(Mode Line Data): Explain when symbols in mode-line
[emacs.git] / src / intervals.c
bloba15011f481d2645b16ad7eab4626de6c6e864b5a
1 /* Code for doing intervals.
2 Copyright (C) 1993, 1994, 1995, 1997, 1998, 2002, 2003 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* NOTES:
24 Have to ensure that we can't put symbol nil on a plist, or some
25 functions may work incorrectly.
27 An idea: Have the owner of the tree keep count of splits and/or
28 insertion lengths (in intervals), and balance after every N.
30 Need to call *_left_hook when buffer is killed.
32 Scan for zero-length, or 0-length to see notes about handling
33 zero length interval-markers.
35 There are comments around about freeing intervals. It might be
36 faster to explicitly free them (put them on the free list) than
37 to GC them.
42 #include <config.h>
43 #include "lisp.h"
44 #include "intervals.h"
45 #include "buffer.h"
46 #include "puresize.h"
47 #include "keyboard.h"
48 #include "keymap.h"
50 /* Test for membership, allowing for t (actually any non-cons) to mean the
51 universal set. */
53 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
55 Lisp_Object merge_properties_sticky ();
56 static INTERVAL reproduce_tree P_ ((INTERVAL, INTERVAL));
57 static INTERVAL reproduce_tree_obj P_ ((INTERVAL, Lisp_Object));
59 /* Utility functions for intervals. */
62 /* Create the root interval of some object, a buffer or string. */
64 INTERVAL
65 create_root_interval (parent)
66 Lisp_Object parent;
68 INTERVAL new;
70 CHECK_IMPURE (parent);
72 new = make_interval ();
74 if (BUFFERP (parent))
76 new->total_length = (BUF_Z (XBUFFER (parent))
77 - BUF_BEG (XBUFFER (parent)));
78 CHECK_TOTAL_LENGTH (new);
79 BUF_INTERVALS (XBUFFER (parent)) = new;
80 new->position = BEG;
82 else if (STRINGP (parent))
84 new->total_length = SCHARS (parent);
85 CHECK_TOTAL_LENGTH (new);
86 STRING_SET_INTERVALS (parent, new);
87 new->position = 0;
90 SET_INTERVAL_OBJECT (new, parent);
92 return new;
95 /* Make the interval TARGET have exactly the properties of SOURCE */
97 void
98 copy_properties (source, target)
99 register INTERVAL source, target;
101 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
102 return;
104 COPY_INTERVAL_CACHE (source, target);
105 target->plist = Fcopy_sequence (source->plist);
108 /* Merge the properties of interval SOURCE into the properties
109 of interval TARGET. That is to say, each property in SOURCE
110 is added to TARGET if TARGET has no such property as yet. */
112 static void
113 merge_properties (source, target)
114 register INTERVAL source, target;
116 register Lisp_Object o, sym, val;
118 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
119 return;
121 MERGE_INTERVAL_CACHE (source, target);
123 o = source->plist;
124 while (CONSP (o))
126 sym = XCAR (o);
127 val = Fmemq (sym, target->plist);
129 if (NILP (val))
131 o = XCDR (o);
132 CHECK_CONS (o);
133 val = XCAR (o);
134 target->plist = Fcons (sym, Fcons (val, target->plist));
135 o = XCDR (o);
137 else
138 o = Fcdr (XCDR (o));
142 /* Return 1 if the two intervals have the same properties,
143 0 otherwise. */
146 intervals_equal (i0, i1)
147 INTERVAL i0, i1;
149 register Lisp_Object i0_cdr, i0_sym, i1_val;
150 register int i1_len;
152 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
153 return 1;
155 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
156 return 0;
158 i1_len = XFASTINT (Flength (i1->plist));
159 if (i1_len & 0x1) /* Paranoia -- plists are always even */
160 abort ();
161 i1_len /= 2;
162 i0_cdr = i0->plist;
163 while (CONSP (i0_cdr))
165 /* Lengths of the two plists were unequal. */
166 if (i1_len == 0)
167 return 0;
169 i0_sym = XCAR (i0_cdr);
170 i1_val = Fmemq (i0_sym, i1->plist);
172 /* i0 has something i1 doesn't. */
173 if (EQ (i1_val, Qnil))
174 return 0;
176 /* i0 and i1 both have sym, but it has different values in each. */
177 i0_cdr = XCDR (i0_cdr);
178 CHECK_CONS (i0_cdr);
179 if (!EQ (Fcar (Fcdr (i1_val)), XCAR (i0_cdr)))
180 return 0;
182 i0_cdr = XCDR (i0_cdr);
183 i1_len--;
186 /* Lengths of the two plists were unequal. */
187 if (i1_len > 0)
188 return 0;
190 return 1;
194 /* Traverse an interval tree TREE, performing FUNCTION on each node.
195 No guarantee is made about the order of traversal.
196 Pass FUNCTION two args: an interval, and ARG. */
198 void
199 traverse_intervals_noorder (tree, function, arg)
200 INTERVAL tree;
201 void (* function) P_ ((INTERVAL, Lisp_Object));
202 Lisp_Object arg;
204 /* Minimize stack usage. */
205 while (!NULL_INTERVAL_P (tree))
207 (*function) (tree, arg);
208 if (NULL_INTERVAL_P (tree->right))
209 tree = tree->left;
210 else
212 traverse_intervals_noorder (tree->left, function, arg);
213 tree = tree->right;
218 /* Traverse an interval tree TREE, performing FUNCTION on each node.
219 Pass FUNCTION two args: an interval, and ARG. */
221 void
222 traverse_intervals (tree, position, function, arg)
223 INTERVAL tree;
224 int position;
225 void (* function) P_ ((INTERVAL, Lisp_Object));
226 Lisp_Object arg;
228 while (!NULL_INTERVAL_P (tree))
230 traverse_intervals (tree->left, position, function, arg);
231 position += LEFT_TOTAL_LENGTH (tree);
232 tree->position = position;
233 (*function) (tree, arg);
234 position += LENGTH (tree); tree = tree->right;
238 #if 0
240 static int icount;
241 static int idepth;
242 static int zero_length;
244 /* These functions are temporary, for debugging purposes only. */
246 INTERVAL search_interval, found_interval;
248 void
249 check_for_interval (i)
250 register INTERVAL i;
252 if (i == search_interval)
254 found_interval = i;
255 icount++;
259 INTERVAL
260 search_for_interval (i, tree)
261 register INTERVAL i, tree;
263 icount = 0;
264 search_interval = i;
265 found_interval = NULL_INTERVAL;
266 traverse_intervals_noorder (tree, &check_for_interval, Qnil);
267 return found_interval;
270 static void
271 inc_interval_count (i)
272 INTERVAL i;
274 icount++;
275 if (LENGTH (i) == 0)
276 zero_length++;
277 if (depth > idepth)
278 idepth = depth;
282 count_intervals (i)
283 register INTERVAL i;
285 icount = 0;
286 idepth = 0;
287 zero_length = 0;
288 traverse_intervals_noorder (i, &inc_interval_count, Qnil);
290 return icount;
293 static INTERVAL
294 root_interval (interval)
295 INTERVAL interval;
297 register INTERVAL i = interval;
299 while (! ROOT_INTERVAL_P (i))
300 i = INTERVAL_PARENT (i);
302 return i;
304 #endif
306 /* Assuming that a left child exists, perform the following operation:
309 / \ / \
310 B => A
311 / \ / \
315 static INLINE INTERVAL
316 rotate_right (interval)
317 INTERVAL interval;
319 INTERVAL i;
320 INTERVAL B = interval->left;
321 int old_total = interval->total_length;
323 /* Deal with any Parent of A; make it point to B. */
324 if (! ROOT_INTERVAL_P (interval))
326 if (AM_LEFT_CHILD (interval))
327 INTERVAL_PARENT (interval)->left = B;
328 else
329 INTERVAL_PARENT (interval)->right = B;
331 COPY_INTERVAL_PARENT (B, interval);
333 /* Make B the parent of A */
334 i = B->right;
335 B->right = interval;
336 SET_INTERVAL_PARENT (interval, B);
338 /* Make A point to c */
339 interval->left = i;
340 if (! NULL_INTERVAL_P (i))
341 SET_INTERVAL_PARENT (i, interval);
343 /* A's total length is decreased by the length of B and its left child. */
344 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
345 CHECK_TOTAL_LENGTH (interval);
347 /* B must have the same total length of A. */
348 B->total_length = old_total;
349 CHECK_TOTAL_LENGTH (B);
351 return B;
354 /* Assuming that a right child exists, perform the following operation:
357 / \ / \
358 B => A
359 / \ / \
363 static INLINE INTERVAL
364 rotate_left (interval)
365 INTERVAL interval;
367 INTERVAL i;
368 INTERVAL B = interval->right;
369 int old_total = interval->total_length;
371 /* Deal with any parent of A; make it point to B. */
372 if (! ROOT_INTERVAL_P (interval))
374 if (AM_LEFT_CHILD (interval))
375 INTERVAL_PARENT (interval)->left = B;
376 else
377 INTERVAL_PARENT (interval)->right = B;
379 COPY_INTERVAL_PARENT (B, interval);
381 /* Make B the parent of A */
382 i = B->left;
383 B->left = interval;
384 SET_INTERVAL_PARENT (interval, B);
386 /* Make A point to c */
387 interval->right = i;
388 if (! NULL_INTERVAL_P (i))
389 SET_INTERVAL_PARENT (i, interval);
391 /* A's total length is decreased by the length of B and its right child. */
392 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
393 CHECK_TOTAL_LENGTH (interval);
395 /* B must have the same total length of A. */
396 B->total_length = old_total;
397 CHECK_TOTAL_LENGTH (B);
399 return B;
402 /* Balance an interval tree with the assumption that the subtrees
403 themselves are already balanced. */
405 static INTERVAL
406 balance_an_interval (i)
407 INTERVAL i;
409 register int old_diff, new_diff;
411 while (1)
413 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
414 if (old_diff > 0)
416 /* Since the left child is longer, there must be one. */
417 new_diff = i->total_length - i->left->total_length
418 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
419 if (abs (new_diff) >= old_diff)
420 break;
421 i = rotate_right (i);
422 balance_an_interval (i->right);
424 else if (old_diff < 0)
426 /* Since the right child is longer, there must be one. */
427 new_diff = i->total_length - i->right->total_length
428 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
429 if (abs (new_diff) >= -old_diff)
430 break;
431 i = rotate_left (i);
432 balance_an_interval (i->left);
434 else
435 break;
437 return i;
440 /* Balance INTERVAL, potentially stuffing it back into its parent
441 Lisp Object. */
443 static INLINE INTERVAL
444 balance_possible_root_interval (interval)
445 register INTERVAL interval;
447 Lisp_Object parent;
448 int have_parent = 0;
450 if (!INTERVAL_HAS_OBJECT (interval) && !INTERVAL_HAS_PARENT (interval))
451 return interval;
453 if (INTERVAL_HAS_OBJECT (interval))
455 have_parent = 1;
456 GET_INTERVAL_OBJECT (parent, interval);
458 interval = balance_an_interval (interval);
460 if (have_parent)
462 if (BUFFERP (parent))
463 BUF_INTERVALS (XBUFFER (parent)) = interval;
464 else if (STRINGP (parent))
465 STRING_SET_INTERVALS (parent, interval);
468 return interval;
471 /* Balance the interval tree TREE. Balancing is by weight
472 (the amount of text). */
474 static INTERVAL
475 balance_intervals_internal (tree)
476 register INTERVAL tree;
478 /* Balance within each side. */
479 if (tree->left)
480 balance_intervals_internal (tree->left);
481 if (tree->right)
482 balance_intervals_internal (tree->right);
483 return balance_an_interval (tree);
486 /* Advertised interface to balance intervals. */
488 INTERVAL
489 balance_intervals (tree)
490 INTERVAL tree;
492 if (tree == NULL_INTERVAL)
493 return NULL_INTERVAL;
495 return balance_intervals_internal (tree);
498 /* Split INTERVAL into two pieces, starting the second piece at
499 character position OFFSET (counting from 0), relative to INTERVAL.
500 INTERVAL becomes the left-hand piece, and the right-hand piece
501 (second, lexicographically) is returned.
503 The size and position fields of the two intervals are set based upon
504 those of the original interval. The property list of the new interval
505 is reset, thus it is up to the caller to do the right thing with the
506 result.
508 Note that this does not change the position of INTERVAL; if it is a root,
509 it is still a root after this operation. */
511 INTERVAL
512 split_interval_right (interval, offset)
513 INTERVAL interval;
514 int offset;
516 INTERVAL new = make_interval ();
517 int position = interval->position;
518 int new_length = LENGTH (interval) - offset;
520 new->position = position + offset;
521 SET_INTERVAL_PARENT (new, interval);
523 if (NULL_RIGHT_CHILD (interval))
525 interval->right = new;
526 new->total_length = new_length;
527 CHECK_TOTAL_LENGTH (new);
529 else
531 /* Insert the new node between INTERVAL and its right child. */
532 new->right = interval->right;
533 SET_INTERVAL_PARENT (interval->right, new);
534 interval->right = new;
535 new->total_length = new_length + new->right->total_length;
536 CHECK_TOTAL_LENGTH (new);
537 balance_an_interval (new);
540 balance_possible_root_interval (interval);
542 return new;
545 /* Split INTERVAL into two pieces, starting the second piece at
546 character position OFFSET (counting from 0), relative to INTERVAL.
547 INTERVAL becomes the right-hand piece, and the left-hand piece
548 (first, lexicographically) is returned.
550 The size and position fields of the two intervals are set based upon
551 those of the original interval. The property list of the new interval
552 is reset, thus it is up to the caller to do the right thing with the
553 result.
555 Note that this does not change the position of INTERVAL; if it is a root,
556 it is still a root after this operation. */
558 INTERVAL
559 split_interval_left (interval, offset)
560 INTERVAL interval;
561 int offset;
563 INTERVAL new = make_interval ();
564 int new_length = offset;
566 new->position = interval->position;
567 interval->position = interval->position + offset;
568 SET_INTERVAL_PARENT (new, interval);
570 if (NULL_LEFT_CHILD (interval))
572 interval->left = new;
573 new->total_length = new_length;
574 CHECK_TOTAL_LENGTH (new);
576 else
578 /* Insert the new node between INTERVAL and its left child. */
579 new->left = interval->left;
580 SET_INTERVAL_PARENT (new->left, new);
581 interval->left = new;
582 new->total_length = new_length + new->left->total_length;
583 CHECK_TOTAL_LENGTH (new);
584 balance_an_interval (new);
587 balance_possible_root_interval (interval);
589 return new;
592 /* Return the proper position for the first character
593 described by the interval tree SOURCE.
594 This is 1 if the parent is a buffer,
595 0 if the parent is a string or if there is no parent.
597 Don't use this function on an interval which is the child
598 of another interval! */
601 interval_start_pos (source)
602 INTERVAL source;
604 Lisp_Object parent;
606 if (NULL_INTERVAL_P (source))
607 return 0;
609 if (! INTERVAL_HAS_OBJECT (source))
610 return 0;
611 GET_INTERVAL_OBJECT (parent, source);
612 if (BUFFERP (parent))
613 return BUF_BEG (XBUFFER (parent));
614 return 0;
617 /* Find the interval containing text position POSITION in the text
618 represented by the interval tree TREE. POSITION is a buffer
619 position (starting from 1) or a string index (starting from 0).
620 If POSITION is at the end of the buffer or string,
621 return the interval containing the last character.
623 The `position' field, which is a cache of an interval's position,
624 is updated in the interval found. Other functions (e.g., next_interval)
625 will update this cache based on the result of find_interval. */
627 INTERVAL
628 find_interval (tree, position)
629 register INTERVAL tree;
630 register int position;
632 /* The distance from the left edge of the subtree at TREE
633 to POSITION. */
634 register int relative_position;
636 if (NULL_INTERVAL_P (tree))
637 return NULL_INTERVAL;
639 relative_position = position;
640 if (INTERVAL_HAS_OBJECT (tree))
642 Lisp_Object parent;
643 GET_INTERVAL_OBJECT (parent, tree);
644 if (BUFFERP (parent))
645 relative_position -= BUF_BEG (XBUFFER (parent));
648 if (relative_position > TOTAL_LENGTH (tree))
649 abort (); /* Paranoia */
651 if (!handling_signal)
652 tree = balance_possible_root_interval (tree);
654 while (1)
656 if (relative_position < LEFT_TOTAL_LENGTH (tree))
658 tree = tree->left;
660 else if (! NULL_RIGHT_CHILD (tree)
661 && relative_position >= (TOTAL_LENGTH (tree)
662 - RIGHT_TOTAL_LENGTH (tree)))
664 relative_position -= (TOTAL_LENGTH (tree)
665 - RIGHT_TOTAL_LENGTH (tree));
666 tree = tree->right;
668 else
670 tree->position
671 = (position - relative_position /* left edge of *tree. */
672 + LEFT_TOTAL_LENGTH (tree)); /* left edge of this interval. */
674 return tree;
679 /* Find the succeeding interval (lexicographically) to INTERVAL.
680 Sets the `position' field based on that of INTERVAL (see
681 find_interval). */
683 INTERVAL
684 next_interval (interval)
685 register INTERVAL interval;
687 register INTERVAL i = interval;
688 register int next_position;
690 if (NULL_INTERVAL_P (i))
691 return NULL_INTERVAL;
692 next_position = interval->position + LENGTH (interval);
694 if (! NULL_RIGHT_CHILD (i))
696 i = i->right;
697 while (! NULL_LEFT_CHILD (i))
698 i = i->left;
700 i->position = next_position;
701 return i;
704 while (! NULL_PARENT (i))
706 if (AM_LEFT_CHILD (i))
708 i = INTERVAL_PARENT (i);
709 i->position = next_position;
710 return i;
713 i = INTERVAL_PARENT (i);
716 return NULL_INTERVAL;
719 /* Find the preceding interval (lexicographically) to INTERVAL.
720 Sets the `position' field based on that of INTERVAL (see
721 find_interval). */
723 INTERVAL
724 previous_interval (interval)
725 register INTERVAL interval;
727 register INTERVAL i;
729 if (NULL_INTERVAL_P (interval))
730 return NULL_INTERVAL;
732 if (! NULL_LEFT_CHILD (interval))
734 i = interval->left;
735 while (! NULL_RIGHT_CHILD (i))
736 i = i->right;
738 i->position = interval->position - LENGTH (i);
739 return i;
742 i = interval;
743 while (! NULL_PARENT (i))
745 if (AM_RIGHT_CHILD (i))
747 i = INTERVAL_PARENT (i);
749 i->position = interval->position - LENGTH (i);
750 return i;
752 i = INTERVAL_PARENT (i);
755 return NULL_INTERVAL;
758 /* Find the interval containing POS given some non-NULL INTERVAL
759 in the same tree. Note that we need to update interval->position
760 if we go down the tree.
761 To speed up the process, we assume that the ->position of
762 I and all its parents is already uptodate. */
763 INTERVAL
764 update_interval (i, pos)
765 register INTERVAL i;
766 int pos;
768 if (NULL_INTERVAL_P (i))
769 return NULL_INTERVAL;
771 while (1)
773 if (pos < i->position)
775 /* Move left. */
776 if (pos >= i->position - TOTAL_LENGTH (i->left))
778 i->left->position = i->position - TOTAL_LENGTH (i->left)
779 + LEFT_TOTAL_LENGTH (i->left);
780 i = i->left; /* Move to the left child */
782 else if (NULL_PARENT (i))
783 error ("Point before start of properties");
784 else
785 i = INTERVAL_PARENT (i);
786 continue;
788 else if (pos >= INTERVAL_LAST_POS (i))
790 /* Move right. */
791 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
793 i->right->position = INTERVAL_LAST_POS (i) +
794 LEFT_TOTAL_LENGTH (i->right);
795 i = i->right; /* Move to the right child */
797 else if (NULL_PARENT (i))
798 error ("Point after end of properties");
799 else
800 i = INTERVAL_PARENT (i);
801 continue;
803 else
804 return i;
809 #if 0
810 /* Traverse a path down the interval tree TREE to the interval
811 containing POSITION, adjusting all nodes on the path for
812 an addition of LENGTH characters. Insertion between two intervals
813 (i.e., point == i->position, where i is second interval) means
814 text goes into second interval.
816 Modifications are needed to handle the hungry bits -- after simply
817 finding the interval at position (don't add length going down),
818 if it's the beginning of the interval, get the previous interval
819 and check the hungry bits of both. Then add the length going back up
820 to the root. */
822 static INTERVAL
823 adjust_intervals_for_insertion (tree, position, length)
824 INTERVAL tree;
825 int position, length;
827 register int relative_position;
828 register INTERVAL this;
830 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
831 abort ();
833 /* If inserting at point-max of a buffer, that position
834 will be out of range */
835 if (position > TOTAL_LENGTH (tree))
836 position = TOTAL_LENGTH (tree);
837 relative_position = position;
838 this = tree;
840 while (1)
842 if (relative_position <= LEFT_TOTAL_LENGTH (this))
844 this->total_length += length;
845 CHECK_TOTAL_LENGTH (this);
846 this = this->left;
848 else if (relative_position > (TOTAL_LENGTH (this)
849 - RIGHT_TOTAL_LENGTH (this)))
851 relative_position -= (TOTAL_LENGTH (this)
852 - RIGHT_TOTAL_LENGTH (this));
853 this->total_length += length;
854 CHECK_TOTAL_LENGTH (this);
855 this = this->right;
857 else
859 /* If we are to use zero-length intervals as buffer pointers,
860 then this code will have to change. */
861 this->total_length += length;
862 CHECK_TOTAL_LENGTH (this);
863 this->position = LEFT_TOTAL_LENGTH (this)
864 + position - relative_position + 1;
865 return tree;
869 #endif
871 /* Effect an adjustment corresponding to the addition of LENGTH characters
872 of text. Do this by finding the interval containing POSITION in the
873 interval tree TREE, and then adjusting all of its ancestors by adding
874 LENGTH to them.
876 If POSITION is the first character of an interval, meaning that point
877 is actually between the two intervals, make the new text belong to
878 the interval which is "sticky".
880 If both intervals are "sticky", then make them belong to the left-most
881 interval. Another possibility would be to create a new interval for
882 this text, and make it have the merged properties of both ends. */
884 static INTERVAL
885 adjust_intervals_for_insertion (tree, position, length)
886 INTERVAL tree;
887 int position, length;
889 register INTERVAL i;
890 register INTERVAL temp;
891 int eobp = 0;
892 Lisp_Object parent;
893 int offset;
895 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
896 abort ();
898 GET_INTERVAL_OBJECT (parent, tree);
899 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
901 /* If inserting at point-max of a buffer, that position will be out
902 of range. Remember that buffer positions are 1-based. */
903 if (position >= TOTAL_LENGTH (tree) + offset)
905 position = TOTAL_LENGTH (tree) + offset;
906 eobp = 1;
909 i = find_interval (tree, position);
911 /* If in middle of an interval which is not sticky either way,
912 we must not just give its properties to the insertion.
913 So split this interval at the insertion point.
915 Originally, the if condition here was this:
916 (! (position == i->position || eobp)
917 && END_NONSTICKY_P (i)
918 && FRONT_NONSTICKY_P (i))
919 But, these macros are now unreliable because of introduction of
920 Vtext_property_default_nonsticky. So, we always check properties
921 one by one if POSITION is in middle of an interval. */
922 if (! (position == i->position || eobp))
924 Lisp_Object tail;
925 Lisp_Object front, rear;
927 tail = i->plist;
929 /* Properties font-sticky and rear-nonsticky override
930 Vtext_property_default_nonsticky. So, if they are t, we can
931 skip one by one checking of properties. */
932 rear = textget (i->plist, Qrear_nonsticky);
933 if (! CONSP (rear) && ! NILP (rear))
935 /* All properties are nonsticky. We split the interval. */
936 goto check_done;
938 front = textget (i->plist, Qfront_sticky);
939 if (! CONSP (front) && ! NILP (front))
941 /* All properties are sticky. We don't split the interval. */
942 tail = Qnil;
943 goto check_done;
946 /* Does any actual property pose an actual problem? We break
947 the loop if we find a nonsticky property. */
948 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
950 Lisp_Object prop, tmp;
951 prop = XCAR (tail);
953 /* Is this particular property front-sticky? */
954 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
955 continue;
957 /* Is this particular property rear-nonsticky? */
958 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
959 break;
961 /* Is this particular property recorded as sticky or
962 nonsticky in Vtext_property_default_nonsticky? */
963 tmp = Fassq (prop, Vtext_property_default_nonsticky);
964 if (CONSP (tmp))
966 if (NILP (tmp))
967 continue;
968 break;
971 /* By default, a text property is rear-sticky, thus we
972 continue the loop. */
975 check_done:
976 /* If any property is a real problem, split the interval. */
977 if (! NILP (tail))
979 temp = split_interval_right (i, position - i->position);
980 copy_properties (i, temp);
981 i = temp;
985 /* If we are positioned between intervals, check the stickiness of
986 both of them. We have to do this too, if we are at BEG or Z. */
987 if (position == i->position || eobp)
989 register INTERVAL prev;
991 if (position == BEG)
992 prev = 0;
993 else if (eobp)
995 prev = i;
996 i = 0;
998 else
999 prev = previous_interval (i);
1001 /* Even if we are positioned between intervals, we default
1002 to the left one if it exists. We extend it now and split
1003 off a part later, if stickiness demands it. */
1004 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1006 temp->total_length += length;
1007 CHECK_TOTAL_LENGTH (temp);
1008 temp = balance_possible_root_interval (temp);
1011 /* If at least one interval has sticky properties,
1012 we check the stickiness property by property.
1014 Originally, the if condition here was this:
1015 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
1016 But, these macros are now unreliable because of introduction
1017 of Vtext_property_default_nonsticky. So, we always have to
1018 check stickiness of properties one by one. If cache of
1019 stickiness is implemented in the future, we may be able to
1020 use those macros again. */
1021 if (1)
1023 Lisp_Object pleft, pright;
1024 struct interval newi;
1026 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
1027 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
1028 newi.plist = merge_properties_sticky (pleft, pright);
1030 if (! prev) /* i.e. position == BEG */
1032 if (! intervals_equal (i, &newi))
1034 i = split_interval_left (i, length);
1035 i->plist = newi.plist;
1038 else if (! intervals_equal (prev, &newi))
1040 prev = split_interval_right (prev,
1041 position - prev->position);
1042 prev->plist = newi.plist;
1043 if (! NULL_INTERVAL_P (i)
1044 && intervals_equal (prev, i))
1045 merge_interval_right (prev);
1048 /* We will need to update the cache here later. */
1050 else if (! prev && ! NILP (i->plist))
1052 /* Just split off a new interval at the left.
1053 Since I wasn't front-sticky, the empty plist is ok. */
1054 i = split_interval_left (i, length);
1058 /* Otherwise just extend the interval. */
1059 else
1061 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1063 temp->total_length += length;
1064 CHECK_TOTAL_LENGTH (temp);
1065 temp = balance_possible_root_interval (temp);
1069 return tree;
1072 /* Any property might be front-sticky on the left, rear-sticky on the left,
1073 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1074 can be arranged in a matrix with rows denoting the left conditions and
1075 columns denoting the right conditions:
1076 _ __ _
1077 _ FR FR FR FR
1078 FR__ 0 1 2 3
1079 _FR 4 5 6 7
1080 FR 8 9 A B
1081 FR C D E F
1083 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1084 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1085 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1086 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1087 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1088 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1089 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1090 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1092 We inherit from whoever has a sticky side facing us. If both sides
1093 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1094 non-nil value for the current property. If both sides do, then we take
1095 from the left.
1097 When we inherit a property, we get its stickiness as well as its value.
1098 So, when we merge the above two lists, we expect to get this:
1100 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1101 rear-nonsticky (p6 pa)
1102 p0 L p1 L p2 L p3 L p6 R p7 R
1103 pa R pb R pc L pd L pe L pf L)
1105 The optimizable special cases are:
1106 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1107 left rear-nonsticky = t, right front-sticky = t (inherit right)
1108 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1111 Lisp_Object
1112 merge_properties_sticky (pleft, pright)
1113 Lisp_Object pleft, pright;
1115 register Lisp_Object props, front, rear;
1116 Lisp_Object lfront, lrear, rfront, rrear;
1117 register Lisp_Object tail1, tail2, sym, lval, rval, cat;
1118 int use_left, use_right;
1119 int lpresent;
1121 props = Qnil;
1122 front = Qnil;
1123 rear = Qnil;
1124 lfront = textget (pleft, Qfront_sticky);
1125 lrear = textget (pleft, Qrear_nonsticky);
1126 rfront = textget (pright, Qfront_sticky);
1127 rrear = textget (pright, Qrear_nonsticky);
1129 /* Go through each element of PRIGHT. */
1130 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1132 Lisp_Object tmp;
1134 sym = XCAR (tail1);
1136 /* Sticky properties get special treatment. */
1137 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1138 continue;
1140 rval = Fcar (XCDR (tail1));
1141 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1142 if (EQ (sym, XCAR (tail2)))
1143 break;
1145 /* Indicate whether the property is explicitly defined on the left.
1146 (We know it is defined explicitly on the right
1147 because otherwise we don't get here.) */
1148 lpresent = ! NILP (tail2);
1149 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1151 /* Even if lrear or rfront say nothing about the stickiness of
1152 SYM, Vtext_property_default_nonsticky may give default
1153 stickiness to SYM. */
1154 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1155 use_left = (lpresent
1156 && ! (TMEM (sym, lrear)
1157 || (CONSP (tmp) && ! NILP (XCDR (tmp)))));
1158 use_right = (TMEM (sym, rfront)
1159 || (CONSP (tmp) && NILP (XCDR (tmp))));
1160 if (use_left && use_right)
1162 if (NILP (lval))
1163 use_left = 0;
1164 else if (NILP (rval))
1165 use_right = 0;
1167 if (use_left)
1169 /* We build props as (value sym ...) rather than (sym value ...)
1170 because we plan to nreverse it when we're done. */
1171 props = Fcons (lval, Fcons (sym, props));
1172 if (TMEM (sym, lfront))
1173 front = Fcons (sym, front);
1174 if (TMEM (sym, lrear))
1175 rear = Fcons (sym, rear);
1177 else if (use_right)
1179 props = Fcons (rval, Fcons (sym, props));
1180 if (TMEM (sym, rfront))
1181 front = Fcons (sym, front);
1182 if (TMEM (sym, rrear))
1183 rear = Fcons (sym, rear);
1187 /* Now go through each element of PLEFT. */
1188 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1190 Lisp_Object tmp;
1192 sym = XCAR (tail2);
1194 /* Sticky properties get special treatment. */
1195 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1196 continue;
1198 /* If sym is in PRIGHT, we've already considered it. */
1199 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1200 if (EQ (sym, XCAR (tail1)))
1201 break;
1202 if (! NILP (tail1))
1203 continue;
1205 lval = Fcar (XCDR (tail2));
1207 /* Even if lrear or rfront say nothing about the stickiness of
1208 SYM, Vtext_property_default_nonsticky may give default
1209 stickiness to SYM. */
1210 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1212 /* Since rval is known to be nil in this loop, the test simplifies. */
1213 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1215 props = Fcons (lval, Fcons (sym, props));
1216 if (TMEM (sym, lfront))
1217 front = Fcons (sym, front);
1219 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1221 /* The value is nil, but we still inherit the stickiness
1222 from the right. */
1223 front = Fcons (sym, front);
1224 if (TMEM (sym, rrear))
1225 rear = Fcons (sym, rear);
1228 props = Fnreverse (props);
1229 if (! NILP (rear))
1230 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1232 cat = textget (props, Qcategory);
1233 if (! NILP (front)
1235 /* If we have inherited a front-stick category property that is t,
1236 we don't need to set up a detailed one. */
1237 ! (! NILP (cat) && SYMBOLP (cat)
1238 && EQ (Fget (cat, Qfront_sticky), Qt)))
1239 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1240 return props;
1244 /* Delete a node I from its interval tree by merging its subtrees
1245 into one subtree which is then returned. Caller is responsible for
1246 storing the resulting subtree into its parent. */
1248 static INTERVAL
1249 delete_node (i)
1250 register INTERVAL i;
1252 register INTERVAL migrate, this;
1253 register int migrate_amt;
1255 if (NULL_INTERVAL_P (i->left))
1256 return i->right;
1257 if (NULL_INTERVAL_P (i->right))
1258 return i->left;
1260 migrate = i->left;
1261 migrate_amt = i->left->total_length;
1262 this = i->right;
1263 this->total_length += migrate_amt;
1264 while (! NULL_INTERVAL_P (this->left))
1266 this = this->left;
1267 this->total_length += migrate_amt;
1269 CHECK_TOTAL_LENGTH (this);
1270 this->left = migrate;
1271 SET_INTERVAL_PARENT (migrate, this);
1273 return i->right;
1276 /* Delete interval I from its tree by calling `delete_node'
1277 and properly connecting the resultant subtree.
1279 I is presumed to be empty; that is, no adjustments are made
1280 for the length of I. */
1282 void
1283 delete_interval (i)
1284 register INTERVAL i;
1286 register INTERVAL parent;
1287 int amt = LENGTH (i);
1289 if (amt > 0) /* Only used on zero-length intervals now. */
1290 abort ();
1292 if (ROOT_INTERVAL_P (i))
1294 Lisp_Object owner;
1295 GET_INTERVAL_OBJECT (owner, i);
1296 parent = delete_node (i);
1297 if (! NULL_INTERVAL_P (parent))
1298 SET_INTERVAL_OBJECT (parent, owner);
1300 if (BUFFERP (owner))
1301 BUF_INTERVALS (XBUFFER (owner)) = parent;
1302 else if (STRINGP (owner))
1303 STRING_SET_INTERVALS (owner, parent);
1304 else
1305 abort ();
1307 return;
1310 parent = INTERVAL_PARENT (i);
1311 if (AM_LEFT_CHILD (i))
1313 parent->left = delete_node (i);
1314 if (! NULL_INTERVAL_P (parent->left))
1315 SET_INTERVAL_PARENT (parent->left, parent);
1317 else
1319 parent->right = delete_node (i);
1320 if (! NULL_INTERVAL_P (parent->right))
1321 SET_INTERVAL_PARENT (parent->right, parent);
1325 /* Find the interval in TREE corresponding to the relative position
1326 FROM and delete as much as possible of AMOUNT from that interval.
1327 Return the amount actually deleted, and if the interval was
1328 zeroed-out, delete that interval node from the tree.
1330 Note that FROM is actually origin zero, aka relative to the
1331 leftmost edge of tree. This is appropriate since we call ourselves
1332 recursively on subtrees.
1334 Do this by recursing down TREE to the interval in question, and
1335 deleting the appropriate amount of text. */
1337 static int
1338 interval_deletion_adjustment (tree, from, amount)
1339 register INTERVAL tree;
1340 register int from, amount;
1342 register int relative_position = from;
1344 if (NULL_INTERVAL_P (tree))
1345 return 0;
1347 /* Left branch */
1348 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1350 int subtract = interval_deletion_adjustment (tree->left,
1351 relative_position,
1352 amount);
1353 tree->total_length -= subtract;
1354 CHECK_TOTAL_LENGTH (tree);
1355 return subtract;
1357 /* Right branch */
1358 else if (relative_position >= (TOTAL_LENGTH (tree)
1359 - RIGHT_TOTAL_LENGTH (tree)))
1361 int subtract;
1363 relative_position -= (tree->total_length
1364 - RIGHT_TOTAL_LENGTH (tree));
1365 subtract = interval_deletion_adjustment (tree->right,
1366 relative_position,
1367 amount);
1368 tree->total_length -= subtract;
1369 CHECK_TOTAL_LENGTH (tree);
1370 return subtract;
1372 /* Here -- this node. */
1373 else
1375 /* How much can we delete from this interval? */
1376 int my_amount = ((tree->total_length
1377 - RIGHT_TOTAL_LENGTH (tree))
1378 - relative_position);
1380 if (amount > my_amount)
1381 amount = my_amount;
1383 tree->total_length -= amount;
1384 CHECK_TOTAL_LENGTH (tree);
1385 if (LENGTH (tree) == 0)
1386 delete_interval (tree);
1388 return amount;
1391 /* Never reach here. */
1394 /* Effect the adjustments necessary to the interval tree of BUFFER to
1395 correspond to the deletion of LENGTH characters from that buffer
1396 text. The deletion is effected at position START (which is a
1397 buffer position, i.e. origin 1). */
1399 static void
1400 adjust_intervals_for_deletion (buffer, start, length)
1401 struct buffer *buffer;
1402 int start, length;
1404 register int left_to_delete = length;
1405 register INTERVAL tree = BUF_INTERVALS (buffer);
1406 Lisp_Object parent;
1407 int offset;
1409 GET_INTERVAL_OBJECT (parent, tree);
1410 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1412 if (NULL_INTERVAL_P (tree))
1413 return;
1415 if (start > offset + TOTAL_LENGTH (tree)
1416 || start + length > offset + TOTAL_LENGTH (tree))
1417 abort ();
1419 if (length == TOTAL_LENGTH (tree))
1421 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1422 return;
1425 if (ONLY_INTERVAL_P (tree))
1427 tree->total_length -= length;
1428 CHECK_TOTAL_LENGTH (tree);
1429 return;
1432 if (start > offset + TOTAL_LENGTH (tree))
1433 start = offset + TOTAL_LENGTH (tree);
1434 while (left_to_delete > 0)
1436 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1437 left_to_delete);
1438 tree = BUF_INTERVALS (buffer);
1439 if (left_to_delete == tree->total_length)
1441 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1442 return;
1447 /* Make the adjustments necessary to the interval tree of BUFFER to
1448 represent an addition or deletion of LENGTH characters starting
1449 at position START. Addition or deletion is indicated by the sign
1450 of LENGTH. */
1452 INLINE void
1453 offset_intervals (buffer, start, length)
1454 struct buffer *buffer;
1455 int start, length;
1457 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
1458 return;
1460 if (length > 0)
1461 adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
1462 else
1463 adjust_intervals_for_deletion (buffer, start, -length);
1466 /* Merge interval I with its lexicographic successor. The resulting
1467 interval is returned, and has the properties of the original
1468 successor. The properties of I are lost. I is removed from the
1469 interval tree.
1471 IMPORTANT:
1472 The caller must verify that this is not the last (rightmost)
1473 interval. */
1475 INTERVAL
1476 merge_interval_right (i)
1477 register INTERVAL i;
1479 register int absorb = LENGTH (i);
1480 register INTERVAL successor;
1482 /* Zero out this interval. */
1483 i->total_length -= absorb;
1484 CHECK_TOTAL_LENGTH (i);
1486 /* Find the succeeding interval. */
1487 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1488 as we descend. */
1490 successor = i->right;
1491 while (! NULL_LEFT_CHILD (successor))
1493 successor->total_length += absorb;
1494 CHECK_TOTAL_LENGTH (successor);
1495 successor = successor->left;
1498 successor->total_length += absorb;
1499 CHECK_TOTAL_LENGTH (successor);
1500 delete_interval (i);
1501 return successor;
1504 successor = i;
1505 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1506 we ascend. */
1508 if (AM_LEFT_CHILD (successor))
1510 successor = INTERVAL_PARENT (successor);
1511 delete_interval (i);
1512 return successor;
1515 successor = INTERVAL_PARENT (successor);
1516 successor->total_length -= absorb;
1517 CHECK_TOTAL_LENGTH (successor);
1520 /* This must be the rightmost or last interval and cannot
1521 be merged right. The caller should have known. */
1522 abort ();
1525 /* Merge interval I with its lexicographic predecessor. The resulting
1526 interval is returned, and has the properties of the original predecessor.
1527 The properties of I are lost. Interval node I is removed from the tree.
1529 IMPORTANT:
1530 The caller must verify that this is not the first (leftmost) interval. */
1532 INTERVAL
1533 merge_interval_left (i)
1534 register INTERVAL i;
1536 register int absorb = LENGTH (i);
1537 register INTERVAL predecessor;
1539 /* Zero out this interval. */
1540 i->total_length -= absorb;
1541 CHECK_TOTAL_LENGTH (i);
1543 /* Find the preceding interval. */
1544 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1545 adding ABSORB as we go. */
1547 predecessor = i->left;
1548 while (! NULL_RIGHT_CHILD (predecessor))
1550 predecessor->total_length += absorb;
1551 CHECK_TOTAL_LENGTH (predecessor);
1552 predecessor = predecessor->right;
1555 predecessor->total_length += absorb;
1556 CHECK_TOTAL_LENGTH (predecessor);
1557 delete_interval (i);
1558 return predecessor;
1561 predecessor = i;
1562 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1563 subtracting ABSORB. */
1565 if (AM_RIGHT_CHILD (predecessor))
1567 predecessor = INTERVAL_PARENT (predecessor);
1568 delete_interval (i);
1569 return predecessor;
1572 predecessor = INTERVAL_PARENT (predecessor);
1573 predecessor->total_length -= absorb;
1574 CHECK_TOTAL_LENGTH (predecessor);
1577 /* This must be the leftmost or first interval and cannot
1578 be merged left. The caller should have known. */
1579 abort ();
1582 /* Make an exact copy of interval tree SOURCE which descends from
1583 PARENT. This is done by recursing through SOURCE, copying
1584 the current interval and its properties, and then adjusting
1585 the pointers of the copy. */
1587 static INTERVAL
1588 reproduce_tree (source, parent)
1589 INTERVAL source, parent;
1591 register INTERVAL t = make_interval ();
1593 bcopy (source, t, INTERVAL_SIZE);
1594 copy_properties (source, t);
1595 SET_INTERVAL_PARENT (t, parent);
1596 if (! NULL_LEFT_CHILD (source))
1597 t->left = reproduce_tree (source->left, t);
1598 if (! NULL_RIGHT_CHILD (source))
1599 t->right = reproduce_tree (source->right, t);
1601 return t;
1604 static INTERVAL
1605 reproduce_tree_obj (source, parent)
1606 INTERVAL source;
1607 Lisp_Object parent;
1609 register INTERVAL t = make_interval ();
1611 bcopy (source, t, INTERVAL_SIZE);
1612 copy_properties (source, t);
1613 SET_INTERVAL_OBJECT (t, parent);
1614 if (! NULL_LEFT_CHILD (source))
1615 t->left = reproduce_tree (source->left, t);
1616 if (! NULL_RIGHT_CHILD (source))
1617 t->right = reproduce_tree (source->right, t);
1619 return t;
1622 #if 0
1623 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1625 /* Make a new interval of length LENGTH starting at START in the
1626 group of intervals INTERVALS, which is actually an interval tree.
1627 Returns the new interval.
1629 Generate an error if the new positions would overlap an existing
1630 interval. */
1632 static INTERVAL
1633 make_new_interval (intervals, start, length)
1634 INTERVAL intervals;
1635 int start, length;
1637 INTERVAL slot;
1639 slot = find_interval (intervals, start);
1640 if (start + length > slot->position + LENGTH (slot))
1641 error ("Interval would overlap");
1643 if (start == slot->position && length == LENGTH (slot))
1644 return slot;
1646 if (slot->position == start)
1648 /* New right node. */
1649 split_interval_right (slot, length);
1650 return slot;
1653 if (slot->position + LENGTH (slot) == start + length)
1655 /* New left node. */
1656 split_interval_left (slot, LENGTH (slot) - length);
1657 return slot;
1660 /* Convert interval SLOT into three intervals. */
1661 split_interval_left (slot, start - slot->position);
1662 split_interval_right (slot, length);
1663 return slot;
1665 #endif
1667 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1668 LENGTH is the length of the text in SOURCE.
1670 The `position' field of the SOURCE intervals is assumed to be
1671 consistent with its parent; therefore, SOURCE must be an
1672 interval tree made with copy_interval or must be the whole
1673 tree of a buffer or a string.
1675 This is used in insdel.c when inserting Lisp_Strings into the
1676 buffer. The text corresponding to SOURCE is already in the buffer
1677 when this is called. The intervals of new tree are a copy of those
1678 belonging to the string being inserted; intervals are never
1679 shared.
1681 If the inserted text had no intervals associated, and we don't
1682 want to inherit the surrounding text's properties, this function
1683 simply returns -- offset_intervals should handle placing the
1684 text in the correct interval, depending on the sticky bits.
1686 If the inserted text had properties (intervals), then there are two
1687 cases -- either insertion happened in the middle of some interval,
1688 or between two intervals.
1690 If the text goes into the middle of an interval, then new
1691 intervals are created in the middle with only the properties of
1692 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1693 which case the new text has the union of its properties and those
1694 of the text into which it was inserted.
1696 If the text goes between two intervals, then if neither interval
1697 had its appropriate sticky property set (front_sticky, rear_sticky),
1698 the new text has only its properties. If one of the sticky properties
1699 is set, then the new text "sticks" to that region and its properties
1700 depend on merging as above. If both the preceding and succeeding
1701 intervals to the new text are "sticky", then the new text retains
1702 only its properties, as if neither sticky property were set. Perhaps
1703 we should consider merging all three sets of properties onto the new
1704 text... */
1706 void
1707 graft_intervals_into_buffer (source, position, length, buffer, inherit)
1708 INTERVAL source;
1709 int position, length;
1710 struct buffer *buffer;
1711 int inherit;
1713 register INTERVAL under, over, this, prev;
1714 register INTERVAL tree;
1715 int over_used;
1717 tree = BUF_INTERVALS (buffer);
1719 /* If the new text has no properties, then with inheritance it
1720 becomes part of whatever interval it was inserted into.
1721 To prevent inheritance, we must clear out the properties
1722 of the newly inserted text. */
1723 if (NULL_INTERVAL_P (source))
1725 Lisp_Object buf;
1726 if (!inherit && !NULL_INTERVAL_P (tree) && length > 0)
1728 XSETBUFFER (buf, buffer);
1729 set_text_properties_1 (make_number (position),
1730 make_number (position + length),
1731 Qnil, buf, 0);
1733 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1734 /* Shouldn't be necessary. -stef */
1735 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1736 return;
1739 if (NULL_INTERVAL_P (tree))
1741 /* The inserted text constitutes the whole buffer, so
1742 simply copy over the interval structure. */
1743 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1745 Lisp_Object buf;
1746 XSETBUFFER (buf, buffer);
1747 BUF_INTERVALS (buffer) = reproduce_tree_obj (source, buf);
1748 BUF_INTERVALS (buffer)->position = BEG;
1750 /* Explicitly free the old tree here? */
1752 return;
1755 /* Create an interval tree in which to place a copy
1756 of the intervals of the inserted string. */
1758 Lisp_Object buf;
1759 XSETBUFFER (buf, buffer);
1760 tree = create_root_interval (buf);
1763 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1764 /* If the buffer contains only the new string, but
1765 there was already some interval tree there, then it may be
1766 some zero length intervals. Eventually, do something clever
1767 about inserting properly. For now, just waste the old intervals. */
1769 BUF_INTERVALS (buffer) = reproduce_tree (source, INTERVAL_PARENT (tree));
1770 BUF_INTERVALS (buffer)->position = BEG;
1771 /* Explicitly free the old tree here. */
1773 return;
1775 /* Paranoia -- the text has already been added, so this buffer
1776 should be of non-zero length. */
1777 else if (TOTAL_LENGTH (tree) == 0)
1778 abort ();
1780 this = under = find_interval (tree, position);
1781 if (NULL_INTERVAL_P (under)) /* Paranoia */
1782 abort ();
1783 over = find_interval (source, interval_start_pos (source));
1785 /* Here for insertion in the middle of an interval.
1786 Split off an equivalent interval to the right,
1787 then don't bother with it any more. */
1789 if (position > under->position)
1791 INTERVAL end_unchanged
1792 = split_interval_left (this, position - under->position);
1793 copy_properties (under, end_unchanged);
1794 under->position = position;
1796 else
1798 /* This call may have some effect because previous_interval may
1799 update `position' fields of intervals. Thus, don't ignore it
1800 for the moment. Someone please tell me the truth (K.Handa). */
1801 prev = previous_interval (under);
1802 #if 0
1803 /* But, this code surely has no effect. And, anyway,
1804 END_NONSTICKY_P is unreliable now. */
1805 if (prev && !END_NONSTICKY_P (prev))
1806 prev = 0;
1807 #endif /* 0 */
1810 /* Insertion is now at beginning of UNDER. */
1812 /* The inserted text "sticks" to the interval `under',
1813 which means it gets those properties.
1814 The properties of under are the result of
1815 adjust_intervals_for_insertion, so stickiness has
1816 already been taken care of. */
1818 /* OVER is the interval we are copying from next.
1819 OVER_USED says how many characters' worth of OVER
1820 have already been copied into target intervals.
1821 UNDER is the next interval in the target. */
1822 over_used = 0;
1823 while (! NULL_INTERVAL_P (over))
1825 /* If UNDER is longer than OVER, split it. */
1826 if (LENGTH (over) < LENGTH (under))
1828 this = split_interval_left (under, LENGTH (over));
1829 copy_properties (under, this);
1831 else
1832 this = under;
1834 /* THIS is now the interval to copy or merge into.
1835 OVER covers all of it. */
1836 if (inherit)
1837 merge_properties (over, this);
1838 else
1839 copy_properties (over, this);
1841 /* If THIS and OVER end at the same place,
1842 advance OVER to a new source interval. */
1843 if (LENGTH (this) == LENGTH (over) - over_used)
1845 over = next_interval (over);
1846 over_used = 0;
1848 else
1849 /* Otherwise just record that more of OVER has been used. */
1850 over_used += LENGTH (this);
1852 /* Always advance to a new target interval. */
1853 under = next_interval (this);
1856 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1857 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1858 return;
1861 /* Get the value of property PROP from PLIST,
1862 which is the plist of an interval.
1863 We check for direct properties, for categories with property PROP,
1864 and for PROP appearing on the default-text-properties list. */
1866 Lisp_Object
1867 textget (plist, prop)
1868 Lisp_Object plist;
1869 register Lisp_Object prop;
1871 return lookup_char_property (plist, prop, 1);
1874 Lisp_Object
1875 lookup_char_property (plist, prop, textprop)
1876 Lisp_Object plist;
1877 register Lisp_Object prop;
1878 int textprop;
1880 register Lisp_Object tail, fallback = Qnil;
1882 for (tail = plist; CONSP (tail); tail = Fcdr (XCDR (tail)))
1884 register Lisp_Object tem;
1885 tem = XCAR (tail);
1886 if (EQ (prop, tem))
1887 return Fcar (XCDR (tail));
1888 if (EQ (tem, Qcategory))
1890 tem = Fcar (XCDR (tail));
1891 if (SYMBOLP (tem))
1892 fallback = Fget (tem, prop);
1896 if (! NILP (fallback))
1897 return fallback;
1898 /* Check for alternative properties */
1899 tail = Fassq (prop, Vchar_property_alias_alist);
1900 if (NILP (tail))
1901 return tail;
1902 tail = XCDR (tail);
1903 for (; NILP (fallback) && CONSP (tail); tail = XCDR (tail))
1904 fallback = Fplist_get (plist, XCAR (tail));
1905 if (textprop && NILP (fallback) && CONSP (Vdefault_text_properties))
1906 fallback = Fplist_get (Vdefault_text_properties, prop);
1907 return fallback;
1911 /* Set point "temporarily", without checking any text properties. */
1913 INLINE void
1914 temp_set_point (buffer, charpos)
1915 struct buffer *buffer;
1916 int charpos;
1918 temp_set_point_both (buffer, charpos,
1919 buf_charpos_to_bytepos (buffer, charpos));
1922 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1923 byte position BYTEPOS. */
1925 INLINE void
1926 temp_set_point_both (buffer, charpos, bytepos)
1927 int charpos, bytepos;
1928 struct buffer *buffer;
1930 /* In a single-byte buffer, the two positions must be equal. */
1931 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1932 && charpos != bytepos)
1933 abort ();
1935 if (charpos > bytepos)
1936 abort ();
1938 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1939 abort ();
1941 BUF_PT_BYTE (buffer) = bytepos;
1942 BUF_PT (buffer) = charpos;
1945 /* Set point in BUFFER to CHARPOS. If the target position is
1946 before an intangible character, move to an ok place. */
1948 void
1949 set_point (buffer, charpos)
1950 register struct buffer *buffer;
1951 register int charpos;
1953 set_point_both (buffer, charpos, buf_charpos_to_bytepos (buffer, charpos));
1956 /* If there's an invisible character at position POS + TEST_OFFS in the
1957 current buffer, and the invisible property has a `stickiness' such that
1958 inserting a character at position POS would inherit the property it,
1959 return POS + ADJ, otherwise return POS. If TEST_INTANG is non-zero,
1960 then intangibility is required as well as invisibleness.
1962 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1964 Note that `stickiness' is determined by overlay marker insertion types,
1965 if the invisible property comes from an overlay. */
1967 static int
1968 adjust_for_invis_intang (pos, test_offs, adj, test_intang)
1969 int pos, test_offs, adj, test_intang;
1971 Lisp_Object invis_propval, invis_overlay;
1972 Lisp_Object test_pos;
1974 if ((adj < 0 && pos + adj < BEGV) || (adj > 0 && pos + adj > ZV))
1975 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1976 return pos;
1978 test_pos = make_number (pos + test_offs);
1980 invis_propval
1981 = get_char_property_and_overlay (test_pos, Qinvisible, Qnil,
1982 &invis_overlay);
1984 if ((!test_intang
1985 || ! NILP (Fget_char_property (test_pos, Qintangible, Qnil)))
1986 && TEXT_PROP_MEANS_INVISIBLE (invis_propval)
1987 /* This next test is true if the invisible property has a stickiness
1988 such that an insertion at POS would inherit it. */
1989 && (NILP (invis_overlay)
1990 /* Invisible property is from a text-property. */
1991 ? (text_property_stickiness (Qinvisible, make_number (pos), Qnil)
1992 == (test_offs == 0 ? 1 : -1))
1993 /* Invisible property is from an overlay. */
1994 : (test_offs == 0
1995 ? XMARKER (OVERLAY_START (invis_overlay))->insertion_type == 0
1996 : XMARKER (OVERLAY_END (invis_overlay))->insertion_type == 1)))
1997 pos += adj;
1999 return pos;
2002 /* Set point in BUFFER to CHARPOS, which corresponds to byte
2003 position BYTEPOS. If the target position is
2004 before an intangible character, move to an ok place. */
2006 void
2007 set_point_both (buffer, charpos, bytepos)
2008 register struct buffer *buffer;
2009 register int charpos, bytepos;
2011 register INTERVAL to, from, toprev, fromprev;
2012 int buffer_point;
2013 int old_position = BUF_PT (buffer);
2014 int backwards = (charpos < old_position ? 1 : 0);
2015 int have_overlays;
2016 int original_position;
2018 buffer->point_before_scroll = Qnil;
2020 if (charpos == BUF_PT (buffer))
2021 return;
2023 /* In a single-byte buffer, the two positions must be equal. */
2024 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
2025 && charpos != bytepos)
2026 abort ();
2028 /* Check this now, before checking if the buffer has any intervals.
2029 That way, we can catch conditions which break this sanity check
2030 whether or not there are intervals in the buffer. */
2031 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
2032 abort ();
2034 have_overlays = (buffer->overlays_before || buffer->overlays_after);
2036 /* If we have no text properties and overlays,
2037 then we can do it quickly. */
2038 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) && ! have_overlays)
2040 temp_set_point_both (buffer, charpos, bytepos);
2041 return;
2044 /* Set TO to the interval containing the char after CHARPOS,
2045 and TOPREV to the interval containing the char before CHARPOS.
2046 Either one may be null. They may be equal. */
2047 to = find_interval (BUF_INTERVALS (buffer), charpos);
2048 if (charpos == BUF_BEGV (buffer))
2049 toprev = 0;
2050 else if (to && to->position == charpos)
2051 toprev = previous_interval (to);
2052 else
2053 toprev = to;
2055 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
2056 ? BUF_ZV (buffer) - 1
2057 : BUF_PT (buffer));
2059 /* Set FROM to the interval containing the char after PT,
2060 and FROMPREV to the interval containing the char before PT.
2061 Either one may be null. They may be equal. */
2062 /* We could cache this and save time. */
2063 from = find_interval (BUF_INTERVALS (buffer), buffer_point);
2064 if (buffer_point == BUF_BEGV (buffer))
2065 fromprev = 0;
2066 else if (from && from->position == BUF_PT (buffer))
2067 fromprev = previous_interval (from);
2068 else if (buffer_point != BUF_PT (buffer))
2069 fromprev = from, from = 0;
2070 else
2071 fromprev = from;
2073 /* Moving within an interval. */
2074 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
2075 && ! have_overlays)
2077 temp_set_point_both (buffer, charpos, bytepos);
2078 return;
2081 original_position = charpos;
2083 /* If the new position is between two intangible characters
2084 with the same intangible property value,
2085 move forward or backward until a change in that property. */
2086 if (NILP (Vinhibit_point_motion_hooks)
2087 && ((! NULL_INTERVAL_P (to) && ! NULL_INTERVAL_P (toprev))
2088 || have_overlays)
2089 /* Intangibility never stops us from positioning at the beginning
2090 or end of the buffer, so don't bother checking in that case. */
2091 && charpos != BEGV && charpos != ZV)
2093 Lisp_Object pos;
2094 Lisp_Object intangible_propval;
2096 if (backwards)
2098 /* If the preceding character is both intangible and invisible,
2099 and the invisible property is `rear-sticky', perturb it so
2100 that the search starts one character earlier -- this ensures
2101 that point can never move to the end of an invisible/
2102 intangible/rear-sticky region. */
2103 charpos = adjust_for_invis_intang (charpos, -1, -1, 1);
2105 XSETINT (pos, charpos);
2107 /* If following char is intangible,
2108 skip back over all chars with matching intangible property. */
2110 intangible_propval = Fget_char_property (pos, Qintangible, Qnil);
2112 if (! NILP (intangible_propval))
2114 while (XINT (pos) > BUF_BEGV (buffer)
2115 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2116 Qintangible, Qnil),
2117 intangible_propval))
2118 pos = Fprevious_char_property_change (pos, Qnil);
2120 /* Set CHARPOS from POS, and if the final intangible character
2121 that we skipped over is also invisible, and the invisible
2122 property is `front-sticky', perturb it to be one character
2123 earlier -- this ensures that point can never move to the
2124 beginning of an invisible/intangible/front-sticky region. */
2125 charpos = adjust_for_invis_intang (XINT (pos), 0, -1, 0);
2128 else
2130 /* If the following character is both intangible and invisible,
2131 and the invisible property is `front-sticky', perturb it so
2132 that the search starts one character later -- this ensures
2133 that point can never move to the beginning of an
2134 invisible/intangible/front-sticky region. */
2135 charpos = adjust_for_invis_intang (charpos, 0, 1, 1);
2137 XSETINT (pos, charpos);
2139 /* If preceding char is intangible,
2140 skip forward over all chars with matching intangible property. */
2142 intangible_propval = Fget_char_property (make_number (charpos - 1),
2143 Qintangible, Qnil);
2145 if (! NILP (intangible_propval))
2147 while (XINT (pos) < BUF_ZV (buffer)
2148 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2149 intangible_propval))
2150 pos = Fnext_char_property_change (pos, Qnil);
2152 /* Set CHARPOS from POS, and if the final intangible character
2153 that we skipped over is also invisible, and the invisible
2154 property is `rear-sticky', perturb it to be one character
2155 later -- this ensures that point can never move to the
2156 end of an invisible/intangible/rear-sticky region. */
2157 charpos = adjust_for_invis_intang (XINT (pos), -1, 1, 0);
2161 bytepos = buf_charpos_to_bytepos (buffer, charpos);
2164 if (charpos != original_position)
2166 /* Set TO to the interval containing the char after CHARPOS,
2167 and TOPREV to the interval containing the char before CHARPOS.
2168 Either one may be null. They may be equal. */
2169 to = find_interval (BUF_INTERVALS (buffer), charpos);
2170 if (charpos == BUF_BEGV (buffer))
2171 toprev = 0;
2172 else if (to && to->position == charpos)
2173 toprev = previous_interval (to);
2174 else
2175 toprev = to;
2178 /* Here TO is the interval after the stopping point
2179 and TOPREV is the interval before the stopping point.
2180 One or the other may be null. */
2182 temp_set_point_both (buffer, charpos, bytepos);
2184 /* We run point-left and point-entered hooks here, iff the
2185 two intervals are not equivalent. These hooks take
2186 (old_point, new_point) as arguments. */
2187 if (NILP (Vinhibit_point_motion_hooks)
2188 && (! intervals_equal (from, to)
2189 || ! intervals_equal (fromprev, toprev)))
2191 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2193 if (fromprev)
2194 leave_after = textget (fromprev->plist, Qpoint_left);
2195 else
2196 leave_after = Qnil;
2197 if (from)
2198 leave_before = textget (from->plist, Qpoint_left);
2199 else
2200 leave_before = Qnil;
2202 if (toprev)
2203 enter_after = textget (toprev->plist, Qpoint_entered);
2204 else
2205 enter_after = Qnil;
2206 if (to)
2207 enter_before = textget (to->plist, Qpoint_entered);
2208 else
2209 enter_before = Qnil;
2211 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2212 call2 (leave_before, make_number (old_position),
2213 make_number (charpos));
2214 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2215 call2 (leave_after, make_number (old_position),
2216 make_number (charpos));
2218 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2219 call2 (enter_before, make_number (old_position),
2220 make_number (charpos));
2221 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2222 call2 (enter_after, make_number (old_position),
2223 make_number (charpos));
2227 /* Move point to POSITION, unless POSITION is inside an intangible
2228 segment that reaches all the way to point. */
2230 void
2231 move_if_not_intangible (position)
2232 int position;
2234 Lisp_Object pos;
2235 Lisp_Object intangible_propval;
2237 XSETINT (pos, position);
2239 if (! NILP (Vinhibit_point_motion_hooks))
2240 /* If intangible is inhibited, always move point to POSITION. */
2242 else if (PT < position && XINT (pos) < ZV)
2244 /* We want to move forward, so check the text before POSITION. */
2246 intangible_propval = Fget_char_property (pos,
2247 Qintangible, Qnil);
2249 /* If following char is intangible,
2250 skip back over all chars with matching intangible property. */
2251 if (! NILP (intangible_propval))
2252 while (XINT (pos) > BEGV
2253 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2254 Qintangible, Qnil),
2255 intangible_propval))
2256 pos = Fprevious_char_property_change (pos, Qnil);
2258 else if (XINT (pos) > BEGV)
2260 /* We want to move backward, so check the text after POSITION. */
2262 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2263 Qintangible, Qnil);
2265 /* If following char is intangible,
2266 skip forward over all chars with matching intangible property. */
2267 if (! NILP (intangible_propval))
2268 while (XINT (pos) < ZV
2269 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2270 intangible_propval))
2271 pos = Fnext_char_property_change (pos, Qnil);
2275 /* If the whole stretch between PT and POSITION isn't intangible,
2276 try moving to POSITION (which means we actually move farther
2277 if POSITION is inside of intangible text). */
2279 if (XINT (pos) != PT)
2280 SET_PT (position);
2283 /* If text at position POS has property PROP, set *VAL to the property
2284 value, *START and *END to the beginning and end of a region that
2285 has the same property, and return 1. Otherwise return 0.
2287 OBJECT is the string or buffer to look for the property in;
2288 nil means the current buffer. */
2291 get_property_and_range (pos, prop, val, start, end, object)
2292 int pos;
2293 Lisp_Object prop, *val;
2294 int *start, *end;
2295 Lisp_Object object;
2297 INTERVAL i, prev, next;
2299 if (NILP (object))
2300 i = find_interval (BUF_INTERVALS (current_buffer), pos);
2301 else if (BUFFERP (object))
2302 i = find_interval (BUF_INTERVALS (XBUFFER (object)), pos);
2303 else if (STRINGP (object))
2304 i = find_interval (STRING_INTERVALS (object), pos);
2305 else
2306 abort ();
2308 if (NULL_INTERVAL_P (i) || (i->position + LENGTH (i) <= pos))
2309 return 0;
2310 *val = textget (i->plist, prop);
2311 if (NILP (*val))
2312 return 0;
2314 next = i; /* remember it in advance */
2315 prev = previous_interval (i);
2316 while (! NULL_INTERVAL_P (prev)
2317 && EQ (*val, textget (prev->plist, prop)))
2318 i = prev, prev = previous_interval (prev);
2319 *start = i->position;
2321 next = next_interval (i);
2322 while (! NULL_INTERVAL_P (next)
2323 && EQ (*val, textget (next->plist, prop)))
2324 i = next, next = next_interval (next);
2325 *end = i->position + LENGTH (i);
2327 return 1;
2330 /* Return the proper local keymap TYPE for position POSITION in
2331 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2332 specified by the PROP property, if any. Otherwise, if TYPE is
2333 `local-map' use BUFFER's local map. */
2335 Lisp_Object
2336 get_local_map (position, buffer, type)
2337 register int position;
2338 register struct buffer *buffer;
2339 Lisp_Object type;
2341 Lisp_Object prop, lispy_position, lispy_buffer;
2342 int old_begv, old_zv, old_begv_byte, old_zv_byte;
2344 /* Perhaps we should just change `position' to the limit. */
2345 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
2346 abort ();
2348 /* Ignore narrowing, so that a local map continues to be valid even if
2349 the visible region contains no characters and hence no properties. */
2350 old_begv = BUF_BEGV (buffer);
2351 old_zv = BUF_ZV (buffer);
2352 old_begv_byte = BUF_BEGV_BYTE (buffer);
2353 old_zv_byte = BUF_ZV_BYTE (buffer);
2354 BUF_BEGV (buffer) = BUF_BEG (buffer);
2355 BUF_ZV (buffer) = BUF_Z (buffer);
2356 BUF_BEGV_BYTE (buffer) = BUF_BEG_BYTE (buffer);
2357 BUF_ZV_BYTE (buffer) = BUF_Z_BYTE (buffer);
2359 XSETFASTINT (lispy_position, position);
2360 XSETBUFFER (lispy_buffer, buffer);
2361 /* First check if the CHAR has any property. This is because when
2362 we click with the mouse, the mouse pointer is really pointing
2363 to the CHAR after POS. */
2364 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2365 /* If not, look at the POS's properties. This is necessary because when
2366 editing a field with a `local-map' property, we want insertion at the end
2367 to obey the `local-map' property. */
2368 if (NILP (prop))
2369 prop = get_pos_property (lispy_position, type, lispy_buffer);
2371 BUF_BEGV (buffer) = old_begv;
2372 BUF_ZV (buffer) = old_zv;
2373 BUF_BEGV_BYTE (buffer) = old_begv_byte;
2374 BUF_ZV_BYTE (buffer) = old_zv_byte;
2376 /* Use the local map only if it is valid. */
2377 prop = get_keymap (prop, 0, 0);
2378 if (CONSP (prop))
2379 return prop;
2381 if (EQ (type, Qkeymap))
2382 return Qnil;
2383 else
2384 return buffer->keymap;
2387 /* Produce an interval tree reflecting the intervals in
2388 TREE from START to START + LENGTH.
2389 The new interval tree has no parent and has a starting-position of 0. */
2391 INTERVAL
2392 copy_intervals (tree, start, length)
2393 INTERVAL tree;
2394 int start, length;
2396 register INTERVAL i, new, t;
2397 register int got, prevlen;
2399 if (NULL_INTERVAL_P (tree) || length <= 0)
2400 return NULL_INTERVAL;
2402 i = find_interval (tree, start);
2403 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
2404 abort ();
2406 /* If there is only one interval and it's the default, return nil. */
2407 if ((start - i->position + 1 + length) < LENGTH (i)
2408 && DEFAULT_INTERVAL_P (i))
2409 return NULL_INTERVAL;
2411 new = make_interval ();
2412 new->position = 0;
2413 got = (LENGTH (i) - (start - i->position));
2414 new->total_length = length;
2415 CHECK_TOTAL_LENGTH (new);
2416 copy_properties (i, new);
2418 t = new;
2419 prevlen = got;
2420 while (got < length)
2422 i = next_interval (i);
2423 t = split_interval_right (t, prevlen);
2424 copy_properties (i, t);
2425 prevlen = LENGTH (i);
2426 got += prevlen;
2429 return balance_an_interval (new);
2432 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2434 INLINE void
2435 copy_intervals_to_string (string, buffer, position, length)
2436 Lisp_Object string;
2437 struct buffer *buffer;
2438 int position, length;
2440 INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (buffer),
2441 position, length);
2442 if (NULL_INTERVAL_P (interval_copy))
2443 return;
2445 SET_INTERVAL_OBJECT (interval_copy, string);
2446 STRING_SET_INTERVALS (string, interval_copy);
2449 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2450 Assume they have identical characters. */
2453 compare_string_intervals (s1, s2)
2454 Lisp_Object s1, s2;
2456 INTERVAL i1, i2;
2457 int pos = 0;
2458 int end = SCHARS (s1);
2460 i1 = find_interval (STRING_INTERVALS (s1), 0);
2461 i2 = find_interval (STRING_INTERVALS (s2), 0);
2463 while (pos < end)
2465 /* Determine how far we can go before we reach the end of I1 or I2. */
2466 int len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2467 int len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2468 int distance = min (len1, len2);
2470 /* If we ever find a mismatch between the strings,
2471 they differ. */
2472 if (! intervals_equal (i1, i2))
2473 return 0;
2475 /* Advance POS till the end of the shorter interval,
2476 and advance one or both interval pointers for the new position. */
2477 pos += distance;
2478 if (len1 == distance)
2479 i1 = next_interval (i1);
2480 if (len2 == distance)
2481 i2 = next_interval (i2);
2483 return 1;
2486 /* Recursively adjust interval I in the current buffer
2487 for setting enable_multibyte_characters to MULTI_FLAG.
2488 The range of interval I is START ... END in characters,
2489 START_BYTE ... END_BYTE in bytes. */
2491 static void
2492 set_intervals_multibyte_1 (i, multi_flag, start, start_byte, end, end_byte)
2493 INTERVAL i;
2494 int multi_flag;
2495 int start, start_byte, end, end_byte;
2497 /* Fix the length of this interval. */
2498 if (multi_flag)
2499 i->total_length = end - start;
2500 else
2501 i->total_length = end_byte - start_byte;
2502 CHECK_TOTAL_LENGTH (i);
2504 if (TOTAL_LENGTH (i) == 0)
2506 delete_interval (i);
2507 return;
2510 /* Recursively fix the length of the subintervals. */
2511 if (i->left)
2513 int left_end, left_end_byte;
2515 if (multi_flag)
2517 int temp;
2518 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2519 left_end = BYTE_TO_CHAR (left_end_byte);
2521 temp = CHAR_TO_BYTE (left_end);
2523 /* If LEFT_END_BYTE is in the middle of a character,
2524 adjust it and LEFT_END to a char boundary. */
2525 if (left_end_byte > temp)
2527 left_end_byte = temp;
2529 if (left_end_byte < temp)
2531 left_end--;
2532 left_end_byte = CHAR_TO_BYTE (left_end);
2535 else
2537 left_end = start + LEFT_TOTAL_LENGTH (i);
2538 left_end_byte = CHAR_TO_BYTE (left_end);
2541 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2542 left_end, left_end_byte);
2544 if (i->right)
2546 int right_start_byte, right_start;
2548 if (multi_flag)
2550 int temp;
2552 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2553 right_start = BYTE_TO_CHAR (right_start_byte);
2555 /* If RIGHT_START_BYTE is in the middle of a character,
2556 adjust it and RIGHT_START to a char boundary. */
2557 temp = CHAR_TO_BYTE (right_start);
2559 if (right_start_byte < temp)
2561 right_start_byte = temp;
2563 if (right_start_byte > temp)
2565 right_start++;
2566 right_start_byte = CHAR_TO_BYTE (right_start);
2569 else
2571 right_start = end - RIGHT_TOTAL_LENGTH (i);
2572 right_start_byte = CHAR_TO_BYTE (right_start);
2575 set_intervals_multibyte_1 (i->right, multi_flag,
2576 right_start, right_start_byte,
2577 end, end_byte);
2580 /* Rounding to char boundaries can theoretically ake this interval
2581 spurious. If so, delete one child, and copy its property list
2582 to this interval. */
2583 if (LEFT_TOTAL_LENGTH (i) + RIGHT_TOTAL_LENGTH (i) >= TOTAL_LENGTH (i))
2585 if ((i)->left)
2587 (i)->plist = (i)->left->plist;
2588 (i)->left->total_length = 0;
2589 delete_interval ((i)->left);
2591 else
2593 (i)->plist = (i)->right->plist;
2594 (i)->right->total_length = 0;
2595 delete_interval ((i)->right);
2600 /* Update the intervals of the current buffer
2601 to fit the contents as multibyte (if MULTI_FLAG is 1)
2602 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2604 void
2605 set_intervals_multibyte (multi_flag)
2606 int multi_flag;
2608 if (BUF_INTERVALS (current_buffer))
2609 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer), multi_flag,
2610 BEG, BEG_BYTE, Z, Z_BYTE);
2613 /* arch-tag: 3d402b60-083c-4271-b4a3-ebd9a74bfe27
2614 (do not change this comment) */