Allow talking to STARTTLS servers that have no greeting
[emacs.git] / src / fns.c
blob6f81635ab9d5e3fb29ff2b1f41e77ce84cef7799
1 /* Random utility Lisp functions.
3 Copyright (C) 1985-1987, 1993-1995, 1997-2013 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 #include <config.h>
22 #include <unistd.h>
23 #include <time.h>
25 #include <intprops.h>
27 #include "lisp.h"
28 #include "commands.h"
29 #include "character.h"
30 #include "coding.h"
31 #include "buffer.h"
32 #include "keyboard.h"
33 #include "keymap.h"
34 #include "intervals.h"
35 #include "frame.h"
36 #include "window.h"
37 #include "blockinput.h"
38 #ifdef HAVE_MENUS
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42 #endif /* HAVE_MENUS */
44 Lisp_Object Qstring_lessp;
45 static Lisp_Object Qprovide, Qrequire;
46 static Lisp_Object Qyes_or_no_p_history;
47 Lisp_Object Qcursor_in_echo_area;
48 static Lisp_Object Qwidget_type;
49 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
51 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
53 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool);
55 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
56 doc: /* Return the argument unchanged. */)
57 (Lisp_Object arg)
59 return arg;
62 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
63 doc: /* Return a pseudo-random number.
64 All integers representable in Lisp, i.e. between `most-negative-fixnum'
65 and `most-positive-fixnum', inclusive, are equally likely.
67 With positive integer LIMIT, return random number in interval [0,LIMIT).
68 With argument t, set the random number seed from the current time and pid.
69 With a string argument, set the seed based on the string's contents.
70 Other values of LIMIT are ignored.
72 See Info node `(elisp)Random Numbers' for more details. */)
73 (Lisp_Object limit)
75 EMACS_INT val;
77 if (EQ (limit, Qt))
78 init_random ();
79 else if (STRINGP (limit))
80 seed_random (SSDATA (limit), SBYTES (limit));
82 val = get_random ();
83 if (NATNUMP (limit) && XFASTINT (limit) != 0)
84 val %= XFASTINT (limit);
85 return make_number (val);
88 /* Heuristic on how many iterations of a tight loop can be safely done
89 before it's time to do a QUIT. This must be a power of 2. */
90 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
92 /* Random data-structure functions. */
94 static void
95 CHECK_LIST_END (Lisp_Object x, Lisp_Object y)
97 CHECK_TYPE (NILP (x), Qlistp, y);
100 DEFUN ("length", Flength, Slength, 1, 1, 0,
101 doc: /* Return the length of vector, list or string SEQUENCE.
102 A byte-code function object is also allowed.
103 If the string contains multibyte characters, this is not necessarily
104 the number of bytes in the string; it is the number of characters.
105 To get the number of bytes, use `string-bytes'. */)
106 (register Lisp_Object sequence)
108 register Lisp_Object val;
110 if (STRINGP (sequence))
111 XSETFASTINT (val, SCHARS (sequence));
112 else if (VECTORP (sequence))
113 XSETFASTINT (val, ASIZE (sequence));
114 else if (CHAR_TABLE_P (sequence))
115 XSETFASTINT (val, MAX_CHAR);
116 else if (BOOL_VECTOR_P (sequence))
117 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
118 else if (COMPILEDP (sequence))
119 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
120 else if (CONSP (sequence))
122 EMACS_INT i = 0;
126 ++i;
127 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
129 if (MOST_POSITIVE_FIXNUM < i)
130 error ("List too long");
131 QUIT;
133 sequence = XCDR (sequence);
135 while (CONSP (sequence));
137 CHECK_LIST_END (sequence, sequence);
139 val = make_number (i);
141 else if (NILP (sequence))
142 XSETFASTINT (val, 0);
143 else
144 wrong_type_argument (Qsequencep, sequence);
146 return val;
149 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
150 doc: /* Return the length of a list, but avoid error or infinite loop.
151 This function never gets an error. If LIST is not really a list,
152 it returns 0. If LIST is circular, it returns a finite value
153 which is at least the number of distinct elements. */)
154 (Lisp_Object list)
156 Lisp_Object tail, halftail;
157 double hilen = 0;
158 uintmax_t lolen = 1;
160 if (! CONSP (list))
161 return make_number (0);
163 /* halftail is used to detect circular lists. */
164 for (tail = halftail = list; ; )
166 tail = XCDR (tail);
167 if (! CONSP (tail))
168 break;
169 if (EQ (tail, halftail))
170 break;
171 lolen++;
172 if ((lolen & 1) == 0)
174 halftail = XCDR (halftail);
175 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
177 QUIT;
178 if (lolen == 0)
179 hilen += UINTMAX_MAX + 1.0;
184 /* If the length does not fit into a fixnum, return a float.
185 On all known practical machines this returns an upper bound on
186 the true length. */
187 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
190 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
191 doc: /* Return the number of bytes in STRING.
192 If STRING is multibyte, this may be greater than the length of STRING. */)
193 (Lisp_Object string)
195 CHECK_STRING (string);
196 return make_number (SBYTES (string));
199 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
200 doc: /* Return t if two strings have identical contents.
201 Case is significant, but text properties are ignored.
202 Symbols are also allowed; their print names are used instead. */)
203 (register Lisp_Object s1, Lisp_Object s2)
205 if (SYMBOLP (s1))
206 s1 = SYMBOL_NAME (s1);
207 if (SYMBOLP (s2))
208 s2 = SYMBOL_NAME (s2);
209 CHECK_STRING (s1);
210 CHECK_STRING (s2);
212 if (SCHARS (s1) != SCHARS (s2)
213 || SBYTES (s1) != SBYTES (s2)
214 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
215 return Qnil;
216 return Qt;
219 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
220 doc: /* Compare the contents of two strings, converting to multibyte if needed.
221 The arguments START1, END1, START2, and END2, if non-nil, are
222 positions specifying which parts of STR1 or STR2 to compare. In
223 string STR1, compare the part between START1 (inclusive) and END1
224 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
225 the string; if END1 is nil, it defaults to the length of the string.
226 Likewise, in string STR2, compare the part between START2 and END2.
228 The strings are compared by the numeric values of their characters.
229 For instance, STR1 is "less than" STR2 if its first differing
230 character has a smaller numeric value. If IGNORE-CASE is non-nil,
231 characters are converted to lower-case before comparing them. Unibyte
232 strings are converted to multibyte for comparison.
234 The value is t if the strings (or specified portions) match.
235 If string STR1 is less, the value is a negative number N;
236 - 1 - N is the number of characters that match at the beginning.
237 If string STR1 is greater, the value is a positive number N;
238 N - 1 is the number of characters that match at the beginning. */)
239 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
241 register ptrdiff_t end1_char, end2_char;
242 register ptrdiff_t i1, i1_byte, i2, i2_byte;
244 CHECK_STRING (str1);
245 CHECK_STRING (str2);
246 if (NILP (start1))
247 start1 = make_number (0);
248 if (NILP (start2))
249 start2 = make_number (0);
250 CHECK_NATNUM (start1);
251 CHECK_NATNUM (start2);
252 if (! NILP (end1))
253 CHECK_NATNUM (end1);
254 if (! NILP (end2))
255 CHECK_NATNUM (end2);
257 end1_char = SCHARS (str1);
258 if (! NILP (end1) && end1_char > XINT (end1))
259 end1_char = XINT (end1);
260 if (end1_char < XINT (start1))
261 args_out_of_range (str1, start1);
263 end2_char = SCHARS (str2);
264 if (! NILP (end2) && end2_char > XINT (end2))
265 end2_char = XINT (end2);
266 if (end2_char < XINT (start2))
267 args_out_of_range (str2, start2);
269 i1 = XINT (start1);
270 i2 = XINT (start2);
272 i1_byte = string_char_to_byte (str1, i1);
273 i2_byte = string_char_to_byte (str2, i2);
275 while (i1 < end1_char && i2 < end2_char)
277 /* When we find a mismatch, we must compare the
278 characters, not just the bytes. */
279 int c1, c2;
281 if (STRING_MULTIBYTE (str1))
282 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
283 else
285 c1 = SREF (str1, i1++);
286 MAKE_CHAR_MULTIBYTE (c1);
289 if (STRING_MULTIBYTE (str2))
290 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
291 else
293 c2 = SREF (str2, i2++);
294 MAKE_CHAR_MULTIBYTE (c2);
297 if (c1 == c2)
298 continue;
300 if (! NILP (ignore_case))
302 Lisp_Object tem;
304 tem = Fupcase (make_number (c1));
305 c1 = XINT (tem);
306 tem = Fupcase (make_number (c2));
307 c2 = XINT (tem);
310 if (c1 == c2)
311 continue;
313 /* Note that I1 has already been incremented
314 past the character that we are comparing;
315 hence we don't add or subtract 1 here. */
316 if (c1 < c2)
317 return make_number (- i1 + XINT (start1));
318 else
319 return make_number (i1 - XINT (start1));
322 if (i1 < end1_char)
323 return make_number (i1 - XINT (start1) + 1);
324 if (i2 < end2_char)
325 return make_number (- i1 + XINT (start1) - 1);
327 return Qt;
330 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
331 doc: /* Return t if first arg string is less than second in lexicographic order.
332 Case is significant.
333 Symbols are also allowed; their print names are used instead. */)
334 (register Lisp_Object s1, Lisp_Object s2)
336 register ptrdiff_t end;
337 register ptrdiff_t i1, i1_byte, i2, i2_byte;
339 if (SYMBOLP (s1))
340 s1 = SYMBOL_NAME (s1);
341 if (SYMBOLP (s2))
342 s2 = SYMBOL_NAME (s2);
343 CHECK_STRING (s1);
344 CHECK_STRING (s2);
346 i1 = i1_byte = i2 = i2_byte = 0;
348 end = SCHARS (s1);
349 if (end > SCHARS (s2))
350 end = SCHARS (s2);
352 while (i1 < end)
354 /* When we find a mismatch, we must compare the
355 characters, not just the bytes. */
356 int c1, c2;
358 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
359 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
361 if (c1 != c2)
362 return c1 < c2 ? Qt : Qnil;
364 return i1 < SCHARS (s2) ? Qt : Qnil;
367 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
368 enum Lisp_Type target_type, bool last_special);
370 /* ARGSUSED */
371 Lisp_Object
372 concat2 (Lisp_Object s1, Lisp_Object s2)
374 Lisp_Object args[2];
375 args[0] = s1;
376 args[1] = s2;
377 return concat (2, args, Lisp_String, 0);
380 /* ARGSUSED */
381 Lisp_Object
382 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
384 Lisp_Object args[3];
385 args[0] = s1;
386 args[1] = s2;
387 args[2] = s3;
388 return concat (3, args, Lisp_String, 0);
391 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
392 doc: /* Concatenate all the arguments and make the result a list.
393 The result is a list whose elements are the elements of all the arguments.
394 Each argument may be a list, vector or string.
395 The last argument is not copied, just used as the tail of the new list.
396 usage: (append &rest SEQUENCES) */)
397 (ptrdiff_t nargs, Lisp_Object *args)
399 return concat (nargs, args, Lisp_Cons, 1);
402 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
403 doc: /* Concatenate all the arguments and make the result a string.
404 The result is a string whose elements are the elements of all the arguments.
405 Each argument may be a string or a list or vector of characters (integers).
406 usage: (concat &rest SEQUENCES) */)
407 (ptrdiff_t nargs, Lisp_Object *args)
409 return concat (nargs, args, Lisp_String, 0);
412 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
413 doc: /* Concatenate all the arguments and make the result a vector.
414 The result is a vector whose elements are the elements of all the arguments.
415 Each argument may be a list, vector or string.
416 usage: (vconcat &rest SEQUENCES) */)
417 (ptrdiff_t nargs, Lisp_Object *args)
419 return concat (nargs, args, Lisp_Vectorlike, 0);
423 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
424 doc: /* Return a copy of a list, vector, string or char-table.
425 The elements of a list or vector are not copied; they are shared
426 with the original. */)
427 (Lisp_Object arg)
429 if (NILP (arg)) return arg;
431 if (CHAR_TABLE_P (arg))
433 return copy_char_table (arg);
436 if (BOOL_VECTOR_P (arg))
438 Lisp_Object val;
439 ptrdiff_t size_in_chars
440 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
441 / BOOL_VECTOR_BITS_PER_CHAR);
443 val = Fmake_bool_vector (Flength (arg), Qnil);
444 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
445 size_in_chars);
446 return val;
449 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
450 wrong_type_argument (Qsequencep, arg);
452 return concat (1, &arg, XTYPE (arg), 0);
455 /* This structure holds information of an argument of `concat' that is
456 a string and has text properties to be copied. */
457 struct textprop_rec
459 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
460 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
461 ptrdiff_t to; /* refer to VAL (the target string) */
464 static Lisp_Object
465 concat (ptrdiff_t nargs, Lisp_Object *args,
466 enum Lisp_Type target_type, bool last_special)
468 Lisp_Object val;
469 Lisp_Object tail;
470 Lisp_Object this;
471 ptrdiff_t toindex;
472 ptrdiff_t toindex_byte = 0;
473 EMACS_INT result_len;
474 EMACS_INT result_len_byte;
475 ptrdiff_t argnum;
476 Lisp_Object last_tail;
477 Lisp_Object prev;
478 bool some_multibyte;
479 /* When we make a multibyte string, we can't copy text properties
480 while concatenating each string because the length of resulting
481 string can't be decided until we finish the whole concatenation.
482 So, we record strings that have text properties to be copied
483 here, and copy the text properties after the concatenation. */
484 struct textprop_rec *textprops = NULL;
485 /* Number of elements in textprops. */
486 ptrdiff_t num_textprops = 0;
487 USE_SAFE_ALLOCA;
489 tail = Qnil;
491 /* In append, the last arg isn't treated like the others */
492 if (last_special && nargs > 0)
494 nargs--;
495 last_tail = args[nargs];
497 else
498 last_tail = Qnil;
500 /* Check each argument. */
501 for (argnum = 0; argnum < nargs; argnum++)
503 this = args[argnum];
504 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
505 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
506 wrong_type_argument (Qsequencep, this);
509 /* Compute total length in chars of arguments in RESULT_LEN.
510 If desired output is a string, also compute length in bytes
511 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
512 whether the result should be a multibyte string. */
513 result_len_byte = 0;
514 result_len = 0;
515 some_multibyte = 0;
516 for (argnum = 0; argnum < nargs; argnum++)
518 EMACS_INT len;
519 this = args[argnum];
520 len = XFASTINT (Flength (this));
521 if (target_type == Lisp_String)
523 /* We must count the number of bytes needed in the string
524 as well as the number of characters. */
525 ptrdiff_t i;
526 Lisp_Object ch;
527 int c;
528 ptrdiff_t this_len_byte;
530 if (VECTORP (this) || COMPILEDP (this))
531 for (i = 0; i < len; i++)
533 ch = AREF (this, i);
534 CHECK_CHARACTER (ch);
535 c = XFASTINT (ch);
536 this_len_byte = CHAR_BYTES (c);
537 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
538 string_overflow ();
539 result_len_byte += this_len_byte;
540 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
541 some_multibyte = 1;
543 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
544 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
545 else if (CONSP (this))
546 for (; CONSP (this); this = XCDR (this))
548 ch = XCAR (this);
549 CHECK_CHARACTER (ch);
550 c = XFASTINT (ch);
551 this_len_byte = CHAR_BYTES (c);
552 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
553 string_overflow ();
554 result_len_byte += this_len_byte;
555 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
556 some_multibyte = 1;
558 else if (STRINGP (this))
560 if (STRING_MULTIBYTE (this))
562 some_multibyte = 1;
563 this_len_byte = SBYTES (this);
565 else
566 this_len_byte = count_size_as_multibyte (SDATA (this),
567 SCHARS (this));
568 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
569 string_overflow ();
570 result_len_byte += this_len_byte;
574 result_len += len;
575 if (MOST_POSITIVE_FIXNUM < result_len)
576 memory_full (SIZE_MAX);
579 if (! some_multibyte)
580 result_len_byte = result_len;
582 /* Create the output object. */
583 if (target_type == Lisp_Cons)
584 val = Fmake_list (make_number (result_len), Qnil);
585 else if (target_type == Lisp_Vectorlike)
586 val = Fmake_vector (make_number (result_len), Qnil);
587 else if (some_multibyte)
588 val = make_uninit_multibyte_string (result_len, result_len_byte);
589 else
590 val = make_uninit_string (result_len);
592 /* In `append', if all but last arg are nil, return last arg. */
593 if (target_type == Lisp_Cons && EQ (val, Qnil))
594 return last_tail;
596 /* Copy the contents of the args into the result. */
597 if (CONSP (val))
598 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
599 else
600 toindex = 0, toindex_byte = 0;
602 prev = Qnil;
603 if (STRINGP (val))
604 SAFE_NALLOCA (textprops, 1, nargs);
606 for (argnum = 0; argnum < nargs; argnum++)
608 Lisp_Object thislen;
609 ptrdiff_t thisleni = 0;
610 register ptrdiff_t thisindex = 0;
611 register ptrdiff_t thisindex_byte = 0;
613 this = args[argnum];
614 if (!CONSP (this))
615 thislen = Flength (this), thisleni = XINT (thislen);
617 /* Between strings of the same kind, copy fast. */
618 if (STRINGP (this) && STRINGP (val)
619 && STRING_MULTIBYTE (this) == some_multibyte)
621 ptrdiff_t thislen_byte = SBYTES (this);
623 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
624 if (string_intervals (this))
626 textprops[num_textprops].argnum = argnum;
627 textprops[num_textprops].from = 0;
628 textprops[num_textprops++].to = toindex;
630 toindex_byte += thislen_byte;
631 toindex += thisleni;
633 /* Copy a single-byte string to a multibyte string. */
634 else if (STRINGP (this) && STRINGP (val))
636 if (string_intervals (this))
638 textprops[num_textprops].argnum = argnum;
639 textprops[num_textprops].from = 0;
640 textprops[num_textprops++].to = toindex;
642 toindex_byte += copy_text (SDATA (this),
643 SDATA (val) + toindex_byte,
644 SCHARS (this), 0, 1);
645 toindex += thisleni;
647 else
648 /* Copy element by element. */
649 while (1)
651 register Lisp_Object elt;
653 /* Fetch next element of `this' arg into `elt', or break if
654 `this' is exhausted. */
655 if (NILP (this)) break;
656 if (CONSP (this))
657 elt = XCAR (this), this = XCDR (this);
658 else if (thisindex >= thisleni)
659 break;
660 else if (STRINGP (this))
662 int c;
663 if (STRING_MULTIBYTE (this))
664 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
665 thisindex,
666 thisindex_byte);
667 else
669 c = SREF (this, thisindex); thisindex++;
670 if (some_multibyte && !ASCII_CHAR_P (c))
671 c = BYTE8_TO_CHAR (c);
673 XSETFASTINT (elt, c);
675 else if (BOOL_VECTOR_P (this))
677 int byte;
678 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
679 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
680 elt = Qt;
681 else
682 elt = Qnil;
683 thisindex++;
685 else
687 elt = AREF (this, thisindex);
688 thisindex++;
691 /* Store this element into the result. */
692 if (toindex < 0)
694 XSETCAR (tail, elt);
695 prev = tail;
696 tail = XCDR (tail);
698 else if (VECTORP (val))
700 ASET (val, toindex, elt);
701 toindex++;
703 else
705 int c;
706 CHECK_CHARACTER (elt);
707 c = XFASTINT (elt);
708 if (some_multibyte)
709 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
710 else
711 SSET (val, toindex_byte++, c);
712 toindex++;
716 if (!NILP (prev))
717 XSETCDR (prev, last_tail);
719 if (num_textprops > 0)
721 Lisp_Object props;
722 ptrdiff_t last_to_end = -1;
724 for (argnum = 0; argnum < num_textprops; argnum++)
726 this = args[textprops[argnum].argnum];
727 props = text_property_list (this,
728 make_number (0),
729 make_number (SCHARS (this)),
730 Qnil);
731 /* If successive arguments have properties, be sure that the
732 value of `composition' property be the copy. */
733 if (last_to_end == textprops[argnum].to)
734 make_composition_value_copy (props);
735 add_text_properties_from_list (val, props,
736 make_number (textprops[argnum].to));
737 last_to_end = textprops[argnum].to + SCHARS (this);
741 SAFE_FREE ();
742 return val;
745 static Lisp_Object string_char_byte_cache_string;
746 static ptrdiff_t string_char_byte_cache_charpos;
747 static ptrdiff_t string_char_byte_cache_bytepos;
749 void
750 clear_string_char_byte_cache (void)
752 string_char_byte_cache_string = Qnil;
755 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
757 ptrdiff_t
758 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
760 ptrdiff_t i_byte;
761 ptrdiff_t best_below, best_below_byte;
762 ptrdiff_t best_above, best_above_byte;
764 best_below = best_below_byte = 0;
765 best_above = SCHARS (string);
766 best_above_byte = SBYTES (string);
767 if (best_above == best_above_byte)
768 return char_index;
770 if (EQ (string, string_char_byte_cache_string))
772 if (string_char_byte_cache_charpos < char_index)
774 best_below = string_char_byte_cache_charpos;
775 best_below_byte = string_char_byte_cache_bytepos;
777 else
779 best_above = string_char_byte_cache_charpos;
780 best_above_byte = string_char_byte_cache_bytepos;
784 if (char_index - best_below < best_above - char_index)
786 unsigned char *p = SDATA (string) + best_below_byte;
788 while (best_below < char_index)
790 p += BYTES_BY_CHAR_HEAD (*p);
791 best_below++;
793 i_byte = p - SDATA (string);
795 else
797 unsigned char *p = SDATA (string) + best_above_byte;
799 while (best_above > char_index)
801 p--;
802 while (!CHAR_HEAD_P (*p)) p--;
803 best_above--;
805 i_byte = p - SDATA (string);
808 string_char_byte_cache_bytepos = i_byte;
809 string_char_byte_cache_charpos = char_index;
810 string_char_byte_cache_string = string;
812 return i_byte;
815 /* Return the character index corresponding to BYTE_INDEX in STRING. */
817 ptrdiff_t
818 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
820 ptrdiff_t i, i_byte;
821 ptrdiff_t best_below, best_below_byte;
822 ptrdiff_t best_above, best_above_byte;
824 best_below = best_below_byte = 0;
825 best_above = SCHARS (string);
826 best_above_byte = SBYTES (string);
827 if (best_above == best_above_byte)
828 return byte_index;
830 if (EQ (string, string_char_byte_cache_string))
832 if (string_char_byte_cache_bytepos < byte_index)
834 best_below = string_char_byte_cache_charpos;
835 best_below_byte = string_char_byte_cache_bytepos;
837 else
839 best_above = string_char_byte_cache_charpos;
840 best_above_byte = string_char_byte_cache_bytepos;
844 if (byte_index - best_below_byte < best_above_byte - byte_index)
846 unsigned char *p = SDATA (string) + best_below_byte;
847 unsigned char *pend = SDATA (string) + byte_index;
849 while (p < pend)
851 p += BYTES_BY_CHAR_HEAD (*p);
852 best_below++;
854 i = best_below;
855 i_byte = p - SDATA (string);
857 else
859 unsigned char *p = SDATA (string) + best_above_byte;
860 unsigned char *pbeg = SDATA (string) + byte_index;
862 while (p > pbeg)
864 p--;
865 while (!CHAR_HEAD_P (*p)) p--;
866 best_above--;
868 i = best_above;
869 i_byte = p - SDATA (string);
872 string_char_byte_cache_bytepos = i_byte;
873 string_char_byte_cache_charpos = i;
874 string_char_byte_cache_string = string;
876 return i;
879 /* Convert STRING to a multibyte string. */
881 static Lisp_Object
882 string_make_multibyte (Lisp_Object string)
884 unsigned char *buf;
885 ptrdiff_t nbytes;
886 Lisp_Object ret;
887 USE_SAFE_ALLOCA;
889 if (STRING_MULTIBYTE (string))
890 return string;
892 nbytes = count_size_as_multibyte (SDATA (string),
893 SCHARS (string));
894 /* If all the chars are ASCII, they won't need any more bytes
895 once converted. In that case, we can return STRING itself. */
896 if (nbytes == SBYTES (string))
897 return string;
899 buf = SAFE_ALLOCA (nbytes);
900 copy_text (SDATA (string), buf, SBYTES (string),
901 0, 1);
903 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
904 SAFE_FREE ();
906 return ret;
910 /* Convert STRING (if unibyte) to a multibyte string without changing
911 the number of characters. Characters 0200 trough 0237 are
912 converted to eight-bit characters. */
914 Lisp_Object
915 string_to_multibyte (Lisp_Object string)
917 unsigned char *buf;
918 ptrdiff_t nbytes;
919 Lisp_Object ret;
920 USE_SAFE_ALLOCA;
922 if (STRING_MULTIBYTE (string))
923 return string;
925 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
926 /* If all the chars are ASCII, they won't need any more bytes once
927 converted. */
928 if (nbytes == SBYTES (string))
929 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
931 buf = SAFE_ALLOCA (nbytes);
932 memcpy (buf, SDATA (string), SBYTES (string));
933 str_to_multibyte (buf, nbytes, SBYTES (string));
935 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
936 SAFE_FREE ();
938 return ret;
942 /* Convert STRING to a single-byte string. */
944 Lisp_Object
945 string_make_unibyte (Lisp_Object string)
947 ptrdiff_t nchars;
948 unsigned char *buf;
949 Lisp_Object ret;
950 USE_SAFE_ALLOCA;
952 if (! STRING_MULTIBYTE (string))
953 return string;
955 nchars = SCHARS (string);
957 buf = SAFE_ALLOCA (nchars);
958 copy_text (SDATA (string), buf, SBYTES (string),
959 1, 0);
961 ret = make_unibyte_string ((char *) buf, nchars);
962 SAFE_FREE ();
964 return ret;
967 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
968 1, 1, 0,
969 doc: /* Return the multibyte equivalent of STRING.
970 If STRING is unibyte and contains non-ASCII characters, the function
971 `unibyte-char-to-multibyte' is used to convert each unibyte character
972 to a multibyte character. In this case, the returned string is a
973 newly created string with no text properties. If STRING is multibyte
974 or entirely ASCII, it is returned unchanged. In particular, when
975 STRING is unibyte and entirely ASCII, the returned string is unibyte.
976 \(When the characters are all ASCII, Emacs primitives will treat the
977 string the same way whether it is unibyte or multibyte.) */)
978 (Lisp_Object string)
980 CHECK_STRING (string);
982 return string_make_multibyte (string);
985 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
986 1, 1, 0,
987 doc: /* Return the unibyte equivalent of STRING.
988 Multibyte character codes are converted to unibyte according to
989 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
990 If the lookup in the translation table fails, this function takes just
991 the low 8 bits of each character. */)
992 (Lisp_Object string)
994 CHECK_STRING (string);
996 return string_make_unibyte (string);
999 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1000 1, 1, 0,
1001 doc: /* Return a unibyte string with the same individual bytes as STRING.
1002 If STRING is unibyte, the result is STRING itself.
1003 Otherwise it is a newly created string, with no text properties.
1004 If STRING is multibyte and contains a character of charset
1005 `eight-bit', it is converted to the corresponding single byte. */)
1006 (Lisp_Object string)
1008 CHECK_STRING (string);
1010 if (STRING_MULTIBYTE (string))
1012 ptrdiff_t bytes = SBYTES (string);
1013 unsigned char *str = xmalloc (bytes);
1015 memcpy (str, SDATA (string), bytes);
1016 bytes = str_as_unibyte (str, bytes);
1017 string = make_unibyte_string ((char *) str, bytes);
1018 xfree (str);
1020 return string;
1023 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1024 1, 1, 0,
1025 doc: /* Return a multibyte string with the same individual bytes as STRING.
1026 If STRING is multibyte, the result is STRING itself.
1027 Otherwise it is a newly created string, with no text properties.
1029 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1030 part of a correct utf-8 sequence), it is converted to the corresponding
1031 multibyte character of charset `eight-bit'.
1032 See also `string-to-multibyte'.
1034 Beware, this often doesn't really do what you think it does.
1035 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1036 If you're not sure, whether to use `string-as-multibyte' or
1037 `string-to-multibyte', use `string-to-multibyte'. */)
1038 (Lisp_Object string)
1040 CHECK_STRING (string);
1042 if (! STRING_MULTIBYTE (string))
1044 Lisp_Object new_string;
1045 ptrdiff_t nchars, nbytes;
1047 parse_str_as_multibyte (SDATA (string),
1048 SBYTES (string),
1049 &nchars, &nbytes);
1050 new_string = make_uninit_multibyte_string (nchars, nbytes);
1051 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1052 if (nbytes != SBYTES (string))
1053 str_as_multibyte (SDATA (new_string), nbytes,
1054 SBYTES (string), NULL);
1055 string = new_string;
1056 set_string_intervals (string, NULL);
1058 return string;
1061 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1062 1, 1, 0,
1063 doc: /* Return a multibyte string with the same individual chars as STRING.
1064 If STRING is multibyte, the result is STRING itself.
1065 Otherwise it is a newly created string, with no text properties.
1067 If STRING is unibyte and contains an 8-bit byte, it is converted to
1068 the corresponding multibyte character of charset `eight-bit'.
1070 This differs from `string-as-multibyte' by converting each byte of a correct
1071 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1072 correct sequence. */)
1073 (Lisp_Object string)
1075 CHECK_STRING (string);
1077 return string_to_multibyte (string);
1080 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1081 1, 1, 0,
1082 doc: /* Return a unibyte string with the same individual chars as STRING.
1083 If STRING is unibyte, the result is STRING itself.
1084 Otherwise it is a newly created string, with no text properties,
1085 where each `eight-bit' character is converted to the corresponding byte.
1086 If STRING contains a non-ASCII, non-`eight-bit' character,
1087 an error is signaled. */)
1088 (Lisp_Object string)
1090 CHECK_STRING (string);
1092 if (STRING_MULTIBYTE (string))
1094 ptrdiff_t chars = SCHARS (string);
1095 unsigned char *str = xmalloc (chars);
1096 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1098 if (converted < chars)
1099 error ("Can't convert the %"pD"dth character to unibyte", converted);
1100 string = make_unibyte_string ((char *) str, chars);
1101 xfree (str);
1103 return string;
1107 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1108 doc: /* Return a copy of ALIST.
1109 This is an alist which represents the same mapping from objects to objects,
1110 but does not share the alist structure with ALIST.
1111 The objects mapped (cars and cdrs of elements of the alist)
1112 are shared, however.
1113 Elements of ALIST that are not conses are also shared. */)
1114 (Lisp_Object alist)
1116 register Lisp_Object tem;
1118 CHECK_LIST (alist);
1119 if (NILP (alist))
1120 return alist;
1121 alist = concat (1, &alist, Lisp_Cons, 0);
1122 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1124 register Lisp_Object car;
1125 car = XCAR (tem);
1127 if (CONSP (car))
1128 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1130 return alist;
1133 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1134 doc: /* Return a new string whose contents are a substring of STRING.
1135 The returned string consists of the characters between index FROM
1136 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1137 zero-indexed: 0 means the first character of STRING. Negative values
1138 are counted from the end of STRING. If TO is nil, the substring runs
1139 to the end of STRING.
1141 The STRING argument may also be a vector. In that case, the return
1142 value is a new vector that contains the elements between index FROM
1143 \(inclusive) and index TO (exclusive) of that vector argument. */)
1144 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1146 Lisp_Object res;
1147 ptrdiff_t size;
1148 EMACS_INT from_char, to_char;
1150 CHECK_VECTOR_OR_STRING (string);
1151 CHECK_NUMBER (from);
1153 if (STRINGP (string))
1154 size = SCHARS (string);
1155 else
1156 size = ASIZE (string);
1158 if (NILP (to))
1159 to_char = size;
1160 else
1162 CHECK_NUMBER (to);
1164 to_char = XINT (to);
1165 if (to_char < 0)
1166 to_char += size;
1169 from_char = XINT (from);
1170 if (from_char < 0)
1171 from_char += size;
1172 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1173 args_out_of_range_3 (string, make_number (from_char),
1174 make_number (to_char));
1176 if (STRINGP (string))
1178 ptrdiff_t to_byte =
1179 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1180 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1181 res = make_specified_string (SSDATA (string) + from_byte,
1182 to_char - from_char, to_byte - from_byte,
1183 STRING_MULTIBYTE (string));
1184 copy_text_properties (make_number (from_char), make_number (to_char),
1185 string, make_number (0), res, Qnil);
1187 else
1188 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1190 return res;
1194 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1195 doc: /* Return a substring of STRING, without text properties.
1196 It starts at index FROM and ends before TO.
1197 TO may be nil or omitted; then the substring runs to the end of STRING.
1198 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1199 If FROM or TO is negative, it counts from the end.
1201 With one argument, just copy STRING without its properties. */)
1202 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1204 ptrdiff_t size;
1205 EMACS_INT from_char, to_char;
1206 ptrdiff_t from_byte, to_byte;
1208 CHECK_STRING (string);
1210 size = SCHARS (string);
1212 if (NILP (from))
1213 from_char = 0;
1214 else
1216 CHECK_NUMBER (from);
1217 from_char = XINT (from);
1218 if (from_char < 0)
1219 from_char += size;
1222 if (NILP (to))
1223 to_char = size;
1224 else
1226 CHECK_NUMBER (to);
1227 to_char = XINT (to);
1228 if (to_char < 0)
1229 to_char += size;
1232 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1233 args_out_of_range_3 (string, make_number (from_char),
1234 make_number (to_char));
1236 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1237 to_byte =
1238 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1239 return make_specified_string (SSDATA (string) + from_byte,
1240 to_char - from_char, to_byte - from_byte,
1241 STRING_MULTIBYTE (string));
1244 /* Extract a substring of STRING, giving start and end positions
1245 both in characters and in bytes. */
1247 Lisp_Object
1248 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1249 ptrdiff_t to, ptrdiff_t to_byte)
1251 Lisp_Object res;
1252 ptrdiff_t size;
1254 CHECK_VECTOR_OR_STRING (string);
1256 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1258 if (!(0 <= from && from <= to && to <= size))
1259 args_out_of_range_3 (string, make_number (from), make_number (to));
1261 if (STRINGP (string))
1263 res = make_specified_string (SSDATA (string) + from_byte,
1264 to - from, to_byte - from_byte,
1265 STRING_MULTIBYTE (string));
1266 copy_text_properties (make_number (from), make_number (to),
1267 string, make_number (0), res, Qnil);
1269 else
1270 res = Fvector (to - from, aref_addr (string, from));
1272 return res;
1275 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1276 doc: /* Take cdr N times on LIST, return the result. */)
1277 (Lisp_Object n, Lisp_Object list)
1279 EMACS_INT i, num;
1280 CHECK_NUMBER (n);
1281 num = XINT (n);
1282 for (i = 0; i < num && !NILP (list); i++)
1284 QUIT;
1285 CHECK_LIST_CONS (list, list);
1286 list = XCDR (list);
1288 return list;
1291 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1292 doc: /* Return the Nth element of LIST.
1293 N counts from zero. If LIST is not that long, nil is returned. */)
1294 (Lisp_Object n, Lisp_Object list)
1296 return Fcar (Fnthcdr (n, list));
1299 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1300 doc: /* Return element of SEQUENCE at index N. */)
1301 (register Lisp_Object sequence, Lisp_Object n)
1303 CHECK_NUMBER (n);
1304 if (CONSP (sequence) || NILP (sequence))
1305 return Fcar (Fnthcdr (n, sequence));
1307 /* Faref signals a "not array" error, so check here. */
1308 CHECK_ARRAY (sequence, Qsequencep);
1309 return Faref (sequence, n);
1312 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1313 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1314 The value is actually the tail of LIST whose car is ELT. */)
1315 (register Lisp_Object elt, Lisp_Object list)
1317 register Lisp_Object tail;
1318 for (tail = list; CONSP (tail); tail = XCDR (tail))
1320 register Lisp_Object tem;
1321 CHECK_LIST_CONS (tail, list);
1322 tem = XCAR (tail);
1323 if (! NILP (Fequal (elt, tem)))
1324 return tail;
1325 QUIT;
1327 return Qnil;
1330 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1331 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1332 The value is actually the tail of LIST whose car is ELT. */)
1333 (register Lisp_Object elt, Lisp_Object list)
1335 while (1)
1337 if (!CONSP (list) || EQ (XCAR (list), elt))
1338 break;
1340 list = XCDR (list);
1341 if (!CONSP (list) || EQ (XCAR (list), elt))
1342 break;
1344 list = XCDR (list);
1345 if (!CONSP (list) || EQ (XCAR (list), elt))
1346 break;
1348 list = XCDR (list);
1349 QUIT;
1352 CHECK_LIST (list);
1353 return list;
1356 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1357 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1358 The value is actually the tail of LIST whose car is ELT. */)
1359 (register Lisp_Object elt, Lisp_Object list)
1361 register Lisp_Object tail;
1363 if (!FLOATP (elt))
1364 return Fmemq (elt, list);
1366 for (tail = list; CONSP (tail); tail = XCDR (tail))
1368 register Lisp_Object tem;
1369 CHECK_LIST_CONS (tail, list);
1370 tem = XCAR (tail);
1371 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1372 return tail;
1373 QUIT;
1375 return Qnil;
1378 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1379 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1380 The value is actually the first element of LIST whose car is KEY.
1381 Elements of LIST that are not conses are ignored. */)
1382 (Lisp_Object key, Lisp_Object list)
1384 while (1)
1386 if (!CONSP (list)
1387 || (CONSP (XCAR (list))
1388 && EQ (XCAR (XCAR (list)), key)))
1389 break;
1391 list = XCDR (list);
1392 if (!CONSP (list)
1393 || (CONSP (XCAR (list))
1394 && EQ (XCAR (XCAR (list)), key)))
1395 break;
1397 list = XCDR (list);
1398 if (!CONSP (list)
1399 || (CONSP (XCAR (list))
1400 && EQ (XCAR (XCAR (list)), key)))
1401 break;
1403 list = XCDR (list);
1404 QUIT;
1407 return CAR (list);
1410 /* Like Fassq but never report an error and do not allow quits.
1411 Use only on lists known never to be circular. */
1413 Lisp_Object
1414 assq_no_quit (Lisp_Object key, Lisp_Object list)
1416 while (CONSP (list)
1417 && (!CONSP (XCAR (list))
1418 || !EQ (XCAR (XCAR (list)), key)))
1419 list = XCDR (list);
1421 return CAR_SAFE (list);
1424 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1425 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1426 The value is actually the first element of LIST whose car equals KEY. */)
1427 (Lisp_Object key, Lisp_Object list)
1429 Lisp_Object car;
1431 while (1)
1433 if (!CONSP (list)
1434 || (CONSP (XCAR (list))
1435 && (car = XCAR (XCAR (list)),
1436 EQ (car, key) || !NILP (Fequal (car, key)))))
1437 break;
1439 list = XCDR (list);
1440 if (!CONSP (list)
1441 || (CONSP (XCAR (list))
1442 && (car = XCAR (XCAR (list)),
1443 EQ (car, key) || !NILP (Fequal (car, key)))))
1444 break;
1446 list = XCDR (list);
1447 if (!CONSP (list)
1448 || (CONSP (XCAR (list))
1449 && (car = XCAR (XCAR (list)),
1450 EQ (car, key) || !NILP (Fequal (car, key)))))
1451 break;
1453 list = XCDR (list);
1454 QUIT;
1457 return CAR (list);
1460 /* Like Fassoc but never report an error and do not allow quits.
1461 Use only on lists known never to be circular. */
1463 Lisp_Object
1464 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1466 while (CONSP (list)
1467 && (!CONSP (XCAR (list))
1468 || (!EQ (XCAR (XCAR (list)), key)
1469 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1470 list = XCDR (list);
1472 return CONSP (list) ? XCAR (list) : Qnil;
1475 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1476 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1477 The value is actually the first element of LIST whose cdr is KEY. */)
1478 (register Lisp_Object key, Lisp_Object list)
1480 while (1)
1482 if (!CONSP (list)
1483 || (CONSP (XCAR (list))
1484 && EQ (XCDR (XCAR (list)), key)))
1485 break;
1487 list = XCDR (list);
1488 if (!CONSP (list)
1489 || (CONSP (XCAR (list))
1490 && EQ (XCDR (XCAR (list)), key)))
1491 break;
1493 list = XCDR (list);
1494 if (!CONSP (list)
1495 || (CONSP (XCAR (list))
1496 && EQ (XCDR (XCAR (list)), key)))
1497 break;
1499 list = XCDR (list);
1500 QUIT;
1503 return CAR (list);
1506 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1507 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1508 The value is actually the first element of LIST whose cdr equals KEY. */)
1509 (Lisp_Object key, Lisp_Object list)
1511 Lisp_Object cdr;
1513 while (1)
1515 if (!CONSP (list)
1516 || (CONSP (XCAR (list))
1517 && (cdr = XCDR (XCAR (list)),
1518 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1519 break;
1521 list = XCDR (list);
1522 if (!CONSP (list)
1523 || (CONSP (XCAR (list))
1524 && (cdr = XCDR (XCAR (list)),
1525 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1526 break;
1528 list = XCDR (list);
1529 if (!CONSP (list)
1530 || (CONSP (XCAR (list))
1531 && (cdr = XCDR (XCAR (list)),
1532 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1533 break;
1535 list = XCDR (list);
1536 QUIT;
1539 return CAR (list);
1542 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1543 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1544 More precisely, this function skips any members `eq' to ELT at the
1545 front of LIST, then removes members `eq' to ELT from the remaining
1546 sublist by modifying its list structure, then returns the resulting
1547 list.
1549 Write `(setq foo (delq element foo))' to be sure of correctly changing
1550 the value of a list `foo'. */)
1551 (register Lisp_Object elt, Lisp_Object list)
1553 register Lisp_Object tail, prev;
1554 register Lisp_Object tem;
1556 tail = list;
1557 prev = Qnil;
1558 while (CONSP (tail))
1560 CHECK_LIST_CONS (tail, list);
1561 tem = XCAR (tail);
1562 if (EQ (elt, tem))
1564 if (NILP (prev))
1565 list = XCDR (tail);
1566 else
1567 Fsetcdr (prev, XCDR (tail));
1569 else
1570 prev = tail;
1571 tail = XCDR (tail);
1572 QUIT;
1574 return list;
1577 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1578 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1579 SEQ must be a sequence (i.e. a list, a vector, or a string).
1580 The return value is a sequence of the same type.
1582 If SEQ is a list, this behaves like `delq', except that it compares
1583 with `equal' instead of `eq'. In particular, it may remove elements
1584 by altering the list structure.
1586 If SEQ is not a list, deletion is never performed destructively;
1587 instead this function creates and returns a new vector or string.
1589 Write `(setq foo (delete element foo))' to be sure of correctly
1590 changing the value of a sequence `foo'. */)
1591 (Lisp_Object elt, Lisp_Object seq)
1593 if (VECTORP (seq))
1595 ptrdiff_t i, n;
1597 for (i = n = 0; i < ASIZE (seq); ++i)
1598 if (NILP (Fequal (AREF (seq, i), elt)))
1599 ++n;
1601 if (n != ASIZE (seq))
1603 struct Lisp_Vector *p = allocate_vector (n);
1605 for (i = n = 0; i < ASIZE (seq); ++i)
1606 if (NILP (Fequal (AREF (seq, i), elt)))
1607 p->contents[n++] = AREF (seq, i);
1609 XSETVECTOR (seq, p);
1612 else if (STRINGP (seq))
1614 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1615 int c;
1617 for (i = nchars = nbytes = ibyte = 0;
1618 i < SCHARS (seq);
1619 ++i, ibyte += cbytes)
1621 if (STRING_MULTIBYTE (seq))
1623 c = STRING_CHAR (SDATA (seq) + ibyte);
1624 cbytes = CHAR_BYTES (c);
1626 else
1628 c = SREF (seq, i);
1629 cbytes = 1;
1632 if (!INTEGERP (elt) || c != XINT (elt))
1634 ++nchars;
1635 nbytes += cbytes;
1639 if (nchars != SCHARS (seq))
1641 Lisp_Object tem;
1643 tem = make_uninit_multibyte_string (nchars, nbytes);
1644 if (!STRING_MULTIBYTE (seq))
1645 STRING_SET_UNIBYTE (tem);
1647 for (i = nchars = nbytes = ibyte = 0;
1648 i < SCHARS (seq);
1649 ++i, ibyte += cbytes)
1651 if (STRING_MULTIBYTE (seq))
1653 c = STRING_CHAR (SDATA (seq) + ibyte);
1654 cbytes = CHAR_BYTES (c);
1656 else
1658 c = SREF (seq, i);
1659 cbytes = 1;
1662 if (!INTEGERP (elt) || c != XINT (elt))
1664 unsigned char *from = SDATA (seq) + ibyte;
1665 unsigned char *to = SDATA (tem) + nbytes;
1666 ptrdiff_t n;
1668 ++nchars;
1669 nbytes += cbytes;
1671 for (n = cbytes; n--; )
1672 *to++ = *from++;
1676 seq = tem;
1679 else
1681 Lisp_Object tail, prev;
1683 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1685 CHECK_LIST_CONS (tail, seq);
1687 if (!NILP (Fequal (elt, XCAR (tail))))
1689 if (NILP (prev))
1690 seq = XCDR (tail);
1691 else
1692 Fsetcdr (prev, XCDR (tail));
1694 else
1695 prev = tail;
1696 QUIT;
1700 return seq;
1703 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1704 doc: /* Reverse LIST by modifying cdr pointers.
1705 Return the reversed list. Expects a properly nil-terminated list. */)
1706 (Lisp_Object list)
1708 register Lisp_Object prev, tail, next;
1710 if (NILP (list)) return list;
1711 prev = Qnil;
1712 tail = list;
1713 while (!NILP (tail))
1715 QUIT;
1716 CHECK_LIST_CONS (tail, tail);
1717 next = XCDR (tail);
1718 Fsetcdr (tail, prev);
1719 prev = tail;
1720 tail = next;
1722 return prev;
1725 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1726 doc: /* Reverse LIST, copying. Return the reversed list.
1727 See also the function `nreverse', which is used more often. */)
1728 (Lisp_Object list)
1730 Lisp_Object new;
1732 for (new = Qnil; CONSP (list); list = XCDR (list))
1734 QUIT;
1735 new = Fcons (XCAR (list), new);
1737 CHECK_LIST_END (list, list);
1738 return new;
1741 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1743 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1744 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1745 Returns the sorted list. LIST is modified by side effects.
1746 PREDICATE is called with two elements of LIST, and should return non-nil
1747 if the first element should sort before the second. */)
1748 (Lisp_Object list, Lisp_Object predicate)
1750 Lisp_Object front, back;
1751 register Lisp_Object len, tem;
1752 struct gcpro gcpro1, gcpro2;
1753 EMACS_INT length;
1755 front = list;
1756 len = Flength (list);
1757 length = XINT (len);
1758 if (length < 2)
1759 return list;
1761 XSETINT (len, (length / 2) - 1);
1762 tem = Fnthcdr (len, list);
1763 back = Fcdr (tem);
1764 Fsetcdr (tem, Qnil);
1766 GCPRO2 (front, back);
1767 front = Fsort (front, predicate);
1768 back = Fsort (back, predicate);
1769 UNGCPRO;
1770 return merge (front, back, predicate);
1773 Lisp_Object
1774 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1776 Lisp_Object value;
1777 register Lisp_Object tail;
1778 Lisp_Object tem;
1779 register Lisp_Object l1, l2;
1780 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1782 l1 = org_l1;
1783 l2 = org_l2;
1784 tail = Qnil;
1785 value = Qnil;
1787 /* It is sufficient to protect org_l1 and org_l2.
1788 When l1 and l2 are updated, we copy the new values
1789 back into the org_ vars. */
1790 GCPRO4 (org_l1, org_l2, pred, value);
1792 while (1)
1794 if (NILP (l1))
1796 UNGCPRO;
1797 if (NILP (tail))
1798 return l2;
1799 Fsetcdr (tail, l2);
1800 return value;
1802 if (NILP (l2))
1804 UNGCPRO;
1805 if (NILP (tail))
1806 return l1;
1807 Fsetcdr (tail, l1);
1808 return value;
1810 tem = call2 (pred, Fcar (l2), Fcar (l1));
1811 if (NILP (tem))
1813 tem = l1;
1814 l1 = Fcdr (l1);
1815 org_l1 = l1;
1817 else
1819 tem = l2;
1820 l2 = Fcdr (l2);
1821 org_l2 = l2;
1823 if (NILP (tail))
1824 value = tem;
1825 else
1826 Fsetcdr (tail, tem);
1827 tail = tem;
1832 /* This does not check for quits. That is safe since it must terminate. */
1834 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1835 doc: /* Extract a value from a property list.
1836 PLIST is a property list, which is a list of the form
1837 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1838 corresponding to the given PROP, or nil if PROP is not one of the
1839 properties on the list. This function never signals an error. */)
1840 (Lisp_Object plist, Lisp_Object prop)
1842 Lisp_Object tail, halftail;
1844 /* halftail is used to detect circular lists. */
1845 tail = halftail = plist;
1846 while (CONSP (tail) && CONSP (XCDR (tail)))
1848 if (EQ (prop, XCAR (tail)))
1849 return XCAR (XCDR (tail));
1851 tail = XCDR (XCDR (tail));
1852 halftail = XCDR (halftail);
1853 if (EQ (tail, halftail))
1854 break;
1857 return Qnil;
1860 DEFUN ("get", Fget, Sget, 2, 2, 0,
1861 doc: /* Return the value of SYMBOL's PROPNAME property.
1862 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1863 (Lisp_Object symbol, Lisp_Object propname)
1865 CHECK_SYMBOL (symbol);
1866 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1869 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1870 doc: /* Change value in PLIST of PROP to VAL.
1871 PLIST is a property list, which is a list of the form
1872 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1873 If PROP is already a property on the list, its value is set to VAL,
1874 otherwise the new PROP VAL pair is added. The new plist is returned;
1875 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1876 The PLIST is modified by side effects. */)
1877 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1879 register Lisp_Object tail, prev;
1880 Lisp_Object newcell;
1881 prev = Qnil;
1882 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1883 tail = XCDR (XCDR (tail)))
1885 if (EQ (prop, XCAR (tail)))
1887 Fsetcar (XCDR (tail), val);
1888 return plist;
1891 prev = tail;
1892 QUIT;
1894 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1895 if (NILP (prev))
1896 return newcell;
1897 else
1898 Fsetcdr (XCDR (prev), newcell);
1899 return plist;
1902 DEFUN ("put", Fput, Sput, 3, 3, 0,
1903 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1904 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1905 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1907 CHECK_SYMBOL (symbol);
1908 set_symbol_plist
1909 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1910 return value;
1913 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1914 doc: /* Extract a value from a property list, comparing with `equal'.
1915 PLIST is a property list, which is a list of the form
1916 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1917 corresponding to the given PROP, or nil if PROP is not
1918 one of the properties on the list. */)
1919 (Lisp_Object plist, Lisp_Object prop)
1921 Lisp_Object tail;
1923 for (tail = plist;
1924 CONSP (tail) && CONSP (XCDR (tail));
1925 tail = XCDR (XCDR (tail)))
1927 if (! NILP (Fequal (prop, XCAR (tail))))
1928 return XCAR (XCDR (tail));
1930 QUIT;
1933 CHECK_LIST_END (tail, prop);
1935 return Qnil;
1938 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1939 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1940 PLIST is a property list, which is a list of the form
1941 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1942 If PROP is already a property on the list, its value is set to VAL,
1943 otherwise the new PROP VAL pair is added. The new plist is returned;
1944 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1945 The PLIST is modified by side effects. */)
1946 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1948 register Lisp_Object tail, prev;
1949 Lisp_Object newcell;
1950 prev = Qnil;
1951 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1952 tail = XCDR (XCDR (tail)))
1954 if (! NILP (Fequal (prop, XCAR (tail))))
1956 Fsetcar (XCDR (tail), val);
1957 return plist;
1960 prev = tail;
1961 QUIT;
1963 newcell = list2 (prop, val);
1964 if (NILP (prev))
1965 return newcell;
1966 else
1967 Fsetcdr (XCDR (prev), newcell);
1968 return plist;
1971 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1972 doc: /* Return t if the two args are the same Lisp object.
1973 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1974 (Lisp_Object obj1, Lisp_Object obj2)
1976 if (FLOATP (obj1))
1977 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1978 else
1979 return EQ (obj1, obj2) ? Qt : Qnil;
1982 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1983 doc: /* Return t if two Lisp objects have similar structure and contents.
1984 They must have the same data type.
1985 Conses are compared by comparing the cars and the cdrs.
1986 Vectors and strings are compared element by element.
1987 Numbers are compared by value, but integers cannot equal floats.
1988 (Use `=' if you want integers and floats to be able to be equal.)
1989 Symbols must match exactly. */)
1990 (register Lisp_Object o1, Lisp_Object o2)
1992 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1995 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1996 doc: /* Return t if two Lisp objects have similar structure and contents.
1997 This is like `equal' except that it compares the text properties
1998 of strings. (`equal' ignores text properties.) */)
1999 (register Lisp_Object o1, Lisp_Object o2)
2001 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2004 /* DEPTH is current depth of recursion. Signal an error if it
2005 gets too deep.
2006 PROPS means compare string text properties too. */
2008 static bool
2009 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props)
2011 if (depth > 200)
2012 error ("Stack overflow in equal");
2014 tail_recurse:
2015 QUIT;
2016 if (EQ (o1, o2))
2017 return 1;
2018 if (XTYPE (o1) != XTYPE (o2))
2019 return 0;
2021 switch (XTYPE (o1))
2023 case Lisp_Float:
2025 double d1, d2;
2027 d1 = extract_float (o1);
2028 d2 = extract_float (o2);
2029 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2030 though they are not =. */
2031 return d1 == d2 || (d1 != d1 && d2 != d2);
2034 case Lisp_Cons:
2035 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2036 return 0;
2037 o1 = XCDR (o1);
2038 o2 = XCDR (o2);
2039 goto tail_recurse;
2041 case Lisp_Misc:
2042 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2043 return 0;
2044 if (OVERLAYP (o1))
2046 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2047 depth + 1, props)
2048 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2049 depth + 1, props))
2050 return 0;
2051 o1 = XOVERLAY (o1)->plist;
2052 o2 = XOVERLAY (o2)->plist;
2053 goto tail_recurse;
2055 if (MARKERP (o1))
2057 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2058 && (XMARKER (o1)->buffer == 0
2059 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2061 break;
2063 case Lisp_Vectorlike:
2065 register int i;
2066 ptrdiff_t size = ASIZE (o1);
2067 /* Pseudovectors have the type encoded in the size field, so this test
2068 actually checks that the objects have the same type as well as the
2069 same size. */
2070 if (ASIZE (o2) != size)
2071 return 0;
2072 /* Boolvectors are compared much like strings. */
2073 if (BOOL_VECTOR_P (o1))
2075 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2076 return 0;
2077 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2078 ((XBOOL_VECTOR (o1)->size
2079 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2080 / BOOL_VECTOR_BITS_PER_CHAR)))
2081 return 0;
2082 return 1;
2084 if (WINDOW_CONFIGURATIONP (o1))
2085 return compare_window_configurations (o1, o2, 0);
2087 /* Aside from them, only true vectors, char-tables, compiled
2088 functions, and fonts (font-spec, font-entity, font-object)
2089 are sensible to compare, so eliminate the others now. */
2090 if (size & PSEUDOVECTOR_FLAG)
2092 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2093 < PVEC_COMPILED)
2094 return 0;
2095 size &= PSEUDOVECTOR_SIZE_MASK;
2097 for (i = 0; i < size; i++)
2099 Lisp_Object v1, v2;
2100 v1 = AREF (o1, i);
2101 v2 = AREF (o2, i);
2102 if (!internal_equal (v1, v2, depth + 1, props))
2103 return 0;
2105 return 1;
2107 break;
2109 case Lisp_String:
2110 if (SCHARS (o1) != SCHARS (o2))
2111 return 0;
2112 if (SBYTES (o1) != SBYTES (o2))
2113 return 0;
2114 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2115 return 0;
2116 if (props && !compare_string_intervals (o1, o2))
2117 return 0;
2118 return 1;
2120 default:
2121 break;
2124 return 0;
2128 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2129 doc: /* Store each element of ARRAY with ITEM.
2130 ARRAY is a vector, string, char-table, or bool-vector. */)
2131 (Lisp_Object array, Lisp_Object item)
2133 register ptrdiff_t size, idx;
2135 if (VECTORP (array))
2136 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2137 ASET (array, idx, item);
2138 else if (CHAR_TABLE_P (array))
2140 int i;
2142 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2143 set_char_table_contents (array, i, item);
2144 set_char_table_defalt (array, item);
2146 else if (STRINGP (array))
2148 register unsigned char *p = SDATA (array);
2149 int charval;
2150 CHECK_CHARACTER (item);
2151 charval = XFASTINT (item);
2152 size = SCHARS (array);
2153 if (STRING_MULTIBYTE (array))
2155 unsigned char str[MAX_MULTIBYTE_LENGTH];
2156 int len = CHAR_STRING (charval, str);
2157 ptrdiff_t size_byte = SBYTES (array);
2159 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2160 || SCHARS (array) * len != size_byte)
2161 error ("Attempt to change byte length of a string");
2162 for (idx = 0; idx < size_byte; idx++)
2163 *p++ = str[idx % len];
2165 else
2166 for (idx = 0; idx < size; idx++)
2167 p[idx] = charval;
2169 else if (BOOL_VECTOR_P (array))
2171 register unsigned char *p = XBOOL_VECTOR (array)->data;
2172 size =
2173 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2174 / BOOL_VECTOR_BITS_PER_CHAR);
2176 if (size)
2178 memset (p, ! NILP (item) ? -1 : 0, size);
2180 /* Clear any extraneous bits in the last byte. */
2181 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2184 else
2185 wrong_type_argument (Qarrayp, array);
2186 return array;
2189 DEFUN ("clear-string", Fclear_string, Sclear_string,
2190 1, 1, 0,
2191 doc: /* Clear the contents of STRING.
2192 This makes STRING unibyte and may change its length. */)
2193 (Lisp_Object string)
2195 ptrdiff_t len;
2196 CHECK_STRING (string);
2197 len = SBYTES (string);
2198 memset (SDATA (string), 0, len);
2199 STRING_SET_CHARS (string, len);
2200 STRING_SET_UNIBYTE (string);
2201 return Qnil;
2204 /* ARGSUSED */
2205 Lisp_Object
2206 nconc2 (Lisp_Object s1, Lisp_Object s2)
2208 Lisp_Object args[2];
2209 args[0] = s1;
2210 args[1] = s2;
2211 return Fnconc (2, args);
2214 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2215 doc: /* Concatenate any number of lists by altering them.
2216 Only the last argument is not altered, and need not be a list.
2217 usage: (nconc &rest LISTS) */)
2218 (ptrdiff_t nargs, Lisp_Object *args)
2220 ptrdiff_t argnum;
2221 register Lisp_Object tail, tem, val;
2223 val = tail = Qnil;
2225 for (argnum = 0; argnum < nargs; argnum++)
2227 tem = args[argnum];
2228 if (NILP (tem)) continue;
2230 if (NILP (val))
2231 val = tem;
2233 if (argnum + 1 == nargs) break;
2235 CHECK_LIST_CONS (tem, tem);
2237 while (CONSP (tem))
2239 tail = tem;
2240 tem = XCDR (tail);
2241 QUIT;
2244 tem = args[argnum + 1];
2245 Fsetcdr (tail, tem);
2246 if (NILP (tem))
2247 args[argnum + 1] = tail;
2250 return val;
2253 /* This is the guts of all mapping functions.
2254 Apply FN to each element of SEQ, one by one,
2255 storing the results into elements of VALS, a C vector of Lisp_Objects.
2256 LENI is the length of VALS, which should also be the length of SEQ. */
2258 static void
2259 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2261 register Lisp_Object tail;
2262 Lisp_Object dummy;
2263 register EMACS_INT i;
2264 struct gcpro gcpro1, gcpro2, gcpro3;
2266 if (vals)
2268 /* Don't let vals contain any garbage when GC happens. */
2269 for (i = 0; i < leni; i++)
2270 vals[i] = Qnil;
2272 GCPRO3 (dummy, fn, seq);
2273 gcpro1.var = vals;
2274 gcpro1.nvars = leni;
2276 else
2277 GCPRO2 (fn, seq);
2278 /* We need not explicitly protect `tail' because it is used only on lists, and
2279 1) lists are not relocated and 2) the list is marked via `seq' so will not
2280 be freed */
2282 if (VECTORP (seq) || COMPILEDP (seq))
2284 for (i = 0; i < leni; i++)
2286 dummy = call1 (fn, AREF (seq, i));
2287 if (vals)
2288 vals[i] = dummy;
2291 else if (BOOL_VECTOR_P (seq))
2293 for (i = 0; i < leni; i++)
2295 unsigned char byte;
2296 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2297 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2298 dummy = call1 (fn, dummy);
2299 if (vals)
2300 vals[i] = dummy;
2303 else if (STRINGP (seq))
2305 ptrdiff_t i_byte;
2307 for (i = 0, i_byte = 0; i < leni;)
2309 int c;
2310 ptrdiff_t i_before = i;
2312 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2313 XSETFASTINT (dummy, c);
2314 dummy = call1 (fn, dummy);
2315 if (vals)
2316 vals[i_before] = dummy;
2319 else /* Must be a list, since Flength did not get an error */
2321 tail = seq;
2322 for (i = 0; i < leni && CONSP (tail); i++)
2324 dummy = call1 (fn, XCAR (tail));
2325 if (vals)
2326 vals[i] = dummy;
2327 tail = XCDR (tail);
2331 UNGCPRO;
2334 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2335 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2336 In between each pair of results, stick in SEPARATOR. Thus, " " as
2337 SEPARATOR results in spaces between the values returned by FUNCTION.
2338 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2339 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2341 Lisp_Object len;
2342 register EMACS_INT leni;
2343 EMACS_INT nargs;
2344 ptrdiff_t i;
2345 register Lisp_Object *args;
2346 struct gcpro gcpro1;
2347 Lisp_Object ret;
2348 USE_SAFE_ALLOCA;
2350 len = Flength (sequence);
2351 if (CHAR_TABLE_P (sequence))
2352 wrong_type_argument (Qlistp, sequence);
2353 leni = XINT (len);
2354 nargs = leni + leni - 1;
2355 if (nargs < 0) return empty_unibyte_string;
2357 SAFE_ALLOCA_LISP (args, nargs);
2359 GCPRO1 (separator);
2360 mapcar1 (leni, args, function, sequence);
2361 UNGCPRO;
2363 for (i = leni - 1; i > 0; i--)
2364 args[i + i] = args[i];
2366 for (i = 1; i < nargs; i += 2)
2367 args[i] = separator;
2369 ret = Fconcat (nargs, args);
2370 SAFE_FREE ();
2372 return ret;
2375 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2376 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2377 The result is a list just as long as SEQUENCE.
2378 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2379 (Lisp_Object function, Lisp_Object sequence)
2381 register Lisp_Object len;
2382 register EMACS_INT leni;
2383 register Lisp_Object *args;
2384 Lisp_Object ret;
2385 USE_SAFE_ALLOCA;
2387 len = Flength (sequence);
2388 if (CHAR_TABLE_P (sequence))
2389 wrong_type_argument (Qlistp, sequence);
2390 leni = XFASTINT (len);
2392 SAFE_ALLOCA_LISP (args, leni);
2394 mapcar1 (leni, args, function, sequence);
2396 ret = Flist (leni, args);
2397 SAFE_FREE ();
2399 return ret;
2402 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2403 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2404 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2405 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2406 (Lisp_Object function, Lisp_Object sequence)
2408 register EMACS_INT leni;
2410 leni = XFASTINT (Flength (sequence));
2411 if (CHAR_TABLE_P (sequence))
2412 wrong_type_argument (Qlistp, sequence);
2413 mapcar1 (leni, 0, function, sequence);
2415 return sequence;
2418 /* This is how C code calls `yes-or-no-p' and allows the user
2419 to redefined it.
2421 Anything that calls this function must protect from GC! */
2423 Lisp_Object
2424 do_yes_or_no_p (Lisp_Object prompt)
2426 return call1 (intern ("yes-or-no-p"), prompt);
2429 /* Anything that calls this function must protect from GC! */
2431 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2432 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2433 PROMPT is the string to display to ask the question. It should end in
2434 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2436 The user must confirm the answer with RET, and can edit it until it
2437 has been confirmed.
2439 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2440 is nil, and `use-dialog-box' is non-nil. */)
2441 (Lisp_Object prompt)
2443 register Lisp_Object ans;
2444 Lisp_Object args[2];
2445 struct gcpro gcpro1;
2447 CHECK_STRING (prompt);
2449 #ifdef HAVE_MENUS
2450 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2451 && use_dialog_box
2452 && window_system_available (SELECTED_FRAME ()))
2454 Lisp_Object pane, menu, obj;
2455 redisplay_preserve_echo_area (4);
2456 pane = list2 (Fcons (build_string ("Yes"), Qt),
2457 Fcons (build_string ("No"), Qnil));
2458 GCPRO1 (pane);
2459 menu = Fcons (prompt, pane);
2460 obj = Fx_popup_dialog (Qt, menu, Qnil);
2461 UNGCPRO;
2462 return obj;
2464 #endif /* HAVE_MENUS */
2466 args[0] = prompt;
2467 args[1] = build_string ("(yes or no) ");
2468 prompt = Fconcat (2, args);
2470 GCPRO1 (prompt);
2472 while (1)
2474 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2475 Qyes_or_no_p_history, Qnil,
2476 Qnil));
2477 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2479 UNGCPRO;
2480 return Qt;
2482 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2484 UNGCPRO;
2485 return Qnil;
2488 Fding (Qnil);
2489 Fdiscard_input ();
2490 message1 ("Please answer yes or no.");
2491 Fsleep_for (make_number (2), Qnil);
2495 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2496 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2498 Each of the three load averages is multiplied by 100, then converted
2499 to integer.
2501 When USE-FLOATS is non-nil, floats will be used instead of integers.
2502 These floats are not multiplied by 100.
2504 If the 5-minute or 15-minute load averages are not available, return a
2505 shortened list, containing only those averages which are available.
2507 An error is thrown if the load average can't be obtained. In some
2508 cases making it work would require Emacs being installed setuid or
2509 setgid so that it can read kernel information, and that usually isn't
2510 advisable. */)
2511 (Lisp_Object use_floats)
2513 double load_ave[3];
2514 int loads = getloadavg (load_ave, 3);
2515 Lisp_Object ret = Qnil;
2517 if (loads < 0)
2518 error ("load-average not implemented for this operating system");
2520 while (loads-- > 0)
2522 Lisp_Object load = (NILP (use_floats)
2523 ? make_number (100.0 * load_ave[loads])
2524 : make_float (load_ave[loads]));
2525 ret = Fcons (load, ret);
2528 return ret;
2531 static Lisp_Object Qsubfeatures;
2533 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2534 doc: /* Return t if FEATURE is present in this Emacs.
2536 Use this to conditionalize execution of lisp code based on the
2537 presence or absence of Emacs or environment extensions.
2538 Use `provide' to declare that a feature is available. This function
2539 looks at the value of the variable `features'. The optional argument
2540 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2541 (Lisp_Object feature, Lisp_Object subfeature)
2543 register Lisp_Object tem;
2544 CHECK_SYMBOL (feature);
2545 tem = Fmemq (feature, Vfeatures);
2546 if (!NILP (tem) && !NILP (subfeature))
2547 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2548 return (NILP (tem)) ? Qnil : Qt;
2551 static Lisp_Object Qfuncall;
2553 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2554 doc: /* Announce that FEATURE is a feature of the current Emacs.
2555 The optional argument SUBFEATURES should be a list of symbols listing
2556 particular subfeatures supported in this version of FEATURE. */)
2557 (Lisp_Object feature, Lisp_Object subfeatures)
2559 register Lisp_Object tem;
2560 CHECK_SYMBOL (feature);
2561 CHECK_LIST (subfeatures);
2562 if (!NILP (Vautoload_queue))
2563 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2564 Vautoload_queue);
2565 tem = Fmemq (feature, Vfeatures);
2566 if (NILP (tem))
2567 Vfeatures = Fcons (feature, Vfeatures);
2568 if (!NILP (subfeatures))
2569 Fput (feature, Qsubfeatures, subfeatures);
2570 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2572 /* Run any load-hooks for this file. */
2573 tem = Fassq (feature, Vafter_load_alist);
2574 if (CONSP (tem))
2575 Fmapc (Qfuncall, XCDR (tem));
2577 return feature;
2580 /* `require' and its subroutines. */
2582 /* List of features currently being require'd, innermost first. */
2584 static Lisp_Object require_nesting_list;
2586 static void
2587 require_unwind (Lisp_Object old_value)
2589 require_nesting_list = old_value;
2592 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2593 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2594 If FEATURE is not a member of the list `features', then the feature
2595 is not loaded; so load the file FILENAME.
2596 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2597 and `load' will try to load this name appended with the suffix `.elc' or
2598 `.el', in that order. The name without appended suffix will not be used.
2599 See `get-load-suffixes' for the complete list of suffixes.
2600 If the optional third argument NOERROR is non-nil,
2601 then return nil if the file is not found instead of signaling an error.
2602 Normally the return value is FEATURE.
2603 The normal messages at start and end of loading FILENAME are suppressed. */)
2604 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2606 Lisp_Object tem;
2607 struct gcpro gcpro1, gcpro2;
2608 bool from_file = load_in_progress;
2610 CHECK_SYMBOL (feature);
2612 /* Record the presence of `require' in this file
2613 even if the feature specified is already loaded.
2614 But not more than once in any file,
2615 and not when we aren't loading or reading from a file. */
2616 if (!from_file)
2617 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2618 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2619 from_file = 1;
2621 if (from_file)
2623 tem = Fcons (Qrequire, feature);
2624 if (NILP (Fmember (tem, Vcurrent_load_list)))
2625 LOADHIST_ATTACH (tem);
2627 tem = Fmemq (feature, Vfeatures);
2629 if (NILP (tem))
2631 ptrdiff_t count = SPECPDL_INDEX ();
2632 int nesting = 0;
2634 /* This is to make sure that loadup.el gives a clear picture
2635 of what files are preloaded and when. */
2636 if (! NILP (Vpurify_flag))
2637 error ("(require %s) while preparing to dump",
2638 SDATA (SYMBOL_NAME (feature)));
2640 /* A certain amount of recursive `require' is legitimate,
2641 but if we require the same feature recursively 3 times,
2642 signal an error. */
2643 tem = require_nesting_list;
2644 while (! NILP (tem))
2646 if (! NILP (Fequal (feature, XCAR (tem))))
2647 nesting++;
2648 tem = XCDR (tem);
2650 if (nesting > 3)
2651 error ("Recursive `require' for feature `%s'",
2652 SDATA (SYMBOL_NAME (feature)));
2654 /* Update the list for any nested `require's that occur. */
2655 record_unwind_protect (require_unwind, require_nesting_list);
2656 require_nesting_list = Fcons (feature, require_nesting_list);
2658 /* Value saved here is to be restored into Vautoload_queue */
2659 record_unwind_protect (un_autoload, Vautoload_queue);
2660 Vautoload_queue = Qt;
2662 /* Load the file. */
2663 GCPRO2 (feature, filename);
2664 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2665 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2666 UNGCPRO;
2668 /* If load failed entirely, return nil. */
2669 if (NILP (tem))
2670 return unbind_to (count, Qnil);
2672 tem = Fmemq (feature, Vfeatures);
2673 if (NILP (tem))
2674 error ("Required feature `%s' was not provided",
2675 SDATA (SYMBOL_NAME (feature)));
2677 /* Once loading finishes, don't undo it. */
2678 Vautoload_queue = Qt;
2679 feature = unbind_to (count, feature);
2682 return feature;
2685 /* Primitives for work of the "widget" library.
2686 In an ideal world, this section would not have been necessary.
2687 However, lisp function calls being as slow as they are, it turns
2688 out that some functions in the widget library (wid-edit.el) are the
2689 bottleneck of Widget operation. Here is their translation to C,
2690 for the sole reason of efficiency. */
2692 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2693 doc: /* Return non-nil if PLIST has the property PROP.
2694 PLIST is a property list, which is a list of the form
2695 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2696 Unlike `plist-get', this allows you to distinguish between a missing
2697 property and a property with the value nil.
2698 The value is actually the tail of PLIST whose car is PROP. */)
2699 (Lisp_Object plist, Lisp_Object prop)
2701 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2703 QUIT;
2704 plist = XCDR (plist);
2705 plist = CDR (plist);
2707 return plist;
2710 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2711 doc: /* In WIDGET, set PROPERTY to VALUE.
2712 The value can later be retrieved with `widget-get'. */)
2713 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2715 CHECK_CONS (widget);
2716 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2717 return value;
2720 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2721 doc: /* In WIDGET, get the value of PROPERTY.
2722 The value could either be specified when the widget was created, or
2723 later with `widget-put'. */)
2724 (Lisp_Object widget, Lisp_Object property)
2726 Lisp_Object tmp;
2728 while (1)
2730 if (NILP (widget))
2731 return Qnil;
2732 CHECK_CONS (widget);
2733 tmp = Fplist_member (XCDR (widget), property);
2734 if (CONSP (tmp))
2736 tmp = XCDR (tmp);
2737 return CAR (tmp);
2739 tmp = XCAR (widget);
2740 if (NILP (tmp))
2741 return Qnil;
2742 widget = Fget (tmp, Qwidget_type);
2746 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2747 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2748 ARGS are passed as extra arguments to the function.
2749 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2750 (ptrdiff_t nargs, Lisp_Object *args)
2752 /* This function can GC. */
2753 Lisp_Object newargs[3];
2754 struct gcpro gcpro1, gcpro2;
2755 Lisp_Object result;
2757 newargs[0] = Fwidget_get (args[0], args[1]);
2758 newargs[1] = args[0];
2759 newargs[2] = Flist (nargs - 2, args + 2);
2760 GCPRO2 (newargs[0], newargs[2]);
2761 result = Fapply (3, newargs);
2762 UNGCPRO;
2763 return result;
2766 #ifdef HAVE_LANGINFO_CODESET
2767 #include <langinfo.h>
2768 #endif
2770 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2771 doc: /* Access locale data ITEM for the current C locale, if available.
2772 ITEM should be one of the following:
2774 `codeset', returning the character set as a string (locale item CODESET);
2776 `days', returning a 7-element vector of day names (locale items DAY_n);
2778 `months', returning a 12-element vector of month names (locale items MON_n);
2780 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2781 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2783 If the system can't provide such information through a call to
2784 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2786 See also Info node `(libc)Locales'.
2788 The data read from the system are decoded using `locale-coding-system'. */)
2789 (Lisp_Object item)
2791 char *str = NULL;
2792 #ifdef HAVE_LANGINFO_CODESET
2793 Lisp_Object val;
2794 if (EQ (item, Qcodeset))
2796 str = nl_langinfo (CODESET);
2797 return build_string (str);
2799 #ifdef DAY_1
2800 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2802 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2803 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2804 int i;
2805 struct gcpro gcpro1;
2806 GCPRO1 (v);
2807 synchronize_system_time_locale ();
2808 for (i = 0; i < 7; i++)
2810 str = nl_langinfo (days[i]);
2811 val = build_unibyte_string (str);
2812 /* Fixme: Is this coding system necessarily right, even if
2813 it is consistent with CODESET? If not, what to do? */
2814 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2815 0));
2817 UNGCPRO;
2818 return v;
2820 #endif /* DAY_1 */
2821 #ifdef MON_1
2822 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2824 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2825 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2826 MON_8, MON_9, MON_10, MON_11, MON_12};
2827 int i;
2828 struct gcpro gcpro1;
2829 GCPRO1 (v);
2830 synchronize_system_time_locale ();
2831 for (i = 0; i < 12; i++)
2833 str = nl_langinfo (months[i]);
2834 val = build_unibyte_string (str);
2835 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2836 0));
2838 UNGCPRO;
2839 return v;
2841 #endif /* MON_1 */
2842 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2843 but is in the locale files. This could be used by ps-print. */
2844 #ifdef PAPER_WIDTH
2845 else if (EQ (item, Qpaper))
2846 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
2847 #endif /* PAPER_WIDTH */
2848 #endif /* HAVE_LANGINFO_CODESET*/
2849 return Qnil;
2852 /* base64 encode/decode functions (RFC 2045).
2853 Based on code from GNU recode. */
2855 #define MIME_LINE_LENGTH 76
2857 #define IS_ASCII(Character) \
2858 ((Character) < 128)
2859 #define IS_BASE64(Character) \
2860 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2861 #define IS_BASE64_IGNORABLE(Character) \
2862 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2863 || (Character) == '\f' || (Character) == '\r')
2865 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2866 character or return retval if there are no characters left to
2867 process. */
2868 #define READ_QUADRUPLET_BYTE(retval) \
2869 do \
2871 if (i == length) \
2873 if (nchars_return) \
2874 *nchars_return = nchars; \
2875 return (retval); \
2877 c = from[i++]; \
2879 while (IS_BASE64_IGNORABLE (c))
2881 /* Table of characters coding the 64 values. */
2882 static const char base64_value_to_char[64] =
2884 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2885 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2886 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2887 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2888 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2889 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2890 '8', '9', '+', '/' /* 60-63 */
2893 /* Table of base64 values for first 128 characters. */
2894 static const short base64_char_to_value[128] =
2896 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2897 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2898 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2899 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2900 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2901 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2902 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2903 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2904 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2905 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2906 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2907 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2908 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2911 /* The following diagram shows the logical steps by which three octets
2912 get transformed into four base64 characters.
2914 .--------. .--------. .--------.
2915 |aaaaaabb| |bbbbcccc| |ccdddddd|
2916 `--------' `--------' `--------'
2917 6 2 4 4 2 6
2918 .--------+--------+--------+--------.
2919 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2920 `--------+--------+--------+--------'
2922 .--------+--------+--------+--------.
2923 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2924 `--------+--------+--------+--------'
2926 The octets are divided into 6 bit chunks, which are then encoded into
2927 base64 characters. */
2930 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2931 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2932 ptrdiff_t *);
2934 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2935 2, 3, "r",
2936 doc: /* Base64-encode the region between BEG and END.
2937 Return the length of the encoded text.
2938 Optional third argument NO-LINE-BREAK means do not break long lines
2939 into shorter lines. */)
2940 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2942 char *encoded;
2943 ptrdiff_t allength, length;
2944 ptrdiff_t ibeg, iend, encoded_length;
2945 ptrdiff_t old_pos = PT;
2946 USE_SAFE_ALLOCA;
2948 validate_region (&beg, &end);
2950 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2951 iend = CHAR_TO_BYTE (XFASTINT (end));
2952 move_gap_both (XFASTINT (beg), ibeg);
2954 /* We need to allocate enough room for encoding the text.
2955 We need 33 1/3% more space, plus a newline every 76
2956 characters, and then we round up. */
2957 length = iend - ibeg;
2958 allength = length + length/3 + 1;
2959 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2961 encoded = SAFE_ALLOCA (allength);
2962 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2963 encoded, length, NILP (no_line_break),
2964 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2965 if (encoded_length > allength)
2966 emacs_abort ();
2968 if (encoded_length < 0)
2970 /* The encoding wasn't possible. */
2971 SAFE_FREE ();
2972 error ("Multibyte character in data for base64 encoding");
2975 /* Now we have encoded the region, so we insert the new contents
2976 and delete the old. (Insert first in order to preserve markers.) */
2977 SET_PT_BOTH (XFASTINT (beg), ibeg);
2978 insert (encoded, encoded_length);
2979 SAFE_FREE ();
2980 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2982 /* If point was outside of the region, restore it exactly; else just
2983 move to the beginning of the region. */
2984 if (old_pos >= XFASTINT (end))
2985 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2986 else if (old_pos > XFASTINT (beg))
2987 old_pos = XFASTINT (beg);
2988 SET_PT (old_pos);
2990 /* We return the length of the encoded text. */
2991 return make_number (encoded_length);
2994 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2995 1, 2, 0,
2996 doc: /* Base64-encode STRING and return the result.
2997 Optional second argument NO-LINE-BREAK means do not break long lines
2998 into shorter lines. */)
2999 (Lisp_Object string, Lisp_Object no_line_break)
3001 ptrdiff_t allength, length, encoded_length;
3002 char *encoded;
3003 Lisp_Object encoded_string;
3004 USE_SAFE_ALLOCA;
3006 CHECK_STRING (string);
3008 /* We need to allocate enough room for encoding the text.
3009 We need 33 1/3% more space, plus a newline every 76
3010 characters, and then we round up. */
3011 length = SBYTES (string);
3012 allength = length + length/3 + 1;
3013 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3015 /* We need to allocate enough room for decoding the text. */
3016 encoded = SAFE_ALLOCA (allength);
3018 encoded_length = base64_encode_1 (SSDATA (string),
3019 encoded, length, NILP (no_line_break),
3020 STRING_MULTIBYTE (string));
3021 if (encoded_length > allength)
3022 emacs_abort ();
3024 if (encoded_length < 0)
3026 /* The encoding wasn't possible. */
3027 SAFE_FREE ();
3028 error ("Multibyte character in data for base64 encoding");
3031 encoded_string = make_unibyte_string (encoded, encoded_length);
3032 SAFE_FREE ();
3034 return encoded_string;
3037 static ptrdiff_t
3038 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3039 bool line_break, bool multibyte)
3041 int counter = 0;
3042 ptrdiff_t i = 0;
3043 char *e = to;
3044 int c;
3045 unsigned int value;
3046 int bytes;
3048 while (i < length)
3050 if (multibyte)
3052 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3053 if (CHAR_BYTE8_P (c))
3054 c = CHAR_TO_BYTE8 (c);
3055 else if (c >= 256)
3056 return -1;
3057 i += bytes;
3059 else
3060 c = from[i++];
3062 /* Wrap line every 76 characters. */
3064 if (line_break)
3066 if (counter < MIME_LINE_LENGTH / 4)
3067 counter++;
3068 else
3070 *e++ = '\n';
3071 counter = 1;
3075 /* Process first byte of a triplet. */
3077 *e++ = base64_value_to_char[0x3f & c >> 2];
3078 value = (0x03 & c) << 4;
3080 /* Process second byte of a triplet. */
3082 if (i == length)
3084 *e++ = base64_value_to_char[value];
3085 *e++ = '=';
3086 *e++ = '=';
3087 break;
3090 if (multibyte)
3092 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3093 if (CHAR_BYTE8_P (c))
3094 c = CHAR_TO_BYTE8 (c);
3095 else if (c >= 256)
3096 return -1;
3097 i += bytes;
3099 else
3100 c = from[i++];
3102 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3103 value = (0x0f & c) << 2;
3105 /* Process third byte of a triplet. */
3107 if (i == length)
3109 *e++ = base64_value_to_char[value];
3110 *e++ = '=';
3111 break;
3114 if (multibyte)
3116 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3117 if (CHAR_BYTE8_P (c))
3118 c = CHAR_TO_BYTE8 (c);
3119 else if (c >= 256)
3120 return -1;
3121 i += bytes;
3123 else
3124 c = from[i++];
3126 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3127 *e++ = base64_value_to_char[0x3f & c];
3130 return e - to;
3134 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3135 2, 2, "r",
3136 doc: /* Base64-decode the region between BEG and END.
3137 Return the length of the decoded text.
3138 If the region can't be decoded, signal an error and don't modify the buffer. */)
3139 (Lisp_Object beg, Lisp_Object end)
3141 ptrdiff_t ibeg, iend, length, allength;
3142 char *decoded;
3143 ptrdiff_t old_pos = PT;
3144 ptrdiff_t decoded_length;
3145 ptrdiff_t inserted_chars;
3146 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3147 USE_SAFE_ALLOCA;
3149 validate_region (&beg, &end);
3151 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3152 iend = CHAR_TO_BYTE (XFASTINT (end));
3154 length = iend - ibeg;
3156 /* We need to allocate enough room for decoding the text. If we are
3157 working on a multibyte buffer, each decoded code may occupy at
3158 most two bytes. */
3159 allength = multibyte ? length * 2 : length;
3160 decoded = SAFE_ALLOCA (allength);
3162 move_gap_both (XFASTINT (beg), ibeg);
3163 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3164 decoded, length,
3165 multibyte, &inserted_chars);
3166 if (decoded_length > allength)
3167 emacs_abort ();
3169 if (decoded_length < 0)
3171 /* The decoding wasn't possible. */
3172 SAFE_FREE ();
3173 error ("Invalid base64 data");
3176 /* Now we have decoded the region, so we insert the new contents
3177 and delete the old. (Insert first in order to preserve markers.) */
3178 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3179 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3180 SAFE_FREE ();
3182 /* Delete the original text. */
3183 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3184 iend + decoded_length, 1);
3186 /* If point was outside of the region, restore it exactly; else just
3187 move to the beginning of the region. */
3188 if (old_pos >= XFASTINT (end))
3189 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3190 else if (old_pos > XFASTINT (beg))
3191 old_pos = XFASTINT (beg);
3192 SET_PT (old_pos > ZV ? ZV : old_pos);
3194 return make_number (inserted_chars);
3197 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3198 1, 1, 0,
3199 doc: /* Base64-decode STRING and return the result. */)
3200 (Lisp_Object string)
3202 char *decoded;
3203 ptrdiff_t length, decoded_length;
3204 Lisp_Object decoded_string;
3205 USE_SAFE_ALLOCA;
3207 CHECK_STRING (string);
3209 length = SBYTES (string);
3210 /* We need to allocate enough room for decoding the text. */
3211 decoded = SAFE_ALLOCA (length);
3213 /* The decoded result should be unibyte. */
3214 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3215 0, NULL);
3216 if (decoded_length > length)
3217 emacs_abort ();
3218 else if (decoded_length >= 0)
3219 decoded_string = make_unibyte_string (decoded, decoded_length);
3220 else
3221 decoded_string = Qnil;
3223 SAFE_FREE ();
3224 if (!STRINGP (decoded_string))
3225 error ("Invalid base64 data");
3227 return decoded_string;
3230 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3231 MULTIBYTE, the decoded result should be in multibyte
3232 form. If NCHARS_RETURN is not NULL, store the number of produced
3233 characters in *NCHARS_RETURN. */
3235 static ptrdiff_t
3236 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3237 bool multibyte, ptrdiff_t *nchars_return)
3239 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3240 char *e = to;
3241 unsigned char c;
3242 unsigned long value;
3243 ptrdiff_t nchars = 0;
3245 while (1)
3247 /* Process first byte of a quadruplet. */
3249 READ_QUADRUPLET_BYTE (e-to);
3251 if (!IS_BASE64 (c))
3252 return -1;
3253 value = base64_char_to_value[c] << 18;
3255 /* Process second byte of a quadruplet. */
3257 READ_QUADRUPLET_BYTE (-1);
3259 if (!IS_BASE64 (c))
3260 return -1;
3261 value |= base64_char_to_value[c] << 12;
3263 c = (unsigned char) (value >> 16);
3264 if (multibyte && c >= 128)
3265 e += BYTE8_STRING (c, e);
3266 else
3267 *e++ = c;
3268 nchars++;
3270 /* Process third byte of a quadruplet. */
3272 READ_QUADRUPLET_BYTE (-1);
3274 if (c == '=')
3276 READ_QUADRUPLET_BYTE (-1);
3278 if (c != '=')
3279 return -1;
3280 continue;
3283 if (!IS_BASE64 (c))
3284 return -1;
3285 value |= base64_char_to_value[c] << 6;
3287 c = (unsigned char) (0xff & value >> 8);
3288 if (multibyte && c >= 128)
3289 e += BYTE8_STRING (c, e);
3290 else
3291 *e++ = c;
3292 nchars++;
3294 /* Process fourth byte of a quadruplet. */
3296 READ_QUADRUPLET_BYTE (-1);
3298 if (c == '=')
3299 continue;
3301 if (!IS_BASE64 (c))
3302 return -1;
3303 value |= base64_char_to_value[c];
3305 c = (unsigned char) (0xff & value);
3306 if (multibyte && c >= 128)
3307 e += BYTE8_STRING (c, e);
3308 else
3309 *e++ = c;
3310 nchars++;
3316 /***********************************************************************
3317 ***** *****
3318 ***** Hash Tables *****
3319 ***** *****
3320 ***********************************************************************/
3322 /* Implemented by gerd@gnu.org. This hash table implementation was
3323 inspired by CMUCL hash tables. */
3325 /* Ideas:
3327 1. For small tables, association lists are probably faster than
3328 hash tables because they have lower overhead.
3330 For uses of hash tables where the O(1) behavior of table
3331 operations is not a requirement, it might therefore be a good idea
3332 not to hash. Instead, we could just do a linear search in the
3333 key_and_value vector of the hash table. This could be done
3334 if a `:linear-search t' argument is given to make-hash-table. */
3337 /* The list of all weak hash tables. Don't staticpro this one. */
3339 static struct Lisp_Hash_Table *weak_hash_tables;
3341 /* Various symbols. */
3343 static Lisp_Object Qhash_table_p;
3344 static Lisp_Object Qkey, Qvalue, Qeql;
3345 Lisp_Object Qeq, Qequal;
3346 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3347 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3350 /***********************************************************************
3351 Utilities
3352 ***********************************************************************/
3354 static void
3355 CHECK_HASH_TABLE (Lisp_Object x)
3357 CHECK_TYPE (HASH_TABLE_P (x), Qhash_table_p, x);
3360 static void
3361 set_hash_key_and_value (struct Lisp_Hash_Table *h, Lisp_Object key_and_value)
3363 h->key_and_value = key_and_value;
3365 static void
3366 set_hash_next (struct Lisp_Hash_Table *h, Lisp_Object next)
3368 h->next = next;
3370 static void
3371 set_hash_next_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3373 gc_aset (h->next, idx, val);
3375 static void
3376 set_hash_hash (struct Lisp_Hash_Table *h, Lisp_Object hash)
3378 h->hash = hash;
3380 static void
3381 set_hash_hash_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3383 gc_aset (h->hash, idx, val);
3385 static void
3386 set_hash_index (struct Lisp_Hash_Table *h, Lisp_Object index)
3388 h->index = index;
3390 static void
3391 set_hash_index_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3393 gc_aset (h->index, idx, val);
3396 /* If OBJ is a Lisp hash table, return a pointer to its struct
3397 Lisp_Hash_Table. Otherwise, signal an error. */
3399 static struct Lisp_Hash_Table *
3400 check_hash_table (Lisp_Object obj)
3402 CHECK_HASH_TABLE (obj);
3403 return XHASH_TABLE (obj);
3407 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3408 number. A number is "almost" a prime number if it is not divisible
3409 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3411 EMACS_INT
3412 next_almost_prime (EMACS_INT n)
3414 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3415 for (n |= 1; ; n += 2)
3416 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3417 return n;
3421 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3422 which USED[I] is non-zero. If found at index I in ARGS, set
3423 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3424 0. This function is used to extract a keyword/argument pair from
3425 a DEFUN parameter list. */
3427 static ptrdiff_t
3428 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3430 ptrdiff_t i;
3432 for (i = 1; i < nargs; i++)
3433 if (!used[i - 1] && EQ (args[i - 1], key))
3435 used[i - 1] = 1;
3436 used[i] = 1;
3437 return i;
3440 return 0;
3444 /* Return a Lisp vector which has the same contents as VEC but has
3445 at least INCR_MIN more entries, where INCR_MIN is positive.
3446 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3447 than NITEMS_MAX. Entries in the resulting
3448 vector that are not copied from VEC are set to nil. */
3450 Lisp_Object
3451 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3453 struct Lisp_Vector *v;
3454 ptrdiff_t i, incr, incr_max, old_size, new_size;
3455 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3456 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3457 ? nitems_max : C_language_max);
3458 eassert (VECTORP (vec));
3459 eassert (0 < incr_min && -1 <= nitems_max);
3460 old_size = ASIZE (vec);
3461 incr_max = n_max - old_size;
3462 incr = max (incr_min, min (old_size >> 1, incr_max));
3463 if (incr_max < incr)
3464 memory_full (SIZE_MAX);
3465 new_size = old_size + incr;
3466 v = allocate_vector (new_size);
3467 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3468 for (i = old_size; i < new_size; ++i)
3469 v->contents[i] = Qnil;
3470 XSETVECTOR (vec, v);
3471 return vec;
3475 /***********************************************************************
3476 Low-level Functions
3477 ***********************************************************************/
3479 static struct hash_table_test hashtest_eq;
3480 struct hash_table_test hashtest_eql, hashtest_equal;
3482 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3483 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3484 KEY2 are the same. */
3486 static bool
3487 cmpfn_eql (struct hash_table_test *ht,
3488 Lisp_Object key1,
3489 Lisp_Object key2)
3491 return (FLOATP (key1)
3492 && FLOATP (key2)
3493 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3497 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3498 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3499 KEY2 are the same. */
3501 static bool
3502 cmpfn_equal (struct hash_table_test *ht,
3503 Lisp_Object key1,
3504 Lisp_Object key2)
3506 return !NILP (Fequal (key1, key2));
3510 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3511 HASH2 in hash table H using H->user_cmp_function. Value is true
3512 if KEY1 and KEY2 are the same. */
3514 static bool
3515 cmpfn_user_defined (struct hash_table_test *ht,
3516 Lisp_Object key1,
3517 Lisp_Object key2)
3519 Lisp_Object args[3];
3521 args[0] = ht->user_cmp_function;
3522 args[1] = key1;
3523 args[2] = key2;
3524 return !NILP (Ffuncall (3, args));
3528 /* Value is a hash code for KEY for use in hash table H which uses
3529 `eq' to compare keys. The hash code returned is guaranteed to fit
3530 in a Lisp integer. */
3532 static EMACS_UINT
3533 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3535 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3536 return hash;
3539 /* Value is a hash code for KEY for use in hash table H which uses
3540 `eql' to compare keys. The hash code returned is guaranteed to fit
3541 in a Lisp integer. */
3543 static EMACS_UINT
3544 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3546 EMACS_UINT hash;
3547 if (FLOATP (key))
3548 hash = sxhash (key, 0);
3549 else
3550 hash = XHASH (key) ^ XTYPE (key);
3551 return hash;
3554 /* Value is a hash code for KEY for use in hash table H which uses
3555 `equal' to compare keys. The hash code returned is guaranteed to fit
3556 in a Lisp integer. */
3558 static EMACS_UINT
3559 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3561 EMACS_UINT hash = sxhash (key, 0);
3562 return hash;
3565 /* Value is a hash code for KEY for use in hash table H which uses as
3566 user-defined function to compare keys. The hash code returned is
3567 guaranteed to fit in a Lisp integer. */
3569 static EMACS_UINT
3570 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3572 Lisp_Object args[2], hash;
3574 args[0] = ht->user_hash_function;
3575 args[1] = key;
3576 hash = Ffuncall (2, args);
3577 if (!INTEGERP (hash))
3578 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3579 return XUINT (hash);
3582 /* An upper bound on the size of a hash table index. It must fit in
3583 ptrdiff_t and be a valid Emacs fixnum. */
3584 #define INDEX_SIZE_BOUND \
3585 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3587 /* Create and initialize a new hash table.
3589 TEST specifies the test the hash table will use to compare keys.
3590 It must be either one of the predefined tests `eq', `eql' or
3591 `equal' or a symbol denoting a user-defined test named TEST with
3592 test and hash functions USER_TEST and USER_HASH.
3594 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3596 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3597 new size when it becomes full is computed by adding REHASH_SIZE to
3598 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3599 table's new size is computed by multiplying its old size with
3600 REHASH_SIZE.
3602 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3603 be resized when the ratio of (number of entries in the table) /
3604 (table size) is >= REHASH_THRESHOLD.
3606 WEAK specifies the weakness of the table. If non-nil, it must be
3607 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3609 Lisp_Object
3610 make_hash_table (struct hash_table_test test,
3611 Lisp_Object size, Lisp_Object rehash_size,
3612 Lisp_Object rehash_threshold, Lisp_Object weak)
3614 struct Lisp_Hash_Table *h;
3615 Lisp_Object table;
3616 EMACS_INT index_size, sz;
3617 ptrdiff_t i;
3618 double index_float;
3620 /* Preconditions. */
3621 eassert (SYMBOLP (test.name));
3622 eassert (INTEGERP (size) && XINT (size) >= 0);
3623 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3624 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3625 eassert (FLOATP (rehash_threshold)
3626 && 0 < XFLOAT_DATA (rehash_threshold)
3627 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3629 if (XFASTINT (size) == 0)
3630 size = make_number (1);
3632 sz = XFASTINT (size);
3633 index_float = sz / XFLOAT_DATA (rehash_threshold);
3634 index_size = (index_float < INDEX_SIZE_BOUND + 1
3635 ? next_almost_prime (index_float)
3636 : INDEX_SIZE_BOUND + 1);
3637 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3638 error ("Hash table too large");
3640 /* Allocate a table and initialize it. */
3641 h = allocate_hash_table ();
3643 /* Initialize hash table slots. */
3644 h->test = test;
3645 h->weak = weak;
3646 h->rehash_threshold = rehash_threshold;
3647 h->rehash_size = rehash_size;
3648 h->count = 0;
3649 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3650 h->hash = Fmake_vector (size, Qnil);
3651 h->next = Fmake_vector (size, Qnil);
3652 h->index = Fmake_vector (make_number (index_size), Qnil);
3654 /* Set up the free list. */
3655 for (i = 0; i < sz - 1; ++i)
3656 set_hash_next_slot (h, i, make_number (i + 1));
3657 h->next_free = make_number (0);
3659 XSET_HASH_TABLE (table, h);
3660 eassert (HASH_TABLE_P (table));
3661 eassert (XHASH_TABLE (table) == h);
3663 /* Maybe add this hash table to the list of all weak hash tables. */
3664 if (NILP (h->weak))
3665 h->next_weak = NULL;
3666 else
3668 h->next_weak = weak_hash_tables;
3669 weak_hash_tables = h;
3672 return table;
3676 /* Return a copy of hash table H1. Keys and values are not copied,
3677 only the table itself is. */
3679 static Lisp_Object
3680 copy_hash_table (struct Lisp_Hash_Table *h1)
3682 Lisp_Object table;
3683 struct Lisp_Hash_Table *h2;
3685 h2 = allocate_hash_table ();
3686 *h2 = *h1;
3687 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3688 h2->hash = Fcopy_sequence (h1->hash);
3689 h2->next = Fcopy_sequence (h1->next);
3690 h2->index = Fcopy_sequence (h1->index);
3691 XSET_HASH_TABLE (table, h2);
3693 /* Maybe add this hash table to the list of all weak hash tables. */
3694 if (!NILP (h2->weak))
3696 h2->next_weak = weak_hash_tables;
3697 weak_hash_tables = h2;
3700 return table;
3704 /* Resize hash table H if it's too full. If H cannot be resized
3705 because it's already too large, throw an error. */
3707 static void
3708 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3710 if (NILP (h->next_free))
3712 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3713 EMACS_INT new_size, index_size, nsize;
3714 ptrdiff_t i;
3715 double index_float;
3717 if (INTEGERP (h->rehash_size))
3718 new_size = old_size + XFASTINT (h->rehash_size);
3719 else
3721 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3722 if (float_new_size < INDEX_SIZE_BOUND + 1)
3724 new_size = float_new_size;
3725 if (new_size <= old_size)
3726 new_size = old_size + 1;
3728 else
3729 new_size = INDEX_SIZE_BOUND + 1;
3731 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3732 index_size = (index_float < INDEX_SIZE_BOUND + 1
3733 ? next_almost_prime (index_float)
3734 : INDEX_SIZE_BOUND + 1);
3735 nsize = max (index_size, 2 * new_size);
3736 if (INDEX_SIZE_BOUND < nsize)
3737 error ("Hash table too large to resize");
3739 #ifdef ENABLE_CHECKING
3740 if (HASH_TABLE_P (Vpurify_flag)
3741 && XHASH_TABLE (Vpurify_flag) == h)
3743 Lisp_Object args[2];
3744 args[0] = build_string ("Growing hash table to: %d");
3745 args[1] = make_number (new_size);
3746 Fmessage (2, args);
3748 #endif
3750 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3751 2 * (new_size - old_size), -1));
3752 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3753 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3754 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3756 /* Update the free list. Do it so that new entries are added at
3757 the end of the free list. This makes some operations like
3758 maphash faster. */
3759 for (i = old_size; i < new_size - 1; ++i)
3760 set_hash_next_slot (h, i, make_number (i + 1));
3762 if (!NILP (h->next_free))
3764 Lisp_Object last, next;
3766 last = h->next_free;
3767 while (next = HASH_NEXT (h, XFASTINT (last)),
3768 !NILP (next))
3769 last = next;
3771 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3773 else
3774 XSETFASTINT (h->next_free, old_size);
3776 /* Rehash. */
3777 for (i = 0; i < old_size; ++i)
3778 if (!NILP (HASH_HASH (h, i)))
3780 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3781 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3782 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3783 set_hash_index_slot (h, start_of_bucket, make_number (i));
3789 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3790 the hash code of KEY. Value is the index of the entry in H
3791 matching KEY, or -1 if not found. */
3793 ptrdiff_t
3794 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3796 EMACS_UINT hash_code;
3797 ptrdiff_t start_of_bucket;
3798 Lisp_Object idx;
3800 hash_code = h->test.hashfn (&h->test, key);
3801 eassert ((hash_code & ~INTMASK) == 0);
3802 if (hash)
3803 *hash = hash_code;
3805 start_of_bucket = hash_code % ASIZE (h->index);
3806 idx = HASH_INDEX (h, start_of_bucket);
3808 /* We need not gcpro idx since it's either an integer or nil. */
3809 while (!NILP (idx))
3811 ptrdiff_t i = XFASTINT (idx);
3812 if (EQ (key, HASH_KEY (h, i))
3813 || (h->test.cmpfn
3814 && hash_code == XUINT (HASH_HASH (h, i))
3815 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3816 break;
3817 idx = HASH_NEXT (h, i);
3820 return NILP (idx) ? -1 : XFASTINT (idx);
3824 /* Put an entry into hash table H that associates KEY with VALUE.
3825 HASH is a previously computed hash code of KEY.
3826 Value is the index of the entry in H matching KEY. */
3828 ptrdiff_t
3829 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3830 EMACS_UINT hash)
3832 ptrdiff_t start_of_bucket, i;
3834 eassert ((hash & ~INTMASK) == 0);
3836 /* Increment count after resizing because resizing may fail. */
3837 maybe_resize_hash_table (h);
3838 h->count++;
3840 /* Store key/value in the key_and_value vector. */
3841 i = XFASTINT (h->next_free);
3842 h->next_free = HASH_NEXT (h, i);
3843 set_hash_key_slot (h, i, key);
3844 set_hash_value_slot (h, i, value);
3846 /* Remember its hash code. */
3847 set_hash_hash_slot (h, i, make_number (hash));
3849 /* Add new entry to its collision chain. */
3850 start_of_bucket = hash % ASIZE (h->index);
3851 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3852 set_hash_index_slot (h, start_of_bucket, make_number (i));
3853 return i;
3857 /* Remove the entry matching KEY from hash table H, if there is one. */
3859 static void
3860 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3862 EMACS_UINT hash_code;
3863 ptrdiff_t start_of_bucket;
3864 Lisp_Object idx, prev;
3866 hash_code = h->test.hashfn (&h->test, key);
3867 eassert ((hash_code & ~INTMASK) == 0);
3868 start_of_bucket = hash_code % ASIZE (h->index);
3869 idx = HASH_INDEX (h, start_of_bucket);
3870 prev = Qnil;
3872 /* We need not gcpro idx, prev since they're either integers or nil. */
3873 while (!NILP (idx))
3875 ptrdiff_t i = XFASTINT (idx);
3877 if (EQ (key, HASH_KEY (h, i))
3878 || (h->test.cmpfn
3879 && hash_code == XUINT (HASH_HASH (h, i))
3880 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3882 /* Take entry out of collision chain. */
3883 if (NILP (prev))
3884 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3885 else
3886 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3888 /* Clear slots in key_and_value and add the slots to
3889 the free list. */
3890 set_hash_key_slot (h, i, Qnil);
3891 set_hash_value_slot (h, i, Qnil);
3892 set_hash_hash_slot (h, i, Qnil);
3893 set_hash_next_slot (h, i, h->next_free);
3894 h->next_free = make_number (i);
3895 h->count--;
3896 eassert (h->count >= 0);
3897 break;
3899 else
3901 prev = idx;
3902 idx = HASH_NEXT (h, i);
3908 /* Clear hash table H. */
3910 static void
3911 hash_clear (struct Lisp_Hash_Table *h)
3913 if (h->count > 0)
3915 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3917 for (i = 0; i < size; ++i)
3919 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3920 set_hash_key_slot (h, i, Qnil);
3921 set_hash_value_slot (h, i, Qnil);
3922 set_hash_hash_slot (h, i, Qnil);
3925 for (i = 0; i < ASIZE (h->index); ++i)
3926 ASET (h->index, i, Qnil);
3928 h->next_free = make_number (0);
3929 h->count = 0;
3935 /************************************************************************
3936 Weak Hash Tables
3937 ************************************************************************/
3939 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3940 entries from the table that don't survive the current GC.
3941 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3942 true if anything was marked. */
3944 static bool
3945 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3947 ptrdiff_t bucket, n;
3948 bool marked;
3950 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3951 marked = 0;
3953 for (bucket = 0; bucket < n; ++bucket)
3955 Lisp_Object idx, next, prev;
3957 /* Follow collision chain, removing entries that
3958 don't survive this garbage collection. */
3959 prev = Qnil;
3960 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3962 ptrdiff_t i = XFASTINT (idx);
3963 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3964 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3965 bool remove_p;
3967 if (EQ (h->weak, Qkey))
3968 remove_p = !key_known_to_survive_p;
3969 else if (EQ (h->weak, Qvalue))
3970 remove_p = !value_known_to_survive_p;
3971 else if (EQ (h->weak, Qkey_or_value))
3972 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3973 else if (EQ (h->weak, Qkey_and_value))
3974 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3975 else
3976 emacs_abort ();
3978 next = HASH_NEXT (h, i);
3980 if (remove_entries_p)
3982 if (remove_p)
3984 /* Take out of collision chain. */
3985 if (NILP (prev))
3986 set_hash_index_slot (h, bucket, next);
3987 else
3988 set_hash_next_slot (h, XFASTINT (prev), next);
3990 /* Add to free list. */
3991 set_hash_next_slot (h, i, h->next_free);
3992 h->next_free = idx;
3994 /* Clear key, value, and hash. */
3995 set_hash_key_slot (h, i, Qnil);
3996 set_hash_value_slot (h, i, Qnil);
3997 set_hash_hash_slot (h, i, Qnil);
3999 h->count--;
4001 else
4003 prev = idx;
4006 else
4008 if (!remove_p)
4010 /* Make sure key and value survive. */
4011 if (!key_known_to_survive_p)
4013 mark_object (HASH_KEY (h, i));
4014 marked = 1;
4017 if (!value_known_to_survive_p)
4019 mark_object (HASH_VALUE (h, i));
4020 marked = 1;
4027 return marked;
4030 /* Remove elements from weak hash tables that don't survive the
4031 current garbage collection. Remove weak tables that don't survive
4032 from Vweak_hash_tables. Called from gc_sweep. */
4034 void
4035 sweep_weak_hash_tables (void)
4037 struct Lisp_Hash_Table *h, *used, *next;
4038 bool marked;
4040 /* Mark all keys and values that are in use. Keep on marking until
4041 there is no more change. This is necessary for cases like
4042 value-weak table A containing an entry X -> Y, where Y is used in a
4043 key-weak table B, Z -> Y. If B comes after A in the list of weak
4044 tables, X -> Y might be removed from A, although when looking at B
4045 one finds that it shouldn't. */
4048 marked = 0;
4049 for (h = weak_hash_tables; h; h = h->next_weak)
4051 if (h->header.size & ARRAY_MARK_FLAG)
4052 marked |= sweep_weak_table (h, 0);
4055 while (marked);
4057 /* Remove tables and entries that aren't used. */
4058 for (h = weak_hash_tables, used = NULL; h; h = next)
4060 next = h->next_weak;
4062 if (h->header.size & ARRAY_MARK_FLAG)
4064 /* TABLE is marked as used. Sweep its contents. */
4065 if (h->count > 0)
4066 sweep_weak_table (h, 1);
4068 /* Add table to the list of used weak hash tables. */
4069 h->next_weak = used;
4070 used = h;
4074 weak_hash_tables = used;
4079 /***********************************************************************
4080 Hash Code Computation
4081 ***********************************************************************/
4083 /* Maximum depth up to which to dive into Lisp structures. */
4085 #define SXHASH_MAX_DEPTH 3
4087 /* Maximum length up to which to take list and vector elements into
4088 account. */
4090 #define SXHASH_MAX_LEN 7
4092 /* Return a hash for string PTR which has length LEN. The hash value
4093 can be any EMACS_UINT value. */
4095 EMACS_UINT
4096 hash_string (char const *ptr, ptrdiff_t len)
4098 char const *p = ptr;
4099 char const *end = p + len;
4100 unsigned char c;
4101 EMACS_UINT hash = 0;
4103 while (p != end)
4105 c = *p++;
4106 hash = sxhash_combine (hash, c);
4109 return hash;
4112 /* Return a hash for string PTR which has length LEN. The hash
4113 code returned is guaranteed to fit in a Lisp integer. */
4115 static EMACS_UINT
4116 sxhash_string (char const *ptr, ptrdiff_t len)
4118 EMACS_UINT hash = hash_string (ptr, len);
4119 return SXHASH_REDUCE (hash);
4122 /* Return a hash for the floating point value VAL. */
4124 static EMACS_UINT
4125 sxhash_float (double val)
4127 EMACS_UINT hash = 0;
4128 enum {
4129 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4130 + (sizeof val % sizeof hash != 0))
4132 union {
4133 double val;
4134 EMACS_UINT word[WORDS_PER_DOUBLE];
4135 } u;
4136 int i;
4137 u.val = val;
4138 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4139 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4140 hash = sxhash_combine (hash, u.word[i]);
4141 return SXHASH_REDUCE (hash);
4144 /* Return a hash for list LIST. DEPTH is the current depth in the
4145 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4147 static EMACS_UINT
4148 sxhash_list (Lisp_Object list, int depth)
4150 EMACS_UINT hash = 0;
4151 int i;
4153 if (depth < SXHASH_MAX_DEPTH)
4154 for (i = 0;
4155 CONSP (list) && i < SXHASH_MAX_LEN;
4156 list = XCDR (list), ++i)
4158 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4159 hash = sxhash_combine (hash, hash2);
4162 if (!NILP (list))
4164 EMACS_UINT hash2 = sxhash (list, depth + 1);
4165 hash = sxhash_combine (hash, hash2);
4168 return SXHASH_REDUCE (hash);
4172 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4173 the Lisp structure. */
4175 static EMACS_UINT
4176 sxhash_vector (Lisp_Object vec, int depth)
4178 EMACS_UINT hash = ASIZE (vec);
4179 int i, n;
4181 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4182 for (i = 0; i < n; ++i)
4184 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4185 hash = sxhash_combine (hash, hash2);
4188 return SXHASH_REDUCE (hash);
4191 /* Return a hash for bool-vector VECTOR. */
4193 static EMACS_UINT
4194 sxhash_bool_vector (Lisp_Object vec)
4196 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4197 int i, n;
4199 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4200 for (i = 0; i < n; ++i)
4201 hash = sxhash_combine (hash, XBOOL_VECTOR (vec)->data[i]);
4203 return SXHASH_REDUCE (hash);
4207 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4208 structure. Value is an unsigned integer clipped to INTMASK. */
4210 EMACS_UINT
4211 sxhash (Lisp_Object obj, int depth)
4213 EMACS_UINT hash;
4215 if (depth > SXHASH_MAX_DEPTH)
4216 return 0;
4218 switch (XTYPE (obj))
4220 case_Lisp_Int:
4221 hash = XUINT (obj);
4222 break;
4224 case Lisp_Misc:
4225 hash = XHASH (obj);
4226 break;
4228 case Lisp_Symbol:
4229 obj = SYMBOL_NAME (obj);
4230 /* Fall through. */
4232 case Lisp_String:
4233 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4234 break;
4236 /* This can be everything from a vector to an overlay. */
4237 case Lisp_Vectorlike:
4238 if (VECTORP (obj))
4239 /* According to the CL HyperSpec, two arrays are equal only if
4240 they are `eq', except for strings and bit-vectors. In
4241 Emacs, this works differently. We have to compare element
4242 by element. */
4243 hash = sxhash_vector (obj, depth);
4244 else if (BOOL_VECTOR_P (obj))
4245 hash = sxhash_bool_vector (obj);
4246 else
4247 /* Others are `equal' if they are `eq', so let's take their
4248 address as hash. */
4249 hash = XHASH (obj);
4250 break;
4252 case Lisp_Cons:
4253 hash = sxhash_list (obj, depth);
4254 break;
4256 case Lisp_Float:
4257 hash = sxhash_float (XFLOAT_DATA (obj));
4258 break;
4260 default:
4261 emacs_abort ();
4264 return hash;
4269 /***********************************************************************
4270 Lisp Interface
4271 ***********************************************************************/
4274 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4275 doc: /* Compute a hash code for OBJ and return it as integer. */)
4276 (Lisp_Object obj)
4278 EMACS_UINT hash = sxhash (obj, 0);
4279 return make_number (hash);
4283 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4284 doc: /* Create and return a new hash table.
4286 Arguments are specified as keyword/argument pairs. The following
4287 arguments are defined:
4289 :test TEST -- TEST must be a symbol that specifies how to compare
4290 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4291 `equal'. User-supplied test and hash functions can be specified via
4292 `define-hash-table-test'.
4294 :size SIZE -- A hint as to how many elements will be put in the table.
4295 Default is 65.
4297 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4298 fills up. If REHASH-SIZE is an integer, increase the size by that
4299 amount. If it is a float, it must be > 1.0, and the new size is the
4300 old size multiplied by that factor. Default is 1.5.
4302 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4303 Resize the hash table when the ratio (number of entries / table size)
4304 is greater than or equal to THRESHOLD. Default is 0.8.
4306 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4307 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4308 returned is a weak table. Key/value pairs are removed from a weak
4309 hash table when there are no non-weak references pointing to their
4310 key, value, one of key or value, or both key and value, depending on
4311 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4312 is nil.
4314 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4315 (ptrdiff_t nargs, Lisp_Object *args)
4317 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4318 struct hash_table_test testdesc;
4319 char *used;
4320 ptrdiff_t i;
4322 /* The vector `used' is used to keep track of arguments that
4323 have been consumed. */
4324 used = alloca (nargs * sizeof *used);
4325 memset (used, 0, nargs * sizeof *used);
4327 /* See if there's a `:test TEST' among the arguments. */
4328 i = get_key_arg (QCtest, nargs, args, used);
4329 test = i ? args[i] : Qeql;
4330 if (EQ (test, Qeq))
4331 testdesc = hashtest_eq;
4332 else if (EQ (test, Qeql))
4333 testdesc = hashtest_eql;
4334 else if (EQ (test, Qequal))
4335 testdesc = hashtest_equal;
4336 else
4338 /* See if it is a user-defined test. */
4339 Lisp_Object prop;
4341 prop = Fget (test, Qhash_table_test);
4342 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4343 signal_error ("Invalid hash table test", test);
4344 testdesc.name = test;
4345 testdesc.user_cmp_function = XCAR (prop);
4346 testdesc.user_hash_function = XCAR (XCDR (prop));
4347 testdesc.hashfn = hashfn_user_defined;
4348 testdesc.cmpfn = cmpfn_user_defined;
4351 /* See if there's a `:size SIZE' argument. */
4352 i = get_key_arg (QCsize, nargs, args, used);
4353 size = i ? args[i] : Qnil;
4354 if (NILP (size))
4355 size = make_number (DEFAULT_HASH_SIZE);
4356 else if (!INTEGERP (size) || XINT (size) < 0)
4357 signal_error ("Invalid hash table size", size);
4359 /* Look for `:rehash-size SIZE'. */
4360 i = get_key_arg (QCrehash_size, nargs, args, used);
4361 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4362 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4363 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4364 signal_error ("Invalid hash table rehash size", rehash_size);
4366 /* Look for `:rehash-threshold THRESHOLD'. */
4367 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4368 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4369 if (! (FLOATP (rehash_threshold)
4370 && 0 < XFLOAT_DATA (rehash_threshold)
4371 && XFLOAT_DATA (rehash_threshold) <= 1))
4372 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4374 /* Look for `:weakness WEAK'. */
4375 i = get_key_arg (QCweakness, nargs, args, used);
4376 weak = i ? args[i] : Qnil;
4377 if (EQ (weak, Qt))
4378 weak = Qkey_and_value;
4379 if (!NILP (weak)
4380 && !EQ (weak, Qkey)
4381 && !EQ (weak, Qvalue)
4382 && !EQ (weak, Qkey_or_value)
4383 && !EQ (weak, Qkey_and_value))
4384 signal_error ("Invalid hash table weakness", weak);
4386 /* Now, all args should have been used up, or there's a problem. */
4387 for (i = 0; i < nargs; ++i)
4388 if (!used[i])
4389 signal_error ("Invalid argument list", args[i]);
4391 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4395 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4396 doc: /* Return a copy of hash table TABLE. */)
4397 (Lisp_Object table)
4399 return copy_hash_table (check_hash_table (table));
4403 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4404 doc: /* Return the number of elements in TABLE. */)
4405 (Lisp_Object table)
4407 return make_number (check_hash_table (table)->count);
4411 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4412 Shash_table_rehash_size, 1, 1, 0,
4413 doc: /* Return the current rehash size of TABLE. */)
4414 (Lisp_Object table)
4416 return check_hash_table (table)->rehash_size;
4420 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4421 Shash_table_rehash_threshold, 1, 1, 0,
4422 doc: /* Return the current rehash threshold of TABLE. */)
4423 (Lisp_Object table)
4425 return check_hash_table (table)->rehash_threshold;
4429 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4430 doc: /* Return the size of TABLE.
4431 The size can be used as an argument to `make-hash-table' to create
4432 a hash table than can hold as many elements as TABLE holds
4433 without need for resizing. */)
4434 (Lisp_Object table)
4436 struct Lisp_Hash_Table *h = check_hash_table (table);
4437 return make_number (HASH_TABLE_SIZE (h));
4441 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4442 doc: /* Return the test TABLE uses. */)
4443 (Lisp_Object table)
4445 return check_hash_table (table)->test.name;
4449 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4450 1, 1, 0,
4451 doc: /* Return the weakness of TABLE. */)
4452 (Lisp_Object table)
4454 return check_hash_table (table)->weak;
4458 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4459 doc: /* Return t if OBJ is a Lisp hash table object. */)
4460 (Lisp_Object obj)
4462 return HASH_TABLE_P (obj) ? Qt : Qnil;
4466 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4467 doc: /* Clear hash table TABLE and return it. */)
4468 (Lisp_Object table)
4470 hash_clear (check_hash_table (table));
4471 /* Be compatible with XEmacs. */
4472 return table;
4476 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4477 doc: /* Look up KEY in TABLE and return its associated value.
4478 If KEY is not found, return DFLT which defaults to nil. */)
4479 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4481 struct Lisp_Hash_Table *h = check_hash_table (table);
4482 ptrdiff_t i = hash_lookup (h, key, NULL);
4483 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4487 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4488 doc: /* Associate KEY with VALUE in hash table TABLE.
4489 If KEY is already present in table, replace its current value with
4490 VALUE. In any case, return VALUE. */)
4491 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4493 struct Lisp_Hash_Table *h = check_hash_table (table);
4494 ptrdiff_t i;
4495 EMACS_UINT hash;
4497 i = hash_lookup (h, key, &hash);
4498 if (i >= 0)
4499 set_hash_value_slot (h, i, value);
4500 else
4501 hash_put (h, key, value, hash);
4503 return value;
4507 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4508 doc: /* Remove KEY from TABLE. */)
4509 (Lisp_Object key, Lisp_Object table)
4511 struct Lisp_Hash_Table *h = check_hash_table (table);
4512 hash_remove_from_table (h, key);
4513 return Qnil;
4517 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4518 doc: /* Call FUNCTION for all entries in hash table TABLE.
4519 FUNCTION is called with two arguments, KEY and VALUE. */)
4520 (Lisp_Object function, Lisp_Object table)
4522 struct Lisp_Hash_Table *h = check_hash_table (table);
4523 Lisp_Object args[3];
4524 ptrdiff_t i;
4526 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4527 if (!NILP (HASH_HASH (h, i)))
4529 args[0] = function;
4530 args[1] = HASH_KEY (h, i);
4531 args[2] = HASH_VALUE (h, i);
4532 Ffuncall (3, args);
4535 return Qnil;
4539 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4540 Sdefine_hash_table_test, 3, 3, 0,
4541 doc: /* Define a new hash table test with name NAME, a symbol.
4543 In hash tables created with NAME specified as test, use TEST to
4544 compare keys, and HASH for computing hash codes of keys.
4546 TEST must be a function taking two arguments and returning non-nil if
4547 both arguments are the same. HASH must be a function taking one
4548 argument and return an integer that is the hash code of the argument.
4549 Hash code computation should use the whole value range of integers,
4550 including negative integers. */)
4551 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4553 return Fput (name, Qhash_table_test, list2 (test, hash));
4558 /************************************************************************
4559 MD5, SHA-1, and SHA-2
4560 ************************************************************************/
4562 #include "md5.h"
4563 #include "sha1.h"
4564 #include "sha256.h"
4565 #include "sha512.h"
4567 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4569 static Lisp_Object
4570 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4572 int i;
4573 ptrdiff_t size;
4574 EMACS_INT start_char = 0, end_char = 0;
4575 ptrdiff_t start_byte, end_byte;
4576 register EMACS_INT b, e;
4577 register struct buffer *bp;
4578 EMACS_INT temp;
4579 int digest_size;
4580 void *(*hash_func) (const char *, size_t, void *);
4581 Lisp_Object digest;
4583 CHECK_SYMBOL (algorithm);
4585 if (STRINGP (object))
4587 if (NILP (coding_system))
4589 /* Decide the coding-system to encode the data with. */
4591 if (STRING_MULTIBYTE (object))
4592 /* use default, we can't guess correct value */
4593 coding_system = preferred_coding_system ();
4594 else
4595 coding_system = Qraw_text;
4598 if (NILP (Fcoding_system_p (coding_system)))
4600 /* Invalid coding system. */
4602 if (!NILP (noerror))
4603 coding_system = Qraw_text;
4604 else
4605 xsignal1 (Qcoding_system_error, coding_system);
4608 if (STRING_MULTIBYTE (object))
4609 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4611 size = SCHARS (object);
4613 if (!NILP (start))
4615 CHECK_NUMBER (start);
4617 start_char = XINT (start);
4619 if (start_char < 0)
4620 start_char += size;
4623 if (NILP (end))
4624 end_char = size;
4625 else
4627 CHECK_NUMBER (end);
4629 end_char = XINT (end);
4631 if (end_char < 0)
4632 end_char += size;
4635 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4636 args_out_of_range_3 (object, make_number (start_char),
4637 make_number (end_char));
4639 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4640 end_byte =
4641 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4643 else
4645 struct buffer *prev = current_buffer;
4647 record_unwind_current_buffer ();
4649 CHECK_BUFFER (object);
4651 bp = XBUFFER (object);
4652 set_buffer_internal (bp);
4654 if (NILP (start))
4655 b = BEGV;
4656 else
4658 CHECK_NUMBER_COERCE_MARKER (start);
4659 b = XINT (start);
4662 if (NILP (end))
4663 e = ZV;
4664 else
4666 CHECK_NUMBER_COERCE_MARKER (end);
4667 e = XINT (end);
4670 if (b > e)
4671 temp = b, b = e, e = temp;
4673 if (!(BEGV <= b && e <= ZV))
4674 args_out_of_range (start, end);
4676 if (NILP (coding_system))
4678 /* Decide the coding-system to encode the data with.
4679 See fileio.c:Fwrite-region */
4681 if (!NILP (Vcoding_system_for_write))
4682 coding_system = Vcoding_system_for_write;
4683 else
4685 bool force_raw_text = 0;
4687 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4688 if (NILP (coding_system)
4689 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4691 coding_system = Qnil;
4692 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4693 force_raw_text = 1;
4696 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4698 /* Check file-coding-system-alist. */
4699 Lisp_Object args[4], val;
4701 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4702 args[3] = Fbuffer_file_name (object);
4703 val = Ffind_operation_coding_system (4, args);
4704 if (CONSP (val) && !NILP (XCDR (val)))
4705 coding_system = XCDR (val);
4708 if (NILP (coding_system)
4709 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4711 /* If we still have not decided a coding system, use the
4712 default value of buffer-file-coding-system. */
4713 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4716 if (!force_raw_text
4717 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4718 /* Confirm that VAL can surely encode the current region. */
4719 coding_system = call4 (Vselect_safe_coding_system_function,
4720 make_number (b), make_number (e),
4721 coding_system, Qnil);
4723 if (force_raw_text)
4724 coding_system = Qraw_text;
4727 if (NILP (Fcoding_system_p (coding_system)))
4729 /* Invalid coding system. */
4731 if (!NILP (noerror))
4732 coding_system = Qraw_text;
4733 else
4734 xsignal1 (Qcoding_system_error, coding_system);
4738 object = make_buffer_string (b, e, 0);
4739 set_buffer_internal (prev);
4740 /* Discard the unwind protect for recovering the current
4741 buffer. */
4742 specpdl_ptr--;
4744 if (STRING_MULTIBYTE (object))
4745 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4746 start_byte = 0;
4747 end_byte = SBYTES (object);
4750 if (EQ (algorithm, Qmd5))
4752 digest_size = MD5_DIGEST_SIZE;
4753 hash_func = md5_buffer;
4755 else if (EQ (algorithm, Qsha1))
4757 digest_size = SHA1_DIGEST_SIZE;
4758 hash_func = sha1_buffer;
4760 else if (EQ (algorithm, Qsha224))
4762 digest_size = SHA224_DIGEST_SIZE;
4763 hash_func = sha224_buffer;
4765 else if (EQ (algorithm, Qsha256))
4767 digest_size = SHA256_DIGEST_SIZE;
4768 hash_func = sha256_buffer;
4770 else if (EQ (algorithm, Qsha384))
4772 digest_size = SHA384_DIGEST_SIZE;
4773 hash_func = sha384_buffer;
4775 else if (EQ (algorithm, Qsha512))
4777 digest_size = SHA512_DIGEST_SIZE;
4778 hash_func = sha512_buffer;
4780 else
4781 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4783 /* allocate 2 x digest_size so that it can be re-used to hold the
4784 hexified value */
4785 digest = make_uninit_string (digest_size * 2);
4787 hash_func (SSDATA (object) + start_byte,
4788 end_byte - start_byte,
4789 SSDATA (digest));
4791 if (NILP (binary))
4793 unsigned char *p = SDATA (digest);
4794 for (i = digest_size - 1; i >= 0; i--)
4796 static char const hexdigit[16] = "0123456789abcdef";
4797 int p_i = p[i];
4798 p[2 * i] = hexdigit[p_i >> 4];
4799 p[2 * i + 1] = hexdigit[p_i & 0xf];
4801 return digest;
4803 else
4804 return make_unibyte_string (SSDATA (digest), digest_size);
4807 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4808 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4810 A message digest is a cryptographic checksum of a document, and the
4811 algorithm to calculate it is defined in RFC 1321.
4813 The two optional arguments START and END are character positions
4814 specifying for which part of OBJECT the message digest should be
4815 computed. If nil or omitted, the digest is computed for the whole
4816 OBJECT.
4818 The MD5 message digest is computed from the result of encoding the
4819 text in a coding system, not directly from the internal Emacs form of
4820 the text. The optional fourth argument CODING-SYSTEM specifies which
4821 coding system to encode the text with. It should be the same coding
4822 system that you used or will use when actually writing the text into a
4823 file.
4825 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4826 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4827 system would be chosen by default for writing this text into a file.
4829 If OBJECT is a string, the most preferred coding system (see the
4830 command `prefer-coding-system') is used.
4832 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4833 guesswork fails. Normally, an error is signaled in such case. */)
4834 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4836 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4839 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4840 doc: /* Return the secure hash of OBJECT, a buffer or string.
4841 ALGORITHM is a symbol specifying the hash to use:
4842 md5, sha1, sha224, sha256, sha384 or sha512.
4844 The two optional arguments START and END are positions specifying for
4845 which part of OBJECT to compute the hash. If nil or omitted, uses the
4846 whole OBJECT.
4848 If BINARY is non-nil, returns a string in binary form. */)
4849 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4851 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4854 void
4855 syms_of_fns (void)
4857 DEFSYM (Qmd5, "md5");
4858 DEFSYM (Qsha1, "sha1");
4859 DEFSYM (Qsha224, "sha224");
4860 DEFSYM (Qsha256, "sha256");
4861 DEFSYM (Qsha384, "sha384");
4862 DEFSYM (Qsha512, "sha512");
4864 /* Hash table stuff. */
4865 DEFSYM (Qhash_table_p, "hash-table-p");
4866 DEFSYM (Qeq, "eq");
4867 DEFSYM (Qeql, "eql");
4868 DEFSYM (Qequal, "equal");
4869 DEFSYM (QCtest, ":test");
4870 DEFSYM (QCsize, ":size");
4871 DEFSYM (QCrehash_size, ":rehash-size");
4872 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4873 DEFSYM (QCweakness, ":weakness");
4874 DEFSYM (Qkey, "key");
4875 DEFSYM (Qvalue, "value");
4876 DEFSYM (Qhash_table_test, "hash-table-test");
4877 DEFSYM (Qkey_or_value, "key-or-value");
4878 DEFSYM (Qkey_and_value, "key-and-value");
4880 defsubr (&Ssxhash);
4881 defsubr (&Smake_hash_table);
4882 defsubr (&Scopy_hash_table);
4883 defsubr (&Shash_table_count);
4884 defsubr (&Shash_table_rehash_size);
4885 defsubr (&Shash_table_rehash_threshold);
4886 defsubr (&Shash_table_size);
4887 defsubr (&Shash_table_test);
4888 defsubr (&Shash_table_weakness);
4889 defsubr (&Shash_table_p);
4890 defsubr (&Sclrhash);
4891 defsubr (&Sgethash);
4892 defsubr (&Sputhash);
4893 defsubr (&Sremhash);
4894 defsubr (&Smaphash);
4895 defsubr (&Sdefine_hash_table_test);
4897 DEFSYM (Qstring_lessp, "string-lessp");
4898 DEFSYM (Qprovide, "provide");
4899 DEFSYM (Qrequire, "require");
4900 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4901 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4902 DEFSYM (Qwidget_type, "widget-type");
4904 staticpro (&string_char_byte_cache_string);
4905 string_char_byte_cache_string = Qnil;
4907 require_nesting_list = Qnil;
4908 staticpro (&require_nesting_list);
4910 Fset (Qyes_or_no_p_history, Qnil);
4912 DEFVAR_LISP ("features", Vfeatures,
4913 doc: /* A list of symbols which are the features of the executing Emacs.
4914 Used by `featurep' and `require', and altered by `provide'. */);
4915 Vfeatures = list1 (intern_c_string ("emacs"));
4916 DEFSYM (Qsubfeatures, "subfeatures");
4917 DEFSYM (Qfuncall, "funcall");
4919 #ifdef HAVE_LANGINFO_CODESET
4920 DEFSYM (Qcodeset, "codeset");
4921 DEFSYM (Qdays, "days");
4922 DEFSYM (Qmonths, "months");
4923 DEFSYM (Qpaper, "paper");
4924 #endif /* HAVE_LANGINFO_CODESET */
4926 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4927 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4928 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4929 invoked by mouse clicks and mouse menu items.
4931 On some platforms, file selection dialogs are also enabled if this is
4932 non-nil. */);
4933 use_dialog_box = 1;
4935 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4936 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4937 This applies to commands from menus and tool bar buttons even when
4938 they are initiated from the keyboard. If `use-dialog-box' is nil,
4939 that disables the use of a file dialog, regardless of the value of
4940 this variable. */);
4941 use_file_dialog = 1;
4943 defsubr (&Sidentity);
4944 defsubr (&Srandom);
4945 defsubr (&Slength);
4946 defsubr (&Ssafe_length);
4947 defsubr (&Sstring_bytes);
4948 defsubr (&Sstring_equal);
4949 defsubr (&Scompare_strings);
4950 defsubr (&Sstring_lessp);
4951 defsubr (&Sappend);
4952 defsubr (&Sconcat);
4953 defsubr (&Svconcat);
4954 defsubr (&Scopy_sequence);
4955 defsubr (&Sstring_make_multibyte);
4956 defsubr (&Sstring_make_unibyte);
4957 defsubr (&Sstring_as_multibyte);
4958 defsubr (&Sstring_as_unibyte);
4959 defsubr (&Sstring_to_multibyte);
4960 defsubr (&Sstring_to_unibyte);
4961 defsubr (&Scopy_alist);
4962 defsubr (&Ssubstring);
4963 defsubr (&Ssubstring_no_properties);
4964 defsubr (&Snthcdr);
4965 defsubr (&Snth);
4966 defsubr (&Selt);
4967 defsubr (&Smember);
4968 defsubr (&Smemq);
4969 defsubr (&Smemql);
4970 defsubr (&Sassq);
4971 defsubr (&Sassoc);
4972 defsubr (&Srassq);
4973 defsubr (&Srassoc);
4974 defsubr (&Sdelq);
4975 defsubr (&Sdelete);
4976 defsubr (&Snreverse);
4977 defsubr (&Sreverse);
4978 defsubr (&Ssort);
4979 defsubr (&Splist_get);
4980 defsubr (&Sget);
4981 defsubr (&Splist_put);
4982 defsubr (&Sput);
4983 defsubr (&Slax_plist_get);
4984 defsubr (&Slax_plist_put);
4985 defsubr (&Seql);
4986 defsubr (&Sequal);
4987 defsubr (&Sequal_including_properties);
4988 defsubr (&Sfillarray);
4989 defsubr (&Sclear_string);
4990 defsubr (&Snconc);
4991 defsubr (&Smapcar);
4992 defsubr (&Smapc);
4993 defsubr (&Smapconcat);
4994 defsubr (&Syes_or_no_p);
4995 defsubr (&Sload_average);
4996 defsubr (&Sfeaturep);
4997 defsubr (&Srequire);
4998 defsubr (&Sprovide);
4999 defsubr (&Splist_member);
5000 defsubr (&Swidget_put);
5001 defsubr (&Swidget_get);
5002 defsubr (&Swidget_apply);
5003 defsubr (&Sbase64_encode_region);
5004 defsubr (&Sbase64_decode_region);
5005 defsubr (&Sbase64_encode_string);
5006 defsubr (&Sbase64_decode_string);
5007 defsubr (&Smd5);
5008 defsubr (&Ssecure_hash);
5009 defsubr (&Slocale_info);
5011 hashtest_eq.name = Qeq;
5012 hashtest_eq.user_hash_function = Qnil;
5013 hashtest_eq.user_cmp_function = Qnil;
5014 hashtest_eq.cmpfn = 0;
5015 hashtest_eq.hashfn = hashfn_eq;
5017 hashtest_eql.name = Qeql;
5018 hashtest_eql.user_hash_function = Qnil;
5019 hashtest_eql.user_cmp_function = Qnil;
5020 hashtest_eql.cmpfn = cmpfn_eql;
5021 hashtest_eql.hashfn = hashfn_eql;
5023 hashtest_equal.name = Qequal;
5024 hashtest_equal.user_hash_function = Qnil;
5025 hashtest_equal.user_cmp_function = Qnil;
5026 hashtest_equal.cmpfn = cmpfn_equal;
5027 hashtest_equal.hashfn = hashfn_equal;