(run-with-idle-timer): New function.
[emacs.git] / src / search.c
blob85c15a0de47be70f22b1d9e2d11b1d0a9895e41a
1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 #include <config.h>
23 #include "lisp.h"
24 #include "syntax.h"
25 #include "buffer.h"
26 #include "region-cache.h"
27 #include "commands.h"
28 #include "blockinput.h"
30 #include <sys/types.h>
31 #include "regex.h"
33 #define REGEXP_CACHE_SIZE 5
35 /* If the regexp is non-nil, then the buffer contains the compiled form
36 of that regexp, suitable for searching. */
37 struct regexp_cache {
38 struct regexp_cache *next;
39 Lisp_Object regexp;
40 struct re_pattern_buffer buf;
41 char fastmap[0400];
42 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
43 char posix;
46 /* The instances of that struct. */
47 struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
49 /* The head of the linked list; points to the most recently used buffer. */
50 struct regexp_cache *searchbuf_head;
53 /* Every call to re_match, etc., must pass &search_regs as the regs
54 argument unless you can show it is unnecessary (i.e., if re_match
55 is certainly going to be called again before region-around-match
56 can be called).
58 Since the registers are now dynamically allocated, we need to make
59 sure not to refer to the Nth register before checking that it has
60 been allocated by checking search_regs.num_regs.
62 The regex code keeps track of whether it has allocated the search
63 buffer using bits in the re_pattern_buffer. This means that whenever
64 you compile a new pattern, it completely forgets whether it has
65 allocated any registers, and will allocate new registers the next
66 time you call a searching or matching function. Therefore, we need
67 to call re_set_registers after compiling a new pattern or after
68 setting the match registers, so that the regex functions will be
69 able to free or re-allocate it properly. */
70 static struct re_registers search_regs;
72 /* The buffer in which the last search was performed, or
73 Qt if the last search was done in a string;
74 Qnil if no searching has been done yet. */
75 static Lisp_Object last_thing_searched;
77 /* error condition signaled when regexp compile_pattern fails */
79 Lisp_Object Qinvalid_regexp;
81 static void set_search_regs ();
82 static void save_search_regs ();
84 static int search_buffer ();
86 static void
87 matcher_overflow ()
89 error ("Stack overflow in regexp matcher");
92 #ifdef __STDC__
93 #define CONST const
94 #else
95 #define CONST
96 #endif
98 /* Compile a regexp and signal a Lisp error if anything goes wrong.
99 PATTERN is the pattern to compile.
100 CP is the place to put the result.
101 TRANSLATE is a translation table for ignoring case, or NULL for none.
102 REGP is the structure that says where to store the "register"
103 values that will result from matching this pattern.
104 If it is 0, we should compile the pattern not to record any
105 subexpression bounds.
106 POSIX is nonzero if we want full backtracking (POSIX style)
107 for this pattern. 0 means backtrack only enough to get a valid match. */
109 static void
110 compile_pattern_1 (cp, pattern, translate, regp, posix)
111 struct regexp_cache *cp;
112 Lisp_Object pattern;
113 Lisp_Object *translate;
114 struct re_registers *regp;
115 int posix;
117 CONST char *val;
118 reg_syntax_t old;
120 cp->regexp = Qnil;
121 cp->buf.translate = translate;
122 cp->posix = posix;
123 BLOCK_INPUT;
124 old = re_set_syntax (RE_SYNTAX_EMACS
125 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
126 val = (CONST char *) re_compile_pattern ((char *) XSTRING (pattern)->data,
127 XSTRING (pattern)->size, &cp->buf);
128 re_set_syntax (old);
129 UNBLOCK_INPUT;
130 if (val)
131 Fsignal (Qinvalid_regexp, Fcons (build_string (val), Qnil));
133 cp->regexp = Fcopy_sequence (pattern);
136 /* Compile a regexp if necessary, but first check to see if there's one in
137 the cache.
138 PATTERN is the pattern to compile.
139 TRANSLATE is a translation table for ignoring case, or NULL for none.
140 REGP is the structure that says where to store the "register"
141 values that will result from matching this pattern.
142 If it is 0, we should compile the pattern not to record any
143 subexpression bounds.
144 POSIX is nonzero if we want full backtracking (POSIX style)
145 for this pattern. 0 means backtrack only enough to get a valid match. */
147 struct re_pattern_buffer *
148 compile_pattern (pattern, regp, translate, posix)
149 Lisp_Object pattern;
150 struct re_registers *regp;
151 Lisp_Object *translate;
152 int posix;
154 struct regexp_cache *cp, **cpp;
156 for (cpp = &searchbuf_head; ; cpp = &cp->next)
158 cp = *cpp;
159 if (!NILP (Fstring_equal (cp->regexp, pattern))
160 && cp->buf.translate == translate
161 && cp->posix == posix)
162 break;
164 /* If we're at the end of the cache, compile into the last cell. */
165 if (cp->next == 0)
167 compile_pattern_1 (cp, pattern, translate, regp, posix);
168 break;
172 /* When we get here, cp (aka *cpp) contains the compiled pattern,
173 either because we found it in the cache or because we just compiled it.
174 Move it to the front of the queue to mark it as most recently used. */
175 *cpp = cp->next;
176 cp->next = searchbuf_head;
177 searchbuf_head = cp;
179 /* Advise the searching functions about the space we have allocated
180 for register data. */
181 if (regp)
182 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
184 return &cp->buf;
187 /* Error condition used for failing searches */
188 Lisp_Object Qsearch_failed;
190 Lisp_Object
191 signal_failure (arg)
192 Lisp_Object arg;
194 Fsignal (Qsearch_failed, Fcons (arg, Qnil));
195 return Qnil;
198 static Lisp_Object
199 looking_at_1 (string, posix)
200 Lisp_Object string;
201 int posix;
203 Lisp_Object val;
204 unsigned char *p1, *p2;
205 int s1, s2;
206 register int i;
207 struct re_pattern_buffer *bufp;
209 if (running_asynch_code)
210 save_search_regs ();
212 CHECK_STRING (string, 0);
213 bufp = compile_pattern (string, &search_regs,
214 (!NILP (current_buffer->case_fold_search)
215 ? DOWNCASE_TABLE : 0),
216 posix);
218 immediate_quit = 1;
219 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
221 /* Get pointers and sizes of the two strings
222 that make up the visible portion of the buffer. */
224 p1 = BEGV_ADDR;
225 s1 = GPT - BEGV;
226 p2 = GAP_END_ADDR;
227 s2 = ZV - GPT;
228 if (s1 < 0)
230 p2 = p1;
231 s2 = ZV - BEGV;
232 s1 = 0;
234 if (s2 < 0)
236 s1 = ZV - BEGV;
237 s2 = 0;
240 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
241 point - BEGV, &search_regs,
242 ZV - BEGV);
243 if (i == -2)
244 matcher_overflow ();
246 val = (0 <= i ? Qt : Qnil);
247 for (i = 0; i < search_regs.num_regs; i++)
248 if (search_regs.start[i] >= 0)
250 search_regs.start[i] += BEGV;
251 search_regs.end[i] += BEGV;
253 XSETBUFFER (last_thing_searched, current_buffer);
254 immediate_quit = 0;
255 return val;
258 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
259 "Return t if text after point matches regular expression REGEXP.\n\
260 This function modifies the match data that `match-beginning',\n\
261 `match-end' and `match-data' access; save and restore the match\n\
262 data if you want to preserve them.")
263 (regexp)
264 Lisp_Object regexp;
266 return looking_at_1 (regexp, 0);
269 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
270 "Return t if text after point matches regular expression REGEXP.\n\
271 Find the longest match, in accord with Posix regular expression rules.\n\
272 This function modifies the match data that `match-beginning',\n\
273 `match-end' and `match-data' access; save and restore the match\n\
274 data if you want to preserve them.")
275 (regexp)
276 Lisp_Object regexp;
278 return looking_at_1 (regexp, 1);
281 static Lisp_Object
282 string_match_1 (regexp, string, start, posix)
283 Lisp_Object regexp, string, start;
284 int posix;
286 int val;
287 int s;
288 struct re_pattern_buffer *bufp;
290 if (running_asynch_code)
291 save_search_regs ();
293 CHECK_STRING (regexp, 0);
294 CHECK_STRING (string, 1);
296 if (NILP (start))
297 s = 0;
298 else
300 int len = XSTRING (string)->size;
302 CHECK_NUMBER (start, 2);
303 s = XINT (start);
304 if (s < 0 && -s <= len)
305 s = len + s;
306 else if (0 > s || s > len)
307 args_out_of_range (string, start);
310 bufp = compile_pattern (regexp, &search_regs,
311 (!NILP (current_buffer->case_fold_search)
312 ? DOWNCASE_TABLE : 0),
313 posix);
314 immediate_quit = 1;
315 val = re_search (bufp, (char *) XSTRING (string)->data,
316 XSTRING (string)->size, s, XSTRING (string)->size - s,
317 &search_regs);
318 immediate_quit = 0;
319 last_thing_searched = Qt;
320 if (val == -2)
321 matcher_overflow ();
322 if (val < 0) return Qnil;
323 return make_number (val);
326 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
327 "Return index of start of first match for REGEXP in STRING, or nil.\n\
328 If third arg START is non-nil, start search at that index in STRING.\n\
329 For index of first char beyond the match, do (match-end 0).\n\
330 `match-end' and `match-beginning' also give indices of substrings\n\
331 matched by parenthesis constructs in the pattern.")
332 (regexp, string, start)
333 Lisp_Object regexp, string, start;
335 return string_match_1 (regexp, string, start, 0);
338 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
339 "Return index of start of first match for REGEXP in STRING, or nil.\n\
340 Find the longest match, in accord with Posix regular expression rules.\n\
341 If third arg START is non-nil, start search at that index in STRING.\n\
342 For index of first char beyond the match, do (match-end 0).\n\
343 `match-end' and `match-beginning' also give indices of substrings\n\
344 matched by parenthesis constructs in the pattern.")
345 (regexp, string, start)
346 Lisp_Object regexp, string, start;
348 return string_match_1 (regexp, string, start, 1);
351 /* Match REGEXP against STRING, searching all of STRING,
352 and return the index of the match, or negative on failure.
353 This does not clobber the match data. */
356 fast_string_match (regexp, string)
357 Lisp_Object regexp, string;
359 int val;
360 struct re_pattern_buffer *bufp;
362 bufp = compile_pattern (regexp, 0, 0, 0);
363 immediate_quit = 1;
364 val = re_search (bufp, (char *) XSTRING (string)->data,
365 XSTRING (string)->size, 0, XSTRING (string)->size,
367 immediate_quit = 0;
368 return val;
371 /* max and min. */
373 static int
374 max (a, b)
375 int a, b;
377 return ((a > b) ? a : b);
380 static int
381 min (a, b)
382 int a, b;
384 return ((a < b) ? a : b);
388 /* The newline cache: remembering which sections of text have no newlines. */
390 /* If the user has requested newline caching, make sure it's on.
391 Otherwise, make sure it's off.
392 This is our cheezy way of associating an action with the change of
393 state of a buffer-local variable. */
394 static void
395 newline_cache_on_off (buf)
396 struct buffer *buf;
398 if (NILP (buf->cache_long_line_scans))
400 /* It should be off. */
401 if (buf->newline_cache)
403 free_region_cache (buf->newline_cache);
404 buf->newline_cache = 0;
407 else
409 /* It should be on. */
410 if (buf->newline_cache == 0)
411 buf->newline_cache = new_region_cache ();
416 /* Search for COUNT instances of the character TARGET between START and END.
418 If COUNT is positive, search forwards; END must be >= START.
419 If COUNT is negative, search backwards for the -COUNTth instance;
420 END must be <= START.
421 If COUNT is zero, do anything you please; run rogue, for all I care.
423 If END is zero, use BEGV or ZV instead, as appropriate for the
424 direction indicated by COUNT.
426 If we find COUNT instances, set *SHORTAGE to zero, and return the
427 position after the COUNTth match. Note that for reverse motion
428 this is not the same as the usual convention for Emacs motion commands.
430 If we don't find COUNT instances before reaching END, set *SHORTAGE
431 to the number of TARGETs left unfound, and return END.
433 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
434 except when inside redisplay. */
436 scan_buffer (target, start, end, count, shortage, allow_quit)
437 register int target;
438 int start, end;
439 int count;
440 int *shortage;
441 int allow_quit;
443 struct region_cache *newline_cache;
444 int direction;
446 if (count > 0)
448 direction = 1;
449 if (! end) end = ZV;
451 else
453 direction = -1;
454 if (! end) end = BEGV;
457 newline_cache_on_off (current_buffer);
458 newline_cache = current_buffer->newline_cache;
460 if (shortage != 0)
461 *shortage = 0;
463 immediate_quit = allow_quit;
465 if (count > 0)
466 while (start != end)
468 /* Our innermost scanning loop is very simple; it doesn't know
469 about gaps, buffer ends, or the newline cache. ceiling is
470 the position of the last character before the next such
471 obstacle --- the last character the dumb search loop should
472 examine. */
473 register int ceiling = end - 1;
475 /* If we're looking for a newline, consult the newline cache
476 to see where we can avoid some scanning. */
477 if (target == '\n' && newline_cache)
479 int next_change;
480 immediate_quit = 0;
481 while (region_cache_forward
482 (current_buffer, newline_cache, start, &next_change))
483 start = next_change;
484 immediate_quit = allow_quit;
486 /* start should never be after end. */
487 if (start >= end)
488 start = end - 1;
490 /* Now the text after start is an unknown region, and
491 next_change is the position of the next known region. */
492 ceiling = min (next_change - 1, ceiling);
495 /* The dumb loop can only scan text stored in contiguous
496 bytes. BUFFER_CEILING_OF returns the last character
497 position that is contiguous, so the ceiling is the
498 position after that. */
499 ceiling = min (BUFFER_CEILING_OF (start), ceiling);
502 /* The termination address of the dumb loop. */
503 register unsigned char *ceiling_addr = &FETCH_CHAR (ceiling) + 1;
504 register unsigned char *cursor = &FETCH_CHAR (start);
505 unsigned char *base = cursor;
507 while (cursor < ceiling_addr)
509 unsigned char *scan_start = cursor;
511 /* The dumb loop. */
512 while (*cursor != target && ++cursor < ceiling_addr)
515 /* If we're looking for newlines, cache the fact that
516 the region from start to cursor is free of them. */
517 if (target == '\n' && newline_cache)
518 know_region_cache (current_buffer, newline_cache,
519 start + scan_start - base,
520 start + cursor - base);
522 /* Did we find the target character? */
523 if (cursor < ceiling_addr)
525 if (--count == 0)
527 immediate_quit = 0;
528 return (start + cursor - base + 1);
530 cursor++;
534 start += cursor - base;
537 else
538 while (start > end)
540 /* The last character to check before the next obstacle. */
541 register int ceiling = end;
543 /* Consult the newline cache, if appropriate. */
544 if (target == '\n' && newline_cache)
546 int next_change;
547 immediate_quit = 0;
548 while (region_cache_backward
549 (current_buffer, newline_cache, start, &next_change))
550 start = next_change;
551 immediate_quit = allow_quit;
553 /* Start should never be at or before end. */
554 if (start <= end)
555 start = end + 1;
557 /* Now the text before start is an unknown region, and
558 next_change is the position of the next known region. */
559 ceiling = max (next_change, ceiling);
562 /* Stop scanning before the gap. */
563 ceiling = max (BUFFER_FLOOR_OF (start - 1), ceiling);
566 /* The termination address of the dumb loop. */
567 register unsigned char *ceiling_addr = &FETCH_CHAR (ceiling);
568 register unsigned char *cursor = &FETCH_CHAR (start - 1);
569 unsigned char *base = cursor;
571 while (cursor >= ceiling_addr)
573 unsigned char *scan_start = cursor;
575 while (*cursor != target && --cursor >= ceiling_addr)
578 /* If we're looking for newlines, cache the fact that
579 the region from after the cursor to start is free of them. */
580 if (target == '\n' && newline_cache)
581 know_region_cache (current_buffer, newline_cache,
582 start + cursor - base,
583 start + scan_start - base);
585 /* Did we find the target character? */
586 if (cursor >= ceiling_addr)
588 if (++count >= 0)
590 immediate_quit = 0;
591 return (start + cursor - base);
593 cursor--;
597 start += cursor - base;
601 immediate_quit = 0;
602 if (shortage != 0)
603 *shortage = count * direction;
604 return start;
608 find_next_newline_no_quit (from, cnt)
609 register int from, cnt;
611 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 0);
615 find_next_newline (from, cnt)
616 register int from, cnt;
618 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 1);
622 /* Like find_next_newline, but returns position before the newline,
623 not after, and only search up to TO. This isn't just
624 find_next_newline (...)-1, because you might hit TO. */
626 find_before_next_newline (from, to, cnt)
627 int from, to, cnt;
629 int shortage;
630 int pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
632 if (shortage == 0)
633 pos--;
635 return pos;
638 Lisp_Object skip_chars ();
640 DEFUN ("skip-chars-forward", Fskip_chars_forward, Sskip_chars_forward, 1, 2, 0,
641 "Move point forward, stopping before a char not in STRING, or at pos LIM.\n\
642 STRING is like the inside of a `[...]' in a regular expression\n\
643 except that `]' is never special and `\\' quotes `^', `-' or `\\'.\n\
644 Thus, with arg \"a-zA-Z\", this skips letters stopping before first nonletter.\n\
645 With arg \"^a-zA-Z\", skips nonletters stopping before first letter.\n\
646 Returns the distance traveled, either zero or positive.")
647 (string, lim)
648 Lisp_Object string, lim;
650 return skip_chars (1, 0, string, lim);
653 DEFUN ("skip-chars-backward", Fskip_chars_backward, Sskip_chars_backward, 1, 2, 0,
654 "Move point backward, stopping after a char not in STRING, or at pos LIM.\n\
655 See `skip-chars-forward' for details.\n\
656 Returns the distance traveled, either zero or negative.")
657 (string, lim)
658 Lisp_Object string, lim;
660 return skip_chars (0, 0, string, lim);
663 DEFUN ("skip-syntax-forward", Fskip_syntax_forward, Sskip_syntax_forward, 1, 2, 0,
664 "Move point forward across chars in specified syntax classes.\n\
665 SYNTAX is a string of syntax code characters.\n\
666 Stop before a char whose syntax is not in SYNTAX, or at position LIM.\n\
667 If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
668 This function returns the distance traveled, either zero or positive.")
669 (syntax, lim)
670 Lisp_Object syntax, lim;
672 return skip_chars (1, 1, syntax, lim);
675 DEFUN ("skip-syntax-backward", Fskip_syntax_backward, Sskip_syntax_backward, 1, 2, 0,
676 "Move point backward across chars in specified syntax classes.\n\
677 SYNTAX is a string of syntax code characters.\n\
678 Stop on reaching a char whose syntax is not in SYNTAX, or at position LIM.\n\
679 If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
680 This function returns the distance traveled, either zero or negative.")
681 (syntax, lim)
682 Lisp_Object syntax, lim;
684 return skip_chars (0, 1, syntax, lim);
687 Lisp_Object
688 skip_chars (forwardp, syntaxp, string, lim)
689 int forwardp, syntaxp;
690 Lisp_Object string, lim;
692 register unsigned char *p, *pend;
693 register unsigned char c;
694 unsigned char fastmap[0400];
695 int negate = 0;
696 register int i;
698 CHECK_STRING (string, 0);
700 if (NILP (lim))
701 XSETINT (lim, forwardp ? ZV : BEGV);
702 else
703 CHECK_NUMBER_COERCE_MARKER (lim, 1);
705 /* In any case, don't allow scan outside bounds of buffer. */
706 /* jla turned this off, for no known reason.
707 bfox turned the ZV part on, and rms turned the
708 BEGV part back on. */
709 if (XINT (lim) > ZV)
710 XSETFASTINT (lim, ZV);
711 if (XINT (lim) < BEGV)
712 XSETFASTINT (lim, BEGV);
714 p = XSTRING (string)->data;
715 pend = p + XSTRING (string)->size;
716 bzero (fastmap, sizeof fastmap);
718 if (p != pend && *p == '^')
720 negate = 1; p++;
723 /* Find the characters specified and set their elements of fastmap.
724 If syntaxp, each character counts as itself.
725 Otherwise, handle backslashes and ranges specially */
727 while (p != pend)
729 c = *p++;
730 if (syntaxp)
731 fastmap[c] = 1;
732 else
734 if (c == '\\')
736 if (p == pend) break;
737 c = *p++;
739 if (p != pend && *p == '-')
741 p++;
742 if (p == pend) break;
743 while (c <= *p)
745 fastmap[c] = 1;
746 c++;
748 p++;
750 else
751 fastmap[c] = 1;
755 if (syntaxp && fastmap['-'] != 0)
756 fastmap[' '] = 1;
758 /* If ^ was the first character, complement the fastmap. */
760 if (negate)
761 for (i = 0; i < sizeof fastmap; i++)
762 fastmap[i] ^= 1;
765 int start_point = point;
767 immediate_quit = 1;
768 if (syntaxp)
771 if (forwardp)
773 while (point < XINT (lim)
774 && fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point))]])
775 SET_PT (point + 1);
777 else
779 while (point > XINT (lim)
780 && fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point - 1))]])
781 SET_PT (point - 1);
784 else
786 if (forwardp)
788 while (point < XINT (lim) && fastmap[FETCH_CHAR (point)])
789 SET_PT (point + 1);
791 else
793 while (point > XINT (lim) && fastmap[FETCH_CHAR (point - 1)])
794 SET_PT (point - 1);
797 immediate_quit = 0;
799 return make_number (point - start_point);
803 /* Subroutines of Lisp buffer search functions. */
805 static Lisp_Object
806 search_command (string, bound, noerror, count, direction, RE, posix)
807 Lisp_Object string, bound, noerror, count;
808 int direction;
809 int RE;
810 int posix;
812 register int np;
813 int lim;
814 int n = direction;
816 if (!NILP (count))
818 CHECK_NUMBER (count, 3);
819 n *= XINT (count);
822 CHECK_STRING (string, 0);
823 if (NILP (bound))
824 lim = n > 0 ? ZV : BEGV;
825 else
827 CHECK_NUMBER_COERCE_MARKER (bound, 1);
828 lim = XINT (bound);
829 if (n > 0 ? lim < point : lim > point)
830 error ("Invalid search bound (wrong side of point)");
831 if (lim > ZV)
832 lim = ZV;
833 if (lim < BEGV)
834 lim = BEGV;
837 np = search_buffer (string, point, lim, n, RE,
838 (!NILP (current_buffer->case_fold_search)
839 ? XCHAR_TABLE (current_buffer->case_canon_table)->contents
840 : 0),
841 (!NILP (current_buffer->case_fold_search)
842 ? XCHAR_TABLE (current_buffer->case_eqv_table)->contents
843 : 0),
844 posix);
845 if (np <= 0)
847 if (NILP (noerror))
848 return signal_failure (string);
849 if (!EQ (noerror, Qt))
851 if (lim < BEGV || lim > ZV)
852 abort ();
853 SET_PT (lim);
854 return Qnil;
855 #if 0 /* This would be clean, but maybe programs depend on
856 a value of nil here. */
857 np = lim;
858 #endif
860 else
861 return Qnil;
864 if (np < BEGV || np > ZV)
865 abort ();
867 SET_PT (np);
869 return make_number (np);
872 static int
873 trivial_regexp_p (regexp)
874 Lisp_Object regexp;
876 int len = XSTRING (regexp)->size;
877 unsigned char *s = XSTRING (regexp)->data;
878 unsigned char c;
879 while (--len >= 0)
881 switch (*s++)
883 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
884 return 0;
885 case '\\':
886 if (--len < 0)
887 return 0;
888 switch (*s++)
890 case '|': case '(': case ')': case '`': case '\'': case 'b':
891 case 'B': case '<': case '>': case 'w': case 'W': case 's':
892 case 'S': case '=':
893 case '1': case '2': case '3': case '4': case '5':
894 case '6': case '7': case '8': case '9':
895 return 0;
899 return 1;
902 /* Search for the n'th occurrence of STRING in the current buffer,
903 starting at position POS and stopping at position LIM,
904 treating STRING as a literal string if RE is false or as
905 a regular expression if RE is true.
907 If N is positive, searching is forward and LIM must be greater than POS.
908 If N is negative, searching is backward and LIM must be less than POS.
910 Returns -x if only N-x occurrences found (x > 0),
911 or else the position at the beginning of the Nth occurrence
912 (if searching backward) or the end (if searching forward).
914 POSIX is nonzero if we want full backtracking (POSIX style)
915 for this pattern. 0 means backtrack only enough to get a valid match. */
917 static int
918 search_buffer (string, pos, lim, n, RE, trt, inverse_trt, posix)
919 Lisp_Object string;
920 int pos;
921 int lim;
922 int n;
923 int RE;
924 Lisp_Object *trt;
925 Lisp_Object *inverse_trt;
926 int posix;
928 int len = XSTRING (string)->size;
929 unsigned char *base_pat = XSTRING (string)->data;
930 register int *BM_tab;
931 int *BM_tab_base;
932 register int direction = ((n > 0) ? 1 : -1);
933 register int dirlen;
934 int infinity, limit, k, stride_for_teases;
935 register unsigned char *pat, *cursor, *p_limit;
936 register int i, j;
937 unsigned char *p1, *p2;
938 int s1, s2;
940 if (running_asynch_code)
941 save_search_regs ();
943 /* Null string is found at starting position. */
944 if (len == 0)
946 set_search_regs (pos, 0);
947 return pos;
950 /* Searching 0 times means don't move. */
951 if (n == 0)
952 return pos;
954 if (RE && !trivial_regexp_p (string))
956 struct re_pattern_buffer *bufp;
958 bufp = compile_pattern (string, &search_regs, trt, posix);
960 immediate_quit = 1; /* Quit immediately if user types ^G,
961 because letting this function finish
962 can take too long. */
963 QUIT; /* Do a pending quit right away,
964 to avoid paradoxical behavior */
965 /* Get pointers and sizes of the two strings
966 that make up the visible portion of the buffer. */
968 p1 = BEGV_ADDR;
969 s1 = GPT - BEGV;
970 p2 = GAP_END_ADDR;
971 s2 = ZV - GPT;
972 if (s1 < 0)
974 p2 = p1;
975 s2 = ZV - BEGV;
976 s1 = 0;
978 if (s2 < 0)
980 s1 = ZV - BEGV;
981 s2 = 0;
983 while (n < 0)
985 int val;
986 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
987 pos - BEGV, lim - pos, &search_regs,
988 /* Don't allow match past current point */
989 pos - BEGV);
990 if (val == -2)
992 matcher_overflow ();
994 if (val >= 0)
996 j = BEGV;
997 for (i = 0; i < search_regs.num_regs; i++)
998 if (search_regs.start[i] >= 0)
1000 search_regs.start[i] += j;
1001 search_regs.end[i] += j;
1003 XSETBUFFER (last_thing_searched, current_buffer);
1004 /* Set pos to the new position. */
1005 pos = search_regs.start[0];
1007 else
1009 immediate_quit = 0;
1010 return (n);
1012 n++;
1014 while (n > 0)
1016 int val;
1017 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1018 pos - BEGV, lim - pos, &search_regs,
1019 lim - BEGV);
1020 if (val == -2)
1022 matcher_overflow ();
1024 if (val >= 0)
1026 j = BEGV;
1027 for (i = 0; i < search_regs.num_regs; i++)
1028 if (search_regs.start[i] >= 0)
1030 search_regs.start[i] += j;
1031 search_regs.end[i] += j;
1033 XSETBUFFER (last_thing_searched, current_buffer);
1034 pos = search_regs.end[0];
1036 else
1038 immediate_quit = 0;
1039 return (0 - n);
1041 n--;
1043 immediate_quit = 0;
1044 return (pos);
1046 else /* non-RE case */
1048 #ifdef C_ALLOCA
1049 int BM_tab_space[0400];
1050 BM_tab = &BM_tab_space[0];
1051 #else
1052 BM_tab = (int *) alloca (0400 * sizeof (int));
1053 #endif
1055 unsigned char *patbuf = (unsigned char *) alloca (len);
1056 pat = patbuf;
1057 while (--len >= 0)
1059 /* If we got here and the RE flag is set, it's because we're
1060 dealing with a regexp known to be trivial, so the backslash
1061 just quotes the next character. */
1062 if (RE && *base_pat == '\\')
1064 len--;
1065 base_pat++;
1067 *pat++ = (trt ? trt[*base_pat++] : *base_pat++);
1069 len = pat - patbuf;
1070 pat = base_pat = patbuf;
1072 /* The general approach is that we are going to maintain that we know */
1073 /* the first (closest to the present position, in whatever direction */
1074 /* we're searching) character that could possibly be the last */
1075 /* (furthest from present position) character of a valid match. We */
1076 /* advance the state of our knowledge by looking at that character */
1077 /* and seeing whether it indeed matches the last character of the */
1078 /* pattern. If it does, we take a closer look. If it does not, we */
1079 /* move our pointer (to putative last characters) as far as is */
1080 /* logically possible. This amount of movement, which I call a */
1081 /* stride, will be the length of the pattern if the actual character */
1082 /* appears nowhere in the pattern, otherwise it will be the distance */
1083 /* from the last occurrence of that character to the end of the */
1084 /* pattern. */
1085 /* As a coding trick, an enormous stride is coded into the table for */
1086 /* characters that match the last character. This allows use of only */
1087 /* a single test, a test for having gone past the end of the */
1088 /* permissible match region, to test for both possible matches (when */
1089 /* the stride goes past the end immediately) and failure to */
1090 /* match (where you get nudged past the end one stride at a time). */
1092 /* Here we make a "mickey mouse" BM table. The stride of the search */
1093 /* is determined only by the last character of the putative match. */
1094 /* If that character does not match, we will stride the proper */
1095 /* distance to propose a match that superimposes it on the last */
1096 /* instance of a character that matches it (per trt), or misses */
1097 /* it entirely if there is none. */
1099 dirlen = len * direction;
1100 infinity = dirlen - (lim + pos + len + len) * direction;
1101 if (direction < 0)
1102 pat = (base_pat += len - 1);
1103 BM_tab_base = BM_tab;
1104 BM_tab += 0400;
1105 j = dirlen; /* to get it in a register */
1106 /* A character that does not appear in the pattern induces a */
1107 /* stride equal to the pattern length. */
1108 while (BM_tab_base != BM_tab)
1110 *--BM_tab = j;
1111 *--BM_tab = j;
1112 *--BM_tab = j;
1113 *--BM_tab = j;
1115 i = 0;
1116 while (i != infinity)
1118 j = pat[i]; i += direction;
1119 if (i == dirlen) i = infinity;
1120 if (trt != 0)
1122 k = (j = trt[j]);
1123 if (i == infinity)
1124 stride_for_teases = BM_tab[j];
1125 BM_tab[j] = dirlen - i;
1126 /* A translation table is accompanied by its inverse -- see */
1127 /* comment following downcase_table for details */
1128 while ((j = (unsigned char) inverse_trt[j]) != k)
1129 BM_tab[j] = dirlen - i;
1131 else
1133 if (i == infinity)
1134 stride_for_teases = BM_tab[j];
1135 BM_tab[j] = dirlen - i;
1137 /* stride_for_teases tells how much to stride if we get a */
1138 /* match on the far character but are subsequently */
1139 /* disappointed, by recording what the stride would have been */
1140 /* for that character if the last character had been */
1141 /* different. */
1143 infinity = dirlen - infinity;
1144 pos += dirlen - ((direction > 0) ? direction : 0);
1145 /* loop invariant - pos points at where last char (first char if reverse)
1146 of pattern would align in a possible match. */
1147 while (n != 0)
1149 /* It's been reported that some (broken) compiler thinks that
1150 Boolean expressions in an arithmetic context are unsigned.
1151 Using an explicit ?1:0 prevents this. */
1152 if ((lim - pos - ((direction > 0) ? 1 : 0)) * direction < 0)
1153 return (n * (0 - direction));
1154 /* First we do the part we can by pointers (maybe nothing) */
1155 QUIT;
1156 pat = base_pat;
1157 limit = pos - dirlen + direction;
1158 limit = ((direction > 0)
1159 ? BUFFER_CEILING_OF (limit)
1160 : BUFFER_FLOOR_OF (limit));
1161 /* LIMIT is now the last (not beyond-last!) value
1162 POS can take on without hitting edge of buffer or the gap. */
1163 limit = ((direction > 0)
1164 ? min (lim - 1, min (limit, pos + 20000))
1165 : max (lim, max (limit, pos - 20000)));
1166 if ((limit - pos) * direction > 20)
1168 p_limit = &FETCH_CHAR (limit);
1169 p2 = (cursor = &FETCH_CHAR (pos));
1170 /* In this loop, pos + cursor - p2 is the surrogate for pos */
1171 while (1) /* use one cursor setting as long as i can */
1173 if (direction > 0) /* worth duplicating */
1175 /* Use signed comparison if appropriate
1176 to make cursor+infinity sure to be > p_limit.
1177 Assuming that the buffer lies in a range of addresses
1178 that are all "positive" (as ints) or all "negative",
1179 either kind of comparison will work as long
1180 as we don't step by infinity. So pick the kind
1181 that works when we do step by infinity. */
1182 if ((EMACS_INT) (p_limit + infinity) > (EMACS_INT) p_limit)
1183 while ((EMACS_INT) cursor <= (EMACS_INT) p_limit)
1184 cursor += BM_tab[*cursor];
1185 else
1186 while ((unsigned EMACS_INT) cursor <= (unsigned EMACS_INT) p_limit)
1187 cursor += BM_tab[*cursor];
1189 else
1191 if ((EMACS_INT) (p_limit + infinity) < (EMACS_INT) p_limit)
1192 while ((EMACS_INT) cursor >= (EMACS_INT) p_limit)
1193 cursor += BM_tab[*cursor];
1194 else
1195 while ((unsigned EMACS_INT) cursor >= (unsigned EMACS_INT) p_limit)
1196 cursor += BM_tab[*cursor];
1198 /* If you are here, cursor is beyond the end of the searched region. */
1199 /* This can happen if you match on the far character of the pattern, */
1200 /* because the "stride" of that character is infinity, a number able */
1201 /* to throw you well beyond the end of the search. It can also */
1202 /* happen if you fail to match within the permitted region and would */
1203 /* otherwise try a character beyond that region */
1204 if ((cursor - p_limit) * direction <= len)
1205 break; /* a small overrun is genuine */
1206 cursor -= infinity; /* large overrun = hit */
1207 i = dirlen - direction;
1208 if (trt != 0)
1210 while ((i -= direction) + direction != 0)
1211 if (pat[i] != trt[*(cursor -= direction)])
1212 break;
1214 else
1216 while ((i -= direction) + direction != 0)
1217 if (pat[i] != *(cursor -= direction))
1218 break;
1220 cursor += dirlen - i - direction; /* fix cursor */
1221 if (i + direction == 0)
1223 cursor -= direction;
1225 set_search_regs (pos + cursor - p2 + ((direction > 0)
1226 ? 1 - len : 0),
1227 len);
1229 if ((n -= direction) != 0)
1230 cursor += dirlen; /* to resume search */
1231 else
1232 return ((direction > 0)
1233 ? search_regs.end[0] : search_regs.start[0]);
1235 else
1236 cursor += stride_for_teases; /* <sigh> we lose - */
1238 pos += cursor - p2;
1240 else
1241 /* Now we'll pick up a clump that has to be done the hard */
1242 /* way because it covers a discontinuity */
1244 limit = ((direction > 0)
1245 ? BUFFER_CEILING_OF (pos - dirlen + 1)
1246 : BUFFER_FLOOR_OF (pos - dirlen - 1));
1247 limit = ((direction > 0)
1248 ? min (limit + len, lim - 1)
1249 : max (limit - len, lim));
1250 /* LIMIT is now the last value POS can have
1251 and still be valid for a possible match. */
1252 while (1)
1254 /* This loop can be coded for space rather than */
1255 /* speed because it will usually run only once. */
1256 /* (the reach is at most len + 21, and typically */
1257 /* does not exceed len) */
1258 while ((limit - pos) * direction >= 0)
1259 pos += BM_tab[FETCH_CHAR(pos)];
1260 /* now run the same tests to distinguish going off the */
1261 /* end, a match or a phony match. */
1262 if ((pos - limit) * direction <= len)
1263 break; /* ran off the end */
1264 /* Found what might be a match.
1265 Set POS back to last (first if reverse) char pos. */
1266 pos -= infinity;
1267 i = dirlen - direction;
1268 while ((i -= direction) + direction != 0)
1270 pos -= direction;
1271 if (pat[i] != (trt != 0
1272 ? trt[FETCH_CHAR(pos)]
1273 : FETCH_CHAR (pos)))
1274 break;
1276 /* Above loop has moved POS part or all the way
1277 back to the first char pos (last char pos if reverse).
1278 Set it once again at the last (first if reverse) char. */
1279 pos += dirlen - i- direction;
1280 if (i + direction == 0)
1282 pos -= direction;
1284 set_search_regs (pos + ((direction > 0) ? 1 - len : 0),
1285 len);
1287 if ((n -= direction) != 0)
1288 pos += dirlen; /* to resume search */
1289 else
1290 return ((direction > 0)
1291 ? search_regs.end[0] : search_regs.start[0]);
1293 else
1294 pos += stride_for_teases;
1297 /* We have done one clump. Can we continue? */
1298 if ((lim - pos) * direction < 0)
1299 return ((0 - n) * direction);
1301 return pos;
1305 /* Record beginning BEG and end BEG + LEN
1306 for a match just found in the current buffer. */
1308 static void
1309 set_search_regs (beg, len)
1310 int beg, len;
1312 /* Make sure we have registers in which to store
1313 the match position. */
1314 if (search_regs.num_regs == 0)
1316 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1317 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1318 search_regs.num_regs = 2;
1321 search_regs.start[0] = beg;
1322 search_regs.end[0] = beg + len;
1323 XSETBUFFER (last_thing_searched, current_buffer);
1326 /* Given a string of words separated by word delimiters,
1327 compute a regexp that matches those exact words
1328 separated by arbitrary punctuation. */
1330 static Lisp_Object
1331 wordify (string)
1332 Lisp_Object string;
1334 register unsigned char *p, *o;
1335 register int i, len, punct_count = 0, word_count = 0;
1336 Lisp_Object val;
1338 CHECK_STRING (string, 0);
1339 p = XSTRING (string)->data;
1340 len = XSTRING (string)->size;
1342 for (i = 0; i < len; i++)
1343 if (SYNTAX (p[i]) != Sword)
1345 punct_count++;
1346 if (i > 0 && SYNTAX (p[i-1]) == Sword) word_count++;
1348 if (SYNTAX (p[len-1]) == Sword) word_count++;
1349 if (!word_count) return build_string ("");
1351 val = make_string (p, len - punct_count + 5 * (word_count - 1) + 4);
1353 o = XSTRING (val)->data;
1354 *o++ = '\\';
1355 *o++ = 'b';
1357 for (i = 0; i < len; i++)
1358 if (SYNTAX (p[i]) == Sword)
1359 *o++ = p[i];
1360 else if (i > 0 && SYNTAX (p[i-1]) == Sword && --word_count)
1362 *o++ = '\\';
1363 *o++ = 'W';
1364 *o++ = '\\';
1365 *o++ = 'W';
1366 *o++ = '*';
1369 *o++ = '\\';
1370 *o++ = 'b';
1372 return val;
1375 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
1376 "sSearch backward: ",
1377 "Search backward from point for STRING.\n\
1378 Set point to the beginning of the occurrence found, and return point.\n\
1379 An optional second argument bounds the search; it is a buffer position.\n\
1380 The match found must not extend before that position.\n\
1381 Optional third argument, if t, means if fail just return nil (no error).\n\
1382 If not nil and not t, position at limit of search and return nil.\n\
1383 Optional fourth argument is repeat count--search for successive occurrences.\n\
1384 See also the functions `match-beginning', `match-end' and `replace-match'.")
1385 (string, bound, noerror, count)
1386 Lisp_Object string, bound, noerror, count;
1388 return search_command (string, bound, noerror, count, -1, 0, 0);
1391 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "sSearch: ",
1392 "Search forward from point for STRING.\n\
1393 Set point to the end of the occurrence found, and return point.\n\
1394 An optional second argument bounds the search; it is a buffer position.\n\
1395 The match found must not extend after that position. nil is equivalent\n\
1396 to (point-max).\n\
1397 Optional third argument, if t, means if fail just return nil (no error).\n\
1398 If not nil and not t, move to limit of search and return nil.\n\
1399 Optional fourth argument is repeat count--search for successive occurrences.\n\
1400 See also the functions `match-beginning', `match-end' and `replace-match'.")
1401 (string, bound, noerror, count)
1402 Lisp_Object string, bound, noerror, count;
1404 return search_command (string, bound, noerror, count, 1, 0, 0);
1407 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
1408 "sWord search backward: ",
1409 "Search backward from point for STRING, ignoring differences in punctuation.\n\
1410 Set point to the beginning of the occurrence found, and return point.\n\
1411 An optional second argument bounds the search; it is a buffer position.\n\
1412 The match found must not extend before that position.\n\
1413 Optional third argument, if t, means if fail just return nil (no error).\n\
1414 If not nil and not t, move to limit of search and return nil.\n\
1415 Optional fourth argument is repeat count--search for successive occurrences.")
1416 (string, bound, noerror, count)
1417 Lisp_Object string, bound, noerror, count;
1419 return search_command (wordify (string), bound, noerror, count, -1, 1, 0);
1422 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
1423 "sWord search: ",
1424 "Search forward from point for STRING, ignoring differences in punctuation.\n\
1425 Set point to the end of the occurrence found, and return point.\n\
1426 An optional second argument bounds the search; it is a buffer position.\n\
1427 The match found must not extend after that position.\n\
1428 Optional third argument, if t, means if fail just return nil (no error).\n\
1429 If not nil and not t, move to limit of search and return nil.\n\
1430 Optional fourth argument is repeat count--search for successive occurrences.")
1431 (string, bound, noerror, count)
1432 Lisp_Object string, bound, noerror, count;
1434 return search_command (wordify (string), bound, noerror, count, 1, 1, 0);
1437 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
1438 "sRE search backward: ",
1439 "Search backward from point for match for regular expression REGEXP.\n\
1440 Set point to the beginning of the match, and return point.\n\
1441 The match found is the one starting last in the buffer\n\
1442 and yet ending before the origin of the search.\n\
1443 An optional second argument bounds the search; it is a buffer position.\n\
1444 The match found must start at or after that position.\n\
1445 Optional third argument, if t, means if fail just return nil (no error).\n\
1446 If not nil and not t, move to limit of search and return nil.\n\
1447 Optional fourth argument is repeat count--search for successive occurrences.\n\
1448 See also the functions `match-beginning', `match-end' and `replace-match'.")
1449 (regexp, bound, noerror, count)
1450 Lisp_Object regexp, bound, noerror, count;
1452 return search_command (regexp, bound, noerror, count, -1, 1, 0);
1455 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
1456 "sRE search: ",
1457 "Search forward from point for regular expression REGEXP.\n\
1458 Set point to the end of the occurrence found, and return point.\n\
1459 An optional second argument bounds the search; it is a buffer position.\n\
1460 The match found must not extend after that position.\n\
1461 Optional third argument, if t, means if fail just return nil (no error).\n\
1462 If not nil and not t, move to limit of search and return nil.\n\
1463 Optional fourth argument is repeat count--search for successive occurrences.\n\
1464 See also the functions `match-beginning', `match-end' and `replace-match'.")
1465 (regexp, bound, noerror, count)
1466 Lisp_Object regexp, bound, noerror, count;
1468 return search_command (regexp, bound, noerror, count, 1, 1, 0);
1471 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
1472 "sPosix search backward: ",
1473 "Search backward from point for match for regular expression REGEXP.\n\
1474 Find the longest match in accord with Posix regular expression rules.\n\
1475 Set point to the beginning of the match, and return point.\n\
1476 The match found is the one starting last in the buffer\n\
1477 and yet ending before the origin of the search.\n\
1478 An optional second argument bounds the search; it is a buffer position.\n\
1479 The match found must start at or after that position.\n\
1480 Optional third argument, if t, means if fail just return nil (no error).\n\
1481 If not nil and not t, move to limit of search and return nil.\n\
1482 Optional fourth argument is repeat count--search for successive occurrences.\n\
1483 See also the functions `match-beginning', `match-end' and `replace-match'.")
1484 (regexp, bound, noerror, count)
1485 Lisp_Object regexp, bound, noerror, count;
1487 return search_command (regexp, bound, noerror, count, -1, 1, 1);
1490 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
1491 "sPosix search: ",
1492 "Search forward from point for regular expression REGEXP.\n\
1493 Find the longest match in accord with Posix regular expression rules.\n\
1494 Set point to the end of the occurrence found, and return point.\n\
1495 An optional second argument bounds the search; it is a buffer position.\n\
1496 The match found must not extend after that position.\n\
1497 Optional third argument, if t, means if fail just return nil (no error).\n\
1498 If not nil and not t, move to limit of search and return nil.\n\
1499 Optional fourth argument is repeat count--search for successive occurrences.\n\
1500 See also the functions `match-beginning', `match-end' and `replace-match'.")
1501 (regexp, bound, noerror, count)
1502 Lisp_Object regexp, bound, noerror, count;
1504 return search_command (regexp, bound, noerror, count, 1, 1, 1);
1507 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
1508 "Replace text matched by last search with NEWTEXT.\n\
1509 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.\n\
1510 Otherwise maybe capitalize the whole text, or maybe just word initials,\n\
1511 based on the replaced text.\n\
1512 If the replaced text has only capital letters\n\
1513 and has at least one multiletter word, convert NEWTEXT to all caps.\n\
1514 If the replaced text has at least one word starting with a capital letter,\n\
1515 then capitalize each word in NEWTEXT.\n\n\
1516 If third arg LITERAL is non-nil, insert NEWTEXT literally.\n\
1517 Otherwise treat `\\' as special:\n\
1518 `\\&' in NEWTEXT means substitute original matched text.\n\
1519 `\\N' means substitute what matched the Nth `\\(...\\)'.\n\
1520 If Nth parens didn't match, substitute nothing.\n\
1521 `\\\\' means insert one `\\'.\n\
1522 FIXEDCASE and LITERAL are optional arguments.\n\
1523 Leaves point at end of replacement text.\n\
1525 The optional fourth argument STRING can be a string to modify.\n\
1526 In that case, this function creates and returns a new string\n\
1527 which is made by replacing the part of STRING that was matched.\n\
1529 The optional fifth argument SUBEXP specifies a subexpression of the match.\n\
1530 It says to replace just that subexpression instead of the whole match.\n\
1531 This is useful only after a regular expression search or match\n\
1532 since only regular expressions have distinguished subexpressions.")
1533 (newtext, fixedcase, literal, string, subexp)
1534 Lisp_Object newtext, fixedcase, literal, string, subexp;
1536 enum { nochange, all_caps, cap_initial } case_action;
1537 register int pos, last;
1538 int some_multiletter_word;
1539 int some_lowercase;
1540 int some_uppercase;
1541 int some_nonuppercase_initial;
1542 register int c, prevc;
1543 int inslen;
1544 int sub;
1546 CHECK_STRING (newtext, 0);
1548 if (! NILP (string))
1549 CHECK_STRING (string, 4);
1551 case_action = nochange; /* We tried an initialization */
1552 /* but some C compilers blew it */
1554 if (search_regs.num_regs <= 0)
1555 error ("replace-match called before any match found");
1557 if (NILP (subexp))
1558 sub = 0;
1559 else
1561 CHECK_NUMBER (subexp, 3);
1562 sub = XINT (subexp);
1563 if (sub < 0 || sub >= search_regs.num_regs)
1564 args_out_of_range (subexp, make_number (search_regs.num_regs));
1567 if (NILP (string))
1569 if (search_regs.start[sub] < BEGV
1570 || search_regs.start[sub] > search_regs.end[sub]
1571 || search_regs.end[sub] > ZV)
1572 args_out_of_range (make_number (search_regs.start[sub]),
1573 make_number (search_regs.end[sub]));
1575 else
1577 if (search_regs.start[sub] < 0
1578 || search_regs.start[sub] > search_regs.end[sub]
1579 || search_regs.end[sub] > XSTRING (string)->size)
1580 args_out_of_range (make_number (search_regs.start[sub]),
1581 make_number (search_regs.end[sub]));
1584 if (NILP (fixedcase))
1586 /* Decide how to casify by examining the matched text. */
1588 last = search_regs.end[sub];
1589 prevc = '\n';
1590 case_action = all_caps;
1592 /* some_multiletter_word is set nonzero if any original word
1593 is more than one letter long. */
1594 some_multiletter_word = 0;
1595 some_lowercase = 0;
1596 some_nonuppercase_initial = 0;
1597 some_uppercase = 0;
1599 for (pos = search_regs.start[sub]; pos < last; pos++)
1601 if (NILP (string))
1602 c = FETCH_CHAR (pos);
1603 else
1604 c = XSTRING (string)->data[pos];
1606 if (LOWERCASEP (c))
1608 /* Cannot be all caps if any original char is lower case */
1610 some_lowercase = 1;
1611 if (SYNTAX (prevc) != Sword)
1612 some_nonuppercase_initial = 1;
1613 else
1614 some_multiletter_word = 1;
1616 else if (!NOCASEP (c))
1618 some_uppercase = 1;
1619 if (SYNTAX (prevc) != Sword)
1621 else
1622 some_multiletter_word = 1;
1624 else
1626 /* If the initial is a caseless word constituent,
1627 treat that like a lowercase initial. */
1628 if (SYNTAX (prevc) != Sword)
1629 some_nonuppercase_initial = 1;
1632 prevc = c;
1635 /* Convert to all caps if the old text is all caps
1636 and has at least one multiletter word. */
1637 if (! some_lowercase && some_multiletter_word)
1638 case_action = all_caps;
1639 /* Capitalize each word, if the old text has all capitalized words. */
1640 else if (!some_nonuppercase_initial && some_multiletter_word)
1641 case_action = cap_initial;
1642 else if (!some_nonuppercase_initial && some_uppercase)
1643 /* Should x -> yz, operating on X, give Yz or YZ?
1644 We'll assume the latter. */
1645 case_action = all_caps;
1646 else
1647 case_action = nochange;
1650 /* Do replacement in a string. */
1651 if (!NILP (string))
1653 Lisp_Object before, after;
1655 before = Fsubstring (string, make_number (0),
1656 make_number (search_regs.start[sub]));
1657 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
1659 /* Do case substitution into NEWTEXT if desired. */
1660 if (NILP (literal))
1662 int lastpos = -1;
1663 /* We build up the substituted string in ACCUM. */
1664 Lisp_Object accum;
1665 Lisp_Object middle;
1667 accum = Qnil;
1669 for (pos = 0; pos < XSTRING (newtext)->size; pos++)
1671 int substart = -1;
1672 int subend;
1673 int delbackslash = 0;
1675 c = XSTRING (newtext)->data[pos];
1676 if (c == '\\')
1678 c = XSTRING (newtext)->data[++pos];
1679 if (c == '&')
1681 substart = search_regs.start[sub];
1682 subend = search_regs.end[sub];
1684 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
1686 if (search_regs.start[c - '0'] >= 0)
1688 substart = search_regs.start[c - '0'];
1689 subend = search_regs.end[c - '0'];
1692 else if (c == '\\')
1693 delbackslash = 1;
1695 if (substart >= 0)
1697 if (pos - 1 != lastpos + 1)
1698 middle = Fsubstring (newtext,
1699 make_number (lastpos + 1),
1700 make_number (pos - 1));
1701 else
1702 middle = Qnil;
1703 accum = concat3 (accum, middle,
1704 Fsubstring (string, make_number (substart),
1705 make_number (subend)));
1706 lastpos = pos;
1708 else if (delbackslash)
1710 middle = Fsubstring (newtext, make_number (lastpos + 1),
1711 make_number (pos));
1712 accum = concat2 (accum, middle);
1713 lastpos = pos;
1717 if (pos != lastpos + 1)
1718 middle = Fsubstring (newtext, make_number (lastpos + 1),
1719 make_number (pos));
1720 else
1721 middle = Qnil;
1723 newtext = concat2 (accum, middle);
1726 if (case_action == all_caps)
1727 newtext = Fupcase (newtext);
1728 else if (case_action == cap_initial)
1729 newtext = Fupcase_initials (newtext);
1731 return concat3 (before, newtext, after);
1734 /* We insert the replacement text before the old text, and then
1735 delete the original text. This means that markers at the
1736 beginning or end of the original will float to the corresponding
1737 position in the replacement. */
1738 SET_PT (search_regs.start[sub]);
1739 if (!NILP (literal))
1740 Finsert_and_inherit (1, &newtext);
1741 else
1743 struct gcpro gcpro1;
1744 GCPRO1 (newtext);
1746 for (pos = 0; pos < XSTRING (newtext)->size; pos++)
1748 int offset = point - search_regs.start[sub];
1750 c = XSTRING (newtext)->data[pos];
1751 if (c == '\\')
1753 c = XSTRING (newtext)->data[++pos];
1754 if (c == '&')
1755 Finsert_buffer_substring
1756 (Fcurrent_buffer (),
1757 make_number (search_regs.start[sub] + offset),
1758 make_number (search_regs.end[sub] + offset));
1759 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
1761 if (search_regs.start[c - '0'] >= 1)
1762 Finsert_buffer_substring
1763 (Fcurrent_buffer (),
1764 make_number (search_regs.start[c - '0'] + offset),
1765 make_number (search_regs.end[c - '0'] + offset));
1767 else
1768 insert_char (c);
1770 else
1771 insert_char (c);
1773 UNGCPRO;
1776 inslen = point - (search_regs.start[sub]);
1777 del_range (search_regs.start[sub] + inslen, search_regs.end[sub] + inslen);
1779 if (case_action == all_caps)
1780 Fupcase_region (make_number (point - inslen), make_number (point));
1781 else if (case_action == cap_initial)
1782 Fupcase_initials_region (make_number (point - inslen), make_number (point));
1783 return Qnil;
1786 static Lisp_Object
1787 match_limit (num, beginningp)
1788 Lisp_Object num;
1789 int beginningp;
1791 register int n;
1793 CHECK_NUMBER (num, 0);
1794 n = XINT (num);
1795 if (n < 0 || n >= search_regs.num_regs)
1796 args_out_of_range (num, make_number (search_regs.num_regs));
1797 if (search_regs.num_regs <= 0
1798 || search_regs.start[n] < 0)
1799 return Qnil;
1800 return (make_number ((beginningp) ? search_regs.start[n]
1801 : search_regs.end[n]));
1804 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
1805 "Return position of start of text matched by last search.\n\
1806 SUBEXP, a number, specifies which parenthesized expression in the last\n\
1807 regexp.\n\
1808 Value is nil if SUBEXPth pair didn't match, or there were less than\n\
1809 SUBEXP pairs.\n\
1810 Zero means the entire text matched by the whole regexp or whole string.")
1811 (subexp)
1812 Lisp_Object subexp;
1814 return match_limit (subexp, 1);
1817 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
1818 "Return position of end of text matched by last search.\n\
1819 SUBEXP, a number, specifies which parenthesized expression in the last\n\
1820 regexp.\n\
1821 Value is nil if SUBEXPth pair didn't match, or there were less than\n\
1822 SUBEXP pairs.\n\
1823 Zero means the entire text matched by the whole regexp or whole string.")
1824 (subexp)
1825 Lisp_Object subexp;
1827 return match_limit (subexp, 0);
1830 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 0, 0,
1831 "Return a list containing all info on what the last search matched.\n\
1832 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.\n\
1833 All the elements are markers or nil (nil if the Nth pair didn't match)\n\
1834 if the last match was on a buffer; integers or nil if a string was matched.\n\
1835 Use `store-match-data' to reinstate the data in this list.")
1838 Lisp_Object *data;
1839 int i, len;
1841 if (NILP (last_thing_searched))
1842 error ("match-data called before any match found");
1844 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs)
1845 * sizeof (Lisp_Object));
1847 len = -1;
1848 for (i = 0; i < search_regs.num_regs; i++)
1850 int start = search_regs.start[i];
1851 if (start >= 0)
1853 if (EQ (last_thing_searched, Qt))
1855 XSETFASTINT (data[2 * i], start);
1856 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
1858 else if (BUFFERP (last_thing_searched))
1860 data[2 * i] = Fmake_marker ();
1861 Fset_marker (data[2 * i],
1862 make_number (start),
1863 last_thing_searched);
1864 data[2 * i + 1] = Fmake_marker ();
1865 Fset_marker (data[2 * i + 1],
1866 make_number (search_regs.end[i]),
1867 last_thing_searched);
1869 else
1870 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
1871 abort ();
1873 len = i;
1875 else
1876 data[2 * i] = data [2 * i + 1] = Qnil;
1878 return Flist (2 * len + 2, data);
1882 DEFUN ("store-match-data", Fstore_match_data, Sstore_match_data, 1, 1, 0,
1883 "Set internal data on last search match from elements of LIST.\n\
1884 LIST should have been created by calling `match-data' previously.")
1885 (list)
1886 register Lisp_Object list;
1888 register int i;
1889 register Lisp_Object marker;
1891 if (running_asynch_code)
1892 save_search_regs ();
1894 if (!CONSP (list) && !NILP (list))
1895 list = wrong_type_argument (Qconsp, list);
1897 /* Unless we find a marker with a buffer in LIST, assume that this
1898 match data came from a string. */
1899 last_thing_searched = Qt;
1901 /* Allocate registers if they don't already exist. */
1903 int length = XFASTINT (Flength (list)) / 2;
1905 if (length > search_regs.num_regs)
1907 if (search_regs.num_regs == 0)
1909 search_regs.start
1910 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
1911 search_regs.end
1912 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
1914 else
1916 search_regs.start
1917 = (regoff_t *) xrealloc (search_regs.start,
1918 length * sizeof (regoff_t));
1919 search_regs.end
1920 = (regoff_t *) xrealloc (search_regs.end,
1921 length * sizeof (regoff_t));
1924 search_regs.num_regs = length;
1928 for (i = 0; i < search_regs.num_regs; i++)
1930 marker = Fcar (list);
1931 if (NILP (marker))
1933 search_regs.start[i] = -1;
1934 list = Fcdr (list);
1936 else
1938 if (MARKERP (marker))
1940 if (XMARKER (marker)->buffer == 0)
1941 XSETFASTINT (marker, 0);
1942 else
1943 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
1946 CHECK_NUMBER_COERCE_MARKER (marker, 0);
1947 search_regs.start[i] = XINT (marker);
1948 list = Fcdr (list);
1950 marker = Fcar (list);
1951 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
1952 XSETFASTINT (marker, 0);
1954 CHECK_NUMBER_COERCE_MARKER (marker, 0);
1955 search_regs.end[i] = XINT (marker);
1957 list = Fcdr (list);
1960 return Qnil;
1963 /* If non-zero the match data have been saved in saved_search_regs
1964 during the execution of a sentinel or filter. */
1965 static int search_regs_saved;
1966 static struct re_registers saved_search_regs;
1968 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
1969 if asynchronous code (filter or sentinel) is running. */
1970 static void
1971 save_search_regs ()
1973 if (!search_regs_saved)
1975 saved_search_regs.num_regs = search_regs.num_regs;
1976 saved_search_regs.start = search_regs.start;
1977 saved_search_regs.end = search_regs.end;
1978 search_regs.num_regs = 0;
1979 search_regs.start = 0;
1980 search_regs.end = 0;
1982 search_regs_saved = 1;
1986 /* Called upon exit from filters and sentinels. */
1987 void
1988 restore_match_data ()
1990 if (search_regs_saved)
1992 if (search_regs.num_regs > 0)
1994 xfree (search_regs.start);
1995 xfree (search_regs.end);
1997 search_regs.num_regs = saved_search_regs.num_regs;
1998 search_regs.start = saved_search_regs.start;
1999 search_regs.end = saved_search_regs.end;
2001 search_regs_saved = 0;
2005 /* Quote a string to inactivate reg-expr chars */
2007 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
2008 "Return a regexp string which matches exactly STRING and nothing else.")
2009 (string)
2010 Lisp_Object string;
2012 register unsigned char *in, *out, *end;
2013 register unsigned char *temp;
2015 CHECK_STRING (string, 0);
2017 temp = (unsigned char *) alloca (XSTRING (string)->size * 2);
2019 /* Now copy the data into the new string, inserting escapes. */
2021 in = XSTRING (string)->data;
2022 end = in + XSTRING (string)->size;
2023 out = temp;
2025 for (; in != end; in++)
2027 if (*in == '[' || *in == ']'
2028 || *in == '*' || *in == '.' || *in == '\\'
2029 || *in == '?' || *in == '+'
2030 || *in == '^' || *in == '$')
2031 *out++ = '\\';
2032 *out++ = *in;
2035 return make_string (temp, out - temp);
2038 syms_of_search ()
2040 register int i;
2042 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
2044 searchbufs[i].buf.allocated = 100;
2045 searchbufs[i].buf.buffer = (unsigned char *) malloc (100);
2046 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
2047 searchbufs[i].regexp = Qnil;
2048 staticpro (&searchbufs[i].regexp);
2049 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
2051 searchbuf_head = &searchbufs[0];
2053 Qsearch_failed = intern ("search-failed");
2054 staticpro (&Qsearch_failed);
2055 Qinvalid_regexp = intern ("invalid-regexp");
2056 staticpro (&Qinvalid_regexp);
2058 Fput (Qsearch_failed, Qerror_conditions,
2059 Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
2060 Fput (Qsearch_failed, Qerror_message,
2061 build_string ("Search failed"));
2063 Fput (Qinvalid_regexp, Qerror_conditions,
2064 Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
2065 Fput (Qinvalid_regexp, Qerror_message,
2066 build_string ("Invalid regexp"));
2068 last_thing_searched = Qnil;
2069 staticpro (&last_thing_searched);
2071 defsubr (&Slooking_at);
2072 defsubr (&Sposix_looking_at);
2073 defsubr (&Sstring_match);
2074 defsubr (&Sposix_string_match);
2075 defsubr (&Sskip_chars_forward);
2076 defsubr (&Sskip_chars_backward);
2077 defsubr (&Sskip_syntax_forward);
2078 defsubr (&Sskip_syntax_backward);
2079 defsubr (&Ssearch_forward);
2080 defsubr (&Ssearch_backward);
2081 defsubr (&Sword_search_forward);
2082 defsubr (&Sword_search_backward);
2083 defsubr (&Sre_search_forward);
2084 defsubr (&Sre_search_backward);
2085 defsubr (&Sposix_search_forward);
2086 defsubr (&Sposix_search_backward);
2087 defsubr (&Sreplace_match);
2088 defsubr (&Smatch_beginning);
2089 defsubr (&Smatch_end);
2090 defsubr (&Smatch_data);
2091 defsubr (&Sstore_match_data);
2092 defsubr (&Sregexp_quote);