1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2012
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
30 #include "character.h"
35 #include "intervals.h"
38 #include "blockinput.h"
40 #if defined (HAVE_X_WINDOWS)
43 #endif /* HAVE_MENUS */
46 #define NULL ((POINTER_TYPE *)0)
49 Lisp_Object Qstring_lessp
;
50 static Lisp_Object Qprovide
, Qrequire
;
51 static Lisp_Object Qyes_or_no_p_history
;
52 Lisp_Object Qcursor_in_echo_area
;
53 static Lisp_Object Qwidget_type
;
54 static Lisp_Object Qcodeset
, Qdays
, Qmonths
, Qpaper
;
56 static Lisp_Object Qmd5
, Qsha1
, Qsha224
, Qsha256
, Qsha384
, Qsha512
;
58 static int internal_equal (Lisp_Object
, Lisp_Object
, int, int);
64 DEFUN ("identity", Fidentity
, Sidentity
, 1, 1, 0,
65 doc
: /* Return the argument unchanged. */)
71 DEFUN ("random", Frandom
, Srandom
, 0, 1, 0,
72 doc
: /* Return a pseudo-random number.
73 All integers representable in Lisp are equally likely.
74 On most systems, this is 29 bits' worth.
75 With positive integer LIMIT, return random number in interval [0,LIMIT).
76 With argument t, set the random number seed from the current time and pid.
77 Other values of LIMIT are ignored. */)
81 Lisp_Object lispy_val
;
87 seed_random (getpid () ^ EMACS_SECS (t
) ^ EMACS_USECS (t
));
90 if (NATNUMP (limit
) && XFASTINT (limit
) != 0)
92 /* Try to take our random number from the higher bits of VAL,
93 not the lower, since (says Gentzel) the low bits of `random'
94 are less random than the higher ones. We do this by using the
95 quotient rather than the remainder. At the high end of the RNG
96 it's possible to get a quotient larger than n; discarding
97 these values eliminates the bias that would otherwise appear
98 when using a large n. */
99 EMACS_INT denominator
= (INTMASK
+ 1) / XFASTINT (limit
);
101 val
= get_random () / denominator
;
102 while (val
>= XFASTINT (limit
));
106 XSETINT (lispy_val
, val
);
110 /* Heuristic on how many iterations of a tight loop can be safely done
111 before it's time to do a QUIT. This must be a power of 2. */
112 enum { QUIT_COUNT_HEURISTIC
= 1 << 16 };
114 /* Random data-structure functions */
116 DEFUN ("length", Flength
, Slength
, 1, 1, 0,
117 doc
: /* Return the length of vector, list or string SEQUENCE.
118 A byte-code function object is also allowed.
119 If the string contains multibyte characters, this is not necessarily
120 the number of bytes in the string; it is the number of characters.
121 To get the number of bytes, use `string-bytes'. */)
122 (register Lisp_Object sequence
)
124 register Lisp_Object val
;
126 if (STRINGP (sequence
))
127 XSETFASTINT (val
, SCHARS (sequence
));
128 else if (VECTORP (sequence
))
129 XSETFASTINT (val
, ASIZE (sequence
));
130 else if (CHAR_TABLE_P (sequence
))
131 XSETFASTINT (val
, MAX_CHAR
);
132 else if (BOOL_VECTOR_P (sequence
))
133 XSETFASTINT (val
, XBOOL_VECTOR (sequence
)->size
);
134 else if (COMPILEDP (sequence
))
135 XSETFASTINT (val
, ASIZE (sequence
) & PSEUDOVECTOR_SIZE_MASK
);
136 else if (CONSP (sequence
))
143 if ((i
& (QUIT_COUNT_HEURISTIC
- 1)) == 0)
145 if (MOST_POSITIVE_FIXNUM
< i
)
146 error ("List too long");
149 sequence
= XCDR (sequence
);
151 while (CONSP (sequence
));
153 CHECK_LIST_END (sequence
, sequence
);
155 val
= make_number (i
);
157 else if (NILP (sequence
))
158 XSETFASTINT (val
, 0);
160 wrong_type_argument (Qsequencep
, sequence
);
165 /* This does not check for quits. That is safe since it must terminate. */
167 DEFUN ("safe-length", Fsafe_length
, Ssafe_length
, 1, 1, 0,
168 doc
: /* Return the length of a list, but avoid error or infinite loop.
169 This function never gets an error. If LIST is not really a list,
170 it returns 0. If LIST is circular, it returns a finite value
171 which is at least the number of distinct elements. */)
174 Lisp_Object tail
, halftail
;
179 return make_number (0);
181 /* halftail is used to detect circular lists. */
182 for (tail
= halftail
= list
; ; )
187 if (EQ (tail
, halftail
))
190 if ((lolen
& 1) == 0)
192 halftail
= XCDR (halftail
);
193 if ((lolen
& (QUIT_COUNT_HEURISTIC
- 1)) == 0)
197 hilen
+= UINTMAX_MAX
+ 1.0;
202 /* If the length does not fit into a fixnum, return a float.
203 On all known practical machines this returns an upper bound on
205 return hilen
? make_float (hilen
+ lolen
) : make_fixnum_or_float (lolen
);
208 DEFUN ("string-bytes", Fstring_bytes
, Sstring_bytes
, 1, 1, 0,
209 doc
: /* Return the number of bytes in STRING.
210 If STRING is multibyte, this may be greater than the length of STRING. */)
213 CHECK_STRING (string
);
214 return make_number (SBYTES (string
));
217 DEFUN ("string-equal", Fstring_equal
, Sstring_equal
, 2, 2, 0,
218 doc
: /* Return t if two strings have identical contents.
219 Case is significant, but text properties are ignored.
220 Symbols are also allowed; their print names are used instead. */)
221 (register Lisp_Object s1
, Lisp_Object s2
)
224 s1
= SYMBOL_NAME (s1
);
226 s2
= SYMBOL_NAME (s2
);
230 if (SCHARS (s1
) != SCHARS (s2
)
231 || SBYTES (s1
) != SBYTES (s2
)
232 || memcmp (SDATA (s1
), SDATA (s2
), SBYTES (s1
)))
237 DEFUN ("compare-strings", Fcompare_strings
, Scompare_strings
, 6, 7, 0,
238 doc
: /* Compare the contents of two strings, converting to multibyte if needed.
239 In string STR1, skip the first START1 characters and stop at END1.
240 In string STR2, skip the first START2 characters and stop at END2.
241 END1 and END2 default to the full lengths of the respective strings.
243 Case is significant in this comparison if IGNORE-CASE is nil.
244 Unibyte strings are converted to multibyte for comparison.
246 The value is t if the strings (or specified portions) match.
247 If string STR1 is less, the value is a negative number N;
248 - 1 - N is the number of characters that match at the beginning.
249 If string STR1 is greater, the value is a positive number N;
250 N - 1 is the number of characters that match at the beginning. */)
251 (Lisp_Object str1
, Lisp_Object start1
, Lisp_Object end1
, Lisp_Object str2
, Lisp_Object start2
, Lisp_Object end2
, Lisp_Object ignore_case
)
253 register ptrdiff_t end1_char
, end2_char
;
254 register ptrdiff_t i1
, i1_byte
, i2
, i2_byte
;
259 start1
= make_number (0);
261 start2
= make_number (0);
262 CHECK_NATNUM (start1
);
263 CHECK_NATNUM (start2
);
269 end1_char
= SCHARS (str1
);
270 if (! NILP (end1
) && end1_char
> XINT (end1
))
271 end1_char
= XINT (end1
);
272 if (end1_char
< XINT (start1
))
273 args_out_of_range (str1
, start1
);
275 end2_char
= SCHARS (str2
);
276 if (! NILP (end2
) && end2_char
> XINT (end2
))
277 end2_char
= XINT (end2
);
278 if (end2_char
< XINT (start2
))
279 args_out_of_range (str2
, start2
);
284 i1_byte
= string_char_to_byte (str1
, i1
);
285 i2_byte
= string_char_to_byte (str2
, i2
);
287 while (i1
< end1_char
&& i2
< end2_char
)
289 /* When we find a mismatch, we must compare the
290 characters, not just the bytes. */
293 if (STRING_MULTIBYTE (str1
))
294 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1
, str1
, i1
, i1_byte
);
297 c1
= SREF (str1
, i1
++);
298 MAKE_CHAR_MULTIBYTE (c1
);
301 if (STRING_MULTIBYTE (str2
))
302 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2
, str2
, i2
, i2_byte
);
305 c2
= SREF (str2
, i2
++);
306 MAKE_CHAR_MULTIBYTE (c2
);
312 if (! NILP (ignore_case
))
316 tem
= Fupcase (make_number (c1
));
318 tem
= Fupcase (make_number (c2
));
325 /* Note that I1 has already been incremented
326 past the character that we are comparing;
327 hence we don't add or subtract 1 here. */
329 return make_number (- i1
+ XINT (start1
));
331 return make_number (i1
- XINT (start1
));
335 return make_number (i1
- XINT (start1
) + 1);
337 return make_number (- i1
+ XINT (start1
) - 1);
342 DEFUN ("string-lessp", Fstring_lessp
, Sstring_lessp
, 2, 2, 0,
343 doc
: /* Return t if first arg string is less than second in lexicographic order.
345 Symbols are also allowed; their print names are used instead. */)
346 (register Lisp_Object s1
, Lisp_Object s2
)
348 register ptrdiff_t end
;
349 register ptrdiff_t i1
, i1_byte
, i2
, i2_byte
;
352 s1
= SYMBOL_NAME (s1
);
354 s2
= SYMBOL_NAME (s2
);
358 i1
= i1_byte
= i2
= i2_byte
= 0;
361 if (end
> SCHARS (s2
))
366 /* When we find a mismatch, we must compare the
367 characters, not just the bytes. */
370 FETCH_STRING_CHAR_ADVANCE (c1
, s1
, i1
, i1_byte
);
371 FETCH_STRING_CHAR_ADVANCE (c2
, s2
, i2
, i2_byte
);
374 return c1
< c2
? Qt
: Qnil
;
376 return i1
< SCHARS (s2
) ? Qt
: Qnil
;
379 static Lisp_Object
concat (ptrdiff_t nargs
, Lisp_Object
*args
,
380 enum Lisp_Type target_type
, int last_special
);
384 concat2 (Lisp_Object s1
, Lisp_Object s2
)
389 return concat (2, args
, Lisp_String
, 0);
394 concat3 (Lisp_Object s1
, Lisp_Object s2
, Lisp_Object s3
)
400 return concat (3, args
, Lisp_String
, 0);
403 DEFUN ("append", Fappend
, Sappend
, 0, MANY
, 0,
404 doc
: /* Concatenate all the arguments and make the result a list.
405 The result is a list whose elements are the elements of all the arguments.
406 Each argument may be a list, vector or string.
407 The last argument is not copied, just used as the tail of the new list.
408 usage: (append &rest SEQUENCES) */)
409 (ptrdiff_t nargs
, Lisp_Object
*args
)
411 return concat (nargs
, args
, Lisp_Cons
, 1);
414 DEFUN ("concat", Fconcat
, Sconcat
, 0, MANY
, 0,
415 doc
: /* Concatenate all the arguments and make the result a string.
416 The result is a string whose elements are the elements of all the arguments.
417 Each argument may be a string or a list or vector of characters (integers).
418 usage: (concat &rest SEQUENCES) */)
419 (ptrdiff_t nargs
, Lisp_Object
*args
)
421 return concat (nargs
, args
, Lisp_String
, 0);
424 DEFUN ("vconcat", Fvconcat
, Svconcat
, 0, MANY
, 0,
425 doc
: /* Concatenate all the arguments and make the result a vector.
426 The result is a vector whose elements are the elements of all the arguments.
427 Each argument may be a list, vector or string.
428 usage: (vconcat &rest SEQUENCES) */)
429 (ptrdiff_t nargs
, Lisp_Object
*args
)
431 return concat (nargs
, args
, Lisp_Vectorlike
, 0);
435 DEFUN ("copy-sequence", Fcopy_sequence
, Scopy_sequence
, 1, 1, 0,
436 doc
: /* Return a copy of a list, vector, string or char-table.
437 The elements of a list or vector are not copied; they are shared
438 with the original. */)
441 if (NILP (arg
)) return arg
;
443 if (CHAR_TABLE_P (arg
))
445 return copy_char_table (arg
);
448 if (BOOL_VECTOR_P (arg
))
451 ptrdiff_t size_in_chars
452 = ((XBOOL_VECTOR (arg
)->size
+ BOOL_VECTOR_BITS_PER_CHAR
- 1)
453 / BOOL_VECTOR_BITS_PER_CHAR
);
455 val
= Fmake_bool_vector (Flength (arg
), Qnil
);
456 memcpy (XBOOL_VECTOR (val
)->data
, XBOOL_VECTOR (arg
)->data
,
461 if (!CONSP (arg
) && !VECTORP (arg
) && !STRINGP (arg
))
462 wrong_type_argument (Qsequencep
, arg
);
464 return concat (1, &arg
, CONSP (arg
) ? Lisp_Cons
: XTYPE (arg
), 0);
467 /* This structure holds information of an argument of `concat' that is
468 a string and has text properties to be copied. */
471 ptrdiff_t argnum
; /* refer to ARGS (arguments of `concat') */
472 ptrdiff_t from
; /* refer to ARGS[argnum] (argument string) */
473 ptrdiff_t to
; /* refer to VAL (the target string) */
477 concat (ptrdiff_t nargs
, Lisp_Object
*args
,
478 enum Lisp_Type target_type
, int last_special
)
481 register Lisp_Object tail
;
482 register Lisp_Object
this;
484 ptrdiff_t toindex_byte
= 0;
485 register EMACS_INT result_len
;
486 register EMACS_INT result_len_byte
;
488 Lisp_Object last_tail
;
491 /* When we make a multibyte string, we can't copy text properties
492 while concatenating each string because the length of resulting
493 string can't be decided until we finish the whole concatenation.
494 So, we record strings that have text properties to be copied
495 here, and copy the text properties after the concatenation. */
496 struct textprop_rec
*textprops
= NULL
;
497 /* Number of elements in textprops. */
498 ptrdiff_t num_textprops
= 0;
503 /* In append, the last arg isn't treated like the others */
504 if (last_special
&& nargs
> 0)
507 last_tail
= args
[nargs
];
512 /* Check each argument. */
513 for (argnum
= 0; argnum
< nargs
; argnum
++)
516 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
517 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
518 wrong_type_argument (Qsequencep
, this);
521 /* Compute total length in chars of arguments in RESULT_LEN.
522 If desired output is a string, also compute length in bytes
523 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
524 whether the result should be a multibyte string. */
528 for (argnum
= 0; argnum
< nargs
; argnum
++)
532 len
= XFASTINT (Flength (this));
533 if (target_type
== Lisp_String
)
535 /* We must count the number of bytes needed in the string
536 as well as the number of characters. */
540 ptrdiff_t this_len_byte
;
542 if (VECTORP (this) || COMPILEDP (this))
543 for (i
= 0; i
< len
; i
++)
546 CHECK_CHARACTER (ch
);
548 this_len_byte
= CHAR_BYTES (c
);
549 if (STRING_BYTES_BOUND
- result_len_byte
< this_len_byte
)
551 result_len_byte
+= this_len_byte
;
552 if (! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
555 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size
> 0)
556 wrong_type_argument (Qintegerp
, Faref (this, make_number (0)));
557 else if (CONSP (this))
558 for (; CONSP (this); this = XCDR (this))
561 CHECK_CHARACTER (ch
);
563 this_len_byte
= CHAR_BYTES (c
);
564 if (STRING_BYTES_BOUND
- result_len_byte
< this_len_byte
)
566 result_len_byte
+= this_len_byte
;
567 if (! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
570 else if (STRINGP (this))
572 if (STRING_MULTIBYTE (this))
575 this_len_byte
= SBYTES (this);
578 this_len_byte
= count_size_as_multibyte (SDATA (this),
580 if (STRING_BYTES_BOUND
- result_len_byte
< this_len_byte
)
582 result_len_byte
+= this_len_byte
;
587 if (MOST_POSITIVE_FIXNUM
< result_len
)
588 memory_full (SIZE_MAX
);
591 if (! some_multibyte
)
592 result_len_byte
= result_len
;
594 /* Create the output object. */
595 if (target_type
== Lisp_Cons
)
596 val
= Fmake_list (make_number (result_len
), Qnil
);
597 else if (target_type
== Lisp_Vectorlike
)
598 val
= Fmake_vector (make_number (result_len
), Qnil
);
599 else if (some_multibyte
)
600 val
= make_uninit_multibyte_string (result_len
, result_len_byte
);
602 val
= make_uninit_string (result_len
);
604 /* In `append', if all but last arg are nil, return last arg. */
605 if (target_type
== Lisp_Cons
&& EQ (val
, Qnil
))
608 /* Copy the contents of the args into the result. */
610 tail
= val
, toindex
= -1; /* -1 in toindex is flag we are making a list */
612 toindex
= 0, toindex_byte
= 0;
616 SAFE_NALLOCA (textprops
, 1, nargs
);
618 for (argnum
= 0; argnum
< nargs
; argnum
++)
621 ptrdiff_t thisleni
= 0;
622 register ptrdiff_t thisindex
= 0;
623 register ptrdiff_t thisindex_byte
= 0;
627 thislen
= Flength (this), thisleni
= XINT (thislen
);
629 /* Between strings of the same kind, copy fast. */
630 if (STRINGP (this) && STRINGP (val
)
631 && STRING_MULTIBYTE (this) == some_multibyte
)
633 ptrdiff_t thislen_byte
= SBYTES (this);
635 memcpy (SDATA (val
) + toindex_byte
, SDATA (this), SBYTES (this));
636 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
638 textprops
[num_textprops
].argnum
= argnum
;
639 textprops
[num_textprops
].from
= 0;
640 textprops
[num_textprops
++].to
= toindex
;
642 toindex_byte
+= thislen_byte
;
645 /* Copy a single-byte string to a multibyte string. */
646 else if (STRINGP (this) && STRINGP (val
))
648 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
650 textprops
[num_textprops
].argnum
= argnum
;
651 textprops
[num_textprops
].from
= 0;
652 textprops
[num_textprops
++].to
= toindex
;
654 toindex_byte
+= copy_text (SDATA (this),
655 SDATA (val
) + toindex_byte
,
656 SCHARS (this), 0, 1);
660 /* Copy element by element. */
663 register Lisp_Object elt
;
665 /* Fetch next element of `this' arg into `elt', or break if
666 `this' is exhausted. */
667 if (NILP (this)) break;
669 elt
= XCAR (this), this = XCDR (this);
670 else if (thisindex
>= thisleni
)
672 else if (STRINGP (this))
675 if (STRING_MULTIBYTE (this))
676 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c
, this,
681 c
= SREF (this, thisindex
); thisindex
++;
682 if (some_multibyte
&& !ASCII_CHAR_P (c
))
683 c
= BYTE8_TO_CHAR (c
);
685 XSETFASTINT (elt
, c
);
687 else if (BOOL_VECTOR_P (this))
690 byte
= XBOOL_VECTOR (this)->data
[thisindex
/ BOOL_VECTOR_BITS_PER_CHAR
];
691 if (byte
& (1 << (thisindex
% BOOL_VECTOR_BITS_PER_CHAR
)))
699 elt
= AREF (this, thisindex
);
703 /* Store this element into the result. */
710 else if (VECTORP (val
))
712 ASET (val
, toindex
, elt
);
718 CHECK_CHARACTER (elt
);
721 toindex_byte
+= CHAR_STRING (c
, SDATA (val
) + toindex_byte
);
723 SSET (val
, toindex_byte
++, c
);
729 XSETCDR (prev
, last_tail
);
731 if (num_textprops
> 0)
734 ptrdiff_t last_to_end
= -1;
736 for (argnum
= 0; argnum
< num_textprops
; argnum
++)
738 this = args
[textprops
[argnum
].argnum
];
739 props
= text_property_list (this,
741 make_number (SCHARS (this)),
743 /* If successive arguments have properties, be sure that the
744 value of `composition' property be the copy. */
745 if (last_to_end
== textprops
[argnum
].to
)
746 make_composition_value_copy (props
);
747 add_text_properties_from_list (val
, props
,
748 make_number (textprops
[argnum
].to
));
749 last_to_end
= textprops
[argnum
].to
+ SCHARS (this);
757 static Lisp_Object string_char_byte_cache_string
;
758 static ptrdiff_t string_char_byte_cache_charpos
;
759 static ptrdiff_t string_char_byte_cache_bytepos
;
762 clear_string_char_byte_cache (void)
764 string_char_byte_cache_string
= Qnil
;
767 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
770 string_char_to_byte (Lisp_Object string
, ptrdiff_t char_index
)
773 ptrdiff_t best_below
, best_below_byte
;
774 ptrdiff_t best_above
, best_above_byte
;
776 best_below
= best_below_byte
= 0;
777 best_above
= SCHARS (string
);
778 best_above_byte
= SBYTES (string
);
779 if (best_above
== best_above_byte
)
782 if (EQ (string
, string_char_byte_cache_string
))
784 if (string_char_byte_cache_charpos
< char_index
)
786 best_below
= string_char_byte_cache_charpos
;
787 best_below_byte
= string_char_byte_cache_bytepos
;
791 best_above
= string_char_byte_cache_charpos
;
792 best_above_byte
= string_char_byte_cache_bytepos
;
796 if (char_index
- best_below
< best_above
- char_index
)
798 unsigned char *p
= SDATA (string
) + best_below_byte
;
800 while (best_below
< char_index
)
802 p
+= BYTES_BY_CHAR_HEAD (*p
);
805 i_byte
= p
- SDATA (string
);
809 unsigned char *p
= SDATA (string
) + best_above_byte
;
811 while (best_above
> char_index
)
814 while (!CHAR_HEAD_P (*p
)) p
--;
817 i_byte
= p
- SDATA (string
);
820 string_char_byte_cache_bytepos
= i_byte
;
821 string_char_byte_cache_charpos
= char_index
;
822 string_char_byte_cache_string
= string
;
827 /* Return the character index corresponding to BYTE_INDEX in STRING. */
830 string_byte_to_char (Lisp_Object string
, ptrdiff_t byte_index
)
833 ptrdiff_t best_below
, best_below_byte
;
834 ptrdiff_t best_above
, best_above_byte
;
836 best_below
= best_below_byte
= 0;
837 best_above
= SCHARS (string
);
838 best_above_byte
= SBYTES (string
);
839 if (best_above
== best_above_byte
)
842 if (EQ (string
, string_char_byte_cache_string
))
844 if (string_char_byte_cache_bytepos
< byte_index
)
846 best_below
= string_char_byte_cache_charpos
;
847 best_below_byte
= string_char_byte_cache_bytepos
;
851 best_above
= string_char_byte_cache_charpos
;
852 best_above_byte
= string_char_byte_cache_bytepos
;
856 if (byte_index
- best_below_byte
< best_above_byte
- byte_index
)
858 unsigned char *p
= SDATA (string
) + best_below_byte
;
859 unsigned char *pend
= SDATA (string
) + byte_index
;
863 p
+= BYTES_BY_CHAR_HEAD (*p
);
867 i_byte
= p
- SDATA (string
);
871 unsigned char *p
= SDATA (string
) + best_above_byte
;
872 unsigned char *pbeg
= SDATA (string
) + byte_index
;
877 while (!CHAR_HEAD_P (*p
)) p
--;
881 i_byte
= p
- SDATA (string
);
884 string_char_byte_cache_bytepos
= i_byte
;
885 string_char_byte_cache_charpos
= i
;
886 string_char_byte_cache_string
= string
;
891 /* Convert STRING to a multibyte string. */
894 string_make_multibyte (Lisp_Object string
)
901 if (STRING_MULTIBYTE (string
))
904 nbytes
= count_size_as_multibyte (SDATA (string
),
906 /* If all the chars are ASCII, they won't need any more bytes
907 once converted. In that case, we can return STRING itself. */
908 if (nbytes
== SBYTES (string
))
911 SAFE_ALLOCA (buf
, unsigned char *, nbytes
);
912 copy_text (SDATA (string
), buf
, SBYTES (string
),
915 ret
= make_multibyte_string ((char *) buf
, SCHARS (string
), nbytes
);
922 /* Convert STRING (if unibyte) to a multibyte string without changing
923 the number of characters. Characters 0200 trough 0237 are
924 converted to eight-bit characters. */
927 string_to_multibyte (Lisp_Object string
)
934 if (STRING_MULTIBYTE (string
))
937 nbytes
= count_size_as_multibyte (SDATA (string
), SBYTES (string
));
938 /* If all the chars are ASCII, they won't need any more bytes once
940 if (nbytes
== SBYTES (string
))
941 return make_multibyte_string (SSDATA (string
), nbytes
, nbytes
);
943 SAFE_ALLOCA (buf
, unsigned char *, nbytes
);
944 memcpy (buf
, SDATA (string
), SBYTES (string
));
945 str_to_multibyte (buf
, nbytes
, SBYTES (string
));
947 ret
= make_multibyte_string ((char *) buf
, SCHARS (string
), nbytes
);
954 /* Convert STRING to a single-byte string. */
957 string_make_unibyte (Lisp_Object string
)
964 if (! STRING_MULTIBYTE (string
))
967 nchars
= SCHARS (string
);
969 SAFE_ALLOCA (buf
, unsigned char *, nchars
);
970 copy_text (SDATA (string
), buf
, SBYTES (string
),
973 ret
= make_unibyte_string ((char *) buf
, nchars
);
979 DEFUN ("string-make-multibyte", Fstring_make_multibyte
, Sstring_make_multibyte
,
981 doc
: /* Return the multibyte equivalent of STRING.
982 If STRING is unibyte and contains non-ASCII characters, the function
983 `unibyte-char-to-multibyte' is used to convert each unibyte character
984 to a multibyte character. In this case, the returned string is a
985 newly created string with no text properties. If STRING is multibyte
986 or entirely ASCII, it is returned unchanged. In particular, when
987 STRING is unibyte and entirely ASCII, the returned string is unibyte.
988 \(When the characters are all ASCII, Emacs primitives will treat the
989 string the same way whether it is unibyte or multibyte.) */)
992 CHECK_STRING (string
);
994 return string_make_multibyte (string
);
997 DEFUN ("string-make-unibyte", Fstring_make_unibyte
, Sstring_make_unibyte
,
999 doc
: /* Return the unibyte equivalent of STRING.
1000 Multibyte character codes are converted to unibyte according to
1001 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1002 If the lookup in the translation table fails, this function takes just
1003 the low 8 bits of each character. */)
1004 (Lisp_Object string
)
1006 CHECK_STRING (string
);
1008 return string_make_unibyte (string
);
1011 DEFUN ("string-as-unibyte", Fstring_as_unibyte
, Sstring_as_unibyte
,
1013 doc
: /* Return a unibyte string with the same individual bytes as STRING.
1014 If STRING is unibyte, the result is STRING itself.
1015 Otherwise it is a newly created string, with no text properties.
1016 If STRING is multibyte and contains a character of charset
1017 `eight-bit', it is converted to the corresponding single byte. */)
1018 (Lisp_Object string
)
1020 CHECK_STRING (string
);
1022 if (STRING_MULTIBYTE (string
))
1024 ptrdiff_t bytes
= SBYTES (string
);
1025 unsigned char *str
= (unsigned char *) xmalloc (bytes
);
1027 memcpy (str
, SDATA (string
), bytes
);
1028 bytes
= str_as_unibyte (str
, bytes
);
1029 string
= make_unibyte_string ((char *) str
, bytes
);
1035 DEFUN ("string-as-multibyte", Fstring_as_multibyte
, Sstring_as_multibyte
,
1037 doc
: /* Return a multibyte string with the same individual bytes as STRING.
1038 If STRING is multibyte, the result is STRING itself.
1039 Otherwise it is a newly created string, with no text properties.
1041 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1042 part of a correct utf-8 sequence), it is converted to the corresponding
1043 multibyte character of charset `eight-bit'.
1044 See also `string-to-multibyte'.
1046 Beware, this often doesn't really do what you think it does.
1047 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1048 If you're not sure, whether to use `string-as-multibyte' or
1049 `string-to-multibyte', use `string-to-multibyte'. */)
1050 (Lisp_Object string
)
1052 CHECK_STRING (string
);
1054 if (! STRING_MULTIBYTE (string
))
1056 Lisp_Object new_string
;
1057 ptrdiff_t nchars
, nbytes
;
1059 parse_str_as_multibyte (SDATA (string
),
1062 new_string
= make_uninit_multibyte_string (nchars
, nbytes
);
1063 memcpy (SDATA (new_string
), SDATA (string
), SBYTES (string
));
1064 if (nbytes
!= SBYTES (string
))
1065 str_as_multibyte (SDATA (new_string
), nbytes
,
1066 SBYTES (string
), NULL
);
1067 string
= new_string
;
1068 STRING_SET_INTERVALS (string
, NULL_INTERVAL
);
1073 DEFUN ("string-to-multibyte", Fstring_to_multibyte
, Sstring_to_multibyte
,
1075 doc
: /* Return a multibyte string with the same individual chars as STRING.
1076 If STRING is multibyte, the result is STRING itself.
1077 Otherwise it is a newly created string, with no text properties.
1079 If STRING is unibyte and contains an 8-bit byte, it is converted to
1080 the corresponding multibyte character of charset `eight-bit'.
1082 This differs from `string-as-multibyte' by converting each byte of a correct
1083 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1084 correct sequence. */)
1085 (Lisp_Object string
)
1087 CHECK_STRING (string
);
1089 return string_to_multibyte (string
);
1092 DEFUN ("string-to-unibyte", Fstring_to_unibyte
, Sstring_to_unibyte
,
1094 doc
: /* Return a unibyte string with the same individual chars as STRING.
1095 If STRING is unibyte, the result is STRING itself.
1096 Otherwise it is a newly created string, with no text properties,
1097 where each `eight-bit' character is converted to the corresponding byte.
1098 If STRING contains a non-ASCII, non-`eight-bit' character,
1099 an error is signaled. */)
1100 (Lisp_Object string
)
1102 CHECK_STRING (string
);
1104 if (STRING_MULTIBYTE (string
))
1106 ptrdiff_t chars
= SCHARS (string
);
1107 unsigned char *str
= (unsigned char *) xmalloc (chars
);
1108 ptrdiff_t converted
= str_to_unibyte (SDATA (string
), str
, chars
, 0);
1110 if (converted
< chars
)
1111 error ("Can't convert the %"pD
"dth character to unibyte", converted
);
1112 string
= make_unibyte_string ((char *) str
, chars
);
1119 DEFUN ("copy-alist", Fcopy_alist
, Scopy_alist
, 1, 1, 0,
1120 doc
: /* Return a copy of ALIST.
1121 This is an alist which represents the same mapping from objects to objects,
1122 but does not share the alist structure with ALIST.
1123 The objects mapped (cars and cdrs of elements of the alist)
1124 are shared, however.
1125 Elements of ALIST that are not conses are also shared. */)
1128 register Lisp_Object tem
;
1133 alist
= concat (1, &alist
, Lisp_Cons
, 0);
1134 for (tem
= alist
; CONSP (tem
); tem
= XCDR (tem
))
1136 register Lisp_Object car
;
1140 XSETCAR (tem
, Fcons (XCAR (car
), XCDR (car
)));
1145 DEFUN ("substring", Fsubstring
, Ssubstring
, 2, 3, 0,
1146 doc
: /* Return a new string whose contents are a substring of STRING.
1147 The returned string consists of the characters between index FROM
1148 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1149 zero-indexed: 0 means the first character of STRING. Negative values
1150 are counted from the end of STRING. If TO is nil, the substring runs
1151 to the end of STRING.
1153 The STRING argument may also be a vector. In that case, the return
1154 value is a new vector that contains the elements between index FROM
1155 \(inclusive) and index TO (exclusive) of that vector argument. */)
1156 (Lisp_Object string
, register Lisp_Object from
, Lisp_Object to
)
1160 EMACS_INT from_char
, to_char
;
1162 CHECK_VECTOR_OR_STRING (string
);
1163 CHECK_NUMBER (from
);
1165 if (STRINGP (string
))
1166 size
= SCHARS (string
);
1168 size
= ASIZE (string
);
1176 to_char
= XINT (to
);
1181 from_char
= XINT (from
);
1184 if (!(0 <= from_char
&& from_char
<= to_char
&& to_char
<= size
))
1185 args_out_of_range_3 (string
, make_number (from_char
),
1186 make_number (to_char
));
1188 if (STRINGP (string
))
1191 (NILP (to
) ? SBYTES (string
) : string_char_to_byte (string
, to_char
));
1192 ptrdiff_t from_byte
= string_char_to_byte (string
, from_char
);
1193 res
= make_specified_string (SSDATA (string
) + from_byte
,
1194 to_char
- from_char
, to_byte
- from_byte
,
1195 STRING_MULTIBYTE (string
));
1196 copy_text_properties (make_number (from_char
), make_number (to_char
),
1197 string
, make_number (0), res
, Qnil
);
1200 res
= Fvector (to_char
- from_char
, &AREF (string
, from_char
));
1206 DEFUN ("substring-no-properties", Fsubstring_no_properties
, Ssubstring_no_properties
, 1, 3, 0,
1207 doc
: /* Return a substring of STRING, without text properties.
1208 It starts at index FROM and ends before TO.
1209 TO may be nil or omitted; then the substring runs to the end of STRING.
1210 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1211 If FROM or TO is negative, it counts from the end.
1213 With one argument, just copy STRING without its properties. */)
1214 (Lisp_Object string
, register Lisp_Object from
, Lisp_Object to
)
1217 EMACS_INT from_char
, to_char
;
1218 ptrdiff_t from_byte
, to_byte
;
1220 CHECK_STRING (string
);
1222 size
= SCHARS (string
);
1228 CHECK_NUMBER (from
);
1229 from_char
= XINT (from
);
1239 to_char
= XINT (to
);
1244 if (!(0 <= from_char
&& from_char
<= to_char
&& to_char
<= size
))
1245 args_out_of_range_3 (string
, make_number (from_char
),
1246 make_number (to_char
));
1248 from_byte
= NILP (from
) ? 0 : string_char_to_byte (string
, from_char
);
1250 NILP (to
) ? SBYTES (string
) : string_char_to_byte (string
, to_char
);
1251 return make_specified_string (SSDATA (string
) + from_byte
,
1252 to_char
- from_char
, to_byte
- from_byte
,
1253 STRING_MULTIBYTE (string
));
1256 /* Extract a substring of STRING, giving start and end positions
1257 both in characters and in bytes. */
1260 substring_both (Lisp_Object string
, ptrdiff_t from
, ptrdiff_t from_byte
,
1261 ptrdiff_t to
, ptrdiff_t to_byte
)
1266 CHECK_VECTOR_OR_STRING (string
);
1268 size
= STRINGP (string
) ? SCHARS (string
) : ASIZE (string
);
1270 if (!(0 <= from
&& from
<= to
&& to
<= size
))
1271 args_out_of_range_3 (string
, make_number (from
), make_number (to
));
1273 if (STRINGP (string
))
1275 res
= make_specified_string (SSDATA (string
) + from_byte
,
1276 to
- from
, to_byte
- from_byte
,
1277 STRING_MULTIBYTE (string
));
1278 copy_text_properties (make_number (from
), make_number (to
),
1279 string
, make_number (0), res
, Qnil
);
1282 res
= Fvector (to
- from
, &AREF (string
, from
));
1287 DEFUN ("nthcdr", Fnthcdr
, Snthcdr
, 2, 2, 0,
1288 doc
: /* Take cdr N times on LIST, return the result. */)
1289 (Lisp_Object n
, Lisp_Object list
)
1294 for (i
= 0; i
< num
&& !NILP (list
); i
++)
1297 CHECK_LIST_CONS (list
, list
);
1303 DEFUN ("nth", Fnth
, Snth
, 2, 2, 0,
1304 doc
: /* Return the Nth element of LIST.
1305 N counts from zero. If LIST is not that long, nil is returned. */)
1306 (Lisp_Object n
, Lisp_Object list
)
1308 return Fcar (Fnthcdr (n
, list
));
1311 DEFUN ("elt", Felt
, Selt
, 2, 2, 0,
1312 doc
: /* Return element of SEQUENCE at index N. */)
1313 (register Lisp_Object sequence
, Lisp_Object n
)
1316 if (CONSP (sequence
) || NILP (sequence
))
1317 return Fcar (Fnthcdr (n
, sequence
));
1319 /* Faref signals a "not array" error, so check here. */
1320 CHECK_ARRAY (sequence
, Qsequencep
);
1321 return Faref (sequence
, n
);
1324 DEFUN ("member", Fmember
, Smember
, 2, 2, 0,
1325 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1326 The value is actually the tail of LIST whose car is ELT. */)
1327 (register Lisp_Object elt
, Lisp_Object list
)
1329 register Lisp_Object tail
;
1330 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
1332 register Lisp_Object tem
;
1333 CHECK_LIST_CONS (tail
, list
);
1335 if (! NILP (Fequal (elt
, tem
)))
1342 DEFUN ("memq", Fmemq
, Smemq
, 2, 2, 0,
1343 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1344 The value is actually the tail of LIST whose car is ELT. */)
1345 (register Lisp_Object elt
, Lisp_Object list
)
1349 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1353 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1357 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1368 DEFUN ("memql", Fmemql
, Smemql
, 2, 2, 0,
1369 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1370 The value is actually the tail of LIST whose car is ELT. */)
1371 (register Lisp_Object elt
, Lisp_Object list
)
1373 register Lisp_Object tail
;
1376 return Fmemq (elt
, list
);
1378 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
1380 register Lisp_Object tem
;
1381 CHECK_LIST_CONS (tail
, list
);
1383 if (FLOATP (tem
) && internal_equal (elt
, tem
, 0, 0))
1390 DEFUN ("assq", Fassq
, Sassq
, 2, 2, 0,
1391 doc
: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1392 The value is actually the first element of LIST whose car is KEY.
1393 Elements of LIST that are not conses are ignored. */)
1394 (Lisp_Object key
, Lisp_Object list
)
1399 || (CONSP (XCAR (list
))
1400 && EQ (XCAR (XCAR (list
)), key
)))
1405 || (CONSP (XCAR (list
))
1406 && EQ (XCAR (XCAR (list
)), key
)))
1411 || (CONSP (XCAR (list
))
1412 && EQ (XCAR (XCAR (list
)), key
)))
1422 /* Like Fassq but never report an error and do not allow quits.
1423 Use only on lists known never to be circular. */
1426 assq_no_quit (Lisp_Object key
, Lisp_Object list
)
1429 && (!CONSP (XCAR (list
))
1430 || !EQ (XCAR (XCAR (list
)), key
)))
1433 return CAR_SAFE (list
);
1436 DEFUN ("assoc", Fassoc
, Sassoc
, 2, 2, 0,
1437 doc
: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1438 The value is actually the first element of LIST whose car equals KEY. */)
1439 (Lisp_Object key
, Lisp_Object list
)
1446 || (CONSP (XCAR (list
))
1447 && (car
= XCAR (XCAR (list
)),
1448 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1453 || (CONSP (XCAR (list
))
1454 && (car
= XCAR (XCAR (list
)),
1455 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1460 || (CONSP (XCAR (list
))
1461 && (car
= XCAR (XCAR (list
)),
1462 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1472 /* Like Fassoc but never report an error and do not allow quits.
1473 Use only on lists known never to be circular. */
1476 assoc_no_quit (Lisp_Object key
, Lisp_Object list
)
1479 && (!CONSP (XCAR (list
))
1480 || (!EQ (XCAR (XCAR (list
)), key
)
1481 && NILP (Fequal (XCAR (XCAR (list
)), key
)))))
1484 return CONSP (list
) ? XCAR (list
) : Qnil
;
1487 DEFUN ("rassq", Frassq
, Srassq
, 2, 2, 0,
1488 doc
: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1489 The value is actually the first element of LIST whose cdr is KEY. */)
1490 (register Lisp_Object key
, Lisp_Object list
)
1495 || (CONSP (XCAR (list
))
1496 && EQ (XCDR (XCAR (list
)), key
)))
1501 || (CONSP (XCAR (list
))
1502 && EQ (XCDR (XCAR (list
)), key
)))
1507 || (CONSP (XCAR (list
))
1508 && EQ (XCDR (XCAR (list
)), key
)))
1518 DEFUN ("rassoc", Frassoc
, Srassoc
, 2, 2, 0,
1519 doc
: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1520 The value is actually the first element of LIST whose cdr equals KEY. */)
1521 (Lisp_Object key
, Lisp_Object list
)
1528 || (CONSP (XCAR (list
))
1529 && (cdr
= XCDR (XCAR (list
)),
1530 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1535 || (CONSP (XCAR (list
))
1536 && (cdr
= XCDR (XCAR (list
)),
1537 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1542 || (CONSP (XCAR (list
))
1543 && (cdr
= XCDR (XCAR (list
)),
1544 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1554 DEFUN ("delq", Fdelq
, Sdelq
, 2, 2, 0,
1555 doc
: /* Delete by side effect any occurrences of ELT as a member of LIST.
1556 The modified LIST is returned. Comparison is done with `eq'.
1557 If the first member of LIST is ELT, there is no way to remove it by side effect;
1558 therefore, write `(setq foo (delq element foo))'
1559 to be sure of changing the value of `foo'. */)
1560 (register Lisp_Object elt
, Lisp_Object list
)
1562 register Lisp_Object tail
, prev
;
1563 register Lisp_Object tem
;
1567 while (!NILP (tail
))
1569 CHECK_LIST_CONS (tail
, list
);
1576 Fsetcdr (prev
, XCDR (tail
));
1586 DEFUN ("delete", Fdelete
, Sdelete
, 2, 2, 0,
1587 doc
: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1588 SEQ must be a list, a vector, or a string.
1589 The modified SEQ is returned. Comparison is done with `equal'.
1590 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1591 is not a side effect; it is simply using a different sequence.
1592 Therefore, write `(setq foo (delete element foo))'
1593 to be sure of changing the value of `foo'. */)
1594 (Lisp_Object elt
, Lisp_Object seq
)
1600 for (i
= n
= 0; i
< ASIZE (seq
); ++i
)
1601 if (NILP (Fequal (AREF (seq
, i
), elt
)))
1604 if (n
!= ASIZE (seq
))
1606 struct Lisp_Vector
*p
= allocate_vector (n
);
1608 for (i
= n
= 0; i
< ASIZE (seq
); ++i
)
1609 if (NILP (Fequal (AREF (seq
, i
), elt
)))
1610 p
->contents
[n
++] = AREF (seq
, i
);
1612 XSETVECTOR (seq
, p
);
1615 else if (STRINGP (seq
))
1617 ptrdiff_t i
, ibyte
, nchars
, nbytes
, cbytes
;
1620 for (i
= nchars
= nbytes
= ibyte
= 0;
1622 ++i
, ibyte
+= cbytes
)
1624 if (STRING_MULTIBYTE (seq
))
1626 c
= STRING_CHAR (SDATA (seq
) + ibyte
);
1627 cbytes
= CHAR_BYTES (c
);
1635 if (!INTEGERP (elt
) || c
!= XINT (elt
))
1642 if (nchars
!= SCHARS (seq
))
1646 tem
= make_uninit_multibyte_string (nchars
, nbytes
);
1647 if (!STRING_MULTIBYTE (seq
))
1648 STRING_SET_UNIBYTE (tem
);
1650 for (i
= nchars
= nbytes
= ibyte
= 0;
1652 ++i
, ibyte
+= cbytes
)
1654 if (STRING_MULTIBYTE (seq
))
1656 c
= STRING_CHAR (SDATA (seq
) + ibyte
);
1657 cbytes
= CHAR_BYTES (c
);
1665 if (!INTEGERP (elt
) || c
!= XINT (elt
))
1667 unsigned char *from
= SDATA (seq
) + ibyte
;
1668 unsigned char *to
= SDATA (tem
) + nbytes
;
1674 for (n
= cbytes
; n
--; )
1684 Lisp_Object tail
, prev
;
1686 for (tail
= seq
, prev
= Qnil
; CONSP (tail
); tail
= XCDR (tail
))
1688 CHECK_LIST_CONS (tail
, seq
);
1690 if (!NILP (Fequal (elt
, XCAR (tail
))))
1695 Fsetcdr (prev
, XCDR (tail
));
1706 DEFUN ("nreverse", Fnreverse
, Snreverse
, 1, 1, 0,
1707 doc
: /* Reverse LIST by modifying cdr pointers.
1708 Return the reversed list. */)
1711 register Lisp_Object prev
, tail
, next
;
1713 if (NILP (list
)) return list
;
1716 while (!NILP (tail
))
1719 CHECK_LIST_CONS (tail
, list
);
1721 Fsetcdr (tail
, prev
);
1728 DEFUN ("reverse", Freverse
, Sreverse
, 1, 1, 0,
1729 doc
: /* Reverse LIST, copying. Return the reversed list.
1730 See also the function `nreverse', which is used more often. */)
1735 for (new = Qnil
; CONSP (list
); list
= XCDR (list
))
1738 new = Fcons (XCAR (list
), new);
1740 CHECK_LIST_END (list
, list
);
1744 Lisp_Object
merge (Lisp_Object org_l1
, Lisp_Object org_l2
, Lisp_Object pred
);
1746 DEFUN ("sort", Fsort
, Ssort
, 2, 2, 0,
1747 doc
: /* Sort LIST, stably, comparing elements using PREDICATE.
1748 Returns the sorted list. LIST is modified by side effects.
1749 PREDICATE is called with two elements of LIST, and should return non-nil
1750 if the first element should sort before the second. */)
1751 (Lisp_Object list
, Lisp_Object predicate
)
1753 Lisp_Object front
, back
;
1754 register Lisp_Object len
, tem
;
1755 struct gcpro gcpro1
, gcpro2
;
1759 len
= Flength (list
);
1760 length
= XINT (len
);
1764 XSETINT (len
, (length
/ 2) - 1);
1765 tem
= Fnthcdr (len
, list
);
1767 Fsetcdr (tem
, Qnil
);
1769 GCPRO2 (front
, back
);
1770 front
= Fsort (front
, predicate
);
1771 back
= Fsort (back
, predicate
);
1773 return merge (front
, back
, predicate
);
1777 merge (Lisp_Object org_l1
, Lisp_Object org_l2
, Lisp_Object pred
)
1780 register Lisp_Object tail
;
1782 register Lisp_Object l1
, l2
;
1783 struct gcpro gcpro1
, gcpro2
, gcpro3
, gcpro4
;
1790 /* It is sufficient to protect org_l1 and org_l2.
1791 When l1 and l2 are updated, we copy the new values
1792 back into the org_ vars. */
1793 GCPRO4 (org_l1
, org_l2
, pred
, value
);
1813 tem
= call2 (pred
, Fcar (l2
), Fcar (l1
));
1829 Fsetcdr (tail
, tem
);
1835 /* This does not check for quits. That is safe since it must terminate. */
1837 DEFUN ("plist-get", Fplist_get
, Splist_get
, 2, 2, 0,
1838 doc
: /* Extract a value from a property list.
1839 PLIST is a property list, which is a list of the form
1840 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1841 corresponding to the given PROP, or nil if PROP is not one of the
1842 properties on the list. This function never signals an error. */)
1843 (Lisp_Object plist
, Lisp_Object prop
)
1845 Lisp_Object tail
, halftail
;
1847 /* halftail is used to detect circular lists. */
1848 tail
= halftail
= plist
;
1849 while (CONSP (tail
) && CONSP (XCDR (tail
)))
1851 if (EQ (prop
, XCAR (tail
)))
1852 return XCAR (XCDR (tail
));
1854 tail
= XCDR (XCDR (tail
));
1855 halftail
= XCDR (halftail
);
1856 if (EQ (tail
, halftail
))
1859 #if 0 /* Unsafe version. */
1860 /* This function can be called asynchronously
1861 (setup_coding_system). Don't QUIT in that case. */
1862 if (!interrupt_input_blocked
)
1870 DEFUN ("get", Fget
, Sget
, 2, 2, 0,
1871 doc
: /* Return the value of SYMBOL's PROPNAME property.
1872 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1873 (Lisp_Object symbol
, Lisp_Object propname
)
1875 CHECK_SYMBOL (symbol
);
1876 return Fplist_get (XSYMBOL (symbol
)->plist
, propname
);
1879 DEFUN ("plist-put", Fplist_put
, Splist_put
, 3, 3, 0,
1880 doc
: /* Change value in PLIST of PROP to VAL.
1881 PLIST is a property list, which is a list of the form
1882 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1883 If PROP is already a property on the list, its value is set to VAL,
1884 otherwise the new PROP VAL pair is added. The new plist is returned;
1885 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1886 The PLIST is modified by side effects. */)
1887 (Lisp_Object plist
, register Lisp_Object prop
, Lisp_Object val
)
1889 register Lisp_Object tail
, prev
;
1890 Lisp_Object newcell
;
1892 for (tail
= plist
; CONSP (tail
) && CONSP (XCDR (tail
));
1893 tail
= XCDR (XCDR (tail
)))
1895 if (EQ (prop
, XCAR (tail
)))
1897 Fsetcar (XCDR (tail
), val
);
1904 newcell
= Fcons (prop
, Fcons (val
, NILP (prev
) ? plist
: XCDR (XCDR (prev
))));
1908 Fsetcdr (XCDR (prev
), newcell
);
1912 DEFUN ("put", Fput
, Sput
, 3, 3, 0,
1913 doc
: /* Store SYMBOL's PROPNAME property with value VALUE.
1914 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1915 (Lisp_Object symbol
, Lisp_Object propname
, Lisp_Object value
)
1917 CHECK_SYMBOL (symbol
);
1918 XSYMBOL (symbol
)->plist
1919 = Fplist_put (XSYMBOL (symbol
)->plist
, propname
, value
);
1923 DEFUN ("lax-plist-get", Flax_plist_get
, Slax_plist_get
, 2, 2, 0,
1924 doc
: /* Extract a value from a property list, comparing with `equal'.
1925 PLIST is a property list, which is a list of the form
1926 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1927 corresponding to the given PROP, or nil if PROP is not
1928 one of the properties on the list. */)
1929 (Lisp_Object plist
, Lisp_Object prop
)
1934 CONSP (tail
) && CONSP (XCDR (tail
));
1935 tail
= XCDR (XCDR (tail
)))
1937 if (! NILP (Fequal (prop
, XCAR (tail
))))
1938 return XCAR (XCDR (tail
));
1943 CHECK_LIST_END (tail
, prop
);
1948 DEFUN ("lax-plist-put", Flax_plist_put
, Slax_plist_put
, 3, 3, 0,
1949 doc
: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1950 PLIST is a property list, which is a list of the form
1951 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1952 If PROP is already a property on the list, its value is set to VAL,
1953 otherwise the new PROP VAL pair is added. The new plist is returned;
1954 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1955 The PLIST is modified by side effects. */)
1956 (Lisp_Object plist
, register Lisp_Object prop
, Lisp_Object val
)
1958 register Lisp_Object tail
, prev
;
1959 Lisp_Object newcell
;
1961 for (tail
= plist
; CONSP (tail
) && CONSP (XCDR (tail
));
1962 tail
= XCDR (XCDR (tail
)))
1964 if (! NILP (Fequal (prop
, XCAR (tail
))))
1966 Fsetcar (XCDR (tail
), val
);
1973 newcell
= Fcons (prop
, Fcons (val
, Qnil
));
1977 Fsetcdr (XCDR (prev
), newcell
);
1981 DEFUN ("eql", Feql
, Seql
, 2, 2, 0,
1982 doc
: /* Return t if the two args are the same Lisp object.
1983 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1984 (Lisp_Object obj1
, Lisp_Object obj2
)
1987 return internal_equal (obj1
, obj2
, 0, 0) ? Qt
: Qnil
;
1989 return EQ (obj1
, obj2
) ? Qt
: Qnil
;
1992 DEFUN ("equal", Fequal
, Sequal
, 2, 2, 0,
1993 doc
: /* Return t if two Lisp objects have similar structure and contents.
1994 They must have the same data type.
1995 Conses are compared by comparing the cars and the cdrs.
1996 Vectors and strings are compared element by element.
1997 Numbers are compared by value, but integers cannot equal floats.
1998 (Use `=' if you want integers and floats to be able to be equal.)
1999 Symbols must match exactly. */)
2000 (register Lisp_Object o1
, Lisp_Object o2
)
2002 return internal_equal (o1
, o2
, 0, 0) ? Qt
: Qnil
;
2005 DEFUN ("equal-including-properties", Fequal_including_properties
, Sequal_including_properties
, 2, 2, 0,
2006 doc
: /* Return t if two Lisp objects have similar structure and contents.
2007 This is like `equal' except that it compares the text properties
2008 of strings. (`equal' ignores text properties.) */)
2009 (register Lisp_Object o1
, Lisp_Object o2
)
2011 return internal_equal (o1
, o2
, 0, 1) ? Qt
: Qnil
;
2014 /* DEPTH is current depth of recursion. Signal an error if it
2016 PROPS, if non-nil, means compare string text properties too. */
2019 internal_equal (register Lisp_Object o1
, register Lisp_Object o2
, int depth
, int props
)
2022 error ("Stack overflow in equal");
2028 if (XTYPE (o1
) != XTYPE (o2
))
2037 d1
= extract_float (o1
);
2038 d2
= extract_float (o2
);
2039 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2040 though they are not =. */
2041 return d1
== d2
|| (d1
!= d1
&& d2
!= d2
);
2045 if (!internal_equal (XCAR (o1
), XCAR (o2
), depth
+ 1, props
))
2052 if (XMISCTYPE (o1
) != XMISCTYPE (o2
))
2056 if (!internal_equal (OVERLAY_START (o1
), OVERLAY_START (o2
),
2058 || !internal_equal (OVERLAY_END (o1
), OVERLAY_END (o2
),
2061 o1
= XOVERLAY (o1
)->plist
;
2062 o2
= XOVERLAY (o2
)->plist
;
2067 return (XMARKER (o1
)->buffer
== XMARKER (o2
)->buffer
2068 && (XMARKER (o1
)->buffer
== 0
2069 || XMARKER (o1
)->bytepos
== XMARKER (o2
)->bytepos
));
2073 case Lisp_Vectorlike
:
2076 ptrdiff_t size
= ASIZE (o1
);
2077 /* Pseudovectors have the type encoded in the size field, so this test
2078 actually checks that the objects have the same type as well as the
2080 if (ASIZE (o2
) != size
)
2082 /* Boolvectors are compared much like strings. */
2083 if (BOOL_VECTOR_P (o1
))
2085 if (XBOOL_VECTOR (o1
)->size
!= XBOOL_VECTOR (o2
)->size
)
2087 if (memcmp (XBOOL_VECTOR (o1
)->data
, XBOOL_VECTOR (o2
)->data
,
2088 ((XBOOL_VECTOR (o1
)->size
2089 + BOOL_VECTOR_BITS_PER_CHAR
- 1)
2090 / BOOL_VECTOR_BITS_PER_CHAR
)))
2094 if (WINDOW_CONFIGURATIONP (o1
))
2095 return compare_window_configurations (o1
, o2
, 0);
2097 /* Aside from them, only true vectors, char-tables, compiled
2098 functions, and fonts (font-spec, font-entity, font-object)
2099 are sensible to compare, so eliminate the others now. */
2100 if (size
& PSEUDOVECTOR_FLAG
)
2102 if (!(size
& (PVEC_COMPILED
2103 | PVEC_CHAR_TABLE
| PVEC_SUB_CHAR_TABLE
| PVEC_FONT
)))
2105 size
&= PSEUDOVECTOR_SIZE_MASK
;
2107 for (i
= 0; i
< size
; i
++)
2112 if (!internal_equal (v1
, v2
, depth
+ 1, props
))
2120 if (SCHARS (o1
) != SCHARS (o2
))
2122 if (SBYTES (o1
) != SBYTES (o2
))
2124 if (memcmp (SDATA (o1
), SDATA (o2
), SBYTES (o1
)))
2126 if (props
&& !compare_string_intervals (o1
, o2
))
2138 DEFUN ("fillarray", Ffillarray
, Sfillarray
, 2, 2, 0,
2139 doc
: /* Store each element of ARRAY with ITEM.
2140 ARRAY is a vector, string, char-table, or bool-vector. */)
2141 (Lisp_Object array
, Lisp_Object item
)
2143 register ptrdiff_t size
, idx
;
2145 if (VECTORP (array
))
2147 register Lisp_Object
*p
= XVECTOR (array
)->contents
;
2148 size
= ASIZE (array
);
2149 for (idx
= 0; idx
< size
; idx
++)
2152 else if (CHAR_TABLE_P (array
))
2156 for (i
= 0; i
< (1 << CHARTAB_SIZE_BITS_0
); i
++)
2157 XCHAR_TABLE (array
)->contents
[i
] = item
;
2158 XCHAR_TABLE (array
)->defalt
= item
;
2160 else if (STRINGP (array
))
2162 register unsigned char *p
= SDATA (array
);
2164 CHECK_CHARACTER (item
);
2165 charval
= XFASTINT (item
);
2166 size
= SCHARS (array
);
2167 if (STRING_MULTIBYTE (array
))
2169 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
2170 int len
= CHAR_STRING (charval
, str
);
2171 ptrdiff_t size_byte
= SBYTES (array
);
2173 if (INT_MULTIPLY_OVERFLOW (SCHARS (array
), len
)
2174 || SCHARS (array
) * len
!= size_byte
)
2175 error ("Attempt to change byte length of a string");
2176 for (idx
= 0; idx
< size_byte
; idx
++)
2177 *p
++ = str
[idx
% len
];
2180 for (idx
= 0; idx
< size
; idx
++)
2183 else if (BOOL_VECTOR_P (array
))
2185 register unsigned char *p
= XBOOL_VECTOR (array
)->data
;
2187 ((XBOOL_VECTOR (array
)->size
+ BOOL_VECTOR_BITS_PER_CHAR
- 1)
2188 / BOOL_VECTOR_BITS_PER_CHAR
);
2192 memset (p
, ! NILP (item
) ? -1 : 0, size
);
2194 /* Clear any extraneous bits in the last byte. */
2195 p
[size
- 1] &= (1 << (size
% BOOL_VECTOR_BITS_PER_CHAR
)) - 1;
2199 wrong_type_argument (Qarrayp
, array
);
2203 DEFUN ("clear-string", Fclear_string
, Sclear_string
,
2205 doc
: /* Clear the contents of STRING.
2206 This makes STRING unibyte and may change its length. */)
2207 (Lisp_Object string
)
2210 CHECK_STRING (string
);
2211 len
= SBYTES (string
);
2212 memset (SDATA (string
), 0, len
);
2213 STRING_SET_CHARS (string
, len
);
2214 STRING_SET_UNIBYTE (string
);
2220 nconc2 (Lisp_Object s1
, Lisp_Object s2
)
2222 Lisp_Object args
[2];
2225 return Fnconc (2, args
);
2228 DEFUN ("nconc", Fnconc
, Snconc
, 0, MANY
, 0,
2229 doc
: /* Concatenate any number of lists by altering them.
2230 Only the last argument is not altered, and need not be a list.
2231 usage: (nconc &rest LISTS) */)
2232 (ptrdiff_t nargs
, Lisp_Object
*args
)
2235 register Lisp_Object tail
, tem
, val
;
2239 for (argnum
= 0; argnum
< nargs
; argnum
++)
2242 if (NILP (tem
)) continue;
2247 if (argnum
+ 1 == nargs
) break;
2249 CHECK_LIST_CONS (tem
, tem
);
2258 tem
= args
[argnum
+ 1];
2259 Fsetcdr (tail
, tem
);
2261 args
[argnum
+ 1] = tail
;
2267 /* This is the guts of all mapping functions.
2268 Apply FN to each element of SEQ, one by one,
2269 storing the results into elements of VALS, a C vector of Lisp_Objects.
2270 LENI is the length of VALS, which should also be the length of SEQ. */
2273 mapcar1 (EMACS_INT leni
, Lisp_Object
*vals
, Lisp_Object fn
, Lisp_Object seq
)
2275 register Lisp_Object tail
;
2277 register EMACS_INT i
;
2278 struct gcpro gcpro1
, gcpro2
, gcpro3
;
2282 /* Don't let vals contain any garbage when GC happens. */
2283 for (i
= 0; i
< leni
; i
++)
2286 GCPRO3 (dummy
, fn
, seq
);
2288 gcpro1
.nvars
= leni
;
2292 /* We need not explicitly protect `tail' because it is used only on lists, and
2293 1) lists are not relocated and 2) the list is marked via `seq' so will not
2296 if (VECTORP (seq
) || COMPILEDP (seq
))
2298 for (i
= 0; i
< leni
; i
++)
2300 dummy
= call1 (fn
, AREF (seq
, i
));
2305 else if (BOOL_VECTOR_P (seq
))
2307 for (i
= 0; i
< leni
; i
++)
2310 byte
= XBOOL_VECTOR (seq
)->data
[i
/ BOOL_VECTOR_BITS_PER_CHAR
];
2311 dummy
= (byte
& (1 << (i
% BOOL_VECTOR_BITS_PER_CHAR
))) ? Qt
: Qnil
;
2312 dummy
= call1 (fn
, dummy
);
2317 else if (STRINGP (seq
))
2321 for (i
= 0, i_byte
= 0; i
< leni
;)
2324 ptrdiff_t i_before
= i
;
2326 FETCH_STRING_CHAR_ADVANCE (c
, seq
, i
, i_byte
);
2327 XSETFASTINT (dummy
, c
);
2328 dummy
= call1 (fn
, dummy
);
2330 vals
[i_before
] = dummy
;
2333 else /* Must be a list, since Flength did not get an error */
2336 for (i
= 0; i
< leni
&& CONSP (tail
); i
++)
2338 dummy
= call1 (fn
, XCAR (tail
));
2348 DEFUN ("mapconcat", Fmapconcat
, Smapconcat
, 3, 3, 0,
2349 doc
: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2350 In between each pair of results, stick in SEPARATOR. Thus, " " as
2351 SEPARATOR results in spaces between the values returned by FUNCTION.
2352 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2353 (Lisp_Object function
, Lisp_Object sequence
, Lisp_Object separator
)
2356 register EMACS_INT leni
;
2359 register Lisp_Object
*args
;
2360 struct gcpro gcpro1
;
2364 len
= Flength (sequence
);
2365 if (CHAR_TABLE_P (sequence
))
2366 wrong_type_argument (Qlistp
, sequence
);
2368 nargs
= leni
+ leni
- 1;
2369 if (nargs
< 0) return empty_unibyte_string
;
2371 SAFE_ALLOCA_LISP (args
, nargs
);
2374 mapcar1 (leni
, args
, function
, sequence
);
2377 for (i
= leni
- 1; i
> 0; i
--)
2378 args
[i
+ i
] = args
[i
];
2380 for (i
= 1; i
< nargs
; i
+= 2)
2381 args
[i
] = separator
;
2383 ret
= Fconcat (nargs
, args
);
2389 DEFUN ("mapcar", Fmapcar
, Smapcar
, 2, 2, 0,
2390 doc
: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2391 The result is a list just as long as SEQUENCE.
2392 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2393 (Lisp_Object function
, Lisp_Object sequence
)
2395 register Lisp_Object len
;
2396 register EMACS_INT leni
;
2397 register Lisp_Object
*args
;
2401 len
= Flength (sequence
);
2402 if (CHAR_TABLE_P (sequence
))
2403 wrong_type_argument (Qlistp
, sequence
);
2404 leni
= XFASTINT (len
);
2406 SAFE_ALLOCA_LISP (args
, leni
);
2408 mapcar1 (leni
, args
, function
, sequence
);
2410 ret
= Flist (leni
, args
);
2416 DEFUN ("mapc", Fmapc
, Smapc
, 2, 2, 0,
2417 doc
: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2418 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2419 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2420 (Lisp_Object function
, Lisp_Object sequence
)
2422 register EMACS_INT leni
;
2424 leni
= XFASTINT (Flength (sequence
));
2425 if (CHAR_TABLE_P (sequence
))
2426 wrong_type_argument (Qlistp
, sequence
);
2427 mapcar1 (leni
, 0, function
, sequence
);
2432 /* This is how C code calls `yes-or-no-p' and allows the user
2435 Anything that calls this function must protect from GC! */
2438 do_yes_or_no_p (Lisp_Object prompt
)
2440 return call1 (intern ("yes-or-no-p"), prompt
);
2443 /* Anything that calls this function must protect from GC! */
2445 DEFUN ("yes-or-no-p", Fyes_or_no_p
, Syes_or_no_p
, 1, 1, 0,
2446 doc
: /* Ask user a yes-or-no question. Return t if answer is yes.
2447 PROMPT is the string to display to ask the question. It should end in
2448 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2450 The user must confirm the answer with RET, and can edit it until it
2453 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2454 is nil, and `use-dialog-box' is non-nil. */)
2455 (Lisp_Object prompt
)
2457 register Lisp_Object ans
;
2458 Lisp_Object args
[2];
2459 struct gcpro gcpro1
;
2461 CHECK_STRING (prompt
);
2464 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2465 && (NILP (last_nonmenu_event
) || CONSP (last_nonmenu_event
))
2469 Lisp_Object pane
, menu
, obj
;
2470 redisplay_preserve_echo_area (4);
2471 pane
= Fcons (Fcons (build_string ("Yes"), Qt
),
2472 Fcons (Fcons (build_string ("No"), Qnil
),
2475 menu
= Fcons (prompt
, pane
);
2476 obj
= Fx_popup_dialog (Qt
, menu
, Qnil
);
2480 #endif /* HAVE_MENUS */
2483 args
[1] = build_string ("(yes or no) ");
2484 prompt
= Fconcat (2, args
);
2490 ans
= Fdowncase (Fread_from_minibuffer (prompt
, Qnil
, Qnil
, Qnil
,
2491 Qyes_or_no_p_history
, Qnil
,
2493 if (SCHARS (ans
) == 3 && !strcmp (SSDATA (ans
), "yes"))
2498 if (SCHARS (ans
) == 2 && !strcmp (SSDATA (ans
), "no"))
2506 message ("Please answer yes or no.");
2507 Fsleep_for (make_number (2), Qnil
);
2511 DEFUN ("load-average", Fload_average
, Sload_average
, 0, 1, 0,
2512 doc
: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2514 Each of the three load averages is multiplied by 100, then converted
2517 When USE-FLOATS is non-nil, floats will be used instead of integers.
2518 These floats are not multiplied by 100.
2520 If the 5-minute or 15-minute load averages are not available, return a
2521 shortened list, containing only those averages which are available.
2523 An error is thrown if the load average can't be obtained. In some
2524 cases making it work would require Emacs being installed setuid or
2525 setgid so that it can read kernel information, and that usually isn't
2527 (Lisp_Object use_floats
)
2530 int loads
= getloadavg (load_ave
, 3);
2531 Lisp_Object ret
= Qnil
;
2534 error ("load-average not implemented for this operating system");
2538 Lisp_Object load
= (NILP (use_floats
)
2539 ? make_number (100.0 * load_ave
[loads
])
2540 : make_float (load_ave
[loads
]));
2541 ret
= Fcons (load
, ret
);
2547 static Lisp_Object Qsubfeatures
;
2549 DEFUN ("featurep", Ffeaturep
, Sfeaturep
, 1, 2, 0,
2550 doc
: /* Return t if FEATURE is present in this Emacs.
2552 Use this to conditionalize execution of lisp code based on the
2553 presence or absence of Emacs or environment extensions.
2554 Use `provide' to declare that a feature is available. This function
2555 looks at the value of the variable `features'. The optional argument
2556 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2557 (Lisp_Object feature
, Lisp_Object subfeature
)
2559 register Lisp_Object tem
;
2560 CHECK_SYMBOL (feature
);
2561 tem
= Fmemq (feature
, Vfeatures
);
2562 if (!NILP (tem
) && !NILP (subfeature
))
2563 tem
= Fmember (subfeature
, Fget (feature
, Qsubfeatures
));
2564 return (NILP (tem
)) ? Qnil
: Qt
;
2567 DEFUN ("provide", Fprovide
, Sprovide
, 1, 2, 0,
2568 doc
: /* Announce that FEATURE is a feature of the current Emacs.
2569 The optional argument SUBFEATURES should be a list of symbols listing
2570 particular subfeatures supported in this version of FEATURE. */)
2571 (Lisp_Object feature
, Lisp_Object subfeatures
)
2573 register Lisp_Object tem
;
2574 CHECK_SYMBOL (feature
);
2575 CHECK_LIST (subfeatures
);
2576 if (!NILP (Vautoload_queue
))
2577 Vautoload_queue
= Fcons (Fcons (make_number (0), Vfeatures
),
2579 tem
= Fmemq (feature
, Vfeatures
);
2581 Vfeatures
= Fcons (feature
, Vfeatures
);
2582 if (!NILP (subfeatures
))
2583 Fput (feature
, Qsubfeatures
, subfeatures
);
2584 LOADHIST_ATTACH (Fcons (Qprovide
, feature
));
2586 /* Run any load-hooks for this file. */
2587 tem
= Fassq (feature
, Vafter_load_alist
);
2589 Fprogn (XCDR (tem
));
2594 /* `require' and its subroutines. */
2596 /* List of features currently being require'd, innermost first. */
2598 static Lisp_Object require_nesting_list
;
2601 require_unwind (Lisp_Object old_value
)
2603 return require_nesting_list
= old_value
;
2606 DEFUN ("require", Frequire
, Srequire
, 1, 3, 0,
2607 doc
: /* If feature FEATURE is not loaded, load it from FILENAME.
2608 If FEATURE is not a member of the list `features', then the feature
2609 is not loaded; so load the file FILENAME.
2610 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2611 and `load' will try to load this name appended with the suffix `.elc' or
2612 `.el', in that order. The name without appended suffix will not be used.
2613 See `get-load-suffixes' for the complete list of suffixes.
2614 If the optional third argument NOERROR is non-nil,
2615 then return nil if the file is not found instead of signaling an error.
2616 Normally the return value is FEATURE.
2617 The normal messages at start and end of loading FILENAME are suppressed. */)
2618 (Lisp_Object feature
, Lisp_Object filename
, Lisp_Object noerror
)
2620 register Lisp_Object tem
;
2621 struct gcpro gcpro1
, gcpro2
;
2622 int from_file
= load_in_progress
;
2624 CHECK_SYMBOL (feature
);
2626 /* Record the presence of `require' in this file
2627 even if the feature specified is already loaded.
2628 But not more than once in any file,
2629 and not when we aren't loading or reading from a file. */
2631 for (tem
= Vcurrent_load_list
; CONSP (tem
); tem
= XCDR (tem
))
2632 if (NILP (XCDR (tem
)) && STRINGP (XCAR (tem
)))
2637 tem
= Fcons (Qrequire
, feature
);
2638 if (NILP (Fmember (tem
, Vcurrent_load_list
)))
2639 LOADHIST_ATTACH (tem
);
2641 tem
= Fmemq (feature
, Vfeatures
);
2645 ptrdiff_t count
= SPECPDL_INDEX ();
2648 /* This is to make sure that loadup.el gives a clear picture
2649 of what files are preloaded and when. */
2650 if (! NILP (Vpurify_flag
))
2651 error ("(require %s) while preparing to dump",
2652 SDATA (SYMBOL_NAME (feature
)));
2654 /* A certain amount of recursive `require' is legitimate,
2655 but if we require the same feature recursively 3 times,
2657 tem
= require_nesting_list
;
2658 while (! NILP (tem
))
2660 if (! NILP (Fequal (feature
, XCAR (tem
))))
2665 error ("Recursive `require' for feature `%s'",
2666 SDATA (SYMBOL_NAME (feature
)));
2668 /* Update the list for any nested `require's that occur. */
2669 record_unwind_protect (require_unwind
, require_nesting_list
);
2670 require_nesting_list
= Fcons (feature
, require_nesting_list
);
2672 /* Value saved here is to be restored into Vautoload_queue */
2673 record_unwind_protect (un_autoload
, Vautoload_queue
);
2674 Vautoload_queue
= Qt
;
2676 /* Load the file. */
2677 GCPRO2 (feature
, filename
);
2678 tem
= Fload (NILP (filename
) ? Fsymbol_name (feature
) : filename
,
2679 noerror
, Qt
, Qnil
, (NILP (filename
) ? Qt
: Qnil
));
2682 /* If load failed entirely, return nil. */
2684 return unbind_to (count
, Qnil
);
2686 tem
= Fmemq (feature
, Vfeatures
);
2688 error ("Required feature `%s' was not provided",
2689 SDATA (SYMBOL_NAME (feature
)));
2691 /* Once loading finishes, don't undo it. */
2692 Vautoload_queue
= Qt
;
2693 feature
= unbind_to (count
, feature
);
2699 /* Primitives for work of the "widget" library.
2700 In an ideal world, this section would not have been necessary.
2701 However, lisp function calls being as slow as they are, it turns
2702 out that some functions in the widget library (wid-edit.el) are the
2703 bottleneck of Widget operation. Here is their translation to C,
2704 for the sole reason of efficiency. */
2706 DEFUN ("plist-member", Fplist_member
, Splist_member
, 2, 2, 0,
2707 doc
: /* Return non-nil if PLIST has the property PROP.
2708 PLIST is a property list, which is a list of the form
2709 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2710 Unlike `plist-get', this allows you to distinguish between a missing
2711 property and a property with the value nil.
2712 The value is actually the tail of PLIST whose car is PROP. */)
2713 (Lisp_Object plist
, Lisp_Object prop
)
2715 while (CONSP (plist
) && !EQ (XCAR (plist
), prop
))
2718 plist
= XCDR (plist
);
2719 plist
= CDR (plist
);
2724 DEFUN ("widget-put", Fwidget_put
, Swidget_put
, 3, 3, 0,
2725 doc
: /* In WIDGET, set PROPERTY to VALUE.
2726 The value can later be retrieved with `widget-get'. */)
2727 (Lisp_Object widget
, Lisp_Object property
, Lisp_Object value
)
2729 CHECK_CONS (widget
);
2730 XSETCDR (widget
, Fplist_put (XCDR (widget
), property
, value
));
2734 DEFUN ("widget-get", Fwidget_get
, Swidget_get
, 2, 2, 0,
2735 doc
: /* In WIDGET, get the value of PROPERTY.
2736 The value could either be specified when the widget was created, or
2737 later with `widget-put'. */)
2738 (Lisp_Object widget
, Lisp_Object property
)
2746 CHECK_CONS (widget
);
2747 tmp
= Fplist_member (XCDR (widget
), property
);
2753 tmp
= XCAR (widget
);
2756 widget
= Fget (tmp
, Qwidget_type
);
2760 DEFUN ("widget-apply", Fwidget_apply
, Swidget_apply
, 2, MANY
, 0,
2761 doc
: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2762 ARGS are passed as extra arguments to the function.
2763 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2764 (ptrdiff_t nargs
, Lisp_Object
*args
)
2766 /* This function can GC. */
2767 Lisp_Object newargs
[3];
2768 struct gcpro gcpro1
, gcpro2
;
2771 newargs
[0] = Fwidget_get (args
[0], args
[1]);
2772 newargs
[1] = args
[0];
2773 newargs
[2] = Flist (nargs
- 2, args
+ 2);
2774 GCPRO2 (newargs
[0], newargs
[2]);
2775 result
= Fapply (3, newargs
);
2780 #ifdef HAVE_LANGINFO_CODESET
2781 #include <langinfo.h>
2784 DEFUN ("locale-info", Flocale_info
, Slocale_info
, 1, 1, 0,
2785 doc
: /* Access locale data ITEM for the current C locale, if available.
2786 ITEM should be one of the following:
2788 `codeset', returning the character set as a string (locale item CODESET);
2790 `days', returning a 7-element vector of day names (locale items DAY_n);
2792 `months', returning a 12-element vector of month names (locale items MON_n);
2794 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2795 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2797 If the system can't provide such information through a call to
2798 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2800 See also Info node `(libc)Locales'.
2802 The data read from the system are decoded using `locale-coding-system'. */)
2806 #ifdef HAVE_LANGINFO_CODESET
2808 if (EQ (item
, Qcodeset
))
2810 str
= nl_langinfo (CODESET
);
2811 return build_string (str
);
2814 else if (EQ (item
, Qdays
)) /* e.g. for calendar-day-name-array */
2816 Lisp_Object v
= Fmake_vector (make_number (7), Qnil
);
2817 const int days
[7] = {DAY_1
, DAY_2
, DAY_3
, DAY_4
, DAY_5
, DAY_6
, DAY_7
};
2819 struct gcpro gcpro1
;
2821 synchronize_system_time_locale ();
2822 for (i
= 0; i
< 7; i
++)
2824 str
= nl_langinfo (days
[i
]);
2825 val
= make_unibyte_string (str
, strlen (str
));
2826 /* Fixme: Is this coding system necessarily right, even if
2827 it is consistent with CODESET? If not, what to do? */
2828 Faset (v
, make_number (i
),
2829 code_convert_string_norecord (val
, Vlocale_coding_system
,
2837 else if (EQ (item
, Qmonths
)) /* e.g. for calendar-month-name-array */
2839 Lisp_Object v
= Fmake_vector (make_number (12), Qnil
);
2840 const int months
[12] = {MON_1
, MON_2
, MON_3
, MON_4
, MON_5
, MON_6
, MON_7
,
2841 MON_8
, MON_9
, MON_10
, MON_11
, MON_12
};
2843 struct gcpro gcpro1
;
2845 synchronize_system_time_locale ();
2846 for (i
= 0; i
< 12; i
++)
2848 str
= nl_langinfo (months
[i
]);
2849 val
= make_unibyte_string (str
, strlen (str
));
2850 Faset (v
, make_number (i
),
2851 code_convert_string_norecord (val
, Vlocale_coding_system
, 0));
2857 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2858 but is in the locale files. This could be used by ps-print. */
2860 else if (EQ (item
, Qpaper
))
2862 return list2 (make_number (nl_langinfo (PAPER_WIDTH
)),
2863 make_number (nl_langinfo (PAPER_HEIGHT
)));
2865 #endif /* PAPER_WIDTH */
2866 #endif /* HAVE_LANGINFO_CODESET*/
2870 /* base64 encode/decode functions (RFC 2045).
2871 Based on code from GNU recode. */
2873 #define MIME_LINE_LENGTH 76
2875 #define IS_ASCII(Character) \
2877 #define IS_BASE64(Character) \
2878 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2879 #define IS_BASE64_IGNORABLE(Character) \
2880 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2881 || (Character) == '\f' || (Character) == '\r')
2883 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2884 character or return retval if there are no characters left to
2886 #define READ_QUADRUPLET_BYTE(retval) \
2891 if (nchars_return) \
2892 *nchars_return = nchars; \
2897 while (IS_BASE64_IGNORABLE (c))
2899 /* Table of characters coding the 64 values. */
2900 static const char base64_value_to_char
[64] =
2902 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2903 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2904 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2905 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2906 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2907 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2908 '8', '9', '+', '/' /* 60-63 */
2911 /* Table of base64 values for first 128 characters. */
2912 static const short base64_char_to_value
[128] =
2914 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2915 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2916 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2917 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2918 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2919 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2920 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2921 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2922 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2923 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2924 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2925 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2926 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2929 /* The following diagram shows the logical steps by which three octets
2930 get transformed into four base64 characters.
2932 .--------. .--------. .--------.
2933 |aaaaaabb| |bbbbcccc| |ccdddddd|
2934 `--------' `--------' `--------'
2936 .--------+--------+--------+--------.
2937 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2938 `--------+--------+--------+--------'
2940 .--------+--------+--------+--------.
2941 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2942 `--------+--------+--------+--------'
2944 The octets are divided into 6 bit chunks, which are then encoded into
2945 base64 characters. */
2948 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, int, int);
2949 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, int,
2952 DEFUN ("base64-encode-region", Fbase64_encode_region
, Sbase64_encode_region
,
2954 doc
: /* Base64-encode the region between BEG and END.
2955 Return the length of the encoded text.
2956 Optional third argument NO-LINE-BREAK means do not break long lines
2957 into shorter lines. */)
2958 (Lisp_Object beg
, Lisp_Object end
, Lisp_Object no_line_break
)
2961 ptrdiff_t allength
, length
;
2962 ptrdiff_t ibeg
, iend
, encoded_length
;
2963 ptrdiff_t old_pos
= PT
;
2966 validate_region (&beg
, &end
);
2968 ibeg
= CHAR_TO_BYTE (XFASTINT (beg
));
2969 iend
= CHAR_TO_BYTE (XFASTINT (end
));
2970 move_gap_both (XFASTINT (beg
), ibeg
);
2972 /* We need to allocate enough room for encoding the text.
2973 We need 33 1/3% more space, plus a newline every 76
2974 characters, and then we round up. */
2975 length
= iend
- ibeg
;
2976 allength
= length
+ length
/3 + 1;
2977 allength
+= allength
/ MIME_LINE_LENGTH
+ 1 + 6;
2979 SAFE_ALLOCA (encoded
, char *, allength
);
2980 encoded_length
= base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg
),
2981 encoded
, length
, NILP (no_line_break
),
2982 !NILP (BVAR (current_buffer
, enable_multibyte_characters
)));
2983 if (encoded_length
> allength
)
2986 if (encoded_length
< 0)
2988 /* The encoding wasn't possible. */
2990 error ("Multibyte character in data for base64 encoding");
2993 /* Now we have encoded the region, so we insert the new contents
2994 and delete the old. (Insert first in order to preserve markers.) */
2995 SET_PT_BOTH (XFASTINT (beg
), ibeg
);
2996 insert (encoded
, encoded_length
);
2998 del_range_byte (ibeg
+ encoded_length
, iend
+ encoded_length
, 1);
3000 /* If point was outside of the region, restore it exactly; else just
3001 move to the beginning of the region. */
3002 if (old_pos
>= XFASTINT (end
))
3003 old_pos
+= encoded_length
- (XFASTINT (end
) - XFASTINT (beg
));
3004 else if (old_pos
> XFASTINT (beg
))
3005 old_pos
= XFASTINT (beg
);
3008 /* We return the length of the encoded text. */
3009 return make_number (encoded_length
);
3012 DEFUN ("base64-encode-string", Fbase64_encode_string
, Sbase64_encode_string
,
3014 doc
: /* Base64-encode STRING and return the result.
3015 Optional second argument NO-LINE-BREAK means do not break long lines
3016 into shorter lines. */)
3017 (Lisp_Object string
, Lisp_Object no_line_break
)
3019 ptrdiff_t allength
, length
, encoded_length
;
3021 Lisp_Object encoded_string
;
3024 CHECK_STRING (string
);
3026 /* We need to allocate enough room for encoding the text.
3027 We need 33 1/3% more space, plus a newline every 76
3028 characters, and then we round up. */
3029 length
= SBYTES (string
);
3030 allength
= length
+ length
/3 + 1;
3031 allength
+= allength
/ MIME_LINE_LENGTH
+ 1 + 6;
3033 /* We need to allocate enough room for decoding the text. */
3034 SAFE_ALLOCA (encoded
, char *, allength
);
3036 encoded_length
= base64_encode_1 (SSDATA (string
),
3037 encoded
, length
, NILP (no_line_break
),
3038 STRING_MULTIBYTE (string
));
3039 if (encoded_length
> allength
)
3042 if (encoded_length
< 0)
3044 /* The encoding wasn't possible. */
3046 error ("Multibyte character in data for base64 encoding");
3049 encoded_string
= make_unibyte_string (encoded
, encoded_length
);
3052 return encoded_string
;
3056 base64_encode_1 (const char *from
, char *to
, ptrdiff_t length
,
3057 int line_break
, int multibyte
)
3070 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3071 if (CHAR_BYTE8_P (c
))
3072 c
= CHAR_TO_BYTE8 (c
);
3080 /* Wrap line every 76 characters. */
3084 if (counter
< MIME_LINE_LENGTH
/ 4)
3093 /* Process first byte of a triplet. */
3095 *e
++ = base64_value_to_char
[0x3f & c
>> 2];
3096 value
= (0x03 & c
) << 4;
3098 /* Process second byte of a triplet. */
3102 *e
++ = base64_value_to_char
[value
];
3110 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3111 if (CHAR_BYTE8_P (c
))
3112 c
= CHAR_TO_BYTE8 (c
);
3120 *e
++ = base64_value_to_char
[value
| (0x0f & c
>> 4)];
3121 value
= (0x0f & c
) << 2;
3123 /* Process third byte of a triplet. */
3127 *e
++ = base64_value_to_char
[value
];
3134 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3135 if (CHAR_BYTE8_P (c
))
3136 c
= CHAR_TO_BYTE8 (c
);
3144 *e
++ = base64_value_to_char
[value
| (0x03 & c
>> 6)];
3145 *e
++ = base64_value_to_char
[0x3f & c
];
3152 DEFUN ("base64-decode-region", Fbase64_decode_region
, Sbase64_decode_region
,
3154 doc
: /* Base64-decode the region between BEG and END.
3155 Return the length of the decoded text.
3156 If the region can't be decoded, signal an error and don't modify the buffer. */)
3157 (Lisp_Object beg
, Lisp_Object end
)
3159 ptrdiff_t ibeg
, iend
, length
, allength
;
3161 ptrdiff_t old_pos
= PT
;
3162 ptrdiff_t decoded_length
;
3163 ptrdiff_t inserted_chars
;
3164 int multibyte
= !NILP (BVAR (current_buffer
, enable_multibyte_characters
));
3167 validate_region (&beg
, &end
);
3169 ibeg
= CHAR_TO_BYTE (XFASTINT (beg
));
3170 iend
= CHAR_TO_BYTE (XFASTINT (end
));
3172 length
= iend
- ibeg
;
3174 /* We need to allocate enough room for decoding the text. If we are
3175 working on a multibyte buffer, each decoded code may occupy at
3177 allength
= multibyte
? length
* 2 : length
;
3178 SAFE_ALLOCA (decoded
, char *, allength
);
3180 move_gap_both (XFASTINT (beg
), ibeg
);
3181 decoded_length
= base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg
),
3183 multibyte
, &inserted_chars
);
3184 if (decoded_length
> allength
)
3187 if (decoded_length
< 0)
3189 /* The decoding wasn't possible. */
3191 error ("Invalid base64 data");
3194 /* Now we have decoded the region, so we insert the new contents
3195 and delete the old. (Insert first in order to preserve markers.) */
3196 TEMP_SET_PT_BOTH (XFASTINT (beg
), ibeg
);
3197 insert_1_both (decoded
, inserted_chars
, decoded_length
, 0, 1, 0);
3200 /* Delete the original text. */
3201 del_range_both (PT
, PT_BYTE
, XFASTINT (end
) + inserted_chars
,
3202 iend
+ decoded_length
, 1);
3204 /* If point was outside of the region, restore it exactly; else just
3205 move to the beginning of the region. */
3206 if (old_pos
>= XFASTINT (end
))
3207 old_pos
+= inserted_chars
- (XFASTINT (end
) - XFASTINT (beg
));
3208 else if (old_pos
> XFASTINT (beg
))
3209 old_pos
= XFASTINT (beg
);
3210 SET_PT (old_pos
> ZV
? ZV
: old_pos
);
3212 return make_number (inserted_chars
);
3215 DEFUN ("base64-decode-string", Fbase64_decode_string
, Sbase64_decode_string
,
3217 doc
: /* Base64-decode STRING and return the result. */)
3218 (Lisp_Object string
)
3221 ptrdiff_t length
, decoded_length
;
3222 Lisp_Object decoded_string
;
3225 CHECK_STRING (string
);
3227 length
= SBYTES (string
);
3228 /* We need to allocate enough room for decoding the text. */
3229 SAFE_ALLOCA (decoded
, char *, length
);
3231 /* The decoded result should be unibyte. */
3232 decoded_length
= base64_decode_1 (SSDATA (string
), decoded
, length
,
3234 if (decoded_length
> length
)
3236 else if (decoded_length
>= 0)
3237 decoded_string
= make_unibyte_string (decoded
, decoded_length
);
3239 decoded_string
= Qnil
;
3242 if (!STRINGP (decoded_string
))
3243 error ("Invalid base64 data");
3245 return decoded_string
;
3248 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3249 MULTIBYTE is nonzero, the decoded result should be in multibyte
3250 form. If NCHARS_RETURN is not NULL, store the number of produced
3251 characters in *NCHARS_RETURN. */
3254 base64_decode_1 (const char *from
, char *to
, ptrdiff_t length
,
3255 int multibyte
, ptrdiff_t *nchars_return
)
3257 ptrdiff_t i
= 0; /* Used inside READ_QUADRUPLET_BYTE */
3260 unsigned long value
;
3261 ptrdiff_t nchars
= 0;
3265 /* Process first byte of a quadruplet. */
3267 READ_QUADRUPLET_BYTE (e
-to
);
3271 value
= base64_char_to_value
[c
] << 18;
3273 /* Process second byte of a quadruplet. */
3275 READ_QUADRUPLET_BYTE (-1);
3279 value
|= base64_char_to_value
[c
] << 12;
3281 c
= (unsigned char) (value
>> 16);
3282 if (multibyte
&& c
>= 128)
3283 e
+= BYTE8_STRING (c
, e
);
3288 /* Process third byte of a quadruplet. */
3290 READ_QUADRUPLET_BYTE (-1);
3294 READ_QUADRUPLET_BYTE (-1);
3303 value
|= base64_char_to_value
[c
] << 6;
3305 c
= (unsigned char) (0xff & value
>> 8);
3306 if (multibyte
&& c
>= 128)
3307 e
+= BYTE8_STRING (c
, e
);
3312 /* Process fourth byte of a quadruplet. */
3314 READ_QUADRUPLET_BYTE (-1);
3321 value
|= base64_char_to_value
[c
];
3323 c
= (unsigned char) (0xff & value
);
3324 if (multibyte
&& c
>= 128)
3325 e
+= BYTE8_STRING (c
, e
);
3334 /***********************************************************************
3336 ***** Hash Tables *****
3338 ***********************************************************************/
3340 /* Implemented by gerd@gnu.org. This hash table implementation was
3341 inspired by CMUCL hash tables. */
3345 1. For small tables, association lists are probably faster than
3346 hash tables because they have lower overhead.
3348 For uses of hash tables where the O(1) behavior of table
3349 operations is not a requirement, it might therefore be a good idea
3350 not to hash. Instead, we could just do a linear search in the
3351 key_and_value vector of the hash table. This could be done
3352 if a `:linear-search t' argument is given to make-hash-table. */
3355 /* The list of all weak hash tables. Don't staticpro this one. */
3357 static struct Lisp_Hash_Table
*weak_hash_tables
;
3359 /* Various symbols. */
3361 static Lisp_Object Qhash_table_p
, Qkey
, Qvalue
;
3362 Lisp_Object Qeq
, Qeql
, Qequal
;
3363 Lisp_Object QCtest
, QCsize
, QCrehash_size
, QCrehash_threshold
, QCweakness
;
3364 static Lisp_Object Qhash_table_test
, Qkey_or_value
, Qkey_and_value
;
3366 /* Function prototypes. */
3368 static struct Lisp_Hash_Table
*check_hash_table (Lisp_Object
);
3369 static ptrdiff_t get_key_arg (Lisp_Object
, ptrdiff_t, Lisp_Object
*, char *);
3370 static void maybe_resize_hash_table (struct Lisp_Hash_Table
*);
3371 static int sweep_weak_table (struct Lisp_Hash_Table
*, int);
3375 /***********************************************************************
3377 ***********************************************************************/
3379 /* If OBJ is a Lisp hash table, return a pointer to its struct
3380 Lisp_Hash_Table. Otherwise, signal an error. */
3382 static struct Lisp_Hash_Table
*
3383 check_hash_table (Lisp_Object obj
)
3385 CHECK_HASH_TABLE (obj
);
3386 return XHASH_TABLE (obj
);
3390 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3391 number. A number is "almost" a prime number if it is not divisible
3392 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3395 next_almost_prime (EMACS_INT n
)
3397 verify (NEXT_ALMOST_PRIME_LIMIT
== 11);
3398 for (n
|= 1; ; n
+= 2)
3399 if (n
% 3 != 0 && n
% 5 != 0 && n
% 7 != 0)
3404 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3405 which USED[I] is non-zero. If found at index I in ARGS, set
3406 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3407 0. This function is used to extract a keyword/argument pair from
3408 a DEFUN parameter list. */
3411 get_key_arg (Lisp_Object key
, ptrdiff_t nargs
, Lisp_Object
*args
, char *used
)
3415 for (i
= 1; i
< nargs
; i
++)
3416 if (!used
[i
- 1] && EQ (args
[i
- 1], key
))
3427 /* Return a Lisp vector which has the same contents as VEC but has
3428 at least INCR_MIN more entries, where INCR_MIN is positive.
3429 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3430 than NITEMS_MAX. Entries in the resulting
3431 vector that are not copied from VEC are set to nil. */
3434 larger_vector (Lisp_Object vec
, ptrdiff_t incr_min
, ptrdiff_t nitems_max
)
3436 struct Lisp_Vector
*v
;
3437 ptrdiff_t i
, incr
, incr_max
, old_size
, new_size
;
3438 ptrdiff_t C_language_max
= min (PTRDIFF_MAX
, SIZE_MAX
) / sizeof *v
->contents
;
3439 ptrdiff_t n_max
= (0 <= nitems_max
&& nitems_max
< C_language_max
3440 ? nitems_max
: C_language_max
);
3441 xassert (VECTORP (vec
));
3442 xassert (0 < incr_min
&& -1 <= nitems_max
);
3443 old_size
= ASIZE (vec
);
3444 incr_max
= n_max
- old_size
;
3445 incr
= max (incr_min
, min (old_size
>> 1, incr_max
));
3446 if (incr_max
< incr
)
3447 memory_full (SIZE_MAX
);
3448 new_size
= old_size
+ incr
;
3449 v
= allocate_vector (new_size
);
3450 memcpy (v
->contents
, XVECTOR (vec
)->contents
, old_size
* sizeof *v
->contents
);
3451 for (i
= old_size
; i
< new_size
; ++i
)
3452 v
->contents
[i
] = Qnil
;
3453 XSETVECTOR (vec
, v
);
3458 /***********************************************************************
3460 ***********************************************************************/
3462 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3463 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3464 KEY2 are the same. */
3467 cmpfn_eql (struct Lisp_Hash_Table
*h
,
3468 Lisp_Object key1
, EMACS_UINT hash1
,
3469 Lisp_Object key2
, EMACS_UINT hash2
)
3471 return (FLOATP (key1
)
3473 && XFLOAT_DATA (key1
) == XFLOAT_DATA (key2
));
3477 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3478 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3479 KEY2 are the same. */
3482 cmpfn_equal (struct Lisp_Hash_Table
*h
,
3483 Lisp_Object key1
, EMACS_UINT hash1
,
3484 Lisp_Object key2
, EMACS_UINT hash2
)
3486 return hash1
== hash2
&& !NILP (Fequal (key1
, key2
));
3490 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3491 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3492 if KEY1 and KEY2 are the same. */
3495 cmpfn_user_defined (struct Lisp_Hash_Table
*h
,
3496 Lisp_Object key1
, EMACS_UINT hash1
,
3497 Lisp_Object key2
, EMACS_UINT hash2
)
3501 Lisp_Object args
[3];
3503 args
[0] = h
->user_cmp_function
;
3506 return !NILP (Ffuncall (3, args
));
3513 /* Value is a hash code for KEY for use in hash table H which uses
3514 `eq' to compare keys. The hash code returned is guaranteed to fit
3515 in a Lisp integer. */
3518 hashfn_eq (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3520 EMACS_UINT hash
= XUINT (key
) ^ XTYPE (key
);
3521 xassert ((hash
& ~INTMASK
) == 0);
3526 /* Value is a hash code for KEY for use in hash table H which uses
3527 `eql' to compare keys. The hash code returned is guaranteed to fit
3528 in a Lisp integer. */
3531 hashfn_eql (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3535 hash
= sxhash (key
, 0);
3537 hash
= XUINT (key
) ^ XTYPE (key
);
3538 xassert ((hash
& ~INTMASK
) == 0);
3543 /* Value is a hash code for KEY for use in hash table H which uses
3544 `equal' to compare keys. The hash code returned is guaranteed to fit
3545 in a Lisp integer. */
3548 hashfn_equal (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3550 EMACS_UINT hash
= sxhash (key
, 0);
3551 xassert ((hash
& ~INTMASK
) == 0);
3556 /* Value is a hash code for KEY for use in hash table H which uses as
3557 user-defined function to compare keys. The hash code returned is
3558 guaranteed to fit in a Lisp integer. */
3561 hashfn_user_defined (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3563 Lisp_Object args
[2], hash
;
3565 args
[0] = h
->user_hash_function
;
3567 hash
= Ffuncall (2, args
);
3568 if (!INTEGERP (hash
))
3569 signal_error ("Invalid hash code returned from user-supplied hash function", hash
);
3570 return XUINT (hash
);
3573 /* An upper bound on the size of a hash table index. It must fit in
3574 ptrdiff_t and be a valid Emacs fixnum. */
3575 #define INDEX_SIZE_BOUND \
3576 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / sizeof (Lisp_Object)))
3578 /* Create and initialize a new hash table.
3580 TEST specifies the test the hash table will use to compare keys.
3581 It must be either one of the predefined tests `eq', `eql' or
3582 `equal' or a symbol denoting a user-defined test named TEST with
3583 test and hash functions USER_TEST and USER_HASH.
3585 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3587 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3588 new size when it becomes full is computed by adding REHASH_SIZE to
3589 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3590 table's new size is computed by multiplying its old size with
3593 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3594 be resized when the ratio of (number of entries in the table) /
3595 (table size) is >= REHASH_THRESHOLD.
3597 WEAK specifies the weakness of the table. If non-nil, it must be
3598 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3601 make_hash_table (Lisp_Object test
, Lisp_Object size
, Lisp_Object rehash_size
,
3602 Lisp_Object rehash_threshold
, Lisp_Object weak
,
3603 Lisp_Object user_test
, Lisp_Object user_hash
)
3605 struct Lisp_Hash_Table
*h
;
3607 EMACS_INT index_size
, sz
;
3611 /* Preconditions. */
3612 xassert (SYMBOLP (test
));
3613 xassert (INTEGERP (size
) && XINT (size
) >= 0);
3614 xassert ((INTEGERP (rehash_size
) && XINT (rehash_size
) > 0)
3615 || (FLOATP (rehash_size
) && 1 < XFLOAT_DATA (rehash_size
)));
3616 xassert (FLOATP (rehash_threshold
)
3617 && 0 < XFLOAT_DATA (rehash_threshold
)
3618 && XFLOAT_DATA (rehash_threshold
) <= 1.0);
3620 if (XFASTINT (size
) == 0)
3621 size
= make_number (1);
3623 sz
= XFASTINT (size
);
3624 index_float
= sz
/ XFLOAT_DATA (rehash_threshold
);
3625 index_size
= (index_float
< INDEX_SIZE_BOUND
+ 1
3626 ? next_almost_prime (index_float
)
3627 : INDEX_SIZE_BOUND
+ 1);
3628 if (INDEX_SIZE_BOUND
< max (index_size
, 2 * sz
))
3629 error ("Hash table too large");
3631 /* Allocate a table and initialize it. */
3632 h
= allocate_hash_table ();
3634 /* Initialize hash table slots. */
3636 if (EQ (test
, Qeql
))
3638 h
->cmpfn
= cmpfn_eql
;
3639 h
->hashfn
= hashfn_eql
;
3641 else if (EQ (test
, Qeq
))
3644 h
->hashfn
= hashfn_eq
;
3646 else if (EQ (test
, Qequal
))
3648 h
->cmpfn
= cmpfn_equal
;
3649 h
->hashfn
= hashfn_equal
;
3653 h
->user_cmp_function
= user_test
;
3654 h
->user_hash_function
= user_hash
;
3655 h
->cmpfn
= cmpfn_user_defined
;
3656 h
->hashfn
= hashfn_user_defined
;
3660 h
->rehash_threshold
= rehash_threshold
;
3661 h
->rehash_size
= rehash_size
;
3663 h
->key_and_value
= Fmake_vector (make_number (2 * sz
), Qnil
);
3664 h
->hash
= Fmake_vector (size
, Qnil
);
3665 h
->next
= Fmake_vector (size
, Qnil
);
3666 h
->index
= Fmake_vector (make_number (index_size
), Qnil
);
3668 /* Set up the free list. */
3669 for (i
= 0; i
< sz
- 1; ++i
)
3670 HASH_NEXT (h
, i
) = make_number (i
+ 1);
3671 h
->next_free
= make_number (0);
3673 XSET_HASH_TABLE (table
, h
);
3674 xassert (HASH_TABLE_P (table
));
3675 xassert (XHASH_TABLE (table
) == h
);
3677 /* Maybe add this hash table to the list of all weak hash tables. */
3679 h
->next_weak
= NULL
;
3682 h
->next_weak
= weak_hash_tables
;
3683 weak_hash_tables
= h
;
3690 /* Return a copy of hash table H1. Keys and values are not copied,
3691 only the table itself is. */
3694 copy_hash_table (struct Lisp_Hash_Table
*h1
)
3697 struct Lisp_Hash_Table
*h2
;
3698 struct Lisp_Vector
*next
;
3700 h2
= allocate_hash_table ();
3701 next
= h2
->header
.next
.vector
;
3702 memcpy (h2
, h1
, sizeof *h2
);
3703 h2
->header
.next
.vector
= next
;
3704 h2
->key_and_value
= Fcopy_sequence (h1
->key_and_value
);
3705 h2
->hash
= Fcopy_sequence (h1
->hash
);
3706 h2
->next
= Fcopy_sequence (h1
->next
);
3707 h2
->index
= Fcopy_sequence (h1
->index
);
3708 XSET_HASH_TABLE (table
, h2
);
3710 /* Maybe add this hash table to the list of all weak hash tables. */
3711 if (!NILP (h2
->weak
))
3713 h2
->next_weak
= weak_hash_tables
;
3714 weak_hash_tables
= h2
;
3721 /* Resize hash table H if it's too full. If H cannot be resized
3722 because it's already too large, throw an error. */
3725 maybe_resize_hash_table (struct Lisp_Hash_Table
*h
)
3727 if (NILP (h
->next_free
))
3729 ptrdiff_t old_size
= HASH_TABLE_SIZE (h
);
3730 EMACS_INT new_size
, index_size
, nsize
;
3734 if (INTEGERP (h
->rehash_size
))
3735 new_size
= old_size
+ XFASTINT (h
->rehash_size
);
3738 double float_new_size
= old_size
* XFLOAT_DATA (h
->rehash_size
);
3739 if (float_new_size
< INDEX_SIZE_BOUND
+ 1)
3741 new_size
= float_new_size
;
3742 if (new_size
<= old_size
)
3743 new_size
= old_size
+ 1;
3746 new_size
= INDEX_SIZE_BOUND
+ 1;
3748 index_float
= new_size
/ XFLOAT_DATA (h
->rehash_threshold
);
3749 index_size
= (index_float
< INDEX_SIZE_BOUND
+ 1
3750 ? next_almost_prime (index_float
)
3751 : INDEX_SIZE_BOUND
+ 1);
3752 nsize
= max (index_size
, 2 * new_size
);
3753 if (INDEX_SIZE_BOUND
< nsize
)
3754 error ("Hash table too large to resize");
3756 h
->key_and_value
= larger_vector (h
->key_and_value
,
3757 2 * (new_size
- old_size
), -1);
3758 h
->next
= larger_vector (h
->next
, new_size
- old_size
, -1);
3759 h
->hash
= larger_vector (h
->hash
, new_size
- old_size
, -1);
3760 h
->index
= Fmake_vector (make_number (index_size
), Qnil
);
3762 /* Update the free list. Do it so that new entries are added at
3763 the end of the free list. This makes some operations like
3765 for (i
= old_size
; i
< new_size
- 1; ++i
)
3766 HASH_NEXT (h
, i
) = make_number (i
+ 1);
3768 if (!NILP (h
->next_free
))
3770 Lisp_Object last
, next
;
3772 last
= h
->next_free
;
3773 while (next
= HASH_NEXT (h
, XFASTINT (last
)),
3777 HASH_NEXT (h
, XFASTINT (last
)) = make_number (old_size
);
3780 XSETFASTINT (h
->next_free
, old_size
);
3783 for (i
= 0; i
< old_size
; ++i
)
3784 if (!NILP (HASH_HASH (h
, i
)))
3786 EMACS_UINT hash_code
= XUINT (HASH_HASH (h
, i
));
3787 ptrdiff_t start_of_bucket
= hash_code
% ASIZE (h
->index
);
3788 HASH_NEXT (h
, i
) = HASH_INDEX (h
, start_of_bucket
);
3789 HASH_INDEX (h
, start_of_bucket
) = make_number (i
);
3795 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3796 the hash code of KEY. Value is the index of the entry in H
3797 matching KEY, or -1 if not found. */
3800 hash_lookup (struct Lisp_Hash_Table
*h
, Lisp_Object key
, EMACS_UINT
*hash
)
3802 EMACS_UINT hash_code
;
3803 ptrdiff_t start_of_bucket
;
3806 hash_code
= h
->hashfn (h
, key
);
3810 start_of_bucket
= hash_code
% ASIZE (h
->index
);
3811 idx
= HASH_INDEX (h
, start_of_bucket
);
3813 /* We need not gcpro idx since it's either an integer or nil. */
3816 ptrdiff_t i
= XFASTINT (idx
);
3817 if (EQ (key
, HASH_KEY (h
, i
))
3819 && h
->cmpfn (h
, key
, hash_code
,
3820 HASH_KEY (h
, i
), XUINT (HASH_HASH (h
, i
)))))
3822 idx
= HASH_NEXT (h
, i
);
3825 return NILP (idx
) ? -1 : XFASTINT (idx
);
3829 /* Put an entry into hash table H that associates KEY with VALUE.
3830 HASH is a previously computed hash code of KEY.
3831 Value is the index of the entry in H matching KEY. */
3834 hash_put (struct Lisp_Hash_Table
*h
, Lisp_Object key
, Lisp_Object value
,
3837 ptrdiff_t start_of_bucket
, i
;
3839 xassert ((hash
& ~INTMASK
) == 0);
3841 /* Increment count after resizing because resizing may fail. */
3842 maybe_resize_hash_table (h
);
3845 /* Store key/value in the key_and_value vector. */
3846 i
= XFASTINT (h
->next_free
);
3847 h
->next_free
= HASH_NEXT (h
, i
);
3848 HASH_KEY (h
, i
) = key
;
3849 HASH_VALUE (h
, i
) = value
;
3851 /* Remember its hash code. */
3852 HASH_HASH (h
, i
) = make_number (hash
);
3854 /* Add new entry to its collision chain. */
3855 start_of_bucket
= hash
% ASIZE (h
->index
);
3856 HASH_NEXT (h
, i
) = HASH_INDEX (h
, start_of_bucket
);
3857 HASH_INDEX (h
, start_of_bucket
) = make_number (i
);
3862 /* Remove the entry matching KEY from hash table H, if there is one. */
3865 hash_remove_from_table (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3867 EMACS_UINT hash_code
;
3868 ptrdiff_t start_of_bucket
;
3869 Lisp_Object idx
, prev
;
3871 hash_code
= h
->hashfn (h
, key
);
3872 start_of_bucket
= hash_code
% ASIZE (h
->index
);
3873 idx
= HASH_INDEX (h
, start_of_bucket
);
3876 /* We need not gcpro idx, prev since they're either integers or nil. */
3879 ptrdiff_t i
= XFASTINT (idx
);
3881 if (EQ (key
, HASH_KEY (h
, i
))
3883 && h
->cmpfn (h
, key
, hash_code
,
3884 HASH_KEY (h
, i
), XUINT (HASH_HASH (h
, i
)))))
3886 /* Take entry out of collision chain. */
3888 HASH_INDEX (h
, start_of_bucket
) = HASH_NEXT (h
, i
);
3890 HASH_NEXT (h
, XFASTINT (prev
)) = HASH_NEXT (h
, i
);
3892 /* Clear slots in key_and_value and add the slots to
3894 HASH_KEY (h
, i
) = HASH_VALUE (h
, i
) = HASH_HASH (h
, i
) = Qnil
;
3895 HASH_NEXT (h
, i
) = h
->next_free
;
3896 h
->next_free
= make_number (i
);
3898 xassert (h
->count
>= 0);
3904 idx
= HASH_NEXT (h
, i
);
3910 /* Clear hash table H. */
3913 hash_clear (struct Lisp_Hash_Table
*h
)
3917 ptrdiff_t i
, size
= HASH_TABLE_SIZE (h
);
3919 for (i
= 0; i
< size
; ++i
)
3921 HASH_NEXT (h
, i
) = i
< size
- 1 ? make_number (i
+ 1) : Qnil
;
3922 HASH_KEY (h
, i
) = Qnil
;
3923 HASH_VALUE (h
, i
) = Qnil
;
3924 HASH_HASH (h
, i
) = Qnil
;
3927 for (i
= 0; i
< ASIZE (h
->index
); ++i
)
3928 ASET (h
->index
, i
, Qnil
);
3930 h
->next_free
= make_number (0);
3937 /************************************************************************
3939 ************************************************************************/
3942 init_weak_hash_tables (void)
3944 weak_hash_tables
= NULL
;
3947 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3948 entries from the table that don't survive the current GC.
3949 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3950 non-zero if anything was marked. */
3953 sweep_weak_table (struct Lisp_Hash_Table
*h
, int remove_entries_p
)
3955 ptrdiff_t bucket
, n
;
3958 n
= ASIZE (h
->index
) & ~ARRAY_MARK_FLAG
;
3961 for (bucket
= 0; bucket
< n
; ++bucket
)
3963 Lisp_Object idx
, next
, prev
;
3965 /* Follow collision chain, removing entries that
3966 don't survive this garbage collection. */
3968 for (idx
= HASH_INDEX (h
, bucket
); !NILP (idx
); idx
= next
)
3970 ptrdiff_t i
= XFASTINT (idx
);
3971 int key_known_to_survive_p
= survives_gc_p (HASH_KEY (h
, i
));
3972 int value_known_to_survive_p
= survives_gc_p (HASH_VALUE (h
, i
));
3975 if (EQ (h
->weak
, Qkey
))
3976 remove_p
= !key_known_to_survive_p
;
3977 else if (EQ (h
->weak
, Qvalue
))
3978 remove_p
= !value_known_to_survive_p
;
3979 else if (EQ (h
->weak
, Qkey_or_value
))
3980 remove_p
= !(key_known_to_survive_p
|| value_known_to_survive_p
);
3981 else if (EQ (h
->weak
, Qkey_and_value
))
3982 remove_p
= !(key_known_to_survive_p
&& value_known_to_survive_p
);
3986 next
= HASH_NEXT (h
, i
);
3988 if (remove_entries_p
)
3992 /* Take out of collision chain. */
3994 HASH_INDEX (h
, bucket
) = next
;
3996 HASH_NEXT (h
, XFASTINT (prev
)) = next
;
3998 /* Add to free list. */
3999 HASH_NEXT (h
, i
) = h
->next_free
;
4002 /* Clear key, value, and hash. */
4003 HASH_KEY (h
, i
) = HASH_VALUE (h
, i
) = Qnil
;
4004 HASH_HASH (h
, i
) = Qnil
;
4017 /* Make sure key and value survive. */
4018 if (!key_known_to_survive_p
)
4020 mark_object (HASH_KEY (h
, i
));
4024 if (!value_known_to_survive_p
)
4026 mark_object (HASH_VALUE (h
, i
));
4037 /* Remove elements from weak hash tables that don't survive the
4038 current garbage collection. Remove weak tables that don't survive
4039 from Vweak_hash_tables. Called from gc_sweep. */
4042 sweep_weak_hash_tables (void)
4044 struct Lisp_Hash_Table
*h
, *used
, *next
;
4047 /* Mark all keys and values that are in use. Keep on marking until
4048 there is no more change. This is necessary for cases like
4049 value-weak table A containing an entry X -> Y, where Y is used in a
4050 key-weak table B, Z -> Y. If B comes after A in the list of weak
4051 tables, X -> Y might be removed from A, although when looking at B
4052 one finds that it shouldn't. */
4056 for (h
= weak_hash_tables
; h
; h
= h
->next_weak
)
4058 if (h
->header
.size
& ARRAY_MARK_FLAG
)
4059 marked
|= sweep_weak_table (h
, 0);
4064 /* Remove tables and entries that aren't used. */
4065 for (h
= weak_hash_tables
, used
= NULL
; h
; h
= next
)
4067 next
= h
->next_weak
;
4069 if (h
->header
.size
& ARRAY_MARK_FLAG
)
4071 /* TABLE is marked as used. Sweep its contents. */
4073 sweep_weak_table (h
, 1);
4075 /* Add table to the list of used weak hash tables. */
4076 h
->next_weak
= used
;
4081 weak_hash_tables
= used
;
4086 /***********************************************************************
4087 Hash Code Computation
4088 ***********************************************************************/
4090 /* Maximum depth up to which to dive into Lisp structures. */
4092 #define SXHASH_MAX_DEPTH 3
4094 /* Maximum length up to which to take list and vector elements into
4097 #define SXHASH_MAX_LEN 7
4099 /* Combine two integers X and Y for hashing. The result might not fit
4100 into a Lisp integer. */
4102 #define SXHASH_COMBINE(X, Y) \
4103 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4106 /* Hash X, returning a value that fits into a Lisp integer. */
4107 #define SXHASH_REDUCE(X) \
4108 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4110 /* Return a hash for string PTR which has length LEN. The hash value
4111 can be any EMACS_UINT value. */
4114 hash_string (char const *ptr
, ptrdiff_t len
)
4116 char const *p
= ptr
;
4117 char const *end
= p
+ len
;
4119 EMACS_UINT hash
= 0;
4124 hash
= SXHASH_COMBINE (hash
, c
);
4130 /* Return a hash for string PTR which has length LEN. The hash
4131 code returned is guaranteed to fit in a Lisp integer. */
4134 sxhash_string (char const *ptr
, ptrdiff_t len
)
4136 EMACS_UINT hash
= hash_string (ptr
, len
);
4137 return SXHASH_REDUCE (hash
);
4140 /* Return a hash for the floating point value VAL. */
4143 sxhash_float (double val
)
4145 EMACS_UINT hash
= 0;
4147 WORDS_PER_DOUBLE
= (sizeof val
/ sizeof hash
4148 + (sizeof val
% sizeof hash
!= 0))
4152 EMACS_UINT word
[WORDS_PER_DOUBLE
];
4156 memset (&u
.val
+ 1, 0, sizeof u
- sizeof u
.val
);
4157 for (i
= 0; i
< WORDS_PER_DOUBLE
; i
++)
4158 hash
= SXHASH_COMBINE (hash
, u
.word
[i
]);
4159 return SXHASH_REDUCE (hash
);
4162 /* Return a hash for list LIST. DEPTH is the current depth in the
4163 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4166 sxhash_list (Lisp_Object list
, int depth
)
4168 EMACS_UINT hash
= 0;
4171 if (depth
< SXHASH_MAX_DEPTH
)
4173 CONSP (list
) && i
< SXHASH_MAX_LEN
;
4174 list
= XCDR (list
), ++i
)
4176 EMACS_UINT hash2
= sxhash (XCAR (list
), depth
+ 1);
4177 hash
= SXHASH_COMBINE (hash
, hash2
);
4182 EMACS_UINT hash2
= sxhash (list
, depth
+ 1);
4183 hash
= SXHASH_COMBINE (hash
, hash2
);
4186 return SXHASH_REDUCE (hash
);
4190 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4191 the Lisp structure. */
4194 sxhash_vector (Lisp_Object vec
, int depth
)
4196 EMACS_UINT hash
= ASIZE (vec
);
4199 n
= min (SXHASH_MAX_LEN
, ASIZE (vec
));
4200 for (i
= 0; i
< n
; ++i
)
4202 EMACS_UINT hash2
= sxhash (AREF (vec
, i
), depth
+ 1);
4203 hash
= SXHASH_COMBINE (hash
, hash2
);
4206 return SXHASH_REDUCE (hash
);
4209 /* Return a hash for bool-vector VECTOR. */
4212 sxhash_bool_vector (Lisp_Object vec
)
4214 EMACS_UINT hash
= XBOOL_VECTOR (vec
)->size
;
4217 n
= min (SXHASH_MAX_LEN
, XBOOL_VECTOR (vec
)->header
.size
);
4218 for (i
= 0; i
< n
; ++i
)
4219 hash
= SXHASH_COMBINE (hash
, XBOOL_VECTOR (vec
)->data
[i
]);
4221 return SXHASH_REDUCE (hash
);
4225 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4226 structure. Value is an unsigned integer clipped to INTMASK. */
4229 sxhash (Lisp_Object obj
, int depth
)
4233 if (depth
> SXHASH_MAX_DEPTH
)
4236 switch (XTYPE (obj
))
4247 obj
= SYMBOL_NAME (obj
);
4251 hash
= sxhash_string (SSDATA (obj
), SBYTES (obj
));
4254 /* This can be everything from a vector to an overlay. */
4255 case Lisp_Vectorlike
:
4257 /* According to the CL HyperSpec, two arrays are equal only if
4258 they are `eq', except for strings and bit-vectors. In
4259 Emacs, this works differently. We have to compare element
4261 hash
= sxhash_vector (obj
, depth
);
4262 else if (BOOL_VECTOR_P (obj
))
4263 hash
= sxhash_bool_vector (obj
);
4265 /* Others are `equal' if they are `eq', so let's take their
4271 hash
= sxhash_list (obj
, depth
);
4275 hash
= sxhash_float (XFLOAT_DATA (obj
));
4287 /***********************************************************************
4289 ***********************************************************************/
4292 DEFUN ("sxhash", Fsxhash
, Ssxhash
, 1, 1, 0,
4293 doc
: /* Compute a hash code for OBJ and return it as integer. */)
4296 EMACS_UINT hash
= sxhash (obj
, 0);
4297 return make_number (hash
);
4301 DEFUN ("make-hash-table", Fmake_hash_table
, Smake_hash_table
, 0, MANY
, 0,
4302 doc
: /* Create and return a new hash table.
4304 Arguments are specified as keyword/argument pairs. The following
4305 arguments are defined:
4307 :test TEST -- TEST must be a symbol that specifies how to compare
4308 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4309 `equal'. User-supplied test and hash functions can be specified via
4310 `define-hash-table-test'.
4312 :size SIZE -- A hint as to how many elements will be put in the table.
4315 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4316 fills up. If REHASH-SIZE is an integer, increase the size by that
4317 amount. If it is a float, it must be > 1.0, and the new size is the
4318 old size multiplied by that factor. Default is 1.5.
4320 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4321 Resize the hash table when the ratio (number of entries / table size)
4322 is greater than or equal to THRESHOLD. Default is 0.8.
4324 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4325 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4326 returned is a weak table. Key/value pairs are removed from a weak
4327 hash table when there are no non-weak references pointing to their
4328 key, value, one of key or value, or both key and value, depending on
4329 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4332 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4333 (ptrdiff_t nargs
, Lisp_Object
*args
)
4335 Lisp_Object test
, size
, rehash_size
, rehash_threshold
, weak
;
4336 Lisp_Object user_test
, user_hash
;
4340 /* The vector `used' is used to keep track of arguments that
4341 have been consumed. */
4342 used
= (char *) alloca (nargs
* sizeof *used
);
4343 memset (used
, 0, nargs
* sizeof *used
);
4345 /* See if there's a `:test TEST' among the arguments. */
4346 i
= get_key_arg (QCtest
, nargs
, args
, used
);
4347 test
= i
? args
[i
] : Qeql
;
4348 if (!EQ (test
, Qeq
) && !EQ (test
, Qeql
) && !EQ (test
, Qequal
))
4350 /* See if it is a user-defined test. */
4353 prop
= Fget (test
, Qhash_table_test
);
4354 if (!CONSP (prop
) || !CONSP (XCDR (prop
)))
4355 signal_error ("Invalid hash table test", test
);
4356 user_test
= XCAR (prop
);
4357 user_hash
= XCAR (XCDR (prop
));
4360 user_test
= user_hash
= Qnil
;
4362 /* See if there's a `:size SIZE' argument. */
4363 i
= get_key_arg (QCsize
, nargs
, args
, used
);
4364 size
= i
? args
[i
] : Qnil
;
4366 size
= make_number (DEFAULT_HASH_SIZE
);
4367 else if (!INTEGERP (size
) || XINT (size
) < 0)
4368 signal_error ("Invalid hash table size", size
);
4370 /* Look for `:rehash-size SIZE'. */
4371 i
= get_key_arg (QCrehash_size
, nargs
, args
, used
);
4372 rehash_size
= i
? args
[i
] : make_float (DEFAULT_REHASH_SIZE
);
4373 if (! ((INTEGERP (rehash_size
) && 0 < XINT (rehash_size
))
4374 || (FLOATP (rehash_size
) && 1 < XFLOAT_DATA (rehash_size
))))
4375 signal_error ("Invalid hash table rehash size", rehash_size
);
4377 /* Look for `:rehash-threshold THRESHOLD'. */
4378 i
= get_key_arg (QCrehash_threshold
, nargs
, args
, used
);
4379 rehash_threshold
= i
? args
[i
] : make_float (DEFAULT_REHASH_THRESHOLD
);
4380 if (! (FLOATP (rehash_threshold
)
4381 && 0 < XFLOAT_DATA (rehash_threshold
)
4382 && XFLOAT_DATA (rehash_threshold
) <= 1))
4383 signal_error ("Invalid hash table rehash threshold", rehash_threshold
);
4385 /* Look for `:weakness WEAK'. */
4386 i
= get_key_arg (QCweakness
, nargs
, args
, used
);
4387 weak
= i
? args
[i
] : Qnil
;
4389 weak
= Qkey_and_value
;
4392 && !EQ (weak
, Qvalue
)
4393 && !EQ (weak
, Qkey_or_value
)
4394 && !EQ (weak
, Qkey_and_value
))
4395 signal_error ("Invalid hash table weakness", weak
);
4397 /* Now, all args should have been used up, or there's a problem. */
4398 for (i
= 0; i
< nargs
; ++i
)
4400 signal_error ("Invalid argument list", args
[i
]);
4402 return make_hash_table (test
, size
, rehash_size
, rehash_threshold
, weak
,
4403 user_test
, user_hash
);
4407 DEFUN ("copy-hash-table", Fcopy_hash_table
, Scopy_hash_table
, 1, 1, 0,
4408 doc
: /* Return a copy of hash table TABLE. */)
4411 return copy_hash_table (check_hash_table (table
));
4415 DEFUN ("hash-table-count", Fhash_table_count
, Shash_table_count
, 1, 1, 0,
4416 doc
: /* Return the number of elements in TABLE. */)
4419 return make_number (check_hash_table (table
)->count
);
4423 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size
,
4424 Shash_table_rehash_size
, 1, 1, 0,
4425 doc
: /* Return the current rehash size of TABLE. */)
4428 return check_hash_table (table
)->rehash_size
;
4432 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold
,
4433 Shash_table_rehash_threshold
, 1, 1, 0,
4434 doc
: /* Return the current rehash threshold of TABLE. */)
4437 return check_hash_table (table
)->rehash_threshold
;
4441 DEFUN ("hash-table-size", Fhash_table_size
, Shash_table_size
, 1, 1, 0,
4442 doc
: /* Return the size of TABLE.
4443 The size can be used as an argument to `make-hash-table' to create
4444 a hash table than can hold as many elements as TABLE holds
4445 without need for resizing. */)
4448 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4449 return make_number (HASH_TABLE_SIZE (h
));
4453 DEFUN ("hash-table-test", Fhash_table_test
, Shash_table_test
, 1, 1, 0,
4454 doc
: /* Return the test TABLE uses. */)
4457 return check_hash_table (table
)->test
;
4461 DEFUN ("hash-table-weakness", Fhash_table_weakness
, Shash_table_weakness
,
4463 doc
: /* Return the weakness of TABLE. */)
4466 return check_hash_table (table
)->weak
;
4470 DEFUN ("hash-table-p", Fhash_table_p
, Shash_table_p
, 1, 1, 0,
4471 doc
: /* Return t if OBJ is a Lisp hash table object. */)
4474 return HASH_TABLE_P (obj
) ? Qt
: Qnil
;
4478 DEFUN ("clrhash", Fclrhash
, Sclrhash
, 1, 1, 0,
4479 doc
: /* Clear hash table TABLE and return it. */)
4482 hash_clear (check_hash_table (table
));
4483 /* Be compatible with XEmacs. */
4488 DEFUN ("gethash", Fgethash
, Sgethash
, 2, 3, 0,
4489 doc
: /* Look up KEY in TABLE and return its associated value.
4490 If KEY is not found, return DFLT which defaults to nil. */)
4491 (Lisp_Object key
, Lisp_Object table
, Lisp_Object dflt
)
4493 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4494 ptrdiff_t i
= hash_lookup (h
, key
, NULL
);
4495 return i
>= 0 ? HASH_VALUE (h
, i
) : dflt
;
4499 DEFUN ("puthash", Fputhash
, Sputhash
, 3, 3, 0,
4500 doc
: /* Associate KEY with VALUE in hash table TABLE.
4501 If KEY is already present in table, replace its current value with
4502 VALUE. In any case, return VALUE. */)
4503 (Lisp_Object key
, Lisp_Object value
, Lisp_Object table
)
4505 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4509 i
= hash_lookup (h
, key
, &hash
);
4511 HASH_VALUE (h
, i
) = value
;
4513 hash_put (h
, key
, value
, hash
);
4519 DEFUN ("remhash", Fremhash
, Sremhash
, 2, 2, 0,
4520 doc
: /* Remove KEY from TABLE. */)
4521 (Lisp_Object key
, Lisp_Object table
)
4523 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4524 hash_remove_from_table (h
, key
);
4529 DEFUN ("maphash", Fmaphash
, Smaphash
, 2, 2, 0,
4530 doc
: /* Call FUNCTION for all entries in hash table TABLE.
4531 FUNCTION is called with two arguments, KEY and VALUE. */)
4532 (Lisp_Object function
, Lisp_Object table
)
4534 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4535 Lisp_Object args
[3];
4538 for (i
= 0; i
< HASH_TABLE_SIZE (h
); ++i
)
4539 if (!NILP (HASH_HASH (h
, i
)))
4542 args
[1] = HASH_KEY (h
, i
);
4543 args
[2] = HASH_VALUE (h
, i
);
4551 DEFUN ("define-hash-table-test", Fdefine_hash_table_test
,
4552 Sdefine_hash_table_test
, 3, 3, 0,
4553 doc
: /* Define a new hash table test with name NAME, a symbol.
4555 In hash tables created with NAME specified as test, use TEST to
4556 compare keys, and HASH for computing hash codes of keys.
4558 TEST must be a function taking two arguments and returning non-nil if
4559 both arguments are the same. HASH must be a function taking one
4560 argument and return an integer that is the hash code of the argument.
4561 Hash code computation should use the whole value range of integers,
4562 including negative integers. */)
4563 (Lisp_Object name
, Lisp_Object test
, Lisp_Object hash
)
4565 return Fput (name
, Qhash_table_test
, list2 (test
, hash
));
4570 /************************************************************************
4571 MD5, SHA-1, and SHA-2
4572 ************************************************************************/
4579 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4582 secure_hash (Lisp_Object algorithm
, Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object coding_system
, Lisp_Object noerror
, Lisp_Object binary
)
4586 EMACS_INT start_char
= 0, end_char
= 0;
4587 ptrdiff_t start_byte
, end_byte
;
4588 register EMACS_INT b
, e
;
4589 register struct buffer
*bp
;
4592 void *(*hash_func
) (const char *, size_t, void *);
4595 CHECK_SYMBOL (algorithm
);
4597 if (STRINGP (object
))
4599 if (NILP (coding_system
))
4601 /* Decide the coding-system to encode the data with. */
4603 if (STRING_MULTIBYTE (object
))
4604 /* use default, we can't guess correct value */
4605 coding_system
= preferred_coding_system ();
4607 coding_system
= Qraw_text
;
4610 if (NILP (Fcoding_system_p (coding_system
)))
4612 /* Invalid coding system. */
4614 if (!NILP (noerror
))
4615 coding_system
= Qraw_text
;
4617 xsignal1 (Qcoding_system_error
, coding_system
);
4620 if (STRING_MULTIBYTE (object
))
4621 object
= code_convert_string (object
, coding_system
, Qnil
, 1, 0, 1);
4623 size
= SCHARS (object
);
4627 CHECK_NUMBER (start
);
4629 start_char
= XINT (start
);
4641 end_char
= XINT (end
);
4647 if (!(0 <= start_char
&& start_char
<= end_char
&& end_char
<= size
))
4648 args_out_of_range_3 (object
, make_number (start_char
),
4649 make_number (end_char
));
4651 start_byte
= NILP (start
) ? 0 : string_char_to_byte (object
, start_char
);
4653 NILP (end
) ? SBYTES (object
) : string_char_to_byte (object
, end_char
);
4657 struct buffer
*prev
= current_buffer
;
4659 record_unwind_protect (Fset_buffer
, Fcurrent_buffer ());
4661 CHECK_BUFFER (object
);
4663 bp
= XBUFFER (object
);
4664 if (bp
!= current_buffer
)
4665 set_buffer_internal (bp
);
4671 CHECK_NUMBER_COERCE_MARKER (start
);
4679 CHECK_NUMBER_COERCE_MARKER (end
);
4684 temp
= b
, b
= e
, e
= temp
;
4686 if (!(BEGV
<= b
&& e
<= ZV
))
4687 args_out_of_range (start
, end
);
4689 if (NILP (coding_system
))
4691 /* Decide the coding-system to encode the data with.
4692 See fileio.c:Fwrite-region */
4694 if (!NILP (Vcoding_system_for_write
))
4695 coding_system
= Vcoding_system_for_write
;
4698 int force_raw_text
= 0;
4700 coding_system
= BVAR (XBUFFER (object
), buffer_file_coding_system
);
4701 if (NILP (coding_system
)
4702 || NILP (Flocal_variable_p (Qbuffer_file_coding_system
, Qnil
)))
4704 coding_system
= Qnil
;
4705 if (NILP (BVAR (current_buffer
, enable_multibyte_characters
)))
4709 if (NILP (coding_system
) && !NILP (Fbuffer_file_name (object
)))
4711 /* Check file-coding-system-alist. */
4712 Lisp_Object args
[4], val
;
4714 args
[0] = Qwrite_region
; args
[1] = start
; args
[2] = end
;
4715 args
[3] = Fbuffer_file_name (object
);
4716 val
= Ffind_operation_coding_system (4, args
);
4717 if (CONSP (val
) && !NILP (XCDR (val
)))
4718 coding_system
= XCDR (val
);
4721 if (NILP (coding_system
)
4722 && !NILP (BVAR (XBUFFER (object
), buffer_file_coding_system
)))
4724 /* If we still have not decided a coding system, use the
4725 default value of buffer-file-coding-system. */
4726 coding_system
= BVAR (XBUFFER (object
), buffer_file_coding_system
);
4730 && !NILP (Ffboundp (Vselect_safe_coding_system_function
)))
4731 /* Confirm that VAL can surely encode the current region. */
4732 coding_system
= call4 (Vselect_safe_coding_system_function
,
4733 make_number (b
), make_number (e
),
4734 coding_system
, Qnil
);
4737 coding_system
= Qraw_text
;
4740 if (NILP (Fcoding_system_p (coding_system
)))
4742 /* Invalid coding system. */
4744 if (!NILP (noerror
))
4745 coding_system
= Qraw_text
;
4747 xsignal1 (Qcoding_system_error
, coding_system
);
4751 object
= make_buffer_string (b
, e
, 0);
4752 if (prev
!= current_buffer
)
4753 set_buffer_internal (prev
);
4754 /* Discard the unwind protect for recovering the current
4758 if (STRING_MULTIBYTE (object
))
4759 object
= code_convert_string (object
, coding_system
, Qnil
, 1, 0, 0);
4761 end_byte
= SBYTES (object
);
4764 if (EQ (algorithm
, Qmd5
))
4766 digest_size
= MD5_DIGEST_SIZE
;
4767 hash_func
= md5_buffer
;
4769 else if (EQ (algorithm
, Qsha1
))
4771 digest_size
= SHA1_DIGEST_SIZE
;
4772 hash_func
= sha1_buffer
;
4774 else if (EQ (algorithm
, Qsha224
))
4776 digest_size
= SHA224_DIGEST_SIZE
;
4777 hash_func
= sha224_buffer
;
4779 else if (EQ (algorithm
, Qsha256
))
4781 digest_size
= SHA256_DIGEST_SIZE
;
4782 hash_func
= sha256_buffer
;
4784 else if (EQ (algorithm
, Qsha384
))
4786 digest_size
= SHA384_DIGEST_SIZE
;
4787 hash_func
= sha384_buffer
;
4789 else if (EQ (algorithm
, Qsha512
))
4791 digest_size
= SHA512_DIGEST_SIZE
;
4792 hash_func
= sha512_buffer
;
4795 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm
)));
4797 /* allocate 2 x digest_size so that it can be re-used to hold the
4799 digest
= make_uninit_string (digest_size
* 2);
4801 hash_func (SSDATA (object
) + start_byte
,
4802 end_byte
- start_byte
,
4807 unsigned char *p
= SDATA (digest
);
4808 for (i
= digest_size
- 1; i
>= 0; i
--)
4810 static char const hexdigit
[16] = "0123456789abcdef";
4812 p
[2 * i
] = hexdigit
[p_i
>> 4];
4813 p
[2 * i
+ 1] = hexdigit
[p_i
& 0xf];
4818 return make_unibyte_string (SSDATA (digest
), digest_size
);
4821 DEFUN ("md5", Fmd5
, Smd5
, 1, 5, 0,
4822 doc
: /* Return MD5 message digest of OBJECT, a buffer or string.
4824 A message digest is a cryptographic checksum of a document, and the
4825 algorithm to calculate it is defined in RFC 1321.
4827 The two optional arguments START and END are character positions
4828 specifying for which part of OBJECT the message digest should be
4829 computed. If nil or omitted, the digest is computed for the whole
4832 The MD5 message digest is computed from the result of encoding the
4833 text in a coding system, not directly from the internal Emacs form of
4834 the text. The optional fourth argument CODING-SYSTEM specifies which
4835 coding system to encode the text with. It should be the same coding
4836 system that you used or will use when actually writing the text into a
4839 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4840 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4841 system would be chosen by default for writing this text into a file.
4843 If OBJECT is a string, the most preferred coding system (see the
4844 command `prefer-coding-system') is used.
4846 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4847 guesswork fails. Normally, an error is signaled in such case. */)
4848 (Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object coding_system
, Lisp_Object noerror
)
4850 return secure_hash (Qmd5
, object
, start
, end
, coding_system
, noerror
, Qnil
);
4853 DEFUN ("secure-hash", Fsecure_hash
, Ssecure_hash
, 2, 5, 0,
4854 doc
: /* Return the secure hash of OBJECT, a buffer or string.
4855 ALGORITHM is a symbol specifying the hash to use:
4856 md5, sha1, sha224, sha256, sha384 or sha512.
4858 The two optional arguments START and END are positions specifying for
4859 which part of OBJECT to compute the hash. If nil or omitted, uses the
4862 If BINARY is non-nil, returns a string in binary form. */)
4863 (Lisp_Object algorithm
, Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object binary
)
4865 return secure_hash (algorithm
, object
, start
, end
, Qnil
, Qnil
, binary
);
4871 DEFSYM (Qmd5
, "md5");
4872 DEFSYM (Qsha1
, "sha1");
4873 DEFSYM (Qsha224
, "sha224");
4874 DEFSYM (Qsha256
, "sha256");
4875 DEFSYM (Qsha384
, "sha384");
4876 DEFSYM (Qsha512
, "sha512");
4878 /* Hash table stuff. */
4879 DEFSYM (Qhash_table_p
, "hash-table-p");
4881 DEFSYM (Qeql
, "eql");
4882 DEFSYM (Qequal
, "equal");
4883 DEFSYM (QCtest
, ":test");
4884 DEFSYM (QCsize
, ":size");
4885 DEFSYM (QCrehash_size
, ":rehash-size");
4886 DEFSYM (QCrehash_threshold
, ":rehash-threshold");
4887 DEFSYM (QCweakness
, ":weakness");
4888 DEFSYM (Qkey
, "key");
4889 DEFSYM (Qvalue
, "value");
4890 DEFSYM (Qhash_table_test
, "hash-table-test");
4891 DEFSYM (Qkey_or_value
, "key-or-value");
4892 DEFSYM (Qkey_and_value
, "key-and-value");
4895 defsubr (&Smake_hash_table
);
4896 defsubr (&Scopy_hash_table
);
4897 defsubr (&Shash_table_count
);
4898 defsubr (&Shash_table_rehash_size
);
4899 defsubr (&Shash_table_rehash_threshold
);
4900 defsubr (&Shash_table_size
);
4901 defsubr (&Shash_table_test
);
4902 defsubr (&Shash_table_weakness
);
4903 defsubr (&Shash_table_p
);
4904 defsubr (&Sclrhash
);
4905 defsubr (&Sgethash
);
4906 defsubr (&Sputhash
);
4907 defsubr (&Sremhash
);
4908 defsubr (&Smaphash
);
4909 defsubr (&Sdefine_hash_table_test
);
4911 DEFSYM (Qstring_lessp
, "string-lessp");
4912 DEFSYM (Qprovide
, "provide");
4913 DEFSYM (Qrequire
, "require");
4914 DEFSYM (Qyes_or_no_p_history
, "yes-or-no-p-history");
4915 DEFSYM (Qcursor_in_echo_area
, "cursor-in-echo-area");
4916 DEFSYM (Qwidget_type
, "widget-type");
4918 staticpro (&string_char_byte_cache_string
);
4919 string_char_byte_cache_string
= Qnil
;
4921 require_nesting_list
= Qnil
;
4922 staticpro (&require_nesting_list
);
4924 Fset (Qyes_or_no_p_history
, Qnil
);
4926 DEFVAR_LISP ("features", Vfeatures
,
4927 doc
: /* A list of symbols which are the features of the executing Emacs.
4928 Used by `featurep' and `require', and altered by `provide'. */);
4929 Vfeatures
= Fcons (intern_c_string ("emacs"), Qnil
);
4930 DEFSYM (Qsubfeatures
, "subfeatures");
4932 #ifdef HAVE_LANGINFO_CODESET
4933 DEFSYM (Qcodeset
, "codeset");
4934 DEFSYM (Qdays
, "days");
4935 DEFSYM (Qmonths
, "months");
4936 DEFSYM (Qpaper
, "paper");
4937 #endif /* HAVE_LANGINFO_CODESET */
4939 DEFVAR_BOOL ("use-dialog-box", use_dialog_box
,
4940 doc
: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4941 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4942 invoked by mouse clicks and mouse menu items.
4944 On some platforms, file selection dialogs are also enabled if this is
4948 DEFVAR_BOOL ("use-file-dialog", use_file_dialog
,
4949 doc
: /* *Non-nil means mouse commands use a file dialog to ask for files.
4950 This applies to commands from menus and tool bar buttons even when
4951 they are initiated from the keyboard. If `use-dialog-box' is nil,
4952 that disables the use of a file dialog, regardless of the value of
4954 use_file_dialog
= 1;
4956 defsubr (&Sidentity
);
4959 defsubr (&Ssafe_length
);
4960 defsubr (&Sstring_bytes
);
4961 defsubr (&Sstring_equal
);
4962 defsubr (&Scompare_strings
);
4963 defsubr (&Sstring_lessp
);
4966 defsubr (&Svconcat
);
4967 defsubr (&Scopy_sequence
);
4968 defsubr (&Sstring_make_multibyte
);
4969 defsubr (&Sstring_make_unibyte
);
4970 defsubr (&Sstring_as_multibyte
);
4971 defsubr (&Sstring_as_unibyte
);
4972 defsubr (&Sstring_to_multibyte
);
4973 defsubr (&Sstring_to_unibyte
);
4974 defsubr (&Scopy_alist
);
4975 defsubr (&Ssubstring
);
4976 defsubr (&Ssubstring_no_properties
);
4989 defsubr (&Snreverse
);
4990 defsubr (&Sreverse
);
4992 defsubr (&Splist_get
);
4994 defsubr (&Splist_put
);
4996 defsubr (&Slax_plist_get
);
4997 defsubr (&Slax_plist_put
);
5000 defsubr (&Sequal_including_properties
);
5001 defsubr (&Sfillarray
);
5002 defsubr (&Sclear_string
);
5006 defsubr (&Smapconcat
);
5007 defsubr (&Syes_or_no_p
);
5008 defsubr (&Sload_average
);
5009 defsubr (&Sfeaturep
);
5010 defsubr (&Srequire
);
5011 defsubr (&Sprovide
);
5012 defsubr (&Splist_member
);
5013 defsubr (&Swidget_put
);
5014 defsubr (&Swidget_get
);
5015 defsubr (&Swidget_apply
);
5016 defsubr (&Sbase64_encode_region
);
5017 defsubr (&Sbase64_decode_region
);
5018 defsubr (&Sbase64_encode_string
);
5019 defsubr (&Sbase64_decode_string
);
5021 defsubr (&Ssecure_hash
);
5022 defsubr (&Slocale_info
);