(x_per_char_metric): Return NULL if glyph width is 0.
[emacs.git] / lispref / numbers.texi
blob3cbc1a7ae1621c92902386f6c283eaf061e4181e
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2002, 2003,
4 @c   2004, 2005, 2006 Free Software Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @setfilename ../info/numbers
7 @node Numbers, Strings and Characters, Lisp Data Types, Top
8 @chapter Numbers
9 @cindex integers
10 @cindex numbers
12   GNU Emacs supports two numeric data types: @dfn{integers} and
13 @dfn{floating point numbers}.  Integers are whole numbers such as
14 @minus{}3, 0, 7, 13, and 511.  Their values are exact.  Floating point
15 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
16 2.71828.  They can also be expressed in exponential notation: 1.5e2
17 equals 150; in this example, @samp{e2} stands for ten to the second
18 power, and that is multiplied by 1.5.  Floating point values are not
19 exact; they have a fixed, limited amount of precision.
21 @menu
22 * Integer Basics::            Representation and range of integers.
23 * Float Basics::              Representation and range of floating point.
24 * Predicates on Numbers::     Testing for numbers.
25 * Comparison of Numbers::     Equality and inequality predicates.
26 * Numeric Conversions::       Converting float to integer and vice versa.
27 * Arithmetic Operations::     How to add, subtract, multiply and divide.
28 * Rounding Operations::       Explicitly rounding floating point numbers.
29 * Bitwise Operations::        Logical and, or, not, shifting.
30 * Math Functions::            Trig, exponential and logarithmic functions.
31 * Random Numbers::            Obtaining random integers, predictable or not.
32 @end menu
34 @node Integer Basics
35 @comment  node-name,  next,  previous,  up
36 @section Integer Basics
38   The range of values for an integer depends on the machine.  The
39 minimum range is @minus{}268435456 to 268435455 (29 bits; i.e.,
40 @ifnottex
41 -2**28
42 @end ifnottex
43 @tex
44 @math{-2^{28}}
45 @end tex
47 @ifnottex
48 2**28 - 1),
49 @end ifnottex
50 @tex
51 @math{2^{28}-1}),
52 @end tex
53 but some machines may provide a wider range.  Many examples in this
54 chapter assume an integer has 29 bits.
55 @cindex overflow
57   The Lisp reader reads an integer as a sequence of digits with optional
58 initial sign and optional final period.
60 @example
61  1               ; @r{The integer 1.}
62  1.              ; @r{The integer 1.}
63 +1               ; @r{Also the integer 1.}
64 -1               ; @r{The integer @minus{}1.}
65  536870913       ; @r{Also the integer 1, due to overflow.}
66  0               ; @r{The integer 0.}
67 -0               ; @r{The integer 0.}
68 @end example
70 @cindex integers in specific radix
71 @cindex radix for reading an integer
72 @cindex base for reading an integer
73 @cindex hex numbers
74 @cindex octal numbers
75 @cindex reading numbers in hex, octal, and binary
76   The syntax for integers in bases other than 10 uses @samp{#}
77 followed by a letter that specifies the radix: @samp{b} for binary,
78 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
79 specify radix @var{radix}.  Case is not significant for the letter
80 that specifies the radix.  Thus, @samp{#b@var{integer}} reads
81 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
82 @var{integer} in radix @var{radix}.  Allowed values of @var{radix} run
83 from 2 to 36.  For example:
85 @example
86 #b101100 @result{} 44
87 #o54 @result{} 44
88 #x2c @result{} 44
89 #24r1k @result{} 44
90 @end example
92   To understand how various functions work on integers, especially the
93 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
94 view the numbers in their binary form.
96   In 29-bit binary, the decimal integer 5 looks like this:
98 @example
99 0 0000  0000 0000  0000 0000  0000 0101
100 @end example
102 @noindent
103 (We have inserted spaces between groups of 4 bits, and two spaces
104 between groups of 8 bits, to make the binary integer easier to read.)
106   The integer @minus{}1 looks like this:
108 @example
109 1 1111  1111 1111  1111 1111  1111 1111
110 @end example
112 @noindent
113 @cindex two's complement
114 @minus{}1 is represented as 29 ones.  (This is called @dfn{two's
115 complement} notation.)
117   The negative integer, @minus{}5, is creating by subtracting 4 from
118 @minus{}1.  In binary, the decimal integer 4 is 100.  Consequently,
119 @minus{}5 looks like this:
121 @example
122 1 1111  1111 1111  1111 1111  1111 1011
123 @end example
125   In this implementation, the largest 29-bit binary integer value is
126 268,435,455 in decimal.  In binary, it looks like this:
128 @example
129 0 1111  1111 1111  1111 1111  1111 1111
130 @end example
132   Since the arithmetic functions do not check whether integers go
133 outside their range, when you add 1 to 268,435,455, the value is the
134 negative integer @minus{}268,435,456:
136 @example
137 (+ 1 268435455)
138      @result{} -268435456
139      @result{} 1 0000  0000 0000  0000 0000  0000 0000
140 @end example
142   Many of the functions described in this chapter accept markers for
143 arguments in place of numbers.  (@xref{Markers}.)  Since the actual
144 arguments to such functions may be either numbers or markers, we often
145 give these arguments the name @var{number-or-marker}.  When the argument
146 value is a marker, its position value is used and its buffer is ignored.
148 @defvar most-positive-fixnum
149 The value of this variable is the largest integer that Emacs Lisp
150 can handle.
151 @end defvar
153 @defvar most-negative-fixnum
154 The value of this variable is the smallest integer that Emacs Lisp can
155 handle.  It is negative.
156 @end defvar
158 @node Float Basics
159 @section Floating Point Basics
161   Floating point numbers are useful for representing numbers that are
162 not integral.  The precise range of floating point numbers is
163 machine-specific; it is the same as the range of the C data type
164 @code{double} on the machine you are using.
166   The read-syntax for floating point numbers requires either a decimal
167 point (with at least one digit following), an exponent, or both.  For
168 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
169 @samp{.15e4} are five ways of writing a floating point number whose
170 value is 1500.  They are all equivalent.  You can also use a minus sign
171 to write negative floating point numbers, as in @samp{-1.0}.
173 @cindex @acronym{IEEE} floating point
174 @cindex positive infinity
175 @cindex negative infinity
176 @cindex infinity
177 @cindex NaN
178   Most modern computers support the @acronym{IEEE} floating point standard,
179 which provides for positive infinity and negative infinity as floating point
180 values.  It also provides for a class of values called NaN or
181 ``not-a-number''; numerical functions return such values in cases where
182 there is no correct answer.  For example, @code{(/ 0.0 0.0)} returns a
183 NaN.  For practical purposes, there's no significant difference between
184 different NaN values in Emacs Lisp, and there's no rule for precisely
185 which NaN value should be used in a particular case, so Emacs Lisp
186 doesn't try to distinguish them (but it does report the sign, if you
187 print it).  Here are the read syntaxes for these special floating
188 point values:
190 @table @asis
191 @item positive infinity
192 @samp{1.0e+INF}
193 @item negative infinity
194 @samp{-1.0e+INF}
195 @item Not-a-number 
196 @samp{0.0e+NaN} or @samp{-0.0e+NaN}.
197 @end table
199   To test whether a floating point value is a NaN, compare it with
200 itself using @code{=}.  That returns @code{nil} for a NaN, and
201 @code{t} for any other floating point value.
203   The value @code{-0.0} is distinguishable from ordinary zero in
204 @acronym{IEEE} floating point, but Emacs Lisp @code{equal} and
205 @code{=} consider them equal values.
207   You can use @code{logb} to extract the binary exponent of a floating
208 point number (or estimate the logarithm of an integer):
210 @defun logb number
211 This function returns the binary exponent of @var{number}.  More
212 precisely, the value is the logarithm of @var{number} base 2, rounded
213 down to an integer.
215 @example
216 (logb 10)
217      @result{} 3
218 (logb 10.0e20)
219      @result{} 69
220 @end example
221 @end defun
223 @node Predicates on Numbers
224 @section Type Predicates for Numbers
226   The functions in this section test for numbers, or for a specific
227 type of number.  The functions @code{integerp} and @code{floatp} can
228 take any type of Lisp object as argument (they would not be of much
229 use otherwise), but the @code{zerop} predicate requires a number as
230 its argument.  See also @code{integer-or-marker-p} and
231 @code{number-or-marker-p}, in @ref{Predicates on Markers}.
233 @defun floatp object
234 This predicate tests whether its argument is a floating point
235 number and returns @code{t} if so, @code{nil} otherwise.
237 @code{floatp} does not exist in Emacs versions 18 and earlier.
238 @end defun
240 @defun integerp object
241 This predicate tests whether its argument is an integer, and returns
242 @code{t} if so, @code{nil} otherwise.
243 @end defun
245 @defun numberp object
246 This predicate tests whether its argument is a number (either integer or
247 floating point), and returns @code{t} if so, @code{nil} otherwise.
248 @end defun
250 @defun wholenump object
251 @cindex natural numbers
252 The @code{wholenump} predicate (whose name comes from the phrase
253 ``whole-number-p'') tests to see whether its argument is a nonnegative
254 integer, and returns @code{t} if so, @code{nil} otherwise.  0 is
255 considered non-negative.
257 @findex natnump
258 @code{natnump} is an obsolete synonym for @code{wholenump}.
259 @end defun
261 @defun zerop number
262 This predicate tests whether its argument is zero, and returns @code{t}
263 if so, @code{nil} otherwise.  The argument must be a number.
265 @code{(zerop x)} is equivalent to @code{(= x 0)}.
266 @end defun
268 @node Comparison of Numbers
269 @section Comparison of Numbers
270 @cindex number equality
272   To test numbers for numerical equality, you should normally use
273 @code{=}, not @code{eq}.  There can be many distinct floating point
274 number objects with the same numeric value.  If you use @code{eq} to
275 compare them, then you test whether two values are the same
276 @emph{object}.  By contrast, @code{=} compares only the numeric values
277 of the objects.
279   At present, each integer value has a unique Lisp object in Emacs Lisp.
280 Therefore, @code{eq} is equivalent to @code{=} where integers are
281 concerned.  It is sometimes convenient to use @code{eq} for comparing an
282 unknown value with an integer, because @code{eq} does not report an
283 error if the unknown value is not a number---it accepts arguments of any
284 type.  By contrast, @code{=} signals an error if the arguments are not
285 numbers or markers.  However, it is a good idea to use @code{=} if you
286 can, even for comparing integers, just in case we change the
287 representation of integers in a future Emacs version.
289   Sometimes it is useful to compare numbers with @code{equal}; it
290 treats two numbers as equal if they have the same data type (both
291 integers, or both floating point) and the same value.  By contrast,
292 @code{=} can treat an integer and a floating point number as equal.
293 @xref{Equality Predicates}.
295   There is another wrinkle: because floating point arithmetic is not
296 exact, it is often a bad idea to check for equality of two floating
297 point values.  Usually it is better to test for approximate equality.
298 Here's a function to do this:
300 @example
301 (defvar fuzz-factor 1.0e-6)
302 (defun approx-equal (x y)
303   (or (and (= x 0) (= y 0))
304       (< (/ (abs (- x y))
305             (max (abs x) (abs y)))
306          fuzz-factor)))
307 @end example
309 @cindex CL note---integers vrs @code{eq}
310 @quotation
311 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
312 @code{=} because Common Lisp implements multi-word integers, and two
313 distinct integer objects can have the same numeric value.  Emacs Lisp
314 can have just one integer object for any given value because it has a
315 limited range of integer values.
316 @end quotation
318 @defun = number-or-marker1 number-or-marker2
319 This function tests whether its arguments are numerically equal, and
320 returns @code{t} if so, @code{nil} otherwise.
321 @end defun
323 @defun eql value1 value2
324 This function acts like @code{eq} except when both arguments are
325 numbers.  It compares numbers by type and numberic value, so that
326 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
327 @code{(eql 1 1)} both return @code{t}.
328 @end defun
330 @defun /= number-or-marker1 number-or-marker2
331 This function tests whether its arguments are numerically equal, and
332 returns @code{t} if they are not, and @code{nil} if they are.
333 @end defun
335 @defun <  number-or-marker1 number-or-marker2
336 This function tests whether its first argument is strictly less than
337 its second argument.  It returns @code{t} if so, @code{nil} otherwise.
338 @end defun
340 @defun <=  number-or-marker1 number-or-marker2
341 This function tests whether its first argument is less than or equal
342 to its second argument.  It returns @code{t} if so, @code{nil}
343 otherwise.
344 @end defun
346 @defun >  number-or-marker1 number-or-marker2
347 This function tests whether its first argument is strictly greater
348 than its second argument.  It returns @code{t} if so, @code{nil}
349 otherwise.
350 @end defun
352 @defun >=  number-or-marker1 number-or-marker2
353 This function tests whether its first argument is greater than or
354 equal to its second argument.  It returns @code{t} if so, @code{nil}
355 otherwise.
356 @end defun
358 @defun max number-or-marker &rest numbers-or-markers
359 This function returns the largest of its arguments.
360 If any of the arguments is floating-point, the value is returned
361 as floating point, even if it was given as an integer.
363 @example
364 (max 20)
365      @result{} 20
366 (max 1 2.5)
367      @result{} 2.5
368 (max 1 3 2.5)
369      @result{} 3.0
370 @end example
371 @end defun
373 @defun min number-or-marker &rest numbers-or-markers
374 This function returns the smallest of its arguments.
375 If any of the arguments is floating-point, the value is returned
376 as floating point, even if it was given as an integer.
378 @example
379 (min -4 1)
380      @result{} -4
381 @end example
382 @end defun
384 @defun abs number
385 This function returns the absolute value of @var{number}.
386 @end defun
388 @node Numeric Conversions
389 @section Numeric Conversions
390 @cindex rounding in conversions
392 To convert an integer to floating point, use the function @code{float}.
394 @defun float number
395 This returns @var{number} converted to floating point.
396 If @var{number} is already a floating point number, @code{float} returns
397 it unchanged.
398 @end defun
400 There are four functions to convert floating point numbers to integers;
401 they differ in how they round.  All accept an argument @var{number}
402 and an optional argument @var{divisor}.  Both arguments may be
403 integers or floating point numbers.  @var{divisor} may also be
404 @code{nil}.  If @var{divisor} is @code{nil} or omitted, these
405 functions convert @var{number} to an integer, or return it unchanged
406 if it already is an integer.  If @var{divisor} is non-@code{nil}, they
407 divide @var{number} by @var{divisor} and convert the result to an
408 integer.  An @code{arith-error} results if @var{divisor} is 0.
410 @defun truncate number &optional divisor
411 This returns @var{number}, converted to an integer by rounding towards
412 zero.
414 @example
415 (truncate 1.2)
416      @result{} 1
417 (truncate 1.7)
418      @result{} 1
419 (truncate -1.2)
420      @result{} -1
421 (truncate -1.7)
422      @result{} -1
423 @end example
424 @end defun
426 @defun floor number &optional divisor
427 This returns @var{number}, converted to an integer by rounding downward
428 (towards negative infinity).
430 If @var{divisor} is specified, this uses the kind of division
431 operation that corresponds to @code{mod}, rounding downward.
433 @example
434 (floor 1.2)
435      @result{} 1
436 (floor 1.7)
437      @result{} 1
438 (floor -1.2)
439      @result{} -2
440 (floor -1.7)
441      @result{} -2
442 (floor 5.99 3)
443      @result{} 1
444 @end example
445 @end defun
447 @defun ceiling number &optional divisor
448 This returns @var{number}, converted to an integer by rounding upward
449 (towards positive infinity).
451 @example
452 (ceiling 1.2)
453      @result{} 2
454 (ceiling 1.7)
455      @result{} 2
456 (ceiling -1.2)
457      @result{} -1
458 (ceiling -1.7)
459      @result{} -1
460 @end example
461 @end defun
463 @defun round number &optional divisor
464 This returns @var{number}, converted to an integer by rounding towards the
465 nearest integer.  Rounding a value equidistant between two integers
466 may choose the integer closer to zero, or it may prefer an even integer,
467 depending on your machine.
469 @example
470 (round 1.2)
471      @result{} 1
472 (round 1.7)
473      @result{} 2
474 (round -1.2)
475      @result{} -1
476 (round -1.7)
477      @result{} -2
478 @end example
479 @end defun
481 @node Arithmetic Operations
482 @section Arithmetic Operations
484   Emacs Lisp provides the traditional four arithmetic operations:
485 addition, subtraction, multiplication, and division.  Remainder and modulus
486 functions supplement the division functions.  The functions to
487 add or subtract 1 are provided because they are traditional in Lisp and
488 commonly used.
490   All of these functions except @code{%} return a floating point value
491 if any argument is floating.
493   It is important to note that in Emacs Lisp, arithmetic functions
494 do not check for overflow.  Thus @code{(1+ 268435455)} may evaluate to
495 @minus{}268435456, depending on your hardware.
497 @defun 1+ number-or-marker
498 This function returns @var{number-or-marker} plus 1.
499 For example,
501 @example
502 (setq foo 4)
503      @result{} 4
504 (1+ foo)
505      @result{} 5
506 @end example
508 This function is not analogous to the C operator @code{++}---it does not
509 increment a variable.  It just computes a sum.  Thus, if we continue,
511 @example
513      @result{} 4
514 @end example
516 If you want to increment the variable, you must use @code{setq},
517 like this:
519 @example
520 (setq foo (1+ foo))
521      @result{} 5
522 @end example
523 @end defun
525 @defun 1- number-or-marker
526 This function returns @var{number-or-marker} minus 1.
527 @end defun
529 @defun + &rest numbers-or-markers
530 This function adds its arguments together.  When given no arguments,
531 @code{+} returns 0.
533 @example
535      @result{} 0
536 (+ 1)
537      @result{} 1
538 (+ 1 2 3 4)
539      @result{} 10
540 @end example
541 @end defun
543 @defun - &optional number-or-marker &rest more-numbers-or-markers
544 The @code{-} function serves two purposes: negation and subtraction.
545 When @code{-} has a single argument, the value is the negative of the
546 argument.  When there are multiple arguments, @code{-} subtracts each of
547 the @var{more-numbers-or-markers} from @var{number-or-marker},
548 cumulatively.  If there are no arguments, the result is 0.
550 @example
551 (- 10 1 2 3 4)
552      @result{} 0
553 (- 10)
554      @result{} -10
556      @result{} 0
557 @end example
558 @end defun
560 @defun * &rest numbers-or-markers
561 This function multiplies its arguments together, and returns the
562 product.  When given no arguments, @code{*} returns 1.
564 @example
566      @result{} 1
567 (* 1)
568      @result{} 1
569 (* 1 2 3 4)
570      @result{} 24
571 @end example
572 @end defun
574 @defun / dividend divisor &rest divisors
575 This function divides @var{dividend} by @var{divisor} and returns the
576 quotient.  If there are additional arguments @var{divisors}, then it
577 divides @var{dividend} by each divisor in turn.  Each argument may be a
578 number or a marker.
580 If all the arguments are integers, then the result is an integer too.
581 This means the result has to be rounded.  On most machines, the result
582 is rounded towards zero after each division, but some machines may round
583 differently with negative arguments.  This is because the Lisp function
584 @code{/} is implemented using the C division operator, which also
585 permits machine-dependent rounding.  As a practical matter, all known
586 machines round in the standard fashion.
588 @cindex @code{arith-error} in division
589 If you divide an integer by 0, an @code{arith-error} error is signaled.
590 (@xref{Errors}.)  Floating point division by zero returns either
591 infinity or a NaN if your machine supports @acronym{IEEE} floating point;
592 otherwise, it signals an @code{arith-error} error.
594 @example
595 @group
596 (/ 6 2)
597      @result{} 3
598 @end group
599 (/ 5 2)
600      @result{} 2
601 (/ 5.0 2)
602      @result{} 2.5
603 (/ 5 2.0)
604      @result{} 2.5
605 (/ 5.0 2.0)
606      @result{} 2.5
607 (/ 25 3 2)
608      @result{} 4
609 (/ -17 6)
610      @result{} -2
611 @end example
613 The result of @code{(/ -17 6)} could in principle be -3 on some
614 machines.
615 @end defun
617 @defun % dividend divisor
618 @cindex remainder
619 This function returns the integer remainder after division of @var{dividend}
620 by @var{divisor}.  The arguments must be integers or markers.
622 For negative arguments, the remainder is in principle machine-dependent
623 since the quotient is; but in practice, all known machines behave alike.
625 An @code{arith-error} results if @var{divisor} is 0.
627 @example
628 (% 9 4)
629      @result{} 1
630 (% -9 4)
631      @result{} -1
632 (% 9 -4)
633      @result{} 1
634 (% -9 -4)
635      @result{} -1
636 @end example
638 For any two integers @var{dividend} and @var{divisor},
640 @example
641 @group
642 (+ (% @var{dividend} @var{divisor})
643    (* (/ @var{dividend} @var{divisor}) @var{divisor}))
644 @end group
645 @end example
647 @noindent
648 always equals @var{dividend}.
649 @end defun
651 @defun mod dividend divisor
652 @cindex modulus
653 This function returns the value of @var{dividend} modulo @var{divisor};
654 in other words, the remainder after division of @var{dividend}
655 by @var{divisor}, but with the same sign as @var{divisor}.
656 The arguments must be numbers or markers.
658 Unlike @code{%}, @code{mod} returns a well-defined result for negative
659 arguments.  It also permits floating point arguments; it rounds the
660 quotient downward (towards minus infinity) to an integer, and uses that
661 quotient to compute the remainder.
663 An @code{arith-error} results if @var{divisor} is 0.
665 @example
666 @group
667 (mod 9 4)
668      @result{} 1
669 @end group
670 @group
671 (mod -9 4)
672      @result{} 3
673 @end group
674 @group
675 (mod 9 -4)
676      @result{} -3
677 @end group
678 @group
679 (mod -9 -4)
680      @result{} -1
681 @end group
682 @group
683 (mod 5.5 2.5)
684      @result{} .5
685 @end group
686 @end example
688 For any two numbers @var{dividend} and @var{divisor},
690 @example
691 @group
692 (+ (mod @var{dividend} @var{divisor})
693    (* (floor @var{dividend} @var{divisor}) @var{divisor}))
694 @end group
695 @end example
697 @noindent
698 always equals @var{dividend}, subject to rounding error if either
699 argument is floating point.  For @code{floor}, see @ref{Numeric
700 Conversions}.
701 @end defun
703 @node Rounding Operations
704 @section Rounding Operations
705 @cindex rounding without conversion
707 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
708 @code{ftruncate} take a floating point argument and return a floating
709 point result whose value is a nearby integer.  @code{ffloor} returns the
710 nearest integer below; @code{fceiling}, the nearest integer above;
711 @code{ftruncate}, the nearest integer in the direction towards zero;
712 @code{fround}, the nearest integer.
714 @defun ffloor float
715 This function rounds @var{float} to the next lower integral value, and
716 returns that value as a floating point number.
717 @end defun
719 @defun fceiling float
720 This function rounds @var{float} to the next higher integral value, and
721 returns that value as a floating point number.
722 @end defun
724 @defun ftruncate float
725 This function rounds @var{float} towards zero to an integral value, and
726 returns that value as a floating point number.
727 @end defun
729 @defun fround float
730 This function rounds @var{float} to the nearest integral value,
731 and returns that value as a floating point number.
732 @end defun
734 @node Bitwise Operations
735 @section Bitwise Operations on Integers
737   In a computer, an integer is represented as a binary number, a
738 sequence of @dfn{bits} (digits which are either zero or one).  A bitwise
739 operation acts on the individual bits of such a sequence.  For example,
740 @dfn{shifting} moves the whole sequence left or right one or more places,
741 reproducing the same pattern ``moved over''.
743   The bitwise operations in Emacs Lisp apply only to integers.
745 @defun lsh integer1 count
746 @cindex logical shift
747 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
748 bits in @var{integer1} to the left @var{count} places, or to the right
749 if @var{count} is negative, bringing zeros into the vacated bits.  If
750 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
751 (most-significant) bit, producing a positive result even if
752 @var{integer1} is negative.  Contrast this with @code{ash}, below.
754 Here are two examples of @code{lsh}, shifting a pattern of bits one
755 place to the left.  We show only the low-order eight bits of the binary
756 pattern; the rest are all zero.
758 @example
759 @group
760 (lsh 5 1)
761      @result{} 10
762 ;; @r{Decimal 5 becomes decimal 10.}
763 00000101 @result{} 00001010
765 (lsh 7 1)
766      @result{} 14
767 ;; @r{Decimal 7 becomes decimal 14.}
768 00000111 @result{} 00001110
769 @end group
770 @end example
772 @noindent
773 As the examples illustrate, shifting the pattern of bits one place to
774 the left produces a number that is twice the value of the previous
775 number.
777 Shifting a pattern of bits two places to the left produces results
778 like this (with 8-bit binary numbers):
780 @example
781 @group
782 (lsh 3 2)
783      @result{} 12
784 ;; @r{Decimal 3 becomes decimal 12.}
785 00000011 @result{} 00001100
786 @end group
787 @end example
789 On the other hand, shifting one place to the right looks like this:
791 @example
792 @group
793 (lsh 6 -1)
794      @result{} 3
795 ;; @r{Decimal 6 becomes decimal 3.}
796 00000110 @result{} 00000011
797 @end group
799 @group
800 (lsh 5 -1)
801      @result{} 2
802 ;; @r{Decimal 5 becomes decimal 2.}
803 00000101 @result{} 00000010
804 @end group
805 @end example
807 @noindent
808 As the example illustrates, shifting one place to the right divides the
809 value of a positive integer by two, rounding downward.
811 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
812 not check for overflow, so shifting left can discard significant bits
813 and change the sign of the number.  For example, left shifting
814 268,435,455 produces @minus{}2 on a 29-bit machine:
816 @example
817 (lsh 268435455 1)          ; @r{left shift}
818      @result{} -2
819 @end example
821 In binary, in the 29-bit implementation, the argument looks like this:
823 @example
824 @group
825 ;; @r{Decimal 268,435,455}
826 0 1111  1111 1111  1111 1111  1111 1111
827 @end group
828 @end example
830 @noindent
831 which becomes the following when left shifted:
833 @example
834 @group
835 ;; @r{Decimal @minus{}2}
836 1 1111  1111 1111  1111 1111  1111 1110
837 @end group
838 @end example
839 @end defun
841 @defun ash integer1 count
842 @cindex arithmetic shift
843 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
844 to the left @var{count} places, or to the right if @var{count}
845 is negative.
847 @code{ash} gives the same results as @code{lsh} except when
848 @var{integer1} and @var{count} are both negative.  In that case,
849 @code{ash} puts ones in the empty bit positions on the left, while
850 @code{lsh} puts zeros in those bit positions.
852 Thus, with @code{ash}, shifting the pattern of bits one place to the right
853 looks like this:
855 @example
856 @group
857 (ash -6 -1) @result{} -3
858 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
859 1 1111  1111 1111  1111 1111  1111 1010
860      @result{}
861 1 1111  1111 1111  1111 1111  1111 1101
862 @end group
863 @end example
865 In contrast, shifting the pattern of bits one place to the right with
866 @code{lsh} looks like this:
868 @example
869 @group
870 (lsh -6 -1) @result{} 268435453
871 ;; @r{Decimal @minus{}6 becomes decimal 268,435,453.}
872 1 1111  1111 1111  1111 1111  1111 1010
873      @result{}
874 0 1111  1111 1111  1111 1111  1111 1101
875 @end group
876 @end example
878 Here are other examples:
880 @c !!! Check if lined up in smallbook format!  XDVI shows problem
881 @c     with smallbook but not with regular book! --rjc 16mar92
882 @smallexample
883 @group
884                    ;  @r{             29-bit binary values}
886 (lsh 5 2)          ;   5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
887      @result{} 20         ;      =  @r{0 0000  0000 0000  0000 0000  0001 0100}
888 @end group
889 @group
890 (ash 5 2)
891      @result{} 20
892 (lsh -5 2)         ;  -5  =  @r{1 1111  1111 1111  1111 1111  1111 1011}
893      @result{} -20        ;      =  @r{1 1111  1111 1111  1111 1111  1110 1100}
894 (ash -5 2)
895      @result{} -20
896 @end group
897 @group
898 (lsh 5 -2)         ;   5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
899      @result{} 1          ;      =  @r{0 0000  0000 0000  0000 0000  0000 0001}
900 @end group
901 @group
902 (ash 5 -2)
903      @result{} 1
904 @end group
905 @group
906 (lsh -5 -2)        ;  -5  =  @r{1 1111  1111 1111  1111 1111  1111 1011}
907      @result{} 134217726  ;      =  @r{0 0111  1111 1111  1111 1111  1111 1110}
908 @end group
909 @group
910 (ash -5 -2)        ;  -5  =  @r{1 1111  1111 1111  1111 1111  1111 1011}
911      @result{} -2         ;      =  @r{1 1111  1111 1111  1111 1111  1111 1110}
912 @end group
913 @end smallexample
914 @end defun
916 @defun logand &rest ints-or-markers
917 @cindex logical and
918 @cindex bitwise and
919 This function returns the ``logical and'' of the arguments: the
920 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
921 set in all the arguments.  (``Set'' means that the value of the bit is 1
922 rather than 0.)
924 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
925 12 is 12: 1101 combined with 1100 produces 1100.
926 In both the binary numbers, the leftmost two bits are set (i.e., they
927 are 1's), so the leftmost two bits of the returned value are set.
928 However, for the rightmost two bits, each is zero in at least one of
929 the arguments, so the rightmost two bits of the returned value are 0's.
931 @noindent
932 Therefore,
934 @example
935 @group
936 (logand 13 12)
937      @result{} 12
938 @end group
939 @end example
941 If @code{logand} is not passed any argument, it returns a value of
942 @minus{}1.  This number is an identity element for @code{logand}
943 because its binary representation consists entirely of ones.  If
944 @code{logand} is passed just one argument, it returns that argument.
946 @smallexample
947 @group
948                    ; @r{               29-bit binary values}
950 (logand 14 13)     ; 14  =  @r{0 0000  0000 0000  0000 0000  0000 1110}
951                    ; 13  =  @r{0 0000  0000 0000  0000 0000  0000 1101}
952      @result{} 12         ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
953 @end group
955 @group
956 (logand 14 13 4)   ; 14  =  @r{0 0000  0000 0000  0000 0000  0000 1110}
957                    ; 13  =  @r{0 0000  0000 0000  0000 0000  0000 1101}
958                    ;  4  =  @r{0 0000  0000 0000  0000 0000  0000 0100}
959      @result{} 4          ;  4  =  @r{0 0000  0000 0000  0000 0000  0000 0100}
960 @end group
962 @group
963 (logand)
964      @result{} -1         ; -1  =  @r{1 1111  1111 1111  1111 1111  1111 1111}
965 @end group
966 @end smallexample
967 @end defun
969 @defun logior &rest ints-or-markers
970 @cindex logical inclusive or
971 @cindex bitwise or
972 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
973 is set in the result if, and only if, the @var{n}th bit is set in at least
974 one of the arguments.  If there are no arguments, the result is zero,
975 which is an identity element for this operation.  If @code{logior} is
976 passed just one argument, it returns that argument.
978 @smallexample
979 @group
980                    ; @r{              29-bit binary values}
982 (logior 12 5)      ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
983                    ;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
984      @result{} 13         ; 13  =  @r{0 0000  0000 0000  0000 0000  0000 1101}
985 @end group
987 @group
988 (logior 12 5 7)    ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
989                    ;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
990                    ;  7  =  @r{0 0000  0000 0000  0000 0000  0000 0111}
991      @result{} 15         ; 15  =  @r{0 0000  0000 0000  0000 0000  0000 1111}
992 @end group
993 @end smallexample
994 @end defun
996 @defun logxor &rest ints-or-markers
997 @cindex bitwise exclusive or
998 @cindex logical exclusive or
999 This function returns the ``exclusive or'' of its arguments: the
1000 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
1001 set in an odd number of the arguments.  If there are no arguments, the
1002 result is 0, which is an identity element for this operation.  If
1003 @code{logxor} is passed just one argument, it returns that argument.
1005 @smallexample
1006 @group
1007                    ; @r{              29-bit binary values}
1009 (logxor 12 5)      ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
1010                    ;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
1011      @result{} 9          ;  9  =  @r{0 0000  0000 0000  0000 0000  0000 1001}
1012 @end group
1014 @group
1015 (logxor 12 5 7)    ; 12  =  @r{0 0000  0000 0000  0000 0000  0000 1100}
1016                    ;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
1017                    ;  7  =  @r{0 0000  0000 0000  0000 0000  0000 0111}
1018      @result{} 14         ; 14  =  @r{0 0000  0000 0000  0000 0000  0000 1110}
1019 @end group
1020 @end smallexample
1021 @end defun
1023 @defun lognot integer
1024 @cindex logical not
1025 @cindex bitwise not
1026 This function returns the logical complement of its argument: the @var{n}th
1027 bit is one in the result if, and only if, the @var{n}th bit is zero in
1028 @var{integer}, and vice-versa.
1030 @example
1031 (lognot 5)
1032      @result{} -6
1033 ;;  5  =  @r{0 0000  0000 0000  0000 0000  0000 0101}
1034 ;; @r{becomes}
1035 ;; -6  =  @r{1 1111  1111 1111  1111 1111  1111 1010}
1036 @end example
1037 @end defun
1039 @node Math Functions
1040 @section Standard Mathematical Functions
1041 @cindex transcendental functions
1042 @cindex mathematical functions
1044   These mathematical functions allow integers as well as floating point
1045 numbers as arguments.
1047 @defun sin arg
1048 @defunx cos arg
1049 @defunx tan arg
1050 These are the ordinary trigonometric functions, with argument measured
1051 in radians.
1052 @end defun
1054 @defun asin arg
1055 The value of @code{(asin @var{arg})} is a number between
1056 @ifnottex
1057 @minus{}pi/2
1058 @end ifnottex
1059 @tex
1060 @math{-\pi/2}
1061 @end tex
1063 @ifnottex
1064 pi/2
1065 @end ifnottex
1066 @tex
1067 @math{\pi/2}
1068 @end tex
1069 (inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of
1070 range (outside [-1, 1]), it signals a @code{domain-error} error.
1071 @end defun
1073 @defun acos arg
1074 The value of @code{(acos @var{arg})} is a number between 0 and
1075 @ifnottex
1077 @end ifnottex
1078 @tex
1079 @math{\pi}
1080 @end tex
1081 (inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out
1082 of range (outside [-1, 1]), it signals a @code{domain-error} error.
1083 @end defun
1085 @defun atan y &optional x
1086 The value of @code{(atan @var{y})} is a number between
1087 @ifnottex
1088 @minus{}pi/2
1089 @end ifnottex
1090 @tex
1091 @math{-\pi/2}
1092 @end tex
1094 @ifnottex
1095 pi/2
1096 @end ifnottex
1097 @tex
1098 @math{\pi/2}
1099 @end tex
1100 (exclusive) whose tangent is @var{y}.  If the optional second
1101 argument @var{x} is given, the value of @code{(atan y x)} is the
1102 angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1103 @code{X} axis.
1104 @end defun
1106 @defun exp arg
1107 This is the exponential function; it returns
1108 @tex
1109 @math{e}
1110 @end tex
1111 @ifnottex
1112 @i{e}
1113 @end ifnottex
1114 to the power @var{arg}.
1115 @tex
1116 @math{e}
1117 @end tex
1118 @ifnottex
1119 @i{e}
1120 @end ifnottex
1121 is a fundamental mathematical constant also called the base of natural
1122 logarithms.
1123 @end defun
1125 @defun log arg &optional base
1126 This function returns the logarithm of @var{arg}, with base @var{base}.
1127 If you don't specify @var{base}, the base
1128 @tex
1129 @math{e}
1130 @end tex
1131 @ifnottex
1132 @i{e}
1133 @end ifnottex
1134 is used.  If @var{arg} is negative, it signals a @code{domain-error}
1135 error.
1136 @end defun
1138 @ignore
1139 @defun expm1 arg
1140 This function returns @code{(1- (exp @var{arg}))}, but it is more
1141 accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
1142 is close to 1.
1143 @end defun
1145 @defun log1p arg
1146 This function returns @code{(log (1+ @var{arg}))}, but it is more
1147 accurate than that when @var{arg} is so small that adding 1 to it would
1148 lose accuracy.
1149 @end defun
1150 @end ignore
1152 @defun log10 arg
1153 This function returns the logarithm of @var{arg}, with base 10.  If
1154 @var{arg} is negative, it signals a @code{domain-error} error.
1155 @code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least
1156 approximately.
1157 @end defun
1159 @defun expt x y
1160 This function returns @var{x} raised to power @var{y}.  If both
1161 arguments are integers and @var{y} is positive, the result is an
1162 integer; in this case, overflow causes truncation, so watch out.
1163 @end defun
1165 @defun sqrt arg
1166 This returns the square root of @var{arg}.  If @var{arg} is negative,
1167 it signals a @code{domain-error} error.
1168 @end defun
1170 @node Random Numbers
1171 @section Random Numbers
1172 @cindex random numbers
1174 A deterministic computer program cannot generate true random numbers.
1175 For most purposes, @dfn{pseudo-random numbers} suffice.  A series of
1176 pseudo-random numbers is generated in a deterministic fashion.  The
1177 numbers are not truly random, but they have certain properties that
1178 mimic a random series.  For example, all possible values occur equally
1179 often in a pseudo-random series.
1181 In Emacs, pseudo-random numbers are generated from a ``seed'' number.
1182 Starting from any given seed, the @code{random} function always
1183 generates the same sequence of numbers.  Emacs always starts with the
1184 same seed value, so the sequence of values of @code{random} is actually
1185 the same in each Emacs run!  For example, in one operating system, the
1186 first call to @code{(random)} after you start Emacs always returns
1187 -1457731, and the second one always returns -7692030.  This
1188 repeatability is helpful for debugging.
1190 If you want random numbers that don't always come out the same, execute
1191 @code{(random t)}.  This chooses a new seed based on the current time of
1192 day and on Emacs's process @acronym{ID} number.
1194 @defun random &optional limit
1195 This function returns a pseudo-random integer.  Repeated calls return a
1196 series of pseudo-random integers.
1198 If @var{limit} is a positive integer, the value is chosen to be
1199 nonnegative and less than @var{limit}.
1201 If @var{limit} is @code{t}, it means to choose a new seed based on the
1202 current time of day and on Emacs's process @acronym{ID} number.
1203 @c "Emacs'" is incorrect usage!
1205 On some machines, any integer representable in Lisp may be the result
1206 of @code{random}.  On other machines, the result can never be larger
1207 than a certain maximum or less than a certain (negative) minimum.
1208 @end defun
1210 @ignore
1211    arch-tag: 574e8dd2-d513-4616-9844-c9a27869782e
1212 @end ignore