* src/term.c: Remove dead code.
[emacs.git] / src / alloc.c
blob2ddec3dbe481496980cc116b4807635476138f3f
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
30 #include <signal.h>
32 #ifdef HAVE_GTK_AND_PTHREAD
33 #include <pthread.h>
34 #endif
36 /* This file is part of the core Lisp implementation, and thus must
37 deal with the real data structures. If the Lisp implementation is
38 replaced, this file likely will not be used. */
40 #undef HIDE_LISP_IMPLEMENTATION
41 #include "lisp.h"
42 #include "process.h"
43 #include "intervals.h"
44 #include "puresize.h"
45 #include "buffer.h"
46 #include "window.h"
47 #include "keyboard.h"
48 #include "frame.h"
49 #include "blockinput.h"
50 #include "character.h"
51 #include "syssignal.h"
52 #include "termhooks.h" /* For struct terminal. */
53 #include <setjmp.h>
55 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
56 memory. Can do this only if using gmalloc.c. */
58 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
59 #undef GC_MALLOC_CHECK
60 #endif
62 #ifdef HAVE_UNISTD_H
63 #include <unistd.h>
64 #else
65 extern POINTER_TYPE *sbrk ();
66 #endif
68 #ifdef HAVE_FCNTL_H
69 #include <fcntl.h>
70 #endif
71 #ifndef O_WRONLY
72 #define O_WRONLY 1
73 #endif
75 #ifdef WINDOWSNT
76 #include <fcntl.h>
77 #include "w32.h"
78 #endif
80 #ifdef DOUG_LEA_MALLOC
82 #include <malloc.h>
83 /* malloc.h #defines this as size_t, at least in glibc2. */
84 #ifndef __malloc_size_t
85 #define __malloc_size_t int
86 #endif
88 /* Specify maximum number of areas to mmap. It would be nice to use a
89 value that explicitly means "no limit". */
91 #define MMAP_MAX_AREAS 100000000
93 #else /* not DOUG_LEA_MALLOC */
95 /* The following come from gmalloc.c. */
97 #define __malloc_size_t size_t
98 extern __malloc_size_t _bytes_used;
99 extern __malloc_size_t __malloc_extra_blocks;
101 #endif /* not DOUG_LEA_MALLOC */
103 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
105 /* When GTK uses the file chooser dialog, different backends can be loaded
106 dynamically. One such a backend is the Gnome VFS backend that gets loaded
107 if you run Gnome. That backend creates several threads and also allocates
108 memory with malloc.
110 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
111 functions below are called from malloc, there is a chance that one
112 of these threads preempts the Emacs main thread and the hook variables
113 end up in an inconsistent state. So we have a mutex to prevent that (note
114 that the backend handles concurrent access to malloc within its own threads
115 but Emacs code running in the main thread is not included in that control).
117 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
118 happens in one of the backend threads we will have two threads that tries
119 to run Emacs code at once, and the code is not prepared for that.
120 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
122 static pthread_mutex_t alloc_mutex;
124 #define BLOCK_INPUT_ALLOC \
125 do \
127 if (pthread_equal (pthread_self (), main_thread)) \
128 BLOCK_INPUT; \
129 pthread_mutex_lock (&alloc_mutex); \
131 while (0)
132 #define UNBLOCK_INPUT_ALLOC \
133 do \
135 pthread_mutex_unlock (&alloc_mutex); \
136 if (pthread_equal (pthread_self (), main_thread)) \
137 UNBLOCK_INPUT; \
139 while (0)
141 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
143 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
144 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
146 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
148 /* Value of _bytes_used, when spare_memory was freed. */
150 static __malloc_size_t bytes_used_when_full;
152 static __malloc_size_t bytes_used_when_reconsidered;
154 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
155 to a struct Lisp_String. */
157 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
158 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
159 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
161 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
162 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
163 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
165 /* Value is the number of bytes/chars of S, a pointer to a struct
166 Lisp_String. This must be used instead of STRING_BYTES (S) or
167 S->size during GC, because S->size contains the mark bit for
168 strings. */
170 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
171 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
173 /* Number of bytes of consing done since the last gc. */
175 int consing_since_gc;
177 /* Count the amount of consing of various sorts of space. */
179 EMACS_INT cons_cells_consed;
180 EMACS_INT floats_consed;
181 EMACS_INT vector_cells_consed;
182 EMACS_INT symbols_consed;
183 EMACS_INT string_chars_consed;
184 EMACS_INT misc_objects_consed;
185 EMACS_INT intervals_consed;
186 EMACS_INT strings_consed;
188 /* Minimum number of bytes of consing since GC before next GC. */
190 EMACS_INT gc_cons_threshold;
192 /* Similar minimum, computed from Vgc_cons_percentage. */
194 EMACS_INT gc_relative_threshold;
196 static Lisp_Object Vgc_cons_percentage;
198 /* Minimum number of bytes of consing since GC before next GC,
199 when memory is full. */
201 EMACS_INT memory_full_cons_threshold;
203 /* Nonzero during GC. */
205 int gc_in_progress;
207 /* Nonzero means abort if try to GC.
208 This is for code which is written on the assumption that
209 no GC will happen, so as to verify that assumption. */
211 int abort_on_gc;
213 /* Nonzero means display messages at beginning and end of GC. */
215 int garbage_collection_messages;
217 #ifndef VIRT_ADDR_VARIES
218 extern
219 #endif /* VIRT_ADDR_VARIES */
220 int malloc_sbrk_used;
222 #ifndef VIRT_ADDR_VARIES
223 extern
224 #endif /* VIRT_ADDR_VARIES */
225 int malloc_sbrk_unused;
227 /* Number of live and free conses etc. */
229 static int total_conses, total_markers, total_symbols, total_vector_size;
230 static int total_free_conses, total_free_markers, total_free_symbols;
231 static int total_free_floats, total_floats;
233 /* Points to memory space allocated as "spare", to be freed if we run
234 out of memory. We keep one large block, four cons-blocks, and
235 two string blocks. */
237 static char *spare_memory[7];
239 /* Amount of spare memory to keep in large reserve block. */
241 #define SPARE_MEMORY (1 << 14)
243 /* Number of extra blocks malloc should get when it needs more core. */
245 static int malloc_hysteresis;
247 /* Non-nil means defun should do purecopy on the function definition. */
249 Lisp_Object Vpurify_flag;
251 /* Non-nil means we are handling a memory-full error. */
253 Lisp_Object Vmemory_full;
255 /* Initialize it to a nonzero value to force it into data space
256 (rather than bss space). That way unexec will remap it into text
257 space (pure), on some systems. We have not implemented the
258 remapping on more recent systems because this is less important
259 nowadays than in the days of small memories and timesharing. */
261 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
262 #define PUREBEG (char *) pure
264 /* Pointer to the pure area, and its size. */
266 static char *purebeg;
267 static size_t pure_size;
269 /* Number of bytes of pure storage used before pure storage overflowed.
270 If this is non-zero, this implies that an overflow occurred. */
272 static size_t pure_bytes_used_before_overflow;
274 /* Value is non-zero if P points into pure space. */
276 #define PURE_POINTER_P(P) \
277 (((PNTR_COMPARISON_TYPE) (P) \
278 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
279 && ((PNTR_COMPARISON_TYPE) (P) \
280 >= (PNTR_COMPARISON_TYPE) purebeg))
282 /* Total number of bytes allocated in pure storage. */
284 EMACS_INT pure_bytes_used;
286 /* Index in pure at which next pure Lisp object will be allocated.. */
288 static EMACS_INT pure_bytes_used_lisp;
290 /* Number of bytes allocated for non-Lisp objects in pure storage. */
292 static EMACS_INT pure_bytes_used_non_lisp;
294 /* If nonzero, this is a warning delivered by malloc and not yet
295 displayed. */
297 const char *pending_malloc_warning;
299 /* Pre-computed signal argument for use when memory is exhausted. */
301 Lisp_Object Vmemory_signal_data;
303 /* Maximum amount of C stack to save when a GC happens. */
305 #ifndef MAX_SAVE_STACK
306 #define MAX_SAVE_STACK 16000
307 #endif
309 /* Buffer in which we save a copy of the C stack at each GC. */
311 static char *stack_copy;
312 static int stack_copy_size;
314 /* Non-zero means ignore malloc warnings. Set during initialization.
315 Currently not used. */
317 static int ignore_warnings;
319 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
321 /* Hook run after GC has finished. */
323 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
325 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
326 EMACS_INT gcs_done; /* accumulated GCs */
328 static void mark_buffer (Lisp_Object);
329 static void mark_terminals (void);
330 extern void mark_kboards (void);
331 extern void mark_ttys (void);
332 extern void mark_backtrace (void);
333 static void gc_sweep (void);
334 static void mark_glyph_matrix (struct glyph_matrix *);
335 static void mark_face_cache (struct face_cache *);
337 #ifdef HAVE_WINDOW_SYSTEM
338 extern void mark_fringe_data (void);
339 #endif /* HAVE_WINDOW_SYSTEM */
341 static struct Lisp_String *allocate_string (void);
342 static void compact_small_strings (void);
343 static void free_large_strings (void);
344 static void sweep_strings (void);
346 extern int message_enable_multibyte;
348 /* When scanning the C stack for live Lisp objects, Emacs keeps track
349 of what memory allocated via lisp_malloc is intended for what
350 purpose. This enumeration specifies the type of memory. */
352 enum mem_type
354 MEM_TYPE_NON_LISP,
355 MEM_TYPE_BUFFER,
356 MEM_TYPE_CONS,
357 MEM_TYPE_STRING,
358 MEM_TYPE_MISC,
359 MEM_TYPE_SYMBOL,
360 MEM_TYPE_FLOAT,
361 /* We used to keep separate mem_types for subtypes of vectors such as
362 process, hash_table, frame, terminal, and window, but we never made
363 use of the distinction, so it only caused source-code complexity
364 and runtime slowdown. Minor but pointless. */
365 MEM_TYPE_VECTORLIKE
368 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
369 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
370 void refill_memory_reserve (void);
373 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
375 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
376 #include <stdio.h> /* For fprintf. */
377 #endif
379 /* A unique object in pure space used to make some Lisp objects
380 on free lists recognizable in O(1). */
382 static Lisp_Object Vdead;
384 #ifdef GC_MALLOC_CHECK
386 enum mem_type allocated_mem_type;
387 static int dont_register_blocks;
389 #endif /* GC_MALLOC_CHECK */
391 /* A node in the red-black tree describing allocated memory containing
392 Lisp data. Each such block is recorded with its start and end
393 address when it is allocated, and removed from the tree when it
394 is freed.
396 A red-black tree is a balanced binary tree with the following
397 properties:
399 1. Every node is either red or black.
400 2. Every leaf is black.
401 3. If a node is red, then both of its children are black.
402 4. Every simple path from a node to a descendant leaf contains
403 the same number of black nodes.
404 5. The root is always black.
406 When nodes are inserted into the tree, or deleted from the tree,
407 the tree is "fixed" so that these properties are always true.
409 A red-black tree with N internal nodes has height at most 2
410 log(N+1). Searches, insertions and deletions are done in O(log N).
411 Please see a text book about data structures for a detailed
412 description of red-black trees. Any book worth its salt should
413 describe them. */
415 struct mem_node
417 /* Children of this node. These pointers are never NULL. When there
418 is no child, the value is MEM_NIL, which points to a dummy node. */
419 struct mem_node *left, *right;
421 /* The parent of this node. In the root node, this is NULL. */
422 struct mem_node *parent;
424 /* Start and end of allocated region. */
425 void *start, *end;
427 /* Node color. */
428 enum {MEM_BLACK, MEM_RED} color;
430 /* Memory type. */
431 enum mem_type type;
434 /* Base address of stack. Set in main. */
436 Lisp_Object *stack_base;
438 /* Root of the tree describing allocated Lisp memory. */
440 static struct mem_node *mem_root;
442 /* Lowest and highest known address in the heap. */
444 static void *min_heap_address, *max_heap_address;
446 /* Sentinel node of the tree. */
448 static struct mem_node mem_z;
449 #define MEM_NIL &mem_z
451 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
452 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
453 static void lisp_free (POINTER_TYPE *);
454 static void mark_stack (void);
455 static int live_vector_p (struct mem_node *, void *);
456 static int live_buffer_p (struct mem_node *, void *);
457 static int live_string_p (struct mem_node *, void *);
458 static int live_cons_p (struct mem_node *, void *);
459 static int live_symbol_p (struct mem_node *, void *);
460 static int live_float_p (struct mem_node *, void *);
461 static int live_misc_p (struct mem_node *, void *);
462 static void mark_maybe_object (Lisp_Object);
463 static void mark_memory (void *, void *, int);
464 static void mem_init (void);
465 static struct mem_node *mem_insert (void *, void *, enum mem_type);
466 static void mem_insert_fixup (struct mem_node *);
467 static void mem_rotate_left (struct mem_node *);
468 static void mem_rotate_right (struct mem_node *);
469 static void mem_delete (struct mem_node *);
470 static void mem_delete_fixup (struct mem_node *);
471 static INLINE struct mem_node *mem_find (void *);
474 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
475 static void check_gcpros (void);
476 #endif
478 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
480 /* Recording what needs to be marked for gc. */
482 struct gcpro *gcprolist;
484 /* Addresses of staticpro'd variables. Initialize it to a nonzero
485 value; otherwise some compilers put it into BSS. */
487 #define NSTATICS 0x640
488 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
490 /* Index of next unused slot in staticvec. */
492 static int staticidx = 0;
494 static POINTER_TYPE *pure_alloc (size_t, int);
497 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
498 ALIGNMENT must be a power of 2. */
500 #define ALIGN(ptr, ALIGNMENT) \
501 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
502 & ~((ALIGNMENT) - 1)))
506 /************************************************************************
507 Malloc
508 ************************************************************************/
510 /* Function malloc calls this if it finds we are near exhausting storage. */
512 void
513 malloc_warning (const char *str)
515 pending_malloc_warning = str;
519 /* Display an already-pending malloc warning. */
521 void
522 display_malloc_warning (void)
524 call3 (intern ("display-warning"),
525 intern ("alloc"),
526 build_string (pending_malloc_warning),
527 intern ("emergency"));
528 pending_malloc_warning = 0;
532 #ifdef DOUG_LEA_MALLOC
533 # define BYTES_USED (mallinfo ().uordblks)
534 #else
535 # define BYTES_USED _bytes_used
536 #endif
538 /* Called if we can't allocate relocatable space for a buffer. */
540 void
541 buffer_memory_full (void)
543 /* If buffers use the relocating allocator, no need to free
544 spare_memory, because we may have plenty of malloc space left
545 that we could get, and if we don't, the malloc that fails will
546 itself cause spare_memory to be freed. If buffers don't use the
547 relocating allocator, treat this like any other failing
548 malloc. */
550 #ifndef REL_ALLOC
551 memory_full ();
552 #endif
554 /* This used to call error, but if we've run out of memory, we could
555 get infinite recursion trying to build the string. */
556 xsignal (Qnil, Vmemory_signal_data);
560 #ifdef XMALLOC_OVERRUN_CHECK
562 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
563 and a 16 byte trailer around each block.
565 The header consists of 12 fixed bytes + a 4 byte integer contaning the
566 original block size, while the trailer consists of 16 fixed bytes.
568 The header is used to detect whether this block has been allocated
569 through these functions -- as it seems that some low-level libc
570 functions may bypass the malloc hooks.
574 #define XMALLOC_OVERRUN_CHECK_SIZE 16
576 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
577 { 0x9a, 0x9b, 0xae, 0xaf,
578 0xbf, 0xbe, 0xce, 0xcf,
579 0xea, 0xeb, 0xec, 0xed };
581 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
582 { 0xaa, 0xab, 0xac, 0xad,
583 0xba, 0xbb, 0xbc, 0xbd,
584 0xca, 0xcb, 0xcc, 0xcd,
585 0xda, 0xdb, 0xdc, 0xdd };
587 /* Macros to insert and extract the block size in the header. */
589 #define XMALLOC_PUT_SIZE(ptr, size) \
590 (ptr[-1] = (size & 0xff), \
591 ptr[-2] = ((size >> 8) & 0xff), \
592 ptr[-3] = ((size >> 16) & 0xff), \
593 ptr[-4] = ((size >> 24) & 0xff))
595 #define XMALLOC_GET_SIZE(ptr) \
596 (size_t)((unsigned)(ptr[-1]) | \
597 ((unsigned)(ptr[-2]) << 8) | \
598 ((unsigned)(ptr[-3]) << 16) | \
599 ((unsigned)(ptr[-4]) << 24))
602 /* The call depth in overrun_check functions. For example, this might happen:
603 xmalloc()
604 overrun_check_malloc()
605 -> malloc -> (via hook)_-> emacs_blocked_malloc
606 -> overrun_check_malloc
607 call malloc (hooks are NULL, so real malloc is called).
608 malloc returns 10000.
609 add overhead, return 10016.
610 <- (back in overrun_check_malloc)
611 add overhead again, return 10032
612 xmalloc returns 10032.
614 (time passes).
616 xfree(10032)
617 overrun_check_free(10032)
618 decrease overhed
619 free(10016) <- crash, because 10000 is the original pointer. */
621 static int check_depth;
623 /* Like malloc, but wraps allocated block with header and trailer. */
625 POINTER_TYPE *
626 overrun_check_malloc (size)
627 size_t size;
629 register unsigned char *val;
630 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
632 val = (unsigned char *) malloc (size + overhead);
633 if (val && check_depth == 1)
635 memcpy (val, xmalloc_overrun_check_header,
636 XMALLOC_OVERRUN_CHECK_SIZE - 4);
637 val += XMALLOC_OVERRUN_CHECK_SIZE;
638 XMALLOC_PUT_SIZE(val, size);
639 memcpy (val + size, xmalloc_overrun_check_trailer,
640 XMALLOC_OVERRUN_CHECK_SIZE);
642 --check_depth;
643 return (POINTER_TYPE *)val;
647 /* Like realloc, but checks old block for overrun, and wraps new block
648 with header and trailer. */
650 POINTER_TYPE *
651 overrun_check_realloc (block, size)
652 POINTER_TYPE *block;
653 size_t size;
655 register unsigned char *val = (unsigned char *)block;
656 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
658 if (val
659 && check_depth == 1
660 && memcmp (xmalloc_overrun_check_header,
661 val - XMALLOC_OVERRUN_CHECK_SIZE,
662 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
664 size_t osize = XMALLOC_GET_SIZE (val);
665 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
666 XMALLOC_OVERRUN_CHECK_SIZE))
667 abort ();
668 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
669 val -= XMALLOC_OVERRUN_CHECK_SIZE;
670 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
673 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
675 if (val && check_depth == 1)
677 memcpy (val, xmalloc_overrun_check_header,
678 XMALLOC_OVERRUN_CHECK_SIZE - 4);
679 val += XMALLOC_OVERRUN_CHECK_SIZE;
680 XMALLOC_PUT_SIZE(val, size);
681 memcpy (val + size, xmalloc_overrun_check_trailer,
682 XMALLOC_OVERRUN_CHECK_SIZE);
684 --check_depth;
685 return (POINTER_TYPE *)val;
688 /* Like free, but checks block for overrun. */
690 void
691 overrun_check_free (block)
692 POINTER_TYPE *block;
694 unsigned char *val = (unsigned char *)block;
696 ++check_depth;
697 if (val
698 && check_depth == 1
699 && memcmp (xmalloc_overrun_check_header,
700 val - XMALLOC_OVERRUN_CHECK_SIZE,
701 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
703 size_t osize = XMALLOC_GET_SIZE (val);
704 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
705 XMALLOC_OVERRUN_CHECK_SIZE))
706 abort ();
707 #ifdef XMALLOC_CLEAR_FREE_MEMORY
708 val -= XMALLOC_OVERRUN_CHECK_SIZE;
709 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
710 #else
711 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
712 val -= XMALLOC_OVERRUN_CHECK_SIZE;
713 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
714 #endif
717 free (val);
718 --check_depth;
721 #undef malloc
722 #undef realloc
723 #undef free
724 #define malloc overrun_check_malloc
725 #define realloc overrun_check_realloc
726 #define free overrun_check_free
727 #endif
729 #ifdef SYNC_INPUT
730 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
731 there's no need to block input around malloc. */
732 #define MALLOC_BLOCK_INPUT ((void)0)
733 #define MALLOC_UNBLOCK_INPUT ((void)0)
734 #else
735 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
736 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
737 #endif
739 /* Like malloc but check for no memory and block interrupt input.. */
741 POINTER_TYPE *
742 xmalloc (size_t size)
744 register POINTER_TYPE *val;
746 MALLOC_BLOCK_INPUT;
747 val = (POINTER_TYPE *) malloc (size);
748 MALLOC_UNBLOCK_INPUT;
750 if (!val && size)
751 memory_full ();
752 return val;
756 /* Like realloc but check for no memory and block interrupt input.. */
758 POINTER_TYPE *
759 xrealloc (POINTER_TYPE *block, size_t size)
761 register POINTER_TYPE *val;
763 MALLOC_BLOCK_INPUT;
764 /* We must call malloc explicitly when BLOCK is 0, since some
765 reallocs don't do this. */
766 if (! block)
767 val = (POINTER_TYPE *) malloc (size);
768 else
769 val = (POINTER_TYPE *) realloc (block, size);
770 MALLOC_UNBLOCK_INPUT;
772 if (!val && size) memory_full ();
773 return val;
777 /* Like free but block interrupt input. */
779 void
780 xfree (POINTER_TYPE *block)
782 if (!block)
783 return;
784 MALLOC_BLOCK_INPUT;
785 free (block);
786 MALLOC_UNBLOCK_INPUT;
787 /* We don't call refill_memory_reserve here
788 because that duplicates doing so in emacs_blocked_free
789 and the criterion should go there. */
793 /* Like strdup, but uses xmalloc. */
795 char *
796 xstrdup (const char *s)
798 size_t len = strlen (s) + 1;
799 char *p = (char *) xmalloc (len);
800 memcpy (p, s, len);
801 return p;
805 /* Unwind for SAFE_ALLOCA */
807 Lisp_Object
808 safe_alloca_unwind (Lisp_Object arg)
810 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
812 p->dogc = 0;
813 xfree (p->pointer);
814 p->pointer = 0;
815 free_misc (arg);
816 return Qnil;
820 /* Like malloc but used for allocating Lisp data. NBYTES is the
821 number of bytes to allocate, TYPE describes the intended use of the
822 allcated memory block (for strings, for conses, ...). */
824 #ifndef USE_LSB_TAG
825 static void *lisp_malloc_loser;
826 #endif
828 static POINTER_TYPE *
829 lisp_malloc (size_t nbytes, enum mem_type type)
831 register void *val;
833 MALLOC_BLOCK_INPUT;
835 #ifdef GC_MALLOC_CHECK
836 allocated_mem_type = type;
837 #endif
839 val = (void *) malloc (nbytes);
841 #ifndef USE_LSB_TAG
842 /* If the memory just allocated cannot be addressed thru a Lisp
843 object's pointer, and it needs to be,
844 that's equivalent to running out of memory. */
845 if (val && type != MEM_TYPE_NON_LISP)
847 Lisp_Object tem;
848 XSETCONS (tem, (char *) val + nbytes - 1);
849 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
851 lisp_malloc_loser = val;
852 free (val);
853 val = 0;
856 #endif
858 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
859 if (val && type != MEM_TYPE_NON_LISP)
860 mem_insert (val, (char *) val + nbytes, type);
861 #endif
863 MALLOC_UNBLOCK_INPUT;
864 if (!val && nbytes)
865 memory_full ();
866 return val;
869 /* Free BLOCK. This must be called to free memory allocated with a
870 call to lisp_malloc. */
872 static void
873 lisp_free (POINTER_TYPE *block)
875 MALLOC_BLOCK_INPUT;
876 free (block);
877 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
878 mem_delete (mem_find (block));
879 #endif
880 MALLOC_UNBLOCK_INPUT;
883 /* Allocation of aligned blocks of memory to store Lisp data. */
884 /* The entry point is lisp_align_malloc which returns blocks of at most */
885 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
887 /* Use posix_memalloc if the system has it and we're using the system's
888 malloc (because our gmalloc.c routines don't have posix_memalign although
889 its memalloc could be used). */
890 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
891 #define USE_POSIX_MEMALIGN 1
892 #endif
894 /* BLOCK_ALIGN has to be a power of 2. */
895 #define BLOCK_ALIGN (1 << 10)
897 /* Padding to leave at the end of a malloc'd block. This is to give
898 malloc a chance to minimize the amount of memory wasted to alignment.
899 It should be tuned to the particular malloc library used.
900 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
901 posix_memalign on the other hand would ideally prefer a value of 4
902 because otherwise, there's 1020 bytes wasted between each ablocks.
903 In Emacs, testing shows that those 1020 can most of the time be
904 efficiently used by malloc to place other objects, so a value of 0 can
905 still preferable unless you have a lot of aligned blocks and virtually
906 nothing else. */
907 #define BLOCK_PADDING 0
908 #define BLOCK_BYTES \
909 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
911 /* Internal data structures and constants. */
913 #define ABLOCKS_SIZE 16
915 /* An aligned block of memory. */
916 struct ablock
918 union
920 char payload[BLOCK_BYTES];
921 struct ablock *next_free;
922 } x;
923 /* `abase' is the aligned base of the ablocks. */
924 /* It is overloaded to hold the virtual `busy' field that counts
925 the number of used ablock in the parent ablocks.
926 The first ablock has the `busy' field, the others have the `abase'
927 field. To tell the difference, we assume that pointers will have
928 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
929 is used to tell whether the real base of the parent ablocks is `abase'
930 (if not, the word before the first ablock holds a pointer to the
931 real base). */
932 struct ablocks *abase;
933 /* The padding of all but the last ablock is unused. The padding of
934 the last ablock in an ablocks is not allocated. */
935 #if BLOCK_PADDING
936 char padding[BLOCK_PADDING];
937 #endif
940 /* A bunch of consecutive aligned blocks. */
941 struct ablocks
943 struct ablock blocks[ABLOCKS_SIZE];
946 /* Size of the block requested from malloc or memalign. */
947 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
949 #define ABLOCK_ABASE(block) \
950 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
951 ? (struct ablocks *)(block) \
952 : (block)->abase)
954 /* Virtual `busy' field. */
955 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
957 /* Pointer to the (not necessarily aligned) malloc block. */
958 #ifdef USE_POSIX_MEMALIGN
959 #define ABLOCKS_BASE(abase) (abase)
960 #else
961 #define ABLOCKS_BASE(abase) \
962 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
963 #endif
965 /* The list of free ablock. */
966 static struct ablock *free_ablock;
968 /* Allocate an aligned block of nbytes.
969 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
970 smaller or equal to BLOCK_BYTES. */
971 static POINTER_TYPE *
972 lisp_align_malloc (size_t nbytes, enum mem_type type)
974 void *base, *val;
975 struct ablocks *abase;
977 eassert (nbytes <= BLOCK_BYTES);
979 MALLOC_BLOCK_INPUT;
981 #ifdef GC_MALLOC_CHECK
982 allocated_mem_type = type;
983 #endif
985 if (!free_ablock)
987 int i;
988 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
990 #ifdef DOUG_LEA_MALLOC
991 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
992 because mapped region contents are not preserved in
993 a dumped Emacs. */
994 mallopt (M_MMAP_MAX, 0);
995 #endif
997 #ifdef USE_POSIX_MEMALIGN
999 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1000 if (err)
1001 base = NULL;
1002 abase = base;
1004 #else
1005 base = malloc (ABLOCKS_BYTES);
1006 abase = ALIGN (base, BLOCK_ALIGN);
1007 #endif
1009 if (base == 0)
1011 MALLOC_UNBLOCK_INPUT;
1012 memory_full ();
1015 aligned = (base == abase);
1016 if (!aligned)
1017 ((void**)abase)[-1] = base;
1019 #ifdef DOUG_LEA_MALLOC
1020 /* Back to a reasonable maximum of mmap'ed areas. */
1021 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1022 #endif
1024 #ifndef USE_LSB_TAG
1025 /* If the memory just allocated cannot be addressed thru a Lisp
1026 object's pointer, and it needs to be, that's equivalent to
1027 running out of memory. */
1028 if (type != MEM_TYPE_NON_LISP)
1030 Lisp_Object tem;
1031 char *end = (char *) base + ABLOCKS_BYTES - 1;
1032 XSETCONS (tem, end);
1033 if ((char *) XCONS (tem) != end)
1035 lisp_malloc_loser = base;
1036 free (base);
1037 MALLOC_UNBLOCK_INPUT;
1038 memory_full ();
1041 #endif
1043 /* Initialize the blocks and put them on the free list.
1044 Is `base' was not properly aligned, we can't use the last block. */
1045 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1047 abase->blocks[i].abase = abase;
1048 abase->blocks[i].x.next_free = free_ablock;
1049 free_ablock = &abase->blocks[i];
1051 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1053 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1054 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1055 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1056 eassert (ABLOCKS_BASE (abase) == base);
1057 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1060 abase = ABLOCK_ABASE (free_ablock);
1061 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1062 val = free_ablock;
1063 free_ablock = free_ablock->x.next_free;
1065 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1066 if (val && type != MEM_TYPE_NON_LISP)
1067 mem_insert (val, (char *) val + nbytes, type);
1068 #endif
1070 MALLOC_UNBLOCK_INPUT;
1071 if (!val && nbytes)
1072 memory_full ();
1074 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1075 return val;
1078 static void
1079 lisp_align_free (POINTER_TYPE *block)
1081 struct ablock *ablock = block;
1082 struct ablocks *abase = ABLOCK_ABASE (ablock);
1084 MALLOC_BLOCK_INPUT;
1085 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1086 mem_delete (mem_find (block));
1087 #endif
1088 /* Put on free list. */
1089 ablock->x.next_free = free_ablock;
1090 free_ablock = ablock;
1091 /* Update busy count. */
1092 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1094 if (2 > (long) ABLOCKS_BUSY (abase))
1095 { /* All the blocks are free. */
1096 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1097 struct ablock **tem = &free_ablock;
1098 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1100 while (*tem)
1102 if (*tem >= (struct ablock *) abase && *tem < atop)
1104 i++;
1105 *tem = (*tem)->x.next_free;
1107 else
1108 tem = &(*tem)->x.next_free;
1110 eassert ((aligned & 1) == aligned);
1111 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1112 #ifdef USE_POSIX_MEMALIGN
1113 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1114 #endif
1115 free (ABLOCKS_BASE (abase));
1117 MALLOC_UNBLOCK_INPUT;
1120 /* Return a new buffer structure allocated from the heap with
1121 a call to lisp_malloc. */
1123 struct buffer *
1124 allocate_buffer (void)
1126 struct buffer *b
1127 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1128 MEM_TYPE_BUFFER);
1129 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1130 XSETPVECTYPE (b, PVEC_BUFFER);
1131 return b;
1135 #ifndef SYSTEM_MALLOC
1137 /* Arranging to disable input signals while we're in malloc.
1139 This only works with GNU malloc. To help out systems which can't
1140 use GNU malloc, all the calls to malloc, realloc, and free
1141 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1142 pair; unfortunately, we have no idea what C library functions
1143 might call malloc, so we can't really protect them unless you're
1144 using GNU malloc. Fortunately, most of the major operating systems
1145 can use GNU malloc. */
1147 #ifndef SYNC_INPUT
1148 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1149 there's no need to block input around malloc. */
1151 #ifndef DOUG_LEA_MALLOC
1152 extern void * (*__malloc_hook) (size_t, const void *);
1153 extern void * (*__realloc_hook) (void *, size_t, const void *);
1154 extern void (*__free_hook) (void *, const void *);
1155 /* Else declared in malloc.h, perhaps with an extra arg. */
1156 #endif /* DOUG_LEA_MALLOC */
1157 static void * (*old_malloc_hook) (size_t, const void *);
1158 static void * (*old_realloc_hook) (void *, size_t, const void*);
1159 static void (*old_free_hook) (void*, const void*);
1161 /* This function is used as the hook for free to call. */
1163 static void
1164 emacs_blocked_free (void *ptr, const void *ptr2)
1166 BLOCK_INPUT_ALLOC;
1168 #ifdef GC_MALLOC_CHECK
1169 if (ptr)
1171 struct mem_node *m;
1173 m = mem_find (ptr);
1174 if (m == MEM_NIL || m->start != ptr)
1176 fprintf (stderr,
1177 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1178 abort ();
1180 else
1182 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1183 mem_delete (m);
1186 #endif /* GC_MALLOC_CHECK */
1188 __free_hook = old_free_hook;
1189 free (ptr);
1191 /* If we released our reserve (due to running out of memory),
1192 and we have a fair amount free once again,
1193 try to set aside another reserve in case we run out once more. */
1194 if (! NILP (Vmemory_full)
1195 /* Verify there is enough space that even with the malloc
1196 hysteresis this call won't run out again.
1197 The code here is correct as long as SPARE_MEMORY
1198 is substantially larger than the block size malloc uses. */
1199 && (bytes_used_when_full
1200 > ((bytes_used_when_reconsidered = BYTES_USED)
1201 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1202 refill_memory_reserve ();
1204 __free_hook = emacs_blocked_free;
1205 UNBLOCK_INPUT_ALLOC;
1209 /* This function is the malloc hook that Emacs uses. */
1211 static void *
1212 emacs_blocked_malloc (size_t size, const void *ptr)
1214 void *value;
1216 BLOCK_INPUT_ALLOC;
1217 __malloc_hook = old_malloc_hook;
1218 #ifdef DOUG_LEA_MALLOC
1219 /* Segfaults on my system. --lorentey */
1220 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1221 #else
1222 __malloc_extra_blocks = malloc_hysteresis;
1223 #endif
1225 value = (void *) malloc (size);
1227 #ifdef GC_MALLOC_CHECK
1229 struct mem_node *m = mem_find (value);
1230 if (m != MEM_NIL)
1232 fprintf (stderr, "Malloc returned %p which is already in use\n",
1233 value);
1234 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1235 m->start, m->end, (char *) m->end - (char *) m->start,
1236 m->type);
1237 abort ();
1240 if (!dont_register_blocks)
1242 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1243 allocated_mem_type = MEM_TYPE_NON_LISP;
1246 #endif /* GC_MALLOC_CHECK */
1248 __malloc_hook = emacs_blocked_malloc;
1249 UNBLOCK_INPUT_ALLOC;
1251 /* fprintf (stderr, "%p malloc\n", value); */
1252 return value;
1256 /* This function is the realloc hook that Emacs uses. */
1258 static void *
1259 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1261 void *value;
1263 BLOCK_INPUT_ALLOC;
1264 __realloc_hook = old_realloc_hook;
1266 #ifdef GC_MALLOC_CHECK
1267 if (ptr)
1269 struct mem_node *m = mem_find (ptr);
1270 if (m == MEM_NIL || m->start != ptr)
1272 fprintf (stderr,
1273 "Realloc of %p which wasn't allocated with malloc\n",
1274 ptr);
1275 abort ();
1278 mem_delete (m);
1281 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1283 /* Prevent malloc from registering blocks. */
1284 dont_register_blocks = 1;
1285 #endif /* GC_MALLOC_CHECK */
1287 value = (void *) realloc (ptr, size);
1289 #ifdef GC_MALLOC_CHECK
1290 dont_register_blocks = 0;
1293 struct mem_node *m = mem_find (value);
1294 if (m != MEM_NIL)
1296 fprintf (stderr, "Realloc returns memory that is already in use\n");
1297 abort ();
1300 /* Can't handle zero size regions in the red-black tree. */
1301 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1304 /* fprintf (stderr, "%p <- realloc\n", value); */
1305 #endif /* GC_MALLOC_CHECK */
1307 __realloc_hook = emacs_blocked_realloc;
1308 UNBLOCK_INPUT_ALLOC;
1310 return value;
1314 #ifdef HAVE_GTK_AND_PTHREAD
1315 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1316 normal malloc. Some thread implementations need this as they call
1317 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1318 calls malloc because it is the first call, and we have an endless loop. */
1320 void
1321 reset_malloc_hooks ()
1323 __free_hook = old_free_hook;
1324 __malloc_hook = old_malloc_hook;
1325 __realloc_hook = old_realloc_hook;
1327 #endif /* HAVE_GTK_AND_PTHREAD */
1330 /* Called from main to set up malloc to use our hooks. */
1332 void
1333 uninterrupt_malloc (void)
1335 #ifdef HAVE_GTK_AND_PTHREAD
1336 #ifdef DOUG_LEA_MALLOC
1337 pthread_mutexattr_t attr;
1339 /* GLIBC has a faster way to do this, but lets keep it portable.
1340 This is according to the Single UNIX Specification. */
1341 pthread_mutexattr_init (&attr);
1342 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1343 pthread_mutex_init (&alloc_mutex, &attr);
1344 #else /* !DOUG_LEA_MALLOC */
1345 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1346 and the bundled gmalloc.c doesn't require it. */
1347 pthread_mutex_init (&alloc_mutex, NULL);
1348 #endif /* !DOUG_LEA_MALLOC */
1349 #endif /* HAVE_GTK_AND_PTHREAD */
1351 if (__free_hook != emacs_blocked_free)
1352 old_free_hook = __free_hook;
1353 __free_hook = emacs_blocked_free;
1355 if (__malloc_hook != emacs_blocked_malloc)
1356 old_malloc_hook = __malloc_hook;
1357 __malloc_hook = emacs_blocked_malloc;
1359 if (__realloc_hook != emacs_blocked_realloc)
1360 old_realloc_hook = __realloc_hook;
1361 __realloc_hook = emacs_blocked_realloc;
1364 #endif /* not SYNC_INPUT */
1365 #endif /* not SYSTEM_MALLOC */
1369 /***********************************************************************
1370 Interval Allocation
1371 ***********************************************************************/
1373 /* Number of intervals allocated in an interval_block structure.
1374 The 1020 is 1024 minus malloc overhead. */
1376 #define INTERVAL_BLOCK_SIZE \
1377 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1379 /* Intervals are allocated in chunks in form of an interval_block
1380 structure. */
1382 struct interval_block
1384 /* Place `intervals' first, to preserve alignment. */
1385 struct interval intervals[INTERVAL_BLOCK_SIZE];
1386 struct interval_block *next;
1389 /* Current interval block. Its `next' pointer points to older
1390 blocks. */
1392 static struct interval_block *interval_block;
1394 /* Index in interval_block above of the next unused interval
1395 structure. */
1397 static int interval_block_index;
1399 /* Number of free and live intervals. */
1401 static int total_free_intervals, total_intervals;
1403 /* List of free intervals. */
1405 INTERVAL interval_free_list;
1407 /* Total number of interval blocks now in use. */
1409 static int n_interval_blocks;
1412 /* Initialize interval allocation. */
1414 static void
1415 init_intervals (void)
1417 interval_block = NULL;
1418 interval_block_index = INTERVAL_BLOCK_SIZE;
1419 interval_free_list = 0;
1420 n_interval_blocks = 0;
1424 /* Return a new interval. */
1426 INTERVAL
1427 make_interval (void)
1429 INTERVAL val;
1431 /* eassert (!handling_signal); */
1433 MALLOC_BLOCK_INPUT;
1435 if (interval_free_list)
1437 val = interval_free_list;
1438 interval_free_list = INTERVAL_PARENT (interval_free_list);
1440 else
1442 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1444 register struct interval_block *newi;
1446 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1447 MEM_TYPE_NON_LISP);
1449 newi->next = interval_block;
1450 interval_block = newi;
1451 interval_block_index = 0;
1452 n_interval_blocks++;
1454 val = &interval_block->intervals[interval_block_index++];
1457 MALLOC_UNBLOCK_INPUT;
1459 consing_since_gc += sizeof (struct interval);
1460 intervals_consed++;
1461 RESET_INTERVAL (val);
1462 val->gcmarkbit = 0;
1463 return val;
1467 /* Mark Lisp objects in interval I. */
1469 static void
1470 mark_interval (register INTERVAL i, Lisp_Object dummy)
1472 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1473 i->gcmarkbit = 1;
1474 mark_object (i->plist);
1478 /* Mark the interval tree rooted in TREE. Don't call this directly;
1479 use the macro MARK_INTERVAL_TREE instead. */
1481 static void
1482 mark_interval_tree (register INTERVAL tree)
1484 /* No need to test if this tree has been marked already; this
1485 function is always called through the MARK_INTERVAL_TREE macro,
1486 which takes care of that. */
1488 traverse_intervals_noorder (tree, mark_interval, Qnil);
1492 /* Mark the interval tree rooted in I. */
1494 #define MARK_INTERVAL_TREE(i) \
1495 do { \
1496 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1497 mark_interval_tree (i); \
1498 } while (0)
1501 #define UNMARK_BALANCE_INTERVALS(i) \
1502 do { \
1503 if (! NULL_INTERVAL_P (i)) \
1504 (i) = balance_intervals (i); \
1505 } while (0)
1508 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1509 can't create number objects in macros. */
1510 #ifndef make_number
1511 Lisp_Object
1512 make_number (n)
1513 EMACS_INT n;
1515 Lisp_Object obj;
1516 obj.s.val = n;
1517 obj.s.type = Lisp_Int;
1518 return obj;
1520 #endif
1522 /***********************************************************************
1523 String Allocation
1524 ***********************************************************************/
1526 /* Lisp_Strings are allocated in string_block structures. When a new
1527 string_block is allocated, all the Lisp_Strings it contains are
1528 added to a free-list string_free_list. When a new Lisp_String is
1529 needed, it is taken from that list. During the sweep phase of GC,
1530 string_blocks that are entirely free are freed, except two which
1531 we keep.
1533 String data is allocated from sblock structures. Strings larger
1534 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1535 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1537 Sblocks consist internally of sdata structures, one for each
1538 Lisp_String. The sdata structure points to the Lisp_String it
1539 belongs to. The Lisp_String points back to the `u.data' member of
1540 its sdata structure.
1542 When a Lisp_String is freed during GC, it is put back on
1543 string_free_list, and its `data' member and its sdata's `string'
1544 pointer is set to null. The size of the string is recorded in the
1545 `u.nbytes' member of the sdata. So, sdata structures that are no
1546 longer used, can be easily recognized, and it's easy to compact the
1547 sblocks of small strings which we do in compact_small_strings. */
1549 /* Size in bytes of an sblock structure used for small strings. This
1550 is 8192 minus malloc overhead. */
1552 #define SBLOCK_SIZE 8188
1554 /* Strings larger than this are considered large strings. String data
1555 for large strings is allocated from individual sblocks. */
1557 #define LARGE_STRING_BYTES 1024
1559 /* Structure describing string memory sub-allocated from an sblock.
1560 This is where the contents of Lisp strings are stored. */
1562 struct sdata
1564 /* Back-pointer to the string this sdata belongs to. If null, this
1565 structure is free, and the NBYTES member of the union below
1566 contains the string's byte size (the same value that STRING_BYTES
1567 would return if STRING were non-null). If non-null, STRING_BYTES
1568 (STRING) is the size of the data, and DATA contains the string's
1569 contents. */
1570 struct Lisp_String *string;
1572 #ifdef GC_CHECK_STRING_BYTES
1574 EMACS_INT nbytes;
1575 unsigned char data[1];
1577 #define SDATA_NBYTES(S) (S)->nbytes
1578 #define SDATA_DATA(S) (S)->data
1580 #else /* not GC_CHECK_STRING_BYTES */
1582 union
1584 /* When STRING in non-null. */
1585 unsigned char data[1];
1587 /* When STRING is null. */
1588 EMACS_INT nbytes;
1589 } u;
1592 #define SDATA_NBYTES(S) (S)->u.nbytes
1593 #define SDATA_DATA(S) (S)->u.data
1595 #endif /* not GC_CHECK_STRING_BYTES */
1599 /* Structure describing a block of memory which is sub-allocated to
1600 obtain string data memory for strings. Blocks for small strings
1601 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1602 as large as needed. */
1604 struct sblock
1606 /* Next in list. */
1607 struct sblock *next;
1609 /* Pointer to the next free sdata block. This points past the end
1610 of the sblock if there isn't any space left in this block. */
1611 struct sdata *next_free;
1613 /* Start of data. */
1614 struct sdata first_data;
1617 /* Number of Lisp strings in a string_block structure. The 1020 is
1618 1024 minus malloc overhead. */
1620 #define STRING_BLOCK_SIZE \
1621 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1623 /* Structure describing a block from which Lisp_String structures
1624 are allocated. */
1626 struct string_block
1628 /* Place `strings' first, to preserve alignment. */
1629 struct Lisp_String strings[STRING_BLOCK_SIZE];
1630 struct string_block *next;
1633 /* Head and tail of the list of sblock structures holding Lisp string
1634 data. We always allocate from current_sblock. The NEXT pointers
1635 in the sblock structures go from oldest_sblock to current_sblock. */
1637 static struct sblock *oldest_sblock, *current_sblock;
1639 /* List of sblocks for large strings. */
1641 static struct sblock *large_sblocks;
1643 /* List of string_block structures, and how many there are. */
1645 static struct string_block *string_blocks;
1646 static int n_string_blocks;
1648 /* Free-list of Lisp_Strings. */
1650 static struct Lisp_String *string_free_list;
1652 /* Number of live and free Lisp_Strings. */
1654 static int total_strings, total_free_strings;
1656 /* Number of bytes used by live strings. */
1658 static int total_string_size;
1660 /* Given a pointer to a Lisp_String S which is on the free-list
1661 string_free_list, return a pointer to its successor in the
1662 free-list. */
1664 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1666 /* Return a pointer to the sdata structure belonging to Lisp string S.
1667 S must be live, i.e. S->data must not be null. S->data is actually
1668 a pointer to the `u.data' member of its sdata structure; the
1669 structure starts at a constant offset in front of that. */
1671 #ifdef GC_CHECK_STRING_BYTES
1673 #define SDATA_OF_STRING(S) \
1674 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1675 - sizeof (EMACS_INT)))
1677 #else /* not GC_CHECK_STRING_BYTES */
1679 #define SDATA_OF_STRING(S) \
1680 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1682 #endif /* not GC_CHECK_STRING_BYTES */
1685 #ifdef GC_CHECK_STRING_OVERRUN
1687 /* We check for overrun in string data blocks by appending a small
1688 "cookie" after each allocated string data block, and check for the
1689 presence of this cookie during GC. */
1691 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1692 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1693 { 0xde, 0xad, 0xbe, 0xef };
1695 #else
1696 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1697 #endif
1699 /* Value is the size of an sdata structure large enough to hold NBYTES
1700 bytes of string data. The value returned includes a terminating
1701 NUL byte, the size of the sdata structure, and padding. */
1703 #ifdef GC_CHECK_STRING_BYTES
1705 #define SDATA_SIZE(NBYTES) \
1706 ((sizeof (struct Lisp_String *) \
1707 + (NBYTES) + 1 \
1708 + sizeof (EMACS_INT) \
1709 + sizeof (EMACS_INT) - 1) \
1710 & ~(sizeof (EMACS_INT) - 1))
1712 #else /* not GC_CHECK_STRING_BYTES */
1714 #define SDATA_SIZE(NBYTES) \
1715 ((sizeof (struct Lisp_String *) \
1716 + (NBYTES) + 1 \
1717 + sizeof (EMACS_INT) - 1) \
1718 & ~(sizeof (EMACS_INT) - 1))
1720 #endif /* not GC_CHECK_STRING_BYTES */
1722 /* Extra bytes to allocate for each string. */
1724 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1726 /* Initialize string allocation. Called from init_alloc_once. */
1728 static void
1729 init_strings (void)
1731 total_strings = total_free_strings = total_string_size = 0;
1732 oldest_sblock = current_sblock = large_sblocks = NULL;
1733 string_blocks = NULL;
1734 n_string_blocks = 0;
1735 string_free_list = NULL;
1736 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1737 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1741 #ifdef GC_CHECK_STRING_BYTES
1743 static int check_string_bytes_count;
1745 static void check_string_bytes (int);
1746 static void check_sblock (struct sblock *);
1748 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1751 /* Like GC_STRING_BYTES, but with debugging check. */
1754 string_bytes (s)
1755 struct Lisp_String *s;
1757 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1758 if (!PURE_POINTER_P (s)
1759 && s->data
1760 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1761 abort ();
1762 return nbytes;
1765 /* Check validity of Lisp strings' string_bytes member in B. */
1767 static void
1768 check_sblock (b)
1769 struct sblock *b;
1771 struct sdata *from, *end, *from_end;
1773 end = b->next_free;
1775 for (from = &b->first_data; from < end; from = from_end)
1777 /* Compute the next FROM here because copying below may
1778 overwrite data we need to compute it. */
1779 int nbytes;
1781 /* Check that the string size recorded in the string is the
1782 same as the one recorded in the sdata structure. */
1783 if (from->string)
1784 CHECK_STRING_BYTES (from->string);
1786 if (from->string)
1787 nbytes = GC_STRING_BYTES (from->string);
1788 else
1789 nbytes = SDATA_NBYTES (from);
1791 nbytes = SDATA_SIZE (nbytes);
1792 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1797 /* Check validity of Lisp strings' string_bytes member. ALL_P
1798 non-zero means check all strings, otherwise check only most
1799 recently allocated strings. Used for hunting a bug. */
1801 static void
1802 check_string_bytes (all_p)
1803 int all_p;
1805 if (all_p)
1807 struct sblock *b;
1809 for (b = large_sblocks; b; b = b->next)
1811 struct Lisp_String *s = b->first_data.string;
1812 if (s)
1813 CHECK_STRING_BYTES (s);
1816 for (b = oldest_sblock; b; b = b->next)
1817 check_sblock (b);
1819 else
1820 check_sblock (current_sblock);
1823 #endif /* GC_CHECK_STRING_BYTES */
1825 #ifdef GC_CHECK_STRING_FREE_LIST
1827 /* Walk through the string free list looking for bogus next pointers.
1828 This may catch buffer overrun from a previous string. */
1830 static void
1831 check_string_free_list ()
1833 struct Lisp_String *s;
1835 /* Pop a Lisp_String off the free-list. */
1836 s = string_free_list;
1837 while (s != NULL)
1839 if ((unsigned)s < 1024)
1840 abort();
1841 s = NEXT_FREE_LISP_STRING (s);
1844 #else
1845 #define check_string_free_list()
1846 #endif
1848 /* Return a new Lisp_String. */
1850 static struct Lisp_String *
1851 allocate_string (void)
1853 struct Lisp_String *s;
1855 /* eassert (!handling_signal); */
1857 MALLOC_BLOCK_INPUT;
1859 /* If the free-list is empty, allocate a new string_block, and
1860 add all the Lisp_Strings in it to the free-list. */
1861 if (string_free_list == NULL)
1863 struct string_block *b;
1864 int i;
1866 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1867 memset (b, 0, sizeof *b);
1868 b->next = string_blocks;
1869 string_blocks = b;
1870 ++n_string_blocks;
1872 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1874 s = b->strings + i;
1875 NEXT_FREE_LISP_STRING (s) = string_free_list;
1876 string_free_list = s;
1879 total_free_strings += STRING_BLOCK_SIZE;
1882 check_string_free_list ();
1884 /* Pop a Lisp_String off the free-list. */
1885 s = string_free_list;
1886 string_free_list = NEXT_FREE_LISP_STRING (s);
1888 MALLOC_UNBLOCK_INPUT;
1890 /* Probably not strictly necessary, but play it safe. */
1891 memset (s, 0, sizeof *s);
1893 --total_free_strings;
1894 ++total_strings;
1895 ++strings_consed;
1896 consing_since_gc += sizeof *s;
1898 #ifdef GC_CHECK_STRING_BYTES
1899 if (!noninteractive)
1901 if (++check_string_bytes_count == 200)
1903 check_string_bytes_count = 0;
1904 check_string_bytes (1);
1906 else
1907 check_string_bytes (0);
1909 #endif /* GC_CHECK_STRING_BYTES */
1911 return s;
1915 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1916 plus a NUL byte at the end. Allocate an sdata structure for S, and
1917 set S->data to its `u.data' member. Store a NUL byte at the end of
1918 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1919 S->data if it was initially non-null. */
1921 void
1922 allocate_string_data (struct Lisp_String *s, int nchars, int nbytes)
1924 struct sdata *data, *old_data;
1925 struct sblock *b;
1926 int needed, old_nbytes;
1928 /* Determine the number of bytes needed to store NBYTES bytes
1929 of string data. */
1930 needed = SDATA_SIZE (nbytes);
1931 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1932 old_nbytes = GC_STRING_BYTES (s);
1934 MALLOC_BLOCK_INPUT;
1936 if (nbytes > LARGE_STRING_BYTES)
1938 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1940 #ifdef DOUG_LEA_MALLOC
1941 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1942 because mapped region contents are not preserved in
1943 a dumped Emacs.
1945 In case you think of allowing it in a dumped Emacs at the
1946 cost of not being able to re-dump, there's another reason:
1947 mmap'ed data typically have an address towards the top of the
1948 address space, which won't fit into an EMACS_INT (at least on
1949 32-bit systems with the current tagging scheme). --fx */
1950 mallopt (M_MMAP_MAX, 0);
1951 #endif
1953 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1955 #ifdef DOUG_LEA_MALLOC
1956 /* Back to a reasonable maximum of mmap'ed areas. */
1957 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1958 #endif
1960 b->next_free = &b->first_data;
1961 b->first_data.string = NULL;
1962 b->next = large_sblocks;
1963 large_sblocks = b;
1965 else if (current_sblock == NULL
1966 || (((char *) current_sblock + SBLOCK_SIZE
1967 - (char *) current_sblock->next_free)
1968 < (needed + GC_STRING_EXTRA)))
1970 /* Not enough room in the current sblock. */
1971 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1972 b->next_free = &b->first_data;
1973 b->first_data.string = NULL;
1974 b->next = NULL;
1976 if (current_sblock)
1977 current_sblock->next = b;
1978 else
1979 oldest_sblock = b;
1980 current_sblock = b;
1982 else
1983 b = current_sblock;
1985 data = b->next_free;
1986 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1988 MALLOC_UNBLOCK_INPUT;
1990 data->string = s;
1991 s->data = SDATA_DATA (data);
1992 #ifdef GC_CHECK_STRING_BYTES
1993 SDATA_NBYTES (data) = nbytes;
1994 #endif
1995 s->size = nchars;
1996 s->size_byte = nbytes;
1997 s->data[nbytes] = '\0';
1998 #ifdef GC_CHECK_STRING_OVERRUN
1999 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
2000 #endif
2002 /* If S had already data assigned, mark that as free by setting its
2003 string back-pointer to null, and recording the size of the data
2004 in it. */
2005 if (old_data)
2007 SDATA_NBYTES (old_data) = old_nbytes;
2008 old_data->string = NULL;
2011 consing_since_gc += needed;
2015 /* Sweep and compact strings. */
2017 static void
2018 sweep_strings (void)
2020 struct string_block *b, *next;
2021 struct string_block *live_blocks = NULL;
2023 string_free_list = NULL;
2024 total_strings = total_free_strings = 0;
2025 total_string_size = 0;
2027 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2028 for (b = string_blocks; b; b = next)
2030 int i, nfree = 0;
2031 struct Lisp_String *free_list_before = string_free_list;
2033 next = b->next;
2035 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2037 struct Lisp_String *s = b->strings + i;
2039 if (s->data)
2041 /* String was not on free-list before. */
2042 if (STRING_MARKED_P (s))
2044 /* String is live; unmark it and its intervals. */
2045 UNMARK_STRING (s);
2047 if (!NULL_INTERVAL_P (s->intervals))
2048 UNMARK_BALANCE_INTERVALS (s->intervals);
2050 ++total_strings;
2051 total_string_size += STRING_BYTES (s);
2053 else
2055 /* String is dead. Put it on the free-list. */
2056 struct sdata *data = SDATA_OF_STRING (s);
2058 /* Save the size of S in its sdata so that we know
2059 how large that is. Reset the sdata's string
2060 back-pointer so that we know it's free. */
2061 #ifdef GC_CHECK_STRING_BYTES
2062 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2063 abort ();
2064 #else
2065 data->u.nbytes = GC_STRING_BYTES (s);
2066 #endif
2067 data->string = NULL;
2069 /* Reset the strings's `data' member so that we
2070 know it's free. */
2071 s->data = NULL;
2073 /* Put the string on the free-list. */
2074 NEXT_FREE_LISP_STRING (s) = string_free_list;
2075 string_free_list = s;
2076 ++nfree;
2079 else
2081 /* S was on the free-list before. Put it there again. */
2082 NEXT_FREE_LISP_STRING (s) = string_free_list;
2083 string_free_list = s;
2084 ++nfree;
2088 /* Free blocks that contain free Lisp_Strings only, except
2089 the first two of them. */
2090 if (nfree == STRING_BLOCK_SIZE
2091 && total_free_strings > STRING_BLOCK_SIZE)
2093 lisp_free (b);
2094 --n_string_blocks;
2095 string_free_list = free_list_before;
2097 else
2099 total_free_strings += nfree;
2100 b->next = live_blocks;
2101 live_blocks = b;
2105 check_string_free_list ();
2107 string_blocks = live_blocks;
2108 free_large_strings ();
2109 compact_small_strings ();
2111 check_string_free_list ();
2115 /* Free dead large strings. */
2117 static void
2118 free_large_strings (void)
2120 struct sblock *b, *next;
2121 struct sblock *live_blocks = NULL;
2123 for (b = large_sblocks; b; b = next)
2125 next = b->next;
2127 if (b->first_data.string == NULL)
2128 lisp_free (b);
2129 else
2131 b->next = live_blocks;
2132 live_blocks = b;
2136 large_sblocks = live_blocks;
2140 /* Compact data of small strings. Free sblocks that don't contain
2141 data of live strings after compaction. */
2143 static void
2144 compact_small_strings (void)
2146 struct sblock *b, *tb, *next;
2147 struct sdata *from, *to, *end, *tb_end;
2148 struct sdata *to_end, *from_end;
2150 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2151 to, and TB_END is the end of TB. */
2152 tb = oldest_sblock;
2153 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2154 to = &tb->first_data;
2156 /* Step through the blocks from the oldest to the youngest. We
2157 expect that old blocks will stabilize over time, so that less
2158 copying will happen this way. */
2159 for (b = oldest_sblock; b; b = b->next)
2161 end = b->next_free;
2162 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2164 for (from = &b->first_data; from < end; from = from_end)
2166 /* Compute the next FROM here because copying below may
2167 overwrite data we need to compute it. */
2168 int nbytes;
2170 #ifdef GC_CHECK_STRING_BYTES
2171 /* Check that the string size recorded in the string is the
2172 same as the one recorded in the sdata structure. */
2173 if (from->string
2174 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2175 abort ();
2176 #endif /* GC_CHECK_STRING_BYTES */
2178 if (from->string)
2179 nbytes = GC_STRING_BYTES (from->string);
2180 else
2181 nbytes = SDATA_NBYTES (from);
2183 if (nbytes > LARGE_STRING_BYTES)
2184 abort ();
2186 nbytes = SDATA_SIZE (nbytes);
2187 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2189 #ifdef GC_CHECK_STRING_OVERRUN
2190 if (memcmp (string_overrun_cookie,
2191 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2192 GC_STRING_OVERRUN_COOKIE_SIZE))
2193 abort ();
2194 #endif
2196 /* FROM->string non-null means it's alive. Copy its data. */
2197 if (from->string)
2199 /* If TB is full, proceed with the next sblock. */
2200 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2201 if (to_end > tb_end)
2203 tb->next_free = to;
2204 tb = tb->next;
2205 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2206 to = &tb->first_data;
2207 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2210 /* Copy, and update the string's `data' pointer. */
2211 if (from != to)
2213 xassert (tb != b || to <= from);
2214 memmove (to, from, nbytes + GC_STRING_EXTRA);
2215 to->string->data = SDATA_DATA (to);
2218 /* Advance past the sdata we copied to. */
2219 to = to_end;
2224 /* The rest of the sblocks following TB don't contain live data, so
2225 we can free them. */
2226 for (b = tb->next; b; b = next)
2228 next = b->next;
2229 lisp_free (b);
2232 tb->next_free = to;
2233 tb->next = NULL;
2234 current_sblock = tb;
2238 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2239 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2240 LENGTH must be an integer.
2241 INIT must be an integer that represents a character. */)
2242 (Lisp_Object length, Lisp_Object init)
2244 register Lisp_Object val;
2245 register unsigned char *p, *end;
2246 int c, nbytes;
2248 CHECK_NATNUM (length);
2249 CHECK_NUMBER (init);
2251 c = XINT (init);
2252 if (ASCII_CHAR_P (c))
2254 nbytes = XINT (length);
2255 val = make_uninit_string (nbytes);
2256 p = SDATA (val);
2257 end = p + SCHARS (val);
2258 while (p != end)
2259 *p++ = c;
2261 else
2263 unsigned char str[MAX_MULTIBYTE_LENGTH];
2264 int len = CHAR_STRING (c, str);
2266 nbytes = len * XINT (length);
2267 val = make_uninit_multibyte_string (XINT (length), nbytes);
2268 p = SDATA (val);
2269 end = p + nbytes;
2270 while (p != end)
2272 memcpy (p, str, len);
2273 p += len;
2277 *p = 0;
2278 return val;
2282 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2283 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2284 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2285 (Lisp_Object length, Lisp_Object init)
2287 register Lisp_Object val;
2288 struct Lisp_Bool_Vector *p;
2289 int real_init, i;
2290 int length_in_chars, length_in_elts, bits_per_value;
2292 CHECK_NATNUM (length);
2294 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2296 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2297 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2298 / BOOL_VECTOR_BITS_PER_CHAR);
2300 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2301 slot `size' of the struct Lisp_Bool_Vector. */
2302 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2304 /* Get rid of any bits that would cause confusion. */
2305 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2306 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2307 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2309 p = XBOOL_VECTOR (val);
2310 p->size = XFASTINT (length);
2312 real_init = (NILP (init) ? 0 : -1);
2313 for (i = 0; i < length_in_chars ; i++)
2314 p->data[i] = real_init;
2316 /* Clear the extraneous bits in the last byte. */
2317 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2318 p->data[length_in_chars - 1]
2319 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2321 return val;
2325 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2326 of characters from the contents. This string may be unibyte or
2327 multibyte, depending on the contents. */
2329 Lisp_Object
2330 make_string (const char *contents, int nbytes)
2332 register Lisp_Object val;
2333 int nchars, multibyte_nbytes;
2335 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2336 if (nbytes == nchars || nbytes != multibyte_nbytes)
2337 /* CONTENTS contains no multibyte sequences or contains an invalid
2338 multibyte sequence. We must make unibyte string. */
2339 val = make_unibyte_string (contents, nbytes);
2340 else
2341 val = make_multibyte_string (contents, nchars, nbytes);
2342 return val;
2346 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2348 Lisp_Object
2349 make_unibyte_string (const char *contents, int length)
2351 register Lisp_Object val;
2352 val = make_uninit_string (length);
2353 memcpy (SDATA (val), contents, length);
2354 STRING_SET_UNIBYTE (val);
2355 return val;
2359 /* Make a multibyte string from NCHARS characters occupying NBYTES
2360 bytes at CONTENTS. */
2362 Lisp_Object
2363 make_multibyte_string (const char *contents, int nchars, int nbytes)
2365 register Lisp_Object val;
2366 val = make_uninit_multibyte_string (nchars, nbytes);
2367 memcpy (SDATA (val), contents, nbytes);
2368 return val;
2372 /* Make a string from NCHARS characters occupying NBYTES bytes at
2373 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2375 Lisp_Object
2376 make_string_from_bytes (const char *contents, int nchars, int nbytes)
2378 register Lisp_Object val;
2379 val = make_uninit_multibyte_string (nchars, nbytes);
2380 memcpy (SDATA (val), contents, nbytes);
2381 if (SBYTES (val) == SCHARS (val))
2382 STRING_SET_UNIBYTE (val);
2383 return val;
2387 /* Make a string from NCHARS characters occupying NBYTES bytes at
2388 CONTENTS. The argument MULTIBYTE controls whether to label the
2389 string as multibyte. If NCHARS is negative, it counts the number of
2390 characters by itself. */
2392 Lisp_Object
2393 make_specified_string (const char *contents, int nchars, int nbytes, int multibyte)
2395 register Lisp_Object val;
2397 if (nchars < 0)
2399 if (multibyte)
2400 nchars = multibyte_chars_in_text (contents, nbytes);
2401 else
2402 nchars = nbytes;
2404 val = make_uninit_multibyte_string (nchars, nbytes);
2405 memcpy (SDATA (val), contents, nbytes);
2406 if (!multibyte)
2407 STRING_SET_UNIBYTE (val);
2408 return val;
2412 /* Make a string from the data at STR, treating it as multibyte if the
2413 data warrants. */
2415 Lisp_Object
2416 build_string (const char *str)
2418 return make_string (str, strlen (str));
2422 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2423 occupying LENGTH bytes. */
2425 Lisp_Object
2426 make_uninit_string (int length)
2428 Lisp_Object val;
2430 if (!length)
2431 return empty_unibyte_string;
2432 val = make_uninit_multibyte_string (length, length);
2433 STRING_SET_UNIBYTE (val);
2434 return val;
2438 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2439 which occupy NBYTES bytes. */
2441 Lisp_Object
2442 make_uninit_multibyte_string (int nchars, int nbytes)
2444 Lisp_Object string;
2445 struct Lisp_String *s;
2447 if (nchars < 0)
2448 abort ();
2449 if (!nbytes)
2450 return empty_multibyte_string;
2452 s = allocate_string ();
2453 allocate_string_data (s, nchars, nbytes);
2454 XSETSTRING (string, s);
2455 string_chars_consed += nbytes;
2456 return string;
2461 /***********************************************************************
2462 Float Allocation
2463 ***********************************************************************/
2465 /* We store float cells inside of float_blocks, allocating a new
2466 float_block with malloc whenever necessary. Float cells reclaimed
2467 by GC are put on a free list to be reallocated before allocating
2468 any new float cells from the latest float_block. */
2470 #define FLOAT_BLOCK_SIZE \
2471 (((BLOCK_BYTES - sizeof (struct float_block *) \
2472 /* The compiler might add padding at the end. */ \
2473 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2474 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2476 #define GETMARKBIT(block,n) \
2477 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2478 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2479 & 1)
2481 #define SETMARKBIT(block,n) \
2482 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2483 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2485 #define UNSETMARKBIT(block,n) \
2486 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2487 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2489 #define FLOAT_BLOCK(fptr) \
2490 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2492 #define FLOAT_INDEX(fptr) \
2493 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2495 struct float_block
2497 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2498 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2499 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2500 struct float_block *next;
2503 #define FLOAT_MARKED_P(fptr) \
2504 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2506 #define FLOAT_MARK(fptr) \
2507 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2509 #define FLOAT_UNMARK(fptr) \
2510 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2512 /* Current float_block. */
2514 struct float_block *float_block;
2516 /* Index of first unused Lisp_Float in the current float_block. */
2518 int float_block_index;
2520 /* Total number of float blocks now in use. */
2522 int n_float_blocks;
2524 /* Free-list of Lisp_Floats. */
2526 struct Lisp_Float *float_free_list;
2529 /* Initialize float allocation. */
2531 static void
2532 init_float (void)
2534 float_block = NULL;
2535 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2536 float_free_list = 0;
2537 n_float_blocks = 0;
2541 /* Return a new float object with value FLOAT_VALUE. */
2543 Lisp_Object
2544 make_float (double float_value)
2546 register Lisp_Object val;
2548 /* eassert (!handling_signal); */
2550 MALLOC_BLOCK_INPUT;
2552 if (float_free_list)
2554 /* We use the data field for chaining the free list
2555 so that we won't use the same field that has the mark bit. */
2556 XSETFLOAT (val, float_free_list);
2557 float_free_list = float_free_list->u.chain;
2559 else
2561 if (float_block_index == FLOAT_BLOCK_SIZE)
2563 register struct float_block *new;
2565 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2566 MEM_TYPE_FLOAT);
2567 new->next = float_block;
2568 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2569 float_block = new;
2570 float_block_index = 0;
2571 n_float_blocks++;
2573 XSETFLOAT (val, &float_block->floats[float_block_index]);
2574 float_block_index++;
2577 MALLOC_UNBLOCK_INPUT;
2579 XFLOAT_INIT (val, float_value);
2580 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2581 consing_since_gc += sizeof (struct Lisp_Float);
2582 floats_consed++;
2583 return val;
2588 /***********************************************************************
2589 Cons Allocation
2590 ***********************************************************************/
2592 /* We store cons cells inside of cons_blocks, allocating a new
2593 cons_block with malloc whenever necessary. Cons cells reclaimed by
2594 GC are put on a free list to be reallocated before allocating
2595 any new cons cells from the latest cons_block. */
2597 #define CONS_BLOCK_SIZE \
2598 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2599 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2601 #define CONS_BLOCK(fptr) \
2602 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2604 #define CONS_INDEX(fptr) \
2605 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2607 struct cons_block
2609 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2610 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2611 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2612 struct cons_block *next;
2615 #define CONS_MARKED_P(fptr) \
2616 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2618 #define CONS_MARK(fptr) \
2619 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2621 #define CONS_UNMARK(fptr) \
2622 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2624 /* Current cons_block. */
2626 struct cons_block *cons_block;
2628 /* Index of first unused Lisp_Cons in the current block. */
2630 int cons_block_index;
2632 /* Free-list of Lisp_Cons structures. */
2634 struct Lisp_Cons *cons_free_list;
2636 /* Total number of cons blocks now in use. */
2638 static int n_cons_blocks;
2641 /* Initialize cons allocation. */
2643 static void
2644 init_cons (void)
2646 cons_block = NULL;
2647 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2648 cons_free_list = 0;
2649 n_cons_blocks = 0;
2653 /* Explicitly free a cons cell by putting it on the free-list. */
2655 void
2656 free_cons (struct Lisp_Cons *ptr)
2658 ptr->u.chain = cons_free_list;
2659 #if GC_MARK_STACK
2660 ptr->car = Vdead;
2661 #endif
2662 cons_free_list = ptr;
2665 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2666 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2667 (Lisp_Object car, Lisp_Object cdr)
2669 register Lisp_Object val;
2671 /* eassert (!handling_signal); */
2673 MALLOC_BLOCK_INPUT;
2675 if (cons_free_list)
2677 /* We use the cdr for chaining the free list
2678 so that we won't use the same field that has the mark bit. */
2679 XSETCONS (val, cons_free_list);
2680 cons_free_list = cons_free_list->u.chain;
2682 else
2684 if (cons_block_index == CONS_BLOCK_SIZE)
2686 register struct cons_block *new;
2687 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2688 MEM_TYPE_CONS);
2689 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2690 new->next = cons_block;
2691 cons_block = new;
2692 cons_block_index = 0;
2693 n_cons_blocks++;
2695 XSETCONS (val, &cons_block->conses[cons_block_index]);
2696 cons_block_index++;
2699 MALLOC_UNBLOCK_INPUT;
2701 XSETCAR (val, car);
2702 XSETCDR (val, cdr);
2703 eassert (!CONS_MARKED_P (XCONS (val)));
2704 consing_since_gc += sizeof (struct Lisp_Cons);
2705 cons_cells_consed++;
2706 return val;
2709 /* Get an error now if there's any junk in the cons free list. */
2710 void
2711 check_cons_list (void)
2713 #ifdef GC_CHECK_CONS_LIST
2714 struct Lisp_Cons *tail = cons_free_list;
2716 while (tail)
2717 tail = tail->u.chain;
2718 #endif
2721 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2723 Lisp_Object
2724 list1 (Lisp_Object arg1)
2726 return Fcons (arg1, Qnil);
2729 Lisp_Object
2730 list2 (Lisp_Object arg1, Lisp_Object arg2)
2732 return Fcons (arg1, Fcons (arg2, Qnil));
2736 Lisp_Object
2737 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2739 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2743 Lisp_Object
2744 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2746 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2750 Lisp_Object
2751 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2753 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2754 Fcons (arg5, Qnil)))));
2758 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2759 doc: /* Return a newly created list with specified arguments as elements.
2760 Any number of arguments, even zero arguments, are allowed.
2761 usage: (list &rest OBJECTS) */)
2762 (int nargs, register Lisp_Object *args)
2764 register Lisp_Object val;
2765 val = Qnil;
2767 while (nargs > 0)
2769 nargs--;
2770 val = Fcons (args[nargs], val);
2772 return val;
2776 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2777 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2778 (register Lisp_Object length, Lisp_Object init)
2780 register Lisp_Object val;
2781 register int size;
2783 CHECK_NATNUM (length);
2784 size = XFASTINT (length);
2786 val = Qnil;
2787 while (size > 0)
2789 val = Fcons (init, val);
2790 --size;
2792 if (size > 0)
2794 val = Fcons (init, val);
2795 --size;
2797 if (size > 0)
2799 val = Fcons (init, val);
2800 --size;
2802 if (size > 0)
2804 val = Fcons (init, val);
2805 --size;
2807 if (size > 0)
2809 val = Fcons (init, val);
2810 --size;
2816 QUIT;
2819 return val;
2824 /***********************************************************************
2825 Vector Allocation
2826 ***********************************************************************/
2828 /* Singly-linked list of all vectors. */
2830 static struct Lisp_Vector *all_vectors;
2832 /* Total number of vector-like objects now in use. */
2834 static int n_vectors;
2837 /* Value is a pointer to a newly allocated Lisp_Vector structure
2838 with room for LEN Lisp_Objects. */
2840 static struct Lisp_Vector *
2841 allocate_vectorlike (EMACS_INT len)
2843 struct Lisp_Vector *p;
2844 size_t nbytes;
2846 MALLOC_BLOCK_INPUT;
2848 #ifdef DOUG_LEA_MALLOC
2849 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2850 because mapped region contents are not preserved in
2851 a dumped Emacs. */
2852 mallopt (M_MMAP_MAX, 0);
2853 #endif
2855 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2856 /* eassert (!handling_signal); */
2858 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2859 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2861 #ifdef DOUG_LEA_MALLOC
2862 /* Back to a reasonable maximum of mmap'ed areas. */
2863 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2864 #endif
2866 consing_since_gc += nbytes;
2867 vector_cells_consed += len;
2869 p->next = all_vectors;
2870 all_vectors = p;
2872 MALLOC_UNBLOCK_INPUT;
2874 ++n_vectors;
2875 return p;
2879 /* Allocate a vector with NSLOTS slots. */
2881 struct Lisp_Vector *
2882 allocate_vector (EMACS_INT nslots)
2884 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2885 v->size = nslots;
2886 return v;
2890 /* Allocate other vector-like structures. */
2892 struct Lisp_Vector *
2893 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2895 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2896 EMACS_INT i;
2898 /* Only the first lisplen slots will be traced normally by the GC. */
2899 v->size = lisplen;
2900 for (i = 0; i < lisplen; ++i)
2901 v->contents[i] = Qnil;
2903 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2904 return v;
2907 struct Lisp_Hash_Table *
2908 allocate_hash_table (void)
2910 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2914 struct window *
2915 allocate_window (void)
2917 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2921 struct terminal *
2922 allocate_terminal (void)
2924 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2925 next_terminal, PVEC_TERMINAL);
2926 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2927 memset (&t->next_terminal, 0,
2928 (char*) (t + 1) - (char*) &t->next_terminal);
2930 return t;
2933 struct frame *
2934 allocate_frame (void)
2936 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2937 face_cache, PVEC_FRAME);
2938 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2939 memset (&f->face_cache, 0,
2940 (char *) (f + 1) - (char *) &f->face_cache);
2941 return f;
2945 struct Lisp_Process *
2946 allocate_process (void)
2948 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2952 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2953 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2954 See also the function `vector'. */)
2955 (register Lisp_Object length, Lisp_Object init)
2957 Lisp_Object vector;
2958 register EMACS_INT sizei;
2959 register int index;
2960 register struct Lisp_Vector *p;
2962 CHECK_NATNUM (length);
2963 sizei = XFASTINT (length);
2965 p = allocate_vector (sizei);
2966 for (index = 0; index < sizei; index++)
2967 p->contents[index] = init;
2969 XSETVECTOR (vector, p);
2970 return vector;
2974 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2975 doc: /* Return a newly created vector with specified arguments as elements.
2976 Any number of arguments, even zero arguments, are allowed.
2977 usage: (vector &rest OBJECTS) */)
2978 (register int nargs, Lisp_Object *args)
2980 register Lisp_Object len, val;
2981 register int index;
2982 register struct Lisp_Vector *p;
2984 XSETFASTINT (len, nargs);
2985 val = Fmake_vector (len, Qnil);
2986 p = XVECTOR (val);
2987 for (index = 0; index < nargs; index++)
2988 p->contents[index] = args[index];
2989 return val;
2993 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2994 doc: /* Create a byte-code object with specified arguments as elements.
2995 The arguments should be the arglist, bytecode-string, constant vector,
2996 stack size, (optional) doc string, and (optional) interactive spec.
2997 The first four arguments are required; at most six have any
2998 significance.
2999 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3000 (register int nargs, Lisp_Object *args)
3002 register Lisp_Object len, val;
3003 register int index;
3004 register struct Lisp_Vector *p;
3006 XSETFASTINT (len, nargs);
3007 if (!NILP (Vpurify_flag))
3008 val = make_pure_vector ((EMACS_INT) nargs);
3009 else
3010 val = Fmake_vector (len, Qnil);
3012 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3013 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3014 earlier because they produced a raw 8-bit string for byte-code
3015 and now such a byte-code string is loaded as multibyte while
3016 raw 8-bit characters converted to multibyte form. Thus, now we
3017 must convert them back to the original unibyte form. */
3018 args[1] = Fstring_as_unibyte (args[1]);
3020 p = XVECTOR (val);
3021 for (index = 0; index < nargs; index++)
3023 if (!NILP (Vpurify_flag))
3024 args[index] = Fpurecopy (args[index]);
3025 p->contents[index] = args[index];
3027 XSETPVECTYPE (p, PVEC_COMPILED);
3028 XSETCOMPILED (val, p);
3029 return val;
3034 /***********************************************************************
3035 Symbol Allocation
3036 ***********************************************************************/
3038 /* Each symbol_block is just under 1020 bytes long, since malloc
3039 really allocates in units of powers of two and uses 4 bytes for its
3040 own overhead. */
3042 #define SYMBOL_BLOCK_SIZE \
3043 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3045 struct symbol_block
3047 /* Place `symbols' first, to preserve alignment. */
3048 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3049 struct symbol_block *next;
3052 /* Current symbol block and index of first unused Lisp_Symbol
3053 structure in it. */
3055 static struct symbol_block *symbol_block;
3056 static int symbol_block_index;
3058 /* List of free symbols. */
3060 static struct Lisp_Symbol *symbol_free_list;
3062 /* Total number of symbol blocks now in use. */
3064 static int n_symbol_blocks;
3067 /* Initialize symbol allocation. */
3069 static void
3070 init_symbol (void)
3072 symbol_block = NULL;
3073 symbol_block_index = SYMBOL_BLOCK_SIZE;
3074 symbol_free_list = 0;
3075 n_symbol_blocks = 0;
3079 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3080 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3081 Its value and function definition are void, and its property list is nil. */)
3082 (Lisp_Object name)
3084 register Lisp_Object val;
3085 register struct Lisp_Symbol *p;
3087 CHECK_STRING (name);
3089 /* eassert (!handling_signal); */
3091 MALLOC_BLOCK_INPUT;
3093 if (symbol_free_list)
3095 XSETSYMBOL (val, symbol_free_list);
3096 symbol_free_list = symbol_free_list->next;
3098 else
3100 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3102 struct symbol_block *new;
3103 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3104 MEM_TYPE_SYMBOL);
3105 new->next = symbol_block;
3106 symbol_block = new;
3107 symbol_block_index = 0;
3108 n_symbol_blocks++;
3110 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3111 symbol_block_index++;
3114 MALLOC_UNBLOCK_INPUT;
3116 p = XSYMBOL (val);
3117 p->xname = name;
3118 p->plist = Qnil;
3119 p->redirect = SYMBOL_PLAINVAL;
3120 SET_SYMBOL_VAL (p, Qunbound);
3121 p->function = Qunbound;
3122 p->next = NULL;
3123 p->gcmarkbit = 0;
3124 p->interned = SYMBOL_UNINTERNED;
3125 p->constant = 0;
3126 consing_since_gc += sizeof (struct Lisp_Symbol);
3127 symbols_consed++;
3128 return val;
3133 /***********************************************************************
3134 Marker (Misc) Allocation
3135 ***********************************************************************/
3137 /* Allocation of markers and other objects that share that structure.
3138 Works like allocation of conses. */
3140 #define MARKER_BLOCK_SIZE \
3141 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3143 struct marker_block
3145 /* Place `markers' first, to preserve alignment. */
3146 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3147 struct marker_block *next;
3150 static struct marker_block *marker_block;
3151 static int marker_block_index;
3153 static union Lisp_Misc *marker_free_list;
3155 /* Total number of marker blocks now in use. */
3157 static int n_marker_blocks;
3159 static void
3160 init_marker (void)
3162 marker_block = NULL;
3163 marker_block_index = MARKER_BLOCK_SIZE;
3164 marker_free_list = 0;
3165 n_marker_blocks = 0;
3168 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3170 Lisp_Object
3171 allocate_misc (void)
3173 Lisp_Object val;
3175 /* eassert (!handling_signal); */
3177 MALLOC_BLOCK_INPUT;
3179 if (marker_free_list)
3181 XSETMISC (val, marker_free_list);
3182 marker_free_list = marker_free_list->u_free.chain;
3184 else
3186 if (marker_block_index == MARKER_BLOCK_SIZE)
3188 struct marker_block *new;
3189 new = (struct marker_block *) lisp_malloc (sizeof *new,
3190 MEM_TYPE_MISC);
3191 new->next = marker_block;
3192 marker_block = new;
3193 marker_block_index = 0;
3194 n_marker_blocks++;
3195 total_free_markers += MARKER_BLOCK_SIZE;
3197 XSETMISC (val, &marker_block->markers[marker_block_index]);
3198 marker_block_index++;
3201 MALLOC_UNBLOCK_INPUT;
3203 --total_free_markers;
3204 consing_since_gc += sizeof (union Lisp_Misc);
3205 misc_objects_consed++;
3206 XMISCANY (val)->gcmarkbit = 0;
3207 return val;
3210 /* Free a Lisp_Misc object */
3212 void
3213 free_misc (Lisp_Object misc)
3215 XMISCTYPE (misc) = Lisp_Misc_Free;
3216 XMISC (misc)->u_free.chain = marker_free_list;
3217 marker_free_list = XMISC (misc);
3219 total_free_markers++;
3222 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3223 INTEGER. This is used to package C values to call record_unwind_protect.
3224 The unwind function can get the C values back using XSAVE_VALUE. */
3226 Lisp_Object
3227 make_save_value (void *pointer, int integer)
3229 register Lisp_Object val;
3230 register struct Lisp_Save_Value *p;
3232 val = allocate_misc ();
3233 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3234 p = XSAVE_VALUE (val);
3235 p->pointer = pointer;
3236 p->integer = integer;
3237 p->dogc = 0;
3238 return val;
3241 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3242 doc: /* Return a newly allocated marker which does not point at any place. */)
3243 (void)
3245 register Lisp_Object val;
3246 register struct Lisp_Marker *p;
3248 val = allocate_misc ();
3249 XMISCTYPE (val) = Lisp_Misc_Marker;
3250 p = XMARKER (val);
3251 p->buffer = 0;
3252 p->bytepos = 0;
3253 p->charpos = 0;
3254 p->next = NULL;
3255 p->insertion_type = 0;
3256 return val;
3259 /* Put MARKER back on the free list after using it temporarily. */
3261 void
3262 free_marker (Lisp_Object marker)
3264 unchain_marker (XMARKER (marker));
3265 free_misc (marker);
3269 /* Return a newly created vector or string with specified arguments as
3270 elements. If all the arguments are characters that can fit
3271 in a string of events, make a string; otherwise, make a vector.
3273 Any number of arguments, even zero arguments, are allowed. */
3275 Lisp_Object
3276 make_event_array (register int nargs, Lisp_Object *args)
3278 int i;
3280 for (i = 0; i < nargs; i++)
3281 /* The things that fit in a string
3282 are characters that are in 0...127,
3283 after discarding the meta bit and all the bits above it. */
3284 if (!INTEGERP (args[i])
3285 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3286 return Fvector (nargs, args);
3288 /* Since the loop exited, we know that all the things in it are
3289 characters, so we can make a string. */
3291 Lisp_Object result;
3293 result = Fmake_string (make_number (nargs), make_number (0));
3294 for (i = 0; i < nargs; i++)
3296 SSET (result, i, XINT (args[i]));
3297 /* Move the meta bit to the right place for a string char. */
3298 if (XINT (args[i]) & CHAR_META)
3299 SSET (result, i, SREF (result, i) | 0x80);
3302 return result;
3308 /************************************************************************
3309 Memory Full Handling
3310 ************************************************************************/
3313 /* Called if malloc returns zero. */
3315 void
3316 memory_full (void)
3318 int i;
3320 Vmemory_full = Qt;
3322 memory_full_cons_threshold = sizeof (struct cons_block);
3324 /* The first time we get here, free the spare memory. */
3325 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3326 if (spare_memory[i])
3328 if (i == 0)
3329 free (spare_memory[i]);
3330 else if (i >= 1 && i <= 4)
3331 lisp_align_free (spare_memory[i]);
3332 else
3333 lisp_free (spare_memory[i]);
3334 spare_memory[i] = 0;
3337 /* Record the space now used. When it decreases substantially,
3338 we can refill the memory reserve. */
3339 #ifndef SYSTEM_MALLOC
3340 bytes_used_when_full = BYTES_USED;
3341 #endif
3343 /* This used to call error, but if we've run out of memory, we could
3344 get infinite recursion trying to build the string. */
3345 xsignal (Qnil, Vmemory_signal_data);
3348 /* If we released our reserve (due to running out of memory),
3349 and we have a fair amount free once again,
3350 try to set aside another reserve in case we run out once more.
3352 This is called when a relocatable block is freed in ralloc.c,
3353 and also directly from this file, in case we're not using ralloc.c. */
3355 void
3356 refill_memory_reserve (void)
3358 #ifndef SYSTEM_MALLOC
3359 if (spare_memory[0] == 0)
3360 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3361 if (spare_memory[1] == 0)
3362 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3363 MEM_TYPE_CONS);
3364 if (spare_memory[2] == 0)
3365 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3366 MEM_TYPE_CONS);
3367 if (spare_memory[3] == 0)
3368 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3369 MEM_TYPE_CONS);
3370 if (spare_memory[4] == 0)
3371 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3372 MEM_TYPE_CONS);
3373 if (spare_memory[5] == 0)
3374 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3375 MEM_TYPE_STRING);
3376 if (spare_memory[6] == 0)
3377 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3378 MEM_TYPE_STRING);
3379 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3380 Vmemory_full = Qnil;
3381 #endif
3384 /************************************************************************
3385 C Stack Marking
3386 ************************************************************************/
3388 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3390 /* Conservative C stack marking requires a method to identify possibly
3391 live Lisp objects given a pointer value. We do this by keeping
3392 track of blocks of Lisp data that are allocated in a red-black tree
3393 (see also the comment of mem_node which is the type of nodes in
3394 that tree). Function lisp_malloc adds information for an allocated
3395 block to the red-black tree with calls to mem_insert, and function
3396 lisp_free removes it with mem_delete. Functions live_string_p etc
3397 call mem_find to lookup information about a given pointer in the
3398 tree, and use that to determine if the pointer points to a Lisp
3399 object or not. */
3401 /* Initialize this part of alloc.c. */
3403 static void
3404 mem_init (void)
3406 mem_z.left = mem_z.right = MEM_NIL;
3407 mem_z.parent = NULL;
3408 mem_z.color = MEM_BLACK;
3409 mem_z.start = mem_z.end = NULL;
3410 mem_root = MEM_NIL;
3414 /* Value is a pointer to the mem_node containing START. Value is
3415 MEM_NIL if there is no node in the tree containing START. */
3417 static INLINE struct mem_node *
3418 mem_find (void *start)
3420 struct mem_node *p;
3422 if (start < min_heap_address || start > max_heap_address)
3423 return MEM_NIL;
3425 /* Make the search always successful to speed up the loop below. */
3426 mem_z.start = start;
3427 mem_z.end = (char *) start + 1;
3429 p = mem_root;
3430 while (start < p->start || start >= p->end)
3431 p = start < p->start ? p->left : p->right;
3432 return p;
3436 /* Insert a new node into the tree for a block of memory with start
3437 address START, end address END, and type TYPE. Value is a
3438 pointer to the node that was inserted. */
3440 static struct mem_node *
3441 mem_insert (void *start, void *end, enum mem_type type)
3443 struct mem_node *c, *parent, *x;
3445 if (min_heap_address == NULL || start < min_heap_address)
3446 min_heap_address = start;
3447 if (max_heap_address == NULL || end > max_heap_address)
3448 max_heap_address = end;
3450 /* See where in the tree a node for START belongs. In this
3451 particular application, it shouldn't happen that a node is already
3452 present. For debugging purposes, let's check that. */
3453 c = mem_root;
3454 parent = NULL;
3456 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3458 while (c != MEM_NIL)
3460 if (start >= c->start && start < c->end)
3461 abort ();
3462 parent = c;
3463 c = start < c->start ? c->left : c->right;
3466 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3468 while (c != MEM_NIL)
3470 parent = c;
3471 c = start < c->start ? c->left : c->right;
3474 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3476 /* Create a new node. */
3477 #ifdef GC_MALLOC_CHECK
3478 x = (struct mem_node *) _malloc_internal (sizeof *x);
3479 if (x == NULL)
3480 abort ();
3481 #else
3482 x = (struct mem_node *) xmalloc (sizeof *x);
3483 #endif
3484 x->start = start;
3485 x->end = end;
3486 x->type = type;
3487 x->parent = parent;
3488 x->left = x->right = MEM_NIL;
3489 x->color = MEM_RED;
3491 /* Insert it as child of PARENT or install it as root. */
3492 if (parent)
3494 if (start < parent->start)
3495 parent->left = x;
3496 else
3497 parent->right = x;
3499 else
3500 mem_root = x;
3502 /* Re-establish red-black tree properties. */
3503 mem_insert_fixup (x);
3505 return x;
3509 /* Re-establish the red-black properties of the tree, and thereby
3510 balance the tree, after node X has been inserted; X is always red. */
3512 static void
3513 mem_insert_fixup (struct mem_node *x)
3515 while (x != mem_root && x->parent->color == MEM_RED)
3517 /* X is red and its parent is red. This is a violation of
3518 red-black tree property #3. */
3520 if (x->parent == x->parent->parent->left)
3522 /* We're on the left side of our grandparent, and Y is our
3523 "uncle". */
3524 struct mem_node *y = x->parent->parent->right;
3526 if (y->color == MEM_RED)
3528 /* Uncle and parent are red but should be black because
3529 X is red. Change the colors accordingly and proceed
3530 with the grandparent. */
3531 x->parent->color = MEM_BLACK;
3532 y->color = MEM_BLACK;
3533 x->parent->parent->color = MEM_RED;
3534 x = x->parent->parent;
3536 else
3538 /* Parent and uncle have different colors; parent is
3539 red, uncle is black. */
3540 if (x == x->parent->right)
3542 x = x->parent;
3543 mem_rotate_left (x);
3546 x->parent->color = MEM_BLACK;
3547 x->parent->parent->color = MEM_RED;
3548 mem_rotate_right (x->parent->parent);
3551 else
3553 /* This is the symmetrical case of above. */
3554 struct mem_node *y = x->parent->parent->left;
3556 if (y->color == MEM_RED)
3558 x->parent->color = MEM_BLACK;
3559 y->color = MEM_BLACK;
3560 x->parent->parent->color = MEM_RED;
3561 x = x->parent->parent;
3563 else
3565 if (x == x->parent->left)
3567 x = x->parent;
3568 mem_rotate_right (x);
3571 x->parent->color = MEM_BLACK;
3572 x->parent->parent->color = MEM_RED;
3573 mem_rotate_left (x->parent->parent);
3578 /* The root may have been changed to red due to the algorithm. Set
3579 it to black so that property #5 is satisfied. */
3580 mem_root->color = MEM_BLACK;
3584 /* (x) (y)
3585 / \ / \
3586 a (y) ===> (x) c
3587 / \ / \
3588 b c a b */
3590 static void
3591 mem_rotate_left (struct mem_node *x)
3593 struct mem_node *y;
3595 /* Turn y's left sub-tree into x's right sub-tree. */
3596 y = x->right;
3597 x->right = y->left;
3598 if (y->left != MEM_NIL)
3599 y->left->parent = x;
3601 /* Y's parent was x's parent. */
3602 if (y != MEM_NIL)
3603 y->parent = x->parent;
3605 /* Get the parent to point to y instead of x. */
3606 if (x->parent)
3608 if (x == x->parent->left)
3609 x->parent->left = y;
3610 else
3611 x->parent->right = y;
3613 else
3614 mem_root = y;
3616 /* Put x on y's left. */
3617 y->left = x;
3618 if (x != MEM_NIL)
3619 x->parent = y;
3623 /* (x) (Y)
3624 / \ / \
3625 (y) c ===> a (x)
3626 / \ / \
3627 a b b c */
3629 static void
3630 mem_rotate_right (struct mem_node *x)
3632 struct mem_node *y = x->left;
3634 x->left = y->right;
3635 if (y->right != MEM_NIL)
3636 y->right->parent = x;
3638 if (y != MEM_NIL)
3639 y->parent = x->parent;
3640 if (x->parent)
3642 if (x == x->parent->right)
3643 x->parent->right = y;
3644 else
3645 x->parent->left = y;
3647 else
3648 mem_root = y;
3650 y->right = x;
3651 if (x != MEM_NIL)
3652 x->parent = y;
3656 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3658 static void
3659 mem_delete (struct mem_node *z)
3661 struct mem_node *x, *y;
3663 if (!z || z == MEM_NIL)
3664 return;
3666 if (z->left == MEM_NIL || z->right == MEM_NIL)
3667 y = z;
3668 else
3670 y = z->right;
3671 while (y->left != MEM_NIL)
3672 y = y->left;
3675 if (y->left != MEM_NIL)
3676 x = y->left;
3677 else
3678 x = y->right;
3680 x->parent = y->parent;
3681 if (y->parent)
3683 if (y == y->parent->left)
3684 y->parent->left = x;
3685 else
3686 y->parent->right = x;
3688 else
3689 mem_root = x;
3691 if (y != z)
3693 z->start = y->start;
3694 z->end = y->end;
3695 z->type = y->type;
3698 if (y->color == MEM_BLACK)
3699 mem_delete_fixup (x);
3701 #ifdef GC_MALLOC_CHECK
3702 _free_internal (y);
3703 #else
3704 xfree (y);
3705 #endif
3709 /* Re-establish the red-black properties of the tree, after a
3710 deletion. */
3712 static void
3713 mem_delete_fixup (struct mem_node *x)
3715 while (x != mem_root && x->color == MEM_BLACK)
3717 if (x == x->parent->left)
3719 struct mem_node *w = x->parent->right;
3721 if (w->color == MEM_RED)
3723 w->color = MEM_BLACK;
3724 x->parent->color = MEM_RED;
3725 mem_rotate_left (x->parent);
3726 w = x->parent->right;
3729 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3731 w->color = MEM_RED;
3732 x = x->parent;
3734 else
3736 if (w->right->color == MEM_BLACK)
3738 w->left->color = MEM_BLACK;
3739 w->color = MEM_RED;
3740 mem_rotate_right (w);
3741 w = x->parent->right;
3743 w->color = x->parent->color;
3744 x->parent->color = MEM_BLACK;
3745 w->right->color = MEM_BLACK;
3746 mem_rotate_left (x->parent);
3747 x = mem_root;
3750 else
3752 struct mem_node *w = x->parent->left;
3754 if (w->color == MEM_RED)
3756 w->color = MEM_BLACK;
3757 x->parent->color = MEM_RED;
3758 mem_rotate_right (x->parent);
3759 w = x->parent->left;
3762 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3764 w->color = MEM_RED;
3765 x = x->parent;
3767 else
3769 if (w->left->color == MEM_BLACK)
3771 w->right->color = MEM_BLACK;
3772 w->color = MEM_RED;
3773 mem_rotate_left (w);
3774 w = x->parent->left;
3777 w->color = x->parent->color;
3778 x->parent->color = MEM_BLACK;
3779 w->left->color = MEM_BLACK;
3780 mem_rotate_right (x->parent);
3781 x = mem_root;
3786 x->color = MEM_BLACK;
3790 /* Value is non-zero if P is a pointer to a live Lisp string on
3791 the heap. M is a pointer to the mem_block for P. */
3793 static INLINE int
3794 live_string_p (struct mem_node *m, void *p)
3796 if (m->type == MEM_TYPE_STRING)
3798 struct string_block *b = (struct string_block *) m->start;
3799 int offset = (char *) p - (char *) &b->strings[0];
3801 /* P must point to the start of a Lisp_String structure, and it
3802 must not be on the free-list. */
3803 return (offset >= 0
3804 && offset % sizeof b->strings[0] == 0
3805 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3806 && ((struct Lisp_String *) p)->data != NULL);
3808 else
3809 return 0;
3813 /* Value is non-zero if P is a pointer to a live Lisp cons on
3814 the heap. M is a pointer to the mem_block for P. */
3816 static INLINE int
3817 live_cons_p (struct mem_node *m, void *p)
3819 if (m->type == MEM_TYPE_CONS)
3821 struct cons_block *b = (struct cons_block *) m->start;
3822 int offset = (char *) p - (char *) &b->conses[0];
3824 /* P must point to the start of a Lisp_Cons, not be
3825 one of the unused cells in the current cons block,
3826 and not be on the free-list. */
3827 return (offset >= 0
3828 && offset % sizeof b->conses[0] == 0
3829 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3830 && (b != cons_block
3831 || offset / sizeof b->conses[0] < cons_block_index)
3832 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3834 else
3835 return 0;
3839 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3840 the heap. M is a pointer to the mem_block for P. */
3842 static INLINE int
3843 live_symbol_p (struct mem_node *m, void *p)
3845 if (m->type == MEM_TYPE_SYMBOL)
3847 struct symbol_block *b = (struct symbol_block *) m->start;
3848 int offset = (char *) p - (char *) &b->symbols[0];
3850 /* P must point to the start of a Lisp_Symbol, not be
3851 one of the unused cells in the current symbol block,
3852 and not be on the free-list. */
3853 return (offset >= 0
3854 && offset % sizeof b->symbols[0] == 0
3855 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3856 && (b != symbol_block
3857 || offset / sizeof b->symbols[0] < symbol_block_index)
3858 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3860 else
3861 return 0;
3865 /* Value is non-zero if P is a pointer to a live Lisp float on
3866 the heap. M is a pointer to the mem_block for P. */
3868 static INLINE int
3869 live_float_p (struct mem_node *m, void *p)
3871 if (m->type == MEM_TYPE_FLOAT)
3873 struct float_block *b = (struct float_block *) m->start;
3874 int offset = (char *) p - (char *) &b->floats[0];
3876 /* P must point to the start of a Lisp_Float and not be
3877 one of the unused cells in the current float block. */
3878 return (offset >= 0
3879 && offset % sizeof b->floats[0] == 0
3880 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3881 && (b != float_block
3882 || offset / sizeof b->floats[0] < float_block_index));
3884 else
3885 return 0;
3889 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3890 the heap. M is a pointer to the mem_block for P. */
3892 static INLINE int
3893 live_misc_p (struct mem_node *m, void *p)
3895 if (m->type == MEM_TYPE_MISC)
3897 struct marker_block *b = (struct marker_block *) m->start;
3898 int offset = (char *) p - (char *) &b->markers[0];
3900 /* P must point to the start of a Lisp_Misc, not be
3901 one of the unused cells in the current misc block,
3902 and not be on the free-list. */
3903 return (offset >= 0
3904 && offset % sizeof b->markers[0] == 0
3905 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3906 && (b != marker_block
3907 || offset / sizeof b->markers[0] < marker_block_index)
3908 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3910 else
3911 return 0;
3915 /* Value is non-zero if P is a pointer to a live vector-like object.
3916 M is a pointer to the mem_block for P. */
3918 static INLINE int
3919 live_vector_p (struct mem_node *m, void *p)
3921 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3925 /* Value is non-zero if P is a pointer to a live buffer. M is a
3926 pointer to the mem_block for P. */
3928 static INLINE int
3929 live_buffer_p (struct mem_node *m, void *p)
3931 /* P must point to the start of the block, and the buffer
3932 must not have been killed. */
3933 return (m->type == MEM_TYPE_BUFFER
3934 && p == m->start
3935 && !NILP (((struct buffer *) p)->name));
3938 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3940 #if GC_MARK_STACK
3942 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3944 /* Array of objects that are kept alive because the C stack contains
3945 a pattern that looks like a reference to them . */
3947 #define MAX_ZOMBIES 10
3948 static Lisp_Object zombies[MAX_ZOMBIES];
3950 /* Number of zombie objects. */
3952 static int nzombies;
3954 /* Number of garbage collections. */
3956 static int ngcs;
3958 /* Average percentage of zombies per collection. */
3960 static double avg_zombies;
3962 /* Max. number of live and zombie objects. */
3964 static int max_live, max_zombies;
3966 /* Average number of live objects per GC. */
3968 static double avg_live;
3970 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3971 doc: /* Show information about live and zombie objects. */)
3972 (void)
3974 Lisp_Object args[8], zombie_list = Qnil;
3975 int i;
3976 for (i = 0; i < nzombies; i++)
3977 zombie_list = Fcons (zombies[i], zombie_list);
3978 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3979 args[1] = make_number (ngcs);
3980 args[2] = make_float (avg_live);
3981 args[3] = make_float (avg_zombies);
3982 args[4] = make_float (avg_zombies / avg_live / 100);
3983 args[5] = make_number (max_live);
3984 args[6] = make_number (max_zombies);
3985 args[7] = zombie_list;
3986 return Fmessage (8, args);
3989 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3992 /* Mark OBJ if we can prove it's a Lisp_Object. */
3994 static INLINE void
3995 mark_maybe_object (Lisp_Object obj)
3997 void *po = (void *) XPNTR (obj);
3998 struct mem_node *m = mem_find (po);
4000 if (m != MEM_NIL)
4002 int mark_p = 0;
4004 switch (XTYPE (obj))
4006 case Lisp_String:
4007 mark_p = (live_string_p (m, po)
4008 && !STRING_MARKED_P ((struct Lisp_String *) po));
4009 break;
4011 case Lisp_Cons:
4012 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4013 break;
4015 case Lisp_Symbol:
4016 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4017 break;
4019 case Lisp_Float:
4020 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4021 break;
4023 case Lisp_Vectorlike:
4024 /* Note: can't check BUFFERP before we know it's a
4025 buffer because checking that dereferences the pointer
4026 PO which might point anywhere. */
4027 if (live_vector_p (m, po))
4028 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4029 else if (live_buffer_p (m, po))
4030 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4031 break;
4033 case Lisp_Misc:
4034 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4035 break;
4037 default:
4038 break;
4041 if (mark_p)
4043 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4044 if (nzombies < MAX_ZOMBIES)
4045 zombies[nzombies] = obj;
4046 ++nzombies;
4047 #endif
4048 mark_object (obj);
4054 /* If P points to Lisp data, mark that as live if it isn't already
4055 marked. */
4057 static INLINE void
4058 mark_maybe_pointer (void *p)
4060 struct mem_node *m;
4062 /* Quickly rule out some values which can't point to Lisp data. */
4063 if ((EMACS_INT) p %
4064 #ifdef USE_LSB_TAG
4065 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4066 #else
4067 2 /* We assume that Lisp data is aligned on even addresses. */
4068 #endif
4070 return;
4072 m = mem_find (p);
4073 if (m != MEM_NIL)
4075 Lisp_Object obj = Qnil;
4077 switch (m->type)
4079 case MEM_TYPE_NON_LISP:
4080 /* Nothing to do; not a pointer to Lisp memory. */
4081 break;
4083 case MEM_TYPE_BUFFER:
4084 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4085 XSETVECTOR (obj, p);
4086 break;
4088 case MEM_TYPE_CONS:
4089 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4090 XSETCONS (obj, p);
4091 break;
4093 case MEM_TYPE_STRING:
4094 if (live_string_p (m, p)
4095 && !STRING_MARKED_P ((struct Lisp_String *) p))
4096 XSETSTRING (obj, p);
4097 break;
4099 case MEM_TYPE_MISC:
4100 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4101 XSETMISC (obj, p);
4102 break;
4104 case MEM_TYPE_SYMBOL:
4105 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4106 XSETSYMBOL (obj, p);
4107 break;
4109 case MEM_TYPE_FLOAT:
4110 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4111 XSETFLOAT (obj, p);
4112 break;
4114 case MEM_TYPE_VECTORLIKE:
4115 if (live_vector_p (m, p))
4117 Lisp_Object tem;
4118 XSETVECTOR (tem, p);
4119 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4120 obj = tem;
4122 break;
4124 default:
4125 abort ();
4128 if (!NILP (obj))
4129 mark_object (obj);
4134 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4135 or END+OFFSET..START. */
4137 static void
4138 mark_memory (void *start, void *end, int offset)
4140 Lisp_Object *p;
4141 void **pp;
4143 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4144 nzombies = 0;
4145 #endif
4147 /* Make START the pointer to the start of the memory region,
4148 if it isn't already. */
4149 if (end < start)
4151 void *tem = start;
4152 start = end;
4153 end = tem;
4156 /* Mark Lisp_Objects. */
4157 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4158 mark_maybe_object (*p);
4160 /* Mark Lisp data pointed to. This is necessary because, in some
4161 situations, the C compiler optimizes Lisp objects away, so that
4162 only a pointer to them remains. Example:
4164 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4167 Lisp_Object obj = build_string ("test");
4168 struct Lisp_String *s = XSTRING (obj);
4169 Fgarbage_collect ();
4170 fprintf (stderr, "test `%s'\n", s->data);
4171 return Qnil;
4174 Here, `obj' isn't really used, and the compiler optimizes it
4175 away. The only reference to the life string is through the
4176 pointer `s'. */
4178 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4179 mark_maybe_pointer (*pp);
4182 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4183 the GCC system configuration. In gcc 3.2, the only systems for
4184 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4185 by others?) and ns32k-pc532-min. */
4187 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4189 static int setjmp_tested_p, longjmps_done;
4191 #define SETJMP_WILL_LIKELY_WORK "\
4193 Emacs garbage collector has been changed to use conservative stack\n\
4194 marking. Emacs has determined that the method it uses to do the\n\
4195 marking will likely work on your system, but this isn't sure.\n\
4197 If you are a system-programmer, or can get the help of a local wizard\n\
4198 who is, please take a look at the function mark_stack in alloc.c, and\n\
4199 verify that the methods used are appropriate for your system.\n\
4201 Please mail the result to <emacs-devel@gnu.org>.\n\
4204 #define SETJMP_WILL_NOT_WORK "\
4206 Emacs garbage collector has been changed to use conservative stack\n\
4207 marking. Emacs has determined that the default method it uses to do the\n\
4208 marking will not work on your system. We will need a system-dependent\n\
4209 solution for your system.\n\
4211 Please take a look at the function mark_stack in alloc.c, and\n\
4212 try to find a way to make it work on your system.\n\
4214 Note that you may get false negatives, depending on the compiler.\n\
4215 In particular, you need to use -O with GCC for this test.\n\
4217 Please mail the result to <emacs-devel@gnu.org>.\n\
4221 /* Perform a quick check if it looks like setjmp saves registers in a
4222 jmp_buf. Print a message to stderr saying so. When this test
4223 succeeds, this is _not_ a proof that setjmp is sufficient for
4224 conservative stack marking. Only the sources or a disassembly
4225 can prove that. */
4227 static void
4228 test_setjmp ()
4230 char buf[10];
4231 register int x;
4232 jmp_buf jbuf;
4233 int result = 0;
4235 /* Arrange for X to be put in a register. */
4236 sprintf (buf, "1");
4237 x = strlen (buf);
4238 x = 2 * x - 1;
4240 setjmp (jbuf);
4241 if (longjmps_done == 1)
4243 /* Came here after the longjmp at the end of the function.
4245 If x == 1, the longjmp has restored the register to its
4246 value before the setjmp, and we can hope that setjmp
4247 saves all such registers in the jmp_buf, although that
4248 isn't sure.
4250 For other values of X, either something really strange is
4251 taking place, or the setjmp just didn't save the register. */
4253 if (x == 1)
4254 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4255 else
4257 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4258 exit (1);
4262 ++longjmps_done;
4263 x = 2;
4264 if (longjmps_done == 1)
4265 longjmp (jbuf, 1);
4268 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4271 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4273 /* Abort if anything GCPRO'd doesn't survive the GC. */
4275 static void
4276 check_gcpros ()
4278 struct gcpro *p;
4279 int i;
4281 for (p = gcprolist; p; p = p->next)
4282 for (i = 0; i < p->nvars; ++i)
4283 if (!survives_gc_p (p->var[i]))
4284 /* FIXME: It's not necessarily a bug. It might just be that the
4285 GCPRO is unnecessary or should release the object sooner. */
4286 abort ();
4289 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4291 static void
4292 dump_zombies ()
4294 int i;
4296 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4297 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4299 fprintf (stderr, " %d = ", i);
4300 debug_print (zombies[i]);
4304 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4307 /* Mark live Lisp objects on the C stack.
4309 There are several system-dependent problems to consider when
4310 porting this to new architectures:
4312 Processor Registers
4314 We have to mark Lisp objects in CPU registers that can hold local
4315 variables or are used to pass parameters.
4317 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4318 something that either saves relevant registers on the stack, or
4319 calls mark_maybe_object passing it each register's contents.
4321 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4322 implementation assumes that calling setjmp saves registers we need
4323 to see in a jmp_buf which itself lies on the stack. This doesn't
4324 have to be true! It must be verified for each system, possibly
4325 by taking a look at the source code of setjmp.
4327 Stack Layout
4329 Architectures differ in the way their processor stack is organized.
4330 For example, the stack might look like this
4332 +----------------+
4333 | Lisp_Object | size = 4
4334 +----------------+
4335 | something else | size = 2
4336 +----------------+
4337 | Lisp_Object | size = 4
4338 +----------------+
4339 | ... |
4341 In such a case, not every Lisp_Object will be aligned equally. To
4342 find all Lisp_Object on the stack it won't be sufficient to walk
4343 the stack in steps of 4 bytes. Instead, two passes will be
4344 necessary, one starting at the start of the stack, and a second
4345 pass starting at the start of the stack + 2. Likewise, if the
4346 minimal alignment of Lisp_Objects on the stack is 1, four passes
4347 would be necessary, each one starting with one byte more offset
4348 from the stack start.
4350 The current code assumes by default that Lisp_Objects are aligned
4351 equally on the stack. */
4353 static void
4354 mark_stack (void)
4356 int i;
4357 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4358 union aligned_jmpbuf {
4359 Lisp_Object o;
4360 jmp_buf j;
4361 } j;
4362 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4363 void *end;
4365 /* This trick flushes the register windows so that all the state of
4366 the process is contained in the stack. */
4367 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4368 needed on ia64 too. See mach_dep.c, where it also says inline
4369 assembler doesn't work with relevant proprietary compilers. */
4370 #ifdef __sparc__
4371 #if defined (__sparc64__) && defined (__FreeBSD__)
4372 /* FreeBSD does not have a ta 3 handler. */
4373 asm ("flushw");
4374 #else
4375 asm ("ta 3");
4376 #endif
4377 #endif
4379 /* Save registers that we need to see on the stack. We need to see
4380 registers used to hold register variables and registers used to
4381 pass parameters. */
4382 #ifdef GC_SAVE_REGISTERS_ON_STACK
4383 GC_SAVE_REGISTERS_ON_STACK (end);
4384 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4386 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4387 setjmp will definitely work, test it
4388 and print a message with the result
4389 of the test. */
4390 if (!setjmp_tested_p)
4392 setjmp_tested_p = 1;
4393 test_setjmp ();
4395 #endif /* GC_SETJMP_WORKS */
4397 setjmp (j.j);
4398 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4399 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4401 /* This assumes that the stack is a contiguous region in memory. If
4402 that's not the case, something has to be done here to iterate
4403 over the stack segments. */
4404 #ifndef GC_LISP_OBJECT_ALIGNMENT
4405 #ifdef __GNUC__
4406 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4407 #else
4408 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4409 #endif
4410 #endif
4411 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4412 mark_memory (stack_base, end, i);
4413 /* Allow for marking a secondary stack, like the register stack on the
4414 ia64. */
4415 #ifdef GC_MARK_SECONDARY_STACK
4416 GC_MARK_SECONDARY_STACK ();
4417 #endif
4419 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4420 check_gcpros ();
4421 #endif
4424 #endif /* GC_MARK_STACK != 0 */
4427 /* Determine whether it is safe to access memory at address P. */
4428 static int
4429 valid_pointer_p (void *p)
4431 #ifdef WINDOWSNT
4432 return w32_valid_pointer_p (p, 16);
4433 #else
4434 int fd;
4436 /* Obviously, we cannot just access it (we would SEGV trying), so we
4437 trick the o/s to tell us whether p is a valid pointer.
4438 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4439 not validate p in that case. */
4441 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4443 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4444 emacs_close (fd);
4445 unlink ("__Valid__Lisp__Object__");
4446 return valid;
4449 return -1;
4450 #endif
4453 /* Return 1 if OBJ is a valid lisp object.
4454 Return 0 if OBJ is NOT a valid lisp object.
4455 Return -1 if we cannot validate OBJ.
4456 This function can be quite slow,
4457 so it should only be used in code for manual debugging. */
4460 valid_lisp_object_p (Lisp_Object obj)
4462 void *p;
4463 #if GC_MARK_STACK
4464 struct mem_node *m;
4465 #endif
4467 if (INTEGERP (obj))
4468 return 1;
4470 p = (void *) XPNTR (obj);
4471 if (PURE_POINTER_P (p))
4472 return 1;
4474 #if !GC_MARK_STACK
4475 return valid_pointer_p (p);
4476 #else
4478 m = mem_find (p);
4480 if (m == MEM_NIL)
4482 int valid = valid_pointer_p (p);
4483 if (valid <= 0)
4484 return valid;
4486 if (SUBRP (obj))
4487 return 1;
4489 return 0;
4492 switch (m->type)
4494 case MEM_TYPE_NON_LISP:
4495 return 0;
4497 case MEM_TYPE_BUFFER:
4498 return live_buffer_p (m, p);
4500 case MEM_TYPE_CONS:
4501 return live_cons_p (m, p);
4503 case MEM_TYPE_STRING:
4504 return live_string_p (m, p);
4506 case MEM_TYPE_MISC:
4507 return live_misc_p (m, p);
4509 case MEM_TYPE_SYMBOL:
4510 return live_symbol_p (m, p);
4512 case MEM_TYPE_FLOAT:
4513 return live_float_p (m, p);
4515 case MEM_TYPE_VECTORLIKE:
4516 return live_vector_p (m, p);
4518 default:
4519 break;
4522 return 0;
4523 #endif
4529 /***********************************************************************
4530 Pure Storage Management
4531 ***********************************************************************/
4533 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4534 pointer to it. TYPE is the Lisp type for which the memory is
4535 allocated. TYPE < 0 means it's not used for a Lisp object. */
4537 static POINTER_TYPE *
4538 pure_alloc (size_t size, int type)
4540 POINTER_TYPE *result;
4541 #ifdef USE_LSB_TAG
4542 size_t alignment = (1 << GCTYPEBITS);
4543 #else
4544 size_t alignment = sizeof (EMACS_INT);
4546 /* Give Lisp_Floats an extra alignment. */
4547 if (type == Lisp_Float)
4549 #if defined __GNUC__ && __GNUC__ >= 2
4550 alignment = __alignof (struct Lisp_Float);
4551 #else
4552 alignment = sizeof (struct Lisp_Float);
4553 #endif
4555 #endif
4557 again:
4558 if (type >= 0)
4560 /* Allocate space for a Lisp object from the beginning of the free
4561 space with taking account of alignment. */
4562 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4563 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4565 else
4567 /* Allocate space for a non-Lisp object from the end of the free
4568 space. */
4569 pure_bytes_used_non_lisp += size;
4570 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4572 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4574 if (pure_bytes_used <= pure_size)
4575 return result;
4577 /* Don't allocate a large amount here,
4578 because it might get mmap'd and then its address
4579 might not be usable. */
4580 purebeg = (char *) xmalloc (10000);
4581 pure_size = 10000;
4582 pure_bytes_used_before_overflow += pure_bytes_used - size;
4583 pure_bytes_used = 0;
4584 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4585 goto again;
4589 /* Print a warning if PURESIZE is too small. */
4591 void
4592 check_pure_size (void)
4594 if (pure_bytes_used_before_overflow)
4595 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4596 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4600 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4601 the non-Lisp data pool of the pure storage, and return its start
4602 address. Return NULL if not found. */
4604 static char *
4605 find_string_data_in_pure (const char *data, int nbytes)
4607 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4608 const unsigned char *p;
4609 char *non_lisp_beg;
4611 if (pure_bytes_used_non_lisp < nbytes + 1)
4612 return NULL;
4614 /* Set up the Boyer-Moore table. */
4615 skip = nbytes + 1;
4616 for (i = 0; i < 256; i++)
4617 bm_skip[i] = skip;
4619 p = (const unsigned char *) data;
4620 while (--skip > 0)
4621 bm_skip[*p++] = skip;
4623 last_char_skip = bm_skip['\0'];
4625 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4626 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4628 /* See the comments in the function `boyer_moore' (search.c) for the
4629 use of `infinity'. */
4630 infinity = pure_bytes_used_non_lisp + 1;
4631 bm_skip['\0'] = infinity;
4633 p = (const unsigned char *) non_lisp_beg + nbytes;
4634 start = 0;
4637 /* Check the last character (== '\0'). */
4640 start += bm_skip[*(p + start)];
4642 while (start <= start_max);
4644 if (start < infinity)
4645 /* Couldn't find the last character. */
4646 return NULL;
4648 /* No less than `infinity' means we could find the last
4649 character at `p[start - infinity]'. */
4650 start -= infinity;
4652 /* Check the remaining characters. */
4653 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4654 /* Found. */
4655 return non_lisp_beg + start;
4657 start += last_char_skip;
4659 while (start <= start_max);
4661 return NULL;
4665 /* Return a string allocated in pure space. DATA is a buffer holding
4666 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4667 non-zero means make the result string multibyte.
4669 Must get an error if pure storage is full, since if it cannot hold
4670 a large string it may be able to hold conses that point to that
4671 string; then the string is not protected from gc. */
4673 Lisp_Object
4674 make_pure_string (const char *data, int nchars, int nbytes, int multibyte)
4676 Lisp_Object string;
4677 struct Lisp_String *s;
4679 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4680 s->data = find_string_data_in_pure (data, nbytes);
4681 if (s->data == NULL)
4683 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4684 memcpy (s->data, data, nbytes);
4685 s->data[nbytes] = '\0';
4687 s->size = nchars;
4688 s->size_byte = multibyte ? nbytes : -1;
4689 s->intervals = NULL_INTERVAL;
4690 XSETSTRING (string, s);
4691 return string;
4694 /* Return a string a string allocated in pure space. Do not allocate
4695 the string data, just point to DATA. */
4697 Lisp_Object
4698 make_pure_c_string (const char *data)
4700 Lisp_Object string;
4701 struct Lisp_String *s;
4702 int nchars = strlen (data);
4704 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4705 s->size = nchars;
4706 s->size_byte = -1;
4707 s->data = (unsigned char *) data;
4708 s->intervals = NULL_INTERVAL;
4709 XSETSTRING (string, s);
4710 return string;
4713 /* Return a cons allocated from pure space. Give it pure copies
4714 of CAR as car and CDR as cdr. */
4716 Lisp_Object
4717 pure_cons (Lisp_Object car, Lisp_Object cdr)
4719 register Lisp_Object new;
4720 struct Lisp_Cons *p;
4722 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4723 XSETCONS (new, p);
4724 XSETCAR (new, Fpurecopy (car));
4725 XSETCDR (new, Fpurecopy (cdr));
4726 return new;
4730 /* Value is a float object with value NUM allocated from pure space. */
4732 static Lisp_Object
4733 make_pure_float (double num)
4735 register Lisp_Object new;
4736 struct Lisp_Float *p;
4738 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4739 XSETFLOAT (new, p);
4740 XFLOAT_INIT (new, num);
4741 return new;
4745 /* Return a vector with room for LEN Lisp_Objects allocated from
4746 pure space. */
4748 Lisp_Object
4749 make_pure_vector (EMACS_INT len)
4751 Lisp_Object new;
4752 struct Lisp_Vector *p;
4753 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4755 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4756 XSETVECTOR (new, p);
4757 XVECTOR (new)->size = len;
4758 return new;
4762 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4763 doc: /* Make a copy of object OBJ in pure storage.
4764 Recursively copies contents of vectors and cons cells.
4765 Does not copy symbols. Copies strings without text properties. */)
4766 (register Lisp_Object obj)
4768 if (NILP (Vpurify_flag))
4769 return obj;
4771 if (PURE_POINTER_P (XPNTR (obj)))
4772 return obj;
4774 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4776 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4777 if (!NILP (tmp))
4778 return tmp;
4781 if (CONSP (obj))
4782 obj = pure_cons (XCAR (obj), XCDR (obj));
4783 else if (FLOATP (obj))
4784 obj = make_pure_float (XFLOAT_DATA (obj));
4785 else if (STRINGP (obj))
4786 obj = make_pure_string (SDATA (obj), SCHARS (obj),
4787 SBYTES (obj),
4788 STRING_MULTIBYTE (obj));
4789 else if (COMPILEDP (obj) || VECTORP (obj))
4791 register struct Lisp_Vector *vec;
4792 register int i;
4793 EMACS_INT size;
4795 size = XVECTOR (obj)->size;
4796 if (size & PSEUDOVECTOR_FLAG)
4797 size &= PSEUDOVECTOR_SIZE_MASK;
4798 vec = XVECTOR (make_pure_vector (size));
4799 for (i = 0; i < size; i++)
4800 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4801 if (COMPILEDP (obj))
4803 XSETPVECTYPE (vec, PVEC_COMPILED);
4804 XSETCOMPILED (obj, vec);
4806 else
4807 XSETVECTOR (obj, vec);
4809 else if (MARKERP (obj))
4810 error ("Attempt to copy a marker to pure storage");
4811 else
4812 /* Not purified, don't hash-cons. */
4813 return obj;
4815 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4816 Fputhash (obj, obj, Vpurify_flag);
4818 return obj;
4823 /***********************************************************************
4824 Protection from GC
4825 ***********************************************************************/
4827 /* Put an entry in staticvec, pointing at the variable with address
4828 VARADDRESS. */
4830 void
4831 staticpro (Lisp_Object *varaddress)
4833 staticvec[staticidx++] = varaddress;
4834 if (staticidx >= NSTATICS)
4835 abort ();
4839 /***********************************************************************
4840 Protection from GC
4841 ***********************************************************************/
4843 /* Temporarily prevent garbage collection. */
4846 inhibit_garbage_collection (void)
4848 int count = SPECPDL_INDEX ();
4849 int nbits = min (VALBITS, BITS_PER_INT);
4851 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4852 return count;
4856 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4857 doc: /* Reclaim storage for Lisp objects no longer needed.
4858 Garbage collection happens automatically if you cons more than
4859 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4860 `garbage-collect' normally returns a list with info on amount of space in use:
4861 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4862 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4863 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4864 (USED-STRINGS . FREE-STRINGS))
4865 However, if there was overflow in pure space, `garbage-collect'
4866 returns nil, because real GC can't be done. */)
4867 (void)
4869 register struct specbinding *bind;
4870 struct catchtag *catch;
4871 struct handler *handler;
4872 char stack_top_variable;
4873 register int i;
4874 int message_p;
4875 Lisp_Object total[8];
4876 int count = SPECPDL_INDEX ();
4877 EMACS_TIME t1, t2, t3;
4879 if (abort_on_gc)
4880 abort ();
4882 /* Can't GC if pure storage overflowed because we can't determine
4883 if something is a pure object or not. */
4884 if (pure_bytes_used_before_overflow)
4885 return Qnil;
4887 CHECK_CONS_LIST ();
4889 /* Don't keep undo information around forever.
4890 Do this early on, so it is no problem if the user quits. */
4892 register struct buffer *nextb = all_buffers;
4894 while (nextb)
4896 /* If a buffer's undo list is Qt, that means that undo is
4897 turned off in that buffer. Calling truncate_undo_list on
4898 Qt tends to return NULL, which effectively turns undo back on.
4899 So don't call truncate_undo_list if undo_list is Qt. */
4900 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4901 truncate_undo_list (nextb);
4903 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4904 if (nextb->base_buffer == 0 && !NILP (nextb->name)
4905 && ! nextb->text->inhibit_shrinking)
4907 /* If a buffer's gap size is more than 10% of the buffer
4908 size, or larger than 2000 bytes, then shrink it
4909 accordingly. Keep a minimum size of 20 bytes. */
4910 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4912 if (nextb->text->gap_size > size)
4914 struct buffer *save_current = current_buffer;
4915 current_buffer = nextb;
4916 make_gap (-(nextb->text->gap_size - size));
4917 current_buffer = save_current;
4921 nextb = nextb->next;
4925 EMACS_GET_TIME (t1);
4927 /* In case user calls debug_print during GC,
4928 don't let that cause a recursive GC. */
4929 consing_since_gc = 0;
4931 /* Save what's currently displayed in the echo area. */
4932 message_p = push_message ();
4933 record_unwind_protect (pop_message_unwind, Qnil);
4935 /* Save a copy of the contents of the stack, for debugging. */
4936 #if MAX_SAVE_STACK > 0
4937 if (NILP (Vpurify_flag))
4939 i = &stack_top_variable - stack_bottom;
4940 if (i < 0) i = -i;
4941 if (i < MAX_SAVE_STACK)
4943 if (stack_copy == 0)
4944 stack_copy = (char *) xmalloc (stack_copy_size = i);
4945 else if (stack_copy_size < i)
4946 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4947 if (stack_copy)
4949 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4950 memcpy (stack_copy, stack_bottom, i);
4951 else
4952 memcpy (stack_copy, &stack_top_variable, i);
4956 #endif /* MAX_SAVE_STACK > 0 */
4958 if (garbage_collection_messages)
4959 message1_nolog ("Garbage collecting...");
4961 BLOCK_INPUT;
4963 shrink_regexp_cache ();
4965 gc_in_progress = 1;
4967 /* clear_marks (); */
4969 /* Mark all the special slots that serve as the roots of accessibility. */
4971 for (i = 0; i < staticidx; i++)
4972 mark_object (*staticvec[i]);
4974 for (bind = specpdl; bind != specpdl_ptr; bind++)
4976 mark_object (bind->symbol);
4977 mark_object (bind->old_value);
4979 mark_terminals ();
4980 mark_kboards ();
4981 mark_ttys ();
4983 #ifdef USE_GTK
4985 extern void xg_mark_data (void);
4986 xg_mark_data ();
4988 #endif
4990 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4991 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4992 mark_stack ();
4993 #else
4995 register struct gcpro *tail;
4996 for (tail = gcprolist; tail; tail = tail->next)
4997 for (i = 0; i < tail->nvars; i++)
4998 mark_object (tail->var[i]);
5000 #endif
5002 mark_byte_stack ();
5003 for (catch = catchlist; catch; catch = catch->next)
5005 mark_object (catch->tag);
5006 mark_object (catch->val);
5008 for (handler = handlerlist; handler; handler = handler->next)
5010 mark_object (handler->handler);
5011 mark_object (handler->var);
5013 mark_backtrace ();
5015 #ifdef HAVE_WINDOW_SYSTEM
5016 mark_fringe_data ();
5017 #endif
5019 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5020 mark_stack ();
5021 #endif
5023 /* Everything is now marked, except for the things that require special
5024 finalization, i.e. the undo_list.
5025 Look thru every buffer's undo list
5026 for elements that update markers that were not marked,
5027 and delete them. */
5029 register struct buffer *nextb = all_buffers;
5031 while (nextb)
5033 /* If a buffer's undo list is Qt, that means that undo is
5034 turned off in that buffer. Calling truncate_undo_list on
5035 Qt tends to return NULL, which effectively turns undo back on.
5036 So don't call truncate_undo_list if undo_list is Qt. */
5037 if (! EQ (nextb->undo_list, Qt))
5039 Lisp_Object tail, prev;
5040 tail = nextb->undo_list;
5041 prev = Qnil;
5042 while (CONSP (tail))
5044 if (CONSP (XCAR (tail))
5045 && MARKERP (XCAR (XCAR (tail)))
5046 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5048 if (NILP (prev))
5049 nextb->undo_list = tail = XCDR (tail);
5050 else
5052 tail = XCDR (tail);
5053 XSETCDR (prev, tail);
5056 else
5058 prev = tail;
5059 tail = XCDR (tail);
5063 /* Now that we have stripped the elements that need not be in the
5064 undo_list any more, we can finally mark the list. */
5065 mark_object (nextb->undo_list);
5067 nextb = nextb->next;
5071 gc_sweep ();
5073 /* Clear the mark bits that we set in certain root slots. */
5075 unmark_byte_stack ();
5076 VECTOR_UNMARK (&buffer_defaults);
5077 VECTOR_UNMARK (&buffer_local_symbols);
5079 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5080 dump_zombies ();
5081 #endif
5083 UNBLOCK_INPUT;
5085 CHECK_CONS_LIST ();
5087 /* clear_marks (); */
5088 gc_in_progress = 0;
5090 consing_since_gc = 0;
5091 if (gc_cons_threshold < 10000)
5092 gc_cons_threshold = 10000;
5094 if (FLOATP (Vgc_cons_percentage))
5095 { /* Set gc_cons_combined_threshold. */
5096 EMACS_INT total = 0;
5098 total += total_conses * sizeof (struct Lisp_Cons);
5099 total += total_symbols * sizeof (struct Lisp_Symbol);
5100 total += total_markers * sizeof (union Lisp_Misc);
5101 total += total_string_size;
5102 total += total_vector_size * sizeof (Lisp_Object);
5103 total += total_floats * sizeof (struct Lisp_Float);
5104 total += total_intervals * sizeof (struct interval);
5105 total += total_strings * sizeof (struct Lisp_String);
5107 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5109 else
5110 gc_relative_threshold = 0;
5112 if (garbage_collection_messages)
5114 if (message_p || minibuf_level > 0)
5115 restore_message ();
5116 else
5117 message1_nolog ("Garbage collecting...done");
5120 unbind_to (count, Qnil);
5122 total[0] = Fcons (make_number (total_conses),
5123 make_number (total_free_conses));
5124 total[1] = Fcons (make_number (total_symbols),
5125 make_number (total_free_symbols));
5126 total[2] = Fcons (make_number (total_markers),
5127 make_number (total_free_markers));
5128 total[3] = make_number (total_string_size);
5129 total[4] = make_number (total_vector_size);
5130 total[5] = Fcons (make_number (total_floats),
5131 make_number (total_free_floats));
5132 total[6] = Fcons (make_number (total_intervals),
5133 make_number (total_free_intervals));
5134 total[7] = Fcons (make_number (total_strings),
5135 make_number (total_free_strings));
5137 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5139 /* Compute average percentage of zombies. */
5140 double nlive = 0;
5142 for (i = 0; i < 7; ++i)
5143 if (CONSP (total[i]))
5144 nlive += XFASTINT (XCAR (total[i]));
5146 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5147 max_live = max (nlive, max_live);
5148 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5149 max_zombies = max (nzombies, max_zombies);
5150 ++ngcs;
5152 #endif
5154 if (!NILP (Vpost_gc_hook))
5156 int count = inhibit_garbage_collection ();
5157 safe_run_hooks (Qpost_gc_hook);
5158 unbind_to (count, Qnil);
5161 /* Accumulate statistics. */
5162 EMACS_GET_TIME (t2);
5163 EMACS_SUB_TIME (t3, t2, t1);
5164 if (FLOATP (Vgc_elapsed))
5165 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5166 EMACS_SECS (t3) +
5167 EMACS_USECS (t3) * 1.0e-6);
5168 gcs_done++;
5170 return Flist (sizeof total / sizeof *total, total);
5174 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5175 only interesting objects referenced from glyphs are strings. */
5177 static void
5178 mark_glyph_matrix (struct glyph_matrix *matrix)
5180 struct glyph_row *row = matrix->rows;
5181 struct glyph_row *end = row + matrix->nrows;
5183 for (; row < end; ++row)
5184 if (row->enabled_p)
5186 int area;
5187 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5189 struct glyph *glyph = row->glyphs[area];
5190 struct glyph *end_glyph = glyph + row->used[area];
5192 for (; glyph < end_glyph; ++glyph)
5193 if (STRINGP (glyph->object)
5194 && !STRING_MARKED_P (XSTRING (glyph->object)))
5195 mark_object (glyph->object);
5201 /* Mark Lisp faces in the face cache C. */
5203 static void
5204 mark_face_cache (struct face_cache *c)
5206 if (c)
5208 int i, j;
5209 for (i = 0; i < c->used; ++i)
5211 struct face *face = FACE_FROM_ID (c->f, i);
5213 if (face)
5215 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5216 mark_object (face->lface[j]);
5224 /* Mark reference to a Lisp_Object.
5225 If the object referred to has not been seen yet, recursively mark
5226 all the references contained in it. */
5228 #define LAST_MARKED_SIZE 500
5229 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5230 int last_marked_index;
5232 /* For debugging--call abort when we cdr down this many
5233 links of a list, in mark_object. In debugging,
5234 the call to abort will hit a breakpoint.
5235 Normally this is zero and the check never goes off. */
5236 static int mark_object_loop_halt;
5238 static void
5239 mark_vectorlike (struct Lisp_Vector *ptr)
5241 register EMACS_INT size = ptr->size;
5242 register int i;
5244 eassert (!VECTOR_MARKED_P (ptr));
5245 VECTOR_MARK (ptr); /* Else mark it */
5246 if (size & PSEUDOVECTOR_FLAG)
5247 size &= PSEUDOVECTOR_SIZE_MASK;
5249 /* Note that this size is not the memory-footprint size, but only
5250 the number of Lisp_Object fields that we should trace.
5251 The distinction is used e.g. by Lisp_Process which places extra
5252 non-Lisp_Object fields at the end of the structure. */
5253 for (i = 0; i < size; i++) /* and then mark its elements */
5254 mark_object (ptr->contents[i]);
5257 /* Like mark_vectorlike but optimized for char-tables (and
5258 sub-char-tables) assuming that the contents are mostly integers or
5259 symbols. */
5261 static void
5262 mark_char_table (struct Lisp_Vector *ptr)
5264 register EMACS_INT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5265 register int i;
5267 eassert (!VECTOR_MARKED_P (ptr));
5268 VECTOR_MARK (ptr);
5269 for (i = 0; i < size; i++)
5271 Lisp_Object val = ptr->contents[i];
5273 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5274 continue;
5275 if (SUB_CHAR_TABLE_P (val))
5277 if (! VECTOR_MARKED_P (XVECTOR (val)))
5278 mark_char_table (XVECTOR (val));
5280 else
5281 mark_object (val);
5285 void
5286 mark_object (Lisp_Object arg)
5288 register Lisp_Object obj = arg;
5289 #ifdef GC_CHECK_MARKED_OBJECTS
5290 void *po;
5291 struct mem_node *m;
5292 #endif
5293 int cdr_count = 0;
5295 loop:
5297 if (PURE_POINTER_P (XPNTR (obj)))
5298 return;
5300 last_marked[last_marked_index++] = obj;
5301 if (last_marked_index == LAST_MARKED_SIZE)
5302 last_marked_index = 0;
5304 /* Perform some sanity checks on the objects marked here. Abort if
5305 we encounter an object we know is bogus. This increases GC time
5306 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5307 #ifdef GC_CHECK_MARKED_OBJECTS
5309 po = (void *) XPNTR (obj);
5311 /* Check that the object pointed to by PO is known to be a Lisp
5312 structure allocated from the heap. */
5313 #define CHECK_ALLOCATED() \
5314 do { \
5315 m = mem_find (po); \
5316 if (m == MEM_NIL) \
5317 abort (); \
5318 } while (0)
5320 /* Check that the object pointed to by PO is live, using predicate
5321 function LIVEP. */
5322 #define CHECK_LIVE(LIVEP) \
5323 do { \
5324 if (!LIVEP (m, po)) \
5325 abort (); \
5326 } while (0)
5328 /* Check both of the above conditions. */
5329 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5330 do { \
5331 CHECK_ALLOCATED (); \
5332 CHECK_LIVE (LIVEP); \
5333 } while (0) \
5335 #else /* not GC_CHECK_MARKED_OBJECTS */
5337 #define CHECK_ALLOCATED() (void) 0
5338 #define CHECK_LIVE(LIVEP) (void) 0
5339 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5341 #endif /* not GC_CHECK_MARKED_OBJECTS */
5343 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5345 case Lisp_String:
5347 register struct Lisp_String *ptr = XSTRING (obj);
5348 if (STRING_MARKED_P (ptr))
5349 break;
5350 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5351 MARK_INTERVAL_TREE (ptr->intervals);
5352 MARK_STRING (ptr);
5353 #ifdef GC_CHECK_STRING_BYTES
5354 /* Check that the string size recorded in the string is the
5355 same as the one recorded in the sdata structure. */
5356 CHECK_STRING_BYTES (ptr);
5357 #endif /* GC_CHECK_STRING_BYTES */
5359 break;
5361 case Lisp_Vectorlike:
5362 if (VECTOR_MARKED_P (XVECTOR (obj)))
5363 break;
5364 #ifdef GC_CHECK_MARKED_OBJECTS
5365 m = mem_find (po);
5366 if (m == MEM_NIL && !SUBRP (obj)
5367 && po != &buffer_defaults
5368 && po != &buffer_local_symbols)
5369 abort ();
5370 #endif /* GC_CHECK_MARKED_OBJECTS */
5372 if (BUFFERP (obj))
5374 #ifdef GC_CHECK_MARKED_OBJECTS
5375 if (po != &buffer_defaults && po != &buffer_local_symbols)
5377 struct buffer *b;
5378 for (b = all_buffers; b && b != po; b = b->next)
5380 if (b == NULL)
5381 abort ();
5383 #endif /* GC_CHECK_MARKED_OBJECTS */
5384 mark_buffer (obj);
5386 else if (SUBRP (obj))
5387 break;
5388 else if (COMPILEDP (obj))
5389 /* We could treat this just like a vector, but it is better to
5390 save the COMPILED_CONSTANTS element for last and avoid
5391 recursion there. */
5393 register struct Lisp_Vector *ptr = XVECTOR (obj);
5394 register EMACS_INT size = ptr->size;
5395 register int i;
5397 CHECK_LIVE (live_vector_p);
5398 VECTOR_MARK (ptr); /* Else mark it */
5399 size &= PSEUDOVECTOR_SIZE_MASK;
5400 for (i = 0; i < size; i++) /* and then mark its elements */
5402 if (i != COMPILED_CONSTANTS)
5403 mark_object (ptr->contents[i]);
5405 obj = ptr->contents[COMPILED_CONSTANTS];
5406 goto loop;
5408 else if (FRAMEP (obj))
5410 register struct frame *ptr = XFRAME (obj);
5411 mark_vectorlike (XVECTOR (obj));
5412 mark_face_cache (ptr->face_cache);
5414 else if (WINDOWP (obj))
5416 register struct Lisp_Vector *ptr = XVECTOR (obj);
5417 struct window *w = XWINDOW (obj);
5418 mark_vectorlike (ptr);
5419 /* Mark glyphs for leaf windows. Marking window matrices is
5420 sufficient because frame matrices use the same glyph
5421 memory. */
5422 if (NILP (w->hchild)
5423 && NILP (w->vchild)
5424 && w->current_matrix)
5426 mark_glyph_matrix (w->current_matrix);
5427 mark_glyph_matrix (w->desired_matrix);
5430 else if (HASH_TABLE_P (obj))
5432 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5433 mark_vectorlike ((struct Lisp_Vector *)h);
5434 /* If hash table is not weak, mark all keys and values.
5435 For weak tables, mark only the vector. */
5436 if (NILP (h->weak))
5437 mark_object (h->key_and_value);
5438 else
5439 VECTOR_MARK (XVECTOR (h->key_and_value));
5441 else if (CHAR_TABLE_P (obj))
5442 mark_char_table (XVECTOR (obj));
5443 else
5444 mark_vectorlike (XVECTOR (obj));
5445 break;
5447 case Lisp_Symbol:
5449 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5450 struct Lisp_Symbol *ptrx;
5452 if (ptr->gcmarkbit)
5453 break;
5454 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5455 ptr->gcmarkbit = 1;
5456 mark_object (ptr->function);
5457 mark_object (ptr->plist);
5458 switch (ptr->redirect)
5460 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5461 case SYMBOL_VARALIAS:
5463 Lisp_Object tem;
5464 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5465 mark_object (tem);
5466 break;
5468 case SYMBOL_LOCALIZED:
5470 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5471 /* If the value is forwarded to a buffer or keyboard field,
5472 these are marked when we see the corresponding object.
5473 And if it's forwarded to a C variable, either it's not
5474 a Lisp_Object var, or it's staticpro'd already. */
5475 mark_object (blv->where);
5476 mark_object (blv->valcell);
5477 mark_object (blv->defcell);
5478 break;
5480 case SYMBOL_FORWARDED:
5481 /* If the value is forwarded to a buffer or keyboard field,
5482 these are marked when we see the corresponding object.
5483 And if it's forwarded to a C variable, either it's not
5484 a Lisp_Object var, or it's staticpro'd already. */
5485 break;
5486 default: abort ();
5488 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5489 MARK_STRING (XSTRING (ptr->xname));
5490 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5492 ptr = ptr->next;
5493 if (ptr)
5495 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5496 XSETSYMBOL (obj, ptrx);
5497 goto loop;
5500 break;
5502 case Lisp_Misc:
5503 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5504 if (XMISCANY (obj)->gcmarkbit)
5505 break;
5506 XMISCANY (obj)->gcmarkbit = 1;
5508 switch (XMISCTYPE (obj))
5511 case Lisp_Misc_Marker:
5512 /* DO NOT mark thru the marker's chain.
5513 The buffer's markers chain does not preserve markers from gc;
5514 instead, markers are removed from the chain when freed by gc. */
5515 break;
5517 case Lisp_Misc_Save_Value:
5518 #if GC_MARK_STACK
5520 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5521 /* If DOGC is set, POINTER is the address of a memory
5522 area containing INTEGER potential Lisp_Objects. */
5523 if (ptr->dogc)
5525 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5526 int nelt;
5527 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5528 mark_maybe_object (*p);
5531 #endif
5532 break;
5534 case Lisp_Misc_Overlay:
5536 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5537 mark_object (ptr->start);
5538 mark_object (ptr->end);
5539 mark_object (ptr->plist);
5540 if (ptr->next)
5542 XSETMISC (obj, ptr->next);
5543 goto loop;
5546 break;
5548 default:
5549 abort ();
5551 break;
5553 case Lisp_Cons:
5555 register struct Lisp_Cons *ptr = XCONS (obj);
5556 if (CONS_MARKED_P (ptr))
5557 break;
5558 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5559 CONS_MARK (ptr);
5560 /* If the cdr is nil, avoid recursion for the car. */
5561 if (EQ (ptr->u.cdr, Qnil))
5563 obj = ptr->car;
5564 cdr_count = 0;
5565 goto loop;
5567 mark_object (ptr->car);
5568 obj = ptr->u.cdr;
5569 cdr_count++;
5570 if (cdr_count == mark_object_loop_halt)
5571 abort ();
5572 goto loop;
5575 case Lisp_Float:
5576 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5577 FLOAT_MARK (XFLOAT (obj));
5578 break;
5580 case_Lisp_Int:
5581 break;
5583 default:
5584 abort ();
5587 #undef CHECK_LIVE
5588 #undef CHECK_ALLOCATED
5589 #undef CHECK_ALLOCATED_AND_LIVE
5592 /* Mark the pointers in a buffer structure. */
5594 static void
5595 mark_buffer (Lisp_Object buf)
5597 register struct buffer *buffer = XBUFFER (buf);
5598 register Lisp_Object *ptr, tmp;
5599 Lisp_Object base_buffer;
5601 eassert (!VECTOR_MARKED_P (buffer));
5602 VECTOR_MARK (buffer);
5604 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5606 /* For now, we just don't mark the undo_list. It's done later in
5607 a special way just before the sweep phase, and after stripping
5608 some of its elements that are not needed any more. */
5610 if (buffer->overlays_before)
5612 XSETMISC (tmp, buffer->overlays_before);
5613 mark_object (tmp);
5615 if (buffer->overlays_after)
5617 XSETMISC (tmp, buffer->overlays_after);
5618 mark_object (tmp);
5621 /* buffer-local Lisp variables start at `undo_list',
5622 tho only the ones from `name' on are GC'd normally. */
5623 for (ptr = &buffer->name;
5624 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5625 ptr++)
5626 mark_object (*ptr);
5628 /* If this is an indirect buffer, mark its base buffer. */
5629 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5631 XSETBUFFER (base_buffer, buffer->base_buffer);
5632 mark_buffer (base_buffer);
5636 /* Mark the Lisp pointers in the terminal objects.
5637 Called by the Fgarbage_collector. */
5639 static void
5640 mark_terminals (void)
5642 struct terminal *t;
5643 for (t = terminal_list; t; t = t->next_terminal)
5645 eassert (t->name != NULL);
5646 if (!VECTOR_MARKED_P (t))
5648 #ifdef HAVE_WINDOW_SYSTEM
5649 mark_image_cache (t->image_cache);
5650 #endif /* HAVE_WINDOW_SYSTEM */
5651 mark_vectorlike ((struct Lisp_Vector *)t);
5658 /* Value is non-zero if OBJ will survive the current GC because it's
5659 either marked or does not need to be marked to survive. */
5662 survives_gc_p (Lisp_Object obj)
5664 int survives_p;
5666 switch (XTYPE (obj))
5668 case_Lisp_Int:
5669 survives_p = 1;
5670 break;
5672 case Lisp_Symbol:
5673 survives_p = XSYMBOL (obj)->gcmarkbit;
5674 break;
5676 case Lisp_Misc:
5677 survives_p = XMISCANY (obj)->gcmarkbit;
5678 break;
5680 case Lisp_String:
5681 survives_p = STRING_MARKED_P (XSTRING (obj));
5682 break;
5684 case Lisp_Vectorlike:
5685 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5686 break;
5688 case Lisp_Cons:
5689 survives_p = CONS_MARKED_P (XCONS (obj));
5690 break;
5692 case Lisp_Float:
5693 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5694 break;
5696 default:
5697 abort ();
5700 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5705 /* Sweep: find all structures not marked, and free them. */
5707 static void
5708 gc_sweep (void)
5710 /* Remove or mark entries in weak hash tables.
5711 This must be done before any object is unmarked. */
5712 sweep_weak_hash_tables ();
5714 sweep_strings ();
5715 #ifdef GC_CHECK_STRING_BYTES
5716 if (!noninteractive)
5717 check_string_bytes (1);
5718 #endif
5720 /* Put all unmarked conses on free list */
5722 register struct cons_block *cblk;
5723 struct cons_block **cprev = &cons_block;
5724 register int lim = cons_block_index;
5725 register int num_free = 0, num_used = 0;
5727 cons_free_list = 0;
5729 for (cblk = cons_block; cblk; cblk = *cprev)
5731 register int i = 0;
5732 int this_free = 0;
5733 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5735 /* Scan the mark bits an int at a time. */
5736 for (i = 0; i <= ilim; i++)
5738 if (cblk->gcmarkbits[i] == -1)
5740 /* Fast path - all cons cells for this int are marked. */
5741 cblk->gcmarkbits[i] = 0;
5742 num_used += BITS_PER_INT;
5744 else
5746 /* Some cons cells for this int are not marked.
5747 Find which ones, and free them. */
5748 int start, pos, stop;
5750 start = i * BITS_PER_INT;
5751 stop = lim - start;
5752 if (stop > BITS_PER_INT)
5753 stop = BITS_PER_INT;
5754 stop += start;
5756 for (pos = start; pos < stop; pos++)
5758 if (!CONS_MARKED_P (&cblk->conses[pos]))
5760 this_free++;
5761 cblk->conses[pos].u.chain = cons_free_list;
5762 cons_free_list = &cblk->conses[pos];
5763 #if GC_MARK_STACK
5764 cons_free_list->car = Vdead;
5765 #endif
5767 else
5769 num_used++;
5770 CONS_UNMARK (&cblk->conses[pos]);
5776 lim = CONS_BLOCK_SIZE;
5777 /* If this block contains only free conses and we have already
5778 seen more than two blocks worth of free conses then deallocate
5779 this block. */
5780 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5782 *cprev = cblk->next;
5783 /* Unhook from the free list. */
5784 cons_free_list = cblk->conses[0].u.chain;
5785 lisp_align_free (cblk);
5786 n_cons_blocks--;
5788 else
5790 num_free += this_free;
5791 cprev = &cblk->next;
5794 total_conses = num_used;
5795 total_free_conses = num_free;
5798 /* Put all unmarked floats on free list */
5800 register struct float_block *fblk;
5801 struct float_block **fprev = &float_block;
5802 register int lim = float_block_index;
5803 register int num_free = 0, num_used = 0;
5805 float_free_list = 0;
5807 for (fblk = float_block; fblk; fblk = *fprev)
5809 register int i;
5810 int this_free = 0;
5811 for (i = 0; i < lim; i++)
5812 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5814 this_free++;
5815 fblk->floats[i].u.chain = float_free_list;
5816 float_free_list = &fblk->floats[i];
5818 else
5820 num_used++;
5821 FLOAT_UNMARK (&fblk->floats[i]);
5823 lim = FLOAT_BLOCK_SIZE;
5824 /* If this block contains only free floats and we have already
5825 seen more than two blocks worth of free floats then deallocate
5826 this block. */
5827 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5829 *fprev = fblk->next;
5830 /* Unhook from the free list. */
5831 float_free_list = fblk->floats[0].u.chain;
5832 lisp_align_free (fblk);
5833 n_float_blocks--;
5835 else
5837 num_free += this_free;
5838 fprev = &fblk->next;
5841 total_floats = num_used;
5842 total_free_floats = num_free;
5845 /* Put all unmarked intervals on free list */
5847 register struct interval_block *iblk;
5848 struct interval_block **iprev = &interval_block;
5849 register int lim = interval_block_index;
5850 register int num_free = 0, num_used = 0;
5852 interval_free_list = 0;
5854 for (iblk = interval_block; iblk; iblk = *iprev)
5856 register int i;
5857 int this_free = 0;
5859 for (i = 0; i < lim; i++)
5861 if (!iblk->intervals[i].gcmarkbit)
5863 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5864 interval_free_list = &iblk->intervals[i];
5865 this_free++;
5867 else
5869 num_used++;
5870 iblk->intervals[i].gcmarkbit = 0;
5873 lim = INTERVAL_BLOCK_SIZE;
5874 /* If this block contains only free intervals and we have already
5875 seen more than two blocks worth of free intervals then
5876 deallocate this block. */
5877 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5879 *iprev = iblk->next;
5880 /* Unhook from the free list. */
5881 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5882 lisp_free (iblk);
5883 n_interval_blocks--;
5885 else
5887 num_free += this_free;
5888 iprev = &iblk->next;
5891 total_intervals = num_used;
5892 total_free_intervals = num_free;
5895 /* Put all unmarked symbols on free list */
5897 register struct symbol_block *sblk;
5898 struct symbol_block **sprev = &symbol_block;
5899 register int lim = symbol_block_index;
5900 register int num_free = 0, num_used = 0;
5902 symbol_free_list = NULL;
5904 for (sblk = symbol_block; sblk; sblk = *sprev)
5906 int this_free = 0;
5907 struct Lisp_Symbol *sym = sblk->symbols;
5908 struct Lisp_Symbol *end = sym + lim;
5910 for (; sym < end; ++sym)
5912 /* Check if the symbol was created during loadup. In such a case
5913 it might be pointed to by pure bytecode which we don't trace,
5914 so we conservatively assume that it is live. */
5915 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5917 if (!sym->gcmarkbit && !pure_p)
5919 if (sym->redirect == SYMBOL_LOCALIZED)
5920 xfree (SYMBOL_BLV (sym));
5921 sym->next = symbol_free_list;
5922 symbol_free_list = sym;
5923 #if GC_MARK_STACK
5924 symbol_free_list->function = Vdead;
5925 #endif
5926 ++this_free;
5928 else
5930 ++num_used;
5931 if (!pure_p)
5932 UNMARK_STRING (XSTRING (sym->xname));
5933 sym->gcmarkbit = 0;
5937 lim = SYMBOL_BLOCK_SIZE;
5938 /* If this block contains only free symbols and we have already
5939 seen more than two blocks worth of free symbols then deallocate
5940 this block. */
5941 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5943 *sprev = sblk->next;
5944 /* Unhook from the free list. */
5945 symbol_free_list = sblk->symbols[0].next;
5946 lisp_free (sblk);
5947 n_symbol_blocks--;
5949 else
5951 num_free += this_free;
5952 sprev = &sblk->next;
5955 total_symbols = num_used;
5956 total_free_symbols = num_free;
5959 /* Put all unmarked misc's on free list.
5960 For a marker, first unchain it from the buffer it points into. */
5962 register struct marker_block *mblk;
5963 struct marker_block **mprev = &marker_block;
5964 register int lim = marker_block_index;
5965 register int num_free = 0, num_used = 0;
5967 marker_free_list = 0;
5969 for (mblk = marker_block; mblk; mblk = *mprev)
5971 register int i;
5972 int this_free = 0;
5974 for (i = 0; i < lim; i++)
5976 if (!mblk->markers[i].u_any.gcmarkbit)
5978 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5979 unchain_marker (&mblk->markers[i].u_marker);
5980 /* Set the type of the freed object to Lisp_Misc_Free.
5981 We could leave the type alone, since nobody checks it,
5982 but this might catch bugs faster. */
5983 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5984 mblk->markers[i].u_free.chain = marker_free_list;
5985 marker_free_list = &mblk->markers[i];
5986 this_free++;
5988 else
5990 num_used++;
5991 mblk->markers[i].u_any.gcmarkbit = 0;
5994 lim = MARKER_BLOCK_SIZE;
5995 /* If this block contains only free markers and we have already
5996 seen more than two blocks worth of free markers then deallocate
5997 this block. */
5998 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6000 *mprev = mblk->next;
6001 /* Unhook from the free list. */
6002 marker_free_list = mblk->markers[0].u_free.chain;
6003 lisp_free (mblk);
6004 n_marker_blocks--;
6006 else
6008 num_free += this_free;
6009 mprev = &mblk->next;
6013 total_markers = num_used;
6014 total_free_markers = num_free;
6017 /* Free all unmarked buffers */
6019 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6021 while (buffer)
6022 if (!VECTOR_MARKED_P (buffer))
6024 if (prev)
6025 prev->next = buffer->next;
6026 else
6027 all_buffers = buffer->next;
6028 next = buffer->next;
6029 lisp_free (buffer);
6030 buffer = next;
6032 else
6034 VECTOR_UNMARK (buffer);
6035 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6036 prev = buffer, buffer = buffer->next;
6040 /* Free all unmarked vectors */
6042 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6043 total_vector_size = 0;
6045 while (vector)
6046 if (!VECTOR_MARKED_P (vector))
6048 if (prev)
6049 prev->next = vector->next;
6050 else
6051 all_vectors = vector->next;
6052 next = vector->next;
6053 lisp_free (vector);
6054 n_vectors--;
6055 vector = next;
6058 else
6060 VECTOR_UNMARK (vector);
6061 if (vector->size & PSEUDOVECTOR_FLAG)
6062 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6063 else
6064 total_vector_size += vector->size;
6065 prev = vector, vector = vector->next;
6069 #ifdef GC_CHECK_STRING_BYTES
6070 if (!noninteractive)
6071 check_string_bytes (1);
6072 #endif
6078 /* Debugging aids. */
6080 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6081 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6082 This may be helpful in debugging Emacs's memory usage.
6083 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6084 (void)
6086 Lisp_Object end;
6088 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6090 return end;
6093 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6094 doc: /* Return a list of counters that measure how much consing there has been.
6095 Each of these counters increments for a certain kind of object.
6096 The counters wrap around from the largest positive integer to zero.
6097 Garbage collection does not decrease them.
6098 The elements of the value are as follows:
6099 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6100 All are in units of 1 = one object consed
6101 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6102 objects consed.
6103 MISCS include overlays, markers, and some internal types.
6104 Frames, windows, buffers, and subprocesses count as vectors
6105 (but the contents of a buffer's text do not count here). */)
6106 (void)
6108 Lisp_Object consed[8];
6110 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6111 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6112 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6113 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6114 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6115 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6116 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6117 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6119 return Flist (8, consed);
6122 int suppress_checking;
6124 void
6125 die (const char *msg, const char *file, int line)
6127 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6128 file, line, msg);
6129 abort ();
6132 /* Initialization */
6134 void
6135 init_alloc_once (void)
6137 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6138 purebeg = PUREBEG;
6139 pure_size = PURESIZE;
6140 pure_bytes_used = 0;
6141 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6142 pure_bytes_used_before_overflow = 0;
6144 /* Initialize the list of free aligned blocks. */
6145 free_ablock = NULL;
6147 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6148 mem_init ();
6149 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6150 #endif
6152 all_vectors = 0;
6153 ignore_warnings = 1;
6154 #ifdef DOUG_LEA_MALLOC
6155 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6156 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6157 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6158 #endif
6159 init_strings ();
6160 init_cons ();
6161 init_symbol ();
6162 init_marker ();
6163 init_float ();
6164 init_intervals ();
6165 init_weak_hash_tables ();
6167 #ifdef REL_ALLOC
6168 malloc_hysteresis = 32;
6169 #else
6170 malloc_hysteresis = 0;
6171 #endif
6173 refill_memory_reserve ();
6175 ignore_warnings = 0;
6176 gcprolist = 0;
6177 byte_stack_list = 0;
6178 staticidx = 0;
6179 consing_since_gc = 0;
6180 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6181 gc_relative_threshold = 0;
6183 #ifdef VIRT_ADDR_VARIES
6184 malloc_sbrk_unused = 1<<22; /* A large number */
6185 malloc_sbrk_used = 100000; /* as reasonable as any number */
6186 #endif /* VIRT_ADDR_VARIES */
6189 void
6190 init_alloc (void)
6192 gcprolist = 0;
6193 byte_stack_list = 0;
6194 #if GC_MARK_STACK
6195 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6196 setjmp_tested_p = longjmps_done = 0;
6197 #endif
6198 #endif
6199 Vgc_elapsed = make_float (0.0);
6200 gcs_done = 0;
6203 void
6204 syms_of_alloc (void)
6206 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6207 doc: /* *Number of bytes of consing between garbage collections.
6208 Garbage collection can happen automatically once this many bytes have been
6209 allocated since the last garbage collection. All data types count.
6211 Garbage collection happens automatically only when `eval' is called.
6213 By binding this temporarily to a large number, you can effectively
6214 prevent garbage collection during a part of the program.
6215 See also `gc-cons-percentage'. */);
6217 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6218 doc: /* *Portion of the heap used for allocation.
6219 Garbage collection can happen automatically once this portion of the heap
6220 has been allocated since the last garbage collection.
6221 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6222 Vgc_cons_percentage = make_float (0.1);
6224 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6225 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6227 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6228 doc: /* Number of cons cells that have been consed so far. */);
6230 DEFVAR_INT ("floats-consed", &floats_consed,
6231 doc: /* Number of floats that have been consed so far. */);
6233 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6234 doc: /* Number of vector cells that have been consed so far. */);
6236 DEFVAR_INT ("symbols-consed", &symbols_consed,
6237 doc: /* Number of symbols that have been consed so far. */);
6239 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6240 doc: /* Number of string characters that have been consed so far. */);
6242 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6243 doc: /* Number of miscellaneous objects that have been consed so far. */);
6245 DEFVAR_INT ("intervals-consed", &intervals_consed,
6246 doc: /* Number of intervals that have been consed so far. */);
6248 DEFVAR_INT ("strings-consed", &strings_consed,
6249 doc: /* Number of strings that have been consed so far. */);
6251 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6252 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6253 This means that certain objects should be allocated in shared (pure) space.
6254 It can also be set to a hash-table, in which case this table is used to
6255 do hash-consing of the objects allocated to pure space. */);
6257 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6258 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6259 garbage_collection_messages = 0;
6261 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6262 doc: /* Hook run after garbage collection has finished. */);
6263 Vpost_gc_hook = Qnil;
6264 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6265 staticpro (&Qpost_gc_hook);
6267 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6268 doc: /* Precomputed `signal' argument for memory-full error. */);
6269 /* We build this in advance because if we wait until we need it, we might
6270 not be able to allocate the memory to hold it. */
6271 Vmemory_signal_data
6272 = pure_cons (Qerror,
6273 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6275 DEFVAR_LISP ("memory-full", &Vmemory_full,
6276 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6277 Vmemory_full = Qnil;
6279 staticpro (&Qgc_cons_threshold);
6280 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6282 staticpro (&Qchar_table_extra_slots);
6283 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6285 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6286 doc: /* Accumulated time elapsed in garbage collections.
6287 The time is in seconds as a floating point value. */);
6288 DEFVAR_INT ("gcs-done", &gcs_done,
6289 doc: /* Accumulated number of garbage collections done. */);
6291 defsubr (&Scons);
6292 defsubr (&Slist);
6293 defsubr (&Svector);
6294 defsubr (&Smake_byte_code);
6295 defsubr (&Smake_list);
6296 defsubr (&Smake_vector);
6297 defsubr (&Smake_string);
6298 defsubr (&Smake_bool_vector);
6299 defsubr (&Smake_symbol);
6300 defsubr (&Smake_marker);
6301 defsubr (&Spurecopy);
6302 defsubr (&Sgarbage_collect);
6303 defsubr (&Smemory_limit);
6304 defsubr (&Smemory_use_counts);
6306 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6307 defsubr (&Sgc_status);
6308 #endif
6311 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6312 (do not change this comment) */