Use make_formatted_string to avoid double length calculation.
[emacs.git] / src / alloc.c
blob739ec40c45c475139d36f665f67391abd78f2778
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
26 #include <signal.h>
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "character.h"
42 #include "buffer.h"
43 #include "window.h"
44 #include "keyboard.h"
45 #include "frame.h"
46 #include "blockinput.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
72 #include <fcntl.h>
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
78 #ifdef DOUG_LEA_MALLOC
80 #include <malloc.h>
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
85 #define MMAP_MAX_AREAS 100000000
87 #else /* not DOUG_LEA_MALLOC */
89 /* The following come from gmalloc.c. */
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
96 #endif /* not DOUG_LEA_MALLOC */
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
106 Also, gconf and gsettings may create several threads.
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
120 static pthread_mutex_t alloc_mutex;
122 #define BLOCK_INPUT_ALLOC \
123 do \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
137 while (0)
139 #else /* ! defined HAVE_PTHREAD */
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
164 /* Global variables. */
165 struct emacs_globals globals;
167 /* Number of bytes of consing done since the last gc. */
169 EMACS_INT consing_since_gc;
171 /* Similar minimum, computed from Vgc_cons_percentage. */
173 EMACS_INT gc_relative_threshold;
175 /* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
178 EMACS_INT memory_full_cons_threshold;
180 /* Nonzero during GC. */
182 int gc_in_progress;
184 /* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
188 int abort_on_gc;
190 /* Number of live and free conses etc. */
192 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194 static EMACS_INT total_free_floats, total_floats;
196 /* Points to memory space allocated as "spare", to be freed if we run
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
200 static char *spare_memory[7];
202 /* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
205 #define SPARE_MEMORY (1 << 14)
207 /* Number of extra blocks malloc should get when it needs more core. */
209 static int malloc_hysteresis;
211 /* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
217 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
218 #define PUREBEG (char *) pure
220 /* Pointer to the pure area, and its size. */
222 static char *purebeg;
223 static ptrdiff_t pure_size;
225 /* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
228 static ptrdiff_t pure_bytes_used_before_overflow;
230 /* Value is non-zero if P points into pure space. */
232 #define PURE_POINTER_P(P) \
233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
235 /* Index in pure at which next pure Lisp object will be allocated.. */
237 static ptrdiff_t pure_bytes_used_lisp;
239 /* Number of bytes allocated for non-Lisp objects in pure storage. */
241 static ptrdiff_t pure_bytes_used_non_lisp;
243 /* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
246 const char *pending_malloc_warning;
248 /* Maximum amount of C stack to save when a GC happens. */
250 #ifndef MAX_SAVE_STACK
251 #define MAX_SAVE_STACK 16000
252 #endif
254 /* Buffer in which we save a copy of the C stack at each GC. */
256 #if MAX_SAVE_STACK > 0
257 static char *stack_copy;
258 static ptrdiff_t stack_copy_size;
259 #endif
261 /* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
264 static int ignore_warnings;
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
269 /* Hook run after GC has finished. */
271 static Lisp_Object Qpost_gc_hook;
273 static void mark_terminals (void);
274 static void gc_sweep (void);
275 static Lisp_Object make_pure_vector (ptrdiff_t);
276 static void mark_glyph_matrix (struct glyph_matrix *);
277 static void mark_face_cache (struct face_cache *);
279 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
280 static void refill_memory_reserve (void);
281 #endif
282 static struct Lisp_String *allocate_string (void);
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 static void sweep_strings (void);
286 static void free_misc (Lisp_Object);
287 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
289 /* When scanning the C stack for live Lisp objects, Emacs keeps track
290 of what memory allocated via lisp_malloc is intended for what
291 purpose. This enumeration specifies the type of memory. */
293 enum mem_type
295 MEM_TYPE_NON_LISP,
296 MEM_TYPE_BUFFER,
297 MEM_TYPE_CONS,
298 MEM_TYPE_STRING,
299 MEM_TYPE_MISC,
300 MEM_TYPE_SYMBOL,
301 MEM_TYPE_FLOAT,
302 /* We used to keep separate mem_types for subtypes of vectors such as
303 process, hash_table, frame, terminal, and window, but we never made
304 use of the distinction, so it only caused source-code complexity
305 and runtime slowdown. Minor but pointless. */
306 MEM_TYPE_VECTORLIKE,
307 /* Special type to denote vector blocks. */
308 MEM_TYPE_VECTOR_BLOCK
311 static void *lisp_malloc (size_t, enum mem_type);
314 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
316 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
317 #include <stdio.h> /* For fprintf. */
318 #endif
320 /* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
323 static Lisp_Object Vdead;
324 #define DEADP(x) EQ (x, Vdead)
326 #ifdef GC_MALLOC_CHECK
328 enum mem_type allocated_mem_type;
330 #endif /* GC_MALLOC_CHECK */
332 /* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
337 A red-black tree is a balanced binary tree with the following
338 properties:
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
356 struct mem_node
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
365 /* Start and end of allocated region. */
366 void *start, *end;
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
371 /* Memory type. */
372 enum mem_type type;
375 /* Base address of stack. Set in main. */
377 Lisp_Object *stack_base;
379 /* Root of the tree describing allocated Lisp memory. */
381 static struct mem_node *mem_root;
383 /* Lowest and highest known address in the heap. */
385 static void *min_heap_address, *max_heap_address;
387 /* Sentinel node of the tree. */
389 static struct mem_node mem_z;
390 #define MEM_NIL &mem_z
392 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
393 static void lisp_free (void *);
394 static void mark_stack (void);
395 static int live_vector_p (struct mem_node *, void *);
396 static int live_buffer_p (struct mem_node *, void *);
397 static int live_string_p (struct mem_node *, void *);
398 static int live_cons_p (struct mem_node *, void *);
399 static int live_symbol_p (struct mem_node *, void *);
400 static int live_float_p (struct mem_node *, void *);
401 static int live_misc_p (struct mem_node *, void *);
402 static void mark_maybe_object (Lisp_Object);
403 static void mark_memory (void *, void *);
404 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
405 static void mem_init (void);
406 static struct mem_node *mem_insert (void *, void *, enum mem_type);
407 static void mem_insert_fixup (struct mem_node *);
408 #endif
409 static void mem_rotate_left (struct mem_node *);
410 static void mem_rotate_right (struct mem_node *);
411 static void mem_delete (struct mem_node *);
412 static void mem_delete_fixup (struct mem_node *);
413 static inline struct mem_node *mem_find (void *);
416 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
417 static void check_gcpros (void);
418 #endif
420 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
422 #ifndef DEADP
423 # define DEADP(x) 0
424 #endif
426 /* Recording what needs to be marked for gc. */
428 struct gcpro *gcprolist;
430 /* Addresses of staticpro'd variables. Initialize it to a nonzero
431 value; otherwise some compilers put it into BSS. */
433 #define NSTATICS 0x650
434 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
436 /* Index of next unused slot in staticvec. */
438 static int staticidx = 0;
440 static void *pure_alloc (size_t, int);
443 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
444 ALIGNMENT must be a power of 2. */
446 #define ALIGN(ptr, ALIGNMENT) \
447 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
448 & ~ ((ALIGNMENT) - 1)))
452 /************************************************************************
453 Malloc
454 ************************************************************************/
456 /* Function malloc calls this if it finds we are near exhausting storage. */
458 void
459 malloc_warning (const char *str)
461 pending_malloc_warning = str;
465 /* Display an already-pending malloc warning. */
467 void
468 display_malloc_warning (void)
470 call3 (intern ("display-warning"),
471 intern ("alloc"),
472 build_string (pending_malloc_warning),
473 intern ("emergency"));
474 pending_malloc_warning = 0;
477 /* Called if we can't allocate relocatable space for a buffer. */
479 void
480 buffer_memory_full (ptrdiff_t nbytes)
482 /* If buffers use the relocating allocator, no need to free
483 spare_memory, because we may have plenty of malloc space left
484 that we could get, and if we don't, the malloc that fails will
485 itself cause spare_memory to be freed. If buffers don't use the
486 relocating allocator, treat this like any other failing
487 malloc. */
489 #ifndef REL_ALLOC
490 memory_full (nbytes);
491 #endif
493 /* This used to call error, but if we've run out of memory, we could
494 get infinite recursion trying to build the string. */
495 xsignal (Qnil, Vmemory_signal_data);
498 /* A common multiple of the positive integers A and B. Ideally this
499 would be the least common multiple, but there's no way to do that
500 as a constant expression in C, so do the best that we can easily do. */
501 #define COMMON_MULTIPLE(a, b) \
502 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
504 #ifndef XMALLOC_OVERRUN_CHECK
505 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
506 #else
508 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
509 around each block.
511 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
512 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
513 block size in little-endian order. The trailer consists of
514 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
516 The header is used to detect whether this block has been allocated
517 through these functions, as some low-level libc functions may
518 bypass the malloc hooks. */
520 #define XMALLOC_OVERRUN_CHECK_SIZE 16
521 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
522 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
524 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
525 hold a size_t value and (2) the header size is a multiple of the
526 alignment that Emacs needs for C types and for USE_LSB_TAG. */
527 #define XMALLOC_BASE_ALIGNMENT \
528 offsetof ( \
529 struct { \
530 union { long double d; intmax_t i; void *p; } u; \
531 char c; \
532 }, \
535 #if USE_LSB_TAG
536 # define XMALLOC_HEADER_ALIGNMENT \
537 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
538 #else
539 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
540 #endif
541 #define XMALLOC_OVERRUN_SIZE_SIZE \
542 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
543 + XMALLOC_HEADER_ALIGNMENT - 1) \
544 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
545 - XMALLOC_OVERRUN_CHECK_SIZE)
547 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
548 { '\x9a', '\x9b', '\xae', '\xaf',
549 '\xbf', '\xbe', '\xce', '\xcf',
550 '\xea', '\xeb', '\xec', '\xed',
551 '\xdf', '\xde', '\x9c', '\x9d' };
553 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
554 { '\xaa', '\xab', '\xac', '\xad',
555 '\xba', '\xbb', '\xbc', '\xbd',
556 '\xca', '\xcb', '\xcc', '\xcd',
557 '\xda', '\xdb', '\xdc', '\xdd' };
559 /* Insert and extract the block size in the header. */
561 static void
562 xmalloc_put_size (unsigned char *ptr, size_t size)
564 int i;
565 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
567 *--ptr = size & ((1 << CHAR_BIT) - 1);
568 size >>= CHAR_BIT;
572 static size_t
573 xmalloc_get_size (unsigned char *ptr)
575 size_t size = 0;
576 int i;
577 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
578 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
580 size <<= CHAR_BIT;
581 size += *ptr++;
583 return size;
587 /* The call depth in overrun_check functions. For example, this might happen:
588 xmalloc()
589 overrun_check_malloc()
590 -> malloc -> (via hook)_-> emacs_blocked_malloc
591 -> overrun_check_malloc
592 call malloc (hooks are NULL, so real malloc is called).
593 malloc returns 10000.
594 add overhead, return 10016.
595 <- (back in overrun_check_malloc)
596 add overhead again, return 10032
597 xmalloc returns 10032.
599 (time passes).
601 xfree(10032)
602 overrun_check_free(10032)
603 decrease overhead
604 free(10016) <- crash, because 10000 is the original pointer. */
606 static ptrdiff_t check_depth;
608 /* Like malloc, but wraps allocated block with header and trailer. */
610 static void *
611 overrun_check_malloc (size_t size)
613 register unsigned char *val;
614 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
615 if (SIZE_MAX - overhead < size)
616 abort ();
618 val = malloc (size + overhead);
619 if (val && check_depth == 1)
621 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
622 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
623 xmalloc_put_size (val, size);
624 memcpy (val + size, xmalloc_overrun_check_trailer,
625 XMALLOC_OVERRUN_CHECK_SIZE);
627 --check_depth;
628 return val;
632 /* Like realloc, but checks old block for overrun, and wraps new block
633 with header and trailer. */
635 static void *
636 overrun_check_realloc (void *block, size_t size)
638 register unsigned char *val = (unsigned char *) block;
639 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
640 if (SIZE_MAX - overhead < size)
641 abort ();
643 if (val
644 && check_depth == 1
645 && memcmp (xmalloc_overrun_check_header,
646 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
647 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
649 size_t osize = xmalloc_get_size (val);
650 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
651 XMALLOC_OVERRUN_CHECK_SIZE))
652 abort ();
653 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
654 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
655 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
658 val = realloc (val, size + overhead);
660 if (val && check_depth == 1)
662 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
663 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
664 xmalloc_put_size (val, size);
665 memcpy (val + size, xmalloc_overrun_check_trailer,
666 XMALLOC_OVERRUN_CHECK_SIZE);
668 --check_depth;
669 return val;
672 /* Like free, but checks block for overrun. */
674 static void
675 overrun_check_free (void *block)
677 unsigned char *val = (unsigned char *) block;
679 ++check_depth;
680 if (val
681 && check_depth == 1
682 && memcmp (xmalloc_overrun_check_header,
683 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
684 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
686 size_t osize = xmalloc_get_size (val);
687 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
688 XMALLOC_OVERRUN_CHECK_SIZE))
689 abort ();
690 #ifdef XMALLOC_CLEAR_FREE_MEMORY
691 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
692 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
693 #else
694 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
695 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
696 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
697 #endif
700 free (val);
701 --check_depth;
704 #undef malloc
705 #undef realloc
706 #undef free
707 #define malloc overrun_check_malloc
708 #define realloc overrun_check_realloc
709 #define free overrun_check_free
710 #endif
712 #ifdef SYNC_INPUT
713 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
714 there's no need to block input around malloc. */
715 #define MALLOC_BLOCK_INPUT ((void)0)
716 #define MALLOC_UNBLOCK_INPUT ((void)0)
717 #else
718 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
719 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
720 #endif
722 /* Like malloc but check for no memory and block interrupt input.. */
724 void *
725 xmalloc (size_t size)
727 void *val;
729 MALLOC_BLOCK_INPUT;
730 val = malloc (size);
731 MALLOC_UNBLOCK_INPUT;
733 if (!val && size)
734 memory_full (size);
735 return val;
738 /* Like the above, but zeroes out the memory just allocated. */
740 void *
741 xzalloc (size_t size)
743 void *val;
745 MALLOC_BLOCK_INPUT;
746 val = malloc (size);
747 MALLOC_UNBLOCK_INPUT;
749 if (!val && size)
750 memory_full (size);
751 memset (val, 0, size);
752 return val;
755 /* Like realloc but check for no memory and block interrupt input.. */
757 void *
758 xrealloc (void *block, size_t size)
760 void *val;
762 MALLOC_BLOCK_INPUT;
763 /* We must call malloc explicitly when BLOCK is 0, since some
764 reallocs don't do this. */
765 if (! block)
766 val = malloc (size);
767 else
768 val = realloc (block, size);
769 MALLOC_UNBLOCK_INPUT;
771 if (!val && size)
772 memory_full (size);
773 return val;
777 /* Like free but block interrupt input. */
779 void
780 xfree (void *block)
782 if (!block)
783 return;
784 MALLOC_BLOCK_INPUT;
785 free (block);
786 MALLOC_UNBLOCK_INPUT;
787 /* We don't call refill_memory_reserve here
788 because that duplicates doing so in emacs_blocked_free
789 and the criterion should go there. */
793 /* Other parts of Emacs pass large int values to allocator functions
794 expecting ptrdiff_t. This is portable in practice, but check it to
795 be safe. */
796 verify (INT_MAX <= PTRDIFF_MAX);
799 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
800 Signal an error on memory exhaustion, and block interrupt input. */
802 void *
803 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
805 eassert (0 <= nitems && 0 < item_size);
806 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
807 memory_full (SIZE_MAX);
808 return xmalloc (nitems * item_size);
812 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
813 Signal an error on memory exhaustion, and block interrupt input. */
815 void *
816 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
818 eassert (0 <= nitems && 0 < item_size);
819 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
820 memory_full (SIZE_MAX);
821 return xrealloc (pa, nitems * item_size);
825 /* Grow PA, which points to an array of *NITEMS items, and return the
826 location of the reallocated array, updating *NITEMS to reflect its
827 new size. The new array will contain at least NITEMS_INCR_MIN more
828 items, but will not contain more than NITEMS_MAX items total.
829 ITEM_SIZE is the size of each item, in bytes.
831 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
832 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
833 infinity.
835 If PA is null, then allocate a new array instead of reallocating
836 the old one. Thus, to grow an array A without saving its old
837 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
838 &NITEMS, ...).
840 Block interrupt input as needed. If memory exhaustion occurs, set
841 *NITEMS to zero if PA is null, and signal an error (i.e., do not
842 return). */
844 void *
845 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
846 ptrdiff_t nitems_max, ptrdiff_t item_size)
848 /* The approximate size to use for initial small allocation
849 requests. This is the largest "small" request for the GNU C
850 library malloc. */
851 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
853 /* If the array is tiny, grow it to about (but no greater than)
854 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
855 ptrdiff_t n = *nitems;
856 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
857 ptrdiff_t half_again = n >> 1;
858 ptrdiff_t incr_estimate = max (tiny_max, half_again);
860 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
861 NITEMS_MAX, and what the C language can represent safely. */
862 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
863 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
864 ? nitems_max : C_language_max);
865 ptrdiff_t nitems_incr_max = n_max - n;
866 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
868 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
869 if (! pa)
870 *nitems = 0;
871 if (nitems_incr_max < incr)
872 memory_full (SIZE_MAX);
873 n += incr;
874 pa = xrealloc (pa, n * item_size);
875 *nitems = n;
876 return pa;
880 /* Like strdup, but uses xmalloc. */
882 char *
883 xstrdup (const char *s)
885 size_t len = strlen (s) + 1;
886 char *p = xmalloc (len);
887 memcpy (p, s, len);
888 return p;
892 /* Unwind for SAFE_ALLOCA */
894 Lisp_Object
895 safe_alloca_unwind (Lisp_Object arg)
897 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
899 p->dogc = 0;
900 xfree (p->pointer);
901 p->pointer = 0;
902 free_misc (arg);
903 return Qnil;
907 /* Like malloc but used for allocating Lisp data. NBYTES is the
908 number of bytes to allocate, TYPE describes the intended use of the
909 allocated memory block (for strings, for conses, ...). */
911 #if ! USE_LSB_TAG
912 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
913 #endif
915 static void *
916 lisp_malloc (size_t nbytes, enum mem_type type)
918 register void *val;
920 MALLOC_BLOCK_INPUT;
922 #ifdef GC_MALLOC_CHECK
923 allocated_mem_type = type;
924 #endif
926 val = malloc (nbytes);
928 #if ! USE_LSB_TAG
929 /* If the memory just allocated cannot be addressed thru a Lisp
930 object's pointer, and it needs to be,
931 that's equivalent to running out of memory. */
932 if (val && type != MEM_TYPE_NON_LISP)
934 Lisp_Object tem;
935 XSETCONS (tem, (char *) val + nbytes - 1);
936 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
938 lisp_malloc_loser = val;
939 free (val);
940 val = 0;
943 #endif
945 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
946 if (val && type != MEM_TYPE_NON_LISP)
947 mem_insert (val, (char *) val + nbytes, type);
948 #endif
950 MALLOC_UNBLOCK_INPUT;
951 if (!val && nbytes)
952 memory_full (nbytes);
953 return val;
956 /* Free BLOCK. This must be called to free memory allocated with a
957 call to lisp_malloc. */
959 static void
960 lisp_free (void *block)
962 MALLOC_BLOCK_INPUT;
963 free (block);
964 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
965 mem_delete (mem_find (block));
966 #endif
967 MALLOC_UNBLOCK_INPUT;
970 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
972 /* The entry point is lisp_align_malloc which returns blocks of at most
973 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
975 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
976 #define USE_POSIX_MEMALIGN 1
977 #endif
979 /* BLOCK_ALIGN has to be a power of 2. */
980 #define BLOCK_ALIGN (1 << 10)
982 /* Padding to leave at the end of a malloc'd block. This is to give
983 malloc a chance to minimize the amount of memory wasted to alignment.
984 It should be tuned to the particular malloc library used.
985 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
986 posix_memalign on the other hand would ideally prefer a value of 4
987 because otherwise, there's 1020 bytes wasted between each ablocks.
988 In Emacs, testing shows that those 1020 can most of the time be
989 efficiently used by malloc to place other objects, so a value of 0 can
990 still preferable unless you have a lot of aligned blocks and virtually
991 nothing else. */
992 #define BLOCK_PADDING 0
993 #define BLOCK_BYTES \
994 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
996 /* Internal data structures and constants. */
998 #define ABLOCKS_SIZE 16
1000 /* An aligned block of memory. */
1001 struct ablock
1003 union
1005 char payload[BLOCK_BYTES];
1006 struct ablock *next_free;
1007 } x;
1008 /* `abase' is the aligned base of the ablocks. */
1009 /* It is overloaded to hold the virtual `busy' field that counts
1010 the number of used ablock in the parent ablocks.
1011 The first ablock has the `busy' field, the others have the `abase'
1012 field. To tell the difference, we assume that pointers will have
1013 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1014 is used to tell whether the real base of the parent ablocks is `abase'
1015 (if not, the word before the first ablock holds a pointer to the
1016 real base). */
1017 struct ablocks *abase;
1018 /* The padding of all but the last ablock is unused. The padding of
1019 the last ablock in an ablocks is not allocated. */
1020 #if BLOCK_PADDING
1021 char padding[BLOCK_PADDING];
1022 #endif
1025 /* A bunch of consecutive aligned blocks. */
1026 struct ablocks
1028 struct ablock blocks[ABLOCKS_SIZE];
1031 /* Size of the block requested from malloc or posix_memalign. */
1032 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1034 #define ABLOCK_ABASE(block) \
1035 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1036 ? (struct ablocks *)(block) \
1037 : (block)->abase)
1039 /* Virtual `busy' field. */
1040 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1042 /* Pointer to the (not necessarily aligned) malloc block. */
1043 #ifdef USE_POSIX_MEMALIGN
1044 #define ABLOCKS_BASE(abase) (abase)
1045 #else
1046 #define ABLOCKS_BASE(abase) \
1047 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1048 #endif
1050 /* The list of free ablock. */
1051 static struct ablock *free_ablock;
1053 /* Allocate an aligned block of nbytes.
1054 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1055 smaller or equal to BLOCK_BYTES. */
1056 static void *
1057 lisp_align_malloc (size_t nbytes, enum mem_type type)
1059 void *base, *val;
1060 struct ablocks *abase;
1062 eassert (nbytes <= BLOCK_BYTES);
1064 MALLOC_BLOCK_INPUT;
1066 #ifdef GC_MALLOC_CHECK
1067 allocated_mem_type = type;
1068 #endif
1070 if (!free_ablock)
1072 int i;
1073 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1075 #ifdef DOUG_LEA_MALLOC
1076 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1077 because mapped region contents are not preserved in
1078 a dumped Emacs. */
1079 mallopt (M_MMAP_MAX, 0);
1080 #endif
1082 #ifdef USE_POSIX_MEMALIGN
1084 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1085 if (err)
1086 base = NULL;
1087 abase = base;
1089 #else
1090 base = malloc (ABLOCKS_BYTES);
1091 abase = ALIGN (base, BLOCK_ALIGN);
1092 #endif
1094 if (base == 0)
1096 MALLOC_UNBLOCK_INPUT;
1097 memory_full (ABLOCKS_BYTES);
1100 aligned = (base == abase);
1101 if (!aligned)
1102 ((void**)abase)[-1] = base;
1104 #ifdef DOUG_LEA_MALLOC
1105 /* Back to a reasonable maximum of mmap'ed areas. */
1106 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1107 #endif
1109 #if ! USE_LSB_TAG
1110 /* If the memory just allocated cannot be addressed thru a Lisp
1111 object's pointer, and it needs to be, that's equivalent to
1112 running out of memory. */
1113 if (type != MEM_TYPE_NON_LISP)
1115 Lisp_Object tem;
1116 char *end = (char *) base + ABLOCKS_BYTES - 1;
1117 XSETCONS (tem, end);
1118 if ((char *) XCONS (tem) != end)
1120 lisp_malloc_loser = base;
1121 free (base);
1122 MALLOC_UNBLOCK_INPUT;
1123 memory_full (SIZE_MAX);
1126 #endif
1128 /* Initialize the blocks and put them on the free list.
1129 If `base' was not properly aligned, we can't use the last block. */
1130 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1132 abase->blocks[i].abase = abase;
1133 abase->blocks[i].x.next_free = free_ablock;
1134 free_ablock = &abase->blocks[i];
1136 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1138 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1139 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1140 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1141 eassert (ABLOCKS_BASE (abase) == base);
1142 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1145 abase = ABLOCK_ABASE (free_ablock);
1146 ABLOCKS_BUSY (abase) =
1147 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1148 val = free_ablock;
1149 free_ablock = free_ablock->x.next_free;
1151 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1152 if (type != MEM_TYPE_NON_LISP)
1153 mem_insert (val, (char *) val + nbytes, type);
1154 #endif
1156 MALLOC_UNBLOCK_INPUT;
1158 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1159 return val;
1162 static void
1163 lisp_align_free (void *block)
1165 struct ablock *ablock = block;
1166 struct ablocks *abase = ABLOCK_ABASE (ablock);
1168 MALLOC_BLOCK_INPUT;
1169 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1170 mem_delete (mem_find (block));
1171 #endif
1172 /* Put on free list. */
1173 ablock->x.next_free = free_ablock;
1174 free_ablock = ablock;
1175 /* Update busy count. */
1176 ABLOCKS_BUSY (abase)
1177 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1179 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1180 { /* All the blocks are free. */
1181 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1182 struct ablock **tem = &free_ablock;
1183 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1185 while (*tem)
1187 if (*tem >= (struct ablock *) abase && *tem < atop)
1189 i++;
1190 *tem = (*tem)->x.next_free;
1192 else
1193 tem = &(*tem)->x.next_free;
1195 eassert ((aligned & 1) == aligned);
1196 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1197 #ifdef USE_POSIX_MEMALIGN
1198 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1199 #endif
1200 free (ABLOCKS_BASE (abase));
1202 MALLOC_UNBLOCK_INPUT;
1206 #ifndef SYSTEM_MALLOC
1208 /* Arranging to disable input signals while we're in malloc.
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1213 pair; unfortunately, we have no idea what C library functions
1214 might call malloc, so we can't really protect them unless you're
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
1218 #ifndef SYNC_INPUT
1219 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
1222 #ifndef DOUG_LEA_MALLOC
1223 extern void * (*__malloc_hook) (size_t, const void *);
1224 extern void * (*__realloc_hook) (void *, size_t, const void *);
1225 extern void (*__free_hook) (void *, const void *);
1226 /* Else declared in malloc.h, perhaps with an extra arg. */
1227 #endif /* DOUG_LEA_MALLOC */
1228 static void * (*old_malloc_hook) (size_t, const void *);
1229 static void * (*old_realloc_hook) (void *, size_t, const void*);
1230 static void (*old_free_hook) (void*, const void*);
1232 #ifdef DOUG_LEA_MALLOC
1233 # define BYTES_USED (mallinfo ().uordblks)
1234 #else
1235 # define BYTES_USED _bytes_used
1236 #endif
1238 #ifdef GC_MALLOC_CHECK
1239 static int dont_register_blocks;
1240 #endif
1242 static size_t bytes_used_when_reconsidered;
1244 /* Value of _bytes_used, when spare_memory was freed. */
1246 static size_t bytes_used_when_full;
1248 /* This function is used as the hook for free to call. */
1250 static void
1251 emacs_blocked_free (void *ptr, const void *ptr2)
1253 BLOCK_INPUT_ALLOC;
1255 #ifdef GC_MALLOC_CHECK
1256 if (ptr)
1258 struct mem_node *m;
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1267 else
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1273 #endif /* GC_MALLOC_CHECK */
1275 __free_hook = old_free_hook;
1276 free (ptr);
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
1281 if (! NILP (Vmemory_full)
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
1287 > ((bytes_used_when_reconsidered = BYTES_USED)
1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1289 refill_memory_reserve ();
1291 __free_hook = emacs_blocked_free;
1292 UNBLOCK_INPUT_ALLOC;
1296 /* This function is the malloc hook that Emacs uses. */
1298 static void *
1299 emacs_blocked_malloc (size_t size, const void *ptr)
1301 void *value;
1303 BLOCK_INPUT_ALLOC;
1304 __malloc_hook = old_malloc_hook;
1305 #ifdef DOUG_LEA_MALLOC
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1308 #else
1309 __malloc_extra_blocks = malloc_hysteresis;
1310 #endif
1312 value = malloc (size);
1314 #ifdef GC_MALLOC_CHECK
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1327 if (!dont_register_blocks)
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1333 #endif /* GC_MALLOC_CHECK */
1335 __malloc_hook = emacs_blocked_malloc;
1336 UNBLOCK_INPUT_ALLOC;
1338 /* fprintf (stderr, "%p malloc\n", value); */
1339 return value;
1343 /* This function is the realloc hook that Emacs uses. */
1345 static void *
1346 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1348 void *value;
1350 BLOCK_INPUT_ALLOC;
1351 __realloc_hook = old_realloc_hook;
1353 #ifdef GC_MALLOC_CHECK
1354 if (ptr)
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1365 mem_delete (m);
1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372 #endif /* GC_MALLOC_CHECK */
1374 value = realloc (ptr, size);
1376 #ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392 #endif /* GC_MALLOC_CHECK */
1394 __realloc_hook = emacs_blocked_realloc;
1395 UNBLOCK_INPUT_ALLOC;
1397 return value;
1401 #ifdef HAVE_PTHREAD
1402 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1407 void
1408 reset_malloc_hooks (void)
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
1414 #endif /* HAVE_PTHREAD */
1417 /* Called from main to set up malloc to use our hooks. */
1419 void
1420 uninterrupt_malloc (void)
1422 #ifdef HAVE_PTHREAD
1423 #ifdef DOUG_LEA_MALLOC
1424 pthread_mutexattr_t attr;
1426 /* GLIBC has a faster way to do this, but let's keep it portable.
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
1431 #else /* !DOUG_LEA_MALLOC */
1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435 #endif /* !DOUG_LEA_MALLOC */
1436 #endif /* HAVE_PTHREAD */
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
1440 __free_hook = emacs_blocked_free;
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
1444 __malloc_hook = emacs_blocked_malloc;
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
1448 __realloc_hook = emacs_blocked_realloc;
1451 #endif /* not SYNC_INPUT */
1452 #endif /* not SYSTEM_MALLOC */
1456 /***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1460 /* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1463 #define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1466 /* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1469 struct interval_block
1471 /* Place `intervals' first, to preserve alignment. */
1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
1473 struct interval_block *next;
1476 /* Current interval block. Its `next' pointer points to older
1477 blocks. */
1479 static struct interval_block *interval_block;
1481 /* Index in interval_block above of the next unused interval
1482 structure. */
1484 static int interval_block_index;
1486 /* Number of free and live intervals. */
1488 static EMACS_INT total_free_intervals, total_intervals;
1490 /* List of free intervals. */
1492 static INTERVAL interval_free_list;
1495 /* Initialize interval allocation. */
1497 static void
1498 init_intervals (void)
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
1502 interval_free_list = 0;
1506 /* Return a new interval. */
1508 INTERVAL
1509 make_interval (void)
1511 INTERVAL val;
1513 /* eassert (!handling_signal); */
1515 MALLOC_BLOCK_INPUT;
1517 if (interval_free_list)
1519 val = interval_free_list;
1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
1522 else
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1526 struct interval_block *newi
1527 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1529 newi->next = interval_block;
1530 interval_block = newi;
1531 interval_block_index = 0;
1533 val = &interval_block->intervals[interval_block_index++];
1536 MALLOC_UNBLOCK_INPUT;
1538 consing_since_gc += sizeof (struct interval);
1539 intervals_consed++;
1540 RESET_INTERVAL (val);
1541 val->gcmarkbit = 0;
1542 return val;
1546 /* Mark Lisp objects in interval I. */
1548 static void
1549 mark_interval (register INTERVAL i, Lisp_Object dummy)
1551 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1552 i->gcmarkbit = 1;
1553 mark_object (i->plist);
1557 /* Mark the interval tree rooted in TREE. Don't call this directly;
1558 use the macro MARK_INTERVAL_TREE instead. */
1560 static void
1561 mark_interval_tree (register INTERVAL tree)
1563 /* No need to test if this tree has been marked already; this
1564 function is always called through the MARK_INTERVAL_TREE macro,
1565 which takes care of that. */
1567 traverse_intervals_noorder (tree, mark_interval, Qnil);
1571 /* Mark the interval tree rooted in I. */
1573 #define MARK_INTERVAL_TREE(i) \
1574 do { \
1575 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1576 mark_interval_tree (i); \
1577 } while (0)
1580 #define UNMARK_BALANCE_INTERVALS(i) \
1581 do { \
1582 if (! NULL_INTERVAL_P (i)) \
1583 (i) = balance_intervals (i); \
1584 } while (0)
1586 /***********************************************************************
1587 String Allocation
1588 ***********************************************************************/
1590 /* Lisp_Strings are allocated in string_block structures. When a new
1591 string_block is allocated, all the Lisp_Strings it contains are
1592 added to a free-list string_free_list. When a new Lisp_String is
1593 needed, it is taken from that list. During the sweep phase of GC,
1594 string_blocks that are entirely free are freed, except two which
1595 we keep.
1597 String data is allocated from sblock structures. Strings larger
1598 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1599 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1601 Sblocks consist internally of sdata structures, one for each
1602 Lisp_String. The sdata structure points to the Lisp_String it
1603 belongs to. The Lisp_String points back to the `u.data' member of
1604 its sdata structure.
1606 When a Lisp_String is freed during GC, it is put back on
1607 string_free_list, and its `data' member and its sdata's `string'
1608 pointer is set to null. The size of the string is recorded in the
1609 `u.nbytes' member of the sdata. So, sdata structures that are no
1610 longer used, can be easily recognized, and it's easy to compact the
1611 sblocks of small strings which we do in compact_small_strings. */
1613 /* Size in bytes of an sblock structure used for small strings. This
1614 is 8192 minus malloc overhead. */
1616 #define SBLOCK_SIZE 8188
1618 /* Strings larger than this are considered large strings. String data
1619 for large strings is allocated from individual sblocks. */
1621 #define LARGE_STRING_BYTES 1024
1623 /* Structure describing string memory sub-allocated from an sblock.
1624 This is where the contents of Lisp strings are stored. */
1626 struct sdata
1628 /* Back-pointer to the string this sdata belongs to. If null, this
1629 structure is free, and the NBYTES member of the union below
1630 contains the string's byte size (the same value that STRING_BYTES
1631 would return if STRING were non-null). If non-null, STRING_BYTES
1632 (STRING) is the size of the data, and DATA contains the string's
1633 contents. */
1634 struct Lisp_String *string;
1636 #ifdef GC_CHECK_STRING_BYTES
1638 ptrdiff_t nbytes;
1639 unsigned char data[1];
1641 #define SDATA_NBYTES(S) (S)->nbytes
1642 #define SDATA_DATA(S) (S)->data
1643 #define SDATA_SELECTOR(member) member
1645 #else /* not GC_CHECK_STRING_BYTES */
1647 union
1649 /* When STRING is non-null. */
1650 unsigned char data[1];
1652 /* When STRING is null. */
1653 ptrdiff_t nbytes;
1654 } u;
1656 #define SDATA_NBYTES(S) (S)->u.nbytes
1657 #define SDATA_DATA(S) (S)->u.data
1658 #define SDATA_SELECTOR(member) u.member
1660 #endif /* not GC_CHECK_STRING_BYTES */
1662 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1666 /* Structure describing a block of memory which is sub-allocated to
1667 obtain string data memory for strings. Blocks for small strings
1668 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1669 as large as needed. */
1671 struct sblock
1673 /* Next in list. */
1674 struct sblock *next;
1676 /* Pointer to the next free sdata block. This points past the end
1677 of the sblock if there isn't any space left in this block. */
1678 struct sdata *next_free;
1680 /* Start of data. */
1681 struct sdata first_data;
1684 /* Number of Lisp strings in a string_block structure. The 1020 is
1685 1024 minus malloc overhead. */
1687 #define STRING_BLOCK_SIZE \
1688 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1690 /* Structure describing a block from which Lisp_String structures
1691 are allocated. */
1693 struct string_block
1695 /* Place `strings' first, to preserve alignment. */
1696 struct Lisp_String strings[STRING_BLOCK_SIZE];
1697 struct string_block *next;
1700 /* Head and tail of the list of sblock structures holding Lisp string
1701 data. We always allocate from current_sblock. The NEXT pointers
1702 in the sblock structures go from oldest_sblock to current_sblock. */
1704 static struct sblock *oldest_sblock, *current_sblock;
1706 /* List of sblocks for large strings. */
1708 static struct sblock *large_sblocks;
1710 /* List of string_block structures. */
1712 static struct string_block *string_blocks;
1714 /* Free-list of Lisp_Strings. */
1716 static struct Lisp_String *string_free_list;
1718 /* Number of live and free Lisp_Strings. */
1720 static EMACS_INT total_strings, total_free_strings;
1722 /* Number of bytes used by live strings. */
1724 static EMACS_INT total_string_size;
1726 /* Given a pointer to a Lisp_String S which is on the free-list
1727 string_free_list, return a pointer to its successor in the
1728 free-list. */
1730 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1732 /* Return a pointer to the sdata structure belonging to Lisp string S.
1733 S must be live, i.e. S->data must not be null. S->data is actually
1734 a pointer to the `u.data' member of its sdata structure; the
1735 structure starts at a constant offset in front of that. */
1737 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1740 #ifdef GC_CHECK_STRING_OVERRUN
1742 /* We check for overrun in string data blocks by appending a small
1743 "cookie" after each allocated string data block, and check for the
1744 presence of this cookie during GC. */
1746 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1747 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1748 { '\xde', '\xad', '\xbe', '\xef' };
1750 #else
1751 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1752 #endif
1754 /* Value is the size of an sdata structure large enough to hold NBYTES
1755 bytes of string data. The value returned includes a terminating
1756 NUL byte, the size of the sdata structure, and padding. */
1758 #ifdef GC_CHECK_STRING_BYTES
1760 #define SDATA_SIZE(NBYTES) \
1761 ((SDATA_DATA_OFFSET \
1762 + (NBYTES) + 1 \
1763 + sizeof (ptrdiff_t) - 1) \
1764 & ~(sizeof (ptrdiff_t) - 1))
1766 #else /* not GC_CHECK_STRING_BYTES */
1768 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1769 less than the size of that member. The 'max' is not needed when
1770 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1771 alignment code reserves enough space. */
1773 #define SDATA_SIZE(NBYTES) \
1774 ((SDATA_DATA_OFFSET \
1775 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1776 ? NBYTES \
1777 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1778 + 1 \
1779 + sizeof (ptrdiff_t) - 1) \
1780 & ~(sizeof (ptrdiff_t) - 1))
1782 #endif /* not GC_CHECK_STRING_BYTES */
1784 /* Extra bytes to allocate for each string. */
1786 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1788 /* Exact bound on the number of bytes in a string, not counting the
1789 terminating null. A string cannot contain more bytes than
1790 STRING_BYTES_BOUND, nor can it be so long that the size_t
1791 arithmetic in allocate_string_data would overflow while it is
1792 calculating a value to be passed to malloc. */
1793 #define STRING_BYTES_MAX \
1794 min (STRING_BYTES_BOUND, \
1795 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1796 - GC_STRING_EXTRA \
1797 - offsetof (struct sblock, first_data) \
1798 - SDATA_DATA_OFFSET) \
1799 & ~(sizeof (EMACS_INT) - 1)))
1801 /* Initialize string allocation. Called from init_alloc_once. */
1803 static void
1804 init_strings (void)
1806 total_strings = total_free_strings = total_string_size = 0;
1807 oldest_sblock = current_sblock = large_sblocks = NULL;
1808 string_blocks = NULL;
1809 string_free_list = NULL;
1810 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1811 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1815 #ifdef GC_CHECK_STRING_BYTES
1817 static int check_string_bytes_count;
1819 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1822 /* Like GC_STRING_BYTES, but with debugging check. */
1824 ptrdiff_t
1825 string_bytes (struct Lisp_String *s)
1827 ptrdiff_t nbytes =
1828 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1830 if (!PURE_POINTER_P (s)
1831 && s->data
1832 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1833 abort ();
1834 return nbytes;
1837 /* Check validity of Lisp strings' string_bytes member in B. */
1839 static void
1840 check_sblock (struct sblock *b)
1842 struct sdata *from, *end, *from_end;
1844 end = b->next_free;
1846 for (from = &b->first_data; from < end; from = from_end)
1848 /* Compute the next FROM here because copying below may
1849 overwrite data we need to compute it. */
1850 ptrdiff_t nbytes;
1852 /* Check that the string size recorded in the string is the
1853 same as the one recorded in the sdata structure. */
1854 if (from->string)
1855 CHECK_STRING_BYTES (from->string);
1857 if (from->string)
1858 nbytes = GC_STRING_BYTES (from->string);
1859 else
1860 nbytes = SDATA_NBYTES (from);
1862 nbytes = SDATA_SIZE (nbytes);
1863 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1868 /* Check validity of Lisp strings' string_bytes member. ALL_P
1869 non-zero means check all strings, otherwise check only most
1870 recently allocated strings. Used for hunting a bug. */
1872 static void
1873 check_string_bytes (int all_p)
1875 if (all_p)
1877 struct sblock *b;
1879 for (b = large_sblocks; b; b = b->next)
1881 struct Lisp_String *s = b->first_data.string;
1882 if (s)
1883 CHECK_STRING_BYTES (s);
1886 for (b = oldest_sblock; b; b = b->next)
1887 check_sblock (b);
1889 else if (current_sblock)
1890 check_sblock (current_sblock);
1893 #endif /* GC_CHECK_STRING_BYTES */
1895 #ifdef GC_CHECK_STRING_FREE_LIST
1897 /* Walk through the string free list looking for bogus next pointers.
1898 This may catch buffer overrun from a previous string. */
1900 static void
1901 check_string_free_list (void)
1903 struct Lisp_String *s;
1905 /* Pop a Lisp_String off the free-list. */
1906 s = string_free_list;
1907 while (s != NULL)
1909 if ((uintptr_t) s < 1024)
1910 abort ();
1911 s = NEXT_FREE_LISP_STRING (s);
1914 #else
1915 #define check_string_free_list()
1916 #endif
1918 /* Return a new Lisp_String. */
1920 static struct Lisp_String *
1921 allocate_string (void)
1923 struct Lisp_String *s;
1925 /* eassert (!handling_signal); */
1927 MALLOC_BLOCK_INPUT;
1929 /* If the free-list is empty, allocate a new string_block, and
1930 add all the Lisp_Strings in it to the free-list. */
1931 if (string_free_list == NULL)
1933 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1934 int i;
1936 b->next = string_blocks;
1937 string_blocks = b;
1939 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1941 s = b->strings + i;
1942 /* Every string on a free list should have NULL data pointer. */
1943 s->data = NULL;
1944 NEXT_FREE_LISP_STRING (s) = string_free_list;
1945 string_free_list = s;
1948 total_free_strings += STRING_BLOCK_SIZE;
1951 check_string_free_list ();
1953 /* Pop a Lisp_String off the free-list. */
1954 s = string_free_list;
1955 string_free_list = NEXT_FREE_LISP_STRING (s);
1957 MALLOC_UNBLOCK_INPUT;
1959 --total_free_strings;
1960 ++total_strings;
1961 ++strings_consed;
1962 consing_since_gc += sizeof *s;
1964 #ifdef GC_CHECK_STRING_BYTES
1965 if (!noninteractive)
1967 if (++check_string_bytes_count == 200)
1969 check_string_bytes_count = 0;
1970 check_string_bytes (1);
1972 else
1973 check_string_bytes (0);
1975 #endif /* GC_CHECK_STRING_BYTES */
1977 return s;
1981 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1982 plus a NUL byte at the end. Allocate an sdata structure for S, and
1983 set S->data to its `u.data' member. Store a NUL byte at the end of
1984 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1985 S->data if it was initially non-null. */
1987 void
1988 allocate_string_data (struct Lisp_String *s,
1989 EMACS_INT nchars, EMACS_INT nbytes)
1991 struct sdata *data;
1992 struct sblock *b;
1993 ptrdiff_t needed;
1995 if (STRING_BYTES_MAX < nbytes)
1996 string_overflow ();
1998 /* Determine the number of bytes needed to store NBYTES bytes
1999 of string data. */
2000 needed = SDATA_SIZE (nbytes);
2002 MALLOC_BLOCK_INPUT;
2004 if (nbytes > LARGE_STRING_BYTES)
2006 size_t size = offsetof (struct sblock, first_data) + needed;
2008 #ifdef DOUG_LEA_MALLOC
2009 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2010 because mapped region contents are not preserved in
2011 a dumped Emacs.
2013 In case you think of allowing it in a dumped Emacs at the
2014 cost of not being able to re-dump, there's another reason:
2015 mmap'ed data typically have an address towards the top of the
2016 address space, which won't fit into an EMACS_INT (at least on
2017 32-bit systems with the current tagging scheme). --fx */
2018 mallopt (M_MMAP_MAX, 0);
2019 #endif
2021 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2023 #ifdef DOUG_LEA_MALLOC
2024 /* Back to a reasonable maximum of mmap'ed areas. */
2025 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2026 #endif
2028 b->next_free = &b->first_data;
2029 b->first_data.string = NULL;
2030 b->next = large_sblocks;
2031 large_sblocks = b;
2033 else if (current_sblock == NULL
2034 || (((char *) current_sblock + SBLOCK_SIZE
2035 - (char *) current_sblock->next_free)
2036 < (needed + GC_STRING_EXTRA)))
2038 /* Not enough room in the current sblock. */
2039 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2040 b->next_free = &b->first_data;
2041 b->first_data.string = NULL;
2042 b->next = NULL;
2044 if (current_sblock)
2045 current_sblock->next = b;
2046 else
2047 oldest_sblock = b;
2048 current_sblock = b;
2050 else
2051 b = current_sblock;
2053 data = b->next_free;
2054 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2056 MALLOC_UNBLOCK_INPUT;
2058 data->string = s;
2059 s->data = SDATA_DATA (data);
2060 #ifdef GC_CHECK_STRING_BYTES
2061 SDATA_NBYTES (data) = nbytes;
2062 #endif
2063 s->size = nchars;
2064 s->size_byte = nbytes;
2065 s->data[nbytes] = '\0';
2066 #ifdef GC_CHECK_STRING_OVERRUN
2067 memcpy ((char *) data + needed, string_overrun_cookie,
2068 GC_STRING_OVERRUN_COOKIE_SIZE);
2069 #endif
2070 consing_since_gc += needed;
2074 /* Sweep and compact strings. */
2076 static void
2077 sweep_strings (void)
2079 struct string_block *b, *next;
2080 struct string_block *live_blocks = NULL;
2082 string_free_list = NULL;
2083 total_strings = total_free_strings = 0;
2084 total_string_size = 0;
2086 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2087 for (b = string_blocks; b; b = next)
2089 int i, nfree = 0;
2090 struct Lisp_String *free_list_before = string_free_list;
2092 next = b->next;
2094 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2096 struct Lisp_String *s = b->strings + i;
2098 if (s->data)
2100 /* String was not on free-list before. */
2101 if (STRING_MARKED_P (s))
2103 /* String is live; unmark it and its intervals. */
2104 UNMARK_STRING (s);
2106 if (!NULL_INTERVAL_P (s->intervals))
2107 UNMARK_BALANCE_INTERVALS (s->intervals);
2109 ++total_strings;
2110 total_string_size += STRING_BYTES (s);
2112 else
2114 /* String is dead. Put it on the free-list. */
2115 struct sdata *data = SDATA_OF_STRING (s);
2117 /* Save the size of S in its sdata so that we know
2118 how large that is. Reset the sdata's string
2119 back-pointer so that we know it's free. */
2120 #ifdef GC_CHECK_STRING_BYTES
2121 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2122 abort ();
2123 #else
2124 data->u.nbytes = GC_STRING_BYTES (s);
2125 #endif
2126 data->string = NULL;
2128 /* Reset the strings's `data' member so that we
2129 know it's free. */
2130 s->data = NULL;
2132 /* Put the string on the free-list. */
2133 NEXT_FREE_LISP_STRING (s) = string_free_list;
2134 string_free_list = s;
2135 ++nfree;
2138 else
2140 /* S was on the free-list before. Put it there again. */
2141 NEXT_FREE_LISP_STRING (s) = string_free_list;
2142 string_free_list = s;
2143 ++nfree;
2147 /* Free blocks that contain free Lisp_Strings only, except
2148 the first two of them. */
2149 if (nfree == STRING_BLOCK_SIZE
2150 && total_free_strings > STRING_BLOCK_SIZE)
2152 lisp_free (b);
2153 string_free_list = free_list_before;
2155 else
2157 total_free_strings += nfree;
2158 b->next = live_blocks;
2159 live_blocks = b;
2163 check_string_free_list ();
2165 string_blocks = live_blocks;
2166 free_large_strings ();
2167 compact_small_strings ();
2169 check_string_free_list ();
2173 /* Free dead large strings. */
2175 static void
2176 free_large_strings (void)
2178 struct sblock *b, *next;
2179 struct sblock *live_blocks = NULL;
2181 for (b = large_sblocks; b; b = next)
2183 next = b->next;
2185 if (b->first_data.string == NULL)
2186 lisp_free (b);
2187 else
2189 b->next = live_blocks;
2190 live_blocks = b;
2194 large_sblocks = live_blocks;
2198 /* Compact data of small strings. Free sblocks that don't contain
2199 data of live strings after compaction. */
2201 static void
2202 compact_small_strings (void)
2204 struct sblock *b, *tb, *next;
2205 struct sdata *from, *to, *end, *tb_end;
2206 struct sdata *to_end, *from_end;
2208 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2209 to, and TB_END is the end of TB. */
2210 tb = oldest_sblock;
2211 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2212 to = &tb->first_data;
2214 /* Step through the blocks from the oldest to the youngest. We
2215 expect that old blocks will stabilize over time, so that less
2216 copying will happen this way. */
2217 for (b = oldest_sblock; b; b = b->next)
2219 end = b->next_free;
2220 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2222 for (from = &b->first_data; from < end; from = from_end)
2224 /* Compute the next FROM here because copying below may
2225 overwrite data we need to compute it. */
2226 ptrdiff_t nbytes;
2228 #ifdef GC_CHECK_STRING_BYTES
2229 /* Check that the string size recorded in the string is the
2230 same as the one recorded in the sdata structure. */
2231 if (from->string
2232 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2233 abort ();
2234 #endif /* GC_CHECK_STRING_BYTES */
2236 if (from->string)
2237 nbytes = GC_STRING_BYTES (from->string);
2238 else
2239 nbytes = SDATA_NBYTES (from);
2241 if (nbytes > LARGE_STRING_BYTES)
2242 abort ();
2244 nbytes = SDATA_SIZE (nbytes);
2245 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2247 #ifdef GC_CHECK_STRING_OVERRUN
2248 if (memcmp (string_overrun_cookie,
2249 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2250 GC_STRING_OVERRUN_COOKIE_SIZE))
2251 abort ();
2252 #endif
2254 /* FROM->string non-null means it's alive. Copy its data. */
2255 if (from->string)
2257 /* If TB is full, proceed with the next sblock. */
2258 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2259 if (to_end > tb_end)
2261 tb->next_free = to;
2262 tb = tb->next;
2263 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2264 to = &tb->first_data;
2265 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2268 /* Copy, and update the string's `data' pointer. */
2269 if (from != to)
2271 eassert (tb != b || to < from);
2272 memmove (to, from, nbytes + GC_STRING_EXTRA);
2273 to->string->data = SDATA_DATA (to);
2276 /* Advance past the sdata we copied to. */
2277 to = to_end;
2282 /* The rest of the sblocks following TB don't contain live data, so
2283 we can free them. */
2284 for (b = tb->next; b; b = next)
2286 next = b->next;
2287 lisp_free (b);
2290 tb->next_free = to;
2291 tb->next = NULL;
2292 current_sblock = tb;
2295 void
2296 string_overflow (void)
2298 error ("Maximum string size exceeded");
2301 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2302 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2303 LENGTH must be an integer.
2304 INIT must be an integer that represents a character. */)
2305 (Lisp_Object length, Lisp_Object init)
2307 register Lisp_Object val;
2308 register unsigned char *p, *end;
2309 int c;
2310 EMACS_INT nbytes;
2312 CHECK_NATNUM (length);
2313 CHECK_CHARACTER (init);
2315 c = XFASTINT (init);
2316 if (ASCII_CHAR_P (c))
2318 nbytes = XINT (length);
2319 val = make_uninit_string (nbytes);
2320 p = SDATA (val);
2321 end = p + SCHARS (val);
2322 while (p != end)
2323 *p++ = c;
2325 else
2327 unsigned char str[MAX_MULTIBYTE_LENGTH];
2328 int len = CHAR_STRING (c, str);
2329 EMACS_INT string_len = XINT (length);
2331 if (string_len > STRING_BYTES_MAX / len)
2332 string_overflow ();
2333 nbytes = len * string_len;
2334 val = make_uninit_multibyte_string (string_len, nbytes);
2335 p = SDATA (val);
2336 end = p + nbytes;
2337 while (p != end)
2339 memcpy (p, str, len);
2340 p += len;
2344 *p = 0;
2345 return val;
2349 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2350 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2351 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2352 (Lisp_Object length, Lisp_Object init)
2354 register Lisp_Object val;
2355 struct Lisp_Bool_Vector *p;
2356 ptrdiff_t length_in_chars;
2357 EMACS_INT length_in_elts;
2358 int bits_per_value;
2360 CHECK_NATNUM (length);
2362 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2364 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2366 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2367 slot `size' of the struct Lisp_Bool_Vector. */
2368 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2370 /* No Lisp_Object to trace in there. */
2371 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2373 p = XBOOL_VECTOR (val);
2374 p->size = XFASTINT (length);
2376 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2377 / BOOL_VECTOR_BITS_PER_CHAR);
2378 if (length_in_chars)
2380 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2382 /* Clear any extraneous bits in the last byte. */
2383 p->data[length_in_chars - 1]
2384 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2387 return val;
2391 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2392 of characters from the contents. This string may be unibyte or
2393 multibyte, depending on the contents. */
2395 Lisp_Object
2396 make_string (const char *contents, ptrdiff_t nbytes)
2398 register Lisp_Object val;
2399 ptrdiff_t nchars, multibyte_nbytes;
2401 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2402 &nchars, &multibyte_nbytes);
2403 if (nbytes == nchars || nbytes != multibyte_nbytes)
2404 /* CONTENTS contains no multibyte sequences or contains an invalid
2405 multibyte sequence. We must make unibyte string. */
2406 val = make_unibyte_string (contents, nbytes);
2407 else
2408 val = make_multibyte_string (contents, nchars, nbytes);
2409 return val;
2413 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2415 Lisp_Object
2416 make_unibyte_string (const char *contents, ptrdiff_t length)
2418 register Lisp_Object val;
2419 val = make_uninit_string (length);
2420 memcpy (SDATA (val), contents, length);
2421 return val;
2425 /* Make a multibyte string from NCHARS characters occupying NBYTES
2426 bytes at CONTENTS. */
2428 Lisp_Object
2429 make_multibyte_string (const char *contents,
2430 ptrdiff_t nchars, ptrdiff_t nbytes)
2432 register Lisp_Object val;
2433 val = make_uninit_multibyte_string (nchars, nbytes);
2434 memcpy (SDATA (val), contents, nbytes);
2435 return val;
2439 /* Make a string from NCHARS characters occupying NBYTES bytes at
2440 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2442 Lisp_Object
2443 make_string_from_bytes (const char *contents,
2444 ptrdiff_t nchars, ptrdiff_t nbytes)
2446 register Lisp_Object val;
2447 val = make_uninit_multibyte_string (nchars, nbytes);
2448 memcpy (SDATA (val), contents, nbytes);
2449 if (SBYTES (val) == SCHARS (val))
2450 STRING_SET_UNIBYTE (val);
2451 return val;
2455 /* Make a string from NCHARS characters occupying NBYTES bytes at
2456 CONTENTS. The argument MULTIBYTE controls whether to label the
2457 string as multibyte. If NCHARS is negative, it counts the number of
2458 characters by itself. */
2460 Lisp_Object
2461 make_specified_string (const char *contents,
2462 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2464 register Lisp_Object val;
2466 if (nchars < 0)
2468 if (multibyte)
2469 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2470 nbytes);
2471 else
2472 nchars = nbytes;
2474 val = make_uninit_multibyte_string (nchars, nbytes);
2475 memcpy (SDATA (val), contents, nbytes);
2476 if (!multibyte)
2477 STRING_SET_UNIBYTE (val);
2478 return val;
2482 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2483 occupying LENGTH bytes. */
2485 Lisp_Object
2486 make_uninit_string (EMACS_INT length)
2488 Lisp_Object val;
2490 if (!length)
2491 return empty_unibyte_string;
2492 val = make_uninit_multibyte_string (length, length);
2493 STRING_SET_UNIBYTE (val);
2494 return val;
2498 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2499 which occupy NBYTES bytes. */
2501 Lisp_Object
2502 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2504 Lisp_Object string;
2505 struct Lisp_String *s;
2507 if (nchars < 0)
2508 abort ();
2509 if (!nbytes)
2510 return empty_multibyte_string;
2512 s = allocate_string ();
2513 s->intervals = NULL_INTERVAL;
2514 allocate_string_data (s, nchars, nbytes);
2515 XSETSTRING (string, s);
2516 string_chars_consed += nbytes;
2517 return string;
2520 /* Print arguments to BUF according to a FORMAT, then return
2521 a Lisp_String initialized with the data from BUF. */
2523 Lisp_Object
2524 make_formatted_string (char *buf, const char *format, ...)
2526 va_list ap;
2527 ptrdiff_t length;
2529 va_start (ap, format);
2530 length = vsprintf (buf, format, ap);
2531 va_end (ap);
2532 return make_string (buf, length);
2536 /***********************************************************************
2537 Float Allocation
2538 ***********************************************************************/
2540 /* We store float cells inside of float_blocks, allocating a new
2541 float_block with malloc whenever necessary. Float cells reclaimed
2542 by GC are put on a free list to be reallocated before allocating
2543 any new float cells from the latest float_block. */
2545 #define FLOAT_BLOCK_SIZE \
2546 (((BLOCK_BYTES - sizeof (struct float_block *) \
2547 /* The compiler might add padding at the end. */ \
2548 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2549 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2551 #define GETMARKBIT(block,n) \
2552 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2553 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2554 & 1)
2556 #define SETMARKBIT(block,n) \
2557 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2558 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2560 #define UNSETMARKBIT(block,n) \
2561 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2562 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2564 #define FLOAT_BLOCK(fptr) \
2565 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2567 #define FLOAT_INDEX(fptr) \
2568 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2570 struct float_block
2572 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2573 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2574 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2575 struct float_block *next;
2578 #define FLOAT_MARKED_P(fptr) \
2579 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2581 #define FLOAT_MARK(fptr) \
2582 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2584 #define FLOAT_UNMARK(fptr) \
2585 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2587 /* Current float_block. */
2589 static struct float_block *float_block;
2591 /* Index of first unused Lisp_Float in the current float_block. */
2593 static int float_block_index;
2595 /* Free-list of Lisp_Floats. */
2597 static struct Lisp_Float *float_free_list;
2600 /* Initialize float allocation. */
2602 static void
2603 init_float (void)
2605 float_block = NULL;
2606 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2607 float_free_list = 0;
2611 /* Return a new float object with value FLOAT_VALUE. */
2613 Lisp_Object
2614 make_float (double float_value)
2616 register Lisp_Object val;
2618 /* eassert (!handling_signal); */
2620 MALLOC_BLOCK_INPUT;
2622 if (float_free_list)
2624 /* We use the data field for chaining the free list
2625 so that we won't use the same field that has the mark bit. */
2626 XSETFLOAT (val, float_free_list);
2627 float_free_list = float_free_list->u.chain;
2629 else
2631 if (float_block_index == FLOAT_BLOCK_SIZE)
2633 struct float_block *new
2634 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2635 new->next = float_block;
2636 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2637 float_block = new;
2638 float_block_index = 0;
2640 XSETFLOAT (val, &float_block->floats[float_block_index]);
2641 float_block_index++;
2644 MALLOC_UNBLOCK_INPUT;
2646 XFLOAT_INIT (val, float_value);
2647 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2648 consing_since_gc += sizeof (struct Lisp_Float);
2649 floats_consed++;
2650 return val;
2655 /***********************************************************************
2656 Cons Allocation
2657 ***********************************************************************/
2659 /* We store cons cells inside of cons_blocks, allocating a new
2660 cons_block with malloc whenever necessary. Cons cells reclaimed by
2661 GC are put on a free list to be reallocated before allocating
2662 any new cons cells from the latest cons_block. */
2664 #define CONS_BLOCK_SIZE \
2665 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2666 /* The compiler might add padding at the end. */ \
2667 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2668 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2670 #define CONS_BLOCK(fptr) \
2671 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2673 #define CONS_INDEX(fptr) \
2674 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2676 struct cons_block
2678 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2679 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2680 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2681 struct cons_block *next;
2684 #define CONS_MARKED_P(fptr) \
2685 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2687 #define CONS_MARK(fptr) \
2688 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2690 #define CONS_UNMARK(fptr) \
2691 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2693 /* Current cons_block. */
2695 static struct cons_block *cons_block;
2697 /* Index of first unused Lisp_Cons in the current block. */
2699 static int cons_block_index;
2701 /* Free-list of Lisp_Cons structures. */
2703 static struct Lisp_Cons *cons_free_list;
2706 /* Initialize cons allocation. */
2708 static void
2709 init_cons (void)
2711 cons_block = NULL;
2712 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2713 cons_free_list = 0;
2717 /* Explicitly free a cons cell by putting it on the free-list. */
2719 void
2720 free_cons (struct Lisp_Cons *ptr)
2722 ptr->u.chain = cons_free_list;
2723 #if GC_MARK_STACK
2724 ptr->car = Vdead;
2725 #endif
2726 cons_free_list = ptr;
2729 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2730 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2731 (Lisp_Object car, Lisp_Object cdr)
2733 register Lisp_Object val;
2735 /* eassert (!handling_signal); */
2737 MALLOC_BLOCK_INPUT;
2739 if (cons_free_list)
2741 /* We use the cdr for chaining the free list
2742 so that we won't use the same field that has the mark bit. */
2743 XSETCONS (val, cons_free_list);
2744 cons_free_list = cons_free_list->u.chain;
2746 else
2748 if (cons_block_index == CONS_BLOCK_SIZE)
2750 struct cons_block *new
2751 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2752 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2753 new->next = cons_block;
2754 cons_block = new;
2755 cons_block_index = 0;
2757 XSETCONS (val, &cons_block->conses[cons_block_index]);
2758 cons_block_index++;
2761 MALLOC_UNBLOCK_INPUT;
2763 XSETCAR (val, car);
2764 XSETCDR (val, cdr);
2765 eassert (!CONS_MARKED_P (XCONS (val)));
2766 consing_since_gc += sizeof (struct Lisp_Cons);
2767 cons_cells_consed++;
2768 return val;
2771 #ifdef GC_CHECK_CONS_LIST
2772 /* Get an error now if there's any junk in the cons free list. */
2773 void
2774 check_cons_list (void)
2776 struct Lisp_Cons *tail = cons_free_list;
2778 while (tail)
2779 tail = tail->u.chain;
2781 #endif
2783 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2785 Lisp_Object
2786 list1 (Lisp_Object arg1)
2788 return Fcons (arg1, Qnil);
2791 Lisp_Object
2792 list2 (Lisp_Object arg1, Lisp_Object arg2)
2794 return Fcons (arg1, Fcons (arg2, Qnil));
2798 Lisp_Object
2799 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2801 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2805 Lisp_Object
2806 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2808 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2812 Lisp_Object
2813 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2815 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2816 Fcons (arg5, Qnil)))));
2820 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2821 doc: /* Return a newly created list with specified arguments as elements.
2822 Any number of arguments, even zero arguments, are allowed.
2823 usage: (list &rest OBJECTS) */)
2824 (ptrdiff_t nargs, Lisp_Object *args)
2826 register Lisp_Object val;
2827 val = Qnil;
2829 while (nargs > 0)
2831 nargs--;
2832 val = Fcons (args[nargs], val);
2834 return val;
2838 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2839 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2840 (register Lisp_Object length, Lisp_Object init)
2842 register Lisp_Object val;
2843 register EMACS_INT size;
2845 CHECK_NATNUM (length);
2846 size = XFASTINT (length);
2848 val = Qnil;
2849 while (size > 0)
2851 val = Fcons (init, val);
2852 --size;
2854 if (size > 0)
2856 val = Fcons (init, val);
2857 --size;
2859 if (size > 0)
2861 val = Fcons (init, val);
2862 --size;
2864 if (size > 0)
2866 val = Fcons (init, val);
2867 --size;
2869 if (size > 0)
2871 val = Fcons (init, val);
2872 --size;
2878 QUIT;
2881 return val;
2886 /***********************************************************************
2887 Vector Allocation
2888 ***********************************************************************/
2890 /* This value is balanced well enough to avoid too much internal overhead
2891 for the most common cases; it's not required to be a power of two, but
2892 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2894 #define VECTOR_BLOCK_SIZE 4096
2896 /* Handy constants for vectorlike objects. */
2897 enum
2899 header_size = offsetof (struct Lisp_Vector, contents),
2900 word_size = sizeof (Lisp_Object),
2901 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
2902 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2905 /* ROUNDUP_SIZE must be a power of 2. */
2906 verify ((roundup_size & (roundup_size - 1)) == 0);
2908 /* Verify assumptions described above. */
2909 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2910 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2912 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2914 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2916 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2918 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2920 /* Size of the minimal vector allocated from block. */
2922 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2924 /* Size of the largest vector allocated from block. */
2926 #define VBLOCK_BYTES_MAX \
2927 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2929 /* We maintain one free list for each possible block-allocated
2930 vector size, and this is the number of free lists we have. */
2932 #define VECTOR_MAX_FREE_LIST_INDEX \
2933 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2935 /* Common shortcut to advance vector pointer over a block data. */
2937 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2939 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2941 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2943 /* Common shortcut to setup vector on a free list. */
2945 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2946 do { \
2947 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2948 eassert ((nbytes) % roundup_size == 0); \
2949 (index) = VINDEX (nbytes); \
2950 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2951 (v)->header.next.vector = vector_free_lists[index]; \
2952 vector_free_lists[index] = (v); \
2953 } while (0)
2955 struct vector_block
2957 char data[VECTOR_BLOCK_BYTES];
2958 struct vector_block *next;
2961 /* Chain of vector blocks. */
2963 static struct vector_block *vector_blocks;
2965 /* Vector free lists, where NTH item points to a chain of free
2966 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2968 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2970 /* Singly-linked list of large vectors. */
2972 static struct Lisp_Vector *large_vectors;
2974 /* The only vector with 0 slots, allocated from pure space. */
2976 static struct Lisp_Vector *zero_vector;
2978 /* Get a new vector block. */
2980 static struct vector_block *
2981 allocate_vector_block (void)
2983 struct vector_block *block = xmalloc (sizeof *block);
2985 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2986 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2987 MEM_TYPE_VECTOR_BLOCK);
2988 #endif
2990 block->next = vector_blocks;
2991 vector_blocks = block;
2992 return block;
2995 /* Called once to initialize vector allocation. */
2997 static void
2998 init_vectors (void)
3000 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
3001 zero_vector->header.size = 0;
3004 /* Allocate vector from a vector block. */
3006 static struct Lisp_Vector *
3007 allocate_vector_from_block (size_t nbytes)
3009 struct Lisp_Vector *vector, *rest;
3010 struct vector_block *block;
3011 size_t index, restbytes;
3013 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3014 eassert (nbytes % roundup_size == 0);
3016 /* First, try to allocate from a free list
3017 containing vectors of the requested size. */
3018 index = VINDEX (nbytes);
3019 if (vector_free_lists[index])
3021 vector = vector_free_lists[index];
3022 vector_free_lists[index] = vector->header.next.vector;
3023 vector->header.next.nbytes = nbytes;
3024 return vector;
3027 /* Next, check free lists containing larger vectors. Since
3028 we will split the result, we should have remaining space
3029 large enough to use for one-slot vector at least. */
3030 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3031 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3032 if (vector_free_lists[index])
3034 /* This vector is larger than requested. */
3035 vector = vector_free_lists[index];
3036 vector_free_lists[index] = vector->header.next.vector;
3037 vector->header.next.nbytes = nbytes;
3039 /* Excess bytes are used for the smaller vector,
3040 which should be set on an appropriate free list. */
3041 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3042 eassert (restbytes % roundup_size == 0);
3043 rest = ADVANCE (vector, nbytes);
3044 SETUP_ON_FREE_LIST (rest, restbytes, index);
3045 return vector;
3048 /* Finally, need a new vector block. */
3049 block = allocate_vector_block ();
3051 /* New vector will be at the beginning of this block. */
3052 vector = (struct Lisp_Vector *) block->data;
3053 vector->header.next.nbytes = nbytes;
3055 /* If the rest of space from this block is large enough
3056 for one-slot vector at least, set up it on a free list. */
3057 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3058 if (restbytes >= VBLOCK_BYTES_MIN)
3060 eassert (restbytes % roundup_size == 0);
3061 rest = ADVANCE (vector, nbytes);
3062 SETUP_ON_FREE_LIST (rest, restbytes, index);
3064 return vector;
3067 /* Return how many Lisp_Objects can be stored in V. */
3069 #define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3070 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3071 (v)->header.size)
3073 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3075 #define VECTOR_IN_BLOCK(vector, block) \
3076 ((char *) (vector) <= (block)->data \
3077 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3079 /* Number of bytes used by vector-block-allocated object. This is the only
3080 place where we actually use the `nbytes' field of the vector-header.
3081 I.e. we could get rid of the `nbytes' field by computing it based on the
3082 vector-type. */
3084 #define PSEUDOVECTOR_NBYTES(vector) \
3085 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3086 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
3087 : vector->header.next.nbytes)
3089 /* Reclaim space used by unmarked vectors. */
3091 static void
3092 sweep_vectors (void)
3094 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3095 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3097 total_vector_size = 0;
3098 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3100 /* Looking through vector blocks. */
3102 for (block = vector_blocks; block; block = *bprev)
3104 int free_this_block = 0;
3106 for (vector = (struct Lisp_Vector *) block->data;
3107 VECTOR_IN_BLOCK (vector, block); vector = next)
3109 if (VECTOR_MARKED_P (vector))
3111 VECTOR_UNMARK (vector);
3112 total_vector_size += VECTOR_SIZE (vector);
3113 next = ADVANCE (vector, vector->header.next.nbytes);
3115 else
3117 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3118 ptrdiff_t total_bytes = nbytes;
3120 next = ADVANCE (vector, nbytes);
3122 /* While NEXT is not marked, try to coalesce with VECTOR,
3123 thus making VECTOR of the largest possible size. */
3125 while (VECTOR_IN_BLOCK (next, block))
3127 if (VECTOR_MARKED_P (next))
3128 break;
3129 nbytes = PSEUDOVECTOR_NBYTES (next);
3130 total_bytes += nbytes;
3131 next = ADVANCE (next, nbytes);
3134 eassert (total_bytes % roundup_size == 0);
3136 if (vector == (struct Lisp_Vector *) block->data
3137 && !VECTOR_IN_BLOCK (next, block))
3138 /* This block should be freed because all of it's
3139 space was coalesced into the only free vector. */
3140 free_this_block = 1;
3141 else
3143 int tmp;
3144 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3149 if (free_this_block)
3151 *bprev = block->next;
3152 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3153 mem_delete (mem_find (block->data));
3154 #endif
3155 xfree (block);
3157 else
3158 bprev = &block->next;
3161 /* Sweep large vectors. */
3163 for (vector = large_vectors; vector; vector = *vprev)
3165 if (VECTOR_MARKED_P (vector))
3167 VECTOR_UNMARK (vector);
3168 total_vector_size += VECTOR_SIZE (vector);
3169 vprev = &vector->header.next.vector;
3171 else
3173 *vprev = vector->header.next.vector;
3174 lisp_free (vector);
3179 /* Value is a pointer to a newly allocated Lisp_Vector structure
3180 with room for LEN Lisp_Objects. */
3182 static struct Lisp_Vector *
3183 allocate_vectorlike (ptrdiff_t len)
3185 struct Lisp_Vector *p;
3187 MALLOC_BLOCK_INPUT;
3189 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3190 /* eassert (!handling_signal); */
3192 if (len == 0)
3193 p = zero_vector;
3194 else
3196 size_t nbytes = header_size + len * word_size;
3198 #ifdef DOUG_LEA_MALLOC
3199 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3200 because mapped region contents are not preserved in
3201 a dumped Emacs. */
3202 mallopt (M_MMAP_MAX, 0);
3203 #endif
3205 if (nbytes <= VBLOCK_BYTES_MAX)
3206 p = allocate_vector_from_block (vroundup (nbytes));
3207 else
3209 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3210 p->header.next.vector = large_vectors;
3211 large_vectors = p;
3214 #ifdef DOUG_LEA_MALLOC
3215 /* Back to a reasonable maximum of mmap'ed areas. */
3216 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3217 #endif
3219 consing_since_gc += nbytes;
3220 vector_cells_consed += len;
3223 MALLOC_UNBLOCK_INPUT;
3225 return p;
3229 /* Allocate a vector with LEN slots. */
3231 struct Lisp_Vector *
3232 allocate_vector (EMACS_INT len)
3234 struct Lisp_Vector *v;
3235 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3237 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3238 memory_full (SIZE_MAX);
3239 v = allocate_vectorlike (len);
3240 v->header.size = len;
3241 return v;
3245 /* Allocate other vector-like structures. */
3247 struct Lisp_Vector *
3248 allocate_pseudovector (int memlen, int lisplen, int tag)
3250 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3251 int i;
3253 /* Only the first lisplen slots will be traced normally by the GC. */
3254 for (i = 0; i < lisplen; ++i)
3255 v->contents[i] = Qnil;
3257 XSETPVECTYPESIZE (v, tag, lisplen);
3258 return v;
3261 struct buffer *
3262 allocate_buffer (void)
3264 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3266 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3267 - header_size) / word_size);
3268 /* Note that the fields of B are not initialized. */
3269 return b;
3272 struct Lisp_Hash_Table *
3273 allocate_hash_table (void)
3275 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3278 struct window *
3279 allocate_window (void)
3281 struct window *w;
3283 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3284 /* Users assumes that non-Lisp data is zeroed. */
3285 memset (&w->current_matrix, 0,
3286 sizeof (*w) - offsetof (struct window, current_matrix));
3287 return w;
3290 struct terminal *
3291 allocate_terminal (void)
3293 struct terminal *t;
3295 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3296 /* Users assumes that non-Lisp data is zeroed. */
3297 memset (&t->next_terminal, 0,
3298 sizeof (*t) - offsetof (struct terminal, next_terminal));
3299 return t;
3302 struct frame *
3303 allocate_frame (void)
3305 struct frame *f;
3307 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3308 /* Users assumes that non-Lisp data is zeroed. */
3309 memset (&f->face_cache, 0,
3310 sizeof (*f) - offsetof (struct frame, face_cache));
3311 return f;
3314 struct Lisp_Process *
3315 allocate_process (void)
3317 struct Lisp_Process *p;
3319 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3320 /* Users assumes that non-Lisp data is zeroed. */
3321 memset (&p->pid, 0,
3322 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3323 return p;
3326 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3327 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3328 See also the function `vector'. */)
3329 (register Lisp_Object length, Lisp_Object init)
3331 Lisp_Object vector;
3332 register ptrdiff_t sizei;
3333 register ptrdiff_t i;
3334 register struct Lisp_Vector *p;
3336 CHECK_NATNUM (length);
3338 p = allocate_vector (XFASTINT (length));
3339 sizei = XFASTINT (length);
3340 for (i = 0; i < sizei; i++)
3341 p->contents[i] = init;
3343 XSETVECTOR (vector, p);
3344 return vector;
3348 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3349 doc: /* Return a newly created vector with specified arguments as elements.
3350 Any number of arguments, even zero arguments, are allowed.
3351 usage: (vector &rest OBJECTS) */)
3352 (ptrdiff_t nargs, Lisp_Object *args)
3354 register Lisp_Object len, val;
3355 ptrdiff_t i;
3356 register struct Lisp_Vector *p;
3358 XSETFASTINT (len, nargs);
3359 val = Fmake_vector (len, Qnil);
3360 p = XVECTOR (val);
3361 for (i = 0; i < nargs; i++)
3362 p->contents[i] = args[i];
3363 return val;
3366 void
3367 make_byte_code (struct Lisp_Vector *v)
3369 if (v->header.size > 1 && STRINGP (v->contents[1])
3370 && STRING_MULTIBYTE (v->contents[1]))
3371 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3372 earlier because they produced a raw 8-bit string for byte-code
3373 and now such a byte-code string is loaded as multibyte while
3374 raw 8-bit characters converted to multibyte form. Thus, now we
3375 must convert them back to the original unibyte form. */
3376 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3377 XSETPVECTYPE (v, PVEC_COMPILED);
3380 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3381 doc: /* Create a byte-code object with specified arguments as elements.
3382 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3383 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3384 and (optional) INTERACTIVE-SPEC.
3385 The first four arguments are required; at most six have any
3386 significance.
3387 The ARGLIST can be either like the one of `lambda', in which case the arguments
3388 will be dynamically bound before executing the byte code, or it can be an
3389 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3390 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3391 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3392 argument to catch the left-over arguments. If such an integer is used, the
3393 arguments will not be dynamically bound but will be instead pushed on the
3394 stack before executing the byte-code.
3395 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3396 (ptrdiff_t nargs, Lisp_Object *args)
3398 register Lisp_Object len, val;
3399 ptrdiff_t i;
3400 register struct Lisp_Vector *p;
3402 /* We used to purecopy everything here, if purify-flga was set. This worked
3403 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3404 dangerous, since make-byte-code is used during execution to build
3405 closures, so any closure built during the preload phase would end up
3406 copied into pure space, including its free variables, which is sometimes
3407 just wasteful and other times plainly wrong (e.g. those free vars may want
3408 to be setcar'd). */
3410 XSETFASTINT (len, nargs);
3411 val = Fmake_vector (len, Qnil);
3413 p = XVECTOR (val);
3414 for (i = 0; i < nargs; i++)
3415 p->contents[i] = args[i];
3416 make_byte_code (p);
3417 XSETCOMPILED (val, p);
3418 return val;
3423 /***********************************************************************
3424 Symbol Allocation
3425 ***********************************************************************/
3427 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3428 of the required alignment if LSB tags are used. */
3430 union aligned_Lisp_Symbol
3432 struct Lisp_Symbol s;
3433 #if USE_LSB_TAG
3434 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3435 & -(1 << GCTYPEBITS)];
3436 #endif
3439 /* Each symbol_block is just under 1020 bytes long, since malloc
3440 really allocates in units of powers of two and uses 4 bytes for its
3441 own overhead. */
3443 #define SYMBOL_BLOCK_SIZE \
3444 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3446 struct symbol_block
3448 /* Place `symbols' first, to preserve alignment. */
3449 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3450 struct symbol_block *next;
3453 /* Current symbol block and index of first unused Lisp_Symbol
3454 structure in it. */
3456 static struct symbol_block *symbol_block;
3457 static int symbol_block_index;
3459 /* List of free symbols. */
3461 static struct Lisp_Symbol *symbol_free_list;
3464 /* Initialize symbol allocation. */
3466 static void
3467 init_symbol (void)
3469 symbol_block = NULL;
3470 symbol_block_index = SYMBOL_BLOCK_SIZE;
3471 symbol_free_list = 0;
3475 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3476 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3477 Its value and function definition are void, and its property list is nil. */)
3478 (Lisp_Object name)
3480 register Lisp_Object val;
3481 register struct Lisp_Symbol *p;
3483 CHECK_STRING (name);
3485 /* eassert (!handling_signal); */
3487 MALLOC_BLOCK_INPUT;
3489 if (symbol_free_list)
3491 XSETSYMBOL (val, symbol_free_list);
3492 symbol_free_list = symbol_free_list->next;
3494 else
3496 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3498 struct symbol_block *new
3499 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3500 new->next = symbol_block;
3501 symbol_block = new;
3502 symbol_block_index = 0;
3504 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3505 symbol_block_index++;
3508 MALLOC_UNBLOCK_INPUT;
3510 p = XSYMBOL (val);
3511 p->xname = name;
3512 p->plist = Qnil;
3513 p->redirect = SYMBOL_PLAINVAL;
3514 SET_SYMBOL_VAL (p, Qunbound);
3515 p->function = Qunbound;
3516 p->next = NULL;
3517 p->gcmarkbit = 0;
3518 p->interned = SYMBOL_UNINTERNED;
3519 p->constant = 0;
3520 p->declared_special = 0;
3521 consing_since_gc += sizeof (struct Lisp_Symbol);
3522 symbols_consed++;
3523 return val;
3528 /***********************************************************************
3529 Marker (Misc) Allocation
3530 ***********************************************************************/
3532 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3533 the required alignment when LSB tags are used. */
3535 union aligned_Lisp_Misc
3537 union Lisp_Misc m;
3538 #if USE_LSB_TAG
3539 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3540 & -(1 << GCTYPEBITS)];
3541 #endif
3544 /* Allocation of markers and other objects that share that structure.
3545 Works like allocation of conses. */
3547 #define MARKER_BLOCK_SIZE \
3548 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3550 struct marker_block
3552 /* Place `markers' first, to preserve alignment. */
3553 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3554 struct marker_block *next;
3557 static struct marker_block *marker_block;
3558 static int marker_block_index;
3560 static union Lisp_Misc *marker_free_list;
3562 static void
3563 init_marker (void)
3565 marker_block = NULL;
3566 marker_block_index = MARKER_BLOCK_SIZE;
3567 marker_free_list = 0;
3570 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3572 Lisp_Object
3573 allocate_misc (void)
3575 Lisp_Object val;
3577 /* eassert (!handling_signal); */
3579 MALLOC_BLOCK_INPUT;
3581 if (marker_free_list)
3583 XSETMISC (val, marker_free_list);
3584 marker_free_list = marker_free_list->u_free.chain;
3586 else
3588 if (marker_block_index == MARKER_BLOCK_SIZE)
3590 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3591 new->next = marker_block;
3592 marker_block = new;
3593 marker_block_index = 0;
3594 total_free_markers += MARKER_BLOCK_SIZE;
3596 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3597 marker_block_index++;
3600 MALLOC_UNBLOCK_INPUT;
3602 --total_free_markers;
3603 consing_since_gc += sizeof (union Lisp_Misc);
3604 misc_objects_consed++;
3605 XMISCANY (val)->gcmarkbit = 0;
3606 return val;
3609 /* Free a Lisp_Misc object */
3611 static void
3612 free_misc (Lisp_Object misc)
3614 XMISCTYPE (misc) = Lisp_Misc_Free;
3615 XMISC (misc)->u_free.chain = marker_free_list;
3616 marker_free_list = XMISC (misc);
3618 total_free_markers++;
3621 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3622 INTEGER. This is used to package C values to call record_unwind_protect.
3623 The unwind function can get the C values back using XSAVE_VALUE. */
3625 Lisp_Object
3626 make_save_value (void *pointer, ptrdiff_t integer)
3628 register Lisp_Object val;
3629 register struct Lisp_Save_Value *p;
3631 val = allocate_misc ();
3632 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3633 p = XSAVE_VALUE (val);
3634 p->pointer = pointer;
3635 p->integer = integer;
3636 p->dogc = 0;
3637 return val;
3640 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3641 doc: /* Return a newly allocated marker which does not point at any place. */)
3642 (void)
3644 register Lisp_Object val;
3645 register struct Lisp_Marker *p;
3647 val = allocate_misc ();
3648 XMISCTYPE (val) = Lisp_Misc_Marker;
3649 p = XMARKER (val);
3650 p->buffer = 0;
3651 p->bytepos = 0;
3652 p->charpos = 0;
3653 p->next = NULL;
3654 p->insertion_type = 0;
3655 return val;
3658 /* Return a newly allocated marker which points into BUF
3659 at character position CHARPOS and byte position BYTEPOS. */
3661 Lisp_Object
3662 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3664 Lisp_Object obj;
3665 struct Lisp_Marker *m;
3667 /* No dead buffers here. */
3668 eassert (!NILP (BVAR (buf, name)));
3670 /* Every character is at least one byte. */
3671 eassert (charpos <= bytepos);
3673 obj = allocate_misc ();
3674 XMISCTYPE (obj) = Lisp_Misc_Marker;
3675 m = XMARKER (obj);
3676 m->buffer = buf;
3677 m->charpos = charpos;
3678 m->bytepos = bytepos;
3679 m->insertion_type = 0;
3680 m->next = BUF_MARKERS (buf);
3681 BUF_MARKERS (buf) = m;
3682 return obj;
3685 /* Put MARKER back on the free list after using it temporarily. */
3687 void
3688 free_marker (Lisp_Object marker)
3690 unchain_marker (XMARKER (marker));
3691 free_misc (marker);
3695 /* Return a newly created vector or string with specified arguments as
3696 elements. If all the arguments are characters that can fit
3697 in a string of events, make a string; otherwise, make a vector.
3699 Any number of arguments, even zero arguments, are allowed. */
3701 Lisp_Object
3702 make_event_array (register int nargs, Lisp_Object *args)
3704 int i;
3706 for (i = 0; i < nargs; i++)
3707 /* The things that fit in a string
3708 are characters that are in 0...127,
3709 after discarding the meta bit and all the bits above it. */
3710 if (!INTEGERP (args[i])
3711 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3712 return Fvector (nargs, args);
3714 /* Since the loop exited, we know that all the things in it are
3715 characters, so we can make a string. */
3717 Lisp_Object result;
3719 result = Fmake_string (make_number (nargs), make_number (0));
3720 for (i = 0; i < nargs; i++)
3722 SSET (result, i, XINT (args[i]));
3723 /* Move the meta bit to the right place for a string char. */
3724 if (XINT (args[i]) & CHAR_META)
3725 SSET (result, i, SREF (result, i) | 0x80);
3728 return result;
3734 /************************************************************************
3735 Memory Full Handling
3736 ************************************************************************/
3739 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3740 there may have been size_t overflow so that malloc was never
3741 called, or perhaps malloc was invoked successfully but the
3742 resulting pointer had problems fitting into a tagged EMACS_INT. In
3743 either case this counts as memory being full even though malloc did
3744 not fail. */
3746 void
3747 memory_full (size_t nbytes)
3749 /* Do not go into hysterics merely because a large request failed. */
3750 int enough_free_memory = 0;
3751 if (SPARE_MEMORY < nbytes)
3753 void *p;
3755 MALLOC_BLOCK_INPUT;
3756 p = malloc (SPARE_MEMORY);
3757 if (p)
3759 free (p);
3760 enough_free_memory = 1;
3762 MALLOC_UNBLOCK_INPUT;
3765 if (! enough_free_memory)
3767 int i;
3769 Vmemory_full = Qt;
3771 memory_full_cons_threshold = sizeof (struct cons_block);
3773 /* The first time we get here, free the spare memory. */
3774 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3775 if (spare_memory[i])
3777 if (i == 0)
3778 free (spare_memory[i]);
3779 else if (i >= 1 && i <= 4)
3780 lisp_align_free (spare_memory[i]);
3781 else
3782 lisp_free (spare_memory[i]);
3783 spare_memory[i] = 0;
3786 /* Record the space now used. When it decreases substantially,
3787 we can refill the memory reserve. */
3788 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3789 bytes_used_when_full = BYTES_USED;
3790 #endif
3793 /* This used to call error, but if we've run out of memory, we could
3794 get infinite recursion trying to build the string. */
3795 xsignal (Qnil, Vmemory_signal_data);
3798 /* If we released our reserve (due to running out of memory),
3799 and we have a fair amount free once again,
3800 try to set aside another reserve in case we run out once more.
3802 This is called when a relocatable block is freed in ralloc.c,
3803 and also directly from this file, in case we're not using ralloc.c. */
3805 void
3806 refill_memory_reserve (void)
3808 #ifndef SYSTEM_MALLOC
3809 if (spare_memory[0] == 0)
3810 spare_memory[0] = malloc (SPARE_MEMORY);
3811 if (spare_memory[1] == 0)
3812 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3813 MEM_TYPE_CONS);
3814 if (spare_memory[2] == 0)
3815 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3816 MEM_TYPE_CONS);
3817 if (spare_memory[3] == 0)
3818 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3819 MEM_TYPE_CONS);
3820 if (spare_memory[4] == 0)
3821 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3822 MEM_TYPE_CONS);
3823 if (spare_memory[5] == 0)
3824 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3825 MEM_TYPE_STRING);
3826 if (spare_memory[6] == 0)
3827 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3828 MEM_TYPE_STRING);
3829 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3830 Vmemory_full = Qnil;
3831 #endif
3834 /************************************************************************
3835 C Stack Marking
3836 ************************************************************************/
3838 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3840 /* Conservative C stack marking requires a method to identify possibly
3841 live Lisp objects given a pointer value. We do this by keeping
3842 track of blocks of Lisp data that are allocated in a red-black tree
3843 (see also the comment of mem_node which is the type of nodes in
3844 that tree). Function lisp_malloc adds information for an allocated
3845 block to the red-black tree with calls to mem_insert, and function
3846 lisp_free removes it with mem_delete. Functions live_string_p etc
3847 call mem_find to lookup information about a given pointer in the
3848 tree, and use that to determine if the pointer points to a Lisp
3849 object or not. */
3851 /* Initialize this part of alloc.c. */
3853 static void
3854 mem_init (void)
3856 mem_z.left = mem_z.right = MEM_NIL;
3857 mem_z.parent = NULL;
3858 mem_z.color = MEM_BLACK;
3859 mem_z.start = mem_z.end = NULL;
3860 mem_root = MEM_NIL;
3864 /* Value is a pointer to the mem_node containing START. Value is
3865 MEM_NIL if there is no node in the tree containing START. */
3867 static inline struct mem_node *
3868 mem_find (void *start)
3870 struct mem_node *p;
3872 if (start < min_heap_address || start > max_heap_address)
3873 return MEM_NIL;
3875 /* Make the search always successful to speed up the loop below. */
3876 mem_z.start = start;
3877 mem_z.end = (char *) start + 1;
3879 p = mem_root;
3880 while (start < p->start || start >= p->end)
3881 p = start < p->start ? p->left : p->right;
3882 return p;
3886 /* Insert a new node into the tree for a block of memory with start
3887 address START, end address END, and type TYPE. Value is a
3888 pointer to the node that was inserted. */
3890 static struct mem_node *
3891 mem_insert (void *start, void *end, enum mem_type type)
3893 struct mem_node *c, *parent, *x;
3895 if (min_heap_address == NULL || start < min_heap_address)
3896 min_heap_address = start;
3897 if (max_heap_address == NULL || end > max_heap_address)
3898 max_heap_address = end;
3900 /* See where in the tree a node for START belongs. In this
3901 particular application, it shouldn't happen that a node is already
3902 present. For debugging purposes, let's check that. */
3903 c = mem_root;
3904 parent = NULL;
3906 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3908 while (c != MEM_NIL)
3910 if (start >= c->start && start < c->end)
3911 abort ();
3912 parent = c;
3913 c = start < c->start ? c->left : c->right;
3916 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3918 while (c != MEM_NIL)
3920 parent = c;
3921 c = start < c->start ? c->left : c->right;
3924 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3926 /* Create a new node. */
3927 #ifdef GC_MALLOC_CHECK
3928 x = _malloc_internal (sizeof *x);
3929 if (x == NULL)
3930 abort ();
3931 #else
3932 x = xmalloc (sizeof *x);
3933 #endif
3934 x->start = start;
3935 x->end = end;
3936 x->type = type;
3937 x->parent = parent;
3938 x->left = x->right = MEM_NIL;
3939 x->color = MEM_RED;
3941 /* Insert it as child of PARENT or install it as root. */
3942 if (parent)
3944 if (start < parent->start)
3945 parent->left = x;
3946 else
3947 parent->right = x;
3949 else
3950 mem_root = x;
3952 /* Re-establish red-black tree properties. */
3953 mem_insert_fixup (x);
3955 return x;
3959 /* Re-establish the red-black properties of the tree, and thereby
3960 balance the tree, after node X has been inserted; X is always red. */
3962 static void
3963 mem_insert_fixup (struct mem_node *x)
3965 while (x != mem_root && x->parent->color == MEM_RED)
3967 /* X is red and its parent is red. This is a violation of
3968 red-black tree property #3. */
3970 if (x->parent == x->parent->parent->left)
3972 /* We're on the left side of our grandparent, and Y is our
3973 "uncle". */
3974 struct mem_node *y = x->parent->parent->right;
3976 if (y->color == MEM_RED)
3978 /* Uncle and parent are red but should be black because
3979 X is red. Change the colors accordingly and proceed
3980 with the grandparent. */
3981 x->parent->color = MEM_BLACK;
3982 y->color = MEM_BLACK;
3983 x->parent->parent->color = MEM_RED;
3984 x = x->parent->parent;
3986 else
3988 /* Parent and uncle have different colors; parent is
3989 red, uncle is black. */
3990 if (x == x->parent->right)
3992 x = x->parent;
3993 mem_rotate_left (x);
3996 x->parent->color = MEM_BLACK;
3997 x->parent->parent->color = MEM_RED;
3998 mem_rotate_right (x->parent->parent);
4001 else
4003 /* This is the symmetrical case of above. */
4004 struct mem_node *y = x->parent->parent->left;
4006 if (y->color == MEM_RED)
4008 x->parent->color = MEM_BLACK;
4009 y->color = MEM_BLACK;
4010 x->parent->parent->color = MEM_RED;
4011 x = x->parent->parent;
4013 else
4015 if (x == x->parent->left)
4017 x = x->parent;
4018 mem_rotate_right (x);
4021 x->parent->color = MEM_BLACK;
4022 x->parent->parent->color = MEM_RED;
4023 mem_rotate_left (x->parent->parent);
4028 /* The root may have been changed to red due to the algorithm. Set
4029 it to black so that property #5 is satisfied. */
4030 mem_root->color = MEM_BLACK;
4034 /* (x) (y)
4035 / \ / \
4036 a (y) ===> (x) c
4037 / \ / \
4038 b c a b */
4040 static void
4041 mem_rotate_left (struct mem_node *x)
4043 struct mem_node *y;
4045 /* Turn y's left sub-tree into x's right sub-tree. */
4046 y = x->right;
4047 x->right = y->left;
4048 if (y->left != MEM_NIL)
4049 y->left->parent = x;
4051 /* Y's parent was x's parent. */
4052 if (y != MEM_NIL)
4053 y->parent = x->parent;
4055 /* Get the parent to point to y instead of x. */
4056 if (x->parent)
4058 if (x == x->parent->left)
4059 x->parent->left = y;
4060 else
4061 x->parent->right = y;
4063 else
4064 mem_root = y;
4066 /* Put x on y's left. */
4067 y->left = x;
4068 if (x != MEM_NIL)
4069 x->parent = y;
4073 /* (x) (Y)
4074 / \ / \
4075 (y) c ===> a (x)
4076 / \ / \
4077 a b b c */
4079 static void
4080 mem_rotate_right (struct mem_node *x)
4082 struct mem_node *y = x->left;
4084 x->left = y->right;
4085 if (y->right != MEM_NIL)
4086 y->right->parent = x;
4088 if (y != MEM_NIL)
4089 y->parent = x->parent;
4090 if (x->parent)
4092 if (x == x->parent->right)
4093 x->parent->right = y;
4094 else
4095 x->parent->left = y;
4097 else
4098 mem_root = y;
4100 y->right = x;
4101 if (x != MEM_NIL)
4102 x->parent = y;
4106 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4108 static void
4109 mem_delete (struct mem_node *z)
4111 struct mem_node *x, *y;
4113 if (!z || z == MEM_NIL)
4114 return;
4116 if (z->left == MEM_NIL || z->right == MEM_NIL)
4117 y = z;
4118 else
4120 y = z->right;
4121 while (y->left != MEM_NIL)
4122 y = y->left;
4125 if (y->left != MEM_NIL)
4126 x = y->left;
4127 else
4128 x = y->right;
4130 x->parent = y->parent;
4131 if (y->parent)
4133 if (y == y->parent->left)
4134 y->parent->left = x;
4135 else
4136 y->parent->right = x;
4138 else
4139 mem_root = x;
4141 if (y != z)
4143 z->start = y->start;
4144 z->end = y->end;
4145 z->type = y->type;
4148 if (y->color == MEM_BLACK)
4149 mem_delete_fixup (x);
4151 #ifdef GC_MALLOC_CHECK
4152 _free_internal (y);
4153 #else
4154 xfree (y);
4155 #endif
4159 /* Re-establish the red-black properties of the tree, after a
4160 deletion. */
4162 static void
4163 mem_delete_fixup (struct mem_node *x)
4165 while (x != mem_root && x->color == MEM_BLACK)
4167 if (x == x->parent->left)
4169 struct mem_node *w = x->parent->right;
4171 if (w->color == MEM_RED)
4173 w->color = MEM_BLACK;
4174 x->parent->color = MEM_RED;
4175 mem_rotate_left (x->parent);
4176 w = x->parent->right;
4179 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4181 w->color = MEM_RED;
4182 x = x->parent;
4184 else
4186 if (w->right->color == MEM_BLACK)
4188 w->left->color = MEM_BLACK;
4189 w->color = MEM_RED;
4190 mem_rotate_right (w);
4191 w = x->parent->right;
4193 w->color = x->parent->color;
4194 x->parent->color = MEM_BLACK;
4195 w->right->color = MEM_BLACK;
4196 mem_rotate_left (x->parent);
4197 x = mem_root;
4200 else
4202 struct mem_node *w = x->parent->left;
4204 if (w->color == MEM_RED)
4206 w->color = MEM_BLACK;
4207 x->parent->color = MEM_RED;
4208 mem_rotate_right (x->parent);
4209 w = x->parent->left;
4212 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4214 w->color = MEM_RED;
4215 x = x->parent;
4217 else
4219 if (w->left->color == MEM_BLACK)
4221 w->right->color = MEM_BLACK;
4222 w->color = MEM_RED;
4223 mem_rotate_left (w);
4224 w = x->parent->left;
4227 w->color = x->parent->color;
4228 x->parent->color = MEM_BLACK;
4229 w->left->color = MEM_BLACK;
4230 mem_rotate_right (x->parent);
4231 x = mem_root;
4236 x->color = MEM_BLACK;
4240 /* Value is non-zero if P is a pointer to a live Lisp string on
4241 the heap. M is a pointer to the mem_block for P. */
4243 static inline int
4244 live_string_p (struct mem_node *m, void *p)
4246 if (m->type == MEM_TYPE_STRING)
4248 struct string_block *b = (struct string_block *) m->start;
4249 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4251 /* P must point to the start of a Lisp_String structure, and it
4252 must not be on the free-list. */
4253 return (offset >= 0
4254 && offset % sizeof b->strings[0] == 0
4255 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4256 && ((struct Lisp_String *) p)->data != NULL);
4258 else
4259 return 0;
4263 /* Value is non-zero if P is a pointer to a live Lisp cons on
4264 the heap. M is a pointer to the mem_block for P. */
4266 static inline int
4267 live_cons_p (struct mem_node *m, void *p)
4269 if (m->type == MEM_TYPE_CONS)
4271 struct cons_block *b = (struct cons_block *) m->start;
4272 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4274 /* P must point to the start of a Lisp_Cons, not be
4275 one of the unused cells in the current cons block,
4276 and not be on the free-list. */
4277 return (offset >= 0
4278 && offset % sizeof b->conses[0] == 0
4279 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4280 && (b != cons_block
4281 || offset / sizeof b->conses[0] < cons_block_index)
4282 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4284 else
4285 return 0;
4289 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4290 the heap. M is a pointer to the mem_block for P. */
4292 static inline int
4293 live_symbol_p (struct mem_node *m, void *p)
4295 if (m->type == MEM_TYPE_SYMBOL)
4297 struct symbol_block *b = (struct symbol_block *) m->start;
4298 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4300 /* P must point to the start of a Lisp_Symbol, not be
4301 one of the unused cells in the current symbol block,
4302 and not be on the free-list. */
4303 return (offset >= 0
4304 && offset % sizeof b->symbols[0] == 0
4305 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4306 && (b != symbol_block
4307 || offset / sizeof b->symbols[0] < symbol_block_index)
4308 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4310 else
4311 return 0;
4315 /* Value is non-zero if P is a pointer to a live Lisp float on
4316 the heap. M is a pointer to the mem_block for P. */
4318 static inline int
4319 live_float_p (struct mem_node *m, void *p)
4321 if (m->type == MEM_TYPE_FLOAT)
4323 struct float_block *b = (struct float_block *) m->start;
4324 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4326 /* P must point to the start of a Lisp_Float and not be
4327 one of the unused cells in the current float block. */
4328 return (offset >= 0
4329 && offset % sizeof b->floats[0] == 0
4330 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4331 && (b != float_block
4332 || offset / sizeof b->floats[0] < float_block_index));
4334 else
4335 return 0;
4339 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4340 the heap. M is a pointer to the mem_block for P. */
4342 static inline int
4343 live_misc_p (struct mem_node *m, void *p)
4345 if (m->type == MEM_TYPE_MISC)
4347 struct marker_block *b = (struct marker_block *) m->start;
4348 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4350 /* P must point to the start of a Lisp_Misc, not be
4351 one of the unused cells in the current misc block,
4352 and not be on the free-list. */
4353 return (offset >= 0
4354 && offset % sizeof b->markers[0] == 0
4355 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4356 && (b != marker_block
4357 || offset / sizeof b->markers[0] < marker_block_index)
4358 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4360 else
4361 return 0;
4365 /* Value is non-zero if P is a pointer to a live vector-like object.
4366 M is a pointer to the mem_block for P. */
4368 static inline int
4369 live_vector_p (struct mem_node *m, void *p)
4371 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4373 /* This memory node corresponds to a vector block. */
4374 struct vector_block *block = (struct vector_block *) m->start;
4375 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4377 /* P is in the block's allocation range. Scan the block
4378 up to P and see whether P points to the start of some
4379 vector which is not on a free list. FIXME: check whether
4380 some allocation patterns (probably a lot of short vectors)
4381 may cause a substantial overhead of this loop. */
4382 while (VECTOR_IN_BLOCK (vector, block)
4383 && vector <= (struct Lisp_Vector *) p)
4385 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4386 vector = ADVANCE (vector, (vector->header.size
4387 & PSEUDOVECTOR_SIZE_MASK));
4388 else if (vector == p)
4389 return 1;
4390 else
4391 vector = ADVANCE (vector, vector->header.next.nbytes);
4394 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4395 /* This memory node corresponds to a large vector. */
4396 return 1;
4397 return 0;
4401 /* Value is non-zero if P is a pointer to a live buffer. M is a
4402 pointer to the mem_block for P. */
4404 static inline int
4405 live_buffer_p (struct mem_node *m, void *p)
4407 /* P must point to the start of the block, and the buffer
4408 must not have been killed. */
4409 return (m->type == MEM_TYPE_BUFFER
4410 && p == m->start
4411 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4414 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4416 #if GC_MARK_STACK
4418 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4420 /* Array of objects that are kept alive because the C stack contains
4421 a pattern that looks like a reference to them . */
4423 #define MAX_ZOMBIES 10
4424 static Lisp_Object zombies[MAX_ZOMBIES];
4426 /* Number of zombie objects. */
4428 static EMACS_INT nzombies;
4430 /* Number of garbage collections. */
4432 static EMACS_INT ngcs;
4434 /* Average percentage of zombies per collection. */
4436 static double avg_zombies;
4438 /* Max. number of live and zombie objects. */
4440 static EMACS_INT max_live, max_zombies;
4442 /* Average number of live objects per GC. */
4444 static double avg_live;
4446 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4447 doc: /* Show information about live and zombie objects. */)
4448 (void)
4450 Lisp_Object args[8], zombie_list = Qnil;
4451 EMACS_INT i;
4452 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4453 zombie_list = Fcons (zombies[i], zombie_list);
4454 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4455 args[1] = make_number (ngcs);
4456 args[2] = make_float (avg_live);
4457 args[3] = make_float (avg_zombies);
4458 args[4] = make_float (avg_zombies / avg_live / 100);
4459 args[5] = make_number (max_live);
4460 args[6] = make_number (max_zombies);
4461 args[7] = zombie_list;
4462 return Fmessage (8, args);
4465 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4468 /* Mark OBJ if we can prove it's a Lisp_Object. */
4470 static inline void
4471 mark_maybe_object (Lisp_Object obj)
4473 void *po;
4474 struct mem_node *m;
4476 if (INTEGERP (obj))
4477 return;
4479 po = (void *) XPNTR (obj);
4480 m = mem_find (po);
4482 if (m != MEM_NIL)
4484 int mark_p = 0;
4486 switch (XTYPE (obj))
4488 case Lisp_String:
4489 mark_p = (live_string_p (m, po)
4490 && !STRING_MARKED_P ((struct Lisp_String *) po));
4491 break;
4493 case Lisp_Cons:
4494 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4495 break;
4497 case Lisp_Symbol:
4498 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4499 break;
4501 case Lisp_Float:
4502 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4503 break;
4505 case Lisp_Vectorlike:
4506 /* Note: can't check BUFFERP before we know it's a
4507 buffer because checking that dereferences the pointer
4508 PO which might point anywhere. */
4509 if (live_vector_p (m, po))
4510 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4511 else if (live_buffer_p (m, po))
4512 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4513 break;
4515 case Lisp_Misc:
4516 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4517 break;
4519 default:
4520 break;
4523 if (mark_p)
4525 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4526 if (nzombies < MAX_ZOMBIES)
4527 zombies[nzombies] = obj;
4528 ++nzombies;
4529 #endif
4530 mark_object (obj);
4536 /* If P points to Lisp data, mark that as live if it isn't already
4537 marked. */
4539 static inline void
4540 mark_maybe_pointer (void *p)
4542 struct mem_node *m;
4544 /* Quickly rule out some values which can't point to Lisp data.
4545 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4546 Otherwise, assume that Lisp data is aligned on even addresses. */
4547 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4548 return;
4550 m = mem_find (p);
4551 if (m != MEM_NIL)
4553 Lisp_Object obj = Qnil;
4555 switch (m->type)
4557 case MEM_TYPE_NON_LISP:
4558 /* Nothing to do; not a pointer to Lisp memory. */
4559 break;
4561 case MEM_TYPE_BUFFER:
4562 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4563 XSETVECTOR (obj, p);
4564 break;
4566 case MEM_TYPE_CONS:
4567 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4568 XSETCONS (obj, p);
4569 break;
4571 case MEM_TYPE_STRING:
4572 if (live_string_p (m, p)
4573 && !STRING_MARKED_P ((struct Lisp_String *) p))
4574 XSETSTRING (obj, p);
4575 break;
4577 case MEM_TYPE_MISC:
4578 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4579 XSETMISC (obj, p);
4580 break;
4582 case MEM_TYPE_SYMBOL:
4583 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4584 XSETSYMBOL (obj, p);
4585 break;
4587 case MEM_TYPE_FLOAT:
4588 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4589 XSETFLOAT (obj, p);
4590 break;
4592 case MEM_TYPE_VECTORLIKE:
4593 case MEM_TYPE_VECTOR_BLOCK:
4594 if (live_vector_p (m, p))
4596 Lisp_Object tem;
4597 XSETVECTOR (tem, p);
4598 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4599 obj = tem;
4601 break;
4603 default:
4604 abort ();
4607 if (!NILP (obj))
4608 mark_object (obj);
4613 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4614 a smaller alignment than GCC's __alignof__ and mark_memory might
4615 miss objects if __alignof__ were used. */
4616 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4618 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4619 not suffice, which is the typical case. A host where a Lisp_Object is
4620 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4621 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4622 suffice to widen it to to a Lisp_Object and check it that way. */
4623 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4624 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4625 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4626 nor mark_maybe_object can follow the pointers. This should not occur on
4627 any practical porting target. */
4628 # error "MSB type bits straddle pointer-word boundaries"
4629 # endif
4630 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4631 pointer words that hold pointers ORed with type bits. */
4632 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4633 #else
4634 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4635 words that hold unmodified pointers. */
4636 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4637 #endif
4639 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4640 or END+OFFSET..START. */
4642 static void
4643 mark_memory (void *start, void *end)
4644 #ifdef __clang__
4645 /* Do not allow -faddress-sanitizer to check this function, since it
4646 crosses the function stack boundary, and thus would yield many
4647 false positives. */
4648 __attribute__((no_address_safety_analysis))
4649 #endif
4651 void **pp;
4652 int i;
4654 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4655 nzombies = 0;
4656 #endif
4658 /* Make START the pointer to the start of the memory region,
4659 if it isn't already. */
4660 if (end < start)
4662 void *tem = start;
4663 start = end;
4664 end = tem;
4667 /* Mark Lisp data pointed to. This is necessary because, in some
4668 situations, the C compiler optimizes Lisp objects away, so that
4669 only a pointer to them remains. Example:
4671 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4674 Lisp_Object obj = build_string ("test");
4675 struct Lisp_String *s = XSTRING (obj);
4676 Fgarbage_collect ();
4677 fprintf (stderr, "test `%s'\n", s->data);
4678 return Qnil;
4681 Here, `obj' isn't really used, and the compiler optimizes it
4682 away. The only reference to the life string is through the
4683 pointer `s'. */
4685 for (pp = start; (void *) pp < end; pp++)
4686 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4688 void *p = *(void **) ((char *) pp + i);
4689 mark_maybe_pointer (p);
4690 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4691 mark_maybe_object (XIL ((intptr_t) p));
4695 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4696 the GCC system configuration. In gcc 3.2, the only systems for
4697 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4698 by others?) and ns32k-pc532-min. */
4700 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4702 static int setjmp_tested_p, longjmps_done;
4704 #define SETJMP_WILL_LIKELY_WORK "\
4706 Emacs garbage collector has been changed to use conservative stack\n\
4707 marking. Emacs has determined that the method it uses to do the\n\
4708 marking will likely work on your system, but this isn't sure.\n\
4710 If you are a system-programmer, or can get the help of a local wizard\n\
4711 who is, please take a look at the function mark_stack in alloc.c, and\n\
4712 verify that the methods used are appropriate for your system.\n\
4714 Please mail the result to <emacs-devel@gnu.org>.\n\
4717 #define SETJMP_WILL_NOT_WORK "\
4719 Emacs garbage collector has been changed to use conservative stack\n\
4720 marking. Emacs has determined that the default method it uses to do the\n\
4721 marking will not work on your system. We will need a system-dependent\n\
4722 solution for your system.\n\
4724 Please take a look at the function mark_stack in alloc.c, and\n\
4725 try to find a way to make it work on your system.\n\
4727 Note that you may get false negatives, depending on the compiler.\n\
4728 In particular, you need to use -O with GCC for this test.\n\
4730 Please mail the result to <emacs-devel@gnu.org>.\n\
4734 /* Perform a quick check if it looks like setjmp saves registers in a
4735 jmp_buf. Print a message to stderr saying so. When this test
4736 succeeds, this is _not_ a proof that setjmp is sufficient for
4737 conservative stack marking. Only the sources or a disassembly
4738 can prove that. */
4740 static void
4741 test_setjmp (void)
4743 char buf[10];
4744 register int x;
4745 jmp_buf jbuf;
4746 int result = 0;
4748 /* Arrange for X to be put in a register. */
4749 sprintf (buf, "1");
4750 x = strlen (buf);
4751 x = 2 * x - 1;
4753 setjmp (jbuf);
4754 if (longjmps_done == 1)
4756 /* Came here after the longjmp at the end of the function.
4758 If x == 1, the longjmp has restored the register to its
4759 value before the setjmp, and we can hope that setjmp
4760 saves all such registers in the jmp_buf, although that
4761 isn't sure.
4763 For other values of X, either something really strange is
4764 taking place, or the setjmp just didn't save the register. */
4766 if (x == 1)
4767 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4768 else
4770 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4771 exit (1);
4775 ++longjmps_done;
4776 x = 2;
4777 if (longjmps_done == 1)
4778 longjmp (jbuf, 1);
4781 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4784 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4786 /* Abort if anything GCPRO'd doesn't survive the GC. */
4788 static void
4789 check_gcpros (void)
4791 struct gcpro *p;
4792 ptrdiff_t i;
4794 for (p = gcprolist; p; p = p->next)
4795 for (i = 0; i < p->nvars; ++i)
4796 if (!survives_gc_p (p->var[i]))
4797 /* FIXME: It's not necessarily a bug. It might just be that the
4798 GCPRO is unnecessary or should release the object sooner. */
4799 abort ();
4802 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4804 static void
4805 dump_zombies (void)
4807 int i;
4809 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4810 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4812 fprintf (stderr, " %d = ", i);
4813 debug_print (zombies[i]);
4817 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4820 /* Mark live Lisp objects on the C stack.
4822 There are several system-dependent problems to consider when
4823 porting this to new architectures:
4825 Processor Registers
4827 We have to mark Lisp objects in CPU registers that can hold local
4828 variables or are used to pass parameters.
4830 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4831 something that either saves relevant registers on the stack, or
4832 calls mark_maybe_object passing it each register's contents.
4834 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4835 implementation assumes that calling setjmp saves registers we need
4836 to see in a jmp_buf which itself lies on the stack. This doesn't
4837 have to be true! It must be verified for each system, possibly
4838 by taking a look at the source code of setjmp.
4840 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4841 can use it as a machine independent method to store all registers
4842 to the stack. In this case the macros described in the previous
4843 two paragraphs are not used.
4845 Stack Layout
4847 Architectures differ in the way their processor stack is organized.
4848 For example, the stack might look like this
4850 +----------------+
4851 | Lisp_Object | size = 4
4852 +----------------+
4853 | something else | size = 2
4854 +----------------+
4855 | Lisp_Object | size = 4
4856 +----------------+
4857 | ... |
4859 In such a case, not every Lisp_Object will be aligned equally. To
4860 find all Lisp_Object on the stack it won't be sufficient to walk
4861 the stack in steps of 4 bytes. Instead, two passes will be
4862 necessary, one starting at the start of the stack, and a second
4863 pass starting at the start of the stack + 2. Likewise, if the
4864 minimal alignment of Lisp_Objects on the stack is 1, four passes
4865 would be necessary, each one starting with one byte more offset
4866 from the stack start. */
4868 static void
4869 mark_stack (void)
4871 void *end;
4873 #ifdef HAVE___BUILTIN_UNWIND_INIT
4874 /* Force callee-saved registers and register windows onto the stack.
4875 This is the preferred method if available, obviating the need for
4876 machine dependent methods. */
4877 __builtin_unwind_init ();
4878 end = &end;
4879 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4880 #ifndef GC_SAVE_REGISTERS_ON_STACK
4881 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4882 union aligned_jmpbuf {
4883 Lisp_Object o;
4884 jmp_buf j;
4885 } j;
4886 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4887 #endif
4888 /* This trick flushes the register windows so that all the state of
4889 the process is contained in the stack. */
4890 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4891 needed on ia64 too. See mach_dep.c, where it also says inline
4892 assembler doesn't work with relevant proprietary compilers. */
4893 #ifdef __sparc__
4894 #if defined (__sparc64__) && defined (__FreeBSD__)
4895 /* FreeBSD does not have a ta 3 handler. */
4896 asm ("flushw");
4897 #else
4898 asm ("ta 3");
4899 #endif
4900 #endif
4902 /* Save registers that we need to see on the stack. We need to see
4903 registers used to hold register variables and registers used to
4904 pass parameters. */
4905 #ifdef GC_SAVE_REGISTERS_ON_STACK
4906 GC_SAVE_REGISTERS_ON_STACK (end);
4907 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4909 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4910 setjmp will definitely work, test it
4911 and print a message with the result
4912 of the test. */
4913 if (!setjmp_tested_p)
4915 setjmp_tested_p = 1;
4916 test_setjmp ();
4918 #endif /* GC_SETJMP_WORKS */
4920 setjmp (j.j);
4921 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4922 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4923 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4925 /* This assumes that the stack is a contiguous region in memory. If
4926 that's not the case, something has to be done here to iterate
4927 over the stack segments. */
4928 mark_memory (stack_base, end);
4930 /* Allow for marking a secondary stack, like the register stack on the
4931 ia64. */
4932 #ifdef GC_MARK_SECONDARY_STACK
4933 GC_MARK_SECONDARY_STACK ();
4934 #endif
4936 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4937 check_gcpros ();
4938 #endif
4941 #endif /* GC_MARK_STACK != 0 */
4944 /* Determine whether it is safe to access memory at address P. */
4945 static int
4946 valid_pointer_p (void *p)
4948 #ifdef WINDOWSNT
4949 return w32_valid_pointer_p (p, 16);
4950 #else
4951 int fd[2];
4953 /* Obviously, we cannot just access it (we would SEGV trying), so we
4954 trick the o/s to tell us whether p is a valid pointer.
4955 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4956 not validate p in that case. */
4958 if (pipe (fd) == 0)
4960 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4961 emacs_close (fd[1]);
4962 emacs_close (fd[0]);
4963 return valid;
4966 return -1;
4967 #endif
4970 /* Return 1 if OBJ is a valid lisp object.
4971 Return 0 if OBJ is NOT a valid lisp object.
4972 Return -1 if we cannot validate OBJ.
4973 This function can be quite slow,
4974 so it should only be used in code for manual debugging. */
4977 valid_lisp_object_p (Lisp_Object obj)
4979 void *p;
4980 #if GC_MARK_STACK
4981 struct mem_node *m;
4982 #endif
4984 if (INTEGERP (obj))
4985 return 1;
4987 p = (void *) XPNTR (obj);
4988 if (PURE_POINTER_P (p))
4989 return 1;
4991 #if !GC_MARK_STACK
4992 return valid_pointer_p (p);
4993 #else
4995 m = mem_find (p);
4997 if (m == MEM_NIL)
4999 int valid = valid_pointer_p (p);
5000 if (valid <= 0)
5001 return valid;
5003 if (SUBRP (obj))
5004 return 1;
5006 return 0;
5009 switch (m->type)
5011 case MEM_TYPE_NON_LISP:
5012 return 0;
5014 case MEM_TYPE_BUFFER:
5015 return live_buffer_p (m, p);
5017 case MEM_TYPE_CONS:
5018 return live_cons_p (m, p);
5020 case MEM_TYPE_STRING:
5021 return live_string_p (m, p);
5023 case MEM_TYPE_MISC:
5024 return live_misc_p (m, p);
5026 case MEM_TYPE_SYMBOL:
5027 return live_symbol_p (m, p);
5029 case MEM_TYPE_FLOAT:
5030 return live_float_p (m, p);
5032 case MEM_TYPE_VECTORLIKE:
5033 case MEM_TYPE_VECTOR_BLOCK:
5034 return live_vector_p (m, p);
5036 default:
5037 break;
5040 return 0;
5041 #endif
5047 /***********************************************************************
5048 Pure Storage Management
5049 ***********************************************************************/
5051 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5052 pointer to it. TYPE is the Lisp type for which the memory is
5053 allocated. TYPE < 0 means it's not used for a Lisp object. */
5055 static void *
5056 pure_alloc (size_t size, int type)
5058 void *result;
5059 #if USE_LSB_TAG
5060 size_t alignment = (1 << GCTYPEBITS);
5061 #else
5062 size_t alignment = sizeof (EMACS_INT);
5064 /* Give Lisp_Floats an extra alignment. */
5065 if (type == Lisp_Float)
5067 #if defined __GNUC__ && __GNUC__ >= 2
5068 alignment = __alignof (struct Lisp_Float);
5069 #else
5070 alignment = sizeof (struct Lisp_Float);
5071 #endif
5073 #endif
5075 again:
5076 if (type >= 0)
5078 /* Allocate space for a Lisp object from the beginning of the free
5079 space with taking account of alignment. */
5080 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5081 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5083 else
5085 /* Allocate space for a non-Lisp object from the end of the free
5086 space. */
5087 pure_bytes_used_non_lisp += size;
5088 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5090 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5092 if (pure_bytes_used <= pure_size)
5093 return result;
5095 /* Don't allocate a large amount here,
5096 because it might get mmap'd and then its address
5097 might not be usable. */
5098 purebeg = xmalloc (10000);
5099 pure_size = 10000;
5100 pure_bytes_used_before_overflow += pure_bytes_used - size;
5101 pure_bytes_used = 0;
5102 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5103 goto again;
5107 /* Print a warning if PURESIZE is too small. */
5109 void
5110 check_pure_size (void)
5112 if (pure_bytes_used_before_overflow)
5113 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5114 " bytes needed)"),
5115 pure_bytes_used + pure_bytes_used_before_overflow);
5119 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5120 the non-Lisp data pool of the pure storage, and return its start
5121 address. Return NULL if not found. */
5123 static char *
5124 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5126 int i;
5127 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5128 const unsigned char *p;
5129 char *non_lisp_beg;
5131 if (pure_bytes_used_non_lisp <= nbytes)
5132 return NULL;
5134 /* Set up the Boyer-Moore table. */
5135 skip = nbytes + 1;
5136 for (i = 0; i < 256; i++)
5137 bm_skip[i] = skip;
5139 p = (const unsigned char *) data;
5140 while (--skip > 0)
5141 bm_skip[*p++] = skip;
5143 last_char_skip = bm_skip['\0'];
5145 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5146 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5148 /* See the comments in the function `boyer_moore' (search.c) for the
5149 use of `infinity'. */
5150 infinity = pure_bytes_used_non_lisp + 1;
5151 bm_skip['\0'] = infinity;
5153 p = (const unsigned char *) non_lisp_beg + nbytes;
5154 start = 0;
5157 /* Check the last character (== '\0'). */
5160 start += bm_skip[*(p + start)];
5162 while (start <= start_max);
5164 if (start < infinity)
5165 /* Couldn't find the last character. */
5166 return NULL;
5168 /* No less than `infinity' means we could find the last
5169 character at `p[start - infinity]'. */
5170 start -= infinity;
5172 /* Check the remaining characters. */
5173 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5174 /* Found. */
5175 return non_lisp_beg + start;
5177 start += last_char_skip;
5179 while (start <= start_max);
5181 return NULL;
5185 /* Return a string allocated in pure space. DATA is a buffer holding
5186 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5187 non-zero means make the result string multibyte.
5189 Must get an error if pure storage is full, since if it cannot hold
5190 a large string it may be able to hold conses that point to that
5191 string; then the string is not protected from gc. */
5193 Lisp_Object
5194 make_pure_string (const char *data,
5195 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5197 Lisp_Object string;
5198 struct Lisp_String *s;
5200 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5201 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5202 if (s->data == NULL)
5204 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5205 memcpy (s->data, data, nbytes);
5206 s->data[nbytes] = '\0';
5208 s->size = nchars;
5209 s->size_byte = multibyte ? nbytes : -1;
5210 s->intervals = NULL_INTERVAL;
5211 XSETSTRING (string, s);
5212 return string;
5215 /* Return a string a string allocated in pure space. Do not allocate
5216 the string data, just point to DATA. */
5218 Lisp_Object
5219 make_pure_c_string (const char *data)
5221 Lisp_Object string;
5222 struct Lisp_String *s;
5223 ptrdiff_t nchars = strlen (data);
5225 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5226 s->size = nchars;
5227 s->size_byte = -1;
5228 s->data = (unsigned char *) data;
5229 s->intervals = NULL_INTERVAL;
5230 XSETSTRING (string, s);
5231 return string;
5234 /* Return a cons allocated from pure space. Give it pure copies
5235 of CAR as car and CDR as cdr. */
5237 Lisp_Object
5238 pure_cons (Lisp_Object car, Lisp_Object cdr)
5240 register Lisp_Object new;
5241 struct Lisp_Cons *p;
5243 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5244 XSETCONS (new, p);
5245 XSETCAR (new, Fpurecopy (car));
5246 XSETCDR (new, Fpurecopy (cdr));
5247 return new;
5251 /* Value is a float object with value NUM allocated from pure space. */
5253 static Lisp_Object
5254 make_pure_float (double num)
5256 register Lisp_Object new;
5257 struct Lisp_Float *p;
5259 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5260 XSETFLOAT (new, p);
5261 XFLOAT_INIT (new, num);
5262 return new;
5266 /* Return a vector with room for LEN Lisp_Objects allocated from
5267 pure space. */
5269 static Lisp_Object
5270 make_pure_vector (ptrdiff_t len)
5272 Lisp_Object new;
5273 struct Lisp_Vector *p;
5274 size_t size = (offsetof (struct Lisp_Vector, contents)
5275 + len * sizeof (Lisp_Object));
5277 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5278 XSETVECTOR (new, p);
5279 XVECTOR (new)->header.size = len;
5280 return new;
5284 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5285 doc: /* Make a copy of object OBJ in pure storage.
5286 Recursively copies contents of vectors and cons cells.
5287 Does not copy symbols. Copies strings without text properties. */)
5288 (register Lisp_Object obj)
5290 if (NILP (Vpurify_flag))
5291 return obj;
5293 if (PURE_POINTER_P (XPNTR (obj)))
5294 return obj;
5296 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5298 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5299 if (!NILP (tmp))
5300 return tmp;
5303 if (CONSP (obj))
5304 obj = pure_cons (XCAR (obj), XCDR (obj));
5305 else if (FLOATP (obj))
5306 obj = make_pure_float (XFLOAT_DATA (obj));
5307 else if (STRINGP (obj))
5308 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5309 SBYTES (obj),
5310 STRING_MULTIBYTE (obj));
5311 else if (COMPILEDP (obj) || VECTORP (obj))
5313 register struct Lisp_Vector *vec;
5314 register ptrdiff_t i;
5315 ptrdiff_t size;
5317 size = ASIZE (obj);
5318 if (size & PSEUDOVECTOR_FLAG)
5319 size &= PSEUDOVECTOR_SIZE_MASK;
5320 vec = XVECTOR (make_pure_vector (size));
5321 for (i = 0; i < size; i++)
5322 vec->contents[i] = Fpurecopy (AREF (obj, i));
5323 if (COMPILEDP (obj))
5325 XSETPVECTYPE (vec, PVEC_COMPILED);
5326 XSETCOMPILED (obj, vec);
5328 else
5329 XSETVECTOR (obj, vec);
5331 else if (MARKERP (obj))
5332 error ("Attempt to copy a marker to pure storage");
5333 else
5334 /* Not purified, don't hash-cons. */
5335 return obj;
5337 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5338 Fputhash (obj, obj, Vpurify_flag);
5340 return obj;
5345 /***********************************************************************
5346 Protection from GC
5347 ***********************************************************************/
5349 /* Put an entry in staticvec, pointing at the variable with address
5350 VARADDRESS. */
5352 void
5353 staticpro (Lisp_Object *varaddress)
5355 staticvec[staticidx++] = varaddress;
5356 if (staticidx >= NSTATICS)
5357 abort ();
5361 /***********************************************************************
5362 Protection from GC
5363 ***********************************************************************/
5365 /* Temporarily prevent garbage collection. */
5367 ptrdiff_t
5368 inhibit_garbage_collection (void)
5370 ptrdiff_t count = SPECPDL_INDEX ();
5372 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5373 return count;
5377 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5378 doc: /* Reclaim storage for Lisp objects no longer needed.
5379 Garbage collection happens automatically if you cons more than
5380 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5381 `garbage-collect' normally returns a list with info on amount of space in use:
5382 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5383 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
5384 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5385 (USED-STRINGS . FREE-STRINGS))
5386 However, if there was overflow in pure space, `garbage-collect'
5387 returns nil, because real GC can't be done.
5388 See Info node `(elisp)Garbage Collection'. */)
5389 (void)
5391 register struct specbinding *bind;
5392 char stack_top_variable;
5393 ptrdiff_t i;
5394 int message_p;
5395 Lisp_Object total[8];
5396 ptrdiff_t count = SPECPDL_INDEX ();
5397 EMACS_TIME t1, t2, t3;
5399 if (abort_on_gc)
5400 abort ();
5402 /* Can't GC if pure storage overflowed because we can't determine
5403 if something is a pure object or not. */
5404 if (pure_bytes_used_before_overflow)
5405 return Qnil;
5407 CHECK_CONS_LIST ();
5409 /* Don't keep undo information around forever.
5410 Do this early on, so it is no problem if the user quits. */
5412 register struct buffer *nextb = all_buffers;
5414 while (nextb)
5416 /* If a buffer's undo list is Qt, that means that undo is
5417 turned off in that buffer. Calling truncate_undo_list on
5418 Qt tends to return NULL, which effectively turns undo back on.
5419 So don't call truncate_undo_list if undo_list is Qt. */
5420 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5421 && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5422 truncate_undo_list (nextb);
5424 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5425 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5426 && ! nextb->text->inhibit_shrinking)
5428 /* If a buffer's gap size is more than 10% of the buffer
5429 size, or larger than 2000 bytes, then shrink it
5430 accordingly. Keep a minimum size of 20 bytes. */
5431 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5433 if (nextb->text->gap_size > size)
5435 struct buffer *save_current = current_buffer;
5436 current_buffer = nextb;
5437 make_gap (-(nextb->text->gap_size - size));
5438 current_buffer = save_current;
5442 nextb = nextb->header.next.buffer;
5446 EMACS_GET_TIME (t1);
5448 /* In case user calls debug_print during GC,
5449 don't let that cause a recursive GC. */
5450 consing_since_gc = 0;
5452 /* Save what's currently displayed in the echo area. */
5453 message_p = push_message ();
5454 record_unwind_protect (pop_message_unwind, Qnil);
5456 /* Save a copy of the contents of the stack, for debugging. */
5457 #if MAX_SAVE_STACK > 0
5458 if (NILP (Vpurify_flag))
5460 char *stack;
5461 ptrdiff_t stack_size;
5462 if (&stack_top_variable < stack_bottom)
5464 stack = &stack_top_variable;
5465 stack_size = stack_bottom - &stack_top_variable;
5467 else
5469 stack = stack_bottom;
5470 stack_size = &stack_top_variable - stack_bottom;
5472 if (stack_size <= MAX_SAVE_STACK)
5474 if (stack_copy_size < stack_size)
5476 stack_copy = xrealloc (stack_copy, stack_size);
5477 stack_copy_size = stack_size;
5479 memcpy (stack_copy, stack, stack_size);
5482 #endif /* MAX_SAVE_STACK > 0 */
5484 if (garbage_collection_messages)
5485 message1_nolog ("Garbage collecting...");
5487 BLOCK_INPUT;
5489 shrink_regexp_cache ();
5491 gc_in_progress = 1;
5493 /* clear_marks (); */
5495 /* Mark all the special slots that serve as the roots of accessibility. */
5497 for (i = 0; i < staticidx; i++)
5498 mark_object (*staticvec[i]);
5500 for (bind = specpdl; bind != specpdl_ptr; bind++)
5502 mark_object (bind->symbol);
5503 mark_object (bind->old_value);
5505 mark_terminals ();
5506 mark_kboards ();
5507 mark_ttys ();
5509 #ifdef USE_GTK
5511 extern void xg_mark_data (void);
5512 xg_mark_data ();
5514 #endif
5516 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5517 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5518 mark_stack ();
5519 #else
5521 register struct gcpro *tail;
5522 for (tail = gcprolist; tail; tail = tail->next)
5523 for (i = 0; i < tail->nvars; i++)
5524 mark_object (tail->var[i]);
5526 mark_byte_stack ();
5528 struct catchtag *catch;
5529 struct handler *handler;
5531 for (catch = catchlist; catch; catch = catch->next)
5533 mark_object (catch->tag);
5534 mark_object (catch->val);
5536 for (handler = handlerlist; handler; handler = handler->next)
5538 mark_object (handler->handler);
5539 mark_object (handler->var);
5542 mark_backtrace ();
5543 #endif
5545 #ifdef HAVE_WINDOW_SYSTEM
5546 mark_fringe_data ();
5547 #endif
5549 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5550 mark_stack ();
5551 #endif
5553 /* Everything is now marked, except for the things that require special
5554 finalization, i.e. the undo_list.
5555 Look thru every buffer's undo list
5556 for elements that update markers that were not marked,
5557 and delete them. */
5559 register struct buffer *nextb = all_buffers;
5561 while (nextb)
5563 /* If a buffer's undo list is Qt, that means that undo is
5564 turned off in that buffer. Calling truncate_undo_list on
5565 Qt tends to return NULL, which effectively turns undo back on.
5566 So don't call truncate_undo_list if undo_list is Qt. */
5567 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5569 Lisp_Object tail, prev;
5570 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5571 prev = Qnil;
5572 while (CONSP (tail))
5574 if (CONSP (XCAR (tail))
5575 && MARKERP (XCAR (XCAR (tail)))
5576 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5578 if (NILP (prev))
5579 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5580 else
5582 tail = XCDR (tail);
5583 XSETCDR (prev, tail);
5586 else
5588 prev = tail;
5589 tail = XCDR (tail);
5593 /* Now that we have stripped the elements that need not be in the
5594 undo_list any more, we can finally mark the list. */
5595 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5597 nextb = nextb->header.next.buffer;
5601 gc_sweep ();
5603 /* Clear the mark bits that we set in certain root slots. */
5605 unmark_byte_stack ();
5606 VECTOR_UNMARK (&buffer_defaults);
5607 VECTOR_UNMARK (&buffer_local_symbols);
5609 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5610 dump_zombies ();
5611 #endif
5613 UNBLOCK_INPUT;
5615 CHECK_CONS_LIST ();
5617 /* clear_marks (); */
5618 gc_in_progress = 0;
5620 consing_since_gc = 0;
5621 if (gc_cons_threshold < 10000)
5622 gc_cons_threshold = 10000;
5624 gc_relative_threshold = 0;
5625 if (FLOATP (Vgc_cons_percentage))
5626 { /* Set gc_cons_combined_threshold. */
5627 double tot = 0;
5629 tot += total_conses * sizeof (struct Lisp_Cons);
5630 tot += total_symbols * sizeof (struct Lisp_Symbol);
5631 tot += total_markers * sizeof (union Lisp_Misc);
5632 tot += total_string_size;
5633 tot += total_vector_size * sizeof (Lisp_Object);
5634 tot += total_floats * sizeof (struct Lisp_Float);
5635 tot += total_intervals * sizeof (struct interval);
5636 tot += total_strings * sizeof (struct Lisp_String);
5638 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5639 if (0 < tot)
5641 if (tot < TYPE_MAXIMUM (EMACS_INT))
5642 gc_relative_threshold = tot;
5643 else
5644 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5648 if (garbage_collection_messages)
5650 if (message_p || minibuf_level > 0)
5651 restore_message ();
5652 else
5653 message1_nolog ("Garbage collecting...done");
5656 unbind_to (count, Qnil);
5658 total[0] = Fcons (make_number (total_conses),
5659 make_number (total_free_conses));
5660 total[1] = Fcons (make_number (total_symbols),
5661 make_number (total_free_symbols));
5662 total[2] = Fcons (make_number (total_markers),
5663 make_number (total_free_markers));
5664 total[3] = make_number (total_string_size);
5665 total[4] = make_number (total_vector_size);
5666 total[5] = Fcons (make_number (total_floats),
5667 make_number (total_free_floats));
5668 total[6] = Fcons (make_number (total_intervals),
5669 make_number (total_free_intervals));
5670 total[7] = Fcons (make_number (total_strings),
5671 make_number (total_free_strings));
5673 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5675 /* Compute average percentage of zombies. */
5676 double nlive = 0;
5678 for (i = 0; i < 7; ++i)
5679 if (CONSP (total[i]))
5680 nlive += XFASTINT (XCAR (total[i]));
5682 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5683 max_live = max (nlive, max_live);
5684 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5685 max_zombies = max (nzombies, max_zombies);
5686 ++ngcs;
5688 #endif
5690 if (!NILP (Vpost_gc_hook))
5692 ptrdiff_t gc_count = inhibit_garbage_collection ();
5693 safe_run_hooks (Qpost_gc_hook);
5694 unbind_to (gc_count, Qnil);
5697 /* Accumulate statistics. */
5698 if (FLOATP (Vgc_elapsed))
5700 EMACS_GET_TIME (t2);
5701 EMACS_SUB_TIME (t3, t2, t1);
5702 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5703 + EMACS_TIME_TO_DOUBLE (t3));
5706 gcs_done++;
5708 return Flist (sizeof total / sizeof *total, total);
5712 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5713 only interesting objects referenced from glyphs are strings. */
5715 static void
5716 mark_glyph_matrix (struct glyph_matrix *matrix)
5718 struct glyph_row *row = matrix->rows;
5719 struct glyph_row *end = row + matrix->nrows;
5721 for (; row < end; ++row)
5722 if (row->enabled_p)
5724 int area;
5725 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5727 struct glyph *glyph = row->glyphs[area];
5728 struct glyph *end_glyph = glyph + row->used[area];
5730 for (; glyph < end_glyph; ++glyph)
5731 if (STRINGP (glyph->object)
5732 && !STRING_MARKED_P (XSTRING (glyph->object)))
5733 mark_object (glyph->object);
5739 /* Mark Lisp faces in the face cache C. */
5741 static void
5742 mark_face_cache (struct face_cache *c)
5744 if (c)
5746 int i, j;
5747 for (i = 0; i < c->used; ++i)
5749 struct face *face = FACE_FROM_ID (c->f, i);
5751 if (face)
5753 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5754 mark_object (face->lface[j]);
5762 /* Mark reference to a Lisp_Object.
5763 If the object referred to has not been seen yet, recursively mark
5764 all the references contained in it. */
5766 #define LAST_MARKED_SIZE 500
5767 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5768 static int last_marked_index;
5770 /* For debugging--call abort when we cdr down this many
5771 links of a list, in mark_object. In debugging,
5772 the call to abort will hit a breakpoint.
5773 Normally this is zero and the check never goes off. */
5774 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5776 static void
5777 mark_vectorlike (struct Lisp_Vector *ptr)
5779 ptrdiff_t size = ptr->header.size;
5780 ptrdiff_t i;
5782 eassert (!VECTOR_MARKED_P (ptr));
5783 VECTOR_MARK (ptr); /* Else mark it. */
5784 if (size & PSEUDOVECTOR_FLAG)
5785 size &= PSEUDOVECTOR_SIZE_MASK;
5787 /* Note that this size is not the memory-footprint size, but only
5788 the number of Lisp_Object fields that we should trace.
5789 The distinction is used e.g. by Lisp_Process which places extra
5790 non-Lisp_Object fields at the end of the structure... */
5791 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5792 mark_object (ptr->contents[i]);
5795 /* Like mark_vectorlike but optimized for char-tables (and
5796 sub-char-tables) assuming that the contents are mostly integers or
5797 symbols. */
5799 static void
5800 mark_char_table (struct Lisp_Vector *ptr)
5802 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5803 int i;
5805 eassert (!VECTOR_MARKED_P (ptr));
5806 VECTOR_MARK (ptr);
5807 for (i = 0; i < size; i++)
5809 Lisp_Object val = ptr->contents[i];
5811 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5812 continue;
5813 if (SUB_CHAR_TABLE_P (val))
5815 if (! VECTOR_MARKED_P (XVECTOR (val)))
5816 mark_char_table (XVECTOR (val));
5818 else
5819 mark_object (val);
5823 /* Mark the chain of overlays starting at PTR. */
5825 static void
5826 mark_overlay (struct Lisp_Overlay *ptr)
5828 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5830 ptr->gcmarkbit = 1;
5831 mark_object (ptr->start);
5832 mark_object (ptr->end);
5833 mark_object (ptr->plist);
5837 /* Mark Lisp_Objects and special pointers in BUFFER. */
5839 static void
5840 mark_buffer (struct buffer *buffer)
5842 /* This is handled much like other pseudovectors... */
5843 mark_vectorlike ((struct Lisp_Vector *) buffer);
5845 /* ...but there are some buffer-specific things. */
5847 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5849 /* For now, we just don't mark the undo_list. It's done later in
5850 a special way just before the sweep phase, and after stripping
5851 some of its elements that are not needed any more. */
5853 mark_overlay (buffer->overlays_before);
5854 mark_overlay (buffer->overlays_after);
5856 /* If this is an indirect buffer, mark its base buffer. */
5857 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5858 mark_buffer (buffer->base_buffer);
5861 /* Determine type of generic Lisp_Object and mark it accordingly. */
5863 void
5864 mark_object (Lisp_Object arg)
5866 register Lisp_Object obj = arg;
5867 #ifdef GC_CHECK_MARKED_OBJECTS
5868 void *po;
5869 struct mem_node *m;
5870 #endif
5871 ptrdiff_t cdr_count = 0;
5873 loop:
5875 if (PURE_POINTER_P (XPNTR (obj)))
5876 return;
5878 last_marked[last_marked_index++] = obj;
5879 if (last_marked_index == LAST_MARKED_SIZE)
5880 last_marked_index = 0;
5882 /* Perform some sanity checks on the objects marked here. Abort if
5883 we encounter an object we know is bogus. This increases GC time
5884 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5885 #ifdef GC_CHECK_MARKED_OBJECTS
5887 po = (void *) XPNTR (obj);
5889 /* Check that the object pointed to by PO is known to be a Lisp
5890 structure allocated from the heap. */
5891 #define CHECK_ALLOCATED() \
5892 do { \
5893 m = mem_find (po); \
5894 if (m == MEM_NIL) \
5895 abort (); \
5896 } while (0)
5898 /* Check that the object pointed to by PO is live, using predicate
5899 function LIVEP. */
5900 #define CHECK_LIVE(LIVEP) \
5901 do { \
5902 if (!LIVEP (m, po)) \
5903 abort (); \
5904 } while (0)
5906 /* Check both of the above conditions. */
5907 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5908 do { \
5909 CHECK_ALLOCATED (); \
5910 CHECK_LIVE (LIVEP); \
5911 } while (0) \
5913 #else /* not GC_CHECK_MARKED_OBJECTS */
5915 #define CHECK_LIVE(LIVEP) (void) 0
5916 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5918 #endif /* not GC_CHECK_MARKED_OBJECTS */
5920 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5922 case Lisp_String:
5924 register struct Lisp_String *ptr = XSTRING (obj);
5925 if (STRING_MARKED_P (ptr))
5926 break;
5927 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5928 MARK_STRING (ptr);
5929 MARK_INTERVAL_TREE (ptr->intervals);
5930 #ifdef GC_CHECK_STRING_BYTES
5931 /* Check that the string size recorded in the string is the
5932 same as the one recorded in the sdata structure. */
5933 CHECK_STRING_BYTES (ptr);
5934 #endif /* GC_CHECK_STRING_BYTES */
5936 break;
5938 case Lisp_Vectorlike:
5940 register struct Lisp_Vector *ptr = XVECTOR (obj);
5941 register ptrdiff_t pvectype;
5943 if (VECTOR_MARKED_P (ptr))
5944 break;
5946 #ifdef GC_CHECK_MARKED_OBJECTS
5947 m = mem_find (po);
5948 if (m == MEM_NIL && !SUBRP (obj)
5949 && po != &buffer_defaults
5950 && po != &buffer_local_symbols)
5951 abort ();
5952 #endif /* GC_CHECK_MARKED_OBJECTS */
5954 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5955 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5956 >> PSEUDOVECTOR_SIZE_BITS);
5957 else
5958 pvectype = 0;
5960 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5961 CHECK_LIVE (live_vector_p);
5963 switch (pvectype)
5965 case PVEC_BUFFER:
5966 #ifdef GC_CHECK_MARKED_OBJECTS
5967 if (po != &buffer_defaults && po != &buffer_local_symbols)
5969 struct buffer *b = all_buffers;
5970 for (; b && b != po; b = b->header.next.buffer)
5972 if (b == NULL)
5973 abort ();
5975 #endif /* GC_CHECK_MARKED_OBJECTS */
5976 mark_buffer ((struct buffer *) ptr);
5977 break;
5979 case PVEC_COMPILED:
5980 { /* We could treat this just like a vector, but it is better
5981 to save the COMPILED_CONSTANTS element for last and avoid
5982 recursion there. */
5983 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5984 int i;
5986 VECTOR_MARK (ptr);
5987 for (i = 0; i < size; i++)
5988 if (i != COMPILED_CONSTANTS)
5989 mark_object (ptr->contents[i]);
5990 if (size > COMPILED_CONSTANTS)
5992 obj = ptr->contents[COMPILED_CONSTANTS];
5993 goto loop;
5996 break;
5998 case PVEC_FRAME:
6000 mark_vectorlike (ptr);
6001 mark_face_cache (((struct frame *) ptr)->face_cache);
6003 break;
6005 case PVEC_WINDOW:
6007 struct window *w = (struct window *) ptr;
6009 mark_vectorlike (ptr);
6010 /* Mark glyphs for leaf windows. Marking window
6011 matrices is sufficient because frame matrices
6012 use the same glyph memory. */
6013 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
6015 mark_glyph_matrix (w->current_matrix);
6016 mark_glyph_matrix (w->desired_matrix);
6019 break;
6021 case PVEC_HASH_TABLE:
6023 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6025 mark_vectorlike (ptr);
6026 /* If hash table is not weak, mark all keys and values.
6027 For weak tables, mark only the vector. */
6028 if (NILP (h->weak))
6029 mark_object (h->key_and_value);
6030 else
6031 VECTOR_MARK (XVECTOR (h->key_and_value));
6033 break;
6035 case PVEC_CHAR_TABLE:
6036 mark_char_table (ptr);
6037 break;
6039 case PVEC_BOOL_VECTOR:
6040 /* No Lisp_Objects to mark in a bool vector. */
6041 VECTOR_MARK (ptr);
6042 break;
6044 case PVEC_SUBR:
6045 break;
6047 case PVEC_FREE:
6048 abort ();
6050 default:
6051 mark_vectorlike (ptr);
6054 break;
6056 case Lisp_Symbol:
6058 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6059 struct Lisp_Symbol *ptrx;
6061 if (ptr->gcmarkbit)
6062 break;
6063 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6064 ptr->gcmarkbit = 1;
6065 mark_object (ptr->function);
6066 mark_object (ptr->plist);
6067 switch (ptr->redirect)
6069 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6070 case SYMBOL_VARALIAS:
6072 Lisp_Object tem;
6073 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6074 mark_object (tem);
6075 break;
6077 case SYMBOL_LOCALIZED:
6079 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6080 /* If the value is forwarded to a buffer or keyboard field,
6081 these are marked when we see the corresponding object.
6082 And if it's forwarded to a C variable, either it's not
6083 a Lisp_Object var, or it's staticpro'd already. */
6084 mark_object (blv->where);
6085 mark_object (blv->valcell);
6086 mark_object (blv->defcell);
6087 break;
6089 case SYMBOL_FORWARDED:
6090 /* If the value is forwarded to a buffer or keyboard field,
6091 these are marked when we see the corresponding object.
6092 And if it's forwarded to a C variable, either it's not
6093 a Lisp_Object var, or it's staticpro'd already. */
6094 break;
6095 default: abort ();
6097 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6098 MARK_STRING (XSTRING (ptr->xname));
6099 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
6101 ptr = ptr->next;
6102 if (ptr)
6104 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6105 XSETSYMBOL (obj, ptrx);
6106 goto loop;
6109 break;
6111 case Lisp_Misc:
6112 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6114 if (XMISCANY (obj)->gcmarkbit)
6115 break;
6117 switch (XMISCTYPE (obj))
6119 case Lisp_Misc_Marker:
6120 /* DO NOT mark thru the marker's chain.
6121 The buffer's markers chain does not preserve markers from gc;
6122 instead, markers are removed from the chain when freed by gc. */
6123 XMISCANY (obj)->gcmarkbit = 1;
6124 break;
6126 case Lisp_Misc_Save_Value:
6127 XMISCANY (obj)->gcmarkbit = 1;
6128 #if GC_MARK_STACK
6130 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6131 /* If DOGC is set, POINTER is the address of a memory
6132 area containing INTEGER potential Lisp_Objects. */
6133 if (ptr->dogc)
6135 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6136 ptrdiff_t nelt;
6137 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6138 mark_maybe_object (*p);
6141 #endif
6142 break;
6144 case Lisp_Misc_Overlay:
6145 mark_overlay (XOVERLAY (obj));
6146 break;
6148 default:
6149 abort ();
6151 break;
6153 case Lisp_Cons:
6155 register struct Lisp_Cons *ptr = XCONS (obj);
6156 if (CONS_MARKED_P (ptr))
6157 break;
6158 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6159 CONS_MARK (ptr);
6160 /* If the cdr is nil, avoid recursion for the car. */
6161 if (EQ (ptr->u.cdr, Qnil))
6163 obj = ptr->car;
6164 cdr_count = 0;
6165 goto loop;
6167 mark_object (ptr->car);
6168 obj = ptr->u.cdr;
6169 cdr_count++;
6170 if (cdr_count == mark_object_loop_halt)
6171 abort ();
6172 goto loop;
6175 case Lisp_Float:
6176 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6177 FLOAT_MARK (XFLOAT (obj));
6178 break;
6180 case_Lisp_Int:
6181 break;
6183 default:
6184 abort ();
6187 #undef CHECK_LIVE
6188 #undef CHECK_ALLOCATED
6189 #undef CHECK_ALLOCATED_AND_LIVE
6191 /* Mark the Lisp pointers in the terminal objects.
6192 Called by Fgarbage_collect. */
6194 static void
6195 mark_terminals (void)
6197 struct terminal *t;
6198 for (t = terminal_list; t; t = t->next_terminal)
6200 eassert (t->name != NULL);
6201 #ifdef HAVE_WINDOW_SYSTEM
6202 /* If a terminal object is reachable from a stacpro'ed object,
6203 it might have been marked already. Make sure the image cache
6204 gets marked. */
6205 mark_image_cache (t->image_cache);
6206 #endif /* HAVE_WINDOW_SYSTEM */
6207 if (!VECTOR_MARKED_P (t))
6208 mark_vectorlike ((struct Lisp_Vector *)t);
6214 /* Value is non-zero if OBJ will survive the current GC because it's
6215 either marked or does not need to be marked to survive. */
6218 survives_gc_p (Lisp_Object obj)
6220 int survives_p;
6222 switch (XTYPE (obj))
6224 case_Lisp_Int:
6225 survives_p = 1;
6226 break;
6228 case Lisp_Symbol:
6229 survives_p = XSYMBOL (obj)->gcmarkbit;
6230 break;
6232 case Lisp_Misc:
6233 survives_p = XMISCANY (obj)->gcmarkbit;
6234 break;
6236 case Lisp_String:
6237 survives_p = STRING_MARKED_P (XSTRING (obj));
6238 break;
6240 case Lisp_Vectorlike:
6241 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6242 break;
6244 case Lisp_Cons:
6245 survives_p = CONS_MARKED_P (XCONS (obj));
6246 break;
6248 case Lisp_Float:
6249 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6250 break;
6252 default:
6253 abort ();
6256 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6261 /* Sweep: find all structures not marked, and free them. */
6263 static void
6264 gc_sweep (void)
6266 /* Remove or mark entries in weak hash tables.
6267 This must be done before any object is unmarked. */
6268 sweep_weak_hash_tables ();
6270 sweep_strings ();
6271 #ifdef GC_CHECK_STRING_BYTES
6272 if (!noninteractive)
6273 check_string_bytes (1);
6274 #endif
6276 /* Put all unmarked conses on free list */
6278 register struct cons_block *cblk;
6279 struct cons_block **cprev = &cons_block;
6280 register int lim = cons_block_index;
6281 EMACS_INT num_free = 0, num_used = 0;
6283 cons_free_list = 0;
6285 for (cblk = cons_block; cblk; cblk = *cprev)
6287 register int i = 0;
6288 int this_free = 0;
6289 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6291 /* Scan the mark bits an int at a time. */
6292 for (i = 0; i < ilim; i++)
6294 if (cblk->gcmarkbits[i] == -1)
6296 /* Fast path - all cons cells for this int are marked. */
6297 cblk->gcmarkbits[i] = 0;
6298 num_used += BITS_PER_INT;
6300 else
6302 /* Some cons cells for this int are not marked.
6303 Find which ones, and free them. */
6304 int start, pos, stop;
6306 start = i * BITS_PER_INT;
6307 stop = lim - start;
6308 if (stop > BITS_PER_INT)
6309 stop = BITS_PER_INT;
6310 stop += start;
6312 for (pos = start; pos < stop; pos++)
6314 if (!CONS_MARKED_P (&cblk->conses[pos]))
6316 this_free++;
6317 cblk->conses[pos].u.chain = cons_free_list;
6318 cons_free_list = &cblk->conses[pos];
6319 #if GC_MARK_STACK
6320 cons_free_list->car = Vdead;
6321 #endif
6323 else
6325 num_used++;
6326 CONS_UNMARK (&cblk->conses[pos]);
6332 lim = CONS_BLOCK_SIZE;
6333 /* If this block contains only free conses and we have already
6334 seen more than two blocks worth of free conses then deallocate
6335 this block. */
6336 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6338 *cprev = cblk->next;
6339 /* Unhook from the free list. */
6340 cons_free_list = cblk->conses[0].u.chain;
6341 lisp_align_free (cblk);
6343 else
6345 num_free += this_free;
6346 cprev = &cblk->next;
6349 total_conses = num_used;
6350 total_free_conses = num_free;
6353 /* Put all unmarked floats on free list */
6355 register struct float_block *fblk;
6356 struct float_block **fprev = &float_block;
6357 register int lim = float_block_index;
6358 EMACS_INT num_free = 0, num_used = 0;
6360 float_free_list = 0;
6362 for (fblk = float_block; fblk; fblk = *fprev)
6364 register int i;
6365 int this_free = 0;
6366 for (i = 0; i < lim; i++)
6367 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6369 this_free++;
6370 fblk->floats[i].u.chain = float_free_list;
6371 float_free_list = &fblk->floats[i];
6373 else
6375 num_used++;
6376 FLOAT_UNMARK (&fblk->floats[i]);
6378 lim = FLOAT_BLOCK_SIZE;
6379 /* If this block contains only free floats and we have already
6380 seen more than two blocks worth of free floats then deallocate
6381 this block. */
6382 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6384 *fprev = fblk->next;
6385 /* Unhook from the free list. */
6386 float_free_list = fblk->floats[0].u.chain;
6387 lisp_align_free (fblk);
6389 else
6391 num_free += this_free;
6392 fprev = &fblk->next;
6395 total_floats = num_used;
6396 total_free_floats = num_free;
6399 /* Put all unmarked intervals on free list */
6401 register struct interval_block *iblk;
6402 struct interval_block **iprev = &interval_block;
6403 register int lim = interval_block_index;
6404 EMACS_INT num_free = 0, num_used = 0;
6406 interval_free_list = 0;
6408 for (iblk = interval_block; iblk; iblk = *iprev)
6410 register int i;
6411 int this_free = 0;
6413 for (i = 0; i < lim; i++)
6415 if (!iblk->intervals[i].gcmarkbit)
6417 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6418 interval_free_list = &iblk->intervals[i];
6419 this_free++;
6421 else
6423 num_used++;
6424 iblk->intervals[i].gcmarkbit = 0;
6427 lim = INTERVAL_BLOCK_SIZE;
6428 /* If this block contains only free intervals and we have already
6429 seen more than two blocks worth of free intervals then
6430 deallocate this block. */
6431 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6433 *iprev = iblk->next;
6434 /* Unhook from the free list. */
6435 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6436 lisp_free (iblk);
6438 else
6440 num_free += this_free;
6441 iprev = &iblk->next;
6444 total_intervals = num_used;
6445 total_free_intervals = num_free;
6448 /* Put all unmarked symbols on free list */
6450 register struct symbol_block *sblk;
6451 struct symbol_block **sprev = &symbol_block;
6452 register int lim = symbol_block_index;
6453 EMACS_INT num_free = 0, num_used = 0;
6455 symbol_free_list = NULL;
6457 for (sblk = symbol_block; sblk; sblk = *sprev)
6459 int this_free = 0;
6460 union aligned_Lisp_Symbol *sym = sblk->symbols;
6461 union aligned_Lisp_Symbol *end = sym + lim;
6463 for (; sym < end; ++sym)
6465 /* Check if the symbol was created during loadup. In such a case
6466 it might be pointed to by pure bytecode which we don't trace,
6467 so we conservatively assume that it is live. */
6468 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6470 if (!sym->s.gcmarkbit && !pure_p)
6472 if (sym->s.redirect == SYMBOL_LOCALIZED)
6473 xfree (SYMBOL_BLV (&sym->s));
6474 sym->s.next = symbol_free_list;
6475 symbol_free_list = &sym->s;
6476 #if GC_MARK_STACK
6477 symbol_free_list->function = Vdead;
6478 #endif
6479 ++this_free;
6481 else
6483 ++num_used;
6484 if (!pure_p)
6485 UNMARK_STRING (XSTRING (sym->s.xname));
6486 sym->s.gcmarkbit = 0;
6490 lim = SYMBOL_BLOCK_SIZE;
6491 /* If this block contains only free symbols and we have already
6492 seen more than two blocks worth of free symbols then deallocate
6493 this block. */
6494 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6496 *sprev = sblk->next;
6497 /* Unhook from the free list. */
6498 symbol_free_list = sblk->symbols[0].s.next;
6499 lisp_free (sblk);
6501 else
6503 num_free += this_free;
6504 sprev = &sblk->next;
6507 total_symbols = num_used;
6508 total_free_symbols = num_free;
6511 /* Put all unmarked misc's on free list.
6512 For a marker, first unchain it from the buffer it points into. */
6514 register struct marker_block *mblk;
6515 struct marker_block **mprev = &marker_block;
6516 register int lim = marker_block_index;
6517 EMACS_INT num_free = 0, num_used = 0;
6519 marker_free_list = 0;
6521 for (mblk = marker_block; mblk; mblk = *mprev)
6523 register int i;
6524 int this_free = 0;
6526 for (i = 0; i < lim; i++)
6528 if (!mblk->markers[i].m.u_any.gcmarkbit)
6530 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6531 unchain_marker (&mblk->markers[i].m.u_marker);
6532 /* Set the type of the freed object to Lisp_Misc_Free.
6533 We could leave the type alone, since nobody checks it,
6534 but this might catch bugs faster. */
6535 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6536 mblk->markers[i].m.u_free.chain = marker_free_list;
6537 marker_free_list = &mblk->markers[i].m;
6538 this_free++;
6540 else
6542 num_used++;
6543 mblk->markers[i].m.u_any.gcmarkbit = 0;
6546 lim = MARKER_BLOCK_SIZE;
6547 /* If this block contains only free markers and we have already
6548 seen more than two blocks worth of free markers then deallocate
6549 this block. */
6550 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6552 *mprev = mblk->next;
6553 /* Unhook from the free list. */
6554 marker_free_list = mblk->markers[0].m.u_free.chain;
6555 lisp_free (mblk);
6557 else
6559 num_free += this_free;
6560 mprev = &mblk->next;
6564 total_markers = num_used;
6565 total_free_markers = num_free;
6568 /* Free all unmarked buffers */
6570 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6572 while (buffer)
6573 if (!VECTOR_MARKED_P (buffer))
6575 if (prev)
6576 prev->header.next = buffer->header.next;
6577 else
6578 all_buffers = buffer->header.next.buffer;
6579 next = buffer->header.next.buffer;
6580 lisp_free (buffer);
6581 buffer = next;
6583 else
6585 VECTOR_UNMARK (buffer);
6586 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6587 prev = buffer, buffer = buffer->header.next.buffer;
6591 sweep_vectors ();
6593 #ifdef GC_CHECK_STRING_BYTES
6594 if (!noninteractive)
6595 check_string_bytes (1);
6596 #endif
6602 /* Debugging aids. */
6604 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6605 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6606 This may be helpful in debugging Emacs's memory usage.
6607 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6608 (void)
6610 Lisp_Object end;
6612 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6614 return end;
6617 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6618 doc: /* Return a list of counters that measure how much consing there has been.
6619 Each of these counters increments for a certain kind of object.
6620 The counters wrap around from the largest positive integer to zero.
6621 Garbage collection does not decrease them.
6622 The elements of the value are as follows:
6623 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6624 All are in units of 1 = one object consed
6625 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6626 objects consed.
6627 MISCS include overlays, markers, and some internal types.
6628 Frames, windows, buffers, and subprocesses count as vectors
6629 (but the contents of a buffer's text do not count here). */)
6630 (void)
6632 Lisp_Object consed[8];
6634 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6635 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6636 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6637 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6638 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6639 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6640 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6641 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6643 return Flist (8, consed);
6646 /* Find at most FIND_MAX symbols which have OBJ as their value or
6647 function. This is used in gdbinit's `xwhichsymbols' command. */
6649 Lisp_Object
6650 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6652 struct symbol_block *sblk;
6653 ptrdiff_t gc_count = inhibit_garbage_collection ();
6654 Lisp_Object found = Qnil;
6656 if (! DEADP (obj))
6658 for (sblk = symbol_block; sblk; sblk = sblk->next)
6660 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6661 int bn;
6663 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6665 struct Lisp_Symbol *sym = &aligned_sym->s;
6666 Lisp_Object val;
6667 Lisp_Object tem;
6669 if (sblk == symbol_block && bn >= symbol_block_index)
6670 break;
6672 XSETSYMBOL (tem, sym);
6673 val = find_symbol_value (tem);
6674 if (EQ (val, obj)
6675 || EQ (sym->function, obj)
6676 || (!NILP (sym->function)
6677 && COMPILEDP (sym->function)
6678 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6679 || (!NILP (val)
6680 && COMPILEDP (val)
6681 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6683 found = Fcons (tem, found);
6684 if (--find_max == 0)
6685 goto out;
6691 out:
6692 unbind_to (gc_count, Qnil);
6693 return found;
6696 #ifdef ENABLE_CHECKING
6697 int suppress_checking;
6699 void
6700 die (const char *msg, const char *file, int line)
6702 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6703 file, line, msg);
6704 abort ();
6706 #endif
6708 /* Initialization */
6710 void
6711 init_alloc_once (void)
6713 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6714 purebeg = PUREBEG;
6715 pure_size = PURESIZE;
6716 pure_bytes_used = 0;
6717 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6718 pure_bytes_used_before_overflow = 0;
6720 /* Initialize the list of free aligned blocks. */
6721 free_ablock = NULL;
6723 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6724 mem_init ();
6725 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6726 #endif
6728 ignore_warnings = 1;
6729 #ifdef DOUG_LEA_MALLOC
6730 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6731 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6732 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6733 #endif
6734 init_strings ();
6735 init_cons ();
6736 init_symbol ();
6737 init_marker ();
6738 init_float ();
6739 init_intervals ();
6740 init_vectors ();
6741 init_weak_hash_tables ();
6743 #ifdef REL_ALLOC
6744 malloc_hysteresis = 32;
6745 #else
6746 malloc_hysteresis = 0;
6747 #endif
6749 refill_memory_reserve ();
6751 ignore_warnings = 0;
6752 gcprolist = 0;
6753 byte_stack_list = 0;
6754 staticidx = 0;
6755 consing_since_gc = 0;
6756 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6757 gc_relative_threshold = 0;
6760 void
6761 init_alloc (void)
6763 gcprolist = 0;
6764 byte_stack_list = 0;
6765 #if GC_MARK_STACK
6766 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6767 setjmp_tested_p = longjmps_done = 0;
6768 #endif
6769 #endif
6770 Vgc_elapsed = make_float (0.0);
6771 gcs_done = 0;
6774 void
6775 syms_of_alloc (void)
6777 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6778 doc: /* Number of bytes of consing between garbage collections.
6779 Garbage collection can happen automatically once this many bytes have been
6780 allocated since the last garbage collection. All data types count.
6782 Garbage collection happens automatically only when `eval' is called.
6784 By binding this temporarily to a large number, you can effectively
6785 prevent garbage collection during a part of the program.
6786 See also `gc-cons-percentage'. */);
6788 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6789 doc: /* Portion of the heap used for allocation.
6790 Garbage collection can happen automatically once this portion of the heap
6791 has been allocated since the last garbage collection.
6792 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6793 Vgc_cons_percentage = make_float (0.1);
6795 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6796 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6798 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6799 doc: /* Number of cons cells that have been consed so far. */);
6801 DEFVAR_INT ("floats-consed", floats_consed,
6802 doc: /* Number of floats that have been consed so far. */);
6804 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6805 doc: /* Number of vector cells that have been consed so far. */);
6807 DEFVAR_INT ("symbols-consed", symbols_consed,
6808 doc: /* Number of symbols that have been consed so far. */);
6810 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6811 doc: /* Number of string characters that have been consed so far. */);
6813 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6814 doc: /* Number of miscellaneous objects that have been consed so far.
6815 These include markers and overlays, plus certain objects not visible
6816 to users. */);
6818 DEFVAR_INT ("intervals-consed", intervals_consed,
6819 doc: /* Number of intervals that have been consed so far. */);
6821 DEFVAR_INT ("strings-consed", strings_consed,
6822 doc: /* Number of strings that have been consed so far. */);
6824 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6825 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6826 This means that certain objects should be allocated in shared (pure) space.
6827 It can also be set to a hash-table, in which case this table is used to
6828 do hash-consing of the objects allocated to pure space. */);
6830 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6831 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6832 garbage_collection_messages = 0;
6834 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6835 doc: /* Hook run after garbage collection has finished. */);
6836 Vpost_gc_hook = Qnil;
6837 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6839 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6840 doc: /* Precomputed `signal' argument for memory-full error. */);
6841 /* We build this in advance because if we wait until we need it, we might
6842 not be able to allocate the memory to hold it. */
6843 Vmemory_signal_data
6844 = pure_cons (Qerror,
6845 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6847 DEFVAR_LISP ("memory-full", Vmemory_full,
6848 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6849 Vmemory_full = Qnil;
6851 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6852 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6854 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6855 doc: /* Accumulated time elapsed in garbage collections.
6856 The time is in seconds as a floating point value. */);
6857 DEFVAR_INT ("gcs-done", gcs_done,
6858 doc: /* Accumulated number of garbage collections done. */);
6860 defsubr (&Scons);
6861 defsubr (&Slist);
6862 defsubr (&Svector);
6863 defsubr (&Smake_byte_code);
6864 defsubr (&Smake_list);
6865 defsubr (&Smake_vector);
6866 defsubr (&Smake_string);
6867 defsubr (&Smake_bool_vector);
6868 defsubr (&Smake_symbol);
6869 defsubr (&Smake_marker);
6870 defsubr (&Spurecopy);
6871 defsubr (&Sgarbage_collect);
6872 defsubr (&Smemory_limit);
6873 defsubr (&Smemory_use_counts);
6875 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6876 defsubr (&Sgc_status);
6877 #endif