(Glossary): Explain `iff'.
[emacs.git] / lispref / display.texi
blob0d2a8da87535bc0e6db7fdc8eeb3f61dc5beb1c0
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000, 2001,
4 @c   2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @setfilename ../info/display
7 @node Display, System Interface, Processes, Top
8 @chapter Emacs Display
10   This chapter describes a number of features related to the display
11 that Emacs presents to the user.
13 @menu
14 * Refresh Screen::      Clearing the screen and redrawing everything on it.
15 * Forcing Redisplay::   Forcing redisplay.
16 * Truncation::          Folding or wrapping long text lines.
17 * The Echo Area::       Displaying messages at the bottom of the screen.
18 * Warnings::            Displaying warning messages for the user.
19 * Invisible Text::      Hiding part of the buffer text.
20 * Selective Display::   Hiding part of the buffer text (the old way).
21 * Temporary Displays::  Displays that go away automatically.
22 * Overlays::            Use overlays to highlight parts of the buffer.
23 * Width::               How wide a character or string is on the screen.
24 * Line Height::         Controlling the height of lines.
25 * Faces::               A face defines a graphics style for text characters:
26                           font, colors, etc.
27 * Fringes::             Controlling window fringes.
28 * Scroll Bars::         Controlling vertical scroll bars.
29 * Display Property::    Enabling special display features.
30 * Images::              Displaying images in Emacs buffers.
31 * Buttons::             Adding clickable buttons to Emacs buffers.
32 * Abstract Display::    Emacs' Widget for Object Collections.
33 * Blinking::            How Emacs shows the matching open parenthesis.
34 * Usual Display::       The usual conventions for displaying nonprinting chars.
35 * Display Tables::      How to specify other conventions.
36 * Beeping::             Audible signal to the user.
37 * Window Systems::      Which window system is being used.
38 @end menu
40 @node Refresh Screen
41 @section Refreshing the Screen
43   The function @code{redraw-frame} clears and redisplays the entire
44 contents of a given frame (@pxref{Frames}).  This is useful if the
45 screen is corrupted.
47 @c Emacs 19 feature
48 @defun redraw-frame frame
49 This function clears and redisplays frame @var{frame}.
50 @end defun
52   Even more powerful is @code{redraw-display}:
54 @deffn Command redraw-display
55 This function clears and redisplays all visible frames.
56 @end deffn
58   This function calls for redisplay of certain windows, the next time
59 redisplay is done, but does not clear them first.
61 @defun force-window-update &optional object
62 This function forces some or all windows to be updated on next redisplay.
63 If @var{object} is a window, it forces redisplay of that window.  If
64 @var{object} is a buffer or buffer name, it forces redisplay of all
65 windows displaying that buffer.  If @var{object} is @code{nil} (or
66 omitted), it forces redisplay of all windows.
67 @end defun
69   Processing user input takes absolute priority over redisplay.  If you
70 call these functions when input is available, they do nothing
71 immediately, but a full redisplay does happen eventually---after all the
72 input has been processed.
74   Normally, suspending and resuming Emacs also refreshes the screen.
75 Some terminal emulators record separate contents for display-oriented
76 programs such as Emacs and for ordinary sequential display.  If you are
77 using such a terminal, you might want to inhibit the redisplay on
78 resumption.
80 @defvar no-redraw-on-reenter
81 @cindex suspend (cf. @code{no-redraw-on-reenter})
82 @cindex resume (cf. @code{no-redraw-on-reenter})
83 This variable controls whether Emacs redraws the entire screen after it
84 has been suspended and resumed.  Non-@code{nil} means there is no need
85 to redraw, @code{nil} means redrawing is needed.  The default is @code{nil}.
86 @end defvar
88 @node Forcing Redisplay
89 @section Forcing Redisplay
90 @cindex forcing redisplay
92   Emacs redisplay normally stops if input arrives, and does not happen
93 at all if input is available before it starts.  Most of the time, this
94 is exactly what you want.  However, you can prevent preemption by
95 binding @code{redisplay-dont-pause} to a non-@code{nil} value.
97 @defvar redisplay-preemption-period
98 This variable specifies how many seconds Emacs waits between checks
99 for new input during redisplay.  (The default is 0.1 seconds.)  If
100 input has arrived when Emacs checks, it pre-empts redisplay and
101 processes the available input before trying again to redisplay.
103 If this variable is @code{nil}, Emacs does not check for input during
104 redisplay, and redisplay cannot be preempted by input.
106 This variable is only obeyed on graphical terminals.  For
107 text terminals, see @ref{Terminal Output}.
108 @end defvar
110 @defvar redisplay-dont-pause
111 If this variable is non-@code{nil}, pending input does not
112 prevent or halt redisplay; redisplay occurs, and finishes,
113 regardless of whether input is available.
114 @end defvar
116 @defun redisplay &optional force
117 This function performs an immediate redisplay provided there are no
118 pending input events.  This is equivalent to @code{(sit-for 0)}.
120 If the optional argument @var{force} is non-@code{nil}, it forces an
121 immediate and complete redisplay even if input is available.
123 Returns @code{t} if redisplay was performed, or @code{nil} otherwise.
124 @end defun
126 @node Truncation
127 @section Truncation
128 @cindex line wrapping
129 @cindex line truncation
130 @cindex continuation lines
131 @cindex @samp{$} in display
132 @cindex @samp{\} in display
134   When a line of text extends beyond the right edge of a window, Emacs
135 can @dfn{continue} the line (make it ``wrap'' to the next screen
136 line), or @dfn{truncate} the line (limit it to one screen line).  The
137 additional screen lines used to display a long text line are called
138 @dfn{continuation} lines.  Continuation is not the same as filling;
139 continuation happens on the screen only, not in the buffer contents,
140 and it breaks a line precisely at the right margin, not at a word
141 boundary.  @xref{Filling}.
143    On a graphical display, tiny arrow images in the window fringes
144 indicate truncated and continued lines (@pxref{Fringes}).  On a text
145 terminal, a @samp{$} in the rightmost column of the window indicates
146 truncation; a @samp{\} on the rightmost column indicates a line that
147 ``wraps.''  (The display table can specify alternate characters to use
148 for this; @pxref{Display Tables}).
150 @defopt truncate-lines
151 This buffer-local variable controls how Emacs displays lines that extend
152 beyond the right edge of the window.  The default is @code{nil}, which
153 specifies continuation.  If the value is non-@code{nil}, then these
154 lines are truncated.
156 If the variable @code{truncate-partial-width-windows} is non-@code{nil},
157 then truncation is always used for side-by-side windows (within one
158 frame) regardless of the value of @code{truncate-lines}.
159 @end defopt
161 @defopt default-truncate-lines
162 This variable is the default value for @code{truncate-lines}, for
163 buffers that do not have buffer-local values for it.
164 @end defopt
166 @defopt truncate-partial-width-windows
167 This variable controls display of lines that extend beyond the right
168 edge of the window, in side-by-side windows (@pxref{Splitting Windows}).
169 If it is non-@code{nil}, these lines are truncated; otherwise,
170 @code{truncate-lines} says what to do with them.
171 @end defopt
173   When horizontal scrolling (@pxref{Horizontal Scrolling}) is in use in
174 a window, that forces truncation.
176   If your buffer contains @emph{very} long lines, and you use
177 continuation to display them, just thinking about them can make Emacs
178 redisplay slow.  The column computation and indentation functions also
179 become slow.  Then you might find it advisable to set
180 @code{cache-long-line-scans} to @code{t}.
182 @defvar cache-long-line-scans
183 If this variable is non-@code{nil}, various indentation and motion
184 functions, and Emacs redisplay, cache the results of scanning the
185 buffer, and consult the cache to avoid rescanning regions of the buffer
186 unless they are modified.
188 Turning on the cache slows down processing of short lines somewhat.
190 This variable is automatically buffer-local in every buffer.
191 @end defvar
193 @node The Echo Area
194 @section The Echo Area
195 @cindex error display
196 @cindex echo area
198   The @dfn{echo area} is used for displaying error messages
199 (@pxref{Errors}), for messages made with the @code{message} primitive,
200 and for echoing keystrokes.  It is not the same as the minibuffer,
201 despite the fact that the minibuffer appears (when active) in the same
202 place on the screen as the echo area.  The @cite{GNU Emacs Manual}
203 specifies the rules for resolving conflicts between the echo area and
204 the minibuffer for use of that screen space (@pxref{Minibuffer,, The
205 Minibuffer, emacs, The GNU Emacs Manual}).
207   You can write output in the echo area by using the Lisp printing
208 functions with @code{t} as the stream (@pxref{Output Functions}), or
209 explicitly.
211 @menu
212 * Displaying Messages:: Explicitly displaying text in the echo area.
213 * Progress::            Informing user about progress of a long operation.
214 * Logging Messages::    Echo area messages are logged for the user.
215 * Echo Area Customization:: Controlling the echo area.
216 @end menu
218 @node Displaying Messages
219 @subsection Displaying Messages in the Echo Area
220 @cindex display message in echo area
222   This section describes the functions for explicitly producing echo
223 area messages.  Many other Emacs features display messages there, too.
225 @defun message format-string &rest arguments
226 This function displays a message in the echo area.  The argument
227 @var{format-string} is similar to a C language @code{printf} format
228 string.  See @code{format} in @ref{Formatting Strings}, for the details
229 on the conversion specifications.  @code{message} returns the
230 constructed string.
232 In batch mode, @code{message} prints the message text on the standard
233 error stream, followed by a newline.
235 If @var{format-string}, or strings among the @var{arguments}, have
236 @code{face} text properties, these affect the way the message is displayed.
238 @c Emacs 19 feature
239 If @var{format-string} is @code{nil} or the empty string,
240 @code{message} clears the echo area; if the echo area has been
241 expanded automatically, this brings it back to its normal size.
242 If the minibuffer is active, this brings the minibuffer contents back
243 onto the screen immediately.
245 @example
246 @group
247 (message "Minibuffer depth is %d."
248          (minibuffer-depth))
249  @print{} Minibuffer depth is 0.
250 @result{} "Minibuffer depth is 0."
251 @end group
253 @group
254 ---------- Echo Area ----------
255 Minibuffer depth is 0.
256 ---------- Echo Area ----------
257 @end group
258 @end example
260 To automatically display a message in the echo area or in a pop-buffer,
261 depending on its size, use @code{display-message-or-buffer} (see below).
262 @end defun
264 @defmac with-temp-message message &rest body
265 This construct displays a message in the echo area temporarily, during
266 the execution of @var{body}.  It displays @var{message}, executes
267 @var{body}, then returns the value of the last body form while restoring
268 the previous echo area contents.
269 @end defmac
271 @defun message-or-box format-string &rest arguments
272 This function displays a message like @code{message}, but may display it
273 in a dialog box instead of the echo area.  If this function is called in
274 a command that was invoked using the mouse---more precisely, if
275 @code{last-nonmenu-event} (@pxref{Command Loop Info}) is either
276 @code{nil} or a list---then it uses a dialog box or pop-up menu to
277 display the message.  Otherwise, it uses the echo area.  (This is the
278 same criterion that @code{y-or-n-p} uses to make a similar decision; see
279 @ref{Yes-or-No Queries}.)
281 You can force use of the mouse or of the echo area by binding
282 @code{last-nonmenu-event} to a suitable value around the call.
283 @end defun
285 @defun message-box format-string &rest arguments
286 @anchor{message-box}
287 This function displays a message like @code{message}, but uses a dialog
288 box (or a pop-up menu) whenever that is possible.  If it is impossible
289 to use a dialog box or pop-up menu, because the terminal does not
290 support them, then @code{message-box} uses the echo area, like
291 @code{message}.
292 @end defun
294 @defun display-message-or-buffer message &optional buffer-name not-this-window frame
295 This function displays the message @var{message}, which may be either a
296 string or a buffer.  If it is shorter than the maximum height of the
297 echo area, as defined by @code{max-mini-window-height}, it is displayed
298 in the echo area, using @code{message}.  Otherwise,
299 @code{display-buffer} is used to show it in a pop-up buffer.
301 Returns either the string shown in the echo area, or when a pop-up
302 buffer is used, the window used to display it.
304 If @var{message} is a string, then the optional argument
305 @var{buffer-name} is the name of the buffer used to display it when a
306 pop-up buffer is used, defaulting to @samp{*Message*}.  In the case
307 where @var{message} is a string and displayed in the echo area, it is
308 not specified whether the contents are inserted into the buffer anyway.
310 The optional arguments @var{not-this-window} and @var{frame} are as for
311 @code{display-buffer}, and only used if a buffer is displayed.
312 @end defun
314 @defun current-message
315 This function returns the message currently being displayed in the
316 echo area, or @code{nil} if there is none.
317 @end defun
319 @node Progress
320 @subsection Reporting Operation Progress
321 @cindex progress reporting
323   When an operation can take a while to finish, you should inform the
324 user about the progress it makes.  This way the user can estimate
325 remaining time and clearly see that Emacs is busy working, not hung.
327   Functions listed in this section provide simple and efficient way of
328 reporting operation progress.  Here is a working example that does
329 nothing useful:
331 @smallexample
332 (let ((progress-reporter
333        (make-progress-reporter "Collecting mana for Emacs..."
334                                0  500)))
335   (dotimes (k 500)
336     (sit-for 0.01)
337     (progress-reporter-update progress-reporter k))
338   (progress-reporter-done progress-reporter))
339 @end smallexample
341 @defun make-progress-reporter message min-value max-value &optional current-value min-change min-time
342 This function creates and returns a @dfn{progress reporter}---an
343 object you will use as an argument for all other functions listed
344 here.  The idea is to precompute as much data as possible to make
345 progress reporting very fast.
347 When this progress reporter is subsequently used, it will display
348 @var{message} in the echo area, followed by progress percentage.
349 @var{message} is treated as a simple string.  If you need it to depend
350 on a filename, for instance, use @code{format} before calling this
351 function.
353 @var{min-value} and @var{max-value} arguments stand for starting and
354 final states of your operation.  For instance, if you scan a buffer,
355 they should be the results of @code{point-min} and @code{point-max}
356 correspondingly.  It is required that @var{max-value} is greater than
357 @var{min-value}.  If you create progress reporter when some part of
358 the operation has already been completed, then specify
359 @var{current-value} argument.  But normally you should omit it or set
360 it to @code{nil}---it will default to @var{min-value} then.
362 Remaining arguments control the rate of echo area updates.  Progress
363 reporter will wait for at least @var{min-change} more percents of the
364 operation to be completed before printing next message.
365 @var{min-time} specifies the minimum time in seconds to pass between
366 successive prints.  It can be fractional.  Depending on Emacs and
367 system capabilities, progress reporter may or may not respect this
368 last argument or do it with varying precision.  Default value for
369 @var{min-change} is 1 (one percent), for @var{min-time}---0.2
370 (seconds.)
372 This function calls @code{progress-reporter-update}, so the first
373 message is printed immediately.
374 @end defun
376 @defun progress-reporter-update reporter value
377 This function does the main work of reporting progress of your
378 operation.  It displays the message of @var{reporter}, followed by
379 progress percentage determined by @var{value}.  If percentage is zero,
380 or close enough according to the @var{min-change} and @var{min-time}
381 arguments, then it is omitted from the output.
383 @var{reporter} must be the result of a call to
384 @code{make-progress-reporter}.  @var{value} specifies the current
385 state of your operation and must be between @var{min-value} and
386 @var{max-value} (inclusive) as passed to
387 @code{make-progress-reporter}.  For instance, if you scan a buffer,
388 then @var{value} should be the result of a call to @code{point}.
390 This function respects @var{min-change} and @var{min-time} as passed
391 to @code{make-progress-reporter} and so does not output new messages
392 on every invocation.  It is thus very fast and normally you should not
393 try to reduce the number of calls to it: resulting overhead will most
394 likely negate your effort.
395 @end defun
397 @defun progress-reporter-force-update reporter value &optional new-message
398 This function is similar to @code{progress-reporter-update} except
399 that it prints a message in the echo area unconditionally.
401 The first two arguments have the same meaning as for
402 @code{progress-reporter-update}.  Optional @var{new-message} allows
403 you to change the message of the @var{reporter}.  Since this functions
404 always updates the echo area, such a change will be immediately
405 presented to the user.
406 @end defun
408 @defun progress-reporter-done reporter
409 This function should be called when the operation is finished.  It
410 prints the message of @var{reporter} followed by word ``done'' in the
411 echo area.
413 You should always call this function and not hope for
414 @code{progress-reporter-update} to print ``100%.''  Firstly, it may
415 never print it, there are many good reasons for this not to happen.
416 Secondly, ``done'' is more explicit.
417 @end defun
419 @defmac dotimes-with-progress-reporter (var count [result]) message body@dots{}
420 This is a convenience macro that works the same way as @code{dotimes}
421 does, but also reports loop progress using the functions described
422 above.  It allows you to save some typing.
424 You can rewrite the example in the beginning of this node using
425 this macro this way:
427 @example
428 (dotimes-with-progress-reporter
429     (k 500)
430     "Collecting some mana for Emacs..."
431   (sit-for 0.01))
432 @end example
433 @end defmac
435 @node Logging Messages
436 @subsection Logging Messages in @samp{*Messages*}
437 @cindex logging echo-area messages
439   Almost all the messages displayed in the echo area are also recorded
440 in the @samp{*Messages*} buffer so that the user can refer back to
441 them.  This includes all the messages that are output with
442 @code{message}.
444 @defopt message-log-max
445 This variable specifies how many lines to keep in the @samp{*Messages*}
446 buffer.  The value @code{t} means there is no limit on how many lines to
447 keep.  The value @code{nil} disables message logging entirely.  Here's
448 how to display a message and prevent it from being logged:
450 @example
451 (let (message-log-max)
452   (message @dots{}))
453 @end example
454 @end defopt
456   To make @samp{*Messages*} more convenient for the user, the logging
457 facility combines successive identical messages.  It also combines
458 successive related messages for the sake of two cases: question
459 followed by answer, and a series of progress messages.
461   A ``question followed by an answer'' means two messages like the
462 ones produced by @code{y-or-n-p}: the first is @samp{@var{question}},
463 and the second is @samp{@var{question}...@var{answer}}.  The first
464 message conveys no additional information beyond what's in the second,
465 so logging the second message discards the first from the log.
467   A ``series of progress messages'' means successive messages like
468 those produced by @code{make-progress-reporter}.  They have the form
469 @samp{@var{base}...@var{how-far}}, where @var{base} is the same each
470 time, while @var{how-far} varies.  Logging each message in the series
471 discards the previous one, provided they are consecutive.
473   The functions @code{make-progress-reporter} and @code{y-or-n-p}
474 don't have to do anything special to activate the message log
475 combination feature.  It operates whenever two consecutive messages
476 are logged that share a common prefix ending in @samp{...}.
478 @node Echo Area Customization
479 @subsection Echo Area Customization
481   These variables control details of how the echo area works.
483 @defvar cursor-in-echo-area
484 This variable controls where the cursor appears when a message is
485 displayed in the echo area.  If it is non-@code{nil}, then the cursor
486 appears at the end of the message.  Otherwise, the cursor appears at
487 point---not in the echo area at all.
489 The value is normally @code{nil}; Lisp programs bind it to @code{t}
490 for brief periods of time.
491 @end defvar
493 @defvar echo-area-clear-hook
494 This normal hook is run whenever the echo area is cleared---either by
495 @code{(message nil)} or for any other reason.
496 @end defvar
498 @defvar echo-keystrokes
499 This variable determines how much time should elapse before command
500 characters echo.  Its value must be an integer or floating point number,
501 which specifies the
502 number of seconds to wait before echoing.  If the user types a prefix
503 key (such as @kbd{C-x}) and then delays this many seconds before
504 continuing, the prefix key is echoed in the echo area.  (Once echoing
505 begins in a key sequence, all subsequent characters in the same key
506 sequence are echoed immediately.)
508 If the value is zero, then command input is not echoed.
509 @end defvar
511 @defvar message-truncate-lines
512 Normally, displaying a long message resizes the echo area to display
513 the entire message.  But if the variable @code{message-truncate-lines}
514 is non-@code{nil}, the echo area does not resize, and the message is
515 truncated to fit it, as in Emacs 20 and before.
516 @end defvar
518   The variable @code{max-mini-window-height}, which specifies the
519 maximum height for resizing minibuffer windows, also applies to the
520 echo area (which is really a special use of the minibuffer window.
521 @xref{Minibuffer Misc}.
523 @node Warnings
524 @section Reporting Warnings
525 @cindex warnings
527   @dfn{Warnings} are a facility for a program to inform the user of a
528 possible problem, but continue running.
530 @menu
531 * Warning Basics::      Warnings concepts and functions to report them.
532 * Warning Variables::   Variables programs bind to customize their warnings.
533 * Warning Options::     Variables users set to control display of warnings.
534 @end menu
536 @node Warning Basics
537 @subsection Warning Basics
538 @cindex severity level
540   Every warning has a textual message, which explains the problem for
541 the user, and a @dfn{severity level} which is a symbol.  Here are the
542 possible severity levels, in order of decreasing severity, and their
543 meanings:
545 @table @code
546 @item :emergency
547 A problem that will seriously impair Emacs operation soon
548 if you do not attend to it promptly.
549 @item :error
550 A report of data or circumstances that are inherently wrong.
551 @item :warning
552 A report of data or circumstances that are not inherently wrong, but
553 raise suspicion of a possible problem.
554 @item :debug
555 A report of information that may be useful if you are debugging.
556 @end table
558   When your program encounters invalid input data, it can either
559 signal a Lisp error by calling @code{error} or @code{signal} or report
560 a warning with severity @code{:error}.  Signaling a Lisp error is the
561 easiest thing to do, but it means the program cannot continue
562 processing.  If you want to take the trouble to implement a way to
563 continue processing despite the bad data, then reporting a warning of
564 severity @code{:error} is the right way to inform the user of the
565 problem.  For instance, the Emacs Lisp byte compiler can report an
566 error that way and continue compiling other functions.  (If the
567 program signals a Lisp error and then handles it with
568 @code{condition-case}, the user won't see the error message; it could
569 show the message to the user by reporting it as a warning.)
571 @cindex warning type
572   Each warning has a @dfn{warning type} to classify it.  The type is a
573 list of symbols.  The first symbol should be the custom group that you
574 use for the program's user options.  For example, byte compiler
575 warnings use the warning type @code{(bytecomp)}.  You can also
576 subcategorize the warnings, if you wish, by using more symbols in the
577 list.
579 @defun display-warning type message &optional level buffer-name
580 This function reports a warning, using @var{message} as the message
581 and @var{type} as the warning type.  @var{level} should be the
582 severity level, with @code{:warning} being the default.
584 @var{buffer-name}, if non-@code{nil}, specifies the name of the buffer
585 for logging the warning.  By default, it is @samp{*Warnings*}.
586 @end defun
588 @defun lwarn type level message &rest args
589 This function reports a warning using the value of @code{(format
590 @var{message} @var{args}...)} as the message.  In other respects it is
591 equivalent to @code{display-warning}.
592 @end defun
594 @defun warn message &rest args
595 This function reports a warning using the value of @code{(format
596 @var{message} @var{args}...)} as the message, @code{(emacs)} as the
597 type, and @code{:warning} as the severity level.  It exists for
598 compatibility only; we recommend not using it, because you should
599 specify a specific warning type.
600 @end defun
602 @node Warning Variables
603 @subsection Warning Variables
605   Programs can customize how their warnings appear by binding
606 the variables described in this section.
608 @defvar warning-levels
609 This list defines the meaning and severity order of the warning
610 severity levels.  Each element defines one severity level,
611 and they are arranged in order of decreasing severity.
613 Each element has the form @code{(@var{level} @var{string}
614 @var{function})}, where @var{level} is the severity level it defines.
615 @var{string} specifies the textual description of this level.
616 @var{string} should use @samp{%s} to specify where to put the warning
617 type information, or it can omit the @samp{%s} so as not to include
618 that information.
620 The optional @var{function}, if non-@code{nil}, is a function to call
621 with no arguments, to get the user's attention.
623 Normally you should not change the value of this variable.
624 @end defvar
626 @defvar warning-prefix-function
627 If non-@code{nil}, the value is a function to generate prefix text for
628 warnings.  Programs can bind the variable to a suitable function.
629 @code{display-warning} calls this function with the warnings buffer
630 current, and the function can insert text in it.  That text becomes
631 the beginning of the warning message.
633 The function is called with two arguments, the severity level and its
634 entry in @code{warning-levels}.  It should return a list to use as the
635 entry (this value need not be an actual member of
636 @code{warning-levels}).  By constructing this value, the function can
637 change the severity of the warning, or specify different handling for
638 a given severity level.
640 If the variable's value is @code{nil} then there is no function
641 to call.
642 @end defvar
644 @defvar warning-series
645 Programs can bind this variable to @code{t} to say that the next
646 warning should begin a series.  When several warnings form a series,
647 that means to leave point on the first warning of the series, rather
648 than keep moving it for each warning so that it appears on the last one.
649 The series ends when the local binding is unbound and
650 @code{warning-series} becomes @code{nil} again.
652 The value can also be a symbol with a function definition.  That is
653 equivalent to @code{t}, except that the next warning will also call
654 the function with no arguments with the warnings buffer current.  The
655 function can insert text which will serve as a header for the series
656 of warnings.
658 Once a series has begun, the value is a marker which points to the
659 buffer position in the warnings buffer of the start of the series.
661 The variable's normal value is @code{nil}, which means to handle
662 each warning separately.
663 @end defvar
665 @defvar warning-fill-prefix
666 When this variable is non-@code{nil}, it specifies a fill prefix to
667 use for filling each warning's text.
668 @end defvar
670 @defvar warning-type-format
671 This variable specifies the format for displaying the warning type
672 in the warning message.  The result of formatting the type this way
673 gets included in the message under the control of the string in the
674 entry in @code{warning-levels}.  The default value is @code{" (%s)"}.
675 If you bind it to @code{""} then the warning type won't appear at
676 all.
677 @end defvar
679 @node Warning Options
680 @subsection Warning Options
682   These variables are used by users to control what happens
683 when a Lisp program reports a warning.
685 @defopt warning-minimum-level
686 This user option specifies the minimum severity level that should be
687 shown immediately to the user.  The default is @code{:warning}, which
688 means to immediately display all warnings except @code{:debug}
689 warnings.
690 @end defopt
692 @defopt warning-minimum-log-level
693 This user option specifies the minimum severity level that should be
694 logged in the warnings buffer.  The default is @code{:warning}, which
695 means to log all warnings except @code{:debug} warnings.
696 @end defopt
698 @defopt warning-suppress-types
699 This list specifies which warning types should not be displayed
700 immediately for the user.  Each element of the list should be a list
701 of symbols.  If its elements match the first elements in a warning
702 type, then that warning is not displayed immediately.
703 @end defopt
705 @defopt warning-suppress-log-types
706 This list specifies which warning types should not be logged in the
707 warnings buffer.  Each element of the list should be a list of
708 symbols.  If it matches the first few elements in a warning type, then
709 that warning is not logged.
710 @end defopt
712 @node Invisible Text
713 @section Invisible Text
715 @cindex invisible text
716 You can make characters @dfn{invisible}, so that they do not appear on
717 the screen, with the @code{invisible} property.  This can be either a
718 text property (@pxref{Text Properties}) or a property of an overlay
719 (@pxref{Overlays}).  Cursor motion also partly ignores these
720 characters; if the command loop finds point within them, it moves
721 point to the other side of them.
723 In the simplest case, any non-@code{nil} @code{invisible} property makes
724 a character invisible.  This is the default case---if you don't alter
725 the default value of @code{buffer-invisibility-spec}, this is how the
726 @code{invisible} property works.  You should normally use @code{t}
727 as the value of the @code{invisible} property if you don't plan
728 to set @code{buffer-invisibility-spec} yourself.
730 More generally, you can use the variable @code{buffer-invisibility-spec}
731 to control which values of the @code{invisible} property make text
732 invisible.  This permits you to classify the text into different subsets
733 in advance, by giving them different @code{invisible} values, and
734 subsequently make various subsets visible or invisible by changing the
735 value of @code{buffer-invisibility-spec}.
737 Controlling visibility with @code{buffer-invisibility-spec} is
738 especially useful in a program to display the list of entries in a
739 database.  It permits the implementation of convenient filtering
740 commands to view just a part of the entries in the database.  Setting
741 this variable is very fast, much faster than scanning all the text in
742 the buffer looking for properties to change.
744 @defvar buffer-invisibility-spec
745 This variable specifies which kinds of @code{invisible} properties
746 actually make a character invisible.  Setting this variable makes it
747 buffer-local.
749 @table @asis
750 @item @code{t}
751 A character is invisible if its @code{invisible} property is
752 non-@code{nil}.  This is the default.
754 @item a list
755 Each element of the list specifies a criterion for invisibility; if a
756 character's @code{invisible} property fits any one of these criteria,
757 the character is invisible.  The list can have two kinds of elements:
759 @table @code
760 @item @var{atom}
761 A character is invisible if its @code{invisible} property value
762 is @var{atom} or if it is a list with @var{atom} as a member.
764 @item (@var{atom} . t)
765 A character is invisible if its @code{invisible} property value is
766 @var{atom} or if it is a list with @var{atom} as a member.  Moreover,
767 a sequence of such characters displays as an ellipsis.
768 @end table
769 @end table
770 @end defvar
772   Two functions are specifically provided for adding elements to
773 @code{buffer-invisibility-spec} and removing elements from it.
775 @defun add-to-invisibility-spec element
776 This function adds the element @var{element} to
777 @code{buffer-invisibility-spec}.  If @code{buffer-invisibility-spec}
778 was @code{t}, it changes to a list, @code{(t)}, so that text whose
779 @code{invisible} property is @code{t} remains invisible.
780 @end defun
782 @defun remove-from-invisibility-spec element
783 This removes the element @var{element} from
784 @code{buffer-invisibility-spec}.  This does nothing if @var{element}
785 is not in the list.
786 @end defun
788   A convention for use of @code{buffer-invisibility-spec} is that a
789 major mode should use the mode's own name as an element of
790 @code{buffer-invisibility-spec} and as the value of the
791 @code{invisible} property:
793 @example
794 ;; @r{If you want to display an ellipsis:}
795 (add-to-invisibility-spec '(my-symbol . t))
796 ;; @r{If you don't want ellipsis:}
797 (add-to-invisibility-spec 'my-symbol)
799 (overlay-put (make-overlay beginning end)
800              'invisible 'my-symbol)
802 ;; @r{When done with the overlays:}
803 (remove-from-invisibility-spec '(my-symbol . t))
804 ;; @r{Or respectively:}
805 (remove-from-invisibility-spec 'my-symbol)
806 @end example
808 @vindex line-move-ignore-invisible
809   Ordinarily, functions that operate on text or move point do not care
810 whether the text is invisible.  The user-level line motion commands
811 explicitly ignore invisible newlines if
812 @code{line-move-ignore-invisible} is non-@code{nil} (the default), but
813 only because they are explicitly programmed to do so.
815   However, if a command ends with point inside or immediately before
816 invisible text, the main editing loop moves point further forward or
817 further backward (in the same direction that the command already moved
818 it) until that condition is no longer true.  Thus, if the command
819 moved point back into an invisible range, Emacs moves point back to
820 the beginning of that range, and then back one more character.  If the
821 command moved point forward into an invisible range, Emacs moves point
822 forward up to the first visible character that follows the invisible
823 text.
825   Incremental search can make invisible overlays visible temporarily
826 and/or permanently when a match includes invisible text.  To enable
827 this, the overlay should have a non-@code{nil}
828 @code{isearch-open-invisible} property.  The property value should be a
829 function to be called with the overlay as an argument.  This function
830 should make the overlay visible permanently; it is used when the match
831 overlaps the overlay on exit from the search.
833   During the search, such overlays are made temporarily visible by
834 temporarily modifying their invisible and intangible properties.  If you
835 want this to be done differently for a certain overlay, give it an
836 @code{isearch-open-invisible-temporary} property which is a function.
837 The function is called with two arguments: the first is the overlay, and
838 the second is @code{nil} to make the overlay visible, or @code{t} to
839 make it invisible again.
841 @node Selective Display
842 @section Selective Display
843 @c @cindex selective display   Duplicates selective-display
845   @dfn{Selective display} refers to a pair of related features for
846 hiding certain lines on the screen.
848   The first variant, explicit selective display, is designed for use
849 in a Lisp program: it controls which lines are hidden by altering the
850 text.  This kind of hiding in some ways resembles the effect of the
851 @code{invisible} property (@pxref{Invisible Text}), but the two
852 features are different and do not work the same way.
854   In the second variant, the choice of lines to hide is made
855 automatically based on indentation.  This variant is designed to be a
856 user-level feature.
858   The way you control explicit selective display is by replacing a
859 newline (control-j) with a carriage return (control-m).  The text that
860 was formerly a line following that newline is now hidden.  Strictly
861 speaking, it is temporarily no longer a line at all, since only
862 newlines can separate lines; it is now part of the previous line.
864   Selective display does not directly affect editing commands.  For
865 example, @kbd{C-f} (@code{forward-char}) moves point unhesitatingly
866 into hidden text.  However, the replacement of newline characters with
867 carriage return characters affects some editing commands.  For
868 example, @code{next-line} skips hidden lines, since it searches only
869 for newlines.  Modes that use selective display can also define
870 commands that take account of the newlines, or that control which
871 parts of the text are hidden.
873   When you write a selectively displayed buffer into a file, all the
874 control-m's are output as newlines.  This means that when you next read
875 in the file, it looks OK, with nothing hidden.  The selective display
876 effect is seen only within Emacs.
878 @defvar selective-display
879 This buffer-local variable enables selective display.  This means that
880 lines, or portions of lines, may be made hidden.
882 @itemize @bullet
883 @item
884 If the value of @code{selective-display} is @code{t}, then the character
885 control-m marks the start of hidden text; the control-m, and the rest
886 of the line following it, are not displayed.  This is explicit selective
887 display.
889 @item
890 If the value of @code{selective-display} is a positive integer, then
891 lines that start with more than that many columns of indentation are not
892 displayed.
893 @end itemize
895 When some portion of a buffer is hidden, the vertical movement
896 commands operate as if that portion did not exist, allowing a single
897 @code{next-line} command to skip any number of hidden lines.
898 However, character movement commands (such as @code{forward-char}) do
899 not skip the hidden portion, and it is possible (if tricky) to insert
900 or delete text in an hidden portion.
902 In the examples below, we show the @emph{display appearance} of the
903 buffer @code{foo}, which changes with the value of
904 @code{selective-display}.  The @emph{contents} of the buffer do not
905 change.
907 @example
908 @group
909 (setq selective-display nil)
910      @result{} nil
912 ---------- Buffer: foo ----------
913 1 on this column
914  2on this column
915   3n this column
916   3n this column
917  2on this column
918 1 on this column
919 ---------- Buffer: foo ----------
920 @end group
922 @group
923 (setq selective-display 2)
924      @result{} 2
926 ---------- Buffer: foo ----------
927 1 on this column
928  2on this column
929  2on this column
930 1 on this column
931 ---------- Buffer: foo ----------
932 @end group
933 @end example
934 @end defvar
936 @defvar selective-display-ellipses
937 If this buffer-local variable is non-@code{nil}, then Emacs displays
938 @samp{@dots{}} at the end of a line that is followed by hidden text.
939 This example is a continuation of the previous one.
941 @example
942 @group
943 (setq selective-display-ellipses t)
944      @result{} t
946 ---------- Buffer: foo ----------
947 1 on this column
948  2on this column ...
949  2on this column
950 1 on this column
951 ---------- Buffer: foo ----------
952 @end group
953 @end example
955 You can use a display table to substitute other text for the ellipsis
956 (@samp{@dots{}}).  @xref{Display Tables}.
957 @end defvar
959 @node Temporary Displays
960 @section Temporary Displays
962   Temporary displays are used by Lisp programs to put output into a
963 buffer and then present it to the user for perusal rather than for
964 editing.  Many help commands use this feature.
966 @defspec with-output-to-temp-buffer buffer-name forms@dots{}
967 This function executes @var{forms} while arranging to insert any output
968 they print into the buffer named @var{buffer-name}, which is first
969 created if necessary, and put into Help mode.  Finally, the buffer is
970 displayed in some window, but not selected.
972 If the @var{forms} do not change the major mode in the output buffer,
973 so that it is still Help mode at the end of their execution, then
974 @code{with-output-to-temp-buffer} makes this buffer read-only at the
975 end, and also scans it for function and variable names to make them
976 into clickable cross-references.  @xref{Docstring hyperlinks, , Tips
977 for Documentation Strings}, in particular the item on hyperlinks in
978 documentation strings, for more details.
980 The string @var{buffer-name} specifies the temporary buffer, which
981 need not already exist.  The argument must be a string, not a buffer.
982 The buffer is erased initially (with no questions asked), and it is
983 marked as unmodified after @code{with-output-to-temp-buffer} exits.
985 @code{with-output-to-temp-buffer} binds @code{standard-output} to the
986 temporary buffer, then it evaluates the forms in @var{forms}.  Output
987 using the Lisp output functions within @var{forms} goes by default to
988 that buffer (but screen display and messages in the echo area, although
989 they are ``output'' in the general sense of the word, are not affected).
990 @xref{Output Functions}.
992 Several hooks are available for customizing the behavior
993 of this construct; they are listed below.
995 The value of the last form in @var{forms} is returned.
997 @example
998 @group
999 ---------- Buffer: foo ----------
1000  This is the contents of foo.
1001 ---------- Buffer: foo ----------
1002 @end group
1004 @group
1005 (with-output-to-temp-buffer "foo"
1006     (print 20)
1007     (print standard-output))
1008 @result{} #<buffer foo>
1010 ---------- Buffer: foo ----------
1013 #<buffer foo>
1015 ---------- Buffer: foo ----------
1016 @end group
1017 @end example
1018 @end defspec
1020 @defvar temp-buffer-show-function
1021 If this variable is non-@code{nil}, @code{with-output-to-temp-buffer}
1022 calls it as a function to do the job of displaying a help buffer.  The
1023 function gets one argument, which is the buffer it should display.
1025 It is a good idea for this function to run @code{temp-buffer-show-hook}
1026 just as @code{with-output-to-temp-buffer} normally would, inside of
1027 @code{save-selected-window} and with the chosen window and buffer
1028 selected.
1029 @end defvar
1031 @defvar temp-buffer-setup-hook
1032 This normal hook is run by @code{with-output-to-temp-buffer} before
1033 evaluating @var{body}.  When the hook runs, the temporary buffer is
1034 current.  This hook is normally set up with a function to put the
1035 buffer in Help mode.
1036 @end defvar
1038 @defvar temp-buffer-show-hook
1039 This normal hook is run by @code{with-output-to-temp-buffer} after
1040 displaying the temporary buffer.  When the hook runs, the temporary buffer
1041 is current, and the window it was displayed in is selected.  This hook
1042 is normally set up with a function to make the buffer read only, and
1043 find function names and variable names in it, provided the major mode
1044 is Help mode.
1045 @end defvar
1047 @defun momentary-string-display string position &optional char message
1048 This function momentarily displays @var{string} in the current buffer at
1049 @var{position}.  It has no effect on the undo list or on the buffer's
1050 modification status.
1052 The momentary display remains until the next input event.  If the next
1053 input event is @var{char}, @code{momentary-string-display} ignores it
1054 and returns.  Otherwise, that event remains buffered for subsequent use
1055 as input.  Thus, typing @var{char} will simply remove the string from
1056 the display, while typing (say) @kbd{C-f} will remove the string from
1057 the display and later (presumably) move point forward.  The argument
1058 @var{char} is a space by default.
1060 The return value of @code{momentary-string-display} is not meaningful.
1062 If the string @var{string} does not contain control characters, you can
1063 do the same job in a more general way by creating (and then subsequently
1064 deleting) an overlay with a @code{before-string} property.
1065 @xref{Overlay Properties}.
1067 If @var{message} is non-@code{nil}, it is displayed in the echo area
1068 while @var{string} is displayed in the buffer.  If it is @code{nil}, a
1069 default message says to type @var{char} to continue.
1071 In this example, point is initially located at the beginning of the
1072 second line:
1074 @example
1075 @group
1076 ---------- Buffer: foo ----------
1077 This is the contents of foo.
1078 @point{}Second line.
1079 ---------- Buffer: foo ----------
1080 @end group
1082 @group
1083 (momentary-string-display
1084   "**** Important Message! ****"
1085   (point) ?\r
1086   "Type RET when done reading")
1087 @result{} t
1088 @end group
1090 @group
1091 ---------- Buffer: foo ----------
1092 This is the contents of foo.
1093 **** Important Message! ****Second line.
1094 ---------- Buffer: foo ----------
1096 ---------- Echo Area ----------
1097 Type RET when done reading
1098 ---------- Echo Area ----------
1099 @end group
1100 @end example
1101 @end defun
1103 @node Overlays
1104 @section Overlays
1105 @cindex overlays
1107 You can use @dfn{overlays} to alter the appearance of a buffer's text on
1108 the screen, for the sake of presentation features.  An overlay is an
1109 object that belongs to a particular buffer, and has a specified
1110 beginning and end.  It also has properties that you can examine and set;
1111 these affect the display of the text within the overlay.
1113 An overlay uses markers to record its beginning and end; thus,
1114 editing the text of the buffer adjusts the beginning and end of each
1115 overlay so that it stays with the text.  When you create the overlay,
1116 you can specify whether text inserted at the beginning should be
1117 inside the overlay or outside, and likewise for the end of the overlay.
1119 @menu
1120 * Managing Overlays::   Creating and moving overlays.
1121 * Overlay Properties::  How to read and set properties.
1122                         What properties do to the screen display.
1123 * Finding Overlays::    Searching for overlays.
1124 @end menu
1126 @node Managing Overlays
1127 @subsection Managing Overlays
1129   This section describes the functions to create, delete and move
1130 overlays, and to examine their contents.  Overlay changes are not
1131 recorded in the buffer's undo list, since the overlays are not
1132 part of the buffer's contents.
1134 @defun overlayp object
1135 This function returns @code{t} if @var{object} is an overlay.
1136 @end defun
1138 @defun make-overlay start end &optional buffer front-advance rear-advance
1139 This function creates and returns an overlay that belongs to
1140 @var{buffer} and ranges from @var{start} to @var{end}.  Both @var{start}
1141 and @var{end} must specify buffer positions; they may be integers or
1142 markers.  If @var{buffer} is omitted, the overlay is created in the
1143 current buffer.
1145 The arguments @var{front-advance} and @var{rear-advance} specify the
1146 marker insertion type for the start of the overlay and for the end of
1147 the overlay, respectively.  @xref{Marker Insertion Types}.  If they
1148 are both @code{nil}, the default, then the overlay extends to include
1149 any text inserted at the beginning, but not text inserted at the end.
1150 If @var{front-advance} is non-@code{nil}, text inserted at the
1151 beginning of the overlay is excluded from the overlay.  If
1152 @var{rear-advance} is non-@code{nil}, text inserted at the end of the
1153 overlay is included in the overlay.
1154 @end defun
1156 @defun overlay-start overlay
1157 This function returns the position at which @var{overlay} starts,
1158 as an integer.
1159 @end defun
1161 @defun overlay-end overlay
1162 This function returns the position at which @var{overlay} ends,
1163 as an integer.
1164 @end defun
1166 @defun overlay-buffer overlay
1167 This function returns the buffer that @var{overlay} belongs to.  It
1168 returns @code{nil} if @var{overlay} has been deleted.
1169 @end defun
1171 @defun delete-overlay overlay
1172 This function deletes @var{overlay}.  The overlay continues to exist as
1173 a Lisp object, and its property list is unchanged, but it ceases to be
1174 attached to the buffer it belonged to, and ceases to have any effect on
1175 display.
1177 A deleted overlay is not permanently disconnected.  You can give it a
1178 position in a buffer again by calling @code{move-overlay}.
1179 @end defun
1181 @defun move-overlay overlay start end &optional buffer
1182 This function moves @var{overlay} to @var{buffer}, and places its bounds
1183 at @var{start} and @var{end}.  Both arguments @var{start} and @var{end}
1184 must specify buffer positions; they may be integers or markers.
1186 If @var{buffer} is omitted, @var{overlay} stays in the same buffer it
1187 was already associated with; if @var{overlay} was deleted, it goes into
1188 the current buffer.
1190 The return value is @var{overlay}.
1192 This is the only valid way to change the endpoints of an overlay.  Do
1193 not try modifying the markers in the overlay by hand, as that fails to
1194 update other vital data structures and can cause some overlays to be
1195 ``lost.''
1196 @end defun
1198 @defun remove-overlays &optional start end name value
1199 This function removes all the overlays between @var{start} and
1200 @var{end} whose property @var{name} has the value @var{value}.  It can
1201 move the endpoints of the overlays in the region, or split them.
1203 If @var{name} is omitted or @code{nil}, it means to delete all overlays in
1204 the specified region.  If @var{start} and/or @var{end} are omitted or
1205 @code{nil}, that means the beginning and end of the buffer respectively.
1206 Therefore, @code{(remove-overlays)} removes all the overlays in the
1207 current buffer.
1208 @end defun
1210   Here are some examples:
1212 @example
1213 ;; @r{Create an overlay.}
1214 (setq foo (make-overlay 1 10))
1215      @result{} #<overlay from 1 to 10 in display.texi>
1216 (overlay-start foo)
1217      @result{} 1
1218 (overlay-end foo)
1219      @result{} 10
1220 (overlay-buffer foo)
1221      @result{} #<buffer display.texi>
1222 ;; @r{Give it a property we can check later.}
1223 (overlay-put foo 'happy t)
1224      @result{} t
1225 ;; @r{Verify the property is present.}
1226 (overlay-get foo 'happy)
1227      @result{} t
1228 ;; @r{Move the overlay.}
1229 (move-overlay foo 5 20)
1230      @result{} #<overlay from 5 to 20 in display.texi>
1231 (overlay-start foo)
1232      @result{} 5
1233 (overlay-end foo)
1234      @result{} 20
1235 ;; @r{Delete the overlay.}
1236 (delete-overlay foo)
1237      @result{} nil
1238 ;; @r{Verify it is deleted.}
1240      @result{} #<overlay in no buffer>
1241 ;; @r{A deleted overlay has no position.}
1242 (overlay-start foo)
1243      @result{} nil
1244 (overlay-end foo)
1245      @result{} nil
1246 (overlay-buffer foo)
1247      @result{} nil
1248 ;; @r{Undelete the overlay.}
1249 (move-overlay foo 1 20)
1250      @result{} #<overlay from 1 to 20 in display.texi>
1251 ;; @r{Verify the results.}
1252 (overlay-start foo)
1253      @result{} 1
1254 (overlay-end foo)
1255      @result{} 20
1256 (overlay-buffer foo)
1257      @result{} #<buffer display.texi>
1258 ;; @r{Moving and deleting the overlay does not change its properties.}
1259 (overlay-get foo 'happy)
1260      @result{} t
1261 @end example
1263   Emacs stores the overlays of each buffer in two lists, divided
1264 around an arbitrary ``center position.''  One list extends backwards
1265 through the buffer from that center position, and the other extends
1266 forwards from that center position.  The center position can be anywhere
1267 in the buffer.
1269 @defun overlay-recenter pos
1270 This function recenters the overlays of the current buffer around
1271 position @var{pos}.  That makes overlay lookup faster for positions
1272 near @var{pos}, but slower for positions far away from @var{pos}.
1273 @end defun
1275   A loop that scans the buffer forwards, creating overlays, can run
1276 faster if you do @code{(overlay-recenter (point-max))} first.
1278 @node Overlay Properties
1279 @subsection Overlay Properties
1281   Overlay properties are like text properties in that the properties that
1282 alter how a character is displayed can come from either source.  But in
1283 most respects they are different.  @xref{Text Properties}, for comparison.
1285   Text properties are considered a part of the text; overlays and
1286 their properties are specifically considered not to be part of the
1287 text.  Thus, copying text between various buffers and strings
1288 preserves text properties, but does not try to preserve overlays.
1289 Changing a buffer's text properties marks the buffer as modified,
1290 while moving an overlay or changing its properties does not.  Unlike
1291 text property changes, overlay property changes are not recorded in
1292 the buffer's undo list.
1294   These functions read and set the properties of an overlay:
1296 @defun overlay-get overlay prop
1297 This function returns the value of property @var{prop} recorded in
1298 @var{overlay}, if any.  If @var{overlay} does not record any value for
1299 that property, but it does have a @code{category} property which is a
1300 symbol, that symbol's @var{prop} property is used.  Otherwise, the value
1301 is @code{nil}.
1302 @end defun
1304 @defun overlay-put overlay prop value
1305 This function sets the value of property @var{prop} recorded in
1306 @var{overlay} to @var{value}.  It returns @var{value}.
1307 @end defun
1309 @defun overlay-properties overlay
1310 This returns a copy of the property list of @var{overlay}.
1311 @end defun
1313   See also the function @code{get-char-property} which checks both
1314 overlay properties and text properties for a given character.
1315 @xref{Examining Properties}.
1317   Many overlay properties have special meanings; here is a table
1318 of them:
1320 @table @code
1321 @item priority
1322 @kindex priority @r{(overlay property)}
1323 This property's value (which should be a nonnegative integer number)
1324 determines the priority of the overlay.  The priority matters when two
1325 or more overlays cover the same character and both specify the same
1326 property; the one whose @code{priority} value is larger takes priority
1327 over the other.  For the @code{face} property, the higher priority
1328 value does not completely replace the other; instead, its face
1329 attributes override the face attributes of the lower priority
1330 @code{face} property.
1332 Currently, all overlays take priority over text properties.  Please
1333 avoid using negative priority values, as we have not yet decided just
1334 what they should mean.
1336 @item window
1337 @kindex window @r{(overlay property)}
1338 If the @code{window} property is non-@code{nil}, then the overlay
1339 applies only on that window.
1341 @item category
1342 @kindex category @r{(overlay property)}
1343 If an overlay has a @code{category} property, we call it the
1344 @dfn{category} of the overlay.  It should be a symbol.  The properties
1345 of the symbol serve as defaults for the properties of the overlay.
1347 @item face
1348 @kindex face @r{(overlay property)}
1349 This property controls the way text is displayed---for example, which
1350 font and which colors.  @xref{Faces}, for more information.
1352 In the simplest case, the value is a face name.  It can also be a list;
1353 then each element can be any of these possibilities:
1355 @itemize @bullet
1356 @item
1357 A face name (a symbol or string).
1359 @item
1360 A property list of face attributes.  This has the form (@var{keyword}
1361 @var{value} @dots{}), where each @var{keyword} is a face attribute
1362 name and @var{value} is a meaningful value for that attribute.  With
1363 this feature, you do not need to create a face each time you want to
1364 specify a particular attribute for certain text.  @xref{Face
1365 Attributes}.
1367 @item
1368 A cons cell, either of the form @code{(foreground-color . @var{color-name})} or
1369 @code{(background-color . @var{color-name})}.  These elements specify
1370 just the foreground color or just the background color.
1372 @code{(foreground-color . @var{color-name})} has the same effect as
1373 @code{(:foreground @var{color-name})}; likewise for the background.
1374 @end itemize
1376 @item mouse-face
1377 @kindex mouse-face @r{(overlay property)}
1378 This property is used instead of @code{face} when the mouse is within
1379 the range of the overlay.
1381 @item display
1382 @kindex display @r{(overlay property)}
1383 This property activates various features that change the
1384 way text is displayed.  For example, it can make text appear taller
1385 or shorter, higher or lower, wider or narrower, or replaced with an image.
1386 @xref{Display Property}.
1388 @item help-echo
1389 @kindex help-echo @r{(overlay property)}
1390 If an overlay has a @code{help-echo} property, then when you move the
1391 mouse onto the text in the overlay, Emacs displays a help string in the
1392 echo area, or in the tooltip window.  For details see @ref{Text
1393 help-echo}.
1395 @item modification-hooks
1396 @kindex modification-hooks @r{(overlay property)}
1397 This property's value is a list of functions to be called if any
1398 character within the overlay is changed or if text is inserted strictly
1399 within the overlay.
1401 The hook functions are called both before and after each change.
1402 If the functions save the information they receive, and compare notes
1403 between calls, they can determine exactly what change has been made
1404 in the buffer text.
1406 When called before a change, each function receives four arguments: the
1407 overlay, @code{nil}, and the beginning and end of the text range to be
1408 modified.
1410 When called after a change, each function receives five arguments: the
1411 overlay, @code{t}, the beginning and end of the text range just
1412 modified, and the length of the pre-change text replaced by that range.
1413 (For an insertion, the pre-change length is zero; for a deletion, that
1414 length is the number of characters deleted, and the post-change
1415 beginning and end are equal.)
1417 If these functions modify the buffer, they should bind
1418 @code{inhibit-modification-hooks} to @code{t} around doing so, to
1419 avoid confusing the internal mechanism that calls these hooks.
1421 @item insert-in-front-hooks
1422 @kindex insert-in-front-hooks @r{(overlay property)}
1423 This property's value is a list of functions to be called before and
1424 after inserting text right at the beginning of the overlay.  The calling
1425 conventions are the same as for the @code{modification-hooks} functions.
1427 @item insert-behind-hooks
1428 @kindex insert-behind-hooks @r{(overlay property)}
1429 This property's value is a list of functions to be called before and
1430 after inserting text right at the end of the overlay.  The calling
1431 conventions are the same as for the @code{modification-hooks} functions.
1433 @item invisible
1434 @kindex invisible @r{(overlay property)}
1435 The @code{invisible} property can make the text in the overlay
1436 invisible, which means that it does not appear on the screen.
1437 @xref{Invisible Text}, for details.
1439 @item intangible
1440 @kindex intangible @r{(overlay property)}
1441 The @code{intangible} property on an overlay works just like the
1442 @code{intangible} text property.  @xref{Special Properties}, for details.
1444 @item isearch-open-invisible
1445 This property tells incremental search how to make an invisible overlay
1446 visible, permanently, if the final match overlaps it.  @xref{Invisible
1447 Text}.
1449 @item isearch-open-invisible-temporary
1450 This property tells incremental search how to make an invisible overlay
1451 visible, temporarily, during the search.  @xref{Invisible Text}.
1453 @item before-string
1454 @kindex before-string @r{(overlay property)}
1455 This property's value is a string to add to the display at the beginning
1456 of the overlay.  The string does not appear in the buffer in any
1457 sense---only on the screen.
1459 @item after-string
1460 @kindex after-string @r{(overlay property)}
1461 This property's value is a string to add to the display at the end of
1462 the overlay.  The string does not appear in the buffer in any
1463 sense---only on the screen.
1465 @item evaporate
1466 @kindex evaporate @r{(overlay property)}
1467 If this property is non-@code{nil}, the overlay is deleted automatically
1468 if it becomes empty (i.e., if its length becomes zero).  If you give
1469 an empty overlay a non-@code{nil} @code{evaporate} property, that deletes
1470 it immediately.
1472 @item local-map
1473 @cindex keymap of character (and overlays)
1474 @kindex local-map @r{(overlay property)}
1475 If this property is non-@code{nil}, it specifies a keymap for a portion
1476 of the text.  The property's value replaces the buffer's local map, when
1477 the character after point is within the overlay.  @xref{Active Keymaps}.
1479 @item keymap
1480 @kindex keymap @r{(overlay property)}
1481 The @code{keymap} property is similar to @code{local-map} but overrides the
1482 buffer's local map (and the map specified by the @code{local-map}
1483 property) rather than replacing it.
1484 @end table
1486 @node Finding Overlays
1487 @subsection Searching for Overlays
1489 @defun overlays-at pos
1490 This function returns a list of all the overlays that cover the
1491 character at position @var{pos} in the current buffer.  The list is in
1492 no particular order.  An overlay contains position @var{pos} if it
1493 begins at or before @var{pos}, and ends after @var{pos}.
1495 To illustrate usage, here is a Lisp function that returns a list of the
1496 overlays that specify property @var{prop} for the character at point:
1498 @smallexample
1499 (defun find-overlays-specifying (prop)
1500   (let ((overlays (overlays-at (point)))
1501         found)
1502     (while overlays
1503       (let ((overlay (car overlays)))
1504         (if (overlay-get overlay prop)
1505             (setq found (cons overlay found))))
1506       (setq overlays (cdr overlays)))
1507     found))
1508 @end smallexample
1509 @end defun
1511 @defun overlays-in beg end
1512 This function returns a list of the overlays that overlap the region
1513 @var{beg} through @var{end}.  ``Overlap'' means that at least one
1514 character is contained within the overlay and also contained within the
1515 specified region; however, empty overlays are included in the result if
1516 they are located at @var{beg}, or strictly between @var{beg} and @var{end}.
1517 @end defun
1519 @defun next-overlay-change pos
1520 This function returns the buffer position of the next beginning or end
1521 of an overlay, after @var{pos}.  If there is none, it returns
1522 @code{(point-max)}.
1523 @end defun
1525 @defun previous-overlay-change pos
1526 This function returns the buffer position of the previous beginning or
1527 end of an overlay, before @var{pos}.  If there is none, it returns
1528 @code{(point-min)}.
1529 @end defun
1531   As an example, here's a simplified (and inefficient) version of the
1532 primitive function @code{next-single-char-property-change}
1533 (@pxref{Property Search}).  It searches forward from position
1534 @var{pos} for the next position where the value of a given property
1535 @code{prop}, as obtained from either overlays or text properties,
1536 changes.
1538 @smallexample
1539 (defun next-single-char-property-change (position prop)
1540   (save-excursion
1541     (goto-char position)
1542     (let ((propval (get-char-property (point) prop)))
1543       (while (and (not (eobp))
1544                   (eq (get-char-property (point) prop) propval))
1545         (goto-char (min (next-overlay-change (point))
1546                         (next-single-property-change (point) prop)))))
1547     (point)))
1548 @end smallexample
1550 @node Width
1551 @section Width
1553 Since not all characters have the same width, these functions let you
1554 check the width of a character.  @xref{Primitive Indent}, and
1555 @ref{Screen Lines}, for related functions.
1557 @defun char-width char
1558 This function returns the width in columns of the character @var{char},
1559 if it were displayed in the current buffer and the selected window.
1560 @end defun
1562 @defun string-width string
1563 This function returns the width in columns of the string @var{string},
1564 if it were displayed in the current buffer and the selected window.
1565 @end defun
1567 @defun truncate-string-to-width string width &optional start-column padding ellipsis
1568 This function returns the part of @var{string} that fits within
1569 @var{width} columns, as a new string.
1571 If @var{string} does not reach @var{width}, then the result ends where
1572 @var{string} ends.  If one multi-column character in @var{string}
1573 extends across the column @var{width}, that character is not included in
1574 the result.  Thus, the result can fall short of @var{width} but cannot
1575 go beyond it.
1577 The optional argument @var{start-column} specifies the starting column.
1578 If this is non-@code{nil}, then the first @var{start-column} columns of
1579 the string are omitted from the value.  If one multi-column character in
1580 @var{string} extends across the column @var{start-column}, that
1581 character is not included.
1583 The optional argument @var{padding}, if non-@code{nil}, is a padding
1584 character added at the beginning and end of the result string, to extend
1585 it to exactly @var{width} columns.  The padding character is used at the
1586 end of the result if it falls short of @var{width}.  It is also used at
1587 the beginning of the result if one multi-column character in
1588 @var{string} extends across the column @var{start-column}.
1590 If @var{ellipsis} is non-@code{nil}, it should be a string which will
1591 replace the end of @var{str} (including any padding) if it extends
1592 beyond @var{end-column}, unless the display width of @var{str} is
1593 equal to or less than the display width of @var{ellipsis}.  If
1594 @var{ellipsis} is non-@code{nil} and not a string, it stands for
1595 @code{"..."}.
1597 @example
1598 (truncate-string-to-width "\tab\t" 12 4)
1599      @result{} "ab"
1600 (truncate-string-to-width "\tab\t" 12 4 ?\s)
1601      @result{} "    ab  "
1602 @end example
1603 @end defun
1605 @node Line Height
1606 @section Line Height
1607 @cindex line height
1609   The total height of each display line consists of the height of the
1610 contents of the line, plus optional additional vertical line spacing
1611 above or below the display line.
1613   The height of the line contents is the maximum height of any
1614 character or image on that display line, including the final newline
1615 if there is one.  (A display line that is continued doesn't include a
1616 final newline.)  That is the default line height, if you do nothing to
1617 specify a greater height.  (In the most common case, this equals the
1618 height of the default frame font.)
1620   There are several ways to explicitly specify a larger line height,
1621 either by specifying an absolute height for the display line, or by
1622 specifying vertical space.  However, no matter what you specify, the
1623 actual line height can never be less than the default.
1625 @kindex line-height @r{(text property)}
1626   A newline can have a @code{line-height} text or overlay property
1627 that controls the total height of the display line ending in that
1628 newline.
1630   If the property value is @code{t}, the newline character has no
1631 effect on the displayed height of the line---the visible contents
1632 alone determine the height.  This is useful for tiling small images
1633 (or image slices) without adding blank areas between the images.
1635   If the property value is a list of the form @code{(@var{height}
1636 @var{total})}, that adds extra space @emph{below} the display line.
1637 First Emacs uses @var{height} as a height spec to control extra space
1638 @emph{above} the line; then it adds enough space @emph{below} the line
1639 to bring the total line height up to @var{total}.  In this case, the
1640 other ways to specify the line spacing are ignored.
1642   Any other kind of property value is a height spec, which translates
1643 into a number---the specified line height.  There are several ways to
1644 write a height spec; here's how each of them translates into a number:
1646 @table @code
1647 @item @var{integer}
1648 If the height spec is a positive integer, the height value is that integer.
1649 @item @var{float}
1650 If the height spec is a float, @var{float}, the numeric height value
1651 is @var{float} times the frame's default line height.
1652 @item (@var{face} . @var{ratio})
1653 If the height spec is a cons of the format shown, the numeric height
1654 is @var{ratio} times the height of face @var{face}.  @var{ratio} can
1655 be any type of number, or @code{nil} which means a ratio of 1.
1656 If @var{face} is @code{t}, it refers to the current face.
1657 @item (nil . @var{ratio})
1658 If the height spec is a cons of the format shown, the numeric height
1659 is @var{ratio} times the height of the contents of the line.
1660 @end table
1662   Thus, any valid height spec determines the height in pixels, one way
1663 or another.  If the line contents' height is less than that, Emacs
1664 adds extra vertical space above the line to achieve the specified
1665 total height.
1667   If you don't specify the @code{line-height} property, the line's
1668 height consists of the contents' height plus the line spacing.
1669 There are several ways to specify the line spacing for different
1670 parts of Emacs text.
1672 @vindex default-line-spacing
1673   You can specify the line spacing for all lines in a frame with the
1674 @code{line-spacing} frame parameter (@pxref{Layout Parameters}).
1675 However, if the variable @code{default-line-spacing} is
1676 non-@code{nil}, it overrides the frame's @code{line-spacing}
1677 parameter.  An integer value specifies the number of pixels put below
1678 lines on graphical displays.  A floating point number specifies the
1679 spacing relative to the frame's default line height.
1681 @vindex line-spacing
1682   You can specify the line spacing for all lines in a buffer via the
1683 buffer-local @code{line-spacing} variable.  An integer value specifies
1684 the number of pixels put below lines on graphical displays.  A floating
1685 point number specifies the spacing relative to the default frame line
1686 height.  This overrides line spacings specified for the frame.
1688 @kindex line-spacing @r{(text property)}
1689   Finally, a newline can have a @code{line-spacing} text or overlay
1690 property that overrides the default frame line spacing and the buffer
1691 local @code{line-spacing} variable, for the display line ending in
1692 that newline.
1694   One way or another, these mechanisms specify a Lisp value for the
1695 spacing of each line.  The value is a height spec, and it translates
1696 into a Lisp value as described above.  However, in this case the
1697 numeric height value specifies the line spacing, rather than the line
1698 height.
1700 @node Faces
1701 @section Faces
1702 @cindex faces
1704   A @dfn{face} is a named collection of graphical attributes: font
1705 family, foreground color, background color, optional underlining, and
1706 many others.  Faces are used in Emacs to control the style of display of
1707 particular parts of the text or the frame.  @xref{Standard Faces,,,
1708 emacs, The GNU Emacs Manual}, for the list of faces Emacs normally
1709 comes with.
1711 @cindex face id
1712 Each face has its own @dfn{face number}, which distinguishes faces at
1713 low levels within Emacs.  However, for most purposes, you refer to
1714 faces in Lisp programs by the symbols that name them.
1716 @defun facep object
1717 This function returns @code{t} if @var{object} is a face name string
1718 or symbol (or if it is a vector of the kind used internally to record
1719 face data).  It returns @code{nil} otherwise.
1720 @end defun
1722 Each face name is meaningful for all frames, and by default it has the
1723 same meaning in all frames.  But you can arrange to give a particular
1724 face name a special meaning in one frame if you wish.
1726 @menu
1727 * Defining Faces::      How to define a face with @code{defface}.
1728 * Face Attributes::     What is in a face?
1729 * Attribute Functions::  Functions to examine and set face attributes.
1730 * Displaying Faces::     How Emacs combines the faces specified for a character.
1731 * Font Selection::      Finding the best available font for a face.
1732 * Face Functions::      How to define and examine faces.
1733 * Auto Faces::          Hook for automatic face assignment.
1734 * Font Lookup::         Looking up the names of available fonts
1735                           and information about them.
1736 * Fontsets::            A fontset is a collection of fonts
1737                           that handle a range of character sets.
1738 @end menu
1740 @node Defining Faces
1741 @subsection Defining Faces
1743   The way to define a new face is with @code{defface}.  This creates a
1744 kind of customization item (@pxref{Customization}) which the user can
1745 customize using the Customization buffer (@pxref{Easy Customization,,,
1746 emacs, The GNU Emacs Manual}).
1748 @defmac defface face spec doc [keyword value]@dots{}
1749 This declares @var{face} as a customizable face that defaults
1750 according to @var{spec}.  You should not quote the symbol @var{face},
1751 and it should not end in @samp{-face} (that would be redundant).  The
1752 argument @var{doc} specifies the face documentation.  The keywords you
1753 can use in @code{defface} are the same as in @code{defgroup} and
1754 @code{defcustom} (@pxref{Common Keywords}).
1756 When @code{defface} executes, it defines the face according to
1757 @var{spec}, then uses any customizations that were read from the
1758 init file (@pxref{Init File}) to override that specification.
1760 The purpose of @var{spec} is to specify how the face should appear on
1761 different kinds of terminals.  It should be an alist whose elements
1762 have the form @code{(@var{display} @var{atts})}.  Each element's
1763 @sc{car}, @var{display}, specifies a class of terminals.  (The first
1764 element, if its @sc{car} is @code{default}, is special---it specifies
1765 defaults for the remaining elements).  The element's @sc{cadr},
1766 @var{atts}, is a list of face attributes and their values; it
1767 specifies what the face should look like on that kind of terminal.
1768 The possible attributes are defined in the value of
1769 @code{custom-face-attributes}.
1771 The @var{display} part of an element of @var{spec} determines which
1772 frames the element matches.  If more than one element of @var{spec}
1773 matches a given frame, the first element that matches is the one used
1774 for that frame.  There are three possibilities for @var{display}:
1776 @table @asis
1777 @item @code{default}
1778 This element of @var{spec} doesn't match any frames; instead, it
1779 specifies defaults that apply to all frames.  This kind of element, if
1780 used, must be the first element of @var{spec}.  Each of the following
1781 elements can override any or all of these defaults.
1783 @item @code{t}
1784 This element of @var{spec} matches all frames.  Therefore, any
1785 subsequent elements of @var{spec} are never used.  Normally
1786 @code{t} is used in the last (or only) element of @var{spec}.
1788 @item a list
1789 If @var{display} is a list, each element should have the form
1790 @code{(@var{characteristic} @var{value}@dots{})}.  Here
1791 @var{characteristic} specifies a way of classifying frames, and the
1792 @var{value}s are possible classifications which @var{display} should
1793 apply to.  Here are the possible values of @var{characteristic}:
1795 @table @code
1796 @item type
1797 The kind of window system the frame uses---either @code{graphic} (any
1798 graphics-capable display), @code{x}, @code{pc} (for the MS-DOS console),
1799 @code{w32} (for MS Windows 9X/NT/2K/XP), @code{mac} (for the Macintosh
1800 display), or @code{tty} (a non-graphics-capable display).
1801 @xref{Window Systems, window-system}.
1803 @item class
1804 What kinds of colors the frame supports---either @code{color},
1805 @code{grayscale}, or @code{mono}.
1807 @item background
1808 The kind of background---either @code{light} or @code{dark}.
1810 @item min-colors
1811 An integer that represents the minimum number of colors the frame
1812 should support.  This matches a frame if its
1813 @code{display-color-cells} value is at least the specified integer.
1815 @item supports
1816 Whether or not the frame can display the face attributes given in
1817 @var{value}@dots{} (@pxref{Face Attributes}).  See the documentation
1818 for the function @code{display-supports-face-attributes-p} for more
1819 information on exactly how this testing is done.  @xref{Display Face
1820 Attribute Testing}.
1821 @end table
1823 If an element of @var{display} specifies more than one @var{value} for a
1824 given @var{characteristic}, any of those values is acceptable.  If
1825 @var{display} has more than one element, each element should specify a
1826 different @var{characteristic}; then @emph{each} characteristic of the
1827 frame must match one of the @var{value}s specified for it in
1828 @var{display}.
1829 @end table
1830 @end defmac
1832   Here's how the standard face @code{region} is defined:
1834 @example
1835 @group
1836 (defface region
1837   '((((class color) (min-colors 88) (background dark))
1838      :background "blue3")
1839 @end group
1840     (((class color) (min-colors 88) (background light))
1841      :background "lightgoldenrod2")
1842     (((class color) (min-colors 16) (background dark))
1843      :background "blue3")
1844     (((class color) (min-colors 16) (background light))
1845      :background "lightgoldenrod2")
1846     (((class color) (min-colors 8))
1847      :background "blue" :foreground "white")
1848     (((type tty) (class mono))
1849      :inverse-video t)
1850     (t :background "gray"))
1851 @group
1852   "Basic face for highlighting the region."
1853   :group 'basic-faces)
1854 @end group
1855 @end example
1857   Internally, @code{defface} uses the symbol property
1858 @code{face-defface-spec} to record the face attributes specified in
1859 @code{defface}, @code{saved-face} for the attributes saved by the user
1860 with the customization buffer, @code{customized-face} for the
1861 attributes customized by the user for the current session, but not
1862 saved, and @code{face-documentation} for the documentation string.
1864 @defopt frame-background-mode
1865 This option, if non-@code{nil}, specifies the background type to use for
1866 interpreting face definitions.  If it is @code{dark}, then Emacs treats
1867 all frames as if they had a dark background, regardless of their actual
1868 background colors.  If it is @code{light}, then Emacs treats all frames
1869 as if they had a light background.
1870 @end defopt
1872 @node Face Attributes
1873 @subsection Face Attributes
1874 @cindex face attributes
1876   The effect of using a face is determined by a fixed set of @dfn{face
1877 attributes}.  This table lists all the face attributes, and what they
1878 mean.  You can specify more than one face for a given piece of text;
1879 Emacs merges the attributes of all the faces to determine how to
1880 display the text.  @xref{Displaying Faces}.
1882   Any attribute in a face can have the value @code{unspecified}.  This
1883 means the face doesn't specify that attribute.  In face merging, when
1884 the first face fails to specify a particular attribute, that means the
1885 next face gets a chance.  However, the @code{default} face must
1886 specify all attributes.
1888   Some of these font attributes are meaningful only on certain kinds of
1889 displays---if your display cannot handle a certain attribute, the
1890 attribute is ignored.  (The attributes @code{:family}, @code{:width},
1891 @code{:height}, @code{:weight}, and @code{:slant} correspond to parts of
1892 an X Logical Font Descriptor.)
1894 @table @code
1895 @item :family
1896 Font family name, or fontset name (@pxref{Fontsets}).  If you specify a
1897 font family name, the wild-card characters @samp{*} and @samp{?} are
1898 allowed.
1900 @item :width
1901 Relative proportionate width, also known as the character set width or
1902 set width.  This should be one of the symbols @code{ultra-condensed},
1903 @code{extra-condensed}, @code{condensed}, @code{semi-condensed},
1904 @code{normal}, @code{semi-expanded}, @code{expanded},
1905 @code{extra-expanded}, or @code{ultra-expanded}.
1907 @item :height
1908 Either the font height, an integer in units of 1/10 point, a floating
1909 point number specifying the amount by which to scale the height of any
1910 underlying face, or a function, which is called with the old height
1911 (from the underlying face), and should return the new height.
1913 @item :weight
1914 Font weight---a symbol from this series (from most dense to most faint):
1915 @code{ultra-bold}, @code{extra-bold}, @code{bold}, @code{semi-bold},
1916 @code{normal}, @code{semi-light}, @code{light}, @code{extra-light},
1917 or @code{ultra-light}.
1919 On a text-only terminal, any weight greater than normal is displayed as
1920 extra bright, and any weight less than normal is displayed as
1921 half-bright (provided the terminal supports the feature).
1923 @item :slant
1924 Font slant---one of the symbols @code{italic}, @code{oblique}, @code{normal},
1925 @code{reverse-italic}, or @code{reverse-oblique}.
1927 On a text-only terminal, slanted text is displayed as half-bright, if
1928 the terminal supports the feature.
1930 @item :foreground
1931 Foreground color, a string.  The value can be a system-defined color
1932 name, or a hexadecimal color specification of the form
1933 @samp{#@var{rr}@var{gg}@var{bb}}.  (@samp{#000000} is black,
1934 @samp{#ff0000} is red, @samp{#00ff00} is green, @samp{#0000ff} is
1935 blue, and @samp{#ffffff} is white.)
1937 @item :background
1938 Background color, a string, like the foreground color.
1940 @item :inverse-video
1941 Whether or not characters should be displayed in inverse video.  The
1942 value should be @code{t} (yes) or @code{nil} (no).
1944 @item :stipple
1945 The background stipple, a bitmap.
1947 The value can be a string; that should be the name of a file containing
1948 external-format X bitmap data.  The file is found in the directories
1949 listed in the variable @code{x-bitmap-file-path}.
1951 Alternatively, the value can specify the bitmap directly, with a list
1952 of the form @code{(@var{width} @var{height} @var{data})}.  Here,
1953 @var{width} and @var{height} specify the size in pixels, and
1954 @var{data} is a string containing the raw bits of the bitmap, row by
1955 row.  Each row occupies @math{(@var{width} + 7) / 8} consecutive bytes
1956 in the string (which should be a unibyte string for best results).
1957 This means that each row always occupies at least one whole byte.
1959 If the value is @code{nil}, that means use no stipple pattern.
1961 Normally you do not need to set the stipple attribute, because it is
1962 used automatically to handle certain shades of gray.
1964 @item :underline
1965 Whether or not characters should be underlined, and in what color.  If
1966 the value is @code{t}, underlining uses the foreground color of the
1967 face.  If the value is a string, underlining uses that color.  The
1968 value @code{nil} means do not underline.
1970 @item :overline
1971 Whether or not characters should be overlined, and in what color.
1972 The value is used like that of @code{:underline}.
1974 @item :strike-through
1975 Whether or not characters should be strike-through, and in what
1976 color.  The value is used like that of @code{:underline}.
1978 @item :inherit
1979 The name of a face from which to inherit attributes, or a list of face
1980 names.  Attributes from inherited faces are merged into the face like an
1981 underlying face would be, with higher priority than underlying faces.
1982 If a list of faces is used, attributes from faces earlier in the list
1983 override those from later faces.
1985 @item :box
1986 Whether or not a box should be drawn around characters, its color, the
1987 width of the box lines, and 3D appearance.
1988 @end table
1990   Here are the possible values of the @code{:box} attribute, and what
1991 they mean:
1993 @table @asis
1994 @item @code{nil}
1995 Don't draw a box.
1997 @item @code{t}
1998 Draw a box with lines of width 1, in the foreground color.
2000 @item @var{color}
2001 Draw a box with lines of width 1, in color @var{color}.
2003 @item @code{(:line-width @var{width} :color @var{color} :style @var{style})}
2004 This way you can explicitly specify all aspects of the box.  The value
2005 @var{width} specifies the width of the lines to draw; it defaults to 1.
2007 The value @var{color} specifies the color to draw with.  The default is
2008 the foreground color of the face for simple boxes, and the background
2009 color of the face for 3D boxes.
2011 The value @var{style} specifies whether to draw a 3D box.  If it is
2012 @code{released-button}, the box looks like a 3D button that is not being
2013 pressed.  If it is @code{pressed-button}, the box looks like a 3D button
2014 that is being pressed.  If it is @code{nil} or omitted, a plain 2D box
2015 is used.
2016 @end table
2018   In older versions of Emacs, before @code{:family}, @code{:height},
2019 @code{:width}, @code{:weight}, and @code{:slant} existed, these
2020 attributes were used to specify the type face.  They are now
2021 semi-obsolete, but they still work:
2023 @table @code
2024 @item :font
2025 This attribute specifies the font name.
2027 @item :bold
2028 A non-@code{nil} value specifies a bold font.
2030 @item :italic
2031 A non-@code{nil} value specifies an italic font.
2032 @end table
2034   For compatibility, you can still set these ``attributes,'' even
2035 though they are not real face attributes.  Here is what that does:
2037 @table @code
2038 @item :font
2039 You can specify an X font name as the ``value'' of this ``attribute'';
2040 that sets the @code{:family}, @code{:width}, @code{:height},
2041 @code{:weight}, and @code{:slant} attributes according to the font name.
2043 If the value is a pattern with wildcards, the first font that matches
2044 the pattern is used to set these attributes.
2046 @item :bold
2047 A non-@code{nil} makes the face bold; @code{nil} makes it normal.
2048 This actually works by setting the @code{:weight} attribute.
2050 @item :italic
2051 A non-@code{nil} makes the face italic; @code{nil} makes it normal.
2052 This actually works by setting the @code{:slant} attribute.
2053 @end table
2055 @defvar x-bitmap-file-path
2056 This variable specifies a list of directories for searching
2057 for bitmap files, for the @code{:stipple} attribute.
2058 @end defvar
2060 @defun bitmap-spec-p object
2061 This returns @code{t} if @var{object} is a valid bitmap specification,
2062 suitable for use with @code{:stipple} (see above).  It returns
2063 @code{nil} otherwise.
2064 @end defun
2066 @node Attribute Functions
2067 @subsection Face Attribute Functions
2069   This section describes the functions for accessing and modifying the
2070 attributes of an existing face.
2072 @defun set-face-attribute face frame &rest arguments
2073 This function sets one or more attributes of face @var{face} for frame
2074 @var{frame}.  The attributes you specify this way override whatever
2075 the @code{defface} says.
2077 The extra arguments @var{arguments} specify the attributes to set, and
2078 the values for them.  They should consist of alternating attribute names
2079 (such as @code{:family} or @code{:underline}) and corresponding values.
2080 Thus,
2082 @example
2083 (set-face-attribute 'foo nil
2084                     :width 'extended
2085                     :weight 'bold
2086                     :underline "red")
2087 @end example
2089 @noindent
2090 sets the attributes @code{:width}, @code{:weight} and @code{:underline}
2091 to the corresponding values.
2093 If @var{frame} is @code{t}, this function sets the default attributes
2094 for new frames.  Default attribute values specified this way override
2095 the @code{defface} for newly created frames.
2097 If @var{frame} is @code{nil}, this function sets the attributes for
2098 all existing frames, and the default for new frames.
2099 @end defun
2101 @defun face-attribute face attribute &optional frame inherit
2102 This returns the value of the @var{attribute} attribute of face
2103 @var{face} on @var{frame}.  If @var{frame} is @code{nil},
2104 that means the selected frame (@pxref{Input Focus}).
2106 If @var{frame} is @code{t}, this returns whatever new-frames default
2107 value you previously specified with @code{set-face-attribute} for the
2108 @var{attribute} attribute of @var{face}.  If you have not specified
2109 one, it returns @code{nil}.
2111 If @var{inherit} is @code{nil}, only attributes directly defined by
2112 @var{face} are considered, so the return value may be
2113 @code{unspecified}, or a relative value.  If @var{inherit} is
2114 non-@code{nil}, @var{face}'s definition of @var{attribute} is merged
2115 with the faces specified by its @code{:inherit} attribute; however the
2116 return value may still be @code{unspecified} or relative.  If
2117 @var{inherit} is a face or a list of faces, then the result is further
2118 merged with that face (or faces), until it becomes specified and
2119 absolute.
2121 To ensure that the return value is always specified and absolute, use
2122 a value of @code{default} for @var{inherit}; this will resolve any
2123 unspecified or relative values by merging with the @code{default} face
2124 (which is always completely specified).
2126 For example,
2128 @example
2129 (face-attribute 'bold :weight)
2130      @result{} bold
2131 @end example
2132 @end defun
2134 @defun face-attribute-relative-p attribute value
2135 This function returns non-@code{nil} if @var{value}, when used as the
2136 value of the face attribute @var{attribute}, is relative.  This means
2137 it would modify, rather than completely override, any value that comes
2138 from a subsequent face in the face list or that is inherited from
2139 another face.
2141 @code{unspecified} is a relative value for all attributes.
2142 For @code{:height}, floating point values are also relative.
2144 For example:
2146 @example
2147 (read-face-name "Describe face" "= `default' face" t)
2148 @end example
2150 prompts with @samp{Describe face (default = `default' face): }.
2151 @end defun
2153 @defun merge-face-attribute attribute value1 value2
2154 If @var{value1} is a relative value for the face attribute
2155 @var{attribute}, returns it merged with the underlying value
2156 @var{value2}; otherwise, if @var{value1} is an absolute value for the
2157 face attribute @var{attribute}, returns @var{value1} unchanged.
2158 @end defun
2160   The functions above did not exist before Emacs 21.  For compatibility
2161 with older Emacs versions, you can use the following functions to set
2162 and examine the face attributes which existed in those versions.
2163 They use values of @code{t} and @code{nil} for @var{frame}
2164 just like @code{set-face-attribute} and @code{face-attribute}.
2166 @defun set-face-foreground face color &optional frame
2167 @defunx set-face-background face color &optional frame
2168 These functions set the foreground (or background, respectively) color
2169 of face @var{face} to @var{color}.  The argument @var{color} should be a
2170 string, the name of a color.
2172 Certain shades of gray are implemented by stipple patterns on
2173 black-and-white screens.
2174 @end defun
2176 @defun set-face-stipple face pattern &optional frame
2177 This function sets the background stipple pattern of face @var{face}
2178 to @var{pattern}.  The argument @var{pattern} should be the name of a
2179 stipple pattern defined by the X server, or actual bitmap data
2180 (@pxref{Face Attributes}), or @code{nil} meaning don't use stipple.
2182 Normally there is no need to pay attention to stipple patterns, because
2183 they are used automatically to handle certain shades of gray.
2184 @end defun
2186 @defun set-face-font face font &optional frame
2187 This function sets the font of face @var{face}.  This actually sets
2188 the attributes @code{:family}, @code{:width}, @code{:height},
2189 @code{:weight}, and @code{:slant} according to the font name
2190 @var{font}.
2191 @end defun
2193 @defun set-face-bold-p face bold-p &optional frame
2194 This function specifies whether @var{face} should be bold.  If
2195 @var{bold-p} is non-@code{nil}, that means yes; @code{nil} means no.
2196 This actually sets the @code{:weight} attribute.
2197 @end defun
2199 @defun set-face-italic-p face italic-p &optional frame
2200 This function specifies whether @var{face} should be italic.  If
2201 @var{italic-p} is non-@code{nil}, that means yes; @code{nil} means no.
2202 This actually sets the @code{:slant} attribute.
2203 @end defun
2205 @defun set-face-underline-p face underline &optional frame
2206 This function sets the underline attribute of face @var{face}.
2207 Non-@code{nil} means do underline; @code{nil} means don't.
2208 If @var{underline} is a string, underline with that color.
2209 @end defun
2211 @defun set-face-inverse-video-p face inverse-video-p &optional frame
2212 This function sets the @code{:inverse-video} attribute of face
2213 @var{face}.
2214 @end defun
2216 @defun invert-face face &optional frame
2217 This function swaps the foreground and background colors of face
2218 @var{face}.
2219 @end defun
2221   These functions examine the attributes of a face.  If you don't
2222 specify @var{frame}, they refer to the selected frame; @code{t} refers
2223 to the default data for new frames.  They return the symbol
2224 @code{unspecified} if the face doesn't define any value for that
2225 attribute.
2227 @defun face-foreground face &optional frame inherit
2228 @defunx face-background face &optional frame inherit
2229 These functions return the foreground color (or background color,
2230 respectively) of face @var{face}, as a string.
2232 If @var{inherit} is @code{nil}, only a color directly defined by the face is
2233 returned.  If @var{inherit} is non-@code{nil}, any faces specified by its
2234 @code{:inherit} attribute are considered as well, and if @var{inherit}
2235 is a face or a list of faces, then they are also considered, until a
2236 specified color is found.  To ensure that the return value is always
2237 specified, use a value of @code{default} for @var{inherit}.
2238 @end defun
2240 @defun face-stipple face &optional frame inherit
2241 This function returns the name of the background stipple pattern of face
2242 @var{face}, or @code{nil} if it doesn't have one.
2244 If @var{inherit} is @code{nil}, only a stipple directly defined by the
2245 face is returned.  If @var{inherit} is non-@code{nil}, any faces
2246 specified by its @code{:inherit} attribute are considered as well, and
2247 if @var{inherit} is a face or a list of faces, then they are also
2248 considered, until a specified stipple is found.  To ensure that the
2249 return value is always specified, use a value of @code{default} for
2250 @var{inherit}.
2251 @end defun
2253 @defun face-font face &optional frame
2254 This function returns the name of the font of face @var{face}.
2255 @end defun
2257 @defun face-bold-p face &optional frame
2258 This function returns @code{t} if @var{face} is bold---that is, if it is
2259 bolder than normal.  It returns @code{nil} otherwise.
2260 @end defun
2262 @defun face-italic-p face &optional frame
2263 This function returns @code{t} if @var{face} is italic or oblique,
2264 @code{nil} otherwise.
2265 @end defun
2267 @defun face-underline-p face &optional frame
2268 This function returns the @code{:underline} attribute of face @var{face}.
2269 @end defun
2271 @defun face-inverse-video-p face &optional frame
2272 This function returns the @code{:inverse-video} attribute of face @var{face}.
2273 @end defun
2275 @node Displaying Faces
2276 @subsection Displaying Faces
2278   Here are the ways to specify which faces to use for display of text:
2280 @itemize @bullet
2281 @item
2282 With defaults.  The @code{default} face is used as the ultimate
2283 default for all text.  (In Emacs 19 and 20, the @code{default}
2284 face is used only when no other face is specified.)
2286 @item
2287 For a mode line or header line, the face @code{mode-line} or
2288 @code{mode-line-inactive}, or @code{header-line}, is merged in just
2289 before @code{default}.
2291 @item
2292 With text properties.  A character can have a @code{face} property; if
2293 so, the faces and face attributes specified there apply.  @xref{Special
2294 Properties}.
2296 If the character has a @code{mouse-face} property, that is used instead
2297 of the @code{face} property when the mouse is ``near enough'' to the
2298 character.
2300 @item
2301 With overlays.  An overlay can have @code{face} and @code{mouse-face}
2302 properties too; they apply to all the text covered by the overlay.
2304 @item
2305 With a region that is active.  In Transient Mark mode, the region is
2306 highlighted with the face @code{region} (@pxref{Standard Faces,,,
2307 emacs, The GNU Emacs Manual}).
2309 @item
2310 With special glyphs.  Each glyph can specify a particular face
2311 number.  @xref{Glyphs}.
2312 @end itemize
2314   If these various sources together specify more than one face for a
2315 particular character, Emacs merges the attributes of the various faces
2316 specified.  For each attribute, Emacs tries first the face of any
2317 special glyph; then the face for region highlighting, if appropriate;
2318 then the faces specified by overlays, followed by those specified by
2319 text properties, then the @code{mode-line} or
2320 @code{mode-line-inactive} or @code{header-line} face (if in a mode
2321 line or a header line), and last the @code{default} face.
2323   When multiple overlays cover one character, an overlay with higher
2324 priority overrides those with lower priority.  @xref{Overlays}.
2326 @node Font Selection
2327 @subsection Font Selection
2329   @dfn{Selecting a font} means mapping the specified face attributes for
2330 a character to a font that is available on a particular display.  The
2331 face attributes, as determined by face merging, specify most of the
2332 font choice, but not all.  Part of the choice depends on what character
2333 it is.
2335   If the face specifies a fontset name, that fontset determines a
2336 pattern for fonts of the given charset.  If the face specifies a font
2337 family, a font pattern is constructed.
2339   Emacs tries to find an available font for the given face attributes
2340 and character's registry and encoding.  If there is a font that matches
2341 exactly, it is used, of course.  The hard case is when no available font
2342 exactly fits the specification.  Then Emacs looks for one that is
2343 ``close''---one attribute at a time.  You can specify the order to
2344 consider the attributes.  In the case where a specified font family is
2345 not available, you can specify a set of mappings for alternatives to
2346 try.
2348 @defvar face-font-selection-order
2349 This variable specifies the order of importance of the face attributes
2350 @code{:width}, @code{:height}, @code{:weight}, and @code{:slant}.  The
2351 value should be a list containing those four symbols, in order of
2352 decreasing importance.
2354 Font selection first finds the best available matches for the first
2355 attribute listed; then, among the fonts which are best in that way, it
2356 searches for the best matches in the second attribute, and so on.
2358 The attributes @code{:weight} and @code{:width} have symbolic values in
2359 a range centered around @code{normal}.  Matches that are more extreme
2360 (farther from @code{normal}) are somewhat preferred to matches that are
2361 less extreme (closer to @code{normal}); this is designed to ensure that
2362 non-normal faces contrast with normal ones, whenever possible.
2364 The default is @code{(:width :height :weight :slant)}, which means first
2365 find the fonts closest to the specified @code{:width}, then---among the
2366 fonts with that width---find a best match for the specified font height,
2367 and so on.
2369 One example of a case where this variable makes a difference is when the
2370 default font has no italic equivalent.  With the default ordering, the
2371 @code{italic} face will use a non-italic font that is similar to the
2372 default one.  But if you put @code{:slant} before @code{:height}, the
2373 @code{italic} face will use an italic font, even if its height is not
2374 quite right.
2375 @end defvar
2377 @defvar face-font-family-alternatives
2378 This variable lets you specify alternative font families to try, if a
2379 given family is specified and doesn't exist.  Each element should have
2380 this form:
2382 @example
2383 (@var{family} @var{alternate-families}@dots{})
2384 @end example
2386 If @var{family} is specified but not available, Emacs will try the other
2387 families given in @var{alternate-families}, one by one, until it finds a
2388 family that does exist.
2389 @end defvar
2391 @defvar face-font-registry-alternatives
2392 This variable lets you specify alternative font registries to try, if a
2393 given registry is specified and doesn't exist.  Each element should have
2394 this form:
2396 @example
2397 (@var{registry} @var{alternate-registries}@dots{})
2398 @end example
2400 If @var{registry} is specified but not available, Emacs will try the
2401 other registries given in @var{alternate-registries}, one by one,
2402 until it finds a registry that does exist.
2403 @end defvar
2405   Emacs can make use of scalable fonts, but by default it does not use
2406 them, since the use of too many or too big scalable fonts can crash
2407 XFree86 servers.
2409 @defvar scalable-fonts-allowed
2410 This variable controls which scalable fonts to use.  A value of
2411 @code{nil}, the default, means do not use scalable fonts.  @code{t}
2412 means to use any scalable font that seems appropriate for the text.
2414 Otherwise, the value must be a list of regular expressions.  Then a
2415 scalable font is enabled for use if its name matches any regular
2416 expression in the list.  For example,
2418 @example
2419 (setq scalable-fonts-allowed '("muleindian-2$"))
2420 @end example
2422 @noindent
2423 allows the use of scalable fonts with registry @code{muleindian-2}.
2424 @end defvar
2426 @defvar face-font-rescale-alist
2427 This variable specifies scaling for certain faces.  Its value should
2428 be a list of elements of the form
2430 @example
2431 (@var{fontname-regexp} . @var{scale-factor})
2432 @end example
2434 If @var{fontname-regexp} matches the font name that is about to be
2435 used, this says to choose a larger similar font according to the
2436 factor @var{scale-factor}.  You would use this feature to normalize
2437 the font size if certain fonts are bigger or smaller than their
2438 nominal heights and widths would suggest.
2439 @end defvar
2441 @node Face Functions
2442 @subsection Functions for Working with Faces
2444   Here are additional functions for creating and working with faces.
2446 @defun make-face name
2447 This function defines a new face named @var{name}, initially with all
2448 attributes @code{nil}.  It does nothing if there is already a face named
2449 @var{name}.
2450 @end defun
2452 @defun face-list
2453 This function returns a list of all defined face names.
2454 @end defun
2456 @defun copy-face old-face new-name &optional frame new-frame
2457 This function defines a face named @var{new-name} as a copy of the existing
2458 face named @var{old-face}.  It creates the face @var{new-name} if that
2459 doesn't already exist.
2461 If the optional argument @var{frame} is given, this function applies
2462 only to that frame.  Otherwise it applies to each frame individually,
2463 copying attributes from @var{old-face} in each frame to @var{new-face}
2464 in the same frame.
2466 If the optional argument @var{new-frame} is given, then @code{copy-face}
2467 copies the attributes of @var{old-face} in @var{frame} to @var{new-name}
2468 in @var{new-frame}.
2469 @end defun
2471 @defun face-id face
2472 This function returns the face number of face @var{face}.
2473 @end defun
2475 @defun face-documentation face
2476 This function returns the documentation string of face @var{face}, or
2477 @code{nil} if none was specified for it.
2478 @end defun
2480 @defun face-equal face1 face2 &optional frame
2481 This returns @code{t} if the faces @var{face1} and @var{face2} have the
2482 same attributes for display.
2483 @end defun
2485 @defun face-differs-from-default-p face &optional frame
2486 This returns non-@code{nil} if the face @var{face} displays
2487 differently from the default face.
2488 @end defun
2490 @cindex face alias
2491 A @dfn{face alias} provides an equivalent name for a face.  You can
2492 define a face alias by giving the alias symbol the @code{face-alias}
2493 property, with a value of the target face name.  The following example
2494 makes @code{modeline} an alias for the @code{mode-line} face.
2496 @example
2497 (put 'modeline 'face-alias 'mode-line)
2498 @end example
2501 @node Auto Faces
2502 @subsection Automatic Face Assignment
2503 @cindex automatic face assignment
2504 @cindex faces, automatic choice
2506   This hook is used for automatically assigning faces to text in the
2507 buffer.  It is part of the implementation of Font-Lock mode.
2509 @defvar fontification-functions
2510 This variable holds a list of functions that are called by Emacs
2511 redisplay as needed to assign faces automatically to text in the buffer.
2513 The functions are called in the order listed, with one argument, a
2514 buffer position @var{pos}.  Each function should attempt to assign faces
2515 to the text in the current buffer starting at @var{pos}.
2517 Each function should record the faces they assign by setting the
2518 @code{face} property.  It should also add a non-@code{nil}
2519 @code{fontified} property for all the text it has assigned faces to.
2520 That property tells redisplay that faces have been assigned to that text
2521 already.
2523 It is probably a good idea for each function to do nothing if the
2524 character after @var{pos} already has a non-@code{nil} @code{fontified}
2525 property, but this is not required.  If one function overrides the
2526 assignments made by a previous one, the properties as they are
2527 after the last function finishes are the ones that really matter.
2529 For efficiency, we recommend writing these functions so that they
2530 usually assign faces to around 400 to 600 characters at each call.
2531 @end defvar
2533 @node Font Lookup
2534 @subsection Looking Up Fonts
2536 @defun x-list-fonts pattern &optional face frame maximum
2537 This function returns a list of available font names that match
2538 @var{pattern}.  If the optional arguments @var{face} and @var{frame} are
2539 specified, then the list is limited to fonts that are the same size as
2540 @var{face} currently is on @var{frame}.
2542 The argument @var{pattern} should be a string, perhaps with wildcard
2543 characters: the @samp{*} character matches any substring, and the
2544 @samp{?} character matches any single character.  Pattern matching
2545 of font names ignores case.
2547 If you specify @var{face} and @var{frame}, @var{face} should be a face name
2548 (a symbol) and @var{frame} should be a frame.
2550 The optional argument @var{maximum} sets a limit on how many fonts to
2551 return.  If this is non-@code{nil}, then the return value is truncated
2552 after the first @var{maximum} matching fonts.  Specifying a small value
2553 for @var{maximum} can make this function much faster, in cases where
2554 many fonts match the pattern.
2555 @end defun
2557 @defun x-family-fonts &optional family frame
2558 This function returns a list describing the available fonts for family
2559 @var{family} on @var{frame}.  If @var{family} is omitted or @code{nil},
2560 this list applies to all families, and therefore, it contains all
2561 available fonts.  Otherwise, @var{family} must be a string; it may
2562 contain the wildcards @samp{?} and @samp{*}.
2564 The list describes the display that @var{frame} is on; if @var{frame} is
2565 omitted or @code{nil}, it applies to the selected frame's display
2566 (@pxref{Input Focus}).
2568 The list contains a vector of the following form for each font:
2570 @example
2571 [@var{family} @var{width} @var{point-size} @var{weight} @var{slant}
2572  @var{fixed-p} @var{full} @var{registry-and-encoding}]
2573 @end example
2575 The first five elements correspond to face attributes; if you
2576 specify these attributes for a face, it will use this font.
2578 The last three elements give additional information about the font.
2579 @var{fixed-p} is non-@code{nil} if the font is fixed-pitch.
2580 @var{full} is the full name of the font, and
2581 @var{registry-and-encoding} is a string giving the registry and
2582 encoding of the font.
2584 The result list is sorted according to the current face font sort order.
2585 @end defun
2587 @defun x-font-family-list &optional frame
2588 This function returns a list of the font families available for
2589 @var{frame}'s display.  If @var{frame} is omitted or @code{nil}, it
2590 describes the selected frame's display (@pxref{Input Focus}).
2592 The value is a list of elements of this form:
2594 @example
2595 (@var{family} . @var{fixed-p})
2596 @end example
2598 @noindent
2599 Here @var{family} is a font family, and @var{fixed-p} is
2600 non-@code{nil} if fonts of that family are fixed-pitch.
2601 @end defun
2603 @defvar font-list-limit
2604 This variable specifies maximum number of fonts to consider in font
2605 matching.  The function @code{x-family-fonts} will not return more than
2606 that many fonts, and font selection will consider only that many fonts
2607 when searching a matching font for face attributes.  The default is
2608 currently 100.
2609 @end defvar
2611 @node Fontsets
2612 @subsection Fontsets
2614   A @dfn{fontset} is a list of fonts, each assigned to a range of
2615 character codes.  An individual font cannot display the whole range of
2616 characters that Emacs supports, but a fontset can.  Fontsets have names,
2617 just as fonts do, and you can use a fontset name in place of a font name
2618 when you specify the ``font'' for a frame or a face.  Here is
2619 information about defining a fontset under Lisp program control.
2621 @defun create-fontset-from-fontset-spec fontset-spec &optional style-variant-p noerror
2622 This function defines a new fontset according to the specification
2623 string @var{fontset-spec}.  The string should have this format:
2625 @smallexample
2626 @var{fontpattern}, @r{[}@var{charsetname}:@var{fontname}@r{]@dots{}}
2627 @end smallexample
2629 @noindent
2630 Whitespace characters before and after the commas are ignored.
2632 The first part of the string, @var{fontpattern}, should have the form of
2633 a standard X font name, except that the last two fields should be
2634 @samp{fontset-@var{alias}}.
2636 The new fontset has two names, one long and one short.  The long name is
2637 @var{fontpattern} in its entirety.  The short name is
2638 @samp{fontset-@var{alias}}.  You can refer to the fontset by either
2639 name.  If a fontset with the same name already exists, an error is
2640 signaled, unless @var{noerror} is non-@code{nil}, in which case this
2641 function does nothing.
2643 If optional argument @var{style-variant-p} is non-@code{nil}, that says
2644 to create bold, italic and bold-italic variants of the fontset as well.
2645 These variant fontsets do not have a short name, only a long one, which
2646 is made by altering @var{fontpattern} to indicate the bold or italic
2647 status.
2649 The specification string also says which fonts to use in the fontset.
2650 See below for the details.
2651 @end defun
2653   The construct @samp{@var{charset}:@var{font}} specifies which font to
2654 use (in this fontset) for one particular character set.  Here,
2655 @var{charset} is the name of a character set, and @var{font} is the font
2656 to use for that character set.  You can use this construct any number of
2657 times in the specification string.
2659   For the remaining character sets, those that you don't specify
2660 explicitly, Emacs chooses a font based on @var{fontpattern}: it replaces
2661 @samp{fontset-@var{alias}} with a value that names one character set.
2662 For the @acronym{ASCII} character set, @samp{fontset-@var{alias}} is replaced
2663 with @samp{ISO8859-1}.
2665   In addition, when several consecutive fields are wildcards, Emacs
2666 collapses them into a single wildcard.  This is to prevent use of
2667 auto-scaled fonts.  Fonts made by scaling larger fonts are not usable
2668 for editing, and scaling a smaller font is not useful because it is
2669 better to use the smaller font in its own size, which Emacs does.
2671   Thus if @var{fontpattern} is this,
2673 @example
2674 -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24
2675 @end example
2677 @noindent
2678 the font specification for @acronym{ASCII} characters would be this:
2680 @example
2681 -*-fixed-medium-r-normal-*-24-*-ISO8859-1
2682 @end example
2684 @noindent
2685 and the font specification for Chinese GB2312 characters would be this:
2687 @example
2688 -*-fixed-medium-r-normal-*-24-*-gb2312*-*
2689 @end example
2691   You may not have any Chinese font matching the above font
2692 specification.  Most X distributions include only Chinese fonts that
2693 have @samp{song ti} or @samp{fangsong ti} in the @var{family} field.  In
2694 such a case, @samp{Fontset-@var{n}} can be specified as below:
2696 @smallexample
2697 Emacs.Fontset-0: -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24,\
2698         chinese-gb2312:-*-*-medium-r-normal-*-24-*-gb2312*-*
2699 @end smallexample
2701 @noindent
2702 Then, the font specifications for all but Chinese GB2312 characters have
2703 @samp{fixed} in the @var{family} field, and the font specification for
2704 Chinese GB2312 characters has a wild card @samp{*} in the @var{family}
2705 field.
2707 @defun set-fontset-font name character fontname &optional frame
2708 This function modifies the existing fontset @var{name} to
2709 use the font name @var{fontname} for the character @var{character}.
2711 If @var{name} is @code{nil}, this function modifies the default
2712 fontset, whose short name is @samp{fontset-default}.
2714 @var{character} may be a cons; @code{(@var{from} . @var{to})}, where
2715 @var{from} and @var{to} are non-generic characters.  In that case, use
2716 @var{fontname} for all characters in the range @var{from} and @var{to}
2717 (inclusive).
2719 @var{character} may be a charset.  In that case, use
2720 @var{fontname} for all character in the charsets.
2722 @var{fontname} may be a cons; @code{(@var{family} . @var{registry})},
2723 where @var{family} is a family name of a font (possibly including a
2724 foundry name at the head), @var{registry} is a registry name of a font
2725 (possibly including an encoding name at the tail).
2727 For instance, this changes the default fontset to use a font of which
2728 registry name is @samp{JISX0208.1983} for all characters belonging to
2729 the charset @code{japanese-jisx0208}.
2731 @smallexample
2732 (set-fontset-font nil 'japanese-jisx0208 '(nil . "JISX0208.1983"))
2733 @end smallexample
2734 @end defun
2736 @defun char-displayable-p char
2737 This function returns @code{t} if Emacs ought to be able to display
2738 @var{char}.  More precisely, if the selected frame's fontset has a
2739 font to display the character set that @var{char} belongs to.
2741 Fontsets can specify a font on a per-character basis; when the fontset
2742 does that, this function's value may not be accurate.
2743 @end defun
2745 @node Fringes
2746 @section Fringes
2747 @cindex fringes
2749   The @dfn{fringes} of a window are thin vertical strips down the
2750 sides that are used for displaying bitmaps that indicate truncation,
2751 continuation, horizontal scrolling, and the overlay arrow.
2753 @menu
2754 * Fringe Size/Pos::     Specifying where to put the window fringes.
2755 * Fringe Indicators::   Displaying indicator icons in the window fringes.
2756 * Fringe Cursors::      Displaying cursors in the right fringe.
2757 * Fringe Bitmaps::      Specifying bitmaps for fringe indicators.
2758 * Customizing Bitmaps:: Specifying your own bitmaps to use in the fringes.
2759 * Overlay Arrow::       Display of an arrow to indicate position.
2760 @end menu
2762 @node Fringe Size/Pos
2763 @subsection Fringe Size and Position
2765   The following buffer-local variables control the position and width
2766 of the window fringes.
2768 @defvar fringes-outside-margins
2769 The fringes normally appear between the display margins and the window
2770 text.  If the value is non-@code{nil}, they appear outside the display
2771 margins.  @xref{Display Margins}.
2772 @end defvar
2774 @defvar left-fringe-width
2775 This variable, if non-@code{nil}, specifies the width of the left
2776 fringe in pixels.  A value of @code{nil} means to use the left fringe
2777 width from the window's frame.
2778 @end defvar
2780 @defvar right-fringe-width
2781 This variable, if non-@code{nil}, specifies the width of the right
2782 fringe in pixels.  A value of @code{nil} means to use the right fringe
2783 width from the window's frame.
2784 @end defvar
2786   The values of these variables take effect when you display the
2787 buffer in a window.  If you change them while the buffer is visible,
2788 you can call @code{set-window-buffer} to display it once again in the
2789 same window, to make the changes take effect.
2791 @defun set-window-fringes window left &optional right outside-margins
2792 This function sets the fringe widths of window @var{window}.
2793 If @var{window} is @code{nil}, the selected window is used.
2795 The argument @var{left} specifies the width in pixels of the left
2796 fringe, and likewise @var{right} for the right fringe.  A value of
2797 @code{nil} for either one stands for the default width.  If
2798 @var{outside-margins} is non-@code{nil}, that specifies that fringes
2799 should appear outside of the display margins.
2800 @end defun
2802 @defun window-fringes &optional window
2803 This function returns information about the fringes of a window
2804 @var{window}.  If @var{window} is omitted or @code{nil}, the selected
2805 window is used.  The value has the form @code{(@var{left-width}
2806 @var{right-width} @var{outside-margins})}.
2807 @end defun
2810 @node Fringe Indicators
2811 @subsection Fringe Indicators
2812 @cindex fringe indicators
2813 @cindex indicators, fringe
2815   The @dfn{fringe indicators} are tiny icons Emacs displays in the
2816 window fringe (on a graphic display) to indicate truncated or
2817 continued lines, buffer boundaries, overlay arrow, etc.
2819 @defopt indicate-empty-lines
2820 @cindex fringes, and empty line indication
2821 When this is non-@code{nil}, Emacs displays a special glyph in the
2822 fringe of each empty line at the end of the buffer, on graphical
2823 displays.  @xref{Fringes}.  This variable is automatically
2824 buffer-local in every buffer.
2825 @end defopt
2827 @defvar indicate-buffer-boundaries
2828 This buffer-local variable controls how the buffer boundaries and
2829 window scrolling are indicated in the window fringes.
2831 Emacs can indicate the buffer boundaries---that is, the first and last
2832 line in the buffer---with angle icons when they appear on the screen.
2833 In addition, Emacs can display an up-arrow in the fringe to show
2834 that there is text above the screen, and a down-arrow to show
2835 there is text below the screen.
2837 There are three kinds of basic values:
2839 @table @asis
2840 @item @code{nil}
2841 Don't display any of these fringe icons.
2842 @item @code{left}
2843 Display the angle icons and arrows in the left fringe.
2844 @item @code{right}
2845 Display the angle icons and arrows in the right fringe.
2846 @item any non-alist
2847 Display the angle icons in the left fringe
2848 and don't display the arrows.
2849 @end table
2851 Otherwise the value should be an alist that specifies which fringe
2852 indicators to display and where.  Each element of the alist should
2853 have the form @code{(@var{indicator} . @var{position})}.  Here,
2854 @var{indicator} is one of @code{top}, @code{bottom}, @code{up},
2855 @code{down}, and @code{t} (which covers all the icons not yet
2856 specified), while @var{position} is one of @code{left}, @code{right}
2857 and @code{nil}.
2859 For example, @code{((top . left) (t . right))} places the top angle
2860 bitmap in left fringe, and the bottom angle bitmap as well as both
2861 arrow bitmaps in right fringe.  To show the angle bitmaps in the left
2862 fringe, and no arrow bitmaps, use @code{((top .  left) (bottom . left))}.
2863 @end defvar
2865 @defvar default-indicate-buffer-boundaries
2866 The value of this variable is the default value for
2867 @code{indicate-buffer-boundaries} in buffers that do not override it.
2868 @end defvar
2870 @defvar fringe-indicator-alist
2871 This buffer-local variable specifies the mapping from logical fringe
2872 indicators to the actual bitmaps displayed in the window fringes.
2874 These symbols identify the logical fringe indicators:
2876 @table @asis
2877 @item Truncation and continuation line indicators:
2878 @code{truncation}, @code{continuation}.
2880 @item Buffer position indicators:
2881 @code{up}, @code{down},
2882 @code{top}, @code{bottom},
2883 @code{top-bottom}.
2885 @item Empty line indicator:
2886 @code{empty-line}.
2888 @item Overlay arrow indicator:
2889 @code{overlay-arrow}.
2891 @item Unknown bitmap indicator:
2892 @code{unknown}.
2893 @end table
2895   The value is an alist where each element @code{(@var{indicator} . @var{bitmaps})}
2896 specifies the fringe bitmaps used to display a specific logical
2897 fringe indicator.
2899 Here, @var{indicator} specifies the logical indicator type, and
2900 @var{bitmaps} is list of symbols @code{(@var{left} @var{right}
2901 [@var{left1} @var{right1}])} which specifies the actual bitmap shown
2902 in the left or right fringe for the logical indicator.
2904 The @var{left} and @var{right} symbols specify the bitmaps shown in
2905 the left and/or right fringe for the specific indicator.  The
2906 @var{left1} or @var{right1} bitmaps are used only for the `bottom' and
2907 `top-bottom indicators when the last (only) line in has no final
2908 newline.  Alternatively, @var{bitmaps} may be a single symbol which is
2909 used in both left and right fringes.
2911 When @code{fringe-indicator-alist} has a buffer-local value, and there
2912 is no bitmap defined for a logical indicator, or the bitmap is
2913 @code{t}, the corresponding value from the (non-local)
2914 @code{default-fringe-indicator-alist} is used.
2916 To completely hide a specific indicator, set the bitmap to @code{nil}.
2917 @end defvar
2919 @defvar default-fringe-indicator-alist
2920 The value of this variable is the default value for
2921 @code{fringe-indicator-alist} in buffers that do not override it.
2922 @end defvar
2924 Standard fringe bitmaps for indicators:
2925 @example
2926 left-arrow right-arrow up-arrow down-arrow
2927 left-curly-arrow right-curly-arrow
2928 left-triangle right-triangle
2929 top-left-angle top-right-angle
2930 bottom-left-angle bottom-right-angle
2931 left-bracket right-bracket
2932 filled-rectangle hollow-rectangle
2933 filled-square hollow-square
2934 vertical-bar horizontal-bar
2935 empty-line question-mark
2936 @end example
2938 @node Fringe Cursors
2939 @subsection Fringe Cursors
2940 @cindex fringe cursors
2941 @cindex cursor, fringe
2943   When a line is exactly as wide as the window, Emacs displays the
2944 cursor in the right fringe instead of using two lines.  Different
2945 bitmaps are used to represent the cursor in the fringe depending on
2946 the current buffer's cursor type.
2948 @table @asis
2949 @item Logical cursor types:
2950 @code{box} , @code{hollow}, @code{bar},
2951 @code{hbar}, @code{hollow-small}.
2952 @end table
2954 The @code{hollow-small} type is used instead of @code{hollow} when the
2955 normal @code{hollow-rectangle} bitmap is too tall to fit on a specific
2956 display line.
2958 @defvar overflow-newline-into-fringe
2959 If this is non-@code{nil}, lines exactly as wide as the window (not
2960 counting the final newline character) are not continued.  Instead,
2961 when point is at the end of the line, the cursor appears in the right
2962 fringe.
2963 @end defvar
2965 @defvar fringe-cursor-alist
2966 This variable specifies the mapping from logical cursor type to the
2967 actual fringe bitmaps displayed in the right fringe.  The value is an
2968 alist where each element @code{(@var{cursor} . @var{bitmap})} specifies
2969 the fringe bitmaps used to display a specific logical cursor type in
2970 the fringe.  Here, @var{cursor} specifies the logical cursor type and
2971 @var{bitmap} is a symbol specifying the fringe bitmap to be displayed
2972 for that logical cursor type.
2974 When @code{fringe-cursor-alist} has a buffer-local value, and there is
2975 no bitmap defined for a cursor type, the corresponding value from the
2976 (non-local) @code{default-fringes-indicator-alist} is used.
2977 @end defvar
2979 @defvar default-fringes-cursor-alist
2980 The value of this variable is the default value for
2981 @code{fringe-cursor-alist} in buffers that do not override it.
2982 @end defvar
2984 Standard bitmaps for displaying the cursor in right fringe:
2985 @example
2986 filled-rectangle hollow-rectangle filled-square hollow-square
2987 vertical-bar horizontal-bar
2988 @end example
2991 @node Fringe Bitmaps
2992 @subsection Fringe Bitmaps
2993 @cindex fringe bitmaps
2994 @cindex bitmaps, fringe
2996   The @dfn{fringe bitmaps} are the actual bitmaps which represent the
2997 logical fringe indicators for truncated or continued lines, buffer
2998 boundaries, overlay arrow, etc.  Fringe bitmap symbols have their own
2999 name space.  The fringe bitmaps are shared by all frames and windows.
3000 You can redefine the built-in fringe bitmaps, and you can define new
3001 fringe bitmaps.
3003   The way to display a bitmap in the left or right fringes for a given
3004 line in a window is by specifying the @code{display} property for one
3005 of the characters that appears in it.  Use a display specification of
3006 the form @code{(left-fringe @var{bitmap} [@var{face}])} or
3007 @code{(right-fringe @var{bitmap} [@var{face}])} (@pxref{Display
3008 Property}).  Here, @var{bitmap} is a symbol identifying the bitmap you
3009 want, and @var{face} (which is optional) is the name of the face whose
3010 colors should be used for displaying the bitmap, instead of the
3011 default @code{fringe} face.  @var{face} is automatically merged with
3012 the @code{fringe} face, so normally @var{face} need only specify the
3013 foreground color for the bitmap.
3015 @defun fringe-bitmaps-at-pos &optional pos window
3016 This function returns the fringe bitmaps of the display line
3017 containing position @var{pos} in window @var{window}.  The return
3018 value has the form @code{(@var{left} @var{right} @var{ov})}, where @var{left}
3019 is the symbol for the fringe bitmap in the left fringe (or @code{nil}
3020 if no bitmap), @var{right} is similar for the right fringe, and @var{ov}
3021 is non-@code{nil} if there is an overlay arrow in the left fringe.
3023 The value is @code{nil} if @var{pos} is not visible in @var{window}.
3024 If @var{window} is @code{nil}, that stands for the selected window.
3025 If @var{pos} is @code{nil}, that stands for the value of point in
3026 @var{window}.
3027 @end defun
3029 @node Customizing Bitmaps
3030 @subsection Customizing Fringe Bitmaps
3032 @defun define-fringe-bitmap bitmap bits &optional height width align
3033 This function defines the symbol @var{bitmap} as a new fringe bitmap,
3034 or replaces an existing bitmap with that name.
3036 The argument @var{bits} specifies the image to use.  It should be
3037 either a string or a vector of integers, where each element (an
3038 integer) corresponds to one row of the bitmap.  Each bit of an integer
3039 corresponds to one pixel of the bitmap, where the low bit corresponds
3040 to the rightmost pixel of the bitmap.
3042 The height is normally the length of @var{bits}.  However, you
3043 can specify a different height with non-@code{nil} @var{height}.  The width
3044 is normally 8, but you can specify a different width with non-@code{nil}
3045 @var{width}.  The width must be an integer between 1 and 16.
3047 The argument @var{align} specifies the positioning of the bitmap
3048 relative to the range of rows where it is used; the default is to
3049 center the bitmap.  The allowed values are @code{top}, @code{center},
3050 or @code{bottom}.
3052 The @var{align} argument may also be a list @code{(@var{align}
3053 @var{periodic})} where @var{align} is interpreted as described above.
3054 If @var{periodic} is non-@code{nil}, it specifies that the rows in
3055 @code{bits} should be repeated enough times to reach the specified
3056 height.
3057 @end defun
3059 @defun destroy-fringe-bitmap bitmap
3060 This function destroy the fringe bitmap identified by @var{bitmap}.
3061 If @var{bitmap} identifies a standard fringe bitmap, it actually
3062 restores the standard definition of that bitmap, instead of
3063 eliminating it entirely.
3064 @end defun
3066 @defun set-fringe-bitmap-face bitmap &optional face
3067 This sets the face for the fringe bitmap @var{bitmap} to @var{face}.
3068 If @var{face} is @code{nil}, it selects the @code{fringe} face.  The
3069 bitmap's face controls the color to draw it in.
3071 @var{face} is merged with the @code{fringe} face, so normally
3072 @var{face} should specify only the foreground color.
3073 @end defun
3075 @node Overlay Arrow
3076 @subsection The Overlay Arrow
3077 @c @cindex overlay arrow  Duplicates variable names
3079   The @dfn{overlay arrow} is useful for directing the user's attention
3080 to a particular line in a buffer.  For example, in the modes used for
3081 interface to debuggers, the overlay arrow indicates the line of code
3082 about to be executed.  This feature has nothing to do with
3083 @dfn{overlays} (@pxref{Overlays}).
3085 @defvar overlay-arrow-string
3086 This variable holds the string to display to call attention to a
3087 particular line, or @code{nil} if the arrow feature is not in use.
3088 On a graphical display the contents of the string are ignored; instead a
3089 glyph is displayed in the fringe area to the left of the display area.
3090 @end defvar
3092 @defvar overlay-arrow-position
3093 This variable holds a marker that indicates where to display the overlay
3094 arrow.  It should point at the beginning of a line.  On a non-graphical
3095 display the arrow text
3096 appears at the beginning of that line, overlaying any text that would
3097 otherwise appear.  Since the arrow is usually short, and the line
3098 usually begins with indentation, normally nothing significant is
3099 overwritten.
3101 The overlay-arrow string is displayed in any given buffer if the value
3102 of @code{overlay-arrow-position} in that buffer points into that
3103 buffer.  Thus, it works to can display multiple overlay arrow strings
3104 by creating buffer-local bindings of @code{overlay-arrow-position}.
3105 However, it is usually cleaner to use
3106 @code{overlay-arrow-variable-list} to achieve this result.
3107 @c !!! overlay-arrow-position: but the overlay string may remain in the display
3108 @c of some other buffer until an update is required.  This should be fixed
3109 @c now.  Is it?
3110 @end defvar
3112   You can do a similar job by creating an overlay with a
3113 @code{before-string} property.  @xref{Overlay Properties}.
3115   You can define multiple overlay arrows via the variable
3116 @code{overlay-arrow-variable-list}.
3118 @defvar overlay-arrow-variable-list
3119 This variable's value is a list of variables, each of which specifies
3120 the position of an overlay arrow.  The variable
3121 @code{overlay-arrow-position} has its normal meaning because it is on
3122 this list.
3123 @end defvar
3125 Each variable on this list can have properties
3126 @code{overlay-arrow-string} and @code{overlay-arrow-bitmap} that
3127 specify an overlay arrow string (for text-only terminals) or fringe
3128 bitmap (for graphical terminals) to display at the corresponding
3129 overlay arrow position.  If either property is not set, the default
3130 @code{overlay-arrow-string} or @code{overlay-arrow} fringe indicator
3131 is used.
3133 @node Scroll Bars
3134 @section Scroll Bars
3135 @cindex scroll bars
3137 Normally the frame parameter @code{vertical-scroll-bars} controls
3138 whether the windows in the frame have vertical scroll bars, and
3139 whether they are on the left or right.  The frame parameter
3140 @code{scroll-bar-width} specifies how wide they are (@code{nil}
3141 meaning the default).  @xref{Layout Parameters}.
3143 @defun frame-current-scroll-bars &optional frame
3144 This function reports the scroll bar type settings for frame
3145 @var{frame}.  The value is a cons cell
3146 @code{(@var{vertical-type} .@: @var{horizontal-type})}, where
3147 @var{vertical-type} is either @code{left}, @code{right}, or @code{nil}
3148 (which means no scroll bar.)  @var{horizontal-type} is meant to
3149 specify the horizontal scroll bar type, but since they are not
3150 implemented, it is always @code{nil}.
3151 @end defun
3153 @vindex vertical-scroll-bar
3154   You can enable or disable scroll bars for a particular buffer,
3155 by setting the variable @code{vertical-scroll-bar}.  This variable
3156 automatically becomes buffer-local when set.  The possible values are
3157 @code{left}, @code{right}, @code{t}, which means to use the
3158 frame's default, and @code{nil} for no scroll bar.
3160   You can also control this for individual windows.  Call the function
3161 @code{set-window-scroll-bars} to specify what to do for a specific window:
3163 @defun set-window-scroll-bars window width &optional vertical-type horizontal-type
3164 This function sets the width and type of scroll bars for window
3165 @var{window}.
3167 @var{width} specifies the scroll bar width in pixels (@code{nil} means
3168 use the width specified for the frame).  @var{vertical-type} specifies
3169 whether to have a vertical scroll bar and, if so, where.  The possible
3170 values are @code{left}, @code{right} and @code{nil}, just like the
3171 values of the @code{vertical-scroll-bars} frame parameter.
3173 The argument @var{horizontal-type} is meant to specify whether and
3174 where to have horizontal scroll bars, but since they are not
3175 implemented, it has no effect.  If @var{window} is @code{nil}, the
3176 selected window is used.
3177 @end defun
3179 @defun window-scroll-bars &optional window
3180 Report the width and type of scroll bars specified for @var{window}.
3181 If @var{window} is omitted or @code{nil}, the selected window is used.
3182 The value is a list of the form @code{(@var{width}
3183 @var{cols} @var{vertical-type} @var{horizontal-type})}.  The value
3184 @var{width} is the value that was specified for the width (which may
3185 be @code{nil}); @var{cols} is the number of columns that the scroll
3186 bar actually occupies.
3188 @var{horizontal-type} is not actually meaningful.
3189 @end defun
3191 If you don't specify these values for a window with
3192 @code{set-window-scroll-bars}, the buffer-local variables
3193 @code{scroll-bar-mode} and @code{scroll-bar-width} in the buffer being
3194 displayed control the window's vertical scroll bars.  The function
3195 @code{set-window-buffer} examines these variables.  If you change them
3196 in a buffer that is already visible in a window, you can make the
3197 window take note of the new values by calling @code{set-window-buffer}
3198 specifying the same buffer that is already displayed.
3200 @defvar scroll-bar-mode
3201 This variable, always local in all buffers, controls whether and where
3202 to put scroll bars in windows displaying the buffer.  The possible values
3203 are @code{nil} for no scroll bar, @code{left} to put a scroll bar on
3204 the left, and @code{right} to put a scroll bar on the right.
3205 @end defvar
3207 @defun window-current-scroll-bars &optional window
3208 This function reports the scroll bar type for window @var{window}.
3209 If @var{window} is omitted or @code{nil}, the selected window is used.
3210 The value is a cons cell
3211 @code{(@var{vertical-type} .@: @var{horizontal-type})}.  Unlike
3212 @code{window-scroll-bars}, this reports the scroll bar type actually
3213 used, once frame defaults and @code{scroll-bar-mode} are taken into
3214 account.
3215 @end defun
3217 @defvar scroll-bar-width
3218 This variable, always local in all buffers, specifies the width of the
3219 buffer's scroll bars, measured in pixels.  A value of @code{nil} means
3220 to use the value specified by the frame.
3221 @end defvar
3223 @node Display Property
3224 @section The @code{display} Property
3225 @cindex display specification
3226 @kindex display @r{(text property)}
3228   The @code{display} text property (or overlay property) is used to
3229 insert images into text, and also control other aspects of how text
3230 displays.  The value of the @code{display} property should be a
3231 display specification, or a list or vector containing several display
3232 specifications.
3234   Some kinds of @code{display} properties specify something to display
3235 instead of the text that has the property.  In this case, ``the text''
3236 means all the consecutive characters that have the same Lisp object as
3237 their @code{display} property; these characters are replaced as a
3238 single unit.  By contrast, characters that have similar but distinct
3239 Lisp objects as their @code{display} properties are handled
3240 separately.  Here's a function that illustrates this point:
3242 @smallexample
3243 (defun foo ()
3244   (goto-char (point-min))
3245   (dotimes (i 5)
3246     (let ((string (concat "A")))
3247       (put-text-property (point) (1+ (point)) 'display string)
3248       (forward-char 1)
3249       (put-text-property (point) (1+ (point)) 'display string)
3250       (forward-char 1))))
3251 @end smallexample
3253 @noindent
3254 It gives each of the first ten characters in the buffer string
3255 @code{"A"} as the @code{display} property, but they don't all get the
3256 same string.  The first two characters get the same string, so they
3257 together are replaced with one @samp{A}.  The next two characters get
3258 a second string, so they together are replaced with one @samp{A}.
3259 Likewise for each following pair of characters.  Thus, the ten
3260 characters appear as five A's.  This function would have the same
3261 results:
3263 @smallexample
3264 (defun foo ()
3265   (goto-char (point-min))
3266   (dotimes (i 5)
3267     (let ((string (concat "A")))
3268       (put-text-property (point) (2+ (point)) 'display string)
3269       (put-text-property (point) (1+ (point)) 'display string)
3270       (forward-char 2))))
3271 @end smallexample
3273 @noindent
3274 This illustrates that what matters is the property value for
3275 each character.  If two consecutive characters have the same
3276 object as the @code{display} property value, it's irrelevant
3277 whether they got this property from a single call to
3278 @code{put-text-property} or from two different calls.
3280   The rest of this section describes several kinds of
3281 display specifications and what they mean.
3283 @menu
3284 * Specified Space::      Displaying one space with a specified width.
3285 * Pixel Specification::  Specifying space width or height in pixels.
3286 * Other Display Specs::  Displaying an image; magnifying text; moving it
3287                           up or down on the page; adjusting the width
3288                           of spaces within text.
3289 * Display Margins::     Displaying text or images to the side of the main text.
3290 @end menu
3292 @node Specified Space
3293 @subsection Specified Spaces
3294 @cindex spaces, specified height or width
3295 @cindex variable-width spaces
3297   To display a space of specified width and/or height, use a display
3298 specification of the form @code{(space . @var{props})}, where
3299 @var{props} is a property list (a list of alternating properties and
3300 values).  You can put this property on one or more consecutive
3301 characters; a space of the specified height and width is displayed in
3302 place of @emph{all} of those characters.  These are the properties you
3303 can use in @var{props} to specify the weight of the space:
3305 @table @code
3306 @item :width @var{width}
3307 If @var{width} is an integer or floating point number, it specifies
3308 that the space width should be @var{width} times the normal character
3309 width.  @var{width} can also be a @dfn{pixel width} specification
3310 (@pxref{Pixel Specification}).
3312 @item :relative-width @var{factor}
3313 Specifies that the width of the stretch should be computed from the
3314 first character in the group of consecutive characters that have the
3315 same @code{display} property.  The space width is the width of that
3316 character, multiplied by @var{factor}.
3318 @item :align-to @var{hpos}
3319 Specifies that the space should be wide enough to reach @var{hpos}.
3320 If @var{hpos} is a number, it is measured in units of the normal
3321 character width.  @var{hpos} can also be a @dfn{pixel width}
3322 specification (@pxref{Pixel Specification}).
3323 @end table
3325   You should use one and only one of the above properties.  You can
3326 also specify the height of the space, with these properties:
3328 @table @code
3329 @item :height @var{height}
3330 Specifies the height of the space.
3331 If @var{height} is an integer or floating point number, it specifies
3332 that the space height should be @var{height} times the normal character
3333 height.  The @var{height} may also be a @dfn{pixel height} specification
3334 (@pxref{Pixel Specification}).
3336 @item :relative-height @var{factor}
3337 Specifies the height of the space, multiplying the ordinary height
3338 of the text having this display specification by @var{factor}.
3340 @item :ascent @var{ascent}
3341 If the value of @var{ascent} is a non-negative number no greater than
3342 100, it specifies that @var{ascent} percent of the height of the space
3343 should be considered as the ascent of the space---that is, the part
3344 above the baseline.  The ascent may also be specified in pixel units
3345 with a @dfn{pixel ascent} specification (@pxref{Pixel Specification}).
3347 @end table
3349   Don't use both @code{:height} and @code{:relative-height} together.
3351   The @code{:width} and @code{:align-to} properties are supported on
3352 non-graphic terminals, but the other space properties in this section
3353 are not.
3355 @node Pixel Specification
3356 @subsection Pixel Specification for Spaces
3357 @cindex spaces, pixel specification
3359   The value of the @code{:width}, @code{:align-to}, @code{:height},
3360 and @code{:ascent} properties can be a special kind of expression that
3361 is evaluated during redisplay.  The result of the evaluation is used
3362 as an absolute number of pixels.
3364   The following expressions are supported:
3366 @smallexample
3367 @group
3368   @var{expr} ::= @var{num} | (@var{num}) | @var{unit} | @var{elem} | @var{pos} | @var{image} | @var{form}
3369   @var{num}  ::= @var{integer} | @var{float} | @var{symbol}
3370   @var{unit} ::= in | mm | cm | width | height
3371 @end group
3372 @group
3373   @var{elem} ::= left-fringe | right-fringe | left-margin | right-margin
3374         |  scroll-bar | text
3375   @var{pos}  ::= left | center | right
3376   @var{form} ::= (@var{num} . @var{expr}) | (@var{op} @var{expr} ...)
3377   @var{op}   ::= + | -
3378 @end group
3379 @end smallexample
3381   The form @var{num} specifies a fraction of the default frame font
3382 height or width.  The form @code{(@var{num})} specifies an absolute
3383 number of pixels.  If @var{num} is a symbol, @var{symbol}, its
3384 buffer-local variable binding is used.
3386   The @code{in}, @code{mm}, and @code{cm} units specify the number of
3387 pixels per inch, millimeter, and centimeter, respectively.  The
3388 @code{width} and @code{height} units correspond to the default width
3389 and height of the current face.  An image specification @code{image}
3390 corresponds to the width or height of the image.
3392   The @code{left-fringe}, @code{right-fringe}, @code{left-margin},
3393 @code{right-margin}, @code{scroll-bar}, and @code{text} elements
3394 specify to the width of the corresponding area of the window.
3396   The @code{left}, @code{center}, and @code{right} positions can be
3397 used with @code{:align-to} to specify a position relative to the left
3398 edge, center, or right edge of the text area.
3400   Any of the above window elements (except @code{text}) can also be
3401 used with @code{:align-to} to specify that the position is relative to
3402 the left edge of the given area.  Once the base offset for a relative
3403 position has been set (by the first occurrence of one of these
3404 symbols), further occurrences of these symbols are interpreted as the
3405 width of the specified area.  For example, to align to the center of
3406 the left-margin, use
3408 @example
3409 :align-to (+ left-margin (0.5 . left-margin))
3410 @end example
3412   If no specific base offset is set for alignment, it is always relative
3413 to the left edge of the text area.  For example, @samp{:align-to 0} in a
3414 header-line aligns with the first text column in the text area.
3416   A value of the form @code{(@var{num} . @var{expr})} stands for the
3417 product of the values of @var{num} and @var{expr}.  For example,
3418 @code{(2 . in)} specifies a width of 2 inches, while @code{(0.5 .
3419 @var{image})} specifies half the width (or height) of the specified
3420 image.
3422   The form @code{(+ @var{expr} ...)} adds up the value of the
3423 expressions.  The form @code{(- @var{expr} ...)} negates or subtracts
3424 the value of the expressions.
3426 @node Other Display Specs
3427 @subsection Other Display Specifications
3429   Here are the other sorts of display specifications that you can use
3430 in the @code{display} text property.
3432 @table @code
3433 @item @var{string}
3434 Display @var{string} instead of the text that has this property.
3436 Recursive display specifications are not supported---@var{string}'s
3437 @code{display} properties, if any, are not used.
3439 @item (image . @var{image-props})
3440 This kind of display specification is an image descriptor (@pxref{Images}).
3441 When used as a display specification, it means to display the image
3442 instead of the text that has the display specification.
3444 @item (slice @var{x} @var{y} @var{width} @var{height})
3445 This specification together with @code{image} specifies a @dfn{slice}
3446 (a partial area) of the image to display.  The elements @var{y} and
3447 @var{x} specify the top left corner of the slice, within the image;
3448 @var{width} and @var{height} specify the width and height of the
3449 slice.  Integer values are numbers of pixels.  A floating point number
3450 in the range 0.0--1.0 stands for that fraction of the width or height
3451 of the entire image.
3453 @item ((margin nil) @var{string})
3454 A display specification of this form means to display @var{string}
3455 instead of the text that has the display specification, at the same
3456 position as that text.  It is equivalent to using just @var{string},
3457 but it is done as a special case of marginal display (@pxref{Display
3458 Margins}).
3460 @item (space-width @var{factor})
3461 This display specification affects all the space characters within the
3462 text that has the specification.  It displays all of these spaces
3463 @var{factor} times as wide as normal.  The element @var{factor} should
3464 be an integer or float.  Characters other than spaces are not affected
3465 at all; in particular, this has no effect on tab characters.
3467 @item (height @var{height})
3468 This display specification makes the text taller or shorter.
3469 Here are the possibilities for @var{height}:
3471 @table @asis
3472 @item @code{(+ @var{n})}
3473 This means to use a font that is @var{n} steps larger.  A ``step'' is
3474 defined by the set of available fonts---specifically, those that match
3475 what was otherwise specified for this text, in all attributes except
3476 height.  Each size for which a suitable font is available counts as
3477 another step.  @var{n} should be an integer.
3479 @item @code{(- @var{n})}
3480 This means to use a font that is @var{n} steps smaller.
3482 @item a number, @var{factor}
3483 A number, @var{factor}, means to use a font that is @var{factor} times
3484 as tall as the default font.
3486 @item a symbol, @var{function}
3487 A symbol is a function to compute the height.  It is called with the
3488 current height as argument, and should return the new height to use.
3490 @item anything else, @var{form}
3491 If the @var{height} value doesn't fit the previous possibilities, it is
3492 a form.  Emacs evaluates it to get the new height, with the symbol
3493 @code{height} bound to the current specified font height.
3494 @end table
3496 @item (raise @var{factor})
3497 This kind of display specification raises or lowers the text
3498 it applies to, relative to the baseline of the line.
3500 @var{factor} must be a number, which is interpreted as a multiple of the
3501 height of the affected text.  If it is positive, that means to display
3502 the characters raised.  If it is negative, that means to display them
3503 lower down.
3505 If the text also has a @code{height} display specification, that does
3506 not affect the amount of raising or lowering, which is based on the
3507 faces used for the text.
3508 @end table
3510 @c We put all the `@code{(when ...)}' on one line to encourage
3511 @c makeinfo's end-of-sentence heuristics to DTRT.  Previously, the dot
3512 @c was at eol; the info file ended up w/ two spaces rendered after it.
3513   You can make any display specification conditional.  To do that,
3514 package it in another list of the form
3515 @code{(when @var{condition} . @var{spec})}.
3516 Then the specification @var{spec} applies only when
3517 @var{condition} evaluates to a non-@code{nil} value.  During the
3518 evaluation, @code{object} is bound to the string or buffer having the
3519 conditional @code{display} property.  @code{position} and
3520 @code{buffer-position} are bound to the position within @code{object}
3521 and the buffer position where the @code{display} property was found,
3522 respectively.  Both positions can be different when @code{object} is a
3523 string.
3525 @node Display Margins
3526 @subsection Displaying in the Margins
3527 @cindex display margins
3528 @cindex margins, display
3530   A buffer can have blank areas called @dfn{display margins} on the left
3531 and on the right.  Ordinary text never appears in these areas, but you
3532 can put things into the display margins using the @code{display}
3533 property.
3535   To put text in the left or right display margin of the window, use a
3536 display specification of the form @code{(margin right-margin)} or
3537 @code{(margin left-margin)} on it.  To put an image in a display margin,
3538 use that display specification along with the display specification for
3539 the image.  Unfortunately, there is currently no way to make
3540 text or images in the margin mouse-sensitive.
3542   If you put such a display specification directly on text in the
3543 buffer, the specified margin display appears @emph{instead of} that
3544 buffer text itself.  To put something in the margin @emph{in
3545 association with} certain buffer text without preventing or altering
3546 the display of that text, put a @code{before-string} property on the
3547 text and put the display specification on the contents of the
3548 before-string.
3550   Before the display margins can display anything, you must give
3551 them a nonzero width.  The usual way to do that is to set these
3552 variables:
3554 @defvar left-margin-width
3555 This variable specifies the width of the left margin.
3556 It is buffer-local in all buffers.
3557 @end defvar
3559 @defvar right-margin-width
3560 This variable specifies the width of the right margin.
3561 It is buffer-local in all buffers.
3562 @end defvar
3564   Setting these variables does not immediately affect the window.  These
3565 variables are checked when a new buffer is displayed in the window.
3566 Thus, you can make changes take effect by calling
3567 @code{set-window-buffer}.
3569   You can also set the margin widths immediately.
3571 @defun set-window-margins window left &optional right
3572 This function specifies the margin widths for window @var{window}.
3573 The argument @var{left} controls the left margin and
3574 @var{right} controls the right margin (default @code{0}).
3575 @end defun
3577 @defun window-margins &optional window
3578 This function returns the left and right margins of @var{window}
3579 as a cons cell of the form @code{(@var{left} . @var{right})}.
3580 If @var{window} is @code{nil}, the selected window is used.
3581 @end defun
3583 @node Images
3584 @section Images
3585 @cindex images in buffers
3587   To display an image in an Emacs buffer, you must first create an image
3588 descriptor, then use it as a display specifier in the @code{display}
3589 property of text that is displayed (@pxref{Display Property}).
3591   Emacs is usually able to display images when it is run on a
3592 graphical terminal.  Images cannot be displayed in a text terminal, on
3593 certain graphical terminals that lack the support for this, or if
3594 Emacs is compiled without image support.  You can use the function
3595 @code{display-images-p} to determine if images can in principle be
3596 displayed (@pxref{Display Feature Testing}).
3598   Emacs can display a number of different image formats; some of them
3599 are supported only if particular support libraries are installed on
3600 your machine.  In some environments, Emacs can load image
3601 libraries on demand; if so, the variable @code{image-library-alist}
3602 can be used to modify the set of known names for these dynamic
3603 libraries (though it is not possible to add new image formats).
3605   The supported image formats include XBM, XPM (this requires the
3606 libraries @code{libXpm} version 3.4k and @code{libz}), GIF (requiring
3607 @code{libungif} 4.1.0), PostScript, PBM, JPEG (requiring the
3608 @code{libjpeg} library version v6a), TIFF (requiring @code{libtiff}
3609 v3.4), and PNG (requiring @code{libpng} 1.0.2).
3611   You specify one of these formats with an image type symbol.  The image
3612 type symbols are @code{xbm}, @code{xpm}, @code{gif}, @code{postscript},
3613 @code{pbm}, @code{jpeg}, @code{tiff}, and @code{png}.
3615 @defvar image-types
3616 This variable contains a list of those image type symbols that are
3617 potentially supported in the current configuration.
3618 @emph{Potentially} here means that Emacs knows about the image types,
3619 not necessarily that they can be loaded (they could depend on
3620 unavailable dynamic libraries, for example).
3622 To know which image types are really available, use
3623 @code{image-type-available-p}.
3624 @end defvar
3626 @defvar image-library-alist
3627 This in an alist of image types vs external libraries needed to
3628 display them.
3630 Each element is a list @code{(@var{image-type} @var{library}...)},
3631 where the car is a supported image format from @code{image-types}, and
3632 the rest are strings giving alternate filenames for the corresponding
3633 external libraries to load.
3635 Emacs tries to load the libraries in the order they appear on the
3636 list; if none is loaded, the running session of Emacs won't support
3637 the image type.  @code{pbm} and @code{xbm} don't need to be listed;
3638 they're always supported.
3640 This variable is ignored if the image libraries are statically linked
3641 into Emacs.
3642 @end defvar
3644 @defun  image-type-available-p type
3645 @findex image-type-available-p
3647 This function returns non-@code{nil} if image type @var{type} is
3648 available, i.e., if images of this type can be loaded and displayed in
3649 Emacs.  @var{type} should be one of the types contained in
3650 @code{image-types}.
3652 For image types whose support libraries are statically linked, this
3653 function always returns @code{t}; for other image types, it returns
3654 @code{t} if the dynamic library could be loaded, @code{nil} otherwise.
3655 @end defun
3657 @menu
3658 * Image Descriptors::   How to specify an image for use in @code{:display}.
3659 * XBM Images::          Special features for XBM format.
3660 * XPM Images::          Special features for XPM format.
3661 * GIF Images::          Special features for GIF format.
3662 * PostScript Images::   Special features for PostScript format.
3663 * Other Image Types::   Various other formats are supported.
3664 * Defining Images::     Convenient ways to define an image for later use.
3665 * Showing Images::      Convenient ways to display an image once it is defined.
3666 * Image Cache::         Internal mechanisms of image display.
3667 @end menu
3669 @node Image Descriptors
3670 @subsection Image Descriptors
3671 @cindex image descriptor
3673   An image description is a list of the form @code{(image . @var{props})},
3674 where @var{props} is a property list containing alternating keyword
3675 symbols (symbols whose names start with a colon) and their values.
3676 You can use any Lisp object as a property, but the only properties
3677 that have any special meaning are certain symbols, all of them keywords.
3679   Every image descriptor must contain the property @code{:type
3680 @var{type}} to specify the format of the image.  The value of @var{type}
3681 should be an image type symbol; for example, @code{xpm} for an image in
3682 XPM format.
3684   Here is a list of other properties that are meaningful for all image
3685 types:
3687 @table @code
3688 @item :file @var{file}
3689 The @code{:file} property says to load the image from file
3690 @var{file}.  If @var{file} is not an absolute file name, it is expanded
3691 in @code{data-directory}.
3693 @item :data @var{data}
3694 The @code{:data} property says the actual contents of the image.
3695 Each image must use either @code{:data} or @code{:file}, but not both.
3696 For most image types, the value of the @code{:data} property should be a
3697 string containing the image data; we recommend using a unibyte string.
3699 Before using @code{:data}, look for further information in the section
3700 below describing the specific image format.  For some image types,
3701 @code{:data} may not be supported; for some, it allows other data types;
3702 for some, @code{:data} alone is not enough, so you need to use other
3703 image properties along with @code{:data}.
3705 @item :margin @var{margin}
3706 The @code{:margin} property specifies how many pixels to add as an
3707 extra margin around the image.  The value, @var{margin}, must be a
3708 non-negative number, or a pair @code{(@var{x} . @var{y})} of such
3709 numbers.  If it is a pair, @var{x} specifies how many pixels to add
3710 horizontally, and @var{y} specifies how many pixels to add vertically.
3711 If @code{:margin} is not specified, the default is zero.
3713 @item :ascent @var{ascent}
3714 The @code{:ascent} property specifies the amount of the image's
3715 height to use for its ascent---that is, the part above the baseline.
3716 The value, @var{ascent}, must be a number in the range 0 to 100, or
3717 the symbol @code{center}.
3719 If @var{ascent} is a number, that percentage of the image's height is
3720 used for its ascent.
3722 If @var{ascent} is @code{center}, the image is vertically centered
3723 around a centerline which would be the vertical centerline of text drawn
3724 at the position of the image, in the manner specified by the text
3725 properties and overlays that apply to the image.
3727 If this property is omitted, it defaults to 50.
3729 @item :relief @var{relief}
3730 The @code{:relief} property, if non-@code{nil}, adds a shadow rectangle
3731 around the image.  The value, @var{relief}, specifies the width of the
3732 shadow lines, in pixels.  If @var{relief} is negative, shadows are drawn
3733 so that the image appears as a pressed button; otherwise, it appears as
3734 an unpressed button.
3736 @item :conversion @var{algorithm}
3737 The @code{:conversion} property, if non-@code{nil}, specifies a
3738 conversion algorithm that should be applied to the image before it is
3739 displayed; the value, @var{algorithm}, specifies which algorithm.
3741 @table @code
3742 @item laplace
3743 @itemx emboss
3744 Specifies the Laplace edge detection algorithm, which blurs out small
3745 differences in color while highlighting larger differences.  People
3746 sometimes consider this useful for displaying the image for a
3747 ``disabled'' button.
3749 @item (edge-detection :matrix @var{matrix} :color-adjust @var{adjust})
3750 Specifies a general edge-detection algorithm.  @var{matrix} must be
3751 either a nine-element list or a nine-element vector of numbers.  A pixel
3752 at position @math{x/y} in the transformed image is computed from
3753 original pixels around that position.  @var{matrix} specifies, for each
3754 pixel in the neighborhood of @math{x/y}, a factor with which that pixel
3755 will influence the transformed pixel; element @math{0} specifies the
3756 factor for the pixel at @math{x-1/y-1}, element @math{1} the factor for
3757 the pixel at @math{x/y-1} etc., as shown below:
3758 @iftex
3759 @tex
3760 $$\pmatrix{x-1/y-1 & x/y-1  & x+1/y-1 \cr
3761    x-1/y  &   x/y &    x+1/y \cr
3762    x-1/y+1&   x/y+1 &  x+1/y+1 \cr}$$
3763 @end tex
3764 @end iftex
3765 @ifnottex
3766 @display
3767   (x-1/y-1  x/y-1  x+1/y-1
3768    x-1/y    x/y    x+1/y
3769    x-1/y+1  x/y+1  x+1/y+1)
3770 @end display
3771 @end ifnottex
3773 The resulting pixel is computed from the color intensity of the color
3774 resulting from summing up the RGB values of surrounding pixels,
3775 multiplied by the specified factors, and dividing that sum by the sum
3776 of the factors' absolute values.
3778 Laplace edge-detection currently uses a matrix of
3779 @iftex
3780 @tex
3781 $$\pmatrix{1 & 0 & 0 \cr
3782    0&  0 &  0 \cr
3783    9 & 9 & -1 \cr}$$
3784 @end tex
3785 @end iftex
3786 @ifnottex
3787 @display
3788   (1  0  0
3789    0  0  0
3790    9  9 -1)
3791 @end display
3792 @end ifnottex
3794 Emboss edge-detection uses a matrix of
3795 @iftex
3796 @tex
3797 $$\pmatrix{ 2 & -1 &  0 \cr
3798    -1 &  0 &  1 \cr
3799     0  & 1 & -2 \cr}$$
3800 @end tex
3801 @end iftex
3802 @ifnottex
3803 @display
3804   ( 2 -1  0
3805    -1  0  1
3806     0  1 -2)
3807 @end display
3808 @end ifnottex
3810 @item disabled
3811 Specifies transforming the image so that it looks ``disabled.''
3812 @end table
3814 @item :mask @var{mask}
3815 If @var{mask} is @code{heuristic} or @code{(heuristic @var{bg})}, build
3816 a clipping mask for the image, so that the background of a frame is
3817 visible behind the image.  If @var{bg} is not specified, or if @var{bg}
3818 is @code{t}, determine the background color of the image by looking at
3819 the four corners of the image, assuming the most frequently occurring
3820 color from the corners is the background color of the image.  Otherwise,
3821 @var{bg} must be a list @code{(@var{red} @var{green} @var{blue})}
3822 specifying the color to assume for the background of the image.
3824 If @var{mask} is @code{nil}, remove a mask from the image, if it has
3825 one.  Images in some formats include a mask which can be removed by
3826 specifying @code{:mask nil}.
3828 @item :pointer @var{shape}
3829 This specifies the pointer shape when the mouse pointer is over this
3830 image.  @xref{Pointer Shape}, for available pointer shapes.
3832 @item :map @var{map}
3833 This associates an image map of @dfn{hot spots} with this image.
3835 An image map is an alist where each element has the format
3836 @code{(@var{area} @var{id} @var{plist})}.  An @var{area} is specified
3837 as either a rectangle, a circle, or a polygon.
3839 A rectangle is a cons
3840 @code{(rect . ((@var{x0} . @var{y0}) . (@var{x1} . @var{y1})))}
3841 which specifies the pixel coordinates of the upper left and bottom right
3842 corners of the rectangle area.
3844 A circle is a cons
3845 @code{(circle . ((@var{x0} . @var{y0}) . @var{r}))}
3846 which specifies the center and the radius of the circle; @var{r} may
3847 be a float or integer.
3849 A polygon is a cons
3850 @code{(poly . [@var{x0} @var{y0} @var{x1} @var{y1} ...])}
3851 where each pair in the vector describes one corner in the polygon.
3853 When the mouse pointer lies on a hot-spot area of an image, the
3854 @var{plist} of that hot-spot is consulted; if it contains a @code{help-echo}
3855 property, that defines a tool-tip for the hot-spot, and if it contains
3856 a @code{pointer} property, that defines the shape of the mouse cursor when
3857 it is on the hot-spot.
3858 @xref{Pointer Shape}, for available pointer shapes.
3860 When you click the mouse when the mouse pointer is over a hot-spot, an
3861 event is composed by combining the @var{id} of the hot-spot with the
3862 mouse event; for instance, @code{[area4 mouse-1]} if the hot-spot's
3863 @var{id} is @code{area4}.
3864 @end table
3866 @defun image-mask-p spec &optional frame
3867 This function returns @code{t} if image @var{spec} has a mask bitmap.
3868 @var{frame} is the frame on which the image will be displayed.
3869 @var{frame} @code{nil} or omitted means to use the selected frame
3870 (@pxref{Input Focus}).
3871 @end defun
3873 @node XBM Images
3874 @subsection XBM Images
3875 @cindex XBM
3877   To use XBM format, specify @code{xbm} as the image type.  This image
3878 format doesn't require an external library, so images of this type are
3879 always supported.
3881   Additional image properties supported for the @code{xbm} image type are:
3883 @table @code
3884 @item :foreground @var{foreground}
3885 The value, @var{foreground}, should be a string specifying the image
3886 foreground color, or @code{nil} for the default color.  This color is
3887 used for each pixel in the XBM that is 1.  The default is the frame's
3888 foreground color.
3890 @item :background @var{background}
3891 The value, @var{background}, should be a string specifying the image
3892 background color, or @code{nil} for the default color.  This color is
3893 used for each pixel in the XBM that is 0.  The default is the frame's
3894 background color.
3895 @end table
3897   If you specify an XBM image using data within Emacs instead of an
3898 external file, use the following three properties:
3900 @table @code
3901 @item :data @var{data}
3902 The value, @var{data}, specifies the contents of the image.
3903 There are three formats you can use for @var{data}:
3905 @itemize @bullet
3906 @item
3907 A vector of strings or bool-vectors, each specifying one line of the
3908 image.  Do specify @code{:height} and @code{:width}.
3910 @item
3911 A string containing the same byte sequence as an XBM file would contain.
3912 You must not specify @code{:height} and @code{:width} in this case,
3913 because omitting them is what indicates the data has the format of an
3914 XBM file.  The file contents specify the height and width of the image.
3916 @item
3917 A string or a bool-vector containing the bits of the image (plus perhaps
3918 some extra bits at the end that will not be used).  It should contain at
3919 least @var{width} * @code{height} bits.  In this case, you must specify
3920 @code{:height} and @code{:width}, both to indicate that the string
3921 contains just the bits rather than a whole XBM file, and to specify the
3922 size of the image.
3923 @end itemize
3925 @item :width @var{width}
3926 The value, @var{width}, specifies the width of the image, in pixels.
3928 @item :height @var{height}
3929 The value, @var{height}, specifies the height of the image, in pixels.
3930 @end table
3932 @node XPM Images
3933 @subsection XPM Images
3934 @cindex XPM
3936   To use XPM format, specify @code{xpm} as the image type.  The
3937 additional image property @code{:color-symbols} is also meaningful with
3938 the @code{xpm} image type:
3940 @table @code
3941 @item :color-symbols @var{symbols}
3942 The value, @var{symbols}, should be an alist whose elements have the
3943 form @code{(@var{name} . @var{color})}.  In each element, @var{name} is
3944 the name of a color as it appears in the image file, and @var{color}
3945 specifies the actual color to use for displaying that name.
3946 @end table
3948 @node GIF Images
3949 @subsection GIF Images
3950 @cindex GIF
3952   For GIF images, specify image type @code{gif}.
3954 @table @code
3955 @item :index @var{index}
3956 You can use @code{:index} to specify one image from a GIF file that
3957 contains more than one image.  This property specifies use of image
3958 number @var{index} from the file.  If the GIF file doesn't contain an
3959 image with index @var{index}, the image displays as a hollow box.
3960 @end table
3962 @ignore
3963 This could be used to implement limited support for animated GIFs.
3964 For example, the following function displays a multi-image GIF file
3965 at point-min in the current buffer, switching between sub-images
3966 every 0.1 seconds.
3968 (defun show-anim (file max)
3969   "Display multi-image GIF file FILE which contains MAX subimages."
3970   (display-anim (current-buffer) file 0 max t))
3972 (defun display-anim (buffer file idx max first-time)
3973   (when (= idx max)
3974     (setq idx 0))
3975   (let ((img (create-image file nil :image idx)))
3976     (save-excursion
3977       (set-buffer buffer)
3978       (goto-char (point-min))
3979       (unless first-time (delete-char 1))
3980       (insert-image img))
3981     (run-with-timer 0.1 nil 'display-anim buffer file (1+ idx) max nil)))
3982 @end ignore
3984 @node PostScript Images
3985 @subsection PostScript Images
3986 @cindex postscript images
3988   To use PostScript for an image, specify image type @code{postscript}.
3989 This works only if you have Ghostscript installed.  You must always use
3990 these three properties:
3992 @table @code
3993 @item :pt-width @var{width}
3994 The value, @var{width}, specifies the width of the image measured in
3995 points (1/72 inch).  @var{width} must be an integer.
3997 @item :pt-height @var{height}
3998 The value, @var{height}, specifies the height of the image in points
3999 (1/72 inch).  @var{height} must be an integer.
4001 @item :bounding-box @var{box}
4002 The value, @var{box}, must be a list or vector of four integers, which
4003 specifying the bounding box of the PostScript image, analogous to the
4004 @samp{BoundingBox} comment found in PostScript files.
4006 @example
4007 %%BoundingBox: 22 171 567 738
4008 @end example
4009 @end table
4011   Displaying PostScript images from Lisp data is not currently
4012 implemented, but it may be implemented by the time you read this.
4013 See the @file{etc/NEWS} file to make sure.
4015 @node Other Image Types
4016 @subsection Other Image Types
4017 @cindex PBM
4019   For PBM images, specify image type @code{pbm}.  Color, gray-scale and
4020 monochromatic images are supported.   For mono PBM images, two additional
4021 image properties are supported.
4023 @table @code
4024 @item :foreground @var{foreground}
4025 The value, @var{foreground}, should be a string specifying the image
4026 foreground color, or @code{nil} for the default color.  This color is
4027 used for each pixel in the XBM that is 1.  The default is the frame's
4028 foreground color.
4030 @item :background @var{background}
4031 The value, @var{background}, should be a string specifying the image
4032 background color, or @code{nil} for the default color.  This color is
4033 used for each pixel in the XBM that is 0.  The default is the frame's
4034 background color.
4035 @end table
4037   For JPEG images, specify image type @code{jpeg}.
4039   For TIFF images, specify image type @code{tiff}.
4041   For PNG images, specify image type @code{png}.
4043 @node Defining Images
4044 @subsection Defining Images
4046   The functions @code{create-image}, @code{defimage} and
4047 @code{find-image} provide convenient ways to create image descriptors.
4049 @defun create-image file-or-data &optional type data-p &rest props
4050 This function creates and returns an image descriptor which uses the
4051 data in @var{file-or-data}.  @var{file-or-data} can be a file name or
4052 a string containing the image data; @var{data-p} should be @code{nil}
4053 for the former case, non-@code{nil} for the latter case.
4055 The optional argument @var{type} is a symbol specifying the image type.
4056 If @var{type} is omitted or @code{nil}, @code{create-image} tries to
4057 determine the image type from the file's first few bytes, or else
4058 from the file's name.
4060 The remaining arguments, @var{props}, specify additional image
4061 properties---for example,
4063 @example
4064 (create-image "foo.xpm" 'xpm nil :heuristic-mask t)
4065 @end example
4067 The function returns @code{nil} if images of this type are not
4068 supported.  Otherwise it returns an image descriptor.
4069 @end defun
4071 @defmac defimage symbol specs &optional doc
4072 This macro defines @var{symbol} as an image name.  The arguments
4073 @var{specs} is a list which specifies how to display the image.
4074 The third argument, @var{doc}, is an optional documentation string.
4076 Each argument in @var{specs} has the form of a property list, and each
4077 one should specify at least the @code{:type} property and either the
4078 @code{:file} or the @code{:data} property.  The value of @code{:type}
4079 should be a symbol specifying the image type, the value of
4080 @code{:file} is the file to load the image from, and the value of
4081 @code{:data} is a string containing the actual image data.  Here is an
4082 example:
4084 @example
4085 (defimage test-image
4086   ((:type xpm :file "~/test1.xpm")
4087    (:type xbm :file "~/test1.xbm")))
4088 @end example
4090 @code{defimage} tests each argument, one by one, to see if it is
4091 usable---that is, if the type is supported and the file exists.  The
4092 first usable argument is used to make an image descriptor which is
4093 stored in @var{symbol}.
4095 If none of the alternatives will work, then @var{symbol} is defined
4096 as @code{nil}.
4097 @end defmac
4099 @defun find-image specs
4100 This function provides a convenient way to find an image satisfying one
4101 of a list of image specifications @var{specs}.
4103 Each specification in @var{specs} is a property list with contents
4104 depending on image type.  All specifications must at least contain the
4105 properties @code{:type @var{type}} and either @w{@code{:file @var{file}}}
4106 or @w{@code{:data @var{DATA}}}, where @var{type} is a symbol specifying
4107 the image type, e.g.@: @code{xbm}, @var{file} is the file to load the
4108 image from, and @var{data} is a string containing the actual image data.
4109 The first specification in the list whose @var{type} is supported, and
4110 @var{file} exists, is used to construct the image specification to be
4111 returned.  If no specification is satisfied, @code{nil} is returned.
4113 The image is looked for in @code{image-load-path}.
4114 @end defun
4116 @defvar image-load-path
4117 This variable's value is a list of locations in which to search for
4118 image files.  If an element is a string or a variable symbol whose
4119 value is a string, the string is taken to be the name of a directory
4120 to search.  If an element is a variable symbol whose value is a list,
4121 that is taken to be a list of directory names to search.
4123 The default is to search in the @file{images} subdirectory of the
4124 directory specified by @code{data-directory}, then the directory
4125 specified by @code{data-directory}, and finally in the directories in
4126 @code{load-path}.  Subdirectories are not automatically included in
4127 the search, so if you put an image file in a subdirectory, you have to
4128 supply the subdirectory name explicitly.  For example, to find the
4129 image @file{images/foo/bar.xpm} within @code{data-directory}, you
4130 should specify the image as follows:
4132 @example
4133 (defimage foo-image '((:type xpm :file "foo/bar.xpm")))
4134 @end example
4135 @end defvar
4137 @defun image-load-path-for-library library image &optional path no-error
4138 This function returns a suitable search path for images used by the
4139 Lisp package @var{library}.
4141 The function searches for @var{image} first using @code{image-load-path},
4142 excluding @file{@code{data-directory}/images}, and then in
4143 @code{load-path}, followed by a path suitable for @var{library}, which
4144 includes @file{../../etc/images} and @file{../etc/images} relative to
4145 the library file itself, and finally in
4146 @file{@code{data-directory}/images}.
4148 Then this function returns a list of directories which contains first
4149 the directory in which @var{image} was found, followed by the value of
4150 @code{load-path}.  If @var{path} is given, it is used instead of
4151 @code{load-path}.
4153 If @var{no-error} is non-@code{nil} and a suitable path can't be
4154 found, don't signal an error.  Instead, return a list of directories as
4155 before, except that @code{nil} appears in place of the image directory.
4157 Here is an example that uses a common idiom to provide compatibility
4158 with versions of Emacs that lack the variable @code{image-load-path}:
4160 @example
4161 (defvar image-load-path) ; shush compiler
4162 (let* ((load-path (image-load-path-for-library
4163                         "mh-e" "mh-logo.xpm"))
4164        (image-load-path (cons (car load-path)
4165                               (when (boundp 'image-load-path)
4166                                 image-load-path))))
4167   (mh-tool-bar-folder-buttons-init))
4168 @end example
4169 @end defun
4171 @node Showing Images
4172 @subsection Showing Images
4174   You can use an image descriptor by setting up the @code{display}
4175 property yourself, but it is easier to use the functions in this
4176 section.
4178 @defun insert-image image &optional string area slice
4179 This function inserts @var{image} in the current buffer at point.  The
4180 value @var{image} should be an image descriptor; it could be a value
4181 returned by @code{create-image}, or the value of a symbol defined with
4182 @code{defimage}.  The argument @var{string} specifies the text to put
4183 in the buffer to hold the image.  If it is omitted or @code{nil},
4184 @code{insert-image} uses @code{" "} by default.
4186 The argument @var{area} specifies whether to put the image in a margin.
4187 If it is @code{left-margin}, the image appears in the left margin;
4188 @code{right-margin} specifies the right margin.  If @var{area} is
4189 @code{nil} or omitted, the image is displayed at point within the
4190 buffer's text.
4192 The argument @var{slice} specifies a slice of the image to insert.  If
4193 @var{slice} is @code{nil} or omitted the whole image is inserted.
4194 Otherwise, @var{slice} is a list @code{(@var{x} @var{y} @var{width}
4195 @var{height})} which specifies the @var{x} and @var{y} positions and
4196 @var{width} and @var{height} of the image area to insert.  Integer
4197 values are in units of pixels.  A floating point number in the range
4198 0.0--1.0 stands for that fraction of the width or height of the entire
4199 image.
4201 Internally, this function inserts @var{string} in the buffer, and gives
4202 it a @code{display} property which specifies @var{image}.  @xref{Display
4203 Property}.
4204 @end defun
4206 @defun insert-sliced-image image &optional string area rows cols
4207 This function inserts @var{image} in the current buffer at point, like
4208 @code{insert-image}, but splits the image into @var{rows}x@var{cols}
4209 equally sized slices.
4210 @end defun
4212 @defun put-image image pos &optional string area
4213 This function puts image @var{image} in front of @var{pos} in the
4214 current buffer.  The argument @var{pos} should be an integer or a
4215 marker.  It specifies the buffer position where the image should appear.
4216 The argument @var{string} specifies the text that should hold the image
4217 as an alternative to the default.
4219 The argument @var{image} must be an image descriptor, perhaps returned
4220 by @code{create-image} or stored by @code{defimage}.
4222 The argument @var{area} specifies whether to put the image in a margin.
4223 If it is @code{left-margin}, the image appears in the left margin;
4224 @code{right-margin} specifies the right margin.  If @var{area} is
4225 @code{nil} or omitted, the image is displayed at point within the
4226 buffer's text.
4228 Internally, this function creates an overlay, and gives it a
4229 @code{before-string} property containing text that has a @code{display}
4230 property whose value is the image.  (Whew!)
4231 @end defun
4233 @defun remove-images start end &optional buffer
4234 This function removes images in @var{buffer} between positions
4235 @var{start} and @var{end}.  If @var{buffer} is omitted or @code{nil},
4236 images are removed from the current buffer.
4238 This removes only images that were put into @var{buffer} the way
4239 @code{put-image} does it, not images that were inserted with
4240 @code{insert-image} or in other ways.
4241 @end defun
4243 @defun image-size spec &optional pixels frame
4244 This function returns the size of an image as a pair
4245 @w{@code{(@var{width} . @var{height})}}.  @var{spec} is an image
4246 specification.  @var{pixels} non-@code{nil} means return sizes
4247 measured in pixels, otherwise return sizes measured in canonical
4248 character units (fractions of the width/height of the frame's default
4249 font).  @var{frame} is the frame on which the image will be displayed.
4250 @var{frame} null or omitted means use the selected frame (@pxref{Input
4251 Focus}).
4252 @end defun
4254 @defvar max-image-size
4255 This variable is used to define the maximum size of image that Emacs
4256 will load.  Emacs will refuse to load (and display) any image that is
4257 larger than this limit.
4259 If the value is an integer, it directly specifies the maximum
4260 image height and width, measured in pixels.  If it is a floating
4261 point number, it specifies the maximum image height and width
4262 as a ratio to the frame height and width.  If the value is
4263 non-numeric, there is no explicit limit on the size of images.
4265 The purpose of this variable is to prevent unreasonably large images
4266 from accidentally being loaded into Emacs.  It only takes effect the
4267 first time an image is loaded.  Once an image is placed in the image
4268 cache, it can always be displayed, even if the value of
4269 @var{max-image-size} is subsequently changed (@pxref{Image Cache}).
4270 @end defvar
4272 @node Image Cache
4273 @subsection Image Cache
4274 @cindex image cache
4276   Emacs stores images in an image cache when it displays them, so it can
4277 display them again more efficiently.  It removes an image from the cache
4278 when it hasn't been displayed for a specified period of time.
4280 When an image is looked up in the cache, its specification is compared
4281 with cached image specifications using @code{equal}.  This means that
4282 all images with equal specifications share the same image in the cache.
4284 @defvar image-cache-eviction-delay
4285 This variable specifies the number of seconds an image can remain in the
4286 cache without being displayed.  When an image is not displayed for this
4287 length of time, Emacs removes it from the image cache.
4289 If the value is @code{nil}, Emacs does not remove images from the cache
4290 except when you explicitly clear it.  This mode can be useful for
4291 debugging.
4292 @end defvar
4294 @defun clear-image-cache &optional frame
4295 This function clears the image cache.  If @var{frame} is non-@code{nil},
4296 only the cache for that frame is cleared.  Otherwise all frames' caches
4297 are cleared.
4298 @end defun
4300 @node Buttons
4301 @section Buttons
4302 @cindex buttons in buffers
4303 @cindex clickable buttons in buffers
4305   The @emph{button} package defines functions for inserting and
4306 manipulating clickable (with the mouse, or via keyboard commands)
4307 buttons in Emacs buffers, such as might be used for help hyper-links,
4308 etc.  Emacs uses buttons for the hyper-links in help text and the like.
4310   A button is essentially a set of properties attached (via text
4311 properties or overlays) to a region of text in an Emacs buffer.  These
4312 properties are called @dfn{button properties}.
4314   One of these properties (@code{action}) is a function, which will
4315 be called when the user invokes it using the keyboard or the mouse.
4316 The invoked function may then examine the button and use its other
4317 properties as desired.
4319   In some ways the Emacs button package duplicates functionality offered
4320 by the widget package (@pxref{Top, , Introduction, widget, The Emacs
4321 Widget Library}), but the button package has the advantage that it is
4322 much faster, much smaller, and much simpler to use (for elisp
4323 programmers---for users, the result is about the same).  The extra
4324 speed and space savings are useful mainly if you need to create many
4325 buttons in a buffer (for instance an @code{*Apropos*} buffer uses
4326 buttons to make entries clickable, and may contain many thousands of
4327 entries).
4329 @menu
4330 * Button Properties::      Button properties with special meanings.
4331 * Button Types::           Defining common properties for classes of buttons.
4332 * Making Buttons::         Adding buttons to Emacs buffers.
4333 * Manipulating Buttons::   Getting and setting properties of buttons.
4334 * Button Buffer Commands:: Buffer-wide commands and bindings for buttons.
4335 @end menu
4337 @node Button Properties
4338 @subsection Button Properties
4339 @cindex button properties
4341   Buttons have an associated list of properties defining their
4342 appearance and behavior, and other arbitrary properties may be used
4343 for application specific purposes.  Some properties that have special
4344 meaning to the button package include:
4346 @table @code
4347 @item action
4348 @kindex action @r{(button property)}
4349 The function to call when the user invokes the button, which is passed
4350 the single argument @var{button}.  By default this is @code{ignore},
4351 which does nothing.
4353 @item mouse-action
4354 @kindex mouse-action @r{(button property)}
4355 This is similar to @code{action}, and when present, will be used
4356 instead of @code{action} for button invocations resulting from
4357 mouse-clicks (instead of the user hitting @key{RET}).  If not
4358 present, mouse-clicks use @code{action} instead.
4360 @item face
4361 @kindex face @r{(button property)}
4362 This is an Emacs face controlling how buttons of this type are
4363 displayed; by default this is the @code{button} face.
4365 @item mouse-face
4366 @kindex mouse-face @r{(button property)}
4367 This is an additional face which controls appearance during
4368 mouse-overs (merged with the usual button face); by default this is
4369 the usual Emacs @code{highlight} face.
4371 @item keymap
4372 @kindex keymap @r{(button property)}
4373 The button's keymap, defining bindings active within the button
4374 region.  By default this is the usual button region keymap, stored
4375 in the variable @code{button-map}, which defines @key{RET} and
4376 @key{mouse-2} to invoke the button.
4378 @item type
4379 @kindex type @r{(button property)}
4380 The button-type of the button.  When creating a button, this is
4381 usually specified using the @code{:type} keyword argument.
4382 @xref{Button Types}.
4384 @item help-echo
4385 @kindex help-index @r{(button property)}
4386 A string displayed by the Emacs tool-tip help system; by default,
4387 @code{"mouse-2, RET: Push this button"}.
4389 @item follow-link
4390 @kindex follow-link @r{(button property)}
4391 The follow-link property, defining how a @key{Mouse-1} click behaves
4392 on this button, @xref{Links and Mouse-1}.
4394 @item button
4395 @kindex button @r{(button property)}
4396 All buttons have a non-@code{nil} @code{button} property, which may be useful
4397 in finding regions of text that comprise buttons (which is what the
4398 standard button functions do).
4399 @end table
4401   There are other properties defined for the regions of text in a
4402 button, but these are not generally interesting for typical uses.
4404 @node Button Types
4405 @subsection Button Types
4406 @cindex button types
4408   Every button has a button @emph{type}, which defines default values
4409 for the button's properties.  Button types are arranged in a
4410 hierarchy, with specialized types inheriting from more general types,
4411 so that it's easy to define special-purpose types of buttons for
4412 specific tasks.
4414 @defun define-button-type name &rest properties
4415 Define a `button type' called @var{name}.  The remaining arguments
4416 form a sequence of @var{property value} pairs, specifying default
4417 property values for buttons with this type (a button's type may be set
4418 by giving it a @code{type} property when creating the button, using
4419 the @code{:type} keyword argument).
4421 In addition, the keyword argument @code{:supertype} may be used to
4422 specify a button-type from which @var{name} inherits its default
4423 property values.  Note that this inheritance happens only when
4424 @var{name} is defined; subsequent changes to a supertype are not
4425 reflected in its subtypes.
4426 @end defun
4428   Using @code{define-button-type} to define default properties for
4429 buttons is not necessary---buttons without any specified type use the
4430 built-in button-type @code{button}---but it is encouraged, since
4431 doing so usually makes the resulting code clearer and more efficient.
4433 @node Making Buttons
4434 @subsection Making Buttons
4435 @cindex making buttons
4437   Buttons are associated with a region of text, using an overlay or
4438 text properties to hold button-specific information, all of which are
4439 initialized from the button's type (which defaults to the built-in
4440 button type @code{button}).  Like all Emacs text, the appearance of
4441 the button is governed by the @code{face} property; by default (via
4442 the @code{face} property inherited from the @code{button} button-type)
4443 this is a simple underline, like a typical web-page link.
4445   For convenience, there are two sorts of button-creation functions,
4446 those that add button properties to an existing region of a buffer,
4447 called @code{make-...button}, and those that also insert the button
4448 text, called @code{insert-...button}.
4450   The button-creation functions all take the @code{&rest} argument
4451 @var{properties}, which should be a sequence of @var{property value}
4452 pairs, specifying properties to add to the button; see @ref{Button
4453 Properties}.  In addition, the keyword argument @code{:type} may be
4454 used to specify a button-type from which to inherit other properties;
4455 see @ref{Button Types}.  Any properties not explicitly specified
4456 during creation will be inherited from the button's type (if the type
4457 defines such a property).
4459   The following functions add a button using an overlay
4460 (@pxref{Overlays}) to hold the button properties:
4462 @defun make-button beg end &rest properties
4463 This makes a button from @var{beg} to @var{end} in the
4464 current buffer, and returns it.
4465 @end defun
4467 @defun insert-button label &rest properties
4468 This insert a button with the label @var{label} at point,
4469 and returns it.
4470 @end defun
4472   The following functions are similar, but use Emacs text properties
4473 (@pxref{Text Properties}) to hold the button properties, making the
4474 button actually part of the text instead of being a property of the
4475 buffer.  Buttons using text properties do not create markers into the
4476 buffer, which is important for speed when you use extremely large
4477 numbers of buttons.  Both functions return the position of the start
4478 of the new button:
4480 @defun make-text-button beg end &rest properties
4481 This makes a button from @var{beg} to @var{end} in the current buffer, using
4482 text properties.
4483 @end defun
4485 @defun insert-text-button label &rest properties
4486 This inserts a button with the label @var{label} at point, using text
4487 properties.
4488 @end defun
4490 @node Manipulating Buttons
4491 @subsection Manipulating Buttons
4492 @cindex manipulating buttons
4494 These are functions for getting and setting properties of buttons.
4495 Often these are used by a button's invocation function to determine
4496 what to do.
4498 Where a @var{button} parameter is specified, it means an object
4499 referring to a specific button, either an overlay (for overlay
4500 buttons), or a buffer-position or marker (for text property buttons).
4501 Such an object is passed as the first argument to a button's
4502 invocation function when it is invoked.
4504 @defun button-start button
4505 Return the position at which @var{button} starts.
4506 @end defun
4508 @defun button-end button
4509 Return the position at which @var{button} ends.
4510 @end defun
4512 @defun button-get button prop
4513 Get the property of button @var{button} named @var{prop}.
4514 @end defun
4516 @defun button-put button prop val
4517 Set @var{button}'s @var{prop} property to @var{val}.
4518 @end defun
4520 @defun button-activate button &optional use-mouse-action
4521 Call @var{button}'s @code{action} property (i.e., invoke it).  If
4522 @var{use-mouse-action} is non-@code{nil}, try to invoke the button's
4523 @code{mouse-action} property instead of @code{action}; if the button
4524 has no @code{mouse-action} property, use @code{action} as normal.
4525 @end defun
4527 @defun button-label button
4528 Return @var{button}'s text label.
4529 @end defun
4531 @defun button-type button
4532 Return @var{button}'s button-type.
4533 @end defun
4535 @defun button-has-type-p button type
4536 Return @code{t} if @var{button} has button-type @var{type}, or one of
4537 @var{type}'s subtypes.
4538 @end defun
4540 @defun button-at pos
4541 Return the button at position @var{pos} in the current buffer, or @code{nil}.
4542 @end defun
4544 @defun button-type-put type prop val
4545 Set the button-type @var{type}'s @var{prop} property to @var{val}.
4546 @end defun
4548 @defun button-type-get type prop
4549 Get the property of button-type @var{type} named @var{prop}.
4550 @end defun
4552 @defun button-type-subtype-p type supertype
4553 Return @code{t} if button-type @var{type} is a subtype of @var{supertype}.
4554 @end defun
4556 @node Button Buffer Commands
4557 @subsection Button Buffer Commands
4558 @cindex button buffer commands
4560 These are commands and functions for locating and operating on
4561 buttons in an Emacs buffer.
4563 @code{push-button} is the command that a user uses to actually `push'
4564 a button, and is bound by default in the button itself to @key{RET}
4565 and to @key{mouse-2} using a region-specific keymap.  Commands
4566 that are useful outside the buttons itself, such as
4567 @code{forward-button} and @code{backward-button} are additionally
4568 available in the keymap stored in @code{button-buffer-map}; a mode
4569 which uses buttons may want to use @code{button-buffer-map} as a
4570 parent keymap for its keymap.
4572 If the button has a non-@code{nil} @code{follow-link} property, and
4573 @var{mouse-1-click-follows-link} is set, a quick @key{Mouse-1} click
4574 will also activate the @code{push-button} command.
4575 @xref{Links and Mouse-1}.
4577 @deffn Command push-button &optional pos use-mouse-action
4578 Perform the action specified by a button at location @var{pos}.
4579 @var{pos} may be either a buffer position or a mouse-event.  If
4580 @var{use-mouse-action} is non-@code{nil}, or @var{pos} is a
4581 mouse-event (@pxref{Mouse Events}), try to invoke the button's
4582 @code{mouse-action} property instead of @code{action}; if the button
4583 has no @code{mouse-action} property, use @code{action} as normal.
4584 @var{pos} defaults to point, except when @code{push-button} is invoked
4585 interactively as the result of a mouse-event, in which case, the mouse
4586 event's position is used.  If there's no button at @var{pos}, do
4587 nothing and return @code{nil}, otherwise return @code{t}.
4588 @end deffn
4590 @deffn Command forward-button n &optional wrap display-message
4591 Move to the @var{n}th next button, or @var{n}th previous button if
4592 @var{n} is negative.  If @var{n} is zero, move to the start of any
4593 button at point.  If @var{wrap} is non-@code{nil}, moving past either
4594 end of the buffer continues from the other end.  If
4595 @var{display-message} is non-@code{nil}, the button's help-echo string
4596 is displayed.  Any button with a non-@code{nil} @code{skip} property
4597 is skipped over.  Returns the button found.
4598 @end deffn
4600 @deffn Command backward-button n &optional wrap display-message
4601 Move to the @var{n}th previous button, or @var{n}th next button if
4602 @var{n} is negative.  If @var{n} is zero, move to the start of any
4603 button at point.  If @var{wrap} is non-@code{nil}, moving past either
4604 end of the buffer continues from the other end.  If
4605 @var{display-message} is non-@code{nil}, the button's help-echo string
4606 is displayed.  Any button with a non-@code{nil} @code{skip} property
4607 is skipped over.  Returns the button found.
4608 @end deffn
4610 @defun next-button pos &optional count-current
4611 @defunx previous-button pos &optional count-current
4612 Return the next button after (for @code{next-button} or before (for
4613 @code{previous-button}) position @var{pos} in the current buffer.  If
4614 @var{count-current} is non-@code{nil}, count any button at @var{pos}
4615 in the search, instead of starting at the next button.
4616 @end defun
4618 @node Abstract Display
4619 @section Abstract Display
4620 @cindex ewoc
4621 @cindex display, abstract
4622 @cindex display, arbitrary objects
4623 @cindex model/view/controller
4624 @cindex view part, model/view/controller
4626   The Ewoc package constructs buffer text that represents a structure
4627 of Lisp objects, and updates the text to follow changes in that
4628 structure.  This is like the ``view'' component in the
4629 ``model/view/controller'' design paradigm.
4631   An @dfn{ewoc} is a structure that organizes information required to
4632 construct buffer text that represents certain Lisp data.  The buffer
4633 text of the ewoc has three parts, in order: first, fixed @dfn{header}
4634 text; next, textual descriptions of a series of data elements (Lisp
4635 objects that you specify); and last, fixed @dfn{footer} text.
4636 Specifically, an ewoc contains information on:
4638 @itemize @bullet
4639 @item
4640 The buffer which its text is generated in.
4642 @item
4643 The text's start position in the buffer.
4645 @item
4646 The header and footer strings.
4648 @item
4649 A doubly-linked chain of @dfn{nodes}, each of which contains:
4651 @itemize
4652 @item
4653 A @dfn{data element}, a single Lisp object.
4655 @item
4656 Links to the preceding and following nodes in the chain.
4657 @end itemize
4659 @item
4660 A @dfn{pretty-printer} function which is responsible for
4661 inserting the textual representation of a data
4662 element value into the current buffer.
4663 @end itemize
4665   Typically, you define an ewoc with @code{ewoc-create}, and then pass
4666 the resulting ewoc structure to other functions in the Ewoc package to
4667 build nodes within it, and display it in the buffer.  Once it is
4668 displayed in the buffer, other functions determine the correspondance
4669 between buffer positions and nodes, move point from one node's textual
4670 representation to another, and so forth.  @xref{Abstract Display
4671 Functions}.
4673   A node @dfn{encapsulates} a data element much the way a variable
4674 holds a value.  Normally, encapsulation occurs as a part of adding a
4675 node to the ewoc.  You can retrieve the data element value and place a
4676 new value in its place, like so:
4678 @lisp
4679 (ewoc-data @var{node})
4680 @result{} value
4682 (ewoc-set-data @var{node} @var{new-value})
4683 @result{} @var{new-value}
4684 @end lisp
4686 @noindent
4687 You can also use, as the data element value, a Lisp object (list or
4688 vector) that is a container for the ``real'' value, or an index into
4689 some other structure.  The example (@pxref{Abstract Display Example})
4690 uses the latter approach.
4692   When the data changes, you will want to update the text in the
4693 buffer.  You can update all nodes by calling @code{ewoc-refresh}, or
4694 just specific nodes using @code{ewoc-invalidate}, or all nodes
4695 satisfying a predicate using @code{ewoc-map}.  Alternatively, you can
4696 delete invalid nodes using @code{ewoc-delete} or @code{ewoc-filter},
4697 and add new nodes in their place.  Deleting a node from an ewoc deletes
4698 its associated textual description from buffer, as well.
4700 @menu
4701 * Abstract Display Functions::
4702 * Abstract Display Example::
4703 @end menu
4705 @node Abstract Display Functions
4706 @subsection Abstract Display Functions
4708   In this subsection, @var{ewoc} and @var{node} stand for the
4709 structures described above (@pxref{Abstract Display}), while
4710 @var{data} stands for an arbitrary Lisp object used as a data element.
4712 @defun ewoc-create pretty-printer &optional header footer nosep
4713 This constructs and returns a new ewoc, with no nodes (and thus no data
4714 elements).  @var{pretty-printer} should be a function that takes one
4715 argument, a data element of the sort you plan to use in this ewoc, and
4716 inserts its textual description at point using @code{insert} (and never
4717 @code{insert-before-markers}, because that would interfere with the
4718 Ewoc package's internal mechanisms).
4720 Normally, a newline is automatically inserted after the header,
4721 the footer and every node's textual description.  If @var{nosep}
4722 is non-@code{nil}, no newline is inserted.  This may be useful for
4723 displaying an entire ewoc on a single line, for example, or for
4724 making nodes ``invisible'' by arranging for @var{pretty-printer}
4725 to do nothing for those nodes.
4727 An ewoc maintains its text in the buffer that is current when
4728 you create it, so switch to the intended buffer before calling
4729 @code{ewoc-create}.
4730 @end defun
4732 @defun ewoc-buffer ewoc
4733 This returns the buffer where @var{ewoc} maintains its text.
4734 @end defun
4736 @defun ewoc-get-hf ewoc
4737 This returns a cons cell @code{(@var{header} . @var{footer})}
4738 made from @var{ewoc}'s header and footer.
4739 @end defun
4741 @defun ewoc-set-hf ewoc header footer
4742 This sets the header and footer of @var{ewoc} to the strings
4743 @var{header} and @var{footer}, respectively.
4744 @end defun
4746 @defun ewoc-enter-first ewoc data
4747 @defunx ewoc-enter-last ewoc data
4748 These add a new node encapsulating @var{data}, putting it, respectively,
4749 at the beginning or end of @var{ewoc}'s chain of nodes.
4750 @end defun
4752 @defun ewoc-enter-before ewoc node data
4753 @defunx ewoc-enter-after ewoc node data
4754 These add a new node encapsulating @var{data}, adding it to
4755 @var{ewoc} before or after @var{node}, respectively.
4756 @end defun
4758 @defun ewoc-prev ewoc node
4759 @defunx ewoc-next ewoc node
4760 These return, respectively, the previous node and the next node of @var{node}
4761 in @var{ewoc}.
4762 @end defun
4764 @defun ewoc-nth ewoc n
4765 This returns the node in @var{ewoc} found at zero-based index @var{n}.
4766 A negative @var{n} means count from the end.  @code{ewoc-nth} returns
4767 @code{nil} if @var{n} is out of range.
4768 @end defun
4770 @defun ewoc-data node
4771 This extracts the data encapsulated by @var{node} and returns it.
4772 @end defun
4774 @defun ewoc-set-data node data
4775 This sets the data encapsulated by @var{node} to @var{data}.
4776 @end defun
4778 @defun ewoc-locate ewoc &optional pos guess
4779 This determines the node in @var{ewoc} which contains point (or
4780 @var{pos} if specified), and returns that node.  If @var{ewoc} has no
4781 nodes, it returns @code{nil}.  If @var{pos} is before the first node,
4782 it returns the first node; if @var{pos} is after the last node, it returns
4783 the last node.  The optional third arg @var{guess}
4784 should be a node that is likely to be near @var{pos}; this doesn't
4785 alter the result, but makes the function run faster.
4786 @end defun
4788 @defun ewoc-location node
4789 This returns the start position of @var{node}.
4790 @end defun
4792 @defun ewoc-goto-prev ewoc arg
4793 @defunx ewoc-goto-next ewoc arg
4794 These move point to the previous or next, respectively, @var{arg}th node
4795 in @var{ewoc}.  @code{ewoc-goto-prev} does not move if it is already at
4796 the first node or if @var{ewoc} is empty, whereas @code{ewoc-goto-next}
4797 moves past the last node, returning @code{nil}.  Excepting this special
4798 case, these functions return the node moved to.
4799 @end defun
4801 @defun ewoc-goto-node ewoc node
4802 This moves point to the start of @var{node} in @var{ewoc}.
4803 @end defun
4805 @defun ewoc-refresh ewoc
4806 This function regenerates the text of @var{ewoc}.  It works by
4807 deleting the text between the header and the footer, i.e., all the
4808 data elements' representations, and then calling the pretty-printer
4809 function for each node, one by one, in order.
4810 @end defun
4812 @defun ewoc-invalidate ewoc &rest nodes
4813 This is similar to @code{ewoc-refresh}, except that only @var{nodes} in
4814 @var{ewoc} are updated instead of the entire set.
4815 @end defun
4817 @defun ewoc-delete ewoc &rest nodes
4818 This deletes each node in @var{nodes} from @var{ewoc}.
4819 @end defun
4821 @defun ewoc-filter ewoc predicate &rest args
4822 This calls @var{predicate} for each data element in @var{ewoc} and
4823 deletes those nodes for which @var{predicate} returns @code{nil}.
4824 Any @var{args} are passed to @var{predicate}.
4825 @end defun
4827 @defun ewoc-collect ewoc predicate &rest args
4828 This calls @var{predicate} for each data element in @var{ewoc}
4829 and returns a list of those elements for which @var{predicate}
4830 returns non-@code{nil}.  The elements in the list are ordered
4831 as in the buffer.  Any @var{args} are passed to @var{predicate}.
4832 @end defun
4834 @defun ewoc-map map-function ewoc &rest args
4835 This calls @var{map-function} for each data element in @var{ewoc} and
4836 updates those nodes for which @var{map-function} returns non-@code{nil}.
4837 Any @var{args} are passed to @var{map-function}.
4838 @end defun
4840 @node Abstract Display Example
4841 @subsection Abstract Display Example
4843   Here is a simple example using functions of the ewoc package to
4844 implement a ``color components display,'' an area in a buffer that
4845 represents a vector of three integers (itself representing a 24-bit RGB
4846 value) in various ways.
4848 @example
4849 (setq colorcomp-ewoc nil
4850       colorcomp-data nil
4851       colorcomp-mode-map nil
4852       colorcomp-labels ["Red" "Green" "Blue"])
4854 (defun colorcomp-pp (data)
4855   (if data
4856       (let ((comp (aref colorcomp-data data)))
4857         (insert (aref colorcomp-labels data) "\t: #x"
4858                 (format "%02X" comp) " "
4859                 (make-string (ash comp -2) ?#) "\n"))
4860     (let ((cstr (format "#%02X%02X%02X"
4861                         (aref colorcomp-data 0)
4862                         (aref colorcomp-data 1)
4863                         (aref colorcomp-data 2)))
4864           (samp " (sample text) "))
4865       (insert "Color\t: "
4866               (propertize samp 'face `(foreground-color . ,cstr))
4867               (propertize samp 'face `(background-color . ,cstr))
4868               "\n"))))
4870 (defun colorcomp (color)
4871   "Allow fiddling with COLOR in a new buffer.
4872 The buffer is in Color Components mode."
4873   (interactive "sColor (name or #RGB or #RRGGBB): ")
4874   (when (string= "" color)
4875     (setq color "green"))
4876   (unless (color-values color)
4877     (error "No such color: %S" color))
4878   (switch-to-buffer
4879    (generate-new-buffer (format "originally: %s" color)))
4880   (kill-all-local-variables)
4881   (setq major-mode 'colorcomp-mode
4882         mode-name "Color Components")
4883   (use-local-map colorcomp-mode-map)
4884   (erase-buffer)
4885   (buffer-disable-undo)
4886   (let ((data (apply 'vector (mapcar (lambda (n) (ash n -8))
4887                                      (color-values color))))
4888         (ewoc (ewoc-create 'colorcomp-pp
4889                            "\nColor Components\n\n"
4890                            (substitute-command-keys
4891                             "\n\\@{colorcomp-mode-map@}"))))
4892     (set (make-local-variable 'colorcomp-data) data)
4893     (set (make-local-variable 'colorcomp-ewoc) ewoc)
4894     (ewoc-enter-last ewoc 0)
4895     (ewoc-enter-last ewoc 1)
4896     (ewoc-enter-last ewoc 2)
4897     (ewoc-enter-last ewoc nil)))
4898 @end example
4900 @cindex controller part, model/view/controller
4901   This example can be extended to be a ``color selection widget'' (in
4902 other words, the controller part of the ``model/view/controller''
4903 design paradigm) by defining commands to modify @code{colorcomp-data}
4904 and to ``finish'' the selection process, and a keymap to tie it all
4905 together conveniently.
4907 @smallexample
4908 (defun colorcomp-mod (index limit delta)
4909   (let ((cur (aref colorcomp-data index)))
4910     (unless (= limit cur)
4911       (aset colorcomp-data index (+ cur delta)))
4912     (ewoc-invalidate
4913      colorcomp-ewoc
4914      (ewoc-nth colorcomp-ewoc index)
4915      (ewoc-nth colorcomp-ewoc -1))))
4917 (defun colorcomp-R-more () (interactive) (colorcomp-mod 0 255 1))
4918 (defun colorcomp-G-more () (interactive) (colorcomp-mod 1 255 1))
4919 (defun colorcomp-B-more () (interactive) (colorcomp-mod 2 255 1))
4920 (defun colorcomp-R-less () (interactive) (colorcomp-mod 0 0 -1))
4921 (defun colorcomp-G-less () (interactive) (colorcomp-mod 1 0 -1))
4922 (defun colorcomp-B-less () (interactive) (colorcomp-mod 2 0 -1))
4924 (defun colorcomp-copy-as-kill-and-exit ()
4925   "Copy the color components into the kill ring and kill the buffer.
4926 The string is formatted #RRGGBB (hash followed by six hex digits)."
4927   (interactive)
4928   (kill-new (format "#%02X%02X%02X"
4929                     (aref colorcomp-data 0)
4930                     (aref colorcomp-data 1)
4931                     (aref colorcomp-data 2)))
4932   (kill-buffer nil))
4934 (setq colorcomp-mode-map
4935       (let ((m (make-sparse-keymap)))
4936         (suppress-keymap m)
4937         (define-key m "i" 'colorcomp-R-less)
4938         (define-key m "o" 'colorcomp-R-more)
4939         (define-key m "k" 'colorcomp-G-less)
4940         (define-key m "l" 'colorcomp-G-more)
4941         (define-key m "," 'colorcomp-B-less)
4942         (define-key m "." 'colorcomp-B-more)
4943         (define-key m " " 'colorcomp-copy-as-kill-and-exit)
4944         m))
4945 @end smallexample
4947 Note that we never modify the data in each node, which is fixed when the
4948 ewoc is created to be either @code{nil} or an index into the vector
4949 @code{colorcomp-data}, the actual color components.
4951 @node Blinking
4952 @section Blinking Parentheses
4953 @cindex parenthesis matching
4954 @cindex blinking parentheses
4955 @cindex balancing parentheses
4957   This section describes the mechanism by which Emacs shows a matching
4958 open parenthesis when the user inserts a close parenthesis.
4960 @defvar blink-paren-function
4961 The value of this variable should be a function (of no arguments) to
4962 be called whenever a character with close parenthesis syntax is inserted.
4963 The value of @code{blink-paren-function} may be @code{nil}, in which
4964 case nothing is done.
4965 @end defvar
4967 @defopt blink-matching-paren
4968 If this variable is @code{nil}, then @code{blink-matching-open} does
4969 nothing.
4970 @end defopt
4972 @defopt blink-matching-paren-distance
4973 This variable specifies the maximum distance to scan for a matching
4974 parenthesis before giving up.
4975 @end defopt
4977 @defopt blink-matching-delay
4978 This variable specifies the number of seconds for the cursor to remain
4979 at the matching parenthesis.  A fraction of a second often gives
4980 good results, but the default is 1, which works on all systems.
4981 @end defopt
4983 @deffn Command blink-matching-open
4984 This function is the default value of @code{blink-paren-function}.  It
4985 assumes that point follows a character with close parenthesis syntax and
4986 moves the cursor momentarily to the matching opening character.  If that
4987 character is not already on the screen, it displays the character's
4988 context in the echo area.  To avoid long delays, this function does not
4989 search farther than @code{blink-matching-paren-distance} characters.
4991 Here is an example of calling this function explicitly.
4993 @smallexample
4994 @group
4995 (defun interactive-blink-matching-open ()
4996 @c Do not break this line! -- rms.
4997 @c The first line of a doc string
4998 @c must stand alone.
4999   "Indicate momentarily the start of sexp before point."
5000   (interactive)
5001 @end group
5002 @group
5003   (let ((blink-matching-paren-distance
5004          (buffer-size))
5005         (blink-matching-paren t))
5006     (blink-matching-open)))
5007 @end group
5008 @end smallexample
5009 @end deffn
5011 @node Usual Display
5012 @section Usual Display Conventions
5014   The usual display conventions define how to display each character
5015 code.  You can override these conventions by setting up a display table
5016 (@pxref{Display Tables}).  Here are the usual display conventions:
5018 @itemize @bullet
5019 @item
5020 Character codes 32 through 126 map to glyph codes 32 through 126.
5021 Normally this means they display as themselves.
5023 @item
5024 Character code 9 is a horizontal tab.  It displays as whitespace
5025 up to a position determined by @code{tab-width}.
5027 @item
5028 Character code 10 is a newline.
5030 @item
5031 All other codes in the range 0 through 31, and code 127, display in one
5032 of two ways according to the value of @code{ctl-arrow}.  If it is
5033 non-@code{nil}, these codes map to sequences of two glyphs, where the
5034 first glyph is the @acronym{ASCII} code for @samp{^}.  (A display table can
5035 specify a glyph to use instead of @samp{^}.)  Otherwise, these codes map
5036 just like the codes in the range 128 to 255.
5038 On MS-DOS terminals, Emacs arranges by default for the character code
5039 127 to be mapped to the glyph code 127, which normally displays as an
5040 empty polygon.  This glyph is used to display non-@acronym{ASCII} characters
5041 that the MS-DOS terminal doesn't support.  @xref{MS-DOS and MULE,,,
5042 emacs, The GNU Emacs Manual}.
5044 @item
5045 Character codes 128 through 255 map to sequences of four glyphs, where
5046 the first glyph is the @acronym{ASCII} code for @samp{\}, and the others are
5047 digit characters representing the character code in octal.  (A display
5048 table can specify a glyph to use instead of @samp{\}.)
5050 @item
5051 Multibyte character codes above 256 are displayed as themselves, or as a
5052 question mark or empty box if the terminal cannot display that
5053 character.
5054 @end itemize
5056   The usual display conventions apply even when there is a display
5057 table, for any character whose entry in the active display table is
5058 @code{nil}.  Thus, when you set up a display table, you need only
5059 specify the characters for which you want special behavior.
5061   These display rules apply to carriage return (character code 13), when
5062 it appears in the buffer.  But that character may not appear in the
5063 buffer where you expect it, if it was eliminated as part of end-of-line
5064 conversion (@pxref{Coding System Basics}).
5066   These variables affect the way certain characters are displayed on the
5067 screen.  Since they change the number of columns the characters occupy,
5068 they also affect the indentation functions.  These variables also affect
5069 how the mode line is displayed; if you want to force redisplay of the
5070 mode line using the new values, call the function
5071 @code{force-mode-line-update} (@pxref{Mode Line Format}).
5073 @defopt ctl-arrow
5074 @cindex control characters in display
5075 This buffer-local variable controls how control characters are
5076 displayed.  If it is non-@code{nil}, they are displayed as a caret
5077 followed by the character: @samp{^A}.  If it is @code{nil}, they are
5078 displayed as a backslash followed by three octal digits: @samp{\001}.
5079 @end defopt
5081 @c Following may have overfull hbox.
5082 @defvar default-ctl-arrow
5083 The value of this variable is the default value for @code{ctl-arrow} in
5084 buffers that do not override it.  @xref{Default Value}.
5085 @end defvar
5087 @defopt tab-width
5088 The value of this buffer-local variable is the spacing between tab
5089 stops used for displaying tab characters in Emacs buffers.  The value
5090 is in units of columns, and the default is 8.  Note that this feature
5091 is completely independent of the user-settable tab stops used by the
5092 command @code{tab-to-tab-stop}.  @xref{Indent Tabs}.
5093 @end defopt
5095 @node Display Tables
5096 @section Display Tables
5098 @cindex display table
5099 You can use the @dfn{display table} feature to control how all possible
5100 character codes display on the screen.  This is useful for displaying
5101 European languages that have letters not in the @acronym{ASCII} character
5102 set.
5104 The display table maps each character code into a sequence of
5105 @dfn{glyphs}, each glyph being a graphic that takes up one character
5106 position on the screen.  You can also define how to display each glyph
5107 on your terminal, using the @dfn{glyph table}.
5109 Display tables affect how the mode line is displayed; if you want to
5110 force redisplay of the mode line using a new display table, call
5111 @code{force-mode-line-update} (@pxref{Mode Line Format}).
5113 @menu
5114 * Display Table Format::  What a display table consists of.
5115 * Active Display Table::  How Emacs selects a display table to use.
5116 * Glyphs::              How to define a glyph, and what glyphs mean.
5117 @end menu
5119 @node Display Table Format
5120 @subsection Display Table Format
5122   A display table is actually a char-table (@pxref{Char-Tables}) with
5123 @code{display-table} as its subtype.
5125 @defun make-display-table
5126 This creates and returns a display table.  The table initially has
5127 @code{nil} in all elements.
5128 @end defun
5130   The ordinary elements of the display table are indexed by character
5131 codes; the element at index @var{c} says how to display the character
5132 code @var{c}.  The value should be @code{nil} or a vector of the
5133 glyphs to be output (@pxref{Glyphs}).  @code{nil} says to display the
5134 character @var{c} according to the usual display conventions
5135 (@pxref{Usual Display}).
5137   @strong{Warning:} if you use the display table to change the display
5138 of newline characters, the whole buffer will be displayed as one long
5139 ``line.''
5141   The display table also has six ``extra slots'' which serve special
5142 purposes.  Here is a table of their meanings; @code{nil} in any slot
5143 means to use the default for that slot, as stated below.
5145 @table @asis
5146 @item 0
5147 The glyph for the end of a truncated screen line (the default for this
5148 is @samp{$}).  @xref{Glyphs}.  On graphical terminals, Emacs uses
5149 arrows in the fringes to indicate truncation, so the display table has
5150 no effect.
5152 @item 1
5153 The glyph for the end of a continued line (the default is @samp{\}).
5154 On graphical terminals, Emacs uses curved arrows in the fringes to
5155 indicate continuation, so the display table has no effect.
5157 @item 2
5158 The glyph for indicating a character displayed as an octal character
5159 code (the default is @samp{\}).
5161 @item 3
5162 The glyph for indicating a control character (the default is @samp{^}).
5164 @item 4
5165 A vector of glyphs for indicating the presence of invisible lines (the
5166 default is @samp{...}).  @xref{Selective Display}.
5168 @item 5
5169 The glyph used to draw the border between side-by-side windows (the
5170 default is @samp{|}).  @xref{Splitting Windows}.  This takes effect only
5171 when there are no scroll bars; if scroll bars are supported and in use,
5172 a scroll bar separates the two windows.
5173 @end table
5175   For example, here is how to construct a display table that mimics the
5176 effect of setting @code{ctl-arrow} to a non-@code{nil} value:
5178 @example
5179 (setq disptab (make-display-table))
5180 (let ((i 0))
5181   (while (< i 32)
5182     (or (= i ?\t) (= i ?\n)
5183         (aset disptab i (vector ?^ (+ i 64))))
5184     (setq i (1+ i)))
5185   (aset disptab 127 (vector ?^ ??)))
5186 @end example
5188 @defun display-table-slot display-table slot
5189 This function returns the value of the extra slot @var{slot} of
5190 @var{display-table}.  The argument @var{slot} may be a number from 0 to
5191 5 inclusive, or a slot name (symbol).  Valid symbols are
5192 @code{truncation}, @code{wrap}, @code{escape}, @code{control},
5193 @code{selective-display}, and @code{vertical-border}.
5194 @end defun
5196 @defun set-display-table-slot display-table slot value
5197 This function stores @var{value} in the extra slot @var{slot} of
5198 @var{display-table}.  The argument @var{slot} may be a number from 0 to
5199 5 inclusive, or a slot name (symbol).  Valid symbols are
5200 @code{truncation}, @code{wrap}, @code{escape}, @code{control},
5201 @code{selective-display}, and @code{vertical-border}.
5202 @end defun
5204 @defun describe-display-table display-table
5205 This function displays a description of the display table
5206 @var{display-table} in a help buffer.
5207 @end defun
5209 @deffn Command describe-current-display-table
5210 This command displays a description of the current display table in a
5211 help buffer.
5212 @end deffn
5214 @node Active Display Table
5215 @subsection Active Display Table
5216 @cindex active display table
5218   Each window can specify a display table, and so can each buffer.  When
5219 a buffer @var{b} is displayed in window @var{w}, display uses the
5220 display table for window @var{w} if it has one; otherwise, the display
5221 table for buffer @var{b} if it has one; otherwise, the standard display
5222 table if any.  The display table chosen is called the @dfn{active}
5223 display table.
5225 @defun window-display-table &optional window
5226 This function returns @var{window}'s display table, or @code{nil}
5227 if @var{window} does not have an assigned display table.  The default
5228 for @var{window} is the selected window.
5229 @end defun
5231 @defun set-window-display-table window table
5232 This function sets the display table of @var{window} to @var{table}.
5233 The argument @var{table} should be either a display table or
5234 @code{nil}.
5235 @end defun
5237 @defvar buffer-display-table
5238 This variable is automatically buffer-local in all buffers; its value in
5239 a particular buffer specifies the display table for that buffer.  If it
5240 is @code{nil}, that means the buffer does not have an assigned display
5241 table.
5242 @end defvar
5244 @defvar standard-display-table
5245 This variable's value is the default display table, used whenever a
5246 window has no display table and neither does the buffer displayed in
5247 that window.  This variable is @code{nil} by default.
5248 @end defvar
5250   If there is no display table to use for a particular window---that is,
5251 if the window specifies none, its buffer specifies none, and
5252 @code{standard-display-table} is @code{nil}---then Emacs uses the usual
5253 display conventions for all character codes in that window.  @xref{Usual
5254 Display}.
5256 A number of functions for changing the standard display table
5257 are defined in the library @file{disp-table}.
5259 @node Glyphs
5260 @subsection Glyphs
5262 @cindex glyph
5263   A @dfn{glyph} is a generalization of a character; it stands for an
5264 image that takes up a single character position on the screen.  Normally
5265 glyphs come from vectors in the display table (@pxref{Display Tables}).
5267   A glyph is represented in Lisp as a @dfn{glyph code}.  A glyph code
5268 can be @dfn{simple} or it can be defined by the @dfn{glyph table}.  A
5269 simple glyph code is just a way of specifying a character and a face
5270 to output it in.  @xref{Faces}.
5272   The following functions are used to manipulate simple glyph codes:
5274 @defun make-glyph-code char &optional face
5275 This function returns a simple glyph code representing char @var{char}
5276 with face @var{face}.
5277 @end defun
5279 @defun glyph-char glyph
5280 This function returns the character of simple glyph code @var{glyph}.
5281 @end defun
5283 @defun glyph-face glyph
5284 This function returns face of simple glyph code @var{glyph}, or
5285 @code{nil} if @var{glyph} has the default face (face-id 0).
5286 @end defun
5288   On character terminals, you can set up a @dfn{glyph table} to define
5289 the meaning of glyph codes (represented as small integers).
5291 @defvar glyph-table
5292 The value of this variable is the current glyph table.  It should be
5293 @code{nil} or a vector whose @var{g}th element defines glyph code
5294 @var{g}.
5296 If a glyph code is greater than or equal to the length of the glyph
5297 table, that code is automatically simple.  If @code{glyph-table} is
5298 @code{nil} then all glyph codes are simple.
5300 The glyph table is used only on character terminals.  On graphical
5301 displays, all glyph codes are simple.
5302 @end defvar
5304   Here are the meaningful types of elements in the glyph table:
5306 @table @asis
5307 @item @var{string}
5308 Send the characters in @var{string} to the terminal to output
5309 this glyph code.
5311 @item @var{code}
5312 Define this glyph code as an alias for glyph code @var{code} created
5313 by @code{make-glyph-code}.  You can use such an alias to define a
5314 small-numbered glyph code which specifies a character with a face.
5316 @item @code{nil}
5317 This glyph code is simple.
5318 @end table
5320 @defun create-glyph string
5321 This function returns a newly-allocated glyph code which is set up to
5322 display by sending @var{string} to the terminal.
5323 @end defun
5325 @node Beeping
5326 @section Beeping
5327 @c  @cindex beeping   "beep" is adjacent
5328 @cindex bell
5330   This section describes how to make Emacs ring the bell (or blink the
5331 screen) to attract the user's attention.  Be conservative about how
5332 often you do this; frequent bells can become irritating.  Also be
5333 careful not to use just beeping when signaling an error is more
5334 appropriate.  (@xref{Errors}.)
5336 @defun ding &optional do-not-terminate
5337 @cindex keyboard macro termination
5338 This function beeps, or flashes the screen (see @code{visible-bell} below).
5339 It also terminates any keyboard macro currently executing unless
5340 @var{do-not-terminate} is non-@code{nil}.
5341 @end defun
5343 @defun beep &optional do-not-terminate
5344 This is a synonym for @code{ding}.
5345 @end defun
5347 @defopt visible-bell
5348 This variable determines whether Emacs should flash the screen to
5349 represent a bell.  Non-@code{nil} means yes, @code{nil} means no.  This
5350 is effective on graphical displays, and on text-only terminals
5351 provided the terminal's Termcap entry defines the visible bell
5352 capability (@samp{vb}).
5353 @end defopt
5355 @defvar ring-bell-function
5356 If this is non-@code{nil}, it specifies how Emacs should ``ring the
5357 bell.''  Its value should be a function of no arguments.  If this is
5358 non-@code{nil}, it takes precedence over the @code{visible-bell}
5359 variable.
5360 @end defvar
5362 @node Window Systems
5363 @section Window Systems
5365   Emacs works with several window systems, most notably the X Window
5366 System.  Both Emacs and X use the term ``window,'' but use it
5367 differently.  An Emacs frame is a single window as far as X is
5368 concerned; the individual Emacs windows are not known to X at all.
5370 @defvar window-system
5371 This variable tells Lisp programs what window system Emacs is running
5372 under.  The possible values are
5374 @table @code
5375 @item x
5376 @cindex X Window System
5377 Emacs is displaying using X.
5378 @item pc
5379 Emacs is displaying using MS-DOS.
5380 @item w32
5381 Emacs is displaying using Windows.
5382 @item mac
5383 Emacs is displaying using a Macintosh.
5384 @item nil
5385 Emacs is using a character-based terminal.
5386 @end table
5387 @end defvar
5389 @defvar window-setup-hook
5390 This variable is a normal hook which Emacs runs after handling the
5391 initialization files.  Emacs runs this hook after it has completed
5392 loading your init file, the default initialization file (if
5393 any), and the terminal-specific Lisp code, and running the hook
5394 @code{term-setup-hook}.
5396 This hook is used for internal purposes: setting up communication with
5397 the window system, and creating the initial window.  Users should not
5398 interfere with it.
5399 @end defvar
5401 @ignore
5402    arch-tag: ffdf5714-7ecf-415b-9023-fbc6b409c2c6
5403 @end ignore