1 /* CCL (Code Conversion Language) interpreter.
2 Copyright (C) 2001-2011 Free Software Foundation, Inc.
3 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 National Institute of Advanced Industrial Science and Technology (AIST)
6 Registration Number H14PRO021
8 National Institute of Advanced Industrial Science and Technology (AIST)
9 Registration Number H13PRO009
11 This file is part of GNU Emacs.
13 GNU Emacs is free software: you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation, either version 3 of the License, or
16 (at your option) any later version.
18 GNU Emacs is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
33 #include "character.h"
38 Lisp_Object Qccl
, Qcclp
;
40 /* This symbol is a property which associates with ccl program vector.
41 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
42 static Lisp_Object Qccl_program
;
44 /* These symbols are properties which associate with code conversion
45 map and their ID respectively. */
46 static Lisp_Object Qcode_conversion_map
;
47 static Lisp_Object Qcode_conversion_map_id
;
49 /* Symbols of ccl program have this property, a value of the property
50 is an index for Vccl_protram_table. */
51 static Lisp_Object Qccl_program_idx
;
53 /* Table of registered CCL programs. Each element is a vector of
54 NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
55 name of the program, CCL_PROG (vector) is the compiled code of the
56 program, RESOLVEDP (t or nil) is the flag to tell if symbols in
57 CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
58 or nil) is the flat to tell if the CCL program is updated after it
60 static Lisp_Object Vccl_program_table
;
62 /* Return a hash table of id number ID. */
63 #define GET_HASH_TABLE(id) \
64 (XHASH_TABLE (XCDR(XVECTOR(Vtranslation_hash_table_vector)->contents[(id)])))
66 /* CCL (Code Conversion Language) is a simple language which has
67 operations on one input buffer, one output buffer, and 7 registers.
68 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
69 `ccl-compile' compiles a CCL program and produces a CCL code which
70 is a vector of integers. The structure of this vector is as
71 follows: The 1st element: buffer-magnification, a factor for the
72 size of output buffer compared with the size of input buffer. The
73 2nd element: address of CCL code to be executed when encountered
74 with end of input stream. The 3rd and the remaining elements: CCL
77 /* Header of CCL compiled code */
78 #define CCL_HEADER_BUF_MAG 0
79 #define CCL_HEADER_EOF 1
80 #define CCL_HEADER_MAIN 2
82 /* CCL code is a sequence of 28-bit integers. Each contains a CCL
83 command and/or arguments in the following format:
85 |----------------- integer (28-bit) ------------------|
86 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
87 |--constant argument--|-register-|-register-|-command-|
88 ccccccccccccccccc RRR rrr XXXXX
90 |------- relative address -------|-register-|-command-|
91 cccccccccccccccccccc rrr XXXXX
93 |------------- constant or other args ----------------|
94 cccccccccccccccccccccccccccc
96 where `cc...c' is a 17-bit, 20-bit, or 28-bit integer indicating a
97 constant value or a relative/absolute jump address, `RRR'
98 and `rrr' are CCL register number, `XXXXX' is one of the following
101 #define CCL_CODE_MAX ((1 << (28 - 1)) - 1)
102 #define CCL_CODE_MIN (-1 - CCL_CODE_MAX)
106 Each comment fields shows one or more lines for command syntax and
107 the following lines for semantics of the command. In semantics, IC
108 stands for Instruction Counter. */
110 #define CCL_SetRegister 0x00 /* Set register a register value:
111 1:00000000000000000RRRrrrXXXXX
112 ------------------------------
116 #define CCL_SetShortConst 0x01 /* Set register a short constant value:
117 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
118 ------------------------------
119 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
122 #define CCL_SetConst 0x02 /* Set register a constant value:
123 1:00000000000000000000rrrXXXXX
125 ------------------------------
130 #define CCL_SetArray 0x03 /* Set register an element of array:
131 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
135 ------------------------------
136 if (0 <= reg[RRR] < CC..C)
137 reg[rrr] = ELEMENT[reg[RRR]];
141 #define CCL_Jump 0x04 /* Jump:
142 1:A--D--D--R--E--S--S-000XXXXX
143 ------------------------------
147 /* Note: If CC..C is greater than 0, the second code is omitted. */
149 #define CCL_JumpCond 0x05 /* Jump conditional:
150 1:A--D--D--R--E--S--S-rrrXXXXX
151 ------------------------------
157 #define CCL_WriteRegisterJump 0x06 /* Write register and jump:
158 1:A--D--D--R--E--S--S-rrrXXXXX
159 ------------------------------
164 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
165 1:A--D--D--R--E--S--S-rrrXXXXX
166 2:A--D--D--R--E--S--S-rrrYYYYY
167 -----------------------------
173 /* Note: If read is suspended, the resumed execution starts from the
174 second code (YYYYY == CCL_ReadJump). */
176 #define CCL_WriteConstJump 0x08 /* Write constant and jump:
177 1:A--D--D--R--E--S--S-000XXXXX
179 ------------------------------
184 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
185 1:A--D--D--R--E--S--S-rrrXXXXX
187 3:A--D--D--R--E--S--S-rrrYYYYY
188 -----------------------------
194 /* Note: If read is suspended, the resumed execution starts from the
195 second code (YYYYY == CCL_ReadJump). */
197 #define CCL_WriteStringJump 0x0A /* Write string and jump:
198 1:A--D--D--R--E--S--S-000XXXXX
200 3:000MSTRIN[0]STRIN[1]STRIN[2]
202 ------------------------------
204 write_multibyte_string (STRING, LENGTH);
206 write_string (STRING, LENGTH);
210 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
211 1:A--D--D--R--E--S--S-rrrXXXXX
216 N:A--D--D--R--E--S--S-rrrYYYYY
217 ------------------------------
218 if (0 <= reg[rrr] < LENGTH)
219 write (ELEMENT[reg[rrr]]);
220 IC += LENGTH + 2; (... pointing at N+1)
224 /* Note: If read is suspended, the resumed execution starts from the
225 Nth code (YYYYY == CCL_ReadJump). */
227 #define CCL_ReadJump 0x0C /* Read and jump:
228 1:A--D--D--R--E--S--S-rrrYYYYY
229 -----------------------------
234 #define CCL_Branch 0x0D /* Jump by branch table:
235 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
236 2:A--D--D--R--E-S-S[0]000XXXXX
237 3:A--D--D--R--E-S-S[1]000XXXXX
239 ------------------------------
240 if (0 <= reg[rrr] < CC..C)
241 IC += ADDRESS[reg[rrr]];
243 IC += ADDRESS[CC..C];
246 #define CCL_ReadRegister 0x0E /* Read bytes into registers:
247 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
248 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
250 ------------------------------
255 #define CCL_WriteExprConst 0x0F /* write result of expression:
256 1:00000OPERATION000RRR000XXXXX
258 ------------------------------
259 write (reg[RRR] OPERATION CONSTANT);
263 /* Note: If the Nth read is suspended, the resumed execution starts
264 from the Nth code. */
266 #define CCL_ReadBranch 0x10 /* Read one byte into a register,
267 and jump by branch table:
268 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
269 2:A--D--D--R--E-S-S[0]000XXXXX
270 3:A--D--D--R--E-S-S[1]000XXXXX
272 ------------------------------
274 if (0 <= reg[rrr] < CC..C)
275 IC += ADDRESS[reg[rrr]];
277 IC += ADDRESS[CC..C];
280 #define CCL_WriteRegister 0x11 /* Write registers:
281 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
282 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
284 ------------------------------
290 /* Note: If the Nth write is suspended, the resumed execution
291 starts from the Nth code. */
293 #define CCL_WriteExprRegister 0x12 /* Write result of expression
294 1:00000OPERATIONRrrRRR000XXXXX
295 ------------------------------
296 write (reg[RRR] OPERATION reg[Rrr]);
299 #define CCL_Call 0x13 /* Call the CCL program whose ID is
301 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
302 [2:00000000cccccccccccccccccccc]
303 ------------------------------
311 #define CCL_WriteConstString 0x14 /* Write a constant or a string:
312 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
313 [2:000MSTRIN[0]STRIN[1]STRIN[2]]
315 -----------------------------
320 write_multibyte_string (STRING, CC..C);
322 write_string (STRING, CC..C);
323 IC += (CC..C + 2) / 3;
326 #define CCL_WriteArray 0x15 /* Write an element of array:
327 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
331 ------------------------------
332 if (0 <= reg[rrr] < CC..C)
333 write (ELEMENT[reg[rrr]]);
337 #define CCL_End 0x16 /* Terminate:
338 1:00000000000000000000000XXXXX
339 ------------------------------
343 /* The following two codes execute an assignment arithmetic/logical
344 operation. The form of the operation is like REG OP= OPERAND. */
346 #define CCL_ExprSelfConst 0x17 /* REG OP= constant:
347 1:00000OPERATION000000rrrXXXXX
349 ------------------------------
350 reg[rrr] OPERATION= CONSTANT;
353 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
354 1:00000OPERATION000RRRrrrXXXXX
355 ------------------------------
356 reg[rrr] OPERATION= reg[RRR];
359 /* The following codes execute an arithmetic/logical operation. The
360 form of the operation is like REG_X = REG_Y OP OPERAND2. */
362 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
363 1:00000OPERATION000RRRrrrXXXXX
365 ------------------------------
366 reg[rrr] = reg[RRR] OPERATION CONSTANT;
370 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
371 1:00000OPERATIONRrrRRRrrrXXXXX
372 ------------------------------
373 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
376 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
377 an operation on constant:
378 1:A--D--D--R--E--S--S-rrrXXXXX
381 -----------------------------
382 reg[7] = reg[rrr] OPERATION CONSTANT;
389 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
390 an operation on register:
391 1:A--D--D--R--E--S--S-rrrXXXXX
394 -----------------------------
395 reg[7] = reg[rrr] OPERATION reg[RRR];
402 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
403 to an operation on constant:
404 1:A--D--D--R--E--S--S-rrrXXXXX
407 -----------------------------
409 reg[7] = reg[rrr] OPERATION CONSTANT;
416 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
417 to an operation on register:
418 1:A--D--D--R--E--S--S-rrrXXXXX
421 -----------------------------
423 reg[7] = reg[rrr] OPERATION reg[RRR];
430 #define CCL_Extension 0x1F /* Extended CCL code
431 1:ExtendedCOMMNDRrrRRRrrrXXXXX
434 ------------------------------
435 extended_command (rrr,RRR,Rrr,ARGS)
439 Here after, Extended CCL Instructions.
440 Bit length of extended command is 14.
441 Therefore, the instruction code range is 0..16384(0x3fff).
444 /* Read a multibyte character.
445 A code point is stored into reg[rrr]. A charset ID is stored into
448 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
449 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
451 /* Write a multibyte character.
452 Write a character whose code point is reg[rrr] and the charset ID
455 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
456 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
458 /* Translate a character whose code point is reg[rrr] and the charset
459 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
461 A translated character is set in reg[rrr] (code point) and reg[RRR]
464 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
465 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
467 /* Translate a character whose code point is reg[rrr] and the charset
468 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
470 A translated character is set in reg[rrr] (code point) and reg[RRR]
473 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
474 1:ExtendedCOMMNDRrrRRRrrrXXXXX
475 2:ARGUMENT(Translation Table ID)
478 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
479 reg[RRR]) MAP until some value is found.
481 Each MAP is a Lisp vector whose element is number, nil, t, or
483 If the element is nil, ignore the map and proceed to the next map.
484 If the element is t or lambda, finish without changing reg[rrr].
485 If the element is a number, set reg[rrr] to the number and finish.
487 Detail of the map structure is descibed in the comment for
488 CCL_MapMultiple below. */
490 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
491 1:ExtendedCOMMNDXXXRRRrrrXXXXX
498 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
501 MAPs are supplied in the succeeding CCL codes as follows:
503 When CCL program gives this nested structure of map to this command:
506 (MAP-ID121 MAP-ID122 MAP-ID123)
509 (MAP-ID211 (MAP-ID2111) MAP-ID212)
511 the compiled CCL codes has this sequence:
512 CCL_MapMultiple (CCL code of this command)
513 16 (total number of MAPs and SEPARATORs)
531 A value of each SEPARATOR follows this rule:
532 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
533 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
535 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
537 When some map fails to map (i.e. it doesn't have a value for
538 reg[rrr]), the mapping is treated as identity.
540 The mapping is iterated for all maps in each map set (set of maps
541 separated by SEPARATOR) except in the case that lambda is
542 encountered. More precisely, the mapping proceeds as below:
544 At first, VAL0 is set to reg[rrr], and it is translated by the
545 first map to VAL1. Then, VAL1 is translated by the next map to
546 VAL2. This mapping is iterated until the last map is used. The
547 result of the mapping is the last value of VAL?. When the mapping
548 process reached to the end of the map set, it moves to the next
549 map set. If the next does not exit, the mapping process terminates,
550 and regard the last value as a result.
552 But, when VALm is mapped to VALn and VALn is not a number, the
553 mapping proceed as below:
555 If VALn is nil, the lastest map is ignored and the mapping of VALm
556 proceed to the next map.
558 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
559 proceed to the next map.
561 If VALn is lambda, move to the next map set like reaching to the
562 end of the current map set.
564 If VALn is a symbol, call the CCL program refered by it.
565 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
566 Such special values are regarded as nil, t, and lambda respectively.
568 Each map is a Lisp vector of the following format (a) or (b):
569 (a)......[STARTPOINT VAL1 VAL2 ...]
570 (b)......[t VAL STARTPOINT ENDPOINT],
572 STARTPOINT is an offset to be used for indexing a map,
573 ENDPOINT is a maximum index number of a map,
574 VAL and VALn is a number, nil, t, or lambda.
576 Valid index range of a map of type (a) is:
577 STARTPOINT <= index < STARTPOINT + map_size - 1
578 Valid index range of a map of type (b) is:
579 STARTPOINT <= index < ENDPOINT */
581 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
582 1:ExtendedCOMMNDXXXRRRrrrXXXXX
594 #define MAX_MAP_SET_LEVEL 30
602 static tr_stack mapping_stack
[MAX_MAP_SET_LEVEL
];
603 static tr_stack
*mapping_stack_pointer
;
605 /* If this variable is non-zero, it indicates the stack_idx
606 of immediately called by CCL_MapMultiple. */
607 static int stack_idx_of_map_multiple
;
609 #define PUSH_MAPPING_STACK(restlen, orig) \
612 mapping_stack_pointer->rest_length = (restlen); \
613 mapping_stack_pointer->orig_val = (orig); \
614 mapping_stack_pointer++; \
618 #define POP_MAPPING_STACK(restlen, orig) \
621 mapping_stack_pointer--; \
622 (restlen) = mapping_stack_pointer->rest_length; \
623 (orig) = mapping_stack_pointer->orig_val; \
627 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
630 struct ccl_program called_ccl; \
631 if (stack_idx >= 256 \
632 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
636 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
637 ic = ccl_prog_stack_struct[0].ic; \
638 eof_ic = ccl_prog_stack_struct[0].eof_ic; \
642 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
643 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
644 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
646 ccl_prog = called_ccl.prog; \
647 ic = CCL_HEADER_MAIN; \
648 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
653 #define CCL_MapSingle 0x12 /* Map by single code conversion map
654 1:ExtendedCOMMNDXXXRRRrrrXXXXX
656 ------------------------------
657 Map reg[rrr] by MAP-ID.
658 If some valid mapping is found,
659 set reg[rrr] to the result,
664 #define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
665 integer key. Afterwards R7 set
666 to 1 if lookup succeeded.
667 1:ExtendedCOMMNDRrrRRRXXXXXXXX
668 2:ARGUMENT(Hash table ID) */
670 #define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
671 character key. Afterwards R7 set
672 to 1 if lookup succeeded.
673 1:ExtendedCOMMNDRrrRRRrrrXXXXX
674 2:ARGUMENT(Hash table ID) */
676 /* CCL arithmetic/logical operators. */
677 #define CCL_PLUS 0x00 /* X = Y + Z */
678 #define CCL_MINUS 0x01 /* X = Y - Z */
679 #define CCL_MUL 0x02 /* X = Y * Z */
680 #define CCL_DIV 0x03 /* X = Y / Z */
681 #define CCL_MOD 0x04 /* X = Y % Z */
682 #define CCL_AND 0x05 /* X = Y & Z */
683 #define CCL_OR 0x06 /* X = Y | Z */
684 #define CCL_XOR 0x07 /* X = Y ^ Z */
685 #define CCL_LSH 0x08 /* X = Y << Z */
686 #define CCL_RSH 0x09 /* X = Y >> Z */
687 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
688 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
689 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
690 #define CCL_LS 0x10 /* X = (X < Y) */
691 #define CCL_GT 0x11 /* X = (X > Y) */
692 #define CCL_EQ 0x12 /* X = (X == Y) */
693 #define CCL_LE 0x13 /* X = (X <= Y) */
694 #define CCL_GE 0x14 /* X = (X >= Y) */
695 #define CCL_NE 0x15 /* X = (X != Y) */
697 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
698 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
699 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
700 r[7] = LOWER_BYTE (SJIS (Y, Z) */
702 /* Terminate CCL program successfully. */
703 #define CCL_SUCCESS \
706 ccl->status = CCL_STAT_SUCCESS; \
711 /* Suspend CCL program because of reading from empty input buffer or
712 writing to full output buffer. When this program is resumed, the
713 same I/O command is executed. */
714 #define CCL_SUSPEND(stat) \
718 ccl->status = stat; \
723 /* Terminate CCL program because of invalid command. Should not occur
724 in the normal case. */
727 #define CCL_INVALID_CMD \
730 ccl->status = CCL_STAT_INVALID_CMD; \
731 goto ccl_error_handler; \
737 #define CCL_INVALID_CMD \
740 ccl_debug_hook (this_ic); \
741 ccl->status = CCL_STAT_INVALID_CMD; \
742 goto ccl_error_handler; \
748 /* Use "&" rather than "&&" to suppress a bogus GCC warning; see
749 <http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43772>. */
750 #define ASCENDING_ORDER(lo, med, hi) (((lo) <= (med)) & ((med) <= (hi)))
752 #define GET_CCL_RANGE(var, ccl_prog, ic, lo, hi) \
755 EMACS_INT prog_word = XINT ((ccl_prog)[ic]); \
756 if (! ASCENDING_ORDER (lo, prog_word, hi)) \
762 #define GET_CCL_CODE(code, ccl_prog, ic) \
763 GET_CCL_RANGE (code, ccl_prog, ic, CCL_CODE_MIN, CCL_CODE_MAX)
765 #define GET_CCL_INT(var, ccl_prog, ic) \
766 GET_CCL_RANGE (var, ccl_prog, ic, INT_MIN, INT_MAX)
768 #define IN_INT_RANGE(val) ASCENDING_ORDER (INT_MIN, val, INT_MAX)
770 /* Encode one character CH to multibyte form and write to the current
771 output buffer. If CH is less than 256, CH is written as is. */
772 #define CCL_WRITE_CHAR(ch) \
776 else if (dst < dst_end) \
779 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
782 /* Write a string at ccl_prog[IC] of length LEN to the current output
784 #define CCL_WRITE_STRING(len) \
789 else if (dst + len <= dst_end) \
791 if (XFASTINT (ccl_prog[ic]) & 0x1000000) \
792 for (ccli = 0; ccli < len; ccli++) \
793 *dst++ = XFASTINT (ccl_prog[ic + ccli]) & 0xFFFFFF; \
795 for (ccli = 0; ccli < len; ccli++) \
796 *dst++ = ((XFASTINT (ccl_prog[ic + (ccli / 3)])) \
797 >> ((2 - (ccli % 3)) * 8)) & 0xFF; \
800 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
803 /* Read one byte from the current input buffer into Rth register. */
804 #define CCL_READ_CHAR(r) \
808 else if (src < src_end) \
810 else if (ccl->last_block) \
817 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
820 /* Decode CODE by a charset whose id is ID. If ID is 0, return CODE
821 as is for backward compatibility. Assume that we can use the
822 variable `charset'. */
824 #define CCL_DECODE_CHAR(id, code) \
825 ((id) == 0 ? (code) \
826 : (charset = CHARSET_FROM_ID ((id)), DECODE_CHAR (charset, (code))))
828 /* Encode character C by some of charsets in CHARSET_LIST. Set ID to
829 the id of the used charset, ENCODED to the resulf of encoding.
830 Assume that we can use the variable `charset'. */
832 #define CCL_ENCODE_CHAR(c, charset_list, id, encoded) \
836 charset = char_charset ((c), (charset_list), &ncode); \
837 if (! charset && ! NILP (charset_list)) \
838 charset = char_charset ((c), Qnil, &ncode); \
841 (id) = CHARSET_ID (charset); \
846 /* Execute CCL code on characters at SOURCE (length SRC_SIZE). The
847 resulting text goes to a place pointed by DESTINATION, the length
848 of which should not exceed DST_SIZE. As a side effect, how many
849 characters are consumed and produced are recorded in CCL->consumed
850 and CCL->produced, and the contents of CCL registers are updated.
851 If SOURCE or DESTINATION is NULL, only operations on registers are
855 #define CCL_DEBUG_BACKTRACE_LEN 256
856 int ccl_backtrace_table
[CCL_DEBUG_BACKTRACE_LEN
];
857 int ccl_backtrace_idx
;
860 ccl_debug_hook (int ic
)
867 struct ccl_prog_stack
869 Lisp_Object
*ccl_prog
; /* Pointer to an array of CCL code. */
870 int ic
; /* Instruction Counter. */
871 int eof_ic
; /* Instruction Counter to jump on EOF. */
874 /* For the moment, we only support depth 256 of stack. */
875 static struct ccl_prog_stack ccl_prog_stack_struct
[256];
878 ccl_driver (struct ccl_program
*ccl
, int *source
, int *destination
, int src_size
, int dst_size
, Lisp_Object charset_list
)
880 register int *reg
= ccl
->reg
;
881 register int ic
= ccl
->ic
;
882 register int code
= 0, field1
, field2
;
883 register Lisp_Object
*ccl_prog
= ccl
->prog
;
884 int *src
= source
, *src_end
= src
+ src_size
;
885 int *dst
= destination
, *dst_end
= dst
+ dst_size
;
888 int stack_idx
= ccl
->stack_idx
;
889 /* Instruction counter of the current CCL code. */
891 struct charset
*charset
;
892 int eof_ic
= ccl
->eof_ic
;
895 if (ccl
->buf_magnification
== 0) /* We can't read/produce any bytes. */
898 /* Set mapping stack pointer. */
899 mapping_stack_pointer
= mapping_stack
;
902 ccl_backtrace_idx
= 0;
909 ccl_backtrace_table
[ccl_backtrace_idx
++] = ic
;
910 if (ccl_backtrace_idx
>= CCL_DEBUG_BACKTRACE_LEN
)
911 ccl_backtrace_idx
= 0;
912 ccl_backtrace_table
[ccl_backtrace_idx
] = 0;
915 if (!NILP (Vquit_flag
) && NILP (Vinhibit_quit
))
917 /* We can't just signal Qquit, instead break the loop as if
918 the whole data is processed. Don't reset Vquit_flag, it
919 must be handled later at a safer place. */
921 src
= source
+ src_size
;
922 ccl
->status
= CCL_STAT_QUIT
;
927 GET_CCL_CODE (code
, ccl_prog
, ic
++);
929 field2
= (code
& 0xFF) >> 5;
932 #define RRR (field1 & 7)
933 #define Rrr ((field1 >> 3) & 7)
935 #define EXCMD (field1 >> 6)
939 case CCL_SetRegister
: /* 00000000000000000RRRrrrXXXXX */
943 case CCL_SetShortConst
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
947 case CCL_SetConst
: /* 00000000000000000000rrrXXXXX */
948 GET_CCL_INT (reg
[rrr
], ccl_prog
, ic
++);
951 case CCL_SetArray
: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
955 GET_CCL_INT (reg
[rrr
], ccl_prog
, ic
+ i
);
959 case CCL_Jump
: /* A--D--D--R--E--S--S-000XXXXX */
963 case CCL_JumpCond
: /* A--D--D--R--E--S--S-rrrXXXXX */
968 case CCL_WriteRegisterJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
974 case CCL_WriteRegisterReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
978 CCL_READ_CHAR (reg
[rrr
]);
982 case CCL_WriteConstJump
: /* A--D--D--R--E--S--S-000XXXXX */
983 GET_CCL_INT (i
, ccl_prog
, ic
);
988 case CCL_WriteConstReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
989 GET_CCL_INT (i
, ccl_prog
, ic
);
992 CCL_READ_CHAR (reg
[rrr
]);
996 case CCL_WriteStringJump
: /* A--D--D--R--E--S--S-000XXXXX */
997 GET_CCL_INT (j
, ccl_prog
, ic
++);
998 CCL_WRITE_STRING (j
);
1002 case CCL_WriteArrayReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
1004 GET_CCL_INT (j
, ccl_prog
, ic
);
1005 if (0 <= i
&& i
< j
)
1007 GET_CCL_INT (i
, ccl_prog
, ic
+ 1 + i
);
1011 CCL_READ_CHAR (reg
[rrr
]);
1012 ic
+= ADDR
- (j
+ 2);
1015 case CCL_ReadJump
: /* A--D--D--R--E--S--S-rrrYYYYY */
1016 CCL_READ_CHAR (reg
[rrr
]);
1020 case CCL_ReadBranch
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1021 CCL_READ_CHAR (reg
[rrr
]);
1022 /* fall through ... */
1023 case CCL_Branch
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1026 GET_CCL_INT (incr
, ccl_prog
,
1027 ic
+ (0 <= reg
[rrr
] && reg
[rrr
] < field1
1034 case CCL_ReadRegister
: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1037 CCL_READ_CHAR (reg
[rrr
]);
1039 GET_CCL_CODE (code
, ccl_prog
, ic
++);
1041 field2
= (code
& 0xFF) >> 5;
1045 case CCL_WriteExprConst
: /* 1:00000OPERATION000RRR000XXXXX */
1048 GET_CCL_INT (j
, ccl_prog
, ic
);
1050 jump_address
= ic
+ 1;
1053 case CCL_WriteRegister
: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1059 GET_CCL_CODE (code
, ccl_prog
, ic
++);
1061 field2
= (code
& 0xFF) >> 5;
1065 case CCL_WriteExprRegister
: /* 1:00000OPERATIONRrrRRR000XXXXX */
1073 case CCL_Call
: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
1078 /* If FFF is nonzero, the CCL program ID is in the
1081 GET_CCL_INT (prog_id
, ccl_prog
, ic
++);
1085 if (stack_idx
>= 256
1087 || prog_id
>= ASIZE (Vccl_program_table
)
1088 || (slot
= AREF (Vccl_program_table
, prog_id
), !VECTORP (slot
))
1089 || !VECTORP (AREF (slot
, 1)))
1093 ccl_prog
= ccl_prog_stack_struct
[0].ccl_prog
;
1094 ic
= ccl_prog_stack_struct
[0].ic
;
1095 eof_ic
= ccl_prog_stack_struct
[0].eof_ic
;
1100 ccl_prog_stack_struct
[stack_idx
].ccl_prog
= ccl_prog
;
1101 ccl_prog_stack_struct
[stack_idx
].ic
= ic
;
1102 ccl_prog_stack_struct
[stack_idx
].eof_ic
= eof_ic
;
1104 ccl_prog
= XVECTOR (AREF (slot
, 1))->contents
;
1105 ic
= CCL_HEADER_MAIN
;
1106 eof_ic
= XFASTINT (ccl_prog
[CCL_HEADER_EOF
]);
1110 case CCL_WriteConstString
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1112 CCL_WRITE_CHAR (field1
);
1115 CCL_WRITE_STRING (field1
);
1116 ic
+= (field1
+ 2) / 3;
1120 case CCL_WriteArray
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1122 if (0 <= i
&& i
< field1
)
1124 GET_CCL_INT (j
, ccl_prog
, ic
+ i
);
1130 case CCL_End
: /* 0000000000000000000000XXXXX */
1134 ccl_prog
= ccl_prog_stack_struct
[stack_idx
].ccl_prog
;
1135 ic
= ccl_prog_stack_struct
[stack_idx
].ic
;
1136 eof_ic
= ccl_prog_stack_struct
[stack_idx
].eof_ic
;
1143 /* ccl->ic should points to this command code again to
1144 suppress further processing. */
1148 case CCL_ExprSelfConst
: /* 00000OPERATION000000rrrXXXXX */
1149 GET_CCL_INT (i
, ccl_prog
, ic
++);
1153 case CCL_ExprSelfReg
: /* 00000OPERATION000RRRrrrXXXXX */
1160 case CCL_PLUS
: reg
[rrr
] += i
; break;
1161 case CCL_MINUS
: reg
[rrr
] -= i
; break;
1162 case CCL_MUL
: reg
[rrr
] *= i
; break;
1163 case CCL_DIV
: reg
[rrr
] /= i
; break;
1164 case CCL_MOD
: reg
[rrr
] %= i
; break;
1165 case CCL_AND
: reg
[rrr
] &= i
; break;
1166 case CCL_OR
: reg
[rrr
] |= i
; break;
1167 case CCL_XOR
: reg
[rrr
] ^= i
; break;
1168 case CCL_LSH
: reg
[rrr
] <<= i
; break;
1169 case CCL_RSH
: reg
[rrr
] >>= i
; break;
1170 case CCL_LSH8
: reg
[rrr
] <<= 8; reg
[rrr
] |= i
; break;
1171 case CCL_RSH8
: reg
[7] = reg
[rrr
] & 0xFF; reg
[rrr
] >>= 8; break;
1172 case CCL_DIVMOD
: reg
[7] = reg
[rrr
] % i
; reg
[rrr
] /= i
; break;
1173 case CCL_LS
: reg
[rrr
] = reg
[rrr
] < i
; break;
1174 case CCL_GT
: reg
[rrr
] = reg
[rrr
] > i
; break;
1175 case CCL_EQ
: reg
[rrr
] = reg
[rrr
] == i
; break;
1176 case CCL_LE
: reg
[rrr
] = reg
[rrr
] <= i
; break;
1177 case CCL_GE
: reg
[rrr
] = reg
[rrr
] >= i
; break;
1178 case CCL_NE
: reg
[rrr
] = reg
[rrr
] != i
; break;
1179 default: CCL_INVALID_CMD
;
1183 case CCL_SetExprConst
: /* 00000OPERATION000RRRrrrXXXXX */
1185 GET_CCL_INT (j
, ccl_prog
, ic
++);
1190 case CCL_SetExprReg
: /* 00000OPERATIONRrrRRRrrrXXXXX */
1197 case CCL_ReadJumpCondExprConst
: /* A--D--D--R--E--S--S-rrrXXXXX */
1198 CCL_READ_CHAR (reg
[rrr
]);
1199 case CCL_JumpCondExprConst
: /* A--D--D--R--E--S--S-rrrXXXXX */
1201 jump_address
= ic
+ ADDR
;
1202 GET_CCL_INT (op
, ccl_prog
, ic
++);
1203 GET_CCL_INT (j
, ccl_prog
, ic
++);
1207 case CCL_ReadJumpCondExprReg
: /* A--D--D--R--E--S--S-rrrXXXXX */
1208 CCL_READ_CHAR (reg
[rrr
]);
1209 case CCL_JumpCondExprReg
:
1211 jump_address
= ic
+ ADDR
;
1212 GET_CCL_INT (op
, ccl_prog
, ic
++);
1213 GET_CCL_RANGE (j
, ccl_prog
, ic
++, 0, 7);
1220 case CCL_PLUS
: reg
[rrr
] = i
+ j
; break;
1221 case CCL_MINUS
: reg
[rrr
] = i
- j
; break;
1222 case CCL_MUL
: reg
[rrr
] = i
* j
; break;
1223 case CCL_DIV
: reg
[rrr
] = i
/ j
; break;
1224 case CCL_MOD
: reg
[rrr
] = i
% j
; break;
1225 case CCL_AND
: reg
[rrr
] = i
& j
; break;
1226 case CCL_OR
: reg
[rrr
] = i
| j
; break;
1227 case CCL_XOR
: reg
[rrr
] = i
^ j
; break;
1228 case CCL_LSH
: reg
[rrr
] = i
<< j
; break;
1229 case CCL_RSH
: reg
[rrr
] = i
>> j
; break;
1230 case CCL_LSH8
: reg
[rrr
] = (i
<< 8) | j
; break;
1231 case CCL_RSH8
: reg
[rrr
] = i
>> 8; reg
[7] = i
& 0xFF; break;
1232 case CCL_DIVMOD
: reg
[rrr
] = i
/ j
; reg
[7] = i
% j
; break;
1233 case CCL_LS
: reg
[rrr
] = i
< j
; break;
1234 case CCL_GT
: reg
[rrr
] = i
> j
; break;
1235 case CCL_EQ
: reg
[rrr
] = i
== j
; break;
1236 case CCL_LE
: reg
[rrr
] = i
<= j
; break;
1237 case CCL_GE
: reg
[rrr
] = i
>= j
; break;
1238 case CCL_NE
: reg
[rrr
] = i
!= j
; break;
1239 case CCL_DECODE_SJIS
:
1247 case CCL_ENCODE_SJIS
:
1255 default: CCL_INVALID_CMD
;
1258 if (code
== CCL_WriteExprConst
|| code
== CCL_WriteExprRegister
)
1271 case CCL_ReadMultibyteChar2
:
1275 CCL_ENCODE_CHAR (i
, charset_list
, reg
[RRR
], reg
[rrr
]);
1278 case CCL_WriteMultibyteChar2
:
1281 i
= CCL_DECODE_CHAR (reg
[RRR
], reg
[rrr
]);
1285 case CCL_TranslateCharacter
:
1286 i
= CCL_DECODE_CHAR (reg
[RRR
], reg
[rrr
]);
1287 op
= translate_char (GET_TRANSLATION_TABLE (reg
[Rrr
]), i
);
1288 CCL_ENCODE_CHAR (op
, charset_list
, reg
[RRR
], reg
[rrr
]);
1291 case CCL_TranslateCharacterConstTbl
:
1294 GET_CCL_RANGE (eop
, ccl_prog
, ic
++, 0,
1295 (VECTORP (Vtranslation_table_vector
)
1296 ? ASIZE (Vtranslation_table_vector
)
1298 i
= CCL_DECODE_CHAR (reg
[RRR
], reg
[rrr
]);
1299 op
= translate_char (GET_TRANSLATION_TABLE (eop
), i
);
1300 CCL_ENCODE_CHAR (op
, charset_list
, reg
[RRR
], reg
[rrr
]);
1304 case CCL_LookupIntConstTbl
:
1307 struct Lisp_Hash_Table
*h
;
1308 GET_CCL_RANGE (eop
, ccl_prog
, ic
++, 0,
1309 (VECTORP (Vtranslation_hash_table_vector
)
1310 ? ASIZE (Vtranslation_hash_table_vector
)
1312 h
= GET_HASH_TABLE (eop
);
1314 eop
= hash_lookup (h
, make_number (reg
[RRR
]), NULL
);
1318 opl
= HASH_VALUE (h
, eop
);
1319 if (! (IN_INT_RANGE (eop
) && CHARACTERP (opl
)))
1321 reg
[RRR
] = charset_unicode
;
1323 reg
[7] = 1; /* r7 true for success */
1330 case CCL_LookupCharConstTbl
:
1333 struct Lisp_Hash_Table
*h
;
1334 GET_CCL_RANGE (eop
, ccl_prog
, ic
++, 0,
1335 (VECTORP (Vtranslation_hash_table_vector
)
1336 ? ASIZE (Vtranslation_hash_table_vector
)
1338 i
= CCL_DECODE_CHAR (reg
[RRR
], reg
[rrr
]);
1339 h
= GET_HASH_TABLE (eop
);
1341 eop
= hash_lookup (h
, make_number (i
), NULL
);
1345 opl
= HASH_VALUE (h
, eop
);
1346 if (! (INTEGERP (opl
) && IN_INT_RANGE (XINT (opl
))))
1348 reg
[RRR
] = XINT (opl
);
1349 reg
[7] = 1; /* r7 true for success */
1356 case CCL_IterateMultipleMap
:
1358 Lisp_Object map
, content
, attrib
, value
;
1359 EMACS_INT point
, size
;
1362 GET_CCL_INT (j
, ccl_prog
, ic
++); /* number of maps. */
1365 if ((j
> reg
[RRR
]) && (j
>= 0))
1380 size
= ASIZE (Vcode_conversion_map_vector
);
1381 point
= XINT (ccl_prog
[ic
++]);
1382 if (! (0 <= point
&& point
< size
)) continue;
1383 map
= AREF (Vcode_conversion_map_vector
, point
);
1385 /* Check map validity. */
1386 if (!CONSP (map
)) continue;
1388 if (!VECTORP (map
)) continue;
1390 if (size
<= 1) continue;
1392 content
= AREF (map
, 0);
1395 [STARTPOINT VAL1 VAL2 ...] or
1396 [t ELEMENT STARTPOINT ENDPOINT] */
1397 if (INTEGERP (content
))
1399 point
= XINT (content
);
1400 if (!(point
<= op
&& op
- point
+ 1 < size
)) continue;
1401 content
= AREF (map
, op
- point
+ 1);
1403 else if (EQ (content
, Qt
))
1405 if (size
!= 4) continue;
1406 if (INTEGERP (AREF (map
, 2))
1407 && XINT (AREF (map
, 2)) <= op
1408 && INTEGERP (AREF (map
, 3))
1409 && op
< XINT (AREF (map
, 3)))
1410 content
= AREF (map
, 1);
1419 else if (INTEGERP (content
) && IN_INT_RANGE (XINT (content
)))
1422 reg
[rrr
] = XINT(content
);
1425 else if (EQ (content
, Qt
) || EQ (content
, Qlambda
))
1430 else if (CONSP (content
))
1432 attrib
= XCAR (content
);
1433 value
= XCDR (content
);
1434 if (! (INTEGERP (attrib
) && INTEGERP (value
)
1435 && IN_INT_RANGE (XINT (value
))))
1438 reg
[rrr
] = XINT (value
);
1441 else if (SYMBOLP (content
))
1442 CCL_CALL_FOR_MAP_INSTRUCTION (content
, fin_ic
);
1452 case CCL_MapMultiple
:
1454 Lisp_Object map
, content
, attrib
, value
;
1455 int point
, size
, map_vector_size
;
1456 int map_set_rest_length
, fin_ic
;
1457 int current_ic
= this_ic
;
1459 /* inhibit recursive call on MapMultiple. */
1460 if (stack_idx_of_map_multiple
> 0)
1462 if (stack_idx_of_map_multiple
<= stack_idx
)
1464 stack_idx_of_map_multiple
= 0;
1465 mapping_stack_pointer
= mapping_stack
;
1470 mapping_stack_pointer
= mapping_stack
;
1471 stack_idx_of_map_multiple
= 0;
1473 /* Get number of maps and separators. */
1474 GET_CCL_INT (map_set_rest_length
, ccl_prog
, ic
++);
1476 fin_ic
= ic
+ map_set_rest_length
;
1479 if ((map_set_rest_length
> reg
[RRR
]) && (reg
[RRR
] >= 0))
1483 map_set_rest_length
-= i
;
1489 mapping_stack_pointer
= mapping_stack
;
1493 if (mapping_stack_pointer
<= (mapping_stack
+ 1))
1495 /* Set up initial state. */
1496 mapping_stack_pointer
= mapping_stack
;
1497 PUSH_MAPPING_STACK (0, op
);
1502 /* Recover after calling other ccl program. */
1505 POP_MAPPING_STACK (map_set_rest_length
, orig_op
);
1506 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1510 /* Regard it as Qnil. */
1514 map_set_rest_length
--;
1517 /* Regard it as Qt. */
1521 map_set_rest_length
--;
1524 /* Regard it as Qlambda. */
1526 i
+= map_set_rest_length
;
1527 ic
+= map_set_rest_length
;
1528 map_set_rest_length
= 0;
1531 /* Regard it as normal mapping. */
1532 i
+= map_set_rest_length
;
1533 ic
+= map_set_rest_length
;
1534 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1538 map_vector_size
= ASIZE (Vcode_conversion_map_vector
);
1541 for (;map_set_rest_length
> 0;i
++, ic
++, map_set_rest_length
--)
1543 GET_CCL_INT (point
, ccl_prog
, ic
);
1546 /* +1 is for including separator. */
1548 if (mapping_stack_pointer
1549 >= &mapping_stack
[MAX_MAP_SET_LEVEL
])
1551 PUSH_MAPPING_STACK (map_set_rest_length
- point
,
1553 map_set_rest_length
= point
;
1558 if (point
>= map_vector_size
) continue;
1559 map
= AREF (Vcode_conversion_map_vector
, point
);
1561 /* Check map validity. */
1562 if (!CONSP (map
)) continue;
1564 if (!VECTORP (map
)) continue;
1566 if (size
<= 1) continue;
1568 content
= AREF (map
, 0);
1571 [STARTPOINT VAL1 VAL2 ...] or
1572 [t ELEMENT STARTPOINT ENDPOINT] */
1573 if (INTEGERP (content
))
1575 point
= XINT (content
);
1576 if (!(point
<= op
&& op
- point
+ 1 < size
)) continue;
1577 content
= AREF (map
, op
- point
+ 1);
1579 else if (EQ (content
, Qt
))
1581 if (size
!= 4) continue;
1582 if (INTEGERP (AREF (map
, 2))
1583 && XINT (AREF (map
, 2)) <= op
1584 && INTEGERP (AREF (map
, 3))
1585 && op
< XINT (AREF (map
, 3)))
1586 content
= AREF (map
, 1);
1597 if (INTEGERP (content
) && IN_INT_RANGE (XINT (content
)))
1599 op
= XINT (content
);
1600 i
+= map_set_rest_length
- 1;
1601 ic
+= map_set_rest_length
- 1;
1602 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1603 map_set_rest_length
++;
1605 else if (CONSP (content
))
1607 attrib
= XCAR (content
);
1608 value
= XCDR (content
);
1609 if (! (INTEGERP (attrib
) && INTEGERP (value
)
1610 && IN_INT_RANGE (XINT (value
))))
1613 i
+= map_set_rest_length
- 1;
1614 ic
+= map_set_rest_length
- 1;
1615 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1616 map_set_rest_length
++;
1618 else if (EQ (content
, Qt
))
1622 else if (EQ (content
, Qlambda
))
1624 i
+= map_set_rest_length
;
1625 ic
+= map_set_rest_length
;
1628 else if (SYMBOLP (content
))
1630 if (mapping_stack_pointer
1631 >= &mapping_stack
[MAX_MAP_SET_LEVEL
])
1633 PUSH_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1634 PUSH_MAPPING_STACK (map_set_rest_length
, op
);
1635 stack_idx_of_map_multiple
= stack_idx
+ 1;
1636 CCL_CALL_FOR_MAP_INSTRUCTION (content
, current_ic
);
1641 if (mapping_stack_pointer
<= (mapping_stack
+ 1))
1643 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1644 i
+= map_set_rest_length
;
1645 ic
+= map_set_rest_length
;
1646 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1656 Lisp_Object map
, attrib
, value
, content
;
1658 j
= XINT (ccl_prog
[ic
++]); /* map_id */
1660 if (j
>= ASIZE (Vcode_conversion_map_vector
))
1665 map
= AREF (Vcode_conversion_map_vector
, j
);
1672 if (! (VECTORP (map
)
1673 && INTEGERP (AREF (map
, 0))
1674 && XINT (AREF (map
, 0)) <= op
1675 && op
- XINT (AREF (map
, 0)) + 1 < ASIZE (map
)))
1680 point
= XINT (AREF (map
, 0));
1681 point
= op
- point
+ 1;
1683 content
= AREF (map
, point
);
1686 else if (INTEGERP (content
))
1687 reg
[rrr
] = XINT (content
);
1688 else if (EQ (content
, Qt
));
1689 else if (CONSP (content
))
1691 attrib
= XCAR (content
);
1692 value
= XCDR (content
);
1693 if (!INTEGERP (attrib
) || !INTEGERP (value
))
1695 reg
[rrr
] = XINT(value
);
1698 else if (SYMBOLP (content
))
1699 CCL_CALL_FOR_MAP_INSTRUCTION (content
, ic
);
1716 /* The suppress_error member is set when e.g. a CCL-based coding
1717 system is used for terminal output. */
1718 if (!ccl
->suppress_error
&& destination
)
1720 /* We can insert an error message only if DESTINATION is
1721 specified and we still have a room to store the message
1729 switch (ccl
->status
)
1731 case CCL_STAT_INVALID_CMD
:
1732 sprintf(msg
, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
1733 code
& 0x1F, code
, this_ic
);
1736 int i
= ccl_backtrace_idx
- 1;
1739 msglen
= strlen (msg
);
1740 if (dst
+ msglen
<= (dst_bytes
? dst_end
: src
))
1742 memcpy (dst
, msg
, msglen
);
1746 for (j
= 0; j
< CCL_DEBUG_BACKTRACE_LEN
; j
++, i
--)
1748 if (i
< 0) i
= CCL_DEBUG_BACKTRACE_LEN
- 1;
1749 if (ccl_backtrace_table
[i
] == 0)
1751 sprintf(msg
, " %d", ccl_backtrace_table
[i
]);
1752 msglen
= strlen (msg
);
1753 if (dst
+ msglen
> (dst_bytes
? dst_end
: src
))
1755 memcpy (dst
, msg
, msglen
);
1764 if (! ccl
->quit_silently
)
1765 sprintf(msg
, "\nCCL: Quited.");
1769 sprintf(msg
, "\nCCL: Unknown error type (%d)", ccl
->status
);
1772 msglen
= strlen (msg
);
1773 if (dst
+ msglen
<= dst_end
)
1775 for (i
= 0; i
< msglen
; i
++)
1779 if (ccl
->status
== CCL_STAT_INVALID_CMD
)
1781 #if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1782 results in an invalid multibyte sequence. */
1784 /* Copy the remaining source data. */
1785 int i
= src_end
- src
;
1786 if (dst_bytes
&& (dst_end
- dst
) < i
)
1788 memcpy (dst
, src
, i
);
1792 /* Signal that we've consumed everything. */
1800 ccl
->stack_idx
= stack_idx
;
1801 ccl
->prog
= ccl_prog
;
1802 ccl
->consumed
= src
- source
;
1804 ccl
->produced
= dst
- destination
;
1809 /* Resolve symbols in the specified CCL code (Lisp vector). This
1810 function converts symbols of code conversion maps and character
1811 translation tables embeded in the CCL code into their ID numbers.
1813 The return value is a vector (CCL itself or a new vector in which
1814 all symbols are resolved), Qt if resolving of some symbol failed,
1815 or nil if CCL contains invalid data. */
1818 resolve_symbol_ccl_program (Lisp_Object ccl
)
1820 int i
, veclen
, unresolved
= 0;
1821 Lisp_Object result
, contents
, val
;
1824 veclen
= ASIZE (result
);
1826 for (i
= 0; i
< veclen
; i
++)
1828 contents
= AREF (result
, i
);
1829 if (INTEGERP (contents
))
1831 else if (CONSP (contents
)
1832 && SYMBOLP (XCAR (contents
))
1833 && SYMBOLP (XCDR (contents
)))
1835 /* This is the new style for embedding symbols. The form is
1836 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1839 if (EQ (result
, ccl
))
1840 result
= Fcopy_sequence (ccl
);
1842 val
= Fget (XCAR (contents
), XCDR (contents
));
1844 ASET (result
, i
, val
);
1849 else if (SYMBOLP (contents
))
1851 /* This is the old style for embedding symbols. This style
1852 may lead to a bug if, for instance, a translation table
1853 and a code conversion map have the same name. */
1854 if (EQ (result
, ccl
))
1855 result
= Fcopy_sequence (ccl
);
1857 val
= Fget (contents
, Qtranslation_table_id
);
1859 ASET (result
, i
, val
);
1862 val
= Fget (contents
, Qcode_conversion_map_id
);
1864 ASET (result
, i
, val
);
1867 val
= Fget (contents
, Qccl_program_idx
);
1869 ASET (result
, i
, val
);
1879 return (unresolved
? Qt
: result
);
1882 /* Return the compiled code (vector) of CCL program CCL_PROG.
1883 CCL_PROG is a name (symbol) of the program or already compiled
1884 code. If necessary, resolve symbols in the compiled code to index
1885 numbers. If we failed to get the compiled code or to resolve
1886 symbols, return Qnil. */
1889 ccl_get_compiled_code (Lisp_Object ccl_prog
, int *idx
)
1891 Lisp_Object val
, slot
;
1893 if (VECTORP (ccl_prog
))
1895 val
= resolve_symbol_ccl_program (ccl_prog
);
1897 return (VECTORP (val
) ? val
: Qnil
);
1899 if (!SYMBOLP (ccl_prog
))
1902 val
= Fget (ccl_prog
, Qccl_program_idx
);
1904 || XINT (val
) >= ASIZE (Vccl_program_table
))
1906 slot
= AREF (Vccl_program_table
, XINT (val
));
1907 if (! VECTORP (slot
)
1908 || ASIZE (slot
) != 4
1909 || ! VECTORP (AREF (slot
, 1)))
1912 if (NILP (AREF (slot
, 2)))
1914 val
= resolve_symbol_ccl_program (AREF (slot
, 1));
1915 if (! VECTORP (val
))
1917 ASET (slot
, 1, val
);
1920 return AREF (slot
, 1);
1923 /* Setup fields of the structure pointed by CCL appropriately for the
1924 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1925 of the CCL program or the already compiled code (vector).
1926 Return 0 if we succeed this setup, else return -1.
1928 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1930 setup_ccl_program (struct ccl_program
*ccl
, Lisp_Object ccl_prog
)
1934 if (! NILP (ccl_prog
))
1936 struct Lisp_Vector
*vp
;
1938 ccl_prog
= ccl_get_compiled_code (ccl_prog
, &ccl
->idx
);
1939 if (! VECTORP (ccl_prog
))
1941 vp
= XVECTOR (ccl_prog
);
1942 ccl
->size
= vp
->header
.size
;
1943 ccl
->prog
= vp
->contents
;
1944 ccl
->eof_ic
= XINT (vp
->contents
[CCL_HEADER_EOF
]);
1945 ccl
->buf_magnification
= XINT (vp
->contents
[CCL_HEADER_BUF_MAG
]);
1950 slot
= AREF (Vccl_program_table
, ccl
->idx
);
1951 ASET (slot
, 3, Qnil
);
1954 ccl
->ic
= CCL_HEADER_MAIN
;
1955 for (i
= 0; i
< 8; i
++)
1957 ccl
->last_block
= 0;
1958 ccl
->private_state
= 0;
1961 ccl
->suppress_error
= 0;
1962 ccl
->eight_bit_control
= 0;
1963 ccl
->quit_silently
= 0;
1968 DEFUN ("ccl-program-p", Fccl_program_p
, Sccl_program_p
, 1, 1, 0,
1969 doc
: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
1970 See the documentation of `define-ccl-program' for the detail of CCL program. */)
1971 (Lisp_Object object
)
1975 if (VECTORP (object
))
1977 val
= resolve_symbol_ccl_program (object
);
1978 return (VECTORP (val
) ? Qt
: Qnil
);
1980 if (!SYMBOLP (object
))
1983 val
= Fget (object
, Qccl_program_idx
);
1984 return ((! NATNUMP (val
)
1985 || XINT (val
) >= ASIZE (Vccl_program_table
))
1989 DEFUN ("ccl-execute", Fccl_execute
, Sccl_execute
, 2, 2, 0,
1990 doc
: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
1992 CCL-PROGRAM is a CCL program name (symbol)
1993 or compiled code generated by `ccl-compile' (for backward compatibility.
1994 In the latter case, the execution overhead is bigger than in the former).
1995 No I/O commands should appear in CCL-PROGRAM.
1997 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
1998 for the Nth register.
2000 As side effect, each element of REGISTERS holds the value of
2001 the corresponding register after the execution.
2003 See the documentation of `define-ccl-program' for a definition of CCL
2005 (Lisp_Object ccl_prog
, Lisp_Object reg
)
2007 struct ccl_program ccl
;
2010 if (setup_ccl_program (&ccl
, ccl_prog
) < 0)
2011 error ("Invalid CCL program");
2014 if (ASIZE (reg
) != 8)
2015 error ("Length of vector REGISTERS is not 8");
2017 for (i
= 0; i
< 8; i
++)
2018 ccl
.reg
[i
] = (INTEGERP (AREF (reg
, i
))
2019 ? XINT (AREF (reg
, i
))
2022 ccl_driver (&ccl
, NULL
, NULL
, 0, 0, Qnil
);
2024 if (ccl
.status
!= CCL_STAT_SUCCESS
)
2025 error ("Error in CCL program at %dth code", ccl
.ic
);
2027 for (i
= 0; i
< 8; i
++)
2028 ASET (reg
, i
, make_number (ccl
.reg
[i
]));
2032 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string
, Sccl_execute_on_string
,
2034 doc
: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2036 CCL-PROGRAM is a symbol registered by `register-ccl-program',
2037 or a compiled code generated by `ccl-compile' (for backward compatibility,
2038 in this case, the execution is slower).
2040 Read buffer is set to STRING, and write buffer is allocated automatically.
2042 STATUS is a vector of [R0 R1 ... R7 IC], where
2043 R0..R7 are initial values of corresponding registers,
2044 IC is the instruction counter specifying from where to start the program.
2045 If R0..R7 are nil, they are initialized to 0.
2046 If IC is nil, it is initialized to head of the CCL program.
2048 If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2049 when read buffer is exhausted, else, IC is always set to the end of
2050 CCL-PROGRAM on exit.
2052 It returns the contents of write buffer as a string,
2053 and as side effect, STATUS is updated.
2054 If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2055 is a unibyte string. By default it is a multibyte string.
2057 See the documentation of `define-ccl-program' for the detail of CCL program.
2058 usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P) */)
2059 (Lisp_Object ccl_prog
, Lisp_Object status
, Lisp_Object str
, Lisp_Object contin
, Lisp_Object unibyte_p
)
2062 struct ccl_program ccl
;
2064 EMACS_INT outbufsize
;
2065 unsigned char *outbuf
, *outp
;
2066 EMACS_INT str_chars
, str_bytes
;
2067 #define CCL_EXECUTE_BUF_SIZE 1024
2068 int source
[CCL_EXECUTE_BUF_SIZE
], destination
[CCL_EXECUTE_BUF_SIZE
];
2069 EMACS_INT consumed_chars
, consumed_bytes
, produced_chars
;
2071 if (setup_ccl_program (&ccl
, ccl_prog
) < 0)
2072 error ("Invalid CCL program");
2074 CHECK_VECTOR (status
);
2075 if (ASIZE (status
) != 9)
2076 error ("Length of vector STATUS is not 9");
2079 str_chars
= SCHARS (str
);
2080 str_bytes
= SBYTES (str
);
2082 for (i
= 0; i
< 8; i
++)
2084 if (NILP (AREF (status
, i
)))
2085 ASET (status
, i
, make_number (0));
2086 if (INTEGERP (AREF (status
, i
)))
2087 ccl
.reg
[i
] = XINT (AREF (status
, i
));
2089 if (INTEGERP (AREF (status
, i
)))
2091 i
= XFASTINT (AREF (status
, 8));
2092 if (ccl
.ic
< i
&& i
< ccl
.size
)
2096 outbufsize
= (ccl
.buf_magnification
2097 ? str_bytes
* ccl
.buf_magnification
+ 256
2099 outp
= outbuf
= (unsigned char *) xmalloc (outbufsize
);
2101 consumed_chars
= consumed_bytes
= 0;
2105 const unsigned char *p
= SDATA (str
) + consumed_bytes
;
2106 const unsigned char *endp
= SDATA (str
) + str_bytes
;
2110 if (endp
- p
== str_chars
- consumed_chars
)
2111 while (j
< CCL_EXECUTE_BUF_SIZE
&& p
< endp
)
2114 while (j
< CCL_EXECUTE_BUF_SIZE
&& p
< endp
)
2115 source
[j
++] = STRING_CHAR_ADVANCE (p
);
2116 consumed_chars
+= j
;
2117 consumed_bytes
= p
- SDATA (str
);
2119 if (consumed_bytes
== str_bytes
)
2120 ccl
.last_block
= NILP (contin
);
2125 ccl_driver (&ccl
, src
, destination
, src_size
, CCL_EXECUTE_BUF_SIZE
,
2127 produced_chars
+= ccl
.produced
;
2128 if (NILP (unibyte_p
))
2130 if (outp
- outbuf
+ MAX_MULTIBYTE_LENGTH
* ccl
.produced
2133 EMACS_INT offset
= outp
- outbuf
;
2134 outbufsize
+= MAX_MULTIBYTE_LENGTH
* ccl
.produced
;
2135 outbuf
= (unsigned char *) xrealloc (outbuf
, outbufsize
);
2136 outp
= outbuf
+ offset
;
2138 for (j
= 0; j
< ccl
.produced
; j
++)
2139 CHAR_STRING_ADVANCE (destination
[j
], outp
);
2143 if (outp
- outbuf
+ ccl
.produced
> outbufsize
)
2145 EMACS_INT offset
= outp
- outbuf
;
2146 outbufsize
+= ccl
.produced
;
2147 outbuf
= (unsigned char *) xrealloc (outbuf
, outbufsize
);
2148 outp
= outbuf
+ offset
;
2150 for (j
= 0; j
< ccl
.produced
; j
++)
2151 *outp
++ = destination
[j
];
2153 src
+= ccl
.consumed
;
2154 src_size
-= ccl
.consumed
;
2155 if (ccl
.status
!= CCL_STAT_SUSPEND_BY_DST
)
2159 if (ccl
.status
!= CCL_STAT_SUSPEND_BY_SRC
2160 || str_chars
== consumed_chars
)
2164 if (ccl
.status
== CCL_STAT_INVALID_CMD
)
2165 error ("Error in CCL program at %dth code", ccl
.ic
);
2166 if (ccl
.status
== CCL_STAT_QUIT
)
2167 error ("CCL program interrupted at %dth code", ccl
.ic
);
2169 for (i
= 0; i
< 8; i
++)
2170 ASET (status
, i
, make_number (ccl
.reg
[i
]));
2171 ASET (status
, 8, make_number (ccl
.ic
));
2173 if (NILP (unibyte_p
))
2174 val
= make_multibyte_string ((char *) outbuf
, produced_chars
,
2177 val
= make_unibyte_string ((char *) outbuf
, produced_chars
);
2183 DEFUN ("register-ccl-program", Fregister_ccl_program
, Sregister_ccl_program
,
2185 doc
: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
2186 CCL-PROG should be a compiled CCL program (vector), or nil.
2187 If it is nil, just reserve NAME as a CCL program name.
2188 Return index number of the registered CCL program. */)
2189 (Lisp_Object name
, Lisp_Object ccl_prog
)
2191 int len
= ASIZE (Vccl_program_table
);
2193 Lisp_Object resolved
;
2195 CHECK_SYMBOL (name
);
2197 if (!NILP (ccl_prog
))
2199 CHECK_VECTOR (ccl_prog
);
2200 resolved
= resolve_symbol_ccl_program (ccl_prog
);
2201 if (NILP (resolved
))
2202 error ("Error in CCL program");
2203 if (VECTORP (resolved
))
2205 ccl_prog
= resolved
;
2212 for (idx
= 0; idx
< len
; idx
++)
2216 slot
= AREF (Vccl_program_table
, idx
);
2217 if (!VECTORP (slot
))
2218 /* This is the first unused slot. Register NAME here. */
2221 if (EQ (name
, AREF (slot
, 0)))
2223 /* Update this slot. */
2224 ASET (slot
, 1, ccl_prog
);
2225 ASET (slot
, 2, resolved
);
2227 return make_number (idx
);
2232 /* Extend the table. */
2233 Vccl_program_table
= larger_vector (Vccl_program_table
, len
* 2, Qnil
);
2238 elt
= Fmake_vector (make_number (4), Qnil
);
2239 ASET (elt
, 0, name
);
2240 ASET (elt
, 1, ccl_prog
);
2241 ASET (elt
, 2, resolved
);
2243 ASET (Vccl_program_table
, idx
, elt
);
2246 Fput (name
, Qccl_program_idx
, make_number (idx
));
2247 return make_number (idx
);
2250 /* Register code conversion map.
2251 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
2252 The first element is the start code point.
2253 The other elements are mapped numbers.
2254 Symbol t means to map to an original number before mapping.
2255 Symbol nil means that the corresponding element is empty.
2256 Symbol lambda means to terminate mapping here.
2259 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map
,
2260 Sregister_code_conversion_map
,
2262 doc
: /* Register SYMBOL as code conversion map MAP.
2263 Return index number of the registered map. */)
2264 (Lisp_Object symbol
, Lisp_Object map
)
2266 int len
= ASIZE (Vcode_conversion_map_vector
);
2270 CHECK_SYMBOL (symbol
);
2273 for (i
= 0; i
< len
; i
++)
2275 Lisp_Object slot
= AREF (Vcode_conversion_map_vector
, i
);
2280 if (EQ (symbol
, XCAR (slot
)))
2282 idx
= make_number (i
);
2283 XSETCDR (slot
, map
);
2284 Fput (symbol
, Qcode_conversion_map
, map
);
2285 Fput (symbol
, Qcode_conversion_map_id
, idx
);
2291 Vcode_conversion_map_vector
= larger_vector (Vcode_conversion_map_vector
,
2294 idx
= make_number (i
);
2295 Fput (symbol
, Qcode_conversion_map
, map
);
2296 Fput (symbol
, Qcode_conversion_map_id
, idx
);
2297 ASET (Vcode_conversion_map_vector
, i
, Fcons (symbol
, map
));
2305 staticpro (&Vccl_program_table
);
2306 Vccl_program_table
= Fmake_vector (make_number (32), Qnil
);
2308 Qccl
= intern_c_string ("ccl");
2311 Qcclp
= intern_c_string ("cclp");
2314 Qccl_program
= intern_c_string ("ccl-program");
2315 staticpro (&Qccl_program
);
2317 Qccl_program_idx
= intern_c_string ("ccl-program-idx");
2318 staticpro (&Qccl_program_idx
);
2320 Qcode_conversion_map
= intern_c_string ("code-conversion-map");
2321 staticpro (&Qcode_conversion_map
);
2323 Qcode_conversion_map_id
= intern_c_string ("code-conversion-map-id");
2324 staticpro (&Qcode_conversion_map_id
);
2326 DEFVAR_LISP ("code-conversion-map-vector", Vcode_conversion_map_vector
,
2327 doc
: /* Vector of code conversion maps. */);
2328 Vcode_conversion_map_vector
= Fmake_vector (make_number (16), Qnil
);
2330 DEFVAR_LISP ("font-ccl-encoder-alist", Vfont_ccl_encoder_alist
,
2331 doc
: /* Alist of fontname patterns vs corresponding CCL program.
2332 Each element looks like (REGEXP . CCL-CODE),
2333 where CCL-CODE is a compiled CCL program.
2334 When a font whose name matches REGEXP is used for displaying a character,
2335 CCL-CODE is executed to calculate the code point in the font
2336 from the charset number and position code(s) of the character which are set
2337 in CCL registers R0, R1, and R2 before the execution.
2338 The code point in the font is set in CCL registers R1 and R2
2339 when the execution terminated.
2340 If the font is single-byte font, the register R2 is not used. */);
2341 Vfont_ccl_encoder_alist
= Qnil
;
2343 DEFVAR_LISP ("translation-hash-table-vector", Vtranslation_hash_table_vector
,
2344 doc
: /* Vector containing all translation hash tables ever defined.
2345 Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2346 to `define-translation-hash-table'. The vector is indexed by the table id
2348 Vtranslation_hash_table_vector
= Qnil
;
2350 defsubr (&Sccl_program_p
);
2351 defsubr (&Sccl_execute
);
2352 defsubr (&Sccl_execute_on_string
);
2353 defsubr (&Sregister_ccl_program
);
2354 defsubr (&Sregister_code_conversion_map
);