* alloc.c (CONS_BLOCK_SIZE): Account for padding at the end of
[emacs.git] / lib / sha512.c
blobcf62f2034e519e58d7d0fd462c370237b4c9ff86
1 /* sha512.c - Functions to compute SHA512 and SHA384 message digest of files or
2 memory blocks according to the NIST specification FIPS-180-2.
4 Copyright (C) 2005-2006, 2008-2012 Free Software Foundation, Inc.
6 This program is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 /* Written by David Madore, considerably copypasting from
20 Scott G. Miller's sha1.c
23 #include <config.h>
25 #include "sha512.h"
27 #include <stdalign.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <string.h>
32 #if USE_UNLOCKED_IO
33 # include "unlocked-io.h"
34 #endif
36 #ifdef WORDS_BIGENDIAN
37 # define SWAP(n) (n)
38 #else
39 # define SWAP(n) \
40 u64or (u64or (u64or (u64shl (n, 56), \
41 u64shl (u64and (n, u64lo (0x0000ff00)), 40)), \
42 u64or (u64shl (u64and (n, u64lo (0x00ff0000)), 24), \
43 u64shl (u64and (n, u64lo (0xff000000)), 8))), \
44 u64or (u64or (u64and (u64shr (n, 8), u64lo (0xff000000)), \
45 u64and (u64shr (n, 24), u64lo (0x00ff0000))), \
46 u64or (u64and (u64shr (n, 40), u64lo (0x0000ff00)), \
47 u64shr (n, 56))))
48 #endif
50 #define BLOCKSIZE 32768
51 #if BLOCKSIZE % 128 != 0
52 # error "invalid BLOCKSIZE"
53 #endif
55 /* This array contains the bytes used to pad the buffer to the next
56 128-byte boundary. */
57 static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ };
61 Takes a pointer to a 512 bit block of data (eight 64 bit ints) and
62 initializes it to the start constants of the SHA512 algorithm. This
63 must be called before using hash in the call to sha512_hash
65 void
66 sha512_init_ctx (struct sha512_ctx *ctx)
68 ctx->state[0] = u64hilo (0x6a09e667, 0xf3bcc908);
69 ctx->state[1] = u64hilo (0xbb67ae85, 0x84caa73b);
70 ctx->state[2] = u64hilo (0x3c6ef372, 0xfe94f82b);
71 ctx->state[3] = u64hilo (0xa54ff53a, 0x5f1d36f1);
72 ctx->state[4] = u64hilo (0x510e527f, 0xade682d1);
73 ctx->state[5] = u64hilo (0x9b05688c, 0x2b3e6c1f);
74 ctx->state[6] = u64hilo (0x1f83d9ab, 0xfb41bd6b);
75 ctx->state[7] = u64hilo (0x5be0cd19, 0x137e2179);
77 ctx->total[0] = ctx->total[1] = u64lo (0);
78 ctx->buflen = 0;
81 void
82 sha384_init_ctx (struct sha512_ctx *ctx)
84 ctx->state[0] = u64hilo (0xcbbb9d5d, 0xc1059ed8);
85 ctx->state[1] = u64hilo (0x629a292a, 0x367cd507);
86 ctx->state[2] = u64hilo (0x9159015a, 0x3070dd17);
87 ctx->state[3] = u64hilo (0x152fecd8, 0xf70e5939);
88 ctx->state[4] = u64hilo (0x67332667, 0xffc00b31);
89 ctx->state[5] = u64hilo (0x8eb44a87, 0x68581511);
90 ctx->state[6] = u64hilo (0xdb0c2e0d, 0x64f98fa7);
91 ctx->state[7] = u64hilo (0x47b5481d, 0xbefa4fa4);
93 ctx->total[0] = ctx->total[1] = u64lo (0);
94 ctx->buflen = 0;
97 /* Copy the value from V into the memory location pointed to by *CP,
98 If your architecture allows unaligned access, this is equivalent to
99 * (__typeof__ (v) *) cp = v */
100 static inline void
101 set_uint64 (char *cp, u64 v)
103 memcpy (cp, &v, sizeof v);
106 /* Put result from CTX in first 64 bytes following RESBUF.
107 The result must be in little endian byte order. */
108 void *
109 sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
111 int i;
112 char *r = resbuf;
114 for (i = 0; i < 8; i++)
115 set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
117 return resbuf;
120 void *
121 sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
123 int i;
124 char *r = resbuf;
126 for (i = 0; i < 6; i++)
127 set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
129 return resbuf;
132 /* Process the remaining bytes in the internal buffer and the usual
133 prolog according to the standard and write the result to RESBUF. */
134 static void
135 sha512_conclude_ctx (struct sha512_ctx *ctx)
137 /* Take yet unprocessed bytes into account. */
138 size_t bytes = ctx->buflen;
139 size_t size = (bytes < 112) ? 128 / 8 : 128 * 2 / 8;
141 /* Now count remaining bytes. */
142 ctx->total[0] = u64plus (ctx->total[0], u64lo (bytes));
143 if (u64lt (ctx->total[0], u64lo (bytes)))
144 ctx->total[1] = u64plus (ctx->total[1], u64lo (1));
146 /* Put the 128-bit file length in *bits* at the end of the buffer.
147 Use set_uint64 rather than a simple assignment, to avoid risk of
148 unaligned access. */
149 set_uint64 ((char *) &ctx->buffer[size - 2],
150 SWAP (u64or (u64shl (ctx->total[1], 3),
151 u64shr (ctx->total[0], 61))));
152 set_uint64 ((char *) &ctx->buffer[size - 1],
153 SWAP (u64shl (ctx->total[0], 3)));
155 memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 8 - bytes);
157 /* Process last bytes. */
158 sha512_process_block (ctx->buffer, size * 8, ctx);
161 void *
162 sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
164 sha512_conclude_ctx (ctx);
165 return sha512_read_ctx (ctx, resbuf);
168 void *
169 sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
171 sha512_conclude_ctx (ctx);
172 return sha384_read_ctx (ctx, resbuf);
175 /* Compute SHA512 message digest for bytes read from STREAM. The
176 resulting message digest number will be written into the 64 bytes
177 beginning at RESBLOCK. */
179 sha512_stream (FILE *stream, void *resblock)
181 struct sha512_ctx ctx;
182 size_t sum;
184 char *buffer = malloc (BLOCKSIZE + 72);
185 if (!buffer)
186 return 1;
188 /* Initialize the computation context. */
189 sha512_init_ctx (&ctx);
191 /* Iterate over full file contents. */
192 while (1)
194 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
195 computation function processes the whole buffer so that with the
196 next round of the loop another block can be read. */
197 size_t n;
198 sum = 0;
200 /* Read block. Take care for partial reads. */
201 while (1)
203 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
205 sum += n;
207 if (sum == BLOCKSIZE)
208 break;
210 if (n == 0)
212 /* Check for the error flag IFF N == 0, so that we don't
213 exit the loop after a partial read due to e.g., EAGAIN
214 or EWOULDBLOCK. */
215 if (ferror (stream))
217 free (buffer);
218 return 1;
220 goto process_partial_block;
223 /* We've read at least one byte, so ignore errors. But always
224 check for EOF, since feof may be true even though N > 0.
225 Otherwise, we could end up calling fread after EOF. */
226 if (feof (stream))
227 goto process_partial_block;
230 /* Process buffer with BLOCKSIZE bytes. Note that
231 BLOCKSIZE % 128 == 0
233 sha512_process_block (buffer, BLOCKSIZE, &ctx);
236 process_partial_block:;
238 /* Process any remaining bytes. */
239 if (sum > 0)
240 sha512_process_bytes (buffer, sum, &ctx);
242 /* Construct result in desired memory. */
243 sha512_finish_ctx (&ctx, resblock);
244 free (buffer);
245 return 0;
248 /* FIXME: Avoid code duplication */
250 sha384_stream (FILE *stream, void *resblock)
252 struct sha512_ctx ctx;
253 size_t sum;
255 char *buffer = malloc (BLOCKSIZE + 72);
256 if (!buffer)
257 return 1;
259 /* Initialize the computation context. */
260 sha384_init_ctx (&ctx);
262 /* Iterate over full file contents. */
263 while (1)
265 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
266 computation function processes the whole buffer so that with the
267 next round of the loop another block can be read. */
268 size_t n;
269 sum = 0;
271 /* Read block. Take care for partial reads. */
272 while (1)
274 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
276 sum += n;
278 if (sum == BLOCKSIZE)
279 break;
281 if (n == 0)
283 /* Check for the error flag IFF N == 0, so that we don't
284 exit the loop after a partial read due to e.g., EAGAIN
285 or EWOULDBLOCK. */
286 if (ferror (stream))
288 free (buffer);
289 return 1;
291 goto process_partial_block;
294 /* We've read at least one byte, so ignore errors. But always
295 check for EOF, since feof may be true even though N > 0.
296 Otherwise, we could end up calling fread after EOF. */
297 if (feof (stream))
298 goto process_partial_block;
301 /* Process buffer with BLOCKSIZE bytes. Note that
302 BLOCKSIZE % 128 == 0
304 sha512_process_block (buffer, BLOCKSIZE, &ctx);
307 process_partial_block:;
309 /* Process any remaining bytes. */
310 if (sum > 0)
311 sha512_process_bytes (buffer, sum, &ctx);
313 /* Construct result in desired memory. */
314 sha384_finish_ctx (&ctx, resblock);
315 free (buffer);
316 return 0;
319 /* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The
320 result is always in little endian byte order, so that a byte-wise
321 output yields to the wanted ASCII representation of the message
322 digest. */
323 void *
324 sha512_buffer (const char *buffer, size_t len, void *resblock)
326 struct sha512_ctx ctx;
328 /* Initialize the computation context. */
329 sha512_init_ctx (&ctx);
331 /* Process whole buffer but last len % 128 bytes. */
332 sha512_process_bytes (buffer, len, &ctx);
334 /* Put result in desired memory area. */
335 return sha512_finish_ctx (&ctx, resblock);
338 void *
339 sha384_buffer (const char *buffer, size_t len, void *resblock)
341 struct sha512_ctx ctx;
343 /* Initialize the computation context. */
344 sha384_init_ctx (&ctx);
346 /* Process whole buffer but last len % 128 bytes. */
347 sha512_process_bytes (buffer, len, &ctx);
349 /* Put result in desired memory area. */
350 return sha384_finish_ctx (&ctx, resblock);
353 void
354 sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
356 /* When we already have some bits in our internal buffer concatenate
357 both inputs first. */
358 if (ctx->buflen != 0)
360 size_t left_over = ctx->buflen;
361 size_t add = 256 - left_over > len ? len : 256 - left_over;
363 memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
364 ctx->buflen += add;
366 if (ctx->buflen > 128)
368 sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx);
370 ctx->buflen &= 127;
371 /* The regions in the following copy operation cannot overlap. */
372 memcpy (ctx->buffer,
373 &((char *) ctx->buffer)[(left_over + add) & ~127],
374 ctx->buflen);
377 buffer = (const char *) buffer + add;
378 len -= add;
381 /* Process available complete blocks. */
382 if (len >= 128)
384 #if !_STRING_ARCH_unaligned
385 # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (u64) != 0)
386 if (UNALIGNED_P (buffer))
387 while (len > 128)
389 sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx);
390 buffer = (const char *) buffer + 128;
391 len -= 128;
393 else
394 #endif
396 sha512_process_block (buffer, len & ~127, ctx);
397 buffer = (const char *) buffer + (len & ~127);
398 len &= 127;
402 /* Move remaining bytes in internal buffer. */
403 if (len > 0)
405 size_t left_over = ctx->buflen;
407 memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
408 left_over += len;
409 if (left_over >= 128)
411 sha512_process_block (ctx->buffer, 128, ctx);
412 left_over -= 128;
413 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
415 ctx->buflen = left_over;
419 /* --- Code below is the primary difference between sha1.c and sha512.c --- */
421 /* SHA512 round constants */
422 #define K(I) sha512_round_constants[I]
423 static u64 const sha512_round_constants[80] = {
424 u64init (0x428a2f98, 0xd728ae22), u64init (0x71374491, 0x23ef65cd),
425 u64init (0xb5c0fbcf, 0xec4d3b2f), u64init (0xe9b5dba5, 0x8189dbbc),
426 u64init (0x3956c25b, 0xf348b538), u64init (0x59f111f1, 0xb605d019),
427 u64init (0x923f82a4, 0xaf194f9b), u64init (0xab1c5ed5, 0xda6d8118),
428 u64init (0xd807aa98, 0xa3030242), u64init (0x12835b01, 0x45706fbe),
429 u64init (0x243185be, 0x4ee4b28c), u64init (0x550c7dc3, 0xd5ffb4e2),
430 u64init (0x72be5d74, 0xf27b896f), u64init (0x80deb1fe, 0x3b1696b1),
431 u64init (0x9bdc06a7, 0x25c71235), u64init (0xc19bf174, 0xcf692694),
432 u64init (0xe49b69c1, 0x9ef14ad2), u64init (0xefbe4786, 0x384f25e3),
433 u64init (0x0fc19dc6, 0x8b8cd5b5), u64init (0x240ca1cc, 0x77ac9c65),
434 u64init (0x2de92c6f, 0x592b0275), u64init (0x4a7484aa, 0x6ea6e483),
435 u64init (0x5cb0a9dc, 0xbd41fbd4), u64init (0x76f988da, 0x831153b5),
436 u64init (0x983e5152, 0xee66dfab), u64init (0xa831c66d, 0x2db43210),
437 u64init (0xb00327c8, 0x98fb213f), u64init (0xbf597fc7, 0xbeef0ee4),
438 u64init (0xc6e00bf3, 0x3da88fc2), u64init (0xd5a79147, 0x930aa725),
439 u64init (0x06ca6351, 0xe003826f), u64init (0x14292967, 0x0a0e6e70),
440 u64init (0x27b70a85, 0x46d22ffc), u64init (0x2e1b2138, 0x5c26c926),
441 u64init (0x4d2c6dfc, 0x5ac42aed), u64init (0x53380d13, 0x9d95b3df),
442 u64init (0x650a7354, 0x8baf63de), u64init (0x766a0abb, 0x3c77b2a8),
443 u64init (0x81c2c92e, 0x47edaee6), u64init (0x92722c85, 0x1482353b),
444 u64init (0xa2bfe8a1, 0x4cf10364), u64init (0xa81a664b, 0xbc423001),
445 u64init (0xc24b8b70, 0xd0f89791), u64init (0xc76c51a3, 0x0654be30),
446 u64init (0xd192e819, 0xd6ef5218), u64init (0xd6990624, 0x5565a910),
447 u64init (0xf40e3585, 0x5771202a), u64init (0x106aa070, 0x32bbd1b8),
448 u64init (0x19a4c116, 0xb8d2d0c8), u64init (0x1e376c08, 0x5141ab53),
449 u64init (0x2748774c, 0xdf8eeb99), u64init (0x34b0bcb5, 0xe19b48a8),
450 u64init (0x391c0cb3, 0xc5c95a63), u64init (0x4ed8aa4a, 0xe3418acb),
451 u64init (0x5b9cca4f, 0x7763e373), u64init (0x682e6ff3, 0xd6b2b8a3),
452 u64init (0x748f82ee, 0x5defb2fc), u64init (0x78a5636f, 0x43172f60),
453 u64init (0x84c87814, 0xa1f0ab72), u64init (0x8cc70208, 0x1a6439ec),
454 u64init (0x90befffa, 0x23631e28), u64init (0xa4506ceb, 0xde82bde9),
455 u64init (0xbef9a3f7, 0xb2c67915), u64init (0xc67178f2, 0xe372532b),
456 u64init (0xca273ece, 0xea26619c), u64init (0xd186b8c7, 0x21c0c207),
457 u64init (0xeada7dd6, 0xcde0eb1e), u64init (0xf57d4f7f, 0xee6ed178),
458 u64init (0x06f067aa, 0x72176fba), u64init (0x0a637dc5, 0xa2c898a6),
459 u64init (0x113f9804, 0xbef90dae), u64init (0x1b710b35, 0x131c471b),
460 u64init (0x28db77f5, 0x23047d84), u64init (0x32caab7b, 0x40c72493),
461 u64init (0x3c9ebe0a, 0x15c9bebc), u64init (0x431d67c4, 0x9c100d4c),
462 u64init (0x4cc5d4be, 0xcb3e42b6), u64init (0x597f299c, 0xfc657e2a),
463 u64init (0x5fcb6fab, 0x3ad6faec), u64init (0x6c44198c, 0x4a475817),
466 /* Round functions. */
467 #define F2(A, B, C) u64or (u64and (A, B), u64and (C, u64or (A, B)))
468 #define F1(E, F, G) u64xor (G, u64and (E, u64xor (F, G)))
470 /* Process LEN bytes of BUFFER, accumulating context into CTX.
471 It is assumed that LEN % 128 == 0.
472 Most of this code comes from GnuPG's cipher/sha1.c. */
474 void
475 sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
477 u64 const *words = buffer;
478 u64 const *endp = words + len / sizeof (u64);
479 u64 x[16];
480 u64 a = ctx->state[0];
481 u64 b = ctx->state[1];
482 u64 c = ctx->state[2];
483 u64 d = ctx->state[3];
484 u64 e = ctx->state[4];
485 u64 f = ctx->state[5];
486 u64 g = ctx->state[6];
487 u64 h = ctx->state[7];
488 u64 lolen = u64size (len);
490 /* First increment the byte count. FIPS PUB 180-2 specifies the possible
491 length of the file up to 2^128 bits. Here we only compute the
492 number of bytes. Do a double word increment. */
493 ctx->total[0] = u64plus (ctx->total[0], lolen);
494 ctx->total[1] = u64plus (ctx->total[1],
495 u64plus (u64size (len >> 31 >> 31 >> 2),
496 u64lo (u64lt (ctx->total[0], lolen))));
498 #define S0(x) u64xor (u64rol(x, 63), u64xor (u64rol (x, 56), u64shr (x, 7)))
499 #define S1(x) u64xor (u64rol (x, 45), u64xor (u64rol (x, 3), u64shr (x, 6)))
500 #define SS0(x) u64xor (u64rol (x, 36), u64xor (u64rol (x, 30), u64rol (x, 25)))
501 #define SS1(x) u64xor (u64rol(x, 50), u64xor (u64rol (x, 46), u64rol (x, 23)))
503 #define M(I) (x[(I) & 15] \
504 = u64plus (x[(I) & 15], \
505 u64plus (S1 (x[((I) - 2) & 15]), \
506 u64plus (x[((I) - 7) & 15], \
507 S0 (x[((I) - 15) & 15])))))
509 #define R(A, B, C, D, E, F, G, H, K, M) \
510 do \
512 u64 t0 = u64plus (SS0 (A), F2 (A, B, C)); \
513 u64 t1 = \
514 u64plus (H, u64plus (SS1 (E), \
515 u64plus (F1 (E, F, G), u64plus (K, M)))); \
516 D = u64plus (D, t1); \
517 H = u64plus (t0, t1); \
519 while (0)
521 while (words < endp)
523 int t;
524 /* FIXME: see sha1.c for a better implementation. */
525 for (t = 0; t < 16; t++)
527 x[t] = SWAP (*words);
528 words++;
531 R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
532 R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
533 R( g, h, a, b, c, d, e, f, K( 2), x[ 2] );
534 R( f, g, h, a, b, c, d, e, K( 3), x[ 3] );
535 R( e, f, g, h, a, b, c, d, K( 4), x[ 4] );
536 R( d, e, f, g, h, a, b, c, K( 5), x[ 5] );
537 R( c, d, e, f, g, h, a, b, K( 6), x[ 6] );
538 R( b, c, d, e, f, g, h, a, K( 7), x[ 7] );
539 R( a, b, c, d, e, f, g, h, K( 8), x[ 8] );
540 R( h, a, b, c, d, e, f, g, K( 9), x[ 9] );
541 R( g, h, a, b, c, d, e, f, K(10), x[10] );
542 R( f, g, h, a, b, c, d, e, K(11), x[11] );
543 R( e, f, g, h, a, b, c, d, K(12), x[12] );
544 R( d, e, f, g, h, a, b, c, K(13), x[13] );
545 R( c, d, e, f, g, h, a, b, K(14), x[14] );
546 R( b, c, d, e, f, g, h, a, K(15), x[15] );
547 R( a, b, c, d, e, f, g, h, K(16), M(16) );
548 R( h, a, b, c, d, e, f, g, K(17), M(17) );
549 R( g, h, a, b, c, d, e, f, K(18), M(18) );
550 R( f, g, h, a, b, c, d, e, K(19), M(19) );
551 R( e, f, g, h, a, b, c, d, K(20), M(20) );
552 R( d, e, f, g, h, a, b, c, K(21), M(21) );
553 R( c, d, e, f, g, h, a, b, K(22), M(22) );
554 R( b, c, d, e, f, g, h, a, K(23), M(23) );
555 R( a, b, c, d, e, f, g, h, K(24), M(24) );
556 R( h, a, b, c, d, e, f, g, K(25), M(25) );
557 R( g, h, a, b, c, d, e, f, K(26), M(26) );
558 R( f, g, h, a, b, c, d, e, K(27), M(27) );
559 R( e, f, g, h, a, b, c, d, K(28), M(28) );
560 R( d, e, f, g, h, a, b, c, K(29), M(29) );
561 R( c, d, e, f, g, h, a, b, K(30), M(30) );
562 R( b, c, d, e, f, g, h, a, K(31), M(31) );
563 R( a, b, c, d, e, f, g, h, K(32), M(32) );
564 R( h, a, b, c, d, e, f, g, K(33), M(33) );
565 R( g, h, a, b, c, d, e, f, K(34), M(34) );
566 R( f, g, h, a, b, c, d, e, K(35), M(35) );
567 R( e, f, g, h, a, b, c, d, K(36), M(36) );
568 R( d, e, f, g, h, a, b, c, K(37), M(37) );
569 R( c, d, e, f, g, h, a, b, K(38), M(38) );
570 R( b, c, d, e, f, g, h, a, K(39), M(39) );
571 R( a, b, c, d, e, f, g, h, K(40), M(40) );
572 R( h, a, b, c, d, e, f, g, K(41), M(41) );
573 R( g, h, a, b, c, d, e, f, K(42), M(42) );
574 R( f, g, h, a, b, c, d, e, K(43), M(43) );
575 R( e, f, g, h, a, b, c, d, K(44), M(44) );
576 R( d, e, f, g, h, a, b, c, K(45), M(45) );
577 R( c, d, e, f, g, h, a, b, K(46), M(46) );
578 R( b, c, d, e, f, g, h, a, K(47), M(47) );
579 R( a, b, c, d, e, f, g, h, K(48), M(48) );
580 R( h, a, b, c, d, e, f, g, K(49), M(49) );
581 R( g, h, a, b, c, d, e, f, K(50), M(50) );
582 R( f, g, h, a, b, c, d, e, K(51), M(51) );
583 R( e, f, g, h, a, b, c, d, K(52), M(52) );
584 R( d, e, f, g, h, a, b, c, K(53), M(53) );
585 R( c, d, e, f, g, h, a, b, K(54), M(54) );
586 R( b, c, d, e, f, g, h, a, K(55), M(55) );
587 R( a, b, c, d, e, f, g, h, K(56), M(56) );
588 R( h, a, b, c, d, e, f, g, K(57), M(57) );
589 R( g, h, a, b, c, d, e, f, K(58), M(58) );
590 R( f, g, h, a, b, c, d, e, K(59), M(59) );
591 R( e, f, g, h, a, b, c, d, K(60), M(60) );
592 R( d, e, f, g, h, a, b, c, K(61), M(61) );
593 R( c, d, e, f, g, h, a, b, K(62), M(62) );
594 R( b, c, d, e, f, g, h, a, K(63), M(63) );
595 R( a, b, c, d, e, f, g, h, K(64), M(64) );
596 R( h, a, b, c, d, e, f, g, K(65), M(65) );
597 R( g, h, a, b, c, d, e, f, K(66), M(66) );
598 R( f, g, h, a, b, c, d, e, K(67), M(67) );
599 R( e, f, g, h, a, b, c, d, K(68), M(68) );
600 R( d, e, f, g, h, a, b, c, K(69), M(69) );
601 R( c, d, e, f, g, h, a, b, K(70), M(70) );
602 R( b, c, d, e, f, g, h, a, K(71), M(71) );
603 R( a, b, c, d, e, f, g, h, K(72), M(72) );
604 R( h, a, b, c, d, e, f, g, K(73), M(73) );
605 R( g, h, a, b, c, d, e, f, K(74), M(74) );
606 R( f, g, h, a, b, c, d, e, K(75), M(75) );
607 R( e, f, g, h, a, b, c, d, K(76), M(76) );
608 R( d, e, f, g, h, a, b, c, K(77), M(77) );
609 R( c, d, e, f, g, h, a, b, K(78), M(78) );
610 R( b, c, d, e, f, g, h, a, K(79), M(79) );
612 a = ctx->state[0] = u64plus (ctx->state[0], a);
613 b = ctx->state[1] = u64plus (ctx->state[1], b);
614 c = ctx->state[2] = u64plus (ctx->state[2], c);
615 d = ctx->state[3] = u64plus (ctx->state[3], d);
616 e = ctx->state[4] = u64plus (ctx->state[4], e);
617 f = ctx->state[5] = u64plus (ctx->state[5], f);
618 g = ctx->state[6] = u64plus (ctx->state[6], g);
619 h = ctx->state[7] = u64plus (ctx->state[7], h);