1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
22 #include <limits.h> /* For CHAR_BIT. */
27 #ifdef HAVE_GTK_AND_PTHREAD
31 /* This file is part of the core Lisp implementation, and thus must
32 deal with the real data structures. If the Lisp implementation is
33 replaced, this file likely will not be used. */
35 #undef HIDE_LISP_IMPLEMENTATION
38 #include "intervals.h"
44 #include "blockinput.h"
45 #include "character.h"
46 #include "syssignal.h"
47 #include "termhooks.h" /* For struct terminal. */
50 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
51 memory. Can do this only if using gmalloc.c. */
53 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
54 #undef GC_MALLOC_CHECK
59 extern POINTER_TYPE
*sbrk ();
68 #ifdef DOUG_LEA_MALLOC
71 /* malloc.h #defines this as size_t, at least in glibc2. */
72 #ifndef __malloc_size_t
73 #define __malloc_size_t int
76 /* Specify maximum number of areas to mmap. It would be nice to use a
77 value that explicitly means "no limit". */
79 #define MMAP_MAX_AREAS 100000000
81 #else /* not DOUG_LEA_MALLOC */
83 /* The following come from gmalloc.c. */
85 #define __malloc_size_t size_t
86 extern __malloc_size_t _bytes_used
;
87 extern __malloc_size_t __malloc_extra_blocks
;
89 #endif /* not DOUG_LEA_MALLOC */
91 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
92 #ifdef HAVE_GTK_AND_PTHREAD
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
111 static pthread_mutex_t alloc_mutex
;
113 #define BLOCK_INPUT_ALLOC \
116 if (pthread_equal (pthread_self (), main_thread)) \
118 pthread_mutex_lock (&alloc_mutex); \
121 #define UNBLOCK_INPUT_ALLOC \
124 pthread_mutex_unlock (&alloc_mutex); \
125 if (pthread_equal (pthread_self (), main_thread)) \
130 #else /* ! defined HAVE_GTK_AND_PTHREAD */
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
135 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
136 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
138 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
139 to a struct Lisp_String. */
141 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
142 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
143 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
145 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
146 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
147 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
149 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
150 Be careful during GC, because S->size contains the mark bit for
153 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
155 /* Global variables. */
156 struct emacs_globals globals
;
158 /* Number of bytes of consing done since the last gc. */
160 EMACS_INT consing_since_gc
;
162 /* Similar minimum, computed from Vgc_cons_percentage. */
164 EMACS_INT gc_relative_threshold
;
166 /* Minimum number of bytes of consing since GC before next GC,
167 when memory is full. */
169 EMACS_INT memory_full_cons_threshold
;
171 /* Nonzero during GC. */
175 /* Nonzero means abort if try to GC.
176 This is for code which is written on the assumption that
177 no GC will happen, so as to verify that assumption. */
181 /* Number of live and free conses etc. */
183 static EMACS_INT total_conses
, total_markers
, total_symbols
, total_vector_size
;
184 static EMACS_INT total_free_conses
, total_free_markers
, total_free_symbols
;
185 static EMACS_INT total_free_floats
, total_floats
;
187 /* Points to memory space allocated as "spare", to be freed if we run
188 out of memory. We keep one large block, four cons-blocks, and
189 two string blocks. */
191 static char *spare_memory
[7];
193 /* Amount of spare memory to keep in large reserve block, or to see
194 whether this much is available when malloc fails on a larger request. */
196 #define SPARE_MEMORY (1 << 14)
198 /* Number of extra blocks malloc should get when it needs more core. */
200 static int malloc_hysteresis
;
202 /* Initialize it to a nonzero value to force it into data space
203 (rather than bss space). That way unexec will remap it into text
204 space (pure), on some systems. We have not implemented the
205 remapping on more recent systems because this is less important
206 nowadays than in the days of small memories and timesharing. */
208 #ifndef VIRT_ADDR_VARIES
211 EMACS_INT pure
[(PURESIZE
+ sizeof (EMACS_INT
) - 1) / sizeof (EMACS_INT
)] = {1,};
212 #define PUREBEG (char *) pure
214 /* Pointer to the pure area, and its size. */
216 static char *purebeg
;
217 static size_t pure_size
;
219 /* Number of bytes of pure storage used before pure storage overflowed.
220 If this is non-zero, this implies that an overflow occurred. */
222 static size_t pure_bytes_used_before_overflow
;
224 /* Value is non-zero if P points into pure space. */
226 #define PURE_POINTER_P(P) \
227 (((PNTR_COMPARISON_TYPE) (P) \
228 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
229 && ((PNTR_COMPARISON_TYPE) (P) \
230 >= (PNTR_COMPARISON_TYPE) purebeg))
232 /* Index in pure at which next pure Lisp object will be allocated.. */
234 static EMACS_INT pure_bytes_used_lisp
;
236 /* Number of bytes allocated for non-Lisp objects in pure storage. */
238 static EMACS_INT pure_bytes_used_non_lisp
;
240 /* If nonzero, this is a warning delivered by malloc and not yet
243 const char *pending_malloc_warning
;
245 /* Maximum amount of C stack to save when a GC happens. */
247 #ifndef MAX_SAVE_STACK
248 #define MAX_SAVE_STACK 16000
251 /* Buffer in which we save a copy of the C stack at each GC. */
253 #if MAX_SAVE_STACK > 0
254 static char *stack_copy
;
255 static size_t stack_copy_size
;
258 /* Non-zero means ignore malloc warnings. Set during initialization.
259 Currently not used. */
261 static int ignore_warnings
;
263 static Lisp_Object Qgc_cons_threshold
;
264 Lisp_Object Qchar_table_extra_slots
;
266 /* Hook run after GC has finished. */
268 static Lisp_Object Qpost_gc_hook
;
270 static void mark_buffer (Lisp_Object
);
271 static void mark_terminals (void);
272 static void gc_sweep (void);
273 static void mark_glyph_matrix (struct glyph_matrix
*);
274 static void mark_face_cache (struct face_cache
*);
276 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
277 static void refill_memory_reserve (void);
279 static struct Lisp_String
*allocate_string (void);
280 static void compact_small_strings (void);
281 static void free_large_strings (void);
282 static void sweep_strings (void);
283 static void free_misc (Lisp_Object
);
285 /* When scanning the C stack for live Lisp objects, Emacs keeps track
286 of what memory allocated via lisp_malloc is intended for what
287 purpose. This enumeration specifies the type of memory. */
298 /* We used to keep separate mem_types for subtypes of vectors such as
299 process, hash_table, frame, terminal, and window, but we never made
300 use of the distinction, so it only caused source-code complexity
301 and runtime slowdown. Minor but pointless. */
305 static POINTER_TYPE
*lisp_align_malloc (size_t, enum mem_type
);
306 static POINTER_TYPE
*lisp_malloc (size_t, enum mem_type
);
309 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
311 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
312 #include <stdio.h> /* For fprintf. */
315 /* A unique object in pure space used to make some Lisp objects
316 on free lists recognizable in O(1). */
318 static Lisp_Object Vdead
;
320 #ifdef GC_MALLOC_CHECK
322 enum mem_type allocated_mem_type
;
323 static int dont_register_blocks
;
325 #endif /* GC_MALLOC_CHECK */
327 /* A node in the red-black tree describing allocated memory containing
328 Lisp data. Each such block is recorded with its start and end
329 address when it is allocated, and removed from the tree when it
332 A red-black tree is a balanced binary tree with the following
335 1. Every node is either red or black.
336 2. Every leaf is black.
337 3. If a node is red, then both of its children are black.
338 4. Every simple path from a node to a descendant leaf contains
339 the same number of black nodes.
340 5. The root is always black.
342 When nodes are inserted into the tree, or deleted from the tree,
343 the tree is "fixed" so that these properties are always true.
345 A red-black tree with N internal nodes has height at most 2
346 log(N+1). Searches, insertions and deletions are done in O(log N).
347 Please see a text book about data structures for a detailed
348 description of red-black trees. Any book worth its salt should
353 /* Children of this node. These pointers are never NULL. When there
354 is no child, the value is MEM_NIL, which points to a dummy node. */
355 struct mem_node
*left
, *right
;
357 /* The parent of this node. In the root node, this is NULL. */
358 struct mem_node
*parent
;
360 /* Start and end of allocated region. */
364 enum {MEM_BLACK
, MEM_RED
} color
;
370 /* Base address of stack. Set in main. */
372 Lisp_Object
*stack_base
;
374 /* Root of the tree describing allocated Lisp memory. */
376 static struct mem_node
*mem_root
;
378 /* Lowest and highest known address in the heap. */
380 static void *min_heap_address
, *max_heap_address
;
382 /* Sentinel node of the tree. */
384 static struct mem_node mem_z
;
385 #define MEM_NIL &mem_z
387 static struct Lisp_Vector
*allocate_vectorlike (EMACS_INT
);
388 static void lisp_free (POINTER_TYPE
*);
389 static void mark_stack (void);
390 static int live_vector_p (struct mem_node
*, void *);
391 static int live_buffer_p (struct mem_node
*, void *);
392 static int live_string_p (struct mem_node
*, void *);
393 static int live_cons_p (struct mem_node
*, void *);
394 static int live_symbol_p (struct mem_node
*, void *);
395 static int live_float_p (struct mem_node
*, void *);
396 static int live_misc_p (struct mem_node
*, void *);
397 static void mark_maybe_object (Lisp_Object
);
398 static void mark_memory (void *, void *, int);
399 static void mem_init (void);
400 static struct mem_node
*mem_insert (void *, void *, enum mem_type
);
401 static void mem_insert_fixup (struct mem_node
*);
402 static void mem_rotate_left (struct mem_node
*);
403 static void mem_rotate_right (struct mem_node
*);
404 static void mem_delete (struct mem_node
*);
405 static void mem_delete_fixup (struct mem_node
*);
406 static inline struct mem_node
*mem_find (void *);
409 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
410 static void check_gcpros (void);
413 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
415 /* Recording what needs to be marked for gc. */
417 struct gcpro
*gcprolist
;
419 /* Addresses of staticpro'd variables. Initialize it to a nonzero
420 value; otherwise some compilers put it into BSS. */
422 #define NSTATICS 0x640
423 static Lisp_Object
*staticvec
[NSTATICS
] = {&Vpurify_flag
};
425 /* Index of next unused slot in staticvec. */
427 static int staticidx
= 0;
429 static POINTER_TYPE
*pure_alloc (size_t, int);
432 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
433 ALIGNMENT must be a power of 2. */
435 #define ALIGN(ptr, ALIGNMENT) \
436 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
437 & ~((ALIGNMENT) - 1)))
441 /************************************************************************
443 ************************************************************************/
445 /* Function malloc calls this if it finds we are near exhausting storage. */
448 malloc_warning (const char *str
)
450 pending_malloc_warning
= str
;
454 /* Display an already-pending malloc warning. */
457 display_malloc_warning (void)
459 call3 (intern ("display-warning"),
461 build_string (pending_malloc_warning
),
462 intern ("emergency"));
463 pending_malloc_warning
= 0;
466 /* Called if we can't allocate relocatable space for a buffer. */
469 buffer_memory_full (EMACS_INT nbytes
)
471 /* If buffers use the relocating allocator, no need to free
472 spare_memory, because we may have plenty of malloc space left
473 that we could get, and if we don't, the malloc that fails will
474 itself cause spare_memory to be freed. If buffers don't use the
475 relocating allocator, treat this like any other failing
479 memory_full (nbytes
);
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 xsignal (Qnil
, Vmemory_signal_data
);
488 #ifndef XMALLOC_OVERRUN_CHECK
489 #define XMALLOC_OVERRUN_CHECK_SIZE 0
492 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
493 and a 16 byte trailer around each block.
495 The header consists of 12 fixed bytes + a 4 byte integer contaning the
496 original block size, while the trailer consists of 16 fixed bytes.
498 The header is used to detect whether this block has been allocated
499 through these functions -- as it seems that some low-level libc
500 functions may bypass the malloc hooks.
504 #define XMALLOC_OVERRUN_CHECK_SIZE 16
506 static char xmalloc_overrun_check_header
[XMALLOC_OVERRUN_CHECK_SIZE
-4] =
507 { 0x9a, 0x9b, 0xae, 0xaf,
508 0xbf, 0xbe, 0xce, 0xcf,
509 0xea, 0xeb, 0xec, 0xed };
511 static char xmalloc_overrun_check_trailer
[XMALLOC_OVERRUN_CHECK_SIZE
] =
512 { 0xaa, 0xab, 0xac, 0xad,
513 0xba, 0xbb, 0xbc, 0xbd,
514 0xca, 0xcb, 0xcc, 0xcd,
515 0xda, 0xdb, 0xdc, 0xdd };
517 /* Macros to insert and extract the block size in the header. */
519 #define XMALLOC_PUT_SIZE(ptr, size) \
520 (ptr[-1] = (size & 0xff), \
521 ptr[-2] = ((size >> 8) & 0xff), \
522 ptr[-3] = ((size >> 16) & 0xff), \
523 ptr[-4] = ((size >> 24) & 0xff))
525 #define XMALLOC_GET_SIZE(ptr) \
526 (size_t)((unsigned)(ptr[-1]) | \
527 ((unsigned)(ptr[-2]) << 8) | \
528 ((unsigned)(ptr[-3]) << 16) | \
529 ((unsigned)(ptr[-4]) << 24))
532 /* The call depth in overrun_check functions. For example, this might happen:
534 overrun_check_malloc()
535 -> malloc -> (via hook)_-> emacs_blocked_malloc
536 -> overrun_check_malloc
537 call malloc (hooks are NULL, so real malloc is called).
538 malloc returns 10000.
539 add overhead, return 10016.
540 <- (back in overrun_check_malloc)
541 add overhead again, return 10032
542 xmalloc returns 10032.
547 overrun_check_free(10032)
549 free(10016) <- crash, because 10000 is the original pointer. */
551 static int check_depth
;
553 /* Like malloc, but wraps allocated block with header and trailer. */
555 static POINTER_TYPE
*
556 overrun_check_malloc (size_t size
)
558 register unsigned char *val
;
559 size_t overhead
= ++check_depth
== 1 ? XMALLOC_OVERRUN_CHECK_SIZE
*2 : 0;
561 val
= (unsigned char *) malloc (size
+ overhead
);
562 if (val
&& check_depth
== 1)
564 memcpy (val
, xmalloc_overrun_check_header
,
565 XMALLOC_OVERRUN_CHECK_SIZE
- 4);
566 val
+= XMALLOC_OVERRUN_CHECK_SIZE
;
567 XMALLOC_PUT_SIZE(val
, size
);
568 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
569 XMALLOC_OVERRUN_CHECK_SIZE
);
572 return (POINTER_TYPE
*)val
;
576 /* Like realloc, but checks old block for overrun, and wraps new block
577 with header and trailer. */
579 static POINTER_TYPE
*
580 overrun_check_realloc (POINTER_TYPE
*block
, size_t size
)
582 register unsigned char *val
= (unsigned char *) block
;
583 size_t overhead
= ++check_depth
== 1 ? XMALLOC_OVERRUN_CHECK_SIZE
*2 : 0;
587 && memcmp (xmalloc_overrun_check_header
,
588 val
- XMALLOC_OVERRUN_CHECK_SIZE
,
589 XMALLOC_OVERRUN_CHECK_SIZE
- 4) == 0)
591 size_t osize
= XMALLOC_GET_SIZE (val
);
592 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
593 XMALLOC_OVERRUN_CHECK_SIZE
))
595 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
596 val
-= XMALLOC_OVERRUN_CHECK_SIZE
;
597 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
600 val
= (unsigned char *) realloc ((POINTER_TYPE
*)val
, size
+ overhead
);
602 if (val
&& check_depth
== 1)
604 memcpy (val
, xmalloc_overrun_check_header
,
605 XMALLOC_OVERRUN_CHECK_SIZE
- 4);
606 val
+= XMALLOC_OVERRUN_CHECK_SIZE
;
607 XMALLOC_PUT_SIZE(val
, size
);
608 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
609 XMALLOC_OVERRUN_CHECK_SIZE
);
612 return (POINTER_TYPE
*)val
;
615 /* Like free, but checks block for overrun. */
618 overrun_check_free (POINTER_TYPE
*block
)
620 unsigned char *val
= (unsigned char *) block
;
625 && memcmp (xmalloc_overrun_check_header
,
626 val
- XMALLOC_OVERRUN_CHECK_SIZE
,
627 XMALLOC_OVERRUN_CHECK_SIZE
- 4) == 0)
629 size_t osize
= XMALLOC_GET_SIZE (val
);
630 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
631 XMALLOC_OVERRUN_CHECK_SIZE
))
633 #ifdef XMALLOC_CLEAR_FREE_MEMORY
634 val
-= XMALLOC_OVERRUN_CHECK_SIZE
;
635 memset (val
, 0xff, osize
+ XMALLOC_OVERRUN_CHECK_SIZE
*2);
637 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
638 val
-= XMALLOC_OVERRUN_CHECK_SIZE
;
639 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
650 #define malloc overrun_check_malloc
651 #define realloc overrun_check_realloc
652 #define free overrun_check_free
656 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
657 there's no need to block input around malloc. */
658 #define MALLOC_BLOCK_INPUT ((void)0)
659 #define MALLOC_UNBLOCK_INPUT ((void)0)
661 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
662 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
665 /* Like malloc but check for no memory and block interrupt input.. */
668 xmalloc (size_t size
)
670 register POINTER_TYPE
*val
;
673 val
= (POINTER_TYPE
*) malloc (size
);
674 MALLOC_UNBLOCK_INPUT
;
682 /* Like realloc but check for no memory and block interrupt input.. */
685 xrealloc (POINTER_TYPE
*block
, size_t size
)
687 register POINTER_TYPE
*val
;
690 /* We must call malloc explicitly when BLOCK is 0, since some
691 reallocs don't do this. */
693 val
= (POINTER_TYPE
*) malloc (size
);
695 val
= (POINTER_TYPE
*) realloc (block
, size
);
696 MALLOC_UNBLOCK_INPUT
;
704 /* Like free but block interrupt input. */
707 xfree (POINTER_TYPE
*block
)
713 MALLOC_UNBLOCK_INPUT
;
714 /* We don't call refill_memory_reserve here
715 because that duplicates doing so in emacs_blocked_free
716 and the criterion should go there. */
720 /* Like strdup, but uses xmalloc. */
723 xstrdup (const char *s
)
725 size_t len
= strlen (s
) + 1;
726 char *p
= (char *) xmalloc (len
);
732 /* Unwind for SAFE_ALLOCA */
735 safe_alloca_unwind (Lisp_Object arg
)
737 register struct Lisp_Save_Value
*p
= XSAVE_VALUE (arg
);
747 /* Like malloc but used for allocating Lisp data. NBYTES is the
748 number of bytes to allocate, TYPE describes the intended use of the
749 allcated memory block (for strings, for conses, ...). */
752 static void *lisp_malloc_loser
;
755 static POINTER_TYPE
*
756 lisp_malloc (size_t nbytes
, enum mem_type type
)
762 #ifdef GC_MALLOC_CHECK
763 allocated_mem_type
= type
;
766 val
= (void *) malloc (nbytes
);
769 /* If the memory just allocated cannot be addressed thru a Lisp
770 object's pointer, and it needs to be,
771 that's equivalent to running out of memory. */
772 if (val
&& type
!= MEM_TYPE_NON_LISP
)
775 XSETCONS (tem
, (char *) val
+ nbytes
- 1);
776 if ((char *) XCONS (tem
) != (char *) val
+ nbytes
- 1)
778 lisp_malloc_loser
= val
;
785 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
786 if (val
&& type
!= MEM_TYPE_NON_LISP
)
787 mem_insert (val
, (char *) val
+ nbytes
, type
);
790 MALLOC_UNBLOCK_INPUT
;
792 memory_full (nbytes
);
796 /* Free BLOCK. This must be called to free memory allocated with a
797 call to lisp_malloc. */
800 lisp_free (POINTER_TYPE
*block
)
804 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
805 mem_delete (mem_find (block
));
807 MALLOC_UNBLOCK_INPUT
;
810 /* Allocation of aligned blocks of memory to store Lisp data. */
811 /* The entry point is lisp_align_malloc which returns blocks of at most */
812 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
814 /* Use posix_memalloc if the system has it and we're using the system's
815 malloc (because our gmalloc.c routines don't have posix_memalign although
816 its memalloc could be used). */
817 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
818 #define USE_POSIX_MEMALIGN 1
821 /* BLOCK_ALIGN has to be a power of 2. */
822 #define BLOCK_ALIGN (1 << 10)
824 /* Padding to leave at the end of a malloc'd block. This is to give
825 malloc a chance to minimize the amount of memory wasted to alignment.
826 It should be tuned to the particular malloc library used.
827 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
828 posix_memalign on the other hand would ideally prefer a value of 4
829 because otherwise, there's 1020 bytes wasted between each ablocks.
830 In Emacs, testing shows that those 1020 can most of the time be
831 efficiently used by malloc to place other objects, so a value of 0 can
832 still preferable unless you have a lot of aligned blocks and virtually
834 #define BLOCK_PADDING 0
835 #define BLOCK_BYTES \
836 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
838 /* Internal data structures and constants. */
840 #define ABLOCKS_SIZE 16
842 /* An aligned block of memory. */
847 char payload
[BLOCK_BYTES
];
848 struct ablock
*next_free
;
850 /* `abase' is the aligned base of the ablocks. */
851 /* It is overloaded to hold the virtual `busy' field that counts
852 the number of used ablock in the parent ablocks.
853 The first ablock has the `busy' field, the others have the `abase'
854 field. To tell the difference, we assume that pointers will have
855 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
856 is used to tell whether the real base of the parent ablocks is `abase'
857 (if not, the word before the first ablock holds a pointer to the
859 struct ablocks
*abase
;
860 /* The padding of all but the last ablock is unused. The padding of
861 the last ablock in an ablocks is not allocated. */
863 char padding
[BLOCK_PADDING
];
867 /* A bunch of consecutive aligned blocks. */
870 struct ablock blocks
[ABLOCKS_SIZE
];
873 /* Size of the block requested from malloc or memalign. */
874 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
876 #define ABLOCK_ABASE(block) \
877 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
878 ? (struct ablocks *)(block) \
881 /* Virtual `busy' field. */
882 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
884 /* Pointer to the (not necessarily aligned) malloc block. */
885 #ifdef USE_POSIX_MEMALIGN
886 #define ABLOCKS_BASE(abase) (abase)
888 #define ABLOCKS_BASE(abase) \
889 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
892 /* The list of free ablock. */
893 static struct ablock
*free_ablock
;
895 /* Allocate an aligned block of nbytes.
896 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
897 smaller or equal to BLOCK_BYTES. */
898 static POINTER_TYPE
*
899 lisp_align_malloc (size_t nbytes
, enum mem_type type
)
902 struct ablocks
*abase
;
904 eassert (nbytes
<= BLOCK_BYTES
);
908 #ifdef GC_MALLOC_CHECK
909 allocated_mem_type
= type
;
915 intptr_t aligned
; /* int gets warning casting to 64-bit pointer. */
917 #ifdef DOUG_LEA_MALLOC
918 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
919 because mapped region contents are not preserved in
921 mallopt (M_MMAP_MAX
, 0);
924 #ifdef USE_POSIX_MEMALIGN
926 int err
= posix_memalign (&base
, BLOCK_ALIGN
, ABLOCKS_BYTES
);
932 base
= malloc (ABLOCKS_BYTES
);
933 abase
= ALIGN (base
, BLOCK_ALIGN
);
938 MALLOC_UNBLOCK_INPUT
;
939 memory_full (ABLOCKS_BYTES
);
942 aligned
= (base
== abase
);
944 ((void**)abase
)[-1] = base
;
946 #ifdef DOUG_LEA_MALLOC
947 /* Back to a reasonable maximum of mmap'ed areas. */
948 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
952 /* If the memory just allocated cannot be addressed thru a Lisp
953 object's pointer, and it needs to be, that's equivalent to
954 running out of memory. */
955 if (type
!= MEM_TYPE_NON_LISP
)
958 char *end
= (char *) base
+ ABLOCKS_BYTES
- 1;
960 if ((char *) XCONS (tem
) != end
)
962 lisp_malloc_loser
= base
;
964 MALLOC_UNBLOCK_INPUT
;
965 memory_full (SIZE_MAX
);
970 /* Initialize the blocks and put them on the free list.
971 Is `base' was not properly aligned, we can't use the last block. */
972 for (i
= 0; i
< (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1); i
++)
974 abase
->blocks
[i
].abase
= abase
;
975 abase
->blocks
[i
].x
.next_free
= free_ablock
;
976 free_ablock
= &abase
->blocks
[i
];
978 ABLOCKS_BUSY (abase
) = (struct ablocks
*) aligned
;
980 eassert (0 == ((uintptr_t) abase
) % BLOCK_ALIGN
);
981 eassert (ABLOCK_ABASE (&abase
->blocks
[3]) == abase
); /* 3 is arbitrary */
982 eassert (ABLOCK_ABASE (&abase
->blocks
[0]) == abase
);
983 eassert (ABLOCKS_BASE (abase
) == base
);
984 eassert (aligned
== (intptr_t) ABLOCKS_BUSY (abase
));
987 abase
= ABLOCK_ABASE (free_ablock
);
988 ABLOCKS_BUSY (abase
) =
989 (struct ablocks
*) (2 + (intptr_t) ABLOCKS_BUSY (abase
));
991 free_ablock
= free_ablock
->x
.next_free
;
993 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
994 if (type
!= MEM_TYPE_NON_LISP
)
995 mem_insert (val
, (char *) val
+ nbytes
, type
);
998 MALLOC_UNBLOCK_INPUT
;
1000 eassert (0 == ((uintptr_t) val
) % BLOCK_ALIGN
);
1005 lisp_align_free (POINTER_TYPE
*block
)
1007 struct ablock
*ablock
= block
;
1008 struct ablocks
*abase
= ABLOCK_ABASE (ablock
);
1011 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1012 mem_delete (mem_find (block
));
1014 /* Put on free list. */
1015 ablock
->x
.next_free
= free_ablock
;
1016 free_ablock
= ablock
;
1017 /* Update busy count. */
1018 ABLOCKS_BUSY (abase
) =
1019 (struct ablocks
*) (-2 + (intptr_t) ABLOCKS_BUSY (abase
));
1021 if (2 > (intptr_t) ABLOCKS_BUSY (abase
))
1022 { /* All the blocks are free. */
1023 int i
= 0, aligned
= (intptr_t) ABLOCKS_BUSY (abase
);
1024 struct ablock
**tem
= &free_ablock
;
1025 struct ablock
*atop
= &abase
->blocks
[aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1];
1029 if (*tem
>= (struct ablock
*) abase
&& *tem
< atop
)
1032 *tem
= (*tem
)->x
.next_free
;
1035 tem
= &(*tem
)->x
.next_free
;
1037 eassert ((aligned
& 1) == aligned
);
1038 eassert (i
== (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1));
1039 #ifdef USE_POSIX_MEMALIGN
1040 eassert ((uintptr_t) ABLOCKS_BASE (abase
) % BLOCK_ALIGN
== 0);
1042 free (ABLOCKS_BASE (abase
));
1044 MALLOC_UNBLOCK_INPUT
;
1047 /* Return a new buffer structure allocated from the heap with
1048 a call to lisp_malloc. */
1051 allocate_buffer (void)
1054 = (struct buffer
*) lisp_malloc (sizeof (struct buffer
),
1056 XSETPVECTYPESIZE (b
, PVEC_BUFFER
,
1057 ((sizeof (struct buffer
) + sizeof (EMACS_INT
) - 1)
1058 / sizeof (EMACS_INT
)));
1063 #ifndef SYSTEM_MALLOC
1065 /* Arranging to disable input signals while we're in malloc.
1067 This only works with GNU malloc. To help out systems which can't
1068 use GNU malloc, all the calls to malloc, realloc, and free
1069 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1070 pair; unfortunately, we have no idea what C library functions
1071 might call malloc, so we can't really protect them unless you're
1072 using GNU malloc. Fortunately, most of the major operating systems
1073 can use GNU malloc. */
1076 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1077 there's no need to block input around malloc. */
1079 #ifndef DOUG_LEA_MALLOC
1080 extern void * (*__malloc_hook
) (size_t, const void *);
1081 extern void * (*__realloc_hook
) (void *, size_t, const void *);
1082 extern void (*__free_hook
) (void *, const void *);
1083 /* Else declared in malloc.h, perhaps with an extra arg. */
1084 #endif /* DOUG_LEA_MALLOC */
1085 static void * (*old_malloc_hook
) (size_t, const void *);
1086 static void * (*old_realloc_hook
) (void *, size_t, const void*);
1087 static void (*old_free_hook
) (void*, const void*);
1089 #ifdef DOUG_LEA_MALLOC
1090 # define BYTES_USED (mallinfo ().uordblks)
1092 # define BYTES_USED _bytes_used
1095 static __malloc_size_t bytes_used_when_reconsidered
;
1097 /* Value of _bytes_used, when spare_memory was freed. */
1099 static __malloc_size_t bytes_used_when_full
;
1101 /* This function is used as the hook for free to call. */
1104 emacs_blocked_free (void *ptr
, const void *ptr2
)
1108 #ifdef GC_MALLOC_CHECK
1114 if (m
== MEM_NIL
|| m
->start
!= ptr
)
1117 "Freeing `%p' which wasn't allocated with malloc\n", ptr
);
1122 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1126 #endif /* GC_MALLOC_CHECK */
1128 __free_hook
= old_free_hook
;
1131 /* If we released our reserve (due to running out of memory),
1132 and we have a fair amount free once again,
1133 try to set aside another reserve in case we run out once more. */
1134 if (! NILP (Vmemory_full
)
1135 /* Verify there is enough space that even with the malloc
1136 hysteresis this call won't run out again.
1137 The code here is correct as long as SPARE_MEMORY
1138 is substantially larger than the block size malloc uses. */
1139 && (bytes_used_when_full
1140 > ((bytes_used_when_reconsidered
= BYTES_USED
)
1141 + max (malloc_hysteresis
, 4) * SPARE_MEMORY
)))
1142 refill_memory_reserve ();
1144 __free_hook
= emacs_blocked_free
;
1145 UNBLOCK_INPUT_ALLOC
;
1149 /* This function is the malloc hook that Emacs uses. */
1152 emacs_blocked_malloc (size_t size
, const void *ptr
)
1157 __malloc_hook
= old_malloc_hook
;
1158 #ifdef DOUG_LEA_MALLOC
1159 /* Segfaults on my system. --lorentey */
1160 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1162 __malloc_extra_blocks
= malloc_hysteresis
;
1165 value
= (void *) malloc (size
);
1167 #ifdef GC_MALLOC_CHECK
1169 struct mem_node
*m
= mem_find (value
);
1172 fprintf (stderr
, "Malloc returned %p which is already in use\n",
1174 fprintf (stderr
, "Region in use is %p...%p, %u bytes, type %d\n",
1175 m
->start
, m
->end
, (char *) m
->end
- (char *) m
->start
,
1180 if (!dont_register_blocks
)
1182 mem_insert (value
, (char *) value
+ max (1, size
), allocated_mem_type
);
1183 allocated_mem_type
= MEM_TYPE_NON_LISP
;
1186 #endif /* GC_MALLOC_CHECK */
1188 __malloc_hook
= emacs_blocked_malloc
;
1189 UNBLOCK_INPUT_ALLOC
;
1191 /* fprintf (stderr, "%p malloc\n", value); */
1196 /* This function is the realloc hook that Emacs uses. */
1199 emacs_blocked_realloc (void *ptr
, size_t size
, const void *ptr2
)
1204 __realloc_hook
= old_realloc_hook
;
1206 #ifdef GC_MALLOC_CHECK
1209 struct mem_node
*m
= mem_find (ptr
);
1210 if (m
== MEM_NIL
|| m
->start
!= ptr
)
1213 "Realloc of %p which wasn't allocated with malloc\n",
1221 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1223 /* Prevent malloc from registering blocks. */
1224 dont_register_blocks
= 1;
1225 #endif /* GC_MALLOC_CHECK */
1227 value
= (void *) realloc (ptr
, size
);
1229 #ifdef GC_MALLOC_CHECK
1230 dont_register_blocks
= 0;
1233 struct mem_node
*m
= mem_find (value
);
1236 fprintf (stderr
, "Realloc returns memory that is already in use\n");
1240 /* Can't handle zero size regions in the red-black tree. */
1241 mem_insert (value
, (char *) value
+ max (size
, 1), MEM_TYPE_NON_LISP
);
1244 /* fprintf (stderr, "%p <- realloc\n", value); */
1245 #endif /* GC_MALLOC_CHECK */
1247 __realloc_hook
= emacs_blocked_realloc
;
1248 UNBLOCK_INPUT_ALLOC
;
1254 #ifdef HAVE_GTK_AND_PTHREAD
1255 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1256 normal malloc. Some thread implementations need this as they call
1257 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1258 calls malloc because it is the first call, and we have an endless loop. */
1261 reset_malloc_hooks ()
1263 __free_hook
= old_free_hook
;
1264 __malloc_hook
= old_malloc_hook
;
1265 __realloc_hook
= old_realloc_hook
;
1267 #endif /* HAVE_GTK_AND_PTHREAD */
1270 /* Called from main to set up malloc to use our hooks. */
1273 uninterrupt_malloc (void)
1275 #ifdef HAVE_GTK_AND_PTHREAD
1276 #ifdef DOUG_LEA_MALLOC
1277 pthread_mutexattr_t attr
;
1279 /* GLIBC has a faster way to do this, but lets keep it portable.
1280 This is according to the Single UNIX Specification. */
1281 pthread_mutexattr_init (&attr
);
1282 pthread_mutexattr_settype (&attr
, PTHREAD_MUTEX_RECURSIVE
);
1283 pthread_mutex_init (&alloc_mutex
, &attr
);
1284 #else /* !DOUG_LEA_MALLOC */
1285 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1286 and the bundled gmalloc.c doesn't require it. */
1287 pthread_mutex_init (&alloc_mutex
, NULL
);
1288 #endif /* !DOUG_LEA_MALLOC */
1289 #endif /* HAVE_GTK_AND_PTHREAD */
1291 if (__free_hook
!= emacs_blocked_free
)
1292 old_free_hook
= __free_hook
;
1293 __free_hook
= emacs_blocked_free
;
1295 if (__malloc_hook
!= emacs_blocked_malloc
)
1296 old_malloc_hook
= __malloc_hook
;
1297 __malloc_hook
= emacs_blocked_malloc
;
1299 if (__realloc_hook
!= emacs_blocked_realloc
)
1300 old_realloc_hook
= __realloc_hook
;
1301 __realloc_hook
= emacs_blocked_realloc
;
1304 #endif /* not SYNC_INPUT */
1305 #endif /* not SYSTEM_MALLOC */
1309 /***********************************************************************
1311 ***********************************************************************/
1313 /* Number of intervals allocated in an interval_block structure.
1314 The 1020 is 1024 minus malloc overhead. */
1316 #define INTERVAL_BLOCK_SIZE \
1317 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1319 /* Intervals are allocated in chunks in form of an interval_block
1322 struct interval_block
1324 /* Place `intervals' first, to preserve alignment. */
1325 struct interval intervals
[INTERVAL_BLOCK_SIZE
];
1326 struct interval_block
*next
;
1329 /* Current interval block. Its `next' pointer points to older
1332 static struct interval_block
*interval_block
;
1334 /* Index in interval_block above of the next unused interval
1337 static int interval_block_index
;
1339 /* Number of free and live intervals. */
1341 static EMACS_INT total_free_intervals
, total_intervals
;
1343 /* List of free intervals. */
1345 static INTERVAL interval_free_list
;
1348 /* Initialize interval allocation. */
1351 init_intervals (void)
1353 interval_block
= NULL
;
1354 interval_block_index
= INTERVAL_BLOCK_SIZE
;
1355 interval_free_list
= 0;
1359 /* Return a new interval. */
1362 make_interval (void)
1366 /* eassert (!handling_signal); */
1370 if (interval_free_list
)
1372 val
= interval_free_list
;
1373 interval_free_list
= INTERVAL_PARENT (interval_free_list
);
1377 if (interval_block_index
== INTERVAL_BLOCK_SIZE
)
1379 register struct interval_block
*newi
;
1381 newi
= (struct interval_block
*) lisp_malloc (sizeof *newi
,
1384 newi
->next
= interval_block
;
1385 interval_block
= newi
;
1386 interval_block_index
= 0;
1388 val
= &interval_block
->intervals
[interval_block_index
++];
1391 MALLOC_UNBLOCK_INPUT
;
1393 consing_since_gc
+= sizeof (struct interval
);
1395 RESET_INTERVAL (val
);
1401 /* Mark Lisp objects in interval I. */
1404 mark_interval (register INTERVAL i
, Lisp_Object dummy
)
1406 eassert (!i
->gcmarkbit
); /* Intervals are never shared. */
1408 mark_object (i
->plist
);
1412 /* Mark the interval tree rooted in TREE. Don't call this directly;
1413 use the macro MARK_INTERVAL_TREE instead. */
1416 mark_interval_tree (register INTERVAL tree
)
1418 /* No need to test if this tree has been marked already; this
1419 function is always called through the MARK_INTERVAL_TREE macro,
1420 which takes care of that. */
1422 traverse_intervals_noorder (tree
, mark_interval
, Qnil
);
1426 /* Mark the interval tree rooted in I. */
1428 #define MARK_INTERVAL_TREE(i) \
1430 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1431 mark_interval_tree (i); \
1435 #define UNMARK_BALANCE_INTERVALS(i) \
1437 if (! NULL_INTERVAL_P (i)) \
1438 (i) = balance_intervals (i); \
1442 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1443 can't create number objects in macros. */
1446 make_number (EMACS_INT n
)
1450 obj
.s
.type
= Lisp_Int
;
1455 /***********************************************************************
1457 ***********************************************************************/
1459 /* Lisp_Strings are allocated in string_block structures. When a new
1460 string_block is allocated, all the Lisp_Strings it contains are
1461 added to a free-list string_free_list. When a new Lisp_String is
1462 needed, it is taken from that list. During the sweep phase of GC,
1463 string_blocks that are entirely free are freed, except two which
1466 String data is allocated from sblock structures. Strings larger
1467 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1468 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1470 Sblocks consist internally of sdata structures, one for each
1471 Lisp_String. The sdata structure points to the Lisp_String it
1472 belongs to. The Lisp_String points back to the `u.data' member of
1473 its sdata structure.
1475 When a Lisp_String is freed during GC, it is put back on
1476 string_free_list, and its `data' member and its sdata's `string'
1477 pointer is set to null. The size of the string is recorded in the
1478 `u.nbytes' member of the sdata. So, sdata structures that are no
1479 longer used, can be easily recognized, and it's easy to compact the
1480 sblocks of small strings which we do in compact_small_strings. */
1482 /* Size in bytes of an sblock structure used for small strings. This
1483 is 8192 minus malloc overhead. */
1485 #define SBLOCK_SIZE 8188
1487 /* Strings larger than this are considered large strings. String data
1488 for large strings is allocated from individual sblocks. */
1490 #define LARGE_STRING_BYTES 1024
1492 /* Structure describing string memory sub-allocated from an sblock.
1493 This is where the contents of Lisp strings are stored. */
1497 /* Back-pointer to the string this sdata belongs to. If null, this
1498 structure is free, and the NBYTES member of the union below
1499 contains the string's byte size (the same value that STRING_BYTES
1500 would return if STRING were non-null). If non-null, STRING_BYTES
1501 (STRING) is the size of the data, and DATA contains the string's
1503 struct Lisp_String
*string
;
1505 #ifdef GC_CHECK_STRING_BYTES
1508 unsigned char data
[1];
1510 #define SDATA_NBYTES(S) (S)->nbytes
1511 #define SDATA_DATA(S) (S)->data
1512 #define SDATA_SELECTOR(member) member
1514 #else /* not GC_CHECK_STRING_BYTES */
1518 /* When STRING is non-null. */
1519 unsigned char data
[1];
1521 /* When STRING is null. */
1525 #define SDATA_NBYTES(S) (S)->u.nbytes
1526 #define SDATA_DATA(S) (S)->u.data
1527 #define SDATA_SELECTOR(member) u.member
1529 #endif /* not GC_CHECK_STRING_BYTES */
1531 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1535 /* Structure describing a block of memory which is sub-allocated to
1536 obtain string data memory for strings. Blocks for small strings
1537 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1538 as large as needed. */
1543 struct sblock
*next
;
1545 /* Pointer to the next free sdata block. This points past the end
1546 of the sblock if there isn't any space left in this block. */
1547 struct sdata
*next_free
;
1549 /* Start of data. */
1550 struct sdata first_data
;
1553 /* Number of Lisp strings in a string_block structure. The 1020 is
1554 1024 minus malloc overhead. */
1556 #define STRING_BLOCK_SIZE \
1557 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1559 /* Structure describing a block from which Lisp_String structures
1564 /* Place `strings' first, to preserve alignment. */
1565 struct Lisp_String strings
[STRING_BLOCK_SIZE
];
1566 struct string_block
*next
;
1569 /* Head and tail of the list of sblock structures holding Lisp string
1570 data. We always allocate from current_sblock. The NEXT pointers
1571 in the sblock structures go from oldest_sblock to current_sblock. */
1573 static struct sblock
*oldest_sblock
, *current_sblock
;
1575 /* List of sblocks for large strings. */
1577 static struct sblock
*large_sblocks
;
1579 /* List of string_block structures. */
1581 static struct string_block
*string_blocks
;
1583 /* Free-list of Lisp_Strings. */
1585 static struct Lisp_String
*string_free_list
;
1587 /* Number of live and free Lisp_Strings. */
1589 static EMACS_INT total_strings
, total_free_strings
;
1591 /* Number of bytes used by live strings. */
1593 static EMACS_INT total_string_size
;
1595 /* Given a pointer to a Lisp_String S which is on the free-list
1596 string_free_list, return a pointer to its successor in the
1599 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1601 /* Return a pointer to the sdata structure belonging to Lisp string S.
1602 S must be live, i.e. S->data must not be null. S->data is actually
1603 a pointer to the `u.data' member of its sdata structure; the
1604 structure starts at a constant offset in front of that. */
1606 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1609 #ifdef GC_CHECK_STRING_OVERRUN
1611 /* We check for overrun in string data blocks by appending a small
1612 "cookie" after each allocated string data block, and check for the
1613 presence of this cookie during GC. */
1615 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1616 static char const string_overrun_cookie
[GC_STRING_OVERRUN_COOKIE_SIZE
] =
1617 { '\xde', '\xad', '\xbe', '\xef' };
1620 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1623 /* Value is the size of an sdata structure large enough to hold NBYTES
1624 bytes of string data. The value returned includes a terminating
1625 NUL byte, the size of the sdata structure, and padding. */
1627 #ifdef GC_CHECK_STRING_BYTES
1629 #define SDATA_SIZE(NBYTES) \
1630 ((SDATA_DATA_OFFSET \
1632 + sizeof (EMACS_INT) - 1) \
1633 & ~(sizeof (EMACS_INT) - 1))
1635 #else /* not GC_CHECK_STRING_BYTES */
1637 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1638 less than the size of that member. The 'max' is not needed when
1639 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1640 alignment code reserves enough space. */
1642 #define SDATA_SIZE(NBYTES) \
1643 ((SDATA_DATA_OFFSET \
1644 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1646 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1648 + sizeof (EMACS_INT) - 1) \
1649 & ~(sizeof (EMACS_INT) - 1))
1651 #endif /* not GC_CHECK_STRING_BYTES */
1653 /* Extra bytes to allocate for each string. */
1655 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1657 /* Exact bound on the number of bytes in a string, not counting the
1658 terminating null. A string cannot contain more bytes than
1659 STRING_BYTES_BOUND, nor can it be so long that the size_t
1660 arithmetic in allocate_string_data would overflow while it is
1661 calculating a value to be passed to malloc. */
1662 #define STRING_BYTES_MAX \
1663 min (STRING_BYTES_BOUND, \
1664 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_SIZE - GC_STRING_EXTRA \
1665 - offsetof (struct sblock, first_data) \
1666 - SDATA_DATA_OFFSET) \
1667 & ~(sizeof (EMACS_INT) - 1)))
1669 /* Initialize string allocation. Called from init_alloc_once. */
1674 total_strings
= total_free_strings
= total_string_size
= 0;
1675 oldest_sblock
= current_sblock
= large_sblocks
= NULL
;
1676 string_blocks
= NULL
;
1677 string_free_list
= NULL
;
1678 empty_unibyte_string
= make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string
= make_pure_string ("", 0, 0, 1);
1683 #ifdef GC_CHECK_STRING_BYTES
1685 static int check_string_bytes_count
;
1687 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1690 /* Like GC_STRING_BYTES, but with debugging check. */
1693 string_bytes (struct Lisp_String
*s
)
1696 (s
->size_byte
< 0 ? s
->size
& ~ARRAY_MARK_FLAG
: s
->size_byte
);
1698 if (!PURE_POINTER_P (s
)
1700 && nbytes
!= SDATA_NBYTES (SDATA_OF_STRING (s
)))
1705 /* Check validity of Lisp strings' string_bytes member in B. */
1708 check_sblock (struct sblock
*b
)
1710 struct sdata
*from
, *end
, *from_end
;
1714 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
1716 /* Compute the next FROM here because copying below may
1717 overwrite data we need to compute it. */
1720 /* Check that the string size recorded in the string is the
1721 same as the one recorded in the sdata structure. */
1723 CHECK_STRING_BYTES (from
->string
);
1726 nbytes
= GC_STRING_BYTES (from
->string
);
1728 nbytes
= SDATA_NBYTES (from
);
1730 nbytes
= SDATA_SIZE (nbytes
);
1731 from_end
= (struct sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1736 /* Check validity of Lisp strings' string_bytes member. ALL_P
1737 non-zero means check all strings, otherwise check only most
1738 recently allocated strings. Used for hunting a bug. */
1741 check_string_bytes (int all_p
)
1747 for (b
= large_sblocks
; b
; b
= b
->next
)
1749 struct Lisp_String
*s
= b
->first_data
.string
;
1751 CHECK_STRING_BYTES (s
);
1754 for (b
= oldest_sblock
; b
; b
= b
->next
)
1758 check_sblock (current_sblock
);
1761 #endif /* GC_CHECK_STRING_BYTES */
1763 #ifdef GC_CHECK_STRING_FREE_LIST
1765 /* Walk through the string free list looking for bogus next pointers.
1766 This may catch buffer overrun from a previous string. */
1769 check_string_free_list (void)
1771 struct Lisp_String
*s
;
1773 /* Pop a Lisp_String off the free-list. */
1774 s
= string_free_list
;
1777 if ((uintptr_t) s
< 1024)
1779 s
= NEXT_FREE_LISP_STRING (s
);
1783 #define check_string_free_list()
1786 /* Return a new Lisp_String. */
1788 static struct Lisp_String
*
1789 allocate_string (void)
1791 struct Lisp_String
*s
;
1793 /* eassert (!handling_signal); */
1797 /* If the free-list is empty, allocate a new string_block, and
1798 add all the Lisp_Strings in it to the free-list. */
1799 if (string_free_list
== NULL
)
1801 struct string_block
*b
;
1804 b
= (struct string_block
*) lisp_malloc (sizeof *b
, MEM_TYPE_STRING
);
1805 memset (b
, 0, sizeof *b
);
1806 b
->next
= string_blocks
;
1809 for (i
= STRING_BLOCK_SIZE
- 1; i
>= 0; --i
)
1812 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1813 string_free_list
= s
;
1816 total_free_strings
+= STRING_BLOCK_SIZE
;
1819 check_string_free_list ();
1821 /* Pop a Lisp_String off the free-list. */
1822 s
= string_free_list
;
1823 string_free_list
= NEXT_FREE_LISP_STRING (s
);
1825 MALLOC_UNBLOCK_INPUT
;
1827 /* Probably not strictly necessary, but play it safe. */
1828 memset (s
, 0, sizeof *s
);
1830 --total_free_strings
;
1833 consing_since_gc
+= sizeof *s
;
1835 #ifdef GC_CHECK_STRING_BYTES
1836 if (!noninteractive
)
1838 if (++check_string_bytes_count
== 200)
1840 check_string_bytes_count
= 0;
1841 check_string_bytes (1);
1844 check_string_bytes (0);
1846 #endif /* GC_CHECK_STRING_BYTES */
1852 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1853 plus a NUL byte at the end. Allocate an sdata structure for S, and
1854 set S->data to its `u.data' member. Store a NUL byte at the end of
1855 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1856 S->data if it was initially non-null. */
1859 allocate_string_data (struct Lisp_String
*s
,
1860 EMACS_INT nchars
, EMACS_INT nbytes
)
1862 struct sdata
*data
, *old_data
;
1864 EMACS_INT needed
, old_nbytes
;
1866 if (STRING_BYTES_MAX
< nbytes
)
1869 /* Determine the number of bytes needed to store NBYTES bytes
1871 needed
= SDATA_SIZE (nbytes
);
1872 old_data
= s
->data
? SDATA_OF_STRING (s
) : NULL
;
1873 old_nbytes
= GC_STRING_BYTES (s
);
1877 if (nbytes
> LARGE_STRING_BYTES
)
1879 size_t size
= offsetof (struct sblock
, first_data
) + needed
;
1881 #ifdef DOUG_LEA_MALLOC
1882 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1883 because mapped region contents are not preserved in
1886 In case you think of allowing it in a dumped Emacs at the
1887 cost of not being able to re-dump, there's another reason:
1888 mmap'ed data typically have an address towards the top of the
1889 address space, which won't fit into an EMACS_INT (at least on
1890 32-bit systems with the current tagging scheme). --fx */
1891 mallopt (M_MMAP_MAX
, 0);
1894 b
= (struct sblock
*) lisp_malloc (size
+ GC_STRING_EXTRA
, MEM_TYPE_NON_LISP
);
1896 #ifdef DOUG_LEA_MALLOC
1897 /* Back to a reasonable maximum of mmap'ed areas. */
1898 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1901 b
->next_free
= &b
->first_data
;
1902 b
->first_data
.string
= NULL
;
1903 b
->next
= large_sblocks
;
1906 else if (current_sblock
== NULL
1907 || (((char *) current_sblock
+ SBLOCK_SIZE
1908 - (char *) current_sblock
->next_free
)
1909 < (needed
+ GC_STRING_EXTRA
)))
1911 /* Not enough room in the current sblock. */
1912 b
= (struct sblock
*) lisp_malloc (SBLOCK_SIZE
, MEM_TYPE_NON_LISP
);
1913 b
->next_free
= &b
->first_data
;
1914 b
->first_data
.string
= NULL
;
1918 current_sblock
->next
= b
;
1926 data
= b
->next_free
;
1927 b
->next_free
= (struct sdata
*) ((char *) data
+ needed
+ GC_STRING_EXTRA
);
1929 MALLOC_UNBLOCK_INPUT
;
1932 s
->data
= SDATA_DATA (data
);
1933 #ifdef GC_CHECK_STRING_BYTES
1934 SDATA_NBYTES (data
) = nbytes
;
1937 s
->size_byte
= nbytes
;
1938 s
->data
[nbytes
] = '\0';
1939 #ifdef GC_CHECK_STRING_OVERRUN
1940 memcpy ((char *) data
+ needed
, string_overrun_cookie
,
1941 GC_STRING_OVERRUN_COOKIE_SIZE
);
1944 /* If S had already data assigned, mark that as free by setting its
1945 string back-pointer to null, and recording the size of the data
1949 SDATA_NBYTES (old_data
) = old_nbytes
;
1950 old_data
->string
= NULL
;
1953 consing_since_gc
+= needed
;
1957 /* Sweep and compact strings. */
1960 sweep_strings (void)
1962 struct string_block
*b
, *next
;
1963 struct string_block
*live_blocks
= NULL
;
1965 string_free_list
= NULL
;
1966 total_strings
= total_free_strings
= 0;
1967 total_string_size
= 0;
1969 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1970 for (b
= string_blocks
; b
; b
= next
)
1973 struct Lisp_String
*free_list_before
= string_free_list
;
1977 for (i
= 0; i
< STRING_BLOCK_SIZE
; ++i
)
1979 struct Lisp_String
*s
= b
->strings
+ i
;
1983 /* String was not on free-list before. */
1984 if (STRING_MARKED_P (s
))
1986 /* String is live; unmark it and its intervals. */
1989 if (!NULL_INTERVAL_P (s
->intervals
))
1990 UNMARK_BALANCE_INTERVALS (s
->intervals
);
1993 total_string_size
+= STRING_BYTES (s
);
1997 /* String is dead. Put it on the free-list. */
1998 struct sdata
*data
= SDATA_OF_STRING (s
);
2000 /* Save the size of S in its sdata so that we know
2001 how large that is. Reset the sdata's string
2002 back-pointer so that we know it's free. */
2003 #ifdef GC_CHECK_STRING_BYTES
2004 if (GC_STRING_BYTES (s
) != SDATA_NBYTES (data
))
2007 data
->u
.nbytes
= GC_STRING_BYTES (s
);
2009 data
->string
= NULL
;
2011 /* Reset the strings's `data' member so that we
2015 /* Put the string on the free-list. */
2016 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
2017 string_free_list
= s
;
2023 /* S was on the free-list before. Put it there again. */
2024 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
2025 string_free_list
= s
;
2030 /* Free blocks that contain free Lisp_Strings only, except
2031 the first two of them. */
2032 if (nfree
== STRING_BLOCK_SIZE
2033 && total_free_strings
> STRING_BLOCK_SIZE
)
2036 string_free_list
= free_list_before
;
2040 total_free_strings
+= nfree
;
2041 b
->next
= live_blocks
;
2046 check_string_free_list ();
2048 string_blocks
= live_blocks
;
2049 free_large_strings ();
2050 compact_small_strings ();
2052 check_string_free_list ();
2056 /* Free dead large strings. */
2059 free_large_strings (void)
2061 struct sblock
*b
, *next
;
2062 struct sblock
*live_blocks
= NULL
;
2064 for (b
= large_sblocks
; b
; b
= next
)
2068 if (b
->first_data
.string
== NULL
)
2072 b
->next
= live_blocks
;
2077 large_sblocks
= live_blocks
;
2081 /* Compact data of small strings. Free sblocks that don't contain
2082 data of live strings after compaction. */
2085 compact_small_strings (void)
2087 struct sblock
*b
, *tb
, *next
;
2088 struct sdata
*from
, *to
, *end
, *tb_end
;
2089 struct sdata
*to_end
, *from_end
;
2091 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2092 to, and TB_END is the end of TB. */
2094 tb_end
= (struct sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
2095 to
= &tb
->first_data
;
2097 /* Step through the blocks from the oldest to the youngest. We
2098 expect that old blocks will stabilize over time, so that less
2099 copying will happen this way. */
2100 for (b
= oldest_sblock
; b
; b
= b
->next
)
2103 xassert ((char *) end
<= (char *) b
+ SBLOCK_SIZE
);
2105 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
2107 /* Compute the next FROM here because copying below may
2108 overwrite data we need to compute it. */
2111 #ifdef GC_CHECK_STRING_BYTES
2112 /* Check that the string size recorded in the string is the
2113 same as the one recorded in the sdata structure. */
2115 && GC_STRING_BYTES (from
->string
) != SDATA_NBYTES (from
))
2117 #endif /* GC_CHECK_STRING_BYTES */
2120 nbytes
= GC_STRING_BYTES (from
->string
);
2122 nbytes
= SDATA_NBYTES (from
);
2124 if (nbytes
> LARGE_STRING_BYTES
)
2127 nbytes
= SDATA_SIZE (nbytes
);
2128 from_end
= (struct sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
2130 #ifdef GC_CHECK_STRING_OVERRUN
2131 if (memcmp (string_overrun_cookie
,
2132 (char *) from_end
- GC_STRING_OVERRUN_COOKIE_SIZE
,
2133 GC_STRING_OVERRUN_COOKIE_SIZE
))
2137 /* FROM->string non-null means it's alive. Copy its data. */
2140 /* If TB is full, proceed with the next sblock. */
2141 to_end
= (struct sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
2142 if (to_end
> tb_end
)
2146 tb_end
= (struct sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
2147 to
= &tb
->first_data
;
2148 to_end
= (struct sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
2151 /* Copy, and update the string's `data' pointer. */
2154 xassert (tb
!= b
|| to
< from
);
2155 memmove (to
, from
, nbytes
+ GC_STRING_EXTRA
);
2156 to
->string
->data
= SDATA_DATA (to
);
2159 /* Advance past the sdata we copied to. */
2165 /* The rest of the sblocks following TB don't contain live data, so
2166 we can free them. */
2167 for (b
= tb
->next
; b
; b
= next
)
2175 current_sblock
= tb
;
2179 string_overflow (void)
2181 error ("Maximum string size exceeded");
2184 DEFUN ("make-string", Fmake_string
, Smake_string
, 2, 2, 0,
2185 doc
: /* Return a newly created string of length LENGTH, with INIT in each element.
2186 LENGTH must be an integer.
2187 INIT must be an integer that represents a character. */)
2188 (Lisp_Object length
, Lisp_Object init
)
2190 register Lisp_Object val
;
2191 register unsigned char *p
, *end
;
2195 CHECK_NATNUM (length
);
2196 CHECK_CHARACTER (init
);
2198 c
= XFASTINT (init
);
2199 if (ASCII_CHAR_P (c
))
2201 nbytes
= XINT (length
);
2202 val
= make_uninit_string (nbytes
);
2204 end
= p
+ SCHARS (val
);
2210 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
2211 int len
= CHAR_STRING (c
, str
);
2212 EMACS_INT string_len
= XINT (length
);
2214 if (string_len
> STRING_BYTES_MAX
/ len
)
2216 nbytes
= len
* string_len
;
2217 val
= make_uninit_multibyte_string (string_len
, nbytes
);
2222 memcpy (p
, str
, len
);
2232 DEFUN ("make-bool-vector", Fmake_bool_vector
, Smake_bool_vector
, 2, 2, 0,
2233 doc
: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2234 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2235 (Lisp_Object length
, Lisp_Object init
)
2237 register Lisp_Object val
;
2238 struct Lisp_Bool_Vector
*p
;
2239 EMACS_INT length_in_chars
, length_in_elts
;
2242 CHECK_NATNUM (length
);
2244 bits_per_value
= sizeof (EMACS_INT
) * BOOL_VECTOR_BITS_PER_CHAR
;
2246 length_in_elts
= (XFASTINT (length
) + bits_per_value
- 1) / bits_per_value
;
2247 length_in_chars
= ((XFASTINT (length
) + BOOL_VECTOR_BITS_PER_CHAR
- 1)
2248 / BOOL_VECTOR_BITS_PER_CHAR
);
2250 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2251 slot `size' of the struct Lisp_Bool_Vector. */
2252 val
= Fmake_vector (make_number (length_in_elts
+ 1), Qnil
);
2254 /* No Lisp_Object to trace in there. */
2255 XSETPVECTYPESIZE (XVECTOR (val
), PVEC_BOOL_VECTOR
, 0);
2257 p
= XBOOL_VECTOR (val
);
2258 p
->size
= XFASTINT (length
);
2260 memset (p
->data
, NILP (init
) ? 0 : -1, length_in_chars
);
2262 /* Clear the extraneous bits in the last byte. */
2263 if (XINT (length
) != length_in_chars
* BOOL_VECTOR_BITS_PER_CHAR
)
2264 p
->data
[length_in_chars
- 1]
2265 &= (1 << (XINT (length
) % BOOL_VECTOR_BITS_PER_CHAR
)) - 1;
2271 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2272 of characters from the contents. This string may be unibyte or
2273 multibyte, depending on the contents. */
2276 make_string (const char *contents
, EMACS_INT nbytes
)
2278 register Lisp_Object val
;
2279 EMACS_INT nchars
, multibyte_nbytes
;
2281 parse_str_as_multibyte ((const unsigned char *) contents
, nbytes
,
2282 &nchars
, &multibyte_nbytes
);
2283 if (nbytes
== nchars
|| nbytes
!= multibyte_nbytes
)
2284 /* CONTENTS contains no multibyte sequences or contains an invalid
2285 multibyte sequence. We must make unibyte string. */
2286 val
= make_unibyte_string (contents
, nbytes
);
2288 val
= make_multibyte_string (contents
, nchars
, nbytes
);
2293 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2296 make_unibyte_string (const char *contents
, EMACS_INT length
)
2298 register Lisp_Object val
;
2299 val
= make_uninit_string (length
);
2300 memcpy (SDATA (val
), contents
, length
);
2305 /* Make a multibyte string from NCHARS characters occupying NBYTES
2306 bytes at CONTENTS. */
2309 make_multibyte_string (const char *contents
,
2310 EMACS_INT nchars
, EMACS_INT nbytes
)
2312 register Lisp_Object val
;
2313 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2314 memcpy (SDATA (val
), contents
, nbytes
);
2319 /* Make a string from NCHARS characters occupying NBYTES bytes at
2320 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2323 make_string_from_bytes (const char *contents
,
2324 EMACS_INT nchars
, EMACS_INT nbytes
)
2326 register Lisp_Object val
;
2327 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2328 memcpy (SDATA (val
), contents
, nbytes
);
2329 if (SBYTES (val
) == SCHARS (val
))
2330 STRING_SET_UNIBYTE (val
);
2335 /* Make a string from NCHARS characters occupying NBYTES bytes at
2336 CONTENTS. The argument MULTIBYTE controls whether to label the
2337 string as multibyte. If NCHARS is negative, it counts the number of
2338 characters by itself. */
2341 make_specified_string (const char *contents
,
2342 EMACS_INT nchars
, EMACS_INT nbytes
, int multibyte
)
2344 register Lisp_Object val
;
2349 nchars
= multibyte_chars_in_text ((const unsigned char *) contents
,
2354 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2355 memcpy (SDATA (val
), contents
, nbytes
);
2357 STRING_SET_UNIBYTE (val
);
2362 /* Make a string from the data at STR, treating it as multibyte if the
2366 build_string (const char *str
)
2368 return make_string (str
, strlen (str
));
2372 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2373 occupying LENGTH bytes. */
2376 make_uninit_string (EMACS_INT length
)
2381 return empty_unibyte_string
;
2382 val
= make_uninit_multibyte_string (length
, length
);
2383 STRING_SET_UNIBYTE (val
);
2388 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2389 which occupy NBYTES bytes. */
2392 make_uninit_multibyte_string (EMACS_INT nchars
, EMACS_INT nbytes
)
2395 struct Lisp_String
*s
;
2400 return empty_multibyte_string
;
2402 s
= allocate_string ();
2403 allocate_string_data (s
, nchars
, nbytes
);
2404 XSETSTRING (string
, s
);
2405 string_chars_consed
+= nbytes
;
2411 /***********************************************************************
2413 ***********************************************************************/
2415 /* We store float cells inside of float_blocks, allocating a new
2416 float_block with malloc whenever necessary. Float cells reclaimed
2417 by GC are put on a free list to be reallocated before allocating
2418 any new float cells from the latest float_block. */
2420 #define FLOAT_BLOCK_SIZE \
2421 (((BLOCK_BYTES - sizeof (struct float_block *) \
2422 /* The compiler might add padding at the end. */ \
2423 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2424 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2426 #define GETMARKBIT(block,n) \
2427 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2428 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2431 #define SETMARKBIT(block,n) \
2432 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2433 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2435 #define UNSETMARKBIT(block,n) \
2436 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2437 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2439 #define FLOAT_BLOCK(fptr) \
2440 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2442 #define FLOAT_INDEX(fptr) \
2443 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2447 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2448 struct Lisp_Float floats
[FLOAT_BLOCK_SIZE
];
2449 int gcmarkbits
[1 + FLOAT_BLOCK_SIZE
/ (sizeof(int) * CHAR_BIT
)];
2450 struct float_block
*next
;
2453 #define FLOAT_MARKED_P(fptr) \
2454 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2456 #define FLOAT_MARK(fptr) \
2457 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2459 #define FLOAT_UNMARK(fptr) \
2460 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2462 /* Current float_block. */
2464 static struct float_block
*float_block
;
2466 /* Index of first unused Lisp_Float in the current float_block. */
2468 static int float_block_index
;
2470 /* Free-list of Lisp_Floats. */
2472 static struct Lisp_Float
*float_free_list
;
2475 /* Initialize float allocation. */
2481 float_block_index
= FLOAT_BLOCK_SIZE
; /* Force alloc of new float_block. */
2482 float_free_list
= 0;
2486 /* Return a new float object with value FLOAT_VALUE. */
2489 make_float (double float_value
)
2491 register Lisp_Object val
;
2493 /* eassert (!handling_signal); */
2497 if (float_free_list
)
2499 /* We use the data field for chaining the free list
2500 so that we won't use the same field that has the mark bit. */
2501 XSETFLOAT (val
, float_free_list
);
2502 float_free_list
= float_free_list
->u
.chain
;
2506 if (float_block_index
== FLOAT_BLOCK_SIZE
)
2508 register struct float_block
*new;
2510 new = (struct float_block
*) lisp_align_malloc (sizeof *new,
2512 new->next
= float_block
;
2513 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2515 float_block_index
= 0;
2517 XSETFLOAT (val
, &float_block
->floats
[float_block_index
]);
2518 float_block_index
++;
2521 MALLOC_UNBLOCK_INPUT
;
2523 XFLOAT_INIT (val
, float_value
);
2524 eassert (!FLOAT_MARKED_P (XFLOAT (val
)));
2525 consing_since_gc
+= sizeof (struct Lisp_Float
);
2532 /***********************************************************************
2534 ***********************************************************************/
2536 /* We store cons cells inside of cons_blocks, allocating a new
2537 cons_block with malloc whenever necessary. Cons cells reclaimed by
2538 GC are put on a free list to be reallocated before allocating
2539 any new cons cells from the latest cons_block. */
2541 #define CONS_BLOCK_SIZE \
2542 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2543 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2545 #define CONS_BLOCK(fptr) \
2546 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2548 #define CONS_INDEX(fptr) \
2549 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2553 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2554 struct Lisp_Cons conses
[CONS_BLOCK_SIZE
];
2555 int gcmarkbits
[1 + CONS_BLOCK_SIZE
/ (sizeof(int) * CHAR_BIT
)];
2556 struct cons_block
*next
;
2559 #define CONS_MARKED_P(fptr) \
2560 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2562 #define CONS_MARK(fptr) \
2563 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2565 #define CONS_UNMARK(fptr) \
2566 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2568 /* Current cons_block. */
2570 static struct cons_block
*cons_block
;
2572 /* Index of first unused Lisp_Cons in the current block. */
2574 static int cons_block_index
;
2576 /* Free-list of Lisp_Cons structures. */
2578 static struct Lisp_Cons
*cons_free_list
;
2581 /* Initialize cons allocation. */
2587 cons_block_index
= CONS_BLOCK_SIZE
; /* Force alloc of new cons_block. */
2592 /* Explicitly free a cons cell by putting it on the free-list. */
2595 free_cons (struct Lisp_Cons
*ptr
)
2597 ptr
->u
.chain
= cons_free_list
;
2601 cons_free_list
= ptr
;
2604 DEFUN ("cons", Fcons
, Scons
, 2, 2, 0,
2605 doc
: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2606 (Lisp_Object car
, Lisp_Object cdr
)
2608 register Lisp_Object val
;
2610 /* eassert (!handling_signal); */
2616 /* We use the cdr for chaining the free list
2617 so that we won't use the same field that has the mark bit. */
2618 XSETCONS (val
, cons_free_list
);
2619 cons_free_list
= cons_free_list
->u
.chain
;
2623 if (cons_block_index
== CONS_BLOCK_SIZE
)
2625 register struct cons_block
*new;
2626 new = (struct cons_block
*) lisp_align_malloc (sizeof *new,
2628 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2629 new->next
= cons_block
;
2631 cons_block_index
= 0;
2633 XSETCONS (val
, &cons_block
->conses
[cons_block_index
]);
2637 MALLOC_UNBLOCK_INPUT
;
2641 eassert (!CONS_MARKED_P (XCONS (val
)));
2642 consing_since_gc
+= sizeof (struct Lisp_Cons
);
2643 cons_cells_consed
++;
2647 #ifdef GC_CHECK_CONS_LIST
2648 /* Get an error now if there's any junk in the cons free list. */
2650 check_cons_list (void)
2652 struct Lisp_Cons
*tail
= cons_free_list
;
2655 tail
= tail
->u
.chain
;
2659 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2662 list1 (Lisp_Object arg1
)
2664 return Fcons (arg1
, Qnil
);
2668 list2 (Lisp_Object arg1
, Lisp_Object arg2
)
2670 return Fcons (arg1
, Fcons (arg2
, Qnil
));
2675 list3 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
)
2677 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Qnil
)));
2682 list4 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
)
2684 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
, Qnil
))));
2689 list5 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
, Lisp_Object arg5
)
2691 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
,
2692 Fcons (arg5
, Qnil
)))));
2696 DEFUN ("list", Flist
, Slist
, 0, MANY
, 0,
2697 doc
: /* Return a newly created list with specified arguments as elements.
2698 Any number of arguments, even zero arguments, are allowed.
2699 usage: (list &rest OBJECTS) */)
2700 (size_t nargs
, register Lisp_Object
*args
)
2702 register Lisp_Object val
;
2708 val
= Fcons (args
[nargs
], val
);
2714 DEFUN ("make-list", Fmake_list
, Smake_list
, 2, 2, 0,
2715 doc
: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2716 (register Lisp_Object length
, Lisp_Object init
)
2718 register Lisp_Object val
;
2719 register EMACS_INT size
;
2721 CHECK_NATNUM (length
);
2722 size
= XFASTINT (length
);
2727 val
= Fcons (init
, val
);
2732 val
= Fcons (init
, val
);
2737 val
= Fcons (init
, val
);
2742 val
= Fcons (init
, val
);
2747 val
= Fcons (init
, val
);
2762 /***********************************************************************
2764 ***********************************************************************/
2766 /* Singly-linked list of all vectors. */
2768 static struct Lisp_Vector
*all_vectors
;
2771 /* Value is a pointer to a newly allocated Lisp_Vector structure
2772 with room for LEN Lisp_Objects. */
2774 static struct Lisp_Vector
*
2775 allocate_vectorlike (EMACS_INT len
)
2777 struct Lisp_Vector
*p
;
2779 ptrdiff_t nbytes_max
= min (PTRDIFF_MAX
, SIZE_MAX
);
2780 int header_size
= offsetof (struct Lisp_Vector
, contents
);
2781 int word_size
= sizeof p
->contents
[0];
2783 if ((nbytes_max
- header_size
) / word_size
< len
)
2784 memory_full (SIZE_MAX
);
2788 #ifdef DOUG_LEA_MALLOC
2789 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2790 because mapped region contents are not preserved in
2792 mallopt (M_MMAP_MAX
, 0);
2795 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2796 /* eassert (!handling_signal); */
2798 nbytes
= header_size
+ len
* word_size
;
2799 p
= (struct Lisp_Vector
*) lisp_malloc (nbytes
, MEM_TYPE_VECTORLIKE
);
2801 #ifdef DOUG_LEA_MALLOC
2802 /* Back to a reasonable maximum of mmap'ed areas. */
2803 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
2806 consing_since_gc
+= nbytes
;
2807 vector_cells_consed
+= len
;
2809 p
->header
.next
.vector
= all_vectors
;
2812 MALLOC_UNBLOCK_INPUT
;
2818 /* Allocate a vector with NSLOTS slots. */
2820 struct Lisp_Vector
*
2821 allocate_vector (EMACS_INT nslots
)
2823 struct Lisp_Vector
*v
= allocate_vectorlike (nslots
);
2824 v
->header
.size
= nslots
;
2829 /* Allocate other vector-like structures. */
2831 struct Lisp_Vector
*
2832 allocate_pseudovector (int memlen
, int lisplen
, EMACS_INT tag
)
2834 struct Lisp_Vector
*v
= allocate_vectorlike (memlen
);
2837 /* Only the first lisplen slots will be traced normally by the GC. */
2838 for (i
= 0; i
< lisplen
; ++i
)
2839 v
->contents
[i
] = Qnil
;
2841 XSETPVECTYPESIZE (v
, tag
, lisplen
);
2845 struct Lisp_Hash_Table
*
2846 allocate_hash_table (void)
2848 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table
, count
, PVEC_HASH_TABLE
);
2853 allocate_window (void)
2855 return ALLOCATE_PSEUDOVECTOR(struct window
, current_matrix
, PVEC_WINDOW
);
2860 allocate_terminal (void)
2862 struct terminal
*t
= ALLOCATE_PSEUDOVECTOR (struct terminal
,
2863 next_terminal
, PVEC_TERMINAL
);
2864 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2865 memset (&t
->next_terminal
, 0,
2866 (char*) (t
+ 1) - (char*) &t
->next_terminal
);
2872 allocate_frame (void)
2874 struct frame
*f
= ALLOCATE_PSEUDOVECTOR (struct frame
,
2875 face_cache
, PVEC_FRAME
);
2876 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2877 memset (&f
->face_cache
, 0,
2878 (char *) (f
+ 1) - (char *) &f
->face_cache
);
2883 struct Lisp_Process
*
2884 allocate_process (void)
2886 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process
, pid
, PVEC_PROCESS
);
2890 DEFUN ("make-vector", Fmake_vector
, Smake_vector
, 2, 2, 0,
2891 doc
: /* Return a newly created vector of length LENGTH, with each element being INIT.
2892 See also the function `vector'. */)
2893 (register Lisp_Object length
, Lisp_Object init
)
2896 register EMACS_INT sizei
;
2897 register EMACS_INT i
;
2898 register struct Lisp_Vector
*p
;
2900 CHECK_NATNUM (length
);
2901 sizei
= XFASTINT (length
);
2903 p
= allocate_vector (sizei
);
2904 for (i
= 0; i
< sizei
; i
++)
2905 p
->contents
[i
] = init
;
2907 XSETVECTOR (vector
, p
);
2912 DEFUN ("vector", Fvector
, Svector
, 0, MANY
, 0,
2913 doc
: /* Return a newly created vector with specified arguments as elements.
2914 Any number of arguments, even zero arguments, are allowed.
2915 usage: (vector &rest OBJECTS) */)
2916 (register size_t nargs
, Lisp_Object
*args
)
2918 register Lisp_Object len
, val
;
2920 register struct Lisp_Vector
*p
;
2922 XSETFASTINT (len
, nargs
);
2923 val
= Fmake_vector (len
, Qnil
);
2925 for (i
= 0; i
< nargs
; i
++)
2926 p
->contents
[i
] = args
[i
];
2931 DEFUN ("make-byte-code", Fmake_byte_code
, Smake_byte_code
, 4, MANY
, 0,
2932 doc
: /* Create a byte-code object with specified arguments as elements.
2933 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2934 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2935 and (optional) INTERACTIVE-SPEC.
2936 The first four arguments are required; at most six have any
2938 The ARGLIST can be either like the one of `lambda', in which case the arguments
2939 will be dynamically bound before executing the byte code, or it can be an
2940 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2941 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2942 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2943 argument to catch the left-over arguments. If such an integer is used, the
2944 arguments will not be dynamically bound but will be instead pushed on the
2945 stack before executing the byte-code.
2946 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2947 (register size_t nargs
, Lisp_Object
*args
)
2949 register Lisp_Object len
, val
;
2951 register struct Lisp_Vector
*p
;
2953 XSETFASTINT (len
, nargs
);
2954 if (!NILP (Vpurify_flag
))
2955 val
= make_pure_vector ((EMACS_INT
) nargs
);
2957 val
= Fmake_vector (len
, Qnil
);
2959 if (nargs
> 1 && STRINGP (args
[1]) && STRING_MULTIBYTE (args
[1]))
2960 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2961 earlier because they produced a raw 8-bit string for byte-code
2962 and now such a byte-code string is loaded as multibyte while
2963 raw 8-bit characters converted to multibyte form. Thus, now we
2964 must convert them back to the original unibyte form. */
2965 args
[1] = Fstring_as_unibyte (args
[1]);
2968 for (i
= 0; i
< nargs
; i
++)
2970 if (!NILP (Vpurify_flag
))
2971 args
[i
] = Fpurecopy (args
[i
]);
2972 p
->contents
[i
] = args
[i
];
2974 XSETPVECTYPE (p
, PVEC_COMPILED
);
2975 XSETCOMPILED (val
, p
);
2981 /***********************************************************************
2983 ***********************************************************************/
2985 /* Each symbol_block is just under 1020 bytes long, since malloc
2986 really allocates in units of powers of two and uses 4 bytes for its
2989 #define SYMBOL_BLOCK_SIZE \
2990 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2994 /* Place `symbols' first, to preserve alignment. */
2995 struct Lisp_Symbol symbols
[SYMBOL_BLOCK_SIZE
];
2996 struct symbol_block
*next
;
2999 /* Current symbol block and index of first unused Lisp_Symbol
3002 static struct symbol_block
*symbol_block
;
3003 static int symbol_block_index
;
3005 /* List of free symbols. */
3007 static struct Lisp_Symbol
*symbol_free_list
;
3010 /* Initialize symbol allocation. */
3015 symbol_block
= NULL
;
3016 symbol_block_index
= SYMBOL_BLOCK_SIZE
;
3017 symbol_free_list
= 0;
3021 DEFUN ("make-symbol", Fmake_symbol
, Smake_symbol
, 1, 1, 0,
3022 doc
: /* Return a newly allocated uninterned symbol whose name is NAME.
3023 Its value and function definition are void, and its property list is nil. */)
3026 register Lisp_Object val
;
3027 register struct Lisp_Symbol
*p
;
3029 CHECK_STRING (name
);
3031 /* eassert (!handling_signal); */
3035 if (symbol_free_list
)
3037 XSETSYMBOL (val
, symbol_free_list
);
3038 symbol_free_list
= symbol_free_list
->next
;
3042 if (symbol_block_index
== SYMBOL_BLOCK_SIZE
)
3044 struct symbol_block
*new;
3045 new = (struct symbol_block
*) lisp_malloc (sizeof *new,
3047 new->next
= symbol_block
;
3049 symbol_block_index
= 0;
3051 XSETSYMBOL (val
, &symbol_block
->symbols
[symbol_block_index
]);
3052 symbol_block_index
++;
3055 MALLOC_UNBLOCK_INPUT
;
3060 p
->redirect
= SYMBOL_PLAINVAL
;
3061 SET_SYMBOL_VAL (p
, Qunbound
);
3062 p
->function
= Qunbound
;
3065 p
->interned
= SYMBOL_UNINTERNED
;
3067 p
->declared_special
= 0;
3068 consing_since_gc
+= sizeof (struct Lisp_Symbol
);
3075 /***********************************************************************
3076 Marker (Misc) Allocation
3077 ***********************************************************************/
3079 /* Allocation of markers and other objects that share that structure.
3080 Works like allocation of conses. */
3082 #define MARKER_BLOCK_SIZE \
3083 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3087 /* Place `markers' first, to preserve alignment. */
3088 union Lisp_Misc markers
[MARKER_BLOCK_SIZE
];
3089 struct marker_block
*next
;
3092 static struct marker_block
*marker_block
;
3093 static int marker_block_index
;
3095 static union Lisp_Misc
*marker_free_list
;
3100 marker_block
= NULL
;
3101 marker_block_index
= MARKER_BLOCK_SIZE
;
3102 marker_free_list
= 0;
3105 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3108 allocate_misc (void)
3112 /* eassert (!handling_signal); */
3116 if (marker_free_list
)
3118 XSETMISC (val
, marker_free_list
);
3119 marker_free_list
= marker_free_list
->u_free
.chain
;
3123 if (marker_block_index
== MARKER_BLOCK_SIZE
)
3125 struct marker_block
*new;
3126 new = (struct marker_block
*) lisp_malloc (sizeof *new,
3128 new->next
= marker_block
;
3130 marker_block_index
= 0;
3131 total_free_markers
+= MARKER_BLOCK_SIZE
;
3133 XSETMISC (val
, &marker_block
->markers
[marker_block_index
]);
3134 marker_block_index
++;
3137 MALLOC_UNBLOCK_INPUT
;
3139 --total_free_markers
;
3140 consing_since_gc
+= sizeof (union Lisp_Misc
);
3141 misc_objects_consed
++;
3142 XMISCANY (val
)->gcmarkbit
= 0;
3146 /* Free a Lisp_Misc object */
3149 free_misc (Lisp_Object misc
)
3151 XMISCTYPE (misc
) = Lisp_Misc_Free
;
3152 XMISC (misc
)->u_free
.chain
= marker_free_list
;
3153 marker_free_list
= XMISC (misc
);
3155 total_free_markers
++;
3158 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3159 INTEGER. This is used to package C values to call record_unwind_protect.
3160 The unwind function can get the C values back using XSAVE_VALUE. */
3163 make_save_value (void *pointer
, ptrdiff_t integer
)
3165 register Lisp_Object val
;
3166 register struct Lisp_Save_Value
*p
;
3168 val
= allocate_misc ();
3169 XMISCTYPE (val
) = Lisp_Misc_Save_Value
;
3170 p
= XSAVE_VALUE (val
);
3171 p
->pointer
= pointer
;
3172 p
->integer
= integer
;
3177 DEFUN ("make-marker", Fmake_marker
, Smake_marker
, 0, 0, 0,
3178 doc
: /* Return a newly allocated marker which does not point at any place. */)
3181 register Lisp_Object val
;
3182 register struct Lisp_Marker
*p
;
3184 val
= allocate_misc ();
3185 XMISCTYPE (val
) = Lisp_Misc_Marker
;
3191 p
->insertion_type
= 0;
3195 /* Put MARKER back on the free list after using it temporarily. */
3198 free_marker (Lisp_Object marker
)
3200 unchain_marker (XMARKER (marker
));
3205 /* Return a newly created vector or string with specified arguments as
3206 elements. If all the arguments are characters that can fit
3207 in a string of events, make a string; otherwise, make a vector.
3209 Any number of arguments, even zero arguments, are allowed. */
3212 make_event_array (register int nargs
, Lisp_Object
*args
)
3216 for (i
= 0; i
< nargs
; i
++)
3217 /* The things that fit in a string
3218 are characters that are in 0...127,
3219 after discarding the meta bit and all the bits above it. */
3220 if (!INTEGERP (args
[i
])
3221 || (XINT (args
[i
]) & ~(-CHAR_META
)) >= 0200)
3222 return Fvector (nargs
, args
);
3224 /* Since the loop exited, we know that all the things in it are
3225 characters, so we can make a string. */
3229 result
= Fmake_string (make_number (nargs
), make_number (0));
3230 for (i
= 0; i
< nargs
; i
++)
3232 SSET (result
, i
, XINT (args
[i
]));
3233 /* Move the meta bit to the right place for a string char. */
3234 if (XINT (args
[i
]) & CHAR_META
)
3235 SSET (result
, i
, SREF (result
, i
) | 0x80);
3244 /************************************************************************
3245 Memory Full Handling
3246 ************************************************************************/
3249 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3250 there may have been size_t overflow so that malloc was never
3251 called, or perhaps malloc was invoked successfully but the
3252 resulting pointer had problems fitting into a tagged EMACS_INT. In
3253 either case this counts as memory being full even though malloc did
3257 memory_full (size_t nbytes
)
3259 /* Do not go into hysterics merely because a large request failed. */
3260 int enough_free_memory
= 0;
3261 if (SPARE_MEMORY
< nbytes
)
3263 void *p
= malloc (SPARE_MEMORY
);
3267 enough_free_memory
= 1;
3271 if (! enough_free_memory
)
3277 memory_full_cons_threshold
= sizeof (struct cons_block
);
3279 /* The first time we get here, free the spare memory. */
3280 for (i
= 0; i
< sizeof (spare_memory
) / sizeof (char *); i
++)
3281 if (spare_memory
[i
])
3284 free (spare_memory
[i
]);
3285 else if (i
>= 1 && i
<= 4)
3286 lisp_align_free (spare_memory
[i
]);
3288 lisp_free (spare_memory
[i
]);
3289 spare_memory
[i
] = 0;
3292 /* Record the space now used. When it decreases substantially,
3293 we can refill the memory reserve. */
3294 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3295 bytes_used_when_full
= BYTES_USED
;
3299 /* This used to call error, but if we've run out of memory, we could
3300 get infinite recursion trying to build the string. */
3301 xsignal (Qnil
, Vmemory_signal_data
);
3304 /* If we released our reserve (due to running out of memory),
3305 and we have a fair amount free once again,
3306 try to set aside another reserve in case we run out once more.
3308 This is called when a relocatable block is freed in ralloc.c,
3309 and also directly from this file, in case we're not using ralloc.c. */
3312 refill_memory_reserve (void)
3314 #ifndef SYSTEM_MALLOC
3315 if (spare_memory
[0] == 0)
3316 spare_memory
[0] = (char *) malloc ((size_t) SPARE_MEMORY
);
3317 if (spare_memory
[1] == 0)
3318 spare_memory
[1] = (char *) lisp_align_malloc (sizeof (struct cons_block
),
3320 if (spare_memory
[2] == 0)
3321 spare_memory
[2] = (char *) lisp_align_malloc (sizeof (struct cons_block
),
3323 if (spare_memory
[3] == 0)
3324 spare_memory
[3] = (char *) lisp_align_malloc (sizeof (struct cons_block
),
3326 if (spare_memory
[4] == 0)
3327 spare_memory
[4] = (char *) lisp_align_malloc (sizeof (struct cons_block
),
3329 if (spare_memory
[5] == 0)
3330 spare_memory
[5] = (char *) lisp_malloc (sizeof (struct string_block
),
3332 if (spare_memory
[6] == 0)
3333 spare_memory
[6] = (char *) lisp_malloc (sizeof (struct string_block
),
3335 if (spare_memory
[0] && spare_memory
[1] && spare_memory
[5])
3336 Vmemory_full
= Qnil
;
3340 /************************************************************************
3342 ************************************************************************/
3344 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3346 /* Conservative C stack marking requires a method to identify possibly
3347 live Lisp objects given a pointer value. We do this by keeping
3348 track of blocks of Lisp data that are allocated in a red-black tree
3349 (see also the comment of mem_node which is the type of nodes in
3350 that tree). Function lisp_malloc adds information for an allocated
3351 block to the red-black tree with calls to mem_insert, and function
3352 lisp_free removes it with mem_delete. Functions live_string_p etc
3353 call mem_find to lookup information about a given pointer in the
3354 tree, and use that to determine if the pointer points to a Lisp
3357 /* Initialize this part of alloc.c. */
3362 mem_z
.left
= mem_z
.right
= MEM_NIL
;
3363 mem_z
.parent
= NULL
;
3364 mem_z
.color
= MEM_BLACK
;
3365 mem_z
.start
= mem_z
.end
= NULL
;
3370 /* Value is a pointer to the mem_node containing START. Value is
3371 MEM_NIL if there is no node in the tree containing START. */
3373 static inline struct mem_node
*
3374 mem_find (void *start
)
3378 if (start
< min_heap_address
|| start
> max_heap_address
)
3381 /* Make the search always successful to speed up the loop below. */
3382 mem_z
.start
= start
;
3383 mem_z
.end
= (char *) start
+ 1;
3386 while (start
< p
->start
|| start
>= p
->end
)
3387 p
= start
< p
->start
? p
->left
: p
->right
;
3392 /* Insert a new node into the tree for a block of memory with start
3393 address START, end address END, and type TYPE. Value is a
3394 pointer to the node that was inserted. */
3396 static struct mem_node
*
3397 mem_insert (void *start
, void *end
, enum mem_type type
)
3399 struct mem_node
*c
, *parent
, *x
;
3401 if (min_heap_address
== NULL
|| start
< min_heap_address
)
3402 min_heap_address
= start
;
3403 if (max_heap_address
== NULL
|| end
> max_heap_address
)
3404 max_heap_address
= end
;
3406 /* See where in the tree a node for START belongs. In this
3407 particular application, it shouldn't happen that a node is already
3408 present. For debugging purposes, let's check that. */
3412 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3414 while (c
!= MEM_NIL
)
3416 if (start
>= c
->start
&& start
< c
->end
)
3419 c
= start
< c
->start
? c
->left
: c
->right
;
3422 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3424 while (c
!= MEM_NIL
)
3427 c
= start
< c
->start
? c
->left
: c
->right
;
3430 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3432 /* Create a new node. */
3433 #ifdef GC_MALLOC_CHECK
3434 x
= (struct mem_node
*) _malloc_internal (sizeof *x
);
3438 x
= (struct mem_node
*) xmalloc (sizeof *x
);
3444 x
->left
= x
->right
= MEM_NIL
;
3447 /* Insert it as child of PARENT or install it as root. */
3450 if (start
< parent
->start
)
3458 /* Re-establish red-black tree properties. */
3459 mem_insert_fixup (x
);
3465 /* Re-establish the red-black properties of the tree, and thereby
3466 balance the tree, after node X has been inserted; X is always red. */
3469 mem_insert_fixup (struct mem_node
*x
)
3471 while (x
!= mem_root
&& x
->parent
->color
== MEM_RED
)
3473 /* X is red and its parent is red. This is a violation of
3474 red-black tree property #3. */
3476 if (x
->parent
== x
->parent
->parent
->left
)
3478 /* We're on the left side of our grandparent, and Y is our
3480 struct mem_node
*y
= x
->parent
->parent
->right
;
3482 if (y
->color
== MEM_RED
)
3484 /* Uncle and parent are red but should be black because
3485 X is red. Change the colors accordingly and proceed
3486 with the grandparent. */
3487 x
->parent
->color
= MEM_BLACK
;
3488 y
->color
= MEM_BLACK
;
3489 x
->parent
->parent
->color
= MEM_RED
;
3490 x
= x
->parent
->parent
;
3494 /* Parent and uncle have different colors; parent is
3495 red, uncle is black. */
3496 if (x
== x
->parent
->right
)
3499 mem_rotate_left (x
);
3502 x
->parent
->color
= MEM_BLACK
;
3503 x
->parent
->parent
->color
= MEM_RED
;
3504 mem_rotate_right (x
->parent
->parent
);
3509 /* This is the symmetrical case of above. */
3510 struct mem_node
*y
= x
->parent
->parent
->left
;
3512 if (y
->color
== MEM_RED
)
3514 x
->parent
->color
= MEM_BLACK
;
3515 y
->color
= MEM_BLACK
;
3516 x
->parent
->parent
->color
= MEM_RED
;
3517 x
= x
->parent
->parent
;
3521 if (x
== x
->parent
->left
)
3524 mem_rotate_right (x
);
3527 x
->parent
->color
= MEM_BLACK
;
3528 x
->parent
->parent
->color
= MEM_RED
;
3529 mem_rotate_left (x
->parent
->parent
);
3534 /* The root may have been changed to red due to the algorithm. Set
3535 it to black so that property #5 is satisfied. */
3536 mem_root
->color
= MEM_BLACK
;
3547 mem_rotate_left (struct mem_node
*x
)
3551 /* Turn y's left sub-tree into x's right sub-tree. */
3554 if (y
->left
!= MEM_NIL
)
3555 y
->left
->parent
= x
;
3557 /* Y's parent was x's parent. */
3559 y
->parent
= x
->parent
;
3561 /* Get the parent to point to y instead of x. */
3564 if (x
== x
->parent
->left
)
3565 x
->parent
->left
= y
;
3567 x
->parent
->right
= y
;
3572 /* Put x on y's left. */
3586 mem_rotate_right (struct mem_node
*x
)
3588 struct mem_node
*y
= x
->left
;
3591 if (y
->right
!= MEM_NIL
)
3592 y
->right
->parent
= x
;
3595 y
->parent
= x
->parent
;
3598 if (x
== x
->parent
->right
)
3599 x
->parent
->right
= y
;
3601 x
->parent
->left
= y
;
3612 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3615 mem_delete (struct mem_node
*z
)
3617 struct mem_node
*x
, *y
;
3619 if (!z
|| z
== MEM_NIL
)
3622 if (z
->left
== MEM_NIL
|| z
->right
== MEM_NIL
)
3627 while (y
->left
!= MEM_NIL
)
3631 if (y
->left
!= MEM_NIL
)
3636 x
->parent
= y
->parent
;
3639 if (y
== y
->parent
->left
)
3640 y
->parent
->left
= x
;
3642 y
->parent
->right
= x
;
3649 z
->start
= y
->start
;
3654 if (y
->color
== MEM_BLACK
)
3655 mem_delete_fixup (x
);
3657 #ifdef GC_MALLOC_CHECK
3665 /* Re-establish the red-black properties of the tree, after a
3669 mem_delete_fixup (struct mem_node
*x
)
3671 while (x
!= mem_root
&& x
->color
== MEM_BLACK
)
3673 if (x
== x
->parent
->left
)
3675 struct mem_node
*w
= x
->parent
->right
;
3677 if (w
->color
== MEM_RED
)
3679 w
->color
= MEM_BLACK
;
3680 x
->parent
->color
= MEM_RED
;
3681 mem_rotate_left (x
->parent
);
3682 w
= x
->parent
->right
;
3685 if (w
->left
->color
== MEM_BLACK
&& w
->right
->color
== MEM_BLACK
)
3692 if (w
->right
->color
== MEM_BLACK
)
3694 w
->left
->color
= MEM_BLACK
;
3696 mem_rotate_right (w
);
3697 w
= x
->parent
->right
;
3699 w
->color
= x
->parent
->color
;
3700 x
->parent
->color
= MEM_BLACK
;
3701 w
->right
->color
= MEM_BLACK
;
3702 mem_rotate_left (x
->parent
);
3708 struct mem_node
*w
= x
->parent
->left
;
3710 if (w
->color
== MEM_RED
)
3712 w
->color
= MEM_BLACK
;
3713 x
->parent
->color
= MEM_RED
;
3714 mem_rotate_right (x
->parent
);
3715 w
= x
->parent
->left
;
3718 if (w
->right
->color
== MEM_BLACK
&& w
->left
->color
== MEM_BLACK
)
3725 if (w
->left
->color
== MEM_BLACK
)
3727 w
->right
->color
= MEM_BLACK
;
3729 mem_rotate_left (w
);
3730 w
= x
->parent
->left
;
3733 w
->color
= x
->parent
->color
;
3734 x
->parent
->color
= MEM_BLACK
;
3735 w
->left
->color
= MEM_BLACK
;
3736 mem_rotate_right (x
->parent
);
3742 x
->color
= MEM_BLACK
;
3746 /* Value is non-zero if P is a pointer to a live Lisp string on
3747 the heap. M is a pointer to the mem_block for P. */
3750 live_string_p (struct mem_node
*m
, void *p
)
3752 if (m
->type
== MEM_TYPE_STRING
)
3754 struct string_block
*b
= (struct string_block
*) m
->start
;
3755 ptrdiff_t offset
= (char *) p
- (char *) &b
->strings
[0];
3757 /* P must point to the start of a Lisp_String structure, and it
3758 must not be on the free-list. */
3760 && offset
% sizeof b
->strings
[0] == 0
3761 && offset
< (STRING_BLOCK_SIZE
* sizeof b
->strings
[0])
3762 && ((struct Lisp_String
*) p
)->data
!= NULL
);
3769 /* Value is non-zero if P is a pointer to a live Lisp cons on
3770 the heap. M is a pointer to the mem_block for P. */
3773 live_cons_p (struct mem_node
*m
, void *p
)
3775 if (m
->type
== MEM_TYPE_CONS
)
3777 struct cons_block
*b
= (struct cons_block
*) m
->start
;
3778 ptrdiff_t offset
= (char *) p
- (char *) &b
->conses
[0];
3780 /* P must point to the start of a Lisp_Cons, not be
3781 one of the unused cells in the current cons block,
3782 and not be on the free-list. */
3784 && offset
% sizeof b
->conses
[0] == 0
3785 && offset
< (CONS_BLOCK_SIZE
* sizeof b
->conses
[0])
3787 || offset
/ sizeof b
->conses
[0] < cons_block_index
)
3788 && !EQ (((struct Lisp_Cons
*) p
)->car
, Vdead
));
3795 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3796 the heap. M is a pointer to the mem_block for P. */
3799 live_symbol_p (struct mem_node
*m
, void *p
)
3801 if (m
->type
== MEM_TYPE_SYMBOL
)
3803 struct symbol_block
*b
= (struct symbol_block
*) m
->start
;
3804 ptrdiff_t offset
= (char *) p
- (char *) &b
->symbols
[0];
3806 /* P must point to the start of a Lisp_Symbol, not be
3807 one of the unused cells in the current symbol block,
3808 and not be on the free-list. */
3810 && offset
% sizeof b
->symbols
[0] == 0
3811 && offset
< (SYMBOL_BLOCK_SIZE
* sizeof b
->symbols
[0])
3812 && (b
!= symbol_block
3813 || offset
/ sizeof b
->symbols
[0] < symbol_block_index
)
3814 && !EQ (((struct Lisp_Symbol
*) p
)->function
, Vdead
));
3821 /* Value is non-zero if P is a pointer to a live Lisp float on
3822 the heap. M is a pointer to the mem_block for P. */
3825 live_float_p (struct mem_node
*m
, void *p
)
3827 if (m
->type
== MEM_TYPE_FLOAT
)
3829 struct float_block
*b
= (struct float_block
*) m
->start
;
3830 ptrdiff_t offset
= (char *) p
- (char *) &b
->floats
[0];
3832 /* P must point to the start of a Lisp_Float and not be
3833 one of the unused cells in the current float block. */
3835 && offset
% sizeof b
->floats
[0] == 0
3836 && offset
< (FLOAT_BLOCK_SIZE
* sizeof b
->floats
[0])
3837 && (b
!= float_block
3838 || offset
/ sizeof b
->floats
[0] < float_block_index
));
3845 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3846 the heap. M is a pointer to the mem_block for P. */
3849 live_misc_p (struct mem_node
*m
, void *p
)
3851 if (m
->type
== MEM_TYPE_MISC
)
3853 struct marker_block
*b
= (struct marker_block
*) m
->start
;
3854 ptrdiff_t offset
= (char *) p
- (char *) &b
->markers
[0];
3856 /* P must point to the start of a Lisp_Misc, not be
3857 one of the unused cells in the current misc block,
3858 and not be on the free-list. */
3860 && offset
% sizeof b
->markers
[0] == 0
3861 && offset
< (MARKER_BLOCK_SIZE
* sizeof b
->markers
[0])
3862 && (b
!= marker_block
3863 || offset
/ sizeof b
->markers
[0] < marker_block_index
)
3864 && ((union Lisp_Misc
*) p
)->u_any
.type
!= Lisp_Misc_Free
);
3871 /* Value is non-zero if P is a pointer to a live vector-like object.
3872 M is a pointer to the mem_block for P. */
3875 live_vector_p (struct mem_node
*m
, void *p
)
3877 return (p
== m
->start
&& m
->type
== MEM_TYPE_VECTORLIKE
);
3881 /* Value is non-zero if P is a pointer to a live buffer. M is a
3882 pointer to the mem_block for P. */
3885 live_buffer_p (struct mem_node
*m
, void *p
)
3887 /* P must point to the start of the block, and the buffer
3888 must not have been killed. */
3889 return (m
->type
== MEM_TYPE_BUFFER
3891 && !NILP (((struct buffer
*) p
)->BUFFER_INTERNAL_FIELD (name
)));
3894 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3898 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3900 /* Array of objects that are kept alive because the C stack contains
3901 a pattern that looks like a reference to them . */
3903 #define MAX_ZOMBIES 10
3904 static Lisp_Object zombies
[MAX_ZOMBIES
];
3906 /* Number of zombie objects. */
3908 static EMACS_INT nzombies
;
3910 /* Number of garbage collections. */
3912 static EMACS_INT ngcs
;
3914 /* Average percentage of zombies per collection. */
3916 static double avg_zombies
;
3918 /* Max. number of live and zombie objects. */
3920 static EMACS_INT max_live
, max_zombies
;
3922 /* Average number of live objects per GC. */
3924 static double avg_live
;
3926 DEFUN ("gc-status", Fgc_status
, Sgc_status
, 0, 0, "",
3927 doc
: /* Show information about live and zombie objects. */)
3930 Lisp_Object args
[8], zombie_list
= Qnil
;
3932 for (i
= 0; i
< nzombies
; i
++)
3933 zombie_list
= Fcons (zombies
[i
], zombie_list
);
3934 args
[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3935 args
[1] = make_number (ngcs
);
3936 args
[2] = make_float (avg_live
);
3937 args
[3] = make_float (avg_zombies
);
3938 args
[4] = make_float (avg_zombies
/ avg_live
/ 100);
3939 args
[5] = make_number (max_live
);
3940 args
[6] = make_number (max_zombies
);
3941 args
[7] = zombie_list
;
3942 return Fmessage (8, args
);
3945 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3948 /* Mark OBJ if we can prove it's a Lisp_Object. */
3951 mark_maybe_object (Lisp_Object obj
)
3959 po
= (void *) XPNTR (obj
);
3966 switch (XTYPE (obj
))
3969 mark_p
= (live_string_p (m
, po
)
3970 && !STRING_MARKED_P ((struct Lisp_String
*) po
));
3974 mark_p
= (live_cons_p (m
, po
) && !CONS_MARKED_P (XCONS (obj
)));
3978 mark_p
= (live_symbol_p (m
, po
) && !XSYMBOL (obj
)->gcmarkbit
);
3982 mark_p
= (live_float_p (m
, po
) && !FLOAT_MARKED_P (XFLOAT (obj
)));
3985 case Lisp_Vectorlike
:
3986 /* Note: can't check BUFFERP before we know it's a
3987 buffer because checking that dereferences the pointer
3988 PO which might point anywhere. */
3989 if (live_vector_p (m
, po
))
3990 mark_p
= !SUBRP (obj
) && !VECTOR_MARKED_P (XVECTOR (obj
));
3991 else if (live_buffer_p (m
, po
))
3992 mark_p
= BUFFERP (obj
) && !VECTOR_MARKED_P (XBUFFER (obj
));
3996 mark_p
= (live_misc_p (m
, po
) && !XMISCANY (obj
)->gcmarkbit
);
4005 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4006 if (nzombies
< MAX_ZOMBIES
)
4007 zombies
[nzombies
] = obj
;
4016 /* If P points to Lisp data, mark that as live if it isn't already
4020 mark_maybe_pointer (void *p
)
4024 /* Quickly rule out some values which can't point to Lisp data. */
4027 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4029 2 /* We assume that Lisp data is aligned on even addresses. */
4037 Lisp_Object obj
= Qnil
;
4041 case MEM_TYPE_NON_LISP
:
4042 /* Nothing to do; not a pointer to Lisp memory. */
4045 case MEM_TYPE_BUFFER
:
4046 if (live_buffer_p (m
, p
) && !VECTOR_MARKED_P((struct buffer
*)p
))
4047 XSETVECTOR (obj
, p
);
4051 if (live_cons_p (m
, p
) && !CONS_MARKED_P ((struct Lisp_Cons
*) p
))
4055 case MEM_TYPE_STRING
:
4056 if (live_string_p (m
, p
)
4057 && !STRING_MARKED_P ((struct Lisp_String
*) p
))
4058 XSETSTRING (obj
, p
);
4062 if (live_misc_p (m
, p
) && !((struct Lisp_Free
*) p
)->gcmarkbit
)
4066 case MEM_TYPE_SYMBOL
:
4067 if (live_symbol_p (m
, p
) && !((struct Lisp_Symbol
*) p
)->gcmarkbit
)
4068 XSETSYMBOL (obj
, p
);
4071 case MEM_TYPE_FLOAT
:
4072 if (live_float_p (m
, p
) && !FLOAT_MARKED_P (p
))
4076 case MEM_TYPE_VECTORLIKE
:
4077 if (live_vector_p (m
, p
))
4080 XSETVECTOR (tem
, p
);
4081 if (!SUBRP (tem
) && !VECTOR_MARKED_P (XVECTOR (tem
)))
4096 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4097 or END+OFFSET..START. */
4100 mark_memory (void *start
, void *end
, int offset
)
4105 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4109 /* Make START the pointer to the start of the memory region,
4110 if it isn't already. */
4118 /* Mark Lisp_Objects. */
4119 for (p
= (Lisp_Object
*) ((char *) start
+ offset
); (void *) p
< end
; ++p
)
4120 mark_maybe_object (*p
);
4122 /* Mark Lisp data pointed to. This is necessary because, in some
4123 situations, the C compiler optimizes Lisp objects away, so that
4124 only a pointer to them remains. Example:
4126 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4129 Lisp_Object obj = build_string ("test");
4130 struct Lisp_String *s = XSTRING (obj);
4131 Fgarbage_collect ();
4132 fprintf (stderr, "test `%s'\n", s->data);
4136 Here, `obj' isn't really used, and the compiler optimizes it
4137 away. The only reference to the life string is through the
4140 for (pp
= (void **) ((char *) start
+ offset
); (void *) pp
< end
; ++pp
)
4141 mark_maybe_pointer (*pp
);
4144 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4145 the GCC system configuration. In gcc 3.2, the only systems for
4146 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4147 by others?) and ns32k-pc532-min. */
4149 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4151 static int setjmp_tested_p
, longjmps_done
;
4153 #define SETJMP_WILL_LIKELY_WORK "\
4155 Emacs garbage collector has been changed to use conservative stack\n\
4156 marking. Emacs has determined that the method it uses to do the\n\
4157 marking will likely work on your system, but this isn't sure.\n\
4159 If you are a system-programmer, or can get the help of a local wizard\n\
4160 who is, please take a look at the function mark_stack in alloc.c, and\n\
4161 verify that the methods used are appropriate for your system.\n\
4163 Please mail the result to <emacs-devel@gnu.org>.\n\
4166 #define SETJMP_WILL_NOT_WORK "\
4168 Emacs garbage collector has been changed to use conservative stack\n\
4169 marking. Emacs has determined that the default method it uses to do the\n\
4170 marking will not work on your system. We will need a system-dependent\n\
4171 solution for your system.\n\
4173 Please take a look at the function mark_stack in alloc.c, and\n\
4174 try to find a way to make it work on your system.\n\
4176 Note that you may get false negatives, depending on the compiler.\n\
4177 In particular, you need to use -O with GCC for this test.\n\
4179 Please mail the result to <emacs-devel@gnu.org>.\n\
4183 /* Perform a quick check if it looks like setjmp saves registers in a
4184 jmp_buf. Print a message to stderr saying so. When this test
4185 succeeds, this is _not_ a proof that setjmp is sufficient for
4186 conservative stack marking. Only the sources or a disassembly
4197 /* Arrange for X to be put in a register. */
4203 if (longjmps_done
== 1)
4205 /* Came here after the longjmp at the end of the function.
4207 If x == 1, the longjmp has restored the register to its
4208 value before the setjmp, and we can hope that setjmp
4209 saves all such registers in the jmp_buf, although that
4212 For other values of X, either something really strange is
4213 taking place, or the setjmp just didn't save the register. */
4216 fprintf (stderr
, SETJMP_WILL_LIKELY_WORK
);
4219 fprintf (stderr
, SETJMP_WILL_NOT_WORK
);
4226 if (longjmps_done
== 1)
4230 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4233 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4235 /* Abort if anything GCPRO'd doesn't survive the GC. */
4243 for (p
= gcprolist
; p
; p
= p
->next
)
4244 for (i
= 0; i
< p
->nvars
; ++i
)
4245 if (!survives_gc_p (p
->var
[i
]))
4246 /* FIXME: It's not necessarily a bug. It might just be that the
4247 GCPRO is unnecessary or should release the object sooner. */
4251 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4258 fprintf (stderr
, "\nZombies kept alive = %"pI
":\n", nzombies
);
4259 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); ++i
)
4261 fprintf (stderr
, " %d = ", i
);
4262 debug_print (zombies
[i
]);
4266 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4269 /* Mark live Lisp objects on the C stack.
4271 There are several system-dependent problems to consider when
4272 porting this to new architectures:
4276 We have to mark Lisp objects in CPU registers that can hold local
4277 variables or are used to pass parameters.
4279 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4280 something that either saves relevant registers on the stack, or
4281 calls mark_maybe_object passing it each register's contents.
4283 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4284 implementation assumes that calling setjmp saves registers we need
4285 to see in a jmp_buf which itself lies on the stack. This doesn't
4286 have to be true! It must be verified for each system, possibly
4287 by taking a look at the source code of setjmp.
4289 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4290 can use it as a machine independent method to store all registers
4291 to the stack. In this case the macros described in the previous
4292 two paragraphs are not used.
4296 Architectures differ in the way their processor stack is organized.
4297 For example, the stack might look like this
4300 | Lisp_Object | size = 4
4302 | something else | size = 2
4304 | Lisp_Object | size = 4
4308 In such a case, not every Lisp_Object will be aligned equally. To
4309 find all Lisp_Object on the stack it won't be sufficient to walk
4310 the stack in steps of 4 bytes. Instead, two passes will be
4311 necessary, one starting at the start of the stack, and a second
4312 pass starting at the start of the stack + 2. Likewise, if the
4313 minimal alignment of Lisp_Objects on the stack is 1, four passes
4314 would be necessary, each one starting with one byte more offset
4315 from the stack start.
4317 The current code assumes by default that Lisp_Objects are aligned
4318 equally on the stack. */
4326 #ifdef HAVE___BUILTIN_UNWIND_INIT
4327 /* Force callee-saved registers and register windows onto the stack.
4328 This is the preferred method if available, obviating the need for
4329 machine dependent methods. */
4330 __builtin_unwind_init ();
4332 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4333 #ifndef GC_SAVE_REGISTERS_ON_STACK
4334 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4335 union aligned_jmpbuf
{
4339 volatile int stack_grows_down_p
= (char *) &j
> (char *) stack_base
;
4341 /* This trick flushes the register windows so that all the state of
4342 the process is contained in the stack. */
4343 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4344 needed on ia64 too. See mach_dep.c, where it also says inline
4345 assembler doesn't work with relevant proprietary compilers. */
4347 #if defined (__sparc64__) && defined (__FreeBSD__)
4348 /* FreeBSD does not have a ta 3 handler. */
4355 /* Save registers that we need to see on the stack. We need to see
4356 registers used to hold register variables and registers used to
4358 #ifdef GC_SAVE_REGISTERS_ON_STACK
4359 GC_SAVE_REGISTERS_ON_STACK (end
);
4360 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4362 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4363 setjmp will definitely work, test it
4364 and print a message with the result
4366 if (!setjmp_tested_p
)
4368 setjmp_tested_p
= 1;
4371 #endif /* GC_SETJMP_WORKS */
4374 end
= stack_grows_down_p
? (char *) &j
+ sizeof j
: (char *) &j
;
4375 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4376 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4378 /* This assumes that the stack is a contiguous region in memory. If
4379 that's not the case, something has to be done here to iterate
4380 over the stack segments. */
4381 #ifndef GC_LISP_OBJECT_ALIGNMENT
4383 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4385 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4388 for (i
= 0; i
< sizeof (Lisp_Object
); i
+= GC_LISP_OBJECT_ALIGNMENT
)
4389 mark_memory (stack_base
, end
, i
);
4390 /* Allow for marking a secondary stack, like the register stack on the
4392 #ifdef GC_MARK_SECONDARY_STACK
4393 GC_MARK_SECONDARY_STACK ();
4396 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4401 #endif /* GC_MARK_STACK != 0 */
4404 /* Determine whether it is safe to access memory at address P. */
4406 valid_pointer_p (void *p
)
4409 return w32_valid_pointer_p (p
, 16);
4413 /* Obviously, we cannot just access it (we would SEGV trying), so we
4414 trick the o/s to tell us whether p is a valid pointer.
4415 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4416 not validate p in that case. */
4418 if ((fd
= emacs_open ("__Valid__Lisp__Object__", O_CREAT
| O_WRONLY
| O_TRUNC
, 0666)) >= 0)
4420 int valid
= (emacs_write (fd
, (char *)p
, 16) == 16);
4422 unlink ("__Valid__Lisp__Object__");
4430 /* Return 1 if OBJ is a valid lisp object.
4431 Return 0 if OBJ is NOT a valid lisp object.
4432 Return -1 if we cannot validate OBJ.
4433 This function can be quite slow,
4434 so it should only be used in code for manual debugging. */
4437 valid_lisp_object_p (Lisp_Object obj
)
4447 p
= (void *) XPNTR (obj
);
4448 if (PURE_POINTER_P (p
))
4452 return valid_pointer_p (p
);
4459 int valid
= valid_pointer_p (p
);
4471 case MEM_TYPE_NON_LISP
:
4474 case MEM_TYPE_BUFFER
:
4475 return live_buffer_p (m
, p
);
4478 return live_cons_p (m
, p
);
4480 case MEM_TYPE_STRING
:
4481 return live_string_p (m
, p
);
4484 return live_misc_p (m
, p
);
4486 case MEM_TYPE_SYMBOL
:
4487 return live_symbol_p (m
, p
);
4489 case MEM_TYPE_FLOAT
:
4490 return live_float_p (m
, p
);
4492 case MEM_TYPE_VECTORLIKE
:
4493 return live_vector_p (m
, p
);
4506 /***********************************************************************
4507 Pure Storage Management
4508 ***********************************************************************/
4510 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4511 pointer to it. TYPE is the Lisp type for which the memory is
4512 allocated. TYPE < 0 means it's not used for a Lisp object. */
4514 static POINTER_TYPE
*
4515 pure_alloc (size_t size
, int type
)
4517 POINTER_TYPE
*result
;
4519 size_t alignment
= (1 << GCTYPEBITS
);
4521 size_t alignment
= sizeof (EMACS_INT
);
4523 /* Give Lisp_Floats an extra alignment. */
4524 if (type
== Lisp_Float
)
4526 #if defined __GNUC__ && __GNUC__ >= 2
4527 alignment
= __alignof (struct Lisp_Float
);
4529 alignment
= sizeof (struct Lisp_Float
);
4537 /* Allocate space for a Lisp object from the beginning of the free
4538 space with taking account of alignment. */
4539 result
= ALIGN (purebeg
+ pure_bytes_used_lisp
, alignment
);
4540 pure_bytes_used_lisp
= ((char *)result
- (char *)purebeg
) + size
;
4544 /* Allocate space for a non-Lisp object from the end of the free
4546 pure_bytes_used_non_lisp
+= size
;
4547 result
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
4549 pure_bytes_used
= pure_bytes_used_lisp
+ pure_bytes_used_non_lisp
;
4551 if (pure_bytes_used
<= pure_size
)
4554 /* Don't allocate a large amount here,
4555 because it might get mmap'd and then its address
4556 might not be usable. */
4557 purebeg
= (char *) xmalloc (10000);
4559 pure_bytes_used_before_overflow
+= pure_bytes_used
- size
;
4560 pure_bytes_used
= 0;
4561 pure_bytes_used_lisp
= pure_bytes_used_non_lisp
= 0;
4566 /* Print a warning if PURESIZE is too small. */
4569 check_pure_size (void)
4571 if (pure_bytes_used_before_overflow
)
4572 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI
"d"
4574 pure_bytes_used
+ pure_bytes_used_before_overflow
);
4578 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4579 the non-Lisp data pool of the pure storage, and return its start
4580 address. Return NULL if not found. */
4583 find_string_data_in_pure (const char *data
, EMACS_INT nbytes
)
4586 EMACS_INT skip
, bm_skip
[256], last_char_skip
, infinity
, start
, start_max
;
4587 const unsigned char *p
;
4590 if (pure_bytes_used_non_lisp
< nbytes
+ 1)
4593 /* Set up the Boyer-Moore table. */
4595 for (i
= 0; i
< 256; i
++)
4598 p
= (const unsigned char *) data
;
4600 bm_skip
[*p
++] = skip
;
4602 last_char_skip
= bm_skip
['\0'];
4604 non_lisp_beg
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
4605 start_max
= pure_bytes_used_non_lisp
- (nbytes
+ 1);
4607 /* See the comments in the function `boyer_moore' (search.c) for the
4608 use of `infinity'. */
4609 infinity
= pure_bytes_used_non_lisp
+ 1;
4610 bm_skip
['\0'] = infinity
;
4612 p
= (const unsigned char *) non_lisp_beg
+ nbytes
;
4616 /* Check the last character (== '\0'). */
4619 start
+= bm_skip
[*(p
+ start
)];
4621 while (start
<= start_max
);
4623 if (start
< infinity
)
4624 /* Couldn't find the last character. */
4627 /* No less than `infinity' means we could find the last
4628 character at `p[start - infinity]'. */
4631 /* Check the remaining characters. */
4632 if (memcmp (data
, non_lisp_beg
+ start
, nbytes
) == 0)
4634 return non_lisp_beg
+ start
;
4636 start
+= last_char_skip
;
4638 while (start
<= start_max
);
4644 /* Return a string allocated in pure space. DATA is a buffer holding
4645 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4646 non-zero means make the result string multibyte.
4648 Must get an error if pure storage is full, since if it cannot hold
4649 a large string it may be able to hold conses that point to that
4650 string; then the string is not protected from gc. */
4653 make_pure_string (const char *data
,
4654 EMACS_INT nchars
, EMACS_INT nbytes
, int multibyte
)
4657 struct Lisp_String
*s
;
4659 s
= (struct Lisp_String
*) pure_alloc (sizeof *s
, Lisp_String
);
4660 s
->data
= (unsigned char *) find_string_data_in_pure (data
, nbytes
);
4661 if (s
->data
== NULL
)
4663 s
->data
= (unsigned char *) pure_alloc (nbytes
+ 1, -1);
4664 memcpy (s
->data
, data
, nbytes
);
4665 s
->data
[nbytes
] = '\0';
4668 s
->size_byte
= multibyte
? nbytes
: -1;
4669 s
->intervals
= NULL_INTERVAL
;
4670 XSETSTRING (string
, s
);
4674 /* Return a string a string allocated in pure space. Do not allocate
4675 the string data, just point to DATA. */
4678 make_pure_c_string (const char *data
)
4681 struct Lisp_String
*s
;
4682 EMACS_INT nchars
= strlen (data
);
4684 s
= (struct Lisp_String
*) pure_alloc (sizeof *s
, Lisp_String
);
4687 s
->data
= (unsigned char *) data
;
4688 s
->intervals
= NULL_INTERVAL
;
4689 XSETSTRING (string
, s
);
4693 /* Return a cons allocated from pure space. Give it pure copies
4694 of CAR as car and CDR as cdr. */
4697 pure_cons (Lisp_Object car
, Lisp_Object cdr
)
4699 register Lisp_Object
new;
4700 struct Lisp_Cons
*p
;
4702 p
= (struct Lisp_Cons
*) pure_alloc (sizeof *p
, Lisp_Cons
);
4704 XSETCAR (new, Fpurecopy (car
));
4705 XSETCDR (new, Fpurecopy (cdr
));
4710 /* Value is a float object with value NUM allocated from pure space. */
4713 make_pure_float (double num
)
4715 register Lisp_Object
new;
4716 struct Lisp_Float
*p
;
4718 p
= (struct Lisp_Float
*) pure_alloc (sizeof *p
, Lisp_Float
);
4720 XFLOAT_INIT (new, num
);
4725 /* Return a vector with room for LEN Lisp_Objects allocated from
4729 make_pure_vector (EMACS_INT len
)
4732 struct Lisp_Vector
*p
;
4733 size_t size
= (offsetof (struct Lisp_Vector
, contents
)
4734 + len
* sizeof (Lisp_Object
));
4736 p
= (struct Lisp_Vector
*) pure_alloc (size
, Lisp_Vectorlike
);
4737 XSETVECTOR (new, p
);
4738 XVECTOR (new)->header
.size
= len
;
4743 DEFUN ("purecopy", Fpurecopy
, Spurecopy
, 1, 1, 0,
4744 doc
: /* Make a copy of object OBJ in pure storage.
4745 Recursively copies contents of vectors and cons cells.
4746 Does not copy symbols. Copies strings without text properties. */)
4747 (register Lisp_Object obj
)
4749 if (NILP (Vpurify_flag
))
4752 if (PURE_POINTER_P (XPNTR (obj
)))
4755 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
4757 Lisp_Object tmp
= Fgethash (obj
, Vpurify_flag
, Qnil
);
4763 obj
= pure_cons (XCAR (obj
), XCDR (obj
));
4764 else if (FLOATP (obj
))
4765 obj
= make_pure_float (XFLOAT_DATA (obj
));
4766 else if (STRINGP (obj
))
4767 obj
= make_pure_string (SSDATA (obj
), SCHARS (obj
),
4769 STRING_MULTIBYTE (obj
));
4770 else if (COMPILEDP (obj
) || VECTORP (obj
))
4772 register struct Lisp_Vector
*vec
;
4773 register EMACS_INT i
;
4777 if (size
& PSEUDOVECTOR_FLAG
)
4778 size
&= PSEUDOVECTOR_SIZE_MASK
;
4779 vec
= XVECTOR (make_pure_vector (size
));
4780 for (i
= 0; i
< size
; i
++)
4781 vec
->contents
[i
] = Fpurecopy (XVECTOR (obj
)->contents
[i
]);
4782 if (COMPILEDP (obj
))
4784 XSETPVECTYPE (vec
, PVEC_COMPILED
);
4785 XSETCOMPILED (obj
, vec
);
4788 XSETVECTOR (obj
, vec
);
4790 else if (MARKERP (obj
))
4791 error ("Attempt to copy a marker to pure storage");
4793 /* Not purified, don't hash-cons. */
4796 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
4797 Fputhash (obj
, obj
, Vpurify_flag
);
4804 /***********************************************************************
4806 ***********************************************************************/
4808 /* Put an entry in staticvec, pointing at the variable with address
4812 staticpro (Lisp_Object
*varaddress
)
4814 staticvec
[staticidx
++] = varaddress
;
4815 if (staticidx
>= NSTATICS
)
4820 /***********************************************************************
4822 ***********************************************************************/
4824 /* Temporarily prevent garbage collection. */
4827 inhibit_garbage_collection (void)
4829 int count
= SPECPDL_INDEX ();
4831 specbind (Qgc_cons_threshold
, make_number (MOST_POSITIVE_FIXNUM
));
4836 DEFUN ("garbage-collect", Fgarbage_collect
, Sgarbage_collect
, 0, 0, "",
4837 doc
: /* Reclaim storage for Lisp objects no longer needed.
4838 Garbage collection happens automatically if you cons more than
4839 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4840 `garbage-collect' normally returns a list with info on amount of space in use:
4841 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4842 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4843 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4844 (USED-STRINGS . FREE-STRINGS))
4845 However, if there was overflow in pure space, `garbage-collect'
4846 returns nil, because real GC can't be done. */)
4849 register struct specbinding
*bind
;
4850 char stack_top_variable
;
4853 Lisp_Object total
[8];
4854 int count
= SPECPDL_INDEX ();
4855 EMACS_TIME t1
, t2
, t3
;
4860 /* Can't GC if pure storage overflowed because we can't determine
4861 if something is a pure object or not. */
4862 if (pure_bytes_used_before_overflow
)
4867 /* Don't keep undo information around forever.
4868 Do this early on, so it is no problem if the user quits. */
4870 register struct buffer
*nextb
= all_buffers
;
4874 /* If a buffer's undo list is Qt, that means that undo is
4875 turned off in that buffer. Calling truncate_undo_list on
4876 Qt tends to return NULL, which effectively turns undo back on.
4877 So don't call truncate_undo_list if undo_list is Qt. */
4878 if (! NILP (nextb
->BUFFER_INTERNAL_FIELD (name
)) && ! EQ (nextb
->BUFFER_INTERNAL_FIELD (undo_list
), Qt
))
4879 truncate_undo_list (nextb
);
4881 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4882 if (nextb
->base_buffer
== 0 && !NILP (nextb
->BUFFER_INTERNAL_FIELD (name
))
4883 && ! nextb
->text
->inhibit_shrinking
)
4885 /* If a buffer's gap size is more than 10% of the buffer
4886 size, or larger than 2000 bytes, then shrink it
4887 accordingly. Keep a minimum size of 20 bytes. */
4888 int size
= min (2000, max (20, (nextb
->text
->z_byte
/ 10)));
4890 if (nextb
->text
->gap_size
> size
)
4892 struct buffer
*save_current
= current_buffer
;
4893 current_buffer
= nextb
;
4894 make_gap (-(nextb
->text
->gap_size
- size
));
4895 current_buffer
= save_current
;
4899 nextb
= nextb
->header
.next
.buffer
;
4903 EMACS_GET_TIME (t1
);
4905 /* In case user calls debug_print during GC,
4906 don't let that cause a recursive GC. */
4907 consing_since_gc
= 0;
4909 /* Save what's currently displayed in the echo area. */
4910 message_p
= push_message ();
4911 record_unwind_protect (pop_message_unwind
, Qnil
);
4913 /* Save a copy of the contents of the stack, for debugging. */
4914 #if MAX_SAVE_STACK > 0
4915 if (NILP (Vpurify_flag
))
4919 if (&stack_top_variable
< stack_bottom
)
4921 stack
= &stack_top_variable
;
4922 stack_size
= stack_bottom
- &stack_top_variable
;
4926 stack
= stack_bottom
;
4927 stack_size
= &stack_top_variable
- stack_bottom
;
4929 if (stack_size
<= MAX_SAVE_STACK
)
4931 if (stack_copy_size
< stack_size
)
4933 stack_copy
= (char *) xrealloc (stack_copy
, stack_size
);
4934 stack_copy_size
= stack_size
;
4936 memcpy (stack_copy
, stack
, stack_size
);
4939 #endif /* MAX_SAVE_STACK > 0 */
4941 if (garbage_collection_messages
)
4942 message1_nolog ("Garbage collecting...");
4946 shrink_regexp_cache ();
4950 /* clear_marks (); */
4952 /* Mark all the special slots that serve as the roots of accessibility. */
4954 for (i
= 0; i
< staticidx
; i
++)
4955 mark_object (*staticvec
[i
]);
4957 for (bind
= specpdl
; bind
!= specpdl_ptr
; bind
++)
4959 mark_object (bind
->symbol
);
4960 mark_object (bind
->old_value
);
4968 extern void xg_mark_data (void);
4973 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4974 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4978 register struct gcpro
*tail
;
4979 for (tail
= gcprolist
; tail
; tail
= tail
->next
)
4980 for (i
= 0; i
< tail
->nvars
; i
++)
4981 mark_object (tail
->var
[i
]);
4985 struct catchtag
*catch;
4986 struct handler
*handler
;
4988 for (catch = catchlist
; catch; catch = catch->next
)
4990 mark_object (catch->tag
);
4991 mark_object (catch->val
);
4993 for (handler
= handlerlist
; handler
; handler
= handler
->next
)
4995 mark_object (handler
->handler
);
4996 mark_object (handler
->var
);
5002 #ifdef HAVE_WINDOW_SYSTEM
5003 mark_fringe_data ();
5006 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5010 /* Everything is now marked, except for the things that require special
5011 finalization, i.e. the undo_list.
5012 Look thru every buffer's undo list
5013 for elements that update markers that were not marked,
5016 register struct buffer
*nextb
= all_buffers
;
5020 /* If a buffer's undo list is Qt, that means that undo is
5021 turned off in that buffer. Calling truncate_undo_list on
5022 Qt tends to return NULL, which effectively turns undo back on.
5023 So don't call truncate_undo_list if undo_list is Qt. */
5024 if (! EQ (nextb
->BUFFER_INTERNAL_FIELD (undo_list
), Qt
))
5026 Lisp_Object tail
, prev
;
5027 tail
= nextb
->BUFFER_INTERNAL_FIELD (undo_list
);
5029 while (CONSP (tail
))
5031 if (CONSP (XCAR (tail
))
5032 && MARKERP (XCAR (XCAR (tail
)))
5033 && !XMARKER (XCAR (XCAR (tail
)))->gcmarkbit
)
5036 nextb
->BUFFER_INTERNAL_FIELD (undo_list
) = tail
= XCDR (tail
);
5040 XSETCDR (prev
, tail
);
5050 /* Now that we have stripped the elements that need not be in the
5051 undo_list any more, we can finally mark the list. */
5052 mark_object (nextb
->BUFFER_INTERNAL_FIELD (undo_list
));
5054 nextb
= nextb
->header
.next
.buffer
;
5060 /* Clear the mark bits that we set in certain root slots. */
5062 unmark_byte_stack ();
5063 VECTOR_UNMARK (&buffer_defaults
);
5064 VECTOR_UNMARK (&buffer_local_symbols
);
5066 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5074 /* clear_marks (); */
5077 consing_since_gc
= 0;
5078 if (gc_cons_threshold
< 10000)
5079 gc_cons_threshold
= 10000;
5081 gc_relative_threshold
= 0;
5082 if (FLOATP (Vgc_cons_percentage
))
5083 { /* Set gc_cons_combined_threshold. */
5086 tot
+= total_conses
* sizeof (struct Lisp_Cons
);
5087 tot
+= total_symbols
* sizeof (struct Lisp_Symbol
);
5088 tot
+= total_markers
* sizeof (union Lisp_Misc
);
5089 tot
+= total_string_size
;
5090 tot
+= total_vector_size
* sizeof (Lisp_Object
);
5091 tot
+= total_floats
* sizeof (struct Lisp_Float
);
5092 tot
+= total_intervals
* sizeof (struct interval
);
5093 tot
+= total_strings
* sizeof (struct Lisp_String
);
5095 tot
*= XFLOAT_DATA (Vgc_cons_percentage
);
5098 if (tot
< TYPE_MAXIMUM (EMACS_INT
))
5099 gc_relative_threshold
= tot
;
5101 gc_relative_threshold
= TYPE_MAXIMUM (EMACS_INT
);
5105 if (garbage_collection_messages
)
5107 if (message_p
|| minibuf_level
> 0)
5110 message1_nolog ("Garbage collecting...done");
5113 unbind_to (count
, Qnil
);
5115 total
[0] = Fcons (make_number (total_conses
),
5116 make_number (total_free_conses
));
5117 total
[1] = Fcons (make_number (total_symbols
),
5118 make_number (total_free_symbols
));
5119 total
[2] = Fcons (make_number (total_markers
),
5120 make_number (total_free_markers
));
5121 total
[3] = make_number (total_string_size
);
5122 total
[4] = make_number (total_vector_size
);
5123 total
[5] = Fcons (make_number (total_floats
),
5124 make_number (total_free_floats
));
5125 total
[6] = Fcons (make_number (total_intervals
),
5126 make_number (total_free_intervals
));
5127 total
[7] = Fcons (make_number (total_strings
),
5128 make_number (total_free_strings
));
5130 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5132 /* Compute average percentage of zombies. */
5135 for (i
= 0; i
< 7; ++i
)
5136 if (CONSP (total
[i
]))
5137 nlive
+= XFASTINT (XCAR (total
[i
]));
5139 avg_live
= (avg_live
* ngcs
+ nlive
) / (ngcs
+ 1);
5140 max_live
= max (nlive
, max_live
);
5141 avg_zombies
= (avg_zombies
* ngcs
+ nzombies
) / (ngcs
+ 1);
5142 max_zombies
= max (nzombies
, max_zombies
);
5147 if (!NILP (Vpost_gc_hook
))
5149 int gc_count
= inhibit_garbage_collection ();
5150 safe_run_hooks (Qpost_gc_hook
);
5151 unbind_to (gc_count
, Qnil
);
5154 /* Accumulate statistics. */
5155 EMACS_GET_TIME (t2
);
5156 EMACS_SUB_TIME (t3
, t2
, t1
);
5157 if (FLOATP (Vgc_elapsed
))
5158 Vgc_elapsed
= make_float (XFLOAT_DATA (Vgc_elapsed
) +
5160 EMACS_USECS (t3
) * 1.0e-6);
5163 return Flist (sizeof total
/ sizeof *total
, total
);
5167 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5168 only interesting objects referenced from glyphs are strings. */
5171 mark_glyph_matrix (struct glyph_matrix
*matrix
)
5173 struct glyph_row
*row
= matrix
->rows
;
5174 struct glyph_row
*end
= row
+ matrix
->nrows
;
5176 for (; row
< end
; ++row
)
5180 for (area
= LEFT_MARGIN_AREA
; area
< LAST_AREA
; ++area
)
5182 struct glyph
*glyph
= row
->glyphs
[area
];
5183 struct glyph
*end_glyph
= glyph
+ row
->used
[area
];
5185 for (; glyph
< end_glyph
; ++glyph
)
5186 if (STRINGP (glyph
->object
)
5187 && !STRING_MARKED_P (XSTRING (glyph
->object
)))
5188 mark_object (glyph
->object
);
5194 /* Mark Lisp faces in the face cache C. */
5197 mark_face_cache (struct face_cache
*c
)
5202 for (i
= 0; i
< c
->used
; ++i
)
5204 struct face
*face
= FACE_FROM_ID (c
->f
, i
);
5208 for (j
= 0; j
< LFACE_VECTOR_SIZE
; ++j
)
5209 mark_object (face
->lface
[j
]);
5217 /* Mark reference to a Lisp_Object.
5218 If the object referred to has not been seen yet, recursively mark
5219 all the references contained in it. */
5221 #define LAST_MARKED_SIZE 500
5222 static Lisp_Object last_marked
[LAST_MARKED_SIZE
];
5223 static int last_marked_index
;
5225 /* For debugging--call abort when we cdr down this many
5226 links of a list, in mark_object. In debugging,
5227 the call to abort will hit a breakpoint.
5228 Normally this is zero and the check never goes off. */
5229 static size_t mark_object_loop_halt
;
5232 mark_vectorlike (struct Lisp_Vector
*ptr
)
5234 EMACS_INT size
= ptr
->header
.size
;
5237 eassert (!VECTOR_MARKED_P (ptr
));
5238 VECTOR_MARK (ptr
); /* Else mark it */
5239 if (size
& PSEUDOVECTOR_FLAG
)
5240 size
&= PSEUDOVECTOR_SIZE_MASK
;
5242 /* Note that this size is not the memory-footprint size, but only
5243 the number of Lisp_Object fields that we should trace.
5244 The distinction is used e.g. by Lisp_Process which places extra
5245 non-Lisp_Object fields at the end of the structure. */
5246 for (i
= 0; i
< size
; i
++) /* and then mark its elements */
5247 mark_object (ptr
->contents
[i
]);
5250 /* Like mark_vectorlike but optimized for char-tables (and
5251 sub-char-tables) assuming that the contents are mostly integers or
5255 mark_char_table (struct Lisp_Vector
*ptr
)
5257 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5260 eassert (!VECTOR_MARKED_P (ptr
));
5262 for (i
= 0; i
< size
; i
++)
5264 Lisp_Object val
= ptr
->contents
[i
];
5266 if (INTEGERP (val
) || (SYMBOLP (val
) && XSYMBOL (val
)->gcmarkbit
))
5268 if (SUB_CHAR_TABLE_P (val
))
5270 if (! VECTOR_MARKED_P (XVECTOR (val
)))
5271 mark_char_table (XVECTOR (val
));
5279 mark_object (Lisp_Object arg
)
5281 register Lisp_Object obj
= arg
;
5282 #ifdef GC_CHECK_MARKED_OBJECTS
5286 size_t cdr_count
= 0;
5290 if (PURE_POINTER_P (XPNTR (obj
)))
5293 last_marked
[last_marked_index
++] = obj
;
5294 if (last_marked_index
== LAST_MARKED_SIZE
)
5295 last_marked_index
= 0;
5297 /* Perform some sanity checks on the objects marked here. Abort if
5298 we encounter an object we know is bogus. This increases GC time
5299 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5300 #ifdef GC_CHECK_MARKED_OBJECTS
5302 po
= (void *) XPNTR (obj
);
5304 /* Check that the object pointed to by PO is known to be a Lisp
5305 structure allocated from the heap. */
5306 #define CHECK_ALLOCATED() \
5308 m = mem_find (po); \
5313 /* Check that the object pointed to by PO is live, using predicate
5315 #define CHECK_LIVE(LIVEP) \
5317 if (!LIVEP (m, po)) \
5321 /* Check both of the above conditions. */
5322 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5324 CHECK_ALLOCATED (); \
5325 CHECK_LIVE (LIVEP); \
5328 #else /* not GC_CHECK_MARKED_OBJECTS */
5330 #define CHECK_LIVE(LIVEP) (void) 0
5331 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5333 #endif /* not GC_CHECK_MARKED_OBJECTS */
5335 switch (SWITCH_ENUM_CAST (XTYPE (obj
)))
5339 register struct Lisp_String
*ptr
= XSTRING (obj
);
5340 if (STRING_MARKED_P (ptr
))
5342 CHECK_ALLOCATED_AND_LIVE (live_string_p
);
5343 MARK_INTERVAL_TREE (ptr
->intervals
);
5345 #ifdef GC_CHECK_STRING_BYTES
5346 /* Check that the string size recorded in the string is the
5347 same as the one recorded in the sdata structure. */
5348 CHECK_STRING_BYTES (ptr
);
5349 #endif /* GC_CHECK_STRING_BYTES */
5353 case Lisp_Vectorlike
:
5354 if (VECTOR_MARKED_P (XVECTOR (obj
)))
5356 #ifdef GC_CHECK_MARKED_OBJECTS
5358 if (m
== MEM_NIL
&& !SUBRP (obj
)
5359 && po
!= &buffer_defaults
5360 && po
!= &buffer_local_symbols
)
5362 #endif /* GC_CHECK_MARKED_OBJECTS */
5366 #ifdef GC_CHECK_MARKED_OBJECTS
5367 if (po
!= &buffer_defaults
&& po
!= &buffer_local_symbols
)
5370 for (b
= all_buffers
; b
&& b
!= po
; b
= b
->header
.next
.buffer
)
5375 #endif /* GC_CHECK_MARKED_OBJECTS */
5378 else if (SUBRP (obj
))
5380 else if (COMPILEDP (obj
))
5381 /* We could treat this just like a vector, but it is better to
5382 save the COMPILED_CONSTANTS element for last and avoid
5385 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
5386 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5389 CHECK_LIVE (live_vector_p
);
5390 VECTOR_MARK (ptr
); /* Else mark it */
5391 for (i
= 0; i
< size
; i
++) /* and then mark its elements */
5393 if (i
!= COMPILED_CONSTANTS
)
5394 mark_object (ptr
->contents
[i
]);
5396 obj
= ptr
->contents
[COMPILED_CONSTANTS
];
5399 else if (FRAMEP (obj
))
5401 register struct frame
*ptr
= XFRAME (obj
);
5402 mark_vectorlike (XVECTOR (obj
));
5403 mark_face_cache (ptr
->face_cache
);
5405 else if (WINDOWP (obj
))
5407 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
5408 struct window
*w
= XWINDOW (obj
);
5409 mark_vectorlike (ptr
);
5410 /* Mark glyphs for leaf windows. Marking window matrices is
5411 sufficient because frame matrices use the same glyph
5413 if (NILP (w
->hchild
)
5415 && w
->current_matrix
)
5417 mark_glyph_matrix (w
->current_matrix
);
5418 mark_glyph_matrix (w
->desired_matrix
);
5421 else if (HASH_TABLE_P (obj
))
5423 struct Lisp_Hash_Table
*h
= XHASH_TABLE (obj
);
5424 mark_vectorlike ((struct Lisp_Vector
*)h
);
5425 /* If hash table is not weak, mark all keys and values.
5426 For weak tables, mark only the vector. */
5428 mark_object (h
->key_and_value
);
5430 VECTOR_MARK (XVECTOR (h
->key_and_value
));
5432 else if (CHAR_TABLE_P (obj
))
5433 mark_char_table (XVECTOR (obj
));
5435 mark_vectorlike (XVECTOR (obj
));
5440 register struct Lisp_Symbol
*ptr
= XSYMBOL (obj
);
5441 struct Lisp_Symbol
*ptrx
;
5445 CHECK_ALLOCATED_AND_LIVE (live_symbol_p
);
5447 mark_object (ptr
->function
);
5448 mark_object (ptr
->plist
);
5449 switch (ptr
->redirect
)
5451 case SYMBOL_PLAINVAL
: mark_object (SYMBOL_VAL (ptr
)); break;
5452 case SYMBOL_VARALIAS
:
5455 XSETSYMBOL (tem
, SYMBOL_ALIAS (ptr
));
5459 case SYMBOL_LOCALIZED
:
5461 struct Lisp_Buffer_Local_Value
*blv
= SYMBOL_BLV (ptr
);
5462 /* If the value is forwarded to a buffer or keyboard field,
5463 these are marked when we see the corresponding object.
5464 And if it's forwarded to a C variable, either it's not
5465 a Lisp_Object var, or it's staticpro'd already. */
5466 mark_object (blv
->where
);
5467 mark_object (blv
->valcell
);
5468 mark_object (blv
->defcell
);
5471 case SYMBOL_FORWARDED
:
5472 /* If the value is forwarded to a buffer or keyboard field,
5473 these are marked when we see the corresponding object.
5474 And if it's forwarded to a C variable, either it's not
5475 a Lisp_Object var, or it's staticpro'd already. */
5479 if (!PURE_POINTER_P (XSTRING (ptr
->xname
)))
5480 MARK_STRING (XSTRING (ptr
->xname
));
5481 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr
->xname
));
5486 ptrx
= ptr
; /* Use of ptrx avoids compiler bug on Sun */
5487 XSETSYMBOL (obj
, ptrx
);
5494 CHECK_ALLOCATED_AND_LIVE (live_misc_p
);
5495 if (XMISCANY (obj
)->gcmarkbit
)
5497 XMISCANY (obj
)->gcmarkbit
= 1;
5499 switch (XMISCTYPE (obj
))
5502 case Lisp_Misc_Marker
:
5503 /* DO NOT mark thru the marker's chain.
5504 The buffer's markers chain does not preserve markers from gc;
5505 instead, markers are removed from the chain when freed by gc. */
5508 case Lisp_Misc_Save_Value
:
5511 register struct Lisp_Save_Value
*ptr
= XSAVE_VALUE (obj
);
5512 /* If DOGC is set, POINTER is the address of a memory
5513 area containing INTEGER potential Lisp_Objects. */
5516 Lisp_Object
*p
= (Lisp_Object
*) ptr
->pointer
;
5518 for (nelt
= ptr
->integer
; nelt
> 0; nelt
--, p
++)
5519 mark_maybe_object (*p
);
5525 case Lisp_Misc_Overlay
:
5527 struct Lisp_Overlay
*ptr
= XOVERLAY (obj
);
5528 mark_object (ptr
->start
);
5529 mark_object (ptr
->end
);
5530 mark_object (ptr
->plist
);
5533 XSETMISC (obj
, ptr
->next
);
5546 register struct Lisp_Cons
*ptr
= XCONS (obj
);
5547 if (CONS_MARKED_P (ptr
))
5549 CHECK_ALLOCATED_AND_LIVE (live_cons_p
);
5551 /* If the cdr is nil, avoid recursion for the car. */
5552 if (EQ (ptr
->u
.cdr
, Qnil
))
5558 mark_object (ptr
->car
);
5561 if (cdr_count
== mark_object_loop_halt
)
5567 CHECK_ALLOCATED_AND_LIVE (live_float_p
);
5568 FLOAT_MARK (XFLOAT (obj
));
5579 #undef CHECK_ALLOCATED
5580 #undef CHECK_ALLOCATED_AND_LIVE
5583 /* Mark the pointers in a buffer structure. */
5586 mark_buffer (Lisp_Object buf
)
5588 register struct buffer
*buffer
= XBUFFER (buf
);
5589 register Lisp_Object
*ptr
, tmp
;
5590 Lisp_Object base_buffer
;
5592 eassert (!VECTOR_MARKED_P (buffer
));
5593 VECTOR_MARK (buffer
);
5595 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer
));
5597 /* For now, we just don't mark the undo_list. It's done later in
5598 a special way just before the sweep phase, and after stripping
5599 some of its elements that are not needed any more. */
5601 if (buffer
->overlays_before
)
5603 XSETMISC (tmp
, buffer
->overlays_before
);
5606 if (buffer
->overlays_after
)
5608 XSETMISC (tmp
, buffer
->overlays_after
);
5612 /* buffer-local Lisp variables start at `undo_list',
5613 tho only the ones from `name' on are GC'd normally. */
5614 for (ptr
= &buffer
->BUFFER_INTERNAL_FIELD (name
);
5615 (char *)ptr
< (char *)buffer
+ sizeof (struct buffer
);
5619 /* If this is an indirect buffer, mark its base buffer. */
5620 if (buffer
->base_buffer
&& !VECTOR_MARKED_P (buffer
->base_buffer
))
5622 XSETBUFFER (base_buffer
, buffer
->base_buffer
);
5623 mark_buffer (base_buffer
);
5627 /* Mark the Lisp pointers in the terminal objects.
5628 Called by the Fgarbage_collector. */
5631 mark_terminals (void)
5634 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
5636 eassert (t
->name
!= NULL
);
5637 #ifdef HAVE_WINDOW_SYSTEM
5638 /* If a terminal object is reachable from a stacpro'ed object,
5639 it might have been marked already. Make sure the image cache
5641 mark_image_cache (t
->image_cache
);
5642 #endif /* HAVE_WINDOW_SYSTEM */
5643 if (!VECTOR_MARKED_P (t
))
5644 mark_vectorlike ((struct Lisp_Vector
*)t
);
5650 /* Value is non-zero if OBJ will survive the current GC because it's
5651 either marked or does not need to be marked to survive. */
5654 survives_gc_p (Lisp_Object obj
)
5658 switch (XTYPE (obj
))
5665 survives_p
= XSYMBOL (obj
)->gcmarkbit
;
5669 survives_p
= XMISCANY (obj
)->gcmarkbit
;
5673 survives_p
= STRING_MARKED_P (XSTRING (obj
));
5676 case Lisp_Vectorlike
:
5677 survives_p
= SUBRP (obj
) || VECTOR_MARKED_P (XVECTOR (obj
));
5681 survives_p
= CONS_MARKED_P (XCONS (obj
));
5685 survives_p
= FLOAT_MARKED_P (XFLOAT (obj
));
5692 return survives_p
|| PURE_POINTER_P ((void *) XPNTR (obj
));
5697 /* Sweep: find all structures not marked, and free them. */
5702 /* Remove or mark entries in weak hash tables.
5703 This must be done before any object is unmarked. */
5704 sweep_weak_hash_tables ();
5707 #ifdef GC_CHECK_STRING_BYTES
5708 if (!noninteractive
)
5709 check_string_bytes (1);
5712 /* Put all unmarked conses on free list */
5714 register struct cons_block
*cblk
;
5715 struct cons_block
**cprev
= &cons_block
;
5716 register int lim
= cons_block_index
;
5717 EMACS_INT num_free
= 0, num_used
= 0;
5721 for (cblk
= cons_block
; cblk
; cblk
= *cprev
)
5725 int ilim
= (lim
+ BITS_PER_INT
- 1) / BITS_PER_INT
;
5727 /* Scan the mark bits an int at a time. */
5728 for (i
= 0; i
<= ilim
; i
++)
5730 if (cblk
->gcmarkbits
[i
] == -1)
5732 /* Fast path - all cons cells for this int are marked. */
5733 cblk
->gcmarkbits
[i
] = 0;
5734 num_used
+= BITS_PER_INT
;
5738 /* Some cons cells for this int are not marked.
5739 Find which ones, and free them. */
5740 int start
, pos
, stop
;
5742 start
= i
* BITS_PER_INT
;
5744 if (stop
> BITS_PER_INT
)
5745 stop
= BITS_PER_INT
;
5748 for (pos
= start
; pos
< stop
; pos
++)
5750 if (!CONS_MARKED_P (&cblk
->conses
[pos
]))
5753 cblk
->conses
[pos
].u
.chain
= cons_free_list
;
5754 cons_free_list
= &cblk
->conses
[pos
];
5756 cons_free_list
->car
= Vdead
;
5762 CONS_UNMARK (&cblk
->conses
[pos
]);
5768 lim
= CONS_BLOCK_SIZE
;
5769 /* If this block contains only free conses and we have already
5770 seen more than two blocks worth of free conses then deallocate
5772 if (this_free
== CONS_BLOCK_SIZE
&& num_free
> CONS_BLOCK_SIZE
)
5774 *cprev
= cblk
->next
;
5775 /* Unhook from the free list. */
5776 cons_free_list
= cblk
->conses
[0].u
.chain
;
5777 lisp_align_free (cblk
);
5781 num_free
+= this_free
;
5782 cprev
= &cblk
->next
;
5785 total_conses
= num_used
;
5786 total_free_conses
= num_free
;
5789 /* Put all unmarked floats on free list */
5791 register struct float_block
*fblk
;
5792 struct float_block
**fprev
= &float_block
;
5793 register int lim
= float_block_index
;
5794 EMACS_INT num_free
= 0, num_used
= 0;
5796 float_free_list
= 0;
5798 for (fblk
= float_block
; fblk
; fblk
= *fprev
)
5802 for (i
= 0; i
< lim
; i
++)
5803 if (!FLOAT_MARKED_P (&fblk
->floats
[i
]))
5806 fblk
->floats
[i
].u
.chain
= float_free_list
;
5807 float_free_list
= &fblk
->floats
[i
];
5812 FLOAT_UNMARK (&fblk
->floats
[i
]);
5814 lim
= FLOAT_BLOCK_SIZE
;
5815 /* If this block contains only free floats and we have already
5816 seen more than two blocks worth of free floats then deallocate
5818 if (this_free
== FLOAT_BLOCK_SIZE
&& num_free
> FLOAT_BLOCK_SIZE
)
5820 *fprev
= fblk
->next
;
5821 /* Unhook from the free list. */
5822 float_free_list
= fblk
->floats
[0].u
.chain
;
5823 lisp_align_free (fblk
);
5827 num_free
+= this_free
;
5828 fprev
= &fblk
->next
;
5831 total_floats
= num_used
;
5832 total_free_floats
= num_free
;
5835 /* Put all unmarked intervals on free list */
5837 register struct interval_block
*iblk
;
5838 struct interval_block
**iprev
= &interval_block
;
5839 register int lim
= interval_block_index
;
5840 EMACS_INT num_free
= 0, num_used
= 0;
5842 interval_free_list
= 0;
5844 for (iblk
= interval_block
; iblk
; iblk
= *iprev
)
5849 for (i
= 0; i
< lim
; i
++)
5851 if (!iblk
->intervals
[i
].gcmarkbit
)
5853 SET_INTERVAL_PARENT (&iblk
->intervals
[i
], interval_free_list
);
5854 interval_free_list
= &iblk
->intervals
[i
];
5860 iblk
->intervals
[i
].gcmarkbit
= 0;
5863 lim
= INTERVAL_BLOCK_SIZE
;
5864 /* If this block contains only free intervals and we have already
5865 seen more than two blocks worth of free intervals then
5866 deallocate this block. */
5867 if (this_free
== INTERVAL_BLOCK_SIZE
&& num_free
> INTERVAL_BLOCK_SIZE
)
5869 *iprev
= iblk
->next
;
5870 /* Unhook from the free list. */
5871 interval_free_list
= INTERVAL_PARENT (&iblk
->intervals
[0]);
5876 num_free
+= this_free
;
5877 iprev
= &iblk
->next
;
5880 total_intervals
= num_used
;
5881 total_free_intervals
= num_free
;
5884 /* Put all unmarked symbols on free list */
5886 register struct symbol_block
*sblk
;
5887 struct symbol_block
**sprev
= &symbol_block
;
5888 register int lim
= symbol_block_index
;
5889 EMACS_INT num_free
= 0, num_used
= 0;
5891 symbol_free_list
= NULL
;
5893 for (sblk
= symbol_block
; sblk
; sblk
= *sprev
)
5896 struct Lisp_Symbol
*sym
= sblk
->symbols
;
5897 struct Lisp_Symbol
*end
= sym
+ lim
;
5899 for (; sym
< end
; ++sym
)
5901 /* Check if the symbol was created during loadup. In such a case
5902 it might be pointed to by pure bytecode which we don't trace,
5903 so we conservatively assume that it is live. */
5904 int pure_p
= PURE_POINTER_P (XSTRING (sym
->xname
));
5906 if (!sym
->gcmarkbit
&& !pure_p
)
5908 if (sym
->redirect
== SYMBOL_LOCALIZED
)
5909 xfree (SYMBOL_BLV (sym
));
5910 sym
->next
= symbol_free_list
;
5911 symbol_free_list
= sym
;
5913 symbol_free_list
->function
= Vdead
;
5921 UNMARK_STRING (XSTRING (sym
->xname
));
5926 lim
= SYMBOL_BLOCK_SIZE
;
5927 /* If this block contains only free symbols and we have already
5928 seen more than two blocks worth of free symbols then deallocate
5930 if (this_free
== SYMBOL_BLOCK_SIZE
&& num_free
> SYMBOL_BLOCK_SIZE
)
5932 *sprev
= sblk
->next
;
5933 /* Unhook from the free list. */
5934 symbol_free_list
= sblk
->symbols
[0].next
;
5939 num_free
+= this_free
;
5940 sprev
= &sblk
->next
;
5943 total_symbols
= num_used
;
5944 total_free_symbols
= num_free
;
5947 /* Put all unmarked misc's on free list.
5948 For a marker, first unchain it from the buffer it points into. */
5950 register struct marker_block
*mblk
;
5951 struct marker_block
**mprev
= &marker_block
;
5952 register int lim
= marker_block_index
;
5953 EMACS_INT num_free
= 0, num_used
= 0;
5955 marker_free_list
= 0;
5957 for (mblk
= marker_block
; mblk
; mblk
= *mprev
)
5962 for (i
= 0; i
< lim
; i
++)
5964 if (!mblk
->markers
[i
].u_any
.gcmarkbit
)
5966 if (mblk
->markers
[i
].u_any
.type
== Lisp_Misc_Marker
)
5967 unchain_marker (&mblk
->markers
[i
].u_marker
);
5968 /* Set the type of the freed object to Lisp_Misc_Free.
5969 We could leave the type alone, since nobody checks it,
5970 but this might catch bugs faster. */
5971 mblk
->markers
[i
].u_marker
.type
= Lisp_Misc_Free
;
5972 mblk
->markers
[i
].u_free
.chain
= marker_free_list
;
5973 marker_free_list
= &mblk
->markers
[i
];
5979 mblk
->markers
[i
].u_any
.gcmarkbit
= 0;
5982 lim
= MARKER_BLOCK_SIZE
;
5983 /* If this block contains only free markers and we have already
5984 seen more than two blocks worth of free markers then deallocate
5986 if (this_free
== MARKER_BLOCK_SIZE
&& num_free
> MARKER_BLOCK_SIZE
)
5988 *mprev
= mblk
->next
;
5989 /* Unhook from the free list. */
5990 marker_free_list
= mblk
->markers
[0].u_free
.chain
;
5995 num_free
+= this_free
;
5996 mprev
= &mblk
->next
;
6000 total_markers
= num_used
;
6001 total_free_markers
= num_free
;
6004 /* Free all unmarked buffers */
6006 register struct buffer
*buffer
= all_buffers
, *prev
= 0, *next
;
6009 if (!VECTOR_MARKED_P (buffer
))
6012 prev
->header
.next
= buffer
->header
.next
;
6014 all_buffers
= buffer
->header
.next
.buffer
;
6015 next
= buffer
->header
.next
.buffer
;
6021 VECTOR_UNMARK (buffer
);
6022 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer
));
6023 prev
= buffer
, buffer
= buffer
->header
.next
.buffer
;
6027 /* Free all unmarked vectors */
6029 register struct Lisp_Vector
*vector
= all_vectors
, *prev
= 0, *next
;
6030 total_vector_size
= 0;
6033 if (!VECTOR_MARKED_P (vector
))
6036 prev
->header
.next
= vector
->header
.next
;
6038 all_vectors
= vector
->header
.next
.vector
;
6039 next
= vector
->header
.next
.vector
;
6046 VECTOR_UNMARK (vector
);
6047 if (vector
->header
.size
& PSEUDOVECTOR_FLAG
)
6048 total_vector_size
+= PSEUDOVECTOR_SIZE_MASK
& vector
->header
.size
;
6050 total_vector_size
+= vector
->header
.size
;
6051 prev
= vector
, vector
= vector
->header
.next
.vector
;
6055 #ifdef GC_CHECK_STRING_BYTES
6056 if (!noninteractive
)
6057 check_string_bytes (1);
6064 /* Debugging aids. */
6066 DEFUN ("memory-limit", Fmemory_limit
, Smemory_limit
, 0, 0, 0,
6067 doc
: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6068 This may be helpful in debugging Emacs's memory usage.
6069 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6074 XSETINT (end
, (intptr_t) (char *) sbrk (0) / 1024);
6079 DEFUN ("memory-use-counts", Fmemory_use_counts
, Smemory_use_counts
, 0, 0, 0,
6080 doc
: /* Return a list of counters that measure how much consing there has been.
6081 Each of these counters increments for a certain kind of object.
6082 The counters wrap around from the largest positive integer to zero.
6083 Garbage collection does not decrease them.
6084 The elements of the value are as follows:
6085 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6086 All are in units of 1 = one object consed
6087 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6089 MISCS include overlays, markers, and some internal types.
6090 Frames, windows, buffers, and subprocesses count as vectors
6091 (but the contents of a buffer's text do not count here). */)
6094 Lisp_Object consed
[8];
6096 consed
[0] = make_number (min (MOST_POSITIVE_FIXNUM
, cons_cells_consed
));
6097 consed
[1] = make_number (min (MOST_POSITIVE_FIXNUM
, floats_consed
));
6098 consed
[2] = make_number (min (MOST_POSITIVE_FIXNUM
, vector_cells_consed
));
6099 consed
[3] = make_number (min (MOST_POSITIVE_FIXNUM
, symbols_consed
));
6100 consed
[4] = make_number (min (MOST_POSITIVE_FIXNUM
, string_chars_consed
));
6101 consed
[5] = make_number (min (MOST_POSITIVE_FIXNUM
, misc_objects_consed
));
6102 consed
[6] = make_number (min (MOST_POSITIVE_FIXNUM
, intervals_consed
));
6103 consed
[7] = make_number (min (MOST_POSITIVE_FIXNUM
, strings_consed
));
6105 return Flist (8, consed
);
6108 #ifdef ENABLE_CHECKING
6109 int suppress_checking
;
6112 die (const char *msg
, const char *file
, int line
)
6114 fprintf (stderr
, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6120 /* Initialization */
6123 init_alloc_once (void)
6125 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6127 pure_size
= PURESIZE
;
6128 pure_bytes_used
= 0;
6129 pure_bytes_used_lisp
= pure_bytes_used_non_lisp
= 0;
6130 pure_bytes_used_before_overflow
= 0;
6132 /* Initialize the list of free aligned blocks. */
6135 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6137 Vdead
= make_pure_string ("DEAD", 4, 4, 0);
6141 ignore_warnings
= 1;
6142 #ifdef DOUG_LEA_MALLOC
6143 mallopt (M_TRIM_THRESHOLD
, 128*1024); /* trim threshold */
6144 mallopt (M_MMAP_THRESHOLD
, 64*1024); /* mmap threshold */
6145 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
); /* max. number of mmap'ed areas */
6153 init_weak_hash_tables ();
6156 malloc_hysteresis
= 32;
6158 malloc_hysteresis
= 0;
6161 refill_memory_reserve ();
6163 ignore_warnings
= 0;
6165 byte_stack_list
= 0;
6167 consing_since_gc
= 0;
6168 gc_cons_threshold
= 100000 * sizeof (Lisp_Object
);
6169 gc_relative_threshold
= 0;
6176 byte_stack_list
= 0;
6178 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6179 setjmp_tested_p
= longjmps_done
= 0;
6182 Vgc_elapsed
= make_float (0.0);
6187 syms_of_alloc (void)
6189 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold
,
6190 doc
: /* *Number of bytes of consing between garbage collections.
6191 Garbage collection can happen automatically once this many bytes have been
6192 allocated since the last garbage collection. All data types count.
6194 Garbage collection happens automatically only when `eval' is called.
6196 By binding this temporarily to a large number, you can effectively
6197 prevent garbage collection during a part of the program.
6198 See also `gc-cons-percentage'. */);
6200 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage
,
6201 doc
: /* *Portion of the heap used for allocation.
6202 Garbage collection can happen automatically once this portion of the heap
6203 has been allocated since the last garbage collection.
6204 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6205 Vgc_cons_percentage
= make_float (0.1);
6207 DEFVAR_INT ("pure-bytes-used", pure_bytes_used
,
6208 doc
: /* Number of bytes of sharable Lisp data allocated so far. */);
6210 DEFVAR_INT ("cons-cells-consed", cons_cells_consed
,
6211 doc
: /* Number of cons cells that have been consed so far. */);
6213 DEFVAR_INT ("floats-consed", floats_consed
,
6214 doc
: /* Number of floats that have been consed so far. */);
6216 DEFVAR_INT ("vector-cells-consed", vector_cells_consed
,
6217 doc
: /* Number of vector cells that have been consed so far. */);
6219 DEFVAR_INT ("symbols-consed", symbols_consed
,
6220 doc
: /* Number of symbols that have been consed so far. */);
6222 DEFVAR_INT ("string-chars-consed", string_chars_consed
,
6223 doc
: /* Number of string characters that have been consed so far. */);
6225 DEFVAR_INT ("misc-objects-consed", misc_objects_consed
,
6226 doc
: /* Number of miscellaneous objects that have been consed so far. */);
6228 DEFVAR_INT ("intervals-consed", intervals_consed
,
6229 doc
: /* Number of intervals that have been consed so far. */);
6231 DEFVAR_INT ("strings-consed", strings_consed
,
6232 doc
: /* Number of strings that have been consed so far. */);
6234 DEFVAR_LISP ("purify-flag", Vpurify_flag
,
6235 doc
: /* Non-nil means loading Lisp code in order to dump an executable.
6236 This means that certain objects should be allocated in shared (pure) space.
6237 It can also be set to a hash-table, in which case this table is used to
6238 do hash-consing of the objects allocated to pure space. */);
6240 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages
,
6241 doc
: /* Non-nil means display messages at start and end of garbage collection. */);
6242 garbage_collection_messages
= 0;
6244 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook
,
6245 doc
: /* Hook run after garbage collection has finished. */);
6246 Vpost_gc_hook
= Qnil
;
6247 Qpost_gc_hook
= intern_c_string ("post-gc-hook");
6248 staticpro (&Qpost_gc_hook
);
6250 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data
,
6251 doc
: /* Precomputed `signal' argument for memory-full error. */);
6252 /* We build this in advance because if we wait until we need it, we might
6253 not be able to allocate the memory to hold it. */
6255 = pure_cons (Qerror
,
6256 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil
));
6258 DEFVAR_LISP ("memory-full", Vmemory_full
,
6259 doc
: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6260 Vmemory_full
= Qnil
;
6262 staticpro (&Qgc_cons_threshold
);
6263 Qgc_cons_threshold
= intern_c_string ("gc-cons-threshold");
6265 staticpro (&Qchar_table_extra_slots
);
6266 Qchar_table_extra_slots
= intern_c_string ("char-table-extra-slots");
6268 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed
,
6269 doc
: /* Accumulated time elapsed in garbage collections.
6270 The time is in seconds as a floating point value. */);
6271 DEFVAR_INT ("gcs-done", gcs_done
,
6272 doc
: /* Accumulated number of garbage collections done. */);
6277 defsubr (&Smake_byte_code
);
6278 defsubr (&Smake_list
);
6279 defsubr (&Smake_vector
);
6280 defsubr (&Smake_string
);
6281 defsubr (&Smake_bool_vector
);
6282 defsubr (&Smake_symbol
);
6283 defsubr (&Smake_marker
);
6284 defsubr (&Spurecopy
);
6285 defsubr (&Sgarbage_collect
);
6286 defsubr (&Smemory_limit
);
6287 defsubr (&Smemory_use_counts
);
6289 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6290 defsubr (&Sgc_status
);