2, 0,
1972 doc
: /* Return t if the two args are the same Lisp object.
1973 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1974 (Lisp_Object obj1
, Lisp_Object obj2
)
1977 return internal_equal (obj1
, obj2
, 0, 0) ? Qt
: Qnil
;
1979 return EQ (obj1
, obj2
) ? Qt
: Qnil
;
1982 DEFUN ("equal", Fequal
, Sequal
, 2, 2, 0,
1983 doc
: /* Return t if two Lisp objects have similar structure and contents.
1984 They must have the same data type.
1985 Conses are compared by comparing the cars and the cdrs.
1986 Vectors and strings are compared element by element.
1987 Numbers are compared by value, but integers cannot equal floats.
1988 (Use `=' if you want integers and floats to be able to be equal.)
1989 Symbols must match exactly. */)
1990 (register Lisp_Object o1
, Lisp_Object o2
)
1992 return internal_equal (o1
, o2
, 0, 0) ? Qt
: Qnil
;
1995 DEFUN ("equal-including-properties", Fequal_including_properties
, Sequal_including_properties
, 2, 2, 0,
1996 doc
: /* Return t if two Lisp objects have similar structure and contents.
1997 This is like `equal' except that it compares the text properties
1998 of strings. (`equal' ignores text properties.) */)
1999 (register Lisp_Object o1
, Lisp_Object o2
)
2001 return internal_equal (o1
, o2
, 0, 1) ? Qt
: Qnil
;
2004 /* DEPTH is current depth of recursion. Signal an error if it
2006 PROPS means compare string text properties too. */
2009 internal_equal (Lisp_Object o1
, Lisp_Object o2
, int depth
, bool props
)
2012 error ("Stack overflow in equal");
2018 if (XTYPE (o1
) != XTYPE (o2
))
2027 d1
= extract_float (o1
);
2028 d2
= extract_float (o2
);
2029 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2030 though they are not =. */
2031 return d1
== d2
|| (d1
!= d1
&& d2
!= d2
);
2035 if (!internal_equal (XCAR (o1
), XCAR (o2
), depth
+ 1, props
))
2042 if (XMISCTYPE (o1
) != XMISCTYPE (o2
))
2046 if (!internal_equal (OVERLAY_START (o1
), OVERLAY_START (o2
),
2048 || !internal_equal (OVERLAY_END (o1
), OVERLAY_END (o2
),
2051 o1
= XOVERLAY (o1
)->plist
;
2052 o2
= XOVERLAY (o2
)->plist
;
2057 return (XMARKER (o1
)->buffer
== XMARKER (o2
)->buffer
2058 && (XMARKER (o1
)->buffer
== 0
2059 || XMARKER (o1
)->bytepos
== XMARKER (o2
)->bytepos
));
2063 case Lisp_Vectorlike
:
2066 ptrdiff_t size
= ASIZE (o1
);
2067 /* Pseudovectors have the type encoded in the size field, so this test
2068 actually checks that the objects have the same type as well as the
2070 if (ASIZE (o2
) != size
)
2072 /* Boolvectors are compared much like strings. */
2073 if (BOOL_VECTOR_P (o1
))
2075 if (XBOOL_VECTOR (o1
)->size
!= XBOOL_VECTOR (o2
)->size
)
2077 if (memcmp (XBOOL_VECTOR (o1
)->data
, XBOOL_VECTOR (o2
)->data
,
2078 ((XBOOL_VECTOR (o1
)->size
2079 + BOOL_VECTOR_BITS_PER_CHAR
- 1)
2080 / BOOL_VECTOR_BITS_PER_CHAR
)))
2084 if (WINDOW_CONFIGURATIONP (o1
))
2085 return compare_window_configurations (o1
, o2
, 0);
2087 /* Aside from them, only true vectors, char-tables, compiled
2088 functions, and fonts (font-spec, font-entity, font-object)
2089 are sensible to compare, so eliminate the others now. */
2090 if (size
& PSEUDOVECTOR_FLAG
)
2092 if (((size
& PVEC_TYPE_MASK
) >> PSEUDOVECTOR_AREA_BITS
)
2095 size
&= PSEUDOVECTOR_SIZE_MASK
;
2097 for (i
= 0; i
< size
; i
++)
2102 if (!internal_equal (v1
, v2
, depth
+ 1, props
))
2110 if (SCHARS (o1
) != SCHARS (o2
))
2112 if (SBYTES (o1
) != SBYTES (o2
))
2114 if (memcmp (SDATA (o1
), SDATA (o2
), SBYTES (o1
)))
2116 if (props
&& !compare_string_intervals (o1
, o2
))
2128 DEFUN ("fillarray", Ffillarray
, Sfillarray
, 2, 2, 0,
2129 doc
: /* Store each element of ARRAY with ITEM.
2130 ARRAY is a vector, string, char-table, or bool-vector. */)
2131 (Lisp_Object array
, Lisp_Object item
)
2133 register ptrdiff_t size
, idx
;
2135 if (VECTORP (array
))
2136 for (idx
= 0, size
= ASIZE (array
); idx
< size
; idx
++)
2137 ASET (array
, idx
, item
);
2138 else if (CHAR_TABLE_P (array
))
2142 for (i
= 0; i
< (1 << CHARTAB_SIZE_BITS_0
); i
++)
2143 set_char_table_contents (array
, i
, item
);
2144 set_char_table_defalt (array
, item
);
2146 else if (STRINGP (array
))
2148 register unsigned char *p
= SDATA (array
);
2150 CHECK_CHARACTER (item
);
2151 charval
= XFASTINT (item
);
2152 size
= SCHARS (array
);
2153 if (STRING_MULTIBYTE (array
))
2155 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
2156 int len
= CHAR_STRING (charval
, str
);
2157 ptrdiff_t size_byte
= SBYTES (array
);
2159 if (INT_MULTIPLY_OVERFLOW (SCHARS (array
), len
)
2160 || SCHARS (array
) * len
!= size_byte
)
2161 error ("Attempt to change byte length of a string");
2162 for (idx
= 0; idx
< size_byte
; idx
++)
2163 *p
++ = str
[idx
% len
];
2166 for (idx
= 0; idx
< size
; idx
++)
2169 else if (BOOL_VECTOR_P (array
))
2171 register unsigned char *p
= XBOOL_VECTOR (array
)->data
;
2173 ((XBOOL_VECTOR (array
)->size
+ BOOL_VECTOR_BITS_PER_CHAR
- 1)
2174 / BOOL_VECTOR_BITS_PER_CHAR
);
2178 memset (p
, ! NILP (item
) ? -1 : 0, size
);
2180 /* Clear any extraneous bits in the last byte. */
2181 p
[size
- 1] &= (1 << (size
% BOOL_VECTOR_BITS_PER_CHAR
)) - 1;
2185 wrong_type_argument (Qarrayp
, array
);
2189 DEFUN ("clear-string", Fclear_string
, Sclear_string
,
2191 doc
: /* Clear the contents of STRING.
2192 This makes STRING unibyte and may change its length. */)
2193 (Lisp_Object string
)
2196 CHECK_STRING (string
);
2197 len
= SBYTES (string
);
2198 memset (SDATA (string
), 0, len
);
2199 STRING_SET_CHARS (string
, len
);
2200 STRING_SET_UNIBYTE (string
);
2206 nconc2 (Lisp_Object s1
, Lisp_Object s2
)
2208 Lisp_Object args
[2];
2211 return Fnconc (2, args
);
2214 DEFUN ("nconc", Fnconc
, Snconc
, 0, MANY
, 0,
2215 doc
: /* Concatenate any number of lists by altering them.
2216 Only the last argument is not altered, and need not be a list.
2217 usage: (nconc &rest LISTS) */)
2218 (ptrdiff_t nargs
, Lisp_Object
*args
)
2221 register Lisp_Object tail
, tem
, val
;
2225 for (argnum
= 0; argnum
< nargs
; argnum
++)
2228 if (NILP (tem
)) continue;
2233 if (argnum
+ 1 == nargs
) break;
2235 CHECK_LIST_CONS (tem
, tem
);
2244 tem
= args
[argnum
+ 1];
2245 Fsetcdr (tail
, tem
);
2247 args
[argnum
+ 1] = tail
;
2253 /* This is the guts of all mapping functions.
2254 Apply FN to each element of SEQ, one by one,
2255 storing the results into elements of VALS, a C vector of Lisp_Objects.
2256 LENI is the length of VALS, which should also be the length of SEQ. */
2259 mapcar1 (EMACS_INT leni
, Lisp_Object
*vals
, Lisp_Object fn
, Lisp_Object seq
)
2261 register Lisp_Object tail
;
2263 register EMACS_INT i
;
2264 struct gcpro gcpro1
, gcpro2
, gcpro3
;
2268 /* Don't let vals contain any garbage when GC happens. */
2269 for (i
= 0; i
< leni
; i
++)
2272 GCPRO3 (dummy
, fn
, seq
);
2274 gcpro1
.nvars
= leni
;
2278 /* We need not explicitly protect `tail' because it is used only on lists, and
2279 1) lists are not relocated and 2) the list is marked via `seq' so will not
2282 if (VECTORP (seq
) || COMPILEDP (seq
))
2284 for (i
= 0; i
< leni
; i
++)
2286 dummy
= call1 (fn
, AREF (seq
, i
));
2291 else if (BOOL_VECTOR_P (seq
))
2293 for (i
= 0; i
< leni
; i
++)
2296 byte
= XBOOL_VECTOR (seq
)->data
[i
/ BOOL_VECTOR_BITS_PER_CHAR
];
2297 dummy
= (byte
& (1 << (i
% BOOL_VECTOR_BITS_PER_CHAR
))) ? Qt
: Qnil
;
2298 dummy
= call1 (fn
, dummy
);
2303 else if (STRINGP (seq
))
2307 for (i
= 0, i_byte
= 0; i
< leni
;)
2310 ptrdiff_t i_before
= i
;
2312 FETCH_STRING_CHAR_ADVANCE (c
, seq
, i
, i_byte
);
2313 XSETFASTINT (dummy
, c
);
2314 dummy
= call1 (fn
, dummy
);
2316 vals
[i_before
] = dummy
;
2319 else /* Must be a list, since Flength did not get an error */
2322 for (i
= 0; i
< leni
&& CONSP (tail
); i
++)
2324 dummy
= call1 (fn
, XCAR (tail
));
2334 DEFUN ("mapconcat", Fmapconcat
, Smapconcat
, 3, 3, 0,
2335 doc
: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2336 In between each pair of results, stick in SEPARATOR. Thus, " " as
2337 SEPARATOR results in spaces between the values returned by FUNCTION.
2338 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2339 (Lisp_Object function
, Lisp_Object sequence
, Lisp_Object separator
)
2342 register EMACS_INT leni
;
2345 register Lisp_Object
*args
;
2346 struct gcpro gcpro1
;
2350 len
= Flength (sequence
);
2351 if (CHAR_TABLE_P (sequence
))
2352 wrong_type_argument (Qlistp
, sequence
);
2354 nargs
= leni
+ leni
- 1;
2355 if (nargs
< 0) return empty_unibyte_string
;
2357 SAFE_ALLOCA_LISP (args
, nargs
);
2360 mapcar1 (leni
, args
, function
, sequence
);
2363 for (i
= leni
- 1; i
> 0; i
--)
2364 args
[i
+ i
] = args
[i
];
2366 for (i
= 1; i
< nargs
; i
+= 2)
2367 args
[i
] = separator
;
2369 ret
= Fconcat (nargs
, args
);
2375 DEFUN ("mapcar", Fmapcar
, Smapcar
, 2, 2, 0,
2376 doc
: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2377 The result is a list just as long as SEQUENCE.
2378 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2379 (Lisp_Object function
, Lisp_Object sequence
)
2381 register Lisp_Object len
;
2382 register EMACS_INT leni
;
2383 register Lisp_Object
*args
;
2387 len
= Flength (sequence
);
2388 if (CHAR_TABLE_P (sequence
))
2389 wrong_type_argument (Qlistp
, sequence
);
2390 leni
= XFASTINT (len
);
2392 SAFE_ALLOCA_LISP (args
, leni
);
2394 mapcar1 (leni
, args
, function
, sequence
);
2396 ret
= Flist (leni
, args
);
2402 DEFUN ("mapc", Fmapc
, Smapc
, 2, 2, 0,
2403 doc
: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2404 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2405 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2406 (Lisp_Object function
, Lisp_Object sequence
)
2408 register EMACS_INT leni
;
2410 leni
= XFASTINT (Flength (sequence
));
2411 if (CHAR_TABLE_P (sequence
))
2412 wrong_type_argument (Qlistp
, sequence
);
2413 mapcar1 (leni
, 0, function
, sequence
);
2418 /* This is how C code calls `yes-or-no-p' and allows the user
2421 Anything that calls this function must protect from GC! */
2424 do_yes_or_no_p (Lisp_Object prompt
)
2426 return call1 (intern ("yes-or-no-p"), prompt
);
2429 /* Anything that calls this function must protect from GC! */
2431 DEFUN ("yes-or-no-p", Fyes_or_no_p
, Syes_or_no_p
, 1, 1, 0,
2432 doc
: /* Ask user a yes-or-no question. Return t if answer is yes.
2433 PROMPT is the string to display to ask the question. It should end in
2434 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2436 The user must confirm the answer with RET, and can edit it until it
2439 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2440 is nil, and `use-dialog-box' is non-nil. */)
2441 (Lisp_Object prompt
)
2443 register Lisp_Object ans
;
2444 Lisp_Object args
[2];
2445 struct gcpro gcpro1
;
2447 CHECK_STRING (prompt
);
2450 if ((NILP (last_nonmenu_event
) || CONSP (last_nonmenu_event
))
2452 && window_system_available (SELECTED_FRAME ()))
2454 Lisp_Object pane
, menu
, obj
;
2455 redisplay_preserve_echo_area (4);
2456 pane
= list2 (Fcons (build_string ("Yes"), Qt
),
2457 Fcons (build_string ("No"), Qnil
));
2459 menu
= Fcons (prompt
, pane
);
2460 obj
= Fx_popup_dialog (Qt
, menu
, Qnil
);
2464 #endif /* HAVE_MENUS */
2467 args
[1] = build_string ("(yes or no) ");
2468 prompt
= Fconcat (2, args
);
2474 ans
= Fdowncase (Fread_from_minibuffer (prompt
, Qnil
, Qnil
, Qnil
,
2475 Qyes_or_no_p_history
, Qnil
,
2477 if (SCHARS (ans
) == 3 && !strcmp (SSDATA (ans
), "yes"))
2482 if (SCHARS (ans
) == 2 && !strcmp (SSDATA (ans
), "no"))
2490 message1 ("Please answer yes or no.");
2491 Fsleep_for (make_number (2), Qnil
);
2495 DEFUN ("load-average", Fload_average
, Sload_average
, 0, 1, 0,
2496 doc
: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2498 Each of the three load averages is multiplied by 100, then converted
2501 When USE-FLOATS is non-nil, floats will be used instead of integers.
2502 These floats are not multiplied by 100.
2504 If the 5-minute or 15-minute load averages are not available, return a
2505 shortened list, containing only those averages which are available.
2507 An error is thrown if the load average can't be obtained. In some
2508 cases making it work would require Emacs being installed setuid or
2509 setgid so that it can read kernel information, and that usually isn't
2511 (Lisp_Object use_floats
)
2514 int loads
= getloadavg (load_ave
, 3);
2515 Lisp_Object ret
= Qnil
;
2518 error ("load-average not implemented for this operating system");
2522 Lisp_Object load
= (NILP (use_floats
)
2523 ? make_number (100.0 * load_ave
[loads
])
2524 : make_float (load_ave
[loads
]));
2525 ret
= Fcons (load
, ret
);
2531 static Lisp_Object Qsubfeatures
;
2533 DEFUN ("featurep", Ffeaturep
, Sfeaturep
, 1, 2, 0,
2534 doc
: /* Return t if FEATURE is present in this Emacs.
2536 Use this to conditionalize execution of lisp code based on the
2537 presence or absence of Emacs or environment extensions.
2538 Use `provide' to declare that a feature is available. This function
2539 looks at the value of the variable `features'. The optional argument
2540 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2541 (Lisp_Object feature
, Lisp_Object subfeature
)
2543 register Lisp_Object tem
;
2544 CHECK_SYMBOL (feature
);
2545 tem
= Fmemq (feature
, Vfeatures
);
2546 if (!NILP (tem
) && !NILP (subfeature
))
2547 tem
= Fmember (subfeature
, Fget (feature
, Qsubfeatures
));
2548 return (NILP (tem
)) ? Qnil
: Qt
;
2551 static Lisp_Object Qfuncall
;
2553 DEFUN ("provide", Fprovide
, Sprovide
, 1, 2, 0,
2554 doc
: /* Announce that FEATURE is a feature of the current Emacs.
2555 The optional argument SUBFEATURES should be a list of symbols listing
2556 particular subfeatures supported in this version of FEATURE. */)
2557 (Lisp_Object feature
, Lisp_Object subfeatures
)
2559 register Lisp_Object tem
;
2560 CHECK_SYMBOL (feature
);
2561 CHECK_LIST (subfeatures
);
2562 if (!NILP (Vautoload_queue
))
2563 Vautoload_queue
= Fcons (Fcons (make_number (0), Vfeatures
),
2565 tem
= Fmemq (feature
, Vfeatures
);
2567 Vfeatures
= Fcons (feature
, Vfeatures
);
2568 if (!NILP (subfeatures
))
2569 Fput (feature
, Qsubfeatures
, subfeatures
);
2570 LOADHIST_ATTACH (Fcons (Qprovide
, feature
));
2572 /* Run any load-hooks for this file. */
2573 tem
= Fassq (feature
, Vafter_load_alist
);
2575 Fmapc (Qfuncall
, XCDR (tem
));
2580 /* `require' and its subroutines. */
2582 /* List of features currently being require'd, innermost first. */
2584 static Lisp_Object require_nesting_list
;
2587 require_unwind (Lisp_Object old_value
)
2589 require_nesting_list
= old_value
;
2592 DEFUN ("require", Frequire
, Srequire
, 1, 3, 0,
2593 doc
: /* If feature FEATURE is not loaded, load it from FILENAME.
2594 If FEATURE is not a member of the list `features', then the feature
2595 is not loaded; so load the file FILENAME.
2596 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2597 and `load' will try to load this name appended with the suffix `.elc' or
2598 `.el', in that order. The name without appended suffix will not be used.
2599 See `get-load-suffixes' for the complete list of suffixes.
2600 If the optional third argument NOERROR is non-nil,
2601 then return nil if the file is not found instead of signaling an error.
2602 Normally the return value is FEATURE.
2603 The normal messages at start and end of loading FILENAME are suppressed. */)
2604 (Lisp_Object feature
, Lisp_Object filename
, Lisp_Object noerror
)
2607 struct gcpro gcpro1
, gcpro2
;
2608 bool from_file
= load_in_progress
;
2610 CHECK_SYMBOL (feature
);
2612 /* Record the presence of `require' in this file
2613 even if the feature specified is already loaded.
2614 But not more than once in any file,
2615 and not when we aren't loading or reading from a file. */
2617 for (tem
= Vcurrent_load_list
; CONSP (tem
); tem
= XCDR (tem
))
2618 if (NILP (XCDR (tem
)) && STRINGP (XCAR (tem
)))
2623 tem
= Fcons (Qrequire
, feature
);
2624 if (NILP (Fmember (tem
, Vcurrent_load_list
)))
2625 LOADHIST_ATTACH (tem
);
2627 tem
= Fmemq (feature
, Vfeatures
);
2631 ptrdiff_t count
= SPECPDL_INDEX ();
2634 /* This is to make sure that loadup.el gives a clear picture
2635 of what files are preloaded and when. */
2636 if (! NILP (Vpurify_flag
))
2637 error ("(require %s) while preparing to dump",
2638 SDATA (SYMBOL_NAME (feature
)));
2640 /* A certain amount of recursive `require' is legitimate,
2641 but if we require the same feature recursively 3 times,
2643 tem
= require_nesting_list
;
2644 while (! NILP (tem
))
2646 if (! NILP (Fequal (feature
, XCAR (tem
))))
2651 error ("Recursive `require' for feature `%s'",
2652 SDATA (SYMBOL_NAME (feature
)));
2654 /* Update the list for any nested `require's that occur. */
2655 record_unwind_protect (require_unwind
, require_nesting_list
);
2656 require_nesting_list
= Fcons (feature
, require_nesting_list
);
2658 /* Value saved here is to be restored into Vautoload_queue */
2659 record_unwind_protect (un_autoload
, Vautoload_queue
);
2660 Vautoload_queue
= Qt
;
2662 /* Load the file. */
2663 GCPRO2 (feature
, filename
);
2664 tem
= Fload (NILP (filename
) ? Fsymbol_name (feature
) : filename
,
2665 noerror
, Qt
, Qnil
, (NILP (filename
) ? Qt
: Qnil
));
2668 /* If load failed entirely, return nil. */
2670 return unbind_to (count
, Qnil
);
2672 tem
= Fmemq (feature
, Vfeatures
);
2674 error ("Required feature `%s' was not provided",
2675 SDATA (SYMBOL_NAME (feature
)));
2677 /* Once loading finishes, don't undo it. */
2678 Vautoload_queue
= Qt
;
2679 feature
= unbind_to (count
, feature
);
2685 /* Primitives for work of the "widget" library.
2686 In an ideal world, this section would not have been necessary.
2687 However, lisp function calls being as slow as they are, it turns
2688 out that some functions in the widget library (wid-edit.el) are the
2689 bottleneck of Widget operation. Here is their translation to C,
2690 for the sole reason of efficiency. */
2692 DEFUN ("plist-member", Fplist_member
, Splist_member
, 2, 2, 0,
2693 doc
: /* Return non-nil if PLIST has the property PROP.
2694 PLIST is a property list, which is a list of the form
2695 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2696 Unlike `plist-get', this allows you to distinguish between a missing
2697 property and a property with the value nil.
2698 The value is actually the tail of PLIST whose car is PROP. */)
2699 (Lisp_Object plist
, Lisp_Object prop
)
2701 while (CONSP (plist
) && !EQ (XCAR (plist
), prop
))
2704 plist
= XCDR (plist
);
2705 plist
= CDR (plist
);
2710 DEFUN ("widget-put", Fwidget_put
, Swidget_put
, 3, 3, 0,
2711 doc
: /* In WIDGET, set PROPERTY to VALUE.
2712 The value can later be retrieved with `widget-get'. */)
2713 (Lisp_Object widget
, Lisp_Object property
, Lisp_Object value
)
2715 CHECK_CONS (widget
);
2716 XSETCDR (widget
, Fplist_put (XCDR (widget
), property
, value
));
2720 DEFUN ("widget-get", Fwidget_get
, Swidget_get
, 2, 2, 0,
2721 doc
: /* In WIDGET, get the value of PROPERTY.
2722 The value could either be specified when the widget was created, or
2723 later with `widget-put'. */)
2724 (Lisp_Object widget
, Lisp_Object property
)
2732 CHECK_CONS (widget
);
2733 tmp
= Fplist_member (XCDR (widget
), property
);
2739 tmp
= XCAR (widget
);
2742 widget
= Fget (tmp
, Qwidget_type
);
2746 DEFUN ("widget-apply", Fwidget_apply
, Swidget_apply
, 2, MANY
, 0,
2747 doc
: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2748 ARGS are passed as extra arguments to the function.
2749 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2750 (ptrdiff_t nargs
, Lisp_Object
*args
)
2752 /* This function can GC. */
2753 Lisp_Object newargs
[3];
2754 struct gcpro gcpro1
, gcpro2
;
2757 newargs
[0] = Fwidget_get (args
[0], args
[1]);
2758 newargs
[1] = args
[0];
2759 newargs
[2] = Flist (nargs
- 2, args
+ 2);
2760 GCPRO2 (newargs
[0], newargs
[2]);
2761 result
= Fapply (3, newargs
);
2766 #ifdef HAVE_LANGINFO_CODESET
2767 #include <langinfo.h>
2770 DEFUN ("locale-info", Flocale_info
, Slocale_info
, 1, 1, 0,
2771 doc
: /* Access locale data ITEM for the current C locale, if available.
2772 ITEM should be one of the following:
2774 `codeset', returning the character set as a string (locale item CODESET);
2776 `days', returning a 7-element vector of day names (locale items DAY_n);
2778 `months', returning a 12-element vector of month names (locale items MON_n);
2780 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2781 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2783 If the system can't provide such information through a call to
2784 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2786 See also Info node `(libc)Locales'.
2788 The data read from the system are decoded using `locale-coding-system'. */)
2792 #ifdef HAVE_LANGINFO_CODESET
2794 if (EQ (item
, Qcodeset
))
2796 str
= nl_langinfo (CODESET
);
2797 return build_string (str
);
2800 else if (EQ (item
, Qdays
)) /* e.g. for calendar-day-name-array */
2802 Lisp_Object v
= Fmake_vector (make_number (7), Qnil
);
2803 const int days
[7] = {DAY_1
, DAY_2
, DAY_3
, DAY_4
, DAY_5
, DAY_6
, DAY_7
};
2805 struct gcpro gcpro1
;
2807 synchronize_system_time_locale ();
2808 for (i
= 0; i
< 7; i
++)
2810 str
= nl_langinfo (days
[i
]);
2811 val
= build_unibyte_string (str
);
2812 /* Fixme: Is this coding system necessarily right, even if
2813 it is consistent with CODESET? If not, what to do? */
2814 ASET (v
, i
, code_convert_string_norecord (val
, Vlocale_coding_system
,
2822 else if (EQ (item
, Qmonths
)) /* e.g. for calendar-month-name-array */
2824 Lisp_Object v
= Fmake_vector (make_number (12), Qnil
);
2825 const int months
[12] = {MON_1
, MON_2
, MON_3
, MON_4
, MON_5
, MON_6
, MON_7
,
2826 MON_8
, MON_9
, MON_10
, MON_11
, MON_12
};
2828 struct gcpro gcpro1
;
2830 synchronize_system_time_locale ();
2831 for (i
= 0; i
< 12; i
++)
2833 str
= nl_langinfo (months
[i
]);
2834 val
= build_unibyte_string (str
);
2835 ASET (v
, i
, code_convert_string_norecord (val
, Vlocale_coding_system
,
2842 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2843 but is in the locale files. This could be used by ps-print. */
2845 else if (EQ (item
, Qpaper
))
2846 return list2i (nl_langinfo (PAPER_WIDTH
), nl_langinfo (PAPER_HEIGHT
));
2847 #endif /* PAPER_WIDTH */
2848 #endif /* HAVE_LANGINFO_CODESET*/
2852 /* base64 encode/decode functions (RFC 2045).
2853 Based on code from GNU recode. */
2855 #define MIME_LINE_LENGTH 76
2857 #define IS_ASCII(Character) \
2859 #define IS_BASE64(Character) \
2860 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2861 #define IS_BASE64_IGNORABLE(Character) \
2862 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2863 || (Character) == '\f' || (Character) == '\r')
2865 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2866 character or return retval if there are no characters left to
2868 #define READ_QUADRUPLET_BYTE(retval) \
2873 if (nchars_return) \
2874 *nchars_return = nchars; \
2879 while (IS_BASE64_IGNORABLE (c))
2881 /* Table of characters coding the 64 values. */
2882 static const char base64_value_to_char
[64] =
2884 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2885 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2886 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2887 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2888 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2889 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2890 '8', '9', '+', '/' /* 60-63 */
2893 /* Table of base64 values for first 128 characters. */
2894 static const short base64_char_to_value
[128] =
2896 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2897 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2898 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2899 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2900 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2901 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2902 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2903 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2904 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2905 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2906 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2907 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2908 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2911 /* The following diagram shows the logical steps by which three octets
2912 get transformed into four base64 characters.
2914 .--------. .--------. .--------.
2915 |aaaaaabb| |bbbbcccc| |ccdddddd|
2916 `--------' `--------' `--------'
2918 .--------+--------+--------+--------.
2919 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2920 `--------+--------+--------+--------'
2922 .--------+--------+--------+--------.
2923 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2924 `--------+--------+--------+--------'
2926 The octets are divided into 6 bit chunks, which are then encoded into
2927 base64 characters. */
2930 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2931 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2934 DEFUN ("base64-encode-region", Fbase64_encode_region
, Sbase64_encode_region
,
2936 doc
: /* Base64-encode the region between BEG and END.
2937 Return the length of the encoded text.
2938 Optional third argument NO-LINE-BREAK means do not break long lines
2939 into shorter lines. */)
2940 (Lisp_Object beg
, Lisp_Object end
, Lisp_Object no_line_break
)
2943 ptrdiff_t allength
, length
;
2944 ptrdiff_t ibeg
, iend
, encoded_length
;
2945 ptrdiff_t old_pos
= PT
;
2948 validate_region (&beg
, &end
);
2950 ibeg
= CHAR_TO_BYTE (XFASTINT (beg
));
2951 iend
= CHAR_TO_BYTE (XFASTINT (end
));
2952 move_gap_both (XFASTINT (beg
), ibeg
);
2954 /* We need to allocate enough room for encoding the text.
2955 We need 33 1/3% more space, plus a newline every 76
2956 characters, and then we round up. */
2957 length
= iend
- ibeg
;
2958 allength
= length
+ length
/3 + 1;
2959 allength
+= allength
/ MIME_LINE_LENGTH
+ 1 + 6;
2961 encoded
= SAFE_ALLOCA (allength
);
2962 encoded_length
= base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg
),
2963 encoded
, length
, NILP (no_line_break
),
2964 !NILP (BVAR (current_buffer
, enable_multibyte_characters
)));
2965 if (encoded_length
> allength
)
2968 if (encoded_length
< 0)
2970 /* The encoding wasn't possible. */
2972 error ("Multibyte character in data for base64 encoding");
2975 /* Now we have encoded the region, so we insert the new contents
2976 and delete the old. (Insert first in order to preserve markers.) */
2977 SET_PT_BOTH (XFASTINT (beg
), ibeg
);
2978 insert (encoded
, encoded_length
);
2980 del_range_byte (ibeg
+ encoded_length
, iend
+ encoded_length
, 1);
2982 /* If point was outside of the region, restore it exactly; else just
2983 move to the beginning of the region. */
2984 if (old_pos
>= XFASTINT (end
))
2985 old_pos
+= encoded_length
- (XFASTINT (end
) - XFASTINT (beg
));
2986 else if (old_pos
> XFASTINT (beg
))
2987 old_pos
= XFASTINT (beg
);
2990 /* We return the length of the encoded text. */
2991 return make_number (encoded_length
);
2994 DEFUN ("base64-encode-string", Fbase64_encode_string
, Sbase64_encode_string
,
2996 doc
: /* Base64-encode STRING and return the result.
2997 Optional second argument NO-LINE-BREAK means do not break long lines
2998 into shorter lines. */)
2999 (Lisp_Object string
, Lisp_Object no_line_break
)
3001 ptrdiff_t allength
, length
, encoded_length
;
3003 Lisp_Object encoded_string
;
3006 CHECK_STRING (string
);
3008 /* We need to allocate enough room for encoding the text.
3009 We need 33 1/3% more space, plus a newline every 76
3010 characters, and then we round up. */
3011 length
= SBYTES (string
);
3012 allength
= length
+ length
/3 + 1;
3013 allength
+= allength
/ MIME_LINE_LENGTH
+ 1 + 6;
3015 /* We need to allocate enough room for decoding the text. */
3016 encoded
= SAFE_ALLOCA (allength
);
3018 encoded_length
= base64_encode_1 (SSDATA (string
),
3019 encoded
, length
, NILP (no_line_break
),
3020 STRING_MULTIBYTE (string
));
3021 if (encoded_length
> allength
)
3024 if (encoded_length
< 0)
3026 /* The encoding wasn't possible. */
3028 error ("Multibyte character in data for base64 encoding");
3031 encoded_string
= make_unibyte_string (encoded
, encoded_length
);
3034 return encoded_string
;
3038 base64_encode_1 (const char *from
, char *to
, ptrdiff_t length
,
3039 bool line_break
, bool multibyte
)
3052 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3053 if (CHAR_BYTE8_P (c
))
3054 c
= CHAR_TO_BYTE8 (c
);
3062 /* Wrap line every 76 characters. */
3066 if (counter
< MIME_LINE_LENGTH
/ 4)
3075 /* Process first byte of a triplet. */
3077 *e
++ = base64_value_to_char
[0x3f & c
>> 2];
3078 value
= (0x03 & c
) << 4;
3080 /* Process second byte of a triplet. */
3084 *e
++ = base64_value_to_char
[value
];
3092 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3093 if (CHAR_BYTE8_P (c
))
3094 c
= CHAR_TO_BYTE8 (c
);
3102 *e
++ = base64_value_to_char
[value
| (0x0f & c
>> 4)];
3103 value
= (0x0f & c
) << 2;
3105 /* Process third byte of a triplet. */
3109 *e
++ = base64_value_to_char
[value
];
3116 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3117 if (CHAR_BYTE8_P (c
))
3118 c
= CHAR_TO_BYTE8 (c
);
3126 *e
++ = base64_value_to_char
[value
| (0x03 & c
>> 6)];
3127 *e
++ = base64_value_to_char
[0x3f & c
];
3134 DEFUN ("base64-decode-region", Fbase64_decode_region
, Sbase64_decode_region
,
3136 doc
: /* Base64-decode the region between BEG and END.
3137 Return the length of the decoded text.
3138 If the region can't be decoded, signal an error and don't modify the buffer. */)
3139 (Lisp_Object beg
, Lisp_Object end
)
3141 ptrdiff_t ibeg
, iend
, length
, allength
;
3143 ptrdiff_t old_pos
= PT
;
3144 ptrdiff_t decoded_length
;
3145 ptrdiff_t inserted_chars
;
3146 bool multibyte
= !NILP (BVAR (current_buffer
, enable_multibyte_characters
));
3149 validate_region (&beg
, &end
);
3151 ibeg
= CHAR_TO_BYTE (XFASTINT (beg
));
3152 iend
= CHAR_TO_BYTE (XFASTINT (end
));
3154 length
= iend
- ibeg
;
3156 /* We need to allocate enough room for decoding the text. If we are
3157 working on a multibyte buffer, each decoded code may occupy at
3159 allength
= multibyte
? length
* 2 : length
;
3160 decoded
= SAFE_ALLOCA (allength
);
3162 move_gap_both (XFASTINT (beg
), ibeg
);
3163 decoded_length
= base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg
),
3165 multibyte
, &inserted_chars
);
3166 if (decoded_length
> allength
)
3169 if (decoded_length
< 0)
3171 /* The decoding wasn't possible. */
3173 error ("Invalid base64 data");
3176 /* Now we have decoded the region, so we insert the new contents
3177 and delete the old. (Insert first in order to preserve markers.) */
3178 TEMP_SET_PT_BOTH (XFASTINT (beg
), ibeg
);
3179 insert_1_both (decoded
, inserted_chars
, decoded_length
, 0, 1, 0);
3182 /* Delete the original text. */
3183 del_range_both (PT
, PT_BYTE
, XFASTINT (end
) + inserted_chars
,
3184 iend
+ decoded_length
, 1);
3186 /* If point was outside of the region, restore it exactly; else just
3187 move to the beginning of the region. */
3188 if (old_pos
>= XFASTINT (end
))
3189 old_pos
+= inserted_chars
- (XFASTINT (end
) - XFASTINT (beg
));
3190 else if (old_pos
> XFASTINT (beg
))
3191 old_pos
= XFASTINT (beg
);
3192 SET_PT (old_pos
> ZV
? ZV
: old_pos
);
3194 return make_number (inserted_chars
);
3197 DEFUN ("base64-decode-string", Fbase64_decode_string
, Sbase64_decode_string
,
3199 doc
: /* Base64-decode STRING and return the result. */)
3200 (Lisp_Object string
)
3203 ptrdiff_t length
, decoded_length
;
3204 Lisp_Object decoded_string
;
3207 CHECK_STRING (string
);
3209 length
= SBYTES (string
);
3210 /* We need to allocate enough room for decoding the text. */
3211 decoded
= SAFE_ALLOCA (length
);
3213 /* The decoded result should be unibyte. */
3214 decoded_length
= base64_decode_1 (SSDATA (string
), decoded
, length
,
3216 if (decoded_length
> length
)
3218 else if (decoded_length
>= 0)
3219 decoded_string
= make_unibyte_string (decoded
, decoded_length
);
3221 decoded_string
= Qnil
;
3224 if (!STRINGP (decoded_string
))
3225 error ("Invalid base64 data");
3227 return decoded_string
;
3230 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3231 MULTIBYTE, the decoded result should be in multibyte
3232 form. If NCHARS_RETURN is not NULL, store the number of produced
3233 characters in *NCHARS_RETURN. */
3236 base64_decode_1 (const char *from
, char *to
, ptrdiff_t length
,
3237 bool multibyte
, ptrdiff_t *nchars_return
)
3239 ptrdiff_t i
= 0; /* Used inside READ_QUADRUPLET_BYTE */
3242 unsigned long value
;
3243 ptrdiff_t nchars
= 0;
3247 /* Process first byte of a quadruplet. */
3249 READ_QUADRUPLET_BYTE (e
-to
);
3253 value
= base64_char_to_value
[c
] << 18;
3255 /* Process second byte of a quadruplet. */
3257 READ_QUADRUPLET_BYTE (-1);
3261 value
|= base64_char_to_value
[c
] << 12;
3263 c
= (unsigned char) (value
>> 16);
3264 if (multibyte
&& c
>= 128)
3265 e
+= BYTE8_STRING (c
, e
);
3270 /* Process third byte of a quadruplet. */
3272 READ_QUADRUPLET_BYTE (-1);
3276 READ_QUADRUPLET_BYTE (-1);
3285 value
|= base64_char_to_value
[c
] << 6;
3287 c
= (unsigned char) (0xff & value
>> 8);
3288 if (multibyte
&& c
>= 128)
3289 e
+= BYTE8_STRING (c
, e
);
3294 /* Process fourth byte of a quadruplet. */
3296 READ_QUADRUPLET_BYTE (-1);
3303 value
|= base64_char_to_value
[c
];
3305 c
= (unsigned char) (0xff & value
);
3306 if (multibyte
&& c
>= 128)
3307 e
+= BYTE8_STRING (c
, e
);
3316 /***********************************************************************
3318 ***** Hash Tables *****
3320 ***********************************************************************/
3322 /* Implemented by gerd@gnu.org. This hash table implementation was
3323 inspired by CMUCL hash tables. */
3327 1. For small tables, association lists are probably faster than
3328 hash tables because they have lower overhead.
3330 For uses of hash tables where the O(1) behavior of table
3331 operations is not a requirement, it might therefore be a good idea
3332 not to hash. Instead, we could just do a linear search in the
3333 key_and_value vector of the hash table. This could be done
3334 if a `:linear-search t' argument is given to make-hash-table. */
3337 /* The list of all weak hash tables. Don't staticpro this one. */
3339 static struct Lisp_Hash_Table
*weak_hash_tables
;
3341 /* Various symbols. */
3343 static Lisp_Object Qhash_table_p
;
3344 static Lisp_Object Qkey
, Qvalue
, Qeql
;
3345 Lisp_Object Qeq
, Qequal
;
3346 Lisp_Object QCtest
, QCsize
, QCrehash_size
, QCrehash_threshold
, QCweakness
;
3347 static Lisp_Object Qhash_table_test
, Qkey_or_value
, Qkey_and_value
;
3350 /***********************************************************************
3352 ***********************************************************************/
3355 CHECK_HASH_TABLE (Lisp_Object x
)
3357 CHECK_TYPE (HASH_TABLE_P (x
), Qhash_table_p
, x
);
3361 set_hash_key_and_value (struct Lisp_Hash_Table
*h
, Lisp_Object key_and_value
)
3363 h
->key_and_value
= key_and_value
;
3366 set_hash_next (struct Lisp_Hash_Table
*h
, Lisp_Object next
)
3371 set_hash_next_slot (struct Lisp_Hash_Table
*h
, ptrdiff_t idx
, Lisp_Object val
)
3373 gc_aset (h
->next
, idx
, val
);
3376 set_hash_hash (struct Lisp_Hash_Table
*h
, Lisp_Object hash
)
3381 set_hash_hash_slot (struct Lisp_Hash_Table
*h
, ptrdiff_t idx
, Lisp_Object val
)
3383 gc_aset (h
->hash
, idx
, val
);
3386 set_hash_index (struct Lisp_Hash_Table
*h
, Lisp_Object index
)
3391 set_hash_index_slot (struct Lisp_Hash_Table
*h
, ptrdiff_t idx
, Lisp_Object val
)
3393 gc_aset (h
->index
, idx
, val
);
3396 /* If OBJ is a Lisp hash table, return a pointer to its struct
3397 Lisp_Hash_Table. Otherwise, signal an error. */
3399 static struct Lisp_Hash_Table
*
3400 check_hash_table (Lisp_Object obj
)
3402 CHECK_HASH_TABLE (obj
);
3403 return XHASH_TABLE (obj
);
3407 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3408 number. A number is "almost" a prime number if it is not divisible
3409 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3412 next_almost_prime (EMACS_INT n
)
3414 verify (NEXT_ALMOST_PRIME_LIMIT
== 11);
3415 for (n
|= 1; ; n
+= 2)
3416 if (n
% 3 != 0 && n
% 5 != 0 && n
% 7 != 0)
3421 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3422 which USED[I] is non-zero. If found at index I in ARGS, set
3423 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3424 0. This function is used to extract a keyword/argument pair from
3425 a DEFUN parameter list. */
3428 get_key_arg (Lisp_Object key
, ptrdiff_t nargs
, Lisp_Object
*args
, char *used
)
3432 for (i
= 1; i
< nargs
; i
++)
3433 if (!used
[i
- 1] && EQ (args
[i
- 1], key
))
3444 /* Return a Lisp vector which has the same contents as VEC but has
3445 at least INCR_MIN more entries, where INCR_MIN is positive.
3446 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3447 than NITEMS_MAX. Entries in the resulting
3448 vector that are not copied from VEC are set to nil. */
3451 larger_vector (Lisp_Object vec
, ptrdiff_t incr_min
, ptrdiff_t nitems_max
)
3453 struct Lisp_Vector
*v
;
3454 ptrdiff_t i
, incr
, incr_max
, old_size
, new_size
;
3455 ptrdiff_t C_language_max
= min (PTRDIFF_MAX
, SIZE_MAX
) / sizeof *v
->contents
;
3456 ptrdiff_t n_max
= (0 <= nitems_max
&& nitems_max
< C_language_max
3457 ? nitems_max
: C_language_max
);
3458 eassert (VECTORP (vec
));
3459 eassert (0 < incr_min
&& -1 <= nitems_max
);
3460 old_size
= ASIZE (vec
);
3461 incr_max
= n_max
- old_size
;
3462 incr
= max (incr_min
, min (old_size
>> 1, incr_max
));
3463 if (incr_max
< incr
)
3464 memory_full (SIZE_MAX
);
3465 new_size
= old_size
+ incr
;
3466 v
= allocate_vector (new_size
);
3467 memcpy (v
->contents
, XVECTOR (vec
)->contents
, old_size
* sizeof *v
->contents
);
3468 for (i
= old_size
; i
< new_size
; ++i
)
3469 v
->contents
[i
] = Qnil
;
3470 XSETVECTOR (vec
, v
);
3475 /***********************************************************************
3477 ***********************************************************************/
3479 static struct hash_table_test hashtest_eq
;
3480 struct hash_table_test hashtest_eql
, hashtest_equal
;
3482 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3483 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3484 KEY2 are the same. */
3487 cmpfn_eql (struct hash_table_test
*ht
,
3491 return (FLOATP (key1
)
3493 && XFLOAT_DATA (key1
) == XFLOAT_DATA (key2
));
3497 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3498 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3499 KEY2 are the same. */
3502 cmpfn_equal (struct hash_table_test
*ht
,
3506 return !NILP (Fequal (key1
, key2
));
3510 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3511 HASH2 in hash table H using H->user_cmp_function. Value is true
3512 if KEY1 and KEY2 are the same. */
3515 cmpfn_user_defined (struct hash_table_test
*ht
,
3519 Lisp_Object args
[3];
3521 args
[0] = ht
->user_cmp_function
;
3524 return !NILP (Ffuncall (3, args
));
3528 /* Value is a hash code for KEY for use in hash table H which uses
3529 `eq' to compare keys. The hash code returned is guaranteed to fit
3530 in a Lisp integer. */
3533 hashfn_eq (struct hash_table_test
*ht
, Lisp_Object key
)
3535 EMACS_UINT hash
= XHASH (key
) ^ XTYPE (key
);
3539 /* Value is a hash code for KEY for use in hash table H which uses
3540 `eql' to compare keys. The hash code returned is guaranteed to fit
3541 in a Lisp integer. */
3544 hashfn_eql (struct hash_table_test
*ht
, Lisp_Object key
)
3548 hash
= sxhash (key
, 0);
3550 hash
= XHASH (key
) ^ XTYPE (key
);
3554 /* Value is a hash code for KEY for use in hash table H which uses
3555 `equal' to compare keys. The hash code returned is guaranteed to fit
3556 in a Lisp integer. */
3559 hashfn_equal (struct hash_table_test
*ht
, Lisp_Object key
)
3561 EMACS_UINT hash
= sxhash (key
, 0);
3565 /* Value is a hash code for KEY for use in hash table H which uses as
3566 user-defined function to compare keys. The hash code returned is
3567 guaranteed to fit in a Lisp integer. */
3570 hashfn_user_defined (struct hash_table_test
*ht
, Lisp_Object key
)
3572 Lisp_Object args
[2], hash
;
3574 args
[0] = ht
->user_hash_function
;
3576 hash
= Ffuncall (2, args
);
3577 if (!INTEGERP (hash
))
3578 signal_error ("Invalid hash code returned from user-supplied hash function", hash
);
3579 return XUINT (hash
);
3582 /* An upper bound on the size of a hash table index. It must fit in
3583 ptrdiff_t and be a valid Emacs fixnum. */
3584 #define INDEX_SIZE_BOUND \
3585 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3587 /* Create and initialize a new hash table.
3589 TEST specifies the test the hash table will use to compare keys.
3590 It must be either one of the predefined tests `eq', `eql' or
3591 `equal' or a symbol denoting a user-defined test named TEST with
3592 test and hash functions USER_TEST and USER_HASH.
3594 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3596 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3597 new size when it becomes full is computed by adding REHASH_SIZE to
3598 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3599 table's new size is computed by multiplying its old size with
3602 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3603 be resized when the ratio of (number of entries in the table) /
3604 (table size) is >= REHASH_THRESHOLD.
3606 WEAK specifies the weakness of the table. If non-nil, it must be
3607 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3610 make_hash_table (struct hash_table_test test
,
3611 Lisp_Object size
, Lisp_Object rehash_size
,
3612 Lisp_Object rehash_threshold
, Lisp_Object weak
)
3614 struct Lisp_Hash_Table
*h
;
3616 EMACS_INT index_size
, sz
;
3620 /* Preconditions. */
3621 eassert (SYMBOLP (test
.name
));
3622 eassert (INTEGERP (size
) && XINT (size
) >= 0);
3623 eassert ((INTEGERP (rehash_size
) && XINT (rehash_size
) > 0)
3624 || (FLOATP (rehash_size
) && 1 < XFLOAT_DATA (rehash_size
)));
3625 eassert (FLOATP (rehash_threshold
)
3626 && 0 < XFLOAT_DATA (rehash_threshold
)
3627 && XFLOAT_DATA (rehash_threshold
) <= 1.0);
3629 if (XFASTINT (size
) == 0)
3630 size
= make_number (1);
3632 sz
= XFASTINT (size
);
3633 index_float
= sz
/ XFLOAT_DATA (rehash_threshold
);
3634 index_size
= (index_float
< INDEX_SIZE_BOUND
+ 1
3635 ? next_almost_prime (index_float
)
3636 : INDEX_SIZE_BOUND
+ 1);
3637 if (INDEX_SIZE_BOUND
< max (index_size
, 2 * sz
))
3638 error ("Hash table too large");
3640 /* Allocate a table and initialize it. */
3641 h
= allocate_hash_table ();
3643 /* Initialize hash table slots. */
3646 h
->rehash_threshold
= rehash_threshold
;
3647 h
->rehash_size
= rehash_size
;
3649 h
->key_and_value
= Fmake_vector (make_number (2 * sz
), Qnil
);
3650 h
->hash
= Fmake_vector (size
, Qnil
);
3651 h
->next
= Fmake_vector (size
, Qnil
);
3652 h
->index
= Fmake_vector (make_number (index_size
), Qnil
);
3654 /* Set up the free list. */
3655 for (i
= 0; i
< sz
- 1; ++i
)
3656 set_hash_next_slot (h
, i
, make_number (i
+ 1));
3657 h
->next_free
= make_number (0);
3659 XSET_HASH_TABLE (table
, h
);
3660 eassert (HASH_TABLE_P (table
));
3661 eassert (XHASH_TABLE (table
) == h
);
3663 /* Maybe add this hash table to the list of all weak hash tables. */
3665 h
->next_weak
= NULL
;
3668 h
->next_weak
= weak_hash_tables
;
3669 weak_hash_tables
= h
;
3676 /* Return a copy of hash table H1. Keys and values are not copied,
3677 only the table itself is. */
3680 copy_hash_table (struct Lisp_Hash_Table
*h1
)
3683 struct Lisp_Hash_Table
*h2
;
3685 h2
= allocate_hash_table ();
3687 h2
->key_and_value
= Fcopy_sequence (h1
->key_and_value
);
3688 h2
->hash
= Fcopy_sequence (h1
->hash
);
3689 h2
->next
= Fcopy_sequence (h1
->next
);
3690 h2
->index
= Fcopy_sequence (h1
->index
);
3691 XSET_HASH_TABLE (table
, h2
);
3693 /* Maybe add this hash table to the list of all weak hash tables. */
3694 if (!NILP (h2
->weak
))
3696 h2
->next_weak
= weak_hash_tables
;
3697 weak_hash_tables
= h2
;
3704 /* Resize hash table H if it's too full. If H cannot be resized
3705 because it's already too large, throw an error. */
3708 maybe_resize_hash_table (struct Lisp_Hash_Table
*h
)
3710 if (NILP (h
->next_free
))
3712 ptrdiff_t old_size
= HASH_TABLE_SIZE (h
);
3713 EMACS_INT new_size
, index_size
, nsize
;
3717 if (INTEGERP (h
->rehash_size
))
3718 new_size
= old_size
+ XFASTINT (h
->rehash_size
);
3721 double float_new_size
= old_size
* XFLOAT_DATA (h
->rehash_size
);
3722 if (float_new_size
< INDEX_SIZE_BOUND
+ 1)
3724 new_size
= float_new_size
;
3725 if (new_size
<= old_size
)
3726 new_size
= old_size
+ 1;
3729 new_size
= INDEX_SIZE_BOUND
+ 1;
3731 index_float
= new_size
/ XFLOAT_DATA (h
->rehash_threshold
);
3732 index_size
= (index_float
< INDEX_SIZE_BOUND
+ 1
3733 ? next_almost_prime (index_float
)
3734 : INDEX_SIZE_BOUND
+ 1);
3735 nsize
= max (index_size
, 2 * new_size
);
3736 if (INDEX_SIZE_BOUND
< nsize
)
3737 error ("Hash table too large to resize");
3739 #ifdef ENABLE_CHECKING
3740 if (HASH_TABLE_P (Vpurify_flag
)
3741 && XHASH_TABLE (Vpurify_flag
) == h
)
3743 Lisp_Object args
[2];
3744 args
[0] = build_string ("Growing hash table to: %d");
3745 args
[1] = make_number (new_size
);
3750 set_hash_key_and_value (h
, larger_vector (h
->key_and_value
,
3751 2 * (new_size
- old_size
), -1));
3752 set_hash_next (h
, larger_vector (h
->next
, new_size
- old_size
, -1));
3753 set_hash_hash (h
, larger_vector (h
->hash
, new_size
- old_size
, -1));
3754 set_hash_index (h
, Fmake_vector (make_number (index_size
), Qnil
));
3756 /* Update the free list. Do it so that new entries are added at
3757 the end of the free list. This makes some operations like
3759 for (i
= old_size
; i
< new_size
- 1; ++i
)
3760 set_hash_next_slot (h
, i
, make_number (i
+ 1));
3762 if (!NILP (h
->next_free
))
3764 Lisp_Object last
, next
;
3766 last
= h
->next_free
;
3767 while (next
= HASH_NEXT (h
, XFASTINT (last
)),
3771 set_hash_next_slot (h
, XFASTINT (last
), make_number (old_size
));
3774 XSETFASTINT (h
->next_free
, old_size
);
3777 for (i
= 0; i
< old_size
; ++i
)
3778 if (!NILP (HASH_HASH (h
, i
)))
3780 EMACS_UINT hash_code
= XUINT (HASH_HASH (h
, i
));
3781 ptrdiff_t start_of_bucket
= hash_code
% ASIZE (h
->index
);
3782 set_hash_next_slot (h
, i
, HASH_INDEX (h
, start_of_bucket
));
3783 set_hash_index_slot (h
, start_of_bucket
, make_number (i
));
3789 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3790 the hash code of KEY. Value is the index of the entry in H
3791 matching KEY, or -1 if not found. */
3794 hash_lookup (struct Lisp_Hash_Table
*h
, Lisp_Object key
, EMACS_UINT
*hash
)
3796 EMACS_UINT hash_code
;
3797 ptrdiff_t start_of_bucket
;
3800 hash_code
= h
->test
.hashfn (&h
->test
, key
);
3801 eassert ((hash_code
& ~INTMASK
) == 0);
3805 start_of_bucket
= hash_code
% ASIZE (h
->index
);
3806 idx
= HASH_INDEX (h
, start_of_bucket
);
3808 /* We need not gcpro idx since it's either an integer or nil. */
3811 ptrdiff_t i
= XFASTINT (idx
);
3812 if (EQ (key
, HASH_KEY (h
, i
))
3814 && hash_code
== XUINT (HASH_HASH (h
, i
))
3815 && h
->test
.cmpfn (&h
->test
, key
, HASH_KEY (h
, i
))))
3817 idx
= HASH_NEXT (h
, i
);
3820 return NILP (idx
) ? -1 : XFASTINT (idx
);
3824 /* Put an entry into hash table H that associates KEY with VALUE.
3825 HASH is a previously computed hash code of KEY.
3826 Value is the index of the entry in H matching KEY. */
3829 hash_put (struct Lisp_Hash_Table
*h
, Lisp_Object key
, Lisp_Object value
,
3832 ptrdiff_t start_of_bucket
, i
;
3834 eassert ((hash
& ~INTMASK
) == 0);
3836 /* Increment count after resizing because resizing may fail. */
3837 maybe_resize_hash_table (h
);
3840 /* Store key/value in the key_and_value vector. */
3841 i
= XFASTINT (h
->next_free
);
3842 h
->next_free
= HASH_NEXT (h
, i
);
3843 set_hash_key_slot (h
, i
, key
);
3844 set_hash_value_slot (h
, i
, value
);
3846 /* Remember its hash code. */
3847 set_hash_hash_slot (h
, i
, make_number (hash
));
3849 /* Add new entry to its collision chain. */
3850 start_of_bucket
= hash
% ASIZE (h
->index
);
3851 set_hash_next_slot (h
, i
, HASH_INDEX (h
, start_of_bucket
));
3852 set_hash_index_slot (h
, start_of_bucket
, make_number (i
));
3857 /* Remove the entry matching KEY from hash table H, if there is one. */
3860 hash_remove_from_table (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3862 EMACS_UINT hash_code
;
3863 ptrdiff_t start_of_bucket
;
3864 Lisp_Object idx
, prev
;
3866 hash_code
= h
->test
.hashfn (&h
->test
, key
);
3867 eassert ((hash_code
& ~INTMASK
) == 0);
3868 start_of_bucket
= hash_code
% ASIZE (h
->index
);
3869 idx
= HASH_INDEX (h
, start_of_bucket
);
3872 /* We need not gcpro idx, prev since they're either integers or nil. */
3875 ptrdiff_t i
= XFASTINT (idx
);
3877 if (EQ (key
, HASH_KEY (h
, i
))
3879 && hash_code
== XUINT (HASH_HASH (h
, i
))
3880 && h
->test
.cmpfn (&h
->test
, key
, HASH_KEY (h
, i
))))
3882 /* Take entry out of collision chain. */
3884 set_hash_index_slot (h
, start_of_bucket
, HASH_NEXT (h
, i
));
3886 set_hash_next_slot (h
, XFASTINT (prev
), HASH_NEXT (h
, i
));
3888 /* Clear slots in key_and_value and add the slots to
3890 set_hash_key_slot (h
, i
, Qnil
);
3891 set_hash_value_slot (h
, i
, Qnil
);
3892 set_hash_hash_slot (h
, i
, Qnil
);
3893 set_hash_next_slot (h
, i
, h
->next_free
);
3894 h
->next_free
= make_number (i
);
3896 eassert (h
->count
>= 0);
3902 idx
= HASH_NEXT (h
, i
);
3908 /* Clear hash table H. */
3911 hash_clear (struct Lisp_Hash_Table
*h
)
3915 ptrdiff_t i
, size
= HASH_TABLE_SIZE (h
);
3917 for (i
= 0; i
< size
; ++i
)
3919 set_hash_next_slot (h
, i
, i
< size
- 1 ? make_number (i
+ 1) : Qnil
);
3920 set_hash_key_slot (h
, i
, Qnil
);
3921 set_hash_value_slot (h
, i
, Qnil
);
3922 set_hash_hash_slot (h
, i
, Qnil
);
3925 for (i
= 0; i
< ASIZE (h
->index
); ++i
)
3926 ASET (h
->index
, i
, Qnil
);
3928 h
->next_free
= make_number (0);
3935 /************************************************************************
3937 ************************************************************************/
3939 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3940 entries from the table that don't survive the current GC.
3941 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3942 true if anything was marked. */
3945 sweep_weak_table (struct Lisp_Hash_Table
*h
, bool remove_entries_p
)
3947 ptrdiff_t bucket
, n
;
3950 n
= ASIZE (h
->index
) & ~ARRAY_MARK_FLAG
;
3953 for (bucket
= 0; bucket
< n
; ++bucket
)
3955 Lisp_Object idx
, next
, prev
;
3957 /* Follow collision chain, removing entries that
3958 don't survive this garbage collection. */
3960 for (idx
= HASH_INDEX (h
, bucket
); !NILP (idx
); idx
= next
)
3962 ptrdiff_t i
= XFASTINT (idx
);
3963 bool key_known_to_survive_p
= survives_gc_p (HASH_KEY (h
, i
));
3964 bool value_known_to_survive_p
= survives_gc_p (HASH_VALUE (h
, i
));
3967 if (EQ (h
->weak
, Qkey
))
3968 remove_p
= !key_known_to_survive_p
;
3969 else if (EQ (h
->weak
, Qvalue
))
3970 remove_p
= !value_known_to_survive_p
;
3971 else if (EQ (h
->weak
, Qkey_or_value
))
3972 remove_p
= !(key_known_to_survive_p
|| value_known_to_survive_p
);
3973 else if (EQ (h
->weak
, Qkey_and_value
))
3974 remove_p
= !(key_known_to_survive_p
&& value_known_to_survive_p
);
3978 next
= HASH_NEXT (h
, i
);
3980 if (remove_entries_p
)
3984 /* Take out of collision chain. */
3986 set_hash_index_slot (h
, bucket
, next
);
3988 set_hash_next_slot (h
, XFASTINT (prev
), next
);
3990 /* Add to free list. */
3991 set_hash_next_slot (h
, i
, h
->next_free
);
3994 /* Clear key, value, and hash. */
3995 set_hash_key_slot (h
, i
, Qnil
);
3996 set_hash_value_slot (h
, i
, Qnil
);
3997 set_hash_hash_slot (h
, i
, Qnil
);
4010 /* Make sure key and value survive. */
4011 if (!key_known_to_survive_p
)
4013 mark_object (HASH_KEY (h
, i
));
4017 if (!value_known_to_survive_p
)
4019 mark_object (HASH_VALUE (h
, i
));
4030 /* Remove elements from weak hash tables that don't survive the
4031 current garbage collection. Remove weak tables that don't survive
4032 from Vweak_hash_tables. Called from gc_sweep. */
4035 sweep_weak_hash_tables (void)
4037 struct Lisp_Hash_Table
*h
, *used
, *next
;
4040 /* Mark all keys and values that are in use. Keep on marking until
4041 there is no more change. This is necessary for cases like
4042 value-weak table A containing an entry X -> Y, where Y is used in a
4043 key-weak table B, Z -> Y. If B comes after A in the list of weak
4044 tables, X -> Y might be removed from A, although when looking at B
4045 one finds that it shouldn't. */
4049 for (h
= weak_hash_tables
; h
; h
= h
->next_weak
)
4051 if (h
->header
.size
& ARRAY_MARK_FLAG
)
4052 marked
|= sweep_weak_table (h
, 0);
4057 /* Remove tables and entries that aren't used. */
4058 for (h
= weak_hash_tables
, used
= NULL
; h
; h
= next
)
4060 next
= h
->next_weak
;
4062 if (h
->header
.size
& ARRAY_MARK_FLAG
)
4064 /* TABLE is marked as used. Sweep its contents. */
4066 sweep_weak_table (h
, 1);
4068 /* Add table to the list of used weak hash tables. */
4069 h
->next_weak
= used
;
4074 weak_hash_tables
= used
;
4079 /***********************************************************************
4080 Hash Code Computation
4081 ***********************************************************************/
4083 /* Maximum depth up to which to dive into Lisp structures. */
4085 #define SXHASH_MAX_DEPTH 3
4087 /* Maximum length up to which to take list and vector elements into
4090 #define SXHASH_MAX_LEN 7
4092 /* Return a hash for string PTR which has length LEN. The hash value
4093 can be any EMACS_UINT value. */
4096 hash_string (char const *ptr
, ptrdiff_t len
)
4098 char const *p
= ptr
;
4099 char const *end
= p
+ len
;
4101 EMACS_UINT hash
= 0;
4106 hash
= sxhash_combine (hash
, c
);
4112 /* Return a hash for string PTR which has length LEN. The hash
4113 code returned is guaranteed to fit in a Lisp integer. */
4116 sxhash_string (char const *ptr
, ptrdiff_t len
)
4118 EMACS_UINT hash
= hash_string (ptr
, len
);
4119 return SXHASH_REDUCE (hash
);
4122 /* Return a hash for the floating point value VAL. */
4125 sxhash_float (double val
)
4127 EMACS_UINT hash
= 0;
4129 WORDS_PER_DOUBLE
= (sizeof val
/ sizeof hash
4130 + (sizeof val
% sizeof hash
!= 0))
4134 EMACS_UINT word
[WORDS_PER_DOUBLE
];
4138 memset (&u
.val
+ 1, 0, sizeof u
- sizeof u
.val
);
4139 for (i
= 0; i
< WORDS_PER_DOUBLE
; i
++)
4140 hash
= sxhash_combine (hash
, u
.word
[i
]);
4141 return SXHASH_REDUCE (hash
);
4144 /* Return a hash for list LIST. DEPTH is the current depth in the
4145 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4148 sxhash_list (Lisp_Object list
, int depth
)
4150 EMACS_UINT hash
= 0;
4153 if (depth
< SXHASH_MAX_DEPTH
)
4155 CONSP (list
) && i
< SXHASH_MAX_LEN
;
4156 list
= XCDR (list
), ++i
)
4158 EMACS_UINT hash2
= sxhash (XCAR (list
), depth
+ 1);
4159 hash
= sxhash_combine (hash
, hash2
);
4164 EMACS_UINT hash2
= sxhash (list
, depth
+ 1);
4165 hash
= sxhash_combine (hash
, hash2
);
4168 return SXHASH_REDUCE (hash
);
4172 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4173 the Lisp structure. */
4176 sxhash_vector (Lisp_Object vec
, int depth
)
4178 EMACS_UINT hash
= ASIZE (vec
);
4181 n
= min (SXHASH_MAX_LEN
, ASIZE (vec
));
4182 for (i
= 0; i
< n
; ++i
)
4184 EMACS_UINT hash2
= sxhash (AREF (vec
, i
), depth
+ 1);
4185 hash
= sxhash_combine (hash
, hash2
);
4188 return SXHASH_REDUCE (hash
);
4191 /* Return a hash for bool-vector VECTOR. */
4194 sxhash_bool_vector (Lisp_Object vec
)
4196 EMACS_UINT hash
= XBOOL_VECTOR (vec
)->size
;
4199 n
= min (SXHASH_MAX_LEN
, XBOOL_VECTOR (vec
)->header
.size
);
4200 for (i
= 0; i
< n
; ++i
)
4201 hash
= sxhash_combine (hash
, XBOOL_VECTOR (vec
)->data
[i
]);
4203 return SXHASH_REDUCE (hash
);
4207 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4208 structure. Value is an unsigned integer clipped to INTMASK. */
4211 sxhash (Lisp_Object obj
, int depth
)
4215 if (depth
> SXHASH_MAX_DEPTH
)
4218 switch (XTYPE (obj
))
4229 obj
= SYMBOL_NAME (obj
);
4233 hash
= sxhash_string (SSDATA (obj
), SBYTES (obj
));
4236 /* This can be everything from a vector to an overlay. */
4237 case Lisp_Vectorlike
:
4239 /* According to the CL HyperSpec, two arrays are equal only if
4240 they are `eq', except for strings and bit-vectors. In
4241 Emacs, this works differently. We have to compare element
4243 hash
= sxhash_vector (obj
, depth
);
4244 else if (BOOL_VECTOR_P (obj
))
4245 hash
= sxhash_bool_vector (obj
);
4247 /* Others are `equal' if they are `eq', so let's take their
4253 hash
= sxhash_list (obj
, depth
);
4257 hash
= sxhash_float (XFLOAT_DATA (obj
));
4269 /***********************************************************************
4271 ***********************************************************************/
4274 DEFUN ("sxhash", Fsxhash
, Ssxhash
, 1, 1, 0,
4275 doc
: /* Compute a hash code for OBJ and return it as integer. */)
4278 EMACS_UINT hash
= sxhash (obj
, 0);
4279 return make_number (hash
);
4283 DEFUN ("make-hash-table", Fmake_hash_table
, Smake_hash_table
, 0, MANY
, 0,
4284 doc
: /* Create and return a new hash table.
4286 Arguments are specified as keyword/argument pairs. The following
4287 arguments are defined:
4289 :test TEST -- TEST must be a symbol that specifies how to compare
4290 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4291 `equal'. User-supplied test and hash functions can be specified via
4292 `define-hash-table-test'.
4294 :size SIZE -- A hint as to how many elements will be put in the table.
4297 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4298 fills up. If REHASH-SIZE is an integer, increase the size by that
4299 amount. If it is a float, it must be > 1.0, and the new size is the
4300 old size multiplied by that factor. Default is 1.5.
4302 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4303 Resize the hash table when the ratio (number of entries / table size)
4304 is greater than or equal to THRESHOLD. Default is 0.8.
4306 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4307 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4308 returned is a weak table. Key/value pairs are removed from a weak
4309 hash table when there are no non-weak references pointing to their
4310 key, value, one of key or value, or both key and value, depending on
4311 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4314 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4315 (ptrdiff_t nargs
, Lisp_Object
*args
)
4317 Lisp_Object test
, size
, rehash_size
, rehash_threshold
, weak
;
4318 struct hash_table_test testdesc
;
4322 /* The vector `used' is used to keep track of arguments that
4323 have been consumed. */
4324 used
= alloca (nargs
* sizeof *used
);
4325 memset (used
, 0, nargs
* sizeof *used
);
4327 /* See if there's a `:test TEST' among the arguments. */
4328 i
= get_key_arg (QCtest
, nargs
, args
, used
);
4329 test
= i
? args
[i
] : Qeql
;
4331 testdesc
= hashtest_eq
;
4332 else if (EQ (test
, Qeql
))
4333 testdesc
= hashtest_eql
;
4334 else if (EQ (test
, Qequal
))
4335 testdesc
= hashtest_equal
;
4338 /* See if it is a user-defined test. */
4341 prop
= Fget (test
, Qhash_table_test
);
4342 if (!CONSP (prop
) || !CONSP (XCDR (prop
)))
4343 signal_error ("Invalid hash table test", test
);
4344 testdesc
.name
= test
;
4345 testdesc
.user_cmp_function
= XCAR (prop
);
4346 testdesc
.user_hash_function
= XCAR (XCDR (prop
));
4347 testdesc
.hashfn
= hashfn_user_defined
;
4348 testdesc
.cmpfn
= cmpfn_user_defined
;
4351 /* See if there's a `:size SIZE' argument. */
4352 i
= get_key_arg (QCsize
, nargs
, args
, used
);
4353 size
= i
? args
[i
] : Qnil
;
4355 size
= make_number (DEFAULT_HASH_SIZE
);
4356 else if (!INTEGERP (size
) || XINT (size
) < 0)
4357 signal_error ("Invalid hash table size", size
);
4359 /* Look for `:rehash-size SIZE'. */
4360 i
= get_key_arg (QCrehash_size
, nargs
, args
, used
);
4361 rehash_size
= i
? args
[i
] : make_float (DEFAULT_REHASH_SIZE
);
4362 if (! ((INTEGERP (rehash_size
) && 0 < XINT (rehash_size
))
4363 || (FLOATP (rehash_size
) && 1 < XFLOAT_DATA (rehash_size
))))
4364 signal_error ("Invalid hash table rehash size", rehash_size
);
4366 /* Look for `:rehash-threshold THRESHOLD'. */
4367 i
= get_key_arg (QCrehash_threshold
, nargs
, args
, used
);
4368 rehash_threshold
= i
? args
[i
] : make_float (DEFAULT_REHASH_THRESHOLD
);
4369 if (! (FLOATP (rehash_threshold
)
4370 && 0 < XFLOAT_DATA (rehash_threshold
)
4371 && XFLOAT_DATA (rehash_threshold
) <= 1))
4372 signal_error ("Invalid hash table rehash threshold", rehash_threshold
);
4374 /* Look for `:weakness WEAK'. */
4375 i
= get_key_arg (QCweakness
, nargs
, args
, used
);
4376 weak
= i
? args
[i
] : Qnil
;
4378 weak
= Qkey_and_value
;
4381 && !EQ (weak
, Qvalue
)
4382 && !EQ (weak
, Qkey_or_value
)
4383 && !EQ (weak
, Qkey_and_value
))
4384 signal_error ("Invalid hash table weakness", weak
);
4386 /* Now, all args should have been used up, or there's a problem. */
4387 for (i
= 0; i
< nargs
; ++i
)
4389 signal_error ("Invalid argument list", args
[i
]);
4391 return make_hash_table (testdesc
, size
, rehash_size
, rehash_threshold
, weak
);
4395 DEFUN ("copy-hash-table", Fcopy_hash_table
, Scopy_hash_table
, 1, 1, 0,
4396 doc
: /* Return a copy of hash table TABLE. */)
4399 return copy_hash_table (check_hash_table (table
));
4403 DEFUN ("hash-table-count", Fhash_table_count
, Shash_table_count
, 1, 1, 0,
4404 doc
: /* Return the number of elements in TABLE. */)
4407 return make_number (check_hash_table (table
)->count
);
4411 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size
,
4412 Shash_table_rehash_size
, 1, 1, 0,
4413 doc
: /* Return the current rehash size of TABLE. */)
4416 return check_hash_table (table
)->rehash_size
;
4420 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold
,
4421 Shash_table_rehash_threshold
, 1, 1, 0,
4422 doc
: /* Return the current rehash threshold of TABLE. */)
4425 return check_hash_table (table
)->rehash_threshold
;
4429 DEFUN ("hash-table-size", Fhash_table_size
, Shash_table_size
, 1, 1, 0,
4430 doc
: /* Return the size of TABLE.
4431 The size can be used as an argument to `make-hash-table' to create
4432 a hash table than can hold as many elements as TABLE holds
4433 without need for resizing. */)
4436 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4437 return make_number (HASH_TABLE_SIZE (h
));
4441 DEFUN ("hash-table-test", Fhash_table_test
, Shash_table_test
, 1, 1, 0,
4442 doc
: /* Return the test TABLE uses. */)
4445 return check_hash_table (table
)->test
.name
;
4449 DEFUN ("hash-table-weakness", Fhash_table_weakness
, Shash_table_weakness
,
4451 doc
: /* Return the weakness of TABLE. */)
4454 return check_hash_table (table
)->weak
;
4458 DEFUN ("hash-table-p", Fhash_table_p
, Shash_table_p
, 1, 1, 0,
4459 doc
: /* Return t if OBJ is a Lisp hash table object. */)
4462 return HASH_TABLE_P (obj
) ? Qt
: Qnil
;
4466 DEFUN ("clrhash", Fclrhash
, Sclrhash
, 1, 1, 0,
4467 doc
: /* Clear hash table TABLE and return it. */)
4470 hash_clear (check_hash_table (table
));
4471 /* Be compatible with XEmacs. */
4476 DEFUN ("gethash", Fgethash
, Sgethash
, 2, 3, 0,
4477 doc
: /* Look up KEY in TABLE and return its associated value.
4478 If KEY is not found, return DFLT which defaults to nil. */)
4479 (Lisp_Object key
, Lisp_Object table
, Lisp_Object dflt
)
4481 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4482 ptrdiff_t i
= hash_lookup (h
, key
, NULL
);
4483 return i
>= 0 ? HASH_VALUE (h
, i
) : dflt
;
4487 DEFUN ("puthash", Fputhash
, Sputhash
, 3, 3, 0,
4488 doc
: /* Associate KEY with VALUE in hash table TABLE.
4489 If KEY is already present in table, replace its current value with
4490 VALUE. In any case, return VALUE. */)
4491 (Lisp_Object key
, Lisp_Object value
, Lisp_Object table
)
4493 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4497 i
= hash_lookup (h
, key
, &hash
);
4499 set_hash_value_slot (h
, i
, value
);
4501 hash_put (h
, key
, value
, hash
);
4507 DEFUN ("remhash", Fremhash
, Sremhash
, 2, 2, 0,
4508 doc
: /* Remove KEY from TABLE. */)
4509 (Lisp_Object key
, Lisp_Object table
)
4511 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4512 hash_remove_from_table (h
, key
);
4517 DEFUN ("maphash", Fmaphash
, Smaphash
, 2, 2, 0,
4518 doc
: /* Call FUNCTION for all entries in hash table TABLE.
4519 FUNCTION is called with two arguments, KEY and VALUE. */)
4520 (Lisp_Object function
, Lisp_Object table
)
4522 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4523 Lisp_Object args
[3];
4526 for (i
= 0; i
< HASH_TABLE_SIZE (h
); ++i
)
4527 if (!NILP (HASH_HASH (h
, i
)))
4530 args
[1] = HASH_KEY (h
, i
);
4531 args
[2] = HASH_VALUE (h
, i
);
4539 DEFUN ("define-hash-table-test", Fdefine_hash_table_test
,
4540 Sdefine_hash_table_test
, 3, 3, 0,
4541 doc
: /* Define a new hash table test with name NAME, a symbol.
4543 In hash tables created with NAME specified as test, use TEST to
4544 compare keys, and HASH for computing hash codes of keys.
4546 TEST must be a function taking two arguments and returning non-nil if
4547 both arguments are the same. HASH must be a function taking one
4548 argument and return an integer that is the hash code of the argument.
4549 Hash code computation should use the whole value range of integers,
4550 including negative integers. */)
4551 (Lisp_Object name
, Lisp_Object test
, Lisp_Object hash
)
4553 return Fput (name
, Qhash_table_test
, list2 (test
, hash
));
4558 /************************************************************************
4559 MD5, SHA-1, and SHA-2
4560 ************************************************************************/
4567 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4570 secure_hash (Lisp_Object algorithm
, Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object coding_system
, Lisp_Object noerror
, Lisp_Object binary
)
4574 EMACS_INT start_char
= 0, end_char
= 0;
4575 ptrdiff_t start_byte
, end_byte
;
4576 register EMACS_INT b
, e
;
4577 register struct buffer
*bp
;
4580 void *(*hash_func
) (const char *, size_t, void *);
4583 CHECK_SYMBOL (algorithm
);
4585 if (STRINGP (object
))
4587 if (NILP (coding_system
))
4589 /* Decide the coding-system to encode the data with. */
4591 if (STRING_MULTIBYTE (object
))
4592 /* use default, we can't guess correct value */
4593 coding_system
= preferred_coding_system ();
4595 coding_system
= Qraw_text
;
4598 if (NILP (Fcoding_system_p (coding_system
)))
4600 /* Invalid coding system. */
4602 if (!NILP (noerror
))
4603 coding_system
= Qraw_text
;
4605 xsignal1 (Qcoding_system_error
, coding_system
);
4608 if (STRING_MULTIBYTE (object
))
4609 object
= code_convert_string (object
, coding_system
, Qnil
, 1, 0, 1);
4611 size
= SCHARS (object
);
4615 CHECK_NUMBER (start
);
4617 start_char
= XINT (start
);
4629 end_char
= XINT (end
);
4635 if (!(0 <= start_char
&& start_char
<= end_char
&& end_char
<= size
))
4636 args_out_of_range_3 (object
, make_number (start_char
),
4637 make_number (end_char
));
4639 start_byte
= NILP (start
) ? 0 : string_char_to_byte (object
, start_char
);
4641 NILP (end
) ? SBYTES (object
) : string_char_to_byte (object
, end_char
);
4645 struct buffer
*prev
= current_buffer
;
4647 record_unwind_current_buffer ();
4649 CHECK_BUFFER (object
);
4651 bp
= XBUFFER (object
);
4652 set_buffer_internal (bp
);
4658 CHECK_NUMBER_COERCE_MARKER (start
);
4666 CHECK_NUMBER_COERCE_MARKER (end
);
4671 temp
= b
, b
= e
, e
= temp
;
4673 if (!(BEGV
<= b
&& e
<= ZV
))
4674 args_out_of_range (start
, end
);
4676 if (NILP (coding_system
))
4678 /* Decide the coding-system to encode the data with.
4679 See fileio.c:Fwrite-region */
4681 if (!NILP (Vcoding_system_for_write
))
4682 coding_system
= Vcoding_system_for_write
;
4685 bool force_raw_text
= 0;
4687 coding_system
= BVAR (XBUFFER (object
), buffer_file_coding_system
);
4688 if (NILP (coding_system
)
4689 || NILP (Flocal_variable_p (Qbuffer_file_coding_system
, Qnil
)))
4691 coding_system
= Qnil
;
4692 if (NILP (BVAR (current_buffer
, enable_multibyte_characters
)))
4696 if (NILP (coding_system
) && !NILP (Fbuffer_file_name (object
)))
4698 /* Check file-coding-system-alist. */
4699 Lisp_Object args
[4], val
;
4701 args
[0] = Qwrite_region
; args
[1] = start
; args
[2] = end
;
4702 args
[3] = Fbuffer_file_name (object
);
4703 val
= Ffind_operation_coding_system (4, args
);
4704 if (CONSP (val
) && !NILP (XCDR (val
)))
4705 coding_system
= XCDR (val
);
4708 if (NILP (coding_system
)
4709 && !NILP (BVAR (XBUFFER (object
), buffer_file_coding_system
)))
4711 /* If we still have not decided a coding system, use the
4712 default value of buffer-file-coding-system. */
4713 coding_system
= BVAR (XBUFFER (object
), buffer_file_coding_system
);
4717 && !NILP (Ffboundp (Vselect_safe_coding_system_function
)))
4718 /* Confirm that VAL can surely encode the current region. */
4719 coding_system
= call4 (Vselect_safe_coding_system_function
,
4720 make_number (b
), make_number (e
),
4721 coding_system
, Qnil
);
4724 coding_system
= Qraw_text
;
4727 if (NILP (Fcoding_system_p (coding_system
)))
4729 /* Invalid coding system. */
4731 if (!NILP (noerror
))
4732 coding_system
= Qraw_text
;
4734 xsignal1 (Qcoding_system_error
, coding_system
);
4738 object
= make_buffer_string (b
, e
, 0);
4739 set_buffer_internal (prev
);
4740 /* Discard the unwind protect for recovering the current
4744 if (STRING_MULTIBYTE (object
))
4745 object
= code_convert_string (object
, coding_system
, Qnil
, 1, 0, 0);
4747 end_byte
= SBYTES (object
);
4750 if (EQ (algorithm
, Qmd5
))
4752 digest_size
= MD5_DIGEST_SIZE
;
4753 hash_func
= md5_buffer
;
4755 else if (EQ (algorithm
, Qsha1
))
4757 digest_size
= SHA1_DIGEST_SIZE
;
4758 hash_func
= sha1_buffer
;
4760 else if (EQ (algorithm
, Qsha224
))
4762 digest_size
= SHA224_DIGEST_SIZE
;
4763 hash_func
= sha224_buffer
;
4765 else if (EQ (algorithm
, Qsha256
))
4767 digest_size
= SHA256_DIGEST_SIZE
;
4768 hash_func
= sha256_buffer
;
4770 else if (EQ (algorithm
, Qsha384
))
4772 digest_size
= SHA384_DIGEST_SIZE
;
4773 hash_func
= sha384_buffer
;
4775 else if (EQ (algorithm
, Qsha512
))
4777 digest_size
= SHA512_DIGEST_SIZE
;
4778 hash_func
= sha512_buffer
;
4781 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm
)));
4783 /* allocate 2 x digest_size so that it can be re-used to hold the
4785 digest
= make_uninit_string (digest_size
* 2);
4787 hash_func (SSDATA (object
) + start_byte
,
4788 end_byte
- start_byte
,
4793 unsigned char *p
= SDATA (digest
);
4794 for (i
= digest_size
- 1; i
>= 0; i
--)
4796 static char const hexdigit
[16] = "0123456789abcdef";
4798 p
[2 * i
] = hexdigit
[p_i
>> 4];
4799 p
[2 * i
+ 1] = hexdigit
[p_i
& 0xf];
4804 return make_unibyte_string (SSDATA (digest
), digest_size
);
4807 DEFUN ("md5", Fmd5
, Smd5
, 1, 5, 0,
4808 doc
: /* Return MD5 message digest of OBJECT, a buffer or string.
4810 A message digest is a cryptographic checksum of a document, and the
4811 algorithm to calculate it is defined in RFC 1321.
4813 The two optional arguments START and END are character positions
4814 specifying for which part of OBJECT the message digest should be
4815 computed. If nil or omitted, the digest is computed for the whole
4818 The MD5 message digest is computed from the result of encoding the
4819 text in a coding system, not directly from the internal Emacs form of
4820 the text. The optional fourth argument CODING-SYSTEM specifies which
4821 coding system to encode the text with. It should be the same coding
4822 system that you used or will use when actually writing the text into a
4825 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4826 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4827 system would be chosen by default for writing this text into a file.
4829 If OBJECT is a string, the most preferred coding system (see the
4830 command `prefer-coding-system') is used.
4832 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4833 guesswork fails. Normally, an error is signaled in such case. */)
4834 (Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object coding_system
, Lisp_Object noerror
)
4836 return secure_hash (Qmd5
, object
, start
, end
, coding_system
, noerror
, Qnil
);
4839 DEFUN ("secure-hash", Fsecure_hash
, Ssecure_hash
, 2, 5, 0,
4840 doc
: /* Return the secure hash of OBJECT, a buffer or string.
4841 ALGORITHM is a symbol specifying the hash to use:
4842 md5, sha1, sha224, sha256, sha384 or sha512.
4844 The two optional arguments START and END are positions specifying for
4845 which part of OBJECT to compute the hash. If nil or omitted, uses the
4848 If BINARY is non-nil, returns a string in binary form. */)
4849 (Lisp_Object algorithm
, Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object binary
)
4851 return secure_hash (algorithm
, object
, start
, end
, Qnil
, Qnil
, binary
);
4857 DEFSYM (Qmd5
, "md5");
4858 DEFSYM (Qsha1
, "sha1");
4859 DEFSYM (Qsha224
, "sha224");
4860 DEFSYM (Qsha256
, "sha256");
4861 DEFSYM (Qsha384
, "sha384");
4862 DEFSYM (Qsha512
, "sha512");
4864 /* Hash table stuff. */
4865 DEFSYM (Qhash_table_p
, "hash-table-p");
4867 DEFSYM (Qeql
, "eql");
4868 DEFSYM (Qequal
, "equal");
4869 DEFSYM (QCtest
, ":test");
4870 DEFSYM (QCsize
, ":size");
4871 DEFSYM (QCrehash_size
, ":rehash-size");
4872 DEFSYM (QCrehash_threshold
, ":rehash-threshold");
4873 DEFSYM (QCweakness
, ":weakness");
4874 DEFSYM (Qkey
, "key");
4875 DEFSYM (Qvalue
, "value");
4876 DEFSYM (Qhash_table_test
, "hash-table-test");
4877 DEFSYM (Qkey_or_value
, "key-or-value");
4878 DEFSYM (Qkey_and_value
, "key-and-value");
4881 defsubr (&Smake_hash_table
);
4882 defsubr (&Scopy_hash_table
);
4883 defsubr (&Shash_table_count
);
4884 defsubr (&Shash_table_rehash_size
);
4885 defsubr (&Shash_table_rehash_threshold
);
4886 defsubr (&Shash_table_size
);
4887 defsubr (&Shash_table_test
);
4888 defsubr (&Shash_table_weakness
);
4889 defsubr (&Shash_table_p
);
4890 defsubr (&Sclrhash
);
4891 defsubr (&Sgethash
);
4892 defsubr (&Sputhash
);
4893 defsubr (&Sremhash
);
4894 defsubr (&Smaphash
);
4895 defsubr (&Sdefine_hash_table_test
);
4897 DEFSYM (Qstring_lessp
, "string-lessp");
4898 DEFSYM (Qprovide
, "provide");
4899 DEFSYM (Qrequire
, "require");
4900 DEFSYM (Qyes_or_no_p_history
, "yes-or-no-p-history");
4901 DEFSYM (Qcursor_in_echo_area
, "cursor-in-echo-area");
4902 DEFSYM (Qwidget_type
, "widget-type");
4904 staticpro (&string_char_byte_cache_string
);
4905 string_char_byte_cache_string
= Qnil
;
4907 require_nesting_list
= Qnil
;
4908 staticpro (&require_nesting_list
);
4910 Fset (Qyes_or_no_p_history
, Qnil
);
4912 DEFVAR_LISP ("features", Vfeatures
,
4913 doc
: /* A list of symbols which are the features of the executing Emacs.
4914 Used by `featurep' and `require', and altered by `provide'. */);
4915 Vfeatures
= list1 (intern_c_string ("emacs"));
4916 DEFSYM (Qsubfeatures
, "subfeatures");
4917 DEFSYM (Qfuncall
, "funcall");
4919 #ifdef HAVE_LANGINFO_CODESET
4920 DEFSYM (Qcodeset
, "codeset");
4921 DEFSYM (Qdays
, "days");
4922 DEFSYM (Qmonths
, "months");
4923 DEFSYM (Qpaper
, "paper");
4924 #endif /* HAVE_LANGINFO_CODESET */
4926 DEFVAR_BOOL ("use-dialog-box", use_dialog_box
,
4927 doc
: /* Non-nil means mouse commands use dialog boxes to ask questions.
4928 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4929 invoked by mouse clicks and mouse menu items.
4931 On some platforms, file selection dialogs are also enabled if this is
4935 DEFVAR_BOOL ("use-file-dialog", use_file_dialog
,
4936 doc
: /* Non-nil means mouse commands use a file dialog to ask for files.
4937 This applies to commands from menus and tool bar buttons even when
4938 they are initiated from the keyboard. If `use-dialog-box' is nil,
4939 that disables the use of a file dialog, regardless of the value of
4941 use_file_dialog
= 1;
4943 defsubr (&Sidentity
);
4946 defsubr (&Ssafe_length
);
4947 defsubr (&Sstring_bytes
);
4948 defsubr (&Sstring_equal
);
4949 defsubr (&Scompare_strings
);
4950 defsubr (&Sstring_lessp
);
4953 defsubr (&Svconcat
);
4954 defsubr (&Scopy_sequence
);
4955 defsubr (&Sstring_make_multibyte
);
4956 defsubr (&Sstring_make_unibyte
);
4957 defsubr (&Sstring_as_multibyte
);
4958 defsubr (&Sstring_as_unibyte
);
4959 defsubr (&Sstring_to_multibyte
);
4960 defsubr (&Sstring_to_unibyte
);
4961 defsubr (&Scopy_alist
);
4962 defsubr (&Ssubstring
);
4963 defsubr (&Ssubstring_no_properties
);
4976 defsubr (&Snreverse
);
4977 defsubr (&Sreverse
);
4979 defsubr (&Splist_get
);
4981 defsubr (&Splist_put
);
4983 defsubr (&Slax_plist_get
);
4984 defsubr (&Slax_plist_put
);
4987 defsubr (&Sequal_including_properties
);
4988 defsubr (&Sfillarray
);
4989 defsubr (&Sclear_string
);
4993 defsubr (&Smapconcat
);
4994 defsubr (&Syes_or_no_p
);
4995 defsubr (&Sload_average
);
4996 defsubr (&Sfeaturep
);
4997 defsubr (&Srequire
);
4998 defsubr (&Sprovide
);
4999 defsubr (&Splist_member
);
5000 defsubr (&Swidget_put
);
5001 defsubr (&Swidget_get
);
5002 defsubr (&Swidget_apply
);
5003 defsubr (&Sbase64_encode_region
);
5004 defsubr (&Sbase64_decode_region
);
5005 defsubr (&Sbase64_encode_string
);
5006 defsubr (&Sbase64_decode_string
);
5008 defsubr (&Ssecure_hash
);
5009 defsubr (&Slocale_info
);
5011 hashtest_eq
.name
= Qeq
;
5012 hashtest_eq
.user_hash_function
= Qnil
;
5013 hashtest_eq
.user_cmp_function
= Qnil
;
5014 hashtest_eq
.cmpfn
= 0;
5015 hashtest_eq
.hashfn
= hashfn_eq
;
5017 hashtest_eql
.name
= Qeql
;
5018 hashtest_eql
.user_hash_function
= Qnil
;
5019 hashtest_eql
.user_cmp_function
= Qnil
;
5020 hashtest_eql
.cmpfn
= cmpfn_eql
;
5021 hashtest_eql
.hashfn
= hashfn_eql
;
5023 hashtest_equal
.name
= Qequal
;
5024 hashtest_equal
.user_hash_function
= Qnil
;
5025 hashtest_equal
.user_cmp_function
= Qnil
;
5026 hashtest_equal
.cmpfn
= cmpfn_equal
;
5027 hashtest_equal
.hashfn
= hashfn_equal
;