use bcopy when moving gap.
[emacs.git] / src / intervals.c
blob400ef43d0d6fe997335854797fc3245ca06b0089
1 /* Code for doing intervals.
2 Copyright (C) 1993 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21 /* NOTES:
23 Have to ensure that we can't put symbol nil on a plist, or some
24 functions may work incorrectly.
26 An idea: Have the owner of the tree keep count of splits and/or
27 insertion lengths (in intervals), and balance after every N.
29 Need to call *_left_hook when buffer is killed.
31 Scan for zero-length, or 0-length to see notes about handling
32 zero length interval-markers.
34 There are comments around about freeing intervals. It might be
35 faster to explicitly free them (put them on the free list) than
36 to GC them.
41 #include <config.h>
42 #include "lisp.h"
43 #include "intervals.h"
44 #include "buffer.h"
45 #include "puresize.h"
47 /* The rest of the file is within this conditional. */
48 #ifdef USE_TEXT_PROPERTIES
50 /* Test for membership, allowing for t (actually any non-cons) to mean the
51 universal set. */
53 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
55 /* Factor for weight-balancing interval trees. */
56 Lisp_Object interval_balance_threshold;
58 Lisp_Object merge_properties_sticky ();
60 /* Utility functions for intervals. */
63 /* Create the root interval of some object, a buffer or string. */
65 INTERVAL
66 create_root_interval (parent)
67 Lisp_Object parent;
69 INTERVAL new;
71 CHECK_IMPURE (parent);
73 new = make_interval ();
75 if (XTYPE (parent) == Lisp_Buffer)
77 new->total_length = (BUF_Z (XBUFFER (parent))
78 - BUF_BEG (XBUFFER (parent)));
79 XBUFFER (parent)->intervals = new;
81 else if (XTYPE (parent) == Lisp_String)
83 new->total_length = XSTRING (parent)->size;
84 XSTRING (parent)->intervals = new;
87 new->parent = (INTERVAL) parent;
88 new->position = 1;
90 return new;
93 /* Make the interval TARGET have exactly the properties of SOURCE */
95 void
96 copy_properties (source, target)
97 register INTERVAL source, target;
99 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
100 return;
102 COPY_INTERVAL_CACHE (source, target);
103 target->plist = Fcopy_sequence (source->plist);
106 /* Merge the properties of interval SOURCE into the properties
107 of interval TARGET. That is to say, each property in SOURCE
108 is added to TARGET if TARGET has no such property as yet. */
110 static void
111 merge_properties (source, target)
112 register INTERVAL source, target;
114 register Lisp_Object o, sym, val;
116 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
117 return;
119 MERGE_INTERVAL_CACHE (source, target);
121 o = source->plist;
122 while (! EQ (o, Qnil))
124 sym = Fcar (o);
125 val = Fmemq (sym, target->plist);
127 if (NILP (val))
129 o = Fcdr (o);
130 val = Fcar (o);
131 target->plist = Fcons (sym, Fcons (val, target->plist));
132 o = Fcdr (o);
134 else
135 o = Fcdr (Fcdr (o));
139 /* Return 1 if the two intervals have the same properties,
140 0 otherwise. */
143 intervals_equal (i0, i1)
144 INTERVAL i0, i1;
146 register Lisp_Object i0_cdr, i0_sym, i1_val;
147 register i1_len;
149 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
150 return 1;
152 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
153 return 0;
155 i1_len = XFASTINT (Flength (i1->plist));
156 if (i1_len & 0x1) /* Paranoia -- plists are always even */
157 abort ();
158 i1_len /= 2;
159 i0_cdr = i0->plist;
160 while (!NILP (i0_cdr))
162 /* Lengths of the two plists were unequal. */
163 if (i1_len == 0)
164 return 0;
166 i0_sym = Fcar (i0_cdr);
167 i1_val = Fmemq (i0_sym, i1->plist);
169 /* i0 has something i1 doesn't. */
170 if (EQ (i1_val, Qnil))
171 return 0;
173 /* i0 and i1 both have sym, but it has different values in each. */
174 i0_cdr = Fcdr (i0_cdr);
175 if (! EQ (Fcar (Fcdr (i1_val)), Fcar (i0_cdr)))
176 return 0;
178 i0_cdr = Fcdr (i0_cdr);
179 i1_len--;
182 /* Lengths of the two plists were unequal. */
183 if (i1_len > 0)
184 return 0;
186 return 1;
189 static int icount;
190 static int idepth;
191 static int zero_length;
193 /* Traverse an interval tree TREE, performing FUNCTION on each node.
194 Pass FUNCTION two args: an interval, and ARG. */
196 void
197 traverse_intervals (tree, position, depth, function, arg)
198 INTERVAL tree;
199 int position, depth;
200 void (* function) ();
201 Lisp_Object arg;
203 if (NULL_INTERVAL_P (tree))
204 return;
206 traverse_intervals (tree->left, position, depth + 1, function, arg);
207 position += LEFT_TOTAL_LENGTH (tree);
208 tree->position = position;
209 (*function) (tree, arg);
210 position += LENGTH (tree);
211 traverse_intervals (tree->right, position, depth + 1, function, arg);
214 #if 0
215 /* These functions are temporary, for debugging purposes only. */
217 INTERVAL search_interval, found_interval;
219 void
220 check_for_interval (i)
221 register INTERVAL i;
223 if (i == search_interval)
225 found_interval = i;
226 icount++;
230 INTERVAL
231 search_for_interval (i, tree)
232 register INTERVAL i, tree;
234 icount = 0;
235 search_interval = i;
236 found_interval = NULL_INTERVAL;
237 traverse_intervals (tree, 1, 0, &check_for_interval, Qnil);
238 return found_interval;
241 static void
242 inc_interval_count (i)
243 INTERVAL i;
245 icount++;
246 if (LENGTH (i) == 0)
247 zero_length++;
248 if (depth > idepth)
249 idepth = depth;
253 count_intervals (i)
254 register INTERVAL i;
256 icount = 0;
257 idepth = 0;
258 zero_length = 0;
259 traverse_intervals (i, 1, 0, &inc_interval_count, Qnil);
261 return icount;
264 static INTERVAL
265 root_interval (interval)
266 INTERVAL interval;
268 register INTERVAL i = interval;
270 while (! ROOT_INTERVAL_P (i))
271 i = i->parent;
273 return i;
275 #endif
277 /* Assuming that a left child exists, perform the following operation:
280 / \ / \
281 B => A
282 / \ / \
286 static INTERVAL
287 rotate_right (interval)
288 INTERVAL interval;
290 INTERVAL i;
291 INTERVAL B = interval->left;
292 int old_total = interval->total_length;
294 /* Deal with any Parent of A; make it point to B. */
295 if (! ROOT_INTERVAL_P (interval))
296 if (AM_LEFT_CHILD (interval))
297 interval->parent->left = B;
298 else
299 interval->parent->right = B;
300 B->parent = interval->parent;
302 /* Make B the parent of A */
303 i = B->right;
304 B->right = interval;
305 interval->parent = B;
307 /* Make A point to c */
308 interval->left = i;
309 if (! NULL_INTERVAL_P (i))
310 i->parent = interval;
312 /* A's total length is decreased by the length of B and its left child. */
313 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
315 /* B must have the same total length of A. */
316 B->total_length = old_total;
318 return B;
321 /* Assuming that a right child exists, perform the following operation:
323 A B
324 / \ / \
325 B => A
326 / \ / \
330 static INTERVAL
331 rotate_left (interval)
332 INTERVAL interval;
334 INTERVAL i;
335 INTERVAL B = interval->right;
336 int old_total = interval->total_length;
338 /* Deal with any parent of A; make it point to B. */
339 if (! ROOT_INTERVAL_P (interval))
340 if (AM_LEFT_CHILD (interval))
341 interval->parent->left = B;
342 else
343 interval->parent->right = B;
344 B->parent = interval->parent;
346 /* Make B the parent of A */
347 i = B->left;
348 B->left = interval;
349 interval->parent = B;
351 /* Make A point to c */
352 interval->right = i;
353 if (! NULL_INTERVAL_P (i))
354 i->parent = interval;
356 /* A's total length is decreased by the length of B and its right child. */
357 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
359 /* B must have the same total length of A. */
360 B->total_length = old_total;
362 return B;
365 /* Balance an interval tree with the assumption that the subtrees
366 themselves are already balanced. */
368 static INTERVAL
369 balance_an_interval (i)
370 INTERVAL i;
372 register int old_diff, new_diff;
374 while (1)
376 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
377 if (old_diff > 0)
379 new_diff = i->total_length - i->left->total_length
380 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
381 if (abs (new_diff) >= old_diff)
382 break;
383 i = rotate_right (i);
384 balance_an_interval (i->right);
386 else if (old_diff < 0)
388 new_diff = i->total_length - i->right->total_length
389 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
390 if (abs (new_diff) >= -old_diff)
391 break;
392 i = rotate_left (i);
393 balance_an_interval (i->left);
395 else
396 break;
398 return i;
401 /* Balance INTERVAL, potentially stuffing it back into its parent
402 Lisp Object. */
404 static INLINE INTERVAL
405 balance_possible_root_interval (interval)
406 register INTERVAL interval;
408 Lisp_Object parent;
410 if (interval->parent == NULL_INTERVAL)
411 return interval;
413 parent = (Lisp_Object) (interval->parent);
414 interval = balance_an_interval (interval);
416 if (XTYPE (parent) == Lisp_Buffer)
417 XBUFFER (parent)->intervals = interval;
418 else if (XTYPE (parent) == Lisp_String)
419 XSTRING (parent)->intervals = interval;
421 return interval;
424 /* Balance the interval tree TREE. Balancing is by weight
425 (the amount of text). */
427 static INTERVAL
428 balance_intervals_internal (tree)
429 register INTERVAL tree;
431 /* Balance within each side. */
432 if (tree->left)
433 balance_intervals (tree->left);
434 if (tree->right)
435 balance_intervals (tree->right);
436 return balance_an_interval (tree);
439 /* Advertised interface to balance intervals. */
441 INTERVAL
442 balance_intervals (tree)
443 INTERVAL tree;
445 if (tree == NULL_INTERVAL)
446 return NULL_INTERVAL;
448 return balance_intervals_internal (tree);
451 /* Split INTERVAL into two pieces, starting the second piece at
452 character position OFFSET (counting from 0), relative to INTERVAL.
453 INTERVAL becomes the left-hand piece, and the right-hand piece
454 (second, lexicographically) is returned.
456 The size and position fields of the two intervals are set based upon
457 those of the original interval. The property list of the new interval
458 is reset, thus it is up to the caller to do the right thing with the
459 result.
461 Note that this does not change the position of INTERVAL; if it is a root,
462 it is still a root after this operation. */
464 INTERVAL
465 split_interval_right (interval, offset)
466 INTERVAL interval;
467 int offset;
469 INTERVAL new = make_interval ();
470 int position = interval->position;
471 int new_length = LENGTH (interval) - offset;
473 new->position = position + offset;
474 new->parent = interval;
476 if (NULL_RIGHT_CHILD (interval))
478 interval->right = new;
479 new->total_length = new_length;
481 return new;
484 /* Insert the new node between INTERVAL and its right child. */
485 new->right = interval->right;
486 interval->right->parent = new;
487 interval->right = new;
488 new->total_length = new_length + new->right->total_length;
490 balance_an_interval (new);
491 balance_possible_root_interval (interval);
493 return new;
496 /* Split INTERVAL into two pieces, starting the second piece at
497 character position OFFSET (counting from 0), relative to INTERVAL.
498 INTERVAL becomes the right-hand piece, and the left-hand piece
499 (first, lexicographically) is returned.
501 The size and position fields of the two intervals are set based upon
502 those of the original interval. The property list of the new interval
503 is reset, thus it is up to the caller to do the right thing with the
504 result.
506 Note that this does not change the position of INTERVAL; if it is a root,
507 it is still a root after this operation. */
509 INTERVAL
510 split_interval_left (interval, offset)
511 INTERVAL interval;
512 int offset;
514 INTERVAL new = make_interval ();
515 int position = interval->position;
516 int new_length = offset;
518 new->position = interval->position;
519 interval->position = interval->position + offset;
520 new->parent = interval;
522 if (NULL_LEFT_CHILD (interval))
524 interval->left = new;
525 new->total_length = new_length;
527 return new;
530 /* Insert the new node between INTERVAL and its left child. */
531 new->left = interval->left;
532 new->left->parent = new;
533 interval->left = new;
534 new->total_length = new_length + new->left->total_length;
536 balance_an_interval (new);
537 balance_possible_root_interval (interval);
539 return new;
542 /* Find the interval containing text position POSITION in the text
543 represented by the interval tree TREE. POSITION is a buffer
544 position; the earliest position is 1. If POSITION is at the end of
545 the buffer, return the interval containing the last character.
547 The `position' field, which is a cache of an interval's position,
548 is updated in the interval found. Other functions (e.g., next_interval)
549 will update this cache based on the result of find_interval. */
551 INLINE INTERVAL
552 find_interval (tree, position)
553 register INTERVAL tree;
554 register int position;
556 /* The distance from the left edge of the subtree at TREE
557 to POSITION. */
558 register int relative_position = position - BEG;
560 if (NULL_INTERVAL_P (tree))
561 return NULL_INTERVAL;
563 if (relative_position > TOTAL_LENGTH (tree))
564 abort (); /* Paranoia */
566 tree = balance_possible_root_interval (tree);
568 while (1)
570 if (relative_position < LEFT_TOTAL_LENGTH (tree))
572 tree = tree->left;
574 else if (! NULL_RIGHT_CHILD (tree)
575 && relative_position >= (TOTAL_LENGTH (tree)
576 - RIGHT_TOTAL_LENGTH (tree)))
578 relative_position -= (TOTAL_LENGTH (tree)
579 - RIGHT_TOTAL_LENGTH (tree));
580 tree = tree->right;
582 else
584 tree->position =
585 (position - relative_position /* the left edge of *tree */
586 + LEFT_TOTAL_LENGTH (tree)); /* the left edge of this interval */
588 return tree;
593 /* Find the succeeding interval (lexicographically) to INTERVAL.
594 Sets the `position' field based on that of INTERVAL (see
595 find_interval). */
597 INTERVAL
598 next_interval (interval)
599 register INTERVAL interval;
601 register INTERVAL i = interval;
602 register int next_position;
604 if (NULL_INTERVAL_P (i))
605 return NULL_INTERVAL;
606 next_position = interval->position + LENGTH (interval);
608 if (! NULL_RIGHT_CHILD (i))
610 i = i->right;
611 while (! NULL_LEFT_CHILD (i))
612 i = i->left;
614 i->position = next_position;
615 return i;
618 while (! NULL_PARENT (i))
620 if (AM_LEFT_CHILD (i))
622 i = i->parent;
623 i->position = next_position;
624 return i;
627 i = i->parent;
630 return NULL_INTERVAL;
633 /* Find the preceding interval (lexicographically) to INTERVAL.
634 Sets the `position' field based on that of INTERVAL (see
635 find_interval). */
637 INTERVAL
638 previous_interval (interval)
639 register INTERVAL interval;
641 register INTERVAL i;
642 register position_of_previous;
644 if (NULL_INTERVAL_P (interval))
645 return NULL_INTERVAL;
647 if (! NULL_LEFT_CHILD (interval))
649 i = interval->left;
650 while (! NULL_RIGHT_CHILD (i))
651 i = i->right;
653 i->position = interval->position - LENGTH (i);
654 return i;
657 i = interval;
658 while (! NULL_PARENT (i))
660 if (AM_RIGHT_CHILD (i))
662 i = i->parent;
664 i->position = interval->position - LENGTH (i);
665 return i;
667 i = i->parent;
670 return NULL_INTERVAL;
673 #if 0
674 /* Traverse a path down the interval tree TREE to the interval
675 containing POSITION, adjusting all nodes on the path for
676 an addition of LENGTH characters. Insertion between two intervals
677 (i.e., point == i->position, where i is second interval) means
678 text goes into second interval.
680 Modifications are needed to handle the hungry bits -- after simply
681 finding the interval at position (don't add length going down),
682 if it's the beginning of the interval, get the previous interval
683 and check the hugry bits of both. Then add the length going back up
684 to the root. */
686 static INTERVAL
687 adjust_intervals_for_insertion (tree, position, length)
688 INTERVAL tree;
689 int position, length;
691 register int relative_position;
692 register INTERVAL this;
694 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
695 abort ();
697 /* If inserting at point-max of a buffer, that position
698 will be out of range */
699 if (position > TOTAL_LENGTH (tree))
700 position = TOTAL_LENGTH (tree);
701 relative_position = position;
702 this = tree;
704 while (1)
706 if (relative_position <= LEFT_TOTAL_LENGTH (this))
708 this->total_length += length;
709 this = this->left;
711 else if (relative_position > (TOTAL_LENGTH (this)
712 - RIGHT_TOTAL_LENGTH (this)))
714 relative_position -= (TOTAL_LENGTH (this)
715 - RIGHT_TOTAL_LENGTH (this));
716 this->total_length += length;
717 this = this->right;
719 else
721 /* If we are to use zero-length intervals as buffer pointers,
722 then this code will have to change. */
723 this->total_length += length;
724 this->position = LEFT_TOTAL_LENGTH (this)
725 + position - relative_position + 1;
726 return tree;
730 #endif
732 /* Effect an adjustment corresponding to the addition of LENGTH characters
733 of text. Do this by finding the interval containing POSITION in the
734 interval tree TREE, and then adjusting all of its ancestors by adding
735 LENGTH to them.
737 If POSITION is the first character of an interval, meaning that point
738 is actually between the two intervals, make the new text belong to
739 the interval which is "sticky".
741 If both intervals are "sticky", then make them belong to the left-most
742 interval. Another possibility would be to create a new interval for
743 this text, and make it have the merged properties of both ends. */
745 static INTERVAL
746 adjust_intervals_for_insertion (tree, position, length)
747 INTERVAL tree;
748 int position, length;
750 register INTERVAL i;
751 register INTERVAL temp;
752 int eobp = 0;
754 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
755 abort ();
757 /* If inserting at point-max of a buffer, that position will be out
758 of range. Remember that buffer positions are 1-based. */
759 if (position >= BEG + TOTAL_LENGTH (tree)){
760 position = BEG + TOTAL_LENGTH (tree);
761 eobp = 1;
764 i = find_interval (tree, position);
766 /* If in middle of an interval which is not sticky either way,
767 we must not just give its properties to the insertion.
768 So split this interval at the insertion point. */
769 if (! (position == i->position || eobp)
770 && END_NONSTICKY_P (i)
771 && ! FRONT_STICKY_P (i))
773 temp = split_interval_right (i, position - i->position);
774 copy_properties (i, temp);
775 i = temp;
778 /* If we are positioned between intervals, check the stickiness of
779 both of them. We have to do this too, if we are at BEG or Z. */
780 if (position == i->position || eobp)
782 register INTERVAL prev;
784 if (position == BEG)
785 prev = 0;
786 else if (eobp)
788 prev = i;
789 i = 0;
791 else
792 prev = previous_interval (i);
794 /* Even if we are positioned between intervals, we default
795 to the left one if it exists. We extend it now and split
796 off a part later, if stickyness demands it. */
797 for (temp = prev ? prev : i;! NULL_INTERVAL_P (temp); temp = temp->parent)
799 temp->total_length += length;
800 temp = balance_possible_root_interval (temp);
803 /* If at least one interval has sticky properties,
804 we check the stickyness property by property. */
805 if (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
807 Lisp_Object pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
808 Lisp_Object pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
809 struct interval newi;
811 newi.plist = merge_properties_sticky (pleft, pright);
813 if(! prev) /* i.e. position == BEG */
815 if (! intervals_equal (i, &newi))
817 i = split_interval_left (i, length);
818 i->plist = newi.plist;
821 else if (! intervals_equal (prev, &newi))
823 prev = split_interval_right (prev,
824 position - prev->position);
825 prev->plist = newi.plist;
826 if (! NULL_INTERVAL_P (i)
827 && intervals_equal (prev, i))
828 merge_interval_right (prev);
831 /* We will need to update the cache here later. */
833 else if (! prev && ! NILP (i->plist))
835 /* Just split off a new interval at the left.
836 Since I wasn't front-sticky, the empty plist is ok. */
837 i = split_interval_left (i, length);
841 /* Otherwise just extend the interval. */
842 else
844 for (temp = i; ! NULL_INTERVAL_P (temp); temp = temp->parent)
846 temp->total_length += length;
847 temp = balance_possible_root_interval (temp);
851 return tree;
854 /* Any property might be front-sticky on the left, rear-sticky on the left,
855 front-sticky on the right, or rear-sticky on the right; the 16 combinations
856 can be arranged in a matrix with rows denoting the left conditions and
857 columns denoting the right conditions:
858 _ __ _
859 _ FR FR FR FR
860 FR__ 0 1 2 3
861 _FR 4 5 6 7
862 FR 8 9 A B
863 FR C D E F
865 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
866 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
867 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
868 p8 L p9 L pa L pb L pc L pd L pe L pf L)
869 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
870 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
871 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
872 p8 R p9 R pa R pb R pc R pd R pe R pf R)
874 We inherit from whoever has a sticky side facing us. If both sides
875 do (cases 2, 3, E, and F), then we inherit from whichever side has a
876 non-nil value for the current property. If both sides do, then we take
877 from the left.
879 When we inherit a property, we get its stickiness as well as its value.
880 So, when we merge the above two lists, we expect to get this:
882 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
883 rear-nonsticky (p6 pa)
884 p0 L p1 L p2 L p3 L p6 R p7 R
885 pa R pb R pc L pd L pe L pf L)
887 The optimizable special cases are:
888 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
889 left rear-nonsticky = t, right front-sticky = t (inherit right)
890 left rear-nonsticky = t, right front-sticky = nil (inherit none)
893 Lisp_Object
894 merge_properties_sticky (pleft, pright)
895 Lisp_Object pleft, pright;
897 register Lisp_Object props = Qnil, front = Qnil, rear = Qnil;
899 Lisp_Object lfront = textget (pleft, Qfront_sticky);
900 Lisp_Object lrear = textget (pleft, Qrear_nonsticky);
901 Lisp_Object rfront = textget (pright, Qfront_sticky);
902 Lisp_Object rrear = textget (pright, Qrear_nonsticky);
904 register Lisp_Object tail1, tail2, sym, lval, rval;
905 int use_left, use_right;
907 /* Go through each element of PRIGHT. */
908 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
910 sym = Fcar (tail1);
912 /* Sticky properties get special treatment. */
913 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
914 continue;
916 rval = Fcar (Fcdr (tail1));
917 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
918 if (EQ (sym, Fcar (tail2)))
919 break;
920 lval = (NILP (tail2) ? Qnil : Fcar( Fcdr (tail2)));
922 use_left = ! TMEM (sym, lrear);
923 use_right = TMEM (sym, rfront);
924 if (use_left && use_right)
926 use_left = ! NILP (lval);
927 use_right = ! NILP (rval);
929 if (use_left)
931 /* We build props as (value sym ...) rather than (sym value ...)
932 because we plan to nreverse it when we're done. */
933 if (! NILP (lval))
934 props = Fcons (lval, Fcons (sym, props));
935 if (TMEM (sym, lfront))
936 front = Fcons (sym, front);
937 if (TMEM (sym, lrear))
938 rear = Fcons (sym, rear);
940 else if (use_right)
942 if (! NILP (rval))
943 props = Fcons (rval, Fcons (sym, props));
944 if (TMEM (sym, rfront))
945 front = Fcons (sym, front);
946 if (TMEM (sym, rrear))
947 rear = Fcons (sym, rear);
951 /* Now go through each element of PLEFT. */
952 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
954 sym = Fcar (tail2);
956 /* Sticky properties get special treatment. */
957 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
958 continue;
960 /* If sym is in PRIGHT, we've already considered it. */
961 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
962 if (EQ (sym, Fcar (tail1)))
963 break;
964 if (! NILP (tail1))
965 continue;
967 lval = Fcar (Fcdr (tail2));
969 /* Since rval is known to be nil in this loop, the test simplifies. */
970 if (! TMEM (sym, lrear))
972 if (! NILP (lval))
973 props = Fcons (lval, Fcons (sym, props));
974 if (TMEM (sym, lfront))
975 front = Fcons (sym, front);
977 else if (TMEM (sym, rfront))
979 /* The value is nil, but we still inherit the stickiness
980 from the right. */
981 front = Fcons (sym, front);
982 if (TMEM (sym, rrear))
983 rear = Fcons (sym, rear);
986 props = Fnreverse (props);
987 if (! NILP (rear))
988 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
989 if (! NILP (front))
990 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
991 return props;
995 /* Delete an node I from its interval tree by merging its subtrees
996 into one subtree which is then returned. Caller is responsible for
997 storing the resulting subtree into its parent. */
999 static INTERVAL
1000 delete_node (i)
1001 register INTERVAL i;
1003 register INTERVAL migrate, this;
1004 register int migrate_amt;
1006 if (NULL_INTERVAL_P (i->left))
1007 return i->right;
1008 if (NULL_INTERVAL_P (i->right))
1009 return i->left;
1011 migrate = i->left;
1012 migrate_amt = i->left->total_length;
1013 this = i->right;
1014 this->total_length += migrate_amt;
1015 while (! NULL_INTERVAL_P (this->left))
1017 this = this->left;
1018 this->total_length += migrate_amt;
1020 this->left = migrate;
1021 migrate->parent = this;
1023 return i->right;
1026 /* Delete interval I from its tree by calling `delete_node'
1027 and properly connecting the resultant subtree.
1029 I is presumed to be empty; that is, no adjustments are made
1030 for the length of I. */
1032 void
1033 delete_interval (i)
1034 register INTERVAL i;
1036 register INTERVAL parent;
1037 int amt = LENGTH (i);
1039 if (amt > 0) /* Only used on zero-length intervals now. */
1040 abort ();
1042 if (ROOT_INTERVAL_P (i))
1044 Lisp_Object owner = (Lisp_Object) i->parent;
1045 parent = delete_node (i);
1046 if (! NULL_INTERVAL_P (parent))
1047 parent->parent = (INTERVAL) owner;
1049 if (XTYPE (owner) == Lisp_Buffer)
1050 XBUFFER (owner)->intervals = parent;
1051 else if (XTYPE (owner) == Lisp_String)
1052 XSTRING (owner)->intervals = parent;
1053 else
1054 abort ();
1056 return;
1059 parent = i->parent;
1060 if (AM_LEFT_CHILD (i))
1062 parent->left = delete_node (i);
1063 if (! NULL_INTERVAL_P (parent->left))
1064 parent->left->parent = parent;
1066 else
1068 parent->right = delete_node (i);
1069 if (! NULL_INTERVAL_P (parent->right))
1070 parent->right->parent = parent;
1074 /* Find the interval in TREE corresponding to the relative position
1075 FROM and delete as much as possible of AMOUNT from that interval.
1076 Return the amount actually deleted, and if the interval was
1077 zeroed-out, delete that interval node from the tree.
1079 Note that FROM is actually origin zero, aka relative to the
1080 leftmost edge of tree. This is appropriate since we call ourselves
1081 recursively on subtrees.
1083 Do this by recursing down TREE to the interval in question, and
1084 deleting the appropriate amount of text. */
1086 static int
1087 interval_deletion_adjustment (tree, from, amount)
1088 register INTERVAL tree;
1089 register int from, amount;
1091 register int relative_position = from;
1093 if (NULL_INTERVAL_P (tree))
1094 return 0;
1096 /* Left branch */
1097 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1099 int subtract = interval_deletion_adjustment (tree->left,
1100 relative_position,
1101 amount);
1102 tree->total_length -= subtract;
1103 return subtract;
1105 /* Right branch */
1106 else if (relative_position >= (TOTAL_LENGTH (tree)
1107 - RIGHT_TOTAL_LENGTH (tree)))
1109 int subtract;
1111 relative_position -= (tree->total_length
1112 - RIGHT_TOTAL_LENGTH (tree));
1113 subtract = interval_deletion_adjustment (tree->right,
1114 relative_position,
1115 amount);
1116 tree->total_length -= subtract;
1117 return subtract;
1119 /* Here -- this node. */
1120 else
1122 /* How much can we delete from this interval? */
1123 int my_amount = ((tree->total_length
1124 - RIGHT_TOTAL_LENGTH (tree))
1125 - relative_position);
1127 if (amount > my_amount)
1128 amount = my_amount;
1130 tree->total_length -= amount;
1131 if (LENGTH (tree) == 0)
1132 delete_interval (tree);
1134 return amount;
1137 /* Never reach here. */
1140 /* Effect the adjustments necessary to the interval tree of BUFFER to
1141 correspond to the deletion of LENGTH characters from that buffer
1142 text. The deletion is effected at position START (which is a
1143 buffer position, i.e. origin 1). */
1145 static void
1146 adjust_intervals_for_deletion (buffer, start, length)
1147 struct buffer *buffer;
1148 int start, length;
1150 register int left_to_delete = length;
1151 register INTERVAL tree = buffer->intervals;
1152 register int deleted;
1154 if (NULL_INTERVAL_P (tree))
1155 return;
1157 if (start > BEG + TOTAL_LENGTH (tree)
1158 || start + length > BEG + TOTAL_LENGTH (tree))
1159 abort ();
1161 if (length == TOTAL_LENGTH (tree))
1163 buffer->intervals = NULL_INTERVAL;
1164 return;
1167 if (ONLY_INTERVAL_P (tree))
1169 tree->total_length -= length;
1170 return;
1173 if (start > BEG + TOTAL_LENGTH (tree))
1174 start = BEG + TOTAL_LENGTH (tree);
1175 while (left_to_delete > 0)
1177 left_to_delete -= interval_deletion_adjustment (tree, start - 1,
1178 left_to_delete);
1179 tree = buffer->intervals;
1180 if (left_to_delete == tree->total_length)
1182 buffer->intervals = NULL_INTERVAL;
1183 return;
1188 /* Make the adjustments necessary to the interval tree of BUFFER to
1189 represent an addition or deletion of LENGTH characters starting
1190 at position START. Addition or deletion is indicated by the sign
1191 of LENGTH. */
1193 INLINE void
1194 offset_intervals (buffer, start, length)
1195 struct buffer *buffer;
1196 int start, length;
1198 if (NULL_INTERVAL_P (buffer->intervals) || length == 0)
1199 return;
1201 if (length > 0)
1202 adjust_intervals_for_insertion (buffer->intervals, start, length);
1203 else
1204 adjust_intervals_for_deletion (buffer, start, -length);
1207 /* Merge interval I with its lexicographic successor. The resulting
1208 interval is returned, and has the properties of the original
1209 successor. The properties of I are lost. I is removed from the
1210 interval tree.
1212 IMPORTANT:
1213 The caller must verify that this is not the last (rightmost)
1214 interval. */
1216 INTERVAL
1217 merge_interval_right (i)
1218 register INTERVAL i;
1220 register int absorb = LENGTH (i);
1221 register INTERVAL successor;
1223 /* Zero out this interval. */
1224 i->total_length -= absorb;
1226 /* Find the succeeding interval. */
1227 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1228 as we descend. */
1230 successor = i->right;
1231 while (! NULL_LEFT_CHILD (successor))
1233 successor->total_length += absorb;
1234 successor = successor->left;
1237 successor->total_length += absorb;
1238 delete_interval (i);
1239 return successor;
1242 successor = i;
1243 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1244 we ascend. */
1246 if (AM_LEFT_CHILD (successor))
1248 successor = successor->parent;
1249 delete_interval (i);
1250 return successor;
1253 successor = successor->parent;
1254 successor->total_length -= absorb;
1257 /* This must be the rightmost or last interval and cannot
1258 be merged right. The caller should have known. */
1259 abort ();
1262 /* Merge interval I with its lexicographic predecessor. The resulting
1263 interval is returned, and has the properties of the original predecessor.
1264 The properties of I are lost. Interval node I is removed from the tree.
1266 IMPORTANT:
1267 The caller must verify that this is not the first (leftmost) interval. */
1269 INTERVAL
1270 merge_interval_left (i)
1271 register INTERVAL i;
1273 register int absorb = LENGTH (i);
1274 register INTERVAL predecessor;
1276 /* Zero out this interval. */
1277 i->total_length -= absorb;
1279 /* Find the preceding interval. */
1280 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1281 adding ABSORB as we go. */
1283 predecessor = i->left;
1284 while (! NULL_RIGHT_CHILD (predecessor))
1286 predecessor->total_length += absorb;
1287 predecessor = predecessor->right;
1290 predecessor->total_length += absorb;
1291 delete_interval (i);
1292 return predecessor;
1295 predecessor = i;
1296 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1297 subtracting ABSORB. */
1299 if (AM_RIGHT_CHILD (predecessor))
1301 predecessor = predecessor->parent;
1302 delete_interval (i);
1303 return predecessor;
1306 predecessor = predecessor->parent;
1307 predecessor->total_length -= absorb;
1310 /* This must be the leftmost or first interval and cannot
1311 be merged left. The caller should have known. */
1312 abort ();
1315 /* Make an exact copy of interval tree SOURCE which descends from
1316 PARENT. This is done by recursing through SOURCE, copying
1317 the current interval and its properties, and then adjusting
1318 the pointers of the copy. */
1320 static INTERVAL
1321 reproduce_tree (source, parent)
1322 INTERVAL source, parent;
1324 register INTERVAL t = make_interval ();
1326 bcopy (source, t, INTERVAL_SIZE);
1327 copy_properties (source, t);
1328 t->parent = parent;
1329 if (! NULL_LEFT_CHILD (source))
1330 t->left = reproduce_tree (source->left, t);
1331 if (! NULL_RIGHT_CHILD (source))
1332 t->right = reproduce_tree (source->right, t);
1334 return t;
1337 #if 0
1338 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1340 /* Make a new interval of length LENGTH starting at START in the
1341 group of intervals INTERVALS, which is actually an interval tree.
1342 Returns the new interval.
1344 Generate an error if the new positions would overlap an existing
1345 interval. */
1347 static INTERVAL
1348 make_new_interval (intervals, start, length)
1349 INTERVAL intervals;
1350 int start, length;
1352 INTERVAL slot;
1354 slot = find_interval (intervals, start);
1355 if (start + length > slot->position + LENGTH (slot))
1356 error ("Interval would overlap");
1358 if (start == slot->position && length == LENGTH (slot))
1359 return slot;
1361 if (slot->position == start)
1363 /* New right node. */
1364 split_interval_right (slot, length);
1365 return slot;
1368 if (slot->position + LENGTH (slot) == start + length)
1370 /* New left node. */
1371 split_interval_left (slot, LENGTH (slot) - length);
1372 return slot;
1375 /* Convert interval SLOT into three intervals. */
1376 split_interval_left (slot, start - slot->position);
1377 split_interval_right (slot, length);
1378 return slot;
1380 #endif
1382 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1383 LENGTH is the length of the text in SOURCE.
1385 This is used in insdel.c when inserting Lisp_Strings into the
1386 buffer. The text corresponding to SOURCE is already in the buffer
1387 when this is called. The intervals of new tree are a copy of those
1388 belonging to the string being inserted; intervals are never
1389 shared.
1391 If the inserted text had no intervals associated, and we don't
1392 want to inherit the surrounding text's properties, this function
1393 simply returns -- offset_intervals should handle placing the
1394 text in the correct interval, depending on the sticky bits.
1396 If the inserted text had properties (intervals), then there are two
1397 cases -- either insertion happened in the middle of some interval,
1398 or between two intervals.
1400 If the text goes into the middle of an interval, then new
1401 intervals are created in the middle with only the properties of
1402 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1403 which case the new text has the union of its properties and those
1404 of the text into which it was inserted.
1406 If the text goes between two intervals, then if neither interval
1407 had its appropriate sticky property set (front_sticky, rear_sticky),
1408 the new text has only its properties. If one of the sticky properties
1409 is set, then the new text "sticks" to that region and its properties
1410 depend on merging as above. If both the preceding and succeeding
1411 intervals to the new text are "sticky", then the new text retains
1412 only its properties, as if neither sticky property were set. Perhaps
1413 we should consider merging all three sets of properties onto the new
1414 text... */
1416 void
1417 graft_intervals_into_buffer (source, position, length, buffer, inherit)
1418 INTERVAL source;
1419 int position, length;
1420 struct buffer *buffer;
1421 int inherit;
1423 register INTERVAL under, over, this, prev;
1424 register INTERVAL tree = buffer->intervals;
1425 int middle;
1427 /* If the new text has no properties, it becomes part of whatever
1428 interval it was inserted into. */
1429 if (NULL_INTERVAL_P (source))
1431 Lisp_Object buf;
1432 if (!inherit && ! NULL_INTERVAL_P (tree))
1434 XSET (buf, Lisp_Buffer, buffer);
1435 Fset_text_properties (make_number (position),
1436 make_number (position + length),
1437 Qnil, buf);
1439 if (! NULL_INTERVAL_P (buffer->intervals))
1440 buffer->intervals = balance_an_interval (buffer->intervals);
1441 return;
1444 if (NULL_INTERVAL_P (tree))
1446 /* The inserted text constitutes the whole buffer, so
1447 simply copy over the interval structure. */
1448 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1450 Lisp_Object buf;
1451 XSET (buf, Lisp_Buffer, buffer);
1452 buffer->intervals = reproduce_tree (source, buf);
1453 /* Explicitly free the old tree here. */
1455 return;
1458 /* Create an interval tree in which to place a copy
1459 of the intervals of the inserted string. */
1461 Lisp_Object buf;
1462 XSET (buf, Lisp_Buffer, buffer);
1463 tree = create_root_interval (buf);
1466 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1467 /* If the buffer contains only the new string, but
1468 there was already some interval tree there, then it may be
1469 some zero length intervals. Eventually, do something clever
1470 about inserting properly. For now, just waste the old intervals. */
1472 buffer->intervals = reproduce_tree (source, tree->parent);
1473 /* Explicitly free the old tree here. */
1475 return;
1477 /* Paranoia -- the text has already been added, so this buffer
1478 should be of non-zero length. */
1479 else if (TOTAL_LENGTH (tree) == 0)
1480 abort ();
1482 this = under = find_interval (tree, position);
1483 if (NULL_INTERVAL_P (under)) /* Paranoia */
1484 abort ();
1485 over = find_interval (source, 1);
1487 /* Here for insertion in the middle of an interval.
1488 Split off an equivalent interval to the right,
1489 then don't bother with it any more. */
1491 if (position > under->position)
1493 INTERVAL end_unchanged
1494 = split_interval_left (this, position - under->position);
1495 copy_properties (under, end_unchanged);
1496 under->position = position;
1497 prev = 0;
1498 middle = 1;
1500 else
1502 prev = previous_interval (under);
1503 if (prev && !END_NONSTICKY_P (prev))
1504 prev = 0;
1507 /* Insertion is now at beginning of UNDER. */
1509 /* The inserted text "sticks" to the interval `under',
1510 which means it gets those properties.
1511 The properties of under are the result of
1512 adjust_intervals_for_insertion, so stickyness has
1513 already been taken care of. */
1515 while (! NULL_INTERVAL_P (over))
1517 if (LENGTH (over) < LENGTH (under))
1519 this = split_interval_left (under, LENGTH (over));
1520 copy_properties (under, this);
1522 else
1523 this = under;
1524 copy_properties (over, this);
1525 if (inherit)
1526 merge_properties (over, this);
1527 else
1528 copy_properties (over, this);
1529 over = next_interval (over);
1532 if (! NULL_INTERVAL_P (buffer->intervals))
1533 buffer->intervals = balance_an_interval (buffer->intervals);
1534 return;
1537 /* Get the value of property PROP from PLIST,
1538 which is the plist of an interval.
1539 We check for direct properties and for categories with property PROP. */
1541 Lisp_Object
1542 textget (plist, prop)
1543 Lisp_Object plist;
1544 register Lisp_Object prop;
1546 register Lisp_Object tail, fallback;
1547 fallback = Qnil;
1549 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1551 register Lisp_Object tem;
1552 tem = Fcar (tail);
1553 if (EQ (prop, tem))
1554 return Fcar (Fcdr (tail));
1555 if (EQ (tem, Qcategory))
1556 fallback = Fget (Fcar (Fcdr (tail)), prop);
1559 return fallback;
1562 /* Get the value of property PROP from PLIST,
1563 which is the plist of an interval.
1564 We check for direct properties only! */
1566 Lisp_Object
1567 textget_direct (plist, prop)
1568 Lisp_Object plist;
1569 register Lisp_Object prop;
1571 register Lisp_Object tail;
1573 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1575 if (EQ (prop, Fcar (tail)))
1576 return Fcar (Fcdr (tail));
1579 return Qnil;
1582 /* Set point in BUFFER to POSITION. If the target position is
1583 before an invisible character which is not displayed with a special glyph,
1584 move back to an ok place to display. */
1586 void
1587 set_point (position, buffer)
1588 register int position;
1589 register struct buffer *buffer;
1591 register INTERVAL to, from, toprev, fromprev, target;
1592 int buffer_point;
1593 register Lisp_Object obj;
1594 int backwards = (position < BUF_PT (buffer)) ? 1 : 0;
1595 int old_position = buffer->text.pt;
1597 if (position == buffer->text.pt)
1598 return;
1600 /* Check this now, before checking if the buffer has any intervals.
1601 That way, we can catch conditions which break this sanity check
1602 whether or not there are intervals in the buffer. */
1603 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1604 abort ();
1606 if (NULL_INTERVAL_P (buffer->intervals))
1608 buffer->text.pt = position;
1609 return;
1612 /* Set TO to the interval containing the char after POSITION,
1613 and TOPREV to the interval containing the char before POSITION.
1614 Either one may be null. They may be equal. */
1615 to = find_interval (buffer->intervals, position);
1616 if (position == BUF_BEGV (buffer))
1617 toprev = 0;
1618 else if (to->position == position)
1619 toprev = previous_interval (to);
1620 else
1621 toprev = to;
1623 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
1624 ? BUF_ZV (buffer) - 1
1625 : BUF_PT (buffer));
1627 /* Set FROM to the interval containing the char after PT,
1628 and FROMPREV to the interval containing the char before PT.
1629 Either one may be null. They may be equal. */
1630 /* We could cache this and save time. */
1631 from = find_interval (buffer->intervals, buffer_point);
1632 if (buffer_point == BUF_BEGV (buffer))
1633 fromprev = 0;
1634 else if (from->position == BUF_PT (buffer))
1635 fromprev = previous_interval (from);
1636 else if (buffer_point != BUF_PT (buffer))
1637 fromprev = from, from = 0;
1638 else
1639 fromprev = from;
1641 /* Moving within an interval. */
1642 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to))
1644 buffer->text.pt = position;
1645 return;
1648 /* If the new position is before an invisible character
1649 that has an `invisible' property of value `hidden',
1650 move forward over all such. */
1651 while (! NULL_INTERVAL_P (to)
1652 && EQ (textget (to->plist, Qinvisible), Qhidden)
1653 && ! DISPLAY_INVISIBLE_GLYPH (to))
1655 toprev = to;
1656 to = next_interval (to);
1657 if (NULL_INTERVAL_P (to))
1658 position = BUF_ZV (buffer);
1659 else
1660 position = to->position;
1663 buffer->text.pt = position;
1665 /* We run point-left and point-entered hooks here, iff the
1666 two intervals are not equivalent. These hooks take
1667 (old_point, new_point) as arguments. */
1668 if (NILP (Vinhibit_point_motion_hooks)
1669 && (! intervals_equal (from, to)
1670 || ! intervals_equal (fromprev, toprev)))
1672 Lisp_Object leave_after, leave_before, enter_after, enter_before;
1674 if (fromprev)
1675 leave_after = textget (fromprev->plist, Qpoint_left);
1676 else
1677 leave_after = Qnil;
1678 if (from)
1679 leave_before = textget (from->plist, Qpoint_left);
1680 else
1681 leave_before = Qnil;
1683 if (toprev)
1684 enter_after = textget (toprev->plist, Qpoint_entered);
1685 else
1686 enter_after = Qnil;
1687 if (to)
1688 enter_before = textget (to->plist, Qpoint_entered);
1689 else
1690 enter_before = Qnil;
1692 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
1693 call2 (leave_before, old_position, position);
1694 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
1695 call2 (leave_after, old_position, position);
1697 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
1698 call2 (enter_before, old_position, position);
1699 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
1700 call2 (enter_after, old_position, position);
1704 /* Set point temporarily, without checking any text properties. */
1706 INLINE void
1707 temp_set_point (position, buffer)
1708 int position;
1709 struct buffer *buffer;
1711 buffer->text.pt = position;
1714 /* Return the proper local map for position POSITION in BUFFER.
1715 Use the map specified by the local-map property, if any.
1716 Otherwise, use BUFFER's local map. */
1718 Lisp_Object
1719 get_local_map (position, buffer)
1720 register int position;
1721 register struct buffer *buffer;
1723 register INTERVAL interval;
1724 Lisp_Object prop, tem;
1726 if (NULL_INTERVAL_P (buffer->intervals))
1727 return current_buffer->keymap;
1729 /* Perhaps we should just change `position' to the limit. */
1730 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1731 abort ();
1733 interval = find_interval (buffer->intervals, position);
1734 prop = textget (interval->plist, Qlocal_map);
1735 if (NILP (prop))
1736 return current_buffer->keymap;
1738 /* Use the local map only if it is valid. */
1739 tem = Fkeymapp (prop);
1740 if (!NILP (tem))
1741 return prop;
1743 return current_buffer->keymap;
1746 /* Call the modification hook functions in LIST, each with START and END. */
1748 static void
1749 call_mod_hooks (list, start, end)
1750 Lisp_Object list, start, end;
1752 struct gcpro gcpro1;
1753 GCPRO1 (list);
1754 while (!NILP (list))
1756 call2 (Fcar (list), start, end);
1757 list = Fcdr (list);
1759 UNGCPRO;
1762 /* Check for read-only intervals and signal an error if we find one.
1763 Then check for any modification hooks in the range START up to
1764 (but not including) TO. Create a list of all these hooks in
1765 lexicographic order, eliminating consecutive extra copies of the
1766 same hook. Then call those hooks in order, with START and END - 1
1767 as arguments. */
1769 void
1770 verify_interval_modification (buf, start, end)
1771 struct buffer *buf;
1772 int start, end;
1774 register INTERVAL intervals = buf->intervals;
1775 register INTERVAL i, prev;
1776 Lisp_Object hooks;
1777 register Lisp_Object prev_mod_hooks;
1778 Lisp_Object mod_hooks;
1779 struct gcpro gcpro1;
1781 hooks = Qnil;
1782 prev_mod_hooks = Qnil;
1783 mod_hooks = Qnil;
1785 if (NULL_INTERVAL_P (intervals))
1786 return;
1788 if (start > end)
1790 int temp = start;
1791 start = end;
1792 end = temp;
1795 /* For an insert operation, check the two chars around the position. */
1796 if (start == end)
1798 INTERVAL prev;
1799 Lisp_Object before, after;
1801 /* Set I to the interval containing the char after START,
1802 and PREV to the interval containing the char before START.
1803 Either one may be null. They may be equal. */
1804 i = find_interval (intervals, start);
1806 if (start == BUF_BEGV (buf))
1807 prev = 0;
1808 else if (i->position == start)
1809 prev = previous_interval (i);
1810 else if (i->position < start)
1811 prev = i;
1812 if (start == BUF_ZV (buf))
1813 i = 0;
1815 /* If Vinhibit_read_only is set and is not a list, we can
1816 skip the read_only checks. */
1817 if (NILP (Vinhibit_read_only) || CONSP (Vinhibit_read_only))
1819 /* If I and PREV differ we need to check for the read-only
1820 property together with its stickyness. If either I or
1821 PREV are 0, this check is all we need.
1822 We have to take special care, since read-only may be
1823 indirectly defined via the category property. */
1824 if (i != prev)
1826 if (! NULL_INTERVAL_P (i))
1828 after = textget (i->plist, Qread_only);
1830 /* If interval I is read-only and read-only is
1831 front-sticky, inhibit insertion.
1832 Check for read-only as well as category. */
1833 if (! NILP (after)
1834 && NILP (Fmemq (after, Vinhibit_read_only)))
1836 Lisp_Object tem;
1838 tem = textget (i->plist, Qfront_sticky);
1839 if (TMEM (Qread_only, tem)
1840 || (NILP (textget_direct (i->plist, Qread_only))
1841 && TMEM (Qcategory, tem)))
1842 error ("Attempt to insert within read-only text");
1845 else
1846 after = Qnil;
1847 if (! NULL_INTERVAL_P (prev))
1849 before = textget (prev->plist, Qread_only);
1851 /* If interval PREV is read-only and read-only isn't
1852 rear-nonsticky, inhibit insertion.
1853 Check for read-only as well as category. */
1854 if (! NILP (before)
1855 && NILP (Fmemq (before, Vinhibit_read_only)))
1857 Lisp_Object tem;
1859 tem = textget (prev->plist, Qrear_nonsticky);
1860 if (! TMEM (Qread_only, tem)
1861 && (! NILP (textget_direct (prev->plist,Qread_only))
1862 || ! TMEM (Qcategory, tem)))
1863 error ("Attempt to insert within read-only text");
1866 else
1867 before = Qnil;
1869 else if (! NULL_INTERVAL_P (i))
1870 before = after = textget (i->plist, Qread_only);
1871 if (! NULL_INTERVAL_P (i) && ! NULL_INTERVAL_P (prev))
1873 /* If I and PREV differ, neither of them has a sticky
1874 read-only property. It only remains to check, whether
1875 they have a common read-only property. */
1876 if (! NILP (before) && EQ (before, after))
1877 error ("Attempt to insert within read-only text");
1881 /* Run both insert hooks (just once if they're the same). */
1882 if (!NULL_INTERVAL_P (prev))
1883 prev_mod_hooks = textget (prev->plist, Qinsert_behind_hooks);
1884 if (!NULL_INTERVAL_P (i))
1885 mod_hooks = textget (i->plist, Qinsert_in_front_hooks);
1886 GCPRO1 (mod_hooks);
1887 if (! NILP (prev_mod_hooks))
1888 call_mod_hooks (prev_mod_hooks, make_number (start),
1889 make_number (end));
1890 UNGCPRO;
1891 if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
1892 call_mod_hooks (mod_hooks, make_number (start), make_number (end));
1894 else
1896 /* Loop over intervals on or next to START...END,
1897 collecting their hooks. */
1899 i = find_interval (intervals, start);
1902 if (! INTERVAL_WRITABLE_P (i))
1903 error ("Attempt to modify read-only text");
1905 mod_hooks = textget (i->plist, Qmodification_hooks);
1906 if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
1908 hooks = Fcons (mod_hooks, hooks);
1909 prev_mod_hooks = mod_hooks;
1912 i = next_interval (i);
1914 /* Keep going thru the interval containing the char before END. */
1915 while (! NULL_INTERVAL_P (i) && i->position < end);
1917 GCPRO1 (hooks);
1918 hooks = Fnreverse (hooks);
1919 while (! EQ (hooks, Qnil))
1921 call_mod_hooks (Fcar (hooks), make_number (start),
1922 make_number (end));
1923 hooks = Fcdr (hooks);
1925 UNGCPRO;
1929 /* Produce an interval tree reflecting the intervals in
1930 TREE from START to START + LENGTH. */
1932 INTERVAL
1933 copy_intervals (tree, start, length)
1934 INTERVAL tree;
1935 int start, length;
1937 register INTERVAL i, new, t;
1938 register int got, prevlen;
1940 if (NULL_INTERVAL_P (tree) || length <= 0)
1941 return NULL_INTERVAL;
1943 i = find_interval (tree, start);
1944 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
1945 abort ();
1947 /* If there is only one interval and it's the default, return nil. */
1948 if ((start - i->position + 1 + length) < LENGTH (i)
1949 && DEFAULT_INTERVAL_P (i))
1950 return NULL_INTERVAL;
1952 new = make_interval ();
1953 new->position = 1;
1954 got = (LENGTH (i) - (start - i->position));
1955 new->total_length = length;
1956 copy_properties (i, new);
1958 t = new;
1959 prevlen = got;
1960 while (got < length)
1962 i = next_interval (i);
1963 t = split_interval_right (t, prevlen);
1964 copy_properties (i, t);
1965 prevlen = LENGTH (i);
1966 got += prevlen;
1969 return balance_an_interval (new);
1972 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
1974 INLINE void
1975 copy_intervals_to_string (string, buffer, position, length)
1976 Lisp_Object string, buffer;
1977 int position, length;
1979 INTERVAL interval_copy = copy_intervals (XBUFFER (buffer)->intervals,
1980 position, length);
1981 if (NULL_INTERVAL_P (interval_copy))
1982 return;
1984 interval_copy->parent = (INTERVAL) string;
1985 XSTRING (string)->intervals = interval_copy;
1988 #endif /* USE_TEXT_PROPERTIES */