1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 /* Contributed by Andrew Choi (akochoi@mac.com). */
22 /* Documentation note.
24 Consult the following documents/files for a description of the
25 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
26 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
27 mach header (-h option) and the load commands (-l option) in a
28 Mach-O file. The tool nm on Mac OS X displays the symbol table in
29 a Mach-O file. For examples of unexec for the Mach-O format, see
30 the file unexnext.c in the GNU Emacs distribution, the file
31 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
32 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
33 contains the source code for malloc_freezedry and malloc_jumpstart.
34 Read that to see what they do. This file was written completely
35 from scratch, making use of information from the above sources. */
37 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
38 memory allocator. All calls to malloc, realloc, and free in Emacs
39 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
40 this file. When temacs is run, all memory requests are handled in
41 the zone EmacsZone. The Darwin memory allocator library calls
42 maintain the data structures to manage this zone. Dumping writes
43 its contents to data segments of the executable file. When emacs
44 is run, the loader recreates the contents of the zone in memory.
45 However since the initialization routine of the zone memory
46 allocator is run again, this `zone' can no longer be used as a
47 heap. That is why emacs uses the ordinary malloc system call to
48 allocate memory. Also, when a block of memory needs to be
49 reallocated and the new size is larger than the old one, a new
50 block must be obtained by malloc and the old contents copied to
53 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
54 (possible causes of future bugs if changed).
56 The file offset of the start of the __TEXT segment is zero. Since
57 the Mach header and load commands are located at the beginning of a
58 Mach-O file, copying the contents of the __TEXT segment from the
59 input file overwrites them in the output file. Despite this,
60 unexec works fine as written below because the segment load command
61 for __TEXT appears, and is therefore processed, before all other
62 load commands except the segment load command for __PAGEZERO, which
65 Although the file offset of the start of the __TEXT segment is
66 zero, none of the sections it contains actually start there. In
67 fact, the earliest one starts a few hundred bytes beyond the end of
68 the last load command. The linker option -headerpad controls the
69 minimum size of this padding. Its setting can be changed in
70 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
71 load commands for the newly created __DATA segments (at 56 bytes
72 each). Unexec fails if there is not enough room for these new
75 The __TEXT segment contains the sections __text, __cstring,
76 __picsymbol_stub, and __const and the __DATA segment contains the
77 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
78 and __common. The other segments do not contain any sections.
79 These sections are copied from the input file to the output file,
80 except for __data, __bss, and __common, which are dumped from
81 memory. The types of the sections __bss and __common are changed
82 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
83 their relative order in the input and output files remain
84 unchanged. Otherwise all n_sect fields in the nlist records in the
85 symbol table (specified by the LC_SYMTAB load command) will have to
86 be changed accordingly.
93 #include <sys/types.h>
95 #include <mach/mach.h>
96 #include <mach-o/loader.h>
97 #include <mach-o/reloc.h>
99 #include <mach-o/ppc/reloc.h>
105 #ifdef HAVE_MALLOC_MALLOC_H
106 #include <malloc/malloc.h>
108 #include <objc/malloc.h>
114 #define mach_header mach_header_64
115 #define segment_command segment_command_64
116 #undef VM_REGION_BASIC_INFO_COUNT
117 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
118 #undef VM_REGION_BASIC_INFO
119 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
121 #define LC_SEGMENT LC_SEGMENT_64
122 #define vm_region vm_region_64
123 #define section section_64
125 #define MH_MAGIC MH_MAGIC_64
130 /* Size of buffer used to copy data from the input file to the output
131 file in function unexec_copy. */
132 #define UNEXEC_COPY_BUFSZ 1024
134 /* Regions with memory addresses above this value are assumed to be
135 mapped to dynamically loaded libraries and will not be dumped. */
136 #define VM_DATA_TOP (20 * 1024 * 1024)
138 /* Type of an element on the list of regions to be dumped. */
140 vm_address_t address
;
142 vm_prot_t protection
;
143 vm_prot_t max_protection
;
145 struct region_t
*next
;
148 /* Head and tail of the list of regions to be dumped. */
149 static struct region_t
*region_list_head
= 0;
150 static struct region_t
*region_list_tail
= 0;
152 /* Pointer to array of load commands. */
153 static struct load_command
**lca
;
155 /* Number of load commands. */
158 /* The highest VM address of segments loaded by the input file.
159 Regions with addresses beyond this are assumed to be allocated
160 dynamically and thus require dumping. */
161 static vm_address_t infile_lc_highest_addr
= 0;
163 /* The lowest file offset used by the all sections in the __TEXT
164 segments. This leaves room at the beginning of the file to store
165 the Mach-O header. Check this value against header size to ensure
166 the added load commands for the new __DATA segments did not
167 overwrite any of the sections in the __TEXT segment. */
168 static unsigned long text_seg_lowest_offset
= 0x10000000;
171 static struct mach_header mh
;
173 /* Offset at which the next load command should be written. */
174 static unsigned long curr_header_offset
= sizeof (struct mach_header
);
176 /* Offset at which the next segment should be written. */
177 static unsigned long curr_file_offset
= 0;
179 static unsigned long pagesize
;
180 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
182 static int infd
, outfd
;
184 static int in_dumped_exec
= 0;
186 static malloc_zone_t
*emacs_zone
;
188 /* file offset of input file's data segment */
189 static off_t data_segment_old_fileoff
= 0;
191 static struct segment_command
*data_segment_scp
;
193 /* Read N bytes from infd into memory starting at address DEST.
194 Return true if successful, false otherwise. */
196 unexec_read (void *dest
, size_t n
)
198 return n
== read (infd
, dest
, n
);
201 /* Write COUNT bytes from memory starting at address SRC to outfd
202 starting at offset DEST. Return true if successful, false
205 unexec_write (off_t dest
, const void *src
, size_t count
)
207 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
210 return write (outfd
, src
, count
) == count
;
213 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
214 Return true if successful, false otherwise. */
216 unexec_write_zero (off_t dest
, size_t count
)
218 char buf
[UNEXEC_COPY_BUFSZ
];
221 bzero (buf
, UNEXEC_COPY_BUFSZ
);
222 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
227 bytes
= count
> UNEXEC_COPY_BUFSZ
? UNEXEC_COPY_BUFSZ
: count
;
228 if (write (outfd
, buf
, bytes
) != bytes
)
236 /* Copy COUNT bytes from starting offset SRC in infd to starting
237 offset DEST in outfd. Return true if successful, false
240 unexec_copy (off_t dest
, off_t src
, ssize_t count
)
243 ssize_t bytes_to_read
;
245 char buf
[UNEXEC_COPY_BUFSZ
];
247 if (lseek (infd
, src
, SEEK_SET
) != src
)
250 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
255 bytes_to_read
= count
> UNEXEC_COPY_BUFSZ
? UNEXEC_COPY_BUFSZ
: count
;
256 bytes_read
= read (infd
, buf
, bytes_to_read
);
259 if (write (outfd
, buf
, bytes_read
) != bytes_read
)
267 /* Debugging and informational messages routines. */
270 unexec_error (char *format
, ...)
274 va_start (ap
, format
);
275 fprintf (stderr
, "unexec: ");
276 vfprintf (stderr
, format
, ap
);
277 fprintf (stderr
, "\n");
283 print_prot (vm_prot_t prot
)
285 if (prot
== VM_PROT_NONE
)
289 putchar (prot
& VM_PROT_READ
? 'r' : ' ');
290 putchar (prot
& VM_PROT_WRITE
? 'w' : ' ');
291 putchar (prot
& VM_PROT_EXECUTE
? 'x' : ' ');
297 print_region (vm_address_t address
, vm_size_t size
, vm_prot_t prot
,
300 printf ("%#10lx %#8lx ", (long) address
, (long) size
);
303 print_prot (max_prot
);
312 printf (" address size prot maxp\n");
314 for (r
= region_list_head
; r
; r
= r
->next
)
315 print_region (r
->address
, r
->size
, r
->protection
, r
->max_protection
);
321 task_t target_task
= mach_task_self ();
322 vm_address_t address
= (vm_address_t
) 0;
324 struct vm_region_basic_info info
;
325 mach_msg_type_number_t info_count
= VM_REGION_BASIC_INFO_COUNT
;
326 mach_port_t object_name
;
328 printf (" address size prot maxp\n");
330 while (vm_region (target_task
, &address
, &size
, VM_REGION_BASIC_INFO
,
331 (vm_region_info_t
) &info
, &info_count
, &object_name
)
332 == KERN_SUCCESS
&& info_count
== VM_REGION_BASIC_INFO_COUNT
)
334 print_region (address
, size
, info
.protection
, info
.max_protection
);
336 if (object_name
!= MACH_PORT_NULL
)
337 mach_port_deallocate (target_task
, object_name
);
343 /* Build the list of regions that need to be dumped. Regions with
344 addresses above VM_DATA_TOP are omitted. Adjacent regions with
345 identical protection are merged. Note that non-writable regions
346 cannot be omitted because they some regions created at run time are
351 task_t target_task
= mach_task_self ();
352 vm_address_t address
= (vm_address_t
) 0;
354 struct vm_region_basic_info info
;
355 mach_msg_type_number_t info_count
= VM_REGION_BASIC_INFO_COUNT
;
356 mach_port_t object_name
;
360 printf ("--- List of All Regions ---\n");
361 printf (" address size prot maxp\n");
364 while (vm_region (target_task
, &address
, &size
, VM_REGION_BASIC_INFO
,
365 (vm_region_info_t
) &info
, &info_count
, &object_name
)
366 == KERN_SUCCESS
&& info_count
== VM_REGION_BASIC_INFO_COUNT
)
368 /* Done when we reach addresses of shared libraries, which are
369 loaded in high memory. */
370 if (address
>= VM_DATA_TOP
)
374 print_region (address
, size
, info
.protection
, info
.max_protection
);
377 /* If a region immediately follows the previous one (the one
378 most recently added to the list) and has identical
379 protection, merge it with the latter. Otherwise create a
380 new list element for it. */
382 && info
.protection
== region_list_tail
->protection
383 && info
.max_protection
== region_list_tail
->max_protection
384 && region_list_tail
->address
+ region_list_tail
->size
== address
)
386 region_list_tail
->size
+= size
;
390 r
= (struct region_t
*) malloc (sizeof (struct region_t
));
393 unexec_error ("cannot allocate region structure");
395 r
->address
= address
;
397 r
->protection
= info
.protection
;
398 r
->max_protection
= info
.max_protection
;
401 if (region_list_head
== 0)
403 region_list_head
= r
;
404 region_list_tail
= r
;
408 region_list_tail
->next
= r
;
409 region_list_tail
= r
;
412 /* Deallocate (unused) object name returned by
414 if (object_name
!= MACH_PORT_NULL
)
415 mach_port_deallocate (target_task
, object_name
);
421 printf ("--- List of Regions to be Dumped ---\n");
422 print_region_list ();
426 #define MAX_UNEXEC_REGIONS 400
428 static int num_unexec_regions
;
432 } unexec_region_info
;
433 static unexec_region_info unexec_regions
[MAX_UNEXEC_REGIONS
];
436 unexec_regions_recorder (task_t task
, void *rr
, unsigned type
,
437 vm_range_t
*ranges
, unsigned num
)
442 while (num
&& num_unexec_regions
< MAX_UNEXEC_REGIONS
)
444 /* Subtract the size of trailing null bytes from filesize. It
445 can be smaller than vmsize in segment commands. In such a
446 case, trailing bytes are initialized with zeros. */
447 for (p
= ranges
->address
+ ranges
->size
; p
> ranges
->address
; p
--)
448 if (*(((char *) p
)-1))
450 filesize
= p
- ranges
->address
;
452 unexec_regions
[num_unexec_regions
].filesize
= filesize
;
453 unexec_regions
[num_unexec_regions
++].range
= *ranges
;
454 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges
->address
),
455 (long) filesize
, (long) (ranges
->size
));
461 unexec_reader (task_t task
, vm_address_t address
, vm_size_t size
, void **ptr
)
463 *ptr
= (void *) address
;
468 find_emacs_zone_regions ()
470 num_unexec_regions
= 0;
472 emacs_zone
->introspect
->enumerator (mach_task_self(), 0,
473 MALLOC_PTR_REGION_RANGE_TYPE
474 | MALLOC_ADMIN_REGION_RANGE_TYPE
,
475 (vm_address_t
) emacs_zone
,
477 unexec_regions_recorder
);
479 if (num_unexec_regions
== MAX_UNEXEC_REGIONS
)
480 unexec_error ("find_emacs_zone_regions: too many regions");
484 unexec_regions_sort_compare (const void *a
, const void *b
)
486 vm_address_t aa
= ((unexec_region_info
*) a
)->range
.address
;
487 vm_address_t bb
= ((unexec_region_info
*) b
)->range
.address
;
498 unexec_regions_merge ()
501 unexec_region_info r
;
504 qsort (unexec_regions
, num_unexec_regions
, sizeof (unexec_regions
[0]),
505 &unexec_regions_sort_compare
);
507 r
= unexec_regions
[0];
508 padsize
= r
.range
.address
& (pagesize
- 1);
511 r
.range
.address
-= padsize
;
512 r
.range
.size
+= padsize
;
513 r
.filesize
+= padsize
;
515 for (i
= 1; i
< num_unexec_regions
; i
++)
517 if (r
.range
.address
+ r
.range
.size
== unexec_regions
[i
].range
.address
518 && r
.range
.size
- r
.filesize
< 2 * pagesize
)
520 r
.filesize
= r
.range
.size
+ unexec_regions
[i
].filesize
;
521 r
.range
.size
+= unexec_regions
[i
].range
.size
;
525 unexec_regions
[n
++] = r
;
526 r
= unexec_regions
[i
];
527 padsize
= r
.range
.address
& (pagesize
- 1);
530 if ((unexec_regions
[n
-1].range
.address
531 + unexec_regions
[n
-1].range
.size
) == r
.range
.address
)
532 unexec_regions
[n
-1].range
.size
-= padsize
;
534 r
.range
.address
-= padsize
;
535 r
.range
.size
+= padsize
;
536 r
.filesize
+= padsize
;
540 unexec_regions
[n
++] = r
;
541 num_unexec_regions
= n
;
545 /* More informational messages routines. */
548 print_load_command_name (int lc
)
554 printf ("LC_SEGMENT ");
556 printf ("LC_SEGMENT_64 ");
559 case LC_LOAD_DYLINKER
:
560 printf ("LC_LOAD_DYLINKER ");
563 printf ("LC_LOAD_DYLIB ");
566 printf ("LC_SYMTAB ");
569 printf ("LC_DYSYMTAB ");
572 printf ("LC_UNIXTHREAD ");
574 case LC_PREBOUND_DYLIB
:
575 printf ("LC_PREBOUND_DYLIB");
577 case LC_TWOLEVEL_HINTS
:
578 printf ("LC_TWOLEVEL_HINTS");
591 print_load_command (struct load_command
*lc
)
593 print_load_command_name (lc
->cmd
);
594 printf ("%8d", lc
->cmdsize
);
596 if (lc
->cmd
== LC_SEGMENT
)
598 struct segment_command
*scp
;
599 struct section
*sectp
;
602 scp
= (struct segment_command
*) lc
;
603 printf (" %-16.16s %#10lx %#8lx\n",
604 scp
->segname
, (long) (scp
->vmaddr
), (long) (scp
->vmsize
));
606 sectp
= (struct section
*) (scp
+ 1);
607 for (j
= 0; j
< scp
->nsects
; j
++)
609 printf (" %-16.16s %#10lx %#8lx\n",
610 sectp
->sectname
, (long) (sectp
->addr
), (long) (sectp
->size
));
618 /* Read header and load commands from input file. Store the latter in
619 the global array lca. Store the total number of load commands in
620 global variable nlc. */
622 read_load_commands ()
626 if (!unexec_read (&mh
, sizeof (struct mach_header
)))
627 unexec_error ("cannot read mach-o header");
629 if (mh
.magic
!= MH_MAGIC
)
630 unexec_error ("input file not in Mach-O format");
632 if (mh
.filetype
!= MH_EXECUTE
)
633 unexec_error ("input Mach-O file is not an executable object file");
636 printf ("--- Header Information ---\n");
637 printf ("Magic = 0x%08x\n", mh
.magic
);
638 printf ("CPUType = %d\n", mh
.cputype
);
639 printf ("CPUSubType = %d\n", mh
.cpusubtype
);
640 printf ("FileType = 0x%x\n", mh
.filetype
);
641 printf ("NCmds = %d\n", mh
.ncmds
);
642 printf ("SizeOfCmds = %d\n", mh
.sizeofcmds
);
643 printf ("Flags = 0x%08x\n", mh
.flags
);
647 lca
= (struct load_command
**) malloc (nlc
* sizeof (struct load_command
*));
649 for (i
= 0; i
< nlc
; i
++)
651 struct load_command lc
;
652 /* Load commands are variable-size: so read the command type and
653 size first and then read the rest. */
654 if (!unexec_read (&lc
, sizeof (struct load_command
)))
655 unexec_error ("cannot read load command");
656 lca
[i
] = (struct load_command
*) malloc (lc
.cmdsize
);
657 memcpy (lca
[i
], &lc
, sizeof (struct load_command
));
658 if (!unexec_read (lca
[i
] + 1, lc
.cmdsize
- sizeof (struct load_command
)))
659 unexec_error ("cannot read content of load command");
660 if (lc
.cmd
== LC_SEGMENT
)
662 struct segment_command
*scp
= (struct segment_command
*) lca
[i
];
664 if (scp
->vmaddr
+ scp
->vmsize
> infile_lc_highest_addr
)
665 infile_lc_highest_addr
= scp
->vmaddr
+ scp
->vmsize
;
667 if (strncmp (scp
->segname
, SEG_TEXT
, 16) == 0)
669 struct section
*sectp
= (struct section
*) (scp
+ 1);
672 for (j
= 0; j
< scp
->nsects
; j
++)
673 if (sectp
->offset
< text_seg_lowest_offset
)
674 text_seg_lowest_offset
= sectp
->offset
;
679 printf ("Highest address of load commands in input file: %#8x\n",
680 infile_lc_highest_addr
);
682 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
683 text_seg_lowest_offset
);
685 printf ("--- List of Load Commands in Input File ---\n");
686 printf ("# cmd cmdsize name address size\n");
688 for (i
= 0; i
< nlc
; i
++)
691 print_load_command (lca
[i
]);
695 /* Copy a LC_SEGMENT load command other than the __DATA segment from
696 the input file to the output file, adjusting the file offset of the
697 segment and the file offsets of sections contained in it. */
699 copy_segment (struct load_command
*lc
)
701 struct segment_command
*scp
= (struct segment_command
*) lc
;
702 unsigned long old_fileoff
= scp
->fileoff
;
703 struct section
*sectp
;
706 scp
->fileoff
= curr_file_offset
;
708 sectp
= (struct section
*) (scp
+ 1);
709 for (j
= 0; j
< scp
->nsects
; j
++)
711 sectp
->offset
+= curr_file_offset
- old_fileoff
;
715 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
716 scp
->segname
, (long) (scp
->fileoff
), (long) (scp
->filesize
),
717 (long) (scp
->vmsize
), (long) (scp
->vmaddr
));
719 if (!unexec_copy (scp
->fileoff
, old_fileoff
, scp
->filesize
))
720 unexec_error ("cannot copy segment from input to output file");
721 curr_file_offset
+= ROUNDUP_TO_PAGE_BOUNDARY (scp
->filesize
);
723 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
724 unexec_error ("cannot write load command to header");
726 curr_header_offset
+= lc
->cmdsize
;
729 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
730 file to the output file. We assume that only one such segment load
731 command exists in the input file and it contains the sections
732 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
733 __dyld. The first three of these should be dumped from memory and
734 the rest should be copied from the input file. Note that the
735 sections __bss and __common contain no data in the input file
736 because their flag fields have the value S_ZEROFILL. Dumping these
737 from memory makes it necessary to adjust file offset fields in
738 subsequently dumped load commands. Then, create new __DATA segment
739 load commands for regions on the region list other than the one
740 corresponding to the __DATA segment in the input file. */
742 copy_data_segment (struct load_command
*lc
)
744 struct segment_command
*scp
= (struct segment_command
*) lc
;
745 struct section
*sectp
;
747 unsigned long header_offset
, old_file_offset
;
749 /* The new filesize of the segment is set to its vmsize because data
750 blocks for segments must start at region boundaries. Note that
751 this may leave unused locations at the end of the segment data
752 block because the total of the sizes of all sections in the
753 segment is generally smaller than vmsize. */
754 scp
->filesize
= scp
->vmsize
;
756 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
757 scp
->segname
, curr_file_offset
, (long)(scp
->filesize
),
758 (long)(scp
->vmsize
), (long) (scp
->vmaddr
));
760 /* Offsets in the output file for writing the next section structure
761 and segment data block, respectively. */
762 header_offset
= curr_header_offset
+ sizeof (struct segment_command
);
764 sectp
= (struct section
*) (scp
+ 1);
765 for (j
= 0; j
< scp
->nsects
; j
++)
767 old_file_offset
= sectp
->offset
;
768 sectp
->offset
= sectp
->addr
- scp
->vmaddr
+ curr_file_offset
;
769 /* The __data section is dumped from memory. The __bss and
770 __common sections are also dumped from memory but their flag
771 fields require changing (from S_ZEROFILL to S_REGULAR). The
772 other three kinds of sections are just copied from the input
774 if (strncmp (sectp
->sectname
, SECT_DATA
, 16) == 0)
776 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, sectp
->size
))
777 unexec_error ("cannot write section %s", SECT_DATA
);
778 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
779 unexec_error ("cannot write section %s's header", SECT_DATA
);
781 else if (strncmp (sectp
->sectname
, SECT_COMMON
, 16) == 0)
783 sectp
->flags
= S_REGULAR
;
784 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, sectp
->size
))
785 unexec_error ("cannot write section %s", sectp
->sectname
);
786 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
787 unexec_error ("cannot write section %s's header", sectp
->sectname
);
789 else if (strncmp (sectp
->sectname
, SECT_BSS
, 16) == 0)
791 extern char *my_endbss_static
;
792 unsigned long my_size
;
794 sectp
->flags
= S_REGULAR
;
796 /* Clear uninitialized local variables in statically linked
797 libraries. In particular, function pointers stored by
798 libSystemStub.a, which is introduced in Mac OS X 10.4 for
799 binary compatibility with respect to long double, are
800 cleared so that they will be reinitialized when the
801 dumped binary is executed on other versions of OS. */
802 my_size
= (unsigned long)my_endbss_static
- sectp
->addr
;
803 if (!(sectp
->addr
<= (unsigned long)my_endbss_static
804 && my_size
<= sectp
->size
))
805 unexec_error ("my_endbss_static is not in section %s",
807 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, my_size
))
808 unexec_error ("cannot write section %s", sectp
->sectname
);
809 if (!unexec_write_zero (sectp
->offset
+ my_size
,
810 sectp
->size
- my_size
))
811 unexec_error ("cannot write section %s", sectp
->sectname
);
812 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
813 unexec_error ("cannot write section %s's header", sectp
->sectname
);
815 else if (strncmp (sectp
->sectname
, "__la_symbol_ptr", 16) == 0
816 || strncmp (sectp
->sectname
, "__nl_symbol_ptr", 16) == 0
817 || strncmp (sectp
->sectname
, "__la_sym_ptr2", 16) == 0
818 || strncmp (sectp
->sectname
, "__dyld", 16) == 0
819 || strncmp (sectp
->sectname
, "__const", 16) == 0
820 || strncmp (sectp
->sectname
, "__cfstring", 16) == 0
821 || strncmp (sectp
->sectname
, "__gcc_except_tab", 16) == 0
822 || strncmp (sectp
->sectname
, "__objc_", 7) == 0)
824 if (!unexec_copy (sectp
->offset
, old_file_offset
, sectp
->size
))
825 unexec_error ("cannot copy section %s", sectp
->sectname
);
826 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
827 unexec_error ("cannot write section %s's header", sectp
->sectname
);
830 unexec_error ("unrecognized section name in __DATA segment");
832 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
833 sectp
->sectname
, (long) (sectp
->offset
),
834 (long) (sectp
->offset
+ sectp
->size
), (long) (sectp
->size
));
836 header_offset
+= sizeof (struct section
);
840 curr_file_offset
+= ROUNDUP_TO_PAGE_BOUNDARY (scp
->filesize
);
842 if (!unexec_write (curr_header_offset
, scp
, sizeof (struct segment_command
)))
843 unexec_error ("cannot write header of __DATA segment");
844 curr_header_offset
+= lc
->cmdsize
;
846 /* Create new __DATA segment load commands for regions on the region
847 list that do not corresponding to any segment load commands in
850 for (j
= 0; j
< num_unexec_regions
; j
++)
852 struct segment_command sc
;
855 sc
.cmdsize
= sizeof (struct segment_command
);
856 strncpy (sc
.segname
, SEG_DATA
, 16);
857 sc
.vmaddr
= unexec_regions
[j
].range
.address
;
858 sc
.vmsize
= unexec_regions
[j
].range
.size
;
859 sc
.fileoff
= curr_file_offset
;
860 sc
.filesize
= unexec_regions
[j
].filesize
;
861 sc
.maxprot
= VM_PROT_READ
| VM_PROT_WRITE
;
862 sc
.initprot
= VM_PROT_READ
| VM_PROT_WRITE
;
866 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
867 sc
.segname
, (long) (sc
.fileoff
), (long) (sc
.filesize
),
868 (long) (sc
.vmsize
), (long) (sc
.vmaddr
));
870 if (!unexec_write (sc
.fileoff
, (void *) sc
.vmaddr
, sc
.filesize
))
871 unexec_error ("cannot write new __DATA segment");
872 curr_file_offset
+= ROUNDUP_TO_PAGE_BOUNDARY (sc
.filesize
);
874 if (!unexec_write (curr_header_offset
, &sc
, sc
.cmdsize
))
875 unexec_error ("cannot write new __DATA segment's header");
876 curr_header_offset
+= sc
.cmdsize
;
881 /* Copy a LC_SYMTAB load command from the input file to the output
882 file, adjusting the file offset fields. */
884 copy_symtab (struct load_command
*lc
, long delta
)
886 struct symtab_command
*stp
= (struct symtab_command
*) lc
;
888 stp
->symoff
+= delta
;
889 stp
->stroff
+= delta
;
891 printf ("Writing LC_SYMTAB command\n");
893 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
894 unexec_error ("cannot write symtab command to header");
896 curr_header_offset
+= lc
->cmdsize
;
899 /* Fix up relocation entries. */
901 unrelocate (const char *name
, off_t reloff
, int nrel
, vm_address_t base
)
903 int i
, unreloc_count
;
904 struct relocation_info reloc_info
;
905 struct scattered_relocation_info
*sc_reloc_info
906 = (struct scattered_relocation_info
*) &reloc_info
;
907 vm_address_t location
;
909 for (unreloc_count
= 0, i
= 0; i
< nrel
; i
++)
911 if (lseek (infd
, reloff
, L_SET
) != reloff
)
912 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name
, i
);
913 if (!unexec_read (&reloc_info
, sizeof (reloc_info
)))
914 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name
, i
);
915 reloff
+= sizeof (reloc_info
);
917 if (sc_reloc_info
->r_scattered
== 0)
918 switch (reloc_info
.r_type
)
920 case GENERIC_RELOC_VANILLA
:
921 location
= base
+ reloc_info
.r_address
;
922 if (location
>= data_segment_scp
->vmaddr
923 && location
< (data_segment_scp
->vmaddr
924 + data_segment_scp
->vmsize
))
926 off_t src_off
= data_segment_old_fileoff
927 + (location
- data_segment_scp
->vmaddr
);
928 off_t dst_off
= data_segment_scp
->fileoff
929 + (location
- data_segment_scp
->vmaddr
);
931 if (!unexec_copy (dst_off
, src_off
, 1 << reloc_info
.r_length
))
932 unexec_error ("unrelocate: %s:%d cannot copy original value",
938 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
939 name
, i
, reloc_info
.r_type
);
942 switch (sc_reloc_info
->r_type
)
944 #if defined (__ppc__)
945 case PPC_RELOC_PB_LA_PTR
:
946 /* nothing to do for prebound lazy pointer */
950 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
951 name
, i
, sc_reloc_info
->r_type
);
956 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
957 unreloc_count
, nrel
, name
);
961 /* Rebase r_address in the relocation table. */
963 rebase_reloc_address (off_t reloff
, int nrel
, long linkedit_delta
, long diff
)
966 struct relocation_info reloc_info
;
967 struct scattered_relocation_info
*sc_reloc_info
968 = (struct scattered_relocation_info
*) &reloc_info
;
970 for (i
= 0; i
< nrel
; i
++, reloff
+= sizeof (reloc_info
))
972 if (lseek (infd
, reloff
- linkedit_delta
, L_SET
)
973 != reloff
- linkedit_delta
)
974 unexec_error ("rebase_reloc_table: cannot seek to reloc_info");
975 if (!unexec_read (&reloc_info
, sizeof (reloc_info
)))
976 unexec_error ("rebase_reloc_table: cannot read reloc_info");
978 if (sc_reloc_info
->r_scattered
== 0
979 && reloc_info
.r_type
== GENERIC_RELOC_VANILLA
)
981 reloc_info
.r_address
-= diff
;
982 if (!unexec_write (reloff
, &reloc_info
, sizeof (reloc_info
)))
983 unexec_error ("rebase_reloc_table: cannot write reloc_info");
989 /* Copy a LC_DYSYMTAB load command from the input file to the output
990 file, adjusting the file offset fields. */
992 copy_dysymtab (struct load_command
*lc
, long delta
)
994 struct dysymtab_command
*dstp
= (struct dysymtab_command
*) lc
;
1003 for (i
= 0; i
< nlc
; i
++)
1004 if (lca
[i
]->cmd
== LC_SEGMENT
)
1006 struct segment_command
*scp
= (struct segment_command
*) lca
[i
];
1008 if (scp
->vmaddr
+ scp
->vmsize
> 0x100000000
1009 && (scp
->initprot
& VM_PROT_WRITE
) != 0)
1011 base
= data_segment_scp
->vmaddr
;
1017 /* First writable segment address. */
1018 base
= data_segment_scp
->vmaddr
;
1021 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1025 unrelocate ("local", dstp
->locreloff
, dstp
->nlocrel
, base
);
1026 unrelocate ("external", dstp
->extreloff
, dstp
->nextrel
, base
);
1028 if (dstp
->nextrel
> 0) {
1029 dstp
->extreloff
+= delta
;
1032 if (dstp
->nlocrel
> 0) {
1033 dstp
->locreloff
+= delta
;
1036 if (dstp
->nindirectsyms
> 0)
1037 dstp
->indirectsymoff
+= delta
;
1039 printf ("Writing LC_DYSYMTAB command\n");
1041 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1042 unexec_error ("cannot write symtab command to header");
1044 curr_header_offset
+= lc
->cmdsize
;
1047 /* Check if the relocation base needs to be changed. */
1050 vm_address_t newbase
= 0;
1053 for (i
= 0; i
< num_unexec_regions
; i
++)
1054 if (unexec_regions
[i
].range
.address
+ unexec_regions
[i
].range
.size
1057 newbase
= data_segment_scp
->vmaddr
;
1063 rebase_reloc_address (dstp
->locreloff
, dstp
->nlocrel
, delta
, newbase
);
1064 rebase_reloc_address (dstp
->extreloff
, dstp
->nextrel
, delta
, newbase
);
1070 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1071 file, adjusting the file offset fields. */
1073 copy_twolevelhints (struct load_command
*lc
, long delta
)
1075 struct twolevel_hints_command
*tlhp
= (struct twolevel_hints_command
*) lc
;
1077 if (tlhp
->nhints
> 0) {
1078 tlhp
->offset
+= delta
;
1081 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1083 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1084 unexec_error ("cannot write two level hint command to header");
1086 curr_header_offset
+= lc
->cmdsize
;
1089 /* Copy other kinds of load commands from the input file to the output
1090 file, ones that do not require adjustments of file offsets. */
1092 copy_other (struct load_command
*lc
)
1094 printf ("Writing ");
1095 print_load_command_name (lc
->cmd
);
1096 printf (" command\n");
1098 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1099 unexec_error ("cannot write symtab command to header");
1101 curr_header_offset
+= lc
->cmdsize
;
1104 /* Loop through all load commands and dump them. Then write the Mach
1110 long linkedit_delta
= 0;
1112 printf ("--- Load Commands written to Output File ---\n");
1114 for (i
= 0; i
< nlc
; i
++)
1115 switch (lca
[i
]->cmd
)
1119 struct segment_command
*scp
= (struct segment_command
*) lca
[i
];
1120 if (strncmp (scp
->segname
, SEG_DATA
, 16) == 0)
1122 /* save data segment file offset and segment_command for
1124 if (data_segment_old_fileoff
)
1125 unexec_error ("cannot handle multiple DATA segments"
1127 data_segment_old_fileoff
= scp
->fileoff
;
1128 data_segment_scp
= scp
;
1130 copy_data_segment (lca
[i
]);
1134 if (strncmp (scp
->segname
, SEG_LINKEDIT
, 16) == 0)
1137 unexec_error ("cannot handle multiple LINKEDIT segments"
1139 linkedit_delta
= curr_file_offset
- scp
->fileoff
;
1142 copy_segment (lca
[i
]);
1147 copy_symtab (lca
[i
], linkedit_delta
);
1150 copy_dysymtab (lca
[i
], linkedit_delta
);
1152 case LC_TWOLEVEL_HINTS
:
1153 copy_twolevelhints (lca
[i
], linkedit_delta
);
1156 copy_other (lca
[i
]);
1160 if (curr_header_offset
> text_seg_lowest_offset
)
1161 unexec_error ("not enough room for load commands for new __DATA segments");
1163 printf ("%ld unused bytes follow Mach-O header\n",
1164 text_seg_lowest_offset
- curr_header_offset
);
1166 mh
.sizeofcmds
= curr_header_offset
- sizeof (struct mach_header
);
1167 if (!unexec_write (0, &mh
, sizeof (struct mach_header
)))
1168 unexec_error ("cannot write final header contents");
1171 /* Take a snapshot of Emacs and make a Mach-O format executable file
1172 from it. The file names of the output and input files are outfile
1173 and infile, respectively. The three other parameters are
1176 unexec (char *outfile
, char *infile
, void *start_data
, void *start_bss
,
1177 void *entry_address
)
1180 unexec_error ("Unexec from a dumped executable is not supported.");
1182 pagesize
= getpagesize ();
1183 infd
= open (infile
, O_RDONLY
, 0);
1186 unexec_error ("cannot open input file `%s'", infile
);
1189 outfd
= open (outfile
, O_WRONLY
| O_TRUNC
| O_CREAT
, 0755);
1193 unexec_error ("cannot open output file `%s'", outfile
);
1196 build_region_list ();
1197 read_load_commands ();
1199 find_emacs_zone_regions ();
1200 unexec_regions_merge ();
1211 unexec_init_emacs_zone ()
1213 emacs_zone
= malloc_create_zone (0, 0);
1214 malloc_set_zone_name (emacs_zone
, "EmacsZone");
1217 #ifndef MACOSX_MALLOC_MULT16
1218 #define MACOSX_MALLOC_MULT16 1
1221 typedef struct unexec_malloc_header
{
1226 } unexec_malloc_header_t
;
1228 #if MACOSX_MALLOC_MULT16
1230 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1235 ptr_in_unexec_regions (void *ptr
)
1239 for (i
= 0; i
< num_unexec_regions
; i
++)
1240 if ((vm_address_t
) ptr
- unexec_regions
[i
].range
.address
1241 < unexec_regions
[i
].range
.size
)
1250 unexec_malloc (size_t size
)
1257 #if MACOSX_MALLOC_MULT16
1258 assert (((vm_address_t
) p
% 16) == 0);
1264 unexec_malloc_header_t
*ptr
;
1266 ptr
= (unexec_malloc_header_t
*)
1267 malloc_zone_malloc (emacs_zone
, size
+ sizeof (unexec_malloc_header_t
));
1270 #if MACOSX_MALLOC_MULT16
1271 assert (((vm_address_t
) ptr
% 16) == 8);
1273 return (void *) ptr
;
1278 unexec_realloc (void *old_ptr
, size_t new_size
)
1284 if (ptr_in_unexec_regions (old_ptr
))
1286 size_t old_size
= ((unexec_malloc_header_t
*) old_ptr
)[-1].u
.size
;
1287 size_t size
= new_size
> old_size
? old_size
: new_size
;
1289 p
= (size_t *) malloc (new_size
);
1291 memcpy (p
, old_ptr
, size
);
1295 p
= realloc (old_ptr
, new_size
);
1297 #if MACOSX_MALLOC_MULT16
1298 assert (((vm_address_t
) p
% 16) == 0);
1304 unexec_malloc_header_t
*ptr
;
1306 ptr
= (unexec_malloc_header_t
*)
1307 malloc_zone_realloc (emacs_zone
, (unexec_malloc_header_t
*) old_ptr
- 1,
1308 new_size
+ sizeof (unexec_malloc_header_t
));
1309 ptr
->u
.size
= new_size
;
1311 #if MACOSX_MALLOC_MULT16
1312 assert (((vm_address_t
) ptr
% 16) == 8);
1314 return (void *) ptr
;
1319 unexec_free (void *ptr
)
1325 if (!ptr_in_unexec_regions (ptr
))
1329 malloc_zone_free (emacs_zone
, (unexec_malloc_header_t
*) ptr
- 1);
1332 /* arch-tag: 1a784f7b-a184-4c4f-9544-da8619593d72
1333 (do not change this comment) */