* regex.c: (regex_compile, re_search_2, re_match_2_internal):
[emacs.git] / src / regex.c
blobe79316d6bc6f75e946913d7bd4bce3ffdb552dc2
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993-2011 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20 USA. */
22 /* TODO:
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch].
25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
31 /* AIX requires this to be the first thing in the file. */
32 #if defined _AIX && !defined REGEX_MALLOC
33 #pragma alloca
34 #endif
36 #ifdef HAVE_CONFIG_H
37 # include <config.h>
38 #endif
40 #if defined STDC_HEADERS && !defined emacs
41 # include <stddef.h>
42 #else
43 /* We need this for `regex.h', and perhaps for the Emacs include files. */
44 # include <sys/types.h>
45 #endif
47 /* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
49 #if defined _LIBC
50 #define WIDE_CHAR_SUPPORT 1
51 #else
52 #define WIDE_CHAR_SUPPORT \
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
54 #endif
56 /* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
58 #if WIDE_CHAR_SUPPORT
59 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60 # include <wchar.h>
61 # include <wctype.h>
62 #endif
64 #ifdef _LIBC
65 /* We have to keep the namespace clean. */
66 # define regfree(preg) __regfree (preg)
67 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69 # define regerror(err_code, preg, errbuf, errbuf_size) \
70 __regerror(err_code, preg, errbuf, errbuf_size)
71 # define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75 # define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77 # define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79 # define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81 # define re_set_syntax(syntax) __re_set_syntax (syntax)
82 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86 /* Make sure we call libc's function even if the user overrides them. */
87 # define btowc __btowc
88 # define iswctype __iswctype
89 # define wctype __wctype
91 # define WEAK_ALIAS(a,b) weak_alias (a, b)
93 /* We are also using some library internals. */
94 # include <locale/localeinfo.h>
95 # include <locale/elem-hash.h>
96 # include <langinfo.h>
97 #else
98 # define WEAK_ALIAS(a,b)
99 #endif
101 /* This is for other GNU distributions with internationalized messages. */
102 #if HAVE_LIBINTL_H || defined _LIBC
103 # include <libintl.h>
104 #else
105 # define gettext(msgid) (msgid)
106 #endif
108 #ifndef gettext_noop
109 /* This define is so xgettext can find the internationalizable
110 strings. */
111 # define gettext_noop(String) String
112 #endif
114 /* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116 #ifdef emacs
118 # include <setjmp.h>
119 # include "lisp.h"
120 # include "buffer.h"
122 /* Make syntax table lookup grant data in gl_state. */
123 # define SYNTAX_ENTRY_VIA_PROPERTY
125 # include "syntax.h"
126 # include "character.h"
127 # include "category.h"
129 # ifdef malloc
130 # undef malloc
131 # endif
132 # define malloc xmalloc
133 # ifdef realloc
134 # undef realloc
135 # endif
136 # define realloc xrealloc
137 # ifdef free
138 # undef free
139 # endif
140 # define free xfree
142 /* Converts the pointer to the char to BEG-based offset from the start. */
143 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
144 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
146 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
147 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
148 # define RE_STRING_CHAR(p, multibyte) \
149 (multibyte ? (STRING_CHAR (p)) : (*(p)))
150 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
151 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
153 # define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
155 # define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
157 /* Set C a (possibly converted to multibyte) character before P. P
158 points into a string which is the virtual concatenation of STR1
159 (which ends at END1) or STR2 (which ends at END2). */
160 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
161 do { \
162 if (target_multibyte) \
164 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
165 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
166 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
167 c = STRING_CHAR (dtemp); \
169 else \
171 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
172 (c) = RE_CHAR_TO_MULTIBYTE (c); \
174 } while (0)
176 /* Set C a (possibly converted to multibyte) character at P, and set
177 LEN to the byte length of that character. */
178 # define GET_CHAR_AFTER(c, p, len) \
179 do { \
180 if (target_multibyte) \
181 (c) = STRING_CHAR_AND_LENGTH (p, len); \
182 else \
184 (c) = *p; \
185 len = 1; \
186 (c) = RE_CHAR_TO_MULTIBYTE (c); \
188 } while (0)
190 #else /* not emacs */
192 /* If we are not linking with Emacs proper,
193 we can't use the relocating allocator
194 even if config.h says that we can. */
195 # undef REL_ALLOC
197 # include <unistd.h>
199 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
201 void *
202 xmalloc (size_t size)
204 register void *val;
205 val = (void *) malloc (size);
206 if (!val && size)
208 write (2, "virtual memory exhausted\n", 25);
209 exit (1);
211 return val;
214 void *
215 xrealloc (void *block, size_t size)
217 register void *val;
218 /* We must call malloc explicitly when BLOCK is 0, since some
219 reallocs don't do this. */
220 if (! block)
221 val = (void *) malloc (size);
222 else
223 val = (void *) realloc (block, size);
224 if (!val && size)
226 write (2, "virtual memory exhausted\n", 25);
227 exit (1);
229 return val;
232 # ifdef malloc
233 # undef malloc
234 # endif
235 # define malloc xmalloc
236 # ifdef realloc
237 # undef realloc
238 # endif
239 # define realloc xrealloc
241 /* This is the normal way of making sure we have memcpy, memcmp and memset. */
242 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
243 # include <string.h>
244 # else
245 # include <strings.h>
246 # ifndef memcmp
247 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
248 # endif
249 # ifndef memcpy
250 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
251 # endif
252 # endif
254 /* Define the syntax stuff for \<, \>, etc. */
256 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
257 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
259 # define SWITCH_ENUM_CAST(x) (x)
261 /* Dummy macros for non-Emacs environments. */
262 # define CHAR_CHARSET(c) 0
263 # define CHARSET_LEADING_CODE_BASE(c) 0
264 # define MAX_MULTIBYTE_LENGTH 1
265 # define RE_MULTIBYTE_P(x) 0
266 # define RE_TARGET_MULTIBYTE_P(x) 0
267 # define WORD_BOUNDARY_P(c1, c2) (0)
268 # define CHAR_HEAD_P(p) (1)
269 # define SINGLE_BYTE_CHAR_P(c) (1)
270 # define SAME_CHARSET_P(c1, c2) (1)
271 # define BYTES_BY_CHAR_HEAD(p) (1)
272 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
273 # define STRING_CHAR(p) (*(p))
274 # define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
275 # define CHAR_STRING(c, s) (*(s) = (c), 1)
276 # define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
277 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
278 # define RE_CHAR_TO_MULTIBYTE(c) (c)
279 # define RE_CHAR_TO_UNIBYTE(c) (c)
280 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
281 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
282 # define GET_CHAR_AFTER(c, p, len) \
283 (c = *p, len = 1)
284 # define MAKE_CHAR(charset, c1, c2) (c1)
285 # define BYTE8_TO_CHAR(c) (c)
286 # define CHAR_BYTE8_P(c) (0)
287 # define CHAR_LEADING_CODE(c) (c)
289 #endif /* not emacs */
291 #ifndef RE_TRANSLATE
292 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
293 # define RE_TRANSLATE_P(TBL) (TBL)
294 #endif
296 /* Get the interface, including the syntax bits. */
297 #include "regex.h"
299 /* isalpha etc. are used for the character classes. */
300 #include <ctype.h>
302 #ifdef emacs
304 /* 1 if C is an ASCII character. */
305 # define IS_REAL_ASCII(c) ((c) < 0200)
307 /* 1 if C is a unibyte character. */
308 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
310 /* The Emacs definitions should not be directly affected by locales. */
312 /* In Emacs, these are only used for single-byte characters. */
313 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
314 # define ISCNTRL(c) ((c) < ' ')
315 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
316 || ((c) >= 'a' && (c) <= 'f') \
317 || ((c) >= 'A' && (c) <= 'F'))
319 /* This is only used for single-byte characters. */
320 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
322 /* The rest must handle multibyte characters. */
324 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
325 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
326 : 1)
328 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
329 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
330 : 1)
332 # define ISALNUM(c) (IS_REAL_ASCII (c) \
333 ? (((c) >= 'a' && (c) <= 'z') \
334 || ((c) >= 'A' && (c) <= 'Z') \
335 || ((c) >= '0' && (c) <= '9')) \
336 : SYNTAX (c) == Sword)
338 # define ISALPHA(c) (IS_REAL_ASCII (c) \
339 ? (((c) >= 'a' && (c) <= 'z') \
340 || ((c) >= 'A' && (c) <= 'Z')) \
341 : SYNTAX (c) == Sword)
343 # define ISLOWER(c) (LOWERCASEP (c))
345 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
346 ? ((c) > ' ' && (c) < 0177 \
347 && !(((c) >= 'a' && (c) <= 'z') \
348 || ((c) >= 'A' && (c) <= 'Z') \
349 || ((c) >= '0' && (c) <= '9'))) \
350 : SYNTAX (c) != Sword)
352 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
354 # define ISUPPER(c) (UPPERCASEP (c))
356 # define ISWORD(c) (SYNTAX (c) == Sword)
358 #else /* not emacs */
360 /* Jim Meyering writes:
362 "... Some ctype macros are valid only for character codes that
363 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
364 using /bin/cc or gcc but without giving an ansi option). So, all
365 ctype uses should be through macros like ISPRINT... If
366 STDC_HEADERS is defined, then autoconf has verified that the ctype
367 macros don't need to be guarded with references to isascii. ...
368 Defining isascii to 1 should let any compiler worth its salt
369 eliminate the && through constant folding."
370 Solaris defines some of these symbols so we must undefine them first. */
372 # undef ISASCII
373 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
374 # define ISASCII(c) 1
375 # else
376 # define ISASCII(c) isascii(c)
377 # endif
379 /* 1 if C is an ASCII character. */
380 # define IS_REAL_ASCII(c) ((c) < 0200)
382 /* This distinction is not meaningful, except in Emacs. */
383 # define ISUNIBYTE(c) 1
385 # ifdef isblank
386 # define ISBLANK(c) (ISASCII (c) && isblank (c))
387 # else
388 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
389 # endif
390 # ifdef isgraph
391 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
392 # else
393 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
394 # endif
396 # undef ISPRINT
397 # define ISPRINT(c) (ISASCII (c) && isprint (c))
398 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
399 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
400 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
401 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
402 # define ISLOWER(c) (ISASCII (c) && islower (c))
403 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
404 # define ISSPACE(c) (ISASCII (c) && isspace (c))
405 # define ISUPPER(c) (ISASCII (c) && isupper (c))
406 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
408 # define ISWORD(c) ISALPHA(c)
410 # ifdef _tolower
411 # define TOLOWER(c) _tolower(c)
412 # else
413 # define TOLOWER(c) tolower(c)
414 # endif
416 /* How many characters in the character set. */
417 # define CHAR_SET_SIZE 256
419 # ifdef SYNTAX_TABLE
421 extern char *re_syntax_table;
423 # else /* not SYNTAX_TABLE */
425 static char re_syntax_table[CHAR_SET_SIZE];
427 static void
428 init_syntax_once (void)
430 register int c;
431 static int done = 0;
433 if (done)
434 return;
436 memset (re_syntax_table, 0, sizeof re_syntax_table);
438 for (c = 0; c < CHAR_SET_SIZE; ++c)
439 if (ISALNUM (c))
440 re_syntax_table[c] = Sword;
442 re_syntax_table['_'] = Ssymbol;
444 done = 1;
447 # endif /* not SYNTAX_TABLE */
449 # define SYNTAX(c) re_syntax_table[(c)]
451 #endif /* not emacs */
453 #ifndef NULL
454 # define NULL (void *)0
455 #endif
457 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
458 since ours (we hope) works properly with all combinations of
459 machines, compilers, `char' and `unsigned char' argument types.
460 (Per Bothner suggested the basic approach.) */
461 #undef SIGN_EXTEND_CHAR
462 #if __STDC__
463 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
464 #else /* not __STDC__ */
465 /* As in Harbison and Steele. */
466 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
467 #endif
469 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
470 use `alloca' instead of `malloc'. This is because using malloc in
471 re_search* or re_match* could cause memory leaks when C-g is used in
472 Emacs; also, malloc is slower and causes storage fragmentation. On
473 the other hand, malloc is more portable, and easier to debug.
475 Because we sometimes use alloca, some routines have to be macros,
476 not functions -- `alloca'-allocated space disappears at the end of the
477 function it is called in. */
479 #ifdef REGEX_MALLOC
481 # define REGEX_ALLOCATE malloc
482 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
483 # define REGEX_FREE free
485 #else /* not REGEX_MALLOC */
487 /* Emacs already defines alloca, sometimes. */
488 # ifndef alloca
490 /* Make alloca work the best possible way. */
491 # ifdef __GNUC__
492 # define alloca __builtin_alloca
493 # else /* not __GNUC__ */
494 # ifdef HAVE_ALLOCA_H
495 # include <alloca.h>
496 # endif /* HAVE_ALLOCA_H */
497 # endif /* not __GNUC__ */
499 # endif /* not alloca */
501 # define REGEX_ALLOCATE alloca
503 /* Assumes a `char *destination' variable. */
504 # define REGEX_REALLOCATE(source, osize, nsize) \
505 (destination = (char *) alloca (nsize), \
506 memcpy (destination, source, osize))
508 /* No need to do anything to free, after alloca. */
509 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
511 #endif /* not REGEX_MALLOC */
513 /* Define how to allocate the failure stack. */
515 #if defined REL_ALLOC && defined REGEX_MALLOC
517 # define REGEX_ALLOCATE_STACK(size) \
518 r_alloc (&failure_stack_ptr, (size))
519 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
520 r_re_alloc (&failure_stack_ptr, (nsize))
521 # define REGEX_FREE_STACK(ptr) \
522 r_alloc_free (&failure_stack_ptr)
524 #else /* not using relocating allocator */
526 # ifdef REGEX_MALLOC
528 # define REGEX_ALLOCATE_STACK malloc
529 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
530 # define REGEX_FREE_STACK free
532 # else /* not REGEX_MALLOC */
534 # define REGEX_ALLOCATE_STACK alloca
536 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
537 REGEX_REALLOCATE (source, osize, nsize)
538 /* No need to explicitly free anything. */
539 # define REGEX_FREE_STACK(arg) ((void)0)
541 # endif /* not REGEX_MALLOC */
542 #endif /* not using relocating allocator */
545 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
546 `string1' or just past its end. This works if PTR is NULL, which is
547 a good thing. */
548 #define FIRST_STRING_P(ptr) \
549 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
551 /* (Re)Allocate N items of type T using malloc, or fail. */
552 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
553 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
554 #define RETALLOC_IF(addr, n, t) \
555 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
556 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
558 #define BYTEWIDTH 8 /* In bits. */
560 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
562 #undef MAX
563 #undef MIN
564 #define MAX(a, b) ((a) > (b) ? (a) : (b))
565 #define MIN(a, b) ((a) < (b) ? (a) : (b))
567 /* Type of source-pattern and string chars. */
568 typedef const unsigned char re_char;
570 typedef char boolean;
571 #define false 0
572 #define true 1
574 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
575 re_char *string1, int size1,
576 re_char *string2, int size2,
577 int pos,
578 struct re_registers *regs,
579 int stop));
581 /* These are the command codes that appear in compiled regular
582 expressions. Some opcodes are followed by argument bytes. A
583 command code can specify any interpretation whatsoever for its
584 arguments. Zero bytes may appear in the compiled regular expression. */
586 typedef enum
588 no_op = 0,
590 /* Succeed right away--no more backtracking. */
591 succeed,
593 /* Followed by one byte giving n, then by n literal bytes. */
594 exactn,
596 /* Matches any (more or less) character. */
597 anychar,
599 /* Matches any one char belonging to specified set. First
600 following byte is number of bitmap bytes. Then come bytes
601 for a bitmap saying which chars are in. Bits in each byte
602 are ordered low-bit-first. A character is in the set if its
603 bit is 1. A character too large to have a bit in the map is
604 automatically not in the set.
606 If the length byte has the 0x80 bit set, then that stuff
607 is followed by a range table:
608 2 bytes of flags for character sets (low 8 bits, high 8 bits)
609 See RANGE_TABLE_WORK_BITS below.
610 2 bytes, the number of pairs that follow (upto 32767)
611 pairs, each 2 multibyte characters,
612 each multibyte character represented as 3 bytes. */
613 charset,
615 /* Same parameters as charset, but match any character that is
616 not one of those specified. */
617 charset_not,
619 /* Start remembering the text that is matched, for storing in a
620 register. Followed by one byte with the register number, in
621 the range 0 to one less than the pattern buffer's re_nsub
622 field. */
623 start_memory,
625 /* Stop remembering the text that is matched and store it in a
626 memory register. Followed by one byte with the register
627 number, in the range 0 to one less than `re_nsub' in the
628 pattern buffer. */
629 stop_memory,
631 /* Match a duplicate of something remembered. Followed by one
632 byte containing the register number. */
633 duplicate,
635 /* Fail unless at beginning of line. */
636 begline,
638 /* Fail unless at end of line. */
639 endline,
641 /* Succeeds if at beginning of buffer (if emacs) or at beginning
642 of string to be matched (if not). */
643 begbuf,
645 /* Analogously, for end of buffer/string. */
646 endbuf,
648 /* Followed by two byte relative address to which to jump. */
649 jump,
651 /* Followed by two-byte relative address of place to resume at
652 in case of failure. */
653 on_failure_jump,
655 /* Like on_failure_jump, but pushes a placeholder instead of the
656 current string position when executed. */
657 on_failure_keep_string_jump,
659 /* Just like `on_failure_jump', except that it checks that we
660 don't get stuck in an infinite loop (matching an empty string
661 indefinitely). */
662 on_failure_jump_loop,
664 /* Just like `on_failure_jump_loop', except that it checks for
665 a different kind of loop (the kind that shows up with non-greedy
666 operators). This operation has to be immediately preceded
667 by a `no_op'. */
668 on_failure_jump_nastyloop,
670 /* A smart `on_failure_jump' used for greedy * and + operators.
671 It analyses the loop before which it is put and if the
672 loop does not require backtracking, it changes itself to
673 `on_failure_keep_string_jump' and short-circuits the loop,
674 else it just defaults to changing itself into `on_failure_jump'.
675 It assumes that it is pointing to just past a `jump'. */
676 on_failure_jump_smart,
678 /* Followed by two-byte relative address and two-byte number n.
679 After matching N times, jump to the address upon failure.
680 Does not work if N starts at 0: use on_failure_jump_loop
681 instead. */
682 succeed_n,
684 /* Followed by two-byte relative address, and two-byte number n.
685 Jump to the address N times, then fail. */
686 jump_n,
688 /* Set the following two-byte relative address to the
689 subsequent two-byte number. The address *includes* the two
690 bytes of number. */
691 set_number_at,
693 wordbeg, /* Succeeds if at word beginning. */
694 wordend, /* Succeeds if at word end. */
696 wordbound, /* Succeeds if at a word boundary. */
697 notwordbound, /* Succeeds if not at a word boundary. */
699 symbeg, /* Succeeds if at symbol beginning. */
700 symend, /* Succeeds if at symbol end. */
702 /* Matches any character whose syntax is specified. Followed by
703 a byte which contains a syntax code, e.g., Sword. */
704 syntaxspec,
706 /* Matches any character whose syntax is not that specified. */
707 notsyntaxspec
709 #ifdef emacs
710 ,before_dot, /* Succeeds if before point. */
711 at_dot, /* Succeeds if at point. */
712 after_dot, /* Succeeds if after point. */
714 /* Matches any character whose category-set contains the specified
715 category. The operator is followed by a byte which contains a
716 category code (mnemonic ASCII character). */
717 categoryspec,
719 /* Matches any character whose category-set does not contain the
720 specified category. The operator is followed by a byte which
721 contains the category code (mnemonic ASCII character). */
722 notcategoryspec
723 #endif /* emacs */
724 } re_opcode_t;
726 /* Common operations on the compiled pattern. */
728 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
730 #define STORE_NUMBER(destination, number) \
731 do { \
732 (destination)[0] = (number) & 0377; \
733 (destination)[1] = (number) >> 8; \
734 } while (0)
736 /* Same as STORE_NUMBER, except increment DESTINATION to
737 the byte after where the number is stored. Therefore, DESTINATION
738 must be an lvalue. */
740 #define STORE_NUMBER_AND_INCR(destination, number) \
741 do { \
742 STORE_NUMBER (destination, number); \
743 (destination) += 2; \
744 } while (0)
746 /* Put into DESTINATION a number stored in two contiguous bytes starting
747 at SOURCE. */
749 #define EXTRACT_NUMBER(destination, source) \
750 do { \
751 (destination) = *(source) & 0377; \
752 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
753 } while (0)
755 #ifdef DEBUG
756 static void extract_number _RE_ARGS ((int *dest, re_char *source));
757 static void
758 extract_number (dest, source)
759 int *dest;
760 re_char *source;
762 int temp = SIGN_EXTEND_CHAR (*(source + 1));
763 *dest = *source & 0377;
764 *dest += temp << 8;
767 # ifndef EXTRACT_MACROS /* To debug the macros. */
768 # undef EXTRACT_NUMBER
769 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
770 # endif /* not EXTRACT_MACROS */
772 #endif /* DEBUG */
774 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
775 SOURCE must be an lvalue. */
777 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
778 do { \
779 EXTRACT_NUMBER (destination, source); \
780 (source) += 2; \
781 } while (0)
783 #ifdef DEBUG
784 static void extract_number_and_incr _RE_ARGS ((int *destination,
785 re_char **source));
786 static void
787 extract_number_and_incr (destination, source)
788 int *destination;
789 re_char **source;
791 extract_number (destination, *source);
792 *source += 2;
795 # ifndef EXTRACT_MACROS
796 # undef EXTRACT_NUMBER_AND_INCR
797 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
798 extract_number_and_incr (&dest, &src)
799 # endif /* not EXTRACT_MACROS */
801 #endif /* DEBUG */
803 /* Store a multibyte character in three contiguous bytes starting
804 DESTINATION, and increment DESTINATION to the byte after where the
805 character is stored. Therefore, DESTINATION must be an lvalue. */
807 #define STORE_CHARACTER_AND_INCR(destination, character) \
808 do { \
809 (destination)[0] = (character) & 0377; \
810 (destination)[1] = ((character) >> 8) & 0377; \
811 (destination)[2] = (character) >> 16; \
812 (destination) += 3; \
813 } while (0)
815 /* Put into DESTINATION a character stored in three contiguous bytes
816 starting at SOURCE. */
818 #define EXTRACT_CHARACTER(destination, source) \
819 do { \
820 (destination) = ((source)[0] \
821 | ((source)[1] << 8) \
822 | ((source)[2] << 16)); \
823 } while (0)
826 /* Macros for charset. */
828 /* Size of bitmap of charset P in bytes. P is a start of charset,
829 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
830 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
832 /* Nonzero if charset P has range table. */
833 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
835 /* Return the address of range table of charset P. But not the start
836 of table itself, but the before where the number of ranges is
837 stored. `2 +' means to skip re_opcode_t and size of bitmap,
838 and the 2 bytes of flags at the start of the range table. */
839 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
841 /* Extract the bit flags that start a range table. */
842 #define CHARSET_RANGE_TABLE_BITS(p) \
843 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
844 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
846 /* Test if C is listed in the bitmap of charset P. */
847 #define CHARSET_LOOKUP_BITMAP(p, c) \
848 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
849 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
851 /* Return the address of end of RANGE_TABLE. COUNT is number of
852 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
853 is start of range and end of range. `* 3' is size of each start
854 and end. */
855 #define CHARSET_RANGE_TABLE_END(range_table, count) \
856 ((range_table) + (count) * 2 * 3)
858 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
859 COUNT is number of ranges in RANGE_TABLE. */
860 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
861 do \
863 re_wchar_t range_start, range_end; \
864 re_char *rtp; \
865 re_char *range_table_end \
866 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
868 for (rtp = (range_table); rtp < range_table_end; rtp += 2 * 3) \
870 EXTRACT_CHARACTER (range_start, rtp); \
871 EXTRACT_CHARACTER (range_end, rtp + 3); \
873 if (range_start <= (c) && (c) <= range_end) \
875 (not) = !(not); \
876 break; \
880 while (0)
882 /* Test if C is in range table of CHARSET. The flag NOT is negated if
883 C is listed in it. */
884 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
885 do \
887 /* Number of ranges in range table. */ \
888 int count; \
889 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
891 EXTRACT_NUMBER_AND_INCR (count, range_table); \
892 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
894 while (0)
896 /* If DEBUG is defined, Regex prints many voluminous messages about what
897 it is doing (if the variable `debug' is nonzero). If linked with the
898 main program in `iregex.c', you can enter patterns and strings
899 interactively. And if linked with the main program in `main.c' and
900 the other test files, you can run the already-written tests. */
902 #ifdef DEBUG
904 /* We use standard I/O for debugging. */
905 # include <stdio.h>
907 /* It is useful to test things that ``must'' be true when debugging. */
908 # include <assert.h>
910 static int debug = -100000;
912 # define DEBUG_STATEMENT(e) e
913 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
914 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
915 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
916 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
917 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
918 if (debug > 0) print_partial_compiled_pattern (s, e)
919 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
920 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
923 /* Print the fastmap in human-readable form. */
925 void
926 print_fastmap (fastmap)
927 char *fastmap;
929 unsigned was_a_range = 0;
930 unsigned i = 0;
932 while (i < (1 << BYTEWIDTH))
934 if (fastmap[i++])
936 was_a_range = 0;
937 putchar (i - 1);
938 while (i < (1 << BYTEWIDTH) && fastmap[i])
940 was_a_range = 1;
941 i++;
943 if (was_a_range)
945 printf ("-");
946 putchar (i - 1);
950 putchar ('\n');
954 /* Print a compiled pattern string in human-readable form, starting at
955 the START pointer into it and ending just before the pointer END. */
957 void
958 print_partial_compiled_pattern (start, end)
959 re_char *start;
960 re_char *end;
962 int mcnt, mcnt2;
963 re_char *p = start;
964 re_char *pend = end;
966 if (start == NULL)
968 fprintf (stderr, "(null)\n");
969 return;
972 /* Loop over pattern commands. */
973 while (p < pend)
975 fprintf (stderr, "%d:\t", p - start);
977 switch ((re_opcode_t) *p++)
979 case no_op:
980 fprintf (stderr, "/no_op");
981 break;
983 case succeed:
984 fprintf (stderr, "/succeed");
985 break;
987 case exactn:
988 mcnt = *p++;
989 fprintf (stderr, "/exactn/%d", mcnt);
992 fprintf (stderr, "/%c", *p++);
994 while (--mcnt);
995 break;
997 case start_memory:
998 fprintf (stderr, "/start_memory/%d", *p++);
999 break;
1001 case stop_memory:
1002 fprintf (stderr, "/stop_memory/%d", *p++);
1003 break;
1005 case duplicate:
1006 fprintf (stderr, "/duplicate/%d", *p++);
1007 break;
1009 case anychar:
1010 fprintf (stderr, "/anychar");
1011 break;
1013 case charset:
1014 case charset_not:
1016 register int c, last = -100;
1017 register int in_range = 0;
1018 int length = CHARSET_BITMAP_SIZE (p - 1);
1019 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
1021 fprintf (stderr, "/charset [%s",
1022 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
1024 if (p + *p >= pend)
1025 fprintf (stderr, " !extends past end of pattern! ");
1027 for (c = 0; c < 256; c++)
1028 if (c / 8 < length
1029 && (p[1 + (c/8)] & (1 << (c % 8))))
1031 /* Are we starting a range? */
1032 if (last + 1 == c && ! in_range)
1034 fprintf (stderr, "-");
1035 in_range = 1;
1037 /* Have we broken a range? */
1038 else if (last + 1 != c && in_range)
1040 fprintf (stderr, "%c", last);
1041 in_range = 0;
1044 if (! in_range)
1045 fprintf (stderr, "%c", c);
1047 last = c;
1050 if (in_range)
1051 fprintf (stderr, "%c", last);
1053 fprintf (stderr, "]");
1055 p += 1 + length;
1057 if (has_range_table)
1059 int count;
1060 fprintf (stderr, "has-range-table");
1062 /* ??? Should print the range table; for now, just skip it. */
1063 p += 2; /* skip range table bits */
1064 EXTRACT_NUMBER_AND_INCR (count, p);
1065 p = CHARSET_RANGE_TABLE_END (p, count);
1068 break;
1070 case begline:
1071 fprintf (stderr, "/begline");
1072 break;
1074 case endline:
1075 fprintf (stderr, "/endline");
1076 break;
1078 case on_failure_jump:
1079 extract_number_and_incr (&mcnt, &p);
1080 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1081 break;
1083 case on_failure_keep_string_jump:
1084 extract_number_and_incr (&mcnt, &p);
1085 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1086 break;
1088 case on_failure_jump_nastyloop:
1089 extract_number_and_incr (&mcnt, &p);
1090 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1091 break;
1093 case on_failure_jump_loop:
1094 extract_number_and_incr (&mcnt, &p);
1095 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1096 break;
1098 case on_failure_jump_smart:
1099 extract_number_and_incr (&mcnt, &p);
1100 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1101 break;
1103 case jump:
1104 extract_number_and_incr (&mcnt, &p);
1105 fprintf (stderr, "/jump to %d", p + mcnt - start);
1106 break;
1108 case succeed_n:
1109 extract_number_and_incr (&mcnt, &p);
1110 extract_number_and_incr (&mcnt2, &p);
1111 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1112 break;
1114 case jump_n:
1115 extract_number_and_incr (&mcnt, &p);
1116 extract_number_and_incr (&mcnt2, &p);
1117 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1118 break;
1120 case set_number_at:
1121 extract_number_and_incr (&mcnt, &p);
1122 extract_number_and_incr (&mcnt2, &p);
1123 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1124 break;
1126 case wordbound:
1127 fprintf (stderr, "/wordbound");
1128 break;
1130 case notwordbound:
1131 fprintf (stderr, "/notwordbound");
1132 break;
1134 case wordbeg:
1135 fprintf (stderr, "/wordbeg");
1136 break;
1138 case wordend:
1139 fprintf (stderr, "/wordend");
1140 break;
1142 case symbeg:
1143 fprintf (stderr, "/symbeg");
1144 break;
1146 case symend:
1147 fprintf (stderr, "/symend");
1148 break;
1150 case syntaxspec:
1151 fprintf (stderr, "/syntaxspec");
1152 mcnt = *p++;
1153 fprintf (stderr, "/%d", mcnt);
1154 break;
1156 case notsyntaxspec:
1157 fprintf (stderr, "/notsyntaxspec");
1158 mcnt = *p++;
1159 fprintf (stderr, "/%d", mcnt);
1160 break;
1162 # ifdef emacs
1163 case before_dot:
1164 fprintf (stderr, "/before_dot");
1165 break;
1167 case at_dot:
1168 fprintf (stderr, "/at_dot");
1169 break;
1171 case after_dot:
1172 fprintf (stderr, "/after_dot");
1173 break;
1175 case categoryspec:
1176 fprintf (stderr, "/categoryspec");
1177 mcnt = *p++;
1178 fprintf (stderr, "/%d", mcnt);
1179 break;
1181 case notcategoryspec:
1182 fprintf (stderr, "/notcategoryspec");
1183 mcnt = *p++;
1184 fprintf (stderr, "/%d", mcnt);
1185 break;
1186 # endif /* emacs */
1188 case begbuf:
1189 fprintf (stderr, "/begbuf");
1190 break;
1192 case endbuf:
1193 fprintf (stderr, "/endbuf");
1194 break;
1196 default:
1197 fprintf (stderr, "?%d", *(p-1));
1200 fprintf (stderr, "\n");
1203 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1207 void
1208 print_compiled_pattern (bufp)
1209 struct re_pattern_buffer *bufp;
1211 re_char *buffer = bufp->buffer;
1213 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1214 printf ("%ld bytes used/%ld bytes allocated.\n",
1215 bufp->used, bufp->allocated);
1217 if (bufp->fastmap_accurate && bufp->fastmap)
1219 printf ("fastmap: ");
1220 print_fastmap (bufp->fastmap);
1223 printf ("re_nsub: %d\t", bufp->re_nsub);
1224 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1225 printf ("can_be_null: %d\t", bufp->can_be_null);
1226 printf ("no_sub: %d\t", bufp->no_sub);
1227 printf ("not_bol: %d\t", bufp->not_bol);
1228 printf ("not_eol: %d\t", bufp->not_eol);
1229 printf ("syntax: %lx\n", bufp->syntax);
1230 fflush (stdout);
1231 /* Perhaps we should print the translate table? */
1235 void
1236 print_double_string (where, string1, size1, string2, size2)
1237 re_char *where;
1238 re_char *string1;
1239 re_char *string2;
1240 int size1;
1241 int size2;
1243 int this_char;
1245 if (where == NULL)
1246 printf ("(null)");
1247 else
1249 if (FIRST_STRING_P (where))
1251 for (this_char = where - string1; this_char < size1; this_char++)
1252 putchar (string1[this_char]);
1254 where = string2;
1257 for (this_char = where - string2; this_char < size2; this_char++)
1258 putchar (string2[this_char]);
1262 #else /* not DEBUG */
1264 # undef assert
1265 # define assert(e)
1267 # define DEBUG_STATEMENT(e)
1268 # define DEBUG_PRINT1(x)
1269 # define DEBUG_PRINT2(x1, x2)
1270 # define DEBUG_PRINT3(x1, x2, x3)
1271 # define DEBUG_PRINT4(x1, x2, x3, x4)
1272 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1273 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1275 #endif /* not DEBUG */
1277 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1278 also be assigned to arbitrarily: each pattern buffer stores its own
1279 syntax, so it can be changed between regex compilations. */
1280 /* This has no initializer because initialized variables in Emacs
1281 become read-only after dumping. */
1282 reg_syntax_t re_syntax_options;
1285 /* Specify the precise syntax of regexps for compilation. This provides
1286 for compatibility for various utilities which historically have
1287 different, incompatible syntaxes.
1289 The argument SYNTAX is a bit mask comprised of the various bits
1290 defined in regex.h. We return the old syntax. */
1292 reg_syntax_t
1293 re_set_syntax (reg_syntax_t syntax)
1295 reg_syntax_t ret = re_syntax_options;
1297 re_syntax_options = syntax;
1298 return ret;
1300 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1302 /* Regexp to use to replace spaces, or NULL meaning don't. */
1303 static re_char *whitespace_regexp;
1305 void
1306 re_set_whitespace_regexp (const char *regexp)
1308 whitespace_regexp = (re_char *) regexp;
1310 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1312 /* This table gives an error message for each of the error codes listed
1313 in regex.h. Obviously the order here has to be same as there.
1314 POSIX doesn't require that we do anything for REG_NOERROR,
1315 but why not be nice? */
1317 static const char *re_error_msgid[] =
1319 gettext_noop ("Success"), /* REG_NOERROR */
1320 gettext_noop ("No match"), /* REG_NOMATCH */
1321 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1322 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1323 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1324 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1325 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1326 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1327 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1328 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1329 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1330 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1331 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1332 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1333 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1334 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1335 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1336 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1339 /* Avoiding alloca during matching, to placate r_alloc. */
1341 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1342 searching and matching functions should not call alloca. On some
1343 systems, alloca is implemented in terms of malloc, and if we're
1344 using the relocating allocator routines, then malloc could cause a
1345 relocation, which might (if the strings being searched are in the
1346 ralloc heap) shift the data out from underneath the regexp
1347 routines.
1349 Here's another reason to avoid allocation: Emacs
1350 processes input from X in a signal handler; processing X input may
1351 call malloc; if input arrives while a matching routine is calling
1352 malloc, then we're scrod. But Emacs can't just block input while
1353 calling matching routines; then we don't notice interrupts when
1354 they come in. So, Emacs blocks input around all regexp calls
1355 except the matching calls, which it leaves unprotected, in the
1356 faith that they will not malloc. */
1358 /* Normally, this is fine. */
1359 #define MATCH_MAY_ALLOCATE
1361 /* The match routines may not allocate if (1) they would do it with malloc
1362 and (2) it's not safe for them to use malloc.
1363 Note that if REL_ALLOC is defined, matching would not use malloc for the
1364 failure stack, but we would still use it for the register vectors;
1365 so REL_ALLOC should not affect this. */
1366 #if defined REGEX_MALLOC && defined emacs
1367 # undef MATCH_MAY_ALLOCATE
1368 #endif
1371 /* Failure stack declarations and macros; both re_compile_fastmap and
1372 re_match_2 use a failure stack. These have to be macros because of
1373 REGEX_ALLOCATE_STACK. */
1376 /* Approximate number of failure points for which to initially allocate space
1377 when matching. If this number is exceeded, we allocate more
1378 space, so it is not a hard limit. */
1379 #ifndef INIT_FAILURE_ALLOC
1380 # define INIT_FAILURE_ALLOC 20
1381 #endif
1383 /* Roughly the maximum number of failure points on the stack. Would be
1384 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1385 This is a variable only so users of regex can assign to it; we never
1386 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1387 before using it, so it should probably be a byte-count instead. */
1388 # if defined MATCH_MAY_ALLOCATE
1389 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1390 whose default stack limit is 2mb. In order for a larger
1391 value to work reliably, you have to try to make it accord
1392 with the process stack limit. */
1393 size_t re_max_failures = 40000;
1394 # else
1395 size_t re_max_failures = 4000;
1396 # endif
1398 union fail_stack_elt
1400 re_char *pointer;
1401 /* This should be the biggest `int' that's no bigger than a pointer. */
1402 long integer;
1405 typedef union fail_stack_elt fail_stack_elt_t;
1407 typedef struct
1409 fail_stack_elt_t *stack;
1410 size_t size;
1411 size_t avail; /* Offset of next open position. */
1412 size_t frame; /* Offset of the cur constructed frame. */
1413 } fail_stack_type;
1415 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1416 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1419 /* Define macros to initialize and free the failure stack.
1420 Do `return -2' if the alloc fails. */
1422 #ifdef MATCH_MAY_ALLOCATE
1423 # define INIT_FAIL_STACK() \
1424 do { \
1425 fail_stack.stack = (fail_stack_elt_t *) \
1426 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1427 * sizeof (fail_stack_elt_t)); \
1429 if (fail_stack.stack == NULL) \
1430 return -2; \
1432 fail_stack.size = INIT_FAILURE_ALLOC; \
1433 fail_stack.avail = 0; \
1434 fail_stack.frame = 0; \
1435 } while (0)
1437 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1438 #else
1439 # define INIT_FAIL_STACK() \
1440 do { \
1441 fail_stack.avail = 0; \
1442 fail_stack.frame = 0; \
1443 } while (0)
1445 # define RESET_FAIL_STACK() ((void)0)
1446 #endif
1449 /* Double the size of FAIL_STACK, up to a limit
1450 which allows approximately `re_max_failures' items.
1452 Return 1 if succeeds, and 0 if either ran out of memory
1453 allocating space for it or it was already too large.
1455 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1457 /* Factor to increase the failure stack size by
1458 when we increase it.
1459 This used to be 2, but 2 was too wasteful
1460 because the old discarded stacks added up to as much space
1461 were as ultimate, maximum-size stack. */
1462 #define FAIL_STACK_GROWTH_FACTOR 4
1464 #define GROW_FAIL_STACK(fail_stack) \
1465 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1466 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1467 ? 0 \
1468 : ((fail_stack).stack \
1469 = (fail_stack_elt_t *) \
1470 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1471 (fail_stack).size * sizeof (fail_stack_elt_t), \
1472 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1473 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1474 * FAIL_STACK_GROWTH_FACTOR))), \
1476 (fail_stack).stack == NULL \
1477 ? 0 \
1478 : ((fail_stack).size \
1479 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1480 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1481 * FAIL_STACK_GROWTH_FACTOR)) \
1482 / sizeof (fail_stack_elt_t)), \
1483 1)))
1486 /* Push a pointer value onto the failure stack.
1487 Assumes the variable `fail_stack'. Probably should only
1488 be called from within `PUSH_FAILURE_POINT'. */
1489 #define PUSH_FAILURE_POINTER(item) \
1490 fail_stack.stack[fail_stack.avail++].pointer = (item)
1492 /* This pushes an integer-valued item onto the failure stack.
1493 Assumes the variable `fail_stack'. Probably should only
1494 be called from within `PUSH_FAILURE_POINT'. */
1495 #define PUSH_FAILURE_INT(item) \
1496 fail_stack.stack[fail_stack.avail++].integer = (item)
1498 /* Push a fail_stack_elt_t value onto the failure stack.
1499 Assumes the variable `fail_stack'. Probably should only
1500 be called from within `PUSH_FAILURE_POINT'. */
1501 #define PUSH_FAILURE_ELT(item) \
1502 fail_stack.stack[fail_stack.avail++] = (item)
1504 /* These three POP... operations complement the three PUSH... operations.
1505 All assume that `fail_stack' is nonempty. */
1506 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1507 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1508 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1510 /* Individual items aside from the registers. */
1511 #define NUM_NONREG_ITEMS 3
1513 /* Used to examine the stack (to detect infinite loops). */
1514 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1515 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1516 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1517 #define TOP_FAILURE_HANDLE() fail_stack.frame
1520 #define ENSURE_FAIL_STACK(space) \
1521 while (REMAINING_AVAIL_SLOTS <= space) { \
1522 if (!GROW_FAIL_STACK (fail_stack)) \
1523 return -2; \
1524 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1525 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1528 /* Push register NUM onto the stack. */
1529 #define PUSH_FAILURE_REG(num) \
1530 do { \
1531 char *destination; \
1532 ENSURE_FAIL_STACK(3); \
1533 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1534 num, regstart[num], regend[num]); \
1535 PUSH_FAILURE_POINTER (regstart[num]); \
1536 PUSH_FAILURE_POINTER (regend[num]); \
1537 PUSH_FAILURE_INT (num); \
1538 } while (0)
1540 /* Change the counter's value to VAL, but make sure that it will
1541 be reset when backtracking. */
1542 #define PUSH_NUMBER(ptr,val) \
1543 do { \
1544 char *destination; \
1545 int c; \
1546 ENSURE_FAIL_STACK(3); \
1547 EXTRACT_NUMBER (c, ptr); \
1548 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1549 PUSH_FAILURE_INT (c); \
1550 PUSH_FAILURE_POINTER (ptr); \
1551 PUSH_FAILURE_INT (-1); \
1552 STORE_NUMBER (ptr, val); \
1553 } while (0)
1555 /* Pop a saved register off the stack. */
1556 #define POP_FAILURE_REG_OR_COUNT() \
1557 do { \
1558 int pfreg = POP_FAILURE_INT (); \
1559 if (pfreg == -1) \
1561 /* It's a counter. */ \
1562 /* Here, we discard `const', making re_match non-reentrant. */ \
1563 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1564 pfreg = POP_FAILURE_INT (); \
1565 STORE_NUMBER (ptr, pfreg); \
1566 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, pfreg); \
1568 else \
1570 regend[pfreg] = POP_FAILURE_POINTER (); \
1571 regstart[pfreg] = POP_FAILURE_POINTER (); \
1572 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1573 pfreg, regstart[pfreg], regend[pfreg]); \
1575 } while (0)
1577 /* Check that we are not stuck in an infinite loop. */
1578 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1579 do { \
1580 int failure = TOP_FAILURE_HANDLE (); \
1581 /* Check for infinite matching loops */ \
1582 while (failure > 0 \
1583 && (FAILURE_STR (failure) == string_place \
1584 || FAILURE_STR (failure) == NULL)) \
1586 assert (FAILURE_PAT (failure) >= bufp->buffer \
1587 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1588 if (FAILURE_PAT (failure) == pat_cur) \
1590 cycle = 1; \
1591 break; \
1593 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1594 failure = NEXT_FAILURE_HANDLE(failure); \
1596 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1597 } while (0)
1599 /* Push the information about the state we will need
1600 if we ever fail back to it.
1602 Requires variables fail_stack, regstart, regend and
1603 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1604 declared.
1606 Does `return FAILURE_CODE' if runs out of memory. */
1608 #define PUSH_FAILURE_POINT(pattern, string_place) \
1609 do { \
1610 char *destination; \
1611 /* Must be int, so when we don't save any registers, the arithmetic \
1612 of 0 + -1 isn't done as unsigned. */ \
1614 DEBUG_STATEMENT (nfailure_points_pushed++); \
1615 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1616 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1617 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1619 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1621 DEBUG_PRINT1 ("\n"); \
1623 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1624 PUSH_FAILURE_INT (fail_stack.frame); \
1626 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1627 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1628 DEBUG_PRINT1 ("'\n"); \
1629 PUSH_FAILURE_POINTER (string_place); \
1631 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1632 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1633 PUSH_FAILURE_POINTER (pattern); \
1635 /* Close the frame by moving the frame pointer past it. */ \
1636 fail_stack.frame = fail_stack.avail; \
1637 } while (0)
1639 /* Estimate the size of data pushed by a typical failure stack entry.
1640 An estimate is all we need, because all we use this for
1641 is to choose a limit for how big to make the failure stack. */
1642 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1643 #define TYPICAL_FAILURE_SIZE 20
1645 /* How many items can still be added to the stack without overflowing it. */
1646 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1649 /* Pops what PUSH_FAIL_STACK pushes.
1651 We restore into the parameters, all of which should be lvalues:
1652 STR -- the saved data position.
1653 PAT -- the saved pattern position.
1654 REGSTART, REGEND -- arrays of string positions.
1656 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1657 `pend', `string1', `size1', `string2', and `size2'. */
1659 #define POP_FAILURE_POINT(str, pat) \
1660 do { \
1661 assert (!FAIL_STACK_EMPTY ()); \
1663 /* Remove failure points and point to how many regs pushed. */ \
1664 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1665 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1666 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1668 /* Pop the saved registers. */ \
1669 while (fail_stack.frame < fail_stack.avail) \
1670 POP_FAILURE_REG_OR_COUNT (); \
1672 pat = POP_FAILURE_POINTER (); \
1673 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1674 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1676 /* If the saved string location is NULL, it came from an \
1677 on_failure_keep_string_jump opcode, and we want to throw away the \
1678 saved NULL, thus retaining our current position in the string. */ \
1679 str = POP_FAILURE_POINTER (); \
1680 DEBUG_PRINT2 (" Popping string %p: `", str); \
1681 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1682 DEBUG_PRINT1 ("'\n"); \
1684 fail_stack.frame = POP_FAILURE_INT (); \
1685 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1687 assert (fail_stack.avail >= 0); \
1688 assert (fail_stack.frame <= fail_stack.avail); \
1690 DEBUG_STATEMENT (nfailure_points_popped++); \
1691 } while (0) /* POP_FAILURE_POINT */
1695 /* Registers are set to a sentinel when they haven't yet matched. */
1696 #define REG_UNSET(e) ((e) == NULL)
1698 /* Subroutine declarations and macros for regex_compile. */
1700 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1701 reg_syntax_t syntax,
1702 struct re_pattern_buffer *bufp));
1703 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1704 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1705 int arg1, int arg2));
1706 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1707 int arg, unsigned char *end));
1708 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1709 int arg1, int arg2, unsigned char *end));
1710 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1711 re_char *p,
1712 reg_syntax_t syntax));
1713 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1714 re_char *pend,
1715 reg_syntax_t syntax));
1716 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1717 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1718 char *fastmap, const int multibyte));
1720 /* Fetch the next character in the uncompiled pattern, with no
1721 translation. */
1722 #define PATFETCH(c) \
1723 do { \
1724 int len; \
1725 if (p == pend) return REG_EEND; \
1726 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
1727 p += len; \
1728 } while (0)
1731 /* If `translate' is non-null, return translate[D], else just D. We
1732 cast the subscript to translate because some data is declared as
1733 `char *', to avoid warnings when a string constant is passed. But
1734 when we use a character as a subscript we must make it unsigned. */
1735 #ifndef TRANSLATE
1736 # define TRANSLATE(d) \
1737 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1738 #endif
1741 /* Macros for outputting the compiled pattern into `buffer'. */
1743 /* If the buffer isn't allocated when it comes in, use this. */
1744 #define INIT_BUF_SIZE 32
1746 /* Make sure we have at least N more bytes of space in buffer. */
1747 #define GET_BUFFER_SPACE(n) \
1748 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1749 EXTEND_BUFFER ()
1751 /* Make sure we have one more byte of buffer space and then add C to it. */
1752 #define BUF_PUSH(c) \
1753 do { \
1754 GET_BUFFER_SPACE (1); \
1755 *b++ = (unsigned char) (c); \
1756 } while (0)
1759 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1760 #define BUF_PUSH_2(c1, c2) \
1761 do { \
1762 GET_BUFFER_SPACE (2); \
1763 *b++ = (unsigned char) (c1); \
1764 *b++ = (unsigned char) (c2); \
1765 } while (0)
1768 /* As with BUF_PUSH_2, except for three bytes. */
1769 #define BUF_PUSH_3(c1, c2, c3) \
1770 do { \
1771 GET_BUFFER_SPACE (3); \
1772 *b++ = (unsigned char) (c1); \
1773 *b++ = (unsigned char) (c2); \
1774 *b++ = (unsigned char) (c3); \
1775 } while (0)
1778 /* Store a jump with opcode OP at LOC to location TO. We store a
1779 relative address offset by the three bytes the jump itself occupies. */
1780 #define STORE_JUMP(op, loc, to) \
1781 store_op1 (op, loc, (to) - (loc) - 3)
1783 /* Likewise, for a two-argument jump. */
1784 #define STORE_JUMP2(op, loc, to, arg) \
1785 store_op2 (op, loc, (to) - (loc) - 3, arg)
1787 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1788 #define INSERT_JUMP(op, loc, to) \
1789 insert_op1 (op, loc, (to) - (loc) - 3, b)
1791 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1792 #define INSERT_JUMP2(op, loc, to, arg) \
1793 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1796 /* This is not an arbitrary limit: the arguments which represent offsets
1797 into the pattern are two bytes long. So if 2^15 bytes turns out to
1798 be too small, many things would have to change. */
1799 # define MAX_BUF_SIZE (1L << 15)
1801 #if 0 /* This is when we thought it could be 2^16 bytes. */
1802 /* Any other compiler which, like MSC, has allocation limit below 2^16
1803 bytes will have to use approach similar to what was done below for
1804 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1805 reallocating to 0 bytes. Such thing is not going to work too well.
1806 You have been warned!! */
1807 #if defined _MSC_VER && !defined WIN32
1808 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1809 # define MAX_BUF_SIZE 65500L
1810 #else
1811 # define MAX_BUF_SIZE (1L << 16)
1812 #endif
1813 #endif /* 0 */
1815 /* Extend the buffer by twice its current size via realloc and
1816 reset the pointers that pointed into the old block to point to the
1817 correct places in the new one. If extending the buffer results in it
1818 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1819 #if __BOUNDED_POINTERS__
1820 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1821 # define MOVE_BUFFER_POINTER(P) \
1822 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1823 SET_HIGH_BOUND (P), \
1824 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
1825 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1826 else \
1828 SET_HIGH_BOUND (b); \
1829 SET_HIGH_BOUND (begalt); \
1830 if (fixup_alt_jump) \
1831 SET_HIGH_BOUND (fixup_alt_jump); \
1832 if (laststart) \
1833 SET_HIGH_BOUND (laststart); \
1834 if (pending_exact) \
1835 SET_HIGH_BOUND (pending_exact); \
1837 #else
1838 # define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
1839 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1840 #endif
1841 #define EXTEND_BUFFER() \
1842 do { \
1843 unsigned char *old_buffer = bufp->buffer; \
1844 if (bufp->allocated == MAX_BUF_SIZE) \
1845 return REG_ESIZE; \
1846 bufp->allocated <<= 1; \
1847 if (bufp->allocated > MAX_BUF_SIZE) \
1848 bufp->allocated = MAX_BUF_SIZE; \
1849 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1850 if (bufp->buffer == NULL) \
1851 return REG_ESPACE; \
1852 /* If the buffer moved, move all the pointers into it. */ \
1853 if (old_buffer != bufp->buffer) \
1855 unsigned char *new_buffer = bufp->buffer; \
1856 MOVE_BUFFER_POINTER (b); \
1857 MOVE_BUFFER_POINTER (begalt); \
1858 if (fixup_alt_jump) \
1859 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1860 if (laststart) \
1861 MOVE_BUFFER_POINTER (laststart); \
1862 if (pending_exact) \
1863 MOVE_BUFFER_POINTER (pending_exact); \
1865 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1866 } while (0)
1869 /* Since we have one byte reserved for the register number argument to
1870 {start,stop}_memory, the maximum number of groups we can report
1871 things about is what fits in that byte. */
1872 #define MAX_REGNUM 255
1874 /* But patterns can have more than `MAX_REGNUM' registers. We just
1875 ignore the excess. */
1876 typedef int regnum_t;
1879 /* Macros for the compile stack. */
1881 /* Since offsets can go either forwards or backwards, this type needs to
1882 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1883 /* int may be not enough when sizeof(int) == 2. */
1884 typedef long pattern_offset_t;
1886 typedef struct
1888 pattern_offset_t begalt_offset;
1889 pattern_offset_t fixup_alt_jump;
1890 pattern_offset_t laststart_offset;
1891 regnum_t regnum;
1892 } compile_stack_elt_t;
1895 typedef struct
1897 compile_stack_elt_t *stack;
1898 unsigned size;
1899 unsigned avail; /* Offset of next open position. */
1900 } compile_stack_type;
1903 #define INIT_COMPILE_STACK_SIZE 32
1905 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1906 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1908 /* The next available element. */
1909 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1911 /* Explicit quit checking is only used on NTemacs and whenever we
1912 use polling to process input events. */
1913 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1914 extern int immediate_quit;
1915 # define IMMEDIATE_QUIT_CHECK \
1916 do { \
1917 if (immediate_quit) QUIT; \
1918 } while (0)
1919 #else
1920 # define IMMEDIATE_QUIT_CHECK ((void)0)
1921 #endif
1923 /* Structure to manage work area for range table. */
1924 struct range_table_work_area
1926 int *table; /* actual work area. */
1927 int allocated; /* allocated size for work area in bytes. */
1928 int used; /* actually used size in words. */
1929 int bits; /* flag to record character classes */
1932 /* Make sure that WORK_AREA can hold more N multibyte characters.
1933 This is used only in set_image_of_range and set_image_of_range_1.
1934 It expects WORK_AREA to be a pointer.
1935 If it can't get the space, it returns from the surrounding function. */
1937 #define EXTEND_RANGE_TABLE(work_area, n) \
1938 do { \
1939 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1941 extend_range_table_work_area (&work_area); \
1942 if ((work_area).table == 0) \
1943 return (REG_ESPACE); \
1945 } while (0)
1947 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1948 (work_area).bits |= (bit)
1950 /* Bits used to implement the multibyte-part of the various character classes
1951 such as [:alnum:] in a charset's range table. */
1952 #define BIT_WORD 0x1
1953 #define BIT_LOWER 0x2
1954 #define BIT_PUNCT 0x4
1955 #define BIT_SPACE 0x8
1956 #define BIT_UPPER 0x10
1957 #define BIT_MULTIBYTE 0x20
1959 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1960 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1961 do { \
1962 EXTEND_RANGE_TABLE ((work_area), 2); \
1963 (work_area).table[(work_area).used++] = (range_start); \
1964 (work_area).table[(work_area).used++] = (range_end); \
1965 } while (0)
1967 /* Free allocated memory for WORK_AREA. */
1968 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1969 do { \
1970 if ((work_area).table) \
1971 free ((work_area).table); \
1972 } while (0)
1974 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1975 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1976 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1977 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1980 /* Set the bit for character C in a list. */
1981 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1984 #ifdef emacs
1986 /* Store characters in the range FROM to TO in the bitmap at B (for
1987 ASCII and unibyte characters) and WORK_AREA (for multibyte
1988 characters) while translating them and paying attention to the
1989 continuity of translated characters.
1991 Implementation note: It is better to implement these fairly big
1992 macros by a function, but it's not that easy because macros called
1993 in this macro assume various local variables already declared. */
1995 /* Both FROM and TO are ASCII characters. */
1997 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
1998 do { \
1999 int C0, C1; \
2001 for (C0 = (FROM); C0 <= (TO); C0++) \
2003 C1 = TRANSLATE (C0); \
2004 if (! ASCII_CHAR_P (C1)) \
2006 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2007 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
2008 C1 = C0; \
2010 SET_LIST_BIT (C1); \
2012 } while (0)
2015 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
2017 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
2018 do { \
2019 int C0, C1, C2, I; \
2020 int USED = RANGE_TABLE_WORK_USED (work_area); \
2022 for (C0 = (FROM); C0 <= (TO); C0++) \
2024 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
2025 if (CHAR_BYTE8_P (C1)) \
2026 SET_LIST_BIT (C0); \
2027 else \
2029 C2 = TRANSLATE (C1); \
2030 if (C2 == C1 \
2031 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
2032 C1 = C0; \
2033 SET_LIST_BIT (C1); \
2034 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2036 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2037 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2039 if (C2 >= from - 1 && C2 <= to + 1) \
2041 if (C2 == from - 1) \
2042 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2043 else if (C2 == to + 1) \
2044 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2045 break; \
2048 if (I < USED) \
2049 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
2052 } while (0)
2055 /* Both FROM and TO are multibyte characters. */
2057 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
2058 do { \
2059 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
2061 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
2062 for (C0 = (FROM); C0 <= (TO); C0++) \
2064 C1 = TRANSLATE (C0); \
2065 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
2066 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
2067 SET_LIST_BIT (C2); \
2068 if (C1 >= (FROM) && C1 <= (TO)) \
2069 continue; \
2070 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2072 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2073 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2075 if (C1 >= from - 1 && C1 <= to + 1) \
2077 if (C1 == from - 1) \
2078 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2079 else if (C1 == to + 1) \
2080 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2081 break; \
2084 if (I < USED) \
2085 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2087 } while (0)
2089 #endif /* emacs */
2091 /* Get the next unsigned number in the uncompiled pattern. */
2092 #define GET_UNSIGNED_NUMBER(num) \
2093 do { \
2094 if (p == pend) \
2095 FREE_STACK_RETURN (REG_EBRACE); \
2096 else \
2098 PATFETCH (c); \
2099 while ('0' <= c && c <= '9') \
2101 int prev; \
2102 if (num < 0) \
2103 num = 0; \
2104 prev = num; \
2105 num = num * 10 + c - '0'; \
2106 if (num / 10 != prev) \
2107 FREE_STACK_RETURN (REG_BADBR); \
2108 if (p == pend) \
2109 FREE_STACK_RETURN (REG_EBRACE); \
2110 PATFETCH (c); \
2113 } while (0)
2115 #if ! WIDE_CHAR_SUPPORT
2117 /* Map a string to the char class it names (if any). */
2118 re_wctype_t
2119 re_wctype (const re_char *str)
2121 const char *string = (const char *) str;
2122 if (STREQ (string, "alnum")) return RECC_ALNUM;
2123 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2124 else if (STREQ (string, "word")) return RECC_WORD;
2125 else if (STREQ (string, "ascii")) return RECC_ASCII;
2126 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2127 else if (STREQ (string, "graph")) return RECC_GRAPH;
2128 else if (STREQ (string, "lower")) return RECC_LOWER;
2129 else if (STREQ (string, "print")) return RECC_PRINT;
2130 else if (STREQ (string, "punct")) return RECC_PUNCT;
2131 else if (STREQ (string, "space")) return RECC_SPACE;
2132 else if (STREQ (string, "upper")) return RECC_UPPER;
2133 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2134 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2135 else if (STREQ (string, "digit")) return RECC_DIGIT;
2136 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2137 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2138 else if (STREQ (string, "blank")) return RECC_BLANK;
2139 else return 0;
2142 /* True if CH is in the char class CC. */
2143 boolean
2144 re_iswctype (int ch, re_wctype_t cc)
2146 switch (cc)
2148 case RECC_ALNUM: return ISALNUM (ch);
2149 case RECC_ALPHA: return ISALPHA (ch);
2150 case RECC_BLANK: return ISBLANK (ch);
2151 case RECC_CNTRL: return ISCNTRL (ch);
2152 case RECC_DIGIT: return ISDIGIT (ch);
2153 case RECC_GRAPH: return ISGRAPH (ch);
2154 case RECC_LOWER: return ISLOWER (ch);
2155 case RECC_PRINT: return ISPRINT (ch);
2156 case RECC_PUNCT: return ISPUNCT (ch);
2157 case RECC_SPACE: return ISSPACE (ch);
2158 case RECC_UPPER: return ISUPPER (ch);
2159 case RECC_XDIGIT: return ISXDIGIT (ch);
2160 case RECC_ASCII: return IS_REAL_ASCII (ch);
2161 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2162 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2163 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2164 case RECC_WORD: return ISWORD (ch);
2165 case RECC_ERROR: return false;
2166 default:
2167 abort();
2171 /* Return a bit-pattern to use in the range-table bits to match multibyte
2172 chars of class CC. */
2173 static int
2174 re_wctype_to_bit (re_wctype_t cc)
2176 switch (cc)
2178 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2179 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2180 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2181 case RECC_LOWER: return BIT_LOWER;
2182 case RECC_UPPER: return BIT_UPPER;
2183 case RECC_PUNCT: return BIT_PUNCT;
2184 case RECC_SPACE: return BIT_SPACE;
2185 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2186 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2187 default:
2188 abort();
2191 #endif
2193 /* Filling in the work area of a range. */
2195 /* Actually extend the space in WORK_AREA. */
2197 static void
2198 extend_range_table_work_area (struct range_table_work_area *work_area)
2200 work_area->allocated += 16 * sizeof (int);
2201 if (work_area->table)
2202 work_area->table
2203 = (int *) realloc (work_area->table, work_area->allocated);
2204 else
2205 work_area->table
2206 = (int *) malloc (work_area->allocated);
2209 #if 0
2210 #ifdef emacs
2212 /* Carefully find the ranges of codes that are equivalent
2213 under case conversion to the range start..end when passed through
2214 TRANSLATE. Handle the case where non-letters can come in between
2215 two upper-case letters (which happens in Latin-1).
2216 Also handle the case of groups of more than 2 case-equivalent chars.
2218 The basic method is to look at consecutive characters and see
2219 if they can form a run that can be handled as one.
2221 Returns -1 if successful, REG_ESPACE if ran out of space. */
2223 static int
2224 set_image_of_range_1 (work_area, start, end, translate)
2225 RE_TRANSLATE_TYPE translate;
2226 struct range_table_work_area *work_area;
2227 re_wchar_t start, end;
2229 /* `one_case' indicates a character, or a run of characters,
2230 each of which is an isolate (no case-equivalents).
2231 This includes all ASCII non-letters.
2233 `two_case' indicates a character, or a run of characters,
2234 each of which has two case-equivalent forms.
2235 This includes all ASCII letters.
2237 `strange' indicates a character that has more than one
2238 case-equivalent. */
2240 enum case_type {one_case, two_case, strange};
2242 /* Describe the run that is in progress,
2243 which the next character can try to extend.
2244 If run_type is strange, that means there really is no run.
2245 If run_type is one_case, then run_start...run_end is the run.
2246 If run_type is two_case, then the run is run_start...run_end,
2247 and the case-equivalents end at run_eqv_end. */
2249 enum case_type run_type = strange;
2250 int run_start, run_end, run_eqv_end;
2252 Lisp_Object eqv_table;
2254 if (!RE_TRANSLATE_P (translate))
2256 EXTEND_RANGE_TABLE (work_area, 2);
2257 work_area->table[work_area->used++] = (start);
2258 work_area->table[work_area->used++] = (end);
2259 return -1;
2262 eqv_table = XCHAR_TABLE (translate)->extras[2];
2264 for (; start <= end; start++)
2266 enum case_type this_type;
2267 int eqv = RE_TRANSLATE (eqv_table, start);
2268 int minchar, maxchar;
2270 /* Classify this character */
2271 if (eqv == start)
2272 this_type = one_case;
2273 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2274 this_type = two_case;
2275 else
2276 this_type = strange;
2278 if (start < eqv)
2279 minchar = start, maxchar = eqv;
2280 else
2281 minchar = eqv, maxchar = start;
2283 /* Can this character extend the run in progress? */
2284 if (this_type == strange || this_type != run_type
2285 || !(minchar == run_end + 1
2286 && (run_type == two_case
2287 ? maxchar == run_eqv_end + 1 : 1)))
2289 /* No, end the run.
2290 Record each of its equivalent ranges. */
2291 if (run_type == one_case)
2293 EXTEND_RANGE_TABLE (work_area, 2);
2294 work_area->table[work_area->used++] = run_start;
2295 work_area->table[work_area->used++] = run_end;
2297 else if (run_type == two_case)
2299 EXTEND_RANGE_TABLE (work_area, 4);
2300 work_area->table[work_area->used++] = run_start;
2301 work_area->table[work_area->used++] = run_end;
2302 work_area->table[work_area->used++]
2303 = RE_TRANSLATE (eqv_table, run_start);
2304 work_area->table[work_area->used++]
2305 = RE_TRANSLATE (eqv_table, run_end);
2307 run_type = strange;
2310 if (this_type == strange)
2312 /* For a strange character, add each of its equivalents, one
2313 by one. Don't start a range. */
2316 EXTEND_RANGE_TABLE (work_area, 2);
2317 work_area->table[work_area->used++] = eqv;
2318 work_area->table[work_area->used++] = eqv;
2319 eqv = RE_TRANSLATE (eqv_table, eqv);
2321 while (eqv != start);
2324 /* Add this char to the run, or start a new run. */
2325 else if (run_type == strange)
2327 /* Initialize a new range. */
2328 run_type = this_type;
2329 run_start = start;
2330 run_end = start;
2331 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2333 else
2335 /* Extend a running range. */
2336 run_end = minchar;
2337 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2341 /* If a run is still in progress at the end, finish it now
2342 by recording its equivalent ranges. */
2343 if (run_type == one_case)
2345 EXTEND_RANGE_TABLE (work_area, 2);
2346 work_area->table[work_area->used++] = run_start;
2347 work_area->table[work_area->used++] = run_end;
2349 else if (run_type == two_case)
2351 EXTEND_RANGE_TABLE (work_area, 4);
2352 work_area->table[work_area->used++] = run_start;
2353 work_area->table[work_area->used++] = run_end;
2354 work_area->table[work_area->used++]
2355 = RE_TRANSLATE (eqv_table, run_start);
2356 work_area->table[work_area->used++]
2357 = RE_TRANSLATE (eqv_table, run_end);
2360 return -1;
2363 #endif /* emacs */
2365 /* Record the image of the range start..end when passed through
2366 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2367 and is not even necessarily contiguous.
2368 Normally we approximate it with the smallest contiguous range that contains
2369 all the chars we need. However, for Latin-1 we go to extra effort
2370 to do a better job.
2372 This function is not called for ASCII ranges.
2374 Returns -1 if successful, REG_ESPACE if ran out of space. */
2376 static int
2377 set_image_of_range (work_area, start, end, translate)
2378 RE_TRANSLATE_TYPE translate;
2379 struct range_table_work_area *work_area;
2380 re_wchar_t start, end;
2382 re_wchar_t cmin, cmax;
2384 #ifdef emacs
2385 /* For Latin-1 ranges, use set_image_of_range_1
2386 to get proper handling of ranges that include letters and nonletters.
2387 For a range that includes the whole of Latin-1, this is not necessary.
2388 For other character sets, we don't bother to get this right. */
2389 if (RE_TRANSLATE_P (translate) && start < 04400
2390 && !(start < 04200 && end >= 04377))
2392 int newend;
2393 int tem;
2394 newend = end;
2395 if (newend > 04377)
2396 newend = 04377;
2397 tem = set_image_of_range_1 (work_area, start, newend, translate);
2398 if (tem > 0)
2399 return tem;
2401 start = 04400;
2402 if (end < 04400)
2403 return -1;
2405 #endif
2407 EXTEND_RANGE_TABLE (work_area, 2);
2408 work_area->table[work_area->used++] = (start);
2409 work_area->table[work_area->used++] = (end);
2411 cmin = -1, cmax = -1;
2413 if (RE_TRANSLATE_P (translate))
2415 int ch;
2417 for (ch = start; ch <= end; ch++)
2419 re_wchar_t c = TRANSLATE (ch);
2420 if (! (start <= c && c <= end))
2422 if (cmin == -1)
2423 cmin = c, cmax = c;
2424 else
2426 cmin = MIN (cmin, c);
2427 cmax = MAX (cmax, c);
2432 if (cmin != -1)
2434 EXTEND_RANGE_TABLE (work_area, 2);
2435 work_area->table[work_area->used++] = (cmin);
2436 work_area->table[work_area->used++] = (cmax);
2440 return -1;
2442 #endif /* 0 */
2444 #ifndef MATCH_MAY_ALLOCATE
2446 /* If we cannot allocate large objects within re_match_2_internal,
2447 we make the fail stack and register vectors global.
2448 The fail stack, we grow to the maximum size when a regexp
2449 is compiled.
2450 The register vectors, we adjust in size each time we
2451 compile a regexp, according to the number of registers it needs. */
2453 static fail_stack_type fail_stack;
2455 /* Size with which the following vectors are currently allocated.
2456 That is so we can make them bigger as needed,
2457 but never make them smaller. */
2458 static int regs_allocated_size;
2460 static re_char ** regstart, ** regend;
2461 static re_char **best_regstart, **best_regend;
2463 /* Make the register vectors big enough for NUM_REGS registers,
2464 but don't make them smaller. */
2466 static
2467 regex_grow_registers (num_regs)
2468 int num_regs;
2470 if (num_regs > regs_allocated_size)
2472 RETALLOC_IF (regstart, num_regs, re_char *);
2473 RETALLOC_IF (regend, num_regs, re_char *);
2474 RETALLOC_IF (best_regstart, num_regs, re_char *);
2475 RETALLOC_IF (best_regend, num_regs, re_char *);
2477 regs_allocated_size = num_regs;
2481 #endif /* not MATCH_MAY_ALLOCATE */
2483 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2484 compile_stack,
2485 regnum_t regnum));
2487 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2488 Returns one of error codes defined in `regex.h', or zero for success.
2490 Assumes the `allocated' (and perhaps `buffer') and `translate'
2491 fields are set in BUFP on entry.
2493 If it succeeds, results are put in BUFP (if it returns an error, the
2494 contents of BUFP are undefined):
2495 `buffer' is the compiled pattern;
2496 `syntax' is set to SYNTAX;
2497 `used' is set to the length of the compiled pattern;
2498 `fastmap_accurate' is zero;
2499 `re_nsub' is the number of subexpressions in PATTERN;
2500 `not_bol' and `not_eol' are zero;
2502 The `fastmap' field is neither examined nor set. */
2504 /* Insert the `jump' from the end of last alternative to "here".
2505 The space for the jump has already been allocated. */
2506 #define FIXUP_ALT_JUMP() \
2507 do { \
2508 if (fixup_alt_jump) \
2509 STORE_JUMP (jump, fixup_alt_jump, b); \
2510 } while (0)
2513 /* Return, freeing storage we allocated. */
2514 #define FREE_STACK_RETURN(value) \
2515 do { \
2516 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2517 free (compile_stack.stack); \
2518 return value; \
2519 } while (0)
2521 static reg_errcode_t
2522 regex_compile (const re_char *pattern, size_t size, reg_syntax_t syntax, struct re_pattern_buffer *bufp)
2524 /* We fetch characters from PATTERN here. */
2525 register re_wchar_t c, c1;
2527 /* Points to the end of the buffer, where we should append. */
2528 register unsigned char *b;
2530 /* Keeps track of unclosed groups. */
2531 compile_stack_type compile_stack;
2533 /* Points to the current (ending) position in the pattern. */
2534 #ifdef AIX
2535 /* `const' makes AIX compiler fail. */
2536 unsigned char *p = pattern;
2537 #else
2538 re_char *p = pattern;
2539 #endif
2540 re_char *pend = pattern + size;
2542 /* How to translate the characters in the pattern. */
2543 RE_TRANSLATE_TYPE translate = bufp->translate;
2545 /* Address of the count-byte of the most recently inserted `exactn'
2546 command. This makes it possible to tell if a new exact-match
2547 character can be added to that command or if the character requires
2548 a new `exactn' command. */
2549 unsigned char *pending_exact = 0;
2551 /* Address of start of the most recently finished expression.
2552 This tells, e.g., postfix * where to find the start of its
2553 operand. Reset at the beginning of groups and alternatives. */
2554 unsigned char *laststart = 0;
2556 /* Address of beginning of regexp, or inside of last group. */
2557 unsigned char *begalt;
2559 /* Place in the uncompiled pattern (i.e., the {) to
2560 which to go back if the interval is invalid. */
2561 re_char *beg_interval;
2563 /* Address of the place where a forward jump should go to the end of
2564 the containing expression. Each alternative of an `or' -- except the
2565 last -- ends with a forward jump of this sort. */
2566 unsigned char *fixup_alt_jump = 0;
2568 /* Work area for range table of charset. */
2569 struct range_table_work_area range_table_work;
2571 /* If the object matched can contain multibyte characters. */
2572 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2574 /* Nonzero if we have pushed down into a subpattern. */
2575 int in_subpattern = 0;
2577 /* These hold the values of p, pattern, and pend from the main
2578 pattern when we have pushed into a subpattern. */
2579 re_char *main_p;
2580 re_char *main_pattern;
2581 re_char *main_pend;
2583 #ifdef DEBUG
2584 debug++;
2585 DEBUG_PRINT1 ("\nCompiling pattern: ");
2586 if (debug > 0)
2588 unsigned debug_count;
2590 for (debug_count = 0; debug_count < size; debug_count++)
2591 putchar (pattern[debug_count]);
2592 putchar ('\n');
2594 #endif /* DEBUG */
2596 /* Initialize the compile stack. */
2597 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2598 if (compile_stack.stack == NULL)
2599 return REG_ESPACE;
2601 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2602 compile_stack.avail = 0;
2604 range_table_work.table = 0;
2605 range_table_work.allocated = 0;
2607 /* Initialize the pattern buffer. */
2608 bufp->syntax = syntax;
2609 bufp->fastmap_accurate = 0;
2610 bufp->not_bol = bufp->not_eol = 0;
2611 bufp->used_syntax = 0;
2613 /* Set `used' to zero, so that if we return an error, the pattern
2614 printer (for debugging) will think there's no pattern. We reset it
2615 at the end. */
2616 bufp->used = 0;
2618 /* Always count groups, whether or not bufp->no_sub is set. */
2619 bufp->re_nsub = 0;
2621 #if !defined emacs && !defined SYNTAX_TABLE
2622 /* Initialize the syntax table. */
2623 init_syntax_once ();
2624 #endif
2626 if (bufp->allocated == 0)
2628 if (bufp->buffer)
2629 { /* If zero allocated, but buffer is non-null, try to realloc
2630 enough space. This loses if buffer's address is bogus, but
2631 that is the user's responsibility. */
2632 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2634 else
2635 { /* Caller did not allocate a buffer. Do it for them. */
2636 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2638 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2640 bufp->allocated = INIT_BUF_SIZE;
2643 begalt = b = bufp->buffer;
2645 /* Loop through the uncompiled pattern until we're at the end. */
2646 while (1)
2648 if (p == pend)
2650 /* If this is the end of an included regexp,
2651 pop back to the main regexp and try again. */
2652 if (in_subpattern)
2654 in_subpattern = 0;
2655 pattern = main_pattern;
2656 p = main_p;
2657 pend = main_pend;
2658 continue;
2660 /* If this is the end of the main regexp, we are done. */
2661 break;
2664 PATFETCH (c);
2666 switch (c)
2668 case ' ':
2670 re_char *p1 = p;
2672 /* If there's no special whitespace regexp, treat
2673 spaces normally. And don't try to do this recursively. */
2674 if (!whitespace_regexp || in_subpattern)
2675 goto normal_char;
2677 /* Peek past following spaces. */
2678 while (p1 != pend)
2680 if (*p1 != ' ')
2681 break;
2682 p1++;
2684 /* If the spaces are followed by a repetition op,
2685 treat them normally. */
2686 if (p1 != pend
2687 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2688 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2689 goto normal_char;
2691 /* Replace the spaces with the whitespace regexp. */
2692 in_subpattern = 1;
2693 main_p = p1;
2694 main_pend = pend;
2695 main_pattern = pattern;
2696 p = pattern = whitespace_regexp;
2697 pend = p + strlen ((const char *) p);
2698 break;
2701 case '^':
2703 if ( /* If at start of pattern, it's an operator. */
2704 p == pattern + 1
2705 /* If context independent, it's an operator. */
2706 || syntax & RE_CONTEXT_INDEP_ANCHORS
2707 /* Otherwise, depends on what's come before. */
2708 || at_begline_loc_p (pattern, p, syntax))
2709 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2710 else
2711 goto normal_char;
2713 break;
2716 case '$':
2718 if ( /* If at end of pattern, it's an operator. */
2719 p == pend
2720 /* If context independent, it's an operator. */
2721 || syntax & RE_CONTEXT_INDEP_ANCHORS
2722 /* Otherwise, depends on what's next. */
2723 || at_endline_loc_p (p, pend, syntax))
2724 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2725 else
2726 goto normal_char;
2728 break;
2731 case '+':
2732 case '?':
2733 if ((syntax & RE_BK_PLUS_QM)
2734 || (syntax & RE_LIMITED_OPS))
2735 goto normal_char;
2736 handle_plus:
2737 case '*':
2738 /* If there is no previous pattern... */
2739 if (!laststart)
2741 if (syntax & RE_CONTEXT_INVALID_OPS)
2742 FREE_STACK_RETURN (REG_BADRPT);
2743 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2744 goto normal_char;
2748 /* 1 means zero (many) matches is allowed. */
2749 boolean zero_times_ok = 0, many_times_ok = 0;
2750 boolean greedy = 1;
2752 /* If there is a sequence of repetition chars, collapse it
2753 down to just one (the right one). We can't combine
2754 interval operators with these because of, e.g., `a{2}*',
2755 which should only match an even number of `a's. */
2757 for (;;)
2759 if ((syntax & RE_FRUGAL)
2760 && c == '?' && (zero_times_ok || many_times_ok))
2761 greedy = 0;
2762 else
2764 zero_times_ok |= c != '+';
2765 many_times_ok |= c != '?';
2768 if (p == pend)
2769 break;
2770 else if (*p == '*'
2771 || (!(syntax & RE_BK_PLUS_QM)
2772 && (*p == '+' || *p == '?')))
2774 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2776 if (p+1 == pend)
2777 FREE_STACK_RETURN (REG_EESCAPE);
2778 if (p[1] == '+' || p[1] == '?')
2779 PATFETCH (c); /* Gobble up the backslash. */
2780 else
2781 break;
2783 else
2784 break;
2785 /* If we get here, we found another repeat character. */
2786 PATFETCH (c);
2789 /* Star, etc. applied to an empty pattern is equivalent
2790 to an empty pattern. */
2791 if (!laststart || laststart == b)
2792 break;
2794 /* Now we know whether or not zero matches is allowed
2795 and also whether or not two or more matches is allowed. */
2796 if (greedy)
2798 if (many_times_ok)
2800 boolean simple = skip_one_char (laststart) == b;
2801 unsigned int startoffset = 0;
2802 re_opcode_t ofj =
2803 /* Check if the loop can match the empty string. */
2804 (simple || !analyse_first (laststart, b, NULL, 0))
2805 ? on_failure_jump : on_failure_jump_loop;
2806 assert (skip_one_char (laststart) <= b);
2808 if (!zero_times_ok && simple)
2809 { /* Since simple * loops can be made faster by using
2810 on_failure_keep_string_jump, we turn simple P+
2811 into PP* if P is simple. */
2812 unsigned char *p1, *p2;
2813 startoffset = b - laststart;
2814 GET_BUFFER_SPACE (startoffset);
2815 p1 = b; p2 = laststart;
2816 while (p2 < p1)
2817 *b++ = *p2++;
2818 zero_times_ok = 1;
2821 GET_BUFFER_SPACE (6);
2822 if (!zero_times_ok)
2823 /* A + loop. */
2824 STORE_JUMP (ofj, b, b + 6);
2825 else
2826 /* Simple * loops can use on_failure_keep_string_jump
2827 depending on what follows. But since we don't know
2828 that yet, we leave the decision up to
2829 on_failure_jump_smart. */
2830 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2831 laststart + startoffset, b + 6);
2832 b += 3;
2833 STORE_JUMP (jump, b, laststart + startoffset);
2834 b += 3;
2836 else
2838 /* A simple ? pattern. */
2839 assert (zero_times_ok);
2840 GET_BUFFER_SPACE (3);
2841 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2842 b += 3;
2845 else /* not greedy */
2846 { /* I wish the greedy and non-greedy cases could be merged. */
2848 GET_BUFFER_SPACE (7); /* We might use less. */
2849 if (many_times_ok)
2851 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2853 /* The non-greedy multiple match looks like
2854 a repeat..until: we only need a conditional jump
2855 at the end of the loop. */
2856 if (emptyp) BUF_PUSH (no_op);
2857 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2858 : on_failure_jump, b, laststart);
2859 b += 3;
2860 if (zero_times_ok)
2862 /* The repeat...until naturally matches one or more.
2863 To also match zero times, we need to first jump to
2864 the end of the loop (its conditional jump). */
2865 INSERT_JUMP (jump, laststart, b);
2866 b += 3;
2869 else
2871 /* non-greedy a?? */
2872 INSERT_JUMP (jump, laststart, b + 3);
2873 b += 3;
2874 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2875 b += 3;
2879 pending_exact = 0;
2880 break;
2883 case '.':
2884 laststart = b;
2885 BUF_PUSH (anychar);
2886 break;
2889 case '[':
2891 re_char *p1;
2893 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2895 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2897 /* Ensure that we have enough space to push a charset: the
2898 opcode, the length count, and the bitset; 34 bytes in all. */
2899 GET_BUFFER_SPACE (34);
2901 laststart = b;
2903 /* We test `*p == '^' twice, instead of using an if
2904 statement, so we only need one BUF_PUSH. */
2905 BUF_PUSH (*p == '^' ? charset_not : charset);
2906 if (*p == '^')
2907 p++;
2909 /* Remember the first position in the bracket expression. */
2910 p1 = p;
2912 /* Push the number of bytes in the bitmap. */
2913 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2915 /* Clear the whole map. */
2916 memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
2918 /* charset_not matches newline according to a syntax bit. */
2919 if ((re_opcode_t) b[-2] == charset_not
2920 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2921 SET_LIST_BIT ('\n');
2923 /* Read in characters and ranges, setting map bits. */
2924 for (;;)
2926 boolean escaped_char = false;
2927 const unsigned char *p2 = p;
2928 re_wchar_t ch;
2930 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2932 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2933 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2934 So the translation is done later in a loop. Example:
2935 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2936 PATFETCH (c);
2938 /* \ might escape characters inside [...] and [^...]. */
2939 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2941 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2943 PATFETCH (c);
2944 escaped_char = true;
2946 else
2948 /* Could be the end of the bracket expression. If it's
2949 not (i.e., when the bracket expression is `[]' so
2950 far), the ']' character bit gets set way below. */
2951 if (c == ']' && p2 != p1)
2952 break;
2955 /* See if we're at the beginning of a possible character
2956 class. */
2958 if (!escaped_char &&
2959 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2961 /* Leave room for the null. */
2962 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2963 const unsigned char *class_beg;
2965 PATFETCH (c);
2966 c1 = 0;
2967 class_beg = p;
2969 /* If pattern is `[[:'. */
2970 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2972 for (;;)
2974 PATFETCH (c);
2975 if ((c == ':' && *p == ']') || p == pend)
2976 break;
2977 if (c1 < CHAR_CLASS_MAX_LENGTH)
2978 str[c1++] = c;
2979 else
2980 /* This is in any case an invalid class name. */
2981 str[0] = '\0';
2983 str[c1] = '\0';
2985 /* If isn't a word bracketed by `[:' and `:]':
2986 undo the ending character, the letters, and
2987 leave the leading `:' and `[' (but set bits for
2988 them). */
2989 if (c == ':' && *p == ']')
2991 re_wctype_t cc = re_wctype (str);
2993 if (cc == 0)
2994 FREE_STACK_RETURN (REG_ECTYPE);
2996 /* Throw away the ] at the end of the character
2997 class. */
2998 PATFETCH (c);
3000 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3002 #ifndef emacs
3003 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
3004 if (re_iswctype (btowc (ch), cc))
3006 c = TRANSLATE (ch);
3007 if (c < (1 << BYTEWIDTH))
3008 SET_LIST_BIT (c);
3010 #else /* emacs */
3011 /* Most character classes in a multibyte match
3012 just set a flag. Exceptions are is_blank,
3013 is_digit, is_cntrl, and is_xdigit, since
3014 they can only match ASCII characters. We
3015 don't need to handle them for multibyte.
3016 They are distinguished by a negative wctype. */
3018 /* Setup the gl_state object to its buffer-defined
3019 value. This hardcodes the buffer-global
3020 syntax-table for ASCII chars, while the other chars
3021 will obey syntax-table properties. It's not ideal,
3022 but it's the way it's been done until now. */
3023 SETUP_BUFFER_SYNTAX_TABLE ();
3025 for (ch = 0; ch < 256; ++ch)
3027 c = RE_CHAR_TO_MULTIBYTE (ch);
3028 if (! CHAR_BYTE8_P (c)
3029 && re_iswctype (c, cc))
3031 SET_LIST_BIT (ch);
3032 c1 = TRANSLATE (c);
3033 if (c1 == c)
3034 continue;
3035 if (ASCII_CHAR_P (c1))
3036 SET_LIST_BIT (c1);
3037 else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
3038 SET_LIST_BIT (c1);
3041 SET_RANGE_TABLE_WORK_AREA_BIT
3042 (range_table_work, re_wctype_to_bit (cc));
3043 #endif /* emacs */
3044 /* In most cases the matching rule for char classes
3045 only uses the syntax table for multibyte chars,
3046 so that the content of the syntax-table it is not
3047 hardcoded in the range_table. SPACE and WORD are
3048 the two exceptions. */
3049 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
3050 bufp->used_syntax = 1;
3052 /* Repeat the loop. */
3053 continue;
3055 else
3057 /* Go back to right after the "[:". */
3058 p = class_beg;
3059 SET_LIST_BIT ('[');
3061 /* Because the `:' may starts the range, we
3062 can't simply set bit and repeat the loop.
3063 Instead, just set it to C and handle below. */
3064 c = ':';
3068 if (p < pend && p[0] == '-' && p[1] != ']')
3071 /* Discard the `-'. */
3072 PATFETCH (c1);
3074 /* Fetch the character which ends the range. */
3075 PATFETCH (c1);
3076 #ifdef emacs
3077 if (CHAR_BYTE8_P (c1)
3078 && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
3079 /* Treat the range from a multibyte character to
3080 raw-byte character as empty. */
3081 c = c1 + 1;
3082 #endif /* emacs */
3084 else
3085 /* Range from C to C. */
3086 c1 = c;
3088 if (c > c1)
3090 if (syntax & RE_NO_EMPTY_RANGES)
3091 FREE_STACK_RETURN (REG_ERANGEX);
3092 /* Else, repeat the loop. */
3094 else
3096 #ifndef emacs
3097 /* Set the range into bitmap */
3098 for (; c <= c1; c++)
3100 ch = TRANSLATE (c);
3101 if (ch < (1 << BYTEWIDTH))
3102 SET_LIST_BIT (ch);
3104 #else /* emacs */
3105 if (c < 128)
3107 ch = MIN (127, c1);
3108 SETUP_ASCII_RANGE (range_table_work, c, ch);
3109 c = ch + 1;
3110 if (CHAR_BYTE8_P (c1))
3111 c = BYTE8_TO_CHAR (128);
3113 if (c <= c1)
3115 if (CHAR_BYTE8_P (c))
3117 c = CHAR_TO_BYTE8 (c);
3118 c1 = CHAR_TO_BYTE8 (c1);
3119 for (; c <= c1; c++)
3120 SET_LIST_BIT (c);
3122 else if (multibyte)
3124 SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
3126 else
3128 SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
3131 #endif /* emacs */
3135 /* Discard any (non)matching list bytes that are all 0 at the
3136 end of the map. Decrease the map-length byte too. */
3137 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3138 b[-1]--;
3139 b += b[-1];
3141 /* Build real range table from work area. */
3142 if (RANGE_TABLE_WORK_USED (range_table_work)
3143 || RANGE_TABLE_WORK_BITS (range_table_work))
3145 int i;
3146 int used = RANGE_TABLE_WORK_USED (range_table_work);
3148 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3149 bytes for flags, two for COUNT, and three bytes for
3150 each character. */
3151 GET_BUFFER_SPACE (4 + used * 3);
3153 /* Indicate the existence of range table. */
3154 laststart[1] |= 0x80;
3156 /* Store the character class flag bits into the range table.
3157 If not in emacs, these flag bits are always 0. */
3158 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3159 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3161 STORE_NUMBER_AND_INCR (b, used / 2);
3162 for (i = 0; i < used; i++)
3163 STORE_CHARACTER_AND_INCR
3164 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3167 break;
3170 case '(':
3171 if (syntax & RE_NO_BK_PARENS)
3172 goto handle_open;
3173 else
3174 goto normal_char;
3177 case ')':
3178 if (syntax & RE_NO_BK_PARENS)
3179 goto handle_close;
3180 else
3181 goto normal_char;
3184 case '\n':
3185 if (syntax & RE_NEWLINE_ALT)
3186 goto handle_alt;
3187 else
3188 goto normal_char;
3191 case '|':
3192 if (syntax & RE_NO_BK_VBAR)
3193 goto handle_alt;
3194 else
3195 goto normal_char;
3198 case '{':
3199 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3200 goto handle_interval;
3201 else
3202 goto normal_char;
3205 case '\\':
3206 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3208 /* Do not translate the character after the \, so that we can
3209 distinguish, e.g., \B from \b, even if we normally would
3210 translate, e.g., B to b. */
3211 PATFETCH (c);
3213 switch (c)
3215 case '(':
3216 if (syntax & RE_NO_BK_PARENS)
3217 goto normal_backslash;
3219 handle_open:
3221 int shy = 0;
3222 regnum_t regnum = 0;
3223 if (p+1 < pend)
3225 /* Look for a special (?...) construct */
3226 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3228 PATFETCH (c); /* Gobble up the '?'. */
3229 while (!shy)
3231 PATFETCH (c);
3232 switch (c)
3234 case ':': shy = 1; break;
3235 case '0':
3236 /* An explicitly specified regnum must start
3237 with non-0. */
3238 if (regnum == 0)
3239 FREE_STACK_RETURN (REG_BADPAT);
3240 case '1': case '2': case '3': case '4':
3241 case '5': case '6': case '7': case '8': case '9':
3242 regnum = 10*regnum + (c - '0'); break;
3243 default:
3244 /* Only (?:...) is supported right now. */
3245 FREE_STACK_RETURN (REG_BADPAT);
3251 if (!shy)
3252 regnum = ++bufp->re_nsub;
3253 else if (regnum)
3254 { /* It's actually not shy, but explicitly numbered. */
3255 shy = 0;
3256 if (regnum > bufp->re_nsub)
3257 bufp->re_nsub = regnum;
3258 else if (regnum > bufp->re_nsub
3259 /* Ideally, we'd want to check that the specified
3260 group can't have matched (i.e. all subgroups
3261 using the same regnum are in other branches of
3262 OR patterns), but we don't currently keep track
3263 of enough info to do that easily. */
3264 || group_in_compile_stack (compile_stack, regnum))
3265 FREE_STACK_RETURN (REG_BADPAT);
3267 else
3268 /* It's really shy. */
3269 regnum = - bufp->re_nsub;
3271 if (COMPILE_STACK_FULL)
3273 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3274 compile_stack_elt_t);
3275 if (compile_stack.stack == NULL) return REG_ESPACE;
3277 compile_stack.size <<= 1;
3280 /* These are the values to restore when we hit end of this
3281 group. They are all relative offsets, so that if the
3282 whole pattern moves because of realloc, they will still
3283 be valid. */
3284 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3285 COMPILE_STACK_TOP.fixup_alt_jump
3286 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3287 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3288 COMPILE_STACK_TOP.regnum = regnum;
3290 /* Do not push a start_memory for groups beyond the last one
3291 we can represent in the compiled pattern. */
3292 if (regnum <= MAX_REGNUM && regnum > 0)
3293 BUF_PUSH_2 (start_memory, regnum);
3295 compile_stack.avail++;
3297 fixup_alt_jump = 0;
3298 laststart = 0;
3299 begalt = b;
3300 /* If we've reached MAX_REGNUM groups, then this open
3301 won't actually generate any code, so we'll have to
3302 clear pending_exact explicitly. */
3303 pending_exact = 0;
3304 break;
3307 case ')':
3308 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3310 if (COMPILE_STACK_EMPTY)
3312 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3313 goto normal_backslash;
3314 else
3315 FREE_STACK_RETURN (REG_ERPAREN);
3318 handle_close:
3319 FIXUP_ALT_JUMP ();
3321 /* See similar code for backslashed left paren above. */
3322 if (COMPILE_STACK_EMPTY)
3324 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3325 goto normal_char;
3326 else
3327 FREE_STACK_RETURN (REG_ERPAREN);
3330 /* Since we just checked for an empty stack above, this
3331 ``can't happen''. */
3332 assert (compile_stack.avail != 0);
3334 /* We don't just want to restore into `regnum', because
3335 later groups should continue to be numbered higher,
3336 as in `(ab)c(de)' -- the second group is #2. */
3337 regnum_t regnum;
3339 compile_stack.avail--;
3340 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3341 fixup_alt_jump
3342 = COMPILE_STACK_TOP.fixup_alt_jump
3343 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3344 : 0;
3345 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3346 regnum = COMPILE_STACK_TOP.regnum;
3347 /* If we've reached MAX_REGNUM groups, then this open
3348 won't actually generate any code, so we'll have to
3349 clear pending_exact explicitly. */
3350 pending_exact = 0;
3352 /* We're at the end of the group, so now we know how many
3353 groups were inside this one. */
3354 if (regnum <= MAX_REGNUM && regnum > 0)
3355 BUF_PUSH_2 (stop_memory, regnum);
3357 break;
3360 case '|': /* `\|'. */
3361 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3362 goto normal_backslash;
3363 handle_alt:
3364 if (syntax & RE_LIMITED_OPS)
3365 goto normal_char;
3367 /* Insert before the previous alternative a jump which
3368 jumps to this alternative if the former fails. */
3369 GET_BUFFER_SPACE (3);
3370 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3371 pending_exact = 0;
3372 b += 3;
3374 /* The alternative before this one has a jump after it
3375 which gets executed if it gets matched. Adjust that
3376 jump so it will jump to this alternative's analogous
3377 jump (put in below, which in turn will jump to the next
3378 (if any) alternative's such jump, etc.). The last such
3379 jump jumps to the correct final destination. A picture:
3380 _____ _____
3381 | | | |
3382 | v | v
3383 a | b | c
3385 If we are at `b', then fixup_alt_jump right now points to a
3386 three-byte space after `a'. We'll put in the jump, set
3387 fixup_alt_jump to right after `b', and leave behind three
3388 bytes which we'll fill in when we get to after `c'. */
3390 FIXUP_ALT_JUMP ();
3392 /* Mark and leave space for a jump after this alternative,
3393 to be filled in later either by next alternative or
3394 when know we're at the end of a series of alternatives. */
3395 fixup_alt_jump = b;
3396 GET_BUFFER_SPACE (3);
3397 b += 3;
3399 laststart = 0;
3400 begalt = b;
3401 break;
3404 case '{':
3405 /* If \{ is a literal. */
3406 if (!(syntax & RE_INTERVALS)
3407 /* If we're at `\{' and it's not the open-interval
3408 operator. */
3409 || (syntax & RE_NO_BK_BRACES))
3410 goto normal_backslash;
3412 handle_interval:
3414 /* If got here, then the syntax allows intervals. */
3416 /* At least (most) this many matches must be made. */
3417 int lower_bound = 0, upper_bound = -1;
3419 beg_interval = p;
3421 GET_UNSIGNED_NUMBER (lower_bound);
3423 if (c == ',')
3424 GET_UNSIGNED_NUMBER (upper_bound);
3425 else
3426 /* Interval such as `{1}' => match exactly once. */
3427 upper_bound = lower_bound;
3429 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3430 || (upper_bound >= 0 && lower_bound > upper_bound))
3431 FREE_STACK_RETURN (REG_BADBR);
3433 if (!(syntax & RE_NO_BK_BRACES))
3435 if (c != '\\')
3436 FREE_STACK_RETURN (REG_BADBR);
3437 if (p == pend)
3438 FREE_STACK_RETURN (REG_EESCAPE);
3439 PATFETCH (c);
3442 if (c != '}')
3443 FREE_STACK_RETURN (REG_BADBR);
3445 /* We just parsed a valid interval. */
3447 /* If it's invalid to have no preceding re. */
3448 if (!laststart)
3450 if (syntax & RE_CONTEXT_INVALID_OPS)
3451 FREE_STACK_RETURN (REG_BADRPT);
3452 else if (syntax & RE_CONTEXT_INDEP_OPS)
3453 laststart = b;
3454 else
3455 goto unfetch_interval;
3458 if (upper_bound == 0)
3459 /* If the upper bound is zero, just drop the sub pattern
3460 altogether. */
3461 b = laststart;
3462 else if (lower_bound == 1 && upper_bound == 1)
3463 /* Just match it once: nothing to do here. */
3466 /* Otherwise, we have a nontrivial interval. When
3467 we're all done, the pattern will look like:
3468 set_number_at <jump count> <upper bound>
3469 set_number_at <succeed_n count> <lower bound>
3470 succeed_n <after jump addr> <succeed_n count>
3471 <body of loop>
3472 jump_n <succeed_n addr> <jump count>
3473 (The upper bound and `jump_n' are omitted if
3474 `upper_bound' is 1, though.) */
3475 else
3476 { /* If the upper bound is > 1, we need to insert
3477 more at the end of the loop. */
3478 unsigned int nbytes = (upper_bound < 0 ? 3
3479 : upper_bound > 1 ? 5 : 0);
3480 unsigned int startoffset = 0;
3482 GET_BUFFER_SPACE (20); /* We might use less. */
3484 if (lower_bound == 0)
3486 /* A succeed_n that starts with 0 is really a
3487 a simple on_failure_jump_loop. */
3488 INSERT_JUMP (on_failure_jump_loop, laststart,
3489 b + 3 + nbytes);
3490 b += 3;
3492 else
3494 /* Initialize lower bound of the `succeed_n', even
3495 though it will be set during matching by its
3496 attendant `set_number_at' (inserted next),
3497 because `re_compile_fastmap' needs to know.
3498 Jump to the `jump_n' we might insert below. */
3499 INSERT_JUMP2 (succeed_n, laststart,
3500 b + 5 + nbytes,
3501 lower_bound);
3502 b += 5;
3504 /* Code to initialize the lower bound. Insert
3505 before the `succeed_n'. The `5' is the last two
3506 bytes of this `set_number_at', plus 3 bytes of
3507 the following `succeed_n'. */
3508 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3509 b += 5;
3510 startoffset += 5;
3513 if (upper_bound < 0)
3515 /* A negative upper bound stands for infinity,
3516 in which case it degenerates to a plain jump. */
3517 STORE_JUMP (jump, b, laststart + startoffset);
3518 b += 3;
3520 else if (upper_bound > 1)
3521 { /* More than one repetition is allowed, so
3522 append a backward jump to the `succeed_n'
3523 that starts this interval.
3525 When we've reached this during matching,
3526 we'll have matched the interval once, so
3527 jump back only `upper_bound - 1' times. */
3528 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3529 upper_bound - 1);
3530 b += 5;
3532 /* The location we want to set is the second
3533 parameter of the `jump_n'; that is `b-2' as
3534 an absolute address. `laststart' will be
3535 the `set_number_at' we're about to insert;
3536 `laststart+3' the number to set, the source
3537 for the relative address. But we are
3538 inserting into the middle of the pattern --
3539 so everything is getting moved up by 5.
3540 Conclusion: (b - 2) - (laststart + 3) + 5,
3541 i.e., b - laststart.
3543 We insert this at the beginning of the loop
3544 so that if we fail during matching, we'll
3545 reinitialize the bounds. */
3546 insert_op2 (set_number_at, laststart, b - laststart,
3547 upper_bound - 1, b);
3548 b += 5;
3551 pending_exact = 0;
3552 beg_interval = NULL;
3554 break;
3556 unfetch_interval:
3557 /* If an invalid interval, match the characters as literals. */
3558 assert (beg_interval);
3559 p = beg_interval;
3560 beg_interval = NULL;
3562 /* normal_char and normal_backslash need `c'. */
3563 c = '{';
3565 if (!(syntax & RE_NO_BK_BRACES))
3567 assert (p > pattern && p[-1] == '\\');
3568 goto normal_backslash;
3570 else
3571 goto normal_char;
3573 #ifdef emacs
3574 /* There is no way to specify the before_dot and after_dot
3575 operators. rms says this is ok. --karl */
3576 case '=':
3577 BUF_PUSH (at_dot);
3578 break;
3580 case 's':
3581 laststart = b;
3582 PATFETCH (c);
3583 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3584 break;
3586 case 'S':
3587 laststart = b;
3588 PATFETCH (c);
3589 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3590 break;
3592 case 'c':
3593 laststart = b;
3594 PATFETCH (c);
3595 BUF_PUSH_2 (categoryspec, c);
3596 break;
3598 case 'C':
3599 laststart = b;
3600 PATFETCH (c);
3601 BUF_PUSH_2 (notcategoryspec, c);
3602 break;
3603 #endif /* emacs */
3606 case 'w':
3607 if (syntax & RE_NO_GNU_OPS)
3608 goto normal_char;
3609 laststart = b;
3610 BUF_PUSH_2 (syntaxspec, Sword);
3611 break;
3614 case 'W':
3615 if (syntax & RE_NO_GNU_OPS)
3616 goto normal_char;
3617 laststart = b;
3618 BUF_PUSH_2 (notsyntaxspec, Sword);
3619 break;
3622 case '<':
3623 if (syntax & RE_NO_GNU_OPS)
3624 goto normal_char;
3625 BUF_PUSH (wordbeg);
3626 break;
3628 case '>':
3629 if (syntax & RE_NO_GNU_OPS)
3630 goto normal_char;
3631 BUF_PUSH (wordend);
3632 break;
3634 case '_':
3635 if (syntax & RE_NO_GNU_OPS)
3636 goto normal_char;
3637 laststart = b;
3638 PATFETCH (c);
3639 if (c == '<')
3640 BUF_PUSH (symbeg);
3641 else if (c == '>')
3642 BUF_PUSH (symend);
3643 else
3644 FREE_STACK_RETURN (REG_BADPAT);
3645 break;
3647 case 'b':
3648 if (syntax & RE_NO_GNU_OPS)
3649 goto normal_char;
3650 BUF_PUSH (wordbound);
3651 break;
3653 case 'B':
3654 if (syntax & RE_NO_GNU_OPS)
3655 goto normal_char;
3656 BUF_PUSH (notwordbound);
3657 break;
3659 case '`':
3660 if (syntax & RE_NO_GNU_OPS)
3661 goto normal_char;
3662 BUF_PUSH (begbuf);
3663 break;
3665 case '\'':
3666 if (syntax & RE_NO_GNU_OPS)
3667 goto normal_char;
3668 BUF_PUSH (endbuf);
3669 break;
3671 case '1': case '2': case '3': case '4': case '5':
3672 case '6': case '7': case '8': case '9':
3674 regnum_t reg;
3676 if (syntax & RE_NO_BK_REFS)
3677 goto normal_backslash;
3679 reg = c - '0';
3681 if (reg > bufp->re_nsub || reg < 1
3682 /* Can't back reference to a subexp before its end. */
3683 || group_in_compile_stack (compile_stack, reg))
3684 FREE_STACK_RETURN (REG_ESUBREG);
3686 laststart = b;
3687 BUF_PUSH_2 (duplicate, reg);
3689 break;
3692 case '+':
3693 case '?':
3694 if (syntax & RE_BK_PLUS_QM)
3695 goto handle_plus;
3696 else
3697 goto normal_backslash;
3699 default:
3700 normal_backslash:
3701 /* You might think it would be useful for \ to mean
3702 not to translate; but if we don't translate it
3703 it will never match anything. */
3704 goto normal_char;
3706 break;
3709 default:
3710 /* Expects the character in `c'. */
3711 normal_char:
3712 /* If no exactn currently being built. */
3713 if (!pending_exact
3715 /* If last exactn not at current position. */
3716 || pending_exact + *pending_exact + 1 != b
3718 /* We have only one byte following the exactn for the count. */
3719 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3721 /* If followed by a repetition operator. */
3722 || (p != pend && (*p == '*' || *p == '^'))
3723 || ((syntax & RE_BK_PLUS_QM)
3724 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3725 : p != pend && (*p == '+' || *p == '?'))
3726 || ((syntax & RE_INTERVALS)
3727 && ((syntax & RE_NO_BK_BRACES)
3728 ? p != pend && *p == '{'
3729 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3731 /* Start building a new exactn. */
3733 laststart = b;
3735 BUF_PUSH_2 (exactn, 0);
3736 pending_exact = b - 1;
3739 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3741 int len;
3743 if (multibyte)
3745 c = TRANSLATE (c);
3746 len = CHAR_STRING (c, b);
3747 b += len;
3749 else
3751 c1 = RE_CHAR_TO_MULTIBYTE (c);
3752 if (! CHAR_BYTE8_P (c1))
3754 re_wchar_t c2 = TRANSLATE (c1);
3756 if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
3757 c = c1;
3759 *b++ = c;
3760 len = 1;
3762 (*pending_exact) += len;
3765 break;
3766 } /* switch (c) */
3767 } /* while p != pend */
3770 /* Through the pattern now. */
3772 FIXUP_ALT_JUMP ();
3774 if (!COMPILE_STACK_EMPTY)
3775 FREE_STACK_RETURN (REG_EPAREN);
3777 /* If we don't want backtracking, force success
3778 the first time we reach the end of the compiled pattern. */
3779 if (syntax & RE_NO_POSIX_BACKTRACKING)
3780 BUF_PUSH (succeed);
3782 /* We have succeeded; set the length of the buffer. */
3783 bufp->used = b - bufp->buffer;
3785 #ifdef DEBUG
3786 if (debug > 0)
3788 re_compile_fastmap (bufp);
3789 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3790 print_compiled_pattern (bufp);
3792 debug--;
3793 #endif /* DEBUG */
3795 #ifndef MATCH_MAY_ALLOCATE
3796 /* Initialize the failure stack to the largest possible stack. This
3797 isn't necessary unless we're trying to avoid calling alloca in
3798 the search and match routines. */
3800 int num_regs = bufp->re_nsub + 1;
3802 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3804 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3806 if (! fail_stack.stack)
3807 fail_stack.stack
3808 = (fail_stack_elt_t *) malloc (fail_stack.size
3809 * sizeof (fail_stack_elt_t));
3810 else
3811 fail_stack.stack
3812 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3813 (fail_stack.size
3814 * sizeof (fail_stack_elt_t)));
3817 regex_grow_registers (num_regs);
3819 #endif /* not MATCH_MAY_ALLOCATE */
3821 FREE_STACK_RETURN (REG_NOERROR);
3822 } /* regex_compile */
3824 /* Subroutines for `regex_compile'. */
3826 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3828 static void
3829 store_op1 (re_opcode_t op, unsigned char *loc, int arg)
3831 *loc = (unsigned char) op;
3832 STORE_NUMBER (loc + 1, arg);
3836 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3838 static void
3839 store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
3841 *loc = (unsigned char) op;
3842 STORE_NUMBER (loc + 1, arg1);
3843 STORE_NUMBER (loc + 3, arg2);
3847 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3848 for OP followed by two-byte integer parameter ARG. */
3850 static void
3851 insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
3853 register unsigned char *pfrom = end;
3854 register unsigned char *pto = end + 3;
3856 while (pfrom != loc)
3857 *--pto = *--pfrom;
3859 store_op1 (op, loc, arg);
3863 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3865 static void
3866 insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
3868 register unsigned char *pfrom = end;
3869 register unsigned char *pto = end + 5;
3871 while (pfrom != loc)
3872 *--pto = *--pfrom;
3874 store_op2 (op, loc, arg1, arg2);
3878 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3879 after an alternative or a begin-subexpression. We assume there is at
3880 least one character before the ^. */
3882 static boolean
3883 at_begline_loc_p (const re_char *pattern, const re_char *p, reg_syntax_t syntax)
3885 re_char *prev = p - 2;
3886 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3888 return
3889 /* After a subexpression? */
3890 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3891 /* After an alternative? */
3892 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3893 /* After a shy subexpression? */
3894 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3895 && prev[-1] == '?' && prev[-2] == '('
3896 && (syntax & RE_NO_BK_PARENS
3897 || (prev - 3 >= pattern && prev[-3] == '\\')));
3901 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3902 at least one character after the $, i.e., `P < PEND'. */
3904 static boolean
3905 at_endline_loc_p (const re_char *p, const re_char *pend, reg_syntax_t syntax)
3907 re_char *next = p;
3908 boolean next_backslash = *next == '\\';
3909 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3911 return
3912 /* Before a subexpression? */
3913 (syntax & RE_NO_BK_PARENS ? *next == ')'
3914 : next_backslash && next_next && *next_next == ')')
3915 /* Before an alternative? */
3916 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3917 : next_backslash && next_next && *next_next == '|');
3921 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3922 false if it's not. */
3924 static boolean
3925 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
3927 int this_element;
3929 for (this_element = compile_stack.avail - 1;
3930 this_element >= 0;
3931 this_element--)
3932 if (compile_stack.stack[this_element].regnum == regnum)
3933 return true;
3935 return false;
3938 /* analyse_first.
3939 If fastmap is non-NULL, go through the pattern and fill fastmap
3940 with all the possible leading chars. If fastmap is NULL, don't
3941 bother filling it up (obviously) and only return whether the
3942 pattern could potentially match the empty string.
3944 Return 1 if p..pend might match the empty string.
3945 Return 0 if p..pend matches at least one char.
3946 Return -1 if fastmap was not updated accurately. */
3948 static int
3949 analyse_first (const re_char *p, const re_char *pend, char *fastmap, const int multibyte)
3951 int j, k;
3952 boolean not;
3954 /* If all elements for base leading-codes in fastmap is set, this
3955 flag is set true. */
3956 boolean match_any_multibyte_characters = false;
3958 assert (p);
3960 /* The loop below works as follows:
3961 - It has a working-list kept in the PATTERN_STACK and which basically
3962 starts by only containing a pointer to the first operation.
3963 - If the opcode we're looking at is a match against some set of
3964 chars, then we add those chars to the fastmap and go on to the
3965 next work element from the worklist (done via `break').
3966 - If the opcode is a control operator on the other hand, we either
3967 ignore it (if it's meaningless at this point, such as `start_memory')
3968 or execute it (if it's a jump). If the jump has several destinations
3969 (i.e. `on_failure_jump'), then we push the other destination onto the
3970 worklist.
3971 We guarantee termination by ignoring backward jumps (more or less),
3972 so that `p' is monotonically increasing. More to the point, we
3973 never set `p' (or push) anything `<= p1'. */
3975 while (p < pend)
3977 /* `p1' is used as a marker of how far back a `on_failure_jump'
3978 can go without being ignored. It is normally equal to `p'
3979 (which prevents any backward `on_failure_jump') except right
3980 after a plain `jump', to allow patterns such as:
3981 0: jump 10
3982 3..9: <body>
3983 10: on_failure_jump 3
3984 as used for the *? operator. */
3985 re_char *p1 = p;
3987 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3989 case succeed:
3990 return 1;
3992 case duplicate:
3993 /* If the first character has to match a backreference, that means
3994 that the group was empty (since it already matched). Since this
3995 is the only case that interests us here, we can assume that the
3996 backreference must match the empty string. */
3997 p++;
3998 continue;
4001 /* Following are the cases which match a character. These end
4002 with `break'. */
4004 case exactn:
4005 if (fastmap)
4007 /* If multibyte is nonzero, the first byte of each
4008 character is an ASCII or a leading code. Otherwise,
4009 each byte is a character. Thus, this works in both
4010 cases. */
4011 fastmap[p[1]] = 1;
4012 if (! multibyte)
4014 /* For the case of matching this unibyte regex
4015 against multibyte, we must set a leading code of
4016 the corresponding multibyte character. */
4017 int c = RE_CHAR_TO_MULTIBYTE (p[1]);
4019 fastmap[CHAR_LEADING_CODE (c)] = 1;
4022 break;
4025 case anychar:
4026 /* We could put all the chars except for \n (and maybe \0)
4027 but we don't bother since it is generally not worth it. */
4028 if (!fastmap) break;
4029 return -1;
4032 case charset_not:
4033 if (!fastmap) break;
4035 /* Chars beyond end of bitmap are possible matches. */
4036 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
4037 j < (1 << BYTEWIDTH); j++)
4038 fastmap[j] = 1;
4041 /* Fallthrough */
4042 case charset:
4043 if (!fastmap) break;
4044 not = (re_opcode_t) *(p - 1) == charset_not;
4045 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
4046 j >= 0; j--)
4047 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
4048 fastmap[j] = 1;
4050 #ifdef emacs
4051 if (/* Any leading code can possibly start a character
4052 which doesn't match the specified set of characters. */
4055 /* If we can match a character class, we can match any
4056 multibyte characters. */
4057 (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4058 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
4061 if (match_any_multibyte_characters == false)
4063 for (j = MIN_MULTIBYTE_LEADING_CODE;
4064 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4065 fastmap[j] = 1;
4066 match_any_multibyte_characters = true;
4070 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4071 && match_any_multibyte_characters == false)
4073 /* Set fastmap[I] to 1 where I is a leading code of each
4074 multibyte character in the range table. */
4075 int c, count;
4076 unsigned char lc1, lc2;
4078 /* Make P points the range table. `+ 2' is to skip flag
4079 bits for a character class. */
4080 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
4082 /* Extract the number of ranges in range table into COUNT. */
4083 EXTRACT_NUMBER_AND_INCR (count, p);
4084 for (; count > 0; count--, p += 3)
4086 /* Extract the start and end of each range. */
4087 EXTRACT_CHARACTER (c, p);
4088 lc1 = CHAR_LEADING_CODE (c);
4089 p += 3;
4090 EXTRACT_CHARACTER (c, p);
4091 lc2 = CHAR_LEADING_CODE (c);
4092 for (j = lc1; j <= lc2; j++)
4093 fastmap[j] = 1;
4096 #endif
4097 break;
4099 case syntaxspec:
4100 case notsyntaxspec:
4101 if (!fastmap) break;
4102 #ifndef emacs
4103 not = (re_opcode_t)p[-1] == notsyntaxspec;
4104 k = *p++;
4105 for (j = 0; j < (1 << BYTEWIDTH); j++)
4106 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
4107 fastmap[j] = 1;
4108 break;
4109 #else /* emacs */
4110 /* This match depends on text properties. These end with
4111 aborting optimizations. */
4112 return -1;
4114 case categoryspec:
4115 case notcategoryspec:
4116 if (!fastmap) break;
4117 not = (re_opcode_t)p[-1] == notcategoryspec;
4118 k = *p++;
4119 for (j = (1 << BYTEWIDTH); j >= 0; j--)
4120 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
4121 fastmap[j] = 1;
4123 /* Any leading code can possibly start a character which
4124 has or doesn't has the specified category. */
4125 if (match_any_multibyte_characters == false)
4127 for (j = MIN_MULTIBYTE_LEADING_CODE;
4128 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4129 fastmap[j] = 1;
4130 match_any_multibyte_characters = true;
4132 break;
4134 /* All cases after this match the empty string. These end with
4135 `continue'. */
4137 case before_dot:
4138 case at_dot:
4139 case after_dot:
4140 #endif /* !emacs */
4141 case no_op:
4142 case begline:
4143 case endline:
4144 case begbuf:
4145 case endbuf:
4146 case wordbound:
4147 case notwordbound:
4148 case wordbeg:
4149 case wordend:
4150 case symbeg:
4151 case symend:
4152 continue;
4155 case jump:
4156 EXTRACT_NUMBER_AND_INCR (j, p);
4157 if (j < 0)
4158 /* Backward jumps can only go back to code that we've already
4159 visited. `re_compile' should make sure this is true. */
4160 break;
4161 p += j;
4162 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4164 case on_failure_jump:
4165 case on_failure_keep_string_jump:
4166 case on_failure_jump_loop:
4167 case on_failure_jump_nastyloop:
4168 case on_failure_jump_smart:
4169 p++;
4170 break;
4171 default:
4172 continue;
4174 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4175 to jump back to "just after here". */
4176 /* Fallthrough */
4178 case on_failure_jump:
4179 case on_failure_keep_string_jump:
4180 case on_failure_jump_nastyloop:
4181 case on_failure_jump_loop:
4182 case on_failure_jump_smart:
4183 EXTRACT_NUMBER_AND_INCR (j, p);
4184 if (p + j <= p1)
4185 ; /* Backward jump to be ignored. */
4186 else
4187 { /* We have to look down both arms.
4188 We first go down the "straight" path so as to minimize
4189 stack usage when going through alternatives. */
4190 int r = analyse_first (p, pend, fastmap, multibyte);
4191 if (r) return r;
4192 p += j;
4194 continue;
4197 case jump_n:
4198 /* This code simply does not properly handle forward jump_n. */
4199 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4200 p += 4;
4201 /* jump_n can either jump or fall through. The (backward) jump
4202 case has already been handled, so we only need to look at the
4203 fallthrough case. */
4204 continue;
4206 case succeed_n:
4207 /* If N == 0, it should be an on_failure_jump_loop instead. */
4208 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4209 p += 4;
4210 /* We only care about one iteration of the loop, so we don't
4211 need to consider the case where this behaves like an
4212 on_failure_jump. */
4213 continue;
4216 case set_number_at:
4217 p += 4;
4218 continue;
4221 case start_memory:
4222 case stop_memory:
4223 p += 1;
4224 continue;
4227 default:
4228 abort (); /* We have listed all the cases. */
4229 } /* switch *p++ */
4231 /* Getting here means we have found the possible starting
4232 characters for one path of the pattern -- and that the empty
4233 string does not match. We need not follow this path further. */
4234 return 0;
4235 } /* while p */
4237 /* We reached the end without matching anything. */
4238 return 1;
4240 } /* analyse_first */
4242 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4243 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4244 characters can start a string that matches the pattern. This fastmap
4245 is used by re_search to skip quickly over impossible starting points.
4247 Character codes above (1 << BYTEWIDTH) are not represented in the
4248 fastmap, but the leading codes are represented. Thus, the fastmap
4249 indicates which character sets could start a match.
4251 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4252 area as BUFP->fastmap.
4254 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4255 the pattern buffer.
4257 Returns 0 if we succeed, -2 if an internal error. */
4260 re_compile_fastmap (struct re_pattern_buffer *bufp)
4262 char *fastmap = bufp->fastmap;
4263 int analysis;
4265 assert (fastmap && bufp->buffer);
4267 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4268 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4270 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4271 fastmap, RE_MULTIBYTE_P (bufp));
4272 bufp->can_be_null = (analysis != 0);
4273 return 0;
4274 } /* re_compile_fastmap */
4276 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4277 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4278 this memory for recording register information. STARTS and ENDS
4279 must be allocated using the malloc library routine, and must each
4280 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4282 If NUM_REGS == 0, then subsequent matches should allocate their own
4283 register data.
4285 Unless this function is called, the first search or match using
4286 PATTERN_BUFFER will allocate its own register data, without
4287 freeing the old data. */
4289 void
4290 re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, unsigned int num_regs, regoff_t *starts, regoff_t *ends)
4292 if (num_regs)
4294 bufp->regs_allocated = REGS_REALLOCATE;
4295 regs->num_regs = num_regs;
4296 regs->start = starts;
4297 regs->end = ends;
4299 else
4301 bufp->regs_allocated = REGS_UNALLOCATED;
4302 regs->num_regs = 0;
4303 regs->start = regs->end = (regoff_t *) 0;
4306 WEAK_ALIAS (__re_set_registers, re_set_registers)
4308 /* Searching routines. */
4310 /* Like re_search_2, below, but only one string is specified, and
4311 doesn't let you say where to stop matching. */
4314 re_search (struct re_pattern_buffer *bufp, const char *string, int size, int startpos, int range, struct re_registers *regs)
4316 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4317 regs, size);
4319 WEAK_ALIAS (__re_search, re_search)
4321 /* Head address of virtual concatenation of string. */
4322 #define HEAD_ADDR_VSTRING(P) \
4323 (((P) >= size1 ? string2 : string1))
4325 /* End address of virtual concatenation of string. */
4326 #define STOP_ADDR_VSTRING(P) \
4327 (((P) >= size1 ? string2 + size2 : string1 + size1))
4329 /* Address of POS in the concatenation of virtual string. */
4330 #define POS_ADDR_VSTRING(POS) \
4331 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4333 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4334 virtual concatenation of STRING1 and STRING2, starting first at index
4335 STARTPOS, then at STARTPOS + 1, and so on.
4337 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4339 RANGE is how far to scan while trying to match. RANGE = 0 means try
4340 only at STARTPOS; in general, the last start tried is STARTPOS +
4341 RANGE.
4343 In REGS, return the indices of the virtual concatenation of STRING1
4344 and STRING2 that matched the entire BUFP->buffer and its contained
4345 subexpressions.
4347 Do not consider matching one past the index STOP in the virtual
4348 concatenation of STRING1 and STRING2.
4350 We return either the position in the strings at which the match was
4351 found, -1 if no match, or -2 if error (such as failure
4352 stack overflow). */
4355 re_search_2 (struct re_pattern_buffer *bufp, const char *str1, int size1, const char *str2, int size2, int startpos, int range, struct re_registers *regs, int stop)
4357 int val;
4358 re_char *string1 = (re_char*) str1;
4359 re_char *string2 = (re_char*) str2;
4360 register char *fastmap = bufp->fastmap;
4361 register RE_TRANSLATE_TYPE translate = bufp->translate;
4362 int total_size = size1 + size2;
4363 int endpos = startpos + range;
4364 boolean anchored_start;
4365 /* Nonzero if we are searching multibyte string. */
4366 const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
4368 /* Check for out-of-range STARTPOS. */
4369 if (startpos < 0 || startpos > total_size)
4370 return -1;
4372 /* Fix up RANGE if it might eventually take us outside
4373 the virtual concatenation of STRING1 and STRING2.
4374 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4375 if (endpos < 0)
4376 range = 0 - startpos;
4377 else if (endpos > total_size)
4378 range = total_size - startpos;
4380 /* If the search isn't to be a backwards one, don't waste time in a
4381 search for a pattern anchored at beginning of buffer. */
4382 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4384 if (startpos > 0)
4385 return -1;
4386 else
4387 range = 0;
4390 #ifdef emacs
4391 /* In a forward search for something that starts with \=.
4392 don't keep searching past point. */
4393 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4395 range = PT_BYTE - BEGV_BYTE - startpos;
4396 if (range < 0)
4397 return -1;
4399 #endif /* emacs */
4401 /* Update the fastmap now if not correct already. */
4402 if (fastmap && !bufp->fastmap_accurate)
4403 re_compile_fastmap (bufp);
4405 /* See whether the pattern is anchored. */
4406 anchored_start = (bufp->buffer[0] == begline);
4408 #ifdef emacs
4409 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4411 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4413 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4415 #endif
4417 /* Loop through the string, looking for a place to start matching. */
4418 for (;;)
4420 /* If the pattern is anchored,
4421 skip quickly past places we cannot match.
4422 We don't bother to treat startpos == 0 specially
4423 because that case doesn't repeat. */
4424 if (anchored_start && startpos > 0)
4426 if (! ((startpos <= size1 ? string1[startpos - 1]
4427 : string2[startpos - size1 - 1])
4428 == '\n'))
4429 goto advance;
4432 /* If a fastmap is supplied, skip quickly over characters that
4433 cannot be the start of a match. If the pattern can match the
4434 null string, however, we don't need to skip characters; we want
4435 the first null string. */
4436 if (fastmap && startpos < total_size && !bufp->can_be_null)
4438 register re_char *d;
4439 register re_wchar_t buf_ch;
4441 d = POS_ADDR_VSTRING (startpos);
4443 if (range > 0) /* Searching forwards. */
4445 register int lim = 0;
4446 int irange = range;
4448 if (startpos < size1 && startpos + range >= size1)
4449 lim = range - (size1 - startpos);
4451 /* Written out as an if-else to avoid testing `translate'
4452 inside the loop. */
4453 if (RE_TRANSLATE_P (translate))
4455 if (multibyte)
4456 while (range > lim)
4458 int buf_charlen;
4460 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
4461 buf_ch = RE_TRANSLATE (translate, buf_ch);
4462 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4463 break;
4465 range -= buf_charlen;
4466 d += buf_charlen;
4468 else
4469 while (range > lim)
4471 register re_wchar_t ch, translated;
4473 buf_ch = *d;
4474 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4475 translated = RE_TRANSLATE (translate, ch);
4476 if (translated != ch
4477 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4478 buf_ch = ch;
4479 if (fastmap[buf_ch])
4480 break;
4481 d++;
4482 range--;
4485 else
4487 if (multibyte)
4488 while (range > lim)
4490 int buf_charlen;
4492 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
4493 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4494 break;
4495 range -= buf_charlen;
4496 d += buf_charlen;
4498 else
4499 while (range > lim && !fastmap[*d])
4501 d++;
4502 range--;
4505 startpos += irange - range;
4507 else /* Searching backwards. */
4509 if (multibyte)
4511 buf_ch = STRING_CHAR (d);
4512 buf_ch = TRANSLATE (buf_ch);
4513 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4514 goto advance;
4516 else
4518 register re_wchar_t ch, translated;
4520 buf_ch = *d;
4521 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4522 translated = TRANSLATE (ch);
4523 if (translated != ch
4524 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4525 buf_ch = ch;
4526 if (! fastmap[TRANSLATE (buf_ch)])
4527 goto advance;
4532 /* If can't match the null string, and that's all we have left, fail. */
4533 if (range >= 0 && startpos == total_size && fastmap
4534 && !bufp->can_be_null)
4535 return -1;
4537 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4538 startpos, regs, stop);
4540 if (val >= 0)
4541 return startpos;
4543 if (val == -2)
4544 return -2;
4546 advance:
4547 if (!range)
4548 break;
4549 else if (range > 0)
4551 /* Update STARTPOS to the next character boundary. */
4552 if (multibyte)
4554 re_char *p = POS_ADDR_VSTRING (startpos);
4555 int len = BYTES_BY_CHAR_HEAD (*p);
4557 range -= len;
4558 if (range < 0)
4559 break;
4560 startpos += len;
4562 else
4564 range--;
4565 startpos++;
4568 else
4570 range++;
4571 startpos--;
4573 /* Update STARTPOS to the previous character boundary. */
4574 if (multibyte)
4576 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4577 re_char *p0 = p;
4578 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4580 /* Find the head of multibyte form. */
4581 PREV_CHAR_BOUNDARY (p, phead);
4582 range += p0 - 1 - p;
4583 if (range > 0)
4584 break;
4586 startpos -= p0 - 1 - p;
4590 return -1;
4591 } /* re_search_2 */
4592 WEAK_ALIAS (__re_search_2, re_search_2)
4594 /* Declarations and macros for re_match_2. */
4596 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4597 register int len,
4598 RE_TRANSLATE_TYPE translate,
4599 const int multibyte));
4601 /* This converts PTR, a pointer into one of the search strings `string1'
4602 and `string2' into an offset from the beginning of that string. */
4603 #define POINTER_TO_OFFSET(ptr) \
4604 (FIRST_STRING_P (ptr) \
4605 ? ((regoff_t) ((ptr) - string1)) \
4606 : ((regoff_t) ((ptr) - string2 + size1)))
4608 /* Call before fetching a character with *d. This switches over to
4609 string2 if necessary.
4610 Check re_match_2_internal for a discussion of why end_match_2 might
4611 not be within string2 (but be equal to end_match_1 instead). */
4612 #define PREFETCH() \
4613 while (d == dend) \
4615 /* End of string2 => fail. */ \
4616 if (dend == end_match_2) \
4617 goto fail; \
4618 /* End of string1 => advance to string2. */ \
4619 d = string2; \
4620 dend = end_match_2; \
4623 /* Call before fetching a char with *d if you already checked other limits.
4624 This is meant for use in lookahead operations like wordend, etc..
4625 where we might need to look at parts of the string that might be
4626 outside of the LIMITs (i.e past `stop'). */
4627 #define PREFETCH_NOLIMIT() \
4628 if (d == end1) \
4630 d = string2; \
4631 dend = end_match_2; \
4634 /* Test if at very beginning or at very end of the virtual concatenation
4635 of `string1' and `string2'. If only one string, it's `string2'. */
4636 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4637 #define AT_STRINGS_END(d) ((d) == end2)
4640 /* Test if D points to a character which is word-constituent. We have
4641 two special cases to check for: if past the end of string1, look at
4642 the first character in string2; and if before the beginning of
4643 string2, look at the last character in string1. */
4644 #define WORDCHAR_P(d) \
4645 (SYNTAX ((d) == end1 ? *string2 \
4646 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4647 == Sword)
4649 /* Disabled due to a compiler bug -- see comment at case wordbound */
4651 /* The comment at case wordbound is following one, but we don't use
4652 AT_WORD_BOUNDARY anymore to support multibyte form.
4654 The DEC Alpha C compiler 3.x generates incorrect code for the
4655 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4656 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4657 macro and introducing temporary variables works around the bug. */
4659 #if 0
4660 /* Test if the character before D and the one at D differ with respect
4661 to being word-constituent. */
4662 #define AT_WORD_BOUNDARY(d) \
4663 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4664 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4665 #endif
4667 /* Free everything we malloc. */
4668 #ifdef MATCH_MAY_ALLOCATE
4669 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4670 # define FREE_VARIABLES() \
4671 do { \
4672 REGEX_FREE_STACK (fail_stack.stack); \
4673 FREE_VAR (regstart); \
4674 FREE_VAR (regend); \
4675 FREE_VAR (best_regstart); \
4676 FREE_VAR (best_regend); \
4677 } while (0)
4678 #else
4679 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4680 #endif /* not MATCH_MAY_ALLOCATE */
4683 /* Optimization routines. */
4685 /* If the operation is a match against one or more chars,
4686 return a pointer to the next operation, else return NULL. */
4687 static re_char *
4688 skip_one_char (const re_char *p)
4690 switch (SWITCH_ENUM_CAST (*p++))
4692 case anychar:
4693 break;
4695 case exactn:
4696 p += *p + 1;
4697 break;
4699 case charset_not:
4700 case charset:
4701 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4703 int mcnt;
4704 p = CHARSET_RANGE_TABLE (p - 1);
4705 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4706 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4708 else
4709 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4710 break;
4712 case syntaxspec:
4713 case notsyntaxspec:
4714 #ifdef emacs
4715 case categoryspec:
4716 case notcategoryspec:
4717 #endif /* emacs */
4718 p++;
4719 break;
4721 default:
4722 p = NULL;
4724 return p;
4728 /* Jump over non-matching operations. */
4729 static re_char *
4730 skip_noops (const re_char *p, const re_char *pend)
4732 int mcnt;
4733 while (p < pend)
4735 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4737 case start_memory:
4738 case stop_memory:
4739 p += 2; break;
4740 case no_op:
4741 p += 1; break;
4742 case jump:
4743 p += 1;
4744 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4745 p += mcnt;
4746 break;
4747 default:
4748 return p;
4751 assert (p == pend);
4752 return p;
4755 /* Non-zero if "p1 matches something" implies "p2 fails". */
4756 static int
4757 mutually_exclusive_p (struct re_pattern_buffer *bufp, const re_char *p1, const re_char *p2)
4759 re_opcode_t op2;
4760 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4761 unsigned char *pend = bufp->buffer + bufp->used;
4763 assert (p1 >= bufp->buffer && p1 < pend
4764 && p2 >= bufp->buffer && p2 <= pend);
4766 /* Skip over open/close-group commands.
4767 If what follows this loop is a ...+ construct,
4768 look at what begins its body, since we will have to
4769 match at least one of that. */
4770 p2 = skip_noops (p2, pend);
4771 /* The same skip can be done for p1, except that this function
4772 is only used in the case where p1 is a simple match operator. */
4773 /* p1 = skip_noops (p1, pend); */
4775 assert (p1 >= bufp->buffer && p1 < pend
4776 && p2 >= bufp->buffer && p2 <= pend);
4778 op2 = p2 == pend ? succeed : *p2;
4780 switch (SWITCH_ENUM_CAST (op2))
4782 case succeed:
4783 case endbuf:
4784 /* If we're at the end of the pattern, we can change. */
4785 if (skip_one_char (p1))
4787 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4788 return 1;
4790 break;
4792 case endline:
4793 case exactn:
4795 register re_wchar_t c
4796 = (re_opcode_t) *p2 == endline ? '\n'
4797 : RE_STRING_CHAR (p2 + 2, multibyte);
4799 if ((re_opcode_t) *p1 == exactn)
4801 if (c != RE_STRING_CHAR (p1 + 2, multibyte))
4803 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4804 return 1;
4808 else if ((re_opcode_t) *p1 == charset
4809 || (re_opcode_t) *p1 == charset_not)
4811 int not = (re_opcode_t) *p1 == charset_not;
4813 /* Test if C is listed in charset (or charset_not)
4814 at `p1'. */
4815 if (! multibyte || IS_REAL_ASCII (c))
4817 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4818 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4819 not = !not;
4821 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4822 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4824 /* `not' is equal to 1 if c would match, which means
4825 that we can't change to pop_failure_jump. */
4826 if (!not)
4828 DEBUG_PRINT1 (" No match => fast loop.\n");
4829 return 1;
4832 else if ((re_opcode_t) *p1 == anychar
4833 && c == '\n')
4835 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4836 return 1;
4839 break;
4841 case charset:
4843 if ((re_opcode_t) *p1 == exactn)
4844 /* Reuse the code above. */
4845 return mutually_exclusive_p (bufp, p2, p1);
4847 /* It is hard to list up all the character in charset
4848 P2 if it includes multibyte character. Give up in
4849 such case. */
4850 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4852 /* Now, we are sure that P2 has no range table.
4853 So, for the size of bitmap in P2, `p2[1]' is
4854 enough. But P1 may have range table, so the
4855 size of bitmap table of P1 is extracted by
4856 using macro `CHARSET_BITMAP_SIZE'.
4858 In a multibyte case, we know that all the character
4859 listed in P2 is ASCII. In a unibyte case, P1 has only a
4860 bitmap table. So, in both cases, it is enough to test
4861 only the bitmap table of P1. */
4863 if ((re_opcode_t) *p1 == charset)
4865 int idx;
4866 /* We win if the charset inside the loop
4867 has no overlap with the one after the loop. */
4868 for (idx = 0;
4869 (idx < (int) p2[1]
4870 && idx < CHARSET_BITMAP_SIZE (p1));
4871 idx++)
4872 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4873 break;
4875 if (idx == p2[1]
4876 || idx == CHARSET_BITMAP_SIZE (p1))
4878 DEBUG_PRINT1 (" No match => fast loop.\n");
4879 return 1;
4882 else if ((re_opcode_t) *p1 == charset_not)
4884 int idx;
4885 /* We win if the charset_not inside the loop lists
4886 every character listed in the charset after. */
4887 for (idx = 0; idx < (int) p2[1]; idx++)
4888 if (! (p2[2 + idx] == 0
4889 || (idx < CHARSET_BITMAP_SIZE (p1)
4890 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4891 break;
4893 if (idx == p2[1])
4895 DEBUG_PRINT1 (" No match => fast loop.\n");
4896 return 1;
4901 break;
4903 case charset_not:
4904 switch (SWITCH_ENUM_CAST (*p1))
4906 case exactn:
4907 case charset:
4908 /* Reuse the code above. */
4909 return mutually_exclusive_p (bufp, p2, p1);
4910 case charset_not:
4911 /* When we have two charset_not, it's very unlikely that
4912 they don't overlap. The union of the two sets of excluded
4913 chars should cover all possible chars, which, as a matter of
4914 fact, is virtually impossible in multibyte buffers. */
4915 break;
4917 break;
4919 case wordend:
4920 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4921 case symend:
4922 return ((re_opcode_t) *p1 == syntaxspec
4923 && (p1[1] == Ssymbol || p1[1] == Sword));
4924 case notsyntaxspec:
4925 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4927 case wordbeg:
4928 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4929 case symbeg:
4930 return ((re_opcode_t) *p1 == notsyntaxspec
4931 && (p1[1] == Ssymbol || p1[1] == Sword));
4932 case syntaxspec:
4933 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4935 case wordbound:
4936 return (((re_opcode_t) *p1 == notsyntaxspec
4937 || (re_opcode_t) *p1 == syntaxspec)
4938 && p1[1] == Sword);
4940 #ifdef emacs
4941 case categoryspec:
4942 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4943 case notcategoryspec:
4944 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4945 #endif /* emacs */
4947 default:
4951 /* Safe default. */
4952 return 0;
4956 /* Matching routines. */
4958 #ifndef emacs /* Emacs never uses this. */
4959 /* re_match is like re_match_2 except it takes only a single string. */
4962 re_match (struct re_pattern_buffer *bufp, const char *string,
4963 int size, int pos, struct re_registers *regs)
4965 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4966 pos, regs, size);
4967 return result;
4969 WEAK_ALIAS (__re_match, re_match)
4970 #endif /* not emacs */
4972 #ifdef emacs
4973 /* In Emacs, this is the string or buffer in which we
4974 are matching. It is used for looking up syntax properties. */
4975 Lisp_Object re_match_object;
4976 #endif
4978 /* re_match_2 matches the compiled pattern in BUFP against the
4979 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4980 and SIZE2, respectively). We start matching at POS, and stop
4981 matching at STOP.
4983 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4984 store offsets for the substring each group matched in REGS. See the
4985 documentation for exactly how many groups we fill.
4987 We return -1 if no match, -2 if an internal error (such as the
4988 failure stack overflowing). Otherwise, we return the length of the
4989 matched substring. */
4992 re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1, const char *string2, int size2, int pos, struct re_registers *regs, int stop)
4994 int result;
4996 #ifdef emacs
4997 int charpos;
4998 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4999 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
5000 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
5001 #endif
5003 result = re_match_2_internal (bufp, (re_char*) string1, size1,
5004 (re_char*) string2, size2,
5005 pos, regs, stop);
5006 return result;
5008 WEAK_ALIAS (__re_match_2, re_match_2)
5011 /* This is a separate function so that we can force an alloca cleanup
5012 afterwards. */
5013 static int
5014 re_match_2_internal (struct re_pattern_buffer *bufp, const re_char *string1, int size1, const re_char *string2, int size2, int pos, struct re_registers *regs, int stop)
5016 /* General temporaries. */
5017 int mcnt;
5018 size_t reg;
5020 /* Just past the end of the corresponding string. */
5021 re_char *end1, *end2;
5023 /* Pointers into string1 and string2, just past the last characters in
5024 each to consider matching. */
5025 re_char *end_match_1, *end_match_2;
5027 /* Where we are in the data, and the end of the current string. */
5028 re_char *d, *dend;
5030 /* Used sometimes to remember where we were before starting matching
5031 an operator so that we can go back in case of failure. This "atomic"
5032 behavior of matching opcodes is indispensable to the correctness
5033 of the on_failure_keep_string_jump optimization. */
5034 re_char *dfail;
5036 /* Where we are in the pattern, and the end of the pattern. */
5037 re_char *p = bufp->buffer;
5038 re_char *pend = p + bufp->used;
5040 /* We use this to map every character in the string. */
5041 RE_TRANSLATE_TYPE translate = bufp->translate;
5043 /* Nonzero if BUFP is setup from a multibyte regex. */
5044 const boolean multibyte = RE_MULTIBYTE_P (bufp);
5046 /* Nonzero if STRING1/STRING2 are multibyte. */
5047 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
5049 /* Failure point stack. Each place that can handle a failure further
5050 down the line pushes a failure point on this stack. It consists of
5051 regstart, and regend for all registers corresponding to
5052 the subexpressions we're currently inside, plus the number of such
5053 registers, and, finally, two char *'s. The first char * is where
5054 to resume scanning the pattern; the second one is where to resume
5055 scanning the strings. */
5056 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5057 fail_stack_type fail_stack;
5058 #endif
5059 #ifdef DEBUG
5060 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5061 #endif
5063 #if defined REL_ALLOC && defined REGEX_MALLOC
5064 /* This holds the pointer to the failure stack, when
5065 it is allocated relocatably. */
5066 fail_stack_elt_t *failure_stack_ptr;
5067 #endif
5069 /* We fill all the registers internally, independent of what we
5070 return, for use in backreferences. The number here includes
5071 an element for register zero. */
5072 size_t num_regs = bufp->re_nsub + 1;
5074 /* Information on the contents of registers. These are pointers into
5075 the input strings; they record just what was matched (on this
5076 attempt) by a subexpression part of the pattern, that is, the
5077 regnum-th regstart pointer points to where in the pattern we began
5078 matching and the regnum-th regend points to right after where we
5079 stopped matching the regnum-th subexpression. (The zeroth register
5080 keeps track of what the whole pattern matches.) */
5081 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5082 re_char **regstart, **regend;
5083 #endif
5085 /* The following record the register info as found in the above
5086 variables when we find a match better than any we've seen before.
5087 This happens as we backtrack through the failure points, which in
5088 turn happens only if we have not yet matched the entire string. */
5089 unsigned best_regs_set = false;
5090 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5091 re_char **best_regstart, **best_regend;
5092 #endif
5094 /* Logically, this is `best_regend[0]'. But we don't want to have to
5095 allocate space for that if we're not allocating space for anything
5096 else (see below). Also, we never need info about register 0 for
5097 any of the other register vectors, and it seems rather a kludge to
5098 treat `best_regend' differently than the rest. So we keep track of
5099 the end of the best match so far in a separate variable. We
5100 initialize this to NULL so that when we backtrack the first time
5101 and need to test it, it's not garbage. */
5102 re_char *match_end = NULL;
5104 #ifdef DEBUG
5105 /* Counts the total number of registers pushed. */
5106 unsigned num_regs_pushed = 0;
5107 #endif
5109 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5111 INIT_FAIL_STACK ();
5113 #ifdef MATCH_MAY_ALLOCATE
5114 /* Do not bother to initialize all the register variables if there are
5115 no groups in the pattern, as it takes a fair amount of time. If
5116 there are groups, we include space for register 0 (the whole
5117 pattern), even though we never use it, since it simplifies the
5118 array indexing. We should fix this. */
5119 if (bufp->re_nsub)
5121 regstart = REGEX_TALLOC (num_regs, re_char *);
5122 regend = REGEX_TALLOC (num_regs, re_char *);
5123 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5124 best_regend = REGEX_TALLOC (num_regs, re_char *);
5126 if (!(regstart && regend && best_regstart && best_regend))
5128 FREE_VARIABLES ();
5129 return -2;
5132 else
5134 /* We must initialize all our variables to NULL, so that
5135 `FREE_VARIABLES' doesn't try to free them. */
5136 regstart = regend = best_regstart = best_regend = NULL;
5138 #endif /* MATCH_MAY_ALLOCATE */
5140 /* The starting position is bogus. */
5141 if (pos < 0 || pos > size1 + size2)
5143 FREE_VARIABLES ();
5144 return -1;
5147 /* Initialize subexpression text positions to -1 to mark ones that no
5148 start_memory/stop_memory has been seen for. Also initialize the
5149 register information struct. */
5150 for (reg = 1; reg < num_regs; reg++)
5151 regstart[reg] = regend[reg] = NULL;
5153 /* We move `string1' into `string2' if the latter's empty -- but not if
5154 `string1' is null. */
5155 if (size2 == 0 && string1 != NULL)
5157 string2 = string1;
5158 size2 = size1;
5159 string1 = 0;
5160 size1 = 0;
5162 end1 = string1 + size1;
5163 end2 = string2 + size2;
5165 /* `p' scans through the pattern as `d' scans through the data.
5166 `dend' is the end of the input string that `d' points within. `d'
5167 is advanced into the following input string whenever necessary, but
5168 this happens before fetching; therefore, at the beginning of the
5169 loop, `d' can be pointing at the end of a string, but it cannot
5170 equal `string2'. */
5171 if (pos >= size1)
5173 /* Only match within string2. */
5174 d = string2 + pos - size1;
5175 dend = end_match_2 = string2 + stop - size1;
5176 end_match_1 = end1; /* Just to give it a value. */
5178 else
5180 if (stop < size1)
5182 /* Only match within string1. */
5183 end_match_1 = string1 + stop;
5184 /* BEWARE!
5185 When we reach end_match_1, PREFETCH normally switches to string2.
5186 But in the present case, this means that just doing a PREFETCH
5187 makes us jump from `stop' to `gap' within the string.
5188 What we really want here is for the search to stop as
5189 soon as we hit end_match_1. That's why we set end_match_2
5190 to end_match_1 (since PREFETCH fails as soon as we hit
5191 end_match_2). */
5192 end_match_2 = end_match_1;
5194 else
5195 { /* It's important to use this code when stop == size so that
5196 moving `d' from end1 to string2 will not prevent the d == dend
5197 check from catching the end of string. */
5198 end_match_1 = end1;
5199 end_match_2 = string2 + stop - size1;
5201 d = string1 + pos;
5202 dend = end_match_1;
5205 DEBUG_PRINT1 ("The compiled pattern is: ");
5206 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5207 DEBUG_PRINT1 ("The string to match is: `");
5208 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5209 DEBUG_PRINT1 ("'\n");
5211 /* This loops over pattern commands. It exits by returning from the
5212 function if the match is complete, or it drops through if the match
5213 fails at this starting point in the input data. */
5214 for (;;)
5216 DEBUG_PRINT2 ("\n%p: ", p);
5218 if (p == pend)
5219 { /* End of pattern means we might have succeeded. */
5220 DEBUG_PRINT1 ("end of pattern ... ");
5222 /* If we haven't matched the entire string, and we want the
5223 longest match, try backtracking. */
5224 if (d != end_match_2)
5226 /* 1 if this match ends in the same string (string1 or string2)
5227 as the best previous match. */
5228 boolean same_str_p = (FIRST_STRING_P (match_end)
5229 == FIRST_STRING_P (d));
5230 /* 1 if this match is the best seen so far. */
5231 boolean best_match_p;
5233 /* AIX compiler got confused when this was combined
5234 with the previous declaration. */
5235 if (same_str_p)
5236 best_match_p = d > match_end;
5237 else
5238 best_match_p = !FIRST_STRING_P (d);
5240 DEBUG_PRINT1 ("backtracking.\n");
5242 if (!FAIL_STACK_EMPTY ())
5243 { /* More failure points to try. */
5245 /* If exceeds best match so far, save it. */
5246 if (!best_regs_set || best_match_p)
5248 best_regs_set = true;
5249 match_end = d;
5251 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5253 for (reg = 1; reg < num_regs; reg++)
5255 best_regstart[reg] = regstart[reg];
5256 best_regend[reg] = regend[reg];
5259 goto fail;
5262 /* If no failure points, don't restore garbage. And if
5263 last match is real best match, don't restore second
5264 best one. */
5265 else if (best_regs_set && !best_match_p)
5267 restore_best_regs:
5268 /* Restore best match. It may happen that `dend ==
5269 end_match_1' while the restored d is in string2.
5270 For example, the pattern `x.*y.*z' against the
5271 strings `x-' and `y-z-', if the two strings are
5272 not consecutive in memory. */
5273 DEBUG_PRINT1 ("Restoring best registers.\n");
5275 d = match_end;
5276 dend = ((d >= string1 && d <= end1)
5277 ? end_match_1 : end_match_2);
5279 for (reg = 1; reg < num_regs; reg++)
5281 regstart[reg] = best_regstart[reg];
5282 regend[reg] = best_regend[reg];
5285 } /* d != end_match_2 */
5287 succeed_label:
5288 DEBUG_PRINT1 ("Accepting match.\n");
5290 /* If caller wants register contents data back, do it. */
5291 if (regs && !bufp->no_sub)
5293 /* Have the register data arrays been allocated? */
5294 if (bufp->regs_allocated == REGS_UNALLOCATED)
5295 { /* No. So allocate them with malloc. We need one
5296 extra element beyond `num_regs' for the `-1' marker
5297 GNU code uses. */
5298 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5299 regs->start = TALLOC (regs->num_regs, regoff_t);
5300 regs->end = TALLOC (regs->num_regs, regoff_t);
5301 if (regs->start == NULL || regs->end == NULL)
5303 FREE_VARIABLES ();
5304 return -2;
5306 bufp->regs_allocated = REGS_REALLOCATE;
5308 else if (bufp->regs_allocated == REGS_REALLOCATE)
5309 { /* Yes. If we need more elements than were already
5310 allocated, reallocate them. If we need fewer, just
5311 leave it alone. */
5312 if (regs->num_regs < num_regs + 1)
5314 regs->num_regs = num_regs + 1;
5315 RETALLOC (regs->start, regs->num_regs, regoff_t);
5316 RETALLOC (regs->end, regs->num_regs, regoff_t);
5317 if (regs->start == NULL || regs->end == NULL)
5319 FREE_VARIABLES ();
5320 return -2;
5324 else
5326 /* These braces fend off a "empty body in an else-statement"
5327 warning under GCC when assert expands to nothing. */
5328 assert (bufp->regs_allocated == REGS_FIXED);
5331 /* Convert the pointer data in `regstart' and `regend' to
5332 indices. Register zero has to be set differently,
5333 since we haven't kept track of any info for it. */
5334 if (regs->num_regs > 0)
5336 regs->start[0] = pos;
5337 regs->end[0] = POINTER_TO_OFFSET (d);
5340 /* Go through the first `min (num_regs, regs->num_regs)'
5341 registers, since that is all we initialized. */
5342 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5344 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5345 regs->start[reg] = regs->end[reg] = -1;
5346 else
5348 regs->start[reg]
5349 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5350 regs->end[reg]
5351 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5355 /* If the regs structure we return has more elements than
5356 were in the pattern, set the extra elements to -1. If
5357 we (re)allocated the registers, this is the case,
5358 because we always allocate enough to have at least one
5359 -1 at the end. */
5360 for (reg = num_regs; reg < regs->num_regs; reg++)
5361 regs->start[reg] = regs->end[reg] = -1;
5362 } /* regs && !bufp->no_sub */
5364 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5365 nfailure_points_pushed, nfailure_points_popped,
5366 nfailure_points_pushed - nfailure_points_popped);
5367 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5369 mcnt = POINTER_TO_OFFSET (d) - pos;
5371 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5373 FREE_VARIABLES ();
5374 return mcnt;
5377 /* Otherwise match next pattern command. */
5378 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5380 /* Ignore these. Used to ignore the n of succeed_n's which
5381 currently have n == 0. */
5382 case no_op:
5383 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5384 break;
5386 case succeed:
5387 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5388 goto succeed_label;
5390 /* Match the next n pattern characters exactly. The following
5391 byte in the pattern defines n, and the n bytes after that
5392 are the characters to match. */
5393 case exactn:
5394 mcnt = *p++;
5395 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5397 /* Remember the start point to rollback upon failure. */
5398 dfail = d;
5400 #ifndef emacs
5401 /* This is written out as an if-else so we don't waste time
5402 testing `translate' inside the loop. */
5403 if (RE_TRANSLATE_P (translate))
5406 PREFETCH ();
5407 if (RE_TRANSLATE (translate, *d) != *p++)
5409 d = dfail;
5410 goto fail;
5412 d++;
5414 while (--mcnt);
5415 else
5418 PREFETCH ();
5419 if (*d++ != *p++)
5421 d = dfail;
5422 goto fail;
5425 while (--mcnt);
5426 #else /* emacs */
5427 /* The cost of testing `translate' is comparatively small. */
5428 if (target_multibyte)
5431 int pat_charlen, buf_charlen;
5432 int pat_ch, buf_ch;
5434 PREFETCH ();
5435 if (multibyte)
5436 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
5437 else
5439 pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
5440 pat_charlen = 1;
5442 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
5444 if (TRANSLATE (buf_ch) != pat_ch)
5446 d = dfail;
5447 goto fail;
5450 p += pat_charlen;
5451 d += buf_charlen;
5452 mcnt -= pat_charlen;
5454 while (mcnt > 0);
5455 else
5458 int pat_charlen;
5459 int pat_ch, buf_ch;
5461 PREFETCH ();
5462 if (multibyte)
5464 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
5465 pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
5467 else
5469 pat_ch = *p;
5470 pat_charlen = 1;
5472 buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
5473 if (! CHAR_BYTE8_P (buf_ch))
5475 buf_ch = TRANSLATE (buf_ch);
5476 buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
5477 if (buf_ch < 0)
5478 buf_ch = *d;
5480 else
5481 buf_ch = *d;
5482 if (buf_ch != pat_ch)
5484 d = dfail;
5485 goto fail;
5487 p += pat_charlen;
5488 d++;
5490 while (--mcnt);
5491 #endif
5492 break;
5495 /* Match any character except possibly a newline or a null. */
5496 case anychar:
5498 int buf_charlen;
5499 re_wchar_t buf_ch;
5501 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5503 PREFETCH ();
5504 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
5505 target_multibyte);
5506 buf_ch = TRANSLATE (buf_ch);
5508 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5509 && buf_ch == '\n')
5510 || ((bufp->syntax & RE_DOT_NOT_NULL)
5511 && buf_ch == '\000'))
5512 goto fail;
5514 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5515 d += buf_charlen;
5517 break;
5520 case charset:
5521 case charset_not:
5523 register unsigned int c;
5524 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5525 int len;
5527 /* Start of actual range_table, or end of bitmap if there is no
5528 range table. */
5529 re_char *range_table;
5531 /* Nonzero if there is a range table. */
5532 int range_table_exists;
5534 /* Number of ranges of range table. This is not included
5535 in the initial byte-length of the command. */
5536 int count = 0;
5538 /* Whether matching against a unibyte character. */
5539 boolean unibyte_char = false;
5541 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5543 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5545 if (range_table_exists)
5547 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5548 EXTRACT_NUMBER_AND_INCR (count, range_table);
5551 PREFETCH ();
5552 c = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
5553 if (target_multibyte)
5555 int c1;
5557 c = TRANSLATE (c);
5558 c1 = RE_CHAR_TO_UNIBYTE (c);
5559 if (c1 >= 0)
5561 unibyte_char = true;
5562 c = c1;
5565 else
5567 int c1 = RE_CHAR_TO_MULTIBYTE (c);
5569 if (! CHAR_BYTE8_P (c1))
5571 c1 = TRANSLATE (c1);
5572 c1 = RE_CHAR_TO_UNIBYTE (c1);
5573 if (c1 >= 0)
5575 unibyte_char = true;
5576 c = c1;
5579 else
5580 unibyte_char = true;
5583 if (unibyte_char && c < (1 << BYTEWIDTH))
5584 { /* Lookup bitmap. */
5585 /* Cast to `unsigned' instead of `unsigned char' in
5586 case the bit list is a full 32 bytes long. */
5587 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5588 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5589 not = !not;
5591 #ifdef emacs
5592 else if (range_table_exists)
5594 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5596 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5597 | (class_bits & BIT_MULTIBYTE)
5598 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5599 | (class_bits & BIT_SPACE && ISSPACE (c))
5600 | (class_bits & BIT_UPPER && ISUPPER (c))
5601 | (class_bits & BIT_WORD && ISWORD (c)))
5602 not = !not;
5603 else
5604 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5606 #endif /* emacs */
5608 if (range_table_exists)
5609 p = CHARSET_RANGE_TABLE_END (range_table, count);
5610 else
5611 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5613 if (!not) goto fail;
5615 d += len;
5616 break;
5620 /* The beginning of a group is represented by start_memory.
5621 The argument is the register number. The text
5622 matched within the group is recorded (in the internal
5623 registers data structure) under the register number. */
5624 case start_memory:
5625 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5627 /* In case we need to undo this operation (via backtracking). */
5628 PUSH_FAILURE_REG ((unsigned int)*p);
5630 regstart[*p] = d;
5631 regend[*p] = NULL; /* probably unnecessary. -sm */
5632 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5634 /* Move past the register number and inner group count. */
5635 p += 1;
5636 break;
5639 /* The stop_memory opcode represents the end of a group. Its
5640 argument is the same as start_memory's: the register number. */
5641 case stop_memory:
5642 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5644 assert (!REG_UNSET (regstart[*p]));
5645 /* Strictly speaking, there should be code such as:
5647 assert (REG_UNSET (regend[*p]));
5648 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5650 But the only info to be pushed is regend[*p] and it is known to
5651 be UNSET, so there really isn't anything to push.
5652 Not pushing anything, on the other hand deprives us from the
5653 guarantee that regend[*p] is UNSET since undoing this operation
5654 will not reset its value properly. This is not important since
5655 the value will only be read on the next start_memory or at
5656 the very end and both events can only happen if this stop_memory
5657 is *not* undone. */
5659 regend[*p] = d;
5660 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5662 /* Move past the register number and the inner group count. */
5663 p += 1;
5664 break;
5667 /* \<digit> has been turned into a `duplicate' command which is
5668 followed by the numeric value of <digit> as the register number. */
5669 case duplicate:
5671 register re_char *d2, *dend2;
5672 int regno = *p++; /* Get which register to match against. */
5673 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5675 /* Can't back reference a group which we've never matched. */
5676 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5677 goto fail;
5679 /* Where in input to try to start matching. */
5680 d2 = regstart[regno];
5682 /* Remember the start point to rollback upon failure. */
5683 dfail = d;
5685 /* Where to stop matching; if both the place to start and
5686 the place to stop matching are in the same string, then
5687 set to the place to stop, otherwise, for now have to use
5688 the end of the first string. */
5690 dend2 = ((FIRST_STRING_P (regstart[regno])
5691 == FIRST_STRING_P (regend[regno]))
5692 ? regend[regno] : end_match_1);
5693 for (;;)
5695 /* If necessary, advance to next segment in register
5696 contents. */
5697 while (d2 == dend2)
5699 if (dend2 == end_match_2) break;
5700 if (dend2 == regend[regno]) break;
5702 /* End of string1 => advance to string2. */
5703 d2 = string2;
5704 dend2 = regend[regno];
5706 /* At end of register contents => success */
5707 if (d2 == dend2) break;
5709 /* If necessary, advance to next segment in data. */
5710 PREFETCH ();
5712 /* How many characters left in this segment to match. */
5713 mcnt = dend - d;
5715 /* Want how many consecutive characters we can match in
5716 one shot, so, if necessary, adjust the count. */
5717 if (mcnt > dend2 - d2)
5718 mcnt = dend2 - d2;
5720 /* Compare that many; failure if mismatch, else move
5721 past them. */
5722 if (RE_TRANSLATE_P (translate)
5723 ? bcmp_translate (d, d2, mcnt, translate, target_multibyte)
5724 : memcmp (d, d2, mcnt))
5726 d = dfail;
5727 goto fail;
5729 d += mcnt, d2 += mcnt;
5732 break;
5735 /* begline matches the empty string at the beginning of the string
5736 (unless `not_bol' is set in `bufp'), and after newlines. */
5737 case begline:
5738 DEBUG_PRINT1 ("EXECUTING begline.\n");
5740 if (AT_STRINGS_BEG (d))
5742 if (!bufp->not_bol) break;
5744 else
5746 unsigned c;
5747 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5748 if (c == '\n')
5749 break;
5751 /* In all other cases, we fail. */
5752 goto fail;
5755 /* endline is the dual of begline. */
5756 case endline:
5757 DEBUG_PRINT1 ("EXECUTING endline.\n");
5759 if (AT_STRINGS_END (d))
5761 if (!bufp->not_eol) break;
5763 else
5765 PREFETCH_NOLIMIT ();
5766 if (*d == '\n')
5767 break;
5769 goto fail;
5772 /* Match at the very beginning of the data. */
5773 case begbuf:
5774 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5775 if (AT_STRINGS_BEG (d))
5776 break;
5777 goto fail;
5780 /* Match at the very end of the data. */
5781 case endbuf:
5782 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5783 if (AT_STRINGS_END (d))
5784 break;
5785 goto fail;
5788 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5789 pushes NULL as the value for the string on the stack. Then
5790 `POP_FAILURE_POINT' will keep the current value for the
5791 string, instead of restoring it. To see why, consider
5792 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5793 then the . fails against the \n. But the next thing we want
5794 to do is match the \n against the \n; if we restored the
5795 string value, we would be back at the foo.
5797 Because this is used only in specific cases, we don't need to
5798 check all the things that `on_failure_jump' does, to make
5799 sure the right things get saved on the stack. Hence we don't
5800 share its code. The only reason to push anything on the
5801 stack at all is that otherwise we would have to change
5802 `anychar's code to do something besides goto fail in this
5803 case; that seems worse than this. */
5804 case on_failure_keep_string_jump:
5805 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5806 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5807 mcnt, p + mcnt);
5809 PUSH_FAILURE_POINT (p - 3, NULL);
5810 break;
5812 /* A nasty loop is introduced by the non-greedy *? and +?.
5813 With such loops, the stack only ever contains one failure point
5814 at a time, so that a plain on_failure_jump_loop kind of
5815 cycle detection cannot work. Worse yet, such a detection
5816 can not only fail to detect a cycle, but it can also wrongly
5817 detect a cycle (between different instantiations of the same
5818 loop).
5819 So the method used for those nasty loops is a little different:
5820 We use a special cycle-detection-stack-frame which is pushed
5821 when the on_failure_jump_nastyloop failure-point is *popped*.
5822 This special frame thus marks the beginning of one iteration
5823 through the loop and we can hence easily check right here
5824 whether something matched between the beginning and the end of
5825 the loop. */
5826 case on_failure_jump_nastyloop:
5827 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5828 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5829 mcnt, p + mcnt);
5831 assert ((re_opcode_t)p[-4] == no_op);
5833 int cycle = 0;
5834 CHECK_INFINITE_LOOP (p - 4, d);
5835 if (!cycle)
5836 /* If there's a cycle, just continue without pushing
5837 this failure point. The failure point is the "try again"
5838 option, which shouldn't be tried.
5839 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5840 PUSH_FAILURE_POINT (p - 3, d);
5842 break;
5844 /* Simple loop detecting on_failure_jump: just check on the
5845 failure stack if the same spot was already hit earlier. */
5846 case on_failure_jump_loop:
5847 on_failure:
5848 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5849 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5850 mcnt, p + mcnt);
5852 int cycle = 0;
5853 CHECK_INFINITE_LOOP (p - 3, d);
5854 if (cycle)
5855 /* If there's a cycle, get out of the loop, as if the matching
5856 had failed. We used to just `goto fail' here, but that was
5857 aborting the search a bit too early: we want to keep the
5858 empty-loop-match and keep matching after the loop.
5859 We want (x?)*y\1z to match both xxyz and xxyxz. */
5860 p += mcnt;
5861 else
5862 PUSH_FAILURE_POINT (p - 3, d);
5864 break;
5867 /* Uses of on_failure_jump:
5869 Each alternative starts with an on_failure_jump that points
5870 to the beginning of the next alternative. Each alternative
5871 except the last ends with a jump that in effect jumps past
5872 the rest of the alternatives. (They really jump to the
5873 ending jump of the following alternative, because tensioning
5874 these jumps is a hassle.)
5876 Repeats start with an on_failure_jump that points past both
5877 the repetition text and either the following jump or
5878 pop_failure_jump back to this on_failure_jump. */
5879 case on_failure_jump:
5880 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5881 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5882 mcnt, p + mcnt);
5884 PUSH_FAILURE_POINT (p -3, d);
5885 break;
5887 /* This operation is used for greedy *.
5888 Compare the beginning of the repeat with what in the
5889 pattern follows its end. If we can establish that there
5890 is nothing that they would both match, i.e., that we
5891 would have to backtrack because of (as in, e.g., `a*a')
5892 then we can use a non-backtracking loop based on
5893 on_failure_keep_string_jump instead of on_failure_jump. */
5894 case on_failure_jump_smart:
5895 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5896 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5897 mcnt, p + mcnt);
5899 re_char *p1 = p; /* Next operation. */
5900 /* Here, we discard `const', making re_match non-reentrant. */
5901 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5902 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5904 p -= 3; /* Reset so that we will re-execute the
5905 instruction once it's been changed. */
5907 EXTRACT_NUMBER (mcnt, p2 - 2);
5909 /* Ensure this is a indeed the trivial kind of loop
5910 we are expecting. */
5911 assert (skip_one_char (p1) == p2 - 3);
5912 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5913 DEBUG_STATEMENT (debug += 2);
5914 if (mutually_exclusive_p (bufp, p1, p2))
5916 /* Use a fast `on_failure_keep_string_jump' loop. */
5917 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5918 *p3 = (unsigned char) on_failure_keep_string_jump;
5919 STORE_NUMBER (p2 - 2, mcnt + 3);
5921 else
5923 /* Default to a safe `on_failure_jump' loop. */
5924 DEBUG_PRINT1 (" smart default => slow loop.\n");
5925 *p3 = (unsigned char) on_failure_jump;
5927 DEBUG_STATEMENT (debug -= 2);
5929 break;
5931 /* Unconditionally jump (without popping any failure points). */
5932 case jump:
5933 unconditional_jump:
5934 IMMEDIATE_QUIT_CHECK;
5935 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5936 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5937 p += mcnt; /* Do the jump. */
5938 DEBUG_PRINT2 ("(to %p).\n", p);
5939 break;
5942 /* Have to succeed matching what follows at least n times.
5943 After that, handle like `on_failure_jump'. */
5944 case succeed_n:
5945 /* Signedness doesn't matter since we only compare MCNT to 0. */
5946 EXTRACT_NUMBER (mcnt, p + 2);
5947 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5949 /* Originally, mcnt is how many times we HAVE to succeed. */
5950 if (mcnt != 0)
5952 /* Here, we discard `const', making re_match non-reentrant. */
5953 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5954 mcnt--;
5955 p += 4;
5956 PUSH_NUMBER (p2, mcnt);
5958 else
5959 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5960 goto on_failure;
5961 break;
5963 case jump_n:
5964 /* Signedness doesn't matter since we only compare MCNT to 0. */
5965 EXTRACT_NUMBER (mcnt, p + 2);
5966 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5968 /* Originally, this is how many times we CAN jump. */
5969 if (mcnt != 0)
5971 /* Here, we discard `const', making re_match non-reentrant. */
5972 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5973 mcnt--;
5974 PUSH_NUMBER (p2, mcnt);
5975 goto unconditional_jump;
5977 /* If don't have to jump any more, skip over the rest of command. */
5978 else
5979 p += 4;
5980 break;
5982 case set_number_at:
5984 unsigned char *p2; /* Location of the counter. */
5985 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5987 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5988 /* Here, we discard `const', making re_match non-reentrant. */
5989 p2 = (unsigned char*) p + mcnt;
5990 /* Signedness doesn't matter since we only copy MCNT's bits . */
5991 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5992 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5993 PUSH_NUMBER (p2, mcnt);
5994 break;
5997 case wordbound:
5998 case notwordbound:
6000 boolean not = (re_opcode_t) *(p - 1) == notwordbound;
6001 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
6003 /* We SUCCEED (or FAIL) in one of the following cases: */
6005 /* Case 1: D is at the beginning or the end of string. */
6006 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
6007 not = !not;
6008 else
6010 /* C1 is the character before D, S1 is the syntax of C1, C2
6011 is the character at D, and S2 is the syntax of C2. */
6012 re_wchar_t c1, c2;
6013 int s1, s2;
6014 int dummy;
6015 #ifdef emacs
6016 int offset = PTR_TO_OFFSET (d - 1);
6017 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6018 UPDATE_SYNTAX_TABLE (charpos);
6019 #endif
6020 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6021 s1 = SYNTAX (c1);
6022 #ifdef emacs
6023 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
6024 #endif
6025 PREFETCH_NOLIMIT ();
6026 GET_CHAR_AFTER (c2, d, dummy);
6027 s2 = SYNTAX (c2);
6029 if (/* Case 2: Only one of S1 and S2 is Sword. */
6030 ((s1 == Sword) != (s2 == Sword))
6031 /* Case 3: Both of S1 and S2 are Sword, and macro
6032 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
6033 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
6034 not = !not;
6036 if (not)
6037 break;
6038 else
6039 goto fail;
6042 case wordbeg:
6043 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
6045 /* We FAIL in one of the following cases: */
6047 /* Case 1: D is at the end of string. */
6048 if (AT_STRINGS_END (d))
6049 goto fail;
6050 else
6052 /* C1 is the character before D, S1 is the syntax of C1, C2
6053 is the character at D, and S2 is the syntax of C2. */
6054 re_wchar_t c1, c2;
6055 int s1, s2;
6056 int dummy;
6057 #ifdef emacs
6058 int offset = PTR_TO_OFFSET (d);
6059 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6060 UPDATE_SYNTAX_TABLE (charpos);
6061 #endif
6062 PREFETCH ();
6063 GET_CHAR_AFTER (c2, d, dummy);
6064 s2 = SYNTAX (c2);
6066 /* Case 2: S2 is not Sword. */
6067 if (s2 != Sword)
6068 goto fail;
6070 /* Case 3: D is not at the beginning of string ... */
6071 if (!AT_STRINGS_BEG (d))
6073 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6074 #ifdef emacs
6075 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6076 #endif
6077 s1 = SYNTAX (c1);
6079 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
6080 returns 0. */
6081 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6082 goto fail;
6085 break;
6087 case wordend:
6088 DEBUG_PRINT1 ("EXECUTING wordend.\n");
6090 /* We FAIL in one of the following cases: */
6092 /* Case 1: D is at the beginning of string. */
6093 if (AT_STRINGS_BEG (d))
6094 goto fail;
6095 else
6097 /* C1 is the character before D, S1 is the syntax of C1, C2
6098 is the character at D, and S2 is the syntax of C2. */
6099 re_wchar_t c1, c2;
6100 int s1, s2;
6101 int dummy;
6102 #ifdef emacs
6103 int offset = PTR_TO_OFFSET (d) - 1;
6104 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6105 UPDATE_SYNTAX_TABLE (charpos);
6106 #endif
6107 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6108 s1 = SYNTAX (c1);
6110 /* Case 2: S1 is not Sword. */
6111 if (s1 != Sword)
6112 goto fail;
6114 /* Case 3: D is not at the end of string ... */
6115 if (!AT_STRINGS_END (d))
6117 PREFETCH_NOLIMIT ();
6118 GET_CHAR_AFTER (c2, d, dummy);
6119 #ifdef emacs
6120 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6121 #endif
6122 s2 = SYNTAX (c2);
6124 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6125 returns 0. */
6126 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6127 goto fail;
6130 break;
6132 case symbeg:
6133 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6135 /* We FAIL in one of the following cases: */
6137 /* Case 1: D is at the end of string. */
6138 if (AT_STRINGS_END (d))
6139 goto fail;
6140 else
6142 /* C1 is the character before D, S1 is the syntax of C1, C2
6143 is the character at D, and S2 is the syntax of C2. */
6144 re_wchar_t c1, c2;
6145 int s1, s2;
6146 #ifdef emacs
6147 int offset = PTR_TO_OFFSET (d);
6148 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6149 UPDATE_SYNTAX_TABLE (charpos);
6150 #endif
6151 PREFETCH ();
6152 c2 = RE_STRING_CHAR (d, target_multibyte);
6153 s2 = SYNTAX (c2);
6155 /* Case 2: S2 is neither Sword nor Ssymbol. */
6156 if (s2 != Sword && s2 != Ssymbol)
6157 goto fail;
6159 /* Case 3: D is not at the beginning of string ... */
6160 if (!AT_STRINGS_BEG (d))
6162 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6163 #ifdef emacs
6164 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6165 #endif
6166 s1 = SYNTAX (c1);
6168 /* ... and S1 is Sword or Ssymbol. */
6169 if (s1 == Sword || s1 == Ssymbol)
6170 goto fail;
6173 break;
6175 case symend:
6176 DEBUG_PRINT1 ("EXECUTING symend.\n");
6178 /* We FAIL in one of the following cases: */
6180 /* Case 1: D is at the beginning of string. */
6181 if (AT_STRINGS_BEG (d))
6182 goto fail;
6183 else
6185 /* C1 is the character before D, S1 is the syntax of C1, C2
6186 is the character at D, and S2 is the syntax of C2. */
6187 re_wchar_t c1, c2;
6188 int s1, s2;
6189 #ifdef emacs
6190 int offset = PTR_TO_OFFSET (d) - 1;
6191 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6192 UPDATE_SYNTAX_TABLE (charpos);
6193 #endif
6194 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6195 s1 = SYNTAX (c1);
6197 /* Case 2: S1 is neither Ssymbol nor Sword. */
6198 if (s1 != Sword && s1 != Ssymbol)
6199 goto fail;
6201 /* Case 3: D is not at the end of string ... */
6202 if (!AT_STRINGS_END (d))
6204 PREFETCH_NOLIMIT ();
6205 c2 = RE_STRING_CHAR (d, target_multibyte);
6206 #ifdef emacs
6207 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
6208 #endif
6209 s2 = SYNTAX (c2);
6211 /* ... and S2 is Sword or Ssymbol. */
6212 if (s2 == Sword || s2 == Ssymbol)
6213 goto fail;
6216 break;
6218 case syntaxspec:
6219 case notsyntaxspec:
6221 boolean not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6222 mcnt = *p++;
6223 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
6224 PREFETCH ();
6225 #ifdef emacs
6227 int offset = PTR_TO_OFFSET (d);
6228 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6229 UPDATE_SYNTAX_TABLE (pos1);
6231 #endif
6233 int len;
6234 re_wchar_t c;
6236 GET_CHAR_AFTER (c, d, len);
6237 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6238 goto fail;
6239 d += len;
6241 break;
6244 #ifdef emacs
6245 case before_dot:
6246 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6247 if (PTR_BYTE_POS (d) >= PT_BYTE)
6248 goto fail;
6249 break;
6251 case at_dot:
6252 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6253 if (PTR_BYTE_POS (d) != PT_BYTE)
6254 goto fail;
6255 break;
6257 case after_dot:
6258 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6259 if (PTR_BYTE_POS (d) <= PT_BYTE)
6260 goto fail;
6261 break;
6263 case categoryspec:
6264 case notcategoryspec:
6265 not = (re_opcode_t) *(p - 1) == notcategoryspec;
6266 mcnt = *p++;
6267 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
6268 PREFETCH ();
6270 int len;
6271 re_wchar_t c;
6273 GET_CHAR_AFTER (c, d, len);
6274 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6275 goto fail;
6276 d += len;
6278 break;
6280 #endif /* emacs */
6282 default:
6283 abort ();
6285 continue; /* Successfully executed one pattern command; keep going. */
6288 /* We goto here if a matching operation fails. */
6289 fail:
6290 IMMEDIATE_QUIT_CHECK;
6291 if (!FAIL_STACK_EMPTY ())
6293 re_char *str, *pat;
6294 /* A restart point is known. Restore to that state. */
6295 DEBUG_PRINT1 ("\nFAIL:\n");
6296 POP_FAILURE_POINT (str, pat);
6297 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6299 case on_failure_keep_string_jump:
6300 assert (str == NULL);
6301 goto continue_failure_jump;
6303 case on_failure_jump_nastyloop:
6304 assert ((re_opcode_t)pat[-2] == no_op);
6305 PUSH_FAILURE_POINT (pat - 2, str);
6306 /* Fallthrough */
6308 case on_failure_jump_loop:
6309 case on_failure_jump:
6310 case succeed_n:
6311 d = str;
6312 continue_failure_jump:
6313 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6314 p = pat + mcnt;
6315 break;
6317 case no_op:
6318 /* A special frame used for nastyloops. */
6319 goto fail;
6321 default:
6322 abort();
6325 assert (p >= bufp->buffer && p <= pend);
6327 if (d >= string1 && d <= end1)
6328 dend = end_match_1;
6330 else
6331 break; /* Matching at this starting point really fails. */
6332 } /* for (;;) */
6334 if (best_regs_set)
6335 goto restore_best_regs;
6337 FREE_VARIABLES ();
6339 return -1; /* Failure to match. */
6340 } /* re_match_2 */
6342 /* Subroutine definitions for re_match_2. */
6344 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6345 bytes; nonzero otherwise. */
6347 static int
6348 bcmp_translate (const re_char *s1, const re_char *s2, register int len,
6349 RE_TRANSLATE_TYPE translate, const int target_multibyte)
6351 register re_char *p1 = s1, *p2 = s2;
6352 re_char *p1_end = s1 + len;
6353 re_char *p2_end = s2 + len;
6355 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6356 different lengths, but relying on a single `len' would break this. -sm */
6357 while (p1 < p1_end && p2 < p2_end)
6359 int p1_charlen, p2_charlen;
6360 re_wchar_t p1_ch, p2_ch;
6362 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6363 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
6365 if (RE_TRANSLATE (translate, p1_ch)
6366 != RE_TRANSLATE (translate, p2_ch))
6367 return 1;
6369 p1 += p1_charlen, p2 += p2_charlen;
6372 if (p1 != p1_end || p2 != p2_end)
6373 return 1;
6375 return 0;
6378 /* Entry points for GNU code. */
6380 /* re_compile_pattern is the GNU regular expression compiler: it
6381 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6382 Returns 0 if the pattern was valid, otherwise an error string.
6384 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6385 are set in BUFP on entry.
6387 We call regex_compile to do the actual compilation. */
6389 const char *
6390 re_compile_pattern (const char *pattern, size_t length, struct re_pattern_buffer *bufp)
6392 reg_errcode_t ret;
6394 /* GNU code is written to assume at least RE_NREGS registers will be set
6395 (and at least one extra will be -1). */
6396 bufp->regs_allocated = REGS_UNALLOCATED;
6398 /* And GNU code determines whether or not to get register information
6399 by passing null for the REGS argument to re_match, etc., not by
6400 setting no_sub. */
6401 bufp->no_sub = 0;
6403 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6405 if (!ret)
6406 return NULL;
6407 return gettext (re_error_msgid[(int) ret]);
6409 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6411 /* Entry points compatible with 4.2 BSD regex library. We don't define
6412 them unless specifically requested. */
6414 #if defined _REGEX_RE_COMP || defined _LIBC
6416 /* BSD has one and only one pattern buffer. */
6417 static struct re_pattern_buffer re_comp_buf;
6419 char *
6420 # ifdef _LIBC
6421 /* Make these definitions weak in libc, so POSIX programs can redefine
6422 these names if they don't use our functions, and still use
6423 regcomp/regexec below without link errors. */
6424 weak_function
6425 # endif
6426 re_comp (s)
6427 const char *s;
6429 reg_errcode_t ret;
6431 if (!s)
6433 if (!re_comp_buf.buffer)
6434 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6435 return (char *) gettext ("No previous regular expression");
6436 return 0;
6439 if (!re_comp_buf.buffer)
6441 re_comp_buf.buffer = (unsigned char *) malloc (200);
6442 if (re_comp_buf.buffer == NULL)
6443 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6444 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6445 re_comp_buf.allocated = 200;
6447 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6448 if (re_comp_buf.fastmap == NULL)
6449 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6450 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6453 /* Since `re_exec' always passes NULL for the `regs' argument, we
6454 don't need to initialize the pattern buffer fields which affect it. */
6456 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6458 if (!ret)
6459 return NULL;
6461 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6462 return (char *) gettext (re_error_msgid[(int) ret]);
6467 # ifdef _LIBC
6468 weak_function
6469 # endif
6470 re_exec (s)
6471 const char *s;
6473 const int len = strlen (s);
6474 return
6475 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6477 #endif /* _REGEX_RE_COMP */
6479 /* POSIX.2 functions. Don't define these for Emacs. */
6481 #ifndef emacs
6483 /* regcomp takes a regular expression as a string and compiles it.
6485 PREG is a regex_t *. We do not expect any fields to be initialized,
6486 since POSIX says we shouldn't. Thus, we set
6488 `buffer' to the compiled pattern;
6489 `used' to the length of the compiled pattern;
6490 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6491 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6492 RE_SYNTAX_POSIX_BASIC;
6493 `fastmap' to an allocated space for the fastmap;
6494 `fastmap_accurate' to zero;
6495 `re_nsub' to the number of subexpressions in PATTERN.
6497 PATTERN is the address of the pattern string.
6499 CFLAGS is a series of bits which affect compilation.
6501 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6502 use POSIX basic syntax.
6504 If REG_NEWLINE is set, then . and [^...] don't match newline.
6505 Also, regexec will try a match beginning after every newline.
6507 If REG_ICASE is set, then we considers upper- and lowercase
6508 versions of letters to be equivalent when matching.
6510 If REG_NOSUB is set, then when PREG is passed to regexec, that
6511 routine will report only success or failure, and nothing about the
6512 registers.
6514 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6515 the return codes and their meanings.) */
6518 regcomp (regex_t *__restrict preg, const char *__restrict pattern,
6519 int cflags)
6521 reg_errcode_t ret;
6522 reg_syntax_t syntax
6523 = (cflags & REG_EXTENDED) ?
6524 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6526 /* regex_compile will allocate the space for the compiled pattern. */
6527 preg->buffer = 0;
6528 preg->allocated = 0;
6529 preg->used = 0;
6531 /* Try to allocate space for the fastmap. */
6532 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6534 if (cflags & REG_ICASE)
6536 unsigned i;
6538 preg->translate
6539 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6540 * sizeof (*(RE_TRANSLATE_TYPE)0));
6541 if (preg->translate == NULL)
6542 return (int) REG_ESPACE;
6544 /* Map uppercase characters to corresponding lowercase ones. */
6545 for (i = 0; i < CHAR_SET_SIZE; i++)
6546 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6548 else
6549 preg->translate = NULL;
6551 /* If REG_NEWLINE is set, newlines are treated differently. */
6552 if (cflags & REG_NEWLINE)
6553 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6554 syntax &= ~RE_DOT_NEWLINE;
6555 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6557 else
6558 syntax |= RE_NO_NEWLINE_ANCHOR;
6560 preg->no_sub = !!(cflags & REG_NOSUB);
6562 /* POSIX says a null character in the pattern terminates it, so we
6563 can use strlen here in compiling the pattern. */
6564 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6566 /* POSIX doesn't distinguish between an unmatched open-group and an
6567 unmatched close-group: both are REG_EPAREN. */
6568 if (ret == REG_ERPAREN)
6569 ret = REG_EPAREN;
6571 if (ret == REG_NOERROR && preg->fastmap)
6572 { /* Compute the fastmap now, since regexec cannot modify the pattern
6573 buffer. */
6574 re_compile_fastmap (preg);
6575 if (preg->can_be_null)
6576 { /* The fastmap can't be used anyway. */
6577 free (preg->fastmap);
6578 preg->fastmap = NULL;
6581 return (int) ret;
6583 WEAK_ALIAS (__regcomp, regcomp)
6586 /* regexec searches for a given pattern, specified by PREG, in the
6587 string STRING.
6589 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6590 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6591 least NMATCH elements, and we set them to the offsets of the
6592 corresponding matched substrings.
6594 EFLAGS specifies `execution flags' which affect matching: if
6595 REG_NOTBOL is set, then ^ does not match at the beginning of the
6596 string; if REG_NOTEOL is set, then $ does not match at the end.
6598 We return 0 if we find a match and REG_NOMATCH if not. */
6601 regexec (const regex_t *__restrict preg, const char *__restrict string,
6602 size_t nmatch, regmatch_t pmatch[__restrict_arr], int eflags)
6604 int ret;
6605 struct re_registers regs;
6606 regex_t private_preg;
6607 int len = strlen (string);
6608 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6610 private_preg = *preg;
6612 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6613 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6615 /* The user has told us exactly how many registers to return
6616 information about, via `nmatch'. We have to pass that on to the
6617 matching routines. */
6618 private_preg.regs_allocated = REGS_FIXED;
6620 if (want_reg_info)
6622 regs.num_regs = nmatch;
6623 regs.start = TALLOC (nmatch * 2, regoff_t);
6624 if (regs.start == NULL)
6625 return (int) REG_NOMATCH;
6626 regs.end = regs.start + nmatch;
6629 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6630 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6631 was a little bit longer but still only matching the real part.
6632 This works because the `endline' will check for a '\n' and will find a
6633 '\0', correctly deciding that this is not the end of a line.
6634 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6635 a convenient '\0' there. For all we know, the string could be preceded
6636 by '\n' which would throw things off. */
6638 /* Perform the searching operation. */
6639 ret = re_search (&private_preg, string, len,
6640 /* start: */ 0, /* range: */ len,
6641 want_reg_info ? &regs : (struct re_registers *) 0);
6643 /* Copy the register information to the POSIX structure. */
6644 if (want_reg_info)
6646 if (ret >= 0)
6648 unsigned r;
6650 for (r = 0; r < nmatch; r++)
6652 pmatch[r].rm_so = regs.start[r];
6653 pmatch[r].rm_eo = regs.end[r];
6657 /* If we needed the temporary register info, free the space now. */
6658 free (regs.start);
6661 /* We want zero return to mean success, unlike `re_search'. */
6662 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6664 WEAK_ALIAS (__regexec, regexec)
6667 /* Returns a message corresponding to an error code, ERR_CODE, returned
6668 from either regcomp or regexec. We don't use PREG here.
6670 ERR_CODE was previously called ERRCODE, but that name causes an
6671 error with msvc8 compiler. */
6673 size_t
6674 regerror (int err_code, const regex_t *preg, char *errbuf, size_t errbuf_size)
6676 const char *msg;
6677 size_t msg_size;
6679 if (err_code < 0
6680 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6681 /* Only error codes returned by the rest of the code should be passed
6682 to this routine. If we are given anything else, or if other regex
6683 code generates an invalid error code, then the program has a bug.
6684 Dump core so we can fix it. */
6685 abort ();
6687 msg = gettext (re_error_msgid[err_code]);
6689 msg_size = strlen (msg) + 1; /* Includes the null. */
6691 if (errbuf_size != 0)
6693 if (msg_size > errbuf_size)
6695 strncpy (errbuf, msg, errbuf_size - 1);
6696 errbuf[errbuf_size - 1] = 0;
6698 else
6699 strcpy (errbuf, msg);
6702 return msg_size;
6704 WEAK_ALIAS (__regerror, regerror)
6707 /* Free dynamically allocated space used by PREG. */
6709 void
6710 regfree (regex_t *preg)
6712 free (preg->buffer);
6713 preg->buffer = NULL;
6715 preg->allocated = 0;
6716 preg->used = 0;
6718 free (preg->fastmap);
6719 preg->fastmap = NULL;
6720 preg->fastmap_accurate = 0;
6722 free (preg->translate);
6723 preg->translate = NULL;
6725 WEAK_ALIAS (__regfree, regfree)
6727 #endif /* not emacs */