(XDrawLine) [USE_MAC_IMAGE_IO]: Remove spurious return.
[emacs.git] / man / calc.texi
blob9615aa028bc8f6029af1ce6497942dfbd865def2
1 \input texinfo                  @c -*-texinfo-*-
2 @comment %**start of header (This is for running Texinfo on a region.)
3 @c smallbook
4 @setfilename ../info/calc
5 @c [title]
6 @settitle GNU Emacs Calc 2.1 Manual
7 @setchapternewpage odd
8 @comment %**end of header (This is for running Texinfo on a region.)
10 @c The following macros are used for conditional output for single lines.
11 @c @texline foo
12 @c    `foo' will appear only in TeX output
13 @c @infoline foo
14 @c    `foo' will appear only in non-TeX output
16 @c @expr{expr} will typeset an expression;
17 @c $x$ in TeX, @samp{x} otherwise.
19 @iftex
20 @macro texline
21 @end macro
22 @alias infoline=comment
23 @alias expr=math
24 @alias tfn=code
25 @alias mathit=expr
26 @macro cpi{}
27 @math{@pi{}}
28 @end macro
29 @macro cpiover{den}
30 @math{@pi/\den\}
31 @end macro
32 @end iftex
34 @ifnottex
35 @alias texline=comment
36 @macro infoline{stuff}
37 \stuff\
38 @end macro
39 @alias expr=samp
40 @alias tfn=t
41 @alias mathit=i
42 @macro cpi{}
43 @expr{pi}
44 @end macro
45 @macro cpiover{den}
46 @expr{pi/\den\}
47 @end macro
48 @end ifnottex
51 @tex
52 % Suggested by Karl Berry <karl@@freefriends.org>
53 \gdef\!{\mskip-\thinmuskip}
54 @end tex
56 @c Fix some other things specifically for this manual.
57 @iftex
58 @finalout
59 @mathcode`@:=`@:  @c Make Calc fractions come out right in math mode
60 @tex
61 \gdef\coloneq{\mathrel{\mathord:\mathord=}}
63 \gdef\beforedisplay{\vskip-10pt}
64 \gdef\afterdisplay{\vskip-5pt}
65 \gdef\beforedisplayh{\vskip-25pt}
66 \gdef\afterdisplayh{\vskip-10pt}
67 @end tex
68 @newdimen@kyvpos @kyvpos=0pt
69 @newdimen@kyhpos @kyhpos=0pt
70 @newcount@calcclubpenalty @calcclubpenalty=1000
71 @ignore
72 @newcount@calcpageno
73 @newtoks@calcoldeverypar @calcoldeverypar=@everypar
74 @everypar={@calceverypar@the@calcoldeverypar}
75 @ifx@turnoffactive@undefinedzzz@def@turnoffactive{}@fi
76 @ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi
77 @catcode`@\=0 \catcode`\@=11
78 \r@ggedbottomtrue
79 \catcode`\@=0 @catcode`@\=@active
80 @end ignore
81 @end iftex
83 @copying
84 This file documents Calc, the GNU Emacs calculator.
86 Copyright @copyright{} 1990, 1991, 2001, 2002, 2003, 2004,
87 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
89 @quotation
90 Permission is granted to copy, distribute and/or modify this document
91 under the terms of the GNU Free Documentation License, Version 1.2 or
92 any later version published by the Free Software Foundation; with the
93 Invariant Sections being just ``GNU GENERAL PUBLIC LICENSE'', with the
94 Front-Cover texts being ``A GNU Manual,'' and with the Back-Cover
95 Texts as in (a) below.  A copy of the license is included in the section
96 entitled ``GNU Free Documentation License.''
98 (a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify
99 this GNU Manual, like GNU software.  Copies published by the Free
100 Software Foundation raise funds for GNU development.''
101 @end quotation
102 @end copying
104 @dircategory Emacs
105 @direntry
106 * Calc: (calc).         Advanced desk calculator and mathematical tool.
107 @end direntry
109 @titlepage
110 @sp 6
111 @center @titlefont{Calc Manual}
112 @sp 4
113 @center GNU Emacs Calc Version 2.1
114 @c [volume]
115 @sp 5
116 @center Dave Gillespie
117 @center daveg@@synaptics.com
118 @page
120 @vskip 0pt plus 1filll
121 Copyright @copyright{} 1990, 1991, 2001, 2002, 2003, 2004,
122    2005, 2006, 2007, 2008 Free Software Foundation, Inc.
123 @insertcopying
124 @end titlepage
126 @c [begin]
127 @ifinfo
128 @node Top, Getting Started, (dir), (dir)
129 @chapter The GNU Emacs Calculator
131 @noindent
132 @dfn{Calc} is an advanced desk calculator and mathematical tool
133 that runs as part of the GNU Emacs environment.
135 This manual is divided into three major parts: ``Getting Started,''
136 the ``Calc Tutorial,'' and the ``Calc Reference.''  The Tutorial
137 introduces all the major aspects of Calculator use in an easy,
138 hands-on way.  The remainder of the manual is a complete reference to
139 the features of the Calculator.
141 For help in the Emacs Info system (which you are using to read this
142 file), type @kbd{?}.  (You can also type @kbd{h} to run through a
143 longer Info tutorial.)
145 @end ifinfo
146 @menu
147 * Getting Started::       General description and overview.
148 * Interactive Tutorial::
149 * Tutorial::              A step-by-step introduction for beginners.
151 * Introduction::          Introduction to the Calc reference manual.
152 * Data Types::            Types of objects manipulated by Calc.
153 * Stack and Trail::       Manipulating the stack and trail buffers.
154 * Mode Settings::         Adjusting display format and other modes.
155 * Arithmetic::            Basic arithmetic functions.
156 * Scientific Functions::  Transcendentals and other scientific functions.
157 * Matrix Functions::      Operations on vectors and matrices.
158 * Algebra::               Manipulating expressions algebraically.
159 * Units::                 Operations on numbers with units.
160 * Store and Recall::      Storing and recalling variables.
161 * Graphics::              Commands for making graphs of data.
162 * Kill and Yank::         Moving data into and out of Calc.
163 * Keypad Mode::           Operating Calc from a keypad.
164 * Embedded Mode::         Working with formulas embedded in a file.
165 * Programming::           Calc as a programmable calculator.
167 * Copying::               How you can copy and share Calc.
168 * GNU Free Documentation License:: The license for this documentation.
169 * Customizing Calc::      Customizing Calc.
170 * Reporting Bugs::        How to report bugs and make suggestions.
172 * Summary::               Summary of Calc commands and functions.
174 * Key Index::             The standard Calc key sequences.
175 * Command Index::         The interactive Calc commands.
176 * Function Index::        Functions (in algebraic formulas).
177 * Concept Index::         General concepts.
178 * Variable Index::        Variables used by Calc (both user and internal).
179 * Lisp Function Index::   Internal Lisp math functions.
180 @end menu
182 @node Getting Started, Interactive Tutorial, Top, Top
183 @chapter Getting Started
184 @noindent
185 This chapter provides a general overview of Calc, the GNU Emacs
186 Calculator:  What it is, how to start it and how to exit from it,
187 and what are the various ways that it can be used.
189 @menu
190 * What is Calc::
191 * About This Manual::
192 * Notations Used in This Manual::
193 * Demonstration of Calc::
194 * Using Calc::
195 * History and Acknowledgements::
196 @end menu
198 @node What is Calc, About This Manual, Getting Started, Getting Started
199 @section What is Calc?
201 @noindent
202 @dfn{Calc} is an advanced calculator and mathematical tool that runs as
203 part of the GNU Emacs environment.  Very roughly based on the HP-28/48
204 series of calculators, its many features include:
206 @itemize @bullet
207 @item
208 Choice of algebraic or RPN (stack-based) entry of calculations.
210 @item
211 Arbitrary precision integers and floating-point numbers.
213 @item
214 Arithmetic on rational numbers, complex numbers (rectangular and polar),
215 error forms with standard deviations, open and closed intervals, vectors
216 and matrices, dates and times, infinities, sets, quantities with units,
217 and algebraic formulas.
219 @item
220 Mathematical operations such as logarithms and trigonometric functions.
222 @item
223 Programmer's features (bitwise operations, non-decimal numbers).
225 @item
226 Financial functions such as future value and internal rate of return.
228 @item
229 Number theoretical features such as prime factorization and arithmetic
230 modulo @var{m} for any @var{m}.
232 @item
233 Algebraic manipulation features, including symbolic calculus.
235 @item
236 Moving data to and from regular editing buffers.
238 @item
239 Embedded mode for manipulating Calc formulas and data directly
240 inside any editing buffer.
242 @item
243 Graphics using GNUPLOT, a versatile (and free) plotting program.
245 @item
246 Easy programming using keyboard macros, algebraic formulas,
247 algebraic rewrite rules, or extended Emacs Lisp.
248 @end itemize
250 Calc tries to include a little something for everyone; as a result it is
251 large and might be intimidating to the first-time user.  If you plan to
252 use Calc only as a traditional desk calculator, all you really need to
253 read is the ``Getting Started'' chapter of this manual and possibly the
254 first few sections of the tutorial.  As you become more comfortable with
255 the program you can learn its additional features.  Calc does not
256 have the scope and depth of a fully-functional symbolic math package,
257 but Calc has the advantages of convenience, portability, and freedom.
259 @node About This Manual, Notations Used in This Manual, What is Calc, Getting Started
260 @section About This Manual
262 @noindent
263 This document serves as a complete description of the GNU Emacs
264 Calculator.  It works both as an introduction for novices, and as
265 a reference for experienced users.  While it helps to have some
266 experience with GNU Emacs in order to get the most out of Calc,
267 this manual ought to be readable even if you don't know or use Emacs
268 regularly.
270 @ifinfo
271 The manual is divided into three major parts:@: the ``Getting
272 Started'' chapter you are reading now, the Calc tutorial (chapter 2),
273 and the Calc reference manual (the remaining chapters and appendices).
274 @end ifinfo
275 @iftex
276 The manual is divided into three major parts:@: the ``Getting
277 Started'' chapter you are reading now, the Calc tutorial (chapter 2),
278 and the Calc reference manual (the remaining chapters and appendices).
279 @c [when-split]
280 @c This manual has been printed in two volumes, the @dfn{Tutorial} and the
281 @c @dfn{Reference}.  Both volumes include a copy of the ``Getting Started''
282 @c chapter.
283 @end iftex
285 If you are in a hurry to use Calc, there is a brief ``demonstration''
286 below which illustrates the major features of Calc in just a couple of
287 pages.  If you don't have time to go through the full tutorial, this
288 will show you everything you need to know to begin.
289 @xref{Demonstration of Calc}.
291 The tutorial chapter walks you through the various parts of Calc
292 with lots of hands-on examples and explanations.  If you are new
293 to Calc and you have some time, try going through at least the
294 beginning of the tutorial.  The tutorial includes about 70 exercises
295 with answers.  These exercises give you some guided practice with
296 Calc, as well as pointing out some interesting and unusual ways
297 to use its features.
299 The reference section discusses Calc in complete depth.  You can read
300 the reference from start to finish if you want to learn every aspect
301 of Calc.  Or, you can look in the table of contents or the Concept
302 Index to find the parts of the manual that discuss the things you
303 need to know.
305 @cindex Marginal notes
306 Every Calc keyboard command is listed in the Calc Summary, and also
307 in the Key Index.  Algebraic functions, @kbd{M-x} commands, and
308 variables also have their own indices.  
309 @texline Each
310 @infoline In the printed manual, each
311 paragraph that is referenced in the Key or Function Index is marked
312 in the margin with its index entry.
314 @c [fix-ref Help Commands]
315 You can access this manual on-line at any time within Calc by
316 pressing the @kbd{h i} key sequence.  Outside of the Calc window,
317 you can press @kbd{C-x * i} to read the manual on-line.  Also, you
318 can jump directly to the Tutorial by pressing @kbd{h t} or @kbd{C-x * t},
319 or to the Summary by pressing @kbd{h s} or @kbd{C-x * s}.  Within Calc,
320 you can also go to the part of the manual describing any Calc key,
321 function, or variable using @w{@kbd{h k}}, @kbd{h f}, or @kbd{h v},
322 respectively.  @xref{Help Commands}.
324 The Calc manual can be printed, but because the manual is so large, you
325 should only make a printed copy if you really need it.  To print the
326 manual, you will need the @TeX{} typesetting program (this is a free
327 program by Donald Knuth at Stanford University) as well as the
328 @file{texindex} program and @file{texinfo.tex} file, both of which can
329 be obtained from the FSF as part of the @code{texinfo} package.
330 To print the Calc manual in one huge tome, you will need the
331 source code to this manual, @file{calc.texi}, available as part of the
332 Emacs source.  Once you have this file, type @kbd{texi2dvi calc.texi}.
333 Alternatively, change to the @file{man} subdirectory of the Emacs
334 source distribution, and type @kbd{make calc.dvi}. (Don't worry if you
335 get some ``overfull box'' warnings while @TeX{} runs.)
336 The result will be a device-independent output file called
337 @file{calc.dvi}, which you must print in whatever way is right
338 for your system.  On many systems, the command is
340 @example
341 lpr -d calc.dvi
342 @end example
344 @noindent
347 @example
348 dvips calc.dvi
349 @end example
351 @c Printed copies of this manual are also available from the Free Software
352 @c Foundation.
354 @node Notations Used in This Manual, Demonstration of Calc, About This Manual, Getting Started
355 @section Notations Used in This Manual
357 @noindent
358 This section describes the various notations that are used
359 throughout the Calc manual.
361 In keystroke sequences, uppercase letters mean you must hold down
362 the shift key while typing the letter.  Keys pressed with Control
363 held down are shown as @kbd{C-x}.  Keys pressed with Meta held down
364 are shown as @kbd{M-x}.  Other notations are @key{RET} for the
365 Return key, @key{SPC} for the space bar, @key{TAB} for the Tab key,
366 @key{DEL} for the Delete key, and @key{LFD} for the Line-Feed key.
367 The @key{DEL} key is called Backspace on some keyboards, it is
368 whatever key you would use to correct a simple typing error when
369 regularly using Emacs.
371 (If you don't have the @key{LFD} or @key{TAB} keys on your keyboard,
372 the @kbd{C-j} and @kbd{C-i} keys are equivalent to them, respectively.
373 If you don't have a Meta key, look for Alt or Extend Char.  You can
374 also press @key{ESC} or @kbd{C-[} first to get the same effect, so
375 that @kbd{M-x}, @kbd{@key{ESC} x}, and @kbd{C-[ x} are all equivalent.)
377 Sometimes the @key{RET} key is not shown when it is ``obvious''
378 that you must press @key{RET} to proceed.  For example, the @key{RET}
379 is usually omitted in key sequences like @kbd{M-x calc-keypad @key{RET}}.
381 Commands are generally shown like this:  @kbd{p} (@code{calc-precision})
382 or @kbd{C-x * k} (@code{calc-keypad}).  This means that the command is
383 normally used by pressing the @kbd{p} key or @kbd{C-x * k} key sequence,
384 but it also has the full-name equivalent shown, e.g., @kbd{M-x calc-precision}.
386 Commands that correspond to functions in algebraic notation
387 are written:  @kbd{C} (@code{calc-cos}) [@code{cos}].  This means
388 the @kbd{C} key is equivalent to @kbd{M-x calc-cos}, and that
389 the corresponding function in an algebraic-style formula would
390 be @samp{cos(@var{x})}.
392 A few commands don't have key equivalents:  @code{calc-sincos}
393 [@code{sincos}].
395 @node Demonstration of Calc, Using Calc, Notations Used in This Manual, Getting Started
396 @section A Demonstration of Calc
398 @noindent
399 @cindex Demonstration of Calc
400 This section will show some typical small problems being solved with
401 Calc.  The focus is more on demonstration than explanation, but
402 everything you see here will be covered more thoroughly in the
403 Tutorial.
405 To begin, start Emacs if necessary (usually the command @code{emacs}
406 does this), and type @kbd{C-x * c} to start the
407 Calculator.  (You can also use @kbd{M-x calc} if this doesn't work.
408 @xref{Starting Calc}, for various ways of starting the Calculator.)
410 Be sure to type all the sample input exactly, especially noting the
411 difference between lower-case and upper-case letters.  Remember,
412 @key{RET}, @key{TAB}, @key{DEL}, and @key{SPC} are the Return, Tab,
413 Delete, and Space keys.
415 @strong{RPN calculation.}  In RPN, you type the input number(s) first,
416 then the command to operate on the numbers.
418 @noindent
419 Type @kbd{2 @key{RET} 3 + Q} to compute 
420 @texline @math{\sqrt{2+3} = 2.2360679775}.
421 @infoline the square root of 2+3, which is 2.2360679775.
423 @noindent
424 Type @kbd{P 2 ^} to compute 
425 @texline @math{\pi^2 = 9.86960440109}.
426 @infoline the value of `pi' squared, 9.86960440109.
428 @noindent
429 Type @key{TAB} to exchange the order of these two results.
431 @noindent
432 Type @kbd{- I H S} to subtract these results and compute the Inverse
433 Hyperbolic sine of the difference, 2.72996136574.
435 @noindent
436 Type @key{DEL} to erase this result.
438 @strong{Algebraic calculation.}  You can also enter calculations using
439 conventional ``algebraic'' notation.  To enter an algebraic formula,
440 use the apostrophe key.
442 @noindent
443 Type @kbd{' sqrt(2+3) @key{RET}} to compute 
444 @texline @math{\sqrt{2+3}}.
445 @infoline the square root of 2+3.
447 @noindent
448 Type @kbd{' pi^2 @key{RET}} to enter 
449 @texline @math{\pi^2}.
450 @infoline `pi' squared.  
451 To evaluate this symbolic formula as a number, type @kbd{=}.
453 @noindent
454 Type @kbd{' arcsinh($ - $$) @key{RET}} to subtract the second-most-recent
455 result from the most-recent and compute the Inverse Hyperbolic sine.
457 @strong{Keypad mode.}  If you are using the X window system, press
458 @w{@kbd{C-x * k}} to get Keypad mode.  (If you don't use X, skip to
459 the next section.)
461 @noindent
462 Click on the @key{2}, @key{ENTER}, @key{3}, @key{+}, and @key{SQRT}
463 ``buttons'' using your left mouse button.
465 @noindent
466 Click on @key{PI}, @key{2}, and @tfn{y^x}.
468 @noindent
469 Click on @key{INV}, then @key{ENTER} to swap the two results.
471 @noindent
472 Click on @key{-}, @key{INV}, @key{HYP}, and @key{SIN}.
474 @noindent
475 Click on @key{<-} to erase the result, then click @key{OFF} to turn
476 the Keypad Calculator off.
478 @strong{Grabbing data.}  Type @kbd{C-x * x} if necessary to exit Calc.
479 Now select the following numbers as an Emacs region:  ``Mark'' the
480 front of the list by typing @kbd{C-@key{SPC}} or @kbd{C-@@} there,
481 then move to the other end of the list.  (Either get this list from
482 the on-line copy of this manual, accessed by @w{@kbd{C-x * i}}, or just
483 type these numbers into a scratch file.)  Now type @kbd{C-x * g} to
484 ``grab'' these numbers into Calc.
486 @example
487 @group
488 1.23  1.97
489 1.6   2
490 1.19  1.08
491 @end group
492 @end example
494 @noindent
495 The result @samp{[1.23, 1.97, 1.6, 2, 1.19, 1.08]} is a Calc ``vector.''
496 Type @w{@kbd{V R +}} to compute the sum of these numbers.
498 @noindent
499 Type @kbd{U} to Undo this command, then type @kbd{V R *} to compute
500 the product of the numbers.
502 @noindent
503 You can also grab data as a rectangular matrix.  Place the cursor on
504 the upper-leftmost @samp{1} and set the mark, then move to just after
505 the lower-right @samp{8} and press @kbd{C-x * r}.
507 @noindent
508 Type @kbd{v t} to transpose this 
509 @texline @math{3\times2}
510 @infoline 3x2 
511 matrix into a 
512 @texline @math{2\times3}
513 @infoline 2x3
514 matrix.  Type @w{@kbd{v u}} to unpack the rows into two separate
515 vectors.  Now type @w{@kbd{V R + @key{TAB} V R +}} to compute the sums
516 of the two original columns. (There is also a special
517 grab-and-sum-columns command, @kbd{C-x * :}.)
519 @strong{Units conversion.}  Units are entered algebraically.
520 Type @w{@kbd{' 43 mi/hr @key{RET}}} to enter the quantity 43 miles-per-hour.
521 Type @w{@kbd{u c km/hr @key{RET}}}.  Type @w{@kbd{u c m/s @key{RET}}}.
523 @strong{Date arithmetic.}  Type @kbd{t N} to get the current date and
524 time.  Type @kbd{90 +} to find the date 90 days from now.  Type
525 @kbd{' <25 dec 87> @key{RET}} to enter a date, then @kbd{- 7 /} to see how
526 many weeks have passed since then.
528 @strong{Algebra.}  Algebraic entries can also include formulas
529 or equations involving variables.  Type @kbd{@w{' [x + y} = a, x y = 1] @key{RET}}
530 to enter a pair of equations involving three variables.
531 (Note the leading apostrophe in this example; also, note that the space
532 between @samp{x y} is required.)  Type @w{@kbd{a S x,y @key{RET}}} to solve
533 these equations for the variables @expr{x} and @expr{y}.
535 @noindent
536 Type @kbd{d B} to view the solutions in more readable notation.
537 Type @w{@kbd{d C}} to view them in C language notation, @kbd{d T}
538 to view them in the notation for the @TeX{} typesetting system,
539 and @kbd{d L} to view them in the notation for the La@TeX{} typesetting
540 system.  Type @kbd{d N} to return to normal notation.
542 @noindent
543 Type @kbd{7.5}, then @kbd{s l a @key{RET}} to let @expr{a = 7.5} in these formulas.
544 (That's a letter @kbd{l}, not a numeral @kbd{1}.)
546 @iftex
547 @strong{Help functions.}  You can read about any command in the on-line
548 manual.  Type @kbd{C-x * c} to return to Calc after each of these
549 commands: @kbd{h k t N} to read about the @kbd{t N} command,
550 @kbd{h f sqrt @key{RET}} to read about the @code{sqrt} function, and
551 @kbd{h s} to read the Calc summary.
552 @end iftex
553 @ifinfo
554 @strong{Help functions.}  You can read about any command in the on-line
555 manual.  Remember to type the letter @kbd{l}, then @kbd{C-x * c}, to
556 return here after each of these commands: @w{@kbd{h k t N}} to read
557 about the @w{@kbd{t N}} command, @kbd{h f sqrt @key{RET}} to read about the
558 @code{sqrt} function, and @kbd{h s} to read the Calc summary.
559 @end ifinfo
561 Press @key{DEL} repeatedly to remove any leftover results from the stack.
562 To exit from Calc, press @kbd{q} or @kbd{C-x * c} again.
564 @node Using Calc, History and Acknowledgements, Demonstration of Calc, Getting Started
565 @section Using Calc
567 @noindent
568 Calc has several user interfaces that are specialized for
569 different kinds of tasks.  As well as Calc's standard interface,
570 there are Quick mode, Keypad mode, and Embedded mode.
572 @menu
573 * Starting Calc::
574 * The Standard Interface::
575 * Quick Mode Overview::
576 * Keypad Mode Overview::
577 * Standalone Operation::
578 * Embedded Mode Overview::
579 * Other C-x * Commands::
580 @end menu
582 @node Starting Calc, The Standard Interface, Using Calc, Using Calc
583 @subsection Starting Calc
585 @noindent
586 On most systems, you can type @kbd{C-x *} to start the Calculator.
587 The key sequence @kbd{C-x *} is bound to the command @code{calc-dispatch}, 
588 which can be rebound if convenient (@pxref{Customizing Calc}).
590 When you press @kbd{C-x *}, Emacs waits for you to press a second key to
591 complete the command.  In this case, you will follow @kbd{C-x *} with a
592 letter (upper- or lower-case, it doesn't matter for @kbd{C-x *}) that says
593 which Calc interface you want to use.
595 To get Calc's standard interface, type @kbd{C-x * c}.  To get
596 Keypad mode, type @kbd{C-x * k}.  Type @kbd{C-x * ?} to get a brief
597 list of the available options, and type a second @kbd{?} to get
598 a complete list.
600 To ease typing, @kbd{C-x * *} also works to start Calc.  It starts the
601 same interface (either @kbd{C-x * c} or @w{@kbd{C-x * k}}) that you last
602 used, selecting the @kbd{C-x * c} interface by default.
604 If @kbd{C-x *} doesn't work for you, you can always type explicit
605 commands like @kbd{M-x calc} (for the standard user interface) or
606 @w{@kbd{M-x calc-keypad}} (for Keypad mode).  First type @kbd{M-x}
607 (that's Meta with the letter @kbd{x}), then, at the prompt,
608 type the full command (like @kbd{calc-keypad}) and press Return.
610 The same commands (like @kbd{C-x * c} or @kbd{C-x * *}) that start
611 the Calculator also turn it off if it is already on.
613 @node The Standard Interface, Quick Mode Overview, Starting Calc, Using Calc
614 @subsection The Standard Calc Interface
616 @noindent
617 @cindex Standard user interface
618 Calc's standard interface acts like a traditional RPN calculator,
619 operated by the normal Emacs keyboard.  When you type @kbd{C-x * c}
620 to start the Calculator, the Emacs screen splits into two windows
621 with the file you were editing on top and Calc on the bottom.
623 @smallexample
624 @group
627 --**-Emacs: myfile             (Fundamental)----All----------------------
628 --- Emacs Calculator Mode ---                   |Emacs Calculator Trail
629 2:  17.3                                        |    17.3
630 1:  -5                                          |    3
631     .                                           |    2
632                                                 |    4
633                                                 |  * 8
634                                                 |  ->-5
635                                                 |
636 --%%-Calc: 12 Deg       (Calculator)----All----- --%%-Emacs: *Calc Trail*
637 @end group
638 @end smallexample
640 In this figure, the mode-line for @file{myfile} has moved up and the
641 ``Calculator'' window has appeared below it.  As you can see, Calc
642 actually makes two windows side-by-side.  The lefthand one is
643 called the @dfn{stack window} and the righthand one is called the
644 @dfn{trail window.}  The stack holds the numbers involved in the
645 calculation you are currently performing.  The trail holds a complete
646 record of all calculations you have done.  In a desk calculator with
647 a printer, the trail corresponds to the paper tape that records what
648 you do.
650 In this case, the trail shows that four numbers (17.3, 3, 2, and 4)
651 were first entered into the Calculator, then the 2 and 4 were
652 multiplied to get 8, then the 3 and 8 were subtracted to get @mathit{-5}.
653 (The @samp{>} symbol shows that this was the most recent calculation.)
654 The net result is the two numbers 17.3 and @mathit{-5} sitting on the stack.
656 Most Calculator commands deal explicitly with the stack only, but
657 there is a set of commands that allow you to search back through
658 the trail and retrieve any previous result.
660 Calc commands use the digits, letters, and punctuation keys.
661 Shifted (i.e., upper-case) letters are different from lowercase
662 letters.  Some letters are @dfn{prefix} keys that begin two-letter
663 commands.  For example, @kbd{e} means ``enter exponent'' and shifted
664 @kbd{E} means @expr{e^x}.  With the @kbd{d} (``display modes'') prefix
665 the letter ``e'' takes on very different meanings:  @kbd{d e} means
666 ``engineering notation'' and @kbd{d E} means ``@dfn{eqn} language mode.''
668 There is nothing stopping you from switching out of the Calc
669 window and back into your editing window, say by using the Emacs
670 @w{@kbd{C-x o}} (@code{other-window}) command.  When the cursor is
671 inside a regular window, Emacs acts just like normal.  When the
672 cursor is in the Calc stack or trail windows, keys are interpreted
673 as Calc commands.
675 When you quit by pressing @kbd{C-x * c} a second time, the Calculator
676 windows go away but the actual Stack and Trail are not gone, just
677 hidden.  When you press @kbd{C-x * c} once again you will get the
678 same stack and trail contents you had when you last used the
679 Calculator.
681 The Calculator does not remember its state between Emacs sessions.
682 Thus if you quit Emacs and start it again, @kbd{C-x * c} will give you
683 a fresh stack and trail.  There is a command (@kbd{m m}) that lets
684 you save your favorite mode settings between sessions, though.
685 One of the things it saves is which user interface (standard or
686 Keypad) you last used; otherwise, a freshly started Emacs will
687 always treat @kbd{C-x * *} the same as @kbd{C-x * c}.
689 The @kbd{q} key is another equivalent way to turn the Calculator off.
691 If you type @kbd{C-x * b} first and then @kbd{C-x * c}, you get a
692 full-screen version of Calc (@code{full-calc}) in which the stack and
693 trail windows are still side-by-side but are now as tall as the whole
694 Emacs screen.  When you press @kbd{q} or @kbd{C-x * c} again to quit,
695 the file you were editing before reappears.  The @kbd{C-x * b} key
696 switches back and forth between ``big'' full-screen mode and the
697 normal partial-screen mode.
699 Finally, @kbd{C-x * o} (@code{calc-other-window}) is like @kbd{C-x * c}
700 except that the Calc window is not selected.  The buffer you were
701 editing before remains selected instead.  @kbd{C-x * o} is a handy
702 way to switch out of Calc momentarily to edit your file; type
703 @kbd{C-x * c} to switch back into Calc when you are done.
705 @node Quick Mode Overview, Keypad Mode Overview, The Standard Interface, Using Calc
706 @subsection Quick Mode (Overview)
708 @noindent
709 @dfn{Quick mode} is a quick way to use Calc when you don't need the
710 full complexity of the stack and trail.  To use it, type @kbd{C-x * q}
711 (@code{quick-calc}) in any regular editing buffer.
713 Quick mode is very simple:  It prompts you to type any formula in
714 standard algebraic notation (like @samp{4 - 2/3}) and then displays
715 the result at the bottom of the Emacs screen (@mathit{3.33333333333}
716 in this case).  You are then back in the same editing buffer you
717 were in before, ready to continue editing or to type @kbd{C-x * q}
718 again to do another quick calculation.  The result of the calculation
719 will also be in the Emacs ``kill ring'' so that a @kbd{C-y} command
720 at this point will yank the result into your editing buffer.
722 Calc mode settings affect Quick mode, too, though you will have to
723 go into regular Calc (with @kbd{C-x * c}) to change the mode settings.
725 @c [fix-ref Quick Calculator mode]
726 @xref{Quick Calculator}, for further information.
728 @node Keypad Mode Overview, Standalone Operation, Quick Mode Overview, Using Calc
729 @subsection Keypad Mode (Overview)
731 @noindent
732 @dfn{Keypad mode} is a mouse-based interface to the Calculator.
733 It is designed for use with terminals that support a mouse.  If you
734 don't have a mouse, you will have to operate Keypad mode with your
735 arrow keys (which is probably more trouble than it's worth).
737 Type @kbd{C-x * k} to turn Keypad mode on or off.  Once again you
738 get two new windows, this time on the righthand side of the screen
739 instead of at the bottom.  The upper window is the familiar Calc
740 Stack; the lower window is a picture of a typical calculator keypad.
742 @tex
743 \dimen0=\pagetotal%
744 \advance \dimen0 by 24\baselineskip%
745 \ifdim \dimen0>\pagegoal \vfill\eject \fi%
746 \medskip
747 @end tex
748 @smallexample
749 @group
750 |--- Emacs Calculator Mode ---
751 |2:  17.3
752 |1:  -5
753 |    .
754 |--%%-Calc: 12 Deg       (Calcul
755 |----+-----Calc 2.1------+----1
756 |FLR |CEIL|RND |TRNC|CLN2|FLT |
757 |----+----+----+----+----+----|
758 | LN |EXP |    |ABS |IDIV|MOD |
759 |----+----+----+----+----+----|
760 |SIN |COS |TAN |SQRT|y^x |1/x |
761 |----+----+----+----+----+----|
762 |  ENTER  |+/- |EEX |UNDO| <- |
763 |-----+---+-+--+--+-+---++----|
764 | INV |  7  |  8  |  9  |  /  |
765 |-----+-----+-----+-----+-----|
766 | HYP |  4  |  5  |  6  |  *  |
767 |-----+-----+-----+-----+-----|
768 |EXEC |  1  |  2  |  3  |  -  |
769 |-----+-----+-----+-----+-----|
770 | OFF |  0  |  .  | PI  |  +  |
771 |-----+-----+-----+-----+-----+
772 @end group
773 @end smallexample
775 Keypad mode is much easier for beginners to learn, because there
776 is no need to memorize lots of obscure key sequences.  But not all
777 commands in regular Calc are available on the Keypad.  You can
778 always switch the cursor into the Calc stack window to use
779 standard Calc commands if you need.  Serious Calc users, though,
780 often find they prefer the standard interface over Keypad mode.
782 To operate the Calculator, just click on the ``buttons'' of the
783 keypad using your left mouse button.  To enter the two numbers
784 shown here you would click @w{@kbd{1 7 .@: 3 ENTER 5 +/- ENTER}}; to
785 add them together you would then click @kbd{+} (to get 12.3 on
786 the stack).
788 If you click the right mouse button, the top three rows of the
789 keypad change to show other sets of commands, such as advanced
790 math functions, vector operations, and operations on binary
791 numbers.
793 Because Keypad mode doesn't use the regular keyboard, Calc leaves
794 the cursor in your original editing buffer.  You can type in
795 this buffer in the usual way while also clicking on the Calculator
796 keypad.  One advantage of Keypad mode is that you don't need an
797 explicit command to switch between editing and calculating.
799 If you press @kbd{C-x * b} first, you get a full-screen Keypad mode
800 (@code{full-calc-keypad}) with three windows:  The keypad in the lower
801 left, the stack in the lower right, and the trail on top.
803 @c [fix-ref Keypad Mode]
804 @xref{Keypad Mode}, for further information.
806 @node Standalone Operation, Embedded Mode Overview, Keypad Mode Overview, Using Calc
807 @subsection Standalone Operation
809 @noindent
810 @cindex Standalone Operation
811 If you are not in Emacs at the moment but you wish to use Calc,
812 you must start Emacs first.  If all you want is to run Calc, you
813 can give the commands:
815 @example
816 emacs -f full-calc
817 @end example
819 @noindent
822 @example
823 emacs -f full-calc-keypad
824 @end example
826 @noindent
827 which run a full-screen Calculator (as if by @kbd{C-x * b C-x * c}) or
828 a full-screen X-based Calculator (as if by @kbd{C-x * b C-x * k}).
829 In standalone operation, quitting the Calculator (by pressing
830 @kbd{q} or clicking on the keypad @key{EXIT} button) quits Emacs
831 itself.
833 @node Embedded Mode Overview, Other C-x * Commands, Standalone Operation, Using Calc
834 @subsection Embedded Mode (Overview)
836 @noindent
837 @dfn{Embedded mode} is a way to use Calc directly from inside an
838 editing buffer.  Suppose you have a formula written as part of a
839 document like this:
841 @smallexample
842 @group
843 The derivative of
845                                    ln(ln(x))
848 @end group
849 @end smallexample
851 @noindent
852 and you wish to have Calc compute and format the derivative for
853 you and store this derivative in the buffer automatically.  To
854 do this with Embedded mode, first copy the formula down to where
855 you want the result to be:
857 @smallexample
858 @group
859 The derivative of
861                                    ln(ln(x))
865                                    ln(ln(x))
866 @end group
867 @end smallexample
869 Now, move the cursor onto this new formula and press @kbd{C-x * e}.
870 Calc will read the formula (using the surrounding blank lines to
871 tell how much text to read), then push this formula (invisibly)
872 onto the Calc stack.  The cursor will stay on the formula in the
873 editing buffer, but the buffer's mode line will change to look
874 like the Calc mode line (with mode indicators like @samp{12 Deg}
875 and so on).  Even though you are still in your editing buffer,
876 the keyboard now acts like the Calc keyboard, and any new result
877 you get is copied from the stack back into the buffer.  To take
878 the derivative, you would type @kbd{a d x @key{RET}}.
880 @smallexample
881 @group
882 The derivative of
884                                    ln(ln(x))
888 1 / ln(x) x
889 @end group
890 @end smallexample
892 To make this look nicer, you might want to press @kbd{d =} to center
893 the formula, and even @kbd{d B} to use Big display mode.
895 @smallexample
896 @group
897 The derivative of
899                                    ln(ln(x))
902 % [calc-mode: justify: center]
903 % [calc-mode: language: big]
905                                        1
906                                     -------
907                                     ln(x) x
908 @end group
909 @end smallexample
911 Calc has added annotations to the file to help it remember the modes
912 that were used for this formula.  They are formatted like comments
913 in the @TeX{} typesetting language, just in case you are using @TeX{} or
914 La@TeX{}. (In this example @TeX{} is not being used, so you might want
915 to move these comments up to the top of the file or otherwise put them
916 out of the way.)
918 As an extra flourish, we can add an equation number using a
919 righthand label:  Type @kbd{d @} (1) @key{RET}}.
921 @smallexample
922 @group
923 % [calc-mode: justify: center]
924 % [calc-mode: language: big]
925 % [calc-mode: right-label: " (1)"]
927                                        1
928                                     -------                      (1)
929                                     ln(x) x
930 @end group
931 @end smallexample
933 To leave Embedded mode, type @kbd{C-x * e} again.  The mode line
934 and keyboard will revert to the way they were before.
936 The related command @kbd{C-x * w} operates on a single word, which
937 generally means a single number, inside text.  It uses any
938 non-numeric characters rather than blank lines to delimit the
939 formula it reads.  Here's an example of its use:
941 @smallexample
942 A slope of one-third corresponds to an angle of 1 degrees.
943 @end smallexample
945 Place the cursor on the @samp{1}, then type @kbd{C-x * w} to enable
946 Embedded mode on that number.  Now type @kbd{3 /} (to get one-third),
947 and @kbd{I T} (the Inverse Tangent converts a slope into an angle),
948 then @w{@kbd{C-x * w}} again to exit Embedded mode.
950 @smallexample
951 A slope of one-third corresponds to an angle of 18.4349488229 degrees.
952 @end smallexample
954 @c [fix-ref Embedded Mode]
955 @xref{Embedded Mode}, for full details.
957 @node Other C-x * Commands,  , Embedded Mode Overview, Using Calc
958 @subsection Other @kbd{C-x *} Commands
960 @noindent
961 Two more Calc-related commands are @kbd{C-x * g} and @kbd{C-x * r},
962 which ``grab'' data from a selected region of a buffer into the
963 Calculator.  The region is defined in the usual Emacs way, by
964 a ``mark'' placed at one end of the region, and the Emacs
965 cursor or ``point'' placed at the other.
967 The @kbd{C-x * g} command reads the region in the usual left-to-right,
968 top-to-bottom order.  The result is packaged into a Calc vector
969 of numbers and placed on the stack.  Calc (in its standard
970 user interface) is then started.  Type @kbd{v u} if you want
971 to unpack this vector into separate numbers on the stack.  Also,
972 @kbd{C-u C-x * g} interprets the region as a single number or
973 formula.
975 The @kbd{C-x * r} command reads a rectangle, with the point and
976 mark defining opposite corners of the rectangle.  The result
977 is a matrix of numbers on the Calculator stack.
979 Complementary to these is @kbd{C-x * y}, which ``yanks'' the
980 value at the top of the Calc stack back into an editing buffer.
981 If you type @w{@kbd{C-x * y}} while in such a buffer, the value is
982 yanked at the current position.  If you type @kbd{C-x * y} while
983 in the Calc buffer, Calc makes an educated guess as to which
984 editing buffer you want to use.  The Calc window does not have
985 to be visible in order to use this command, as long as there
986 is something on the Calc stack.
988 Here, for reference, is the complete list of @kbd{C-x *} commands.
989 The shift, control, and meta keys are ignored for the keystroke
990 following @kbd{C-x *}.
992 @noindent
993 Commands for turning Calc on and off:
995 @table @kbd
996 @item *
997 Turn Calc on or off, employing the same user interface as last time.
999 @item =, +, -, /, \, &, #
1000 Alternatives for @kbd{*}.
1002 @item C
1003 Turn Calc on or off using its standard bottom-of-the-screen
1004 interface.  If Calc is already turned on but the cursor is not
1005 in the Calc window, move the cursor into the window.
1007 @item O
1008 Same as @kbd{C}, but don't select the new Calc window.  If
1009 Calc is already turned on and the cursor is in the Calc window,
1010 move it out of that window.
1012 @item B
1013 Control whether @kbd{C-x * c} and @kbd{C-x * k} use the full screen.
1015 @item Q
1016 Use Quick mode for a single short calculation.
1018 @item K
1019 Turn Calc Keypad mode on or off.
1021 @item E
1022 Turn Calc Embedded mode on or off at the current formula.
1024 @item J
1025 Turn Calc Embedded mode on or off, select the interesting part.
1027 @item W
1028 Turn Calc Embedded mode on or off at the current word (number).
1030 @item Z
1031 Turn Calc on in a user-defined way, as defined by a @kbd{Z I} command.
1033 @item X
1034 Quit Calc; turn off standard, Keypad, or Embedded mode if on.
1035 (This is like @kbd{q} or @key{OFF} inside of Calc.)
1036 @end table
1037 @iftex
1038 @sp 2
1039 @end iftex
1041 @noindent
1042 Commands for moving data into and out of the Calculator:
1044 @table @kbd
1045 @item G
1046 Grab the region into the Calculator as a vector.
1048 @item R
1049 Grab the rectangular region into the Calculator as a matrix.
1051 @item :
1052 Grab the rectangular region and compute the sums of its columns.
1054 @item _
1055 Grab the rectangular region and compute the sums of its rows.
1057 @item Y
1058 Yank a value from the Calculator into the current editing buffer.
1059 @end table
1060 @iftex
1061 @sp 2
1062 @end iftex
1064 @noindent
1065 Commands for use with Embedded mode:
1067 @table @kbd
1068 @item A
1069 ``Activate'' the current buffer.  Locate all formulas that
1070 contain @samp{:=} or @samp{=>} symbols and record their locations
1071 so that they can be updated automatically as variables are changed.
1073 @item D
1074 Duplicate the current formula immediately below and select
1075 the duplicate.
1077 @item F
1078 Insert a new formula at the current point.
1080 @item N
1081 Move the cursor to the next active formula in the buffer.
1083 @item P
1084 Move the cursor to the previous active formula in the buffer.
1086 @item U
1087 Update (i.e., as if by the @kbd{=} key) the formula at the current point.
1089 @item `
1090 Edit (as if by @code{calc-edit}) the formula at the current point.
1091 @end table
1092 @iftex
1093 @sp 2
1094 @end iftex
1096 @noindent
1097 Miscellaneous commands:
1099 @table @kbd
1100 @item I
1101 Run the Emacs Info system to read the Calc manual.
1102 (This is the same as @kbd{h i} inside of Calc.)
1104 @item T
1105 Run the Emacs Info system to read the Calc Tutorial.
1107 @item S
1108 Run the Emacs Info system to read the Calc Summary.
1110 @item L
1111 Load Calc entirely into memory.  (Normally the various parts
1112 are loaded only as they are needed.)
1114 @item M
1115 Read a region of written keystroke names (like @kbd{C-n a b c @key{RET}})
1116 and record them as the current keyboard macro.
1118 @item 0
1119 (This is the ``zero'' digit key.)  Reset the Calculator to
1120 its initial state:  Empty stack, and initial mode settings.
1121 @end table
1123 @node History and Acknowledgements,  , Using Calc, Getting Started
1124 @section History and Acknowledgements
1126 @noindent
1127 Calc was originally started as a two-week project to occupy a lull
1128 in the author's schedule.  Basically, a friend asked if I remembered
1129 the value of 
1130 @texline @math{2^{32}}.
1131 @infoline @expr{2^32}.  
1132 I didn't offhand, but I said, ``that's easy, just call up an
1133 @code{xcalc}.''  @code{Xcalc} duly reported that the answer to our
1134 question was @samp{4.294967e+09}---with no way to see the full ten
1135 digits even though we knew they were there in the program's memory!  I
1136 was so annoyed, I vowed to write a calculator of my own, once and for
1137 all.
1139 I chose Emacs Lisp, a) because I had always been curious about it
1140 and b) because, being only a text editor extension language after
1141 all, Emacs Lisp would surely reach its limits long before the project
1142 got too far out of hand.
1144 To make a long story short, Emacs Lisp turned out to be a distressingly
1145 solid implementation of Lisp, and the humble task of calculating
1146 turned out to be more open-ended than one might have expected.
1148 Emacs Lisp didn't have built-in floating point math (now it does), so
1149 this had to be
1150 simulated in software.  In fact, Emacs integers will only comfortably
1151 fit six decimal digits or so---not enough for a decent calculator.  So
1152 I had to write my own high-precision integer code as well, and once I had
1153 this I figured that arbitrary-size integers were just as easy as large
1154 integers.  Arbitrary floating-point precision was the logical next step.
1155 Also, since the large integer arithmetic was there anyway it seemed only
1156 fair to give the user direct access to it, which in turn made it practical
1157 to support fractions as well as floats.  All these features inspired me
1158 to look around for other data types that might be worth having.
1160 Around this time, my friend Rick Koshi showed me his nifty new HP-28
1161 calculator.  It allowed the user to manipulate formulas as well as
1162 numerical quantities, and it could also operate on matrices.  I
1163 decided that these would be good for Calc to have, too.  And once
1164 things had gone this far, I figured I might as well take a look at
1165 serious algebra systems for further ideas.  Since these systems did
1166 far more than I could ever hope to implement, I decided to focus on
1167 rewrite rules and other programming features so that users could
1168 implement what they needed for themselves.
1170 Rick complained that matrices were hard to read, so I put in code to
1171 format them in a 2D style.  Once these routines were in place, Big mode
1172 was obligatory.  Gee, what other language modes would be useful?
1174 Scott Hemphill and Allen Knutson, two friends with a strong mathematical
1175 bent, contributed ideas and algorithms for a number of Calc features
1176 including modulo forms, primality testing, and float-to-fraction conversion.
1178 Units were added at the eager insistence of Mass Sivilotti.  Later,
1179 Ulrich Mueller at CERN and Przemek Klosowski at NIST provided invaluable
1180 expert assistance with the units table.  As far as I can remember, the
1181 idea of using algebraic formulas and variables to represent units dates
1182 back to an ancient article in Byte magazine about muMath, an early
1183 algebra system for microcomputers.
1185 Many people have contributed to Calc by reporting bugs and suggesting
1186 features, large and small.  A few deserve special mention:  Tim Peters,
1187 who helped develop the ideas that led to the selection commands, rewrite
1188 rules, and many other algebra features; 
1189 @texline Fran\c{c}ois
1190 @infoline Francois
1191 Pinard, who contributed an early prototype of the Calc Summary appendix
1192 as well as providing valuable suggestions in many other areas of Calc;
1193 Carl Witty, whose eagle eyes discovered many typographical and factual
1194 errors in the Calc manual; Tim Kay, who drove the development of
1195 Embedded mode; Ove Ewerlid, who made many suggestions relating to the
1196 algebra commands and contributed some code for polynomial operations;
1197 Randal Schwartz, who suggested the @code{calc-eval} function; Robert
1198 J. Chassell, who suggested the Calc Tutorial and exercises; and Juha
1199 Sarlin, who first worked out how to split Calc into quickly-loading
1200 parts.  Bob Weiner helped immensely with the Lucid Emacs port.
1202 @cindex Bibliography
1203 @cindex Knuth, Art of Computer Programming
1204 @cindex Numerical Recipes
1205 @c Should these be expanded into more complete references?
1206 Among the books used in the development of Calc were Knuth's @emph{Art
1207 of Computer Programming} (especially volume II, @emph{Seminumerical
1208 Algorithms}); @emph{Numerical Recipes} by Press, Flannery, Teukolsky,
1209 and Vetterling; Bevington's @emph{Data Reduction and Error Analysis
1210 for the Physical Sciences}; @emph{Concrete Mathematics} by Graham,
1211 Knuth, and Patashnik; Steele's @emph{Common Lisp, the Language}; the
1212 @emph{CRC Standard Math Tables} (William H. Beyer, ed.); and
1213 Abramowitz and Stegun's venerable @emph{Handbook of Mathematical
1214 Functions}.  Also, of course, Calc could not have been written without
1215 the excellent @emph{GNU Emacs Lisp Reference Manual}, by Bil Lewis and
1216 Dan LaLiberte.
1218 Final thanks go to Richard Stallman, without whose fine implementations
1219 of the Emacs editor, language, and environment, Calc would have been
1220 finished in two weeks.
1222 @c [tutorial]
1224 @ifinfo
1225 @c This node is accessed by the `C-x * t' command.
1226 @node Interactive Tutorial, Tutorial, Getting Started, Top
1227 @chapter Tutorial
1229 @noindent
1230 Some brief instructions on using the Emacs Info system for this tutorial:
1232 Press the space bar and Delete keys to go forward and backward in a
1233 section by screenfuls (or use the regular Emacs scrolling commands
1234 for this).
1236 Press @kbd{n} or @kbd{p} to go to the Next or Previous section.
1237 If the section has a @dfn{menu}, press a digit key like @kbd{1}
1238 or @kbd{2} to go to a sub-section from the menu.  Press @kbd{u} to
1239 go back up from a sub-section to the menu it is part of.
1241 Exercises in the tutorial all have cross-references to the
1242 appropriate page of the ``answers'' section.  Press @kbd{f}, then
1243 the exercise number, to see the answer to an exercise.  After
1244 you have followed a cross-reference, you can press the letter
1245 @kbd{l} to return to where you were before.
1247 You can press @kbd{?} at any time for a brief summary of Info commands.
1249 Press @kbd{1} now to enter the first section of the Tutorial.
1251 @menu
1252 * Tutorial::
1253 @end menu
1254 @end ifinfo
1256 @node Tutorial, Introduction, Interactive Tutorial, Top
1257 @chapter Tutorial
1259 @noindent
1260 This chapter explains how to use Calc and its many features, in
1261 a step-by-step, tutorial way.  You are encouraged to run Calc and
1262 work along with the examples as you read (@pxref{Starting Calc}).
1263 If you are already familiar with advanced calculators, you may wish
1264 @c [not-split]
1265 to skip on to the rest of this manual.
1266 @c [when-split]
1267 @c to skip on to volume II of this manual, the @dfn{Calc Reference}.
1269 @c [fix-ref Embedded Mode]
1270 This tutorial describes the standard user interface of Calc only.
1271 The Quick mode and Keypad mode interfaces are fairly
1272 self-explanatory.  @xref{Embedded Mode}, for a description of
1273 the Embedded mode interface.
1275 @ifinfo
1276 The easiest way to read this tutorial on-line is to have two windows on
1277 your Emacs screen, one with Calc and one with the Info system.  (If you
1278 have a printed copy of the manual you can use that instead.)  Press
1279 @kbd{C-x * c} to turn Calc on or to switch into the Calc window, and
1280 press @kbd{C-x * i} to start the Info system or to switch into its window.
1281 Or, you may prefer to use the tutorial in printed form.
1282 @end ifinfo
1283 @iftex
1284 The easiest way to read this tutorial on-line is to have two windows on
1285 your Emacs screen, one with Calc and one with the Info system.  (If you
1286 have a printed copy of the manual you can use that instead.)  Press
1287 @kbd{C-x * c} to turn Calc on or to switch into the Calc window, and
1288 press @kbd{C-x * i} to start the Info system or to switch into its window.
1289 @end iftex
1291 This tutorial is designed to be done in sequence.  But the rest of this
1292 manual does not assume you have gone through the tutorial.  The tutorial
1293 does not cover everything in the Calculator, but it touches on most
1294 general areas.
1296 @ifinfo
1297 You may wish to print out a copy of the Calc Summary and keep notes on
1298 it as you learn Calc.  @xref{About This Manual}, to see how to make a
1299 printed summary.  @xref{Summary}.
1300 @end ifinfo
1301 @iftex
1302 The Calc Summary at the end of the reference manual includes some blank
1303 space for your own use.  You may wish to keep notes there as you learn
1304 Calc.
1305 @end iftex
1307 @menu
1308 * Basic Tutorial::
1309 * Arithmetic Tutorial::
1310 * Vector/Matrix Tutorial::
1311 * Types Tutorial::
1312 * Algebra Tutorial::
1313 * Programming Tutorial::
1315 * Answers to Exercises::
1316 @end menu
1318 @node Basic Tutorial, Arithmetic Tutorial, Tutorial, Tutorial
1319 @section Basic Tutorial
1321 @noindent
1322 In this section, we learn how RPN and algebraic-style calculations
1323 work, how to undo and redo an operation done by mistake, and how
1324 to control various modes of the Calculator.
1326 @menu
1327 * RPN Tutorial::            Basic operations with the stack.
1328 * Algebraic Tutorial::      Algebraic entry; variables.
1329 * Undo Tutorial::           If you make a mistake: Undo and the trail.
1330 * Modes Tutorial::          Common mode-setting commands.
1331 @end menu
1333 @node RPN Tutorial, Algebraic Tutorial, Basic Tutorial, Basic Tutorial
1334 @subsection RPN Calculations and the Stack
1336 @cindex RPN notation
1337 @ifinfo
1338 @noindent
1339 Calc normally uses RPN notation.  You may be familiar with the RPN
1340 system from Hewlett-Packard calculators, FORTH, or PostScript.
1341 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1342 Jan Lukasiewicz.)
1343 @end ifinfo
1344 @tex
1345 \noindent
1346 Calc normally uses RPN notation.  You may be familiar with the RPN
1347 system from Hewlett-Packard calculators, FORTH, or PostScript.
1348 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1349 Jan \L ukasiewicz.)
1350 @end tex
1352 The central component of an RPN calculator is the @dfn{stack}.  A
1353 calculator stack is like a stack of dishes.  New dishes (numbers) are
1354 added at the top of the stack, and numbers are normally only removed
1355 from the top of the stack.
1357 @cindex Operators
1358 @cindex Operands
1359 In an operation like @expr{2+3}, the 2 and 3 are called the @dfn{operands}
1360 and the @expr{+} is the @dfn{operator}.  In an RPN calculator you always
1361 enter the operands first, then the operator.  Each time you type a
1362 number, Calc adds or @dfn{pushes} it onto the top of the Stack.
1363 When you press an operator key like @kbd{+}, Calc @dfn{pops} the appropriate
1364 number of operands from the stack and pushes back the result.
1366 Thus we could add the numbers 2 and 3 in an RPN calculator by typing:
1367 @kbd{2 @key{RET} 3 @key{RET} +}.  (The @key{RET} key, Return, corresponds to
1368 the @key{ENTER} key on traditional RPN calculators.)  Try this now if
1369 you wish; type @kbd{C-x * c} to switch into the Calc window (you can type
1370 @kbd{C-x * c} again or @kbd{C-x * o} to switch back to the Tutorial window).
1371 The first four keystrokes ``push'' the numbers 2 and 3 onto the stack.
1372 The @kbd{+} key ``pops'' the top two numbers from the stack, adds them,
1373 and pushes the result (5) back onto the stack.  Here's how the stack
1374 will look at various points throughout the calculation:
1376 @smallexample
1377 @group
1378     .          1:  2          2:  2          1:  5              .
1379                    .          1:  3              .
1380                                   .
1382   C-x * c          2 @key{RET}          3 @key{RET}            +             @key{DEL}
1383 @end group
1384 @end smallexample
1386 The @samp{.} symbol is a marker that represents the top of the stack.
1387 Note that the ``top'' of the stack is really shown at the bottom of
1388 the Stack window.  This may seem backwards, but it turns out to be
1389 less distracting in regular use.
1391 @cindex Stack levels
1392 @cindex Levels of stack
1393 The numbers @samp{1:} and @samp{2:} on the left are @dfn{stack level
1394 numbers}.  Old RPN calculators always had four stack levels called
1395 @expr{x}, @expr{y}, @expr{z}, and @expr{t}.  Calc's stack can grow
1396 as large as you like, so it uses numbers instead of letters.  Some
1397 stack-manipulation commands accept a numeric argument that says
1398 which stack level to work on.  Normal commands like @kbd{+} always
1399 work on the top few levels of the stack.
1401 @c [fix-ref Truncating the Stack]
1402 The Stack buffer is just an Emacs buffer, and you can move around in
1403 it using the regular Emacs motion commands.  But no matter where the
1404 cursor is, even if you have scrolled the @samp{.} marker out of
1405 view, most Calc commands always move the cursor back down to level 1
1406 before doing anything.  It is possible to move the @samp{.} marker
1407 upwards through the stack, temporarily ``hiding'' some numbers from
1408 commands like @kbd{+}.  This is called @dfn{stack truncation} and
1409 we will not cover it in this tutorial; @pxref{Truncating the Stack},
1410 if you are interested.
1412 You don't really need the second @key{RET} in @kbd{2 @key{RET} 3
1413 @key{RET} +}.  That's because if you type any operator name or
1414 other non-numeric key when you are entering a number, the Calculator
1415 automatically enters that number and then does the requested command.
1416 Thus @kbd{2 @key{RET} 3 +} will work just as well.
1418 Examples in this tutorial will often omit @key{RET} even when the
1419 stack displays shown would only happen if you did press @key{RET}:
1421 @smallexample
1422 @group
1423 1:  2          2:  2          1:  5
1424     .          1:  3              .
1425                    .
1427   2 @key{RET}            3              +
1428 @end group
1429 @end smallexample
1431 @noindent
1432 Here, after pressing @kbd{3} the stack would really show @samp{1:  2}
1433 with @samp{Calc:@: 3} in the minibuffer.  In these situations, you can
1434 press the optional @key{RET} to see the stack as the figure shows.
1436 (@bullet{}) @strong{Exercise 1.}  (This tutorial will include exercises
1437 at various points.  Try them if you wish.  Answers to all the exercises
1438 are located at the end of the Tutorial chapter.  Each exercise will
1439 include a cross-reference to its particular answer.  If you are
1440 reading with the Emacs Info system, press @kbd{f} and the
1441 exercise number to go to the answer, then the letter @kbd{l} to
1442 return to where you were.)
1444 @noindent
1445 Here's the first exercise:  What will the keystrokes @kbd{1 @key{RET} 2
1446 @key{RET} 3 @key{RET} 4 + * -} compute?  (@samp{*} is the symbol for
1447 multiplication.)  Figure it out by hand, then try it with Calc to see
1448 if you're right.  @xref{RPN Answer 1, 1}. (@bullet{})
1450 (@bullet{}) @strong{Exercise 2.}  Compute 
1451 @texline @math{(2\times4) + (7\times9.4) + {5\over4}}
1452 @infoline @expr{2*4 + 7*9.5 + 5/4} 
1453 using the stack.  @xref{RPN Answer 2, 2}. (@bullet{})
1455 The @key{DEL} key is called Backspace on some keyboards.  It is
1456 whatever key you would use to correct a simple typing error when
1457 regularly using Emacs.  The @key{DEL} key pops and throws away the
1458 top value on the stack.  (You can still get that value back from
1459 the Trail if you should need it later on.)  There are many places
1460 in this tutorial where we assume you have used @key{DEL} to erase the
1461 results of the previous example at the beginning of a new example.
1462 In the few places where it is really important to use @key{DEL} to
1463 clear away old results, the text will remind you to do so.
1465 (It won't hurt to let things accumulate on the stack, except that
1466 whenever you give a display-mode-changing command Calc will have to
1467 spend a long time reformatting such a large stack.)
1469 Since the @kbd{-} key is also an operator (it subtracts the top two
1470 stack elements), how does one enter a negative number?  Calc uses
1471 the @kbd{_} (underscore) key to act like the minus sign in a number.
1472 So, typing @kbd{-5 @key{RET}} won't work because the @kbd{-} key
1473 will try to do a subtraction, but @kbd{_5 @key{RET}} works just fine.
1475 You can also press @kbd{n}, which means ``change sign.''  It changes
1476 the number at the top of the stack (or the number being entered)
1477 from positive to negative or vice-versa:  @kbd{5 n @key{RET}}.
1479 @cindex Duplicating a stack entry
1480 If you press @key{RET} when you're not entering a number, the effect
1481 is to duplicate the top number on the stack.  Consider this calculation:
1483 @smallexample
1484 @group
1485 1:  3          2:  3          1:  9          2:  9          1:  81
1486     .          1:  3              .          1:  9              .
1487                    .                             .
1489   3 @key{RET}           @key{RET}             *             @key{RET}             *
1490 @end group
1491 @end smallexample
1493 @noindent
1494 (Of course, an easier way to do this would be @kbd{3 @key{RET} 4 ^},
1495 to raise 3 to the fourth power.)
1497 The space-bar key (denoted @key{SPC} here) performs the same function
1498 as @key{RET}; you could replace all three occurrences of @key{RET} in
1499 the above example with @key{SPC} and the effect would be the same.
1501 @cindex Exchanging stack entries
1502 Another stack manipulation key is @key{TAB}.  This exchanges the top
1503 two stack entries.  Suppose you have computed @kbd{2 @key{RET} 3 +}
1504 to get 5, and then you realize what you really wanted to compute
1505 was @expr{20 / (2+3)}.
1507 @smallexample
1508 @group
1509 1:  5          2:  5          2:  20         1:  4
1510     .          1:  20         1:  5              .
1511                    .              .
1513  2 @key{RET} 3 +         20            @key{TAB}             /
1514 @end group
1515 @end smallexample
1517 @noindent
1518 Planning ahead, the calculation would have gone like this:
1520 @smallexample
1521 @group
1522 1:  20         2:  20         3:  20         2:  20         1:  4
1523     .          1:  2          2:  2          1:  5              .
1524                    .          1:  3              .
1525                                   .
1527   20 @key{RET}         2 @key{RET}            3              +              /
1528 @end group
1529 @end smallexample
1531 A related stack command is @kbd{M-@key{TAB}} (hold @key{META} and type
1532 @key{TAB}).  It rotates the top three elements of the stack upward,
1533 bringing the object in level 3 to the top.
1535 @smallexample
1536 @group
1537 1:  10         2:  10         3:  10         3:  20         3:  30
1538     .          1:  20         2:  20         2:  30         2:  10
1539                    .          1:  30         1:  10         1:  20
1540                                   .              .              .
1542   10 @key{RET}         20 @key{RET}         30 @key{RET}         M-@key{TAB}          M-@key{TAB}
1543 @end group
1544 @end smallexample
1546 (@bullet{}) @strong{Exercise 3.} Suppose the numbers 10, 20, and 30 are
1547 on the stack.  Figure out how to add one to the number in level 2
1548 without affecting the rest of the stack.  Also figure out how to add
1549 one to the number in level 3.  @xref{RPN Answer 3, 3}. (@bullet{})
1551 Operations like @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/}, and @kbd{^} pop two
1552 arguments from the stack and push a result.  Operations like @kbd{n} and
1553 @kbd{Q} (square root) pop a single number and push the result.  You can
1554 think of them as simply operating on the top element of the stack.
1556 @smallexample
1557 @group
1558 1:  3          1:  9          2:  9          1:  25         1:  5
1559     .              .          1:  16             .              .
1560                                   .
1562   3 @key{RET}          @key{RET} *        4 @key{RET} @key{RET} *        +              Q
1563 @end group
1564 @end smallexample
1566 @noindent
1567 (Note that capital @kbd{Q} means to hold down the Shift key while
1568 typing @kbd{q}.  Remember, plain unshifted @kbd{q} is the Quit command.)
1570 @cindex Pythagorean Theorem
1571 Here we've used the Pythagorean Theorem to determine the hypotenuse of a
1572 right triangle.  Calc actually has a built-in command for that called
1573 @kbd{f h}, but let's suppose we can't remember the necessary keystrokes.
1574 We can still enter it by its full name using @kbd{M-x} notation:
1576 @smallexample
1577 @group
1578 1:  3          2:  3          1:  5
1579     .          1:  4              .
1580                    .
1582   3 @key{RET}          4 @key{RET}      M-x calc-hypot
1583 @end group
1584 @end smallexample
1586 All Calculator commands begin with the word @samp{calc-}.  Since it
1587 gets tiring to type this, Calc provides an @kbd{x} key which is just
1588 like the regular Emacs @kbd{M-x} key except that it types the @samp{calc-}
1589 prefix for you:
1591 @smallexample
1592 @group
1593 1:  3          2:  3          1:  5
1594     .          1:  4              .
1595                    .
1597   3 @key{RET}          4 @key{RET}         x hypot
1598 @end group
1599 @end smallexample
1601 What happens if you take the square root of a negative number?
1603 @smallexample
1604 @group
1605 1:  4          1:  -4         1:  (0, 2)
1606     .              .              .
1608   4 @key{RET}            n              Q
1609 @end group
1610 @end smallexample
1612 @noindent
1613 The notation @expr{(a, b)} represents a complex number.
1614 Complex numbers are more traditionally written @expr{a + b i};
1615 Calc can display in this format, too, but for now we'll stick to the
1616 @expr{(a, b)} notation.
1618 If you don't know how complex numbers work, you can safely ignore this
1619 feature.  Complex numbers only arise from operations that would be
1620 errors in a calculator that didn't have complex numbers.  (For example,
1621 taking the square root or logarithm of a negative number produces a
1622 complex result.)
1624 Complex numbers are entered in the notation shown.  The @kbd{(} and
1625 @kbd{,} and @kbd{)} keys manipulate ``incomplete complex numbers.''
1627 @smallexample
1628 @group
1629 1:  ( ...      2:  ( ...      1:  (2, ...    1:  (2, ...    1:  (2, 3)
1630     .          1:  2              .              3              .
1631                    .                             .
1633     (              2              ,              3              )
1634 @end group
1635 @end smallexample
1637 You can perform calculations while entering parts of incomplete objects.
1638 However, an incomplete object cannot actually participate in a calculation:
1640 @smallexample
1641 @group
1642 1:  ( ...      2:  ( ...      3:  ( ...      1:  ( ...      1:  ( ...
1643     .          1:  2          2:  2              5              5
1644                    .          1:  3              .              .
1645                                   .
1646                                                              (error)
1647     (             2 @key{RET}           3              +              +
1648 @end group
1649 @end smallexample
1651 @noindent
1652 Adding 5 to an incomplete object makes no sense, so the last command
1653 produces an error message and leaves the stack the same.
1655 Incomplete objects can't participate in arithmetic, but they can be
1656 moved around by the regular stack commands.
1658 @smallexample
1659 @group
1660 2:  2          3:  2          3:  3          1:  ( ...      1:  (2, 3)
1661 1:  3          2:  3          2:  ( ...          2              .
1662     .          1:  ( ...      1:  2              3
1663                    .              .              .
1665 2 @key{RET} 3 @key{RET}        (            M-@key{TAB}          M-@key{TAB}            )
1666 @end group
1667 @end smallexample
1669 @noindent
1670 Note that the @kbd{,} (comma) key did not have to be used here.
1671 When you press @kbd{)} all the stack entries between the incomplete
1672 entry and the top are collected, so there's never really a reason
1673 to use the comma.  It's up to you.
1675 (@bullet{}) @strong{Exercise 4.}  To enter the complex number @expr{(2, 3)},
1676 your friend Joe typed @kbd{( 2 , @key{SPC} 3 )}.  What happened?
1677 (Joe thought of a clever way to correct his mistake in only two
1678 keystrokes, but it didn't quite work.  Try it to find out why.)
1679 @xref{RPN Answer 4, 4}. (@bullet{})
1681 Vectors are entered the same way as complex numbers, but with square
1682 brackets in place of parentheses.  We'll meet vectors again later in
1683 the tutorial.
1685 Any Emacs command can be given a @dfn{numeric prefix argument} by
1686 typing a series of @key{META}-digits beforehand.  If @key{META} is
1687 awkward for you, you can instead type @kbd{C-u} followed by the
1688 necessary digits.  Numeric prefix arguments can be negative, as in
1689 @kbd{M-- M-3 M-5} or @w{@kbd{C-u - 3 5}}.  Calc commands use numeric
1690 prefix arguments in a variety of ways.  For example, a numeric prefix
1691 on the @kbd{+} operator adds any number of stack entries at once:
1693 @smallexample
1694 @group
1695 1:  10         2:  10         3:  10         3:  10         1:  60
1696     .          1:  20         2:  20         2:  20             .
1697                    .          1:  30         1:  30
1698                                   .              .
1700   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u 3            +
1701 @end group
1702 @end smallexample
1704 For stack manipulation commands like @key{RET}, a positive numeric
1705 prefix argument operates on the top @var{n} stack entries at once.  A
1706 negative argument operates on the entry in level @var{n} only.  An
1707 argument of zero operates on the entire stack.  In this example, we copy
1708 the second-to-top element of the stack:
1710 @smallexample
1711 @group
1712 1:  10         2:  10         3:  10         3:  10         4:  10
1713     .          1:  20         2:  20         2:  20         3:  20
1714                    .          1:  30         1:  30         2:  30
1715                                   .              .          1:  20
1716                                                                 .
1718   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u -2          @key{RET}
1719 @end group
1720 @end smallexample
1722 @cindex Clearing the stack
1723 @cindex Emptying the stack
1724 Another common idiom is @kbd{M-0 @key{DEL}}, which clears the stack.
1725 (The @kbd{M-0} numeric prefix tells @key{DEL} to operate on the
1726 entire stack.)
1728 @node Algebraic Tutorial, Undo Tutorial, RPN Tutorial, Basic Tutorial
1729 @subsection Algebraic-Style Calculations
1731 @noindent
1732 If you are not used to RPN notation, you may prefer to operate the
1733 Calculator in Algebraic mode, which is closer to the way
1734 non-RPN calculators work.  In Algebraic mode, you enter formulas
1735 in traditional @expr{2+3} notation.
1737 @strong{Warning:} Note that @samp{/} has lower precedence than
1738 @samp{*}, so that @samp{a/b*c} is interpreted as @samp{a/(b*c)}.  See
1739 below for details.
1741 You don't really need any special ``mode'' to enter algebraic formulas.
1742 You can enter a formula at any time by pressing the apostrophe (@kbd{'})
1743 key.  Answer the prompt with the desired formula, then press @key{RET}.
1744 The formula is evaluated and the result is pushed onto the RPN stack.
1745 If you don't want to think in RPN at all, you can enter your whole
1746 computation as a formula, read the result from the stack, then press
1747 @key{DEL} to delete it from the stack.
1749 Try pressing the apostrophe key, then @kbd{2+3+4}, then @key{RET}.
1750 The result should be the number 9.
1752 Algebraic formulas use the operators @samp{+}, @samp{-}, @samp{*},
1753 @samp{/}, and @samp{^}.  You can use parentheses to make the order
1754 of evaluation clear.  In the absence of parentheses, @samp{^} is
1755 evaluated first, then @samp{*}, then @samp{/}, then finally
1756 @samp{+} and @samp{-}.  For example, the expression
1758 @example
1759 2 + 3*4*5 / 6*7^8 - 9
1760 @end example
1762 @noindent
1763 is equivalent to
1765 @example
1766 2 + ((3*4*5) / (6*(7^8)) - 9
1767 @end example
1769 @noindent
1770 or, in large mathematical notation,
1772 @ifinfo
1773 @example
1774 @group
1775     3 * 4 * 5
1776 2 + --------- - 9
1777           8
1778      6 * 7
1779 @end group
1780 @end example
1781 @end ifinfo
1782 @tex
1783 \turnoffactive
1784 \beforedisplay
1785 $$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$
1786 \afterdisplay
1787 @end tex
1789 @noindent
1790 The result of this expression will be the number @mathit{-6.99999826533}.
1792 Calc's order of evaluation is the same as for most computer languages,
1793 except that @samp{*} binds more strongly than @samp{/}, as the above
1794 example shows.  As in normal mathematical notation, the @samp{*} symbol
1795 can often be omitted:  @samp{2 a} is the same as @samp{2*a}.
1797 Operators at the same level are evaluated from left to right, except
1798 that @samp{^} is evaluated from right to left.  Thus, @samp{2-3-4} is
1799 equivalent to @samp{(2-3)-4} or @mathit{-5}, whereas @samp{2^3^4} is equivalent
1800 to @samp{2^(3^4)} (a very large integer; try it!).
1802 If you tire of typing the apostrophe all the time, there is
1803 Algebraic mode, where Calc automatically senses
1804 when you are about to type an algebraic expression.  To enter this
1805 mode, press the two letters @w{@kbd{m a}}.  (An @samp{Alg} indicator
1806 should appear in the Calc window's mode line.)
1808 Press @kbd{m a}, then @kbd{2+3+4} with no apostrophe, then @key{RET}.
1810 In Algebraic mode, when you press any key that would normally begin
1811 entering a number (such as a digit, a decimal point, or the @kbd{_}
1812 key), or if you press @kbd{(} or @kbd{[}, Calc automatically begins
1813 an algebraic entry.
1815 Functions which do not have operator symbols like @samp{+} and @samp{*}
1816 must be entered in formulas using function-call notation.  For example,
1817 the function name corresponding to the square-root key @kbd{Q} is
1818 @code{sqrt}.  To compute a square root in a formula, you would use
1819 the notation @samp{sqrt(@var{x})}.
1821 Press the apostrophe, then type @kbd{sqrt(5*2) - 3}.  The result should
1822 be @expr{0.16227766017}.
1824 Note that if the formula begins with a function name, you need to use
1825 the apostrophe even if you are in Algebraic mode.  If you type @kbd{arcsin}
1826 out of the blue, the @kbd{a r} will be taken as an Algebraic Rewrite
1827 command, and the @kbd{csin} will be taken as the name of the rewrite
1828 rule to use!
1830 Some people prefer to enter complex numbers and vectors in algebraic
1831 form because they find RPN entry with incomplete objects to be too
1832 distracting, even though they otherwise use Calc as an RPN calculator.
1834 Still in Algebraic mode, type:
1836 @smallexample
1837 @group
1838 1:  (2, 3)     2:  (2, 3)     1:  (8, -1)    2:  (8, -1)    1:  (9, -1)
1839     .          1:  (1, -2)        .          1:  1              .
1840                    .                             .
1842  (2,3) @key{RET}      (1,-2) @key{RET}        *              1 @key{RET}          +
1843 @end group
1844 @end smallexample
1846 Algebraic mode allows us to enter complex numbers without pressing
1847 an apostrophe first, but it also means we need to press @key{RET}
1848 after every entry, even for a simple number like @expr{1}.
1850 (You can type @kbd{C-u m a} to enable a special Incomplete Algebraic
1851 mode in which the @kbd{(} and @kbd{[} keys use algebraic entry even
1852 though regular numeric keys still use RPN numeric entry.  There is also
1853 Total Algebraic mode, started by typing @kbd{m t}, in which all
1854 normal keys begin algebraic entry.  You must then use the @key{META} key
1855 to type Calc commands:  @kbd{M-m t} to get back out of Total Algebraic
1856 mode, @kbd{M-q} to quit, etc.)
1858 If you're still in Algebraic mode, press @kbd{m a} again to turn it off.
1860 Actual non-RPN calculators use a mixture of algebraic and RPN styles.
1861 In general, operators of two numbers (like @kbd{+} and @kbd{*})
1862 use algebraic form, but operators of one number (like @kbd{n} and @kbd{Q})
1863 use RPN form.  Also, a non-RPN calculator allows you to see the
1864 intermediate results of a calculation as you go along.  You can
1865 accomplish this in Calc by performing your calculation as a series
1866 of algebraic entries, using the @kbd{$} sign to tie them together.
1867 In an algebraic formula, @kbd{$} represents the number on the top
1868 of the stack.  Here, we perform the calculation 
1869 @texline @math{\sqrt{2\times4+1}},
1870 @infoline @expr{sqrt(2*4+1)},
1871 which on a traditional calculator would be done by pressing
1872 @kbd{2 * 4 + 1 =} and then the square-root key.
1874 @smallexample
1875 @group
1876 1:  8          1:  9          1:  3
1877     .              .              .
1879   ' 2*4 @key{RET}        $+1 @key{RET}        Q
1880 @end group
1881 @end smallexample
1883 @noindent
1884 Notice that we didn't need to press an apostrophe for the @kbd{$+1},
1885 because the dollar sign always begins an algebraic entry.
1887 (@bullet{}) @strong{Exercise 1.}  How could you get the same effect as
1888 pressing @kbd{Q} but using an algebraic entry instead?  How about
1889 if the @kbd{Q} key on your keyboard were broken?
1890 @xref{Algebraic Answer 1, 1}. (@bullet{})
1892 The notations @kbd{$$}, @kbd{$$$}, and so on stand for higher stack
1893 entries.  For example, @kbd{' $$+$ @key{RET}} is just like typing @kbd{+}.
1895 Algebraic formulas can include @dfn{variables}.  To store in a
1896 variable, press @kbd{s s}, then type the variable name, then press
1897 @key{RET}.  (There are actually two flavors of store command:
1898 @kbd{s s} stores a number in a variable but also leaves the number
1899 on the stack, while @w{@kbd{s t}} removes a number from the stack and
1900 stores it in the variable.)  A variable name should consist of one
1901 or more letters or digits, beginning with a letter.
1903 @smallexample
1904 @group
1905 1:  17             .          1:  a + a^2    1:  306
1906     .                             .              .
1908     17          s t a @key{RET}      ' a+a^2 @key{RET}       =
1909 @end group
1910 @end smallexample
1912 @noindent
1913 The @kbd{=} key @dfn{evaluates} a formula by replacing all its
1914 variables by the values that were stored in them.
1916 For RPN calculations, you can recall a variable's value on the
1917 stack either by entering its name as a formula and pressing @kbd{=},
1918 or by using the @kbd{s r} command.
1920 @smallexample
1921 @group
1922 1:  17         2:  17         3:  17         2:  17         1:  306
1923     .          1:  17         2:  17         1:  289            .
1924                    .          1:  2              .
1925                                   .
1927   s r a @key{RET}     ' a @key{RET} =         2              ^              +
1928 @end group
1929 @end smallexample
1931 If you press a single digit for a variable name (as in @kbd{s t 3}, you
1932 get one of ten @dfn{quick variables} @code{q0} through @code{q9}.
1933 They are ``quick'' simply because you don't have to type the letter
1934 @code{q} or the @key{RET} after their names.  In fact, you can type
1935 simply @kbd{s 3} as a shorthand for @kbd{s s 3}, and likewise for
1936 @kbd{t 3} and @w{@kbd{r 3}}.
1938 Any variables in an algebraic formula for which you have not stored
1939 values are left alone, even when you evaluate the formula.
1941 @smallexample
1942 @group
1943 1:  2 a + 2 b     1:  34 + 2 b
1944     .                 .
1946  ' 2a+2b @key{RET}          =
1947 @end group
1948 @end smallexample
1950 Calls to function names which are undefined in Calc are also left
1951 alone, as are calls for which the value is undefined.
1953 @smallexample
1954 @group
1955 1:  2 + log10(0) + log10(x) + log10(5, 6) + foo(3)
1956     .
1958  ' log10(100) + log10(0) + log10(x) + log10(5,6) + foo(3) @key{RET}
1959 @end group
1960 @end smallexample
1962 @noindent
1963 In this example, the first call to @code{log10} works, but the other
1964 calls are not evaluated.  In the second call, the logarithm is
1965 undefined for that value of the argument; in the third, the argument
1966 is symbolic, and in the fourth, there are too many arguments.  In the
1967 fifth case, there is no function called @code{foo}.  You will see a
1968 ``Wrong number of arguments'' message referring to @samp{log10(5,6)}.
1969 Press the @kbd{w} (``why'') key to see any other messages that may
1970 have arisen from the last calculation.  In this case you will get
1971 ``logarithm of zero,'' then ``number expected: @code{x}''.  Calc
1972 automatically displays the first message only if the message is
1973 sufficiently important; for example, Calc considers ``wrong number
1974 of arguments'' and ``logarithm of zero'' to be important enough to
1975 report automatically, while a message like ``number expected: @code{x}''
1976 will only show up if you explicitly press the @kbd{w} key.
1978 (@bullet{}) @strong{Exercise 2.}  Joe entered the formula @samp{2 x y},
1979 stored 5 in @code{x}, pressed @kbd{=}, and got the expected result,
1980 @samp{10 y}.  He then tried the same for the formula @samp{2 x (1+y)},
1981 expecting @samp{10 (1+y)}, but it didn't work.  Why not?
1982 @xref{Algebraic Answer 2, 2}. (@bullet{})
1984 (@bullet{}) @strong{Exercise 3.}  What result would you expect
1985 @kbd{1 @key{RET} 0 /} to give?  What if you then type @kbd{0 *}?
1986 @xref{Algebraic Answer 3, 3}. (@bullet{})
1988 One interesting way to work with variables is to use the
1989 @dfn{evaluates-to} (@samp{=>}) operator.  It works like this:
1990 Enter a formula algebraically in the usual way, but follow
1991 the formula with an @samp{=>} symbol.  (There is also an @kbd{s =}
1992 command which builds an @samp{=>} formula using the stack.)  On
1993 the stack, you will see two copies of the formula with an @samp{=>}
1994 between them.  The lefthand formula is exactly like you typed it;
1995 the righthand formula has been evaluated as if by typing @kbd{=}.
1997 @smallexample
1998 @group
1999 2:  2 + 3 => 5                     2:  2 + 3 => 5
2000 1:  2 a + 2 b => 34 + 2 b          1:  2 a + 2 b => 20 + 2 b
2001     .                                  .
2003 ' 2+3 => @key{RET}  ' 2a+2b @key{RET} s =          10 s t a @key{RET}
2004 @end group
2005 @end smallexample
2007 @noindent
2008 Notice that the instant we stored a new value in @code{a}, all
2009 @samp{=>} operators already on the stack that referred to @expr{a}
2010 were updated to use the new value.  With @samp{=>}, you can push a
2011 set of formulas on the stack, then change the variables experimentally
2012 to see the effects on the formulas' values.
2014 You can also ``unstore'' a variable when you are through with it:
2016 @smallexample
2017 @group
2018 2:  2 + 5 => 5
2019 1:  2 a + 2 b => 2 a + 2 b
2020     .
2022     s u a @key{RET}
2023 @end group
2024 @end smallexample
2026 We will encounter formulas involving variables and functions again
2027 when we discuss the algebra and calculus features of the Calculator.
2029 @node Undo Tutorial, Modes Tutorial, Algebraic Tutorial, Basic Tutorial
2030 @subsection Undo and Redo
2032 @noindent
2033 If you make a mistake, you can usually correct it by pressing shift-@kbd{U},
2034 the ``undo'' command.  First, clear the stack (@kbd{M-0 @key{DEL}}) and exit
2035 and restart Calc (@kbd{C-x * * C-x * *}) to make sure things start off
2036 with a clean slate.  Now:
2038 @smallexample
2039 @group
2040 1:  2          2:  2          1:  8          2:  2          1:  6
2041     .          1:  3              .          1:  3              .
2042                    .                             .
2044    2 @key{RET}           3              ^              U              *
2045 @end group
2046 @end smallexample
2048 You can undo any number of times.  Calc keeps a complete record of
2049 all you have done since you last opened the Calc window.  After the
2050 above example, you could type:
2052 @smallexample
2053 @group
2054 1:  6          2:  2          1:  2              .              .
2055     .          1:  3              .
2056                    .
2057                                                              (error)
2058                    U              U              U              U
2059 @end group
2060 @end smallexample
2062 You can also type @kbd{D} to ``redo'' a command that you have undone
2063 mistakenly.
2065 @smallexample
2066 @group
2067     .          1:  2          2:  2          1:  6          1:  6
2068                    .          1:  3              .              .
2069                                   .
2070                                                              (error)
2071                    D              D              D              D
2072 @end group
2073 @end smallexample
2075 @noindent
2076 It was not possible to redo past the @expr{6}, since that was placed there
2077 by something other than an undo command.
2079 @cindex Time travel
2080 You can think of undo and redo as a sort of ``time machine.''  Press
2081 @kbd{U} to go backward in time, @kbd{D} to go forward.  If you go
2082 backward and do something (like @kbd{*}) then, as any science fiction
2083 reader knows, you have changed your future and you cannot go forward
2084 again.  Thus, the inability to redo past the @expr{6} even though there
2085 was an earlier undo command.
2087 You can always recall an earlier result using the Trail.  We've ignored
2088 the trail so far, but it has been faithfully recording everything we
2089 did since we loaded the Calculator.  If the Trail is not displayed,
2090 press @kbd{t d} now to turn it on.
2092 Let's try grabbing an earlier result.  The @expr{8} we computed was
2093 undone by a @kbd{U} command, and was lost even to Redo when we pressed
2094 @kbd{*}, but it's still there in the trail.  There should be a little
2095 @samp{>} arrow (the @dfn{trail pointer}) resting on the last trail
2096 entry.  If there isn't, press @kbd{t ]} to reset the trail pointer.
2097 Now, press @w{@kbd{t p}} to move the arrow onto the line containing
2098 @expr{8}, and press @w{@kbd{t y}} to ``yank'' that number back onto the
2099 stack.
2101 If you press @kbd{t ]} again, you will see that even our Yank command
2102 went into the trail.
2104 Let's go further back in time.  Earlier in the tutorial we computed
2105 a huge integer using the formula @samp{2^3^4}.  We don't remember
2106 what it was, but the first digits were ``241''.  Press @kbd{t r}
2107 (which stands for trail-search-reverse), then type @kbd{241}.
2108 The trail cursor will jump back to the next previous occurrence of
2109 the string ``241'' in the trail.  This is just a regular Emacs
2110 incremental search; you can now press @kbd{C-s} or @kbd{C-r} to
2111 continue the search forwards or backwards as you like.
2113 To finish the search, press @key{RET}.  This halts the incremental
2114 search and leaves the trail pointer at the thing we found.  Now we
2115 can type @kbd{t y} to yank that number onto the stack.  If we hadn't
2116 remembered the ``241'', we could simply have searched for @kbd{2^3^4},
2117 then pressed @kbd{@key{RET} t n} to halt and then move to the next item.
2119 You may have noticed that all the trail-related commands begin with
2120 the letter @kbd{t}.  (The store-and-recall commands, on the other hand,
2121 all began with @kbd{s}.)  Calc has so many commands that there aren't
2122 enough keys for all of them, so various commands are grouped into
2123 two-letter sequences where the first letter is called the @dfn{prefix}
2124 key.  If you type a prefix key by accident, you can press @kbd{C-g}
2125 to cancel it.  (In fact, you can press @kbd{C-g} to cancel almost
2126 anything in Emacs.)  To get help on a prefix key, press that key
2127 followed by @kbd{?}.  Some prefixes have several lines of help,
2128 so you need to press @kbd{?} repeatedly to see them all.  
2129 You can also type @kbd{h h} to see all the help at once.
2131 Try pressing @kbd{t ?} now.  You will see a line of the form,
2133 @smallexample
2134 trail/time: Display; Fwd, Back; Next, Prev, Here, [, ]; Yank:  [MORE]  t-
2135 @end smallexample
2137 @noindent
2138 The word ``trail'' indicates that the @kbd{t} prefix key contains
2139 trail-related commands.  Each entry on the line shows one command,
2140 with a single capital letter showing which letter you press to get
2141 that command.  We have used @kbd{t n}, @kbd{t p}, @kbd{t ]}, and
2142 @kbd{t y} so far.  The @samp{[MORE]} means you can press @kbd{?}
2143 again to see more @kbd{t}-prefix commands.  Notice that the commands
2144 are roughly divided (by semicolons) into related groups.
2146 When you are in the help display for a prefix key, the prefix is
2147 still active.  If you press another key, like @kbd{y} for example,
2148 it will be interpreted as a @kbd{t y} command.  If all you wanted
2149 was to look at the help messages, press @kbd{C-g} afterwards to cancel
2150 the prefix.
2152 One more way to correct an error is by editing the stack entries.
2153 The actual Stack buffer is marked read-only and must not be edited
2154 directly, but you can press @kbd{`} (the backquote or accent grave)
2155 to edit a stack entry.
2157 Try entering @samp{3.141439} now.  If this is supposed to represent
2158 @cpi{}, it's got several errors.  Press @kbd{`} to edit this number.
2159 Now use the normal Emacs cursor motion and editing keys to change
2160 the second 4 to a 5, and to transpose the 3 and the 9.  When you
2161 press @key{RET}, the number on the stack will be replaced by your
2162 new number.  This works for formulas, vectors, and all other types
2163 of values you can put on the stack.  The @kbd{`} key also works
2164 during entry of a number or algebraic formula.
2166 @node Modes Tutorial,  , Undo Tutorial, Basic Tutorial
2167 @subsection Mode-Setting Commands
2169 @noindent
2170 Calc has many types of @dfn{modes} that affect the way it interprets
2171 your commands or the way it displays data.  We have already seen one
2172 mode, namely Algebraic mode.  There are many others, too; we'll
2173 try some of the most common ones here.
2175 Perhaps the most fundamental mode in Calc is the current @dfn{precision}.
2176 Notice the @samp{12} on the Calc window's mode line:
2178 @smallexample
2179 --%%-Calc: 12 Deg       (Calculator)----All------
2180 @end smallexample
2182 @noindent
2183 Most of the symbols there are Emacs things you don't need to worry
2184 about, but the @samp{12} and the @samp{Deg} are mode indicators.
2185 The @samp{12} means that calculations should always be carried to
2186 12 significant figures.  That is why, when we type @kbd{1 @key{RET} 7 /},
2187 we get @expr{0.142857142857} with exactly 12 digits, not counting
2188 leading and trailing zeros.
2190 You can set the precision to anything you like by pressing @kbd{p},
2191 then entering a suitable number.  Try pressing @kbd{p 30 @key{RET}},
2192 then doing @kbd{1 @key{RET} 7 /} again:
2194 @smallexample
2195 @group
2196 1:  0.142857142857
2197 2:  0.142857142857142857142857142857
2198     .
2199 @end group
2200 @end smallexample
2202 Although the precision can be set arbitrarily high, Calc always
2203 has to have @emph{some} value for the current precision.  After
2204 all, the true value @expr{1/7} is an infinitely repeating decimal;
2205 Calc has to stop somewhere.
2207 Of course, calculations are slower the more digits you request.
2208 Press @w{@kbd{p 12}} now to set the precision back down to the default.
2210 Calculations always use the current precision.  For example, even
2211 though we have a 30-digit value for @expr{1/7} on the stack, if
2212 we use it in a calculation in 12-digit mode it will be rounded
2213 down to 12 digits before it is used.  Try it; press @key{RET} to
2214 duplicate the number, then @w{@kbd{1 +}}.  Notice that the @key{RET}
2215 key didn't round the number, because it doesn't do any calculation.
2216 But the instant we pressed @kbd{+}, the number was rounded down.
2218 @smallexample
2219 @group
2220 1:  0.142857142857
2221 2:  0.142857142857142857142857142857
2222 3:  1.14285714286
2223     .
2224 @end group
2225 @end smallexample
2227 @noindent
2228 In fact, since we added a digit on the left, we had to lose one
2229 digit on the right from even the 12-digit value of @expr{1/7}.
2231 How did we get more than 12 digits when we computed @samp{2^3^4}?  The
2232 answer is that Calc makes a distinction between @dfn{integers} and
2233 @dfn{floating-point} numbers, or @dfn{floats}.  An integer is a number
2234 that does not contain a decimal point.  There is no such thing as an
2235 ``infinitely repeating fraction integer,'' so Calc doesn't have to limit
2236 itself.  If you asked for @samp{2^10000} (don't try this!), you would
2237 have to wait a long time but you would eventually get an exact answer.
2238 If you ask for @samp{2.^10000}, you will quickly get an answer which is
2239 correct only to 12 places.  The decimal point tells Calc that it should
2240 use floating-point arithmetic to get the answer, not exact integer
2241 arithmetic.
2243 You can use the @kbd{F} (@code{calc-floor}) command to convert a
2244 floating-point value to an integer, and @kbd{c f} (@code{calc-float})
2245 to convert an integer to floating-point form.
2247 Let's try entering that last calculation:
2249 @smallexample
2250 @group
2251 1:  2.         2:  2.         1:  1.99506311689e3010
2252     .          1:  10000          .
2253                    .
2255   2.0 @key{RET}          10000 @key{RET}      ^
2256 @end group
2257 @end smallexample
2259 @noindent
2260 @cindex Scientific notation, entry of
2261 Notice the letter @samp{e} in there.  It represents ``times ten to the
2262 power of,'' and is used by Calc automatically whenever writing the
2263 number out fully would introduce more extra zeros than you probably
2264 want to see.  You can enter numbers in this notation, too.
2266 @smallexample
2267 @group
2268 1:  2.         2:  2.         1:  1.99506311678e3010
2269     .          1:  10000.         .
2270                    .
2272   2.0 @key{RET}          1e4 @key{RET}        ^
2273 @end group
2274 @end smallexample
2276 @cindex Round-off errors
2277 @noindent
2278 Hey, the answer is different!  Look closely at the middle columns
2279 of the two examples.  In the first, the stack contained the
2280 exact integer @expr{10000}, but in the second it contained
2281 a floating-point value with a decimal point.  When you raise a
2282 number to an integer power, Calc uses repeated squaring and
2283 multiplication to get the answer.  When you use a floating-point
2284 power, Calc uses logarithms and exponentials.  As you can see,
2285 a slight error crept in during one of these methods.  Which
2286 one should we trust?  Let's raise the precision a bit and find
2287 out:
2289 @smallexample
2290 @group
2291     .          1:  2.         2:  2.         1:  1.995063116880828e3010
2292                    .          1:  10000.         .
2293                                   .
2295  p 16 @key{RET}        2. @key{RET}           1e4            ^    p 12 @key{RET}
2296 @end group
2297 @end smallexample
2299 @noindent
2300 @cindex Guard digits
2301 Presumably, it doesn't matter whether we do this higher-precision
2302 calculation using an integer or floating-point power, since we
2303 have added enough ``guard digits'' to trust the first 12 digits
2304 no matter what.  And the verdict is@dots{}  Integer powers were more
2305 accurate; in fact, the result was only off by one unit in the
2306 last place.
2308 @cindex Guard digits
2309 Calc does many of its internal calculations to a slightly higher
2310 precision, but it doesn't always bump the precision up enough.
2311 In each case, Calc added about two digits of precision during
2312 its calculation and then rounded back down to 12 digits
2313 afterward.  In one case, it was enough; in the other, it
2314 wasn't.  If you really need @var{x} digits of precision, it
2315 never hurts to do the calculation with a few extra guard digits.
2317 What if we want guard digits but don't want to look at them?
2318 We can set the @dfn{float format}.  Calc supports four major
2319 formats for floating-point numbers, called @dfn{normal},
2320 @dfn{fixed-point}, @dfn{scientific notation}, and @dfn{engineering
2321 notation}.  You get them by pressing @w{@kbd{d n}}, @kbd{d f},
2322 @kbd{d s}, and @kbd{d e}, respectively.  In each case, you can
2323 supply a numeric prefix argument which says how many digits
2324 should be displayed.  As an example, let's put a few numbers
2325 onto the stack and try some different display modes.  First,
2326 use @kbd{M-0 @key{DEL}} to clear the stack, then enter the four
2327 numbers shown here:
2329 @smallexample
2330 @group
2331 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2332 3:  12345.     3:  12300.     3:  1.2345e4   3:  1.23e4     3:  12345.000
2333 2:  123.45     2:  123.       2:  1.2345e2   2:  1.23e2     2:  123.450
2334 1:  12.345     1:  12.3       1:  1.2345e1   1:  1.23e1     1:  12.345
2335     .              .              .              .              .
2337    d n          M-3 d n          d s          M-3 d s        M-3 d f
2338 @end group
2339 @end smallexample
2341 @noindent
2342 Notice that when we typed @kbd{M-3 d n}, the numbers were rounded down
2343 to three significant digits, but then when we typed @kbd{d s} all
2344 five significant figures reappeared.  The float format does not
2345 affect how numbers are stored, it only affects how they are
2346 displayed.  Only the current precision governs the actual rounding
2347 of numbers in the Calculator's memory.
2349 Engineering notation, not shown here, is like scientific notation
2350 except the exponent (the power-of-ten part) is always adjusted to be
2351 a multiple of three (as in ``kilo,'' ``micro,'' etc.).  As a result
2352 there will be one, two, or three digits before the decimal point.
2354 Whenever you change a display-related mode, Calc redraws everything
2355 in the stack.  This may be slow if there are many things on the stack,
2356 so Calc allows you to type shift-@kbd{H} before any mode command to
2357 prevent it from updating the stack.  Anything Calc displays after the
2358 mode-changing command will appear in the new format.
2360 @smallexample
2361 @group
2362 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2363 3:  12345.000  3:  12345.000  3:  12345.000  3:  1.2345e4   3:  12345.
2364 2:  123.450    2:  123.450    2:  1.2345e1   2:  1.2345e1   2:  123.45
2365 1:  12.345     1:  1.2345e1   1:  1.2345e2   1:  1.2345e2   1:  12.345
2366     .              .              .              .              .
2368     H d s          @key{DEL} U          @key{TAB}            d @key{SPC}          d n
2369 @end group
2370 @end smallexample
2372 @noindent
2373 Here the @kbd{H d s} command changes to scientific notation but without
2374 updating the screen.  Deleting the top stack entry and undoing it back
2375 causes it to show up in the new format; swapping the top two stack
2376 entries reformats both entries.  The @kbd{d @key{SPC}} command refreshes the
2377 whole stack.  The @kbd{d n} command changes back to the normal float
2378 format; since it doesn't have an @kbd{H} prefix, it also updates all
2379 the stack entries to be in @kbd{d n} format.
2381 Notice that the integer @expr{12345} was not affected by any
2382 of the float formats.  Integers are integers, and are always
2383 displayed exactly.
2385 @cindex Large numbers, readability
2386 Large integers have their own problems.  Let's look back at
2387 the result of @kbd{2^3^4}.
2389 @example
2390 2417851639229258349412352
2391 @end example
2393 @noindent
2394 Quick---how many digits does this have?  Try typing @kbd{d g}:
2396 @example
2397 2,417,851,639,229,258,349,412,352
2398 @end example
2400 @noindent
2401 Now how many digits does this have?  It's much easier to tell!
2402 We can actually group digits into clumps of any size.  Some
2403 people prefer @kbd{M-5 d g}:
2405 @example
2406 24178,51639,22925,83494,12352
2407 @end example
2409 Let's see what happens to floating-point numbers when they are grouped.
2410 First, type @kbd{p 25 @key{RET}} to make sure we have enough precision
2411 to get ourselves into trouble.  Now, type @kbd{1e13 /}:
2413 @example
2414 24,17851,63922.9258349412352
2415 @end example
2417 @noindent
2418 The integer part is grouped but the fractional part isn't.  Now try
2419 @kbd{M-- M-5 d g} (that's meta-minus-sign, meta-five):
2421 @example
2422 24,17851,63922.92583,49412,352
2423 @end example
2425 If you find it hard to tell the decimal point from the commas, try
2426 changing the grouping character to a space with @kbd{d , @key{SPC}}:
2428 @example
2429 24 17851 63922.92583 49412 352
2430 @end example
2432 Type @kbd{d , ,} to restore the normal grouping character, then
2433 @kbd{d g} again to turn grouping off.  Also, press @kbd{p 12} to
2434 restore the default precision.
2436 Press @kbd{U} enough times to get the original big integer back.
2437 (Notice that @kbd{U} does not undo each mode-setting command; if
2438 you want to undo a mode-setting command, you have to do it yourself.)
2439 Now, type @kbd{d r 16 @key{RET}}:
2441 @example
2442 16#200000000000000000000
2443 @end example
2445 @noindent
2446 The number is now displayed in @dfn{hexadecimal}, or ``base-16'' form.
2447 Suddenly it looks pretty simple; this should be no surprise, since we
2448 got this number by computing a power of two, and 16 is a power of 2.
2449 In fact, we can use @w{@kbd{d r 2 @key{RET}}} to see it in actual binary
2450 form:
2452 @example
2453 2#1000000000000000000000000000000000000000000000000000000 @dots{}
2454 @end example
2456 @noindent
2457 We don't have enough space here to show all the zeros!  They won't
2458 fit on a typical screen, either, so you will have to use horizontal
2459 scrolling to see them all.  Press @kbd{<} and @kbd{>} to scroll the
2460 stack window left and right by half its width.  Another way to view
2461 something large is to press @kbd{`} (back-quote) to edit the top of
2462 stack in a separate window.  (Press @kbd{C-c C-c} when you are done.)
2464 You can enter non-decimal numbers using the @kbd{#} symbol, too.
2465 Let's see what the hexadecimal number @samp{5FE} looks like in
2466 binary.  Type @kbd{16#5FE} (the letters can be typed in upper or
2467 lower case; they will always appear in upper case).  It will also
2468 help to turn grouping on with @kbd{d g}:
2470 @example
2471 2#101,1111,1110
2472 @end example
2474 Notice that @kbd{d g} groups by fours by default if the display radix
2475 is binary or hexadecimal, but by threes if it is decimal, octal, or any
2476 other radix.
2478 Now let's see that number in decimal; type @kbd{d r 10}:
2480 @example
2481 1,534
2482 @end example
2484 Numbers are not @emph{stored} with any particular radix attached.  They're
2485 just numbers; they can be entered in any radix, and are always displayed
2486 in whatever radix you've chosen with @kbd{d r}.  The current radix applies
2487 to integers, fractions, and floats.
2489 @cindex Roundoff errors, in non-decimal numbers
2490 (@bullet{}) @strong{Exercise 1.}  Your friend Joe tried to enter one-third
2491 as @samp{3#0.1} in @kbd{d r 3} mode with a precision of 12.  He got
2492 @samp{3#0.0222222...} (with 25 2's) in the display.  When he multiplied
2493 that by three, he got @samp{3#0.222222...} instead of the expected
2494 @samp{3#1}.  Next, Joe entered @samp{3#0.2} and, to his great relief,
2495 saw @samp{3#0.2} on the screen.  But when he typed @kbd{2 /}, he got
2496 @samp{3#0.10000001} (some zeros omitted).  What's going on here?
2497 @xref{Modes Answer 1, 1}. (@bullet{})
2499 @cindex Scientific notation, in non-decimal numbers
2500 (@bullet{}) @strong{Exercise 2.}  Scientific notation works in non-decimal
2501 modes in the natural way (the exponent is a power of the radix instead of
2502 a power of ten, although the exponent itself is always written in decimal).
2503 Thus @samp{8#1.23e3 = 8#1230.0}.  Suppose we have the hexadecimal number
2504 @samp{f.e8f} times 16 to the 15th power:  We write @samp{16#f.e8fe15}.
2505 What is wrong with this picture?  What could we write instead that would
2506 work better?  @xref{Modes Answer 2, 2}. (@bullet{})
2508 The @kbd{m} prefix key has another set of modes, relating to the way
2509 Calc interprets your inputs and does computations.  Whereas @kbd{d}-prefix
2510 modes generally affect the way things look, @kbd{m}-prefix modes affect
2511 the way they are actually computed.
2513 The most popular @kbd{m}-prefix mode is the @dfn{angular mode}.  Notice
2514 the @samp{Deg} indicator in the mode line.  This means that if you use
2515 a command that interprets a number as an angle, it will assume the
2516 angle is measured in degrees.  For example,
2518 @smallexample
2519 @group
2520 1:  45         1:  0.707106781187   1:  0.500000000001    1:  0.5
2521     .              .                    .                     .
2523     45             S                    2 ^                   c 1
2524 @end group
2525 @end smallexample
2527 @noindent
2528 The shift-@kbd{S} command computes the sine of an angle.  The sine
2529 of 45 degrees is 
2530 @texline @math{\sqrt{2}/2};
2531 @infoline @expr{sqrt(2)/2}; 
2532 squaring this yields @expr{2/4 = 0.5}.  However, there has been a slight
2533 roundoff error because the representation of 
2534 @texline @math{\sqrt{2}/2}
2535 @infoline @expr{sqrt(2)/2} 
2536 wasn't exact.  The @kbd{c 1} command is a handy way to clean up numbers
2537 in this case; it temporarily reduces the precision by one digit while it
2538 re-rounds the number on the top of the stack.
2540 @cindex Roundoff errors, examples
2541 (@bullet{}) @strong{Exercise 3.}  Your friend Joe computed the sine
2542 of 45 degrees as shown above, then, hoping to avoid an inexact
2543 result, he increased the precision to 16 digits before squaring.
2544 What happened?  @xref{Modes Answer 3, 3}. (@bullet{})
2546 To do this calculation in radians, we would type @kbd{m r} first.
2547 (The indicator changes to @samp{Rad}.)  45 degrees corresponds to
2548 @cpiover{4} radians.  To get @cpi{}, press the @kbd{P} key.  (Once
2549 again, this is a shifted capital @kbd{P}.  Remember, unshifted
2550 @kbd{p} sets the precision.)
2552 @smallexample
2553 @group
2554 1:  3.14159265359   1:  0.785398163398   1:  0.707106781187
2555     .                   .                .
2557     P                   4 /       m r    S
2558 @end group
2559 @end smallexample
2561 Likewise, inverse trigonometric functions generate results in
2562 either radians or degrees, depending on the current angular mode.
2564 @smallexample
2565 @group
2566 1:  0.707106781187   1:  0.785398163398   1:  45.
2567     .                    .                    .
2569     .5 Q        m r      I S        m d       U I S
2570 @end group
2571 @end smallexample
2573 @noindent
2574 Here we compute the Inverse Sine of 
2575 @texline @math{\sqrt{0.5}},
2576 @infoline @expr{sqrt(0.5)}, 
2577 first in radians, then in degrees.
2579 Use @kbd{c d} and @kbd{c r} to convert a number from radians to degrees
2580 and vice-versa.
2582 @smallexample
2583 @group
2584 1:  45         1:  0.785398163397     1:  45.
2585     .              .                      .
2587     45             c r                    c d
2588 @end group
2589 @end smallexample
2591 Another interesting mode is @dfn{Fraction mode}.  Normally,
2592 dividing two integers produces a floating-point result if the
2593 quotient can't be expressed as an exact integer.  Fraction mode
2594 causes integer division to produce a fraction, i.e., a rational
2595 number, instead.
2597 @smallexample
2598 @group
2599 2:  12         1:  1.33333333333    1:  4:3
2600 1:  9              .                    .
2601     .
2603  12 @key{RET} 9          /          m f       U /      m f
2604 @end group
2605 @end smallexample
2607 @noindent
2608 In the first case, we get an approximate floating-point result.
2609 In the second case, we get an exact fractional result (four-thirds).
2611 You can enter a fraction at any time using @kbd{:} notation.
2612 (Calc uses @kbd{:} instead of @kbd{/} as the fraction separator
2613 because @kbd{/} is already used to divide the top two stack
2614 elements.)  Calculations involving fractions will always
2615 produce exact fractional results; Fraction mode only says
2616 what to do when dividing two integers.
2618 @cindex Fractions vs. floats
2619 @cindex Floats vs. fractions
2620 (@bullet{}) @strong{Exercise 4.}  If fractional arithmetic is exact,
2621 why would you ever use floating-point numbers instead?
2622 @xref{Modes Answer 4, 4}. (@bullet{})
2624 Typing @kbd{m f} doesn't change any existing values in the stack.
2625 In the above example, we had to Undo the division and do it over
2626 again when we changed to Fraction mode.  But if you use the
2627 evaluates-to operator you can get commands like @kbd{m f} to
2628 recompute for you.
2630 @smallexample
2631 @group
2632 1:  12 / 9 => 1.33333333333    1:  12 / 9 => 1.333    1:  12 / 9 => 4:3
2633     .                              .                      .
2635    ' 12/9 => @key{RET}                   p 4 @key{RET}                m f
2636 @end group
2637 @end smallexample
2639 @noindent
2640 In this example, the righthand side of the @samp{=>} operator
2641 on the stack is recomputed when we change the precision, then
2642 again when we change to Fraction mode.  All @samp{=>} expressions
2643 on the stack are recomputed every time you change any mode that
2644 might affect their values.
2646 @node Arithmetic Tutorial, Vector/Matrix Tutorial, Basic Tutorial, Tutorial
2647 @section Arithmetic Tutorial
2649 @noindent
2650 In this section, we explore the arithmetic and scientific functions
2651 available in the Calculator.
2653 The standard arithmetic commands are @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/},
2654 and @kbd{^}.  Each normally takes two numbers from the top of the stack
2655 and pushes back a result.  The @kbd{n} and @kbd{&} keys perform
2656 change-sign and reciprocal operations, respectively.
2658 @smallexample
2659 @group
2660 1:  5          1:  0.2        1:  5.         1:  -5.        1:  5.
2661     .              .              .              .              .
2663     5              &              &              n              n
2664 @end group
2665 @end smallexample
2667 @cindex Binary operators
2668 You can apply a ``binary operator'' like @kbd{+} across any number of
2669 stack entries by giving it a numeric prefix.  You can also apply it
2670 pairwise to several stack elements along with the top one if you use
2671 a negative prefix.
2673 @smallexample
2674 @group
2675 3:  2          1:  9          3:  2          4:  2          3:  12
2676 2:  3              .          2:  3          3:  3          2:  13
2677 1:  4                         1:  4          2:  4          1:  14
2678     .                             .          1:  10             .
2679                                                  .
2681 2 @key{RET} 3 @key{RET} 4     M-3 +           U              10          M-- M-3 +
2682 @end group
2683 @end smallexample
2685 @cindex Unary operators
2686 You can apply a ``unary operator'' like @kbd{&} to the top @var{n}
2687 stack entries with a numeric prefix, too.
2689 @smallexample
2690 @group
2691 3:  2          3:  0.5                3:  0.5
2692 2:  3          2:  0.333333333333     2:  3.
2693 1:  4          1:  0.25               1:  4.
2694     .              .                      .
2696 2 @key{RET} 3 @key{RET} 4      M-3 &                  M-2 &
2697 @end group
2698 @end smallexample
2700 Notice that the results here are left in floating-point form.
2701 We can convert them back to integers by pressing @kbd{F}, the
2702 ``floor'' function.  This function rounds down to the next lower
2703 integer.  There is also @kbd{R}, which rounds to the nearest
2704 integer.
2706 @smallexample
2707 @group
2708 7:  2.         7:  2          7:  2
2709 6:  2.4        6:  2          6:  2
2710 5:  2.5        5:  2          5:  3
2711 4:  2.6        4:  2          4:  3
2712 3:  -2.        3:  -2         3:  -2
2713 2:  -2.4       2:  -3         2:  -2
2714 1:  -2.6       1:  -3         1:  -3
2715     .              .              .
2717                   M-7 F        U M-7 R
2718 @end group
2719 @end smallexample
2721 Since dividing-and-flooring (i.e., ``integer quotient'') is such a
2722 common operation, Calc provides a special command for that purpose, the
2723 backslash @kbd{\}.  Another common arithmetic operator is @kbd{%}, which
2724 computes the remainder that would arise from a @kbd{\} operation, i.e.,
2725 the ``modulo'' of two numbers.  For example,
2727 @smallexample
2728 @group
2729 2:  1234       1:  12         2:  1234       1:  34
2730 1:  100            .          1:  100            .
2731     .                             .
2733 1234 @key{RET} 100       \              U              %
2734 @end group
2735 @end smallexample
2737 These commands actually work for any real numbers, not just integers.
2739 @smallexample
2740 @group
2741 2:  3.1415     1:  3          2:  3.1415     1:  0.1415
2742 1:  1              .          1:  1              .
2743     .                             .
2745 3.1415 @key{RET} 1       \              U              %
2746 @end group
2747 @end smallexample
2749 (@bullet{}) @strong{Exercise 1.}  The @kbd{\} command would appear to be a
2750 frill, since you could always do the same thing with @kbd{/ F}.  Think
2751 of a situation where this is not true---@kbd{/ F} would be inadequate.
2752 Now think of a way you could get around the problem if Calc didn't
2753 provide a @kbd{\} command.  @xref{Arithmetic Answer 1, 1}. (@bullet{})
2755 We've already seen the @kbd{Q} (square root) and @kbd{S} (sine)
2756 commands.  Other commands along those lines are @kbd{C} (cosine),
2757 @kbd{T} (tangent), @kbd{E} (@expr{e^x}) and @kbd{L} (natural
2758 logarithm).  These can be modified by the @kbd{I} (inverse) and
2759 @kbd{H} (hyperbolic) prefix keys.
2761 Let's compute the sine and cosine of an angle, and verify the
2762 identity 
2763 @texline @math{\sin^2x + \cos^2x = 1}.
2764 @infoline @expr{sin(x)^2 + cos(x)^2 = 1}.  
2765 We'll arbitrarily pick @mathit{-64} degrees as a good value for @expr{x}.
2766 With the angular mode set to degrees (type @w{@kbd{m d}}), do:
2768 @smallexample
2769 @group
2770 2:  -64        2:  -64        2:  -0.89879   2:  -0.89879   1:  1.
2771 1:  -64        1:  -0.89879   1:  -64        1:  0.43837        .
2772     .              .              .              .
2774  64 n @key{RET} @key{RET}      S              @key{TAB}            C              f h
2775 @end group
2776 @end smallexample
2778 @noindent
2779 (For brevity, we're showing only five digits of the results here.
2780 You can of course do these calculations to any precision you like.)
2782 Remember, @kbd{f h} is the @code{calc-hypot}, or square-root of sum
2783 of squares, command.
2785 Another identity is 
2786 @texline @math{\displaystyle\tan x = {\sin x \over \cos x}}.
2787 @infoline @expr{tan(x) = sin(x) / cos(x)}.
2788 @smallexample
2789 @group
2791 2:  -0.89879   1:  -2.0503    1:  -64.
2792 1:  0.43837        .              .
2793     .
2795     U              /              I T
2796 @end group
2797 @end smallexample
2799 A physical interpretation of this calculation is that if you move
2800 @expr{0.89879} units downward and @expr{0.43837} units to the right,
2801 your direction of motion is @mathit{-64} degrees from horizontal.  Suppose
2802 we move in the opposite direction, up and to the left:
2804 @smallexample
2805 @group
2806 2:  -0.89879   2:  0.89879    1:  -2.0503    1:  -64.
2807 1:  0.43837    1:  -0.43837       .              .
2808     .              .
2810     U U            M-2 n          /              I T
2811 @end group
2812 @end smallexample
2814 @noindent
2815 How can the angle be the same?  The answer is that the @kbd{/} operation
2816 loses information about the signs of its inputs.  Because the quotient
2817 is negative, we know exactly one of the inputs was negative, but we
2818 can't tell which one.  There is an @kbd{f T} [@code{arctan2}] function which
2819 computes the inverse tangent of the quotient of a pair of numbers.
2820 Since you feed it the two original numbers, it has enough information
2821 to give you a full 360-degree answer.
2823 @smallexample
2824 @group
2825 2:  0.89879    1:  116.       3:  116.       2:  116.       1:  180.
2826 1:  -0.43837       .          2:  -0.89879   1:  -64.           .
2827     .                         1:  0.43837        .
2828                                   .
2830     U U            f T         M-@key{RET} M-2 n       f T            -
2831 @end group
2832 @end smallexample
2834 @noindent
2835 The resulting angles differ by 180 degrees; in other words, they
2836 point in opposite directions, just as we would expect.
2838 The @key{META}-@key{RET} we used in the third step is the
2839 ``last-arguments'' command.  It is sort of like Undo, except that it
2840 restores the arguments of the last command to the stack without removing
2841 the command's result.  It is useful in situations like this one,
2842 where we need to do several operations on the same inputs.  We could
2843 have accomplished the same thing by using @kbd{M-2 @key{RET}} to duplicate
2844 the top two stack elements right after the @kbd{U U}, then a pair of
2845 @kbd{M-@key{TAB}} commands to cycle the 116 up around the duplicates.
2847 A similar identity is supposed to hold for hyperbolic sines and cosines,
2848 except that it is the @emph{difference}
2849 @texline @math{\cosh^2x - \sinh^2x}
2850 @infoline @expr{cosh(x)^2 - sinh(x)^2} 
2851 that always equals one.  Let's try to verify this identity.
2853 @smallexample
2854 @group
2855 2:  -64        2:  -64        2:  -64        2:  9.7192e54  2:  9.7192e54
2856 1:  -64        1:  -3.1175e27 1:  9.7192e54  1:  -64        1:  9.7192e54
2857     .              .              .              .              .
2859  64 n @key{RET} @key{RET}      H C            2 ^            @key{TAB}            H S 2 ^
2860 @end group
2861 @end smallexample
2863 @noindent
2864 @cindex Roundoff errors, examples
2865 Something's obviously wrong, because when we subtract these numbers
2866 the answer will clearly be zero!  But if you think about it, if these
2867 numbers @emph{did} differ by one, it would be in the 55th decimal
2868 place.  The difference we seek has been lost entirely to roundoff
2869 error.
2871 We could verify this hypothesis by doing the actual calculation with,
2872 say, 60 decimal places of precision.  This will be slow, but not
2873 enormously so.  Try it if you wish; sure enough, the answer is
2874 0.99999, reasonably close to 1.
2876 Of course, a more reasonable way to verify the identity is to use
2877 a more reasonable value for @expr{x}!
2879 @cindex Common logarithm
2880 Some Calculator commands use the Hyperbolic prefix for other purposes.
2881 The logarithm and exponential functions, for example, work to the base
2882 @expr{e} normally but use base-10 instead if you use the Hyperbolic
2883 prefix.
2885 @smallexample
2886 @group
2887 1:  1000       1:  6.9077     1:  1000       1:  3
2888     .              .              .              .
2890     1000           L              U              H L
2891 @end group
2892 @end smallexample
2894 @noindent
2895 First, we mistakenly compute a natural logarithm.  Then we undo
2896 and compute a common logarithm instead.
2898 The @kbd{B} key computes a general base-@var{b} logarithm for any
2899 value of @var{b}.
2901 @smallexample
2902 @group
2903 2:  1000       1:  3          1:  1000.      2:  1000.      1:  6.9077
2904 1:  10             .              .          1:  2.71828        .
2905     .                                            .
2907  1000 @key{RET} 10       B              H E            H P            B
2908 @end group
2909 @end smallexample
2911 @noindent
2912 Here we first use @kbd{B} to compute the base-10 logarithm, then use
2913 the ``hyperbolic'' exponential as a cheap hack to recover the number
2914 1000, then use @kbd{B} again to compute the natural logarithm.  Note
2915 that @kbd{P} with the hyperbolic prefix pushes the constant @expr{e}
2916 onto the stack.
2918 You may have noticed that both times we took the base-10 logarithm
2919 of 1000, we got an exact integer result.  Calc always tries to give
2920 an exact rational result for calculations involving rational numbers
2921 where possible.  But when we used @kbd{H E}, the result was a
2922 floating-point number for no apparent reason.  In fact, if we had
2923 computed @kbd{10 @key{RET} 3 ^} we @emph{would} have gotten an
2924 exact integer 1000.  But the @kbd{H E} command is rigged to generate
2925 a floating-point result all of the time so that @kbd{1000 H E} will
2926 not waste time computing a thousand-digit integer when all you
2927 probably wanted was @samp{1e1000}.
2929 (@bullet{}) @strong{Exercise 2.}  Find a pair of integer inputs to
2930 the @kbd{B} command for which Calc could find an exact rational
2931 result but doesn't.  @xref{Arithmetic Answer 2, 2}. (@bullet{})
2933 The Calculator also has a set of functions relating to combinatorics
2934 and statistics.  You may be familiar with the @dfn{factorial} function,
2935 which computes the product of all the integers up to a given number.
2937 @smallexample
2938 @group
2939 1:  100        1:  93326215443...    1:  100.       1:  9.3326e157
2940     .              .                     .              .
2942     100            !                     U c f          !
2943 @end group
2944 @end smallexample
2946 @noindent
2947 Recall, the @kbd{c f} command converts the integer or fraction at the
2948 top of the stack to floating-point format.  If you take the factorial
2949 of a floating-point number, you get a floating-point result
2950 accurate to the current precision.  But if you give @kbd{!} an
2951 exact integer, you get an exact integer result (158 digits long
2952 in this case).
2954 If you take the factorial of a non-integer, Calc uses a generalized
2955 factorial function defined in terms of Euler's Gamma function
2956 @texline @math{\Gamma(n)}
2957 @infoline @expr{gamma(n)}
2958 (which is itself available as the @kbd{f g} command).
2960 @smallexample
2961 @group
2962 3:  4.         3:  24.               1:  5.5        1:  52.342777847
2963 2:  4.5        2:  52.3427777847         .              .
2964 1:  5.         1:  120.
2965     .              .
2967                    M-3 !              M-0 @key{DEL} 5.5       f g
2968 @end group
2969 @end smallexample
2971 @noindent
2972 Here we verify the identity 
2973 @texline @math{n! = \Gamma(n+1)}.
2974 @infoline @expr{@var{n}!@: = gamma(@var{n}+1)}.
2976 The binomial coefficient @var{n}-choose-@var{m}
2977 @texline or @math{\displaystyle {n \choose m}}
2978 is defined by
2979 @texline @math{\displaystyle {n! \over m! \, (n-m)!}}
2980 @infoline @expr{n!@: / m!@: (n-m)!}
2981 for all reals @expr{n} and @expr{m}.  The intermediate results in this
2982 formula can become quite large even if the final result is small; the
2983 @kbd{k c} command computes a binomial coefficient in a way that avoids
2984 large intermediate values.
2986 The @kbd{k} prefix key defines several common functions out of
2987 combinatorics and number theory.  Here we compute the binomial
2988 coefficient 30-choose-20, then determine its prime factorization.
2990 @smallexample
2991 @group
2992 2:  30         1:  30045015   1:  [3, 3, 5, 7, 11, 13, 23, 29]
2993 1:  20             .              .
2994     .
2996  30 @key{RET} 20         k c            k f
2997 @end group
2998 @end smallexample
3000 @noindent
3001 You can verify these prime factors by using @kbd{v u} to ``unpack''
3002 this vector into 8 separate stack entries, then @kbd{M-8 *} to
3003 multiply them back together.  The result is the original number,
3004 30045015.
3006 @cindex Hash tables
3007 Suppose a program you are writing needs a hash table with at least
3008 10000 entries.  It's best to use a prime number as the actual size
3009 of a hash table.  Calc can compute the next prime number after 10000:
3011 @smallexample
3012 @group
3013 1:  10000      1:  10007      1:  9973
3014     .              .              .
3016     10000          k n            I k n
3017 @end group
3018 @end smallexample
3020 @noindent
3021 Just for kicks we've also computed the next prime @emph{less} than
3022 10000.
3024 @c [fix-ref Financial Functions]
3025 @xref{Financial Functions}, for a description of the Calculator
3026 commands that deal with business and financial calculations (functions
3027 like @code{pv}, @code{rate}, and @code{sln}).
3029 @c [fix-ref Binary Number Functions]
3030 @xref{Binary Functions}, to read about the commands for operating
3031 on binary numbers (like @code{and}, @code{xor}, and @code{lsh}).
3033 @node Vector/Matrix Tutorial, Types Tutorial, Arithmetic Tutorial, Tutorial
3034 @section Vector/Matrix Tutorial
3036 @noindent
3037 A @dfn{vector} is a list of numbers or other Calc data objects.
3038 Calc provides a large set of commands that operate on vectors.  Some
3039 are familiar operations from vector analysis.  Others simply treat
3040 a vector as a list of objects.
3042 @menu
3043 * Vector Analysis Tutorial::
3044 * Matrix Tutorial::
3045 * List Tutorial::
3046 @end menu
3048 @node Vector Analysis Tutorial, Matrix Tutorial, Vector/Matrix Tutorial, Vector/Matrix Tutorial
3049 @subsection Vector Analysis
3051 @noindent
3052 If you add two vectors, the result is a vector of the sums of the
3053 elements, taken pairwise.
3055 @smallexample
3056 @group
3057 1:  [1, 2, 3]     2:  [1, 2, 3]     1:  [8, 8, 3]
3058     .             1:  [7, 6, 0]         .
3059                       .
3061     [1,2,3]  s 1      [7 6 0]  s 2      +
3062 @end group
3063 @end smallexample
3065 @noindent
3066 Note that we can separate the vector elements with either commas or
3067 spaces.  This is true whether we are using incomplete vectors or
3068 algebraic entry.  The @kbd{s 1} and @kbd{s 2} commands save these
3069 vectors so we can easily reuse them later.
3071 If you multiply two vectors, the result is the sum of the products
3072 of the elements taken pairwise.  This is called the @dfn{dot product}
3073 of the vectors.
3075 @smallexample
3076 @group
3077 2:  [1, 2, 3]     1:  19
3078 1:  [7, 6, 0]         .
3079     .
3081     r 1 r 2           *
3082 @end group
3083 @end smallexample
3085 @cindex Dot product
3086 The dot product of two vectors is equal to the product of their
3087 lengths times the cosine of the angle between them.  (Here the vector
3088 is interpreted as a line from the origin @expr{(0,0,0)} to the
3089 specified point in three-dimensional space.)  The @kbd{A}
3090 (absolute value) command can be used to compute the length of a
3091 vector.
3093 @smallexample
3094 @group
3095 3:  19            3:  19          1:  0.550782    1:  56.579
3096 2:  [1, 2, 3]     2:  3.741657        .               .
3097 1:  [7, 6, 0]     1:  9.219544
3098     .                 .
3100     M-@key{RET}             M-2 A          * /             I C
3101 @end group
3102 @end smallexample
3104 @noindent
3105 First we recall the arguments to the dot product command, then
3106 we compute the absolute values of the top two stack entries to
3107 obtain the lengths of the vectors, then we divide the dot product
3108 by the product of the lengths to get the cosine of the angle.
3109 The inverse cosine finds that the angle between the vectors
3110 is about 56 degrees.
3112 @cindex Cross product
3113 @cindex Perpendicular vectors
3114 The @dfn{cross product} of two vectors is a vector whose length
3115 is the product of the lengths of the inputs times the sine of the
3116 angle between them, and whose direction is perpendicular to both
3117 input vectors.  Unlike the dot product, the cross product is
3118 defined only for three-dimensional vectors.  Let's double-check
3119 our computation of the angle using the cross product.
3121 @smallexample
3122 @group
3123 2:  [1, 2, 3]  3:  [-18, 21, -8]  1:  [-0.52, 0.61, -0.23]  1:  56.579
3124 1:  [7, 6, 0]  2:  [1, 2, 3]          .                         .
3125     .          1:  [7, 6, 0]
3126                    .
3128     r 1 r 2        V C  s 3  M-@key{RET}    M-2 A * /                 A I S
3129 @end group
3130 @end smallexample
3132 @noindent
3133 First we recall the original vectors and compute their cross product,
3134 which we also store for later reference.  Now we divide the vector
3135 by the product of the lengths of the original vectors.  The length of
3136 this vector should be the sine of the angle; sure enough, it is!
3138 @c [fix-ref General Mode Commands]
3139 Vector-related commands generally begin with the @kbd{v} prefix key.
3140 Some are uppercase letters and some are lowercase.  To make it easier
3141 to type these commands, the shift-@kbd{V} prefix key acts the same as
3142 the @kbd{v} key.  (@xref{General Mode Commands}, for a way to make all
3143 prefix keys have this property.)
3145 If we take the dot product of two perpendicular vectors we expect
3146 to get zero, since the cosine of 90 degrees is zero.  Let's check
3147 that the cross product is indeed perpendicular to both inputs:
3149 @smallexample
3150 @group
3151 2:  [1, 2, 3]      1:  0          2:  [7, 6, 0]      1:  0
3152 1:  [-18, 21, -8]      .          1:  [-18, 21, -8]      .
3153     .                                 .
3155     r 1 r 3            *          @key{DEL} r 2 r 3            *
3156 @end group
3157 @end smallexample
3159 @cindex Normalizing a vector
3160 @cindex Unit vectors
3161 (@bullet{}) @strong{Exercise 1.}  Given a vector on the top of the
3162 stack, what keystrokes would you use to @dfn{normalize} the
3163 vector, i.e., to reduce its length to one without changing its
3164 direction?  @xref{Vector Answer 1, 1}. (@bullet{})
3166 (@bullet{}) @strong{Exercise 2.}  Suppose a certain particle can be
3167 at any of several positions along a ruler.  You have a list of
3168 those positions in the form of a vector, and another list of the
3169 probabilities for the particle to be at the corresponding positions.
3170 Find the average position of the particle.
3171 @xref{Vector Answer 2, 2}. (@bullet{})
3173 @node Matrix Tutorial, List Tutorial, Vector Analysis Tutorial, Vector/Matrix Tutorial
3174 @subsection Matrices
3176 @noindent
3177 A @dfn{matrix} is just a vector of vectors, all the same length.
3178 This means you can enter a matrix using nested brackets.  You can
3179 also use the semicolon character to enter a matrix.  We'll show
3180 both methods here:
3182 @smallexample
3183 @group
3184 1:  [ [ 1, 2, 3 ]             1:  [ [ 1, 2, 3 ]
3185       [ 4, 5, 6 ] ]                 [ 4, 5, 6 ] ]
3186     .                             .
3188   [[1 2 3] [4 5 6]]             ' [1 2 3; 4 5 6] @key{RET}
3189 @end group
3190 @end smallexample
3192 @noindent
3193 We'll be using this matrix again, so type @kbd{s 4} to save it now.
3195 Note that semicolons work with incomplete vectors, but they work
3196 better in algebraic entry.  That's why we use the apostrophe in
3197 the second example.
3199 When two matrices are multiplied, the lefthand matrix must have
3200 the same number of columns as the righthand matrix has rows.
3201 Row @expr{i}, column @expr{j} of the result is effectively the
3202 dot product of row @expr{i} of the left matrix by column @expr{j}
3203 of the right matrix.
3205 If we try to duplicate this matrix and multiply it by itself,
3206 the dimensions are wrong and the multiplication cannot take place:
3208 @smallexample
3209 @group
3210 1:  [ [ 1, 2, 3 ]   * [ [ 1, 2, 3 ]
3211       [ 4, 5, 6 ] ]     [ 4, 5, 6 ] ]
3212     .
3214     @key{RET} *
3215 @end group
3216 @end smallexample
3218 @noindent
3219 Though rather hard to read, this is a formula which shows the product
3220 of two matrices.  The @samp{*} function, having invalid arguments, has
3221 been left in symbolic form.
3223 We can multiply the matrices if we @dfn{transpose} one of them first.
3225 @smallexample
3226 @group
3227 2:  [ [ 1, 2, 3 ]       1:  [ [ 14, 32 ]      1:  [ [ 17, 22, 27 ]
3228       [ 4, 5, 6 ] ]           [ 32, 77 ] ]          [ 22, 29, 36 ]
3229 1:  [ [ 1, 4 ]              .                       [ 27, 36, 45 ] ]
3230       [ 2, 5 ]                                    .
3231       [ 3, 6 ] ]
3232     .
3234     U v t                   *                     U @key{TAB} *
3235 @end group
3236 @end smallexample
3238 Matrix multiplication is not commutative; indeed, switching the
3239 order of the operands can even change the dimensions of the result
3240 matrix, as happened here!
3242 If you multiply a plain vector by a matrix, it is treated as a
3243 single row or column depending on which side of the matrix it is
3244 on.  The result is a plain vector which should also be interpreted
3245 as a row or column as appropriate.
3247 @smallexample
3248 @group
3249 2:  [ [ 1, 2, 3 ]      1:  [14, 32]
3250       [ 4, 5, 6 ] ]        .
3251 1:  [1, 2, 3]
3252     .
3254     r 4 r 1                *
3255 @end group
3256 @end smallexample
3258 Multiplying in the other order wouldn't work because the number of
3259 rows in the matrix is different from the number of elements in the
3260 vector.
3262 (@bullet{}) @strong{Exercise 1.}  Use @samp{*} to sum along the rows
3263 of the above 
3264 @texline @math{2\times3}
3265 @infoline 2x3 
3266 matrix to get @expr{[6, 15]}.  Now use @samp{*} to sum along the columns
3267 to get @expr{[5, 7, 9]}. 
3268 @xref{Matrix Answer 1, 1}. (@bullet{})
3270 @cindex Identity matrix
3271 An @dfn{identity matrix} is a square matrix with ones along the
3272 diagonal and zeros elsewhere.  It has the property that multiplication
3273 by an identity matrix, on the left or on the right, always produces
3274 the original matrix.
3276 @smallexample
3277 @group
3278 1:  [ [ 1, 2, 3 ]      2:  [ [ 1, 2, 3 ]      1:  [ [ 1, 2, 3 ]
3279       [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]
3280     .                  1:  [ [ 1, 0, 0 ]          .
3281                              [ 0, 1, 0 ]
3282                              [ 0, 0, 1 ] ]
3283                            .
3285     r 4                    v i 3 @key{RET}              *
3286 @end group
3287 @end smallexample
3289 If a matrix is square, it is often possible to find its @dfn{inverse},
3290 that is, a matrix which, when multiplied by the original matrix, yields
3291 an identity matrix.  The @kbd{&} (reciprocal) key also computes the
3292 inverse of a matrix.
3294 @smallexample
3295 @group
3296 1:  [ [ 1, 2, 3 ]      1:  [ [   -2.4,     1.2,   -0.2 ]
3297       [ 4, 5, 6 ]            [    2.8,    -1.4,    0.4 ]
3298       [ 7, 6, 0 ] ]          [ -0.73333, 0.53333, -0.2 ] ]
3299     .                      .
3301     r 4 r 2 |  s 5         &
3302 @end group
3303 @end smallexample
3305 @noindent
3306 The vertical bar @kbd{|} @dfn{concatenates} numbers, vectors, and
3307 matrices together.  Here we have used it to add a new row onto
3308 our matrix to make it square.
3310 We can multiply these two matrices in either order to get an identity.
3312 @smallexample
3313 @group
3314 1:  [ [ 1., 0., 0. ]      1:  [ [ 1., 0., 0. ]
3315       [ 0., 1., 0. ]            [ 0., 1., 0. ]
3316       [ 0., 0., 1. ] ]          [ 0., 0., 1. ] ]
3317     .                         .
3319     M-@key{RET}  *                  U @key{TAB} *
3320 @end group
3321 @end smallexample
3323 @cindex Systems of linear equations
3324 @cindex Linear equations, systems of
3325 Matrix inverses are related to systems of linear equations in algebra.
3326 Suppose we had the following set of equations:
3328 @ifinfo
3329 @group
3330 @example
3331     a + 2b + 3c = 6
3332    4a + 5b + 6c = 2
3333    7a + 6b      = 3
3334 @end example
3335 @end group
3336 @end ifinfo
3337 @tex
3338 \turnoffactive
3339 \beforedisplayh
3340 $$ \openup1\jot \tabskip=0pt plus1fil
3341 \halign to\displaywidth{\tabskip=0pt
3342    $\hfil#$&$\hfil{}#{}$&
3343    $\hfil#$&$\hfil{}#{}$&
3344    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3345   a&+&2b&+&3c&=6 \cr
3346  4a&+&5b&+&6c&=2 \cr
3347  7a&+&6b& &  &=3 \cr}
3349 \afterdisplayh
3350 @end tex
3352 @noindent
3353 This can be cast into the matrix equation,
3355 @ifinfo
3356 @group
3357 @example
3358    [ [ 1, 2, 3 ]     [ [ a ]     [ [ 6 ]
3359      [ 4, 5, 6 ]   *   [ b ]   =   [ 2 ]
3360      [ 7, 6, 0 ] ]     [ c ] ]     [ 3 ] ]
3361 @end example
3362 @end group
3363 @end ifinfo
3364 @tex
3365 \turnoffactive
3366 \beforedisplay
3367 $$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 }
3368    \times
3369    \pmatrix{ a \cr b \cr c } = \pmatrix{ 6 \cr 2 \cr 3 }
3371 \afterdisplay
3372 @end tex
3374 We can solve this system of equations by multiplying both sides by the
3375 inverse of the matrix.  Calc can do this all in one step:
3377 @smallexample
3378 @group
3379 2:  [6, 2, 3]          1:  [-12.6, 15.2, -3.93333]
3380 1:  [ [ 1, 2, 3 ]          .
3381       [ 4, 5, 6 ]
3382       [ 7, 6, 0 ] ]
3383     .
3385     [6,2,3] r 5            /
3386 @end group
3387 @end smallexample
3389 @noindent
3390 The result is the @expr{[a, b, c]} vector that solves the equations.
3391 (Dividing by a square matrix is equivalent to multiplying by its
3392 inverse.)
3394 Let's verify this solution:
3396 @smallexample
3397 @group
3398 2:  [ [ 1, 2, 3 ]                1:  [6., 2., 3.]
3399       [ 4, 5, 6 ]                    .
3400       [ 7, 6, 0 ] ]
3401 1:  [-12.6, 15.2, -3.93333]
3402     .
3404     r 5  @key{TAB}                         *
3405 @end group
3406 @end smallexample
3408 @noindent
3409 Note that we had to be careful about the order in which we multiplied
3410 the matrix and vector.  If we multiplied in the other order, Calc would
3411 assume the vector was a row vector in order to make the dimensions
3412 come out right, and the answer would be incorrect.  If you
3413 don't feel safe letting Calc take either interpretation of your
3414 vectors, use explicit 
3415 @texline @math{N\times1}
3416 @infoline Nx1
3418 @texline @math{1\times N}
3419 @infoline 1xN
3420 matrices instead.  In this case, you would enter the original column
3421 vector as @samp{[[6], [2], [3]]} or @samp{[6; 2; 3]}.
3423 (@bullet{}) @strong{Exercise 2.}  Algebraic entry allows you to make
3424 vectors and matrices that include variables.  Solve the following
3425 system of equations to get expressions for @expr{x} and @expr{y}
3426 in terms of @expr{a} and @expr{b}.
3428 @ifinfo
3429 @group
3430 @example
3431    x + a y = 6
3432    x + b y = 10
3433 @end example
3434 @end group
3435 @end ifinfo
3436 @tex
3437 \turnoffactive
3438 \beforedisplay
3439 $$ \eqalign{ x &+ a y = 6 \cr
3440              x &+ b y = 10}
3442 \afterdisplay
3443 @end tex
3445 @noindent
3446 @xref{Matrix Answer 2, 2}. (@bullet{})
3448 @cindex Least-squares for over-determined systems
3449 @cindex Over-determined systems of equations
3450 (@bullet{}) @strong{Exercise 3.}  A system of equations is ``over-determined''
3451 if it has more equations than variables.  It is often the case that
3452 there are no values for the variables that will satisfy all the
3453 equations at once, but it is still useful to find a set of values
3454 which ``nearly'' satisfy all the equations.  In terms of matrix equations,
3455 you can't solve @expr{A X = B} directly because the matrix @expr{A}
3456 is not square for an over-determined system.  Matrix inversion works
3457 only for square matrices.  One common trick is to multiply both sides
3458 on the left by the transpose of @expr{A}:
3459 @ifinfo
3460 @samp{trn(A)*A*X = trn(A)*B}.
3461 @end ifinfo
3462 @tex
3463 \turnoffactive
3464 $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}.
3465 @end tex
3466 Now 
3467 @texline @math{A^T A}
3468 @infoline @expr{trn(A)*A} 
3469 is a square matrix so a solution is possible.  It turns out that the
3470 @expr{X} vector you compute in this way will be a ``least-squares''
3471 solution, which can be regarded as the ``closest'' solution to the set
3472 of equations.  Use Calc to solve the following over-determined
3473 system:
3475 @ifinfo
3476 @group
3477 @example
3478     a + 2b + 3c = 6
3479    4a + 5b + 6c = 2
3480    7a + 6b      = 3
3481    2a + 4b + 6c = 11
3482 @end example
3483 @end group
3484 @end ifinfo
3485 @tex
3486 \turnoffactive
3487 \beforedisplayh
3488 $$ \openup1\jot \tabskip=0pt plus1fil
3489 \halign to\displaywidth{\tabskip=0pt
3490    $\hfil#$&$\hfil{}#{}$&
3491    $\hfil#$&$\hfil{}#{}$&
3492    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3493   a&+&2b&+&3c&=6 \cr
3494  4a&+&5b&+&6c&=2 \cr
3495  7a&+&6b& &  &=3 \cr
3496  2a&+&4b&+&6c&=11 \cr}
3498 \afterdisplayh
3499 @end tex
3501 @noindent
3502 @xref{Matrix Answer 3, 3}. (@bullet{})
3504 @node List Tutorial,  , Matrix Tutorial, Vector/Matrix Tutorial
3505 @subsection Vectors as Lists
3507 @noindent
3508 @cindex Lists
3509 Although Calc has a number of features for manipulating vectors and
3510 matrices as mathematical objects, you can also treat vectors as
3511 simple lists of values.  For example, we saw that the @kbd{k f}
3512 command returns a vector which is a list of the prime factors of a
3513 number.
3515 You can pack and unpack stack entries into vectors:
3517 @smallexample
3518 @group
3519 3:  10         1:  [10, 20, 30]     3:  10
3520 2:  20             .                2:  20
3521 1:  30                              1:  30
3522     .                                   .
3524                    M-3 v p              v u
3525 @end group
3526 @end smallexample
3528 You can also build vectors out of consecutive integers, or out
3529 of many copies of a given value:
3531 @smallexample
3532 @group
3533 1:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]
3534     .               1:  17              1:  [17, 17, 17, 17]
3535                         .                   .
3537     v x 4 @key{RET}           17                  v b 4 @key{RET}
3538 @end group
3539 @end smallexample
3541 You can apply an operator to every element of a vector using the
3542 @dfn{map} command.
3544 @smallexample
3545 @group
3546 1:  [17, 34, 51, 68]   1:  [289, 1156, 2601, 4624]  1:  [17, 34, 51, 68]
3547     .                      .                            .
3549     V M *                  2 V M ^                      V M Q
3550 @end group
3551 @end smallexample
3553 @noindent
3554 In the first step, we multiply the vector of integers by the vector
3555 of 17's elementwise.  In the second step, we raise each element to
3556 the power two.  (The general rule is that both operands must be
3557 vectors of the same length, or else one must be a vector and the
3558 other a plain number.)  In the final step, we take the square root
3559 of each element.
3561 (@bullet{}) @strong{Exercise 1.}  Compute a vector of powers of two
3562 from 
3563 @texline @math{2^{-4}}
3564 @infoline @expr{2^-4} 
3565 to @expr{2^4}.  @xref{List Answer 1, 1}. (@bullet{})
3567 You can also @dfn{reduce} a binary operator across a vector.
3568 For example, reducing @samp{*} computes the product of all the
3569 elements in the vector:
3571 @smallexample
3572 @group
3573 1:  123123     1:  [3, 7, 11, 13, 41]      1:  123123
3574     .              .                           .
3576     123123         k f                         V R *
3577 @end group
3578 @end smallexample
3580 @noindent
3581 In this example, we decompose 123123 into its prime factors, then
3582 multiply those factors together again to yield the original number.
3584 We could compute a dot product ``by hand'' using mapping and
3585 reduction:
3587 @smallexample
3588 @group
3589 2:  [1, 2, 3]     1:  [7, 12, 0]     1:  19
3590 1:  [7, 6, 0]         .                  .
3591     .
3593     r 1 r 2           V M *              V R +
3594 @end group
3595 @end smallexample
3597 @noindent
3598 Recalling two vectors from the previous section, we compute the
3599 sum of pairwise products of the elements to get the same answer
3600 for the dot product as before.
3602 A slight variant of vector reduction is the @dfn{accumulate} operation,
3603 @kbd{V U}.  This produces a vector of the intermediate results from
3604 a corresponding reduction.  Here we compute a table of factorials:
3606 @smallexample
3607 @group
3608 1:  [1, 2, 3, 4, 5, 6]    1:  [1, 2, 6, 24, 120, 720]
3609     .                         .
3611     v x 6 @key{RET}                 V U *
3612 @end group
3613 @end smallexample
3615 Calc allows vectors to grow as large as you like, although it gets
3616 rather slow if vectors have more than about a hundred elements.
3617 Actually, most of the time is spent formatting these large vectors
3618 for display, not calculating on them.  Try the following experiment
3619 (if your computer is very fast you may need to substitute a larger
3620 vector size).
3622 @smallexample
3623 @group
3624 1:  [1, 2, 3, 4, ...      1:  [2, 3, 4, 5, ...
3625     .                         .
3627     v x 500 @key{RET}               1 V M +
3628 @end group
3629 @end smallexample
3631 Now press @kbd{v .} (the letter @kbd{v}, then a period) and try the
3632 experiment again.  In @kbd{v .} mode, long vectors are displayed
3633 ``abbreviated'' like this:
3635 @smallexample
3636 @group
3637 1:  [1, 2, 3, ..., 500]   1:  [2, 3, 4, ..., 501]
3638     .                         .
3640     v x 500 @key{RET}               1 V M +
3641 @end group
3642 @end smallexample
3644 @noindent
3645 (where now the @samp{...} is actually part of the Calc display).
3646 You will find both operations are now much faster.  But notice that
3647 even in @w{@kbd{v .}} mode, the full vectors are still shown in the Trail.
3648 Type @w{@kbd{t .}} to cause the trail to abbreviate as well, and try the
3649 experiment one more time.  Operations on long vectors are now quite
3650 fast!  (But of course if you use @kbd{t .} you will lose the ability
3651 to get old vectors back using the @kbd{t y} command.)
3653 An easy way to view a full vector when @kbd{v .} mode is active is
3654 to press @kbd{`} (back-quote) to edit the vector; editing always works
3655 with the full, unabbreviated value.
3657 @cindex Least-squares for fitting a straight line
3658 @cindex Fitting data to a line
3659 @cindex Line, fitting data to
3660 @cindex Data, extracting from buffers
3661 @cindex Columns of data, extracting
3662 As a larger example, let's try to fit a straight line to some data,
3663 using the method of least squares.  (Calc has a built-in command for
3664 least-squares curve fitting, but we'll do it by hand here just to
3665 practice working with vectors.)  Suppose we have the following list
3666 of values in a file we have loaded into Emacs:
3668 @smallexample
3669   x        y
3670  ---      ---
3671  1.34    0.234
3672  1.41    0.298
3673  1.49    0.402
3674  1.56    0.412
3675  1.64    0.466
3676  1.73    0.473
3677  1.82    0.601
3678  1.91    0.519
3679  2.01    0.603
3680  2.11    0.637
3681  2.22    0.645
3682  2.33    0.705
3683  2.45    0.917
3684  2.58    1.009
3685  2.71    0.971
3686  2.85    1.062
3687  3.00    1.148
3688  3.15    1.157
3689  3.32    1.354
3690 @end smallexample
3692 @noindent
3693 If you are reading this tutorial in printed form, you will find it
3694 easiest to press @kbd{C-x * i} to enter the on-line Info version of
3695 the manual and find this table there.  (Press @kbd{g}, then type
3696 @kbd{List Tutorial}, to jump straight to this section.)
3698 Position the cursor at the upper-left corner of this table, just
3699 to the left of the @expr{1.34}.  Press @kbd{C-@@} to set the mark.
3700 (On your system this may be @kbd{C-2}, @kbd{C-@key{SPC}}, or @kbd{NUL}.)
3701 Now position the cursor to the lower-right, just after the @expr{1.354}.
3702 You have now defined this region as an Emacs ``rectangle.''  Still
3703 in the Info buffer, type @kbd{C-x * r}.  This command
3704 (@code{calc-grab-rectangle}) will pop you back into the Calculator, with
3705 the contents of the rectangle you specified in the form of a matrix.
3707 @smallexample
3708 @group
3709 1:  [ [ 1.34, 0.234 ]
3710       [ 1.41, 0.298 ]
3711       @dots{}
3712 @end group
3713 @end smallexample
3715 @noindent
3716 (You may wish to use @kbd{v .} mode to abbreviate the display of this
3717 large matrix.)
3719 We want to treat this as a pair of lists.  The first step is to
3720 transpose this matrix into a pair of rows.  Remember, a matrix is
3721 just a vector of vectors.  So we can unpack the matrix into a pair
3722 of row vectors on the stack.
3724 @smallexample
3725 @group
3726 1:  [ [ 1.34,  1.41,  1.49,  ... ]     2:  [1.34, 1.41, 1.49, ... ]
3727       [ 0.234, 0.298, 0.402, ... ] ]   1:  [0.234, 0.298, 0.402, ... ]
3728     .                                      .
3730     v t                                    v u
3731 @end group
3732 @end smallexample
3734 @noindent
3735 Let's store these in quick variables 1 and 2, respectively.
3737 @smallexample
3738 @group
3739 1:  [1.34, 1.41, 1.49, ... ]        .
3740     .
3742     t 2                             t 1
3743 @end group
3744 @end smallexample
3746 @noindent
3747 (Recall that @kbd{t 2} is a variant of @kbd{s 2} that removes the
3748 stored value from the stack.)
3750 In a least squares fit, the slope @expr{m} is given by the formula
3752 @ifinfo
3753 @example
3754 m = (N sum(x y) - sum(x) sum(y)) / (N sum(x^2) - sum(x)^2)
3755 @end example
3756 @end ifinfo
3757 @tex
3758 \turnoffactive
3759 \beforedisplay
3760 $$ m = {N \sum x y - \sum x \sum y  \over
3761         N \sum x^2 - \left( \sum x \right)^2} $$
3762 \afterdisplay
3763 @end tex
3765 @noindent
3766 where 
3767 @texline @math{\sum x}
3768 @infoline @expr{sum(x)} 
3769 represents the sum of all the values of @expr{x}.  While there is an
3770 actual @code{sum} function in Calc, it's easier to sum a vector using a
3771 simple reduction.  First, let's compute the four different sums that
3772 this formula uses.
3774 @smallexample
3775 @group
3776 1:  41.63                 1:  98.0003
3777     .                         .
3779  r 1 V R +   t 3           r 1 2 V M ^ V R +   t 4
3781 @end group
3782 @end smallexample
3783 @noindent
3784 @smallexample
3785 @group
3786 1:  13.613                1:  33.36554
3787     .                         .
3789  r 2 V R +   t 5           r 1 r 2 V M * V R +   t 6
3790 @end group
3791 @end smallexample
3793 @ifinfo
3794 @noindent
3795 These are @samp{sum(x)}, @samp{sum(x^2)}, @samp{sum(y)}, and @samp{sum(x y)},
3796 respectively.  (We could have used @kbd{*} to compute @samp{sum(x^2)} and
3797 @samp{sum(x y)}.)
3798 @end ifinfo
3799 @tex
3800 \turnoffactive
3801 These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$,
3802 respectively.  (We could have used \kbd{*} to compute $\sum x^2$ and
3803 $\sum x y$.)
3804 @end tex
3806 Finally, we also need @expr{N}, the number of data points.  This is just
3807 the length of either of our lists.
3809 @smallexample
3810 @group
3811 1:  19
3812     .
3814  r 1 v l   t 7
3815 @end group
3816 @end smallexample
3818 @noindent
3819 (That's @kbd{v} followed by a lower-case @kbd{l}.)
3821 Now we grind through the formula:
3823 @smallexample
3824 @group
3825 1:  633.94526  2:  633.94526  1:  67.23607
3826     .          1:  566.70919      .
3827                    .
3829  r 7 r 6 *      r 3 r 5 *         -
3831 @end group
3832 @end smallexample
3833 @noindent
3834 @smallexample
3835 @group
3836 2:  67.23607   3:  67.23607   2:  67.23607   1:  0.52141679
3837 1:  1862.0057  2:  1862.0057  1:  128.9488       .
3838     .          1:  1733.0569      .
3839                    .
3841  r 7 r 4 *      r 3 2 ^           -              /   t 8
3842 @end group
3843 @end smallexample
3845 That gives us the slope @expr{m}.  The y-intercept @expr{b} can now
3846 be found with the simple formula,
3848 @ifinfo
3849 @example
3850 b = (sum(y) - m sum(x)) / N
3851 @end example
3852 @end ifinfo
3853 @tex
3854 \turnoffactive
3855 \beforedisplay
3856 $$ b = {\sum y - m \sum x \over N} $$
3857 \afterdisplay
3858 \vskip10pt
3859 @end tex
3861 @smallexample
3862 @group
3863 1:  13.613     2:  13.613     1:  -8.09358   1:  -0.425978
3864     .          1:  21.70658       .              .
3865                    .
3867    r 5            r 8 r 3 *       -              r 7 /   t 9
3868 @end group
3869 @end smallexample
3871 Let's ``plot'' this straight line approximation, 
3872 @texline @math{y \approx m x + b},
3873 @infoline @expr{m x + b}, 
3874 and compare it with the original data.
3876 @smallexample
3877 @group
3878 1:  [0.699, 0.735, ... ]    1:  [0.273, 0.309, ... ]
3879     .                           .
3881     r 1 r 8 *                   r 9 +    s 0
3882 @end group
3883 @end smallexample
3885 @noindent
3886 Notice that multiplying a vector by a constant, and adding a constant
3887 to a vector, can be done without mapping commands since these are
3888 common operations from vector algebra.  As far as Calc is concerned,
3889 we've just been doing geometry in 19-dimensional space!
3891 We can subtract this vector from our original @expr{y} vector to get
3892 a feel for the error of our fit.  Let's find the maximum error:
3894 @smallexample
3895 @group
3896 1:  [0.0387, 0.0112, ... ]   1:  [0.0387, 0.0112, ... ]   1:  0.0897
3897     .                            .                            .
3899     r 2 -                        V M A                        V R X
3900 @end group
3901 @end smallexample
3903 @noindent
3904 First we compute a vector of differences, then we take the absolute
3905 values of these differences, then we reduce the @code{max} function
3906 across the vector.  (The @code{max} function is on the two-key sequence
3907 @kbd{f x}; because it is so common to use @code{max} in a vector
3908 operation, the letters @kbd{X} and @kbd{N} are also accepted for
3909 @code{max} and @code{min} in this context.  In general, you answer
3910 the @kbd{V M} or @kbd{V R} prompt with the actual key sequence that
3911 invokes the function you want.  You could have typed @kbd{V R f x} or
3912 even @kbd{V R x max @key{RET}} if you had preferred.)
3914 If your system has the GNUPLOT program, you can see graphs of your
3915 data and your straight line to see how well they match.  (If you have
3916 GNUPLOT 3.0 or higher, the following instructions will work regardless
3917 of the kind of display you have.  Some GNUPLOT 2.0, non-X-windows systems
3918 may require additional steps to view the graphs.)
3920 Let's start by plotting the original data.  Recall the ``@var{x}'' and ``@var{y}''
3921 vectors onto the stack and press @kbd{g f}.  This ``fast'' graphing
3922 command does everything you need to do for simple, straightforward
3923 plotting of data.
3925 @smallexample
3926 @group
3927 2:  [1.34, 1.41, 1.49, ... ]
3928 1:  [0.234, 0.298, 0.402, ... ]
3929     .
3931     r 1 r 2    g f
3932 @end group
3933 @end smallexample
3935 If all goes well, you will shortly get a new window containing a graph
3936 of the data.  (If not, contact your GNUPLOT or Calc installer to find
3937 out what went wrong.)  In the X window system, this will be a separate
3938 graphics window.  For other kinds of displays, the default is to
3939 display the graph in Emacs itself using rough character graphics.
3940 Press @kbd{q} when you are done viewing the character graphics.
3942 Next, let's add the line we got from our least-squares fit.
3943 @ifinfo
3944 (If you are reading this tutorial on-line while running Calc, typing
3945 @kbd{g a} may cause the tutorial to disappear from its window and be
3946 replaced by a buffer named @samp{*Gnuplot Commands*}.  The tutorial
3947 will reappear when you terminate GNUPLOT by typing @kbd{g q}.) 
3948 @end ifinfo
3950 @smallexample
3951 @group
3952 2:  [1.34, 1.41, 1.49, ... ]
3953 1:  [0.273, 0.309, 0.351, ... ]
3954     .
3956     @key{DEL} r 0    g a  g p
3957 @end group
3958 @end smallexample
3960 It's not very useful to get symbols to mark the data points on this
3961 second curve; you can type @kbd{g S g p} to remove them.  Type @kbd{g q}
3962 when you are done to remove the X graphics window and terminate GNUPLOT.
3964 (@bullet{}) @strong{Exercise 2.}  An earlier exercise showed how to do
3965 least squares fitting to a general system of equations.  Our 19 data
3966 points are really 19 equations of the form @expr{y_i = m x_i + b} for
3967 different pairs of @expr{(x_i,y_i)}.  Use the matrix-transpose method
3968 to solve for @expr{m} and @expr{b}, duplicating the above result.
3969 @xref{List Answer 2, 2}. (@bullet{})
3971 @cindex Geometric mean
3972 (@bullet{}) @strong{Exercise 3.}  If the input data do not form a
3973 rectangle, you can use @w{@kbd{C-x * g}} (@code{calc-grab-region})
3974 to grab the data the way Emacs normally works with regions---it reads
3975 left-to-right, top-to-bottom, treating line breaks the same as spaces.
3976 Use this command to find the geometric mean of the following numbers.
3977 (The geometric mean is the @var{n}th root of the product of @var{n} numbers.)
3979 @example
3980 2.3  6  22  15.1  7
3981   15  14  7.5
3982   2.5
3983 @end example
3985 @noindent
3986 The @kbd{C-x * g} command accepts numbers separated by spaces or commas,
3987 with or without surrounding vector brackets.
3988 @xref{List Answer 3, 3}. (@bullet{})
3990 @ifinfo
3991 As another example, a theorem about binomial coefficients tells
3992 us that the alternating sum of binomial coefficients
3993 @var{n}-choose-0 minus @var{n}-choose-1 plus @var{n}-choose-2, and so
3994 on up to @var{n}-choose-@var{n},
3995 always comes out to zero.  Let's verify this
3996 for @expr{n=6}.
3997 @end ifinfo
3998 @tex
3999 As another example, a theorem about binomial coefficients tells
4000 us that the alternating sum of binomial coefficients
4001 ${n \choose 0} - {n \choose 1} + {n \choose 2} - \cdots \pm {n \choose n}$
4002 always comes out to zero.  Let's verify this
4003 for \cite{n=6}.
4004 @end tex
4006 @smallexample
4007 @group
4008 1:  [1, 2, 3, 4, 5, 6, 7]     1:  [0, 1, 2, 3, 4, 5, 6]
4009     .                             .
4011     v x 7 @key{RET}                     1 -
4013 @end group
4014 @end smallexample
4015 @noindent
4016 @smallexample
4017 @group
4018 1:  [1, -6, 15, -20, 15, -6, 1]          1:  0
4019     .                                        .
4021     V M ' (-1)^$ choose(6,$) @key{RET}             V R +
4022 @end group
4023 @end smallexample
4025 The @kbd{V M '} command prompts you to enter any algebraic expression
4026 to define the function to map over the vector.  The symbol @samp{$}
4027 inside this expression represents the argument to the function.
4028 The Calculator applies this formula to each element of the vector,
4029 substituting each element's value for the @samp{$} sign(s) in turn.
4031 To define a two-argument function, use @samp{$$} for the first
4032 argument and @samp{$} for the second:  @kbd{V M ' $$-$ @key{RET}} is
4033 equivalent to @kbd{V M -}.  This is analogous to regular algebraic
4034 entry, where @samp{$$} would refer to the next-to-top stack entry
4035 and @samp{$} would refer to the top stack entry, and @kbd{' $$-$ @key{RET}}
4036 would act exactly like @kbd{-}.
4038 Notice that the @kbd{V M '} command has recorded two things in the
4039 trail:  The result, as usual, and also a funny-looking thing marked
4040 @samp{oper} that represents the operator function you typed in.
4041 The function is enclosed in @samp{< >} brackets, and the argument is
4042 denoted by a @samp{#} sign.  If there were several arguments, they
4043 would be shown as @samp{#1}, @samp{#2}, and so on.  (For example,
4044 @kbd{V M ' $$-$} will put the function @samp{<#1 - #2>} on the
4045 trail.)  This object is a ``nameless function''; you can use nameless
4046 @w{@samp{< >}} notation to answer the @kbd{V M '} prompt if you like.
4047 Nameless function notation has the interesting, occasionally useful
4048 property that a nameless function is not actually evaluated until
4049 it is used.  For example, @kbd{V M ' $+random(2.0)} evaluates
4050 @samp{random(2.0)} once and adds that random number to all elements
4051 of the vector, but @kbd{V M ' <#+random(2.0)>} evaluates the
4052 @samp{random(2.0)} separately for each vector element.
4054 Another group of operators that are often useful with @kbd{V M} are
4055 the relational operators:  @kbd{a =}, for example, compares two numbers
4056 and gives the result 1 if they are equal, or 0 if not.  Similarly,
4057 @w{@kbd{a <}} checks for one number being less than another.
4059 Other useful vector operations include @kbd{v v}, to reverse a
4060 vector end-for-end; @kbd{V S}, to sort the elements of a vector
4061 into increasing order; and @kbd{v r} and @w{@kbd{v c}}, to extract
4062 one row or column of a matrix, or (in both cases) to extract one
4063 element of a plain vector.  With a negative argument, @kbd{v r}
4064 and @kbd{v c} instead delete one row, column, or vector element.
4066 @cindex Divisor functions
4067 (@bullet{}) @strong{Exercise 4.}  The @expr{k}th @dfn{divisor function}
4068 @tex
4069 $\sigma_k(n)$
4070 @end tex
4071 is the sum of the @expr{k}th powers of all the divisors of an
4072 integer @expr{n}.  Figure out a method for computing the divisor
4073 function for reasonably small values of @expr{n}.  As a test,
4074 the 0th and 1st divisor functions of 30 are 8 and 72, respectively.
4075 @xref{List Answer 4, 4}. (@bullet{})
4077 @cindex Square-free numbers
4078 @cindex Duplicate values in a list
4079 (@bullet{}) @strong{Exercise 5.}  The @kbd{k f} command produces a
4080 list of prime factors for a number.  Sometimes it is important to
4081 know that a number is @dfn{square-free}, i.e., that no prime occurs
4082 more than once in its list of prime factors.  Find a sequence of
4083 keystrokes to tell if a number is square-free; your method should
4084 leave 1 on the stack if it is, or 0 if it isn't.
4085 @xref{List Answer 5, 5}. (@bullet{})
4087 @cindex Triangular lists
4088 (@bullet{}) @strong{Exercise 6.}  Build a list of lists that looks
4089 like the following diagram.  (You may wish to use the @kbd{v /}
4090 command to enable multi-line display of vectors.)
4092 @smallexample
4093 @group
4094 1:  [ [1],
4095       [1, 2],
4096       [1, 2, 3],
4097       [1, 2, 3, 4],
4098       [1, 2, 3, 4, 5],
4099       [1, 2, 3, 4, 5, 6] ]
4100 @end group
4101 @end smallexample
4103 @noindent
4104 @xref{List Answer 6, 6}. (@bullet{})
4106 (@bullet{}) @strong{Exercise 7.}  Build the following list of lists.
4108 @smallexample
4109 @group
4110 1:  [ [0],
4111       [1, 2],
4112       [3, 4, 5],
4113       [6, 7, 8, 9],
4114       [10, 11, 12, 13, 14],
4115       [15, 16, 17, 18, 19, 20] ]
4116 @end group
4117 @end smallexample
4119 @noindent
4120 @xref{List Answer 7, 7}. (@bullet{})
4122 @cindex Maximizing a function over a list of values
4123 @c [fix-ref Numerical Solutions]
4124 (@bullet{}) @strong{Exercise 8.}  Compute a list of values of Bessel's
4125 @texline @math{J_1(x)}
4126 @infoline @expr{J1} 
4127 function @samp{besJ(1,x)} for @expr{x} from 0 to 5 in steps of 0.25.
4128 Find the value of @expr{x} (from among the above set of values) for
4129 which @samp{besJ(1,x)} is a maximum.  Use an ``automatic'' method,
4130 i.e., just reading along the list by hand to find the largest value
4131 is not allowed!  (There is an @kbd{a X} command which does this kind
4132 of thing automatically; @pxref{Numerical Solutions}.)
4133 @xref{List Answer 8, 8}. (@bullet{})
4135 @cindex Digits, vectors of
4136 (@bullet{}) @strong{Exercise 9.}  You are given an integer in the range
4137 @texline @math{0 \le N < 10^m}
4138 @infoline @expr{0 <= N < 10^m} 
4139 for @expr{m=12} (i.e., an integer of less than
4140 twelve digits).  Convert this integer into a vector of @expr{m}
4141 digits, each in the range from 0 to 9.  In vector-of-digits notation,
4142 add one to this integer to produce a vector of @expr{m+1} digits
4143 (since there could be a carry out of the most significant digit).
4144 Convert this vector back into a regular integer.  A good integer
4145 to try is 25129925999.  @xref{List Answer 9, 9}. (@bullet{})
4147 (@bullet{}) @strong{Exercise 10.}  Your friend Joe tried to use
4148 @kbd{V R a =} to test if all numbers in a list were equal.  What
4149 happened?  How would you do this test?  @xref{List Answer 10, 10}. (@bullet{})
4151 (@bullet{}) @strong{Exercise 11.}  The area of a circle of radius one
4152 is @cpi{}.  The area of the 
4153 @texline @math{2\times2}
4154 @infoline 2x2
4155 square that encloses that circle is 4.  So if we throw @var{n} darts at
4156 random points in the square, about @cpiover{4} of them will land inside
4157 the circle.  This gives us an entertaining way to estimate the value of 
4158 @cpi{}.  The @w{@kbd{k r}}
4159 command picks a random number between zero and the value on the stack.
4160 We could get a random floating-point number between @mathit{-1} and 1 by typing
4161 @w{@kbd{2.0 k r 1 -}}.  Build a vector of 100 random @expr{(x,y)} points in
4162 this square, then use vector mapping and reduction to count how many
4163 points lie inside the unit circle.  Hint:  Use the @kbd{v b} command.
4164 @xref{List Answer 11, 11}. (@bullet{})
4166 @cindex Matchstick problem
4167 (@bullet{}) @strong{Exercise 12.}  The @dfn{matchstick problem} provides
4168 another way to calculate @cpi{}.  Say you have an infinite field
4169 of vertical lines with a spacing of one inch.  Toss a one-inch matchstick
4170 onto the field.  The probability that the matchstick will land crossing
4171 a line turns out to be 
4172 @texline @math{2/\pi}.
4173 @infoline @expr{2/pi}.  
4174 Toss 100 matchsticks to estimate @cpi{}.  (If you want still more fun,
4175 the probability that the GCD (@w{@kbd{k g}}) of two large integers is
4176 one turns out to be 
4177 @texline @math{6/\pi^2}.
4178 @infoline @expr{6/pi^2}.
4179 That provides yet another way to estimate @cpi{}.)
4180 @xref{List Answer 12, 12}. (@bullet{})
4182 (@bullet{}) @strong{Exercise 13.}  An algebraic entry of a string in
4183 double-quote marks, @samp{"hello"}, creates a vector of the numerical
4184 (ASCII) codes of the characters (here, @expr{[104, 101, 108, 108, 111]}).
4185 Sometimes it is convenient to compute a @dfn{hash code} of a string,
4186 which is just an integer that represents the value of that string.
4187 Two equal strings have the same hash code; two different strings
4188 @dfn{probably} have different hash codes.  (For example, Calc has
4189 over 400 function names, but Emacs can quickly find the definition for
4190 any given name because it has sorted the functions into ``buckets'' by
4191 their hash codes.  Sometimes a few names will hash into the same bucket,
4192 but it is easier to search among a few names than among all the names.)
4193 One popular hash function is computed as follows:  First set @expr{h = 0}.
4194 Then, for each character from the string in turn, set @expr{h = 3h + c_i}
4195 where @expr{c_i} is the character's ASCII code.  If we have 511 buckets,
4196 we then take the hash code modulo 511 to get the bucket number.  Develop a
4197 simple command or commands for converting string vectors into hash codes.
4198 The hash code for @samp{"Testing, 1, 2, 3"} is 1960915098, which modulo
4199 511 is 121.  @xref{List Answer 13, 13}. (@bullet{})
4201 (@bullet{}) @strong{Exercise 14.}  The @kbd{H V R} and @kbd{H V U}
4202 commands do nested function evaluations.  @kbd{H V U} takes a starting
4203 value and a number of steps @var{n} from the stack; it then applies the
4204 function you give to the starting value 0, 1, 2, up to @var{n} times
4205 and returns a vector of the results.  Use this command to create a
4206 ``random walk'' of 50 steps.  Start with the two-dimensional point
4207 @expr{(0,0)}; then take one step a random distance between @mathit{-1} and 1
4208 in both @expr{x} and @expr{y}; then take another step, and so on.  Use the
4209 @kbd{g f} command to display this random walk.  Now modify your random
4210 walk to walk a unit distance, but in a random direction, at each step.
4211 (Hint:  The @code{sincos} function returns a vector of the cosine and
4212 sine of an angle.)  @xref{List Answer 14, 14}. (@bullet{})
4214 @node Types Tutorial, Algebra Tutorial, Vector/Matrix Tutorial, Tutorial
4215 @section Types Tutorial
4217 @noindent
4218 Calc understands a variety of data types as well as simple numbers.
4219 In this section, we'll experiment with each of these types in turn.
4221 The numbers we've been using so far have mainly been either @dfn{integers}
4222 or @dfn{floats}.  We saw that floats are usually a good approximation to
4223 the mathematical concept of real numbers, but they are only approximations
4224 and are susceptible to roundoff error.  Calc also supports @dfn{fractions},
4225 which can exactly represent any rational number.
4227 @smallexample
4228 @group
4229 1:  3628800    2:  3628800    1:  518400:7   1:  518414:7   1:  7:518414
4230     .          1:  49             .              .              .
4231                    .
4233     10 !           49 @key{RET}         :              2 +            &
4234 @end group
4235 @end smallexample
4237 @noindent
4238 The @kbd{:} command divides two integers to get a fraction; @kbd{/}
4239 would normally divide integers to get a floating-point result.
4240 Notice we had to type @key{RET} between the @kbd{49} and the @kbd{:}
4241 since the @kbd{:} would otherwise be interpreted as part of a
4242 fraction beginning with 49.
4244 You can convert between floating-point and fractional format using
4245 @kbd{c f} and @kbd{c F}:
4247 @smallexample
4248 @group
4249 1:  1.35027217629e-5    1:  7:518414
4250     .                       .
4252     c f                     c F
4253 @end group
4254 @end smallexample
4256 The @kbd{c F} command replaces a floating-point number with the
4257 ``simplest'' fraction whose floating-point representation is the
4258 same, to within the current precision.
4260 @smallexample
4261 @group
4262 1:  3.14159265359   1:  1146408:364913   1:  3.1416   1:  355:113
4263     .                   .                    .            .
4265     P                   c F      @key{DEL}       p 5 @key{RET} P      c F
4266 @end group
4267 @end smallexample
4269 (@bullet{}) @strong{Exercise 1.}  A calculation has produced the
4270 result 1.26508260337.  You suspect it is the square root of the
4271 product of @cpi{} and some rational number.  Is it?  (Be sure
4272 to allow for roundoff error!)  @xref{Types Answer 1, 1}. (@bullet{})
4274 @dfn{Complex numbers} can be stored in both rectangular and polar form.
4276 @smallexample
4277 @group
4278 1:  -9     1:  (0, 3)    1:  (3; 90.)   1:  (6; 90.)   1:  (2.4495; 45.)
4279     .          .             .              .              .
4281     9 n        Q             c p            2 *            Q
4282 @end group
4283 @end smallexample
4285 @noindent
4286 The square root of @mathit{-9} is by default rendered in rectangular form
4287 (@w{@expr{0 + 3i}}), but we can convert it to polar form (3 with a
4288 phase angle of 90 degrees).  All the usual arithmetic and scientific
4289 operations are defined on both types of complex numbers.
4291 Another generalized kind of number is @dfn{infinity}.  Infinity
4292 isn't really a number, but it can sometimes be treated like one.
4293 Calc uses the symbol @code{inf} to represent positive infinity,
4294 i.e., a value greater than any real number.  Naturally, you can
4295 also write @samp{-inf} for minus infinity, a value less than any
4296 real number.  The word @code{inf} can only be input using
4297 algebraic entry.
4299 @smallexample
4300 @group
4301 2:  inf        2:  -inf       2:  -inf       2:  -inf       1:  nan
4302 1:  -17        1:  -inf       1:  -inf       1:  inf            .
4303     .              .              .              .
4305 ' inf @key{RET} 17 n     *  @key{RET}         72 +           A              +
4306 @end group
4307 @end smallexample
4309 @noindent
4310 Since infinity is infinitely large, multiplying it by any finite
4311 number (like @mathit{-17}) has no effect, except that since @mathit{-17}
4312 is negative, it changes a plus infinity to a minus infinity.
4313 (``A huge positive number, multiplied by @mathit{-17}, yields a huge
4314 negative number.'')  Adding any finite number to infinity also
4315 leaves it unchanged.  Taking an absolute value gives us plus
4316 infinity again.  Finally, we add this plus infinity to the minus
4317 infinity we had earlier.  If you work it out, you might expect
4318 the answer to be @mathit{-72} for this.  But the 72 has been completely
4319 lost next to the infinities; by the time we compute @w{@samp{inf - inf}}
4320 the finite difference between them, if any, is undetectable.
4321 So we say the result is @dfn{indeterminate}, which Calc writes
4322 with the symbol @code{nan} (for Not A Number).
4324 Dividing by zero is normally treated as an error, but you can get
4325 Calc to write an answer in terms of infinity by pressing @kbd{m i}
4326 to turn on Infinite mode.
4328 @smallexample
4329 @group
4330 3:  nan        2:  nan        2:  nan        2:  nan        1:  nan
4331 2:  1          1:  1 / 0      1:  uinf       1:  uinf           .
4332 1:  0              .              .              .
4333     .
4335   1 @key{RET} 0          /       m i    U /            17 n *         +
4336 @end group
4337 @end smallexample
4339 @noindent
4340 Dividing by zero normally is left unevaluated, but after @kbd{m i}
4341 it instead gives an infinite result.  The answer is actually
4342 @code{uinf}, ``undirected infinity.''  If you look at a graph of
4343 @expr{1 / x} around @w{@expr{x = 0}}, you'll see that it goes toward
4344 plus infinity as you approach zero from above, but toward minus
4345 infinity as you approach from below.  Since we said only @expr{1 / 0},
4346 Calc knows that the answer is infinite but not in which direction.
4347 That's what @code{uinf} means.  Notice that multiplying @code{uinf}
4348 by a negative number still leaves plain @code{uinf}; there's no
4349 point in saying @samp{-uinf} because the sign of @code{uinf} is
4350 unknown anyway.  Finally, we add @code{uinf} to our @code{nan},
4351 yielding @code{nan} again.  It's easy to see that, because
4352 @code{nan} means ``totally unknown'' while @code{uinf} means
4353 ``unknown sign but known to be infinite,'' the more mysterious
4354 @code{nan} wins out when it is combined with @code{uinf}, or, for
4355 that matter, with anything else.
4357 (@bullet{}) @strong{Exercise 2.}  Predict what Calc will answer
4358 for each of these formulas:  @samp{inf / inf}, @samp{exp(inf)},
4359 @samp{exp(-inf)}, @samp{sqrt(-inf)}, @samp{sqrt(uinf)},
4360 @samp{abs(uinf)}, @samp{ln(0)}.
4361 @xref{Types Answer 2, 2}. (@bullet{})
4363 (@bullet{}) @strong{Exercise 3.}  We saw that @samp{inf - inf = nan},
4364 which stands for an unknown value.  Can @code{nan} stand for
4365 a complex number?  Can it stand for infinity?
4366 @xref{Types Answer 3, 3}. (@bullet{})
4368 @dfn{HMS forms} represent a value in terms of hours, minutes, and
4369 seconds.
4371 @smallexample
4372 @group
4373 1:  2@@ 30' 0"     1:  3@@ 30' 0"     2:  3@@ 30' 0"     1:  2.
4374     .                 .             1:  1@@ 45' 0."        .
4375                                         .
4377   2@@ 30' @key{RET}          1 +               @key{RET} 2 /           /
4378 @end group
4379 @end smallexample
4381 HMS forms can also be used to hold angles in degrees, minutes, and
4382 seconds.
4384 @smallexample
4385 @group
4386 1:  0.5        1:  26.56505   1:  26@@ 33' 54.18"    1:  0.44721
4387     .              .              .                     .
4389     0.5            I T            c h                   S
4390 @end group
4391 @end smallexample
4393 @noindent
4394 First we convert the inverse tangent of 0.5 to degrees-minutes-seconds
4395 form, then we take the sine of that angle.  Note that the trigonometric
4396 functions will accept HMS forms directly as input.
4398 @cindex Beatles
4399 (@bullet{}) @strong{Exercise 4.}  The Beatles' @emph{Abbey Road} is
4400 47 minutes and 26 seconds long, and contains 17 songs.  What is the
4401 average length of a song on @emph{Abbey Road}?  If the Extended Disco
4402 Version of @emph{Abbey Road} added 20 seconds to the length of each
4403 song, how long would the album be?  @xref{Types Answer 4, 4}. (@bullet{})
4405 A @dfn{date form} represents a date, or a date and time.  Dates must
4406 be entered using algebraic entry.  Date forms are surrounded by
4407 @samp{< >} symbols; most standard formats for dates are recognized.
4409 @smallexample
4410 @group
4411 2:  <Sun Jan 13, 1991>                    1:  2.25
4412 1:  <6:00pm Thu Jan 10, 1991>                 .
4413     .
4415 ' <13 Jan 1991>, <1/10/91, 6pm> @key{RET}           -
4416 @end group
4417 @end smallexample
4419 @noindent
4420 In this example, we enter two dates, then subtract to find the
4421 number of days between them.  It is also possible to add an
4422 HMS form or a number (of days) to a date form to get another
4423 date form.
4425 @smallexample
4426 @group
4427 1:  <4:45:59pm Mon Jan 14, 1991>     1:  <2:50:59am Thu Jan 17, 1991>
4428     .                                    .
4430     t N                                  2 + 10@@ 5' +
4431 @end group
4432 @end smallexample
4434 @c [fix-ref Date Arithmetic]
4435 @noindent
4436 The @kbd{t N} (``now'') command pushes the current date and time on the
4437 stack; then we add two days, ten hours and five minutes to the date and
4438 time.  Other date-and-time related commands include @kbd{t J}, which
4439 does Julian day conversions, @kbd{t W}, which finds the beginning of
4440 the week in which a date form lies, and @kbd{t I}, which increments a
4441 date by one or several months.  @xref{Date Arithmetic}, for more.
4443 (@bullet{}) @strong{Exercise 5.}  How many days until the next
4444 Friday the 13th?  @xref{Types Answer 5, 5}. (@bullet{})
4446 (@bullet{}) @strong{Exercise 6.}  How many leap years will there be
4447 between now and the year 10001 A.D.?  @xref{Types Answer 6, 6}. (@bullet{})
4449 @cindex Slope and angle of a line
4450 @cindex Angle and slope of a line
4451 An @dfn{error form} represents a mean value with an attached standard
4452 deviation, or error estimate.  Suppose our measurements indicate that
4453 a certain telephone pole is about 30 meters away, with an estimated
4454 error of 1 meter, and 8 meters tall, with an estimated error of 0.2
4455 meters.  What is the slope of a line from here to the top of the
4456 pole, and what is the equivalent angle in degrees?
4458 @smallexample
4459 @group
4460 1:  8 +/- 0.2    2:  8 +/- 0.2   1:  0.266 +/- 0.011   1:  14.93 +/- 0.594
4461     .            1:  30 +/- 1        .                     .
4462                      .
4464     8 p .2 @key{RET}       30 p 1          /                     I T
4465 @end group
4466 @end smallexample
4468 @noindent
4469 This means that the angle is about 15 degrees, and, assuming our
4470 original error estimates were valid standard deviations, there is about
4471 a 60% chance that the result is correct within 0.59 degrees.
4473 @cindex Torus, volume of
4474 (@bullet{}) @strong{Exercise 7.}  The volume of a torus (a donut shape) is
4475 @texline @math{2 \pi^2 R r^2}
4476 @infoline @w{@expr{2 pi^2 R r^2}} 
4477 where @expr{R} is the radius of the circle that
4478 defines the center of the tube and @expr{r} is the radius of the tube
4479 itself.  Suppose @expr{R} is 20 cm and @expr{r} is 4 cm, each known to
4480 within 5 percent.  What is the volume and the relative uncertainty of
4481 the volume?  @xref{Types Answer 7, 7}. (@bullet{})
4483 An @dfn{interval form} represents a range of values.  While an
4484 error form is best for making statistical estimates, intervals give
4485 you exact bounds on an answer.  Suppose we additionally know that
4486 our telephone pole is definitely between 28 and 31 meters away,
4487 and that it is between 7.7 and 8.1 meters tall.
4489 @smallexample
4490 @group
4491 1:  [7.7 .. 8.1]  2:  [7.7 .. 8.1]  1:  [0.24 .. 0.28]  1:  [13.9 .. 16.1]
4492     .             1:  [28 .. 31]        .                   .
4493                       .
4495   [ 7.7 .. 8.1 ]    [ 28 .. 31 ]        /                   I T
4496 @end group
4497 @end smallexample
4499 @noindent
4500 If our bounds were correct, then the angle to the top of the pole
4501 is sure to lie in the range shown.
4503 The square brackets around these intervals indicate that the endpoints
4504 themselves are allowable values.  In other words, the distance to the
4505 telephone pole is between 28 and 31, @emph{inclusive}.  You can also
4506 make an interval that is exclusive of its endpoints by writing
4507 parentheses instead of square brackets.  You can even make an interval
4508 which is inclusive (``closed'') on one end and exclusive (``open'') on
4509 the other.
4511 @smallexample
4512 @group
4513 1:  [1 .. 10)    1:  (0.1 .. 1]   2:  (0.1 .. 1]   1:  (0.2 .. 3)
4514     .                .            1:  [2 .. 3)         .
4515                                       .
4517   [ 1 .. 10 )        &              [ 2 .. 3 )         *
4518 @end group
4519 @end smallexample
4521 @noindent
4522 The Calculator automatically keeps track of which end values should
4523 be open and which should be closed.  You can also make infinite or
4524 semi-infinite intervals by using @samp{-inf} or @samp{inf} for one
4525 or both endpoints.
4527 (@bullet{}) @strong{Exercise 8.}  What answer would you expect from
4528 @samp{@w{1 /} @w{(0 .. 10)}}?  What about @samp{@w{1 /} @w{(-10 .. 0)}}?  What
4529 about @samp{@w{1 /} @w{[0 .. 10]}} (where the interval actually includes
4530 zero)?  What about @samp{@w{1 /} @w{(-10 .. 10)}}?
4531 @xref{Types Answer 8, 8}. (@bullet{})
4533 (@bullet{}) @strong{Exercise 9.}  Two easy ways of squaring a number
4534 are @kbd{@key{RET} *} and @w{@kbd{2 ^}}.  Normally these produce the same
4535 answer.  Would you expect this still to hold true for interval forms?
4536 If not, which of these will result in a larger interval?
4537 @xref{Types Answer 9, 9}. (@bullet{})
4539 A @dfn{modulo form} is used for performing arithmetic modulo @var{m}.
4540 For example, arithmetic involving time is generally done modulo 12
4541 or 24 hours.
4543 @smallexample
4544 @group
4545 1:  17 mod 24    1:  3 mod 24     1:  21 mod 24    1:  9 mod 24
4546     .                .                .                .
4548     17 M 24 @key{RET}      10 +             n                5 /
4549 @end group
4550 @end smallexample
4552 @noindent
4553 In this last step, Calc has divided by 5 modulo 24; i.e., it has found a
4554 new number which, when multiplied by 5 modulo 24, produces the original
4555 number, 21.  If @var{m} is prime and the divisor is not a multiple of
4556 @var{m}, it is always possible to find such a number.  For non-prime
4557 @var{m} like 24, it is only sometimes possible. 
4559 @smallexample
4560 @group
4561 1:  10 mod 24    1:  16 mod 24    1:  1000000...   1:  16
4562     .                .                .                .
4564     10 M 24 @key{RET}      100 ^            10 @key{RET} 100 ^     24 %
4565 @end group
4566 @end smallexample
4568 @noindent
4569 These two calculations get the same answer, but the first one is
4570 much more efficient because it avoids the huge intermediate value
4571 that arises in the second one.
4573 @cindex Fermat, primality test of
4574 (@bullet{}) @strong{Exercise 10.}  A theorem of Pierre de Fermat
4575 says that 
4576 @texline @w{@math{x^{n-1} \bmod n = 1}}
4577 @infoline @expr{x^(n-1) mod n = 1}
4578 if @expr{n} is a prime number and @expr{x} is an integer less than
4579 @expr{n}.  If @expr{n} is @emph{not} a prime number, this will
4580 @emph{not} be true for most values of @expr{x}.  Thus we can test
4581 informally if a number is prime by trying this formula for several
4582 values of @expr{x}.  Use this test to tell whether the following numbers
4583 are prime: 811749613, 15485863.  @xref{Types Answer 10, 10}. (@bullet{})
4585 It is possible to use HMS forms as parts of error forms, intervals,
4586 modulo forms, or as the phase part of a polar complex number.
4587 For example, the @code{calc-time} command pushes the current time
4588 of day on the stack as an HMS/modulo form.
4590 @smallexample
4591 @group
4592 1:  17@@ 34' 45" mod 24@@ 0' 0"     1:  6@@ 22' 15" mod 24@@ 0' 0"
4593     .                                 .
4595     x time @key{RET}                        n
4596 @end group
4597 @end smallexample
4599 @noindent
4600 This calculation tells me it is six hours and 22 minutes until midnight.
4602 (@bullet{}) @strong{Exercise 11.}  A rule of thumb is that one year
4603 is about 
4604 @texline @math{\pi \times 10^7}
4605 @infoline @w{@expr{pi * 10^7}} 
4606 seconds.  What time will it be that many seconds from right now?
4607 @xref{Types Answer 11, 11}. (@bullet{})
4609 (@bullet{}) @strong{Exercise 12.}  You are preparing to order packaging
4610 for the CD release of the Extended Disco Version of @emph{Abbey Road}.
4611 You are told that the songs will actually be anywhere from 20 to 60
4612 seconds longer than the originals.  One CD can hold about 75 minutes
4613 of music.  Should you order single or double packages?
4614 @xref{Types Answer 12, 12}. (@bullet{})
4616 Another kind of data the Calculator can manipulate is numbers with
4617 @dfn{units}.  This isn't strictly a new data type; it's simply an
4618 application of algebraic expressions, where we use variables with
4619 suggestive names like @samp{cm} and @samp{in} to represent units
4620 like centimeters and inches.
4622 @smallexample
4623 @group
4624 1:  2 in        1:  5.08 cm      1:  0.027778 fath   1:  0.0508 m
4625     .               .                .                   .
4627     ' 2in @key{RET}       u c cm @key{RET}       u c fath @key{RET}        u b
4628 @end group
4629 @end smallexample
4631 @noindent
4632 We enter the quantity ``2 inches'' (actually an algebraic expression
4633 which means two times the variable @samp{in}), then we convert it
4634 first to centimeters, then to fathoms, then finally to ``base'' units,
4635 which in this case means meters.
4637 @smallexample
4638 @group
4639 1:  9 acre     1:  3 sqrt(acre)   1:  190.84 m   1:  190.84 m + 30 cm
4640     .              .                  .              .
4642  ' 9 acre @key{RET}      Q                  u s            ' $+30 cm @key{RET}
4644 @end group
4645 @end smallexample
4646 @noindent
4647 @smallexample
4648 @group
4649 1:  191.14 m     1:  36536.3046 m^2    1:  365363046 cm^2
4650     .                .                     .
4652     u s              2 ^                   u c cgs
4653 @end group
4654 @end smallexample
4656 @noindent
4657 Since units expressions are really just formulas, taking the square
4658 root of @samp{acre} is undefined.  After all, @code{acre} might be an
4659 algebraic variable that you will someday assign a value.  We use the
4660 ``units-simplify'' command to simplify the expression with variables
4661 being interpreted as unit names.
4663 In the final step, we have converted not to a particular unit, but to a
4664 units system.  The ``cgs'' system uses centimeters instead of meters
4665 as its standard unit of length.
4667 There is a wide variety of units defined in the Calculator.
4669 @smallexample
4670 @group
4671 1:  55 mph     1:  88.5139 kph   1:   88.5139 km / hr   1:  8.201407e-8 c
4672     .              .                  .                     .
4674  ' 55 mph @key{RET}      u c kph @key{RET}        u c km/hr @key{RET}         u c c @key{RET}
4675 @end group
4676 @end smallexample
4678 @noindent
4679 We express a speed first in miles per hour, then in kilometers per
4680 hour, then again using a slightly more explicit notation, then
4681 finally in terms of fractions of the speed of light.
4683 Temperature conversions are a bit more tricky.  There are two ways to
4684 interpret ``20 degrees Fahrenheit''---it could mean an actual
4685 temperature, or it could mean a change in temperature.  For normal
4686 units there is no difference, but temperature units have an offset
4687 as well as a scale factor and so there must be two explicit commands
4688 for them.
4690 @smallexample
4691 @group
4692 1:  20 degF       1:  11.1111 degC     1:  -20:3 degC    1:  -6.666 degC
4693     .                 .                    .                 .
4695   ' 20 degF @key{RET}       u c degC @key{RET}         U u t degC @key{RET}    c f
4696 @end group
4697 @end smallexample
4699 @noindent
4700 First we convert a change of 20 degrees Fahrenheit into an equivalent
4701 change in degrees Celsius (or Centigrade).  Then, we convert the
4702 absolute temperature 20 degrees Fahrenheit into Celsius.  Since
4703 this comes out as an exact fraction, we then convert to floating-point
4704 for easier comparison with the other result.
4706 For simple unit conversions, you can put a plain number on the stack.
4707 Then @kbd{u c} and @kbd{u t} will prompt for both old and new units.
4708 When you use this method, you're responsible for remembering which
4709 numbers are in which units:
4711 @smallexample
4712 @group
4713 1:  55         1:  88.5139              1:  8.201407e-8
4714     .              .                        .
4716     55             u c mph @key{RET} kph @key{RET}      u c km/hr @key{RET} c @key{RET}
4717 @end group
4718 @end smallexample
4720 To see a complete list of built-in units, type @kbd{u v}.  Press
4721 @w{@kbd{C-x * c}} again to re-enter the Calculator when you're done looking
4722 at the units table.
4724 (@bullet{}) @strong{Exercise 13.}  How many seconds are there really
4725 in a year?  @xref{Types Answer 13, 13}. (@bullet{})
4727 @cindex Speed of light
4728 (@bullet{}) @strong{Exercise 14.}  Supercomputer designs are limited by
4729 the speed of light (and of electricity, which is nearly as fast).
4730 Suppose a computer has a 4.1 ns (nanosecond) clock cycle, and its
4731 cabinet is one meter across.  Is speed of light going to be a
4732 significant factor in its design?  @xref{Types Answer 14, 14}. (@bullet{})
4734 (@bullet{}) @strong{Exercise 15.}  Sam the Slug normally travels about
4735 five yards in an hour.  He has obtained a supply of Power Pills; each
4736 Power Pill he eats doubles his speed.  How many Power Pills can he
4737 swallow and still travel legally on most US highways?
4738 @xref{Types Answer 15, 15}. (@bullet{})
4740 @node Algebra Tutorial, Programming Tutorial, Types Tutorial, Tutorial
4741 @section Algebra and Calculus Tutorial
4743 @noindent
4744 This section shows how to use Calc's algebra facilities to solve
4745 equations, do simple calculus problems, and manipulate algebraic
4746 formulas.
4748 @menu
4749 * Basic Algebra Tutorial::
4750 * Rewrites Tutorial::
4751 @end menu
4753 @node Basic Algebra Tutorial, Rewrites Tutorial, Algebra Tutorial, Algebra Tutorial
4754 @subsection Basic Algebra
4756 @noindent
4757 If you enter a formula in Algebraic mode that refers to variables,
4758 the formula itself is pushed onto the stack.  You can manipulate
4759 formulas as regular data objects.
4761 @smallexample
4762 @group
4763 1:  2 x^2 - 6       1:  6 - 2 x^2       1:  (6 - 2 x^2) (3 x^2 + y)
4764     .                   .                   .
4766     ' 2x^2-6 @key{RET}        n                   ' 3x^2+y @key{RET} *
4767 @end group
4768 @end smallexample
4770 (@bullet{}) @strong{Exercise 1.}  Do @kbd{' x @key{RET} Q 2 ^} and
4771 @kbd{' x @key{RET} 2 ^ Q} both wind up with the same result (@samp{x})?
4772 Why or why not?  @xref{Algebra Answer 1, 1}. (@bullet{})
4774 There are also commands for doing common algebraic operations on
4775 formulas.  Continuing with the formula from the last example,
4777 @smallexample
4778 @group
4779 1:  18 x^2 + 6 y - 6 x^4 - 2 x^2 y    1:  (18 - 2 y) x^2 - 6 x^4 + 6 y
4780     .                                     .
4782     a x                                   a c x @key{RET}
4783 @end group
4784 @end smallexample
4786 @noindent
4787 First we ``expand'' using the distributive law, then we ``collect''
4788 terms involving like powers of @expr{x}.
4790 Let's find the value of this expression when @expr{x} is 2 and @expr{y}
4791 is one-half.
4793 @smallexample
4794 @group
4795 1:  17 x^2 - 6 x^4 + 3      1:  -25
4796     .                           .
4798     1:2 s l y @key{RET}               2 s l x @key{RET}
4799 @end group
4800 @end smallexample
4802 @noindent
4803 The @kbd{s l} command means ``let''; it takes a number from the top of
4804 the stack and temporarily assigns it as the value of the variable
4805 you specify.  It then evaluates (as if by the @kbd{=} key) the
4806 next expression on the stack.  After this command, the variable goes
4807 back to its original value, if any.
4809 (An earlier exercise in this tutorial involved storing a value in the
4810 variable @code{x}; if this value is still there, you will have to
4811 unstore it with @kbd{s u x @key{RET}} before the above example will work
4812 properly.)
4814 @cindex Maximum of a function using Calculus
4815 Let's find the maximum value of our original expression when @expr{y}
4816 is one-half and @expr{x} ranges over all possible values.  We can
4817 do this by taking the derivative with respect to @expr{x} and examining
4818 values of @expr{x} for which the derivative is zero.  If the second
4819 derivative of the function at that value of @expr{x} is negative,
4820 the function has a local maximum there.
4822 @smallexample
4823 @group
4824 1:  17 x^2 - 6 x^4 + 3      1:  34 x - 24 x^3
4825     .                           .
4827     U @key{DEL}  s 1                  a d x @key{RET}   s 2
4828 @end group
4829 @end smallexample
4831 @noindent
4832 Well, the derivative is clearly zero when @expr{x} is zero.  To find
4833 the other root(s), let's divide through by @expr{x} and then solve:
4835 @smallexample
4836 @group
4837 1:  (34 x - 24 x^3) / x    1:  34 x / x - 24 x^3 / x    1:  34 - 24 x^2
4838     .                          .                            .
4840     ' x @key{RET} /                  a x                          a s
4842 @end group
4843 @end smallexample
4844 @noindent
4845 @smallexample
4846 @group
4847 1:  34 - 24 x^2 = 0        1:  x = 1.19023
4848     .                          .
4850     0 a =  s 3                 a S x @key{RET}
4851 @end group
4852 @end smallexample
4854 @noindent
4855 Notice the use of @kbd{a s} to ``simplify'' the formula.  When the
4856 default algebraic simplifications don't do enough, you can use
4857 @kbd{a s} to tell Calc to spend more time on the job.
4859 Now we compute the second derivative and plug in our values of @expr{x}:
4861 @smallexample
4862 @group
4863 1:  1.19023        2:  1.19023         2:  1.19023
4864     .              1:  34 x - 24 x^3   1:  34 - 72 x^2
4865                        .                   .
4867     a .                r 2                 a d x @key{RET} s 4
4868 @end group
4869 @end smallexample
4871 @noindent
4872 (The @kbd{a .} command extracts just the righthand side of an equation.
4873 Another method would have been to use @kbd{v u} to unpack the equation
4874 @w{@samp{x = 1.19}} to @samp{x} and @samp{1.19}, then use @kbd{M-- M-2 @key{DEL}}
4875 to delete the @samp{x}.)
4877 @smallexample
4878 @group
4879 2:  34 - 72 x^2   1:  -68.         2:  34 - 72 x^2     1:  34
4880 1:  1.19023           .            1:  0                   .
4881     .                                  .
4883     @key{TAB}               s l x @key{RET}        U @key{DEL} 0             s l x @key{RET}
4884 @end group
4885 @end smallexample
4887 @noindent
4888 The first of these second derivatives is negative, so we know the function
4889 has a maximum value at @expr{x = 1.19023}.  (The function also has a
4890 local @emph{minimum} at @expr{x = 0}.)
4892 When we solved for @expr{x}, we got only one value even though
4893 @expr{34 - 24 x^2 = 0} is a quadratic equation that ought to have
4894 two solutions.  The reason is that @w{@kbd{a S}} normally returns a
4895 single ``principal'' solution.  If it needs to come up with an
4896 arbitrary sign (as occurs in the quadratic formula) it picks @expr{+}.
4897 If it needs an arbitrary integer, it picks zero.  We can get a full
4898 solution by pressing @kbd{H} (the Hyperbolic flag) before @kbd{a S}.
4900 @smallexample
4901 @group
4902 1:  34 - 24 x^2 = 0    1:  x = 1.19023 s1      1:  x = -1.19023
4903     .                      .                       .
4905     r 3                    H a S x @key{RET}  s 5        1 n  s l s1 @key{RET}
4906 @end group
4907 @end smallexample
4909 @noindent
4910 Calc has invented the variable @samp{s1} to represent an unknown sign;
4911 it is supposed to be either @mathit{+1} or @mathit{-1}.  Here we have used
4912 the ``let'' command to evaluate the expression when the sign is negative.
4913 If we plugged this into our second derivative we would get the same,
4914 negative, answer, so @expr{x = -1.19023} is also a maximum.
4916 To find the actual maximum value, we must plug our two values of @expr{x}
4917 into the original formula.
4919 @smallexample
4920 @group
4921 2:  17 x^2 - 6 x^4 + 3    1:  24.08333 s1^2 - 12.04166 s1^4 + 3
4922 1:  x = 1.19023 s1            .
4923     .
4925     r 1 r 5                   s l @key{RET}
4926 @end group
4927 @end smallexample
4929 @noindent
4930 (Here we see another way to use @kbd{s l}; if its input is an equation
4931 with a variable on the lefthand side, then @kbd{s l} treats the equation
4932 like an assignment to that variable if you don't give a variable name.)
4934 It's clear that this will have the same value for either sign of
4935 @code{s1}, but let's work it out anyway, just for the exercise:
4937 @smallexample
4938 @group
4939 2:  [-1, 1]              1:  [15.04166, 15.04166]
4940 1:  24.08333 s1^2 ...        .
4941     .
4943   [ 1 n , 1 ] @key{TAB}            V M $ @key{RET}
4944 @end group
4945 @end smallexample
4947 @noindent
4948 Here we have used a vector mapping operation to evaluate the function
4949 at several values of @samp{s1} at once.  @kbd{V M $} is like @kbd{V M '}
4950 except that it takes the formula from the top of the stack.  The
4951 formula is interpreted as a function to apply across the vector at the
4952 next-to-top stack level.  Since a formula on the stack can't contain
4953 @samp{$} signs, Calc assumes the variables in the formula stand for
4954 different arguments.  It prompts you for an @dfn{argument list}, giving
4955 the list of all variables in the formula in alphabetical order as the
4956 default list.  In this case the default is @samp{(s1)}, which is just
4957 what we want so we simply press @key{RET} at the prompt.
4959 If there had been several different values, we could have used
4960 @w{@kbd{V R X}} to find the global maximum.
4962 Calc has a built-in @kbd{a P} command that solves an equation using
4963 @w{@kbd{H a S}} and returns a vector of all the solutions.  It simply
4964 automates the job we just did by hand.  Applied to our original
4965 cubic polynomial, it would produce the vector of solutions
4966 @expr{[1.19023, -1.19023, 0]}.  (There is also an @kbd{a X} command
4967 which finds a local maximum of a function.  It uses a numerical search
4968 method rather than examining the derivatives, and thus requires you
4969 to provide some kind of initial guess to show it where to look.)
4971 (@bullet{}) @strong{Exercise 2.}  Given a vector of the roots of a
4972 polynomial (such as the output of an @kbd{a P} command), what
4973 sequence of commands would you use to reconstruct the original
4974 polynomial?  (The answer will be unique to within a constant
4975 multiple; choose the solution where the leading coefficient is one.)
4976 @xref{Algebra Answer 2, 2}. (@bullet{})
4978 The @kbd{m s} command enables Symbolic mode, in which formulas
4979 like @samp{sqrt(5)} that can't be evaluated exactly are left in
4980 symbolic form rather than giving a floating-point approximate answer.
4981 Fraction mode (@kbd{m f}) is also useful when doing algebra.
4983 @smallexample
4984 @group
4985 2:  34 x - 24 x^3        2:  34 x - 24 x^3
4986 1:  34 x - 24 x^3        1:  [sqrt(51) / 6, sqrt(51) / -6, 0]
4987     .                        .
4989     r 2  @key{RET}     m s  m f    a P x @key{RET}
4990 @end group
4991 @end smallexample
4993 One more mode that makes reading formulas easier is Big mode.
4995 @smallexample
4996 @group
4997                3
4998 2:  34 x - 24 x
5000       ____   ____
5001      V 51   V 51
5002 1:  [-----, -----, 0]
5003        6     -6
5005     .
5007     d B
5008 @end group
5009 @end smallexample
5011 Here things like powers, square roots, and quotients and fractions
5012 are displayed in a two-dimensional pictorial form.  Calc has other
5013 language modes as well, such as C mode, FORTRAN mode, @TeX{} mode
5014 and La@TeX{} mode.
5016 @smallexample
5017 @group
5018 2:  34*x - 24*pow(x, 3)               2:  34*x - 24*x**3
5019 1:  @{sqrt(51) / 6, sqrt(51) / -6, 0@}  1:  /sqrt(51) / 6, sqrt(51) / -6, 0/
5020     .                                     .
5022     d C                                   d F
5024 @end group
5025 @end smallexample
5026 @noindent
5027 @smallexample
5028 @group
5029 3:  34 x - 24 x^3
5030 2:  [@{\sqrt@{51@} \over 6@}, @{\sqrt@{51@} \over -6@}, 0]
5031 1:  @{2 \over 3@} \sqrt@{5@}
5032     .
5034     d T   ' 2 \sqrt@{5@} \over 3 @key{RET}
5035 @end group
5036 @end smallexample
5038 @noindent
5039 As you can see, language modes affect both entry and display of
5040 formulas.  They affect such things as the names used for built-in
5041 functions, the set of arithmetic operators and their precedences,
5042 and notations for vectors and matrices.
5044 Notice that @samp{sqrt(51)} may cause problems with older
5045 implementations of C and FORTRAN, which would require something more
5046 like @samp{sqrt(51.0)}.  It is always wise to check over the formulas
5047 produced by the various language modes to make sure they are fully
5048 correct.
5050 Type @kbd{m s}, @kbd{m f}, and @kbd{d N} to reset these modes.  (You
5051 may prefer to remain in Big mode, but all the examples in the tutorial
5052 are shown in normal mode.)
5054 @cindex Area under a curve
5055 What is the area under the portion of this curve from @expr{x = 1} to @expr{2}?
5056 This is simply the integral of the function:
5058 @smallexample
5059 @group
5060 1:  17 x^2 - 6 x^4 + 3     1:  5.6666 x^3 - 1.2 x^5 + 3 x
5061     .                          .
5063     r 1                        a i x
5064 @end group
5065 @end smallexample
5067 @noindent
5068 We want to evaluate this at our two values for @expr{x} and subtract.
5069 One way to do it is again with vector mapping and reduction:
5071 @smallexample
5072 @group
5073 2:  [2, 1]            1:  [12.93333, 7.46666]    1:  5.46666
5074 1:  5.6666 x^3 ...        .                          .
5076    [ 2 , 1 ] @key{TAB}          V M $ @key{RET}                  V R -
5077 @end group
5078 @end smallexample
5080 (@bullet{}) @strong{Exercise 3.}  Find the integral from 1 to @expr{y}
5081 of 
5082 @texline @math{x \sin \pi x}
5083 @infoline @w{@expr{x sin(pi x)}} 
5084 (where the sine is calculated in radians).  Find the values of the
5085 integral for integers @expr{y} from 1 to 5.  @xref{Algebra Answer 3,
5086 3}. (@bullet{})
5088 Calc's integrator can do many simple integrals symbolically, but many
5089 others are beyond its capabilities.  Suppose we wish to find the area
5090 under the curve 
5091 @texline @math{\sin x \ln x}
5092 @infoline @expr{sin(x) ln(x)} 
5093 over the same range of @expr{x}.  If you entered this formula and typed
5094 @kbd{a i x @key{RET}} (don't bother to try this), Calc would work for a
5095 long time but would be unable to find a solution.  In fact, there is no
5096 closed-form solution to this integral.  Now what do we do?
5098 @cindex Integration, numerical
5099 @cindex Numerical integration
5100 One approach would be to do the integral numerically.  It is not hard
5101 to do this by hand using vector mapping and reduction.  It is rather
5102 slow, though, since the sine and logarithm functions take a long time.
5103 We can save some time by reducing the working precision.
5105 @smallexample
5106 @group
5107 3:  10                  1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9]
5108 2:  1                       .
5109 1:  0.1
5110     .
5112  10 @key{RET} 1 @key{RET} .1 @key{RET}        C-u v x
5113 @end group
5114 @end smallexample
5116 @noindent
5117 (Note that we have used the extended version of @kbd{v x}; we could
5118 also have used plain @kbd{v x} as follows:  @kbd{v x 10 @key{RET} 9 + .1 *}.)
5120 @smallexample
5121 @group
5122 2:  [1, 1.1, ... ]              1:  [0., 0.084941, 0.16993, ... ]
5123 1:  sin(x) ln(x)                    .
5124     .
5126     ' sin(x) ln(x) @key{RET}  s 1    m r  p 5 @key{RET}   V M $ @key{RET}
5128 @end group
5129 @end smallexample
5130 @noindent
5131 @smallexample
5132 @group
5133 1:  3.4195     0.34195
5134     .          .
5136     V R +      0.1 *
5137 @end group
5138 @end smallexample
5140 @noindent
5141 (If you got wildly different results, did you remember to switch
5142 to Radians mode?)
5144 Here we have divided the curve into ten segments of equal width;
5145 approximating these segments as rectangular boxes (i.e., assuming
5146 the curve is nearly flat at that resolution), we compute the areas
5147 of the boxes (height times width), then sum the areas.  (It is
5148 faster to sum first, then multiply by the width, since the width
5149 is the same for every box.)
5151 The true value of this integral turns out to be about 0.374, so
5152 we're not doing too well.  Let's try another approach.
5154 @smallexample
5155 @group
5156 1:  sin(x) ln(x)    1:  0.84147 x - 0.84147 + 0.11957 (x - 1)^2 - ...
5157     .                   .
5159     r 1                 a t x=1 @key{RET} 4 @key{RET}
5160 @end group
5161 @end smallexample
5163 @noindent
5164 Here we have computed the Taylor series expansion of the function
5165 about the point @expr{x=1}.  We can now integrate this polynomial
5166 approximation, since polynomials are easy to integrate.
5168 @smallexample
5169 @group
5170 1:  0.42074 x^2 + ...    1:  [-0.0446, -0.42073]      1:  0.3761
5171     .                        .                            .
5173     a i x @key{RET}            [ 2 , 1 ] @key{TAB}  V M $ @key{RET}         V R -
5174 @end group
5175 @end smallexample
5177 @noindent
5178 Better!  By increasing the precision and/or asking for more terms
5179 in the Taylor series, we can get a result as accurate as we like.
5180 (Taylor series converge better away from singularities in the
5181 function such as the one at @code{ln(0)}, so it would also help to
5182 expand the series about the points @expr{x=2} or @expr{x=1.5} instead
5183 of @expr{x=1}.)
5185 @cindex Simpson's rule
5186 @cindex Integration by Simpson's rule
5187 (@bullet{}) @strong{Exercise 4.}  Our first method approximated the
5188 curve by stairsteps of width 0.1; the total area was then the sum
5189 of the areas of the rectangles under these stairsteps.  Our second
5190 method approximated the function by a polynomial, which turned out
5191 to be a better approximation than stairsteps.  A third method is
5192 @dfn{Simpson's rule}, which is like the stairstep method except
5193 that the steps are not required to be flat.  Simpson's rule boils
5194 down to the formula,
5196 @ifinfo
5197 @example
5198 (h/3) * (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + ...
5199               + 2 f(a+(n-2)*h) + 4 f(a+(n-1)*h) + f(a+n*h))
5200 @end example
5201 @end ifinfo
5202 @tex
5203 \turnoffactive
5204 \beforedisplay
5205 $$ \displaylines{
5206       \qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots
5207    \hfill \cr \hfill    {} + 2 f(a+(n-2)h) + 4 f(a+(n-1)h) + f(a+n h)) \qquad
5208 } $$
5209 \afterdisplay
5210 @end tex
5212 @noindent
5213 where @expr{n} (which must be even) is the number of slices and @expr{h}
5214 is the width of each slice.  These are 10 and 0.1 in our example.
5215 For reference, here is the corresponding formula for the stairstep
5216 method:
5218 @ifinfo
5219 @example
5220 h * (f(a) + f(a+h) + f(a+2h) + f(a+3h) + ...
5221           + f(a+(n-2)*h) + f(a+(n-1)*h))
5222 @end example
5223 @end ifinfo
5224 @tex
5225 \turnoffactive
5226 \beforedisplay
5227 $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots
5228            + f(a+(n-2)h) + f(a+(n-1)h)) $$
5229 \afterdisplay
5230 @end tex
5232 Compute the integral from 1 to 2 of 
5233 @texline @math{\sin x \ln x}
5234 @infoline @expr{sin(x) ln(x)} 
5235 using Simpson's rule with 10 slices.  
5236 @xref{Algebra Answer 4, 4}. (@bullet{})
5238 Calc has a built-in @kbd{a I} command for doing numerical integration.
5239 It uses @dfn{Romberg's method}, which is a more sophisticated cousin
5240 of Simpson's rule.  In particular, it knows how to keep refining the
5241 result until the current precision is satisfied.
5243 @c [fix-ref Selecting Sub-Formulas]
5244 Aside from the commands we've seen so far, Calc also provides a
5245 large set of commands for operating on parts of formulas.  You
5246 indicate the desired sub-formula by placing the cursor on any part
5247 of the formula before giving a @dfn{selection} command.  Selections won't
5248 be covered in the tutorial; @pxref{Selecting Subformulas}, for
5249 details and examples.
5251 @c hard exercise: simplify (2^(n r) - 2^(r*(n - 1))) / (2^r - 1) 2^(n - 1)
5252 @c                to 2^((n-1)*(r-1)).
5254 @node Rewrites Tutorial,  , Basic Algebra Tutorial, Algebra Tutorial
5255 @subsection Rewrite Rules
5257 @noindent
5258 No matter how many built-in commands Calc provided for doing algebra,
5259 there would always be something you wanted to do that Calc didn't have
5260 in its repertoire.  So Calc also provides a @dfn{rewrite rule} system
5261 that you can use to define your own algebraic manipulations.
5263 Suppose we want to simplify this trigonometric formula:
5265 @smallexample
5266 @group
5267 1:  1 / cos(x) - sin(x) tan(x)
5268     .
5270     ' 1/cos(x) - sin(x) tan(x) @key{RET}   s 1
5271 @end group
5272 @end smallexample
5274 @noindent
5275 If we were simplifying this by hand, we'd probably replace the
5276 @samp{tan} with a @samp{sin/cos} first, then combine over a common
5277 denominator.  There is no Calc command to do the former; the @kbd{a n}
5278 algebra command will do the latter but we'll do both with rewrite
5279 rules just for practice.
5281 Rewrite rules are written with the @samp{:=} symbol.
5283 @smallexample
5284 @group
5285 1:  1 / cos(x) - sin(x)^2 / cos(x)
5286     .
5288     a r tan(a) := sin(a)/cos(a) @key{RET}
5289 @end group
5290 @end smallexample
5292 @noindent
5293 (The ``assignment operator'' @samp{:=} has several uses in Calc.  All
5294 by itself the formula @samp{tan(a) := sin(a)/cos(a)} doesn't do anything,
5295 but when it is given to the @kbd{a r} command, that command interprets
5296 it as a rewrite rule.)
5298 The lefthand side, @samp{tan(a)}, is called the @dfn{pattern} of the
5299 rewrite rule.  Calc searches the formula on the stack for parts that
5300 match the pattern.  Variables in a rewrite pattern are called
5301 @dfn{meta-variables}, and when matching the pattern each meta-variable
5302 can match any sub-formula.  Here, the meta-variable @samp{a} matched
5303 the actual variable @samp{x}.
5305 When the pattern part of a rewrite rule matches a part of the formula,
5306 that part is replaced by the righthand side with all the meta-variables
5307 substituted with the things they matched.  So the result is
5308 @samp{sin(x) / cos(x)}.  Calc's normal algebraic simplifications then
5309 mix this in with the rest of the original formula.
5311 To merge over a common denominator, we can use another simple rule:
5313 @smallexample
5314 @group
5315 1:  (1 - sin(x)^2) / cos(x)
5316     .
5318     a r a/x + b/x := (a+b)/x @key{RET}
5319 @end group
5320 @end smallexample
5322 This rule points out several interesting features of rewrite patterns.
5323 First, if a meta-variable appears several times in a pattern, it must
5324 match the same thing everywhere.  This rule detects common denominators
5325 because the same meta-variable @samp{x} is used in both of the
5326 denominators.
5328 Second, meta-variable names are independent from variables in the
5329 target formula.  Notice that the meta-variable @samp{x} here matches
5330 the subformula @samp{cos(x)}; Calc never confuses the two meanings of
5331 @samp{x}.
5333 And third, rewrite patterns know a little bit about the algebraic
5334 properties of formulas.  The pattern called for a sum of two quotients;
5335 Calc was able to match a difference of two quotients by matching
5336 @samp{a = 1}, @samp{b = -sin(x)^2}, and @samp{x = cos(x)}.
5338 @c [fix-ref Algebraic Properties of Rewrite Rules]
5339 We could just as easily have written @samp{a/x - b/x := (a-b)/x} for
5340 the rule.  It would have worked just the same in all cases.  (If we
5341 really wanted the rule to apply only to @samp{+} or only to @samp{-},
5342 we could have used the @code{plain} symbol.  @xref{Algebraic Properties
5343 of Rewrite Rules}, for some examples of this.)
5345 One more rewrite will complete the job.  We want to use the identity
5346 @samp{sin(x)^2 + cos(x)^2 = 1}, but of course we must first rearrange
5347 the identity in a way that matches our formula.  The obvious rule
5348 would be @samp{@w{1 - sin(x)^2} := cos(x)^2}, but a little thought shows
5349 that the rule @samp{sin(x)^2 := 1 - cos(x)^2} will also work.  The
5350 latter rule has a more general pattern so it will work in many other
5351 situations, too.
5353 @smallexample
5354 @group
5355 1:  (1 + cos(x)^2 - 1) / cos(x)           1:  cos(x)
5356     .                                         .
5358     a r sin(x)^2 := 1 - cos(x)^2 @key{RET}          a s
5359 @end group
5360 @end smallexample
5362 You may ask, what's the point of using the most general rule if you
5363 have to type it in every time anyway?  The answer is that Calc allows
5364 you to store a rewrite rule in a variable, then give the variable
5365 name in the @kbd{a r} command.  In fact, this is the preferred way to
5366 use rewrites.  For one, if you need a rule once you'll most likely
5367 need it again later.  Also, if the rule doesn't work quite right you
5368 can simply Undo, edit the variable, and run the rule again without
5369 having to retype it.
5371 @smallexample
5372 @group
5373 ' tan(x) := sin(x)/cos(x) @key{RET}      s t tsc @key{RET}
5374 ' a/x + b/x := (a+b)/x @key{RET}         s t merge @key{RET}
5375 ' sin(x)^2 := 1 - cos(x)^2 @key{RET}     s t sinsqr @key{RET}
5377 1:  1 / cos(x) - sin(x) tan(x)     1:  cos(x)
5378     .                                  .
5380     r 1                a r tsc @key{RET}  a r merge @key{RET}  a r sinsqr @key{RET}  a s
5381 @end group
5382 @end smallexample
5384 To edit a variable, type @kbd{s e} and the variable name, use regular
5385 Emacs editing commands as necessary, then type @kbd{C-c C-c} to store
5386 the edited value back into the variable. 
5387 You can also use @w{@kbd{s e}} to create a new variable if you wish.
5389 Notice that the first time you use each rule, Calc puts up a ``compiling''
5390 message briefly.  The pattern matcher converts rules into a special
5391 optimized pattern-matching language rather than using them directly.
5392 This allows @kbd{a r} to apply even rather complicated rules very
5393 efficiently.  If the rule is stored in a variable, Calc compiles it
5394 only once and stores the compiled form along with the variable.  That's
5395 another good reason to store your rules in variables rather than
5396 entering them on the fly.
5398 (@bullet{}) @strong{Exercise 1.}  Type @kbd{m s} to get Symbolic
5399 mode, then enter the formula @samp{@w{(2 + sqrt(2))} / @w{(1 + sqrt(2))}}.
5400 Using a rewrite rule, simplify this formula by multiplying the top and
5401 bottom by the conjugate @w{@samp{1 - sqrt(2)}}.  The result will have
5402 to be expanded by the distributive law; do this with another
5403 rewrite.  @xref{Rewrites Answer 1, 1}. (@bullet{})
5405 The @kbd{a r} command can also accept a vector of rewrite rules, or
5406 a variable containing a vector of rules.
5408 @smallexample
5409 @group
5410 1:  [tsc, merge, sinsqr]          1:  [tan(x) := sin(x) / cos(x), ... ]
5411     .                                 .
5413     ' [tsc,merge,sinsqr] @key{RET}          =
5415 @end group
5416 @end smallexample
5417 @noindent
5418 @smallexample
5419 @group
5420 1:  1 / cos(x) - sin(x) tan(x)    1:  cos(x)
5421     .                                 .
5423     s t trig @key{RET}  r 1                 a r trig @key{RET}  a s
5424 @end group
5425 @end smallexample
5427 @c [fix-ref Nested Formulas with Rewrite Rules]
5428 Calc tries all the rules you give against all parts of the formula,
5429 repeating until no further change is possible.  (The exact order in
5430 which things are tried is rather complex, but for simple rules like
5431 the ones we've used here the order doesn't really matter.
5432 @xref{Nested Formulas with Rewrite Rules}.)
5434 Calc actually repeats only up to 100 times, just in case your rule set
5435 has gotten into an infinite loop.  You can give a numeric prefix argument
5436 to @kbd{a r} to specify any limit.  In particular, @kbd{M-1 a r} does
5437 only one rewrite at a time.
5439 @smallexample
5440 @group
5441 1:  1 / cos(x) - sin(x)^2 / cos(x)    1:  (1 - sin(x)^2) / cos(x)
5442     .                                     .
5444     r 1  M-1 a r trig @key{RET}                 M-1 a r trig @key{RET}
5445 @end group
5446 @end smallexample
5448 You can type @kbd{M-0 a r} if you want no limit at all on the number
5449 of rewrites that occur.
5451 Rewrite rules can also be @dfn{conditional}.  Simply follow the rule
5452 with a @samp{::} symbol and the desired condition.  For example,
5454 @smallexample
5455 @group
5456 1:  exp(2 pi i) + exp(3 pi i) + exp(4 pi i)
5457     .
5459     ' exp(2 pi i) + exp(3 pi i) + exp(4 pi i) @key{RET}
5461 @end group
5462 @end smallexample
5463 @noindent
5464 @smallexample
5465 @group
5466 1:  1 + exp(3 pi i) + 1
5467     .
5469     a r exp(k pi i) := 1 :: k % 2 = 0 @key{RET}
5470 @end group
5471 @end smallexample
5473 @noindent
5474 (Recall, @samp{k % 2} is the remainder from dividing @samp{k} by 2,
5475 which will be zero only when @samp{k} is an even integer.)
5477 An interesting point is that the variables @samp{pi} and @samp{i}
5478 were matched literally rather than acting as meta-variables.
5479 This is because they are special-constant variables.  The special
5480 constants @samp{e}, @samp{phi}, and so on also match literally.
5481 A common error with rewrite
5482 rules is to write, say, @samp{f(a,b,c,d,e) := g(a+b+c+d+e)}, expecting
5483 to match any @samp{f} with five arguments but in fact matching
5484 only when the fifth argument is literally @samp{e}!
5486 @cindex Fibonacci numbers
5487 @ignore
5488 @starindex
5489 @end ignore
5490 @tindex fib
5491 Rewrite rules provide an interesting way to define your own functions.
5492 Suppose we want to define @samp{fib(n)} to produce the @var{n}th
5493 Fibonacci number.  The first two Fibonacci numbers are each 1;
5494 later numbers are formed by summing the two preceding numbers in
5495 the sequence.  This is easy to express in a set of three rules:
5497 @smallexample
5498 @group
5499 ' [fib(1) := 1, fib(2) := 1, fib(n) := fib(n-1) + fib(n-2)] @key{RET}  s t fib
5501 1:  fib(7)               1:  13
5502     .                        .
5504     ' fib(7) @key{RET}             a r fib @key{RET}
5505 @end group
5506 @end smallexample
5508 One thing that is guaranteed about the order that rewrites are tried
5509 is that, for any given subformula, earlier rules in the rule set will
5510 be tried for that subformula before later ones.  So even though the
5511 first and third rules both match @samp{fib(1)}, we know the first will
5512 be used preferentially.
5514 This rule set has one dangerous bug:  Suppose we apply it to the
5515 formula @samp{fib(x)}?  (Don't actually try this.)  The third rule
5516 will match @samp{fib(x)} and replace it with @w{@samp{fib(x-1) + fib(x-2)}}.
5517 Each of these will then be replaced to get @samp{fib(x-2) + 2 fib(x-3) +
5518 fib(x-4)}, and so on, expanding forever.  What we really want is to apply
5519 the third rule only when @samp{n} is an integer greater than two.  Type
5520 @w{@kbd{s e fib @key{RET}}}, then edit the third rule to:
5522 @smallexample
5523 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2
5524 @end smallexample
5526 @noindent
5527 Now:
5529 @smallexample
5530 @group
5531 1:  fib(6) + fib(x) + fib(0)      1:  8 + fib(x) + fib(0)
5532     .                                 .
5534     ' fib(6)+fib(x)+fib(0) @key{RET}        a r fib @key{RET}
5535 @end group
5536 @end smallexample
5538 @noindent
5539 We've created a new function, @code{fib}, and a new command,
5540 @w{@kbd{a r fib @key{RET}}}, which means ``evaluate all @code{fib} calls in
5541 this formula.''  To make things easier still, we can tell Calc to
5542 apply these rules automatically by storing them in the special
5543 variable @code{EvalRules}.
5545 @smallexample
5546 @group
5547 1:  [fib(1) := ...]    .                1:  [8, 13]
5548     .                                       .
5550     s r fib @key{RET}        s t EvalRules @key{RET}    ' [fib(6), fib(7)] @key{RET}
5551 @end group
5552 @end smallexample
5554 It turns out that this rule set has the problem that it does far
5555 more work than it needs to when @samp{n} is large.  Consider the
5556 first few steps of the computation of @samp{fib(6)}:
5558 @smallexample
5559 @group
5560 fib(6) =
5561 fib(5)              +               fib(4) =
5562 fib(4)     +      fib(3)     +      fib(3)     +      fib(2) =
5563 fib(3) + fib(2) + fib(2) + fib(1) + fib(2) + fib(1) + 1 = ...
5564 @end group
5565 @end smallexample
5567 @noindent
5568 Note that @samp{fib(3)} appears three times here.  Unless Calc's
5569 algebraic simplifier notices the multiple @samp{fib(3)}s and combines
5570 them (and, as it happens, it doesn't), this rule set does lots of
5571 needless recomputation.  To cure the problem, type @code{s e EvalRules}
5572 to edit the rules (or just @kbd{s E}, a shorthand command for editing
5573 @code{EvalRules}) and add another condition:
5575 @smallexample
5576 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2 :: remember
5577 @end smallexample
5579 @noindent
5580 If a @samp{:: remember} condition appears anywhere in a rule, then if
5581 that rule succeeds Calc will add another rule that describes that match
5582 to the front of the rule set.  (Remembering works in any rule set, but
5583 for technical reasons it is most effective in @code{EvalRules}.)  For
5584 example, if the rule rewrites @samp{fib(7)} to something that evaluates
5585 to 13, then the rule @samp{fib(7) := 13} will be added to the rule set.
5587 Type @kbd{' fib(8) @key{RET}} to compute the eighth Fibonacci number, then
5588 type @kbd{s E} again to see what has happened to the rule set.
5590 With the @code{remember} feature, our rule set can now compute
5591 @samp{fib(@var{n})} in just @var{n} steps.  In the process it builds
5592 up a table of all Fibonacci numbers up to @var{n}.  After we have
5593 computed the result for a particular @var{n}, we can get it back
5594 (and the results for all smaller @var{n}) later in just one step.
5596 All Calc operations will run somewhat slower whenever @code{EvalRules}
5597 contains any rules.  You should type @kbd{s u EvalRules @key{RET}} now to
5598 un-store the variable.
5600 (@bullet{}) @strong{Exercise 2.}  Sometimes it is possible to reformulate
5601 a problem to reduce the amount of recursion necessary to solve it.
5602 Create a rule that, in about @var{n} simple steps and without recourse
5603 to the @code{remember} option, replaces @samp{fib(@var{n}, 1, 1)} with
5604 @samp{fib(1, @var{x}, @var{y})} where @var{x} and @var{y} are the
5605 @var{n}th and @var{n+1}st Fibonacci numbers, respectively.  This rule is
5606 rather clunky to use, so add a couple more rules to make the ``user
5607 interface'' the same as for our first version: enter @samp{fib(@var{n})},
5608 get back a plain number.  @xref{Rewrites Answer 2, 2}. (@bullet{})
5610 There are many more things that rewrites can do.  For example, there
5611 are @samp{&&&} and @samp{|||} pattern operators that create ``and''
5612 and ``or'' combinations of rules.  As one really simple example, we
5613 could combine our first two Fibonacci rules thusly:
5615 @example
5616 [fib(1 ||| 2) := 1, fib(n) := ... ]
5617 @end example
5619 @noindent
5620 That means ``@code{fib} of something matching either 1 or 2 rewrites
5621 to 1.''
5623 You can also make meta-variables optional by enclosing them in @code{opt}.
5624 For example, the pattern @samp{a + b x} matches @samp{2 + 3 x} but not
5625 @samp{2 + x} or @samp{3 x} or @samp{x}.  The pattern @samp{opt(a) + opt(b) x}
5626 matches all of these forms, filling in a default of zero for @samp{a}
5627 and one for @samp{b}.
5629 (@bullet{}) @strong{Exercise 3.}  Your friend Joe had @samp{2 + 3 x}
5630 on the stack and tried to use the rule
5631 @samp{opt(a) + opt(b) x := f(a, b, x)}.  What happened?
5632 @xref{Rewrites Answer 3, 3}. (@bullet{})
5634 (@bullet{}) @strong{Exercise 4.}  Starting with a positive integer @expr{a},
5635 divide @expr{a} by two if it is even, otherwise compute @expr{3 a + 1}.
5636 Now repeat this step over and over.  A famous unproved conjecture
5637 is that for any starting @expr{a}, the sequence always eventually
5638 reaches 1.  Given the formula @samp{seq(@var{a}, 0)}, write a set of
5639 rules that convert this into @samp{seq(1, @var{n})} where @var{n}
5640 is the number of steps it took the sequence to reach the value 1.
5641 Now enhance the rules to accept @samp{seq(@var{a})} as a starting
5642 configuration, and to stop with just the number @var{n} by itself.
5643 Now make the result be a vector of values in the sequence, from @var{a}
5644 to 1.  (The formula @samp{@var{x}|@var{y}} appends the vectors @var{x}
5645 and @var{y}.)  For example, rewriting @samp{seq(6)} should yield the
5646 vector @expr{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
5647 @xref{Rewrites Answer 4, 4}. (@bullet{})
5649 (@bullet{}) @strong{Exercise 5.}  Define, using rewrite rules, a function
5650 @samp{nterms(@var{x})} that returns the number of terms in the sum
5651 @var{x}, or 1 if @var{x} is not a sum.  (A @dfn{sum} for our purposes
5652 is one or more non-sum terms separated by @samp{+} or @samp{-} signs,
5653 so that @expr{2 - 3 (x + y) + x y} is a sum of three terms.)
5654 @xref{Rewrites Answer 5, 5}. (@bullet{})
5656 (@bullet{}) @strong{Exercise 6.}  A Taylor series for a function is an
5657 infinite series that exactly equals the value of that function at
5658 values of @expr{x} near zero.
5660 @ifinfo
5661 @example
5662 cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...
5663 @end example
5664 @end ifinfo
5665 @tex
5666 \turnoffactive
5667 \beforedisplay
5668 $$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$
5669 \afterdisplay
5670 @end tex
5672 The @kbd{a t} command produces a @dfn{truncated Taylor series} which
5673 is obtained by dropping all the terms higher than, say, @expr{x^2}.
5674 Calc represents the truncated Taylor series as a polynomial in @expr{x}.
5675 Mathematicians often write a truncated series using a ``big-O'' notation
5676 that records what was the lowest term that was truncated.
5678 @ifinfo
5679 @example
5680 cos(x) = 1 - x^2 / 2! + O(x^3)
5681 @end example
5682 @end ifinfo
5683 @tex
5684 \turnoffactive
5685 \beforedisplay
5686 $$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$
5687 \afterdisplay
5688 @end tex
5690 @noindent
5691 The meaning of @expr{O(x^3)} is ``a quantity which is negligibly small
5692 if @expr{x^3} is considered negligibly small as @expr{x} goes to zero.''
5694 The exercise is to create rewrite rules that simplify sums and products of
5695 power series represented as @samp{@var{polynomial} + O(@var{var}^@var{n})}.
5696 For example, given @samp{1 - x^2 / 2 + O(x^3)} and @samp{x - x^3 / 6 + O(x^4)}
5697 on the stack, we want to be able to type @kbd{*} and get the result
5698 @samp{x - 2:3 x^3 + O(x^4)}.  Don't worry if the terms of the sum are
5699 rearranged or if @kbd{a s} needs to be typed after rewriting.  (This one
5700 is rather tricky; the solution at the end of this chapter uses 6 rewrite
5701 rules.  Hint:  The @samp{constant(x)} condition tests whether @samp{x} is
5702 a number.)  @xref{Rewrites Answer 6, 6}. (@bullet{})
5704 Just for kicks, try adding the rule @code{2+3 := 6} to @code{EvalRules}.
5705 What happens?  (Be sure to remove this rule afterward, or you might get
5706 a nasty surprise when you use Calc to balance your checkbook!)
5708 @xref{Rewrite Rules}, for the whole story on rewrite rules.
5710 @node Programming Tutorial, Answers to Exercises, Algebra Tutorial, Tutorial
5711 @section Programming Tutorial
5713 @noindent
5714 The Calculator is written entirely in Emacs Lisp, a highly extensible
5715 language.  If you know Lisp, you can program the Calculator to do
5716 anything you like.  Rewrite rules also work as a powerful programming
5717 system.  But Lisp and rewrite rules take a while to master, and often
5718 all you want to do is define a new function or repeat a command a few
5719 times.  Calc has features that allow you to do these things easily.
5721 One very limited form of programming is defining your own functions.
5722 Calc's @kbd{Z F} command allows you to define a function name and
5723 key sequence to correspond to any formula.  Programming commands use
5724 the shift-@kbd{Z} prefix; the user commands they create use the lower
5725 case @kbd{z} prefix.
5727 @smallexample
5728 @group
5729 1:  1 + x + x^2 / 2 + x^3 / 6         1:  1 + x + x^2 / 2 + x^3 / 6
5730     .                                     .
5732     ' 1 + x + x^2/2! + x^3/3! @key{RET}         Z F e myexp @key{RET} @key{RET} @key{RET} y
5733 @end group
5734 @end smallexample
5736 This polynomial is a Taylor series approximation to @samp{exp(x)}.
5737 The @kbd{Z F} command asks a number of questions.  The above answers
5738 say that the key sequence for our function should be @kbd{z e}; the
5739 @kbd{M-x} equivalent should be @code{calc-myexp}; the name of the
5740 function in algebraic formulas should also be @code{myexp}; the
5741 default argument list @samp{(x)} is acceptable; and finally @kbd{y}
5742 answers the question ``leave it in symbolic form for non-constant
5743 arguments?''
5745 @smallexample
5746 @group
5747 1:  1.3495     2:  1.3495     3:  1.3495
5748     .          1:  1.34986    2:  1.34986
5749                    .          1:  myexp(a + 1)
5750                                   .
5752     .3 z e         .3 E           ' a+1 @key{RET} z e
5753 @end group
5754 @end smallexample
5756 @noindent
5757 First we call our new @code{exp} approximation with 0.3 as an
5758 argument, and compare it with the true @code{exp} function.  Then
5759 we note that, as requested, if we try to give @kbd{z e} an
5760 argument that isn't a plain number, it leaves the @code{myexp}
5761 function call in symbolic form.  If we had answered @kbd{n} to the
5762 final question, @samp{myexp(a + 1)} would have evaluated by plugging
5763 in @samp{a + 1} for @samp{x} in the defining formula.
5765 @cindex Sine integral Si(x)
5766 @ignore
5767 @starindex
5768 @end ignore
5769 @tindex Si
5770 (@bullet{}) @strong{Exercise 1.}  The ``sine integral'' function
5771 @texline @math{{\rm Si}(x)}
5772 @infoline @expr{Si(x)} 
5773 is defined as the integral of @samp{sin(t)/t} for
5774 @expr{t = 0} to @expr{x} in radians.  (It was invented because this
5775 integral has no solution in terms of basic functions; if you give it
5776 to Calc's @kbd{a i} command, it will ponder it for a long time and then
5777 give up.)  We can use the numerical integration command, however,
5778 which in algebraic notation is written like @samp{ninteg(f(t), t, 0, x)}
5779 with any integrand @samp{f(t)}.  Define a @kbd{z s} command and
5780 @code{Si} function that implement this.  You will need to edit the
5781 default argument list a bit.  As a test, @samp{Si(1)} should return
5782 0.946083. (If you don't get this answer, you might want to check that
5783 Calc is in Radians mode.  Also, @code{ninteg} will run a lot faster if
5784 you reduce the precision to, say, six digits beforehand.)
5785 @xref{Programming Answer 1, 1}. (@bullet{})
5787 The simplest way to do real ``programming'' of Emacs is to define a
5788 @dfn{keyboard macro}.  A keyboard macro is simply a sequence of
5789 keystrokes which Emacs has stored away and can play back on demand.
5790 For example, if you find yourself typing @kbd{H a S x @key{RET}} often,
5791 you may wish to program a keyboard macro to type this for you.
5793 @smallexample
5794 @group
5795 1:  y = sqrt(x)          1:  x = y^2
5796     .                        .
5798     ' y=sqrt(x) @key{RET}       C-x ( H a S x @key{RET} C-x )
5800 1:  y = cos(x)           1:  x = s1 arccos(y) + 2 pi n1
5801     .                        .
5803     ' y=cos(x) @key{RET}           X
5804 @end group
5805 @end smallexample
5807 @noindent
5808 When you type @kbd{C-x (}, Emacs begins recording.  But it is also
5809 still ready to execute your keystrokes, so you're really ``training''
5810 Emacs by walking it through the procedure once.  When you type
5811 @w{@kbd{C-x )}}, the macro is recorded.  You can now type @kbd{X} to
5812 re-execute the same keystrokes.
5814 You can give a name to your macro by typing @kbd{Z K}.
5816 @smallexample
5817 @group
5818 1:  .              1:  y = x^4         1:  x = s2 sqrt(s1 sqrt(y))
5819                        .                   .
5821   Z K x @key{RET}            ' y=x^4 @key{RET}         z x
5822 @end group
5823 @end smallexample
5825 @noindent
5826 Notice that we use shift-@kbd{Z} to define the command, and lower-case
5827 @kbd{z} to call it up.
5829 Keyboard macros can call other macros.
5831 @smallexample
5832 @group
5833 1:  abs(x)        1:  x = s1 y                1:  2 / x    1:  x = 2 / y
5834     .                 .                           .            .
5836  ' abs(x) @key{RET}   C-x ( ' y @key{RET} a = z x C-x )    ' 2/x @key{RET}       X
5837 @end group
5838 @end smallexample
5840 (@bullet{}) @strong{Exercise 2.}  Define a keyboard macro to negate
5841 the item in level 3 of the stack, without disturbing the rest of
5842 the stack.  @xref{Programming Answer 2, 2}. (@bullet{})
5844 (@bullet{}) @strong{Exercise 3.}  Define keyboard macros to compute
5845 the following functions:
5847 @enumerate
5848 @item
5849 Compute 
5850 @texline @math{\displaystyle{\sin x \over x}},
5851 @infoline @expr{sin(x) / x}, 
5852 where @expr{x} is the number on the top of the stack.
5854 @item
5855 Compute the base-@expr{b} logarithm, just like the @kbd{B} key except
5856 the arguments are taken in the opposite order.
5858 @item
5859 Produce a vector of integers from 1 to the integer on the top of
5860 the stack.
5861 @end enumerate
5862 @noindent
5863 @xref{Programming Answer 3, 3}. (@bullet{})
5865 (@bullet{}) @strong{Exercise 4.}  Define a keyboard macro to compute
5866 the average (mean) value of a list of numbers.
5867 @xref{Programming Answer 4, 4}. (@bullet{})
5869 In many programs, some of the steps must execute several times.
5870 Calc has @dfn{looping} commands that allow this.  Loops are useful
5871 inside keyboard macros, but actually work at any time.
5873 @smallexample
5874 @group
5875 1:  x^6          2:  x^6        1: 360 x^2
5876     .            1:  4             .
5877                      .
5879   ' x^6 @key{RET}          4         Z < a d x @key{RET} Z >
5880 @end group
5881 @end smallexample
5883 @noindent
5884 Here we have computed the fourth derivative of @expr{x^6} by
5885 enclosing a derivative command in a ``repeat loop'' structure.
5886 This structure pops a repeat count from the stack, then
5887 executes the body of the loop that many times.
5889 If you make a mistake while entering the body of the loop,
5890 type @w{@kbd{Z C-g}} to cancel the loop command.
5892 @cindex Fibonacci numbers
5893 Here's another example:
5895 @smallexample
5896 @group
5897 3:  1               2:  10946
5898 2:  1               1:  17711
5899 1:  20                  .
5900     .
5902 1 @key{RET} @key{RET} 20       Z < @key{TAB} C-j + Z >
5903 @end group
5904 @end smallexample
5906 @noindent
5907 The numbers in levels 2 and 1 should be the 21st and 22nd Fibonacci
5908 numbers, respectively.  (To see what's going on, try a few repetitions
5909 of the loop body by hand; @kbd{C-j}, also on the Line-Feed or @key{LFD}
5910 key if you have one, makes a copy of the number in level 2.)
5912 @cindex Golden ratio
5913 @cindex Phi, golden ratio
5914 A fascinating property of the Fibonacci numbers is that the @expr{n}th
5915 Fibonacci number can be found directly by computing 
5916 @texline @math{\phi^n / \sqrt{5}}
5917 @infoline @expr{phi^n / sqrt(5)}
5918 and then rounding to the nearest integer, where 
5919 @texline @math{\phi} (``phi''),
5920 @infoline @expr{phi}, 
5921 the ``golden ratio,'' is 
5922 @texline @math{(1 + \sqrt{5}) / 2}.
5923 @infoline @expr{(1 + sqrt(5)) / 2}. 
5924 (For convenience, this constant is available from the @code{phi}
5925 variable, or the @kbd{I H P} command.)
5927 @smallexample
5928 @group
5929 1:  1.61803         1:  24476.0000409    1:  10945.9999817    1:  10946
5930     .                   .                    .                    .
5932     I H P               21 ^                 5 Q /                R
5933 @end group
5934 @end smallexample
5936 @cindex Continued fractions
5937 (@bullet{}) @strong{Exercise 5.}  The @dfn{continued fraction}
5938 representation of 
5939 @texline @math{\phi}
5940 @infoline @expr{phi} 
5941 is 
5942 @texline @math{1 + 1/(1 + 1/(1 + 1/( \ldots )))}.
5943 @infoline @expr{1 + 1/(1 + 1/(1 + 1/( ...@: )))}.
5944 We can compute an approximate value by carrying this however far
5945 and then replacing the innermost 
5946 @texline @math{1/( \ldots )}
5947 @infoline @expr{1/( ...@: )} 
5948 by 1.  Approximate
5949 @texline @math{\phi}
5950 @infoline @expr{phi} 
5951 using a twenty-term continued fraction.
5952 @xref{Programming Answer 5, 5}. (@bullet{})
5954 (@bullet{}) @strong{Exercise 6.}  Linear recurrences like the one for
5955 Fibonacci numbers can be expressed in terms of matrices.  Given a
5956 vector @w{@expr{[a, b]}} determine a matrix which, when multiplied by this
5957 vector, produces the vector @expr{[b, c]}, where @expr{a}, @expr{b} and
5958 @expr{c} are three successive Fibonacci numbers.  Now write a program
5959 that, given an integer @expr{n}, computes the @expr{n}th Fibonacci number
5960 using matrix arithmetic.  @xref{Programming Answer 6, 6}. (@bullet{})
5962 @cindex Harmonic numbers
5963 A more sophisticated kind of loop is the @dfn{for} loop.  Suppose
5964 we wish to compute the 20th ``harmonic'' number, which is equal to
5965 the sum of the reciprocals of the integers from 1 to 20.
5967 @smallexample
5968 @group
5969 3:  0               1:  3.597739
5970 2:  1                   .
5971 1:  20
5972     .
5974 0 @key{RET} 1 @key{RET} 20         Z ( & + 1 Z )
5975 @end group
5976 @end smallexample
5978 @noindent
5979 The ``for'' loop pops two numbers, the lower and upper limits, then
5980 repeats the body of the loop as an internal counter increases from
5981 the lower limit to the upper one.  Just before executing the loop
5982 body, it pushes the current loop counter.  When the loop body
5983 finishes, it pops the ``step,'' i.e., the amount by which to
5984 increment the loop counter.  As you can see, our loop always
5985 uses a step of one.
5987 This harmonic number function uses the stack to hold the running
5988 total as well as for the various loop housekeeping functions.  If
5989 you find this disorienting, you can sum in a variable instead:
5991 @smallexample
5992 @group
5993 1:  0         2:  1                  .            1:  3.597739
5994     .         1:  20                                  .
5995                   .
5997     0 t 7       1 @key{RET} 20      Z ( & s + 7 1 Z )       r 7
5998 @end group
5999 @end smallexample
6001 @noindent
6002 The @kbd{s +} command adds the top-of-stack into the value in a
6003 variable (and removes that value from the stack).
6005 It's worth noting that many jobs that call for a ``for'' loop can
6006 also be done more easily by Calc's high-level operations.  Two
6007 other ways to compute harmonic numbers are to use vector mapping
6008 and reduction (@kbd{v x 20}, then @w{@kbd{V M &}}, then @kbd{V R +}),
6009 or to use the summation command @kbd{a +}.  Both of these are
6010 probably easier than using loops.  However, there are some
6011 situations where loops really are the way to go:
6013 (@bullet{}) @strong{Exercise 7.}  Use a ``for'' loop to find the first
6014 harmonic number which is greater than 4.0.
6015 @xref{Programming Answer 7, 7}. (@bullet{})
6017 Of course, if we're going to be using variables in our programs,
6018 we have to worry about the programs clobbering values that the
6019 caller was keeping in those same variables.  This is easy to
6020 fix, though:
6022 @smallexample
6023 @group
6024     .        1:  0.6667       1:  0.6667     3:  0.6667
6025                  .                .          2:  3.597739
6026                                              1:  0.6667
6027                                                  .
6029    Z `    p 4 @key{RET} 2 @key{RET} 3 /   s 7 s s a @key{RET}    Z '  r 7 s r a @key{RET}
6030 @end group
6031 @end smallexample
6033 @noindent
6034 When we type @kbd{Z `} (that's a back-quote character), Calc saves
6035 its mode settings and the contents of the ten ``quick variables''
6036 for later reference.  When we type @kbd{Z '} (that's an apostrophe
6037 now), Calc restores those saved values.  Thus the @kbd{p 4} and
6038 @kbd{s 7} commands have no effect outside this sequence.  Wrapping
6039 this around the body of a keyboard macro ensures that it doesn't
6040 interfere with what the user of the macro was doing.  Notice that
6041 the contents of the stack, and the values of named variables,
6042 survive past the @kbd{Z '} command.
6044 @cindex Bernoulli numbers, approximate
6045 The @dfn{Bernoulli numbers} are a sequence with the interesting
6046 property that all of the odd Bernoulli numbers are zero, and the
6047 even ones, while difficult to compute, can be roughly approximated
6048 by the formula 
6049 @texline @math{\displaystyle{2 n! \over (2 \pi)^n}}.
6050 @infoline @expr{2 n!@: / (2 pi)^n}.  
6051 Let's write a keyboard macro to compute (approximate) Bernoulli numbers.
6052 (Calc has a command, @kbd{k b}, to compute exact Bernoulli numbers, but
6053 this command is very slow for large @expr{n} since the higher Bernoulli
6054 numbers are very large fractions.)
6056 @smallexample
6057 @group
6058 1:  10               1:  0.0756823
6059     .                    .
6061     10     C-x ( @key{RET} 2 % Z [ @key{DEL} 0 Z : ' 2 $! / (2 pi)^$ @key{RET} = Z ] C-x )
6062 @end group
6063 @end smallexample
6065 @noindent
6066 You can read @kbd{Z [} as ``then,'' @kbd{Z :} as ``else,'' and
6067 @kbd{Z ]} as ``end-if.''  There is no need for an explicit ``if''
6068 command.  For the purposes of @w{@kbd{Z [}}, the condition is ``true''
6069 if the value it pops from the stack is a nonzero number, or ``false''
6070 if it pops zero or something that is not a number (like a formula).
6071 Here we take our integer argument modulo 2; this will be nonzero
6072 if we're asking for an odd Bernoulli number.
6074 The actual tenth Bernoulli number is @expr{5/66}.
6076 @smallexample
6077 @group
6078 3:  0.0756823    1:  0          1:  0.25305    1:  0          1:  1.16659
6079 2:  5:66             .              .              .              .
6080 1:  0.0757575
6081     .
6083 10 k b @key{RET} c f   M-0 @key{DEL} 11 X   @key{DEL} 12 X       @key{DEL} 13 X       @key{DEL} 14 X
6084 @end group
6085 @end smallexample
6087 Just to exercise loops a bit more, let's compute a table of even
6088 Bernoulli numbers.
6090 @smallexample
6091 @group
6092 3:  []             1:  [0.10132, 0.03079, 0.02340, 0.033197, ...]
6093 2:  2                  .
6094 1:  30
6095     .
6097  [ ] 2 @key{RET} 30          Z ( X | 2 Z )
6098 @end group
6099 @end smallexample
6101 @noindent
6102 The vertical-bar @kbd{|} is the vector-concatenation command.  When
6103 we execute it, the list we are building will be in stack level 2
6104 (initially this is an empty list), and the next Bernoulli number
6105 will be in level 1.  The effect is to append the Bernoulli number
6106 onto the end of the list.  (To create a table of exact fractional
6107 Bernoulli numbers, just replace @kbd{X} with @kbd{k b} in the above
6108 sequence of keystrokes.)
6110 With loops and conditionals, you can program essentially anything
6111 in Calc.  One other command that makes looping easier is @kbd{Z /},
6112 which takes a condition from the stack and breaks out of the enclosing
6113 loop if the condition is true (non-zero).  You can use this to make
6114 ``while'' and ``until'' style loops.
6116 If you make a mistake when entering a keyboard macro, you can edit
6117 it using @kbd{Z E}.  First, you must attach it to a key with @kbd{Z K}.
6118 One technique is to enter a throwaway dummy definition for the macro,
6119 then enter the real one in the edit command.
6121 @smallexample
6122 @group
6123 1:  3                   1:  3           Calc Macro Edit Mode.
6124     .                       .           Original keys: 1 <return> 2 +
6126                                         1                          ;; calc digits
6127                                         RET                        ;; calc-enter
6128                                         2                          ;; calc digits
6129                                         +                          ;; calc-plus
6131 C-x ( 1 @key{RET} 2 + C-x )    Z K h @key{RET}      Z E h
6132 @end group
6133 @end smallexample
6135 @noindent
6136 A keyboard macro is stored as a pure keystroke sequence.  The
6137 @file{edmacro} package (invoked by @kbd{Z E}) scans along the
6138 macro and tries to decode it back into human-readable steps.
6139 Descriptions of the keystrokes are given as comments, which begin with
6140 @samp{;;}, and which are ignored when the edited macro is saved.
6141 Spaces and line breaks are also ignored when the edited macro is saved.
6142 To enter a space into the macro, type @code{SPC}.  All the special
6143 characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC}, @code{DEL},
6144 and @code{NUL} must be written in all uppercase, as must the prefixes
6145 @code{C-} and @code{M-}.
6147 Let's edit in a new definition, for computing harmonic numbers.
6148 First, erase the four lines of the old definition.  Then, type
6149 in the new definition (or use Emacs @kbd{M-w} and @kbd{C-y} commands
6150 to copy it from this page of the Info file; you can of course skip
6151 typing the comments, which begin with @samp{;;}).
6153 @smallexample
6154 Z`                      ;; calc-kbd-push     (Save local values)
6155 0                       ;; calc digits       (Push a zero onto the stack)
6156 st                      ;; calc-store-into   (Store it in the following variable)
6157 1                       ;; calc quick variable  (Quick variable q1)
6158 1                       ;; calc digits       (Initial value for the loop) 
6159 TAB                     ;; calc-roll-down    (Swap initial and final)
6160 Z(                      ;; calc-kbd-for      (Begin the "for" loop)
6161 &                       ;; calc-inv          (Take the reciprocal)
6162 s+                      ;; calc-store-plus   (Add to the following variable)
6163 1                       ;; calc quick variable  (Quick variable q1)
6164 1                       ;; calc digits       (The loop step is 1)
6165 Z)                      ;; calc-kbd-end-for  (End the "for" loop)
6166 sr                      ;; calc-recall       (Recall the final accumulated value)
6167 1                       ;; calc quick variable (Quick variable q1)
6168 Z'                      ;; calc-kbd-pop      (Restore values)
6169 @end smallexample
6171 @noindent
6172 Press @kbd{C-c C-c} to finish editing and return to the Calculator.
6174 @smallexample
6175 @group
6176 1:  20         1:  3.597739
6177     .              .
6179     20             z h
6180 @end group
6181 @end smallexample
6183 The @file{edmacro} package defines a handy @code{read-kbd-macro} command
6184 which reads the current region of the current buffer as a sequence of
6185 keystroke names, and defines that sequence on the @kbd{X} 
6186 (and @kbd{C-x e}) key.  Because this is so useful, Calc puts this
6187 command on the @kbd{C-x * m} key.  Try reading in this macro in the
6188 following form:  Press @kbd{C-@@} (or @kbd{C-@key{SPC}}) at 
6189 one end of the text below, then type @kbd{C-x * m} at the other.
6191 @example
6192 @group
6193 Z ` 0 t 1
6194     1 TAB
6195     Z (  & s + 1  1 Z )
6196     r 1
6197 Z '
6198 @end group
6199 @end example
6201 (@bullet{}) @strong{Exercise 8.}  A general algorithm for solving
6202 equations numerically is @dfn{Newton's Method}.  Given the equation
6203 @expr{f(x) = 0} for any function @expr{f}, and an initial guess
6204 @expr{x_0} which is reasonably close to the desired solution, apply
6205 this formula over and over:
6207 @ifinfo
6208 @example
6209 new_x = x - f(x)/f'(x)
6210 @end example
6211 @end ifinfo
6212 @tex
6213 \beforedisplay
6214 $$ x_{\rm new} = x - {f(x) \over f'(x)} $$
6215 \afterdisplay
6216 @end tex
6218 @noindent
6219 where @expr{f'(x)} is the derivative of @expr{f}.  The @expr{x}
6220 values will quickly converge to a solution, i.e., eventually
6221 @texline @math{x_{\rm new}}
6222 @infoline @expr{new_x} 
6223 and @expr{x} will be equal to within the limits
6224 of the current precision.  Write a program which takes a formula
6225 involving the variable @expr{x}, and an initial guess @expr{x_0},
6226 on the stack, and produces a value of @expr{x} for which the formula
6227 is zero.  Use it to find a solution of 
6228 @texline @math{\sin(\cos x) = 0.5}
6229 @infoline @expr{sin(cos(x)) = 0.5}
6230 near @expr{x = 4.5}.  (Use angles measured in radians.)  Note that
6231 the built-in @w{@kbd{a R}} (@code{calc-find-root}) command uses Newton's
6232 method when it is able.  @xref{Programming Answer 8, 8}. (@bullet{})
6234 @cindex Digamma function
6235 @cindex Gamma constant, Euler's
6236 @cindex Euler's gamma constant
6237 (@bullet{}) @strong{Exercise 9.}  The @dfn{digamma} function 
6238 @texline @math{\psi(z) (``psi'')}
6239 @infoline @expr{psi(z)}
6240 is defined as the derivative of 
6241 @texline @math{\ln \Gamma(z)}.
6242 @infoline @expr{ln(gamma(z))}.  
6243 For large values of @expr{z}, it can be approximated by the infinite sum
6245 @ifinfo
6246 @example
6247 psi(z) ~= ln(z) - 1/2z - sum(bern(2 n) / 2 n z^(2 n), n, 1, inf)
6248 @end example
6249 @end ifinfo
6250 @tex
6251 \beforedisplay
6252 $$ \psi(z) \approx \ln z - {1\over2z} -
6253    \sum_{n=1}^\infty {\code{bern}(2 n) \over 2 n z^{2n}}
6255 \afterdisplay
6256 @end tex
6258 @noindent
6259 where 
6260 @texline @math{\sum}
6261 @infoline @expr{sum} 
6262 represents the sum over @expr{n} from 1 to infinity
6263 (or to some limit high enough to give the desired accuracy), and
6264 the @code{bern} function produces (exact) Bernoulli numbers.
6265 While this sum is not guaranteed to converge, in practice it is safe.
6266 An interesting mathematical constant is Euler's gamma, which is equal
6267 to about 0.5772.  One way to compute it is by the formula,
6268 @texline @math{\gamma = -\psi(1)}.
6269 @infoline @expr{gamma = -psi(1)}.  
6270 Unfortunately, 1 isn't a large enough argument
6271 for the above formula to work (5 is a much safer value for @expr{z}).
6272 Fortunately, we can compute 
6273 @texline @math{\psi(1)}
6274 @infoline @expr{psi(1)} 
6275 from 
6276 @texline @math{\psi(5)}
6277 @infoline @expr{psi(5)} 
6278 using the recurrence 
6279 @texline @math{\psi(z+1) = \psi(z) + {1 \over z}}.
6280 @infoline @expr{psi(z+1) = psi(z) + 1/z}.  
6281 Your task:  Develop a program to compute 
6282 @texline @math{\psi(z)};
6283 @infoline @expr{psi(z)}; 
6284 it should ``pump up'' @expr{z}
6285 if necessary to be greater than 5, then use the above summation
6286 formula.  Use looping commands to compute the sum.  Use your function
6287 to compute 
6288 @texline @math{\gamma}
6289 @infoline @expr{gamma} 
6290 to twelve decimal places.  (Calc has a built-in command
6291 for Euler's constant, @kbd{I P}, which you can use to check your answer.)
6292 @xref{Programming Answer 9, 9}. (@bullet{})
6294 @cindex Polynomial, list of coefficients
6295 (@bullet{}) @strong{Exercise 10.}  Given a polynomial in @expr{x} and
6296 a number @expr{m} on the stack, where the polynomial is of degree
6297 @expr{m} or less (i.e., does not have any terms higher than @expr{x^m}),
6298 write a program to convert the polynomial into a list-of-coefficients
6299 notation.  For example, @expr{5 x^4 + (x + 1)^2} with @expr{m = 6}
6300 should produce the list @expr{[1, 2, 1, 0, 5, 0, 0]}.  Also develop
6301 a way to convert from this form back to the standard algebraic form.
6302 @xref{Programming Answer 10, 10}. (@bullet{})
6304 @cindex Recursion
6305 (@bullet{}) @strong{Exercise 11.}  The @dfn{Stirling numbers of the
6306 first kind} are defined by the recurrences,
6308 @ifinfo
6309 @example
6310 s(n,n) = 1   for n >= 0,
6311 s(n,0) = 0   for n > 0,
6312 s(n+1,m) = s(n,m-1) - n s(n,m)   for n >= m >= 1.
6313 @end example
6314 @end ifinfo
6315 @tex
6316 \turnoffactive
6317 \beforedisplay
6318 $$ \eqalign{ s(n,n)   &= 1 \qquad \hbox{for } n \ge 0,  \cr
6319              s(n,0)   &= 0 \qquad \hbox{for } n > 0, \cr
6320              s(n+1,m) &= s(n,m-1) - n \, s(n,m) \qquad
6321                           \hbox{for } n \ge m \ge 1.}
6323 \afterdisplay
6324 \vskip5pt
6325 (These numbers are also sometimes written $\displaystyle{n \brack m}$.)
6326 @end tex
6328 This can be implemented using a @dfn{recursive} program in Calc; the
6329 program must invoke itself in order to calculate the two righthand
6330 terms in the general formula.  Since it always invokes itself with
6331 ``simpler'' arguments, it's easy to see that it must eventually finish
6332 the computation.  Recursion is a little difficult with Emacs keyboard
6333 macros since the macro is executed before its definition is complete.
6334 So here's the recommended strategy:  Create a ``dummy macro'' and assign
6335 it to a key with, e.g., @kbd{Z K s}.  Now enter the true definition,
6336 using the @kbd{z s} command to call itself recursively, then assign it
6337 to the same key with @kbd{Z K s}.  Now the @kbd{z s} command will run
6338 the complete recursive program.  (Another way is to use @w{@kbd{Z E}}
6339 or @kbd{C-x * m} (@code{read-kbd-macro}) to read the whole macro at once,
6340 thus avoiding the ``training'' phase.)  The task:  Write a program
6341 that computes Stirling numbers of the first kind, given @expr{n} and
6342 @expr{m} on the stack.  Test it with @emph{small} inputs like
6343 @expr{s(4,2)}.  (There is a built-in command for Stirling numbers,
6344 @kbd{k s}, which you can use to check your answers.)
6345 @xref{Programming Answer 11, 11}. (@bullet{})
6347 The programming commands we've seen in this part of the tutorial
6348 are low-level, general-purpose operations.  Often you will find
6349 that a higher-level function, such as vector mapping or rewrite
6350 rules, will do the job much more easily than a detailed, step-by-step
6351 program can:
6353 (@bullet{}) @strong{Exercise 12.}  Write another program for
6354 computing Stirling numbers of the first kind, this time using
6355 rewrite rules.  Once again, @expr{n} and @expr{m} should be taken
6356 from the stack.  @xref{Programming Answer 12, 12}. (@bullet{})
6358 @example
6360 @end example
6361 This ends the tutorial section of the Calc manual.  Now you know enough
6362 about Calc to use it effectively for many kinds of calculations.  But
6363 Calc has many features that were not even touched upon in this tutorial.
6364 @c [not-split]
6365 The rest of this manual tells the whole story.
6366 @c [when-split]
6367 @c Volume II of this manual, the @dfn{Calc Reference}, tells the whole story.
6369 @page
6370 @node Answers to Exercises,  , Programming Tutorial, Tutorial
6371 @section Answers to Exercises
6373 @noindent
6374 This section includes answers to all the exercises in the Calc tutorial.
6376 @menu
6377 * RPN Answer 1::           1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -
6378 * RPN Answer 2::           2*4 + 7*9.5 + 5/4
6379 * RPN Answer 3::           Operating on levels 2 and 3
6380 * RPN Answer 4::           Joe's complex problems
6381 * Algebraic Answer 1::     Simulating Q command
6382 * Algebraic Answer 2::     Joe's algebraic woes
6383 * Algebraic Answer 3::     1 / 0
6384 * Modes Answer 1::         3#0.1 = 3#0.0222222?
6385 * Modes Answer 2::         16#f.e8fe15
6386 * Modes Answer 3::         Joe's rounding bug
6387 * Modes Answer 4::         Why floating point?
6388 * Arithmetic Answer 1::    Why the \ command?
6389 * Arithmetic Answer 2::    Tripping up the B command
6390 * Vector Answer 1::        Normalizing a vector
6391 * Vector Answer 2::        Average position
6392 * Matrix Answer 1::        Row and column sums
6393 * Matrix Answer 2::        Symbolic system of equations
6394 * Matrix Answer 3::        Over-determined system
6395 * List Answer 1::          Powers of two
6396 * List Answer 2::          Least-squares fit with matrices
6397 * List Answer 3::          Geometric mean
6398 * List Answer 4::          Divisor function
6399 * List Answer 5::          Duplicate factors
6400 * List Answer 6::          Triangular list
6401 * List Answer 7::          Another triangular list
6402 * List Answer 8::          Maximum of Bessel function
6403 * List Answer 9::          Integers the hard way
6404 * List Answer 10::         All elements equal
6405 * List Answer 11::         Estimating pi with darts
6406 * List Answer 12::         Estimating pi with matchsticks
6407 * List Answer 13::         Hash codes
6408 * List Answer 14::         Random walk
6409 * Types Answer 1::         Square root of pi times rational
6410 * Types Answer 2::         Infinities
6411 * Types Answer 3::         What can "nan" be?
6412 * Types Answer 4::         Abbey Road
6413 * Types Answer 5::         Friday the 13th
6414 * Types Answer 6::         Leap years
6415 * Types Answer 7::         Erroneous donut
6416 * Types Answer 8::         Dividing intervals
6417 * Types Answer 9::         Squaring intervals
6418 * Types Answer 10::        Fermat's primality test
6419 * Types Answer 11::        pi * 10^7 seconds
6420 * Types Answer 12::        Abbey Road on CD
6421 * Types Answer 13::        Not quite pi * 10^7 seconds
6422 * Types Answer 14::        Supercomputers and c
6423 * Types Answer 15::        Sam the Slug
6424 * Algebra Answer 1::       Squares and square roots
6425 * Algebra Answer 2::       Building polynomial from roots
6426 * Algebra Answer 3::       Integral of x sin(pi x)
6427 * Algebra Answer 4::       Simpson's rule
6428 * Rewrites Answer 1::      Multiplying by conjugate
6429 * Rewrites Answer 2::      Alternative fib rule
6430 * Rewrites Answer 3::      Rewriting opt(a) + opt(b) x
6431 * Rewrites Answer 4::      Sequence of integers
6432 * Rewrites Answer 5::      Number of terms in sum
6433 * Rewrites Answer 6::      Truncated Taylor series
6434 * Programming Answer 1::   Fresnel's C(x)
6435 * Programming Answer 2::   Negate third stack element
6436 * Programming Answer 3::   Compute sin(x) / x, etc.
6437 * Programming Answer 4::   Average value of a list
6438 * Programming Answer 5::   Continued fraction phi
6439 * Programming Answer 6::   Matrix Fibonacci numbers
6440 * Programming Answer 7::   Harmonic number greater than 4
6441 * Programming Answer 8::   Newton's method
6442 * Programming Answer 9::   Digamma function
6443 * Programming Answer 10::  Unpacking a polynomial
6444 * Programming Answer 11::  Recursive Stirling numbers
6445 * Programming Answer 12::  Stirling numbers with rewrites
6446 @end menu
6448 @c The following kludgery prevents the individual answers from
6449 @c being entered on the table of contents.
6450 @tex
6451 \global\let\oldwrite=\write
6452 \gdef\skipwrite#1#2{\let\write=\oldwrite}
6453 \global\let\oldchapternofonts=\chapternofonts
6454 \gdef\chapternofonts{\let\write=\skipwrite\oldchapternofonts}
6455 @end tex
6457 @node RPN Answer 1, RPN Answer 2, Answers to Exercises, Answers to Exercises
6458 @subsection RPN Tutorial Exercise 1
6460 @noindent
6461 @kbd{1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -}
6463 The result is 
6464 @texline @math{1 - (2 \times (3 + 4)) = -13}.
6465 @infoline @expr{1 - (2 * (3 + 4)) = -13}.
6467 @node RPN Answer 2, RPN Answer 3, RPN Answer 1, Answers to Exercises
6468 @subsection RPN Tutorial Exercise 2
6470 @noindent
6471 @texline @math{2\times4 + 7\times9.5 + {5\over4} = 75.75}
6472 @infoline @expr{2*4 + 7*9.5 + 5/4 = 75.75}
6474 After computing the intermediate term 
6475 @texline @math{2\times4 = 8},
6476 @infoline @expr{2*4 = 8}, 
6477 you can leave that result on the stack while you compute the second
6478 term.  With both of these results waiting on the stack you can then
6479 compute the final term, then press @kbd{+ +} to add everything up.
6481 @smallexample
6482 @group
6483 2:  2          1:  8          3:  8          2:  8
6484 1:  4              .          2:  7          1:  66.5
6485     .                         1:  9.5            .
6486                                   .
6488   2 @key{RET} 4          *          7 @key{RET} 9.5          *
6490 @end group
6491 @end smallexample
6492 @noindent
6493 @smallexample
6494 @group
6495 4:  8          3:  8          2:  8          1:  75.75
6496 3:  66.5       2:  66.5       1:  67.75          .
6497 2:  5          1:  1.25           .
6498 1:  4              .
6499     .
6501   5 @key{RET} 4          /              +              +
6502 @end group
6503 @end smallexample
6505 Alternatively, you could add the first two terms before going on
6506 with the third term.
6508 @smallexample
6509 @group
6510 2:  8          1:  74.5       3:  74.5       2:  74.5       1:  75.75
6511 1:  66.5           .          2:  5          1:  1.25           .
6512     .                         1:  4              .
6513                                   .
6515    ...             +            5 @key{RET} 4          /              +
6516 @end group
6517 @end smallexample
6519 On an old-style RPN calculator this second method would have the
6520 advantage of using only three stack levels.  But since Calc's stack
6521 can grow arbitrarily large this isn't really an issue.  Which method
6522 you choose is purely a matter of taste.
6524 @node RPN Answer 3, RPN Answer 4, RPN Answer 2, Answers to Exercises
6525 @subsection RPN Tutorial Exercise 3
6527 @noindent
6528 The @key{TAB} key provides a way to operate on the number in level 2.
6530 @smallexample
6531 @group
6532 3:  10         3:  10         4:  10         3:  10         3:  10
6533 2:  20         2:  30         3:  30         2:  30         2:  21
6534 1:  30         1:  20         2:  20         1:  21         1:  30
6535     .              .          1:  1              .              .
6536                                   .
6538                   @key{TAB}             1              +             @key{TAB}
6539 @end group
6540 @end smallexample
6542 Similarly, @kbd{M-@key{TAB}} gives you access to the number in level 3.
6544 @smallexample
6545 @group
6546 3:  10         3:  21         3:  21         3:  30         3:  11
6547 2:  21         2:  30         2:  30         2:  11         2:  21
6548 1:  30         1:  10         1:  11         1:  21         1:  30
6549     .              .              .              .              .
6551                   M-@key{TAB}           1 +           M-@key{TAB}          M-@key{TAB}
6552 @end group
6553 @end smallexample
6555 @node RPN Answer 4, Algebraic Answer 1, RPN Answer 3, Answers to Exercises
6556 @subsection RPN Tutorial Exercise 4
6558 @noindent
6559 Either @kbd{( 2 , 3 )} or @kbd{( 2 @key{SPC} 3 )} would have worked,
6560 but using both the comma and the space at once yields:
6562 @smallexample
6563 @group
6564 1:  ( ...      2:  ( ...      1:  (2, ...    2:  (2, ...    2:  (2, ...
6565     .          1:  2              .          1:  (2, ...    1:  (2, 3)
6566                    .                             .              .
6568     (              2              ,             @key{SPC}            3 )
6569 @end group
6570 @end smallexample
6572 Joe probably tried to type @kbd{@key{TAB} @key{DEL}} to swap the
6573 extra incomplete object to the top of the stack and delete it.
6574 But a feature of Calc is that @key{DEL} on an incomplete object
6575 deletes just one component out of that object, so he had to press
6576 @key{DEL} twice to finish the job.
6578 @smallexample
6579 @group
6580 2:  (2, ...    2:  (2, 3)     2:  (2, 3)     1:  (2, 3)
6581 1:  (2, 3)     1:  (2, ...    1:  ( ...          .
6582     .              .              .
6584                   @key{TAB}            @key{DEL}            @key{DEL}
6585 @end group
6586 @end smallexample
6588 (As it turns out, deleting the second-to-top stack entry happens often
6589 enough that Calc provides a special key, @kbd{M-@key{DEL}}, to do just that.
6590 @kbd{M-@key{DEL}} is just like @kbd{@key{TAB} @key{DEL}}, except that it doesn't exhibit
6591 the ``feature'' that tripped poor Joe.)
6593 @node Algebraic Answer 1, Algebraic Answer 2, RPN Answer 4, Answers to Exercises
6594 @subsection Algebraic Entry Tutorial Exercise 1
6596 @noindent
6597 Type @kbd{' sqrt($) @key{RET}}.
6599 If the @kbd{Q} key is broken, you could use @kbd{' $^0.5 @key{RET}}.
6600 Or, RPN style, @kbd{0.5 ^}.
6602 (Actually, @samp{$^1:2}, using the fraction one-half as the power, is
6603 a closer equivalent, since @samp{9^0.5} yields @expr{3.0} whereas
6604 @samp{sqrt(9)} and @samp{9^1:2} yield the exact integer @expr{3}.)
6606 @node Algebraic Answer 2, Algebraic Answer 3, Algebraic Answer 1, Answers to Exercises
6607 @subsection Algebraic Entry Tutorial Exercise 2
6609 @noindent
6610 In the formula @samp{2 x (1+y)}, @samp{x} was interpreted as a function
6611 name with @samp{1+y} as its argument.  Assigning a value to a variable
6612 has no relation to a function by the same name.  Joe needed to use an
6613 explicit @samp{*} symbol here:  @samp{2 x*(1+y)}.
6615 @node Algebraic Answer 3, Modes Answer 1, Algebraic Answer 2, Answers to Exercises
6616 @subsection Algebraic Entry Tutorial Exercise 3
6618 @noindent
6619 The result from @kbd{1 @key{RET} 0 /} will be the formula @expr{1 / 0}.
6620 The ``function'' @samp{/} cannot be evaluated when its second argument
6621 is zero, so it is left in symbolic form.  When you now type @kbd{0 *},
6622 the result will be zero because Calc uses the general rule that ``zero
6623 times anything is zero.''
6625 @c [fix-ref Infinities]
6626 The @kbd{m i} command enables an @dfn{Infinite mode} in which @expr{1 / 0}
6627 results in a special symbol that represents ``infinity.''  If you
6628 multiply infinity by zero, Calc uses another special new symbol to
6629 show that the answer is ``indeterminate.''  @xref{Infinities}, for
6630 further discussion of infinite and indeterminate values.
6632 @node Modes Answer 1, Modes Answer 2, Algebraic Answer 3, Answers to Exercises
6633 @subsection Modes Tutorial Exercise 1
6635 @noindent
6636 Calc always stores its numbers in decimal, so even though one-third has
6637 an exact base-3 representation (@samp{3#0.1}), it is still stored as
6638 0.3333333 (chopped off after 12 or however many decimal digits) inside
6639 the calculator's memory.  When this inexact number is converted back
6640 to base 3 for display, it may still be slightly inexact.  When we
6641 multiply this number by 3, we get 0.999999, also an inexact value.
6643 When Calc displays a number in base 3, it has to decide how many digits
6644 to show.  If the current precision is 12 (decimal) digits, that corresponds
6645 to @samp{12 / log10(3) = 25.15} base-3 digits.  Because 25.15 is not an
6646 exact integer, Calc shows only 25 digits, with the result that stored
6647 numbers carry a little bit of extra information that may not show up on
6648 the screen.  When Joe entered @samp{3#0.2}, the stored number 0.666666
6649 happened to round to a pleasing value when it lost that last 0.15 of a
6650 digit, but it was still inexact in Calc's memory.  When he divided by 2,
6651 he still got the dreaded inexact value 0.333333.  (Actually, he divided
6652 0.666667 by 2 to get 0.333334, which is why he got something a little
6653 higher than @code{3#0.1} instead of a little lower.)
6655 If Joe didn't want to be bothered with all this, he could have typed
6656 @kbd{M-24 d n} to display with one less digit than the default.  (If
6657 you give @kbd{d n} a negative argument, it uses default-minus-that,
6658 so @kbd{M-- d n} would be an easier way to get the same effect.)  Those
6659 inexact results would still be lurking there, but they would now be
6660 rounded to nice, natural-looking values for display purposes.  (Remember,
6661 @samp{0.022222} in base 3 is like @samp{0.099999} in base 10; rounding
6662 off one digit will round the number up to @samp{0.1}.)  Depending on the
6663 nature of your work, this hiding of the inexactness may be a benefit or
6664 a danger.  With the @kbd{d n} command, Calc gives you the choice.
6666 Incidentally, another consequence of all this is that if you type
6667 @kbd{M-30 d n} to display more digits than are ``really there,''
6668 you'll see garbage digits at the end of the number.  (In decimal
6669 display mode, with decimally-stored numbers, these garbage digits are
6670 always zero so they vanish and you don't notice them.)  Because Calc
6671 rounds off that 0.15 digit, there is the danger that two numbers could
6672 be slightly different internally but still look the same.  If you feel
6673 uneasy about this, set the @kbd{d n} precision to be a little higher
6674 than normal; you'll get ugly garbage digits, but you'll always be able
6675 to tell two distinct numbers apart.
6677 An interesting side note is that most computers store their
6678 floating-point numbers in binary, and convert to decimal for display.
6679 Thus everyday programs have the same problem:  Decimal 0.1 cannot be
6680 represented exactly in binary (try it: @kbd{0.1 d 2}), so @samp{0.1 * 10}
6681 comes out as an inexact approximation to 1 on some machines (though
6682 they generally arrange to hide it from you by rounding off one digit as
6683 we did above).  Because Calc works in decimal instead of binary, you can
6684 be sure that numbers that look exact @emph{are} exact as long as you stay
6685 in decimal display mode.
6687 It's not hard to show that any number that can be represented exactly
6688 in binary, octal, or hexadecimal is also exact in decimal, so the kinds
6689 of problems we saw in this exercise are likely to be severe only when
6690 you use a relatively unusual radix like 3.
6692 @node Modes Answer 2, Modes Answer 3, Modes Answer 1, Answers to Exercises
6693 @subsection Modes Tutorial Exercise 2
6695 If the radix is 15 or higher, we can't use the letter @samp{e} to mark
6696 the exponent because @samp{e} is interpreted as a digit.  When Calc
6697 needs to display scientific notation in a high radix, it writes
6698 @samp{16#F.E8F*16.^15}.  You can enter a number like this as an
6699 algebraic entry.  Also, pressing @kbd{e} without any digits before it
6700 normally types @kbd{1e}, but in a high radix it types @kbd{16.^} and
6701 puts you in algebraic entry:  @kbd{16#f.e8f @key{RET} e 15 @key{RET} *} is another
6702 way to enter this number.
6704 The reason Calc puts a decimal point in the @samp{16.^} is to prevent
6705 huge integers from being generated if the exponent is large (consider
6706 @samp{16#1.23*16^1000}, where we compute @samp{16^1000} as a giant
6707 exact integer and then throw away most of the digits when we multiply
6708 it by the floating-point @samp{16#1.23}).  While this wouldn't normally
6709 matter for display purposes, it could give you a nasty surprise if you
6710 copied that number into a file and later moved it back into Calc.
6712 @node Modes Answer 3, Modes Answer 4, Modes Answer 2, Answers to Exercises
6713 @subsection Modes Tutorial Exercise 3
6715 @noindent
6716 The answer he got was @expr{0.5000000000006399}.
6718 The problem is not that the square operation is inexact, but that the
6719 sine of 45 that was already on the stack was accurate to only 12 places.
6720 Arbitrary-precision calculations still only give answers as good as
6721 their inputs.
6723 The real problem is that there is no 12-digit number which, when
6724 squared, comes out to 0.5 exactly.  The @kbd{f [} and @kbd{f ]}
6725 commands decrease or increase a number by one unit in the last
6726 place (according to the current precision).  They are useful for
6727 determining facts like this.
6729 @smallexample
6730 @group
6731 1:  0.707106781187      1:  0.500000000001
6732     .                       .
6734     45 S                    2 ^
6736 @end group
6737 @end smallexample
6738 @noindent
6739 @smallexample
6740 @group
6741 1:  0.707106781187      1:  0.707106781186      1:  0.499999999999
6742     .                       .                       .
6744     U  @key{DEL}                  f [                     2 ^
6745 @end group
6746 @end smallexample
6748 A high-precision calculation must be carried out in high precision
6749 all the way.  The only number in the original problem which was known
6750 exactly was the quantity 45 degrees, so the precision must be raised
6751 before anything is done after the number 45 has been entered in order
6752 for the higher precision to be meaningful.
6754 @node Modes Answer 4, Arithmetic Answer 1, Modes Answer 3, Answers to Exercises
6755 @subsection Modes Tutorial Exercise 4
6757 @noindent
6758 Many calculations involve real-world quantities, like the width and
6759 height of a piece of wood or the volume of a jar.  Such quantities
6760 can't be measured exactly anyway, and if the data that is input to
6761 a calculation is inexact, doing exact arithmetic on it is a waste
6762 of time.
6764 Fractions become unwieldy after too many calculations have been
6765 done with them.  For example, the sum of the reciprocals of the
6766 integers from 1 to 10 is 7381:2520.  The sum from 1 to 30 is
6767 9304682830147:2329089562800.  After a point it will take a long
6768 time to add even one more term to this sum, but a floating-point
6769 calculation of the sum will not have this problem.
6771 Also, rational numbers cannot express the results of all calculations.
6772 There is no fractional form for the square root of two, so if you type
6773 @w{@kbd{2 Q}}, Calc has no choice but to give you a floating-point answer.
6775 @node Arithmetic Answer 1, Arithmetic Answer 2, Modes Answer 4, Answers to Exercises
6776 @subsection Arithmetic Tutorial Exercise 1
6778 @noindent
6779 Dividing two integers that are larger than the current precision may
6780 give a floating-point result that is inaccurate even when rounded
6781 down to an integer.  Consider @expr{123456789 / 2} when the current
6782 precision is 6 digits.  The true answer is @expr{61728394.5}, but
6783 with a precision of 6 this will be rounded to 
6784 @texline @math{12345700.0/2.0 = 61728500.0}.
6785 @infoline @expr{12345700.@: / 2.@: = 61728500.}.
6786 The result, when converted to an integer, will be off by 106.
6788 Here are two solutions:  Raise the precision enough that the
6789 floating-point round-off error is strictly to the right of the
6790 decimal point.  Or, convert to Fraction mode so that @expr{123456789 / 2}
6791 produces the exact fraction @expr{123456789:2}, which can be rounded
6792 down by the @kbd{F} command without ever switching to floating-point
6793 format.
6795 @node Arithmetic Answer 2, Vector Answer 1, Arithmetic Answer 1, Answers to Exercises
6796 @subsection Arithmetic Tutorial Exercise 2
6798 @noindent
6799 @kbd{27 @key{RET} 9 B} could give the exact result @expr{3:2}, but it
6800 does a floating-point calculation instead and produces @expr{1.5}.
6802 Calc will find an exact result for a logarithm if the result is an integer
6803 or (when in Fraction mode) the reciprocal of an integer.  But there is
6804 no efficient way to search the space of all possible rational numbers
6805 for an exact answer, so Calc doesn't try.
6807 @node Vector Answer 1, Vector Answer 2, Arithmetic Answer 2, Answers to Exercises
6808 @subsection Vector Tutorial Exercise 1
6810 @noindent
6811 Duplicate the vector, compute its length, then divide the vector
6812 by its length:  @kbd{@key{RET} A /}.
6814 @smallexample
6815 @group
6816 1:  [1, 2, 3]  2:  [1, 2, 3]      1:  [0.27, 0.53, 0.80]  1:  1.
6817     .          1:  3.74165738677      .                       .
6818                    .
6820     r 1            @key{RET} A              /                       A
6821 @end group
6822 @end smallexample
6824 The final @kbd{A} command shows that the normalized vector does
6825 indeed have unit length.
6827 @node Vector Answer 2, Matrix Answer 1, Vector Answer 1, Answers to Exercises
6828 @subsection Vector Tutorial Exercise 2
6830 @noindent
6831 The average position is equal to the sum of the products of the
6832 positions times their corresponding probabilities.  This is the
6833 definition of the dot product operation.  So all you need to do
6834 is to put the two vectors on the stack and press @kbd{*}.
6836 @node Matrix Answer 1, Matrix Answer 2, Vector Answer 2, Answers to Exercises
6837 @subsection Matrix Tutorial Exercise 1
6839 @noindent
6840 The trick is to multiply by a vector of ones.  Use @kbd{r 4 [1 1 1] *} to
6841 get the row sum.  Similarly, use @kbd{[1 1] r 4 *} to get the column sum.
6843 @node Matrix Answer 2, Matrix Answer 3, Matrix Answer 1, Answers to Exercises
6844 @subsection Matrix Tutorial Exercise 2
6846 @ifinfo
6847 @example
6848 @group
6849    x + a y = 6
6850    x + b y = 10
6851 @end group
6852 @end example
6853 @end ifinfo
6854 @tex
6855 \turnoffactive
6856 \beforedisplay
6857 $$ \eqalign{ x &+ a y = 6 \cr
6858              x &+ b y = 10}
6860 \afterdisplay
6861 @end tex
6863 Just enter the righthand side vector, then divide by the lefthand side
6864 matrix as usual.
6866 @smallexample
6867 @group
6868 1:  [6, 10]    2:  [6, 10]         1:  [6 - 4 a / (b - a), 4 / (b - a) ]
6869     .          1:  [ [ 1, a ]          .
6870                      [ 1, b ] ]
6871                    .
6873 ' [6 10] @key{RET}     ' [1 a; 1 b] @key{RET}      /
6874 @end group
6875 @end smallexample
6877 This can be made more readable using @kbd{d B} to enable Big display
6878 mode:
6880 @smallexample
6881 @group
6882           4 a     4
6883 1:  [6 - -----, -----]
6884          b - a  b - a
6885 @end group
6886 @end smallexample
6888 Type @kbd{d N} to return to Normal display mode afterwards.
6890 @node Matrix Answer 3, List Answer 1, Matrix Answer 2, Answers to Exercises
6891 @subsection Matrix Tutorial Exercise 3
6893 @noindent
6894 To solve 
6895 @texline @math{A^T A \, X = A^T B},
6896 @infoline @expr{trn(A) * A * X = trn(A) * B}, 
6897 first we compute
6898 @texline @math{A' = A^T A}
6899 @infoline @expr{A2 = trn(A) * A} 
6900 and 
6901 @texline @math{B' = A^T B};
6902 @infoline @expr{B2 = trn(A) * B}; 
6903 now, we have a system 
6904 @texline @math{A' X = B'}
6905 @infoline @expr{A2 * X = B2} 
6906 which we can solve using Calc's @samp{/} command.
6908 @ifinfo
6909 @example
6910 @group
6911     a + 2b + 3c = 6
6912    4a + 5b + 6c = 2
6913    7a + 6b      = 3
6914    2a + 4b + 6c = 11
6915 @end group
6916 @end example
6917 @end ifinfo
6918 @tex
6919 \turnoffactive
6920 \beforedisplayh
6921 $$ \openup1\jot \tabskip=0pt plus1fil
6922 \halign to\displaywidth{\tabskip=0pt
6923    $\hfil#$&$\hfil{}#{}$&
6924    $\hfil#$&$\hfil{}#{}$&
6925    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
6926   a&+&2b&+&3c&=6 \cr
6927  4a&+&5b&+&6c&=2 \cr
6928  7a&+&6b& &  &=3 \cr
6929  2a&+&4b&+&6c&=11 \cr}
6931 \afterdisplayh
6932 @end tex
6934 The first step is to enter the coefficient matrix.  We'll store it in
6935 quick variable number 7 for later reference.  Next, we compute the
6936 @texline @math{B'}
6937 @infoline @expr{B2} 
6938 vector.
6940 @smallexample
6941 @group
6942 1:  [ [ 1, 2, 3 ]             2:  [ [ 1, 4, 7, 2 ]     1:  [57, 84, 96]
6943       [ 4, 5, 6 ]                   [ 2, 5, 6, 4 ]         .
6944       [ 7, 6, 0 ]                   [ 3, 6, 0, 6 ] ]
6945       [ 2, 4, 6 ] ]           1:  [6, 2, 3, 11]
6946     .                             .
6948 ' [1 2 3; 4 5 6; 7 6 0; 2 4 6] @key{RET}  s 7  v t  [6 2 3 11]   *
6949 @end group
6950 @end smallexample
6952 @noindent
6953 Now we compute the matrix 
6954 @texline @math{A'}
6955 @infoline @expr{A2} 
6956 and divide.
6958 @smallexample
6959 @group
6960 2:  [57, 84, 96]          1:  [-11.64, 14.08, -3.64]
6961 1:  [ [ 70, 72, 39 ]          .
6962       [ 72, 81, 60 ]
6963       [ 39, 60, 81 ] ]
6964     .
6966     r 7 v t r 7 *             /
6967 @end group
6968 @end smallexample
6970 @noindent
6971 (The actual computed answer will be slightly inexact due to
6972 round-off error.)
6974 Notice that the answers are similar to those for the 
6975 @texline @math{3\times3}
6976 @infoline 3x3
6977 system solved in the text.  That's because the fourth equation that was 
6978 added to the system is almost identical to the first one multiplied
6979 by two.  (If it were identical, we would have gotten the exact same
6980 answer since the 
6981 @texline @math{4\times3}
6982 @infoline 4x3
6983 system would be equivalent to the original 
6984 @texline @math{3\times3}
6985 @infoline 3x3
6986 system.)
6988 Since the first and fourth equations aren't quite equivalent, they
6989 can't both be satisfied at once.  Let's plug our answers back into
6990 the original system of equations to see how well they match.
6992 @smallexample
6993 @group
6994 2:  [-11.64, 14.08, -3.64]     1:  [5.6, 2., 3., 11.2]
6995 1:  [ [ 1, 2, 3 ]                  .
6996       [ 4, 5, 6 ]
6997       [ 7, 6, 0 ]
6998       [ 2, 4, 6 ] ]
6999     .
7001     r 7                            @key{TAB} *
7002 @end group
7003 @end smallexample
7005 @noindent
7006 This is reasonably close to our original @expr{B} vector,
7007 @expr{[6, 2, 3, 11]}.
7009 @node List Answer 1, List Answer 2, Matrix Answer 3, Answers to Exercises
7010 @subsection List Tutorial Exercise 1
7012 @noindent
7013 We can use @kbd{v x} to build a vector of integers.  This needs to be
7014 adjusted to get the range of integers we desire.  Mapping @samp{-}
7015 across the vector will accomplish this, although it turns out the
7016 plain @samp{-} key will work just as well.
7018 @smallexample
7019 @group
7020 2:  2                              2:  2
7021 1:  [1, 2, 3, 4, 5, 6, 7, 8, 9]    1:  [-4, -3, -2, -1, 0, 1, 2, 3, 4]
7022     .                                  .
7024     2  v x 9 @key{RET}                       5 V M -   or   5 -
7025 @end group
7026 @end smallexample
7028 @noindent
7029 Now we use @kbd{V M ^} to map the exponentiation operator across the
7030 vector.
7032 @smallexample
7033 @group
7034 1:  [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
7035     .
7037     V M ^
7038 @end group
7039 @end smallexample
7041 @node List Answer 2, List Answer 3, List Answer 1, Answers to Exercises
7042 @subsection List Tutorial Exercise 2
7044 @noindent
7045 Given @expr{x} and @expr{y} vectors in quick variables 1 and 2 as before,
7046 the first job is to form the matrix that describes the problem.
7048 @ifinfo
7049 @example
7050    m*x + b*1 = y
7051 @end example
7052 @end ifinfo
7053 @tex
7054 \turnoffactive
7055 \beforedisplay
7056 $$ m \times x + b \times 1 = y $$
7057 \afterdisplay
7058 @end tex
7060 Thus we want a 
7061 @texline @math{19\times2}
7062 @infoline 19x2
7063 matrix with our @expr{x} vector as one column and
7064 ones as the other column.  So, first we build the column of ones, then
7065 we combine the two columns to form our @expr{A} matrix.
7067 @smallexample
7068 @group
7069 2:  [1.34, 1.41, 1.49, ... ]    1:  [ [ 1.34, 1 ]
7070 1:  [1, 1, 1, ...]                    [ 1.41, 1 ]
7071     .                                 [ 1.49, 1 ]
7072                                       @dots{}
7074     r 1 1 v b 19 @key{RET}                M-2 v p v t   s 3
7075 @end group
7076 @end smallexample
7078 @noindent
7079 Now we compute 
7080 @texline @math{A^T y}
7081 @infoline @expr{trn(A) * y} 
7082 and 
7083 @texline @math{A^T A}
7084 @infoline @expr{trn(A) * A} 
7085 and divide.
7087 @smallexample
7088 @group
7089 1:  [33.36554, 13.613]    2:  [33.36554, 13.613]
7090     .                     1:  [ [ 98.0003, 41.63 ]
7091                                 [  41.63,   19   ] ]
7092                               .
7094  v t r 2 *                    r 3 v t r 3 *
7095 @end group
7096 @end smallexample
7098 @noindent
7099 (Hey, those numbers look familiar!)
7101 @smallexample
7102 @group
7103 1:  [0.52141679, -0.425978]
7104     .
7106     /
7107 @end group
7108 @end smallexample
7110 Since we were solving equations of the form 
7111 @texline @math{m \times x + b \times 1 = y},
7112 @infoline @expr{m*x + b*1 = y}, 
7113 these numbers should be @expr{m} and @expr{b}, respectively.  Sure
7114 enough, they agree exactly with the result computed using @kbd{V M} and
7115 @kbd{V R}!
7117 The moral of this story:  @kbd{V M} and @kbd{V R} will probably solve
7118 your problem, but there is often an easier way using the higher-level
7119 arithmetic functions!
7121 @c [fix-ref Curve Fitting]
7122 In fact, there is a built-in @kbd{a F} command that does least-squares
7123 fits.  @xref{Curve Fitting}.
7125 @node List Answer 3, List Answer 4, List Answer 2, Answers to Exercises
7126 @subsection List Tutorial Exercise 3
7128 @noindent
7129 Move to one end of the list and press @kbd{C-@@} (or @kbd{C-@key{SPC}} or
7130 whatever) to set the mark, then move to the other end of the list
7131 and type @w{@kbd{C-x * g}}.
7133 @smallexample
7134 @group
7135 1:  [2.3, 6, 22, 15.1, 7, 15, 14, 7.5, 2.5]
7136     .
7137 @end group
7138 @end smallexample
7140 To make things interesting, let's assume we don't know at a glance
7141 how many numbers are in this list.  Then we could type:
7143 @smallexample
7144 @group
7145 2:  [2.3, 6, 22, ... ]     2:  [2.3, 6, 22, ... ]
7146 1:  [2.3, 6, 22, ... ]     1:  126356422.5
7147     .                          .
7149     @key{RET}                        V R *
7151 @end group
7152 @end smallexample
7153 @noindent
7154 @smallexample
7155 @group
7156 2:  126356422.5            2:  126356422.5     1:  7.94652913734
7157 1:  [2.3, 6, 22, ... ]     1:  9                   .
7158     .                          .
7160     @key{TAB}                        v l                 I ^
7161 @end group
7162 @end smallexample
7164 @noindent
7165 (The @kbd{I ^} command computes the @var{n}th root of a number.
7166 You could also type @kbd{& ^} to take the reciprocal of 9 and
7167 then raise the number to that power.)
7169 @node List Answer 4, List Answer 5, List Answer 3, Answers to Exercises
7170 @subsection List Tutorial Exercise 4
7172 @noindent
7173 A number @expr{j} is a divisor of @expr{n} if 
7174 @texline @math{n \mathbin{\hbox{\code{\%}}} j = 0}.
7175 @infoline @samp{n % j = 0}.  
7176 The first step is to get a vector that identifies the divisors.
7178 @smallexample
7179 @group
7180 2:  30                  2:  [0, 0, 0, 2, ...]    1:  [1, 1, 1, 0, ...]
7181 1:  [1, 2, 3, 4, ...]   1:  0                        .
7182     .                       .
7184  30 @key{RET} v x 30 @key{RET}   s 1    V M %  0                 V M a =  s 2
7185 @end group
7186 @end smallexample
7188 @noindent
7189 This vector has 1's marking divisors of 30 and 0's marking non-divisors.
7191 The zeroth divisor function is just the total number of divisors.
7192 The first divisor function is the sum of the divisors.
7194 @smallexample
7195 @group
7196 1:  8      3:  8                    2:  8                    2:  8
7197            2:  [1, 2, 3, 4, ...]    1:  [1, 2, 3, 0, ...]    1:  72
7198            1:  [1, 1, 1, 0, ...]        .                        .
7199                .
7201    V R +       r 1 r 2                  V M *                  V R +
7202 @end group
7203 @end smallexample
7205 @noindent
7206 Once again, the last two steps just compute a dot product for which
7207 a simple @kbd{*} would have worked equally well.
7209 @node List Answer 5, List Answer 6, List Answer 4, Answers to Exercises
7210 @subsection List Tutorial Exercise 5
7212 @noindent
7213 The obvious first step is to obtain the list of factors with @kbd{k f}.
7214 This list will always be in sorted order, so if there are duplicates
7215 they will be right next to each other.  A suitable method is to compare
7216 the list with a copy of itself shifted over by one.
7218 @smallexample
7219 @group
7220 1:  [3, 7, 7, 7, 19]   2:  [3, 7, 7, 7, 19]     2:  [3, 7, 7, 7, 19, 0]
7221     .                  1:  [3, 7, 7, 7, 19, 0]  1:  [0, 3, 7, 7, 7, 19]
7222                            .                        .
7224     19551 k f              @key{RET} 0 |                  @key{TAB} 0 @key{TAB} |
7226 @end group
7227 @end smallexample
7228 @noindent
7229 @smallexample
7230 @group
7231 1:  [0, 0, 1, 1, 0, 0]   1:  2          1:  0
7232     .                        .              .
7234     V M a =                  V R +          0 a =
7235 @end group
7236 @end smallexample
7238 @noindent
7239 Note that we have to arrange for both vectors to have the same length
7240 so that the mapping operation works; no prime factor will ever be
7241 zero, so adding zeros on the left and right is safe.  From then on
7242 the job is pretty straightforward.
7244 Incidentally, Calc provides the 
7245 @texline @dfn{M@"obius} @math{\mu}
7246 @infoline @dfn{Moebius mu} 
7247 function which is zero if and only if its argument is square-free.  It
7248 would be a much more convenient way to do the above test in practice.
7250 @node List Answer 6, List Answer 7, List Answer 5, Answers to Exercises
7251 @subsection List Tutorial Exercise 6
7253 @noindent
7254 First use @kbd{v x 6 @key{RET}} to get a list of integers, then @kbd{V M v x}
7255 to get a list of lists of integers!
7257 @node List Answer 7, List Answer 8, List Answer 6, Answers to Exercises
7258 @subsection List Tutorial Exercise 7
7260 @noindent
7261 Here's one solution.  First, compute the triangular list from the previous
7262 exercise and type @kbd{1 -} to subtract one from all the elements.
7264 @smallexample
7265 @group
7266 1:  [ [0],
7267       [0, 1],
7268       [0, 1, 2],
7269       @dots{}
7271     1 -
7272 @end group
7273 @end smallexample
7275 The numbers down the lefthand edge of the list we desire are called
7276 the ``triangular numbers'' (now you know why!).  The @expr{n}th
7277 triangular number is the sum of the integers from 1 to @expr{n}, and
7278 can be computed directly by the formula 
7279 @texline @math{n (n+1) \over 2}.
7280 @infoline @expr{n * (n+1) / 2}.
7282 @smallexample
7283 @group
7284 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7285 1:  [0, 1, 2, 3, 4, 5]      1:  [0, 1, 3, 6, 10, 15]
7286     .                           .
7288     v x 6 @key{RET} 1 -               V M ' $ ($+1)/2 @key{RET}
7289 @end group
7290 @end smallexample
7292 @noindent
7293 Adding this list to the above list of lists produces the desired
7294 result:
7296 @smallexample
7297 @group
7298 1:  [ [0],
7299       [1, 2],
7300       [3, 4, 5],
7301       [6, 7, 8, 9],
7302       [10, 11, 12, 13, 14],
7303       [15, 16, 17, 18, 19, 20] ]
7304       .
7306       V M +
7307 @end group
7308 @end smallexample
7310 If we did not know the formula for triangular numbers, we could have
7311 computed them using a @kbd{V U +} command.  We could also have
7312 gotten them the hard way by mapping a reduction across the original
7313 triangular list.
7315 @smallexample
7316 @group
7317 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7318 1:  [ [0], [0, 1], ... ]    1:  [0, 1, 3, 6, 10, 15]
7319     .                           .
7321     @key{RET}                         V M V R +
7322 @end group
7323 @end smallexample
7325 @noindent
7326 (This means ``map a @kbd{V R +} command across the vector,'' and
7327 since each element of the main vector is itself a small vector,
7328 @kbd{V R +} computes the sum of its elements.)
7330 @node List Answer 8, List Answer 9, List Answer 7, Answers to Exercises
7331 @subsection List Tutorial Exercise 8
7333 @noindent
7334 The first step is to build a list of values of @expr{x}.
7336 @smallexample
7337 @group
7338 1:  [1, 2, 3, ..., 21]  1:  [0, 1, 2, ..., 20]  1:  [0, 0.25, 0.5, ..., 5]
7339     .                       .                       .
7341     v x 21 @key{RET}              1 -                     4 /  s 1
7342 @end group
7343 @end smallexample
7345 Next, we compute the Bessel function values.
7347 @smallexample
7348 @group
7349 1:  [0., 0.124, 0.242, ..., -0.328]
7350     .
7352     V M ' besJ(1,$) @key{RET}
7353 @end group
7354 @end smallexample
7356 @noindent
7357 (Another way to do this would be @kbd{1 @key{TAB} V M f j}.)
7359 A way to isolate the maximum value is to compute the maximum using
7360 @kbd{V R X}, then compare all the Bessel values with that maximum.
7362 @smallexample
7363 @group
7364 2:  [0., 0.124, 0.242, ... ]   1:  [0, 0, 0, ... ]    2:  [0, 0, 0, ... ]
7365 1:  0.5801562                      .                  1:  1
7366     .                                                     .
7368     @key{RET} V R X                      V M a =                @key{RET} V R +    @key{DEL}
7369 @end group
7370 @end smallexample
7372 @noindent
7373 It's a good idea to verify, as in the last step above, that only
7374 one value is equal to the maximum.  (After all, a plot of 
7375 @texline @math{\sin x}
7376 @infoline @expr{sin(x)}
7377 might have many points all equal to the maximum value, 1.)
7379 The vector we have now has a single 1 in the position that indicates
7380 the maximum value of @expr{x}.  Now it is a simple matter to convert
7381 this back into the corresponding value itself.
7383 @smallexample
7384 @group
7385 2:  [0, 0, 0, ... ]         1:  [0, 0., 0., ... ]    1:  1.75
7386 1:  [0, 0.25, 0.5, ... ]        .                        .
7387     .
7389     r 1                         V M *                    V R +
7390 @end group
7391 @end smallexample
7393 If @kbd{a =} had produced more than one @expr{1} value, this method
7394 would have given the sum of all maximum @expr{x} values; not very
7395 useful!  In this case we could have used @kbd{v m} (@code{calc-mask-vector})
7396 instead.  This command deletes all elements of a ``data'' vector that
7397 correspond to zeros in a ``mask'' vector, leaving us with, in this
7398 example, a vector of maximum @expr{x} values.
7400 The built-in @kbd{a X} command maximizes a function using more
7401 efficient methods.  Just for illustration, let's use @kbd{a X}
7402 to maximize @samp{besJ(1,x)} over this same interval.
7404 @smallexample
7405 @group
7406 2:  besJ(1, x)                 1:  [1.84115, 0.581865]
7407 1:  [0 .. 5]                       .
7408     .
7410 ' besJ(1,x), [0..5] @key{RET}            a X x @key{RET}
7411 @end group
7412 @end smallexample
7414 @noindent
7415 The output from @kbd{a X} is a vector containing the value of @expr{x}
7416 that maximizes the function, and the function's value at that maximum.
7417 As you can see, our simple search got quite close to the right answer.
7419 @node List Answer 9, List Answer 10, List Answer 8, Answers to Exercises
7420 @subsection List Tutorial Exercise 9
7422 @noindent
7423 Step one is to convert our integer into vector notation.
7425 @smallexample
7426 @group
7427 1:  25129925999           3:  25129925999
7428     .                     2:  10
7429                           1:  [11, 10, 9, ..., 1, 0]
7430                               .
7432     25129925999 @key{RET}           10 @key{RET} 12 @key{RET} v x 12 @key{RET} -
7434 @end group
7435 @end smallexample
7436 @noindent
7437 @smallexample
7438 @group
7439 1:  25129925999              1:  [0, 2, 25, 251, 2512, ... ]
7440 2:  [100000000000, ... ]         .
7441     .
7443     V M ^   s 1                  V M \
7444 @end group
7445 @end smallexample
7447 @noindent
7448 (Recall, the @kbd{\} command computes an integer quotient.)
7450 @smallexample
7451 @group
7452 1:  [0, 2, 5, 1, 2, 9, 9, 2, 5, 9, 9, 9]
7453     .
7455     10 V M %   s 2
7456 @end group
7457 @end smallexample
7459 Next we must increment this number.  This involves adding one to
7460 the last digit, plus handling carries.  There is a carry to the
7461 left out of a digit if that digit is a nine and all the digits to
7462 the right of it are nines.
7464 @smallexample
7465 @group
7466 1:  [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1]   1:  [1, 1, 1, 0, 0, 1, ... ]
7467     .                                          .
7469     9 V M a =                                  v v
7471 @end group
7472 @end smallexample
7473 @noindent
7474 @smallexample
7475 @group
7476 1:  [1, 1, 1, 0, 0, 0, ... ]   1:  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
7477     .                              .
7479     V U *                          v v 1 |
7480 @end group
7481 @end smallexample
7483 @noindent
7484 Accumulating @kbd{*} across a vector of ones and zeros will preserve
7485 only the initial run of ones.  These are the carries into all digits
7486 except the rightmost digit.  Concatenating a one on the right takes
7487 care of aligning the carries properly, and also adding one to the
7488 rightmost digit.
7490 @smallexample
7491 @group
7492 2:  [0, 0, 0, 0, ... ]     1:  [0, 0, 2, 5, 1, 2, 9, 9, 2, 6, 0, 0, 0]
7493 1:  [0, 0, 2, 5, ... ]         .
7494     .
7496     0 r 2 |                    V M +  10 V M %
7497 @end group
7498 @end smallexample
7500 @noindent
7501 Here we have concatenated 0 to the @emph{left} of the original number;
7502 this takes care of shifting the carries by one with respect to the
7503 digits that generated them.
7505 Finally, we must convert this list back into an integer.
7507 @smallexample
7508 @group
7509 3:  [0, 0, 2, 5, ... ]        2:  [0, 0, 2, 5, ... ]
7510 2:  1000000000000             1:  [1000000000000, 100000000000, ... ]
7511 1:  [100000000000, ... ]          .
7512     .
7514     10 @key{RET} 12 ^  r 1              |
7516 @end group
7517 @end smallexample
7518 @noindent
7519 @smallexample
7520 @group
7521 1:  [0, 0, 20000000000, 5000000000, ... ]    1:  25129926000
7522     .                                            .
7524     V M *                                        V R +
7525 @end group
7526 @end smallexample
7528 @noindent
7529 Another way to do this final step would be to reduce the formula
7530 @w{@samp{10 $$ + $}} across the vector of digits.
7532 @smallexample
7533 @group
7534 1:  [0, 0, 2, 5, ... ]        1:  25129926000
7535     .                             .
7537                                   V R ' 10 $$ + $ @key{RET}
7538 @end group
7539 @end smallexample
7541 @node List Answer 10, List Answer 11, List Answer 9, Answers to Exercises
7542 @subsection List Tutorial Exercise 10
7544 @noindent
7545 For the list @expr{[a, b, c, d]}, the result is @expr{((a = b) = c) = d},
7546 which will compare @expr{a} and @expr{b} to produce a 1 or 0, which is
7547 then compared with @expr{c} to produce another 1 or 0, which is then
7548 compared with @expr{d}.  This is not at all what Joe wanted.
7550 Here's a more correct method:
7552 @smallexample
7553 @group
7554 1:  [7, 7, 7, 8, 7]      2:  [7, 7, 7, 8, 7]
7555     .                    1:  7
7556                              .
7558   ' [7,7,7,8,7] @key{RET}          @key{RET} v r 1 @key{RET}
7560 @end group
7561 @end smallexample
7562 @noindent
7563 @smallexample
7564 @group
7565 1:  [1, 1, 1, 0, 1]      1:  0
7566     .                        .
7568     V M a =                  V R *
7569 @end group
7570 @end smallexample
7572 @node List Answer 11, List Answer 12, List Answer 10, Answers to Exercises
7573 @subsection List Tutorial Exercise 11
7575 @noindent
7576 The circle of unit radius consists of those points @expr{(x,y)} for which
7577 @expr{x^2 + y^2 < 1}.  We start by generating a vector of @expr{x^2}
7578 and a vector of @expr{y^2}.
7580 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7581 commands.
7583 @smallexample
7584 @group
7585 2:  [2., 2., ..., 2.]          2:  [2., 2., ..., 2.]
7586 1:  [2., 2., ..., 2.]          1:  [1.16, 1.98, ..., 0.81]
7587     .                              .
7589  v . t .  2. v b 100 @key{RET} @key{RET}       V M k r
7591 @end group
7592 @end smallexample
7593 @noindent
7594 @smallexample
7595 @group
7596 2:  [2., 2., ..., 2.]          1:  [0.026, 0.96, ..., 0.036]
7597 1:  [0.026, 0.96, ..., 0.036]  2:  [0.53, 0.81, ..., 0.094]
7598     .                              .
7600     1 -  2 V M ^                   @key{TAB}  V M k r  1 -  2 V M ^
7601 @end group
7602 @end smallexample
7604 Now we sum the @expr{x^2} and @expr{y^2} values, compare with 1 to
7605 get a vector of 1/0 truth values, then sum the truth values.
7607 @smallexample
7608 @group
7609 1:  [0.56, 1.78, ..., 0.13]    1:  [1, 0, ..., 1]    1:  84
7610     .                              .                     .
7612     +                              1 V M a <             V R +
7613 @end group
7614 @end smallexample
7616 @noindent
7617 The ratio @expr{84/100} should approximate the ratio @cpiover{4}.
7619 @smallexample
7620 @group
7621 1:  0.84       1:  3.36       2:  3.36       1:  1.0695
7622     .              .          1:  3.14159        .
7624     100 /          4 *            P              /
7625 @end group
7626 @end smallexample
7628 @noindent
7629 Our estimate, 3.36, is off by about 7%.  We could get a better estimate
7630 by taking more points (say, 1000), but it's clear that this method is
7631 not very efficient!
7633 (Naturally, since this example uses random numbers your own answer
7634 will be slightly different from the one shown here!)
7636 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7637 return to full-sized display of vectors.
7639 @node List Answer 12, List Answer 13, List Answer 11, Answers to Exercises
7640 @subsection List Tutorial Exercise 12
7642 @noindent
7643 This problem can be made a lot easier by taking advantage of some
7644 symmetries.  First of all, after some thought it's clear that the
7645 @expr{y} axis can be ignored altogether.  Just pick a random @expr{x}
7646 component for one end of the match, pick a random direction 
7647 @texline @math{\theta},
7648 @infoline @expr{theta},
7649 and see if @expr{x} and 
7650 @texline @math{x + \cos \theta}
7651 @infoline @expr{x + cos(theta)} 
7652 (which is the @expr{x} coordinate of the other endpoint) cross a line.
7653 The lines are at integer coordinates, so this happens when the two
7654 numbers surround an integer.
7656 Since the two endpoints are equivalent, we may as well choose the leftmost
7657 of the two endpoints as @expr{x}.  Then @expr{theta} is an angle pointing
7658 to the right, in the range -90 to 90 degrees.  (We could use radians, but
7659 it would feel like cheating to refer to @cpiover{2} radians while trying
7660 to estimate @cpi{}!)
7662 In fact, since the field of lines is infinite we can choose the
7663 coordinates 0 and 1 for the lines on either side of the leftmost
7664 endpoint.  The rightmost endpoint will be between 0 and 1 if the
7665 match does not cross a line, or between 1 and 2 if it does.  So:
7666 Pick random @expr{x} and 
7667 @texline @math{\theta},
7668 @infoline @expr{theta}, 
7669 compute
7670 @texline @math{x + \cos \theta},
7671 @infoline @expr{x + cos(theta)},
7672 and count how many of the results are greater than one.  Simple!
7674 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7675 commands.
7677 @smallexample
7678 @group
7679 1:  [0.52, 0.71, ..., 0.72]    2:  [0.52, 0.71, ..., 0.72]
7680     .                          1:  [78.4, 64.5, ..., -42.9]
7681                                    .
7683 v . t . 1. v b 100 @key{RET}  V M k r    180. v b 100 @key{RET}  V M k r  90 -
7684 @end group
7685 @end smallexample
7687 @noindent
7688 (The next step may be slow, depending on the speed of your computer.)
7690 @smallexample
7691 @group
7692 2:  [0.52, 0.71, ..., 0.72]    1:  [0.72, 1.14, ..., 1.45]
7693 1:  [0.20, 0.43, ..., 0.73]        .
7694     .
7696     m d  V M C                     +
7698 @end group
7699 @end smallexample
7700 @noindent
7701 @smallexample
7702 @group
7703 1:  [0, 1, ..., 1]       1:  0.64            1:  3.125
7704     .                        .                   .
7706     1 V M a >                V R + 100 /         2 @key{TAB} /
7707 @end group
7708 @end smallexample
7710 Let's try the third method, too.  We'll use random integers up to
7711 one million.  The @kbd{k r} command with an integer argument picks
7712 a random integer.
7714 @smallexample
7715 @group
7716 2:  [1000000, 1000000, ..., 1000000]   2:  [78489, 527587, ..., 814975]
7717 1:  [1000000, 1000000, ..., 1000000]   1:  [324014, 358783, ..., 955450]
7718     .                                      .
7720     1000000 v b 100 @key{RET} @key{RET}                V M k r  @key{TAB}  V M k r
7722 @end group
7723 @end smallexample
7724 @noindent
7725 @smallexample
7726 @group
7727 1:  [1, 1, ..., 25]      1:  [1, 1, ..., 0]     1:  0.56
7728     .                        .                      .
7730     V M k g                  1 V M a =              V R + 100 /
7732 @end group
7733 @end smallexample
7734 @noindent
7735 @smallexample
7736 @group
7737 1:  10.714        1:  3.273
7738     .                 .
7740     6 @key{TAB} /           Q
7741 @end group
7742 @end smallexample
7744 For a proof of this property of the GCD function, see section 4.5.2,
7745 exercise 10, of Knuth's @emph{Art of Computer Programming}, volume II.
7747 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7748 return to full-sized display of vectors.
7750 @node List Answer 13, List Answer 14, List Answer 12, Answers to Exercises
7751 @subsection List Tutorial Exercise 13
7753 @noindent
7754 First, we put the string on the stack as a vector of ASCII codes.
7756 @smallexample
7757 @group
7758 1:  [84, 101, 115, ..., 51]
7759     .
7761     "Testing, 1, 2, 3 @key{RET}
7762 @end group
7763 @end smallexample
7765 @noindent
7766 Note that the @kbd{"} key, like @kbd{$}, initiates algebraic entry so
7767 there was no need to type an apostrophe.  Also, Calc didn't mind that
7768 we omitted the closing @kbd{"}.  (The same goes for all closing delimiters
7769 like @kbd{)} and @kbd{]} at the end of a formula.
7771 We'll show two different approaches here.  In the first, we note that
7772 if the input vector is @expr{[a, b, c, d]}, then the hash code is
7773 @expr{3 (3 (3a + b) + c) + d = 27a + 9b + 3c + d}.  In other words,
7774 it's a sum of descending powers of three times the ASCII codes.
7776 @smallexample
7777 @group
7778 2:  [84, 101, 115, ..., 51]    2:  [84, 101, 115, ..., 51]
7779 1:  16                         1:  [15, 14, 13, ..., 0]
7780     .                              .
7782     @key{RET} v l                        v x 16 @key{RET} -
7784 @end group
7785 @end smallexample
7786 @noindent
7787 @smallexample
7788 @group
7789 2:  [84, 101, 115, ..., 51]    1:  1960915098    1:  121
7790 1:  [14348907, ..., 1]             .                 .
7791     .
7793     3 @key{TAB} V M ^                    *                 511 %
7794 @end group
7795 @end smallexample
7797 @noindent
7798 Once again, @kbd{*} elegantly summarizes most of the computation.
7799 But there's an even more elegant approach:  Reduce the formula
7800 @kbd{3 $$ + $} across the vector.  Recall that this represents a
7801 function of two arguments that computes its first argument times three
7802 plus its second argument.
7804 @smallexample
7805 @group
7806 1:  [84, 101, 115, ..., 51]    1:  1960915098
7807     .                              .
7809     "Testing, 1, 2, 3 @key{RET}          V R ' 3$$+$ @key{RET}
7810 @end group
7811 @end smallexample
7813 @noindent
7814 If you did the decimal arithmetic exercise, this will be familiar.
7815 Basically, we're turning a base-3 vector of digits into an integer,
7816 except that our ``digits'' are much larger than real digits.
7818 Instead of typing @kbd{511 %} again to reduce the result, we can be
7819 cleverer still and notice that rather than computing a huge integer
7820 and taking the modulo at the end, we can take the modulo at each step
7821 without affecting the result.  While this means there are more
7822 arithmetic operations, the numbers we operate on remain small so
7823 the operations are faster.
7825 @smallexample
7826 @group
7827 1:  [84, 101, 115, ..., 51]    1:  121
7828     .                              .
7830     "Testing, 1, 2, 3 @key{RET}          V R ' (3$$+$)%511 @key{RET}
7831 @end group
7832 @end smallexample
7834 Why does this work?  Think about a two-step computation:
7835 @w{@expr{3 (3a + b) + c}}.  Taking a result modulo 511 basically means
7836 subtracting off enough 511's to put the result in the desired range.
7837 So the result when we take the modulo after every step is,
7839 @ifinfo
7840 @example
7841 3 (3 a + b - 511 m) + c - 511 n
7842 @end example
7843 @end ifinfo
7844 @tex
7845 \turnoffactive
7846 \beforedisplay
7847 $$ 3 (3 a + b - 511 m) + c - 511 n $$
7848 \afterdisplay
7849 @end tex
7851 @noindent
7852 for some suitable integers @expr{m} and @expr{n}.  Expanding out by
7853 the distributive law yields
7855 @ifinfo
7856 @example
7857 9 a + 3 b + c - 511*3 m - 511 n
7858 @end example
7859 @end ifinfo
7860 @tex
7861 \turnoffactive
7862 \beforedisplay
7863 $$ 9 a + 3 b + c - 511\times3 m - 511 n $$
7864 \afterdisplay
7865 @end tex
7867 @noindent
7868 The @expr{m} term in the latter formula is redundant because any
7869 contribution it makes could just as easily be made by the @expr{n}
7870 term.  So we can take it out to get an equivalent formula with
7871 @expr{n' = 3m + n},
7873 @ifinfo
7874 @example
7875 9 a + 3 b + c - 511 n'
7876 @end example
7877 @end ifinfo
7878 @tex
7879 \turnoffactive
7880 \beforedisplay
7881 $$ 9 a + 3 b + c - 511 n' $$
7882 \afterdisplay
7883 @end tex
7885 @noindent
7886 which is just the formula for taking the modulo only at the end of
7887 the calculation.  Therefore the two methods are essentially the same.
7889 Later in the tutorial we will encounter @dfn{modulo forms}, which
7890 basically automate the idea of reducing every intermediate result
7891 modulo some value @var{m}.
7893 @node List Answer 14, Types Answer 1, List Answer 13, Answers to Exercises
7894 @subsection List Tutorial Exercise 14
7896 We want to use @kbd{H V U} to nest a function which adds a random
7897 step to an @expr{(x,y)} coordinate.  The function is a bit long, but
7898 otherwise the problem is quite straightforward.
7900 @smallexample
7901 @group
7902 2:  [0, 0]     1:  [ [    0,       0    ]
7903 1:  50               [  0.4288, -0.1695 ]
7904     .                [ -0.4787, -0.9027 ]
7905                      ...
7907     [0,0] 50       H V U ' <# + [random(2.0)-1, random(2.0)-1]> @key{RET}
7908 @end group
7909 @end smallexample
7911 Just as the text recommended, we used @samp{< >} nameless function
7912 notation to keep the two @code{random} calls from being evaluated
7913 before nesting even begins.
7915 We now have a vector of @expr{[x, y]} sub-vectors, which by Calc's
7916 rules acts like a matrix.  We can transpose this matrix and unpack
7917 to get a pair of vectors, @expr{x} and @expr{y}, suitable for graphing.
7919 @smallexample
7920 @group
7921 2:  [ 0, 0.4288, -0.4787, ... ]
7922 1:  [ 0, -0.1696, -0.9027, ... ]
7923     .
7925     v t  v u  g f
7926 @end group
7927 @end smallexample
7929 Incidentally, because the @expr{x} and @expr{y} are completely
7930 independent in this case, we could have done two separate commands
7931 to create our @expr{x} and @expr{y} vectors of numbers directly.
7933 To make a random walk of unit steps, we note that @code{sincos} of
7934 a random direction exactly gives us an @expr{[x, y]} step of unit
7935 length; in fact, the new nesting function is even briefer, though
7936 we might want to lower the precision a bit for it.
7938 @smallexample
7939 @group
7940 2:  [0, 0]     1:  [ [    0,      0    ]
7941 1:  50               [  0.1318, 0.9912 ]
7942     .                [ -0.5965, 0.3061 ]
7943                      ...
7945     [0,0] 50   m d  p 6 @key{RET}   H V U ' <# + sincos(random(360.0))> @key{RET}
7946 @end group
7947 @end smallexample
7949 Another @kbd{v t v u g f} sequence will graph this new random walk.
7951 An interesting twist on these random walk functions would be to use
7952 complex numbers instead of 2-vectors to represent points on the plane.
7953 In the first example, we'd use something like @samp{random + random*(0,1)},
7954 and in the second we could use polar complex numbers with random phase
7955 angles.  (This exercise was first suggested in this form by Randal
7956 Schwartz.)
7958 @node Types Answer 1, Types Answer 2, List Answer 14, Answers to Exercises
7959 @subsection Types Tutorial Exercise 1
7961 @noindent
7962 If the number is the square root of @cpi{} times a rational number,
7963 then its square, divided by @cpi{}, should be a rational number.
7965 @smallexample
7966 @group
7967 1:  1.26508260337    1:  0.509433962268   1:  2486645810:4881193627
7968     .                    .                    .
7970                          2 ^ P /              c F
7971 @end group
7972 @end smallexample
7974 @noindent
7975 Technically speaking this is a rational number, but not one that is
7976 likely to have arisen in the original problem.  More likely, it just
7977 happens to be the fraction which most closely represents some
7978 irrational number to within 12 digits.
7980 But perhaps our result was not quite exact.  Let's reduce the
7981 precision slightly and try again:
7983 @smallexample
7984 @group
7985 1:  0.509433962268     1:  27:53
7986     .                      .
7988     U p 10 @key{RET}             c F
7989 @end group
7990 @end smallexample
7992 @noindent
7993 Aha!  It's unlikely that an irrational number would equal a fraction
7994 this simple to within ten digits, so our original number was probably
7995 @texline @math{\sqrt{27 \pi / 53}}.
7996 @infoline @expr{sqrt(27 pi / 53)}.
7998 Notice that we didn't need to re-round the number when we reduced the
7999 precision.  Remember, arithmetic operations always round their inputs
8000 to the current precision before they begin.
8002 @node Types Answer 2, Types Answer 3, Types Answer 1, Answers to Exercises
8003 @subsection Types Tutorial Exercise 2
8005 @noindent
8006 @samp{inf / inf = nan}.  Perhaps @samp{1} is the ``obvious'' answer.
8007 But if @w{@samp{17 inf = inf}}, then @samp{17 inf / inf = inf / inf = 17}, too.
8009 @samp{exp(inf) = inf}.  It's tempting to say that the exponential
8010 of infinity must be ``bigger'' than ``regular'' infinity, but as
8011 far as Calc is concerned all infinities are as just as big.
8012 In other words, as @expr{x} goes to infinity, @expr{e^x} also goes
8013 to infinity, but the fact the @expr{e^x} grows much faster than
8014 @expr{x} is not relevant here.
8016 @samp{exp(-inf) = 0}.  Here we have a finite answer even though
8017 the input is infinite.
8019 @samp{sqrt(-inf) = (0, 1) inf}.  Remember that @expr{(0, 1)}
8020 represents the imaginary number @expr{i}.  Here's a derivation:
8021 @samp{sqrt(-inf) = @w{sqrt((-1) * inf)} = sqrt(-1) * sqrt(inf)}.
8022 The first part is, by definition, @expr{i}; the second is @code{inf}
8023 because, once again, all infinities are the same size.
8025 @samp{sqrt(uinf) = uinf}.  In fact, we do know something about the
8026 direction because @code{sqrt} is defined to return a value in the
8027 right half of the complex plane.  But Calc has no notation for this,
8028 so it settles for the conservative answer @code{uinf}.
8030 @samp{abs(uinf) = inf}.  No matter which direction @expr{x} points,
8031 @samp{abs(x)} always points along the positive real axis.
8033 @samp{ln(0) = -inf}.  Here we have an infinite answer to a finite
8034 input.  As in the @expr{1 / 0} case, Calc will only use infinities
8035 here if you have turned on Infinite mode.  Otherwise, it will
8036 treat @samp{ln(0)} as an error.
8038 @node Types Answer 3, Types Answer 4, Types Answer 2, Answers to Exercises
8039 @subsection Types Tutorial Exercise 3
8041 @noindent
8042 We can make @samp{inf - inf} be any real number we like, say,
8043 @expr{a}, just by claiming that we added @expr{a} to the first
8044 infinity but not to the second.  This is just as true for complex
8045 values of @expr{a}, so @code{nan} can stand for a complex number.
8046 (And, similarly, @code{uinf} can stand for an infinity that points
8047 in any direction in the complex plane, such as @samp{(0, 1) inf}).
8049 In fact, we can multiply the first @code{inf} by two.  Surely
8050 @w{@samp{2 inf - inf = inf}}, but also @samp{2 inf - inf = inf - inf = nan}.
8051 So @code{nan} can even stand for infinity.  Obviously it's just
8052 as easy to make it stand for minus infinity as for plus infinity.
8054 The moral of this story is that ``infinity'' is a slippery fish
8055 indeed, and Calc tries to handle it by having a very simple model
8056 for infinities (only the direction counts, not the ``size''); but
8057 Calc is careful to write @code{nan} any time this simple model is
8058 unable to tell what the true answer is.
8060 @node Types Answer 4, Types Answer 5, Types Answer 3, Answers to Exercises
8061 @subsection Types Tutorial Exercise 4
8063 @smallexample
8064 @group
8065 2:  0@@ 47' 26"              1:  0@@ 2' 47.411765"
8066 1:  17                          .
8067     .
8069     0@@ 47' 26" @key{RET} 17           /
8070 @end group
8071 @end smallexample
8073 @noindent
8074 The average song length is two minutes and 47.4 seconds.
8076 @smallexample
8077 @group
8078 2:  0@@ 2' 47.411765"     1:  0@@ 3' 7.411765"    1:  0@@ 53' 6.000005"
8079 1:  0@@ 0' 20"                .                      .
8080     .
8082     20"                      +                      17 *
8083 @end group
8084 @end smallexample
8086 @noindent
8087 The album would be 53 minutes and 6 seconds long.
8089 @node Types Answer 5, Types Answer 6, Types Answer 4, Answers to Exercises
8090 @subsection Types Tutorial Exercise 5
8092 @noindent
8093 Let's suppose it's January 14, 1991.  The easiest thing to do is
8094 to keep trying 13ths of months until Calc reports a Friday.
8095 We can do this by manually entering dates, or by using @kbd{t I}:
8097 @smallexample
8098 @group
8099 1:  <Wed Feb 13, 1991>    1:  <Wed Mar 13, 1991>   1:  <Sat Apr 13, 1991>
8100     .                         .                        .
8102     ' <2/13> @key{RET}       @key{DEL}    ' <3/13> @key{RET}             t I
8103 @end group
8104 @end smallexample
8106 @noindent
8107 (Calc assumes the current year if you don't say otherwise.)
8109 This is getting tedious---we can keep advancing the date by typing
8110 @kbd{t I} over and over again, but let's automate the job by using
8111 vector mapping.  The @kbd{t I} command actually takes a second
8112 ``how-many-months'' argument, which defaults to one.  This
8113 argument is exactly what we want to map over:
8115 @smallexample
8116 @group
8117 2:  <Sat Apr 13, 1991>     1:  [<Mon May 13, 1991>, <Thu Jun 13, 1991>,
8118 1:  [1, 2, 3, 4, 5, 6]          <Sat Jul 13, 1991>, <Tue Aug 13, 1991>,
8119     .                           <Fri Sep 13, 1991>, <Sun Oct 13, 1991>]
8120                                .
8122     v x 6 @key{RET}                  V M t I
8123 @end group
8124 @end smallexample
8126 @noindent
8127 Et voil@`a, September 13, 1991 is a Friday.
8129 @smallexample
8130 @group
8131 1:  242
8132     .
8134 ' <sep 13> - <jan 14> @key{RET}
8135 @end group
8136 @end smallexample
8138 @noindent
8139 And the answer to our original question:  242 days to go.
8141 @node Types Answer 6, Types Answer 7, Types Answer 5, Answers to Exercises
8142 @subsection Types Tutorial Exercise 6
8144 @noindent
8145 The full rule for leap years is that they occur in every year divisible
8146 by four, except that they don't occur in years divisible by 100, except
8147 that they @emph{do} in years divisible by 400.  We could work out the
8148 answer by carefully counting the years divisible by four and the
8149 exceptions, but there is a much simpler way that works even if we
8150 don't know the leap year rule.
8152 Let's assume the present year is 1991.  Years have 365 days, except
8153 that leap years (whenever they occur) have 366 days.  So let's count
8154 the number of days between now and then, and compare that to the
8155 number of years times 365.  The number of extra days we find must be
8156 equal to the number of leap years there were.
8158 @smallexample
8159 @group
8160 1:  <Mon Jan 1, 10001>     2:  <Mon Jan 1, 10001>     1:  2925593
8161     .                      1:  <Tue Jan 1, 1991>          .
8162                                .
8164   ' <jan 1 10001> @key{RET}         ' <jan 1 1991> @key{RET}          -
8166 @end group
8167 @end smallexample
8168 @noindent
8169 @smallexample
8170 @group
8171 3:  2925593       2:  2925593     2:  2925593     1:  1943
8172 2:  10001         1:  8010        1:  2923650         .
8173 1:  1991              .               .
8174     .
8176   10001 @key{RET} 1991      -               365 *           -
8177 @end group
8178 @end smallexample
8180 @c [fix-ref Date Forms]
8181 @noindent
8182 There will be 1943 leap years before the year 10001.  (Assuming,
8183 of course, that the algorithm for computing leap years remains
8184 unchanged for that long.  @xref{Date Forms}, for some interesting
8185 background information in that regard.)
8187 @node Types Answer 7, Types Answer 8, Types Answer 6, Answers to Exercises
8188 @subsection Types Tutorial Exercise 7
8190 @noindent
8191 The relative errors must be converted to absolute errors so that
8192 @samp{+/-} notation may be used.
8194 @smallexample
8195 @group
8196 1:  1.              2:  1.
8197     .               1:  0.2
8198                         .
8200     20 @key{RET} .05 *        4 @key{RET} .05 *
8201 @end group
8202 @end smallexample
8204 Now we simply chug through the formula.
8206 @smallexample
8207 @group
8208 1:  19.7392088022    1:  394.78 +/- 19.739    1:  6316.5 +/- 706.21
8209     .                    .                        .
8211     2 P 2 ^ *            20 p 1 *                 4 p .2 @key{RET} 2 ^ *
8212 @end group
8213 @end smallexample
8215 It turns out the @kbd{v u} command will unpack an error form as
8216 well as a vector.  This saves us some retyping of numbers.
8218 @smallexample
8219 @group
8220 3:  6316.5 +/- 706.21     2:  6316.5 +/- 706.21
8221 2:  6316.5                1:  0.1118
8222 1:  706.21                    .
8223     .
8225     @key{RET} v u                   @key{TAB} /
8226 @end group
8227 @end smallexample
8229 @noindent
8230 Thus the volume is 6316 cubic centimeters, within about 11 percent.
8232 @node Types Answer 8, Types Answer 9, Types Answer 7, Answers to Exercises
8233 @subsection Types Tutorial Exercise 8
8235 @noindent
8236 The first answer is pretty simple:  @samp{1 / (0 .. 10) = (0.1 .. inf)}.
8237 Since a number in the interval @samp{(0 .. 10)} can get arbitrarily
8238 close to zero, its reciprocal can get arbitrarily large, so the answer
8239 is an interval that effectively means, ``any number greater than 0.1''
8240 but with no upper bound.
8242 The second answer, similarly, is @samp{1 / (-10 .. 0) = (-inf .. -0.1)}.
8244 Calc normally treats division by zero as an error, so that the formula
8245 @w{@samp{1 / 0}} is left unsimplified.  Our third problem,
8246 @w{@samp{1 / [0 .. 10]}}, also (potentially) divides by zero because zero
8247 is now a member of the interval.  So Calc leaves this one unevaluated, too.
8249 If you turn on Infinite mode by pressing @kbd{m i}, you will
8250 instead get the answer @samp{[0.1 .. inf]}, which includes infinity
8251 as a possible value.
8253 The fourth calculation, @samp{1 / (-10 .. 10)}, has the same problem.
8254 Zero is buried inside the interval, but it's still a possible value.
8255 It's not hard to see that the actual result of @samp{1 / (-10 .. 10)}
8256 will be either greater than @mathit{0.1}, or less than @mathit{-0.1}.  Thus
8257 the interval goes from minus infinity to plus infinity, with a ``hole''
8258 in it from @mathit{-0.1} to @mathit{0.1}.  Calc doesn't have any way to
8259 represent this, so it just reports @samp{[-inf .. inf]} as the answer.
8260 It may be disappointing to hear ``the answer lies somewhere between
8261 minus infinity and plus infinity, inclusive,'' but that's the best
8262 that interval arithmetic can do in this case.
8264 @node Types Answer 9, Types Answer 10, Types Answer 8, Answers to Exercises
8265 @subsection Types Tutorial Exercise 9
8267 @smallexample
8268 @group
8269 1:  [-3 .. 3]       2:  [-3 .. 3]     2:  [0 .. 9]
8270     .               1:  [0 .. 9]      1:  [-9 .. 9]
8271                         .                 .
8273     [ 3 n .. 3 ]        @key{RET} 2 ^           @key{TAB} @key{RET} *
8274 @end group
8275 @end smallexample
8277 @noindent
8278 In the first case the result says, ``if a number is between @mathit{-3} and
8279 3, its square is between 0 and 9.''  The second case says, ``the product
8280 of two numbers each between @mathit{-3} and 3 is between @mathit{-9} and 9.''
8282 An interval form is not a number; it is a symbol that can stand for
8283 many different numbers.  Two identical-looking interval forms can stand
8284 for different numbers.
8286 The same issue arises when you try to square an error form.
8288 @node Types Answer 10, Types Answer 11, Types Answer 9, Answers to Exercises
8289 @subsection Types Tutorial Exercise 10
8291 @noindent
8292 Testing the first number, we might arbitrarily choose 17 for @expr{x}.
8294 @smallexample
8295 @group
8296 1:  17 mod 811749613   2:  17 mod 811749613   1:  533694123 mod 811749613
8297     .                      811749612              .
8298                            .
8300     17 M 811749613 @key{RET}     811749612              ^
8301 @end group
8302 @end smallexample
8304 @noindent
8305 Since 533694123 is (considerably) different from 1, the number 811749613
8306 must not be prime.
8308 It's awkward to type the number in twice as we did above.  There are
8309 various ways to avoid this, and algebraic entry is one.  In fact, using
8310 a vector mapping operation we can perform several tests at once.  Let's
8311 use this method to test the second number.
8313 @smallexample
8314 @group
8315 2:  [17, 42, 100000]               1:  [1 mod 15485863, 1 mod ... ]
8316 1:  15485863                           .
8317     .
8319  [17 42 100000] 15485863 @key{RET}           V M ' ($$ mod $)^($-1) @key{RET}
8320 @end group
8321 @end smallexample
8323 @noindent
8324 The result is three ones (modulo @expr{n}), so it's very probable that
8325 15485863 is prime.  (In fact, this number is the millionth prime.)
8327 Note that the functions @samp{($$^($-1)) mod $} or @samp{$$^($-1) % $}
8328 would have been hopelessly inefficient, since they would have calculated
8329 the power using full integer arithmetic.
8331 Calc has a @kbd{k p} command that does primality testing.  For small
8332 numbers it does an exact test; for large numbers it uses a variant
8333 of the Fermat test we used here.  You can use @kbd{k p} repeatedly
8334 to prove that a large integer is prime with any desired probability.
8336 @node Types Answer 11, Types Answer 12, Types Answer 10, Answers to Exercises
8337 @subsection Types Tutorial Exercise 11
8339 @noindent
8340 There are several ways to insert a calculated number into an HMS form.
8341 One way to convert a number of seconds to an HMS form is simply to
8342 multiply the number by an HMS form representing one second:
8344 @smallexample
8345 @group
8346 1:  31415926.5359     2:  31415926.5359     1:  8726@@ 38' 46.5359"
8347     .                 1:  0@@ 0' 1"              .
8348                           .
8350     P 1e7 *               0@@ 0' 1"              *
8352 @end group
8353 @end smallexample
8354 @noindent
8355 @smallexample
8356 @group
8357 2:  8726@@ 38' 46.5359"             1:  6@@ 6' 2.5359" mod 24@@ 0' 0"
8358 1:  15@@ 27' 16" mod 24@@ 0' 0"          .
8359     .
8361     x time @key{RET}                         +
8362 @end group
8363 @end smallexample
8365 @noindent
8366 It will be just after six in the morning.
8368 The algebraic @code{hms} function can also be used to build an
8369 HMS form:
8371 @smallexample
8372 @group
8373 1:  hms(0, 0, 10000000. pi)       1:  8726@@ 38' 46.5359"
8374     .                                 .
8376   ' hms(0, 0, 1e7 pi) @key{RET}             =
8377 @end group
8378 @end smallexample
8380 @noindent
8381 The @kbd{=} key is necessary to evaluate the symbol @samp{pi} to
8382 the actual number 3.14159...
8384 @node Types Answer 12, Types Answer 13, Types Answer 11, Answers to Exercises
8385 @subsection Types Tutorial Exercise 12
8387 @noindent
8388 As we recall, there are 17 songs of about 2 minutes and 47 seconds
8389 each.
8391 @smallexample
8392 @group
8393 2:  0@@ 2' 47"                    1:  [0@@ 3' 7" .. 0@@ 3' 47"]
8394 1:  [0@@ 0' 20" .. 0@@ 1' 0"]          .
8395     .
8397     [ 0@@ 20" .. 0@@ 1' ]              +
8399 @end group
8400 @end smallexample
8401 @noindent
8402 @smallexample
8403 @group
8404 1:  [0@@ 52' 59." .. 1@@ 4' 19."]
8405     .
8407     17 *
8408 @end group
8409 @end smallexample
8411 @noindent
8412 No matter how long it is, the album will fit nicely on one CD.
8414 @node Types Answer 13, Types Answer 14, Types Answer 12, Answers to Exercises
8415 @subsection Types Tutorial Exercise 13
8417 @noindent
8418 Type @kbd{' 1 yr @key{RET} u c s @key{RET}}.  The answer is 31557600 seconds.
8420 @node Types Answer 14, Types Answer 15, Types Answer 13, Answers to Exercises
8421 @subsection Types Tutorial Exercise 14
8423 @noindent
8424 How long will it take for a signal to get from one end of the computer
8425 to the other?
8427 @smallexample
8428 @group
8429 1:  m / c         1:  3.3356 ns
8430     .                 .
8432  ' 1 m / c @key{RET}        u c ns @key{RET}
8433 @end group
8434 @end smallexample
8436 @noindent
8437 (Recall, @samp{c} is a ``unit'' corresponding to the speed of light.)
8439 @smallexample
8440 @group
8441 1:  3.3356 ns     1:  0.81356 ns / ns     1:  0.81356
8442 2:  4.1 ns            .                       .
8443     .
8445   ' 4.1 ns @key{RET}        /                       u s
8446 @end group
8447 @end smallexample
8449 @noindent
8450 Thus a signal could take up to 81 percent of a clock cycle just to
8451 go from one place to another inside the computer, assuming the signal
8452 could actually attain the full speed of light.  Pretty tight!
8454 @node Types Answer 15, Algebra Answer 1, Types Answer 14, Answers to Exercises
8455 @subsection Types Tutorial Exercise 15
8457 @noindent
8458 The speed limit is 55 miles per hour on most highways.  We want to
8459 find the ratio of Sam's speed to the US speed limit.
8461 @smallexample
8462 @group
8463 1:  55 mph         2:  55 mph           3:  11 hr mph / yd
8464     .              1:  5 yd / hr            .
8465                        .
8467   ' 55 mph @key{RET}       ' 5 yd/hr @key{RET}          /
8468 @end group
8469 @end smallexample
8471 The @kbd{u s} command cancels out these units to get a plain
8472 number.  Now we take the logarithm base two to find the final
8473 answer, assuming that each successive pill doubles his speed.
8475 @smallexample
8476 @group
8477 1:  19360.       2:  19360.       1:  14.24
8478     .            1:  2                .
8479                      .
8481     u s              2                B
8482 @end group
8483 @end smallexample
8485 @noindent
8486 Thus Sam can take up to 14 pills without a worry.
8488 @node Algebra Answer 1, Algebra Answer 2, Types Answer 15, Answers to Exercises
8489 @subsection Algebra Tutorial Exercise 1
8491 @noindent
8492 @c [fix-ref Declarations]
8493 The result @samp{sqrt(x)^2} is simplified back to @expr{x} by the
8494 Calculator, but @samp{sqrt(x^2)} is not.  (Consider what happens
8495 if @w{@expr{x = -4}}.)  If @expr{x} is real, this formula could be
8496 simplified to @samp{abs(x)}, but for general complex arguments even
8497 that is not safe.  (@xref{Declarations}, for a way to tell Calc
8498 that @expr{x} is known to be real.)
8500 @node Algebra Answer 2, Algebra Answer 3, Algebra Answer 1, Answers to Exercises
8501 @subsection Algebra Tutorial Exercise 2
8503 @noindent
8504 Suppose our roots are @expr{[a, b, c]}.  We want a polynomial which
8505 is zero when @expr{x} is any of these values.  The trivial polynomial
8506 @expr{x-a} is zero when @expr{x=a}, so the product @expr{(x-a)(x-b)(x-c)}
8507 will do the job.  We can use @kbd{a c x} to write this in a more
8508 familiar form.
8510 @smallexample
8511 @group
8512 1:  34 x - 24 x^3          1:  [1.19023, -1.19023, 0]
8513     .                          .
8515     r 2                        a P x @key{RET}
8517 @end group
8518 @end smallexample
8519 @noindent
8520 @smallexample
8521 @group
8522 1:  [x - 1.19023, x + 1.19023, x]     1:  (x - 1.19023) (x + 1.19023) x
8523     .                                     .
8525     V M ' x-$ @key{RET}                         V R *
8527 @end group
8528 @end smallexample
8529 @noindent
8530 @smallexample
8531 @group
8532 1:  x^3 - 1.41666 x        1:  34 x - 24 x^3
8533     .                          .
8535     a c x @key{RET}                  24 n *  a x
8536 @end group
8537 @end smallexample
8539 @noindent
8540 Sure enough, our answer (multiplied by a suitable constant) is the
8541 same as the original polynomial.
8543 @node Algebra Answer 3, Algebra Answer 4, Algebra Answer 2, Answers to Exercises
8544 @subsection Algebra Tutorial Exercise 3
8546 @smallexample
8547 @group
8548 1:  x sin(pi x)         1:  (sin(pi x) - pi x cos(pi x)) / pi^2
8549     .                       .
8551   ' x sin(pi x) @key{RET}   m r   a i x @key{RET}
8553 @end group
8554 @end smallexample
8555 @noindent
8556 @smallexample
8557 @group
8558 1:  [y, 1]
8559 2:  (sin(pi x) - pi x cos(pi x)) / pi^2
8560     .
8562   ' [y,1] @key{RET} @key{TAB}
8564 @end group
8565 @end smallexample
8566 @noindent
8567 @smallexample
8568 @group
8569 1:  [(sin(pi y) - pi y cos(pi y)) / pi^2, (sin(pi) - pi cos(pi)) / pi^2]
8570     .
8572     V M $ @key{RET}
8574 @end group
8575 @end smallexample
8576 @noindent
8577 @smallexample
8578 @group
8579 1:  (sin(pi y) - pi y cos(pi y)) / pi^2 + (pi cos(pi) - sin(pi)) / pi^2
8580     .
8582     V R -
8584 @end group
8585 @end smallexample
8586 @noindent
8587 @smallexample
8588 @group
8589 1:  (sin(3.14159 y) - 3.14159 y cos(3.14159 y)) / 9.8696 - 0.3183
8590     .
8592     =
8594 @end group
8595 @end smallexample
8596 @noindent
8597 @smallexample
8598 @group
8599 1:  [0., -0.95493, 0.63662, -1.5915, 1.2732]
8600     .
8602     v x 5 @key{RET}  @key{TAB}  V M $ @key{RET}
8603 @end group
8604 @end smallexample
8606 @node Algebra Answer 4, Rewrites Answer 1, Algebra Answer 3, Answers to Exercises
8607 @subsection Algebra Tutorial Exercise 4
8609 @noindent
8610 The hard part is that @kbd{V R +} is no longer sufficient to add up all
8611 the contributions from the slices, since the slices have varying
8612 coefficients.  So first we must come up with a vector of these
8613 coefficients.  Here's one way:
8615 @smallexample
8616 @group
8617 2:  -1                 2:  3                    1:  [4, 2, ..., 4]
8618 1:  [1, 2, ..., 9]     1:  [-1, 1, ..., -1]         .
8619     .                      .
8621     1 n v x 9 @key{RET}          V M ^  3 @key{TAB}             -
8623 @end group
8624 @end smallexample
8625 @noindent
8626 @smallexample
8627 @group
8628 1:  [4, 2, ..., 4, 1]      1:  [1, 4, 2, ..., 4, 1]
8629     .                          .
8631     1 |                        1 @key{TAB} |
8632 @end group
8633 @end smallexample
8635 @noindent
8636 Now we compute the function values.  Note that for this method we need
8637 eleven values, including both endpoints of the desired interval.
8639 @smallexample
8640 @group
8641 2:  [1, 4, 2, ..., 4, 1]
8642 1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9, 2.]
8643     .
8645  11 @key{RET} 1 @key{RET} .1 @key{RET}  C-u v x
8647 @end group
8648 @end smallexample
8649 @noindent
8650 @smallexample
8651 @group
8652 2:  [1, 4, 2, ..., 4, 1]
8653 1:  [0., 0.084941, 0.16993, ... ]
8654     .
8656     ' sin(x) ln(x) @key{RET}   m r  p 5 @key{RET}   V M $ @key{RET}
8657 @end group
8658 @end smallexample
8660 @noindent
8661 Once again this calls for @kbd{V M * V R +}; a simple @kbd{*} does the
8662 same thing.
8664 @smallexample
8665 @group
8666 1:  11.22      1:  1.122      1:  0.374
8667     .              .              .
8669     *              .1 *           3 /
8670 @end group
8671 @end smallexample
8673 @noindent
8674 Wow!  That's even better than the result from the Taylor series method.
8676 @node Rewrites Answer 1, Rewrites Answer 2, Algebra Answer 4, Answers to Exercises
8677 @subsection Rewrites Tutorial Exercise 1
8679 @noindent
8680 We'll use Big mode to make the formulas more readable.
8682 @smallexample
8683 @group
8684                                                ___
8685                                           2 + V 2
8686 1:  (2 + sqrt(2)) / (1 + sqrt(2))     1:  --------
8687     .                                          ___
8688                                           1 + V 2
8690                                           .
8692   ' (2+sqrt(2)) / (1+sqrt(2)) @key{RET}         d B
8693 @end group
8694 @end smallexample
8696 @noindent
8697 Multiplying by the conjugate helps because @expr{(a+b) (a-b) = a^2 - b^2}.
8699 @smallexample
8700 @group
8701           ___    ___
8702 1:  (2 + V 2 ) (V 2  - 1)
8703     .
8705   a r a/(b+c) := a*(b-c) / (b^2-c^2) @key{RET}
8707 @end group
8708 @end smallexample
8709 @noindent
8710 @smallexample
8711 @group
8712          ___                         ___
8713 1:  2 + V 2  - 2                1:  V 2
8714     .                               .
8716   a r a*(b+c) := a*b + a*c          a s
8717 @end group
8718 @end smallexample
8720 @noindent
8721 (We could have used @kbd{a x} instead of a rewrite rule for the
8722 second step.)
8724 The multiply-by-conjugate rule turns out to be useful in many
8725 different circumstances, such as when the denominator involves
8726 sines and cosines or the imaginary constant @code{i}.
8728 @node Rewrites Answer 2, Rewrites Answer 3, Rewrites Answer 1, Answers to Exercises
8729 @subsection Rewrites Tutorial Exercise 2
8731 @noindent
8732 Here is the rule set:
8734 @smallexample
8735 @group
8736 [ fib(n) := fib(n, 1, 1) :: integer(n) :: n >= 1,
8737   fib(1, x, y) := x,
8738   fib(n, x, y) := fib(n-1, y, x+y) ]
8739 @end group
8740 @end smallexample
8742 @noindent
8743 The first rule turns a one-argument @code{fib} that people like to write
8744 into a three-argument @code{fib} that makes computation easier.  The
8745 second rule converts back from three-argument form once the computation
8746 is done.  The third rule does the computation itself.  It basically
8747 says that if @expr{x} and @expr{y} are two consecutive Fibonacci numbers,
8748 then @expr{y} and @expr{x+y} are the next (overlapping) pair of Fibonacci
8749 numbers.
8751 Notice that because the number @expr{n} was ``validated'' by the
8752 conditions on the first rule, there is no need to put conditions on
8753 the other rules because the rule set would never get that far unless
8754 the input were valid.  That further speeds computation, since no
8755 extra conditions need to be checked at every step.
8757 Actually, a user with a nasty sense of humor could enter a bad
8758 three-argument @code{fib} call directly, say, @samp{fib(0, 1, 1)},
8759 which would get the rules into an infinite loop.  One thing that would
8760 help keep this from happening by accident would be to use something like
8761 @samp{ZzFib} instead of @code{fib} as the name of the three-argument
8762 function.
8764 @node Rewrites Answer 3, Rewrites Answer 4, Rewrites Answer 2, Answers to Exercises
8765 @subsection Rewrites Tutorial Exercise 3
8767 @noindent
8768 He got an infinite loop.  First, Calc did as expected and rewrote
8769 @w{@samp{2 + 3 x}} to @samp{f(2, 3, x)}.  Then it looked for ways to
8770 apply the rule again, and found that @samp{f(2, 3, x)} looks like
8771 @samp{a + b x} with @w{@samp{a = 0}} and @samp{b = 1}, so it rewrote to
8772 @samp{f(0, 1, f(2, 3, x))}.  It then wrapped another @samp{f(0, 1, ...)}
8773 around that, and so on, ad infinitum.  Joe should have used @kbd{M-1 a r}
8774 to make sure the rule applied only once.
8776 (Actually, even the first step didn't work as he expected.  What Calc
8777 really gives for @kbd{M-1 a r} in this situation is @samp{f(3 x, 1, 2)},
8778 treating 2 as the ``variable,'' and @samp{3 x} as a constant being added
8779 to it.  While this may seem odd, it's just as valid a solution as the
8780 ``obvious'' one.  One way to fix this would be to add the condition
8781 @samp{:: variable(x)} to the rule, to make sure the thing that matches
8782 @samp{x} is indeed a variable, or to change @samp{x} to @samp{quote(x)}
8783 on the lefthand side, so that the rule matches the actual variable
8784 @samp{x} rather than letting @samp{x} stand for something else.)
8786 @node Rewrites Answer 4, Rewrites Answer 5, Rewrites Answer 3, Answers to Exercises
8787 @subsection Rewrites Tutorial Exercise 4
8789 @noindent
8790 @ignore
8791 @starindex
8792 @end ignore
8793 @tindex seq
8794 Here is a suitable set of rules to solve the first part of the problem:
8796 @smallexample
8797 @group
8798 [ seq(n, c) := seq(n/2,  c+1) :: n%2 = 0,
8799   seq(n, c) := seq(3n+1, c+1) :: n%2 = 1 :: n > 1 ]
8800 @end group
8801 @end smallexample
8803 Given the initial formula @samp{seq(6, 0)}, application of these
8804 rules produces the following sequence of formulas:
8806 @example
8807 seq( 3, 1)
8808 seq(10, 2)
8809 seq( 5, 3)
8810 seq(16, 4)
8811 seq( 8, 5)
8812 seq( 4, 6)
8813 seq( 2, 7)
8814 seq( 1, 8)
8815 @end example
8817 @noindent
8818 whereupon neither of the rules match, and rewriting stops.
8820 We can pretty this up a bit with a couple more rules:
8822 @smallexample
8823 @group
8824 [ seq(n) := seq(n, 0),
8825   seq(1, c) := c,
8826   ... ]
8827 @end group
8828 @end smallexample
8830 @noindent
8831 Now, given @samp{seq(6)} as the starting configuration, we get 8
8832 as the result.
8834 The change to return a vector is quite simple:
8836 @smallexample
8837 @group
8838 [ seq(n) := seq(n, []) :: integer(n) :: n > 0,
8839   seq(1, v) := v | 1,
8840   seq(n, v) := seq(n/2,  v | n) :: n%2 = 0,
8841   seq(n, v) := seq(3n+1, v | n) :: n%2 = 1 ]
8842 @end group
8843 @end smallexample
8845 @noindent
8846 Given @samp{seq(6)}, the result is @samp{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
8848 Notice that the @expr{n > 1} guard is no longer necessary on the last
8849 rule since the @expr{n = 1} case is now detected by another rule.
8850 But a guard has been added to the initial rule to make sure the
8851 initial value is suitable before the computation begins.
8853 While still a good idea, this guard is not as vitally important as it
8854 was for the @code{fib} function, since calling, say, @samp{seq(x, [])}
8855 will not get into an infinite loop.  Calc will not be able to prove
8856 the symbol @samp{x} is either even or odd, so none of the rules will
8857 apply and the rewrites will stop right away.
8859 @node Rewrites Answer 5, Rewrites Answer 6, Rewrites Answer 4, Answers to Exercises
8860 @subsection Rewrites Tutorial Exercise 5
8862 @noindent
8863 @ignore
8864 @starindex
8865 @end ignore
8866 @tindex nterms
8867 If @expr{x} is the sum @expr{a + b}, then `@tfn{nterms(}@var{x}@tfn{)}' must
8868 be `@tfn{nterms(}@var{a}@tfn{)}' plus `@tfn{nterms(}@var{b}@tfn{)}'.  If @expr{x}
8869 is not a sum, then `@tfn{nterms(}@var{x}@tfn{)}' = 1.
8871 @smallexample
8872 @group
8873 [ nterms(a + b) := nterms(a) + nterms(b),
8874   nterms(x)     := 1 ]
8875 @end group
8876 @end smallexample
8878 @noindent
8879 Here we have taken advantage of the fact that earlier rules always
8880 match before later rules; @samp{nterms(x)} will only be tried if we
8881 already know that @samp{x} is not a sum.
8883 @node Rewrites Answer 6, Programming Answer 1, Rewrites Answer 5, Answers to Exercises
8884 @subsection Rewrites Tutorial Exercise 6
8886 @noindent
8887 Here is a rule set that will do the job:
8889 @smallexample
8890 @group
8891 [ a*(b + c) := a*b + a*c,
8892   opt(a) O(x^n) + opt(b) O(x^m) := O(x^n) :: n <= m
8893      :: constant(a) :: constant(b),
8894   opt(a) O(x^n) + opt(b) x^m := O(x^n) :: n <= m
8895      :: constant(a) :: constant(b),
8896   a O(x^n) := O(x^n) :: constant(a),
8897   x^opt(m) O(x^n) := O(x^(n+m)),
8898   O(x^n) O(x^m) := O(x^(n+m)) ]
8899 @end group
8900 @end smallexample
8902 If we really want the @kbd{+} and @kbd{*} keys to operate naturally
8903 on power series, we should put these rules in @code{EvalRules}.  For
8904 testing purposes, it is better to put them in a different variable,
8905 say, @code{O}, first.
8907 The first rule just expands products of sums so that the rest of the
8908 rules can assume they have an expanded-out polynomial to work with.
8909 Note that this rule does not mention @samp{O} at all, so it will
8910 apply to any product-of-sum it encounters---this rule may surprise
8911 you if you put it into @code{EvalRules}!
8913 In the second rule, the sum of two O's is changed to the smaller O.
8914 The optional constant coefficients are there mostly so that
8915 @samp{O(x^2) - O(x^3)} and @samp{O(x^3) - O(x^2)} are handled
8916 as well as @samp{O(x^2) + O(x^3)}.
8918 The third rule absorbs higher powers of @samp{x} into O's.
8920 The fourth rule says that a constant times a negligible quantity
8921 is still negligible.  (This rule will also match @samp{O(x^3) / 4},
8922 with @samp{a = 1/4}.)
8924 The fifth rule rewrites, for example, @samp{x^2 O(x^3)} to @samp{O(x^5)}.
8925 (It is easy to see that if one of these forms is negligible, the other
8926 is, too.)  Notice the @samp{x^opt(m)} to pick up terms like
8927 @w{@samp{x O(x^3)}}.  Optional powers will match @samp{x} as @samp{x^1}
8928 but not 1 as @samp{x^0}.  This turns out to be exactly what we want here.
8930 The sixth rule is the corresponding rule for products of two O's.
8932 Another way to solve this problem would be to create a new ``data type''
8933 that represents truncated power series.  We might represent these as
8934 function calls @samp{series(@var{coefs}, @var{x})} where @var{coefs} is
8935 a vector of coefficients for @expr{x^0}, @expr{x^1}, @expr{x^2}, and so
8936 on.  Rules would exist for sums and products of such @code{series}
8937 objects, and as an optional convenience could also know how to combine a
8938 @code{series} object with a normal polynomial.  (With this, and with a
8939 rule that rewrites @samp{O(x^n)} to the equivalent @code{series} form,
8940 you could still enter power series in exactly the same notation as
8941 before.)  Operations on such objects would probably be more efficient,
8942 although the objects would be a bit harder to read.
8944 @c [fix-ref Compositions]
8945 Some other symbolic math programs provide a power series data type
8946 similar to this.  Mathematica, for example, has an object that looks
8947 like @samp{PowerSeries[@var{x}, @var{x0}, @var{coefs}, @var{nmin},
8948 @var{nmax}, @var{den}]}, where @var{x0} is the point about which the
8949 power series is taken (we've been assuming this was always zero),
8950 and @var{nmin}, @var{nmax}, and @var{den} allow pseudo-power-series
8951 with fractional or negative powers.  Also, the @code{PowerSeries}
8952 objects have a special display format that makes them look like
8953 @samp{2 x^2 + O(x^4)} when they are printed out.  (@xref{Compositions},
8954 for a way to do this in Calc, although for something as involved as
8955 this it would probably be better to write the formatting routine
8956 in Lisp.)
8958 @node Programming Answer 1, Programming Answer 2, Rewrites Answer 6, Answers to Exercises
8959 @subsection Programming Tutorial Exercise 1
8961 @noindent
8962 Just enter the formula @samp{ninteg(sin(t)/t, t, 0, x)}, type
8963 @kbd{Z F}, and answer the questions.  Since this formula contains two
8964 variables, the default argument list will be @samp{(t x)}.  We want to
8965 change this to @samp{(x)} since @expr{t} is really a dummy variable
8966 to be used within @code{ninteg}.
8968 The exact keystrokes are @kbd{Z F s Si @key{RET} @key{RET} C-b C-b @key{DEL} @key{DEL} @key{RET} y}.
8969 (The @kbd{C-b C-b @key{DEL} @key{DEL}} are what fix the argument list.)
8971 @node Programming Answer 2, Programming Answer 3, Programming Answer 1, Answers to Exercises
8972 @subsection Programming Tutorial Exercise 2
8974 @noindent
8975 One way is to move the number to the top of the stack, operate on
8976 it, then move it back:  @kbd{C-x ( M-@key{TAB} n M-@key{TAB} M-@key{TAB} C-x )}.
8978 Another way is to negate the top three stack entries, then negate
8979 again the top two stack entries:  @kbd{C-x ( M-3 n M-2 n C-x )}.
8981 Finally, it turns out that a negative prefix argument causes a
8982 command like @kbd{n} to operate on the specified stack entry only,
8983 which is just what we want:  @kbd{C-x ( M-- 3 n C-x )}.
8985 Just for kicks, let's also do it algebraically:
8986 @w{@kbd{C-x ( ' -$$$, $$, $ @key{RET} C-x )}}.
8988 @node Programming Answer 3, Programming Answer 4, Programming Answer 2, Answers to Exercises
8989 @subsection Programming Tutorial Exercise 3
8991 @noindent
8992 Each of these functions can be computed using the stack, or using
8993 algebraic entry, whichever way you prefer:
8995 @noindent
8996 Computing 
8997 @texline @math{\displaystyle{\sin x \over x}}:
8998 @infoline @expr{sin(x) / x}:
9000 Using the stack:  @kbd{C-x (  @key{RET} S @key{TAB} /  C-x )}.
9002 Using algebraic entry:  @kbd{C-x (  ' sin($)/$ @key{RET}  C-x )}.
9004 @noindent
9005 Computing the logarithm:
9007 Using the stack:  @kbd{C-x (  @key{TAB} B  C-x )}
9009 Using algebraic entry:  @kbd{C-x (  ' log($,$$) @key{RET}  C-x )}.
9011 @noindent
9012 Computing the vector of integers:
9014 Using the stack:  @kbd{C-x (  1 @key{RET} 1  C-u v x  C-x )}.  (Recall that
9015 @kbd{C-u v x} takes the vector size, starting value, and increment
9016 from the stack.)
9018 Alternatively:  @kbd{C-x (  ~ v x  C-x )}.  (The @kbd{~} key pops a
9019 number from the stack and uses it as the prefix argument for the
9020 next command.)
9022 Using algebraic entry:  @kbd{C-x (  ' index($) @key{RET}  C-x )}.
9024 @node Programming Answer 4, Programming Answer 5, Programming Answer 3, Answers to Exercises
9025 @subsection Programming Tutorial Exercise 4
9027 @noindent
9028 Here's one way:  @kbd{C-x ( @key{RET} V R + @key{TAB} v l / C-x )}.
9030 @node Programming Answer 5, Programming Answer 6, Programming Answer 4, Answers to Exercises
9031 @subsection Programming Tutorial Exercise 5
9033 @smallexample
9034 @group
9035 2:  1              1:  1.61803398502         2:  1.61803398502
9036 1:  20                 .                     1:  1.61803398875
9037     .                                            .
9039    1 @key{RET} 20         Z < & 1 + Z >                I H P
9040 @end group
9041 @end smallexample
9043 @noindent
9044 This answer is quite accurate.
9046 @node Programming Answer 6, Programming Answer 7, Programming Answer 5, Answers to Exercises
9047 @subsection Programming Tutorial Exercise 6
9049 @noindent
9050 Here is the matrix:
9052 @example
9053 [ [ 0, 1 ]   * [a, b] = [b, a + b]
9054   [ 1, 1 ] ]
9055 @end example
9057 @noindent
9058 Thus @samp{[0, 1; 1, 1]^n * [1, 1]} computes Fibonacci numbers @expr{n+1}
9059 and @expr{n+2}.  Here's one program that does the job:
9061 @example
9062 C-x ( ' [0, 1; 1, 1] ^ ($-1) * [1, 1] @key{RET} v u @key{DEL} C-x )
9063 @end example
9065 @noindent
9066 This program is quite efficient because Calc knows how to raise a
9067 matrix (or other value) to the power @expr{n} in only 
9068 @texline @math{\log_2 n}
9069 @infoline @expr{log(n,2)}
9070 steps.  For example, this program can compute the 1000th Fibonacci
9071 number (a 209-digit integer!) in about 10 steps; even though the
9072 @kbd{Z < ... Z >} solution had much simpler steps, it would have
9073 required so many steps that it would not have been practical.
9075 @node Programming Answer 7, Programming Answer 8, Programming Answer 6, Answers to Exercises
9076 @subsection Programming Tutorial Exercise 7
9078 @noindent
9079 The trick here is to compute the harmonic numbers differently, so that
9080 the loop counter itself accumulates the sum of reciprocals.  We use
9081 a separate variable to hold the integer counter.
9083 @smallexample
9084 @group
9085 1:  1          2:  1       1:  .
9086     .          1:  4
9087                    .
9089     1 t 1       1 @key{RET} 4      Z ( t 2 r 1 1 + s 1 & Z )
9090 @end group
9091 @end smallexample
9093 @noindent
9094 The body of the loop goes as follows:  First save the harmonic sum
9095 so far in variable 2.  Then delete it from the stack; the for loop
9096 itself will take care of remembering it for us.  Next, recall the
9097 count from variable 1, add one to it, and feed its reciprocal to
9098 the for loop to use as the step value.  The for loop will increase
9099 the ``loop counter'' by that amount and keep going until the
9100 loop counter exceeds 4.
9102 @smallexample
9103 @group
9104 2:  31                  3:  31
9105 1:  3.99498713092       2:  3.99498713092
9106     .                   1:  4.02724519544
9107                             .
9109     r 1 r 2                 @key{RET} 31 & +
9110 @end group
9111 @end smallexample
9113 Thus we find that the 30th harmonic number is 3.99, and the 31st
9114 harmonic number is 4.02.
9116 @node Programming Answer 8, Programming Answer 9, Programming Answer 7, Answers to Exercises
9117 @subsection Programming Tutorial Exercise 8
9119 @noindent
9120 The first step is to compute the derivative @expr{f'(x)} and thus
9121 the formula 
9122 @texline @math{\displaystyle{x - {f(x) \over f'(x)}}}.
9123 @infoline @expr{x - f(x)/f'(x)}.
9125 (Because this definition is long, it will be repeated in concise form
9126 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9127 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9128 keystrokes without executing them.  In the following diagrams we'll
9129 pretend Calc actually executed the keystrokes as you typed them,
9130 just for purposes of illustration.)
9132 @smallexample
9133 @group
9134 2:  sin(cos(x)) - 0.5            3:  4.5
9135 1:  4.5                          2:  sin(cos(x)) - 0.5
9136     .                            1:  -(sin(x) cos(cos(x)))
9137                                      .
9139 ' sin(cos(x))-0.5 @key{RET} 4.5  m r  C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}
9141 @end group
9142 @end smallexample
9143 @noindent
9144 @smallexample
9145 @group
9146 2:  4.5
9147 1:  x + (sin(cos(x)) - 0.5) / sin(x) cos(cos(x))
9148     .
9150     /  ' x @key{RET} @key{TAB} -   t 1
9151 @end group
9152 @end smallexample
9154 Now, we enter the loop.  We'll use a repeat loop with a 20-repetition
9155 limit just in case the method fails to converge for some reason.
9156 (Normally, the @w{@kbd{Z /}} command will stop the loop before all 20
9157 repetitions are done.)
9159 @smallexample
9160 @group
9161 1:  4.5         3:  4.5                     2:  4.5
9162     .           2:  x + (sin(cos(x)) ...    1:  5.24196456928
9163                 1:  4.5                         .
9164                     .
9166   20 Z <          @key{RET} r 1 @key{TAB}                 s l x @key{RET}
9167 @end group
9168 @end smallexample
9170 This is the new guess for @expr{x}.  Now we compare it with the
9171 old one to see if we've converged.
9173 @smallexample
9174 @group
9175 3:  5.24196     2:  5.24196     1:  5.24196     1:  5.26345856348
9176 2:  5.24196     1:  0               .               .
9177 1:  4.5             .
9178     .
9180   @key{RET} M-@key{TAB}         a =             Z /             Z > Z ' C-x )
9181 @end group
9182 @end smallexample
9184 The loop converges in just a few steps to this value.  To check
9185 the result, we can simply substitute it back into the equation.
9187 @smallexample
9188 @group
9189 2:  5.26345856348
9190 1:  0.499999999997
9191     .
9193  @key{RET} ' sin(cos($)) @key{RET}
9194 @end group
9195 @end smallexample
9197 Let's test the new definition again:
9199 @smallexample
9200 @group
9201 2:  x^2 - 9           1:  3.
9202 1:  1                     .
9203     .
9205   ' x^2-9 @key{RET} 1           X
9206 @end group
9207 @end smallexample
9209 Once again, here's the full Newton's Method definition:
9211 @example
9212 @group
9213 C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}  /  ' x @key{RET} @key{TAB} -  t 1
9214            20 Z <  @key{RET} r 1 @key{TAB}  s l x @key{RET}
9215                    @key{RET} M-@key{TAB}  a =  Z /
9216               Z >
9217       Z '
9218 C-x )
9219 @end group
9220 @end example
9222 @c [fix-ref Nesting and Fixed Points]
9223 It turns out that Calc has a built-in command for applying a formula
9224 repeatedly until it converges to a number.  @xref{Nesting and Fixed Points},
9225 to see how to use it.
9227 @c [fix-ref Root Finding]
9228 Also, of course, @kbd{a R} is a built-in command that uses Newton's
9229 method (among others) to look for numerical solutions to any equation.
9230 @xref{Root Finding}.
9232 @node Programming Answer 9, Programming Answer 10, Programming Answer 8, Answers to Exercises
9233 @subsection Programming Tutorial Exercise 9
9235 @noindent
9236 The first step is to adjust @expr{z} to be greater than 5.  A simple
9237 ``for'' loop will do the job here.  If @expr{z} is less than 5, we
9238 reduce the problem using 
9239 @texline @math{\psi(z) = \psi(z+1) - 1/z}.
9240 @infoline @expr{psi(z) = psi(z+1) - 1/z}.  We go
9241 on to compute 
9242 @texline @math{\psi(z+1)},
9243 @infoline @expr{psi(z+1)}, 
9244 and remember to add back a factor of @expr{-1/z} when we're done.  This
9245 step is repeated until @expr{z > 5}.
9247 (Because this definition is long, it will be repeated in concise form
9248 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9249 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9250 keystrokes without executing them.  In the following diagrams we'll
9251 pretend Calc actually executed the keystrokes as you typed them,
9252 just for purposes of illustration.)
9254 @smallexample
9255 @group
9256 1:  1.             1:  1.
9257     .                  .
9259  1.0 @key{RET}       C-x ( Z `  s 1  0 t 2
9260 @end group
9261 @end smallexample
9263 Here, variable 1 holds @expr{z} and variable 2 holds the adjustment
9264 factor.  If @expr{z < 5}, we use a loop to increase it.
9266 (By the way, we started with @samp{1.0} instead of the integer 1 because
9267 otherwise the calculation below will try to do exact fractional arithmetic,
9268 and will never converge because fractions compare equal only if they
9269 are exactly equal, not just equal to within the current precision.)
9271 @smallexample
9272 @group
9273 3:  1.      2:  1.       1:  6.
9274 2:  1.      1:  1            .
9275 1:  5           .
9276     .
9278   @key{RET} 5        a <    Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9279 @end group
9280 @end smallexample
9282 Now we compute the initial part of the sum:  
9283 @texline @math{\ln z - {1 \over 2z}}
9284 @infoline @expr{ln(z) - 1/2z}
9285 minus the adjustment factor.
9287 @smallexample
9288 @group
9289 2:  1.79175946923      2:  1.7084261359      1:  -0.57490719743
9290 1:  0.0833333333333    1:  2.28333333333         .
9291     .                      .
9293     L  r 1 2 * &           -  r 2                -
9294 @end group
9295 @end smallexample
9297 Now we evaluate the series.  We'll use another ``for'' loop counting
9298 up the value of @expr{2 n}.  (Calc does have a summation command,
9299 @kbd{a +}, but we'll use loops just to get more practice with them.)
9301 @smallexample
9302 @group
9303 3:  -0.5749       3:  -0.5749        4:  -0.5749      2:  -0.5749
9304 2:  2             2:  1:6            3:  1:6          1:  2.3148e-3
9305 1:  40            1:  2              2:  2                .
9306     .                 .              1:  36.
9307                                          .
9309    2 @key{RET} 40        Z ( @key{RET} k b @key{TAB}     @key{RET} r 1 @key{TAB} ^      * /
9311 @end group
9312 @end smallexample
9313 @noindent
9314 @smallexample
9315 @group
9316 3:  -0.5749       3:  -0.5772      2:  -0.5772     1:  -0.577215664892
9317 2:  -0.5749       2:  -0.5772      1:  0               .
9318 1:  2.3148e-3     1:  -0.5749          .
9319     .                 .
9321   @key{TAB} @key{RET} M-@key{TAB}       - @key{RET} M-@key{TAB}      a =     Z /    2  Z )  Z ' C-x )
9322 @end group
9323 @end smallexample
9325 This is the value of 
9326 @texline @math{-\gamma},
9327 @infoline @expr{- gamma}, 
9328 with a slight bit of roundoff error.  To get a full 12 digits, let's use
9329 a higher precision:
9331 @smallexample
9332 @group
9333 2:  -0.577215664892      2:  -0.577215664892
9334 1:  1.                   1:  -0.577215664901532
9336     1. @key{RET}                   p 16 @key{RET} X
9337 @end group
9338 @end smallexample
9340 Here's the complete sequence of keystrokes:
9342 @example
9343 @group
9344 C-x ( Z `  s 1  0 t 2
9345            @key{RET} 5 a <  Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9346            L r 1 2 * & - r 2 -
9347            2 @key{RET} 40  Z (  @key{RET} k b @key{TAB} @key{RET} r 1 @key{TAB} ^ * /
9348                           @key{TAB} @key{RET} M-@key{TAB} - @key{RET} M-@key{TAB} a = Z /
9349                   2  Z )
9350       Z '
9351 C-x )
9352 @end group
9353 @end example
9355 @node Programming Answer 10, Programming Answer 11, Programming Answer 9, Answers to Exercises
9356 @subsection Programming Tutorial Exercise 10
9358 @noindent
9359 Taking the derivative of a term of the form @expr{x^n} will produce
9360 a term like 
9361 @texline @math{n x^{n-1}}.
9362 @infoline @expr{n x^(n-1)}.  
9363 Taking the derivative of a constant
9364 produces zero.  From this it is easy to see that the @expr{n}th
9365 derivative of a polynomial, evaluated at @expr{x = 0}, will equal the
9366 coefficient on the @expr{x^n} term times @expr{n!}.
9368 (Because this definition is long, it will be repeated in concise form
9369 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9370 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9371 keystrokes without executing them.  In the following diagrams we'll
9372 pretend Calc actually executed the keystrokes as you typed them,
9373 just for purposes of illustration.)
9375 @smallexample
9376 @group
9377 2:  5 x^4 + (x + 1)^2          3:  5 x^4 + (x + 1)^2
9378 1:  6                          2:  0
9379     .                          1:  6
9380                                    .
9382   ' 5 x^4 + (x+1)^2 @key{RET} 6        C-x ( Z `  [ ] t 1  0 @key{TAB}
9383 @end group
9384 @end smallexample
9386 @noindent
9387 Variable 1 will accumulate the vector of coefficients.
9389 @smallexample
9390 @group
9391 2:  0              3:  0                  2:  5 x^4 + ...
9392 1:  5 x^4 + ...    2:  5 x^4 + ...        1:  1
9393     .              1:  1                      .
9394                        .
9396    Z ( @key{TAB}         @key{RET} 0 s l x @key{RET}            M-@key{TAB} ! /  s | 1
9397 @end group
9398 @end smallexample
9400 @noindent
9401 Note that @kbd{s | 1} appends the top-of-stack value to the vector
9402 in a variable; it is completely analogous to @kbd{s + 1}.  We could
9403 have written instead, @kbd{r 1 @key{TAB} | t 1}.
9405 @smallexample
9406 @group
9407 1:  20 x^3 + 2 x + 2      1:  0         1:  [1, 2, 1, 0, 5, 0, 0]
9408     .                         .             .
9410     a d x @key{RET}                 1 Z )         @key{DEL} r 1  Z ' C-x )
9411 @end group
9412 @end smallexample
9414 To convert back, a simple method is just to map the coefficients
9415 against a table of powers of @expr{x}.
9417 @smallexample
9418 @group
9419 2:  [1, 2, 1, 0, 5, 0, 0]    2:  [1, 2, 1, 0, 5, 0, 0]
9420 1:  6                        1:  [0, 1, 2, 3, 4, 5, 6]
9421     .                            .
9423     6 @key{RET}                        1 + 0 @key{RET} 1 C-u v x
9425 @end group
9426 @end smallexample
9427 @noindent
9428 @smallexample
9429 @group
9430 2:  [1, 2, 1, 0, 5, 0, 0]    2:  1 + 2 x + x^2 + 5 x^4
9431 1:  [1, x, x^2, x^3, ... ]       .
9432     .
9434     ' x @key{RET} @key{TAB} V M ^            *
9435 @end group
9436 @end smallexample
9438 Once again, here are the whole polynomial to/from vector programs:
9440 @example
9441 @group
9442 C-x ( Z `  [ ] t 1  0 @key{TAB}
9443            Z (  @key{TAB} @key{RET} 0 s l x @key{RET} M-@key{TAB} ! /  s | 1
9444                 a d x @key{RET}
9445          1 Z ) r 1
9446       Z '
9447 C-x )
9449 C-x (  1 + 0 @key{RET} 1 C-u v x ' x @key{RET} @key{TAB} V M ^ *  C-x )
9450 @end group
9451 @end example
9453 @node Programming Answer 11, Programming Answer 12, Programming Answer 10, Answers to Exercises
9454 @subsection Programming Tutorial Exercise 11
9456 @noindent
9457 First we define a dummy program to go on the @kbd{z s} key.  The true
9458 @w{@kbd{z s}} key is supposed to take two numbers from the stack and
9459 return one number, so @key{DEL} as a dummy definition will make
9460 sure the stack comes out right.
9462 @smallexample
9463 @group
9464 2:  4          1:  4                         2:  4
9465 1:  2              .                         1:  2
9466     .                                            .
9468   4 @key{RET} 2       C-x ( @key{DEL} C-x )  Z K s @key{RET}       2
9469 @end group
9470 @end smallexample
9472 The last step replaces the 2 that was eaten during the creation
9473 of the dummy @kbd{z s} command.  Now we move on to the real
9474 definition.  The recurrence needs to be rewritten slightly,
9475 to the form @expr{s(n,m) = s(n-1,m-1) - (n-1) s(n-1,m)}.
9477 (Because this definition is long, it will be repeated in concise form
9478 below.  You can use @kbd{C-x * m} to load it from there.)
9480 @smallexample
9481 @group
9482 2:  4        4:  4       3:  4       2:  4
9483 1:  2        3:  2       2:  2       1:  2
9484     .        2:  4       1:  0           .
9485              1:  2           .
9486                  .
9488   C-x (       M-2 @key{RET}        a =         Z [  @key{DEL} @key{DEL} 1  Z :
9490 @end group
9491 @end smallexample
9492 @noindent
9493 @smallexample
9494 @group
9495 4:  4       2:  4                     2:  3      4:  3    4:  3    3:  3
9496 3:  2       1:  2                     1:  2      3:  2    3:  2    2:  2
9497 2:  2           .                         .      2:  3    2:  3    1:  3
9498 1:  0                                            1:  2    1:  1        .
9499     .                                                .        .
9501   @key{RET} 0   a = Z [  @key{DEL} @key{DEL} 0  Z :  @key{TAB} 1 - @key{TAB}   M-2 @key{RET}     1 -      z s
9502 @end group
9503 @end smallexample
9505 @noindent
9506 (Note that the value 3 that our dummy @kbd{z s} produces is not correct;
9507 it is merely a placeholder that will do just as well for now.)
9509 @smallexample
9510 @group
9511 3:  3               4:  3           3:  3       2:  3      1:  -6
9512 2:  3               3:  3           2:  3       1:  9          .
9513 1:  2               2:  3           1:  3           .
9514     .               1:  2               .
9515                         .
9517  M-@key{TAB} M-@key{TAB}     @key{TAB} @key{RET} M-@key{TAB}         z s          *          -
9519 @end group
9520 @end smallexample
9521 @noindent
9522 @smallexample
9523 @group
9524 1:  -6                          2:  4          1:  11      2:  11
9525     .                           1:  2              .       1:  11
9526                                     .                          .
9528   Z ] Z ] C-x )   Z K s @key{RET}      @key{DEL} 4 @key{RET} 2       z s      M-@key{RET} k s
9529 @end group
9530 @end smallexample
9532 Even though the result that we got during the definition was highly
9533 bogus, once the definition is complete the @kbd{z s} command gets
9534 the right answers.
9536 Here's the full program once again:
9538 @example
9539 @group
9540 C-x (  M-2 @key{RET} a =
9541        Z [  @key{DEL} @key{DEL} 1
9542        Z :  @key{RET} 0 a =
9543             Z [  @key{DEL} @key{DEL} 0
9544             Z :  @key{TAB} 1 - @key{TAB} M-2 @key{RET} 1 - z s
9545                  M-@key{TAB} M-@key{TAB} @key{TAB} @key{RET} M-@key{TAB} z s * -
9546             Z ]
9547        Z ]
9548 C-x )
9549 @end group
9550 @end example
9552 You can read this definition using @kbd{C-x * m} (@code{read-kbd-macro})
9553 followed by @kbd{Z K s}, without having to make a dummy definition
9554 first, because @code{read-kbd-macro} doesn't need to execute the
9555 definition as it reads it in.  For this reason, @code{C-x * m} is often
9556 the easiest way to create recursive programs in Calc.
9558 @node Programming Answer 12,  , Programming Answer 11, Answers to Exercises
9559 @subsection Programming Tutorial Exercise 12
9561 @noindent
9562 This turns out to be a much easier way to solve the problem.  Let's
9563 denote Stirling numbers as calls of the function @samp{s}.
9565 First, we store the rewrite rules corresponding to the definition of
9566 Stirling numbers in a convenient variable:
9568 @smallexample
9569 s e StirlingRules @key{RET}
9570 [ s(n,n) := 1  :: n >= 0,
9571   s(n,0) := 0  :: n > 0,
9572   s(n,m) := s(n-1,m-1) - (n-1) s(n-1,m) :: n >= m :: m >= 1 ]
9573 C-c C-c
9574 @end smallexample
9576 Now, it's just a matter of applying the rules:
9578 @smallexample
9579 @group
9580 2:  4          1:  s(4, 2)              1:  11
9581 1:  2              .                        .
9582     .
9584   4 @key{RET} 2       C-x (  ' s($$,$) @key{RET}     a r StirlingRules @key{RET}  C-x )
9585 @end group
9586 @end smallexample
9588 As in the case of the @code{fib} rules, it would be useful to put these
9589 rules in @code{EvalRules} and to add a @samp{:: remember} condition to
9590 the last rule.
9592 @c This ends the table-of-contents kludge from above:
9593 @tex
9594 \global\let\chapternofonts=\oldchapternofonts
9595 @end tex
9597 @c [reference]
9599 @node Introduction, Data Types, Tutorial, Top
9600 @chapter Introduction
9602 @noindent
9603 This chapter is the beginning of the Calc reference manual.
9604 It covers basic concepts such as the stack, algebraic and
9605 numeric entry, undo, numeric prefix arguments, etc.
9607 @c [when-split]
9608 @c (Chapter 2, the Tutorial, has been printed in a separate volume.)
9610 @menu
9611 * Basic Commands::
9612 * Help Commands::
9613 * Stack Basics::
9614 * Numeric Entry::
9615 * Algebraic Entry::
9616 * Quick Calculator::
9617 * Prefix Arguments::
9618 * Undo::
9619 * Error Messages::
9620 * Multiple Calculators::
9621 * Troubleshooting Commands::
9622 @end menu
9624 @node Basic Commands, Help Commands, Introduction, Introduction
9625 @section Basic Commands
9627 @noindent
9628 @pindex calc
9629 @pindex calc-mode
9630 @cindex Starting the Calculator
9631 @cindex Running the Calculator
9632 To start the Calculator in its standard interface, type @kbd{M-x calc}.
9633 By default this creates a pair of small windows, @samp{*Calculator*}
9634 and @samp{*Calc Trail*}.  The former displays the contents of the
9635 Calculator stack and is manipulated exclusively through Calc commands.
9636 It is possible (though not usually necessary) to create several Calc
9637 mode buffers each of which has an independent stack, undo list, and
9638 mode settings.  There is exactly one Calc Trail buffer; it records a
9639 list of the results of all calculations that have been done.  The
9640 Calc Trail buffer uses a variant of Calc mode, so Calculator commands
9641 still work when the trail buffer's window is selected.  It is possible
9642 to turn the trail window off, but the @samp{*Calc Trail*} buffer itself
9643 still exists and is updated silently.  @xref{Trail Commands}.
9645 @kindex C-x * c
9646 @kindex C-x * *
9647 @ignore
9648 @mindex @null
9649 @end ignore
9650 In most installations, the @kbd{C-x * c} key sequence is a more
9651 convenient way to start the Calculator.  Also, @kbd{C-x * *} 
9652 is a synonym for @kbd{C-x * c} unless you last used Calc
9653 in its Keypad mode.
9655 @kindex x
9656 @kindex M-x
9657 @pindex calc-execute-extended-command
9658 Most Calc commands use one or two keystrokes.  Lower- and upper-case
9659 letters are distinct.  Commands may also be entered in full @kbd{M-x} form;
9660 for some commands this is the only form.  As a convenience, the @kbd{x}
9661 key (@code{calc-execute-extended-command})
9662 is like @kbd{M-x} except that it enters the initial string @samp{calc-}
9663 for you.  For example, the following key sequences are equivalent:
9664 @kbd{S}, @kbd{M-x calc-sin @key{RET}}, @kbd{x sin @key{RET}}.
9666 @cindex Extensions module
9667 @cindex @file{calc-ext} module
9668 The Calculator exists in many parts.  When you type @kbd{C-x * c}, the
9669 Emacs ``auto-load'' mechanism will bring in only the first part, which
9670 contains the basic arithmetic functions.  The other parts will be
9671 auto-loaded the first time you use the more advanced commands like trig
9672 functions or matrix operations.  This is done to improve the response time
9673 of the Calculator in the common case when all you need to do is a
9674 little arithmetic.  If for some reason the Calculator fails to load an
9675 extension module automatically, you can force it to load all the
9676 extensions by using the @kbd{C-x * L} (@code{calc-load-everything})
9677 command.  @xref{Mode Settings}.
9679 If you type @kbd{M-x calc} or @kbd{C-x * c} with any numeric prefix argument,
9680 the Calculator is loaded if necessary, but it is not actually started.
9681 If the argument is positive, the @file{calc-ext} extensions are also
9682 loaded if necessary.  User-written Lisp code that wishes to make use
9683 of Calc's arithmetic routines can use @samp{(calc 0)} or @samp{(calc 1)}
9684 to auto-load the Calculator.
9686 @kindex C-x * b
9687 @pindex full-calc
9688 If you type @kbd{C-x * b}, then next time you use @kbd{C-x * c} you
9689 will get a Calculator that uses the full height of the Emacs screen.
9690 When full-screen mode is on, @kbd{C-x * c} runs the @code{full-calc}
9691 command instead of @code{calc}.  From the Unix shell you can type
9692 @samp{emacs -f full-calc} to start a new Emacs specifically for use
9693 as a calculator.  When Calc is started from the Emacs command line
9694 like this, Calc's normal ``quit'' commands actually quit Emacs itself.
9696 @kindex C-x * o
9697 @pindex calc-other-window
9698 The @kbd{C-x * o} command is like @kbd{C-x * c} except that the Calc
9699 window is not actually selected.  If you are already in the Calc
9700 window, @kbd{C-x * o} switches you out of it.  (The regular Emacs
9701 @kbd{C-x o} command would also work for this, but it has a
9702 tendency to drop you into the Calc Trail window instead, which
9703 @kbd{C-x * o} takes care not to do.)
9705 @ignore
9706 @mindex C-x * q
9707 @end ignore
9708 For one quick calculation, you can type @kbd{C-x * q} (@code{quick-calc})
9709 which prompts you for a formula (like @samp{2+3/4}).  The result is
9710 displayed at the bottom of the Emacs screen without ever creating
9711 any special Calculator windows.  @xref{Quick Calculator}.
9713 @ignore
9714 @mindex C-x * k
9715 @end ignore
9716 Finally, if you are using the X window system you may want to try
9717 @kbd{C-x * k} (@code{calc-keypad}) which runs Calc with a
9718 ``calculator keypad'' picture as well as a stack display.  Click on
9719 the keys with the mouse to operate the calculator.  @xref{Keypad Mode}.
9721 @kindex q
9722 @pindex calc-quit
9723 @cindex Quitting the Calculator
9724 @cindex Exiting the Calculator
9725 The @kbd{q} key (@code{calc-quit}) exits Calc mode and closes the
9726 Calculator's window(s).  It does not delete the Calculator buffers.
9727 If you type @kbd{M-x calc} again, the Calculator will reappear with the
9728 contents of the stack intact.  Typing @kbd{C-x * c} or @kbd{C-x * *}
9729 again from inside the Calculator buffer is equivalent to executing
9730 @code{calc-quit}; you can think of @kbd{C-x * *} as toggling the
9731 Calculator on and off.
9733 @kindex C-x * x
9734 The @kbd{C-x * x} command also turns the Calculator off, no matter which
9735 user interface (standard, Keypad, or Embedded) is currently active.
9736 It also cancels @code{calc-edit} mode if used from there.
9738 @kindex d @key{SPC}
9739 @pindex calc-refresh
9740 @cindex Refreshing a garbled display
9741 @cindex Garbled displays, refreshing
9742 The @kbd{d @key{SPC}} key sequence (@code{calc-refresh}) redraws the contents
9743 of the Calculator buffer from memory.  Use this if the contents of the
9744 buffer have been damaged somehow.
9746 @ignore
9747 @mindex o
9748 @end ignore
9749 The @kbd{o} key (@code{calc-realign}) moves the cursor back to its
9750 ``home'' position at the bottom of the Calculator buffer.
9752 @kindex <
9753 @kindex >
9754 @pindex calc-scroll-left
9755 @pindex calc-scroll-right
9756 @cindex Horizontal scrolling
9757 @cindex Scrolling
9758 @cindex Wide text, scrolling
9759 The @kbd{<} and @kbd{>} keys are bound to @code{calc-scroll-left} and
9760 @code{calc-scroll-right}.  These are just like the normal horizontal
9761 scrolling commands except that they scroll one half-screen at a time by
9762 default.  (Calc formats its output to fit within the bounds of the
9763 window whenever it can.)
9765 @kindex @{
9766 @kindex @}
9767 @pindex calc-scroll-down
9768 @pindex calc-scroll-up
9769 @cindex Vertical scrolling
9770 The @kbd{@{} and @kbd{@}} keys are bound to @code{calc-scroll-down}
9771 and @code{calc-scroll-up}.  They scroll up or down by one-half the
9772 height of the Calc window.
9774 @kindex C-x * 0
9775 @pindex calc-reset
9776 The @kbd{C-x * 0} command (@code{calc-reset}; that's @kbd{C-x *} followed
9777 by a zero) resets the Calculator to its initial state.  This clears
9778 the stack, resets all the modes to their initial values (the values
9779 that were saved with @kbd{m m} (@code{calc-save-modes})), clears the
9780 caches (@pxref{Caches}), and so on.  (It does @emph{not} erase the
9781 values of any variables.) With an argument of 0, Calc will be reset to
9782 its default state; namely, the modes will be given their default values.
9783 With a positive prefix argument, @kbd{C-x * 0} preserves the contents of
9784 the stack but resets everything else to its initial state; with a
9785 negative prefix argument, @kbd{C-x * 0} preserves the contents of the
9786 stack but resets everything else to its default state.
9788 @pindex calc-version
9789 The @kbd{M-x calc-version} command displays the current version number
9790 of Calc and the name of the person who installed it on your system.
9791 (This information is also present in the @samp{*Calc Trail*} buffer,
9792 and in the output of the @kbd{h h} command.)
9794 @node Help Commands, Stack Basics, Basic Commands, Introduction
9795 @section Help Commands
9797 @noindent
9798 @cindex Help commands
9799 @kindex ?
9800 @pindex calc-help
9801 The @kbd{?} key (@code{calc-help}) displays a series of brief help messages.
9802 Some keys (such as @kbd{b} and @kbd{d}) are prefix keys, like Emacs'
9803 @key{ESC} and @kbd{C-x} prefixes.  You can type
9804 @kbd{?} after a prefix to see a list of commands beginning with that
9805 prefix.  (If the message includes @samp{[MORE]}, press @kbd{?} again
9806 to see additional commands for that prefix.)
9808 @kindex h h
9809 @pindex calc-full-help
9810 The @kbd{h h} (@code{calc-full-help}) command displays all the @kbd{?}
9811 responses at once.  When printed, this makes a nice, compact (three pages)
9812 summary of Calc keystrokes.
9814 In general, the @kbd{h} key prefix introduces various commands that
9815 provide help within Calc.  Many of the @kbd{h} key functions are
9816 Calc-specific analogues to the @kbd{C-h} functions for Emacs help.
9818 @kindex h i
9819 @kindex C-x * i
9820 @kindex i
9821 @pindex calc-info
9822 The @kbd{h i} (@code{calc-info}) command runs the Emacs Info system
9823 to read this manual on-line.  This is basically the same as typing
9824 @kbd{C-h i} (the regular way to run the Info system), then, if Info
9825 is not already in the Calc manual, selecting the beginning of the
9826 manual.  The @kbd{C-x * i} command is another way to read the Calc
9827 manual; it is different from @kbd{h i} in that it works any time,
9828 not just inside Calc.  The plain @kbd{i} key is also equivalent to
9829 @kbd{h i}, though this key is obsolete and may be replaced with a
9830 different command in a future version of Calc.
9832 @kindex h t
9833 @kindex C-x * t
9834 @pindex calc-tutorial
9835 The @kbd{h t} (@code{calc-tutorial}) command runs the Info system on
9836 the Tutorial section of the Calc manual.  It is like @kbd{h i},
9837 except that it selects the starting node of the tutorial rather
9838 than the beginning of the whole manual.  (It actually selects the
9839 node ``Interactive Tutorial'' which tells a few things about
9840 using the Info system before going on to the actual tutorial.)
9841 The @kbd{C-x * t} key is equivalent to @kbd{h t} (but it works at
9842 all times).
9844 @kindex h s
9845 @kindex C-x * s
9846 @pindex calc-info-summary
9847 The @kbd{h s} (@code{calc-info-summary}) command runs the Info system
9848 on the Summary node of the Calc manual.  @xref{Summary}.  The @kbd{C-x * s}
9849 key is equivalent to @kbd{h s}.
9851 @kindex h k
9852 @pindex calc-describe-key
9853 The @kbd{h k} (@code{calc-describe-key}) command looks up a key
9854 sequence in the Calc manual.  For example, @kbd{h k H a S} looks
9855 up the documentation on the @kbd{H a S} (@code{calc-solve-for})
9856 command.  This works by looking up the textual description of
9857 the key(s) in the Key Index of the manual, then jumping to the
9858 node indicated by the index.
9860 Most Calc commands do not have traditional Emacs documentation
9861 strings, since the @kbd{h k} command is both more convenient and
9862 more instructive.  This means the regular Emacs @kbd{C-h k}
9863 (@code{describe-key}) command will not be useful for Calc keystrokes.
9865 @kindex h c
9866 @pindex calc-describe-key-briefly
9867 The @kbd{h c} (@code{calc-describe-key-briefly}) command reads a
9868 key sequence and displays a brief one-line description of it at
9869 the bottom of the screen.  It looks for the key sequence in the
9870 Summary node of the Calc manual; if it doesn't find the sequence
9871 there, it acts just like its regular Emacs counterpart @kbd{C-h c}
9872 (@code{describe-key-briefly}).  For example, @kbd{h c H a S}
9873 gives the description:
9875 @smallexample
9876 H a S runs calc-solve-for:  a `H a S' v  => fsolve(a,v)  (?=notes)
9877 @end smallexample
9879 @noindent
9880 which means the command @kbd{H a S} or @kbd{H M-x calc-solve-for}
9881 takes a value @expr{a} from the stack, prompts for a value @expr{v},
9882 then applies the algebraic function @code{fsolve} to these values.
9883 The @samp{?=notes} message means you can now type @kbd{?} to see
9884 additional notes from the summary that apply to this command.
9886 @kindex h f
9887 @pindex calc-describe-function
9888 The @kbd{h f} (@code{calc-describe-function}) command looks up an
9889 algebraic function or a command name in the Calc manual.  Enter an
9890 algebraic function name to look up that function in the Function
9891 Index or enter a command name beginning with @samp{calc-} to look it 
9892 up in the Command Index.  This command will also look up operator
9893 symbols that can appear in algebraic formulas, like @samp{%} and 
9894 @samp{=>}.
9896 @kindex h v
9897 @pindex calc-describe-variable
9898 The @kbd{h v} (@code{calc-describe-variable}) command looks up a
9899 variable in the Calc manual.  Enter a variable name like @code{pi} or
9900 @code{PlotRejects}.
9902 @kindex h b
9903 @pindex describe-bindings
9904 The @kbd{h b} (@code{calc-describe-bindings}) command is just like
9905 @kbd{C-h b}, except that only local (Calc-related) key bindings are
9906 listed.
9908 @kindex h n
9909 The @kbd{h n} or @kbd{h C-n} (@code{calc-view-news}) command displays
9910 the ``news'' or change history of Calc.  This is kept in the file
9911 @file{README}, which Calc looks for in the same directory as the Calc
9912 source files.
9914 @kindex h C-c
9915 @kindex h C-d
9916 @kindex h C-w
9917 The @kbd{h C-c}, @kbd{h C-d}, and @kbd{h C-w} keys display copying,
9918 distribution, and warranty information about Calc.  These work by
9919 pulling up the appropriate parts of the ``Copying'' or ``Reporting
9920 Bugs'' sections of the manual.
9922 @node Stack Basics, Numeric Entry, Help Commands, Introduction
9923 @section Stack Basics
9925 @noindent
9926 @cindex Stack basics
9927 @c [fix-tut RPN Calculations and the Stack]
9928 Calc uses RPN notation.  If you are not familiar with RPN, @pxref{RPN
9929 Tutorial}.
9931 To add the numbers 1 and 2 in Calc you would type the keys:
9932 @kbd{1 @key{RET} 2 +}.
9933 (@key{RET} corresponds to the @key{ENTER} key on most calculators.)
9934 The first three keystrokes ``push'' the numbers 1 and 2 onto the stack.  The
9935 @kbd{+} key always ``pops'' the top two numbers from the stack, adds them,
9936 and pushes the result (3) back onto the stack.  This number is ready for
9937 further calculations:  @kbd{5 -} pushes 5 onto the stack, then pops the
9938 3 and 5, subtracts them, and pushes the result (@mathit{-2}).
9940 Note that the ``top'' of the stack actually appears at the @emph{bottom}
9941 of the buffer.  A line containing a single @samp{.} character signifies
9942 the end of the buffer; Calculator commands operate on the number(s)
9943 directly above this line.  The @kbd{d t} (@code{calc-truncate-stack})
9944 command allows you to move the @samp{.} marker up and down in the stack;
9945 @pxref{Truncating the Stack}.
9947 @kindex d l
9948 @pindex calc-line-numbering
9949 Stack elements are numbered consecutively, with number 1 being the top of
9950 the stack.  These line numbers are ordinarily displayed on the lefthand side
9951 of the window.  The @kbd{d l} (@code{calc-line-numbering}) command controls
9952 whether these numbers appear.  (Line numbers may be turned off since they
9953 slow the Calculator down a bit and also clutter the display.)
9955 @kindex o
9956 @pindex calc-realign
9957 The unshifted letter @kbd{o} (@code{calc-realign}) command repositions
9958 the cursor to its top-of-stack ``home'' position.  It also undoes any
9959 horizontal scrolling in the window.  If you give it a numeric prefix
9960 argument, it instead moves the cursor to the specified stack element.
9962 The @key{RET} (or equivalent @key{SPC}) key is only required to separate
9963 two consecutive numbers.
9964 (After all, if you typed @kbd{1 2} by themselves the Calculator
9965 would enter the number 12.)  If you press @key{RET} or @key{SPC} @emph{not}
9966 right after typing a number, the key duplicates the number on the top of
9967 the stack.  @kbd{@key{RET} *} is thus a handy way to square a number.
9969 The @key{DEL} key pops and throws away the top number on the stack.
9970 The @key{TAB} key swaps the top two objects on the stack.
9971 @xref{Stack and Trail}, for descriptions of these and other stack-related
9972 commands.
9974 @node Numeric Entry, Algebraic Entry, Stack Basics, Introduction
9975 @section Numeric Entry
9977 @noindent
9978 @kindex 0-9
9979 @kindex .
9980 @kindex e
9981 @cindex Numeric entry
9982 @cindex Entering numbers
9983 Pressing a digit or other numeric key begins numeric entry using the
9984 minibuffer.  The number is pushed on the stack when you press the @key{RET}
9985 or @key{SPC} keys.  If you press any other non-numeric key, the number is
9986 pushed onto the stack and the appropriate operation is performed.  If
9987 you press a numeric key which is not valid, the key is ignored.
9989 @cindex Minus signs
9990 @cindex Negative numbers, entering
9991 @kindex _
9992 There are three different concepts corresponding to the word ``minus,''
9993 typified by @expr{a-b} (subtraction), @expr{-x}
9994 (change-sign), and @expr{-5} (negative number).  Calc uses three
9995 different keys for these operations, respectively:
9996 @kbd{-}, @kbd{n}, and @kbd{_} (the underscore).  The @kbd{-} key subtracts
9997 the two numbers on the top of the stack.  The @kbd{n} key changes the sign
9998 of the number on the top of the stack or the number currently being entered.
9999 The @kbd{_} key begins entry of a negative number or changes the sign of
10000 the number currently being entered.  The following sequences all enter the
10001 number @mathit{-5} onto the stack:  @kbd{0 @key{RET} 5 -}, @kbd{5 n @key{RET}},
10002 @kbd{5 @key{RET} n}, @kbd{_ 5 @key{RET}}, @kbd{5 _ @key{RET}}.
10004 Some other keys are active during numeric entry, such as @kbd{#} for
10005 non-decimal numbers, @kbd{:} for fractions, and @kbd{@@} for HMS forms.
10006 These notations are described later in this manual with the corresponding
10007 data types.  @xref{Data Types}.
10009 During numeric entry, the only editing key available is @key{DEL}.
10011 @node Algebraic Entry, Quick Calculator, Numeric Entry, Introduction
10012 @section Algebraic Entry
10014 @noindent
10015 @kindex '
10016 @pindex calc-algebraic-entry
10017 @cindex Algebraic notation
10018 @cindex Formulas, entering
10019 Calculations can also be entered in algebraic form.  This is accomplished
10020 by typing the apostrophe key, @kbd{'}, followed by the expression in
10021 standard format:  @kbd{@key{'} 2+3*4 @key{RET}} computes
10022 @texline @math{2+(3\times4) = 14}
10023 @infoline @expr{2+(3*4) = 14} 
10024 and pushes that on the stack.  If you wish you can
10025 ignore the RPN aspect of Calc altogether and simply enter algebraic
10026 expressions in this way.  You may want to use @key{DEL} every so often to
10027 clear previous results off the stack.
10029 You can press the apostrophe key during normal numeric entry to switch
10030 the half-entered number into Algebraic entry mode.  One reason to do this
10031 would be to use the full Emacs cursor motion and editing keys, which are
10032 available during algebraic entry but not during numeric entry.
10034 In the same vein, during either numeric or algebraic entry you can
10035 press @kbd{`} (backquote) to switch to @code{calc-edit} mode, where
10036 you complete your half-finished entry in a separate buffer.
10037 @xref{Editing Stack Entries}.
10039 @kindex m a
10040 @pindex calc-algebraic-mode
10041 @cindex Algebraic Mode
10042 If you prefer algebraic entry, you can use the command @kbd{m a}
10043 (@code{calc-algebraic-mode}) to set Algebraic mode.  In this mode,
10044 digits and other keys that would normally start numeric entry instead
10045 start full algebraic entry; as long as your formula begins with a digit
10046 you can omit the apostrophe.  Open parentheses and square brackets also
10047 begin algebraic entry.  You can still do RPN calculations in this mode,
10048 but you will have to press @key{RET} to terminate every number:
10049 @kbd{2 @key{RET} 3 @key{RET} * 4 @key{RET} +} would accomplish the same
10050 thing as @kbd{2*3+4 @key{RET}}.
10052 @cindex Incomplete Algebraic Mode
10053 If you give a numeric prefix argument like @kbd{C-u} to the @kbd{m a}
10054 command, it enables Incomplete Algebraic mode; this is like regular
10055 Algebraic mode except that it applies to the @kbd{(} and @kbd{[} keys
10056 only.  Numeric keys still begin a numeric entry in this mode.
10058 @kindex m t
10059 @pindex calc-total-algebraic-mode
10060 @cindex Total Algebraic Mode
10061 The @kbd{m t} (@code{calc-total-algebraic-mode}) gives you an even
10062 stronger algebraic-entry mode, in which @emph{all} regular letter and
10063 punctuation keys begin algebraic entry.  Use this if you prefer typing
10064 @w{@kbd{sqrt( )}} instead of @kbd{Q}, @w{@kbd{factor( )}} instead of
10065 @kbd{a f}, and so on.  To type regular Calc commands when you are in
10066 Total Algebraic mode, hold down the @key{META} key.  Thus @kbd{M-q}
10067 is the command to quit Calc, @kbd{M-p} sets the precision, and
10068 @kbd{M-m t} (or @kbd{M-m M-t}, if you prefer) turns Total Algebraic
10069 mode back off again.  Meta keys also terminate algebraic entry, so
10070 that @kbd{2+3 M-S} is equivalent to @kbd{2+3 @key{RET} M-S}.  The symbol
10071 @samp{Alg*} will appear in the mode line whenever you are in this mode.
10073 Pressing @kbd{'} (the apostrophe) a second time re-enters the previous
10074 algebraic formula.  You can then use the normal Emacs editing keys to
10075 modify this formula to your liking before pressing @key{RET}.
10077 @kindex $
10078 @cindex Formulas, referring to stack
10079 Within a formula entered from the keyboard, the symbol @kbd{$}
10080 represents the number on the top of the stack.  If an entered formula
10081 contains any @kbd{$} characters, the Calculator replaces the top of
10082 stack with that formula rather than simply pushing the formula onto the
10083 stack.  Thus, @kbd{' 1+2 @key{RET}} pushes 3 on the stack, and @kbd{$*2
10084 @key{RET}} replaces it with 6.  Note that the @kbd{$} key always
10085 initiates algebraic entry; the @kbd{'} is unnecessary if @kbd{$} is the
10086 first character in the new formula.
10088 Higher stack elements can be accessed from an entered formula with the
10089 symbols @kbd{$$}, @kbd{$$$}, and so on.  The number of stack elements
10090 removed (to be replaced by the entered values) equals the number of dollar
10091 signs in the longest such symbol in the formula.  For example, @samp{$$+$$$}
10092 adds the second and third stack elements, replacing the top three elements
10093 with the answer.  (All information about the top stack element is thus lost
10094 since no single @samp{$} appears in this formula.)
10096 A slightly different way to refer to stack elements is with a dollar
10097 sign followed by a number:  @samp{$1}, @samp{$2}, and so on are much
10098 like @samp{$}, @samp{$$}, etc., except that stack entries referred
10099 to numerically are not replaced by the algebraic entry.  That is, while
10100 @samp{$+1} replaces 5 on the stack with 6, @samp{$1+1} leaves the 5
10101 on the stack and pushes an additional 6.
10103 If a sequence of formulas are entered separated by commas, each formula
10104 is pushed onto the stack in turn.  For example, @samp{1,2,3} pushes
10105 those three numbers onto the stack (leaving the 3 at the top), and
10106 @samp{$+1,$-1} replaces a 5 on the stack with 4 followed by 6.  Also,
10107 @samp{$,$$} exchanges the top two elements of the stack, just like the
10108 @key{TAB} key.
10110 You can finish an algebraic entry with @kbd{M-=} or @kbd{M-@key{RET}} instead
10111 of @key{RET}.  This uses @kbd{=} to evaluate the variables in each
10112 formula that goes onto the stack.  (Thus @kbd{' pi @key{RET}} pushes
10113 the variable @samp{pi}, but @kbd{' pi M-@key{RET}} pushes 3.1415.)
10115 If you finish your algebraic entry by pressing @key{LFD} (or @kbd{C-j})
10116 instead of @key{RET}, Calc disables the default simplifications
10117 (as if by @kbd{m O}; @pxref{Simplification Modes}) while the entry
10118 is being pushed on the stack.  Thus @kbd{' 1+2 @key{RET}} pushes 3
10119 on the stack, but @kbd{' 1+2 @key{LFD}} pushes the formula @expr{1+2};
10120 you might then press @kbd{=} when it is time to evaluate this formula.
10122 @node Quick Calculator, Prefix Arguments, Algebraic Entry, Introduction
10123 @section ``Quick Calculator'' Mode
10125 @noindent
10126 @kindex C-x * q
10127 @pindex quick-calc
10128 @cindex Quick Calculator
10129 There is another way to invoke the Calculator if all you need to do
10130 is make one or two quick calculations.  Type @kbd{C-x * q} (or
10131 @kbd{M-x quick-calc}), then type any formula as an algebraic entry.
10132 The Calculator will compute the result and display it in the echo
10133 area, without ever actually putting up a Calc window.
10135 You can use the @kbd{$} character in a Quick Calculator formula to
10136 refer to the previous Quick Calculator result.  Older results are
10137 not retained; the Quick Calculator has no effect on the full
10138 Calculator's stack or trail.  If you compute a result and then
10139 forget what it was, just run @code{C-x * q} again and enter
10140 @samp{$} as the formula.
10142 If this is the first time you have used the Calculator in this Emacs
10143 session, the @kbd{C-x * q} command will create the @code{*Calculator*}
10144 buffer and perform all the usual initializations; it simply will
10145 refrain from putting that buffer up in a new window.  The Quick
10146 Calculator refers to the @code{*Calculator*} buffer for all mode
10147 settings.  Thus, for example, to set the precision that the Quick
10148 Calculator uses, simply run the full Calculator momentarily and use
10149 the regular @kbd{p} command.
10151 If you use @code{C-x * q} from inside the Calculator buffer, the
10152 effect is the same as pressing the apostrophe key (algebraic entry).
10154 The result of a Quick calculation is placed in the Emacs ``kill ring''
10155 as well as being displayed.  A subsequent @kbd{C-y} command will
10156 yank the result into the editing buffer.  You can also use this
10157 to yank the result into the next @kbd{C-x * q} input line as a more
10158 explicit alternative to @kbd{$} notation, or to yank the result
10159 into the Calculator stack after typing @kbd{C-x * c}.
10161 If you finish your formula by typing @key{LFD} (or @kbd{C-j}) instead
10162 of @key{RET}, the result is inserted immediately into the current
10163 buffer rather than going into the kill ring.
10165 Quick Calculator results are actually evaluated as if by the @kbd{=}
10166 key (which replaces variable names by their stored values, if any).
10167 If the formula you enter is an assignment to a variable using the
10168 @samp{:=} operator, say, @samp{foo := 2 + 3} or @samp{foo := foo + 1},
10169 then the result of the evaluation is stored in that Calc variable.
10170 @xref{Store and Recall}.
10172 If the result is an integer and the current display radix is decimal,
10173 the number will also be displayed in hex and octal formats.  If the
10174 integer is in the range from 1 to 126, it will also be displayed as
10175 an ASCII character.
10177 For example, the quoted character @samp{"x"} produces the vector
10178 result @samp{[120]} (because 120 is the ASCII code of the lower-case
10179 `x'; @pxref{Strings}).  Since this is a vector, not an integer, it
10180 is displayed only according to the current mode settings.  But
10181 running Quick Calc again and entering @samp{120} will produce the
10182 result @samp{120 (16#78, 8#170, x)} which shows the number in its
10183 decimal, hexadecimal, octal, and ASCII forms.
10185 Please note that the Quick Calculator is not any faster at loading
10186 or computing the answer than the full Calculator; the name ``quick''
10187 merely refers to the fact that it's much less hassle to use for
10188 small calculations.
10190 @node Prefix Arguments, Undo, Quick Calculator, Introduction
10191 @section Numeric Prefix Arguments
10193 @noindent
10194 Many Calculator commands use numeric prefix arguments.  Some, such as
10195 @kbd{d s} (@code{calc-sci-notation}), set a parameter to the value of
10196 the prefix argument or use a default if you don't use a prefix.
10197 Others (like @kbd{d f} (@code{calc-fix-notation})) require an argument
10198 and prompt for a number if you don't give one as a prefix.
10200 As a rule, stack-manipulation commands accept a numeric prefix argument
10201 which is interpreted as an index into the stack.  A positive argument
10202 operates on the top @var{n} stack entries; a negative argument operates
10203 on the @var{n}th stack entry in isolation; and a zero argument operates
10204 on the entire stack.
10206 Most commands that perform computations (such as the arithmetic and
10207 scientific functions) accept a numeric prefix argument that allows the
10208 operation to be applied across many stack elements.  For unary operations
10209 (that is, functions of one argument like absolute value or complex
10210 conjugate), a positive prefix argument applies that function to the top
10211 @var{n} stack entries simultaneously, and a negative argument applies it
10212 to the @var{n}th stack entry only.  For binary operations (functions of
10213 two arguments like addition, GCD, and vector concatenation), a positive
10214 prefix argument ``reduces'' the function across the top @var{n}
10215 stack elements (for example, @kbd{C-u 5 +} sums the top 5 stack entries;
10216 @pxref{Reducing and Mapping}), and a negative argument maps the next-to-top
10217 @var{n} stack elements with the top stack element as a second argument
10218 (for example, @kbd{7 c-u -5 +} adds 7 to the top 5 stack elements).
10219 This feature is not available for operations which use the numeric prefix
10220 argument for some other purpose.
10222 Numeric prefixes are specified the same way as always in Emacs:  Press
10223 a sequence of @key{META}-digits, or press @key{ESC} followed by digits,
10224 or press @kbd{C-u} followed by digits.  Some commands treat plain
10225 @kbd{C-u} (without any actual digits) specially.
10227 @kindex ~
10228 @pindex calc-num-prefix
10229 You can type @kbd{~} (@code{calc-num-prefix}) to pop an integer from the
10230 top of the stack and enter it as the numeric prefix for the next command.
10231 For example, @kbd{C-u 16 p} sets the precision to 16 digits; an alternate
10232 (silly) way to do this would be @kbd{2 @key{RET} 4 ^ ~ p}, i.e., compute 2
10233 to the fourth power and set the precision to that value.
10235 Conversely, if you have typed a numeric prefix argument the @kbd{~} key
10236 pushes it onto the stack in the form of an integer.
10238 @node Undo, Error Messages, Prefix Arguments, Introduction
10239 @section Undoing Mistakes
10241 @noindent
10242 @kindex U
10243 @kindex C-_
10244 @pindex calc-undo
10245 @cindex Mistakes, undoing
10246 @cindex Undoing mistakes
10247 @cindex Errors, undoing
10248 The shift-@kbd{U} key (@code{calc-undo}) undoes the most recent operation.
10249 If that operation added or dropped objects from the stack, those objects
10250 are removed or restored.  If it was a ``store'' operation, you are
10251 queried whether or not to restore the variable to its original value.
10252 The @kbd{U} key may be pressed any number of times to undo successively
10253 farther back in time; with a numeric prefix argument it undoes a
10254 specified number of operations.  The undo history is cleared only by the
10255 @kbd{q} (@code{calc-quit}) command.  (Recall that @kbd{C-x * c} is
10256 synonymous with @code{calc-quit} while inside the Calculator; this
10257 also clears the undo history.)
10259 Currently the mode-setting commands (like @code{calc-precision}) are not
10260 undoable.  You can undo past a point where you changed a mode, but you
10261 will need to reset the mode yourself.
10263 @kindex D
10264 @pindex calc-redo
10265 @cindex Redoing after an Undo
10266 The shift-@kbd{D} key (@code{calc-redo}) redoes an operation that was
10267 mistakenly undone.  Pressing @kbd{U} with a negative prefix argument is
10268 equivalent to executing @code{calc-redo}.  You can redo any number of
10269 times, up to the number of recent consecutive undo commands.  Redo
10270 information is cleared whenever you give any command that adds new undo
10271 information, i.e., if you undo, then enter a number on the stack or make
10272 any other change, then it will be too late to redo.
10274 @kindex M-@key{RET}
10275 @pindex calc-last-args
10276 @cindex Last-arguments feature
10277 @cindex Arguments, restoring
10278 The @kbd{M-@key{RET}} key (@code{calc-last-args}) is like undo in that
10279 it restores the arguments of the most recent command onto the stack;
10280 however, it does not remove the result of that command.  Given a numeric
10281 prefix argument, this command applies to the @expr{n}th most recent
10282 command which removed items from the stack; it pushes those items back
10283 onto the stack.
10285 The @kbd{K} (@code{calc-keep-args}) command provides a related function
10286 to @kbd{M-@key{RET}}.  @xref{Stack and Trail}.
10288 It is also possible to recall previous results or inputs using the trail.
10289 @xref{Trail Commands}.
10291 The standard Emacs @kbd{C-_} undo key is recognized as a synonym for @kbd{U}.
10293 @node Error Messages, Multiple Calculators, Undo, Introduction
10294 @section Error Messages
10296 @noindent
10297 @kindex w
10298 @pindex calc-why
10299 @cindex Errors, messages
10300 @cindex Why did an error occur?
10301 Many situations that would produce an error message in other calculators
10302 simply create unsimplified formulas in the Emacs Calculator.  For example,
10303 @kbd{1 @key{RET} 0 /} pushes the formula @expr{1 / 0}; @w{@kbd{0 L}} pushes
10304 the formula @samp{ln(0)}.  Floating-point overflow and underflow are also
10305 reasons for this to happen.
10307 When a function call must be left in symbolic form, Calc usually
10308 produces a message explaining why.  Messages that are probably
10309 surprising or indicative of user errors are displayed automatically.
10310 Other messages are simply kept in Calc's memory and are displayed only
10311 if you type @kbd{w} (@code{calc-why}).  You can also press @kbd{w} if
10312 the same computation results in several messages.  (The first message
10313 will end with @samp{[w=more]} in this case.)
10315 @kindex d w
10316 @pindex calc-auto-why
10317 The @kbd{d w} (@code{calc-auto-why}) command controls when error messages
10318 are displayed automatically.  (Calc effectively presses @kbd{w} for you
10319 after your computation finishes.)  By default, this occurs only for
10320 ``important'' messages.  The other possible modes are to report
10321 @emph{all} messages automatically, or to report none automatically (so
10322 that you must always press @kbd{w} yourself to see the messages).
10324 @node Multiple Calculators, Troubleshooting Commands, Error Messages, Introduction
10325 @section Multiple Calculators
10327 @noindent
10328 @pindex another-calc
10329 It is possible to have any number of Calc mode buffers at once.
10330 Usually this is done by executing @kbd{M-x another-calc}, which
10331 is similar to @kbd{C-x * c} except that if a @samp{*Calculator*}
10332 buffer already exists, a new, independent one with a name of the
10333 form @samp{*Calculator*<@var{n}>} is created.  You can also use the
10334 command @code{calc-mode} to put any buffer into Calculator mode, but
10335 this would ordinarily never be done.
10337 The @kbd{q} (@code{calc-quit}) command does not destroy a Calculator buffer;
10338 it only closes its window.  Use @kbd{M-x kill-buffer} to destroy a
10339 Calculator buffer.
10341 Each Calculator buffer keeps its own stack, undo list, and mode settings
10342 such as precision, angular mode, and display formats.  In Emacs terms,
10343 variables such as @code{calc-stack} are buffer-local variables.  The
10344 global default values of these variables are used only when a new
10345 Calculator buffer is created.  The @code{calc-quit} command saves
10346 the stack and mode settings of the buffer being quit as the new defaults.
10348 There is only one trail buffer, @samp{*Calc Trail*}, used by all
10349 Calculator buffers.
10351 @node Troubleshooting Commands,  , Multiple Calculators, Introduction
10352 @section Troubleshooting Commands
10354 @noindent
10355 This section describes commands you can use in case a computation
10356 incorrectly fails or gives the wrong answer.
10358 @xref{Reporting Bugs}, if you find a problem that appears to be due
10359 to a bug or deficiency in Calc.
10361 @menu
10362 * Autoloading Problems::
10363 * Recursion Depth::
10364 * Caches::
10365 * Debugging Calc::
10366 @end menu
10368 @node Autoloading Problems, Recursion Depth, Troubleshooting Commands, Troubleshooting Commands
10369 @subsection Autoloading Problems
10371 @noindent
10372 The Calc program is split into many component files; components are
10373 loaded automatically as you use various commands that require them.
10374 Occasionally Calc may lose track of when a certain component is
10375 necessary; typically this means you will type a command and it won't
10376 work because some function you've never heard of was undefined.
10378 @kindex C-x * L
10379 @pindex calc-load-everything
10380 If this happens, the easiest workaround is to type @kbd{C-x * L}
10381 (@code{calc-load-everything}) to force all the parts of Calc to be
10382 loaded right away.  This will cause Emacs to take up a lot more
10383 memory than it would otherwise, but it's guaranteed to fix the problem.
10385 @node Recursion Depth, Caches, Autoloading Problems, Troubleshooting Commands
10386 @subsection Recursion Depth
10388 @noindent
10389 @kindex M
10390 @kindex I M
10391 @pindex calc-more-recursion-depth
10392 @pindex calc-less-recursion-depth
10393 @cindex Recursion depth
10394 @cindex ``Computation got stuck'' message
10395 @cindex @code{max-lisp-eval-depth}
10396 @cindex @code{max-specpdl-size}
10397 Calc uses recursion in many of its calculations.  Emacs Lisp keeps a
10398 variable @code{max-lisp-eval-depth} which limits the amount of recursion
10399 possible in an attempt to recover from program bugs.  If a calculation
10400 ever halts incorrectly with the message ``Computation got stuck or
10401 ran too long,'' use the @kbd{M} command (@code{calc-more-recursion-depth})
10402 to increase this limit.  (Of course, this will not help if the
10403 calculation really did get stuck due to some problem inside Calc.)
10405 The limit is always increased (multiplied) by a factor of two.  There
10406 is also an @kbd{I M} (@code{calc-less-recursion-depth}) command which
10407 decreases this limit by a factor of two, down to a minimum value of 200.
10408 The default value is 1000.
10410 These commands also double or halve @code{max-specpdl-size}, another
10411 internal Lisp recursion limit.  The minimum value for this limit is 600.
10413 @node Caches, Debugging Calc, Recursion Depth, Troubleshooting Commands
10414 @subsection Caches
10416 @noindent
10417 @cindex Caches
10418 @cindex Flushing caches
10419 Calc saves certain values after they have been computed once.  For
10420 example, the @kbd{P} (@code{calc-pi}) command initially ``knows'' the
10421 constant @cpi{} to about 20 decimal places; if the current precision
10422 is greater than this, it will recompute @cpi{} using a series
10423 approximation.  This value will not need to be recomputed ever again
10424 unless you raise the precision still further.  Many operations such as
10425 logarithms and sines make use of similarly cached values such as
10426 @cpiover{4} and 
10427 @texline @math{\ln 2}.
10428 @infoline @expr{ln(2)}.  
10429 The visible effect of caching is that
10430 high-precision computations may seem to do extra work the first time.
10431 Other things cached include powers of two (for the binary arithmetic
10432 functions), matrix inverses and determinants, symbolic integrals, and
10433 data points computed by the graphing commands.
10435 @pindex calc-flush-caches
10436 If you suspect a Calculator cache has become corrupt, you can use the
10437 @code{calc-flush-caches} command to reset all caches to the empty state.
10438 (This should only be necessary in the event of bugs in the Calculator.)
10439 The @kbd{C-x * 0} (with the zero key) command also resets caches along
10440 with all other aspects of the Calculator's state.
10442 @node Debugging Calc,  , Caches, Troubleshooting Commands
10443 @subsection Debugging Calc
10445 @noindent
10446 A few commands exist to help in the debugging of Calc commands.
10447 @xref{Programming}, to see the various ways that you can write
10448 your own Calc commands.
10450 @kindex Z T
10451 @pindex calc-timing
10452 The @kbd{Z T} (@code{calc-timing}) command turns on and off a mode
10453 in which the timing of slow commands is reported in the Trail.
10454 Any Calc command that takes two seconds or longer writes a line
10455 to the Trail showing how many seconds it took.  This value is
10456 accurate only to within one second.
10458 All steps of executing a command are included; in particular, time
10459 taken to format the result for display in the stack and trail is
10460 counted.  Some prompts also count time taken waiting for them to
10461 be answered, while others do not; this depends on the exact
10462 implementation of the command.  For best results, if you are timing
10463 a sequence that includes prompts or multiple commands, define a
10464 keyboard macro to run the whole sequence at once.  Calc's @kbd{X}
10465 command (@pxref{Keyboard Macros}) will then report the time taken
10466 to execute the whole macro.
10468 Another advantage of the @kbd{X} command is that while it is
10469 executing, the stack and trail are not updated from step to step.
10470 So if you expect the output of your test sequence to leave a result
10471 that may take a long time to format and you don't wish to count
10472 this formatting time, end your sequence with a @key{DEL} keystroke
10473 to clear the result from the stack.  When you run the sequence with
10474 @kbd{X}, Calc will never bother to format the large result.
10476 Another thing @kbd{Z T} does is to increase the Emacs variable
10477 @code{gc-cons-threshold} to a much higher value (two million; the
10478 usual default in Calc is 250,000) for the duration of each command.
10479 This generally prevents garbage collection during the timing of
10480 the command, though it may cause your Emacs process to grow
10481 abnormally large.  (Garbage collection time is a major unpredictable
10482 factor in the timing of Emacs operations.)
10484 Another command that is useful when debugging your own Lisp
10485 extensions to Calc is @kbd{M-x calc-pass-errors}, which disables
10486 the error handler that changes the ``@code{max-lisp-eval-depth}
10487 exceeded'' message to the much more friendly ``Computation got
10488 stuck or ran too long.''  This handler interferes with the Emacs
10489 Lisp debugger's @code{debug-on-error} mode.  Errors are reported
10490 in the handler itself rather than at the true location of the
10491 error.  After you have executed @code{calc-pass-errors}, Lisp
10492 errors will be reported correctly but the user-friendly message
10493 will be lost.
10495 @node Data Types, Stack and Trail, Introduction, Top
10496 @chapter Data Types
10498 @noindent
10499 This chapter discusses the various types of objects that can be placed
10500 on the Calculator stack, how they are displayed, and how they are
10501 entered.  (@xref{Data Type Formats}, for information on how these data
10502 types are represented as underlying Lisp objects.)
10504 Integers, fractions, and floats are various ways of describing real
10505 numbers.  HMS forms also for many purposes act as real numbers.  These
10506 types can be combined to form complex numbers, modulo forms, error forms,
10507 or interval forms.  (But these last four types cannot be combined
10508 arbitrarily:@: error forms may not contain modulo forms, for example.)
10509 Finally, all these types of numbers may be combined into vectors,
10510 matrices, or algebraic formulas.
10512 @menu
10513 * Integers::                The most basic data type.
10514 * Fractions::               This and above are called @dfn{rationals}.
10515 * Floats::                  This and above are called @dfn{reals}.
10516 * Complex Numbers::         This and above are called @dfn{numbers}.
10517 * Infinities::
10518 * Vectors and Matrices::
10519 * Strings::
10520 * HMS Forms::
10521 * Date Forms::
10522 * Modulo Forms::
10523 * Error Forms::
10524 * Interval Forms::
10525 * Incomplete Objects::
10526 * Variables::
10527 * Formulas::
10528 @end menu
10530 @node Integers, Fractions, Data Types, Data Types
10531 @section Integers
10533 @noindent
10534 @cindex Integers
10535 The Calculator stores integers to arbitrary precision.  Addition,
10536 subtraction, and multiplication of integers always yields an exact
10537 integer result.  (If the result of a division or exponentiation of
10538 integers is not an integer, it is expressed in fractional or
10539 floating-point form according to the current Fraction mode.
10540 @xref{Fraction Mode}.)
10542 A decimal integer is represented as an optional sign followed by a
10543 sequence of digits.  Grouping (@pxref{Grouping Digits}) can be used to
10544 insert a comma at every third digit for display purposes, but you
10545 must not type commas during the entry of numbers.
10547 @kindex #
10548 A non-decimal integer is represented as an optional sign, a radix
10549 between 2 and 36, a @samp{#} symbol, and one or more digits.  For radix 11
10550 and above, the letters A through Z (upper- or lower-case) count as
10551 digits and do not terminate numeric entry mode.  @xref{Radix Modes}, for how
10552 to set the default radix for display of integers.  Numbers of any radix
10553 may be entered at any time.  If you press @kbd{#} at the beginning of a
10554 number, the current display radix is used.
10556 @node Fractions, Floats, Integers, Data Types
10557 @section Fractions
10559 @noindent
10560 @cindex Fractions
10561 A @dfn{fraction} is a ratio of two integers.  Fractions are traditionally
10562 written ``2/3'' but Calc uses the notation @samp{2:3}.  (The @kbd{/} key
10563 performs RPN division; the following two sequences push the number
10564 @samp{2:3} on the stack:  @kbd{2 :@: 3 @key{RET}}, or @kbd{2 @key{RET} 3 /}
10565 assuming Fraction mode has been enabled.)
10566 When the Calculator produces a fractional result it always reduces it to
10567 simplest form, which may in fact be an integer.
10569 Fractions may also be entered in a three-part form, where @samp{2:3:4}
10570 represents two-and-three-quarters.  @xref{Fraction Formats}, for fraction
10571 display formats.
10573 Non-decimal fractions are entered and displayed as
10574 @samp{@var{radix}#@var{num}:@var{denom}} (or in the analogous three-part
10575 form).  The numerator and denominator always use the same radix.
10577 @node Floats, Complex Numbers, Fractions, Data Types
10578 @section Floats
10580 @noindent
10581 @cindex Floating-point numbers
10582 A floating-point number or @dfn{float} is a number stored in scientific
10583 notation.  The number of significant digits in the fractional part is
10584 governed by the current floating precision (@pxref{Precision}).  The
10585 range of acceptable values is from 
10586 @texline @math{10^{-3999999}}
10587 @infoline @expr{10^-3999999} 
10588 (inclusive) to 
10589 @texline @math{10^{4000000}}
10590 @infoline @expr{10^4000000}
10591 (exclusive), plus the corresponding negative values and zero.
10593 Calculations that would exceed the allowable range of values (such
10594 as @samp{exp(exp(20))}) are left in symbolic form by Calc.  The
10595 messages ``floating-point overflow'' or ``floating-point underflow''
10596 indicate that during the calculation a number would have been produced
10597 that was too large or too close to zero, respectively, to be represented
10598 by Calc.  This does not necessarily mean the final result would have
10599 overflowed, just that an overflow occurred while computing the result.
10600 (In fact, it could report an underflow even though the final result
10601 would have overflowed!)
10603 If a rational number and a float are mixed in a calculation, the result
10604 will in general be expressed as a float.  Commands that require an integer
10605 value (such as @kbd{k g} [@code{gcd}]) will also accept integer-valued
10606 floats, i.e., floating-point numbers with nothing after the decimal point.
10608 Floats are identified by the presence of a decimal point and/or an
10609 exponent.  In general a float consists of an optional sign, digits
10610 including an optional decimal point, and an optional exponent consisting
10611 of an @samp{e}, an optional sign, and up to seven exponent digits.
10612 For example, @samp{23.5e-2} is 23.5 times ten to the minus-second power,
10613 or 0.235.
10615 Floating-point numbers are normally displayed in decimal notation with
10616 all significant figures shown.  Exceedingly large or small numbers are
10617 displayed in scientific notation.  Various other display options are
10618 available.  @xref{Float Formats}.
10620 @cindex Accuracy of calculations
10621 Floating-point numbers are stored in decimal, not binary.  The result
10622 of each operation is rounded to the nearest value representable in the
10623 number of significant digits specified by the current precision,
10624 rounding away from zero in the case of a tie.  Thus (in the default
10625 display mode) what you see is exactly what you get.  Some operations such
10626 as square roots and transcendental functions are performed with several
10627 digits of extra precision and then rounded down, in an effort to make the
10628 final result accurate to the full requested precision.  However,
10629 accuracy is not rigorously guaranteed.  If you suspect the validity of a
10630 result, try doing the same calculation in a higher precision.  The
10631 Calculator's arithmetic is not intended to be IEEE-conformant in any
10632 way.
10634 While floats are always @emph{stored} in decimal, they can be entered
10635 and displayed in any radix just like integers and fractions.  Since a
10636 float that is entered in a radix other that 10 will be converted to
10637 decimal, the number that Calc stores may not be exactly the number that
10638 was entered, it will be the closest decimal approximation given the
10639 current precison.  The notation @samp{@var{radix}#@var{ddd}.@var{ddd}}
10640 is a floating-point number whose digits are in the specified radix.
10641 Note that the @samp{.}  is more aptly referred to as a ``radix point''
10642 than as a decimal point in this case.  The number @samp{8#123.4567} is
10643 defined as @samp{8#1234567 * 8^-4}.  If the radix is 14 or less, you can
10644 use @samp{e} notation to write a non-decimal number in scientific
10645 notation.  The exponent is written in decimal, and is considered to be a
10646 power of the radix: @samp{8#1234567e-4}.  If the radix is 15 or above,
10647 the letter @samp{e} is a digit, so scientific notation must be written
10648 out, e.g., @samp{16#123.4567*16^2}.  The first two exercises of the
10649 Modes Tutorial explore some of the properties of non-decimal floats.
10651 @node Complex Numbers, Infinities, Floats, Data Types
10652 @section Complex Numbers
10654 @noindent
10655 @cindex Complex numbers
10656 There are two supported formats for complex numbers: rectangular and
10657 polar.  The default format is rectangular, displayed in the form
10658 @samp{(@var{real},@var{imag})} where @var{real} is the real part and
10659 @var{imag} is the imaginary part, each of which may be any real number.
10660 Rectangular complex numbers can also be displayed in @samp{@var{a}+@var{b}i}
10661 notation; @pxref{Complex Formats}.
10663 Polar complex numbers are displayed in the form 
10664 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'
10665 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'
10666 where @var{r} is the nonnegative magnitude and 
10667 @texline @math{\theta}
10668 @infoline @var{theta} 
10669 is the argument or phase angle.  The range of 
10670 @texline @math{\theta}
10671 @infoline @var{theta} 
10672 depends on the current angular mode (@pxref{Angular Modes}); it is
10673 generally between @mathit{-180} and @mathit{+180} degrees or the equivalent range
10674 in radians. 
10676 Complex numbers are entered in stages using incomplete objects.
10677 @xref{Incomplete Objects}.
10679 Operations on rectangular complex numbers yield rectangular complex
10680 results, and similarly for polar complex numbers.  Where the two types
10681 are mixed, or where new complex numbers arise (as for the square root of
10682 a negative real), the current @dfn{Polar mode} is used to determine the
10683 type.  @xref{Polar Mode}.
10685 A complex result in which the imaginary part is zero (or the phase angle
10686 is 0 or 180 degrees or @cpi{} radians) is automatically converted to a real
10687 number.
10689 @node Infinities, Vectors and Matrices, Complex Numbers, Data Types
10690 @section Infinities
10692 @noindent
10693 @cindex Infinity
10694 @cindex @code{inf} variable
10695 @cindex @code{uinf} variable
10696 @cindex @code{nan} variable
10697 @vindex inf
10698 @vindex uinf
10699 @vindex nan
10700 The word @code{inf} represents the mathematical concept of @dfn{infinity}.
10701 Calc actually has three slightly different infinity-like values:
10702 @code{inf}, @code{uinf}, and @code{nan}.  These are just regular
10703 variable names (@pxref{Variables}); you should avoid using these
10704 names for your own variables because Calc gives them special
10705 treatment.  Infinities, like all variable names, are normally
10706 entered using algebraic entry.
10708 Mathematically speaking, it is not rigorously correct to treat
10709 ``infinity'' as if it were a number, but mathematicians often do
10710 so informally.  When they say that @samp{1 / inf = 0}, what they
10711 really mean is that @expr{1 / x}, as @expr{x} becomes larger and
10712 larger, becomes arbitrarily close to zero.  So you can imagine
10713 that if @expr{x} got ``all the way to infinity,'' then @expr{1 / x}
10714 would go all the way to zero.  Similarly, when they say that
10715 @samp{exp(inf) = inf}, they mean that 
10716 @texline @math{e^x}
10717 @infoline @expr{exp(x)} 
10718 grows without bound as @expr{x} grows.  The symbol @samp{-inf} likewise
10719 stands for an infinitely negative real value; for example, we say that
10720 @samp{exp(-inf) = 0}.  You can have an infinity pointing in any
10721 direction on the complex plane:  @samp{sqrt(-inf) = i inf}.
10723 The same concept of limits can be used to define @expr{1 / 0}.  We
10724 really want the value that @expr{1 / x} approaches as @expr{x}
10725 approaches zero.  But if all we have is @expr{1 / 0}, we can't
10726 tell which direction @expr{x} was coming from.  If @expr{x} was
10727 positive and decreasing toward zero, then we should say that
10728 @samp{1 / 0 = inf}.  But if @expr{x} was negative and increasing
10729 toward zero, the answer is @samp{1 / 0 = -inf}.  In fact, @expr{x}
10730 could be an imaginary number, giving the answer @samp{i inf} or
10731 @samp{-i inf}.  Calc uses the special symbol @samp{uinf} to mean
10732 @dfn{undirected infinity}, i.e., a value which is infinitely
10733 large but with an unknown sign (or direction on the complex plane).
10735 Calc actually has three modes that say how infinities are handled.
10736 Normally, infinities never arise from calculations that didn't
10737 already have them.  Thus, @expr{1 / 0} is treated simply as an
10738 error and left unevaluated.  The @kbd{m i} (@code{calc-infinite-mode})
10739 command (@pxref{Infinite Mode}) enables a mode in which
10740 @expr{1 / 0} evaluates to @code{uinf} instead.  There is also
10741 an alternative type of infinite mode which says to treat zeros
10742 as if they were positive, so that @samp{1 / 0 = inf}.  While this
10743 is less mathematically correct, it may be the answer you want in
10744 some cases.
10746 Since all infinities are ``as large'' as all others, Calc simplifies,
10747 e.g., @samp{5 inf} to @samp{inf}.  Another example is
10748 @samp{5 - inf = -inf}, where the @samp{-inf} is so large that
10749 adding a finite number like five to it does not affect it.
10750 Note that @samp{a - inf} also results in @samp{-inf}; Calc assumes
10751 that variables like @code{a} always stand for finite quantities.
10752 Just to show that infinities really are all the same size,
10753 note that @samp{sqrt(inf) = inf^2 = exp(inf) = inf} in Calc's
10754 notation.
10756 It's not so easy to define certain formulas like @samp{0 * inf} and
10757 @samp{inf / inf}.  Depending on where these zeros and infinities
10758 came from, the answer could be literally anything.  The latter
10759 formula could be the limit of @expr{x / x} (giving a result of one),
10760 or @expr{2 x / x} (giving two), or @expr{x^2 / x} (giving @code{inf}),
10761 or @expr{x / x^2} (giving zero).  Calc uses the symbol @code{nan}
10762 to represent such an @dfn{indeterminate} value.  (The name ``nan''
10763 comes from analogy with the ``NAN'' concept of IEEE standard
10764 arithmetic; it stands for ``Not A Number.''  This is somewhat of a
10765 misnomer, since @code{nan} @emph{does} stand for some number or
10766 infinity, it's just that @emph{which} number it stands for
10767 cannot be determined.)  In Calc's notation, @samp{0 * inf = nan}
10768 and @samp{inf / inf = nan}.  A few other common indeterminate
10769 expressions are @samp{inf - inf} and @samp{inf ^ 0}.  Also,
10770 @samp{0 / 0 = nan} if you have turned on Infinite mode
10771 (as described above).
10773 Infinities are especially useful as parts of @dfn{intervals}.
10774 @xref{Interval Forms}.
10776 @node Vectors and Matrices, Strings, Infinities, Data Types
10777 @section Vectors and Matrices
10779 @noindent
10780 @cindex Vectors
10781 @cindex Plain vectors
10782 @cindex Matrices
10783 The @dfn{vector} data type is flexible and general.  A vector is simply a
10784 list of zero or more data objects.  When these objects are numbers, the
10785 whole is a vector in the mathematical sense.  When these objects are
10786 themselves vectors of equal (nonzero) length, the whole is a @dfn{matrix}.
10787 A vector which is not a matrix is referred to here as a @dfn{plain vector}.
10789 A vector is displayed as a list of values separated by commas and enclosed
10790 in square brackets:  @samp{[1, 2, 3]}.  Thus the following is a 2 row by
10791 3 column matrix:  @samp{[[1, 2, 3], [4, 5, 6]]}.  Vectors, like complex
10792 numbers, are entered as incomplete objects.  @xref{Incomplete Objects}.
10793 During algebraic entry, vectors are entered all at once in the usual
10794 brackets-and-commas form.  Matrices may be entered algebraically as nested
10795 vectors, or using the shortcut notation @w{@samp{[1, 2, 3; 4, 5, 6]}},
10796 with rows separated by semicolons.  The commas may usually be omitted
10797 when entering vectors:  @samp{[1 2 3]}.  Curly braces may be used in
10798 place of brackets: @samp{@{1, 2, 3@}}, but the commas are required in
10799 this case.
10801 Traditional vector and matrix arithmetic is also supported;
10802 @pxref{Basic Arithmetic} and @pxref{Matrix Functions}.
10803 Many other operations are applied to vectors element-wise.  For example,
10804 the complex conjugate of a vector is a vector of the complex conjugates
10805 of its elements.
10807 @ignore
10808 @starindex
10809 @end ignore
10810 @tindex vec
10811 Algebraic functions for building vectors include @samp{vec(a, b, c)}
10812 to build @samp{[a, b, c]}, @samp{cvec(a, n, m)} to build an 
10813 @texline @math{n\times m}
10814 @infoline @var{n}x@var{m}
10815 matrix of @samp{a}s, and @samp{index(n)} to build a vector of integers
10816 from 1 to @samp{n}.
10818 @node Strings, HMS Forms, Vectors and Matrices, Data Types
10819 @section Strings
10821 @noindent
10822 @kindex "
10823 @cindex Strings
10824 @cindex Character strings
10825 Character strings are not a special data type in the Calculator.
10826 Rather, a string is represented simply as a vector all of whose
10827 elements are integers in the range 0 to 255 (ASCII codes).  You can
10828 enter a string at any time by pressing the @kbd{"} key.  Quotation
10829 marks and backslashes are written @samp{\"} and @samp{\\}, respectively,
10830 inside strings.  Other notations introduced by backslashes are:
10832 @example
10833 @group
10834 \a     7          \^@@    0
10835 \b     8          \^a-z  1-26
10836 \e     27         \^[    27
10837 \f     12         \^\\   28
10838 \n     10         \^]    29
10839 \r     13         \^^    30
10840 \t     9          \^_    31
10841                   \^?    127
10842 @end group
10843 @end example
10845 @noindent
10846 Finally, a backslash followed by three octal digits produces any
10847 character from its ASCII code.
10849 @kindex d "
10850 @pindex calc-display-strings
10851 Strings are normally displayed in vector-of-integers form.  The
10852 @w{@kbd{d "}} (@code{calc-display-strings}) command toggles a mode in
10853 which any vectors of small integers are displayed as quoted strings
10854 instead.
10856 The backslash notations shown above are also used for displaying
10857 strings.  Characters 128 and above are not translated by Calc; unless
10858 you have an Emacs modified for 8-bit fonts, these will show up in
10859 backslash-octal-digits notation.  For characters below 32, and
10860 for character 127, Calc uses the backslash-letter combination if
10861 there is one, or otherwise uses a @samp{\^} sequence.
10863 The only Calc feature that uses strings is @dfn{compositions};
10864 @pxref{Compositions}.  Strings also provide a convenient
10865 way to do conversions between ASCII characters and integers.
10867 @ignore
10868 @starindex
10869 @end ignore
10870 @tindex string
10871 There is a @code{string} function which provides a different display
10872 format for strings.  Basically, @samp{string(@var{s})}, where @var{s}
10873 is a vector of integers in the proper range, is displayed as the
10874 corresponding string of characters with no surrounding quotation
10875 marks or other modifications.  Thus @samp{string("ABC")} (or
10876 @samp{string([65 66 67])}) will look like @samp{ABC} on the stack.
10877 This happens regardless of whether @w{@kbd{d "}} has been used.  The
10878 only way to turn it off is to use @kbd{d U} (unformatted language
10879 mode) which will display @samp{string("ABC")} instead.
10881 Control characters are displayed somewhat differently by @code{string}.
10882 Characters below 32, and character 127, are shown using @samp{^} notation
10883 (same as shown above, but without the backslash).  The quote and
10884 backslash characters are left alone, as are characters 128 and above.
10886 @ignore
10887 @starindex
10888 @end ignore
10889 @tindex bstring
10890 The @code{bstring} function is just like @code{string} except that
10891 the resulting string is breakable across multiple lines if it doesn't
10892 fit all on one line.  Potential break points occur at every space
10893 character in the string.
10895 @node HMS Forms, Date Forms, Strings, Data Types
10896 @section HMS Forms
10898 @noindent
10899 @cindex Hours-minutes-seconds forms
10900 @cindex Degrees-minutes-seconds forms
10901 @dfn{HMS} stands for Hours-Minutes-Seconds; when used as an angular
10902 argument, the interpretation is Degrees-Minutes-Seconds.  All functions
10903 that operate on angles accept HMS forms.  These are interpreted as
10904 degrees regardless of the current angular mode.  It is also possible to
10905 use HMS as the angular mode so that calculated angles are expressed in
10906 degrees, minutes, and seconds.
10908 @kindex @@
10909 @ignore
10910 @mindex @null
10911 @end ignore
10912 @kindex ' (HMS forms)
10913 @ignore
10914 @mindex @null
10915 @end ignore
10916 @kindex " (HMS forms)
10917 @ignore
10918 @mindex @null
10919 @end ignore
10920 @kindex h (HMS forms)
10921 @ignore
10922 @mindex @null
10923 @end ignore
10924 @kindex o (HMS forms)
10925 @ignore
10926 @mindex @null
10927 @end ignore
10928 @kindex m (HMS forms)
10929 @ignore
10930 @mindex @null
10931 @end ignore
10932 @kindex s (HMS forms)
10933 The default format for HMS values is
10934 @samp{@var{hours}@@ @var{mins}' @var{secs}"}.  During entry, the letters
10935 @samp{h} (for ``hours'') or
10936 @samp{o} (approximating the ``degrees'' symbol) are accepted as well as
10937 @samp{@@}, @samp{m} is accepted in place of @samp{'}, and @samp{s} is
10938 accepted in place of @samp{"}.
10939 The @var{hours} value is an integer (or integer-valued float).
10940 The @var{mins} value is an integer or integer-valued float between 0 and 59.
10941 The @var{secs} value is a real number between 0 (inclusive) and 60
10942 (exclusive).  A positive HMS form is interpreted as @var{hours} +
10943 @var{mins}/60 + @var{secs}/3600.  A negative HMS form is interpreted
10944 as @mathit{- @var{hours}} @mathit{-} @var{mins}/60 @mathit{-} @var{secs}/3600.
10945 Display format for HMS forms is quite flexible.  @xref{HMS Formats}.
10947 HMS forms can be added and subtracted.  When they are added to numbers,
10948 the numbers are interpreted according to the current angular mode.  HMS
10949 forms can also be multiplied and divided by real numbers.  Dividing
10950 two HMS forms produces a real-valued ratio of the two angles.
10952 @pindex calc-time
10953 @cindex Time of day
10954 Just for kicks, @kbd{M-x calc-time} pushes the current time of day on
10955 the stack as an HMS form.
10957 @node Date Forms, Modulo Forms, HMS Forms, Data Types
10958 @section Date Forms
10960 @noindent
10961 @cindex Date forms
10962 A @dfn{date form} represents a date and possibly an associated time.
10963 Simple date arithmetic is supported:  Adding a number to a date
10964 produces a new date shifted by that many days; adding an HMS form to
10965 a date shifts it by that many hours.  Subtracting two date forms
10966 computes the number of days between them (represented as a simple
10967 number).  Many other operations, such as multiplying two date forms,
10968 are nonsensical and are not allowed by Calc.
10970 Date forms are entered and displayed enclosed in @samp{< >} brackets.
10971 The default format is, e.g., @samp{<Wed Jan 9, 1991>} for dates,
10972 or @samp{<3:32:20pm Wed Jan 9, 1991>} for dates with times.
10973 Input is flexible; date forms can be entered in any of the usual
10974 notations for dates and times.  @xref{Date Formats}.
10976 Date forms are stored internally as numbers, specifically the number
10977 of days since midnight on the morning of January 1 of the year 1 AD.
10978 If the internal number is an integer, the form represents a date only;
10979 if the internal number is a fraction or float, the form represents
10980 a date and time.  For example, @samp{<6:00am Wed Jan 9, 1991>}
10981 is represented by the number 726842.25.  The standard precision of
10982 12 decimal digits is enough to ensure that a (reasonable) date and
10983 time can be stored without roundoff error.
10985 If the current precision is greater than 12, date forms will keep
10986 additional digits in the seconds position.  For example, if the
10987 precision is 15, the seconds will keep three digits after the
10988 decimal point.  Decreasing the precision below 12 may cause the
10989 time part of a date form to become inaccurate.  This can also happen
10990 if astronomically high years are used, though this will not be an
10991 issue in everyday (or even everymillennium) use.  Note that date
10992 forms without times are stored as exact integers, so roundoff is
10993 never an issue for them.
10995 You can use the @kbd{v p} (@code{calc-pack}) and @kbd{v u}
10996 (@code{calc-unpack}) commands to get at the numerical representation
10997 of a date form.  @xref{Packing and Unpacking}.
10999 Date forms can go arbitrarily far into the future or past.  Negative
11000 year numbers represent years BC.  Calc uses a combination of the
11001 Gregorian and Julian calendars, following the history of Great
11002 Britain and the British colonies.  This is the same calendar that
11003 is used by the @code{cal} program in most Unix implementations.
11005 @cindex Julian calendar
11006 @cindex Gregorian calendar
11007 Some historical background:  The Julian calendar was created by
11008 Julius Caesar in the year 46 BC as an attempt to fix the gradual
11009 drift caused by the lack of leap years in the calendar used
11010 until that time.  The Julian calendar introduced an extra day in
11011 all years divisible by four.  After some initial confusion, the
11012 calendar was adopted around the year we call 8 AD.  Some centuries
11013 later it became apparent that the Julian year of 365.25 days was
11014 itself not quite right.  In 1582 Pope Gregory XIII introduced the
11015 Gregorian calendar, which added the new rule that years divisible
11016 by 100, but not by 400, were not to be considered leap years
11017 despite being divisible by four.  Many countries delayed adoption
11018 of the Gregorian calendar because of religious differences;
11019 in Britain it was put off until the year 1752, by which time
11020 the Julian calendar had fallen eleven days behind the true
11021 seasons.  So the switch to the Gregorian calendar in early
11022 September 1752 introduced a discontinuity:  The day after
11023 Sep 2, 1752 is Sep 14, 1752.  Calc follows this convention.
11024 To take another example, Russia waited until 1918 before
11025 adopting the new calendar, and thus needed to remove thirteen
11026 days (between Feb 1, 1918 and Feb 14, 1918).  This means that
11027 Calc's reckoning will be inconsistent with Russian history between
11028 1752 and 1918, and similarly for various other countries.
11030 Today's timekeepers introduce an occasional ``leap second'' as
11031 well, but Calc does not take these minor effects into account.
11032 (If it did, it would have to report a non-integer number of days
11033 between, say, @samp{<12:00am Mon Jan 1, 1900>} and
11034 @samp{<12:00am Sat Jan 1, 2000>}.)
11036 Calc uses the Julian calendar for all dates before the year 1752,
11037 including dates BC when the Julian calendar technically had not
11038 yet been invented.  Thus the claim that day number @mathit{-10000} is
11039 called ``August 16, 28 BC'' should be taken with a grain of salt.
11041 Please note that there is no ``year 0''; the day before
11042 @samp{<Sat Jan 1, +1>} is @samp{<Fri Dec 31, -1>}.  These are
11043 days 0 and @mathit{-1} respectively in Calc's internal numbering scheme.
11045 @cindex Julian day counting
11046 Another day counting system in common use is, confusingly, also
11047 called ``Julian.''  It was invented in 1583 by Joseph Justus
11048 Scaliger, who named it in honor of his father Julius Caesar
11049 Scaliger.  For obscure reasons he chose to start his day
11050 numbering on Jan 1, 4713 BC at noon, which in Calc's scheme
11051 is @mathit{-1721423.5} (recall that Calc starts at midnight instead
11052 of noon).  Thus to convert a Calc date code obtained by
11053 unpacking a date form into a Julian day number, simply add
11054 1721423.5.  The Julian code for @samp{6:00am Jan 9, 1991}
11055 is 2448265.75.  The built-in @kbd{t J} command performs
11056 this conversion for you.
11058 @cindex Unix time format
11059 The Unix operating system measures time as an integer number of
11060 seconds since midnight, Jan 1, 1970.  To convert a Calc date
11061 value into a Unix time stamp, first subtract 719164 (the code
11062 for @samp{<Jan 1, 1970>}), then multiply by 86400 (the number of
11063 seconds in a day) and press @kbd{R} to round to the nearest
11064 integer.  If you have a date form, you can simply subtract the
11065 day @samp{<Jan 1, 1970>} instead of unpacking and subtracting
11066 719164.  Likewise, divide by 86400 and add @samp{<Jan 1, 1970>}
11067 to convert from Unix time to a Calc date form.  (Note that
11068 Unix normally maintains the time in the GMT time zone; you may
11069 need to subtract five hours to get New York time, or eight hours
11070 for California time.  The same is usually true of Julian day
11071 counts.)  The built-in @kbd{t U} command performs these
11072 conversions.
11074 @node Modulo Forms, Error Forms, Date Forms, Data Types
11075 @section Modulo Forms
11077 @noindent
11078 @cindex Modulo forms
11079 A @dfn{modulo form} is a real number which is taken modulo (i.e., within
11080 an integer multiple of) some value @var{M}.  Arithmetic modulo @var{M}
11081 often arises in number theory.  Modulo forms are written
11082 `@var{a} @tfn{mod} @var{M}',
11083 where @var{a} and @var{M} are real numbers or HMS forms, and
11084 @texline @math{0 \le a < M}.
11085 @infoline @expr{0 <= a < @var{M}}.
11086 In many applications @expr{a} and @expr{M} will be
11087 integers but this is not required.
11089 @ignore
11090 @mindex M
11091 @end ignore
11092 @kindex M (modulo forms)
11093 @ignore
11094 @mindex mod
11095 @end ignore
11096 @tindex mod (operator)
11097 To create a modulo form during numeric entry, press the shift-@kbd{M}
11098 key to enter the word @samp{mod}.  As a special convenience, pressing
11099 shift-@kbd{M} a second time automatically enters the value of @expr{M}
11100 that was most recently used before.  During algebraic entry, either
11101 type @samp{mod} by hand or press @kbd{M-m} (that's @kbd{@key{META}-m}).
11102 Once again, pressing this a second time enters the current modulo.
11104 Modulo forms are not to be confused with the modulo operator @samp{%}.
11105 The expression @samp{27 % 10} means to compute 27 modulo 10 to produce
11106 the result 7.  Further computations treat this 7 as just a regular integer.
11107 The expression @samp{27 mod 10} produces the result @samp{7 mod 10};
11108 further computations with this value are again reduced modulo 10 so that
11109 the result always lies in the desired range.
11111 When two modulo forms with identical @expr{M}'s are added or multiplied,
11112 the Calculator simply adds or multiplies the values, then reduces modulo
11113 @expr{M}.  If one argument is a modulo form and the other a plain number,
11114 the plain number is treated like a compatible modulo form.  It is also
11115 possible to raise modulo forms to powers; the result is the value raised
11116 to the power, then reduced modulo @expr{M}.  (When all values involved
11117 are integers, this calculation is done much more efficiently than
11118 actually computing the power and then reducing.)
11120 @cindex Modulo division
11121 Two modulo forms `@var{a} @tfn{mod} @var{M}' and `@var{b} @tfn{mod} @var{M}'
11122 can be divided if @expr{a}, @expr{b}, and @expr{M} are all
11123 integers.  The result is the modulo form which, when multiplied by
11124 `@var{b} @tfn{mod} @var{M}', produces `@var{a} @tfn{mod} @var{M}'.  If
11125 there is no solution to this equation (which can happen only when
11126 @expr{M} is non-prime), or if any of the arguments are non-integers, the
11127 division is left in symbolic form.  Other operations, such as square
11128 roots, are not yet supported for modulo forms.  (Note that, although
11129 @w{`@tfn{(}@var{a} @tfn{mod} @var{M}@tfn{)^.5}'} will compute a ``modulo square root''
11130 in the sense of reducing 
11131 @texline @math{\sqrt a}
11132 @infoline @expr{sqrt(a)} 
11133 modulo @expr{M}, this is not a useful definition from the
11134 number-theoretical point of view.)
11136 It is possible to mix HMS forms and modulo forms.  For example, an
11137 HMS form modulo 24 could be used to manipulate clock times; an HMS
11138 form modulo 360 would be suitable for angles.  Making the modulo @expr{M}
11139 also be an HMS form eliminates troubles that would arise if the angular
11140 mode were inadvertently set to Radians, in which case
11141 @w{@samp{2@@ 0' 0" mod 24}} would be interpreted as two degrees modulo
11142 24 radians!
11144 Modulo forms cannot have variables or formulas for components.  If you
11145 enter the formula @samp{(x + 2) mod 5}, Calc propagates the modulus
11146 to each of the coefficients:  @samp{(1 mod 5) x + (2 mod 5)}.
11148 You can use @kbd{v p} and @kbd{%} to modify modulo forms.
11149 @xref{Packing and Unpacking}.  @xref{Basic Arithmetic}.
11151 @ignore
11152 @starindex
11153 @end ignore
11154 @tindex makemod
11155 The algebraic function @samp{makemod(a, m)} builds the modulo form
11156 @w{@samp{a mod m}}.
11158 @node Error Forms, Interval Forms, Modulo Forms, Data Types
11159 @section Error Forms
11161 @noindent
11162 @cindex Error forms
11163 @cindex Standard deviations
11164 An @dfn{error form} is a number with an associated standard
11165 deviation, as in @samp{2.3 +/- 0.12}.  The notation
11166 @texline `@var{x} @tfn{+/-} @math{\sigma}' 
11167 @infoline `@var{x} @tfn{+/-} sigma' 
11168 stands for an uncertain value which follows
11169 a normal or Gaussian distribution of mean @expr{x} and standard
11170 deviation or ``error'' 
11171 @texline @math{\sigma}.
11172 @infoline @expr{sigma}.
11173 Both the mean and the error can be either numbers or
11174 formulas.  Generally these are real numbers but the mean may also be
11175 complex.  If the error is negative or complex, it is changed to its
11176 absolute value.  An error form with zero error is converted to a
11177 regular number by the Calculator.
11179 All arithmetic and transcendental functions accept error forms as input.
11180 Operations on the mean-value part work just like operations on regular
11181 numbers.  The error part for any function @expr{f(x)} (such as 
11182 @texline @math{\sin x}
11183 @infoline @expr{sin(x)})
11184 is defined by the error of @expr{x} times the derivative of @expr{f}
11185 evaluated at the mean value of @expr{x}.  For a two-argument function
11186 @expr{f(x,y)} (such as addition) the error is the square root of the sum
11187 of the squares of the errors due to @expr{x} and @expr{y}.
11188 @tex
11189 $$ \eqalign{
11190   f(x \hbox{\code{ +/- }} \sigma)
11191     &= f(x) \hbox{\code{ +/- }} \sigma \left| {df(x) \over dx} \right| \cr
11192   f(x \hbox{\code{ +/- }} \sigma_x, y \hbox{\code{ +/- }} \sigma_y)
11193     &= f(x,y) \hbox{\code{ +/- }}
11194         \sqrt{\left(\sigma_x \left| {\partial f(x,y) \over \partial x}
11195                              \right| \right)^2
11196              +\left(\sigma_y \left| {\partial f(x,y) \over \partial y}
11197                              \right| \right)^2 } \cr
11198 } $$
11199 @end tex
11200 Note that this
11201 definition assumes the errors in @expr{x} and @expr{y} are uncorrelated.
11202 A side effect of this definition is that @samp{(2 +/- 1) * (2 +/- 1)}
11203 is not the same as @samp{(2 +/- 1)^2}; the former represents the product
11204 of two independent values which happen to have the same probability
11205 distributions, and the latter is the product of one random value with itself.
11206 The former will produce an answer with less error, since on the average
11207 the two independent errors can be expected to cancel out.
11209 Consult a good text on error analysis for a discussion of the proper use
11210 of standard deviations.  Actual errors often are neither Gaussian-distributed
11211 nor uncorrelated, and the above formulas are valid only when errors
11212 are small.  As an example, the error arising from
11213 @texline `@tfn{sin(}@var{x} @tfn{+/-} @math{\sigma}@tfn{)}' 
11214 @infoline `@tfn{sin(}@var{x} @tfn{+/-} @var{sigma}@tfn{)}' 
11215 is 
11216 @texline `@math{\sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.  
11217 @infoline `@var{sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.  
11218 When @expr{x} is close to zero,
11219 @texline @math{\cos x}
11220 @infoline @expr{cos(x)} 
11221 is close to one so the error in the sine is close to 
11222 @texline @math{\sigma};
11223 @infoline @expr{sigma};
11224 this makes sense, since 
11225 @texline @math{\sin x}
11226 @infoline @expr{sin(x)} 
11227 is approximately @expr{x} near zero, so a given error in @expr{x} will
11228 produce about the same error in the sine.  Likewise, near 90 degrees
11229 @texline @math{\cos x}
11230 @infoline @expr{cos(x)} 
11231 is nearly zero and so the computed error is
11232 small:  The sine curve is nearly flat in that region, so an error in @expr{x}
11233 has relatively little effect on the value of 
11234 @texline @math{\sin x}.
11235 @infoline @expr{sin(x)}.  
11236 However, consider @samp{sin(90 +/- 1000)}.  The cosine of 90 is zero, so
11237 Calc will report zero error!  We get an obviously wrong result because
11238 we have violated the small-error approximation underlying the error
11239 analysis.  If the error in @expr{x} had been small, the error in
11240 @texline @math{\sin x}
11241 @infoline @expr{sin(x)} 
11242 would indeed have been negligible.
11244 @ignore
11245 @mindex p
11246 @end ignore
11247 @kindex p (error forms)
11248 @tindex +/-
11249 To enter an error form during regular numeric entry, use the @kbd{p}
11250 (``plus-or-minus'') key to type the @samp{+/-} symbol.  (If you try actually
11251 typing @samp{+/-} the @kbd{+} key will be interpreted as the Calculator's
11252 @kbd{+} command!)  Within an algebraic formula, you can press @kbd{M-+} to
11253 type the @samp{+/-} symbol, or type it out by hand.
11255 Error forms and complex numbers can be mixed; the formulas shown above
11256 are used for complex numbers, too; note that if the error part evaluates
11257 to a complex number its absolute value (or the square root of the sum of
11258 the squares of the absolute values of the two error contributions) is
11259 used.  Mathematically, this corresponds to a radially symmetric Gaussian
11260 distribution of numbers on the complex plane.  However, note that Calc
11261 considers an error form with real components to represent a real number,
11262 not a complex distribution around a real mean.
11264 Error forms may also be composed of HMS forms.  For best results, both
11265 the mean and the error should be HMS forms if either one is.
11267 @ignore
11268 @starindex
11269 @end ignore
11270 @tindex sdev
11271 The algebraic function @samp{sdev(a, b)} builds the error form @samp{a +/- b}.
11273 @node Interval Forms, Incomplete Objects, Error Forms, Data Types
11274 @section Interval Forms
11276 @noindent
11277 @cindex Interval forms
11278 An @dfn{interval} is a subset of consecutive real numbers.  For example,
11279 the interval @samp{[2 ..@: 4]} represents all the numbers from 2 to 4,
11280 inclusive.  If you multiply it by the interval @samp{[0.5 ..@: 2]} you
11281 obtain @samp{[1 ..@: 8]}.  This calculation represents the fact that if
11282 you multiply some number in the range @samp{[2 ..@: 4]} by some other
11283 number in the range @samp{[0.5 ..@: 2]}, your result will lie in the range
11284 from 1 to 8.  Interval arithmetic is used to get a worst-case estimate
11285 of the possible range of values a computation will produce, given the
11286 set of possible values of the input.
11288 @ifinfo
11289 Calc supports several varieties of intervals, including @dfn{closed}
11290 intervals of the type shown above, @dfn{open} intervals such as
11291 @samp{(2 ..@: 4)}, which represents the range of numbers from 2 to 4
11292 @emph{exclusive}, and @dfn{semi-open} intervals in which one end
11293 uses a round parenthesis and the other a square bracket.  In mathematical
11294 terms,
11295 @samp{[2 ..@: 4]} means @expr{2 <= x <= 4}, whereas
11296 @samp{[2 ..@: 4)} represents @expr{2 <= x < 4},
11297 @samp{(2 ..@: 4]} represents @expr{2 < x <= 4}, and
11298 @samp{(2 ..@: 4)} represents @expr{2 < x < 4}.
11299 @end ifinfo
11300 @tex
11301 Calc supports several varieties of intervals, including \dfn{closed}
11302 intervals of the type shown above, \dfn{open} intervals such as
11303 \samp{(2 ..\: 4)}, which represents the range of numbers from 2 to 4
11304 \emph{exclusive}, and \dfn{semi-open} intervals in which one end
11305 uses a round parenthesis and the other a square bracket.  In mathematical
11306 terms,
11307 $$ \eqalign{
11308    [2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2 \le x \le 4  \cr
11309    [2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2 \le x  <  4  \cr
11310    (2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2  <  x \le 4  \cr
11311    (2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2  <  x  <  4  \cr
11312 } $$
11313 @end tex
11315 The lower and upper limits of an interval must be either real numbers
11316 (or HMS or date forms), or symbolic expressions which are assumed to be
11317 real-valued, or @samp{-inf} and @samp{inf}.  In general the lower limit
11318 must be less than the upper limit.  A closed interval containing only
11319 one value, @samp{[3 ..@: 3]}, is converted to a plain number (3)
11320 automatically.  An interval containing no values at all (such as
11321 @samp{[3 ..@: 2]} or @samp{[2 ..@: 2)}) can be represented but is not
11322 guaranteed to behave well when used in arithmetic.  Note that the
11323 interval @samp{[3 .. inf)} represents all real numbers greater than
11324 or equal to 3, and @samp{(-inf .. inf)} represents all real numbers.
11325 In fact, @samp{[-inf .. inf]} represents all real numbers including
11326 the real infinities.
11328 Intervals are entered in the notation shown here, either as algebraic
11329 formulas, or using incomplete forms.  (@xref{Incomplete Objects}.)
11330 In algebraic formulas, multiple periods in a row are collected from
11331 left to right, so that @samp{1...1e2} is interpreted as @samp{1.0 ..@: 1e2}
11332 rather than @samp{1 ..@: 0.1e2}.  Add spaces or zeros if you want to
11333 get the other interpretation.  If you omit the lower or upper limit,
11334 a default of @samp{-inf} or @samp{inf} (respectively) is furnished.
11336 Infinite mode also affects operations on intervals
11337 (@pxref{Infinities}).  Calc will always introduce an open infinity,
11338 as in @samp{1 / (0 .. 2] = [0.5 .. inf)}.  But closed infinities,
11339 @w{@samp{1 / [0 .. 2] = [0.5 .. inf]}}, arise only in Infinite mode;
11340 otherwise they are left unevaluated.  Note that the ``direction'' of
11341 a zero is not an issue in this case since the zero is always assumed
11342 to be continuous with the rest of the interval.  For intervals that
11343 contain zero inside them Calc is forced to give the result,
11344 @samp{1 / (-2 .. 2) = [-inf .. inf]}.
11346 While it may seem that intervals and error forms are similar, they are
11347 based on entirely different concepts of inexact quantities.  An error
11348 form 
11349 @texline `@var{x} @tfn{+/-} @math{\sigma}' 
11350 @infoline `@var{x} @tfn{+/-} @var{sigma}' 
11351 means a variable is random, and its value could
11352 be anything but is ``probably'' within one 
11353 @texline @math{\sigma} 
11354 @infoline @var{sigma} 
11355 of the mean value @expr{x}. An interval 
11356 `@tfn{[}@var{a} @tfn{..@:} @var{b}@tfn{]}' means a
11357 variable's value is unknown, but guaranteed to lie in the specified
11358 range.  Error forms are statistical or ``average case'' approximations;
11359 interval arithmetic tends to produce ``worst case'' bounds on an
11360 answer.
11362 Intervals may not contain complex numbers, but they may contain
11363 HMS forms or date forms.
11365 @xref{Set Operations}, for commands that interpret interval forms
11366 as subsets of the set of real numbers.
11368 @ignore
11369 @starindex
11370 @end ignore
11371 @tindex intv
11372 The algebraic function @samp{intv(n, a, b)} builds an interval form
11373 from @samp{a} to @samp{b}; @samp{n} is an integer code which must
11374 be 0 for @samp{(..)}, 1 for @samp{(..]}, 2 for @samp{[..)}, or
11375 3 for @samp{[..]}.
11377 Please note that in fully rigorous interval arithmetic, care would be
11378 taken to make sure that the computation of the lower bound rounds toward
11379 minus infinity, while upper bound computations round toward plus
11380 infinity.  Calc's arithmetic always uses a round-to-nearest mode,
11381 which means that roundoff errors could creep into an interval
11382 calculation to produce intervals slightly smaller than they ought to
11383 be.  For example, entering @samp{[1..2]} and pressing @kbd{Q 2 ^}
11384 should yield the interval @samp{[1..2]} again, but in fact it yields the
11385 (slightly too small) interval @samp{[1..1.9999999]} due to roundoff
11386 error.
11388 @node Incomplete Objects, Variables, Interval Forms, Data Types
11389 @section Incomplete Objects
11391 @noindent
11392 @ignore
11393 @mindex [ ]
11394 @end ignore
11395 @kindex [
11396 @ignore
11397 @mindex ( )
11398 @end ignore
11399 @kindex (
11400 @kindex ,
11401 @ignore
11402 @mindex @null
11403 @end ignore
11404 @kindex ]
11405 @ignore
11406 @mindex @null
11407 @end ignore
11408 @kindex )
11409 @cindex Incomplete vectors
11410 @cindex Incomplete complex numbers
11411 @cindex Incomplete interval forms
11412 When @kbd{(} or @kbd{[} is typed to begin entering a complex number or
11413 vector, respectively, the effect is to push an @dfn{incomplete} complex
11414 number or vector onto the stack.  The @kbd{,} key adds the value(s) at
11415 the top of the stack onto the current incomplete object.  The @kbd{)}
11416 and @kbd{]} keys ``close'' the incomplete object after adding any values
11417 on the top of the stack in front of the incomplete object.
11419 As a result, the sequence of keystrokes @kbd{[ 2 , 3 @key{RET} 2 * , 9 ]}
11420 pushes the vector @samp{[2, 6, 9]} onto the stack.  Likewise, @kbd{( 1 , 2 Q )}
11421 pushes the complex number @samp{(1, 1.414)} (approximately).
11423 If several values lie on the stack in front of the incomplete object,
11424 all are collected and appended to the object.  Thus the @kbd{,} key
11425 is redundant:  @kbd{[ 2 @key{RET} 3 @key{RET} 2 * 9 ]}.  Some people
11426 prefer the equivalent @key{SPC} key to @key{RET}.
11428 As a special case, typing @kbd{,} immediately after @kbd{(}, @kbd{[}, or
11429 @kbd{,} adds a zero or duplicates the preceding value in the list being
11430 formed.  Typing @key{DEL} during incomplete entry removes the last item
11431 from the list.
11433 @kindex ;
11434 The @kbd{;} key is used in the same way as @kbd{,} to create polar complex
11435 numbers:  @kbd{( 1 ; 2 )}.  When entering a vector, @kbd{;} is useful for
11436 creating a matrix.  In particular, @kbd{[ [ 1 , 2 ; 3 , 4 ; 5 , 6 ] ]} is
11437 equivalent to @kbd{[ [ 1 , 2 ] , [ 3 , 4 ] , [ 5 , 6 ] ]}.
11439 @kindex ..
11440 @pindex calc-dots
11441 Incomplete entry is also used to enter intervals.  For example,
11442 @kbd{[ 2 ..@: 4 )} enters a semi-open interval.  Note that when you type
11443 the first period, it will be interpreted as a decimal point, but when
11444 you type a second period immediately afterward, it is re-interpreted as
11445 part of the interval symbol.  Typing @kbd{..} corresponds to executing
11446 the @code{calc-dots} command.
11448 If you find incomplete entry distracting, you may wish to enter vectors
11449 and complex numbers as algebraic formulas by pressing the apostrophe key.
11451 @node Variables, Formulas, Incomplete Objects, Data Types
11452 @section Variables
11454 @noindent
11455 @cindex Variables, in formulas
11456 A @dfn{variable} is somewhere between a storage register on a conventional
11457 calculator, and a variable in a programming language.  (In fact, a Calc
11458 variable is really just an Emacs Lisp variable that contains a Calc number
11459 or formula.)  A variable's name is normally composed of letters and digits.
11460 Calc also allows apostrophes and @code{#} signs in variable names.
11461 (The Calc variable @code{foo} corresponds to the Emacs Lisp variable
11462 @code{var-foo}, but unless you access the variable from within Emacs
11463 Lisp, you don't need to worry about it.  Variable names in algebraic
11464 formulas implicitly have @samp{var-} prefixed to their names.  The
11465 @samp{#} character in variable names used in algebraic formulas
11466 corresponds to a dash @samp{-} in the Lisp variable name.  If the name
11467 contains any dashes, the prefix @samp{var-} is @emph{not} automatically
11468 added.  Thus the two formulas @samp{foo + 1} and @samp{var#foo + 1} both
11469 refer to the same variable.)
11471 In a command that takes a variable name, you can either type the full
11472 name of a variable, or type a single digit to use one of the special
11473 convenience variables @code{q0} through @code{q9}.  For example,
11474 @kbd{3 s s 2} stores the number 3 in variable @code{q2}, and
11475 @w{@kbd{3 s s foo @key{RET}}} stores that number in variable
11476 @code{foo}.
11478 To push a variable itself (as opposed to the variable's value) on the
11479 stack, enter its name as an algebraic expression using the apostrophe
11480 (@key{'}) key.
11482 @kindex =
11483 @pindex calc-evaluate
11484 @cindex Evaluation of variables in a formula
11485 @cindex Variables, evaluation
11486 @cindex Formulas, evaluation
11487 The @kbd{=} (@code{calc-evaluate}) key ``evaluates'' a formula by
11488 replacing all variables in the formula which have been given values by a
11489 @code{calc-store} or @code{calc-let} command by their stored values.
11490 Other variables are left alone.  Thus a variable that has not been
11491 stored acts like an abstract variable in algebra; a variable that has
11492 been stored acts more like a register in a traditional calculator.
11493 With a positive numeric prefix argument, @kbd{=} evaluates the top
11494 @var{n} stack entries; with a negative argument, @kbd{=} evaluates
11495 the @var{n}th stack entry.
11497 @cindex @code{e} variable
11498 @cindex @code{pi} variable
11499 @cindex @code{i} variable
11500 @cindex @code{phi} variable
11501 @cindex @code{gamma} variable
11502 @vindex e
11503 @vindex pi
11504 @vindex i
11505 @vindex phi
11506 @vindex gamma
11507 A few variables are called @dfn{special constants}.  Their names are
11508 @samp{e}, @samp{pi}, @samp{i}, @samp{phi}, and @samp{gamma}.
11509 (@xref{Scientific Functions}.)  When they are evaluated with @kbd{=},
11510 their values are calculated if necessary according to the current precision
11511 or complex polar mode.  If you wish to use these symbols for other purposes,
11512 simply undefine or redefine them using @code{calc-store}.
11514 The variables @samp{inf}, @samp{uinf}, and @samp{nan} stand for
11515 infinite or indeterminate values.  It's best not to use them as
11516 regular variables, since Calc uses special algebraic rules when
11517 it manipulates them.  Calc displays a warning message if you store
11518 a value into any of these special variables.
11520 @xref{Store and Recall}, for a discussion of commands dealing with variables.
11522 @node Formulas,  , Variables, Data Types
11523 @section Formulas
11525 @noindent
11526 @cindex Formulas
11527 @cindex Expressions
11528 @cindex Operators in formulas
11529 @cindex Precedence of operators
11530 When you press the apostrophe key you may enter any expression or formula
11531 in algebraic form.  (Calc uses the terms ``expression'' and ``formula''
11532 interchangeably.)  An expression is built up of numbers, variable names,
11533 and function calls, combined with various arithmetic operators.
11534 Parentheses may
11535 be used to indicate grouping.  Spaces are ignored within formulas, except
11536 that spaces are not permitted within variable names or numbers.
11537 Arithmetic operators, in order from highest to lowest precedence, and
11538 with their equivalent function names, are:
11540 @samp{_} [@code{subscr}] (subscripts);
11542 postfix @samp{%} [@code{percent}] (as in @samp{25% = 0.25});
11544 prefix @samp{+} and @samp{-} [@code{neg}] (as in @samp{-x})
11545 and prefix @samp{!} [@code{lnot}] (logical ``not,'' as in @samp{!x});
11547 @samp{+/-} [@code{sdev}] (the standard deviation symbol) and
11548 @samp{mod} [@code{makemod}] (the symbol for modulo forms);
11550 postfix @samp{!} [@code{fact}] (factorial, as in @samp{n!})
11551 and postfix @samp{!!} [@code{dfact}] (double factorial);
11553 @samp{^} [@code{pow}] (raised-to-the-power-of);
11555 @samp{*} [@code{mul}];
11557 @samp{/} [@code{div}], @samp{%} [@code{mod}] (modulo), and
11558 @samp{\} [@code{idiv}] (integer division);
11560 infix @samp{+} [@code{add}] and @samp{-} [@code{sub}] (as in @samp{x-y});
11562 @samp{|} [@code{vconcat}] (vector concatenation);
11564 relations @samp{=} [@code{eq}], @samp{!=} [@code{neq}], @samp{<} [@code{lt}],
11565 @samp{>} [@code{gt}], @samp{<=} [@code{leq}], and @samp{>=} [@code{geq}];
11567 @samp{&&} [@code{land}] (logical ``and'');
11569 @samp{||} [@code{lor}] (logical ``or'');
11571 the C-style ``if'' operator @samp{a?b:c} [@code{if}];
11573 @samp{!!!} [@code{pnot}] (rewrite pattern ``not'');
11575 @samp{&&&} [@code{pand}] (rewrite pattern ``and'');
11577 @samp{|||} [@code{por}] (rewrite pattern ``or'');
11579 @samp{:=} [@code{assign}] (for assignments and rewrite rules);
11581 @samp{::} [@code{condition}] (rewrite pattern condition);
11583 @samp{=>} [@code{evalto}].
11585 Note that, unlike in usual computer notation, multiplication binds more
11586 strongly than division:  @samp{a*b/c*d} is equivalent to 
11587 @texline @math{a b \over c d}.
11588 @infoline @expr{(a*b)/(c*d)}.
11590 @cindex Multiplication, implicit
11591 @cindex Implicit multiplication
11592 The multiplication sign @samp{*} may be omitted in many cases.  In particular,
11593 if the righthand side is a number, variable name, or parenthesized
11594 expression, the @samp{*} may be omitted.  Implicit multiplication has the
11595 same precedence as the explicit @samp{*} operator.  The one exception to
11596 the rule is that a variable name followed by a parenthesized expression,
11597 as in @samp{f(x)},
11598 is interpreted as a function call, not an implicit @samp{*}.  In many
11599 cases you must use a space if you omit the @samp{*}:  @samp{2a} is the
11600 same as @samp{2*a}, and @samp{a b} is the same as @samp{a*b}, but @samp{ab}
11601 is a variable called @code{ab}, @emph{not} the product of @samp{a} and
11602 @samp{b}!  Also note that @samp{f (x)} is still a function call.
11604 @cindex Implicit comma in vectors
11605 The rules are slightly different for vectors written with square brackets.
11606 In vectors, the space character is interpreted (like the comma) as a
11607 separator of elements of the vector.  Thus @w{@samp{[ 2a b+c d ]}} is
11608 equivalent to @samp{[2*a, b+c, d]}, whereas @samp{2a b+c d} is equivalent
11609 to @samp{2*a*b + c*d}.
11610 Note that spaces around the brackets, and around explicit commas, are
11611 ignored.  To force spaces to be interpreted as multiplication you can
11612 enclose a formula in parentheses as in @samp{[(a b) 2(c d)]}, which is
11613 interpreted as @samp{[a*b, 2*c*d]}.  An implicit comma is also inserted
11614 between @samp{][}, as in the matrix @samp{[[1 2][3 4]]}.
11616 Vectors that contain commas (not embedded within nested parentheses or
11617 brackets) do not treat spaces specially:  @samp{[a b, 2 c d]} is a vector
11618 of two elements.  Also, if it would be an error to treat spaces as
11619 separators, but not otherwise, then Calc will ignore spaces:
11620 @w{@samp{[a - b]}} is a vector of one element, but @w{@samp{[a -b]}} is
11621 a vector of two elements.  Finally, vectors entered with curly braces
11622 instead of square brackets do not give spaces any special treatment.
11623 When Calc displays a vector that does not contain any commas, it will
11624 insert parentheses if necessary to make the meaning clear:
11625 @w{@samp{[(a b)]}}.
11627 The expression @samp{5%-2} is ambiguous; is this five-percent minus two,
11628 or five modulo minus-two?  Calc always interprets the leftmost symbol as
11629 an infix operator preferentially (modulo, in this case), so you would
11630 need to write @samp{(5%)-2} to get the former interpretation.
11632 @cindex Function call notation
11633 A function call is, e.g., @samp{sin(1+x)}.  (The Calc algebraic function
11634 @code{foo} corresponds to the Emacs Lisp function @code{calcFunc-foo},
11635 but unless you access the function from within Emacs Lisp, you don't
11636 need to worry about it.)  Most mathematical Calculator commands like
11637 @code{calc-sin} have function equivalents like @code{sin}.
11638 If no Lisp function is defined for a function called by a formula, the
11639 call is left as it is during algebraic manipulation: @samp{f(x+y)} is
11640 left alone.  Beware that many innocent-looking short names like @code{in}
11641 and @code{re} have predefined meanings which could surprise you; however,
11642 single letters or single letters followed by digits are always safe to
11643 use for your own function names.  @xref{Function Index}.
11645 In the documentation for particular commands, the notation @kbd{H S}
11646 (@code{calc-sinh}) [@code{sinh}] means that the key sequence @kbd{H S}, the
11647 command @kbd{M-x calc-sinh}, and the algebraic function @code{sinh(x)} all
11648 represent the same operation.
11650 Commands that interpret (``parse'') text as algebraic formulas include
11651 algebraic entry (@kbd{'}), editing commands like @kbd{`} which parse
11652 the contents of the editing buffer when you finish, the @kbd{C-x * g}
11653 and @w{@kbd{C-x * r}} commands, the @kbd{C-y} command, the X window system
11654 ``paste'' mouse operation, and Embedded mode.  All of these operations
11655 use the same rules for parsing formulas; in particular, language modes
11656 (@pxref{Language Modes}) affect them all in the same way.
11658 When you read a large amount of text into the Calculator (say a vector
11659 which represents a big set of rewrite rules; @pxref{Rewrite Rules}),
11660 you may wish to include comments in the text.  Calc's formula parser
11661 ignores the symbol @samp{%%} and anything following it on a line:
11663 @example
11664 [ a + b,   %% the sum of "a" and "b"
11665   c + d,
11666   %% last line is coming up:
11667   e + f ]
11668 @end example
11670 @noindent
11671 This is parsed exactly the same as @samp{[ a + b, c + d, e + f ]}.
11673 @xref{Syntax Tables}, for a way to create your own operators and other
11674 input notations.  @xref{Compositions}, for a way to create new display
11675 formats.
11677 @xref{Algebra}, for commands for manipulating formulas symbolically.
11679 @node Stack and Trail, Mode Settings, Data Types, Top
11680 @chapter Stack and Trail Commands
11682 @noindent
11683 This chapter describes the Calc commands for manipulating objects on the
11684 stack and in the trail buffer.  (These commands operate on objects of any
11685 type, such as numbers, vectors, formulas, and incomplete objects.)
11687 @menu
11688 * Stack Manipulation::
11689 * Editing Stack Entries::
11690 * Trail Commands::
11691 * Keep Arguments::
11692 @end menu
11694 @node Stack Manipulation, Editing Stack Entries, Stack and Trail, Stack and Trail
11695 @section Stack Manipulation Commands
11697 @noindent
11698 @kindex @key{RET}
11699 @kindex @key{SPC}
11700 @pindex calc-enter
11701 @cindex Duplicating stack entries
11702 To duplicate the top object on the stack, press @key{RET} or @key{SPC}
11703 (two equivalent keys for the @code{calc-enter} command).
11704 Given a positive numeric prefix argument, these commands duplicate
11705 several elements at the top of the stack.
11706 Given a negative argument,
11707 these commands duplicate the specified element of the stack.
11708 Given an argument of zero, they duplicate the entire stack.
11709 For example, with @samp{10 20 30} on the stack,
11710 @key{RET} creates @samp{10 20 30 30},
11711 @kbd{C-u 2 @key{RET}} creates @samp{10 20 30 20 30},
11712 @kbd{C-u - 2 @key{RET}} creates @samp{10 20 30 20}, and
11713 @kbd{C-u 0 @key{RET}} creates @samp{10 20 30 10 20 30}.
11715 @kindex @key{LFD}
11716 @pindex calc-over
11717 The @key{LFD} (@code{calc-over}) command (on a key marked Line-Feed if you
11718 have it, else on @kbd{C-j}) is like @code{calc-enter}
11719 except that the sign of the numeric prefix argument is interpreted
11720 oppositely.  Also, with no prefix argument the default argument is 2.
11721 Thus with @samp{10 20 30} on the stack, @key{LFD} and @kbd{C-u 2 @key{LFD}}
11722 are both equivalent to @kbd{C-u - 2 @key{RET}}, producing
11723 @samp{10 20 30 20}.
11725 @kindex @key{DEL}
11726 @kindex C-d
11727 @pindex calc-pop
11728 @cindex Removing stack entries
11729 @cindex Deleting stack entries
11730 To remove the top element from the stack, press @key{DEL} (@code{calc-pop}).
11731 The @kbd{C-d} key is a synonym for @key{DEL}.
11732 (If the top element is an incomplete object with at least one element, the
11733 last element is removed from it.)  Given a positive numeric prefix argument,
11734 several elements are removed.  Given a negative argument, the specified
11735 element of the stack is deleted.  Given an argument of zero, the entire
11736 stack is emptied.
11737 For example, with @samp{10 20 30} on the stack,
11738 @key{DEL} leaves @samp{10 20},
11739 @kbd{C-u 2 @key{DEL}} leaves @samp{10},
11740 @kbd{C-u - 2 @key{DEL}} leaves @samp{10 30}, and
11741 @kbd{C-u 0 @key{DEL}} leaves an empty stack.
11743 @kindex M-@key{DEL}
11744 @pindex calc-pop-above
11745 The @kbd{M-@key{DEL}} (@code{calc-pop-above}) command is to @key{DEL} what
11746 @key{LFD} is to @key{RET}:  It interprets the sign of the numeric
11747 prefix argument in the opposite way, and the default argument is 2.
11748 Thus @kbd{M-@key{DEL}} by itself removes the second-from-top stack element,
11749 leaving the first, third, fourth, and so on; @kbd{M-3 M-@key{DEL}} deletes
11750 the third stack element.
11752 @kindex @key{TAB}
11753 @pindex calc-roll-down
11754 To exchange the top two elements of the stack, press @key{TAB}
11755 (@code{calc-roll-down}).  Given a positive numeric prefix argument, the
11756 specified number of elements at the top of the stack are rotated downward.
11757 Given a negative argument, the entire stack is rotated downward the specified
11758 number of times.  Given an argument of zero, the entire stack is reversed
11759 top-for-bottom.
11760 For example, with @samp{10 20 30 40 50} on the stack,
11761 @key{TAB} creates @samp{10 20 30 50 40},
11762 @kbd{C-u 3 @key{TAB}} creates @samp{10 20 50 30 40},
11763 @kbd{C-u - 2 @key{TAB}} creates @samp{40 50 10 20 30}, and
11764 @kbd{C-u 0 @key{TAB}} creates @samp{50 40 30 20 10}.
11766 @kindex M-@key{TAB}
11767 @pindex calc-roll-up
11768 The command @kbd{M-@key{TAB}} (@code{calc-roll-up}) is analogous to @key{TAB}
11769 except that it rotates upward instead of downward.  Also, the default
11770 with no prefix argument is to rotate the top 3 elements.
11771 For example, with @samp{10 20 30 40 50} on the stack,
11772 @kbd{M-@key{TAB}} creates @samp{10 20 40 50 30},
11773 @kbd{C-u 4 M-@key{TAB}} creates @samp{10 30 40 50 20},
11774 @kbd{C-u - 2 M-@key{TAB}} creates @samp{30 40 50 10 20}, and
11775 @kbd{C-u 0 M-@key{TAB}} creates @samp{50 40 30 20 10}.
11777 A good way to view the operation of @key{TAB} and @kbd{M-@key{TAB}} is in
11778 terms of moving a particular element to a new position in the stack.
11779 With a positive argument @var{n}, @key{TAB} moves the top stack
11780 element down to level @var{n}, making room for it by pulling all the
11781 intervening stack elements toward the top.  @kbd{M-@key{TAB}} moves the
11782 element at level @var{n} up to the top.  (Compare with @key{LFD},
11783 which copies instead of moving the element in level @var{n}.)
11785 With a negative argument @mathit{-@var{n}}, @key{TAB} rotates the stack
11786 to move the object in level @var{n} to the deepest place in the
11787 stack, and the object in level @mathit{@var{n}+1} to the top.  @kbd{M-@key{TAB}}
11788 rotates the deepest stack element to be in level @mathit{n}, also
11789 putting the top stack element in level @mathit{@var{n}+1}.
11791 @xref{Selecting Subformulas}, for a way to apply these commands to
11792 any portion of a vector or formula on the stack.
11794 @node Editing Stack Entries, Trail Commands, Stack Manipulation, Stack and Trail
11795 @section Editing Stack Entries
11797 @noindent
11798 @kindex `
11799 @pindex calc-edit
11800 @pindex calc-edit-finish
11801 @cindex Editing the stack with Emacs
11802 The backquote, @kbd{`} (@code{calc-edit}) command creates a temporary
11803 buffer (@samp{*Calc Edit*}) for editing the top-of-stack value using
11804 regular Emacs commands.  With a numeric prefix argument, it edits the
11805 specified number of stack entries at once.  (An argument of zero edits
11806 the entire stack; a negative argument edits one specific stack entry.)
11808 When you are done editing, press @kbd{C-c C-c} to finish and return
11809 to Calc.  The @key{RET} and @key{LFD} keys also work to finish most
11810 sorts of editing, though in some cases Calc leaves @key{RET} with its
11811 usual meaning (``insert a newline'') if it's a situation where you
11812 might want to insert new lines into the editing buffer.
11814 When you finish editing, the Calculator parses the lines of text in
11815 the @samp{*Calc Edit*} buffer as numbers or formulas, replaces the
11816 original stack elements in the original buffer with these new values,
11817 then kills the @samp{*Calc Edit*} buffer.  The original Calculator buffer
11818 continues to exist during editing, but for best results you should be
11819 careful not to change it until you have finished the edit.  You can
11820 also cancel the edit by killing the buffer with @kbd{C-x k}.
11822 The formula is normally reevaluated as it is put onto the stack.
11823 For example, editing @samp{a + 2} to @samp{3 + 2} and pressing
11824 @kbd{C-c C-c} will push 5 on the stack.  If you use @key{LFD} to
11825 finish, Calc will put the result on the stack without evaluating it.
11827 If you give a prefix argument to @kbd{C-c C-c},
11828 Calc will not kill the @samp{*Calc Edit*} buffer.  You can switch
11829 back to that buffer and continue editing if you wish.  However, you
11830 should understand that if you initiated the edit with @kbd{`}, the
11831 @kbd{C-c C-c} operation will be programmed to replace the top of the
11832 stack with the new edited value, and it will do this even if you have
11833 rearranged the stack in the meanwhile.  This is not so much of a problem
11834 with other editing commands, though, such as @kbd{s e}
11835 (@code{calc-edit-variable}; @pxref{Operations on Variables}).
11837 If the @code{calc-edit} command involves more than one stack entry,
11838 each line of the @samp{*Calc Edit*} buffer is interpreted as a
11839 separate formula.  Otherwise, the entire buffer is interpreted as
11840 one formula, with line breaks ignored.  (You can use @kbd{C-o} or
11841 @kbd{C-q C-j} to insert a newline in the buffer without pressing @key{RET}.)
11843 The @kbd{`} key also works during numeric or algebraic entry.  The
11844 text entered so far is moved to the @code{*Calc Edit*} buffer for
11845 more extensive editing than is convenient in the minibuffer.
11847 @node Trail Commands, Keep Arguments, Editing Stack Entries, Stack and Trail
11848 @section Trail Commands
11850 @noindent
11851 @cindex Trail buffer
11852 The commands for manipulating the Calc Trail buffer are two-key sequences
11853 beginning with the @kbd{t} prefix.
11855 @kindex t d
11856 @pindex calc-trail-display
11857 The @kbd{t d} (@code{calc-trail-display}) command turns display of the
11858 trail on and off.  Normally the trail display is toggled on if it was off,
11859 off if it was on.  With a numeric prefix of zero, this command always
11860 turns the trail off; with a prefix of one, it always turns the trail on.
11861 The other trail-manipulation commands described here automatically turn
11862 the trail on.  Note that when the trail is off values are still recorded
11863 there; they are simply not displayed.  To set Emacs to turn the trail
11864 off by default, type @kbd{t d} and then save the mode settings with
11865 @kbd{m m} (@code{calc-save-modes}).
11867 @kindex t i
11868 @pindex calc-trail-in
11869 @kindex t o
11870 @pindex calc-trail-out
11871 The @kbd{t i} (@code{calc-trail-in}) and @kbd{t o}
11872 (@code{calc-trail-out}) commands switch the cursor into and out of the
11873 Calc Trail window.  In practice they are rarely used, since the commands
11874 shown below are a more convenient way to move around in the
11875 trail, and they work ``by remote control'' when the cursor is still
11876 in the Calculator window.
11878 @cindex Trail pointer
11879 There is a @dfn{trail pointer} which selects some entry of the trail at
11880 any given time.  The trail pointer looks like a @samp{>} symbol right
11881 before the selected number.  The following commands operate on the
11882 trail pointer in various ways.
11884 @kindex t y
11885 @pindex calc-trail-yank
11886 @cindex Retrieving previous results
11887 The @kbd{t y} (@code{calc-trail-yank}) command reads the selected value in
11888 the trail and pushes it onto the Calculator stack.  It allows you to
11889 re-use any previously computed value without retyping.  With a numeric
11890 prefix argument @var{n}, it yanks the value @var{n} lines above the current
11891 trail pointer.
11893 @kindex t <
11894 @pindex calc-trail-scroll-left
11895 @kindex t >
11896 @pindex calc-trail-scroll-right
11897 The @kbd{t <} (@code{calc-trail-scroll-left}) and @kbd{t >}
11898 (@code{calc-trail-scroll-right}) commands horizontally scroll the trail
11899 window left or right by one half of its width.
11901 @kindex t n
11902 @pindex calc-trail-next
11903 @kindex t p
11904 @pindex calc-trail-previous
11905 @kindex t f
11906 @pindex calc-trail-forward
11907 @kindex t b
11908 @pindex calc-trail-backward
11909 The @kbd{t n} (@code{calc-trail-next}) and @kbd{t p}
11910 (@code{calc-trail-previous)} commands move the trail pointer down or up
11911 one line.  The @kbd{t f} (@code{calc-trail-forward}) and @kbd{t b}
11912 (@code{calc-trail-backward}) commands move the trail pointer down or up
11913 one screenful at a time.  All of these commands accept numeric prefix
11914 arguments to move several lines or screenfuls at a time.
11916 @kindex t [
11917 @pindex calc-trail-first
11918 @kindex t ]
11919 @pindex calc-trail-last
11920 @kindex t h
11921 @pindex calc-trail-here
11922 The @kbd{t [} (@code{calc-trail-first}) and @kbd{t ]}
11923 (@code{calc-trail-last}) commands move the trail pointer to the first or
11924 last line of the trail.  The @kbd{t h} (@code{calc-trail-here}) command
11925 moves the trail pointer to the cursor position; unlike the other trail
11926 commands, @kbd{t h} works only when Calc Trail is the selected window.
11928 @kindex t s
11929 @pindex calc-trail-isearch-forward
11930 @kindex t r
11931 @pindex calc-trail-isearch-backward
11932 @ifinfo
11933 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
11934 (@code{calc-trail-isearch-backward}) commands perform an incremental
11935 search forward or backward through the trail.  You can press @key{RET}
11936 to terminate the search; the trail pointer moves to the current line.
11937 If you cancel the search with @kbd{C-g}, the trail pointer stays where
11938 it was when the search began.
11939 @end ifinfo
11940 @tex
11941 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
11942 (@code{calc-trail-isearch-backward}) com\-mands perform an incremental
11943 search forward or backward through the trail.  You can press @key{RET}
11944 to terminate the search; the trail pointer moves to the current line.
11945 If you cancel the search with @kbd{C-g}, the trail pointer stays where
11946 it was when the search began.
11947 @end tex
11949 @kindex t m
11950 @pindex calc-trail-marker
11951 The @kbd{t m} (@code{calc-trail-marker}) command allows you to enter a
11952 line of text of your own choosing into the trail.  The text is inserted
11953 after the line containing the trail pointer; this usually means it is
11954 added to the end of the trail.  Trail markers are useful mainly as the
11955 targets for later incremental searches in the trail.
11957 @kindex t k
11958 @pindex calc-trail-kill
11959 The @kbd{t k} (@code{calc-trail-kill}) command removes the selected line
11960 from the trail.  The line is saved in the Emacs kill ring suitable for
11961 yanking into another buffer, but it is not easy to yank the text back
11962 into the trail buffer.  With a numeric prefix argument, this command
11963 kills the @var{n} lines below or above the selected one.
11965 The @kbd{t .} (@code{calc-full-trail-vectors}) command is described
11966 elsewhere; @pxref{Vector and Matrix Formats}.
11968 @node Keep Arguments,  , Trail Commands, Stack and Trail
11969 @section Keep Arguments
11971 @noindent
11972 @kindex K
11973 @pindex calc-keep-args
11974 The @kbd{K} (@code{calc-keep-args}) command acts like a prefix for
11975 the following command.  It prevents that command from removing its
11976 arguments from the stack.  For example, after @kbd{2 @key{RET} 3 +},
11977 the stack contains the sole number 5, but after @kbd{2 @key{RET} 3 K +},
11978 the stack contains the arguments and the result: @samp{2 3 5}.
11980 With the exception of keyboard macros, this works for all commands that
11981 take arguments off the stack. (To avoid potentially unpleasant behavior,
11982 a @kbd{K} prefix before a keyboard macro will be ignored.  A @kbd{K}
11983 prefix called @emph{within} the keyboard macro will still take effect.)  
11984 As another example, @kbd{K a s} simplifies a formula, pushing the
11985 simplified version of the formula onto the stack after the original
11986 formula (rather than replacing the original formula).  Note that you
11987 could get the same effect by typing @kbd{@key{RET} a s}, copying the
11988 formula and then simplifying the copy. One difference is that for a very
11989 large formula the time taken to format the intermediate copy in
11990 @kbd{@key{RET} a s} could be noticeable; @kbd{K a s} would avoid this
11991 extra work. 
11993 Even stack manipulation commands are affected.  @key{TAB} works by
11994 popping two values and pushing them back in the opposite order,
11995 so @kbd{2 @key{RET} 3 K @key{TAB}} produces @samp{2 3 3 2}.
11997 A few Calc commands provide other ways of doing the same thing.
11998 For example, @kbd{' sin($)} replaces the number on the stack with
11999 its sine using algebraic entry; to push the sine and keep the
12000 original argument you could use either @kbd{' sin($1)} or
12001 @kbd{K ' sin($)}.  @xref{Algebraic Entry}.  Also, the @kbd{s s}
12002 command is effectively the same as @kbd{K s t}.  @xref{Storing Variables}.
12004 If you execute a command and then decide you really wanted to keep
12005 the argument, you can press @kbd{M-@key{RET}} (@code{calc-last-args}).
12006 This command pushes the last arguments that were popped by any command
12007 onto the stack.  Note that the order of things on the stack will be
12008 different than with @kbd{K}:  @kbd{2 @key{RET} 3 + M-@key{RET}} leaves
12009 @samp{5 2 3} on the stack instead of @samp{2 3 5}.  @xref{Undo}.
12011 @node Mode Settings, Arithmetic, Stack and Trail, Top
12012 @chapter Mode Settings
12014 @noindent
12015 This chapter describes commands that set modes in the Calculator.
12016 They do not affect the contents of the stack, although they may change
12017 the @emph{appearance} or @emph{interpretation} of the stack's contents.
12019 @menu
12020 * General Mode Commands::
12021 * Precision::
12022 * Inverse and Hyperbolic::
12023 * Calculation Modes::
12024 * Simplification Modes::
12025 * Declarations::
12026 * Display Modes::
12027 * Language Modes::
12028 * Modes Variable::
12029 * Calc Mode Line::
12030 @end menu
12032 @node General Mode Commands, Precision, Mode Settings, Mode Settings
12033 @section General Mode Commands
12035 @noindent
12036 @kindex m m
12037 @pindex calc-save-modes
12038 @cindex Continuous memory
12039 @cindex Saving mode settings
12040 @cindex Permanent mode settings
12041 @cindex Calc init file, mode settings
12042 You can save all of the current mode settings in your Calc init file 
12043 (the file given by the variable @code{calc-settings-file}, typically
12044 @file{~/.calc.el}) with the @kbd{m m} (@code{calc-save-modes}) command.
12045 This will cause Emacs to reestablish these modes each time it starts up.
12046 The modes saved in the file include everything controlled by the @kbd{m}
12047 and @kbd{d} prefix keys, the current precision and binary word size,
12048 whether or not the trail is displayed, the current height of the Calc
12049 window, and more.  The current interface (used when you type @kbd{C-x * *}) 
12050 is also saved.  If there were already saved mode settings in the
12051 file, they are replaced.  Otherwise, the new mode information is
12052 appended to the end of the file.
12054 @kindex m R
12055 @pindex calc-mode-record-mode
12056 The @kbd{m R} (@code{calc-mode-record-mode}) command tells Calc to
12057 record all the mode settings (as if by pressing @kbd{m m}) every
12058 time a mode setting changes.  If the modes are saved this way, then this
12059 ``automatic mode recording'' mode is also saved.
12060 Type @kbd{m R} again to disable this method of recording the mode
12061 settings.  To turn it off permanently, the @kbd{m m} command will also be
12062 necessary.   (If Embedded mode is enabled, other options for recording
12063 the modes are available; @pxref{Mode Settings in Embedded Mode}.)
12065 @kindex m F
12066 @pindex calc-settings-file-name
12067 The @kbd{m F} (@code{calc-settings-file-name}) command allows you to
12068 choose a different file than the current value of @code{calc-settings-file}
12069 for @kbd{m m}, @kbd{Z P}, and similar commands to save permanent information.
12070 You are prompted for a file name.  All Calc modes are then reset to
12071 their default values, then settings from the file you named are loaded
12072 if this file exists, and this file becomes the one that Calc will
12073 use in the future for commands like @kbd{m m}.  The default settings
12074 file name is @file{~/.calc.el}.  You can see the current file name by
12075 giving a blank response to the @kbd{m F} prompt.  See also the
12076 discussion of the @code{calc-settings-file} variable; @pxref{Customizing Calc}.
12078 If the file name you give is your user init file (typically
12079 @file{~/.emacs}), @kbd{m F} will not automatically load the new file.  This
12080 is because your user init file may contain other things you don't want
12081 to reread.  You can give 
12082 a numeric prefix argument of 1 to @kbd{m F} to force it to read the
12083 file no matter what.  Conversely, an argument of @mathit{-1} tells
12084 @kbd{m F} @emph{not} to read the new file.  An argument of 2 or @mathit{-2}
12085 tells @kbd{m F} not to reset the modes to their defaults beforehand,
12086 which is useful if you intend your new file to have a variant of the
12087 modes present in the file you were using before.
12089 @kindex m x
12090 @pindex calc-always-load-extensions
12091 The @kbd{m x} (@code{calc-always-load-extensions}) command enables a mode
12092 in which the first use of Calc loads the entire program, including all
12093 extensions modules.  Otherwise, the extensions modules will not be loaded
12094 until the various advanced Calc features are used.  Since this mode only
12095 has effect when Calc is first loaded, @kbd{m x} is usually followed by
12096 @kbd{m m} to make the mode-setting permanent.  To load all of Calc just
12097 once, rather than always in the future, you can press @kbd{C-x * L}.
12099 @kindex m S
12100 @pindex calc-shift-prefix
12101 The @kbd{m S} (@code{calc-shift-prefix}) command enables a mode in which
12102 all of Calc's letter prefix keys may be typed shifted as well as unshifted.
12103 If you are typing, say, @kbd{a S} (@code{calc-solve-for}) quite often
12104 you might find it easier to turn this mode on so that you can type
12105 @kbd{A S} instead.  When this mode is enabled, the commands that used to
12106 be on those single shifted letters (e.g., @kbd{A} (@code{calc-abs})) can
12107 now be invoked by pressing the shifted letter twice: @kbd{A A}.  Note
12108 that the @kbd{v} prefix key always works both shifted and unshifted, and
12109 the @kbd{z} and @kbd{Z} prefix keys are always distinct.  Also, the @kbd{h}
12110 prefix is not affected by this mode.  Press @kbd{m S} again to disable
12111 shifted-prefix mode.
12113 @node Precision, Inverse and Hyperbolic, General Mode Commands, Mode Settings
12114 @section Precision
12116 @noindent
12117 @kindex p
12118 @pindex calc-precision
12119 @cindex Precision of calculations
12120 The @kbd{p} (@code{calc-precision}) command controls the precision to
12121 which floating-point calculations are carried.  The precision must be
12122 at least 3 digits and may be arbitrarily high, within the limits of
12123 memory and time.  This affects only floats:  Integer and rational
12124 calculations are always carried out with as many digits as necessary.
12126 The @kbd{p} key prompts for the current precision.  If you wish you
12127 can instead give the precision as a numeric prefix argument.
12129 Many internal calculations are carried to one or two digits higher
12130 precision than normal.  Results are rounded down afterward to the
12131 current precision.  Unless a special display mode has been selected,
12132 floats are always displayed with their full stored precision, i.e.,
12133 what you see is what you get.  Reducing the current precision does not
12134 round values already on the stack, but those values will be rounded
12135 down before being used in any calculation.  The @kbd{c 0} through
12136 @kbd{c 9} commands (@pxref{Conversions}) can be used to round an
12137 existing value to a new precision.
12139 @cindex Accuracy of calculations
12140 It is important to distinguish the concepts of @dfn{precision} and
12141 @dfn{accuracy}.  In the normal usage of these words, the number
12142 123.4567 has a precision of 7 digits but an accuracy of 4 digits.
12143 The precision is the total number of digits not counting leading
12144 or trailing zeros (regardless of the position of the decimal point).
12145 The accuracy is simply the number of digits after the decimal point
12146 (again not counting trailing zeros).  In Calc you control the precision,
12147 not the accuracy of computations.  If you were to set the accuracy
12148 instead, then calculations like @samp{exp(100)} would generate many
12149 more digits than you would typically need, while @samp{exp(-100)} would
12150 probably round to zero!  In Calc, both these computations give you
12151 exactly 12 (or the requested number of) significant digits.
12153 The only Calc features that deal with accuracy instead of precision
12154 are fixed-point display mode for floats (@kbd{d f}; @pxref{Float Formats}),
12155 and the rounding functions like @code{floor} and @code{round}
12156 (@pxref{Integer Truncation}).  Also, @kbd{c 0} through @kbd{c 9}
12157 deal with both precision and accuracy depending on the magnitudes
12158 of the numbers involved.
12160 If you need to work with a particular fixed accuracy (say, dollars and
12161 cents with two digits after the decimal point), one solution is to work
12162 with integers and an ``implied'' decimal point.  For example, $8.99
12163 divided by 6 would be entered @kbd{899 @key{RET} 6 /}, yielding 149.833
12164 (actually $1.49833 with our implied decimal point); pressing @kbd{R}
12165 would round this to 150 cents, i.e., $1.50.
12167 @xref{Floats}, for still more on floating-point precision and related
12168 issues.
12170 @node Inverse and Hyperbolic, Calculation Modes, Precision, Mode Settings
12171 @section Inverse and Hyperbolic Flags
12173 @noindent
12174 @kindex I
12175 @pindex calc-inverse
12176 There is no single-key equivalent to the @code{calc-arcsin} function.
12177 Instead, you must first press @kbd{I} (@code{calc-inverse}) to set
12178 the @dfn{Inverse Flag}, then press @kbd{S} (@code{calc-sin}).
12179 The @kbd{I} key actually toggles the Inverse Flag.  When this flag
12180 is set, the word @samp{Inv} appears in the mode line.
12182 @kindex H
12183 @pindex calc-hyperbolic
12184 Likewise, the @kbd{H} key (@code{calc-hyperbolic}) sets or clears the
12185 Hyperbolic Flag, which transforms @code{calc-sin} into @code{calc-sinh}.
12186 If both of these flags are set at once, the effect will be
12187 @code{calc-arcsinh}.  (The Hyperbolic flag is also used by some
12188 non-trigonometric commands; for example @kbd{H L} computes a base-10,
12189 instead of base-@mathit{e}, logarithm.)
12191 Command names like @code{calc-arcsin} are provided for completeness, and
12192 may be executed with @kbd{x} or @kbd{M-x}.  Their effect is simply to
12193 toggle the Inverse and/or Hyperbolic flags and then execute the
12194 corresponding base command (@code{calc-sin} in this case).
12196 The Inverse and Hyperbolic flags apply only to the next Calculator
12197 command, after which they are automatically cleared.  (They are also
12198 cleared if the next keystroke is not a Calc command.)  Digits you
12199 type after @kbd{I} or @kbd{H} (or @kbd{K}) are treated as prefix
12200 arguments for the next command, not as numeric entries.  The same
12201 is true of @kbd{C-u}, but not of the minus sign (@kbd{K -} means to
12202 subtract and keep arguments).
12204 The third Calc prefix flag, @kbd{K} (keep-arguments), is discussed
12205 elsewhere.  @xref{Keep Arguments}.
12207 @node Calculation Modes, Simplification Modes, Inverse and Hyperbolic, Mode Settings
12208 @section Calculation Modes
12210 @noindent
12211 The commands in this section are two-key sequences beginning with
12212 the @kbd{m} prefix.  (That's the letter @kbd{m}, not the @key{META} key.)
12213 The @samp{m a} (@code{calc-algebraic-mode}) command is described elsewhere
12214 (@pxref{Algebraic Entry}).
12216 @menu
12217 * Angular Modes::
12218 * Polar Mode::
12219 * Fraction Mode::
12220 * Infinite Mode::
12221 * Symbolic Mode::
12222 * Matrix Mode::
12223 * Automatic Recomputation::
12224 * Working Message::
12225 @end menu
12227 @node Angular Modes, Polar Mode, Calculation Modes, Calculation Modes
12228 @subsection Angular Modes
12230 @noindent
12231 @cindex Angular mode
12232 The Calculator supports three notations for angles: radians, degrees,
12233 and degrees-minutes-seconds.  When a number is presented to a function
12234 like @code{sin} that requires an angle, the current angular mode is
12235 used to interpret the number as either radians or degrees.  If an HMS
12236 form is presented to @code{sin}, it is always interpreted as
12237 degrees-minutes-seconds.
12239 Functions that compute angles produce a number in radians, a number in
12240 degrees, or an HMS form depending on the current angular mode.  If the
12241 result is a complex number and the current mode is HMS, the number is
12242 instead expressed in degrees.  (Complex-number calculations would
12243 normally be done in Radians mode, though.  Complex numbers are converted
12244 to degrees by calculating the complex result in radians and then
12245 multiplying by 180 over @cpi{}.)
12247 @kindex m r
12248 @pindex calc-radians-mode
12249 @kindex m d
12250 @pindex calc-degrees-mode
12251 @kindex m h
12252 @pindex calc-hms-mode
12253 The @kbd{m r} (@code{calc-radians-mode}), @kbd{m d} (@code{calc-degrees-mode}),
12254 and @kbd{m h} (@code{calc-hms-mode}) commands control the angular mode.
12255 The current angular mode is displayed on the Emacs mode line.
12256 The default angular mode is Degrees.
12258 @node Polar Mode, Fraction Mode, Angular Modes, Calculation Modes
12259 @subsection Polar Mode
12261 @noindent
12262 @cindex Polar mode
12263 The Calculator normally ``prefers'' rectangular complex numbers in the
12264 sense that rectangular form is used when the proper form can not be
12265 decided from the input.  This might happen by multiplying a rectangular
12266 number by a polar one, by taking the square root of a negative real
12267 number, or by entering @kbd{( 2 @key{SPC} 3 )}.
12269 @kindex m p
12270 @pindex calc-polar-mode
12271 The @kbd{m p} (@code{calc-polar-mode}) command toggles complex-number
12272 preference between rectangular and polar forms.  In Polar mode, all
12273 of the above example situations would produce polar complex numbers.
12275 @node Fraction Mode, Infinite Mode, Polar Mode, Calculation Modes
12276 @subsection Fraction Mode
12278 @noindent
12279 @cindex Fraction mode
12280 @cindex Division of integers
12281 Division of two integers normally yields a floating-point number if the
12282 result cannot be expressed as an integer.  In some cases you would
12283 rather get an exact fractional answer.  One way to accomplish this is
12284 to use the @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command, which
12285 divides the two integers on the top of the stack to produce a fraction:
12286 @kbd{6 @key{RET} 4 :} produces @expr{3:2} even though 
12287 @kbd{6 @key{RET} 4 /} produces @expr{1.5}.
12289 @kindex m f
12290 @pindex calc-frac-mode
12291 To set the Calculator to produce fractional results for normal integer
12292 divisions, use the @kbd{m f} (@code{calc-frac-mode}) command.
12293 For example, @expr{8/4} produces @expr{2} in either mode,
12294 but @expr{6/4} produces @expr{3:2} in Fraction mode, @expr{1.5} in
12295 Float mode.
12297 At any time you can use @kbd{c f} (@code{calc-float}) to convert a
12298 fraction to a float, or @kbd{c F} (@code{calc-fraction}) to convert a
12299 float to a fraction.  @xref{Conversions}.
12301 @node Infinite Mode, Symbolic Mode, Fraction Mode, Calculation Modes
12302 @subsection Infinite Mode
12304 @noindent
12305 @cindex Infinite mode
12306 The Calculator normally treats results like @expr{1 / 0} as errors;
12307 formulas like this are left in unsimplified form.  But Calc can be
12308 put into a mode where such calculations instead produce ``infinite''
12309 results.
12311 @kindex m i
12312 @pindex calc-infinite-mode
12313 The @kbd{m i} (@code{calc-infinite-mode}) command turns this mode
12314 on and off.  When the mode is off, infinities do not arise except
12315 in calculations that already had infinities as inputs.  (One exception
12316 is that infinite open intervals like @samp{[0 .. inf)} can be
12317 generated; however, intervals closed at infinity (@samp{[0 .. inf]})
12318 will not be generated when Infinite mode is off.)
12320 With Infinite mode turned on, @samp{1 / 0} will generate @code{uinf},
12321 an undirected infinity.  @xref{Infinities}, for a discussion of the
12322 difference between @code{inf} and @code{uinf}.  Also, @expr{0 / 0}
12323 evaluates to @code{nan}, the ``indeterminate'' symbol.  Various other
12324 functions can also return infinities in this mode; for example,
12325 @samp{ln(0) = -inf}, and @samp{gamma(-7) = uinf}.  Once again,
12326 note that @samp{exp(inf) = inf} regardless of Infinite mode because
12327 this calculation has infinity as an input.
12329 @cindex Positive Infinite mode
12330 The @kbd{m i} command with a numeric prefix argument of zero,
12331 i.e., @kbd{C-u 0 m i}, turns on a Positive Infinite mode in
12332 which zero is treated as positive instead of being directionless.
12333 Thus, @samp{1 / 0 = inf} and @samp{-1 / 0 = -inf} in this mode.
12334 Note that zero never actually has a sign in Calc; there are no
12335 separate representations for @mathit{+0} and @mathit{-0}.  Positive
12336 Infinite mode merely changes the interpretation given to the
12337 single symbol, @samp{0}.  One consequence of this is that, while
12338 you might expect @samp{1 / -0 = -inf}, actually @samp{1 / -0}
12339 is equivalent to @samp{1 / 0}, which is equal to positive @code{inf}.
12341 @node Symbolic Mode, Matrix Mode, Infinite Mode, Calculation Modes
12342 @subsection Symbolic Mode
12344 @noindent
12345 @cindex Symbolic mode
12346 @cindex Inexact results
12347 Calculations are normally performed numerically wherever possible.
12348 For example, the @code{calc-sqrt} command, or @code{sqrt} function in an
12349 algebraic expression, produces a numeric answer if the argument is a
12350 number or a symbolic expression if the argument is an expression:
12351 @kbd{2 Q} pushes 1.4142 but @kbd{@key{'} x+1 @key{RET} Q} pushes @samp{sqrt(x+1)}.
12353 @kindex m s
12354 @pindex calc-symbolic-mode
12355 In @dfn{Symbolic mode}, controlled by the @kbd{m s} (@code{calc-symbolic-mode})
12356 command, functions which would produce inexact, irrational results are
12357 left in symbolic form.  Thus @kbd{16 Q} pushes 4, but @kbd{2 Q} pushes
12358 @samp{sqrt(2)}.
12360 @kindex N
12361 @pindex calc-eval-num
12362 The shift-@kbd{N} (@code{calc-eval-num}) command evaluates numerically
12363 the expression at the top of the stack, by temporarily disabling
12364 @code{calc-symbolic-mode} and executing @kbd{=} (@code{calc-evaluate}).
12365 Given a numeric prefix argument, it also
12366 sets the floating-point precision to the specified value for the duration
12367 of the command.
12369 To evaluate a formula numerically without expanding the variables it
12370 contains, you can use the key sequence @kbd{m s a v m s} (this uses
12371 @code{calc-alg-evaluate}, which resimplifies but doesn't evaluate
12372 variables.)
12374 @node Matrix Mode, Automatic Recomputation, Symbolic Mode, Calculation Modes
12375 @subsection Matrix and Scalar Modes
12377 @noindent
12378 @cindex Matrix mode
12379 @cindex Scalar mode
12380 Calc sometimes makes assumptions during algebraic manipulation that
12381 are awkward or incorrect when vectors and matrices are involved.
12382 Calc has two modes, @dfn{Matrix mode} and @dfn{Scalar mode}, which
12383 modify its behavior around vectors in useful ways.
12385 @kindex m v
12386 @pindex calc-matrix-mode
12387 Press @kbd{m v} (@code{calc-matrix-mode}) once to enter Matrix mode.
12388 In this mode, all objects are assumed to be matrices unless provably
12389 otherwise.  One major effect is that Calc will no longer consider
12390 multiplication to be commutative.  (Recall that in matrix arithmetic,
12391 @samp{A*B} is not the same as @samp{B*A}.)  This assumption affects
12392 rewrite rules and algebraic simplification.  Another effect of this
12393 mode is that calculations that would normally produce constants like
12394 0 and 1 (e.g., @expr{a - a} and @expr{a / a}, respectively) will now
12395 produce function calls that represent ``generic'' zero or identity
12396 matrices: @samp{idn(0)}, @samp{idn(1)}.  The @code{idn} function
12397 @samp{idn(@var{a},@var{n})} returns @var{a} times an @var{n}x@var{n}
12398 identity matrix; if @var{n} is omitted, it doesn't know what
12399 dimension to use and so the @code{idn} call remains in symbolic
12400 form.  However, if this generic identity matrix is later combined
12401 with a matrix whose size is known, it will be converted into
12402 a true identity matrix of the appropriate size.  On the other hand,
12403 if it is combined with a scalar (as in @samp{idn(1) + 2}), Calc
12404 will assume it really was a scalar after all and produce, e.g., 3.
12406 Press @kbd{m v} a second time to get Scalar mode.  Here, objects are
12407 assumed @emph{not} to be vectors or matrices unless provably so.
12408 For example, normally adding a variable to a vector, as in
12409 @samp{[x, y, z] + a}, will leave the sum in symbolic form because
12410 as far as Calc knows, @samp{a} could represent either a number or
12411 another 3-vector.  In Scalar mode, @samp{a} is assumed to be a
12412 non-vector, and the addition is evaluated to @samp{[x+a, y+a, z+a]}.
12414 Press @kbd{m v} a third time to return to the normal mode of operation.
12416 If you press @kbd{m v} with a numeric prefix argument @var{n}, you
12417 get a special ``dimensioned'' Matrix mode in which matrices of
12418 unknown size are assumed to be @var{n}x@var{n} square matrices.
12419 Then, the function call @samp{idn(1)} will expand into an actual
12420 matrix rather than representing a ``generic'' matrix.  Simply typing
12421 @kbd{C-u m v} will get you a square Matrix mode, in which matrices of
12422 unknown size are assumed to be square matrices of unspecified size.
12424 @cindex Declaring scalar variables
12425 Of course these modes are approximations to the true state of
12426 affairs, which is probably that some quantities will be matrices
12427 and others will be scalars.  One solution is to ``declare''
12428 certain variables or functions to be scalar-valued.
12429 @xref{Declarations}, to see how to make declarations in Calc.
12431 There is nothing stopping you from declaring a variable to be
12432 scalar and then storing a matrix in it; however, if you do, the
12433 results you get from Calc may not be valid.  Suppose you let Calc
12434 get the result @samp{[x+a, y+a, z+a]} shown above, and then stored
12435 @samp{[1, 2, 3]} in @samp{a}.  The result would not be the same as
12436 for @samp{[x, y, z] + [1, 2, 3]}, but that's because you have broken
12437 your earlier promise to Calc that @samp{a} would be scalar.
12439 Another way to mix scalars and matrices is to use selections
12440 (@pxref{Selecting Subformulas}).  Use Matrix mode when operating on
12441 your formula normally; then, to apply Scalar mode to a certain part
12442 of the formula without affecting the rest just select that part,
12443 change into Scalar mode and press @kbd{=} to resimplify the part
12444 under this mode, then change back to Matrix mode before deselecting.
12446 @node Automatic Recomputation, Working Message, Matrix Mode, Calculation Modes
12447 @subsection Automatic Recomputation
12449 @noindent
12450 The @dfn{evaluates-to} operator, @samp{=>}, has the special
12451 property that any @samp{=>} formulas on the stack are recomputed
12452 whenever variable values or mode settings that might affect them
12453 are changed.  @xref{Evaluates-To Operator}.
12455 @kindex m C
12456 @pindex calc-auto-recompute
12457 The @kbd{m C} (@code{calc-auto-recompute}) command turns this
12458 automatic recomputation on and off.  If you turn it off, Calc will
12459 not update @samp{=>} operators on the stack (nor those in the
12460 attached Embedded mode buffer, if there is one).  They will not
12461 be updated unless you explicitly do so by pressing @kbd{=} or until
12462 you press @kbd{m C} to turn recomputation back on.  (While automatic
12463 recomputation is off, you can think of @kbd{m C m C} as a command
12464 to update all @samp{=>} operators while leaving recomputation off.)
12466 To update @samp{=>} operators in an Embedded buffer while
12467 automatic recomputation is off, use @w{@kbd{C-x * u}}.
12468 @xref{Embedded Mode}.
12470 @node Working Message,  , Automatic Recomputation, Calculation Modes
12471 @subsection Working Messages
12473 @noindent
12474 @cindex Performance
12475 @cindex Working messages
12476 Since the Calculator is written entirely in Emacs Lisp, which is not
12477 designed for heavy numerical work, many operations are quite slow.
12478 The Calculator normally displays the message @samp{Working...} in the
12479 echo area during any command that may be slow.  In addition, iterative
12480 operations such as square roots and trigonometric functions display the
12481 intermediate result at each step.  Both of these types of messages can
12482 be disabled if you find them distracting.
12484 @kindex m w
12485 @pindex calc-working
12486 Type @kbd{m w} (@code{calc-working}) with a numeric prefix of 0 to
12487 disable all ``working'' messages.  Use a numeric prefix of 1 to enable
12488 only the plain @samp{Working...} message.  Use a numeric prefix of 2 to
12489 see intermediate results as well.  With no numeric prefix this displays
12490 the current mode.
12492 While it may seem that the ``working'' messages will slow Calc down
12493 considerably, experiments have shown that their impact is actually
12494 quite small.  But if your terminal is slow you may find that it helps
12495 to turn the messages off.
12497 @node Simplification Modes, Declarations, Calculation Modes, Mode Settings
12498 @section Simplification Modes
12500 @noindent
12501 The current @dfn{simplification mode} controls how numbers and formulas
12502 are ``normalized'' when being taken from or pushed onto the stack.
12503 Some normalizations are unavoidable, such as rounding floating-point
12504 results to the current precision, and reducing fractions to simplest
12505 form.  Others, such as simplifying a formula like @expr{a+a} (or @expr{2+3}),
12506 are done by default but can be turned off when necessary.
12508 When you press a key like @kbd{+} when @expr{2} and @expr{3} are on the
12509 stack, Calc pops these numbers, normalizes them, creates the formula
12510 @expr{2+3}, normalizes it, and pushes the result.  Of course the standard
12511 rules for normalizing @expr{2+3} will produce the result @expr{5}.
12513 Simplification mode commands consist of the lower-case @kbd{m} prefix key
12514 followed by a shifted letter.
12516 @kindex m O
12517 @pindex calc-no-simplify-mode
12518 The @kbd{m O} (@code{calc-no-simplify-mode}) command turns off all optional
12519 simplifications.  These would leave a formula like @expr{2+3} alone.  In
12520 fact, nothing except simple numbers are ever affected by normalization
12521 in this mode.
12523 @kindex m N
12524 @pindex calc-num-simplify-mode
12525 The @kbd{m N} (@code{calc-num-simplify-mode}) command turns off simplification
12526 of any formulas except those for which all arguments are constants.  For
12527 example, @expr{1+2} is simplified to @expr{3}, and @expr{a+(2-2)} is
12528 simplified to @expr{a+0} but no further, since one argument of the sum
12529 is not a constant.  Unfortunately, @expr{(a+2)-2} is @emph{not} simplified
12530 because the top-level @samp{-} operator's arguments are not both
12531 constant numbers (one of them is the formula @expr{a+2}).
12532 A constant is a number or other numeric object (such as a constant
12533 error form or modulo form), or a vector all of whose
12534 elements are constant.
12536 @kindex m D
12537 @pindex calc-default-simplify-mode
12538 The @kbd{m D} (@code{calc-default-simplify-mode}) command restores the
12539 default simplifications for all formulas.  This includes many easy and
12540 fast algebraic simplifications such as @expr{a+0} to @expr{a}, and
12541 @expr{a + 2 a} to @expr{3 a}, as well as evaluating functions like
12542 @expr{@tfn{deriv}(x^2, x)} to @expr{2 x}.
12544 @kindex m B
12545 @pindex calc-bin-simplify-mode
12546 The @kbd{m B} (@code{calc-bin-simplify-mode}) mode applies the default
12547 simplifications to a result and then, if the result is an integer,
12548 uses the @kbd{b c} (@code{calc-clip}) command to clip the integer according
12549 to the current binary word size.  @xref{Binary Functions}.  Real numbers
12550 are rounded to the nearest integer and then clipped; other kinds of
12551 results (after the default simplifications) are left alone.
12553 @kindex m A
12554 @pindex calc-alg-simplify-mode
12555 The @kbd{m A} (@code{calc-alg-simplify-mode}) mode does algebraic
12556 simplification; it applies all the default simplifications, and also
12557 the more powerful (and slower) simplifications made by @kbd{a s}
12558 (@code{calc-simplify}).  @xref{Algebraic Simplifications}.
12560 @kindex m E
12561 @pindex calc-ext-simplify-mode
12562 The @kbd{m E} (@code{calc-ext-simplify-mode}) mode does ``extended''
12563 algebraic simplification, as by the @kbd{a e} (@code{calc-simplify-extended})
12564 command.  @xref{Unsafe Simplifications}.
12566 @kindex m U
12567 @pindex calc-units-simplify-mode
12568 The @kbd{m U} (@code{calc-units-simplify-mode}) mode does units
12569 simplification; it applies the command @kbd{u s}
12570 (@code{calc-simplify-units}), which in turn
12571 is a superset of @kbd{a s}.  In this mode, variable names which
12572 are identifiable as unit names (like @samp{mm} for ``millimeters'')
12573 are simplified with their unit definitions in mind.
12575 A common technique is to set the simplification mode down to the lowest
12576 amount of simplification you will allow to be applied automatically, then
12577 use manual commands like @kbd{a s} and @kbd{c c} (@code{calc-clean}) to
12578 perform higher types of simplifications on demand.  @xref{Algebraic
12579 Definitions}, for another sample use of No-Simplification mode.
12581 @node Declarations, Display Modes, Simplification Modes, Mode Settings
12582 @section Declarations
12584 @noindent
12585 A @dfn{declaration} is a statement you make that promises you will
12586 use a certain variable or function in a restricted way.  This may
12587 give Calc the freedom to do things that it couldn't do if it had to
12588 take the fully general situation into account.
12590 @menu
12591 * Declaration Basics::
12592 * Kinds of Declarations::
12593 * Functions for Declarations::
12594 @end menu
12596 @node Declaration Basics, Kinds of Declarations, Declarations, Declarations
12597 @subsection Declaration Basics
12599 @noindent
12600 @kindex s d
12601 @pindex calc-declare-variable
12602 The @kbd{s d} (@code{calc-declare-variable}) command is the easiest
12603 way to make a declaration for a variable.  This command prompts for
12604 the variable name, then prompts for the declaration.  The default
12605 at the declaration prompt is the previous declaration, if any.
12606 You can edit this declaration, or press @kbd{C-k} to erase it and
12607 type a new declaration.  (Or, erase it and press @key{RET} to clear
12608 the declaration, effectively ``undeclaring'' the variable.)
12610 A declaration is in general a vector of @dfn{type symbols} and
12611 @dfn{range} values.  If there is only one type symbol or range value,
12612 you can write it directly rather than enclosing it in a vector.
12613 For example, @kbd{s d foo @key{RET} real @key{RET}} declares @code{foo} to
12614 be a real number, and @kbd{s d bar @key{RET} [int, const, [1..6]] @key{RET}}
12615 declares @code{bar} to be a constant integer between 1 and 6.
12616 (Actually, you can omit the outermost brackets and Calc will
12617 provide them for you: @kbd{s d bar @key{RET} int, const, [1..6] @key{RET}}.)
12619 @cindex @code{Decls} variable
12620 @vindex Decls
12621 Declarations in Calc are kept in a special variable called @code{Decls}.
12622 This variable encodes the set of all outstanding declarations in
12623 the form of a matrix.  Each row has two elements:  A variable or
12624 vector of variables declared by that row, and the declaration
12625 specifier as described above.  You can use the @kbd{s D} command to
12626 edit this variable if you wish to see all the declarations at once.
12627 @xref{Operations on Variables}, for a description of this command
12628 and the @kbd{s p} command that allows you to save your declarations
12629 permanently if you wish.
12631 Items being declared can also be function calls.  The arguments in
12632 the call are ignored; the effect is to say that this function returns
12633 values of the declared type for any valid arguments.  The @kbd{s d}
12634 command declares only variables, so if you wish to make a function
12635 declaration you will have to edit the @code{Decls} matrix yourself.
12637 For example, the declaration matrix
12639 @smallexample
12640 @group
12641 [ [ foo,       real       ]
12642   [ [j, k, n], int        ]
12643   [ f(1,2,3),  [0 .. inf) ] ]
12644 @end group
12645 @end smallexample
12647 @noindent
12648 declares that @code{foo} represents a real number, @code{j}, @code{k}
12649 and @code{n} represent integers, and the function @code{f} always
12650 returns a real number in the interval shown.
12652 @vindex All
12653 If there is a declaration for the variable @code{All}, then that
12654 declaration applies to all variables that are not otherwise declared.
12655 It does not apply to function names.  For example, using the row
12656 @samp{[All, real]} says that all your variables are real unless they
12657 are explicitly declared without @code{real} in some other row.
12658 The @kbd{s d} command declares @code{All} if you give a blank
12659 response to the variable-name prompt.
12661 @node Kinds of Declarations, Functions for Declarations, Declaration Basics, Declarations
12662 @subsection Kinds of Declarations
12664 @noindent
12665 The type-specifier part of a declaration (that is, the second prompt
12666 in the @kbd{s d} command) can be a type symbol, an interval, or a
12667 vector consisting of zero or more type symbols followed by zero or
12668 more intervals or numbers that represent the set of possible values
12669 for the variable.
12671 @smallexample
12672 @group
12673 [ [ a, [1, 2, 3, 4, 5] ]
12674   [ b, [1 .. 5]        ]
12675   [ c, [int, 1 .. 5]   ] ]
12676 @end group
12677 @end smallexample
12679 Here @code{a} is declared to contain one of the five integers shown;
12680 @code{b} is any number in the interval from 1 to 5 (any real number
12681 since we haven't specified), and @code{c} is any integer in that
12682 interval.  Thus the declarations for @code{a} and @code{c} are
12683 nearly equivalent (see below).
12685 The type-specifier can be the empty vector @samp{[]} to say that
12686 nothing is known about a given variable's value.  This is the same
12687 as not declaring the variable at all except that it overrides any
12688 @code{All} declaration which would otherwise apply.
12690 The initial value of @code{Decls} is the empty vector @samp{[]}.
12691 If @code{Decls} has no stored value or if the value stored in it
12692 is not valid, it is ignored and there are no declarations as far
12693 as Calc is concerned.  (The @kbd{s d} command will replace such a
12694 malformed value with a fresh empty matrix, @samp{[]}, before recording
12695 the new declaration.)  Unrecognized type symbols are ignored.
12697 The following type symbols describe what sorts of numbers will be
12698 stored in a variable:
12700 @table @code
12701 @item int
12702 Integers.
12703 @item numint
12704 Numerical integers.  (Integers or integer-valued floats.)
12705 @item frac
12706 Fractions.  (Rational numbers which are not integers.)
12707 @item rat
12708 Rational numbers.  (Either integers or fractions.)
12709 @item float
12710 Floating-point numbers.
12711 @item real
12712 Real numbers.  (Integers, fractions, or floats.  Actually,
12713 intervals and error forms with real components also count as
12714 reals here.)
12715 @item pos
12716 Positive real numbers.  (Strictly greater than zero.)
12717 @item nonneg
12718 Nonnegative real numbers.  (Greater than or equal to zero.)
12719 @item number
12720 Numbers.  (Real or complex.)
12721 @end table
12723 Calc uses this information to determine when certain simplifications
12724 of formulas are safe.  For example, @samp{(x^y)^z} cannot be
12725 simplified to @samp{x^(y z)} in general; for example,
12726 @samp{((-3)^2)^1:2} is 3, but @samp{(-3)^(2*1:2) = (-3)^1} is @mathit{-3}.
12727 However, this simplification @emph{is} safe if @code{z} is known
12728 to be an integer, or if @code{x} is known to be a nonnegative
12729 real number.  If you have given declarations that allow Calc to
12730 deduce either of these facts, Calc will perform this simplification
12731 of the formula.
12733 Calc can apply a certain amount of logic when using declarations.
12734 For example, @samp{(x^y)^(2n+1)} will be simplified if @code{n}
12735 has been declared @code{int}; Calc knows that an integer times an
12736 integer, plus an integer, must always be an integer.  (In fact,
12737 Calc would simplify @samp{(-x)^(2n+1)} to @samp{-(x^(2n+1))} since
12738 it is able to determine that @samp{2n+1} must be an odd integer.)
12740 Similarly, @samp{(abs(x)^y)^z} will be simplified to @samp{abs(x)^(y z)}
12741 because Calc knows that the @code{abs} function always returns a
12742 nonnegative real.  If you had a @code{myabs} function that also had
12743 this property, you could get Calc to recognize it by adding the row
12744 @samp{[myabs(), nonneg]} to the @code{Decls} matrix.
12746 One instance of this simplification is @samp{sqrt(x^2)} (since the
12747 @code{sqrt} function is effectively a one-half power).  Normally
12748 Calc leaves this formula alone.  After the command
12749 @kbd{s d x @key{RET} real @key{RET}}, however, it can simplify the formula to
12750 @samp{abs(x)}.  And after @kbd{s d x @key{RET} nonneg @key{RET}}, Calc can
12751 simplify this formula all the way to @samp{x}.
12753 If there are any intervals or real numbers in the type specifier,
12754 they comprise the set of possible values that the variable or
12755 function being declared can have.  In particular, the type symbol
12756 @code{real} is effectively the same as the range @samp{[-inf .. inf]}
12757 (note that infinity is included in the range of possible values);
12758 @code{pos} is the same as @samp{(0 .. inf]}, and @code{nonneg} is
12759 the same as @samp{[0 .. inf]}.  Saying @samp{[real, [-5 .. 5]]} is
12760 redundant because the fact that the variable is real can be
12761 deduced just from the interval, but @samp{[int, [-5 .. 5]]} and
12762 @samp{[rat, [-5 .. 5]]} are useful combinations.
12764 Note that the vector of intervals or numbers is in the same format
12765 used by Calc's set-manipulation commands.  @xref{Set Operations}.
12767 The type specifier @samp{[1, 2, 3]} is equivalent to
12768 @samp{[numint, 1, 2, 3]}, @emph{not} to @samp{[int, 1, 2, 3]}.
12769 In other words, the range of possible values means only that
12770 the variable's value must be numerically equal to a number in
12771 that range, but not that it must be equal in type as well.
12772 Calc's set operations act the same way; @samp{in(2, [1., 2., 3.])}
12773 and @samp{in(1.5, [1:2, 3:2, 5:2])} both report ``true.''
12775 If you use a conflicting combination of type specifiers, the
12776 results are unpredictable.  An example is @samp{[pos, [0 .. 5]]},
12777 where the interval does not lie in the range described by the
12778 type symbol.
12780 ``Real'' declarations mostly affect simplifications involving powers
12781 like the one described above.  Another case where they are used
12782 is in the @kbd{a P} command which returns a list of all roots of a
12783 polynomial; if the variable has been declared real, only the real
12784 roots (if any) will be included in the list.
12786 ``Integer'' declarations are used for simplifications which are valid
12787 only when certain values are integers (such as @samp{(x^y)^z}
12788 shown above).
12790 Another command that makes use of declarations is @kbd{a s}, when
12791 simplifying equations and inequalities.  It will cancel @code{x}
12792 from both sides of @samp{a x = b x} only if it is sure @code{x}
12793 is non-zero, say, because it has a @code{pos} declaration.
12794 To declare specifically that @code{x} is real and non-zero,
12795 use @samp{[[-inf .. 0), (0 .. inf]]}.  (There is no way in the
12796 current notation to say that @code{x} is nonzero but not necessarily
12797 real.)  The @kbd{a e} command does ``unsafe'' simplifications,
12798 including cancelling @samp{x} from the equation when @samp{x} is
12799 not known to be nonzero.
12801 Another set of type symbols distinguish between scalars and vectors.
12803 @table @code
12804 @item scalar
12805 The value is not a vector.
12806 @item vector
12807 The value is a vector.
12808 @item matrix
12809 The value is a matrix (a rectangular vector of vectors).
12810 @item sqmatrix
12811 The value is a square matrix.
12812 @end table
12814 These type symbols can be combined with the other type symbols
12815 described above; @samp{[int, matrix]} describes an object which
12816 is a matrix of integers.
12818 Scalar/vector declarations are used to determine whether certain
12819 algebraic operations are safe.  For example, @samp{[a, b, c] + x}
12820 is normally not simplified to @samp{[a + x, b + x, c + x]}, but
12821 it will be if @code{x} has been declared @code{scalar}.  On the
12822 other hand, multiplication is usually assumed to be commutative,
12823 but the terms in @samp{x y} will never be exchanged if both @code{x}
12824 and @code{y} are known to be vectors or matrices.  (Calc currently
12825 never distinguishes between @code{vector} and @code{matrix}
12826 declarations.)
12828 @xref{Matrix Mode}, for a discussion of Matrix mode and
12829 Scalar mode, which are similar to declaring @samp{[All, matrix]}
12830 or @samp{[All, scalar]} but much more convenient.
12832 One more type symbol that is recognized is used with the @kbd{H a d}
12833 command for taking total derivatives of a formula.  @xref{Calculus}.
12835 @table @code
12836 @item const
12837 The value is a constant with respect to other variables.
12838 @end table
12840 Calc does not check the declarations for a variable when you store
12841 a value in it.  However, storing @mathit{-3.5} in a variable that has
12842 been declared @code{pos}, @code{int}, or @code{matrix} may have
12843 unexpected effects; Calc may evaluate @samp{sqrt(x^2)} to @expr{3.5}
12844 if it substitutes the value first, or to @expr{-3.5} if @code{x}
12845 was declared @code{pos} and the formula @samp{sqrt(x^2)} is
12846 simplified to @samp{x} before the value is substituted.  Before
12847 using a variable for a new purpose, it is best to use @kbd{s d}
12848 or @kbd{s D} to check to make sure you don't still have an old
12849 declaration for the variable that will conflict with its new meaning.
12851 @node Functions for Declarations,  , Kinds of Declarations, Declarations
12852 @subsection Functions for Declarations
12854 @noindent
12855 Calc has a set of functions for accessing the current declarations
12856 in a convenient manner.  These functions return 1 if the argument
12857 can be shown to have the specified property, or 0 if the argument
12858 can be shown @emph{not} to have that property; otherwise they are
12859 left unevaluated.  These functions are suitable for use with rewrite
12860 rules (@pxref{Conditional Rewrite Rules}) or programming constructs
12861 (@pxref{Conditionals in Macros}).  They can be entered only using
12862 algebraic notation.  @xref{Logical Operations}, for functions
12863 that perform other tests not related to declarations.
12865 For example, @samp{dint(17)} returns 1 because 17 is an integer, as
12866 do @samp{dint(n)} and @samp{dint(2 n - 3)} if @code{n} has been declared
12867 @code{int}, but @samp{dint(2.5)} and @samp{dint(n + 0.5)} return 0.
12868 Calc consults knowledge of its own built-in functions as well as your
12869 own declarations: @samp{dint(floor(x))} returns 1.
12871 @ignore
12872 @starindex
12873 @end ignore
12874 @tindex dint
12875 @ignore
12876 @starindex
12877 @end ignore
12878 @tindex dnumint
12879 @ignore
12880 @starindex
12881 @end ignore
12882 @tindex dnatnum
12883 The @code{dint} function checks if its argument is an integer.
12884 The @code{dnatnum} function checks if its argument is a natural
12885 number, i.e., a nonnegative integer.  The @code{dnumint} function
12886 checks if its argument is numerically an integer, i.e., either an
12887 integer or an integer-valued float.  Note that these and the other
12888 data type functions also accept vectors or matrices composed of
12889 suitable elements, and that real infinities @samp{inf} and @samp{-inf}
12890 are considered to be integers for the purposes of these functions.
12892 @ignore
12893 @starindex
12894 @end ignore
12895 @tindex drat
12896 The @code{drat} function checks if its argument is rational, i.e.,
12897 an integer or fraction.  Infinities count as rational, but intervals
12898 and error forms do not.
12900 @ignore
12901 @starindex
12902 @end ignore
12903 @tindex dreal
12904 The @code{dreal} function checks if its argument is real.  This
12905 includes integers, fractions, floats, real error forms, and intervals.
12907 @ignore
12908 @starindex
12909 @end ignore
12910 @tindex dimag
12911 The @code{dimag} function checks if its argument is imaginary,
12912 i.e., is mathematically equal to a real number times @expr{i}.
12914 @ignore
12915 @starindex
12916 @end ignore
12917 @tindex dpos
12918 @ignore
12919 @starindex
12920 @end ignore
12921 @tindex dneg
12922 @ignore
12923 @starindex
12924 @end ignore
12925 @tindex dnonneg
12926 The @code{dpos} function checks for positive (but nonzero) reals.
12927 The @code{dneg} function checks for negative reals.  The @code{dnonneg}
12928 function checks for nonnegative reals, i.e., reals greater than or
12929 equal to zero.  Note that the @kbd{a s} command can simplify an
12930 expression like @expr{x > 0} to 1 or 0 using @code{dpos}, and that
12931 @kbd{a s} is effectively applied to all conditions in rewrite rules,
12932 so the actual functions @code{dpos}, @code{dneg}, and @code{dnonneg}
12933 are rarely necessary.
12935 @ignore
12936 @starindex
12937 @end ignore
12938 @tindex dnonzero
12939 The @code{dnonzero} function checks that its argument is nonzero.
12940 This includes all nonzero real or complex numbers, all intervals that
12941 do not include zero, all nonzero modulo forms, vectors all of whose
12942 elements are nonzero, and variables or formulas whose values can be
12943 deduced to be nonzero.  It does not include error forms, since they
12944 represent values which could be anything including zero.  (This is
12945 also the set of objects considered ``true'' in conditional contexts.)
12947 @ignore
12948 @starindex
12949 @end ignore
12950 @tindex deven
12951 @ignore
12952 @starindex
12953 @end ignore
12954 @tindex dodd
12955 The @code{deven} function returns 1 if its argument is known to be
12956 an even integer (or integer-valued float); it returns 0 if its argument
12957 is known not to be even (because it is known to be odd or a non-integer).
12958 The @kbd{a s} command uses this to simplify a test of the form
12959 @samp{x % 2 = 0}.  There is also an analogous @code{dodd} function.
12961 @ignore
12962 @starindex
12963 @end ignore
12964 @tindex drange
12965 The @code{drange} function returns a set (an interval or a vector
12966 of intervals and/or numbers; @pxref{Set Operations}) that describes
12967 the set of possible values of its argument.  If the argument is
12968 a variable or a function with a declaration, the range is copied
12969 from the declaration.  Otherwise, the possible signs of the
12970 expression are determined using a method similar to @code{dpos},
12971 etc., and a suitable set like @samp{[0 .. inf]} is returned.  If
12972 the expression is not provably real, the @code{drange} function
12973 remains unevaluated.
12975 @ignore
12976 @starindex
12977 @end ignore
12978 @tindex dscalar
12979 The @code{dscalar} function returns 1 if its argument is provably
12980 scalar, or 0 if its argument is provably non-scalar.  It is left
12981 unevaluated if this cannot be determined.  (If Matrix mode or Scalar
12982 mode is in effect, this function returns 1 or 0, respectively,
12983 if it has no other information.)  When Calc interprets a condition
12984 (say, in a rewrite rule) it considers an unevaluated formula to be
12985 ``false.''  Thus, @samp{dscalar(a)} is ``true'' only if @code{a} is
12986 provably scalar, and @samp{!dscalar(a)} is ``true'' only if @code{a}
12987 is provably non-scalar; both are ``false'' if there is insufficient
12988 information to tell.
12990 @node Display Modes, Language Modes, Declarations, Mode Settings
12991 @section Display Modes
12993 @noindent
12994 The commands in this section are two-key sequences beginning with the
12995 @kbd{d} prefix.  The @kbd{d l} (@code{calc-line-numbering}) and @kbd{d b}
12996 (@code{calc-line-breaking}) commands are described elsewhere;
12997 @pxref{Stack Basics} and @pxref{Normal Language Modes}, respectively.
12998 Display formats for vectors and matrices are also covered elsewhere;
12999 @pxref{Vector and Matrix Formats}.
13001 One thing all display modes have in common is their treatment of the
13002 @kbd{H} prefix.  This prefix causes any mode command that would normally
13003 refresh the stack to leave the stack display alone.  The word ``Dirty''
13004 will appear in the mode line when Calc thinks the stack display may not
13005 reflect the latest mode settings.
13007 @kindex d @key{RET}
13008 @pindex calc-refresh-top
13009 The @kbd{d @key{RET}} (@code{calc-refresh-top}) command reformats the
13010 top stack entry according to all the current modes.  Positive prefix
13011 arguments reformat the top @var{n} entries; negative prefix arguments
13012 reformat the specified entry, and a prefix of zero is equivalent to
13013 @kbd{d @key{SPC}} (@code{calc-refresh}), which reformats the entire stack.
13014 For example, @kbd{H d s M-2 d @key{RET}} changes to scientific notation
13015 but reformats only the top two stack entries in the new mode.
13017 The @kbd{I} prefix has another effect on the display modes.  The mode
13018 is set only temporarily; the top stack entry is reformatted according
13019 to that mode, then the original mode setting is restored.  In other
13020 words, @kbd{I d s} is equivalent to @kbd{H d s d @key{RET} H d (@var{old mode})}.
13022 @menu
13023 * Radix Modes::
13024 * Grouping Digits::
13025 * Float Formats::
13026 * Complex Formats::
13027 * Fraction Formats::
13028 * HMS Formats::
13029 * Date Formats::
13030 * Truncating the Stack::
13031 * Justification::
13032 * Labels::
13033 @end menu
13035 @node Radix Modes, Grouping Digits, Display Modes, Display Modes
13036 @subsection Radix Modes
13038 @noindent
13039 @cindex Radix display
13040 @cindex Non-decimal numbers
13041 @cindex Decimal and non-decimal numbers
13042 Calc normally displays numbers in decimal (@dfn{base-10} or @dfn{radix-10})
13043 notation.  Calc can actually display in any radix from two (binary) to 36.
13044 When the radix is above 10, the letters @code{A} to @code{Z} are used as
13045 digits.  When entering such a number, letter keys are interpreted as
13046 potential digits rather than terminating numeric entry mode.
13048 @kindex d 2
13049 @kindex d 8
13050 @kindex d 6
13051 @kindex d 0
13052 @cindex Hexadecimal integers
13053 @cindex Octal integers
13054 The key sequences @kbd{d 2}, @kbd{d 8}, @kbd{d 6}, and @kbd{d 0} select
13055 binary, octal, hexadecimal, and decimal as the current display radix,
13056 respectively.  Numbers can always be entered in any radix, though the
13057 current radix is used as a default if you press @kbd{#} without any initial
13058 digits.  A number entered without a @kbd{#} is @emph{always} interpreted
13059 as decimal.
13061 @kindex d r
13062 @pindex calc-radix
13063 To set the radix generally, use @kbd{d r} (@code{calc-radix}) and enter
13064 an integer from 2 to 36.  You can specify the radix as a numeric prefix
13065 argument; otherwise you will be prompted for it.
13067 @kindex d z
13068 @pindex calc-leading-zeros
13069 @cindex Leading zeros
13070 Integers normally are displayed with however many digits are necessary to
13071 represent the integer and no more.  The @kbd{d z} (@code{calc-leading-zeros})
13072 command causes integers to be padded out with leading zeros according to the
13073 current binary word size.  (@xref{Binary Functions}, for a discussion of
13074 word size.)  If the absolute value of the word size is @expr{w}, all integers
13075 are displayed with at least enough digits to represent 
13076 @texline @math{2^w-1}
13077 @infoline @expr{(2^w)-1} 
13078 in the current radix.  (Larger integers will still be displayed in their
13079 entirety.) 
13081 @node Grouping Digits, Float Formats, Radix Modes, Display Modes
13082 @subsection Grouping Digits
13084 @noindent
13085 @kindex d g
13086 @pindex calc-group-digits
13087 @cindex Grouping digits
13088 @cindex Digit grouping
13089 Long numbers can be hard to read if they have too many digits.  For
13090 example, the factorial of 30 is 33 digits long!  Press @kbd{d g}
13091 (@code{calc-group-digits}) to enable @dfn{Grouping} mode, in which digits
13092 are displayed in clumps of 3 or 4 (depending on the current radix)
13093 separated by commas.
13095 The @kbd{d g} command toggles grouping on and off.
13096 With a numeric prefix of 0, this command displays the current state of
13097 the grouping flag; with an argument of minus one it disables grouping;
13098 with a positive argument @expr{N} it enables grouping on every @expr{N}
13099 digits.  For floating-point numbers, grouping normally occurs only
13100 before the decimal point.  A negative prefix argument @expr{-N} enables
13101 grouping every @expr{N} digits both before and after the decimal point.
13103 @kindex d ,
13104 @pindex calc-group-char
13105 The @kbd{d ,} (@code{calc-group-char}) command allows you to choose any
13106 character as the grouping separator.  The default is the comma character.
13107 If you find it difficult to read vectors of large integers grouped with
13108 commas, you may wish to use spaces or some other character instead.
13109 This command takes the next character you type, whatever it is, and
13110 uses it as the digit separator.  As a special case, @kbd{d , \} selects
13111 @samp{\,} (@TeX{}'s thin-space symbol) as the digit separator.
13113 Please note that grouped numbers will not generally be parsed correctly
13114 if re-read in textual form, say by the use of @kbd{C-x * y} and @kbd{C-x * g}.
13115 (@xref{Kill and Yank}, for details on these commands.)  One exception is
13116 the @samp{\,} separator, which doesn't interfere with parsing because it
13117 is ignored by @TeX{} language mode.
13119 @node Float Formats, Complex Formats, Grouping Digits, Display Modes
13120 @subsection Float Formats
13122 @noindent
13123 Floating-point quantities are normally displayed in standard decimal
13124 form, with scientific notation used if the exponent is especially high
13125 or low.  All significant digits are normally displayed.  The commands
13126 in this section allow you to choose among several alternative display
13127 formats for floats.
13129 @kindex d n
13130 @pindex calc-normal-notation
13131 The @kbd{d n} (@code{calc-normal-notation}) command selects the normal
13132 display format.  All significant figures in a number are displayed.
13133 With a positive numeric prefix, numbers are rounded if necessary to
13134 that number of significant digits.  With a negative numerix prefix,
13135 the specified number of significant digits less than the current
13136 precision is used.  (Thus @kbd{C-u -2 d n} displays 10 digits if the
13137 current precision is 12.)
13139 @kindex d f
13140 @pindex calc-fix-notation
13141 The @kbd{d f} (@code{calc-fix-notation}) command selects fixed-point
13142 notation.  The numeric argument is the number of digits after the
13143 decimal point, zero or more.  This format will relax into scientific
13144 notation if a nonzero number would otherwise have been rounded all the
13145 way to zero.  Specifying a negative number of digits is the same as
13146 for a positive number, except that small nonzero numbers will be rounded
13147 to zero rather than switching to scientific notation.
13149 @kindex d s
13150 @pindex calc-sci-notation
13151 @cindex Scientific notation, display of
13152 The @kbd{d s} (@code{calc-sci-notation}) command selects scientific
13153 notation.  A positive argument sets the number of significant figures
13154 displayed, of which one will be before and the rest after the decimal
13155 point.  A negative argument works the same as for @kbd{d n} format.
13156 The default is to display all significant digits.
13158 @kindex d e
13159 @pindex calc-eng-notation
13160 @cindex Engineering notation, display of
13161 The @kbd{d e} (@code{calc-eng-notation}) command selects engineering
13162 notation.  This is similar to scientific notation except that the
13163 exponent is rounded down to a multiple of three, with from one to three
13164 digits before the decimal point.  An optional numeric prefix sets the
13165 number of significant digits to display, as for @kbd{d s}.
13167 It is important to distinguish between the current @emph{precision} and
13168 the current @emph{display format}.  After the commands @kbd{C-u 10 p}
13169 and @kbd{C-u 6 d n} the Calculator computes all results to ten
13170 significant figures but displays only six.  (In fact, intermediate
13171 calculations are often carried to one or two more significant figures,
13172 but values placed on the stack will be rounded down to ten figures.)
13173 Numbers are never actually rounded to the display precision for storage,
13174 except by commands like @kbd{C-k} and @kbd{C-x * y} which operate on the
13175 actual displayed text in the Calculator buffer.
13177 @kindex d .
13178 @pindex calc-point-char
13179 The @kbd{d .} (@code{calc-point-char}) command selects the character used
13180 as a decimal point.  Normally this is a period; users in some countries
13181 may wish to change this to a comma.  Note that this is only a display
13182 style; on entry, periods must always be used to denote floating-point
13183 numbers, and commas to separate elements in a list.
13185 @node Complex Formats, Fraction Formats, Float Formats, Display Modes
13186 @subsection Complex Formats
13188 @noindent
13189 @kindex d c
13190 @pindex calc-complex-notation
13191 There are three supported notations for complex numbers in rectangular
13192 form.  The default is as a pair of real numbers enclosed in parentheses
13193 and separated by a comma: @samp{(a,b)}.  The @kbd{d c}
13194 (@code{calc-complex-notation}) command selects this style.
13196 @kindex d i
13197 @pindex calc-i-notation
13198 @kindex d j
13199 @pindex calc-j-notation
13200 The other notations are @kbd{d i} (@code{calc-i-notation}), in which
13201 numbers are displayed in @samp{a+bi} form, and @kbd{d j}
13202 (@code{calc-j-notation}) which displays the form @samp{a+bj} preferred
13203 in some disciplines.
13205 @cindex @code{i} variable
13206 @vindex i
13207 Complex numbers are normally entered in @samp{(a,b)} format.
13208 If you enter @samp{2+3i} as an algebraic formula, it will be stored as
13209 the formula @samp{2 + 3 * i}.  However, if you use @kbd{=} to evaluate
13210 this formula and you have not changed the variable @samp{i}, the @samp{i}
13211 will be interpreted as @samp{(0,1)} and the formula will be simplified
13212 to @samp{(2,3)}.  Other commands (like @code{calc-sin}) will @emph{not}
13213 interpret the formula @samp{2 + 3 * i} as a complex number.
13214 @xref{Variables}, under ``special constants.''
13216 @node Fraction Formats, HMS Formats, Complex Formats, Display Modes
13217 @subsection Fraction Formats
13219 @noindent
13220 @kindex d o
13221 @pindex calc-over-notation
13222 Display of fractional numbers is controlled by the @kbd{d o}
13223 (@code{calc-over-notation}) command.  By default, a number like
13224 eight thirds is displayed in the form @samp{8:3}.  The @kbd{d o} command
13225 prompts for a one- or two-character format.  If you give one character,
13226 that character is used as the fraction separator.  Common separators are
13227 @samp{:} and @samp{/}.  (During input of numbers, the @kbd{:} key must be
13228 used regardless of the display format; in particular, the @kbd{/} is used
13229 for RPN-style division, @emph{not} for entering fractions.)
13231 If you give two characters, fractions use ``integer-plus-fractional-part''
13232 notation.  For example, the format @samp{+/} would display eight thirds
13233 as @samp{2+2/3}.  If two colons are present in a number being entered,
13234 the number is interpreted in this form (so that the entries @kbd{2:2:3}
13235 and @kbd{8:3} are equivalent).
13237 It is also possible to follow the one- or two-character format with
13238 a number.  For example:  @samp{:10} or @samp{+/3}.  In this case,
13239 Calc adjusts all fractions that are displayed to have the specified
13240 denominator, if possible.  Otherwise it adjusts the denominator to
13241 be a multiple of the specified value.  For example, in @samp{:6} mode
13242 the fraction @expr{1:6} will be unaffected, but @expr{2:3} will be
13243 displayed as @expr{4:6}, @expr{1:2} will be displayed as @expr{3:6},
13244 and @expr{1:8} will be displayed as @expr{3:24}.  Integers are also
13245 affected by this mode:  3 is displayed as @expr{18:6}.  Note that the
13246 format @samp{:1} writes fractions the same as @samp{:}, but it writes
13247 integers as @expr{n:1}.
13249 The fraction format does not affect the way fractions or integers are
13250 stored, only the way they appear on the screen.  The fraction format
13251 never affects floats.
13253 @node HMS Formats, Date Formats, Fraction Formats, Display Modes
13254 @subsection HMS Formats
13256 @noindent
13257 @kindex d h
13258 @pindex calc-hms-notation
13259 The @kbd{d h} (@code{calc-hms-notation}) command controls the display of
13260 HMS (hours-minutes-seconds) forms.  It prompts for a string which
13261 consists basically of an ``hours'' marker, optional punctuation, a
13262 ``minutes'' marker, more optional punctuation, and a ``seconds'' marker.
13263 Punctuation is zero or more spaces, commas, or semicolons.  The hours
13264 marker is one or more non-punctuation characters.  The minutes and
13265 seconds markers must be single non-punctuation characters.
13267 The default HMS format is @samp{@@ ' "}, producing HMS values of the form
13268 @samp{23@@ 30' 15.75"}.  The format @samp{deg, ms} would display this same
13269 value as @samp{23deg, 30m15.75s}.  During numeric entry, the @kbd{h} or @kbd{o}
13270 keys are recognized as synonyms for @kbd{@@} regardless of display format.
13271 The @kbd{m} and @kbd{s} keys are recognized as synonyms for @kbd{'} and
13272 @kbd{"}, respectively, but only if an @kbd{@@} (or @kbd{h} or @kbd{o}) has
13273 already been typed; otherwise, they have their usual meanings
13274 (@kbd{m-} prefix and @kbd{s-} prefix).  Thus, @kbd{5 "}, @kbd{0 @@ 5 "}, and
13275 @kbd{0 h 5 s} are some of the ways to enter the quantity ``five seconds.''
13276 The @kbd{'} key is recognized as ``minutes'' only if @kbd{@@} (or @kbd{h} or
13277 @kbd{o}) has already been pressed; otherwise it means to switch to algebraic
13278 entry.
13280 @node Date Formats, Truncating the Stack, HMS Formats, Display Modes
13281 @subsection Date Formats
13283 @noindent
13284 @kindex d d
13285 @pindex calc-date-notation
13286 The @kbd{d d} (@code{calc-date-notation}) command controls the display
13287 of date forms (@pxref{Date Forms}).  It prompts for a string which
13288 contains letters that represent the various parts of a date and time.
13289 To show which parts should be omitted when the form represents a pure
13290 date with no time, parts of the string can be enclosed in @samp{< >}
13291 marks.  If you don't include @samp{< >} markers in the format, Calc
13292 guesses at which parts, if any, should be omitted when formatting
13293 pure dates.
13295 The default format is:  @samp{<H:mm:SSpp >Www Mmm D, YYYY}.
13296 An example string in this format is @samp{3:32pm Wed Jan 9, 1991}.
13297 If you enter a blank format string, this default format is
13298 reestablished.
13300 Calc uses @samp{< >} notation for nameless functions as well as for
13301 dates.  @xref{Specifying Operators}.  To avoid confusion with nameless
13302 functions, your date formats should avoid using the @samp{#} character.
13304 @menu
13305 * Date Formatting Codes::
13306 * Free-Form Dates::
13307 * Standard Date Formats::
13308 @end menu
13310 @node Date Formatting Codes, Free-Form Dates, Date Formats, Date Formats
13311 @subsubsection Date Formatting Codes
13313 @noindent
13314 When displaying a date, the current date format is used.  All
13315 characters except for letters and @samp{<} and @samp{>} are
13316 copied literally when dates are formatted.  The portion between
13317 @samp{< >} markers is omitted for pure dates, or included for
13318 date/time forms.  Letters are interpreted according to the table
13319 below.
13321 When dates are read in during algebraic entry, Calc first tries to
13322 match the input string to the current format either with or without
13323 the time part.  The punctuation characters (including spaces) must
13324 match exactly; letter fields must correspond to suitable text in
13325 the input.  If this doesn't work, Calc checks if the input is a
13326 simple number; if so, the number is interpreted as a number of days
13327 since Jan 1, 1 AD.  Otherwise, Calc tries a much more relaxed and
13328 flexible algorithm which is described in the next section.
13330 Weekday names are ignored during reading.
13332 Two-digit year numbers are interpreted as lying in the range
13333 from 1941 to 2039.  Years outside that range are always
13334 entered and displayed in full.  Year numbers with a leading
13335 @samp{+} sign are always interpreted exactly, allowing the
13336 entry and display of the years 1 through 99 AD.
13338 Here is a complete list of the formatting codes for dates:
13340 @table @asis
13341 @item Y
13342 Year:  ``91'' for 1991, ``7'' for 2007, ``+23'' for 23 AD.
13343 @item YY
13344 Year:  ``91'' for 1991, ``07'' for 2007, ``+23'' for 23 AD.
13345 @item BY
13346 Year:  ``91'' for 1991, `` 7'' for 2007, ``+23'' for 23 AD.
13347 @item YYY
13348 Year:  ``1991'' for 1991, ``23'' for 23 AD.
13349 @item YYYY
13350 Year:  ``1991'' for 1991, ``+23'' for 23 AD.
13351 @item aa
13352 Year:  ``ad'' or blank.
13353 @item AA
13354 Year:  ``AD'' or blank.
13355 @item aaa
13356 Year:  ``ad '' or blank.  (Note trailing space.)
13357 @item AAA
13358 Year:  ``AD '' or blank.
13359 @item aaaa
13360 Year:  ``a.d.'' or blank.
13361 @item AAAA
13362 Year:  ``A.D.'' or blank.
13363 @item bb
13364 Year:  ``bc'' or blank.
13365 @item BB
13366 Year:  ``BC'' or blank.
13367 @item bbb
13368 Year:  `` bc'' or blank.  (Note leading space.)
13369 @item BBB
13370 Year:  `` BC'' or blank.
13371 @item bbbb
13372 Year:  ``b.c.'' or blank.
13373 @item BBBB
13374 Year:  ``B.C.'' or blank.
13375 @item M
13376 Month:  ``8'' for August.
13377 @item MM
13378 Month:  ``08'' for August.
13379 @item BM
13380 Month:  `` 8'' for August.
13381 @item MMM
13382 Month:  ``AUG'' for August.
13383 @item Mmm
13384 Month:  ``Aug'' for August.
13385 @item mmm
13386 Month:  ``aug'' for August.
13387 @item MMMM
13388 Month:  ``AUGUST'' for August.
13389 @item Mmmm
13390 Month:  ``August'' for August.
13391 @item D
13392 Day:  ``7'' for 7th day of month.
13393 @item DD
13394 Day:  ``07'' for 7th day of month.
13395 @item BD
13396 Day:  `` 7'' for 7th day of month.
13397 @item W
13398 Weekday:  ``0'' for Sunday, ``6'' for Saturday.
13399 @item WWW
13400 Weekday:  ``SUN'' for Sunday.
13401 @item Www
13402 Weekday:  ``Sun'' for Sunday.
13403 @item www
13404 Weekday:  ``sun'' for Sunday.
13405 @item WWWW
13406 Weekday:  ``SUNDAY'' for Sunday.
13407 @item Wwww
13408 Weekday:  ``Sunday'' for Sunday.
13409 @item d
13410 Day of year:  ``34'' for Feb. 3.
13411 @item ddd
13412 Day of year:  ``034'' for Feb. 3.
13413 @item bdd
13414 Day of year:  `` 34'' for Feb. 3.
13415 @item h
13416 Hour:  ``5'' for 5 AM; ``17'' for 5 PM.
13417 @item hh
13418 Hour:  ``05'' for 5 AM; ``17'' for 5 PM.
13419 @item bh
13420 Hour:  `` 5'' for 5 AM; ``17'' for 5 PM.
13421 @item H
13422 Hour:  ``5'' for 5 AM and 5 PM.
13423 @item HH
13424 Hour:  ``05'' for 5 AM and 5 PM.
13425 @item BH
13426 Hour:  `` 5'' for 5 AM and 5 PM.
13427 @item p
13428 AM/PM:  ``a'' or ``p''.
13429 @item P
13430 AM/PM:  ``A'' or ``P''.
13431 @item pp
13432 AM/PM:  ``am'' or ``pm''.
13433 @item PP
13434 AM/PM:  ``AM'' or ``PM''.
13435 @item pppp
13436 AM/PM:  ``a.m.'' or ``p.m.''.
13437 @item PPPP
13438 AM/PM:  ``A.M.'' or ``P.M.''.
13439 @item m
13440 Minutes:  ``7'' for 7.
13441 @item mm
13442 Minutes:  ``07'' for 7.
13443 @item bm
13444 Minutes:  `` 7'' for 7.
13445 @item s
13446 Seconds:  ``7'' for 7;  ``7.23'' for 7.23.
13447 @item ss
13448 Seconds:  ``07'' for 7;  ``07.23'' for 7.23.
13449 @item bs
13450 Seconds:  `` 7'' for 7;  `` 7.23'' for 7.23.
13451 @item SS
13452 Optional seconds:  ``07'' for 7;  blank for 0.
13453 @item BS
13454 Optional seconds:  `` 7'' for 7;  blank for 0.
13455 @item N
13456 Numeric date/time:  ``726842.25'' for 6:00am Wed Jan 9, 1991.
13457 @item n
13458 Numeric date:  ``726842'' for any time on Wed Jan 9, 1991.
13459 @item J
13460 Julian date/time:  ``2448265.75'' for 6:00am Wed Jan 9, 1991.
13461 @item j
13462 Julian date:  ``2448266'' for any time on Wed Jan 9, 1991.
13463 @item U
13464 Unix time:  ``663400800'' for 6:00am Wed Jan 9, 1991.
13465 @item X
13466 Brackets suppression.  An ``X'' at the front of the format
13467 causes the surrounding @w{@samp{< >}} delimiters to be omitted
13468 when formatting dates.  Note that the brackets are still
13469 required for algebraic entry.
13470 @end table
13472 If ``SS'' or ``BS'' (optional seconds) is preceded by a colon, the
13473 colon is also omitted if the seconds part is zero.
13475 If ``bb,'' ``bbb'' or ``bbbb'' or their upper-case equivalents
13476 appear in the format, then negative year numbers are displayed
13477 without a minus sign.  Note that ``aa'' and ``bb'' are mutually
13478 exclusive.  Some typical usages would be @samp{YYYY AABB};
13479 @samp{AAAYYYYBBB}; @samp{YYYYBBB}.
13481 The formats ``YY,'' ``YYYY,'' ``MM,'' ``DD,'' ``ddd,'' ``hh,'' ``HH,''
13482 ``mm,'' ``ss,'' and ``SS'' actually match any number of digits during
13483 reading unless several of these codes are strung together with no
13484 punctuation in between, in which case the input must have exactly as
13485 many digits as there are letters in the format.
13487 The ``j,'' ``J,'' and ``U'' formats do not make any time zone
13488 adjustment.  They effectively use @samp{julian(x,0)} and
13489 @samp{unixtime(x,0)} to make the conversion; @pxref{Date Arithmetic}.
13491 @node Free-Form Dates, Standard Date Formats, Date Formatting Codes, Date Formats
13492 @subsubsection Free-Form Dates
13494 @noindent
13495 When reading a date form during algebraic entry, Calc falls back
13496 on the algorithm described here if the input does not exactly
13497 match the current date format.  This algorithm generally
13498 ``does the right thing'' and you don't have to worry about it,
13499 but it is described here in full detail for the curious.
13501 Calc does not distinguish between upper- and lower-case letters
13502 while interpreting dates.
13504 First, the time portion, if present, is located somewhere in the
13505 text and then removed.  The remaining text is then interpreted as
13506 the date.
13508 A time is of the form @samp{hh:mm:ss}, possibly with the seconds
13509 part omitted and possibly with an AM/PM indicator added to indicate
13510 12-hour time.  If the AM/PM is present, the minutes may also be
13511 omitted.  The AM/PM part may be any of the words @samp{am},
13512 @samp{pm}, @samp{noon}, or @samp{midnight}; each of these may be
13513 abbreviated to one letter, and the alternate forms @samp{a.m.},
13514 @samp{p.m.}, and @samp{mid} are also understood.  Obviously
13515 @samp{noon} and @samp{midnight} are allowed only on 12:00:00.
13516 The words @samp{noon}, @samp{mid}, and @samp{midnight} are also
13517 recognized with no number attached.
13519 If there is no AM/PM indicator, the time is interpreted in 24-hour
13520 format.
13522 To read the date portion, all words and numbers are isolated
13523 from the string; other characters are ignored.  All words must
13524 be either month names or day-of-week names (the latter of which
13525 are ignored).  Names can be written in full or as three-letter
13526 abbreviations.
13528 Large numbers, or numbers with @samp{+} or @samp{-} signs,
13529 are interpreted as years.  If one of the other numbers is
13530 greater than 12, then that must be the day and the remaining
13531 number in the input is therefore the month.  Otherwise, Calc
13532 assumes the month, day and year are in the same order that they
13533 appear in the current date format.  If the year is omitted, the
13534 current year is taken from the system clock.
13536 If there are too many or too few numbers, or any unrecognizable
13537 words, then the input is rejected.
13539 If there are any large numbers (of five digits or more) other than
13540 the year, they are ignored on the assumption that they are something
13541 like Julian dates that were included along with the traditional
13542 date components when the date was formatted.
13544 One of the words @samp{ad}, @samp{a.d.}, @samp{bc}, or @samp{b.c.}
13545 may optionally be used; the latter two are equivalent to a
13546 minus sign on the year value.
13548 If you always enter a four-digit year, and use a name instead
13549 of a number for the month, there is no danger of ambiguity.
13551 @node Standard Date Formats,  , Free-Form Dates, Date Formats
13552 @subsubsection Standard Date Formats
13554 @noindent
13555 There are actually ten standard date formats, numbered 0 through 9.
13556 Entering a blank line at the @kbd{d d} command's prompt gives
13557 you format number 1, Calc's usual format.  You can enter any digit
13558 to select the other formats.
13560 To create your own standard date formats, give a numeric prefix
13561 argument from 0 to 9 to the @w{@kbd{d d}} command.  The format you
13562 enter will be recorded as the new standard format of that
13563 number, as well as becoming the new current date format.
13564 You can save your formats permanently with the @w{@kbd{m m}}
13565 command (@pxref{Mode Settings}).
13567 @table @asis
13568 @item 0
13569 @samp{N}  (Numerical format)
13570 @item 1
13571 @samp{<H:mm:SSpp >Www Mmm D, YYYY}  (American format)
13572 @item 2
13573 @samp{D Mmm YYYY<, h:mm:SS>}  (European format)
13574 @item 3
13575 @samp{Www Mmm BD< hh:mm:ss> YYYY}  (Unix written date format)
13576 @item 4
13577 @samp{M/D/Y< H:mm:SSpp>}  (American slashed format)
13578 @item 5
13579 @samp{D.M.Y< h:mm:SS>}  (European dotted format)
13580 @item 6
13581 @samp{M-D-Y< H:mm:SSpp>}  (American dashed format)
13582 @item 7
13583 @samp{D-M-Y< h:mm:SS>}  (European dashed format)
13584 @item 8
13585 @samp{j<, h:mm:ss>}  (Julian day plus time)
13586 @item 9
13587 @samp{YYddd< hh:mm:ss>}  (Year-day format)
13588 @end table
13590 @node Truncating the Stack, Justification, Date Formats, Display Modes
13591 @subsection Truncating the Stack
13593 @noindent
13594 @kindex d t
13595 @pindex calc-truncate-stack
13596 @cindex Truncating the stack
13597 @cindex Narrowing the stack
13598 The @kbd{d t} (@code{calc-truncate-stack}) command moves the @samp{.}@:
13599 line that marks the top-of-stack up or down in the Calculator buffer.
13600 The number right above that line is considered to the be at the top of
13601 the stack.  Any numbers below that line are ``hidden'' from all stack
13602 operations (although still visible to the user).  This is similar to the
13603 Emacs ``narrowing'' feature, except that the values below the @samp{.}
13604 are @emph{visible}, just temporarily frozen.  This feature allows you to
13605 keep several independent calculations running at once in different parts
13606 of the stack, or to apply a certain command to an element buried deep in
13607 the stack.
13609 Pressing @kbd{d t} by itself moves the @samp{.} to the line the cursor
13610 is on.  Thus, this line and all those below it become hidden.  To un-hide
13611 these lines, move down to the end of the buffer and press @w{@kbd{d t}}.
13612 With a positive numeric prefix argument @expr{n}, @kbd{d t} hides the
13613 bottom @expr{n} values in the buffer.  With a negative argument, it hides
13614 all but the top @expr{n} values.  With an argument of zero, it hides zero
13615 values, i.e., moves the @samp{.} all the way down to the bottom.
13617 @kindex d [
13618 @pindex calc-truncate-up
13619 @kindex d ]
13620 @pindex calc-truncate-down
13621 The @kbd{d [} (@code{calc-truncate-up}) and @kbd{d ]}
13622 (@code{calc-truncate-down}) commands move the @samp{.} up or down one
13623 line at a time (or several lines with a prefix argument).
13625 @node Justification, Labels, Truncating the Stack, Display Modes
13626 @subsection Justification
13628 @noindent
13629 @kindex d <
13630 @pindex calc-left-justify
13631 @kindex d =
13632 @pindex calc-center-justify
13633 @kindex d >
13634 @pindex calc-right-justify
13635 Values on the stack are normally left-justified in the window.  You can
13636 control this arrangement by typing @kbd{d <} (@code{calc-left-justify}),
13637 @kbd{d >} (@code{calc-right-justify}), or @kbd{d =}
13638 (@code{calc-center-justify}).  For example, in Right-Justification mode,
13639 stack entries are displayed flush-right against the right edge of the
13640 window.
13642 If you change the width of the Calculator window you may have to type
13643 @kbd{d @key{SPC}} (@code{calc-refresh}) to re-align right-justified or centered
13644 text.
13646 Right-justification is especially useful together with fixed-point
13647 notation (see @code{d f}; @code{calc-fix-notation}).  With these modes
13648 together, the decimal points on numbers will always line up.
13650 With a numeric prefix argument, the justification commands give you
13651 a little extra control over the display.  The argument specifies the
13652 horizontal ``origin'' of a display line.  It is also possible to
13653 specify a maximum line width using the @kbd{d b} command (@pxref{Normal
13654 Language Modes}).  For reference, the precise rules for formatting and
13655 breaking lines are given below.  Notice that the interaction between
13656 origin and line width is slightly different in each justification
13657 mode.
13659 In Left-Justified mode, the line is indented by a number of spaces
13660 given by the origin (default zero).  If the result is longer than the
13661 maximum line width, if given, or too wide to fit in the Calc window
13662 otherwise, then it is broken into lines which will fit; each broken
13663 line is indented to the origin.
13665 In Right-Justified mode, lines are shifted right so that the rightmost
13666 character is just before the origin, or just before the current
13667 window width if no origin was specified.  If the line is too long
13668 for this, then it is broken; the current line width is used, if
13669 specified, or else the origin is used as a width if that is
13670 specified, or else the line is broken to fit in the window.
13672 In Centering mode, the origin is the column number of the center of
13673 each stack entry.  If a line width is specified, lines will not be
13674 allowed to go past that width; Calc will either indent less or
13675 break the lines if necessary.  If no origin is specified, half the
13676 line width or Calc window width is used.
13678 Note that, in each case, if line numbering is enabled the display
13679 is indented an additional four spaces to make room for the line
13680 number.  The width of the line number is taken into account when
13681 positioning according to the current Calc window width, but not
13682 when positioning by explicit origins and widths.  In the latter
13683 case, the display is formatted as specified, and then uniformly
13684 shifted over four spaces to fit the line numbers.
13686 @node Labels,  , Justification, Display Modes
13687 @subsection Labels
13689 @noindent
13690 @kindex d @{
13691 @pindex calc-left-label
13692 The @kbd{d @{} (@code{calc-left-label}) command prompts for a string,
13693 then displays that string to the left of every stack entry.  If the
13694 entries are left-justified (@pxref{Justification}), then they will
13695 appear immediately after the label (unless you specified an origin
13696 greater than the length of the label).  If the entries are centered
13697 or right-justified, the label appears on the far left and does not
13698 affect the horizontal position of the stack entry.
13700 Give a blank string (with @kbd{d @{ @key{RET}}) to turn the label off.
13702 @kindex d @}
13703 @pindex calc-right-label
13704 The @kbd{d @}} (@code{calc-right-label}) command similarly adds a
13705 label on the righthand side.  It does not affect positioning of
13706 the stack entries unless they are right-justified.  Also, if both
13707 a line width and an origin are given in Right-Justified mode, the
13708 stack entry is justified to the origin and the righthand label is
13709 justified to the line width.
13711 One application of labels would be to add equation numbers to
13712 formulas you are manipulating in Calc and then copying into a
13713 document (possibly using Embedded mode).  The equations would
13714 typically be centered, and the equation numbers would be on the
13715 left or right as you prefer.
13717 @node Language Modes, Modes Variable, Display Modes, Mode Settings
13718 @section Language Modes
13720 @noindent
13721 The commands in this section change Calc to use a different notation for
13722 entry and display of formulas, corresponding to the conventions of some
13723 other common language such as Pascal or La@TeX{}.  Objects displayed on the
13724 stack or yanked from the Calculator to an editing buffer will be formatted
13725 in the current language; objects entered in algebraic entry or yanked from
13726 another buffer will be interpreted according to the current language.
13728 The current language has no effect on things written to or read from the
13729 trail buffer, nor does it affect numeric entry.  Only algebraic entry is
13730 affected.  You can make even algebraic entry ignore the current language
13731 and use the standard notation by giving a numeric prefix, e.g., @kbd{C-u '}.
13733 For example, suppose the formula @samp{2*a[1] + atan(a[2])} occurs in a C
13734 program; elsewhere in the program you need the derivatives of this formula
13735 with respect to @samp{a[1]} and @samp{a[2]}.  First, type @kbd{d C}
13736 to switch to C notation.  Now use @code{C-u C-x * g} to grab the formula
13737 into the Calculator, @kbd{a d a[1] @key{RET}} to differentiate with respect
13738 to the first variable, and @kbd{C-x * y} to yank the formula for the derivative
13739 back into your C program.  Press @kbd{U} to undo the differentiation and
13740 repeat with @kbd{a d a[2] @key{RET}} for the other derivative.
13742 Without being switched into C mode first, Calc would have misinterpreted
13743 the brackets in @samp{a[1]} and @samp{a[2]}, would not have known that
13744 @code{atan} was equivalent to Calc's built-in @code{arctan} function,
13745 and would have written the formula back with notations (like implicit
13746 multiplication) which would not have been valid for a C program.
13748 As another example, suppose you are maintaining a C program and a La@TeX{}
13749 document, each of which needs a copy of the same formula.  You can grab the
13750 formula from the program in C mode, switch to La@TeX{} mode, and yank the
13751 formula into the document in La@TeX{} math-mode format.
13753 Language modes are selected by typing the letter @kbd{d} followed by a
13754 shifted letter key.
13756 @menu
13757 * Normal Language Modes::
13758 * C FORTRAN Pascal::
13759 * TeX and LaTeX Language Modes::
13760 * Eqn Language Mode::
13761 * Mathematica Language Mode::
13762 * Maple Language Mode::
13763 * Compositions::
13764 * Syntax Tables::
13765 @end menu
13767 @node Normal Language Modes, C FORTRAN Pascal, Language Modes, Language Modes
13768 @subsection Normal Language Modes
13770 @noindent
13771 @kindex d N
13772 @pindex calc-normal-language
13773 The @kbd{d N} (@code{calc-normal-language}) command selects the usual
13774 notation for Calc formulas, as described in the rest of this manual.
13775 Matrices are displayed in a multi-line tabular format, but all other
13776 objects are written in linear form, as they would be typed from the
13777 keyboard.
13779 @kindex d O
13780 @pindex calc-flat-language
13781 @cindex Matrix display
13782 The @kbd{d O} (@code{calc-flat-language}) command selects a language
13783 identical with the normal one, except that matrices are written in
13784 one-line form along with everything else.  In some applications this
13785 form may be more suitable for yanking data into other buffers.
13787 @kindex d b
13788 @pindex calc-line-breaking
13789 @cindex Line breaking
13790 @cindex Breaking up long lines
13791 Even in one-line mode, long formulas or vectors will still be split
13792 across multiple lines if they exceed the width of the Calculator window.
13793 The @kbd{d b} (@code{calc-line-breaking}) command turns this line-breaking
13794 feature on and off.  (It works independently of the current language.)
13795 If you give a numeric prefix argument of five or greater to the @kbd{d b}
13796 command, that argument will specify the line width used when breaking
13797 long lines.
13799 @kindex d B
13800 @pindex calc-big-language
13801 The @kbd{d B} (@code{calc-big-language}) command selects a language
13802 which uses textual approximations to various mathematical notations,
13803 such as powers, quotients, and square roots:
13805 @example
13806   ____________
13807  | a + 1    2
13808  | ----- + c
13809 \|   b
13810 @end example
13812 @noindent
13813 in place of @samp{sqrt((a+1)/b + c^2)}.
13815 Subscripts like @samp{a_i} are displayed as actual subscripts in Big
13816 mode.  Double subscripts, @samp{a_i_j} (@samp{subscr(subscr(a, i), j)})
13817 are displayed as @samp{a} with subscripts separated by commas:
13818 @samp{i, j}.  They must still be entered in the usual underscore
13819 notation.
13821 One slight ambiguity of Big notation is that
13823 @example
13824   3
13825 - -
13826   4
13827 @end example
13829 @noindent
13830 can represent either the negative rational number @expr{-3:4}, or the
13831 actual expression @samp{-(3/4)}; but the latter formula would normally
13832 never be displayed because it would immediately be evaluated to
13833 @expr{-3:4} or @expr{-0.75}, so this ambiguity is not a problem in
13834 typical use.
13836 Non-decimal numbers are displayed with subscripts.  Thus there is no
13837 way to tell the difference between @samp{16#C2} and @samp{C2_16},
13838 though generally you will know which interpretation is correct.
13839 Logarithms @samp{log(x,b)} and @samp{log10(x)} also use subscripts
13840 in Big mode.
13842 In Big mode, stack entries often take up several lines.  To aid
13843 readability, stack entries are separated by a blank line in this mode.
13844 You may find it useful to expand the Calc window's height using
13845 @kbd{C-x ^} (@code{enlarge-window}) or to make the Calc window the only
13846 one on the screen with @kbd{C-x 1} (@code{delete-other-windows}).
13848 Long lines are currently not rearranged to fit the window width in
13849 Big mode, so you may need to use the @kbd{<} and @kbd{>} keys
13850 to scroll across a wide formula.  For really big formulas, you may
13851 even need to use @kbd{@{} and @kbd{@}} to scroll up and down.
13853 @kindex d U
13854 @pindex calc-unformatted-language
13855 The @kbd{d U} (@code{calc-unformatted-language}) command altogether disables
13856 the use of operator notation in formulas.  In this mode, the formula
13857 shown above would be displayed:
13859 @example
13860 sqrt(add(div(add(a, 1), b), pow(c, 2)))
13861 @end example
13863 These four modes differ only in display format, not in the format
13864 expected for algebraic entry.  The standard Calc operators work in
13865 all four modes, and unformatted notation works in any language mode
13866 (except that Mathematica mode expects square brackets instead of
13867 parentheses).
13869 @node C FORTRAN Pascal, TeX and LaTeX Language Modes, Normal Language Modes, Language Modes
13870 @subsection C, FORTRAN, and Pascal Modes
13872 @noindent
13873 @kindex d C
13874 @pindex calc-c-language
13875 @cindex C language
13876 The @kbd{d C} (@code{calc-c-language}) command selects the conventions
13877 of the C language for display and entry of formulas.  This differs from
13878 the normal language mode in a variety of (mostly minor) ways.  In
13879 particular, C language operators and operator precedences are used in
13880 place of Calc's usual ones.  For example, @samp{a^b} means @samp{xor(a,b)}
13881 in C mode; a value raised to a power is written as a function call,
13882 @samp{pow(a,b)}.
13884 In C mode, vectors and matrices use curly braces instead of brackets.
13885 Octal and hexadecimal values are written with leading @samp{0} or @samp{0x}
13886 rather than using the @samp{#} symbol.  Array subscripting is
13887 translated into @code{subscr} calls, so that @samp{a[i]} in C
13888 mode is the same as @samp{a_i} in Normal mode.  Assignments
13889 turn into the @code{assign} function, which Calc normally displays
13890 using the @samp{:=} symbol.
13892 The variables @code{pi} and @code{e} would be displayed @samp{pi}
13893 and @samp{e} in Normal mode, but in C mode they are displayed as
13894 @samp{M_PI} and @samp{M_E}, corresponding to the names of constants
13895 typically provided in the @file{<math.h>} header.  Functions whose
13896 names are different in C are translated automatically for entry and
13897 display purposes.  For example, entering @samp{asin(x)} will push the
13898 formula @samp{arcsin(x)} onto the stack; this formula will be displayed
13899 as @samp{asin(x)} as long as C mode is in effect.
13901 @kindex d P
13902 @pindex calc-pascal-language
13903 @cindex Pascal language
13904 The @kbd{d P} (@code{calc-pascal-language}) command selects Pascal
13905 conventions.  Like C mode, Pascal mode interprets array brackets and uses
13906 a different table of operators.  Hexadecimal numbers are entered and
13907 displayed with a preceding dollar sign.  (Thus the regular meaning of
13908 @kbd{$2} during algebraic entry does not work in Pascal mode, though
13909 @kbd{$} (and @kbd{$$}, etc.) not followed by digits works the same as
13910 always.)  No special provisions are made for other non-decimal numbers,
13911 vectors, and so on, since there is no universally accepted standard way
13912 of handling these in Pascal.
13914 @kindex d F
13915 @pindex calc-fortran-language
13916 @cindex FORTRAN language
13917 The @kbd{d F} (@code{calc-fortran-language}) command selects FORTRAN
13918 conventions.  Various function names are transformed into FORTRAN
13919 equivalents.  Vectors are written as @samp{/1, 2, 3/}, and may be
13920 entered this way or using square brackets.  Since FORTRAN uses round
13921 parentheses for both function calls and array subscripts, Calc displays
13922 both in the same way; @samp{a(i)} is interpreted as a function call
13923 upon reading, and subscripts must be entered as @samp{subscr(a, i)}.
13924 Also, if the variable @code{a} has been declared to have type
13925 @code{vector} or @code{matrix} then @samp{a(i)} will be parsed as a
13926 subscript.  (@xref{Declarations}.)  Usually it doesn't matter, though;
13927 if you enter the subscript expression @samp{a(i)} and Calc interprets
13928 it as a function call, you'll never know the difference unless you
13929 switch to another language mode or replace @code{a} with an actual
13930 vector (or unless @code{a} happens to be the name of a built-in
13931 function!).
13933 Underscores are allowed in variable and function names in all of these
13934 language modes.  The underscore here is equivalent to the @samp{#} in
13935 Normal mode, or to hyphens in the underlying Emacs Lisp variable names.
13937 FORTRAN and Pascal modes normally do not adjust the case of letters in
13938 formulas.  Most built-in Calc names use lower-case letters.  If you use a
13939 positive numeric prefix argument with @kbd{d P} or @kbd{d F}, these
13940 modes will use upper-case letters exclusively for display, and will
13941 convert to lower-case on input.  With a negative prefix, these modes
13942 convert to lower-case for display and input.
13944 @node TeX and LaTeX Language Modes, Eqn Language Mode, C FORTRAN Pascal, Language Modes
13945 @subsection @TeX{} and La@TeX{} Language Modes
13947 @noindent
13948 @kindex d T
13949 @pindex calc-tex-language
13950 @cindex TeX language
13951 @kindex d L
13952 @pindex calc-latex-language
13953 @cindex LaTeX language
13954 The @kbd{d T} (@code{calc-tex-language}) command selects the conventions
13955 of ``math mode'' in Donald Knuth's @TeX{} typesetting language,
13956 and the @kbd{d L} (@code{calc-latex-language}) command selects the
13957 conventions of ``math mode'' in La@TeX{}, a typesetting language that
13958 uses @TeX{} as its formatting engine.  Calc's La@TeX{} language mode can
13959 read any formula that the @TeX{} language mode can, although La@TeX{}
13960 mode may display it differently.
13962 Formulas are entered and displayed in the appropriate notation;
13963 @texline @math{\sin(a/b)}
13964 @infoline @expr{sin(a/b)}
13965 will appear as @samp{\sin\left( a \over b \right)} in @TeX{} mode and
13966 @samp{\sin\left(\frac@{a@}@{b@}\right)} in La@TeX{} mode.
13967 Math formulas are often enclosed by @samp{$ $} signs in @TeX{} and
13968 La@TeX{}; these should be omitted when interfacing with Calc.  To Calc,
13969 the @samp{$} sign has the same meaning it always does in algebraic
13970 formulas (a reference to an existing entry on the stack).
13972 Complex numbers are displayed as in @samp{3 + 4i}.  Fractions and
13973 quotients are written using @code{\over} in @TeX{} mode (as in 
13974 @code{@{a \over b@}}) and @code{\frac} in La@TeX{} mode (as in
13975 @code{\frac@{a@}@{b@}});  binomial coefficients are written with
13976 @code{\choose} in @TeX{} mode (as in @code{@{a \choose b@}}) and
13977 @code{\binom} in La@TeX{} mode (as in @code{\binom@{a@}@{b@}}).
13978 Interval forms are written with @code{\ldots}, and error forms are
13979 written with @code{\pm}. Absolute values are written as in 
13980 @samp{|x + 1|}, and the floor and ceiling functions are written with
13981 @code{\lfloor}, @code{\rfloor}, etc. The words @code{\left} and
13982 @code{\right} are ignored when reading formulas in @TeX{} and La@TeX{}
13983 modes.  Both @code{inf} and @code{uinf} are written as @code{\infty};
13984 when read, @code{\infty} always translates to @code{inf}.
13986 Function calls are written the usual way, with the function name followed
13987 by the arguments in parentheses.  However, functions for which @TeX{}
13988 and La@TeX{} have special names (like @code{\sin}) will use curly braces
13989 instead of parentheses for very simple arguments.  During input, curly
13990 braces and parentheses work equally well for grouping, but when the
13991 document is formatted the curly braces will be invisible.  Thus the
13992 printed result is 
13993 @texline @math{\sin{2 x}}
13994 @infoline @expr{sin 2x} 
13995 but 
13996 @texline @math{\sin(2 + x)}.
13997 @infoline @expr{sin(2 + x)}.
13999 Function and variable names not treated specially by @TeX{} and La@TeX{}
14000 are simply written out as-is, which will cause them to come out in
14001 italic letters in the printed document.  If you invoke @kbd{d T} or
14002 @kbd{d L} with a positive numeric prefix argument, names of more than
14003 one character will instead be enclosed in a protective commands that
14004 will prevent them from being typeset in the math italics; they will be
14005 written @samp{\hbox@{@var{name}@}} in @TeX{} mode and 
14006 @samp{\text@{@var{name}@}} in La@TeX{} mode.  The
14007 @samp{\hbox@{ @}} and @samp{\text@{ @}} notations are ignored during
14008 reading.  If you use a negative prefix argument, such function names are
14009 written @samp{\@var{name}}, and function names that begin with @code{\} during
14010 reading have the @code{\} removed.  (Note that in this mode, long
14011 variable names are still written with @code{\hbox} or @code{\text}.
14012 However, you can always make an actual variable name like @code{\bar} in
14013 any @TeX{} mode.)
14015 During reading, text of the form @samp{\matrix@{ ...@: @}} is replaced
14016 by @samp{[ ...@: ]}.  The same also applies to @code{\pmatrix} and
14017 @code{\bmatrix}.  In La@TeX{} mode this also applies to 
14018 @samp{\begin@{matrix@} ... \end@{matrix@}},
14019 @samp{\begin@{bmatrix@} ... \end@{bmatrix@}},
14020 @samp{\begin@{pmatrix@} ... \end@{pmatrix@}}, as well as
14021 @samp{\begin@{smallmatrix@} ... \end@{smallmatrix@}}.
14022 The symbol @samp{&} is interpreted as a comma,
14023 and the symbols @samp{\cr} and @samp{\\} are interpreted as semicolons.
14024 During output, matrices are displayed in @samp{\matrix@{ a & b \\ c & d@}}
14025 format in @TeX{} mode and in 
14026 @samp{\begin@{pmatrix@} a & b \\ c & d \end@{pmatrix@}} format in
14027 La@TeX{} mode; you may need to edit this afterwards to change to your
14028 preferred matrix form.  If you invoke @kbd{d T} or @kbd{d L} with an
14029 argument of 2 or -2, then matrices will be displayed in two-dimensional
14030 form, such as 
14032 @example
14033 \begin@{pmatrix@}
14034 a & b \\
14035 c & d
14036 \end@{pmatrix@}
14037 @end example
14039 @noindent
14040 This may be convenient for isolated matrices, but could lead to
14041 expressions being displayed like
14043 @example
14044 \begin@{pmatrix@} \times x
14045 a & b \\
14046 c & d
14047 \end@{pmatrix@}
14048 @end example
14050 @noindent
14051 While this wouldn't bother Calc, it is incorrect La@TeX{}.
14052 (Similarly for @TeX{}.)
14054 Accents like @code{\tilde} and @code{\bar} translate into function
14055 calls internally (@samp{tilde(x)}, @samp{bar(x)}).  The @code{\underline}
14056 sequence is treated as an accent.  The @code{\vec} accent corresponds
14057 to the function name @code{Vec}, because @code{vec} is the name of
14058 a built-in Calc function.  The following table shows the accents
14059 in Calc, @TeX{}, La@TeX{} and @dfn{eqn} (described in the next section):
14061 @iftex
14062 @begingroup
14063 @let@calcindexershow=@calcindexernoshow  @c Suppress marginal notes
14064 @let@calcindexersh=@calcindexernoshow
14065 @end iftex
14066 @ignore
14067 @starindex
14068 @end ignore
14069 @tindex acute
14070 @ignore
14071 @starindex
14072 @end ignore
14073 @tindex Acute
14074 @ignore
14075 @starindex
14076 @end ignore
14077 @tindex bar
14078 @ignore
14079 @starindex
14080 @end ignore
14081 @tindex Bar
14082 @ignore
14083 @starindex
14084 @end ignore
14085 @tindex breve
14086 @ignore
14087 @starindex
14088 @end ignore
14089 @tindex Breve
14090 @ignore
14091 @starindex
14092 @end ignore
14093 @tindex check
14094 @ignore
14095 @starindex
14096 @end ignore
14097 @tindex Check
14098 @ignore
14099 @starindex
14100 @end ignore
14101 @tindex dddot
14102 @ignore
14103 @starindex
14104 @end ignore
14105 @tindex ddddot
14106 @ignore
14107 @starindex
14108 @end ignore
14109 @tindex dot
14110 @ignore
14111 @starindex
14112 @end ignore
14113 @tindex Dot
14114 @ignore
14115 @starindex
14116 @end ignore
14117 @tindex dotdot
14118 @ignore
14119 @starindex
14120 @end ignore
14121 @tindex DotDot
14122 @ignore
14123 @starindex
14124 @end ignore
14125 @tindex dyad
14126 @ignore
14127 @starindex
14128 @end ignore
14129 @tindex grave
14130 @ignore
14131 @starindex
14132 @end ignore
14133 @tindex Grave
14134 @ignore
14135 @starindex
14136 @end ignore
14137 @tindex hat
14138 @ignore
14139 @starindex
14140 @end ignore
14141 @tindex Hat
14142 @ignore
14143 @starindex
14144 @end ignore
14145 @tindex Prime
14146 @ignore
14147 @starindex
14148 @end ignore
14149 @tindex tilde
14150 @ignore
14151 @starindex
14152 @end ignore
14153 @tindex Tilde
14154 @ignore
14155 @starindex
14156 @end ignore
14157 @tindex under
14158 @ignore
14159 @starindex
14160 @end ignore
14161 @tindex Vec
14162 @ignore
14163 @starindex
14164 @end ignore
14165 @tindex VEC
14166 @iftex
14167 @endgroup
14168 @end iftex
14169 @example
14170 Calc      TeX           LaTeX         eqn
14171 ----      ---           -----         ---
14172 acute     \acute        \acute        
14173 Acute                   \Acute        
14174 bar       \bar          \bar          bar
14175 Bar                     \Bar
14176 breve     \breve        \breve        
14177 Breve                   \Breve        
14178 check     \check        \check        
14179 Check                   \Check        
14180 dddot                   \dddot
14181 ddddot                  \ddddot
14182 dot       \dot          \dot          dot
14183 Dot                     \Dot
14184 dotdot    \ddot         \ddot         dotdot
14185 DotDot                  \Ddot         
14186 dyad                                  dyad
14187 grave     \grave        \grave        
14188 Grave                   \Grave        
14189 hat       \hat          \hat          hat
14190 Hat                     \Hat          
14191 Prime                                 prime
14192 tilde     \tilde        \tilde        tilde
14193 Tilde                   \Tilde
14194 under     \underline    \underline    under
14195 Vec       \vec          \vec          vec
14196 VEC                     \Vec
14197 @end example
14199 The @samp{=>} (evaluates-to) operator appears as a @code{\to} symbol:
14200 @samp{@{@var{a} \to @var{b}@}}.  @TeX{} defines @code{\to} as an
14201 alias for @code{\rightarrow}.  However, if the @samp{=>} is the
14202 top-level expression being formatted, a slightly different notation
14203 is used:  @samp{\evalto @var{a} \to @var{b}}.  The @code{\evalto}
14204 word is ignored by Calc's input routines, and is undefined in @TeX{}.
14205 You will typically want to include one of the following definitions
14206 at the top of a @TeX{} file that uses @code{\evalto}:
14208 @example
14209 \def\evalto@{@}
14210 \def\evalto#1\to@{@}
14211 @end example
14213 The first definition formats evaluates-to operators in the usual
14214 way.  The second causes only the @var{b} part to appear in the
14215 printed document; the @var{a} part and the arrow are hidden.
14216 Another definition you may wish to use is @samp{\let\to=\Rightarrow}
14217 which causes @code{\to} to appear more like Calc's @samp{=>} symbol.
14218 @xref{Evaluates-To Operator}, for a discussion of @code{evalto}.
14220 The complete set of @TeX{} control sequences that are ignored during
14221 reading is:
14223 @example
14224 \hbox  \mbox  \text  \left  \right
14225 \,  \>  \:  \;  \!  \quad  \qquad  \hfil  \hfill
14226 \displaystyle  \textstyle  \dsize  \tsize
14227 \scriptstyle  \scriptscriptstyle  \ssize  \ssize
14228 \rm  \bf  \it  \sl  \roman  \bold  \italic  \slanted
14229 \cal  \mit  \Cal  \Bbb  \frak  \goth
14230 \evalto
14231 @end example
14233 Note that, because these symbols are ignored, reading a @TeX{} or
14234 La@TeX{} formula into Calc and writing it back out may lose spacing and
14235 font information. 
14237 Also, the ``discretionary multiplication sign'' @samp{\*} is read
14238 the same as @samp{*}.
14240 @ifinfo
14241 The @TeX{} version of this manual includes some printed examples at the
14242 end of this section.
14243 @end ifinfo
14244 @iftex
14245 Here are some examples of how various Calc formulas are formatted in @TeX{}:
14247 @example
14248 @group
14249 sin(a^2 / b_i)
14250 \sin\left( {a^2 \over b_i} \right)
14251 @end group
14252 @end example
14253 @tex
14254 $$ \sin\left( a^2 \over b_i \right) $$
14255 @end tex
14256 @sp 1
14258 @example
14259 @group
14260 [(3, 4), 3:4, 3 +/- 4, [3 .. inf)]
14261 [3 + 4i, @{3 \over 4@}, 3 \pm 4, [3 \ldots \infty)]
14262 @end group
14263 @end example
14264 @tex
14265 \turnoffactive
14266 $$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$
14267 @end tex
14268 @sp 1
14270 @example
14271 @group
14272 [abs(a), abs(a / b), floor(a), ceil(a / b)]
14273 [|a|, \left| a \over b \right|,
14274  \lfloor a \rfloor, \left\lceil a \over b \right\rceil]
14275 @end group
14276 @end example
14277 @tex
14278 $$ [|a|, \left| a \over b \right|,
14279     \lfloor a \rfloor, \left\lceil a \over b \right\rceil] $$
14280 @end tex
14281 @sp 1
14283 @example
14284 @group
14285 [sin(a), sin(2 a), sin(2 + a), sin(a / b)]
14286 [\sin@{a@}, \sin@{2 a@}, \sin(2 + a),
14287  \sin\left( @{a \over b@} \right)]
14288 @end group
14289 @end example
14290 @tex
14291 \turnoffactive
14292 $$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$
14293 @end tex
14294 @sp 2
14296 First with plain @kbd{d T}, then with @kbd{C-u d T}, then finally with
14297 @kbd{C-u - d T} (using the example definition
14298 @samp{\def\foo#1@{\tilde F(#1)@}}:
14300 @example
14301 @group
14302 [f(a), foo(bar), sin(pi)]
14303 [f(a), foo(bar), \sin{\pi}]
14304 [f(a), \hbox@{foo@}(\hbox@{bar@}), \sin@{\pi@}]
14305 [f(a), \foo@{\hbox@{bar@}@}, \sin@{\pi@}]
14306 @end group
14307 @end example
14308 @tex
14309 $$ [f(a), foo(bar), \sin{\pi}] $$
14310 $$ [f(a), \hbox{foo}(\hbox{bar}), \sin{\pi}] $$
14311 $$ [f(a), \tilde F(\hbox{bar}), \sin{\pi}] $$
14312 @end tex
14313 @sp 2
14315 First with @samp{\def\evalto@{@}}, then with @samp{\def\evalto#1\to@{@}}:
14317 @example
14318 @group
14319 2 + 3 => 5
14320 \evalto 2 + 3 \to 5
14321 @end group
14322 @end example
14323 @tex
14324 \turnoffactive
14325 $$ 2 + 3 \to 5 $$
14326 $$ 5 $$
14327 @end tex
14328 @sp 2
14330 First with standard @code{\to}, then with @samp{\let\to\Rightarrow}:
14332 @example
14333 @group
14334 [2 + 3 => 5, a / 2 => (b + c) / 2]
14335 [@{2 + 3 \to 5@}, @{@{a \over 2@} \to @{b + c \over 2@}@}]
14336 @end group
14337 @end example
14338 @tex
14339 \turnoffactive
14340 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$
14341 {\let\to\Rightarrow
14342 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$}
14343 @end tex
14344 @sp 2
14346 Matrices normally, then changing @code{\matrix} to @code{\pmatrix}:
14348 @example
14349 @group
14350 [ [ a / b, 0 ], [ 0, 2^(x + 1) ] ]
14351 \matrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14352 \pmatrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14353 @end group
14354 @end example
14355 @tex
14356 \turnoffactive
14357 $$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14358 $$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14359 @end tex
14360 @sp 2
14361 @end iftex
14363 @node Eqn Language Mode, Mathematica Language Mode, TeX and LaTeX Language Modes, Language Modes
14364 @subsection Eqn Language Mode
14366 @noindent
14367 @kindex d E
14368 @pindex calc-eqn-language
14369 @dfn{Eqn} is another popular formatter for math formulas.  It is
14370 designed for use with the TROFF text formatter, and comes standard
14371 with many versions of Unix.  The @kbd{d E} (@code{calc-eqn-language})
14372 command selects @dfn{eqn} notation.
14374 The @dfn{eqn} language's main idiosyncrasy is that whitespace plays
14375 a significant part in the parsing of the language.  For example,
14376 @samp{sqrt x+1 + y} treats @samp{x+1} as the argument of the
14377 @code{sqrt} operator.  @dfn{Eqn} also understands more conventional
14378 grouping using curly braces:  @samp{sqrt@{x+1@} + y}.  Braces are
14379 required only when the argument contains spaces.
14381 In Calc's @dfn{eqn} mode, however, curly braces are required to
14382 delimit arguments of operators like @code{sqrt}.  The first of the
14383 above examples would treat only the @samp{x} as the argument of
14384 @code{sqrt}, and in fact @samp{sin x+1} would be interpreted as
14385 @samp{sin * x + 1}, because @code{sin} is not a special operator
14386 in the @dfn{eqn} language.  If you always surround the argument
14387 with curly braces, Calc will never misunderstand.
14389 Calc also understands parentheses as grouping characters.  Another
14390 peculiarity of @dfn{eqn}'s syntax makes it advisable to separate
14391 words with spaces from any surrounding characters that aren't curly
14392 braces, so Calc writes @samp{sin ( x + y )} in @dfn{eqn} mode.
14393 (The spaces around @code{sin} are important to make @dfn{eqn}
14394 recognize that @code{sin} should be typeset in a roman font, and
14395 the spaces around @code{x} and @code{y} are a good idea just in
14396 case the @dfn{eqn} document has defined special meanings for these
14397 names, too.)
14399 Powers and subscripts are written with the @code{sub} and @code{sup}
14400 operators, respectively.  Note that the caret symbol @samp{^} is
14401 treated the same as a space in @dfn{eqn} mode, as is the @samp{~}
14402 symbol (these are used to introduce spaces of various widths into
14403 the typeset output of @dfn{eqn}).
14405 As in La@TeX{} mode, Calc's formatter omits parentheses around the
14406 arguments of functions like @code{ln} and @code{sin} if they are
14407 ``simple-looking''; in this case Calc surrounds the argument with
14408 braces, separated by a @samp{~} from the function name: @samp{sin~@{x@}}.
14410 Font change codes (like @samp{roman @var{x}}) and positioning codes
14411 (like @samp{~} and @samp{down @var{n} @var{x}}) are ignored by the
14412 @dfn{eqn} reader.  Also ignored are the words @code{left}, @code{right},
14413 @code{mark}, and @code{lineup}.  Quotation marks in @dfn{eqn} mode input
14414 are treated the same as curly braces: @samp{sqrt "1+x"} is equivalent to
14415 @samp{sqrt @{1+x@}}; this is only an approximation to the true meaning
14416 of quotes in @dfn{eqn}, but it is good enough for most uses.
14418 Accent codes (@samp{@var{x} dot}) are handled by treating them as
14419 function calls (@samp{dot(@var{x})}) internally.  
14420 @xref{TeX and LaTeX Language Modes}, for a table of these accent
14421 functions.  The @code{prime} accent is treated specially if it occurs on
14422 a variable or function name: @samp{f prime prime @w{( x prime )}} is
14423 stored internally as @samp{f'@w{'}(x')}.  For example, taking the
14424 derivative of @samp{f(2 x)} with @kbd{a d x} will produce @samp{2 f'(2
14425 x)}, which @dfn{eqn} mode will display as @samp{2 f prime ( 2 x )}.
14427 Assignments are written with the @samp{<-} (left-arrow) symbol,
14428 and @code{evalto} operators are written with @samp{->} or
14429 @samp{evalto ... ->} (@pxref{TeX and LaTeX Language Modes}, for a discussion
14430 of this).  The regular Calc symbols @samp{:=} and @samp{=>} are also
14431 recognized for these operators during reading.
14433 Vectors in @dfn{eqn} mode use regular Calc square brackets, but
14434 matrices are formatted as @samp{matrix @{ ccol @{ a above b @} ... @}}.
14435 The words @code{lcol} and @code{rcol} are recognized as synonyms
14436 for @code{ccol} during input, and are generated instead of @code{ccol}
14437 if the matrix justification mode so specifies.
14439 @node Mathematica Language Mode, Maple Language Mode, Eqn Language Mode, Language Modes
14440 @subsection Mathematica Language Mode
14442 @noindent
14443 @kindex d M
14444 @pindex calc-mathematica-language
14445 @cindex Mathematica language
14446 The @kbd{d M} (@code{calc-mathematica-language}) command selects the
14447 conventions of Mathematica.  Notable differences in Mathematica mode
14448 are that the names of built-in functions are capitalized, and function
14449 calls use square brackets instead of parentheses.  Thus the Calc
14450 formula @samp{sin(2 x)} is entered and displayed @w{@samp{Sin[2 x]}} in
14451 Mathematica mode.
14453 Vectors and matrices use curly braces in Mathematica.  Complex numbers
14454 are written @samp{3 + 4 I}.  The standard special constants in Calc are
14455 written @code{Pi}, @code{E}, @code{I}, @code{GoldenRatio}, @code{EulerGamma},
14456 @code{Infinity}, @code{ComplexInfinity}, and @code{Indeterminate} in
14457 Mathematica mode.
14458 Non-decimal numbers are written, e.g., @samp{16^^7fff}.  Floating-point
14459 numbers in scientific notation are written @samp{1.23*10.^3}.
14460 Subscripts use double square brackets: @samp{a[[i]]}.
14462 @node Maple Language Mode, Compositions, Mathematica Language Mode, Language Modes
14463 @subsection Maple Language Mode
14465 @noindent
14466 @kindex d W
14467 @pindex calc-maple-language
14468 @cindex Maple language
14469 The @kbd{d W} (@code{calc-maple-language}) command selects the
14470 conventions of Maple.
14472 Maple's language is much like C.  Underscores are allowed in symbol
14473 names; square brackets are used for subscripts; explicit @samp{*}s for
14474 multiplications are required.  Use either @samp{^} or @samp{**} to
14475 denote powers.
14477 Maple uses square brackets for lists and curly braces for sets.  Calc
14478 interprets both notations as vectors, and displays vectors with square
14479 brackets.  This means Maple sets will be converted to lists when they
14480 pass through Calc.  As a special case, matrices are written as calls
14481 to the function @code{matrix}, given a list of lists as the argument,
14482 and can be read in this form or with all-capitals @code{MATRIX}.
14484 The Maple interval notation @samp{2 .. 3} has no surrounding brackets;
14485 Calc reads @samp{2 .. 3} as the closed interval @samp{[2 .. 3]}, and
14486 writes any kind of interval as @samp{2 .. 3}.  This means you cannot
14487 see the difference between an open and a closed interval while in
14488 Maple display mode.
14490 Maple writes complex numbers as @samp{3 + 4*I}.  Its special constants
14491 are @code{Pi}, @code{E}, @code{I}, and @code{infinity} (all three of
14492 @code{inf}, @code{uinf}, and @code{nan} display as @code{infinity}).
14493 Floating-point numbers are written @samp{1.23*10.^3}.
14495 Among things not currently handled by Calc's Maple mode are the
14496 various quote symbols, procedures and functional operators, and
14497 inert (@samp{&}) operators.
14499 @node Compositions, Syntax Tables, Maple Language Mode, Language Modes
14500 @subsection Compositions
14502 @noindent
14503 @cindex Compositions
14504 There are several @dfn{composition functions} which allow you to get
14505 displays in a variety of formats similar to those in Big language
14506 mode.  Most of these functions do not evaluate to anything; they are
14507 placeholders which are left in symbolic form by Calc's evaluator but
14508 are recognized by Calc's display formatting routines.
14510 Two of these, @code{string} and @code{bstring}, are described elsewhere.
14511 @xref{Strings}.  For example, @samp{string("ABC")} is displayed as
14512 @samp{ABC}.  When viewed on the stack it will be indistinguishable from
14513 the variable @code{ABC}, but internally it will be stored as
14514 @samp{string([65, 66, 67])} and can still be manipulated this way; for
14515 example, the selection and vector commands @kbd{j 1 v v j u} would
14516 select the vector portion of this object and reverse the elements, then
14517 deselect to reveal a string whose characters had been reversed.
14519 The composition functions do the same thing in all language modes
14520 (although their components will of course be formatted in the current
14521 language mode).  The one exception is Unformatted mode (@kbd{d U}),
14522 which does not give the composition functions any special treatment.
14523 The functions are discussed here because of their relationship to
14524 the language modes.
14526 @menu
14527 * Composition Basics::
14528 * Horizontal Compositions::
14529 * Vertical Compositions::
14530 * Other Compositions::
14531 * Information about Compositions::
14532 * User-Defined Compositions::
14533 @end menu
14535 @node Composition Basics, Horizontal Compositions, Compositions, Compositions
14536 @subsubsection Composition Basics
14538 @noindent
14539 Compositions are generally formed by stacking formulas together
14540 horizontally or vertically in various ways.  Those formulas are
14541 themselves compositions.  @TeX{} users will find this analogous
14542 to @TeX{}'s ``boxes.''  Each multi-line composition has a
14543 @dfn{baseline}; horizontal compositions use the baselines to
14544 decide how formulas should be positioned relative to one another.
14545 For example, in the Big mode formula
14547 @example
14548 @group
14549           2
14550      a + b
14551 17 + ------
14552        c
14553 @end group
14554 @end example
14556 @noindent
14557 the second term of the sum is four lines tall and has line three as
14558 its baseline.  Thus when the term is combined with 17, line three
14559 is placed on the same level as the baseline of 17.
14561 @tex
14562 \bigskip
14563 @end tex
14565 Another important composition concept is @dfn{precedence}.  This is
14566 an integer that represents the binding strength of various operators.
14567 For example, @samp{*} has higher precedence (195) than @samp{+} (180),
14568 which means that @samp{(a * b) + c} will be formatted without the
14569 parentheses, but @samp{a * (b + c)} will keep the parentheses.
14571 The operator table used by normal and Big language modes has the
14572 following precedences:
14574 @example
14575 _     1200   @r{(subscripts)}
14576 %     1100   @r{(as in n}%@r{)}
14577 -     1000   @r{(as in }-@r{n)}
14578 !     1000   @r{(as in }!@r{n)}
14579 mod    400
14580 +/-    300
14581 !!     210    @r{(as in n}!!@r{)}
14582 !      210    @r{(as in n}!@r{)}
14583 ^      200
14584 *      195    @r{(or implicit multiplication)}
14585 / % \  190
14586 + -    180    @r{(as in a}+@r{b)}
14587 |      170
14588 < =    160    @r{(and other relations)}
14589 &&     110
14590 ||     100
14591 ? :     90
14592 !!!     85
14593 &&&     80
14594 |||     75
14595 :=      50
14596 ::      45
14597 =>      40
14598 @end example
14600 The general rule is that if an operator with precedence @expr{n}
14601 occurs as an argument to an operator with precedence @expr{m}, then
14602 the argument is enclosed in parentheses if @expr{n < m}.  Top-level
14603 expressions and expressions which are function arguments, vector
14604 components, etc., are formatted with precedence zero (so that they
14605 normally never get additional parentheses).
14607 For binary left-associative operators like @samp{+}, the righthand
14608 argument is actually formatted with one-higher precedence than shown
14609 in the table.  This makes sure @samp{(a + b) + c} omits the parentheses,
14610 but the unnatural form @samp{a + (b + c)} keeps its parentheses.
14611 Right-associative operators like @samp{^} format the lefthand argument
14612 with one-higher precedence.
14614 @ignore
14615 @starindex
14616 @end ignore
14617 @tindex cprec
14618 The @code{cprec} function formats an expression with an arbitrary
14619 precedence.  For example, @samp{cprec(abc, 185)} will combine into
14620 sums and products as follows:  @samp{7 + abc}, @samp{7 (abc)} (because
14621 this @code{cprec} form has higher precedence than addition, but lower
14622 precedence than multiplication).
14624 @tex
14625 \bigskip
14626 @end tex
14628 A final composition issue is @dfn{line breaking}.  Calc uses two
14629 different strategies for ``flat'' and ``non-flat'' compositions.
14630 A non-flat composition is anything that appears on multiple lines
14631 (not counting line breaking).  Examples would be matrices and Big
14632 mode powers and quotients.  Non-flat compositions are displayed
14633 exactly as specified.  If they come out wider than the current
14634 window, you must use horizontal scrolling (@kbd{<} and @kbd{>}) to
14635 view them.
14637 Flat compositions, on the other hand, will be broken across several
14638 lines if they are too wide to fit the window.  Certain points in a
14639 composition are noted internally as @dfn{break points}.  Calc's
14640 general strategy is to fill each line as much as possible, then to
14641 move down to the next line starting at the first break point that
14642 didn't fit.  However, the line breaker understands the hierarchical
14643 structure of formulas.  It will not break an ``inner'' formula if
14644 it can use an earlier break point from an ``outer'' formula instead.
14645 For example, a vector of sums might be formatted as:
14647 @example
14648 @group
14649 [ a + b + c, d + e + f,
14650   g + h + i, j + k + l, m ]
14651 @end group
14652 @end example
14654 @noindent
14655 If the @samp{m} can fit, then so, it seems, could the @samp{g}.
14656 But Calc prefers to break at the comma since the comma is part
14657 of a ``more outer'' formula.  Calc would break at a plus sign
14658 only if it had to, say, if the very first sum in the vector had
14659 itself been too large to fit.
14661 Of the composition functions described below, only @code{choriz}
14662 generates break points.  The @code{bstring} function (@pxref{Strings})
14663 also generates breakable items:  A break point is added after every
14664 space (or group of spaces) except for spaces at the very beginning or
14665 end of the string.
14667 Composition functions themselves count as levels in the formula
14668 hierarchy, so a @code{choriz} that is a component of a larger
14669 @code{choriz} will be less likely to be broken.  As a special case,
14670 if a @code{bstring} occurs as a component of a @code{choriz} or
14671 @code{choriz}-like object (such as a vector or a list of arguments
14672 in a function call), then the break points in that @code{bstring}
14673 will be on the same level as the break points of the surrounding
14674 object.
14676 @node Horizontal Compositions, Vertical Compositions, Composition Basics, Compositions
14677 @subsubsection Horizontal Compositions
14679 @noindent
14680 @ignore
14681 @starindex
14682 @end ignore
14683 @tindex choriz
14684 The @code{choriz} function takes a vector of objects and composes
14685 them horizontally.  For example, @samp{choriz([17, a b/c, d])} formats
14686 as @w{@samp{17a b / cd}} in Normal language mode, or as
14688 @example
14689 @group
14690   a b
14691 17---d
14692    c
14693 @end group
14694 @end example
14696 @noindent
14697 in Big language mode.  This is actually one case of the general
14698 function @samp{choriz(@var{vec}, @var{sep}, @var{prec})}, where
14699 either or both of @var{sep} and @var{prec} may be omitted.
14700 @var{Prec} gives the @dfn{precedence} to use when formatting
14701 each of the components of @var{vec}.  The default precedence is
14702 the precedence from the surrounding environment.
14704 @var{Sep} is a string (i.e., a vector of character codes as might
14705 be entered with @code{" "} notation) which should separate components
14706 of the composition.  Also, if @var{sep} is given, the line breaker
14707 will allow lines to be broken after each occurrence of @var{sep}.
14708 If @var{sep} is omitted, the composition will not be breakable
14709 (unless any of its component compositions are breakable).
14711 For example, @samp{2 choriz([a, b c, d = e], " + ", 180)} is
14712 formatted as @samp{2 a + b c + (d = e)}.  To get the @code{choriz}
14713 to have precedence 180 ``outwards'' as well as ``inwards,''
14714 enclose it in a @code{cprec} form:  @samp{2 cprec(choriz(...), 180)}
14715 formats as @samp{2 (a + b c + (d = e))}.
14717 The baseline of a horizontal composition is the same as the
14718 baselines of the component compositions, which are all aligned.
14720 @node Vertical Compositions, Other Compositions, Horizontal Compositions, Compositions
14721 @subsubsection Vertical Compositions
14723 @noindent
14724 @ignore
14725 @starindex
14726 @end ignore
14727 @tindex cvert
14728 The @code{cvert} function makes a vertical composition.  Each
14729 component of the vector is centered in a column.  The baseline of
14730 the result is by default the top line of the resulting composition.
14731 For example, @samp{f(cvert([a, bb, ccc]), cvert([a^2 + 1, b^2]))}
14732 formats in Big mode as
14734 @example
14735 @group
14736 f( a ,  2    )
14737   bb   a  + 1
14738   ccc     2
14739          b
14740 @end group
14741 @end example
14743 @ignore
14744 @starindex
14745 @end ignore
14746 @tindex cbase
14747 There are several special composition functions that work only as
14748 components of a vertical composition.  The @code{cbase} function
14749 controls the baseline of the vertical composition; the baseline
14750 will be the same as the baseline of whatever component is enclosed
14751 in @code{cbase}.  Thus @samp{f(cvert([a, cbase(bb), ccc]),
14752 cvert([a^2 + 1, cbase(b^2)]))} displays as
14754 @example
14755 @group
14756         2
14757        a  + 1
14758    a      2
14759 f(bb ,   b   )
14760   ccc
14761 @end group
14762 @end example
14764 @ignore
14765 @starindex
14766 @end ignore
14767 @tindex ctbase
14768 @ignore
14769 @starindex
14770 @end ignore
14771 @tindex cbbase
14772 There are also @code{ctbase} and @code{cbbase} functions which
14773 make the baseline of the vertical composition equal to the top
14774 or bottom line (rather than the baseline) of that component.
14775 Thus @samp{cvert([cbase(a / b)]) + cvert([ctbase(a / b)]) +
14776 cvert([cbbase(a / b)])} gives
14778 @example
14779 @group
14780         a
14781 a       -
14782 - + a + b
14783 b   -
14784     b
14785 @end group
14786 @end example
14788 There should be only one @code{cbase}, @code{ctbase}, or @code{cbbase}
14789 function in a given vertical composition.  These functions can also
14790 be written with no arguments:  @samp{ctbase()} is a zero-height object
14791 which means the baseline is the top line of the following item, and
14792 @samp{cbbase()} means the baseline is the bottom line of the preceding
14793 item.
14795 @ignore
14796 @starindex
14797 @end ignore
14798 @tindex crule
14799 The @code{crule} function builds a ``rule,'' or horizontal line,
14800 across a vertical composition.  By itself @samp{crule()} uses @samp{-}
14801 characters to build the rule.  You can specify any other character,
14802 e.g., @samp{crule("=")}.  The argument must be a character code or
14803 vector of exactly one character code.  It is repeated to match the
14804 width of the widest item in the stack.  For example, a quotient
14805 with a thick line is @samp{cvert([a + 1, cbase(crule("=")), b^2])}:
14807 @example
14808 @group
14809 a + 1
14810 =====
14811   2
14813 @end group
14814 @end example
14816 @ignore
14817 @starindex
14818 @end ignore
14819 @tindex clvert
14820 @ignore
14821 @starindex
14822 @end ignore
14823 @tindex crvert
14824 Finally, the functions @code{clvert} and @code{crvert} act exactly
14825 like @code{cvert} except that the items are left- or right-justified
14826 in the stack.  Thus @samp{clvert([a, bb, ccc]) + crvert([a, bb, ccc])}
14827 gives:
14829 @example
14830 @group
14831 a   +   a
14832 bb     bb
14833 ccc   ccc
14834 @end group
14835 @end example
14837 Like @code{choriz}, the vertical compositions accept a second argument
14838 which gives the precedence to use when formatting the components.
14839 Vertical compositions do not support separator strings.
14841 @node Other Compositions, Information about Compositions, Vertical Compositions, Compositions
14842 @subsubsection Other Compositions
14844 @noindent
14845 @ignore
14846 @starindex
14847 @end ignore
14848 @tindex csup
14849 The @code{csup} function builds a superscripted expression.  For
14850 example, @samp{csup(a, b)} looks the same as @samp{a^b} does in Big
14851 language mode.  This is essentially a horizontal composition of
14852 @samp{a} and @samp{b}, where @samp{b} is shifted up so that its
14853 bottom line is one above the baseline.
14855 @ignore
14856 @starindex
14857 @end ignore
14858 @tindex csub
14859 Likewise, the @code{csub} function builds a subscripted expression.
14860 This shifts @samp{b} down so that its top line is one below the
14861 bottom line of @samp{a} (note that this is not quite analogous to
14862 @code{csup}).  Other arrangements can be obtained by using
14863 @code{choriz} and @code{cvert} directly.
14865 @ignore
14866 @starindex
14867 @end ignore
14868 @tindex cflat
14869 The @code{cflat} function formats its argument in ``flat'' mode,
14870 as obtained by @samp{d O}, if the current language mode is normal
14871 or Big.  It has no effect in other language modes.  For example,
14872 @samp{a^(b/c)} is formatted by Big mode like @samp{csup(a, cflat(b/c))}
14873 to improve its readability.
14875 @ignore
14876 @starindex
14877 @end ignore
14878 @tindex cspace
14879 The @code{cspace} function creates horizontal space.  For example,
14880 @samp{cspace(4)} is effectively the same as @samp{string("    ")}.
14881 A second string (i.e., vector of characters) argument is repeated
14882 instead of the space character.  For example, @samp{cspace(4, "ab")}
14883 looks like @samp{abababab}.  If the second argument is not a string,
14884 it is formatted in the normal way and then several copies of that
14885 are composed together:  @samp{cspace(4, a^2)} yields
14887 @example
14888 @group
14889  2 2 2 2
14890 a a a a
14891 @end group
14892 @end example
14894 @noindent
14895 If the number argument is zero, this is a zero-width object.
14897 @ignore
14898 @starindex
14899 @end ignore
14900 @tindex cvspace
14901 The @code{cvspace} function creates vertical space, or a vertical
14902 stack of copies of a certain string or formatted object.  The
14903 baseline is the center line of the resulting stack.  A numerical
14904 argument of zero will produce an object which contributes zero
14905 height if used in a vertical composition.
14907 @ignore
14908 @starindex
14909 @end ignore
14910 @tindex ctspace
14911 @ignore
14912 @starindex
14913 @end ignore
14914 @tindex cbspace
14915 There are also @code{ctspace} and @code{cbspace} functions which
14916 create vertical space with the baseline the same as the baseline
14917 of the top or bottom copy, respectively, of the second argument.
14918 Thus @samp{cvspace(2, a/b) + ctspace(2, a/b) + cbspace(2, a/b)}
14919 displays as:
14921 @example
14922 @group
14923         a
14924         -
14925 a       b
14926 -   a   a
14927 b + - + -
14928 a   b   b
14929 -   a
14930 b   -
14931     b
14932 @end group
14933 @end example
14935 @node Information about Compositions, User-Defined Compositions, Other Compositions, Compositions
14936 @subsubsection Information about Compositions
14938 @noindent
14939 The functions in this section are actual functions; they compose their
14940 arguments according to the current language and other display modes,
14941 then return a certain measurement of the composition as an integer.
14943 @ignore
14944 @starindex
14945 @end ignore
14946 @tindex cwidth
14947 The @code{cwidth} function measures the width, in characters, of a
14948 composition.  For example, @samp{cwidth(a + b)} is 5, and
14949 @samp{cwidth(a / b)} is 5 in Normal mode, 1 in Big mode, and 11 in
14950 @TeX{} mode (for @samp{@{a \over b@}}).  The argument may involve
14951 the composition functions described in this section.
14953 @ignore
14954 @starindex
14955 @end ignore
14956 @tindex cheight
14957 The @code{cheight} function measures the height of a composition.
14958 This is the total number of lines in the argument's printed form.
14960 @ignore
14961 @starindex
14962 @end ignore
14963 @tindex cascent
14964 @ignore
14965 @starindex
14966 @end ignore
14967 @tindex cdescent
14968 The functions @code{cascent} and @code{cdescent} measure the amount
14969 of the height that is above (and including) the baseline, or below
14970 the baseline, respectively.  Thus @samp{cascent(@var{x}) + cdescent(@var{x})}
14971 always equals @samp{cheight(@var{x})}.  For a one-line formula like
14972 @samp{a + b}, @code{cascent} returns 1 and @code{cdescent} returns 0.
14973 For @samp{a / b} in Big mode, @code{cascent} returns 2 and @code{cdescent}
14974 returns 1.  The only formula for which @code{cascent} will return zero
14975 is @samp{cvspace(0)} or equivalents.
14977 @node User-Defined Compositions,  , Information about Compositions, Compositions
14978 @subsubsection User-Defined Compositions
14980 @noindent
14981 @kindex Z C
14982 @pindex calc-user-define-composition
14983 The @kbd{Z C} (@code{calc-user-define-composition}) command lets you
14984 define the display format for any algebraic function.  You provide a
14985 formula containing a certain number of argument variables on the stack.
14986 Any time Calc formats a call to the specified function in the current
14987 language mode and with that number of arguments, Calc effectively
14988 replaces the function call with that formula with the arguments
14989 replaced.
14991 Calc builds the default argument list by sorting all the variable names
14992 that appear in the formula into alphabetical order.  You can edit this
14993 argument list before pressing @key{RET} if you wish.  Any variables in
14994 the formula that do not appear in the argument list will be displayed
14995 literally; any arguments that do not appear in the formula will not
14996 affect the display at all.
14998 You can define formats for built-in functions, for functions you have
14999 defined with @kbd{Z F} (@pxref{Algebraic Definitions}), or for functions
15000 which have no definitions but are being used as purely syntactic objects.
15001 You can define different formats for each language mode, and for each
15002 number of arguments, using a succession of @kbd{Z C} commands.  When
15003 Calc formats a function call, it first searches for a format defined
15004 for the current language mode (and number of arguments); if there is
15005 none, it uses the format defined for the Normal language mode.  If
15006 neither format exists, Calc uses its built-in standard format for that
15007 function (usually just @samp{@var{func}(@var{args})}).
15009 If you execute @kbd{Z C} with the number 0 on the stack instead of a
15010 formula, any defined formats for the function in the current language
15011 mode will be removed.  The function will revert to its standard format.
15013 For example, the default format for the binomial coefficient function
15014 @samp{choose(n, m)} in the Big language mode is
15016 @example
15017 @group
15019 ( )
15021 @end group
15022 @end example
15024 @noindent
15025 You might prefer the notation,
15027 @example
15028 @group
15030 n m
15031 @end group
15032 @end example
15034 @noindent
15035 To define this notation, first make sure you are in Big mode,
15036 then put the formula
15038 @smallexample
15039 choriz([cvert([cvspace(1), n]), C, cvert([cvspace(1), m])])
15040 @end smallexample
15042 @noindent
15043 on the stack and type @kbd{Z C}.  Answer the first prompt with
15044 @code{choose}.  The second prompt will be the default argument list
15045 of @samp{(C m n)}.  Edit this list to be @samp{(n m)} and press
15046 @key{RET}.  Now, try it out:  For example, turn simplification
15047 off with @kbd{m O} and enter @samp{choose(a,b) + choose(7,3)}
15048 as an algebraic entry.
15050 @example
15051 @group
15052  C  +  C
15053 a b   7 3
15054 @end group
15055 @end example
15057 As another example, let's define the usual notation for Stirling
15058 numbers of the first kind, @samp{stir1(n, m)}.  This is just like
15059 the regular format for binomial coefficients but with square brackets
15060 instead of parentheses.
15062 @smallexample
15063 choriz([string("["), cvert([n, cbase(cvspace(1)), m]), string("]")])
15064 @end smallexample
15066 Now type @kbd{Z C stir1 @key{RET}}, edit the argument list to
15067 @samp{(n m)}, and type @key{RET}.
15069 The formula provided to @kbd{Z C} usually will involve composition
15070 functions, but it doesn't have to.  Putting the formula @samp{a + b + c}
15071 onto the stack and typing @kbd{Z C foo @key{RET} @key{RET}} would define
15072 the function @samp{foo(x,y,z)} to display like @samp{x + y + z}.
15073 This ``sum'' will act exactly like a real sum for all formatting
15074 purposes (it will be parenthesized the same, and so on).  However
15075 it will be computationally unrelated to a sum.  For example, the
15076 formula @samp{2 * foo(1, 2, 3)} will display as @samp{2 (1 + 2 + 3)}.
15077 Operator precedences have caused the ``sum'' to be written in
15078 parentheses, but the arguments have not actually been summed.
15079 (Generally a display format like this would be undesirable, since
15080 it can easily be confused with a real sum.)
15082 The special function @code{eval} can be used inside a @kbd{Z C}
15083 composition formula to cause all or part of the formula to be
15084 evaluated at display time.  For example, if the formula is
15085 @samp{a + eval(b + c)}, then @samp{foo(1, 2, 3)} will be displayed
15086 as @samp{1 + 5}.  Evaluation will use the default simplifications,
15087 regardless of the current simplification mode.  There are also
15088 @code{evalsimp} and @code{evalextsimp} which simplify as if by
15089 @kbd{a s} and @kbd{a e} (respectively).  Note that these ``functions''
15090 operate only in the context of composition formulas (and also in
15091 rewrite rules, where they serve a similar purpose; @pxref{Rewrite
15092 Rules}).  On the stack, a call to @code{eval} will be left in
15093 symbolic form.
15095 It is not a good idea to use @code{eval} except as a last resort.
15096 It can cause the display of formulas to be extremely slow.  For
15097 example, while @samp{eval(a + b)} might seem quite fast and simple,
15098 there are several situations where it could be slow.  For example,
15099 @samp{a} and/or @samp{b} could be polar complex numbers, in which
15100 case doing the sum requires trigonometry.  Or, @samp{a} could be
15101 the factorial @samp{fact(100)} which is unevaluated because you
15102 have typed @kbd{m O}; @code{eval} will evaluate it anyway to
15103 produce a large, unwieldy integer.
15105 You can save your display formats permanently using the @kbd{Z P}
15106 command (@pxref{Creating User Keys}).
15108 @node Syntax Tables,  , Compositions, Language Modes
15109 @subsection Syntax Tables
15111 @noindent
15112 @cindex Syntax tables
15113 @cindex Parsing formulas, customized
15114 Syntax tables do for input what compositions do for output:  They
15115 allow you to teach custom notations to Calc's formula parser.
15116 Calc keeps a separate syntax table for each language mode.
15118 (Note that the Calc ``syntax tables'' discussed here are completely
15119 unrelated to the syntax tables described in the Emacs manual.)
15121 @kindex Z S
15122 @pindex calc-edit-user-syntax
15123 The @kbd{Z S} (@code{calc-edit-user-syntax}) command edits the
15124 syntax table for the current language mode.  If you want your
15125 syntax to work in any language, define it in the Normal language
15126 mode.  Type @kbd{C-c C-c} to finish editing the syntax table, or
15127 @kbd{C-x k} to cancel the edit.  The @kbd{m m} command saves all
15128 the syntax tables along with the other mode settings;
15129 @pxref{General Mode Commands}.
15131 @menu
15132 * Syntax Table Basics::
15133 * Precedence in Syntax Tables::
15134 * Advanced Syntax Patterns::
15135 * Conditional Syntax Rules::
15136 @end menu
15138 @node Syntax Table Basics, Precedence in Syntax Tables, Syntax Tables, Syntax Tables
15139 @subsubsection Syntax Table Basics
15141 @noindent
15142 @dfn{Parsing} is the process of converting a raw string of characters,
15143 such as you would type in during algebraic entry, into a Calc formula.
15144 Calc's parser works in two stages.  First, the input is broken down
15145 into @dfn{tokens}, such as words, numbers, and punctuation symbols
15146 like @samp{+}, @samp{:=}, and @samp{+/-}.  Space between tokens is
15147 ignored (except when it serves to separate adjacent words).  Next,
15148 the parser matches this string of tokens against various built-in
15149 syntactic patterns, such as ``an expression followed by @samp{+}
15150 followed by another expression'' or ``a name followed by @samp{(},
15151 zero or more expressions separated by commas, and @samp{)}.''
15153 A @dfn{syntax table} is a list of user-defined @dfn{syntax rules},
15154 which allow you to specify new patterns to define your own
15155 favorite input notations.  Calc's parser always checks the syntax
15156 table for the current language mode, then the table for the Normal
15157 language mode, before it uses its built-in rules to parse an
15158 algebraic formula you have entered.  Each syntax rule should go on
15159 its own line; it consists of a @dfn{pattern}, a @samp{:=} symbol,
15160 and a Calc formula with an optional @dfn{condition}.  (Syntax rules
15161 resemble algebraic rewrite rules, but the notation for patterns is
15162 completely different.)
15164 A syntax pattern is a list of tokens, separated by spaces.
15165 Except for a few special symbols, tokens in syntax patterns are
15166 matched literally, from left to right.  For example, the rule,
15168 @example
15169 foo ( ) := 2+3
15170 @end example
15172 @noindent
15173 would cause Calc to parse the formula @samp{4+foo()*5} as if it
15174 were @samp{4+(2+3)*5}.  Notice that the parentheses were written
15175 as two separate tokens in the rule.  As a result, the rule works
15176 for both @samp{foo()} and @w{@samp{foo (  )}}.  If we had written
15177 the rule as @samp{foo () := 2+3}, then Calc would treat @samp{()}
15178 as a single, indivisible token, so that @w{@samp{foo( )}} would
15179 not be recognized by the rule.  (It would be parsed as a regular
15180 zero-argument function call instead.)  In fact, this rule would
15181 also make trouble for the rest of Calc's parser:  An unrelated
15182 formula like @samp{bar()} would now be tokenized into @samp{bar ()}
15183 instead of @samp{bar ( )}, so that the standard parser for function
15184 calls would no longer recognize it!
15186 While it is possible to make a token with a mixture of letters
15187 and punctuation symbols, this is not recommended.  It is better to
15188 break it into several tokens, as we did with @samp{foo()} above.
15190 The symbol @samp{#} in a syntax pattern matches any Calc expression.
15191 On the righthand side, the things that matched the @samp{#}s can
15192 be referred to as @samp{#1}, @samp{#2}, and so on (where @samp{#1}
15193 matches the leftmost @samp{#} in the pattern).  For example, these
15194 rules match a user-defined function, prefix operator, infix operator,
15195 and postfix operator, respectively:
15197 @example
15198 foo ( # ) := myfunc(#1)
15199 foo # := myprefix(#1)
15200 # foo # := myinfix(#1,#2)
15201 # foo := mypostfix(#1)
15202 @end example
15204 Thus @samp{foo(3)} will parse as @samp{myfunc(3)}, and @samp{2+3 foo}
15205 will parse as @samp{mypostfix(2+3)}.
15207 It is important to write the first two rules in the order shown,
15208 because Calc tries rules in order from first to last.  If the
15209 pattern @samp{foo #} came first, it would match anything that could
15210 match the @samp{foo ( # )} rule, since an expression in parentheses
15211 is itself a valid expression.  Thus the @w{@samp{foo ( # )}} rule would
15212 never get to match anything.  Likewise, the last two rules must be
15213 written in the order shown or else @samp{3 foo 4} will be parsed as
15214 @samp{mypostfix(3) * 4}.  (Of course, the best way to avoid these
15215 ambiguities is not to use the same symbol in more than one way at
15216 the same time!  In case you're not convinced, try the following
15217 exercise:  How will the above rules parse the input @samp{foo(3,4)},
15218 if at all?  Work it out for yourself, then try it in Calc and see.)
15220 Calc is quite flexible about what sorts of patterns are allowed.
15221 The only rule is that every pattern must begin with a literal
15222 token (like @samp{foo} in the first two patterns above), or with
15223 a @samp{#} followed by a literal token (as in the last two
15224 patterns).  After that, any mixture is allowed, although putting
15225 two @samp{#}s in a row will not be very useful since two
15226 expressions with nothing between them will be parsed as one
15227 expression that uses implicit multiplication.
15229 As a more practical example, Maple uses the notation
15230 @samp{sum(a(i), i=1..10)} for sums, which Calc's Maple mode doesn't
15231 recognize at present.  To handle this syntax, we simply add the
15232 rule,
15234 @example
15235 sum ( # , # = # .. # ) := sum(#1,#2,#3,#4)
15236 @end example
15238 @noindent
15239 to the Maple mode syntax table.  As another example, C mode can't
15240 read assignment operators like @samp{++} and @samp{*=}.  We can
15241 define these operators quite easily:
15243 @example
15244 # *= # := muleq(#1,#2)
15245 # ++ := postinc(#1)
15246 ++ # := preinc(#1)
15247 @end example
15249 @noindent
15250 To complete the job, we would use corresponding composition functions
15251 and @kbd{Z C} to cause these functions to display in their respective
15252 Maple and C notations.  (Note that the C example ignores issues of
15253 operator precedence, which are discussed in the next section.)
15255 You can enclose any token in quotes to prevent its usual
15256 interpretation in syntax patterns:
15258 @example
15259 # ":=" # := becomes(#1,#2)
15260 @end example
15262 Quotes also allow you to include spaces in a token, although once
15263 again it is generally better to use two tokens than one token with
15264 an embedded space.  To include an actual quotation mark in a quoted
15265 token, precede it with a backslash.  (This also works to include
15266 backslashes in tokens.)
15268 @example
15269 # "bad token" # "/\"\\" # := silly(#1,#2,#3)
15270 @end example
15272 @noindent
15273 This will parse @samp{3 bad token 4 /"\ 5} to @samp{silly(3,4,5)}.
15275 The token @kbd{#} has a predefined meaning in Calc's formula parser;
15276 it is not valid to use @samp{"#"} in a syntax rule.  However, longer
15277 tokens that include the @samp{#} character are allowed.  Also, while
15278 @samp{"$"} and @samp{"\""} are allowed as tokens, their presence in
15279 the syntax table will prevent those characters from working in their
15280 usual ways (referring to stack entries and quoting strings,
15281 respectively).
15283 Finally, the notation @samp{%%} anywhere in a syntax table causes
15284 the rest of the line to be ignored as a comment.
15286 @node Precedence in Syntax Tables, Advanced Syntax Patterns, Syntax Table Basics, Syntax Tables
15287 @subsubsection Precedence
15289 @noindent
15290 Different operators are generally assigned different @dfn{precedences}.
15291 By default, an operator defined by a rule like
15293 @example
15294 # foo # := foo(#1,#2)
15295 @end example
15297 @noindent
15298 will have an extremely low precedence, so that @samp{2*3+4 foo 5 == 6}
15299 will be parsed as @samp{(2*3+4) foo (5 == 6)}.  To change the
15300 precedence of an operator, use the notation @samp{#/@var{p}} in
15301 place of @samp{#}, where @var{p} is an integer precedence level.
15302 For example, 185 lies between the precedences for @samp{+} and
15303 @samp{*}, so if we change this rule to
15305 @example
15306 #/185 foo #/186 := foo(#1,#2)
15307 @end example
15309 @noindent
15310 then @samp{2+3 foo 4*5} will be parsed as @samp{2+(3 foo (4*5))}.
15311 Also, because we've given the righthand expression slightly higher
15312 precedence, our new operator will be left-associative:
15313 @samp{1 foo 2 foo 3} will be parsed as @samp{(1 foo 2) foo 3}.
15314 By raising the precedence of the lefthand expression instead, we
15315 can create a right-associative operator.
15317 @xref{Composition Basics}, for a table of precedences of the
15318 standard Calc operators.  For the precedences of operators in other
15319 language modes, look in the Calc source file @file{calc-lang.el}.
15321 @node Advanced Syntax Patterns, Conditional Syntax Rules, Precedence in Syntax Tables, Syntax Tables
15322 @subsubsection Advanced Syntax Patterns
15324 @noindent
15325 To match a function with a variable number of arguments, you could
15326 write
15328 @example
15329 foo ( # ) := myfunc(#1)
15330 foo ( # , # ) := myfunc(#1,#2)
15331 foo ( # , # , # ) := myfunc(#1,#2,#3)
15332 @end example
15334 @noindent
15335 but this isn't very elegant.  To match variable numbers of items,
15336 Calc uses some notations inspired regular expressions and the
15337 ``extended BNF'' style used by some language designers.
15339 @example
15340 foo ( @{ # @}*, ) := apply(myfunc,#1)
15341 @end example
15343 The token @samp{@{} introduces a repeated or optional portion.
15344 One of the three tokens @samp{@}*}, @samp{@}+}, or @samp{@}?}
15345 ends the portion.  These will match zero or more, one or more,
15346 or zero or one copies of the enclosed pattern, respectively.
15347 In addition, @samp{@}*} and @samp{@}+} can be followed by a
15348 separator token (with no space in between, as shown above).
15349 Thus @samp{@{ # @}*,} matches nothing, or one expression, or
15350 several expressions separated by commas.
15352 A complete @samp{@{ ... @}} item matches as a vector of the
15353 items that matched inside it.  For example, the above rule will
15354 match @samp{foo(1,2,3)} to get @samp{apply(myfunc,[1,2,3])}.
15355 The Calc @code{apply} function takes a function name and a vector
15356 of arguments and builds a call to the function with those
15357 arguments, so the net result is the formula @samp{myfunc(1,2,3)}.
15359 If the body of a @samp{@{ ... @}} contains several @samp{#}s
15360 (or nested @samp{@{ ... @}} constructs), then the items will be
15361 strung together into the resulting vector.  If the body
15362 does not contain anything but literal tokens, the result will
15363 always be an empty vector.
15365 @example
15366 foo ( @{ # , # @}+, ) := bar(#1)
15367 foo ( @{ @{ # @}*, @}*; ) := matrix(#1)
15368 @end example
15370 @noindent
15371 will parse @samp{foo(1, 2, 3, 4)} as @samp{bar([1, 2, 3, 4])}, and
15372 @samp{foo(1, 2; 3, 4)} as @samp{matrix([[1, 2], [3, 4]])}.  Also, after
15373 some thought it's easy to see how this pair of rules will parse
15374 @samp{foo(1, 2, 3)} as @samp{matrix([[1, 2, 3]])}, since the first
15375 rule will only match an even number of arguments.  The rule
15377 @example
15378 foo ( # @{ , # , # @}? ) := bar(#1,#2)
15379 @end example
15381 @noindent
15382 will parse @samp{foo(2,3,4)} as @samp{bar(2,[3,4])}, and
15383 @samp{foo(2)} as @samp{bar(2,[])}.
15385 The notation @samp{@{ ... @}?.} (note the trailing period) works
15386 just the same as regular @samp{@{ ... @}?}, except that it does not
15387 count as an argument; the following two rules are equivalent:
15389 @example
15390 foo ( # , @{ also @}? # ) := bar(#1,#3)
15391 foo ( # , @{ also @}?. # ) := bar(#1,#2)
15392 @end example
15394 @noindent
15395 Note that in the first case the optional text counts as @samp{#2},
15396 which will always be an empty vector, but in the second case no
15397 empty vector is produced.
15399 Another variant is @samp{@{ ... @}?$}, which means the body is
15400 optional only at the end of the input formula.  All built-in syntax
15401 rules in Calc use this for closing delimiters, so that during
15402 algebraic entry you can type @kbd{[sqrt(2), sqrt(3 @key{RET}}, omitting
15403 the closing parenthesis and bracket.  Calc does this automatically
15404 for trailing @samp{)}, @samp{]}, and @samp{>} tokens in syntax
15405 rules, but you can use @samp{@{ ... @}?$} explicitly to get
15406 this effect with any token (such as @samp{"@}"} or @samp{end}).
15407 Like @samp{@{ ... @}?.}, this notation does not count as an
15408 argument.  Conversely, you can use quotes, as in @samp{")"}, to
15409 prevent a closing-delimiter token from being automatically treated
15410 as optional.
15412 Calc's parser does not have full backtracking, which means some
15413 patterns will not work as you might expect:
15415 @example
15416 foo ( @{ # , @}? # , # ) := bar(#1,#2,#3)
15417 @end example
15419 @noindent
15420 Here we are trying to make the first argument optional, so that
15421 @samp{foo(2,3)} parses as @samp{bar([],2,3)}.  Unfortunately, Calc
15422 first tries to match @samp{2,} against the optional part of the
15423 pattern, finds a match, and so goes ahead to match the rest of the
15424 pattern.  Later on it will fail to match the second comma, but it
15425 doesn't know how to go back and try the other alternative at that
15426 point.  One way to get around this would be to use two rules:
15428 @example
15429 foo ( # , # , # ) := bar([#1],#2,#3)
15430 foo ( # , # ) := bar([],#1,#2)
15431 @end example
15433 More precisely, when Calc wants to match an optional or repeated
15434 part of a pattern, it scans forward attempting to match that part.
15435 If it reaches the end of the optional part without failing, it
15436 ``finalizes'' its choice and proceeds.  If it fails, though, it
15437 backs up and tries the other alternative.  Thus Calc has ``partial''
15438 backtracking.  A fully backtracking parser would go on to make sure
15439 the rest of the pattern matched before finalizing the choice.
15441 @node Conditional Syntax Rules,  , Advanced Syntax Patterns, Syntax Tables
15442 @subsubsection Conditional Syntax Rules
15444 @noindent
15445 It is possible to attach a @dfn{condition} to a syntax rule.  For
15446 example, the rules
15448 @example
15449 foo ( # ) := ifoo(#1) :: integer(#1)
15450 foo ( # ) := gfoo(#1)
15451 @end example
15453 @noindent
15454 will parse @samp{foo(3)} as @samp{ifoo(3)}, but will parse
15455 @samp{foo(3.5)} and @samp{foo(x)} as calls to @code{gfoo}.  Any
15456 number of conditions may be attached; all must be true for the
15457 rule to succeed.  A condition is ``true'' if it evaluates to a
15458 nonzero number.  @xref{Logical Operations}, for a list of Calc
15459 functions like @code{integer} that perform logical tests.
15461 The exact sequence of events is as follows:  When Calc tries a
15462 rule, it first matches the pattern as usual.  It then substitutes
15463 @samp{#1}, @samp{#2}, etc., in the conditions, if any.  Next, the
15464 conditions are simplified and evaluated in order from left to right,
15465 as if by the @w{@kbd{a s}} algebra command (@pxref{Simplifying Formulas}).
15466 Each result is true if it is a nonzero number, or an expression
15467 that can be proven to be nonzero (@pxref{Declarations}).  If the
15468 results of all conditions are true, the expression (such as
15469 @samp{ifoo(#1)}) has its @samp{#}s substituted, and that is the
15470 result of the parse.  If the result of any condition is false, Calc
15471 goes on to try the next rule in the syntax table.
15473 Syntax rules also support @code{let} conditions, which operate in
15474 exactly the same way as they do in algebraic rewrite rules.
15475 @xref{Other Features of Rewrite Rules}, for details.  A @code{let}
15476 condition is always true, but as a side effect it defines a
15477 variable which can be used in later conditions, and also in the
15478 expression after the @samp{:=} sign:
15480 @example
15481 foo ( # ) := hifoo(x) :: let(x := #1 + 0.5) :: dnumint(x)
15482 @end example
15484 @noindent
15485 The @code{dnumint} function tests if a value is numerically an
15486 integer, i.e., either a true integer or an integer-valued float.
15487 This rule will parse @code{foo} with a half-integer argument,
15488 like @samp{foo(3.5)}, to a call like @samp{hifoo(4.)}.
15490 The lefthand side of a syntax rule @code{let} must be a simple
15491 variable, not the arbitrary pattern that is allowed in rewrite
15492 rules.
15494 The @code{matches} function is also treated specially in syntax
15495 rule conditions (again, in the same way as in rewrite rules).
15496 @xref{Matching Commands}.  If the matching pattern contains
15497 meta-variables, then those meta-variables may be used in later
15498 conditions and in the result expression.  The arguments to
15499 @code{matches} are not evaluated in this situation.
15501 @example
15502 sum ( # , # ) := sum(#1,a,b,c) :: matches(#2, a=[b..c])
15503 @end example
15505 @noindent
15506 This is another way to implement the Maple mode @code{sum} notation.
15507 In this approach, we allow @samp{#2} to equal the whole expression
15508 @samp{i=1..10}.  Then, we use @code{matches} to break it apart into
15509 its components.  If the expression turns out not to match the pattern,
15510 the syntax rule will fail.  Note that @kbd{Z S} always uses Calc's
15511 Normal language mode for editing expressions in syntax rules, so we
15512 must use regular Calc notation for the interval @samp{[b..c]} that
15513 will correspond to the Maple mode interval @samp{1..10}.
15515 @node Modes Variable, Calc Mode Line, Language Modes, Mode Settings
15516 @section The @code{Modes} Variable
15518 @noindent
15519 @kindex m g
15520 @pindex calc-get-modes
15521 The @kbd{m g} (@code{calc-get-modes}) command pushes onto the stack
15522 a vector of numbers that describes the various mode settings that
15523 are in effect.  With a numeric prefix argument, it pushes only the
15524 @var{n}th mode, i.e., the @var{n}th element of this vector.  Keyboard
15525 macros can use the @kbd{m g} command to modify their behavior based
15526 on the current mode settings.
15528 @cindex @code{Modes} variable
15529 @vindex Modes
15530 The modes vector is also available in the special variable
15531 @code{Modes}.  In other words, @kbd{m g} is like @kbd{s r Modes @key{RET}}.
15532 It will not work to store into this variable; in fact, if you do,
15533 @code{Modes} will cease to track the current modes.  (The @kbd{m g}
15534 command will continue to work, however.)
15536 In general, each number in this vector is suitable as a numeric
15537 prefix argument to the associated mode-setting command.  (Recall
15538 that the @kbd{~} key takes a number from the stack and gives it as
15539 a numeric prefix to the next command.)
15541 The elements of the modes vector are as follows:
15543 @enumerate
15544 @item
15545 Current precision.  Default is 12; associated command is @kbd{p}.
15547 @item
15548 Binary word size.  Default is 32; associated command is @kbd{b w}.
15550 @item
15551 Stack size (not counting the value about to be pushed by @kbd{m g}).
15552 This is zero if @kbd{m g} is executed with an empty stack.
15554 @item
15555 Number radix.  Default is 10; command is @kbd{d r}.
15557 @item
15558 Floating-point format.  This is the number of digits, plus the
15559 constant 0 for normal notation, 10000 for scientific notation,
15560 20000 for engineering notation, or 30000 for fixed-point notation.
15561 These codes are acceptable as prefix arguments to the @kbd{d n}
15562 command, but note that this may lose information:  For example,
15563 @kbd{d s} and @kbd{C-u 12 d s} have similar (but not quite
15564 identical) effects if the current precision is 12, but they both
15565 produce a code of 10012, which will be treated by @kbd{d n} as
15566 @kbd{C-u 12 d s}.  If the precision then changes, the float format
15567 will still be frozen at 12 significant figures.
15569 @item
15570 Angular mode.  Default is 1 (degrees).  Other values are 2 (radians)
15571 and 3 (HMS).  The @kbd{m d} command accepts these prefixes.
15573 @item
15574 Symbolic mode.  Value is 0 or 1; default is 0.  Command is @kbd{m s}.
15576 @item
15577 Fraction mode.  Value is 0 or 1; default is 0.  Command is @kbd{m f}.
15579 @item
15580 Polar mode.  Value is 0 (rectangular) or 1 (polar); default is 0.
15581 Command is @kbd{m p}.
15583 @item
15584 Matrix/Scalar mode.  Default value is @mathit{-1}.  Value is 0 for Scalar
15585 mode, @mathit{-2} for Matrix mode, @mathit{-3} for square Matrix mode,
15586 or @var{N} for  
15587 @texline @math{N\times N}
15588 @infoline @var{N}x@var{N} 
15589 Matrix mode.  Command is @kbd{m v}.
15591 @item
15592 Simplification mode.  Default is 1.  Value is @mathit{-1} for off (@kbd{m O}),
15593 0 for @kbd{m N}, 2 for @kbd{m B}, 3 for @kbd{m A}, 4 for @kbd{m E},
15594 or 5 for @w{@kbd{m U}}.  The @kbd{m D} command accepts these prefixes.
15596 @item
15597 Infinite mode.  Default is @mathit{-1} (off).  Value is 1 if the mode is on,
15598 or 0 if the mode is on with positive zeros.  Command is @kbd{m i}.
15599 @end enumerate
15601 For example, the sequence @kbd{M-1 m g @key{RET} 2 + ~ p} increases the
15602 precision by two, leaving a copy of the old precision on the stack.
15603 Later, @kbd{~ p} will restore the original precision using that
15604 stack value.  (This sequence might be especially useful inside a
15605 keyboard macro.)
15607 As another example, @kbd{M-3 m g 1 - ~ @key{DEL}} deletes all but the
15608 oldest (bottommost) stack entry.
15610 Yet another example:  The HP-48 ``round'' command rounds a number
15611 to the current displayed precision.  You could roughly emulate this
15612 in Calc with the sequence @kbd{M-5 m g 10000 % ~ c c}.  (This
15613 would not work for fixed-point mode, but it wouldn't be hard to
15614 do a full emulation with the help of the @kbd{Z [} and @kbd{Z ]}
15615 programming commands.  @xref{Conditionals in Macros}.)
15617 @node Calc Mode Line,  , Modes Variable, Mode Settings
15618 @section The Calc Mode Line
15620 @noindent
15621 @cindex Mode line indicators
15622 This section is a summary of all symbols that can appear on the
15623 Calc mode line, the highlighted bar that appears under the Calc
15624 stack window (or under an editing window in Embedded mode).
15626 The basic mode line format is:
15628 @example
15629 --%%-Calc: 12 Deg @var{other modes}       (Calculator)
15630 @end example
15632 The @samp{%%} is the Emacs symbol for ``read-only''; it shows that
15633 regular Emacs commands are not allowed to edit the stack buffer
15634 as if it were text.
15636 The word @samp{Calc:} changes to @samp{CalcEmbed:} if Embedded mode
15637 is enabled.  The words after this describe the various Calc modes
15638 that are in effect.
15640 The first mode is always the current precision, an integer.
15641 The second mode is always the angular mode, either @code{Deg},
15642 @code{Rad}, or @code{Hms}.
15644 Here is a complete list of the remaining symbols that can appear
15645 on the mode line:
15647 @table @code
15648 @item Alg
15649 Algebraic mode (@kbd{m a}; @pxref{Algebraic Entry}).
15651 @item Alg[(
15652 Incomplete algebraic mode (@kbd{C-u m a}).
15654 @item Alg*
15655 Total algebraic mode (@kbd{m t}).
15657 @item Symb
15658 Symbolic mode (@kbd{m s}; @pxref{Symbolic Mode}).
15660 @item Matrix
15661 Matrix mode (@kbd{m v}; @pxref{Matrix Mode}).
15663 @item Matrix@var{n}
15664 Dimensioned Matrix mode (@kbd{C-u @var{n} m v}; @pxref{Matrix Mode}).
15666 @item SqMatrix
15667 Square Matrix mode (@kbd{C-u m v}; @pxref{Matrix Mode}).
15669 @item Scalar
15670 Scalar mode (@kbd{m v}; @pxref{Matrix Mode}).
15672 @item Polar
15673 Polar complex mode (@kbd{m p}; @pxref{Polar Mode}).
15675 @item Frac
15676 Fraction mode (@kbd{m f}; @pxref{Fraction Mode}).
15678 @item Inf
15679 Infinite mode (@kbd{m i}; @pxref{Infinite Mode}).
15681 @item +Inf
15682 Positive Infinite mode (@kbd{C-u 0 m i}).
15684 @item NoSimp
15685 Default simplifications off (@kbd{m O}; @pxref{Simplification Modes}).
15687 @item NumSimp
15688 Default simplifications for numeric arguments only (@kbd{m N}).
15690 @item BinSimp@var{w}
15691 Binary-integer simplification mode; word size @var{w} (@kbd{m B}, @kbd{b w}).
15693 @item AlgSimp
15694 Algebraic simplification mode (@kbd{m A}).
15696 @item ExtSimp
15697 Extended algebraic simplification mode (@kbd{m E}).
15699 @item UnitSimp
15700 Units simplification mode (@kbd{m U}).
15702 @item Bin
15703 Current radix is 2 (@kbd{d 2}; @pxref{Radix Modes}).
15705 @item Oct
15706 Current radix is 8 (@kbd{d 8}).
15708 @item Hex
15709 Current radix is 16 (@kbd{d 6}).
15711 @item Radix@var{n}
15712 Current radix is @var{n} (@kbd{d r}).
15714 @item Zero
15715 Leading zeros (@kbd{d z}; @pxref{Radix Modes}).
15717 @item Big
15718 Big language mode (@kbd{d B}; @pxref{Normal Language Modes}).
15720 @item Flat
15721 One-line normal language mode (@kbd{d O}).
15723 @item Unform
15724 Unformatted language mode (@kbd{d U}).
15726 @item C
15727 C language mode (@kbd{d C}; @pxref{C FORTRAN Pascal}).
15729 @item Pascal
15730 Pascal language mode (@kbd{d P}).
15732 @item Fortran
15733 FORTRAN language mode (@kbd{d F}).
15735 @item TeX
15736 @TeX{} language mode (@kbd{d T}; @pxref{TeX and LaTeX Language Modes}).
15738 @item LaTeX
15739 La@TeX{} language mode (@kbd{d L}; @pxref{TeX and LaTeX Language Modes}).
15741 @item Eqn
15742 @dfn{Eqn} language mode (@kbd{d E}; @pxref{Eqn Language Mode}).
15744 @item Math
15745 Mathematica language mode (@kbd{d M}; @pxref{Mathematica Language Mode}).
15747 @item Maple
15748 Maple language mode (@kbd{d W}; @pxref{Maple Language Mode}).
15750 @item Norm@var{n}
15751 Normal float mode with @var{n} digits (@kbd{d n}; @pxref{Float Formats}).
15753 @item Fix@var{n}
15754 Fixed point mode with @var{n} digits after the point (@kbd{d f}).
15756 @item Sci
15757 Scientific notation mode (@kbd{d s}).
15759 @item Sci@var{n}
15760 Scientific notation with @var{n} digits (@kbd{d s}).
15762 @item Eng
15763 Engineering notation mode (@kbd{d e}).
15765 @item Eng@var{n}
15766 Engineering notation with @var{n} digits (@kbd{d e}).
15768 @item Left@var{n}
15769 Left-justified display indented by @var{n} (@kbd{d <}; @pxref{Justification}).
15771 @item Right
15772 Right-justified display (@kbd{d >}).
15774 @item Right@var{n}
15775 Right-justified display with width @var{n} (@kbd{d >}).
15777 @item Center
15778 Centered display (@kbd{d =}).
15780 @item Center@var{n}
15781 Centered display with center column @var{n} (@kbd{d =}).
15783 @item Wid@var{n}
15784 Line breaking with width @var{n} (@kbd{d b}; @pxref{Normal Language Modes}).
15786 @item Wide
15787 No line breaking (@kbd{d b}).
15789 @item Break
15790 Selections show deep structure (@kbd{j b}; @pxref{Making Selections}).
15792 @item Save
15793 Record modes in @file{~/.calc.el} (@kbd{m R}; @pxref{General Mode Commands}).
15795 @item Local
15796 Record modes in Embedded buffer (@kbd{m R}).
15798 @item LocEdit
15799 Record modes as editing-only in Embedded buffer (@kbd{m R}).
15801 @item LocPerm
15802 Record modes as permanent-only in Embedded buffer (@kbd{m R}).
15804 @item Global
15805 Record modes as global in Embedded buffer (@kbd{m R}).
15807 @item Manual
15808 Automatic recomputation turned off (@kbd{m C}; @pxref{Automatic
15809 Recomputation}).
15811 @item Graph
15812 GNUPLOT process is alive in background (@pxref{Graphics}).
15814 @item Sel
15815 Top-of-stack has a selection (Embedded only; @pxref{Making Selections}).
15817 @item Dirty
15818 The stack display may not be up-to-date (@pxref{Display Modes}).
15820 @item Inv
15821 ``Inverse'' prefix was pressed (@kbd{I}; @pxref{Inverse and Hyperbolic}).
15823 @item Hyp
15824 ``Hyperbolic'' prefix was pressed (@kbd{H}).
15826 @item Keep
15827 ``Keep-arguments'' prefix was pressed (@kbd{K}).
15829 @item Narrow
15830 Stack is truncated (@kbd{d t}; @pxref{Truncating the Stack}).
15831 @end table
15833 In addition, the symbols @code{Active} and @code{~Active} can appear
15834 as minor modes on an Embedded buffer's mode line.  @xref{Embedded Mode}.
15836 @node Arithmetic, Scientific Functions, Mode Settings, Top
15837 @chapter Arithmetic Functions
15839 @noindent
15840 This chapter describes the Calc commands for doing simple calculations
15841 on numbers, such as addition, absolute value, and square roots.  These
15842 commands work by removing the top one or two values from the stack,
15843 performing the desired operation, and pushing the result back onto the
15844 stack.  If the operation cannot be performed, the result pushed is a
15845 formula instead of a number, such as @samp{2/0} (because division by zero
15846 is invalid) or @samp{sqrt(x)} (because the argument @samp{x} is a formula).
15848 Most of the commands described here can be invoked by a single keystroke.
15849 Some of the more obscure ones are two-letter sequences beginning with
15850 the @kbd{f} (``functions'') prefix key.
15852 @xref{Prefix Arguments}, for a discussion of the effect of numeric
15853 prefix arguments on commands in this chapter which do not otherwise
15854 interpret a prefix argument.
15856 @menu
15857 * Basic Arithmetic::
15858 * Integer Truncation::
15859 * Complex Number Functions::
15860 * Conversions::
15861 * Date Arithmetic::
15862 * Financial Functions::
15863 * Binary Functions::
15864 @end menu
15866 @node Basic Arithmetic, Integer Truncation, Arithmetic, Arithmetic
15867 @section Basic Arithmetic
15869 @noindent
15870 @kindex +
15871 @pindex calc-plus
15872 @ignore
15873 @mindex @null
15874 @end ignore
15875 @tindex +
15876 The @kbd{+} (@code{calc-plus}) command adds two numbers.  The numbers may
15877 be any of the standard Calc data types.  The resulting sum is pushed back
15878 onto the stack.
15880 If both arguments of @kbd{+} are vectors or matrices (of matching dimensions),
15881 the result is a vector or matrix sum.  If one argument is a vector and the
15882 other a scalar (i.e., a non-vector), the scalar is added to each of the
15883 elements of the vector to form a new vector.  If the scalar is not a
15884 number, the operation is left in symbolic form:  Suppose you added @samp{x}
15885 to the vector @samp{[1,2]}.  You may want the result @samp{[1+x,2+x]}, or
15886 you may plan to substitute a 2-vector for @samp{x} in the future.  Since
15887 the Calculator can't tell which interpretation you want, it makes the
15888 safest assumption.  @xref{Reducing and Mapping}, for a way to add @samp{x}
15889 to every element of a vector.
15891 If either argument of @kbd{+} is a complex number, the result will in general
15892 be complex.  If one argument is in rectangular form and the other polar,
15893 the current Polar mode determines the form of the result.  If Symbolic
15894 mode is enabled, the sum may be left as a formula if the necessary
15895 conversions for polar addition are non-trivial.
15897 If both arguments of @kbd{+} are HMS forms, the forms are added according to
15898 the usual conventions of hours-minutes-seconds notation.  If one argument
15899 is an HMS form and the other is a number, that number is converted from
15900 degrees or radians (depending on the current Angular mode) to HMS format
15901 and then the two HMS forms are added.
15903 If one argument of @kbd{+} is a date form, the other can be either a
15904 real number, which advances the date by a certain number of days, or
15905 an HMS form, which advances the date by a certain amount of time.
15906 Subtracting two date forms yields the number of days between them.
15907 Adding two date forms is meaningless, but Calc interprets it as the
15908 subtraction of one date form and the negative of the other.  (The
15909 negative of a date form can be understood by remembering that dates
15910 are stored as the number of days before or after Jan 1, 1 AD.)
15912 If both arguments of @kbd{+} are error forms, the result is an error form
15913 with an appropriately computed standard deviation.  If one argument is an
15914 error form and the other is a number, the number is taken to have zero error.
15915 Error forms may have symbolic formulas as their mean and/or error parts;
15916 adding these will produce a symbolic error form result.  However, adding an
15917 error form to a plain symbolic formula (as in @samp{(a +/- b) + c}) will not
15918 work, for the same reasons just mentioned for vectors.  Instead you must
15919 write @samp{(a +/- b) + (c +/- 0)}.
15921 If both arguments of @kbd{+} are modulo forms with equal values of @expr{M},
15922 or if one argument is a modulo form and the other a plain number, the
15923 result is a modulo form which represents the sum, modulo @expr{M}, of
15924 the two values.
15926 If both arguments of @kbd{+} are intervals, the result is an interval
15927 which describes all possible sums of the possible input values.  If
15928 one argument is a plain number, it is treated as the interval
15929 @w{@samp{[x ..@: x]}}.
15931 If one argument of @kbd{+} is an infinity and the other is not, the
15932 result is that same infinity.  If both arguments are infinite and in
15933 the same direction, the result is the same infinity, but if they are
15934 infinite in different directions the result is @code{nan}.
15936 @kindex -
15937 @pindex calc-minus
15938 @ignore
15939 @mindex @null
15940 @end ignore
15941 @tindex -
15942 The @kbd{-} (@code{calc-minus}) command subtracts two values.  The top
15943 number on the stack is subtracted from the one behind it, so that the
15944 computation @kbd{5 @key{RET} 2 -} produces 3, not @mathit{-3}.  All options
15945 available for @kbd{+} are available for @kbd{-} as well.
15947 @kindex *
15948 @pindex calc-times
15949 @ignore
15950 @mindex @null
15951 @end ignore
15952 @tindex *
15953 The @kbd{*} (@code{calc-times}) command multiplies two numbers.  If one
15954 argument is a vector and the other a scalar, the scalar is multiplied by
15955 the elements of the vector to produce a new vector.  If both arguments
15956 are vectors, the interpretation depends on the dimensions of the
15957 vectors:  If both arguments are matrices, a matrix multiplication is
15958 done.  If one argument is a matrix and the other a plain vector, the
15959 vector is interpreted as a row vector or column vector, whichever is
15960 dimensionally correct.  If both arguments are plain vectors, the result
15961 is a single scalar number which is the dot product of the two vectors.
15963 If one argument of @kbd{*} is an HMS form and the other a number, the
15964 HMS form is multiplied by that amount.  It is an error to multiply two
15965 HMS forms together, or to attempt any multiplication involving date
15966 forms.  Error forms, modulo forms, and intervals can be multiplied;
15967 see the comments for addition of those forms.  When two error forms
15968 or intervals are multiplied they are considered to be statistically
15969 independent; thus, @samp{[-2 ..@: 3] * [-2 ..@: 3]} is @samp{[-6 ..@: 9]},
15970 whereas @w{@samp{[-2 ..@: 3] ^ 2}} is @samp{[0 ..@: 9]}.
15972 @kindex /
15973 @pindex calc-divide
15974 @ignore
15975 @mindex @null
15976 @end ignore
15977 @tindex /
15978 The @kbd{/} (@code{calc-divide}) command divides two numbers.  Note that
15979 when using algebraic entry, @samp{/} has lower precedence than @samp{*}, 
15980 so that @samp{a/b*c} is interpreted as @samp{a/(b*c)}.
15982 When dividing a scalar @expr{B} by a square matrix @expr{A}, the
15983 computation performed is @expr{B} times the inverse of @expr{A}.  This
15984 also occurs if @expr{B} is itself a vector or matrix, in which case the
15985 effect is to solve the set of linear equations represented by @expr{B}.
15986 If @expr{B} is a matrix with the same number of rows as @expr{A}, or a
15987 plain vector (which is interpreted here as a column vector), then the
15988 equation @expr{A X = B} is solved for the vector or matrix @expr{X}.
15989 Otherwise, if @expr{B} is a non-square matrix with the same number of
15990 @emph{columns} as @expr{A}, the equation @expr{X A = B} is solved.  If
15991 you wish a vector @expr{B} to be interpreted as a row vector to be
15992 solved as @expr{X A = B}, make it into a one-row matrix with @kbd{C-u 1
15993 v p} first.  To force a left-handed solution with a square matrix
15994 @expr{B}, transpose @expr{A} and @expr{B} before dividing, then
15995 transpose the result.
15997 HMS forms can be divided by real numbers or by other HMS forms.  Error
15998 forms can be divided in any combination of ways.  Modulo forms where both
15999 values and the modulo are integers can be divided to get an integer modulo
16000 form result.  Intervals can be divided; dividing by an interval that
16001 encompasses zero or has zero as a limit will result in an infinite
16002 interval.
16004 @kindex ^
16005 @pindex calc-power
16006 @ignore
16007 @mindex @null
16008 @end ignore
16009 @tindex ^
16010 The @kbd{^} (@code{calc-power}) command raises a number to a power.  If
16011 the power is an integer, an exact result is computed using repeated
16012 multiplications.  For non-integer powers, Calc uses Newton's method or
16013 logarithms and exponentials.  Square matrices can be raised to integer
16014 powers.  If either argument is an error (or interval or modulo) form,
16015 the result is also an error (or interval or modulo) form.
16017 @kindex I ^
16018 @tindex nroot
16019 If you press the @kbd{I} (inverse) key first, the @kbd{I ^} command
16020 computes an Nth root:  @kbd{125 @key{RET} 3 I ^} computes the number 5.
16021 (This is entirely equivalent to @kbd{125 @key{RET} 1:3 ^}.)
16023 @kindex \
16024 @pindex calc-idiv
16025 @tindex idiv
16026 @ignore
16027 @mindex @null
16028 @end ignore
16029 @tindex \
16030 The @kbd{\} (@code{calc-idiv}) command divides two numbers on the stack
16031 to produce an integer result.  It is equivalent to dividing with
16032 @key{/}, then rounding down with @kbd{F} (@code{calc-floor}), only a bit
16033 more convenient and efficient.  Also, since it is an all-integer
16034 operation when the arguments are integers, it avoids problems that
16035 @kbd{/ F} would have with floating-point roundoff.
16037 @kindex %
16038 @pindex calc-mod
16039 @ignore
16040 @mindex @null
16041 @end ignore
16042 @tindex %
16043 The @kbd{%} (@code{calc-mod}) command performs a ``modulo'' (or ``remainder'')
16044 operation.  Mathematically, @samp{a%b = a - (a\b)*b}, and is defined
16045 for all real numbers @expr{a} and @expr{b} (except @expr{b=0}).  For
16046 positive @expr{b}, the result will always be between 0 (inclusive) and
16047 @expr{b} (exclusive).  Modulo does not work for HMS forms and error forms.
16048 If @expr{a} is a modulo form, its modulo is changed to @expr{b}, which
16049 must be positive real number.
16051 @kindex :
16052 @pindex calc-fdiv
16053 @tindex fdiv
16054 The @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command
16055 divides the two integers on the top of the stack to produce a fractional
16056 result.  This is a convenient shorthand for enabling Fraction mode (with
16057 @kbd{m f}) temporarily and using @samp{/}.  Note that during numeric entry
16058 the @kbd{:} key is interpreted as a fraction separator, so to divide 8 by 6
16059 you would have to type @kbd{8 @key{RET} 6 @key{RET} :}.  (Of course, in
16060 this case, it would be much easier simply to enter the fraction directly
16061 as @kbd{8:6 @key{RET}}!)
16063 @kindex n
16064 @pindex calc-change-sign
16065 The @kbd{n} (@code{calc-change-sign}) command negates the number on the top
16066 of the stack.  It works on numbers, vectors and matrices, HMS forms, date
16067 forms, error forms, intervals, and modulo forms.
16069 @kindex A
16070 @pindex calc-abs
16071 @tindex abs
16072 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the absolute
16073 value of a number.  The result of @code{abs} is always a nonnegative
16074 real number:  With a complex argument, it computes the complex magnitude.
16075 With a vector or matrix argument, it computes the Frobenius norm, i.e.,
16076 the square root of the sum of the squares of the absolute values of the
16077 elements.  The absolute value of an error form is defined by replacing
16078 the mean part with its absolute value and leaving the error part the same.
16079 The absolute value of a modulo form is undefined.  The absolute value of
16080 an interval is defined in the obvious way.
16082 @kindex f A
16083 @pindex calc-abssqr
16084 @tindex abssqr
16085 The @kbd{f A} (@code{calc-abssqr}) [@code{abssqr}] command computes the
16086 absolute value squared of a number, vector or matrix, or error form.
16088 @kindex f s
16089 @pindex calc-sign
16090 @tindex sign
16091 The @kbd{f s} (@code{calc-sign}) [@code{sign}] command returns 1 if its
16092 argument is positive, @mathit{-1} if its argument is negative, or 0 if its
16093 argument is zero.  In algebraic form, you can also write @samp{sign(a,x)}
16094 which evaluates to @samp{x * sign(a)}, i.e., either @samp{x}, @samp{-x}, or
16095 zero depending on the sign of @samp{a}.
16097 @kindex &
16098 @pindex calc-inv
16099 @tindex inv
16100 @cindex Reciprocal
16101 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
16102 reciprocal of a number, i.e., @expr{1 / x}.  Operating on a square
16103 matrix, it computes the inverse of that matrix.
16105 @kindex Q
16106 @pindex calc-sqrt
16107 @tindex sqrt
16108 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] command computes the square
16109 root of a number.  For a negative real argument, the result will be a
16110 complex number whose form is determined by the current Polar mode.
16112 @kindex f h
16113 @pindex calc-hypot
16114 @tindex hypot
16115 The @kbd{f h} (@code{calc-hypot}) [@code{hypot}] command computes the square
16116 root of the sum of the squares of two numbers.  That is, @samp{hypot(a,b)}
16117 is the length of the hypotenuse of a right triangle with sides @expr{a}
16118 and @expr{b}.  If the arguments are complex numbers, their squared
16119 magnitudes are used.
16121 @kindex f Q
16122 @pindex calc-isqrt
16123 @tindex isqrt
16124 The @kbd{f Q} (@code{calc-isqrt}) [@code{isqrt}] command computes the
16125 integer square root of an integer.  This is the true square root of the
16126 number, rounded down to an integer.  For example, @samp{isqrt(10)}
16127 produces 3.  Note that, like @kbd{\} [@code{idiv}], this uses exact
16128 integer arithmetic throughout to avoid roundoff problems.  If the input
16129 is a floating-point number or other non-integer value, this is exactly
16130 the same as @samp{floor(sqrt(x))}.
16132 @kindex f n
16133 @kindex f x
16134 @pindex calc-min
16135 @tindex min
16136 @pindex calc-max
16137 @tindex max
16138 The @kbd{f n} (@code{calc-min}) [@code{min}] and @kbd{f x} (@code{calc-max})
16139 [@code{max}] commands take the minimum or maximum of two real numbers,
16140 respectively.  These commands also work on HMS forms, date forms,
16141 intervals, and infinities.  (In algebraic expressions, these functions
16142 take any number of arguments and return the maximum or minimum among
16143 all the arguments.)
16145 @kindex f M
16146 @kindex f X
16147 @pindex calc-mant-part
16148 @tindex mant
16149 @pindex calc-xpon-part
16150 @tindex xpon
16151 The @kbd{f M} (@code{calc-mant-part}) [@code{mant}] function extracts
16152 the ``mantissa'' part @expr{m} of its floating-point argument; @kbd{f X}
16153 (@code{calc-xpon-part}) [@code{xpon}] extracts the ``exponent'' part
16154 @expr{e}.  The original number is equal to 
16155 @texline @math{m \times 10^e},
16156 @infoline @expr{m * 10^e},
16157 where @expr{m} is in the interval @samp{[1.0 ..@: 10.0)} except that
16158 @expr{m=e=0} if the original number is zero.  For integers
16159 and fractions, @code{mant} returns the number unchanged and @code{xpon}
16160 returns zero.  The @kbd{v u} (@code{calc-unpack}) command can also be
16161 used to ``unpack'' a floating-point number; this produces an integer
16162 mantissa and exponent, with the constraint that the mantissa is not
16163 a multiple of ten (again except for the @expr{m=e=0} case).
16165 @kindex f S
16166 @pindex calc-scale-float
16167 @tindex scf
16168 The @kbd{f S} (@code{calc-scale-float}) [@code{scf}] function scales a number
16169 by a given power of ten.  Thus, @samp{scf(mant(x), xpon(x)) = x} for any
16170 real @samp{x}.  The second argument must be an integer, but the first
16171 may actually be any numeric value.  For example, @samp{scf(5,-2) = 0.05}
16172 or @samp{1:20} depending on the current Fraction mode.
16174 @kindex f [
16175 @kindex f ]
16176 @pindex calc-decrement
16177 @pindex calc-increment
16178 @tindex decr
16179 @tindex incr
16180 The @kbd{f [} (@code{calc-decrement}) [@code{decr}] and @kbd{f ]}
16181 (@code{calc-increment}) [@code{incr}] functions decrease or increase
16182 a number by one unit.  For integers, the effect is obvious.  For
16183 floating-point numbers, the change is by one unit in the last place.
16184 For example, incrementing @samp{12.3456} when the current precision
16185 is 6 digits yields @samp{12.3457}.  If the current precision had been
16186 8 digits, the result would have been @samp{12.345601}.  Incrementing
16187 @samp{0.0} produces 
16188 @texline @math{10^{-p}},
16189 @infoline @expr{10^-p}, 
16190 where @expr{p} is the current
16191 precision.  These operations are defined only on integers and floats.
16192 With numeric prefix arguments, they change the number by @expr{n} units.
16194 Note that incrementing followed by decrementing, or vice-versa, will
16195 almost but not quite always cancel out.  Suppose the precision is
16196 6 digits and the number @samp{9.99999} is on the stack.  Incrementing
16197 will produce @samp{10.0000}; decrementing will produce @samp{9.9999}.
16198 One digit has been dropped.  This is an unavoidable consequence of the
16199 way floating-point numbers work.
16201 Incrementing a date/time form adjusts it by a certain number of seconds.
16202 Incrementing a pure date form adjusts it by a certain number of days.
16204 @node Integer Truncation, Complex Number Functions, Basic Arithmetic, Arithmetic
16205 @section Integer Truncation
16207 @noindent
16208 There are four commands for truncating a real number to an integer,
16209 differing mainly in their treatment of negative numbers.  All of these
16210 commands have the property that if the argument is an integer, the result
16211 is the same integer.  An integer-valued floating-point argument is converted
16212 to integer form.
16214 If you press @kbd{H} (@code{calc-hyperbolic}) first, the result will be
16215 expressed as an integer-valued floating-point number.
16217 @cindex Integer part of a number
16218 @kindex F
16219 @pindex calc-floor
16220 @tindex floor
16221 @tindex ffloor
16222 @ignore
16223 @mindex @null
16224 @end ignore
16225 @kindex H F
16226 The @kbd{F} (@code{calc-floor}) [@code{floor} or @code{ffloor}] command
16227 truncates a real number to the next lower integer, i.e., toward minus
16228 infinity.  Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces
16229 @mathit{-4}.
16231 @kindex I F
16232 @pindex calc-ceiling
16233 @tindex ceil
16234 @tindex fceil
16235 @ignore
16236 @mindex @null
16237 @end ignore
16238 @kindex H I F
16239 The @kbd{I F} (@code{calc-ceiling}) [@code{ceil} or @code{fceil}]
16240 command truncates toward positive infinity.  Thus @kbd{3.6 I F} produces
16241 4, and @kbd{_3.6 I F} produces @mathit{-3}.
16243 @kindex R
16244 @pindex calc-round
16245 @tindex round
16246 @tindex fround
16247 @ignore
16248 @mindex @null
16249 @end ignore
16250 @kindex H R
16251 The @kbd{R} (@code{calc-round}) [@code{round} or @code{fround}] command
16252 rounds to the nearest integer.  When the fractional part is .5 exactly,
16253 this command rounds away from zero.  (All other rounding in the
16254 Calculator uses this convention as well.)  Thus @kbd{3.5 R} produces 4
16255 but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @mathit{-4}.
16257 @kindex I R
16258 @pindex calc-trunc
16259 @tindex trunc
16260 @tindex ftrunc
16261 @ignore
16262 @mindex @null
16263 @end ignore
16264 @kindex H I R
16265 The @kbd{I R} (@code{calc-trunc}) [@code{trunc} or @code{ftrunc}]
16266 command truncates toward zero.  In other words, it ``chops off''
16267 everything after the decimal point.  Thus @kbd{3.6 I R} produces 3 and
16268 @kbd{_3.6 I R} produces @mathit{-3}.
16270 These functions may not be applied meaningfully to error forms, but they
16271 do work for intervals.  As a convenience, applying @code{floor} to a
16272 modulo form floors the value part of the form.  Applied to a vector,
16273 these functions operate on all elements of the vector one by one.
16274 Applied to a date form, they operate on the internal numerical
16275 representation of dates, converting a date/time form into a pure date.
16277 @ignore
16278 @starindex
16279 @end ignore
16280 @tindex rounde
16281 @ignore
16282 @starindex
16283 @end ignore
16284 @tindex roundu
16285 @ignore
16286 @starindex
16287 @end ignore
16288 @tindex frounde
16289 @ignore
16290 @starindex
16291 @end ignore
16292 @tindex froundu
16293 There are two more rounding functions which can only be entered in
16294 algebraic notation.  The @code{roundu} function is like @code{round}
16295 except that it rounds up, toward plus infinity, when the fractional
16296 part is .5.  This distinction matters only for negative arguments.
16297 Also, @code{rounde} rounds to an even number in the case of a tie,
16298 rounding up or down as necessary.  For example, @samp{rounde(3.5)} and
16299 @samp{rounde(4.5)} both return 4, but @samp{rounde(5.5)} returns 6.
16300 The advantage of round-to-even is that the net error due to rounding
16301 after a long calculation tends to cancel out to zero.  An important
16302 subtle point here is that the number being fed to @code{rounde} will
16303 already have been rounded to the current precision before @code{rounde}
16304 begins.  For example, @samp{rounde(2.500001)} with a current precision
16305 of 6 will incorrectly, or at least surprisingly, yield 2 because the
16306 argument will first have been rounded down to @expr{2.5} (which
16307 @code{rounde} sees as an exact tie between 2 and 3).
16309 Each of these functions, when written in algebraic formulas, allows
16310 a second argument which specifies the number of digits after the
16311 decimal point to keep.  For example, @samp{round(123.4567, 2)} will
16312 produce the answer 123.46, and @samp{round(123.4567, -1)} will
16313 produce 120 (i.e., the cutoff is one digit to the @emph{left} of
16314 the decimal point).  A second argument of zero is equivalent to
16315 no second argument at all.
16317 @cindex Fractional part of a number
16318 To compute the fractional part of a number (i.e., the amount which, when
16319 added to `@tfn{floor(}@var{n}@tfn{)}', will produce @var{n}) just take @var{n}
16320 modulo 1 using the @code{%} command.
16322 Note also the @kbd{\} (integer quotient), @kbd{f I} (integer logarithm),
16323 and @kbd{f Q} (integer square root) commands, which are analogous to
16324 @kbd{/}, @kbd{B}, and @kbd{Q}, respectively, except that they take integer
16325 arguments and return the result rounded down to an integer.
16327 @node Complex Number Functions, Conversions, Integer Truncation, Arithmetic
16328 @section Complex Number Functions
16330 @noindent
16331 @kindex J
16332 @pindex calc-conj
16333 @tindex conj
16334 The @kbd{J} (@code{calc-conj}) [@code{conj}] command computes the
16335 complex conjugate of a number.  For complex number @expr{a+bi}, the
16336 complex conjugate is @expr{a-bi}.  If the argument is a real number,
16337 this command leaves it the same.  If the argument is a vector or matrix,
16338 this command replaces each element by its complex conjugate.
16340 @kindex G
16341 @pindex calc-argument
16342 @tindex arg
16343 The @kbd{G} (@code{calc-argument}) [@code{arg}] command computes the
16344 ``argument'' or polar angle of a complex number.  For a number in polar
16345 notation, this is simply the second component of the pair
16346 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'.
16347 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'.
16348 The result is expressed according to the current angular mode and will
16349 be in the range @mathit{-180} degrees (exclusive) to @mathit{+180} degrees
16350 (inclusive), or the equivalent range in radians.
16352 @pindex calc-imaginary
16353 The @code{calc-imaginary} command multiplies the number on the
16354 top of the stack by the imaginary number @expr{i = (0,1)}.  This
16355 command is not normally bound to a key in Calc, but it is available
16356 on the @key{IMAG} button in Keypad mode.
16358 @kindex f r
16359 @pindex calc-re
16360 @tindex re
16361 The @kbd{f r} (@code{calc-re}) [@code{re}] command replaces a complex number
16362 by its real part.  This command has no effect on real numbers.  (As an
16363 added convenience, @code{re} applied to a modulo form extracts
16364 the value part.)
16366 @kindex f i
16367 @pindex calc-im
16368 @tindex im
16369 The @kbd{f i} (@code{calc-im}) [@code{im}] command replaces a complex number
16370 by its imaginary part; real numbers are converted to zero.  With a vector
16371 or matrix argument, these functions operate element-wise.
16373 @ignore
16374 @mindex v p
16375 @end ignore
16376 @kindex v p (complex)
16377 @pindex calc-pack
16378 The @kbd{v p} (@code{calc-pack}) command can pack the top two numbers on
16379 the stack into a composite object such as a complex number.  With
16380 a prefix argument of @mathit{-1}, it produces a rectangular complex number;
16381 with an argument of @mathit{-2}, it produces a polar complex number.
16382 (Also, @pxref{Building Vectors}.)
16384 @ignore
16385 @mindex v u
16386 @end ignore
16387 @kindex v u (complex)
16388 @pindex calc-unpack
16389 The @kbd{v u} (@code{calc-unpack}) command takes the complex number
16390 (or other composite object) on the top of the stack and unpacks it
16391 into its separate components.
16393 @node Conversions, Date Arithmetic, Complex Number Functions, Arithmetic
16394 @section Conversions
16396 @noindent
16397 The commands described in this section convert numbers from one form
16398 to another; they are two-key sequences beginning with the letter @kbd{c}.
16400 @kindex c f
16401 @pindex calc-float
16402 @tindex pfloat
16403 The @kbd{c f} (@code{calc-float}) [@code{pfloat}] command converts the
16404 number on the top of the stack to floating-point form.  For example,
16405 @expr{23} is converted to @expr{23.0}, @expr{3:2} is converted to
16406 @expr{1.5}, and @expr{2.3} is left the same.  If the value is a composite
16407 object such as a complex number or vector, each of the components is
16408 converted to floating-point.  If the value is a formula, all numbers
16409 in the formula are converted to floating-point.  Note that depending
16410 on the current floating-point precision, conversion to floating-point
16411 format may lose information.
16413 As a special exception, integers which appear as powers or subscripts
16414 are not floated by @kbd{c f}.  If you really want to float a power,
16415 you can use a @kbd{j s} command to select the power followed by @kbd{c f}.
16416 Because @kbd{c f} cannot examine the formula outside of the selection,
16417 it does not notice that the thing being floated is a power.
16418 @xref{Selecting Subformulas}.
16420 The normal @kbd{c f} command is ``pervasive'' in the sense that it
16421 applies to all numbers throughout the formula.  The @code{pfloat}
16422 algebraic function never stays around in a formula; @samp{pfloat(a + 1)}
16423 changes to @samp{a + 1.0} as soon as it is evaluated.
16425 @kindex H c f
16426 @tindex float
16427 With the Hyperbolic flag, @kbd{H c f} [@code{float}] operates
16428 only on the number or vector of numbers at the top level of its
16429 argument.  Thus, @samp{float(1)} is 1.0, but @samp{float(a + 1)}
16430 is left unevaluated because its argument is not a number.
16432 You should use @kbd{H c f} if you wish to guarantee that the final
16433 value, once all the variables have been assigned, is a float; you
16434 would use @kbd{c f} if you wish to do the conversion on the numbers
16435 that appear right now.
16437 @kindex c F
16438 @pindex calc-fraction
16439 @tindex pfrac
16440 The @kbd{c F} (@code{calc-fraction}) [@code{pfrac}] command converts a
16441 floating-point number into a fractional approximation.  By default, it
16442 produces a fraction whose decimal representation is the same as the
16443 input number, to within the current precision.  You can also give a
16444 numeric prefix argument to specify a tolerance, either directly, or,
16445 if the prefix argument is zero, by using the number on top of the stack
16446 as the tolerance.  If the tolerance is a positive integer, the fraction
16447 is correct to within that many significant figures.  If the tolerance is
16448 a non-positive integer, it specifies how many digits fewer than the current
16449 precision to use.  If the tolerance is a floating-point number, the
16450 fraction is correct to within that absolute amount.
16452 @kindex H c F
16453 @tindex frac
16454 The @code{pfrac} function is pervasive, like @code{pfloat}.
16455 There is also a non-pervasive version, @kbd{H c F} [@code{frac}],
16456 which is analogous to @kbd{H c f} discussed above.
16458 @kindex c d
16459 @pindex calc-to-degrees
16460 @tindex deg
16461 The @kbd{c d} (@code{calc-to-degrees}) [@code{deg}] command converts a
16462 number into degrees form.  The value on the top of the stack may be an
16463 HMS form (interpreted as degrees-minutes-seconds), or a real number which
16464 will be interpreted in radians regardless of the current angular mode.
16466 @kindex c r
16467 @pindex calc-to-radians
16468 @tindex rad
16469 The @kbd{c r} (@code{calc-to-radians}) [@code{rad}] command converts an
16470 HMS form or angle in degrees into an angle in radians.
16472 @kindex c h
16473 @pindex calc-to-hms
16474 @tindex hms
16475 The @kbd{c h} (@code{calc-to-hms}) [@code{hms}] command converts a real
16476 number, interpreted according to the current angular mode, to an HMS
16477 form describing the same angle.  In algebraic notation, the @code{hms}
16478 function also accepts three arguments: @samp{hms(@var{h}, @var{m}, @var{s})}.
16479 (The three-argument version is independent of the current angular mode.)
16481 @pindex calc-from-hms
16482 The @code{calc-from-hms} command converts the HMS form on the top of the
16483 stack into a real number according to the current angular mode.
16485 @kindex c p
16486 @kindex I c p
16487 @pindex calc-polar
16488 @tindex polar
16489 @tindex rect
16490 The @kbd{c p} (@code{calc-polar}) command converts the complex number on
16491 the top of the stack from polar to rectangular form, or from rectangular
16492 to polar form, whichever is appropriate.  Real numbers are left the same.
16493 This command is equivalent to the @code{rect} or @code{polar}
16494 functions in algebraic formulas, depending on the direction of
16495 conversion.  (It uses @code{polar}, except that if the argument is
16496 already a polar complex number, it uses @code{rect} instead.  The
16497 @kbd{I c p} command always uses @code{rect}.)
16499 @kindex c c
16500 @pindex calc-clean
16501 @tindex pclean
16502 The @kbd{c c} (@code{calc-clean}) [@code{pclean}] command ``cleans'' the
16503 number on the top of the stack.  Floating point numbers are re-rounded
16504 according to the current precision.  Polar numbers whose angular
16505 components have strayed from the @mathit{-180} to @mathit{+180} degree range
16506 are normalized.  (Note that results will be undesirable if the current
16507 angular mode is different from the one under which the number was
16508 produced!)  Integers and fractions are generally unaffected by this
16509 operation.  Vectors and formulas are cleaned by cleaning each component
16510 number (i.e., pervasively).
16512 If the simplification mode is set below the default level, it is raised
16513 to the default level for the purposes of this command.  Thus, @kbd{c c}
16514 applies the default simplifications even if their automatic application
16515 is disabled.  @xref{Simplification Modes}.
16517 @cindex Roundoff errors, correcting
16518 A numeric prefix argument to @kbd{c c} sets the floating-point precision
16519 to that value for the duration of the command.  A positive prefix (of at
16520 least 3) sets the precision to the specified value; a negative or zero
16521 prefix decreases the precision by the specified amount.
16523 @kindex c 0-9
16524 @pindex calc-clean-num
16525 The keystroke sequences @kbd{c 0} through @kbd{c 9} are equivalent
16526 to @kbd{c c} with the corresponding negative prefix argument.  If roundoff
16527 errors have changed 2.0 into 1.999999, typing @kbd{c 1} to clip off one
16528 decimal place often conveniently does the trick.
16530 The @kbd{c c} command with a numeric prefix argument, and the @kbd{c 0}
16531 through @kbd{c 9} commands, also ``clip'' very small floating-point
16532 numbers to zero.  If the exponent is less than or equal to the negative
16533 of the specified precision, the number is changed to 0.0.  For example,
16534 if the current precision is 12, then @kbd{c 2} changes the vector
16535 @samp{[1e-8, 1e-9, 1e-10, 1e-11]} to @samp{[1e-8, 1e-9, 0, 0]}.
16536 Numbers this small generally arise from roundoff noise.
16538 If the numbers you are using really are legitimately this small,
16539 you should avoid using the @kbd{c 0} through @kbd{c 9} commands.
16540 (The plain @kbd{c c} command rounds to the current precision but
16541 does not clip small numbers.)
16543 One more property of @kbd{c 0} through @kbd{c 9}, and of @kbd{c c} with
16544 a prefix argument, is that integer-valued floats are converted to
16545 plain integers, so that @kbd{c 1} on @samp{[1., 1.5, 2., 2.5, 3.]}
16546 produces @samp{[1, 1.5, 2, 2.5, 3]}.  This is not done for huge
16547 numbers (@samp{1e100} is technically an integer-valued float, but
16548 you wouldn't want it automatically converted to a 100-digit integer).
16550 @kindex H c 0-9
16551 @kindex H c c
16552 @tindex clean
16553 With the Hyperbolic flag, @kbd{H c c} and @kbd{H c 0} through @kbd{H c 9}
16554 operate non-pervasively [@code{clean}].
16556 @node Date Arithmetic, Financial Functions, Conversions, Arithmetic
16557 @section Date Arithmetic
16559 @noindent
16560 @cindex Date arithmetic, additional functions
16561 The commands described in this section perform various conversions
16562 and calculations involving date forms (@pxref{Date Forms}).  They
16563 use the @kbd{t} (for time/date) prefix key followed by shifted
16564 letters.
16566 The simplest date arithmetic is done using the regular @kbd{+} and @kbd{-}
16567 commands.  In particular, adding a number to a date form advances the
16568 date form by a certain number of days; adding an HMS form to a date
16569 form advances the date by a certain amount of time; and subtracting two
16570 date forms produces a difference measured in days.  The commands
16571 described here provide additional, more specialized operations on dates.
16573 Many of these commands accept a numeric prefix argument; if you give
16574 plain @kbd{C-u} as the prefix, these commands will instead take the
16575 additional argument from the top of the stack.
16577 @menu
16578 * Date Conversions::
16579 * Date Functions::
16580 * Time Zones::
16581 * Business Days::
16582 @end menu
16584 @node Date Conversions, Date Functions, Date Arithmetic, Date Arithmetic
16585 @subsection Date Conversions
16587 @noindent
16588 @kindex t D
16589 @pindex calc-date
16590 @tindex date
16591 The @kbd{t D} (@code{calc-date}) [@code{date}] command converts a
16592 date form into a number, measured in days since Jan 1, 1 AD.  The
16593 result will be an integer if @var{date} is a pure date form, or a
16594 fraction or float if @var{date} is a date/time form.  Or, if its
16595 argument is a number, it converts this number into a date form.
16597 With a numeric prefix argument, @kbd{t D} takes that many objects
16598 (up to six) from the top of the stack and interprets them in one
16599 of the following ways:
16601 The @samp{date(@var{year}, @var{month}, @var{day})} function
16602 builds a pure date form out of the specified year, month, and
16603 day, which must all be integers.  @var{Year} is a year number,
16604 such as 1991 (@emph{not} the same as 91!).  @var{Month} must be
16605 an integer in the range 1 to 12; @var{day} must be in the range
16606 1 to 31.  If the specified month has fewer than 31 days and
16607 @var{day} is too large, the equivalent day in the following
16608 month will be used.
16610 The @samp{date(@var{month}, @var{day})} function builds a
16611 pure date form using the current year, as determined by the
16612 real-time clock.
16614 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hms})}
16615 function builds a date/time form using an @var{hms} form.
16617 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hour},
16618 @var{minute}, @var{second})} function builds a date/time form.
16619 @var{hour} should be an integer in the range 0 to 23;
16620 @var{minute} should be an integer in the range 0 to 59;
16621 @var{second} should be any real number in the range @samp{[0 .. 60)}.
16622 The last two arguments default to zero if omitted.
16624 @kindex t J
16625 @pindex calc-julian
16626 @tindex julian
16627 @cindex Julian day counts, conversions
16628 The @kbd{t J} (@code{calc-julian}) [@code{julian}] command converts
16629 a date form into a Julian day count, which is the number of days
16630 since noon on Jan 1, 4713 BC.  A pure date is converted to an integer
16631 Julian count representing noon of that day.  A date/time form is
16632 converted to an exact floating-point Julian count, adjusted to
16633 interpret the date form in the current time zone but the Julian
16634 day count in Greenwich Mean Time.  A numeric prefix argument allows
16635 you to specify the time zone; @pxref{Time Zones}.  Use a prefix of
16636 zero to suppress the time zone adjustment.  Note that pure date forms
16637 are never time-zone adjusted.
16639 This command can also do the opposite conversion, from a Julian day
16640 count (either an integer day, or a floating-point day and time in
16641 the GMT zone), into a pure date form or a date/time form in the
16642 current or specified time zone.
16644 @kindex t U
16645 @pindex calc-unix-time
16646 @tindex unixtime
16647 @cindex Unix time format, conversions
16648 The @kbd{t U} (@code{calc-unix-time}) [@code{unixtime}] command
16649 converts a date form into a Unix time value, which is the number of
16650 seconds since midnight on Jan 1, 1970, or vice-versa.  The numeric result
16651 will be an integer if the current precision is 12 or less; for higher
16652 precisions, the result may be a float with (@var{precision}@minus{}12)
16653 digits after the decimal.  Just as for @kbd{t J}, the numeric time
16654 is interpreted in the GMT time zone and the date form is interpreted
16655 in the current or specified zone.  Some systems use Unix-like
16656 numbering but with the local time zone; give a prefix of zero to
16657 suppress the adjustment if so.
16659 @kindex t C
16660 @pindex calc-convert-time-zones
16661 @tindex tzconv
16662 @cindex Time Zones, converting between
16663 The @kbd{t C} (@code{calc-convert-time-zones}) [@code{tzconv}]
16664 command converts a date form from one time zone to another.  You
16665 are prompted for each time zone name in turn; you can answer with
16666 any suitable Calc time zone expression (@pxref{Time Zones}).
16667 If you answer either prompt with a blank line, the local time
16668 zone is used for that prompt.  You can also answer the first
16669 prompt with @kbd{$} to take the two time zone names from the
16670 stack (and the date to be converted from the third stack level).
16672 @node Date Functions, Business Days, Date Conversions, Date Arithmetic
16673 @subsection Date Functions
16675 @noindent
16676 @kindex t N
16677 @pindex calc-now
16678 @tindex now
16679 The @kbd{t N} (@code{calc-now}) [@code{now}] command pushes the
16680 current date and time on the stack as a date form.  The time is
16681 reported in terms of the specified time zone; with no numeric prefix
16682 argument, @kbd{t N} reports for the current time zone.
16684 @kindex t P
16685 @pindex calc-date-part
16686 The @kbd{t P} (@code{calc-date-part}) command extracts one part
16687 of a date form.  The prefix argument specifies the part; with no
16688 argument, this command prompts for a part code from 1 to 9.
16689 The various part codes are described in the following paragraphs.
16691 @tindex year
16692 The @kbd{M-1 t P} [@code{year}] function extracts the year number
16693 from a date form as an integer, e.g., 1991.  This and the
16694 following functions will also accept a real number for an
16695 argument, which is interpreted as a standard Calc day number.
16696 Note that this function will never return zero, since the year
16697 1 BC immediately precedes the year 1 AD.
16699 @tindex month
16700 The @kbd{M-2 t P} [@code{month}] function extracts the month number
16701 from a date form as an integer in the range 1 to 12.
16703 @tindex day
16704 The @kbd{M-3 t P} [@code{day}] function extracts the day number
16705 from a date form as an integer in the range 1 to 31.
16707 @tindex hour
16708 The @kbd{M-4 t P} [@code{hour}] function extracts the hour from
16709 a date form as an integer in the range 0 (midnight) to 23.  Note
16710 that 24-hour time is always used.  This returns zero for a pure
16711 date form.  This function (and the following two) also accept
16712 HMS forms as input.
16714 @tindex minute
16715 The @kbd{M-5 t P} [@code{minute}] function extracts the minute
16716 from a date form as an integer in the range 0 to 59.
16718 @tindex second
16719 The @kbd{M-6 t P} [@code{second}] function extracts the second
16720 from a date form.  If the current precision is 12 or less,
16721 the result is an integer in the range 0 to 59.  For higher
16722 precisions, the result may instead be a floating-point number.
16724 @tindex weekday
16725 The @kbd{M-7 t P} [@code{weekday}] function extracts the weekday
16726 number from a date form as an integer in the range 0 (Sunday)
16727 to 6 (Saturday).
16729 @tindex yearday
16730 The @kbd{M-8 t P} [@code{yearday}] function extracts the day-of-year
16731 number from a date form as an integer in the range 1 (January 1)
16732 to 366 (December 31 of a leap year).
16734 @tindex time
16735 The @kbd{M-9 t P} [@code{time}] function extracts the time portion
16736 of a date form as an HMS form.  This returns @samp{0@@ 0' 0"}
16737 for a pure date form.
16739 @kindex t M
16740 @pindex calc-new-month
16741 @tindex newmonth
16742 The @kbd{t M} (@code{calc-new-month}) [@code{newmonth}] command
16743 computes a new date form that represents the first day of the month
16744 specified by the input date.  The result is always a pure date
16745 form; only the year and month numbers of the input are retained.
16746 With a numeric prefix argument @var{n} in the range from 1 to 31,
16747 @kbd{t M} computes the @var{n}th day of the month.  (If @var{n}
16748 is greater than the actual number of days in the month, or if
16749 @var{n} is zero, the last day of the month is used.)
16751 @kindex t Y
16752 @pindex calc-new-year
16753 @tindex newyear
16754 The @kbd{t Y} (@code{calc-new-year}) [@code{newyear}] command
16755 computes a new pure date form that represents the first day of
16756 the year specified by the input.  The month, day, and time
16757 of the input date form are lost.  With a numeric prefix argument
16758 @var{n} in the range from 1 to 366, @kbd{t Y} computes the
16759 @var{n}th day of the year (366 is treated as 365 in non-leap
16760 years).  A prefix argument of 0 computes the last day of the
16761 year (December 31).  A negative prefix argument from @mathit{-1} to
16762 @mathit{-12} computes the first day of the @var{n}th month of the year.
16764 @kindex t W
16765 @pindex calc-new-week
16766 @tindex newweek
16767 The @kbd{t W} (@code{calc-new-week}) [@code{newweek}] command
16768 computes a new pure date form that represents the Sunday on or before
16769 the input date.  With a numeric prefix argument, it can be made to
16770 use any day of the week as the starting day; the argument must be in
16771 the range from 0 (Sunday) to 6 (Saturday).  This function always
16772 subtracts between 0 and 6 days from the input date.
16774 Here's an example use of @code{newweek}:  Find the date of the next
16775 Wednesday after a given date.  Using @kbd{M-3 t W} or @samp{newweek(d, 3)}
16776 will give you the @emph{preceding} Wednesday, so @samp{newweek(d+7, 3)}
16777 will give you the following Wednesday.  A further look at the definition
16778 of @code{newweek} shows that if the input date is itself a Wednesday,
16779 this formula will return the Wednesday one week in the future.  An
16780 exercise for the reader is to modify this formula to yield the same day
16781 if the input is already a Wednesday.  Another interesting exercise is
16782 to preserve the time-of-day portion of the input (@code{newweek} resets
16783 the time to midnight; hint:@: how can @code{newweek} be defined in terms
16784 of the @code{weekday} function?).
16786 @ignore
16787 @starindex
16788 @end ignore
16789 @tindex pwday
16790 The @samp{pwday(@var{date})} function (not on any key) computes the
16791 day-of-month number of the Sunday on or before @var{date}.  With
16792 two arguments, @samp{pwday(@var{date}, @var{day})} computes the day
16793 number of the Sunday on or before day number @var{day} of the month
16794 specified by @var{date}.  The @var{day} must be in the range from
16795 7 to 31; if the day number is greater than the actual number of days
16796 in the month, the true number of days is used instead.  Thus
16797 @samp{pwday(@var{date}, 7)} finds the first Sunday of the month, and
16798 @samp{pwday(@var{date}, 31)} finds the last Sunday of the month.
16799 With a third @var{weekday} argument, @code{pwday} can be made to look
16800 for any day of the week instead of Sunday.
16802 @kindex t I
16803 @pindex calc-inc-month
16804 @tindex incmonth
16805 The @kbd{t I} (@code{calc-inc-month}) [@code{incmonth}] command
16806 increases a date form by one month, or by an arbitrary number of
16807 months specified by a numeric prefix argument.  The time portion,
16808 if any, of the date form stays the same.  The day also stays the
16809 same, except that if the new month has fewer days the day
16810 number may be reduced to lie in the valid range.  For example,
16811 @samp{incmonth(<Jan 31, 1991>)} produces @samp{<Feb 28, 1991>}.
16812 Because of this, @kbd{t I t I} and @kbd{M-2 t I} do not always give
16813 the same results (@samp{<Mar 28, 1991>} versus @samp{<Mar 31, 1991>}
16814 in this case).
16816 @ignore
16817 @starindex
16818 @end ignore
16819 @tindex incyear
16820 The @samp{incyear(@var{date}, @var{step})} function increases
16821 a date form by the specified number of years, which may be
16822 any positive or negative integer.  Note that @samp{incyear(d, n)}
16823 is equivalent to @w{@samp{incmonth(d, 12*n)}}, but these do not have
16824 simple equivalents in terms of day arithmetic because
16825 months and years have varying lengths.  If the @var{step}
16826 argument is omitted, 1 year is assumed.  There is no keyboard
16827 command for this function; use @kbd{C-u 12 t I} instead.
16829 There is no @code{newday} function at all because @kbd{F} [@code{floor}]
16830 serves this purpose.  Similarly, instead of @code{incday} and
16831 @code{incweek} simply use @expr{d + n} or @expr{d + 7 n}.
16833 @xref{Basic Arithmetic}, for the @kbd{f ]} [@code{incr}] command
16834 which can adjust a date/time form by a certain number of seconds.
16836 @node Business Days, Time Zones, Date Functions, Date Arithmetic
16837 @subsection Business Days
16839 @noindent
16840 Often time is measured in ``business days'' or ``working days,''
16841 where weekends and holidays are skipped.  Calc's normal date
16842 arithmetic functions use calendar days, so that subtracting two
16843 consecutive Mondays will yield a difference of 7 days.  By contrast,
16844 subtracting two consecutive Mondays would yield 5 business days
16845 (assuming two-day weekends and the absence of holidays).
16847 @kindex t +
16848 @kindex t -
16849 @tindex badd
16850 @tindex bsub
16851 @pindex calc-business-days-plus
16852 @pindex calc-business-days-minus
16853 The @kbd{t +} (@code{calc-business-days-plus}) [@code{badd}]
16854 and @kbd{t -} (@code{calc-business-days-minus}) [@code{bsub}]
16855 commands perform arithmetic using business days.  For @kbd{t +},
16856 one argument must be a date form and the other must be a real
16857 number (positive or negative).  If the number is not an integer,
16858 then a certain amount of time is added as well as a number of
16859 days; for example, adding 0.5 business days to a time in Friday
16860 evening will produce a time in Monday morning.  It is also
16861 possible to add an HMS form; adding @samp{12@@ 0' 0"} also adds
16862 half a business day.  For @kbd{t -}, the arguments are either a
16863 date form and a number or HMS form, or two date forms, in which
16864 case the result is the number of business days between the two
16865 dates.
16867 @cindex @code{Holidays} variable
16868 @vindex Holidays
16869 By default, Calc considers any day that is not a Saturday or
16870 Sunday to be a business day.  You can define any number of
16871 additional holidays by editing the variable @code{Holidays}.
16872 (There is an @w{@kbd{s H}} convenience command for editing this
16873 variable.)  Initially, @code{Holidays} contains the vector
16874 @samp{[sat, sun]}.  Entries in the @code{Holidays} vector may
16875 be any of the following kinds of objects:
16877 @itemize @bullet
16878 @item
16879 Date forms (pure dates, not date/time forms).  These specify
16880 particular days which are to be treated as holidays.
16882 @item
16883 Intervals of date forms.  These specify a range of days, all of
16884 which are holidays (e.g., Christmas week).  @xref{Interval Forms}.
16886 @item
16887 Nested vectors of date forms.  Each date form in the vector is
16888 considered to be a holiday.
16890 @item
16891 Any Calc formula which evaluates to one of the above three things.
16892 If the formula involves the variable @expr{y}, it stands for a
16893 yearly repeating holiday; @expr{y} will take on various year
16894 numbers like 1992.  For example, @samp{date(y, 12, 25)} specifies
16895 Christmas day, and @samp{newweek(date(y, 11, 7), 4) + 21} specifies
16896 Thanksgiving (which is held on the fourth Thursday of November).
16897 If the formula involves the variable @expr{m}, that variable
16898 takes on month numbers from 1 to 12:  @samp{date(y, m, 15)} is
16899 a holiday that takes place on the 15th of every month.
16901 @item
16902 A weekday name, such as @code{sat} or @code{sun}.  This is really
16903 a variable whose name is a three-letter, lower-case day name.
16905 @item
16906 An interval of year numbers (integers).  This specifies the span of
16907 years over which this holiday list is to be considered valid.  Any
16908 business-day arithmetic that goes outside this range will result
16909 in an error message.  Use this if you are including an explicit
16910 list of holidays, rather than a formula to generate them, and you
16911 want to make sure you don't accidentally go beyond the last point
16912 where the holidays you entered are complete.  If there is no
16913 limiting interval in the @code{Holidays} vector, the default
16914 @samp{[1 .. 2737]} is used.  (This is the absolute range of years
16915 for which Calc's business-day algorithms will operate.)
16917 @item
16918 An interval of HMS forms.  This specifies the span of hours that
16919 are to be considered one business day.  For example, if this
16920 range is @samp{[9@@ 0' 0" .. 17@@ 0' 0"]} (i.e., 9am to 5pm), then
16921 the business day is only eight hours long, so that @kbd{1.5 t +}
16922 on @samp{<4:00pm Fri Dec 13, 1991>} will add one business day and
16923 four business hours to produce @samp{<12:00pm Tue Dec 17, 1991>}.
16924 Likewise, @kbd{t -} will now express differences in time as
16925 fractions of an eight-hour day.  Times before 9am will be treated
16926 as 9am by business date arithmetic, and times at or after 5pm will
16927 be treated as 4:59:59pm.  If there is no HMS interval in @code{Holidays},
16928 the full 24-hour day @samp{[0@ 0' 0" .. 24@ 0' 0"]} is assumed.
16929 (Regardless of the type of bounds you specify, the interval is
16930 treated as inclusive on the low end and exclusive on the high end,
16931 so that the work day goes from 9am up to, but not including, 5pm.)
16932 @end itemize
16934 If the @code{Holidays} vector is empty, then @kbd{t +} and
16935 @kbd{t -} will act just like @kbd{+} and @kbd{-} because there will
16936 then be no difference between business days and calendar days.
16938 Calc expands the intervals and formulas you give into a complete
16939 list of holidays for internal use.  This is done mainly to make
16940 sure it can detect multiple holidays.  (For example,
16941 @samp{<Jan 1, 1989>} is both New Year's Day and a Sunday, but
16942 Calc's algorithms take care to count it only once when figuring
16943 the number of holidays between two dates.)
16945 Since the complete list of holidays for all the years from 1 to
16946 2737 would be huge, Calc actually computes only the part of the
16947 list between the smallest and largest years that have been involved
16948 in business-day calculations so far.  Normally, you won't have to
16949 worry about this.  Keep in mind, however, that if you do one
16950 calculation for 1992, and another for 1792, even if both involve
16951 only a small range of years, Calc will still work out all the
16952 holidays that fall in that 200-year span.
16954 If you add a (positive) number of days to a date form that falls on a
16955 weekend or holiday, the date form is treated as if it were the most
16956 recent business day.  (Thus adding one business day to a Friday,
16957 Saturday, or Sunday will all yield the following Monday.)  If you
16958 subtract a number of days from a weekend or holiday, the date is
16959 effectively on the following business day.  (So subtracting one business
16960 day from Saturday, Sunday, or Monday yields the preceding Friday.)  The
16961 difference between two dates one or both of which fall on holidays
16962 equals the number of actual business days between them.  These
16963 conventions are consistent in the sense that, if you add @var{n}
16964 business days to any date, the difference between the result and the
16965 original date will come out to @var{n} business days.  (It can't be
16966 completely consistent though; a subtraction followed by an addition
16967 might come out a bit differently, since @kbd{t +} is incapable of
16968 producing a date that falls on a weekend or holiday.)
16970 @ignore
16971 @starindex
16972 @end ignore
16973 @tindex holiday
16974 There is a @code{holiday} function, not on any keys, that takes
16975 any date form and returns 1 if that date falls on a weekend or
16976 holiday, as defined in @code{Holidays}, or 0 if the date is a
16977 business day.
16979 @node Time Zones,  , Business Days, Date Arithmetic
16980 @subsection Time Zones
16982 @noindent
16983 @cindex Time zones
16984 @cindex Daylight saving time
16985 Time zones and daylight saving time are a complicated business.
16986 The conversions to and from Julian and Unix-style dates automatically
16987 compute the correct time zone and daylight saving adjustment to use,
16988 provided they can figure out this information.  This section describes
16989 Calc's time zone adjustment algorithm in detail, in case you want to
16990 do conversions in different time zones or in case Calc's algorithms
16991 can't determine the right correction to use.
16993 Adjustments for time zones and daylight saving time are done by
16994 @kbd{t U}, @kbd{t J}, @kbd{t N}, and @kbd{t C}, but not by any other
16995 commands.  In particular, @samp{<may 1 1991> - <apr 1 1991>} evaluates
16996 to exactly 30 days even though there is a daylight-saving
16997 transition in between.  This is also true for Julian pure dates:
16998 @samp{julian(<may 1 1991>) - julian(<apr 1 1991>)}.  But Julian
16999 and Unix date/times will adjust for daylight saving time:  using Calc's
17000 default daylight saving time rule (see the explanation below),
17001 @samp{julian(<12am may 1 1991>) - julian(<12am apr 1 1991>)}
17002 evaluates to @samp{29.95833} (that's 29 days and 23 hours)
17003 because one hour was lost when daylight saving commenced on
17004 April 7, 1991.
17006 In brief, the idiom @samp{julian(@var{date1}) - julian(@var{date2})}
17007 computes the actual number of 24-hour periods between two dates, whereas
17008 @samp{@var{date1} - @var{date2}} computes the number of calendar
17009 days between two dates without taking daylight saving into account.
17011 @pindex calc-time-zone
17012 @ignore
17013 @starindex
17014 @end ignore
17015 @tindex tzone
17016 The @code{calc-time-zone} [@code{tzone}] command converts the time
17017 zone specified by its numeric prefix argument into a number of
17018 seconds difference from Greenwich mean time (GMT).  If the argument
17019 is a number, the result is simply that value multiplied by 3600.
17020 Typical arguments for North America are 5 (Eastern) or 8 (Pacific).  If
17021 Daylight Saving time is in effect, one hour should be subtracted from
17022 the normal difference.
17024 If you give a prefix of plain @kbd{C-u}, @code{calc-time-zone} (like other
17025 date arithmetic commands that include a time zone argument) takes the
17026 zone argument from the top of the stack.  (In the case of @kbd{t J}
17027 and @kbd{t U}, the normal argument is then taken from the second-to-top
17028 stack position.)  This allows you to give a non-integer time zone
17029 adjustment.  The time-zone argument can also be an HMS form, or
17030 it can be a variable which is a time zone name in upper- or lower-case.
17031 For example @samp{tzone(PST) = tzone(8)} and @samp{tzone(pdt) = tzone(7)}
17032 (for Pacific standard and daylight saving times, respectively).
17034 North American and European time zone names are defined as follows;
17035 note that for each time zone there is one name for standard time,
17036 another for daylight saving time, and a third for ``generalized'' time
17037 in which the daylight saving adjustment is computed from context.
17039 @smallexample
17040 @group
17041 YST  PST  MST  CST  EST  AST    NST    GMT   WET     MET    MEZ
17042  9    8    7    6    5    4     3.5     0     -1      -2     -2
17044 YDT  PDT  MDT  CDT  EDT  ADT    NDT    BST  WETDST  METDST  MESZ
17045  8    7    6    5    4    3     2.5     -1    -2      -3     -3
17047 YGT  PGT  MGT  CGT  EGT  AGT    NGT    BGT   WEGT    MEGT   MEGZ
17048 9/8  8/7  7/6  6/5  5/4  4/3  3.5/2.5  0/-1 -1/-2   -2/-3  -2/-3
17049 @end group
17050 @end smallexample
17052 @vindex math-tzone-names
17053 To define time zone names that do not appear in the above table,
17054 you must modify the Lisp variable @code{math-tzone-names}.  This
17055 is a list of lists describing the different time zone names; its
17056 structure is best explained by an example.  The three entries for
17057 Pacific Time look like this:
17059 @smallexample
17060 @group
17061 ( ( "PST" 8 0 )    ; Name as an upper-case string, then standard
17062   ( "PDT" 8 -1 )   ; adjustment, then daylight saving adjustment.
17063   ( "PGT" 8 "PST" "PDT" ) )   ; Generalized time zone.
17064 @end group
17065 @end smallexample
17067 @cindex @code{TimeZone} variable
17068 @vindex TimeZone
17069 With no arguments, @code{calc-time-zone} or @samp{tzone()} obtains an
17070 argument from the Calc variable @code{TimeZone} if a value has been
17071 stored for that variable.  If not, Calc runs the Unix @samp{date}
17072 command and looks for one of the above time zone names in the output;
17073 if this does not succeed, @samp{tzone()} leaves itself unevaluated.
17074 The time zone name in the @samp{date} output may be followed by a signed
17075 adjustment, e.g., @samp{GMT+5} or @samp{GMT+0500} which specifies a
17076 number of hours and minutes to be added to the base time zone.
17077 Calc stores the time zone it finds into @code{TimeZone} to speed
17078 later calls to @samp{tzone()}.
17080 The special time zone name @code{local} is equivalent to no argument,
17081 i.e., it uses the local time zone as obtained from the @code{date}
17082 command.
17084 If the time zone name found is one of the standard or daylight
17085 saving zone names from the above table, and Calc's internal
17086 daylight saving algorithm says that time and zone are consistent
17087 (e.g., @code{PDT} accompanies a date that Calc's algorithm would also
17088 consider to be daylight saving, or @code{PST} accompanies a date
17089 that Calc would consider to be standard time), then Calc substitutes
17090 the corresponding generalized time zone (like @code{PGT}).
17092 If your system does not have a suitable @samp{date} command, you
17093 may wish to put a @samp{(setq var-TimeZone ...)} in your Emacs
17094 initialization file to set the time zone.  (Since you are interacting
17095 with the variable @code{TimeZone} directly from Emacs Lisp, the
17096 @code{var-} prefix needs to be present.)  The easiest way to do
17097 this is to edit the @code{TimeZone} variable using Calc's @kbd{s T}
17098 command, then use the @kbd{s p} (@code{calc-permanent-variable})
17099 command to save the value of @code{TimeZone} permanently.
17101 The @kbd{t J} and @code{t U} commands with no numeric prefix
17102 arguments do the same thing as @samp{tzone()}.  If the current
17103 time zone is a generalized time zone, e.g., @code{EGT}, Calc
17104 examines the date being converted to tell whether to use standard
17105 or daylight saving time.  But if the current time zone is explicit,
17106 e.g., @code{EST} or @code{EDT}, then that adjustment is used exactly
17107 and Calc's daylight saving algorithm is not consulted.
17109 Some places don't follow the usual rules for daylight saving time.
17110 The state of Arizona, for example, does not observe daylight saving
17111 time.  If you run Calc during the winter season in Arizona, the
17112 Unix @code{date} command will report @code{MST} time zone, which
17113 Calc will change to @code{MGT}.  If you then convert a time that
17114 lies in the summer months, Calc will apply an incorrect daylight
17115 saving time adjustment.  To avoid this, set your @code{TimeZone}
17116 variable explicitly to @code{MST} to force the use of standard,
17117 non-daylight-saving time.
17119 @vindex math-daylight-savings-hook
17120 @findex math-std-daylight-savings
17121 By default Calc always considers daylight saving time to begin at
17122 2 a.m.@: on the second Sunday of March (for years from 2007 on) or on
17123 the last Sunday in April (for years before 2007), and to end at 2 a.m.@:
17124 on the first Sunday of November. (for years from 2007 on) or the last
17125 Sunday in October (for years before 2007).  These are the rules that have
17126 been in effect in much of North America since 1966 and takes into
17127 account the rule change that began in 2007.  If you are in a
17128 country that uses different rules for computing daylight saving time,
17129 you have two choices:  Write your own daylight saving hook, or control
17130 time zones explicitly by setting the @code{TimeZone} variable and/or
17131 always giving a time-zone argument for the conversion functions.
17133 The Lisp variable @code{math-daylight-savings-hook} holds the
17134 name of a function that is used to compute the daylight saving
17135 adjustment for a given date.  The default is
17136 @code{math-std-daylight-savings}, which computes an adjustment
17137 (either 0 or @mathit{-1}) using the North American rules given above.
17139 The daylight saving hook function is called with four arguments:
17140 The date, as a floating-point number in standard Calc format;
17141 a six-element list of the date decomposed into year, month, day,
17142 hour, minute, and second, respectively; a string which contains
17143 the generalized time zone name in upper-case, e.g., @code{"WEGT"};
17144 and a special adjustment to be applied to the hour value when
17145 converting into a generalized time zone (see below).
17147 @findex math-prev-weekday-in-month
17148 The Lisp function @code{math-prev-weekday-in-month} is useful for
17149 daylight saving computations.  This is an internal version of
17150 the user-level @code{pwday} function described in the previous
17151 section. It takes four arguments:  The floating-point date value,
17152 the corresponding six-element date list, the day-of-month number,
17153 and the weekday number (0-6).
17155 The default daylight saving hook ignores the time zone name, but a
17156 more sophisticated hook could use different algorithms for different
17157 time zones.  It would also be possible to use different algorithms
17158 depending on the year number, but the default hook always uses the
17159 algorithm for 1987 and later.  Here is a listing of the default
17160 daylight saving hook:
17162 @smallexample
17163 (defun math-std-daylight-savings (date dt zone bump)
17164   (cond ((< (nth 1 dt) 4) 0)
17165         ((= (nth 1 dt) 4)
17166          (let ((sunday (math-prev-weekday-in-month date dt 7 0)))
17167            (cond ((< (nth 2 dt) sunday) 0)
17168                  ((= (nth 2 dt) sunday)
17169                   (if (>= (nth 3 dt) (+ 3 bump)) -1 0))
17170                  (t -1))))
17171         ((< (nth 1 dt) 10) -1)
17172         ((= (nth 1 dt) 10)
17173          (let ((sunday (math-prev-weekday-in-month date dt 31 0)))
17174            (cond ((< (nth 2 dt) sunday) -1)
17175                  ((= (nth 2 dt) sunday)
17176                   (if (>= (nth 3 dt) (+ 2 bump)) 0 -1))
17177                  (t 0))))
17178         (t 0))
17180 @end smallexample
17182 @noindent
17183 The @code{bump} parameter is equal to zero when Calc is converting
17184 from a date form in a generalized time zone into a GMT date value.
17185 It is @mathit{-1} when Calc is converting in the other direction.  The
17186 adjustments shown above ensure that the conversion behaves correctly
17187 and reasonably around the 2 a.m.@: transition in each direction.
17189 There is a ``missing'' hour between 2 a.m.@: and 3 a.m.@: at the
17190 beginning of daylight saving time; converting a date/time form that
17191 falls in this hour results in a time value for the following hour,
17192 from 3 a.m.@: to 4 a.m.  At the end of daylight saving time, the
17193 hour from 1 a.m.@: to 2 a.m.@: repeats itself; converting a date/time
17194 form that falls in this hour results in a time value for the first
17195 manifestation of that time (@emph{not} the one that occurs one hour later).
17197 If @code{math-daylight-savings-hook} is @code{nil}, then the
17198 daylight saving adjustment is always taken to be zero.
17200 In algebraic formulas, @samp{tzone(@var{zone}, @var{date})}
17201 computes the time zone adjustment for a given zone name at a
17202 given date.  The @var{date} is ignored unless @var{zone} is a
17203 generalized time zone.  If @var{date} is a date form, the
17204 daylight saving computation is applied to it as it appears.
17205 If @var{date} is a numeric date value, it is adjusted for the
17206 daylight-saving version of @var{zone} before being given to
17207 the daylight saving hook.  This odd-sounding rule ensures
17208 that the daylight-saving computation is always done in
17209 local time, not in the GMT time that a numeric @var{date}
17210 is typically represented in.
17212 @ignore
17213 @starindex
17214 @end ignore
17215 @tindex dsadj
17216 The @samp{dsadj(@var{date}, @var{zone})} function computes the
17217 daylight saving adjustment that is appropriate for @var{date} in
17218 time zone @var{zone}.  If @var{zone} is explicitly in or not in
17219 daylight saving time (e.g., @code{PDT} or @code{PST}) the
17220 @var{date} is ignored.  If @var{zone} is a generalized time zone,
17221 the algorithms described above are used.  If @var{zone} is omitted,
17222 the computation is done for the current time zone.
17224 @xref{Reporting Bugs}, for the address of Calc's author, if you
17225 should wish to contribute your improved versions of
17226 @code{math-tzone-names} and @code{math-daylight-savings-hook}
17227 to the Calc distribution.
17229 @node Financial Functions, Binary Functions, Date Arithmetic, Arithmetic
17230 @section Financial Functions
17232 @noindent
17233 Calc's financial or business functions use the @kbd{b} prefix
17234 key followed by a shifted letter.  (The @kbd{b} prefix followed by
17235 a lower-case letter is used for operations on binary numbers.)
17237 Note that the rate and the number of intervals given to these
17238 functions must be on the same time scale, e.g., both months or
17239 both years.  Mixing an annual interest rate with a time expressed
17240 in months will give you very wrong answers!
17242 It is wise to compute these functions to a higher precision than
17243 you really need, just to make sure your answer is correct to the
17244 last penny; also, you may wish to check the definitions at the end
17245 of this section to make sure the functions have the meaning you expect.
17247 @menu
17248 * Percentages::
17249 * Future Value::
17250 * Present Value::
17251 * Related Financial Functions::
17252 * Depreciation Functions::
17253 * Definitions of Financial Functions::
17254 @end menu
17256 @node Percentages, Future Value, Financial Functions, Financial Functions
17257 @subsection Percentages
17259 @kindex M-%
17260 @pindex calc-percent
17261 @tindex %
17262 @tindex percent
17263 The @kbd{M-%} (@code{calc-percent}) command takes a percentage value,
17264 say 5.4, and converts it to an equivalent actual number.  For example,
17265 @kbd{5.4 M-%} enters 0.054 on the stack.  (That's the @key{META} or
17266 @key{ESC} key combined with @kbd{%}.)
17268 Actually, @kbd{M-%} creates a formula of the form @samp{5.4%}.
17269 You can enter @samp{5.4%} yourself during algebraic entry.  The
17270 @samp{%} operator simply means, ``the preceding value divided by
17271 100.''  The @samp{%} operator has very high precedence, so that
17272 @samp{1+8%} is interpreted as @samp{1+(8%)}, not as @samp{(1+8)%}.
17273 (The @samp{%} operator is just a postfix notation for the
17274 @code{percent} function, just like @samp{20!} is the notation for
17275 @samp{fact(20)}, or twenty-factorial.)
17277 The formula @samp{5.4%} would normally evaluate immediately to
17278 0.054, but the @kbd{M-%} command suppresses evaluation as it puts
17279 the formula onto the stack.  However, the next Calc command that
17280 uses the formula @samp{5.4%} will evaluate it as its first step.
17281 The net effect is that you get to look at @samp{5.4%} on the stack,
17282 but Calc commands see it as @samp{0.054}, which is what they expect.
17284 In particular, @samp{5.4%} and @samp{0.054} are suitable values
17285 for the @var{rate} arguments of the various financial functions,
17286 but the number @samp{5.4} is probably @emph{not} suitable---it
17287 represents a rate of 540 percent!
17289 The key sequence @kbd{M-% *} effectively means ``percent-of.''
17290 For example, @kbd{68 @key{RET} 25 M-% *} computes 17, which is 25% of
17291 68 (and also 68% of 25, which comes out to the same thing).
17293 @kindex c %
17294 @pindex calc-convert-percent
17295 The @kbd{c %} (@code{calc-convert-percent}) command converts the
17296 value on the top of the stack from numeric to percentage form.
17297 For example, if 0.08 is on the stack, @kbd{c %} converts it to
17298 @samp{8%}.  The quantity is the same, it's just represented
17299 differently.  (Contrast this with @kbd{M-%}, which would convert
17300 this number to @samp{0.08%}.)  The @kbd{=} key is a convenient way
17301 to convert a formula like @samp{8%} back to numeric form, 0.08.
17303 To compute what percentage one quantity is of another quantity,
17304 use @kbd{/ c %}.  For example, @w{@kbd{17 @key{RET} 68 / c %}} displays
17305 @samp{25%}.
17307 @kindex b %
17308 @pindex calc-percent-change
17309 @tindex relch
17310 The @kbd{b %} (@code{calc-percent-change}) [@code{relch}] command
17311 calculates the percentage change from one number to another.
17312 For example, @kbd{40 @key{RET} 50 b %} produces the answer @samp{25%},
17313 since 50 is 25% larger than 40.  A negative result represents a
17314 decrease:  @kbd{50 @key{RET} 40 b %} produces @samp{-20%}, since 40 is
17315 20% smaller than 50.  (The answers are different in magnitude
17316 because, in the first case, we're increasing by 25% of 40, but
17317 in the second case, we're decreasing by 20% of 50.)  The effect
17318 of @kbd{40 @key{RET} 50 b %} is to compute @expr{(50-40)/40}, converting
17319 the answer to percentage form as if by @kbd{c %}.
17321 @node Future Value, Present Value, Percentages, Financial Functions
17322 @subsection Future Value
17324 @noindent
17325 @kindex b F
17326 @pindex calc-fin-fv
17327 @tindex fv
17328 The @kbd{b F} (@code{calc-fin-fv}) [@code{fv}] command computes
17329 the future value of an investment.  It takes three arguments
17330 from the stack:  @samp{fv(@var{rate}, @var{n}, @var{payment})}.
17331 If you give payments of @var{payment} every year for @var{n}
17332 years, and the money you have paid earns interest at @var{rate} per
17333 year, then this function tells you what your investment would be
17334 worth at the end of the period.  (The actual interval doesn't
17335 have to be years, as long as @var{n} and @var{rate} are expressed
17336 in terms of the same intervals.)  This function assumes payments
17337 occur at the @emph{end} of each interval.
17339 @kindex I b F
17340 @tindex fvb
17341 The @kbd{I b F} [@code{fvb}] command does the same computation,
17342 but assuming your payments are at the beginning of each interval.
17343 Suppose you plan to deposit $1000 per year in a savings account
17344 earning 5.4% interest, starting right now.  How much will be
17345 in the account after five years?  @code{fvb(5.4%, 5, 1000) = 5870.73}.
17346 Thus you will have earned $870 worth of interest over the years.
17347 Using the stack, this calculation would have been
17348 @kbd{5.4 M-% 5 @key{RET} 1000 I b F}.  Note that the rate is expressed
17349 as a number between 0 and 1, @emph{not} as a percentage.
17351 @kindex H b F
17352 @tindex fvl
17353 The @kbd{H b F} [@code{fvl}] command computes the future value
17354 of an initial lump sum investment.  Suppose you could deposit
17355 those five thousand dollars in the bank right now; how much would
17356 they be worth in five years?  @code{fvl(5.4%, 5, 5000) = 6503.89}.
17358 The algebraic functions @code{fv} and @code{fvb} accept an optional
17359 fourth argument, which is used as an initial lump sum in the sense
17360 of @code{fvl}.  In other words, @code{fv(@var{rate}, @var{n},
17361 @var{payment}, @var{initial}) = fv(@var{rate}, @var{n}, @var{payment})
17362 + fvl(@var{rate}, @var{n}, @var{initial})}.
17364 To illustrate the relationships between these functions, we could
17365 do the @code{fvb} calculation ``by hand'' using @code{fvl}.  The
17366 final balance will be the sum of the contributions of our five
17367 deposits at various times.  The first deposit earns interest for
17368 five years:  @code{fvl(5.4%, 5, 1000) = 1300.78}.  The second
17369 deposit only earns interest for four years:  @code{fvl(5.4%, 4, 1000) =
17370 1234.13}.  And so on down to the last deposit, which earns one
17371 year's interest:  @code{fvl(5.4%, 1, 1000) = 1054.00}.  The sum of
17372 these five values is, sure enough, $5870.73, just as was computed
17373 by @code{fvb} directly.
17375 What does @code{fv(5.4%, 5, 1000) = 5569.96} mean?  The payments
17376 are now at the ends of the periods.  The end of one year is the same
17377 as the beginning of the next, so what this really means is that we've
17378 lost the payment at year zero (which contributed $1300.78), but we're
17379 now counting the payment at year five (which, since it didn't have
17380 a chance to earn interest, counts as $1000).  Indeed, @expr{5569.96 =
17381 5870.73 - 1300.78 + 1000} (give or take a bit of roundoff error).
17383 @node Present Value, Related Financial Functions, Future Value, Financial Functions
17384 @subsection Present Value
17386 @noindent
17387 @kindex b P
17388 @pindex calc-fin-pv
17389 @tindex pv
17390 The @kbd{b P} (@code{calc-fin-pv}) [@code{pv}] command computes
17391 the present value of an investment.  Like @code{fv}, it takes
17392 three arguments:  @code{pv(@var{rate}, @var{n}, @var{payment})}.
17393 It computes the present value of a series of regular payments.
17394 Suppose you have the chance to make an investment that will
17395 pay $2000 per year over the next four years; as you receive
17396 these payments you can put them in the bank at 9% interest.
17397 You want to know whether it is better to make the investment, or
17398 to keep the money in the bank where it earns 9% interest right
17399 from the start.  The calculation @code{pv(9%, 4, 2000)} gives the
17400 result 6479.44.  If your initial investment must be less than this,
17401 say, $6000, then the investment is worthwhile.  But if you had to
17402 put up $7000, then it would be better just to leave it in the bank.
17404 Here is the interpretation of the result of @code{pv}:  You are
17405 trying to compare the return from the investment you are
17406 considering, which is @code{fv(9%, 4, 2000) = 9146.26}, with
17407 the return from leaving the money in the bank, which is
17408 @code{fvl(9%, 4, @var{x})} where @var{x} is the amount of money
17409 you would have to put up in advance.  The @code{pv} function
17410 finds the break-even point, @expr{x = 6479.44}, at which
17411 @code{fvl(9%, 4, 6479.44)} is also equal to 9146.26.  This is
17412 the largest amount you should be willing to invest.
17414 @kindex I b P
17415 @tindex pvb
17416 The @kbd{I b P} [@code{pvb}] command solves the same problem,
17417 but with payments occurring at the beginning of each interval.
17418 It has the same relationship to @code{fvb} as @code{pv} has
17419 to @code{fv}.  For example @code{pvb(9%, 4, 2000) = 7062.59},
17420 a larger number than @code{pv} produced because we get to start
17421 earning interest on the return from our investment sooner.
17423 @kindex H b P
17424 @tindex pvl
17425 The @kbd{H b P} [@code{pvl}] command computes the present value of
17426 an investment that will pay off in one lump sum at the end of the
17427 period.  For example, if we get our $8000 all at the end of the
17428 four years, @code{pvl(9%, 4, 8000) = 5667.40}.  This is much
17429 less than @code{pv} reported, because we don't earn any interest
17430 on the return from this investment.  Note that @code{pvl} and
17431 @code{fvl} are simple inverses:  @code{fvl(9%, 4, 5667.40) = 8000}.
17433 You can give an optional fourth lump-sum argument to @code{pv}
17434 and @code{pvb}; this is handled in exactly the same way as the
17435 fourth argument for @code{fv} and @code{fvb}.
17437 @kindex b N
17438 @pindex calc-fin-npv
17439 @tindex npv
17440 The @kbd{b N} (@code{calc-fin-npv}) [@code{npv}] command computes
17441 the net present value of a series of irregular investments.
17442 The first argument is the interest rate.  The second argument is
17443 a vector which represents the expected return from the investment
17444 at the end of each interval.  For example, if the rate represents
17445 a yearly interest rate, then the vector elements are the return
17446 from the first year, second year, and so on.
17448 Thus, @code{npv(9%, [2000,2000,2000,2000]) = pv(9%, 4, 2000) = 6479.44}.
17449 Obviously this function is more interesting when the payments are
17450 not all the same!
17452 The @code{npv} function can actually have two or more arguments.
17453 Multiple arguments are interpreted in the same way as for the
17454 vector statistical functions like @code{vsum}.
17455 @xref{Single-Variable Statistics}.  Basically, if there are several
17456 payment arguments, each either a vector or a plain number, all these
17457 values are collected left-to-right into the complete list of payments.
17458 A numeric prefix argument on the @kbd{b N} command says how many
17459 payment values or vectors to take from the stack.
17461 @kindex I b N
17462 @tindex npvb
17463 The @kbd{I b N} [@code{npvb}] command computes the net present
17464 value where payments occur at the beginning of each interval
17465 rather than at the end.
17467 @node Related Financial Functions, Depreciation Functions, Present Value, Financial Functions
17468 @subsection Related Financial Functions
17470 @noindent
17471 The functions in this section are basically inverses of the
17472 present value functions with respect to the various arguments.
17474 @kindex b M
17475 @pindex calc-fin-pmt
17476 @tindex pmt
17477 The @kbd{b M} (@code{calc-fin-pmt}) [@code{pmt}] command computes
17478 the amount of periodic payment necessary to amortize a loan.
17479 Thus @code{pmt(@var{rate}, @var{n}, @var{amount})} equals the
17480 value of @var{payment} such that @code{pv(@var{rate}, @var{n},
17481 @var{payment}) = @var{amount}}.
17483 @kindex I b M
17484 @tindex pmtb
17485 The @kbd{I b M} [@code{pmtb}] command does the same computation
17486 but using @code{pvb} instead of @code{pv}.  Like @code{pv} and
17487 @code{pvb}, these functions can also take a fourth argument which
17488 represents an initial lump-sum investment.
17490 @kindex H b M
17491 The @kbd{H b M} key just invokes the @code{fvl} function, which is
17492 the inverse of @code{pvl}.  There is no explicit @code{pmtl} function.
17494 @kindex b #
17495 @pindex calc-fin-nper
17496 @tindex nper
17497 The @kbd{b #} (@code{calc-fin-nper}) [@code{nper}] command computes
17498 the number of regular payments necessary to amortize a loan.
17499 Thus @code{nper(@var{rate}, @var{payment}, @var{amount})} equals
17500 the value of @var{n} such that @code{pv(@var{rate}, @var{n},
17501 @var{payment}) = @var{amount}}.  If @var{payment} is too small
17502 ever to amortize a loan for @var{amount} at interest rate @var{rate},
17503 the @code{nper} function is left in symbolic form.
17505 @kindex I b #
17506 @tindex nperb
17507 The @kbd{I b #} [@code{nperb}] command does the same computation
17508 but using @code{pvb} instead of @code{pv}.  You can give a fourth
17509 lump-sum argument to these functions, but the computation will be
17510 rather slow in the four-argument case.
17512 @kindex H b #
17513 @tindex nperl
17514 The @kbd{H b #} [@code{nperl}] command does the same computation
17515 using @code{pvl}.  By exchanging @var{payment} and @var{amount} you
17516 can also get the solution for @code{fvl}.  For example,
17517 @code{nperl(8%, 2000, 1000) = 9.006}, so if you place $1000 in a
17518 bank account earning 8%, it will take nine years to grow to $2000.
17520 @kindex b T
17521 @pindex calc-fin-rate
17522 @tindex rate
17523 The @kbd{b T} (@code{calc-fin-rate}) [@code{rate}] command computes
17524 the rate of return on an investment.  This is also an inverse of @code{pv}:
17525 @code{rate(@var{n}, @var{payment}, @var{amount})} computes the value of
17526 @var{rate} such that @code{pv(@var{rate}, @var{n}, @var{payment}) =
17527 @var{amount}}.  The result is expressed as a formula like @samp{6.3%}.
17529 @kindex I b T
17530 @kindex H b T
17531 @tindex rateb
17532 @tindex ratel
17533 The @kbd{I b T} [@code{rateb}] and @kbd{H b T} [@code{ratel}]
17534 commands solve the analogous equations with @code{pvb} or @code{pvl}
17535 in place of @code{pv}.  Also, @code{rate} and @code{rateb} can
17536 accept an optional fourth argument just like @code{pv} and @code{pvb}.
17537 To redo the above example from a different perspective,
17538 @code{ratel(9, 2000, 1000) = 8.00597%}, which says you will need an
17539 interest rate of 8% in order to double your account in nine years.
17541 @kindex b I
17542 @pindex calc-fin-irr
17543 @tindex irr
17544 The @kbd{b I} (@code{calc-fin-irr}) [@code{irr}] command is the
17545 analogous function to @code{rate} but for net present value.
17546 Its argument is a vector of payments.  Thus @code{irr(@var{payments})}
17547 computes the @var{rate} such that @code{npv(@var{rate}, @var{payments}) = 0};
17548 this rate is known as the @dfn{internal rate of return}.
17550 @kindex I b I
17551 @tindex irrb
17552 The @kbd{I b I} [@code{irrb}] command computes the internal rate of
17553 return assuming payments occur at the beginning of each period.
17555 @node Depreciation Functions, Definitions of Financial Functions, Related Financial Functions, Financial Functions
17556 @subsection Depreciation Functions
17558 @noindent
17559 The functions in this section calculate @dfn{depreciation}, which is
17560 the amount of value that a possession loses over time.  These functions
17561 are characterized by three parameters:  @var{cost}, the original cost
17562 of the asset; @var{salvage}, the value the asset will have at the end
17563 of its expected ``useful life''; and @var{life}, the number of years
17564 (or other periods) of the expected useful life.
17566 There are several methods for calculating depreciation that differ in
17567 the way they spread the depreciation over the lifetime of the asset.
17569 @kindex b S
17570 @pindex calc-fin-sln
17571 @tindex sln
17572 The @kbd{b S} (@code{calc-fin-sln}) [@code{sln}] command computes the
17573 ``straight-line'' depreciation.  In this method, the asset depreciates
17574 by the same amount every year (or period).  For example,
17575 @samp{sln(12000, 2000, 5)} returns 2000.  The asset costs $12000
17576 initially and will be worth $2000 after five years; it loses $2000
17577 per year.
17579 @kindex b Y
17580 @pindex calc-fin-syd
17581 @tindex syd
17582 The @kbd{b Y} (@code{calc-fin-syd}) [@code{syd}] command computes the
17583 accelerated ``sum-of-years'-digits'' depreciation.  Here the depreciation
17584 is higher during the early years of the asset's life.  Since the
17585 depreciation is different each year, @kbd{b Y} takes a fourth @var{period}
17586 parameter which specifies which year is requested, from 1 to @var{life}.
17587 If @var{period} is outside this range, the @code{syd} function will
17588 return zero.
17590 @kindex b D
17591 @pindex calc-fin-ddb
17592 @tindex ddb
17593 The @kbd{b D} (@code{calc-fin-ddb}) [@code{ddb}] command computes an
17594 accelerated depreciation using the double-declining balance method.
17595 It also takes a fourth @var{period} parameter.
17597 For symmetry, the @code{sln} function will accept a @var{period}
17598 parameter as well, although it will ignore its value except that the
17599 return value will as usual be zero if @var{period} is out of range.
17601 For example, pushing the vector @expr{[1,2,3,4,5]} (perhaps with @kbd{v x 5})
17602 and then mapping @kbd{V M ' [sln(12000,2000,5,$), syd(12000,2000,5,$),
17603 ddb(12000,2000,5,$)] @key{RET}} produces a matrix that allows us to compare
17604 the three depreciation methods:
17606 @example
17607 @group
17608 [ [ 2000, 3333, 4800 ]
17609   [ 2000, 2667, 2880 ]
17610   [ 2000, 2000, 1728 ]
17611   [ 2000, 1333,  592 ]
17612   [ 2000,  667,   0  ] ]
17613 @end group
17614 @end example
17616 @noindent
17617 (Values have been rounded to nearest integers in this figure.)
17618 We see that @code{sln} depreciates by the same amount each year,
17619 @kbd{syd} depreciates more at the beginning and less at the end,
17620 and @kbd{ddb} weights the depreciation even more toward the beginning.
17622 Summing columns with @kbd{V R : +} yields @expr{[10000, 10000, 10000]};
17623 the total depreciation in any method is (by definition) the
17624 difference between the cost and the salvage value.
17626 @node Definitions of Financial Functions,  , Depreciation Functions, Financial Functions
17627 @subsection Definitions
17629 @noindent
17630 For your reference, here are the actual formulas used to compute
17631 Calc's financial functions.
17633 Calc will not evaluate a financial function unless the @var{rate} or
17634 @var{n} argument is known.  However, @var{payment} or @var{amount} can
17635 be a variable.  Calc expands these functions according to the
17636 formulas below for symbolic arguments only when you use the @kbd{a "}
17637 (@code{calc-expand-formula}) command, or when taking derivatives or
17638 integrals or solving equations involving the functions.
17640 @ifinfo
17641 These formulas are shown using the conventions of Big display
17642 mode (@kbd{d B}); for example, the formula for @code{fv} written
17643 linearly is @samp{pmt * ((1 + rate)^n) - 1) / rate}.
17645 @example
17646                                         n
17647                               (1 + rate)  - 1
17648 fv(rate, n, pmt) =      pmt * ---------------
17649                                    rate
17651                                          n
17652                               ((1 + rate)  - 1) (1 + rate)
17653 fvb(rate, n, pmt) =     pmt * ----------------------------
17654                                          rate
17656                                         n
17657 fvl(rate, n, pmt) =     pmt * (1 + rate)
17659                                             -n
17660                               1 - (1 + rate)
17661 pv(rate, n, pmt) =      pmt * ----------------
17662                                     rate
17664                                              -n
17665                               (1 - (1 + rate)  ) (1 + rate)
17666 pvb(rate, n, pmt) =     pmt * -----------------------------
17667                                          rate
17669                                         -n
17670 pvl(rate, n, pmt) =     pmt * (1 + rate)
17672                                     -1               -2               -3
17673 npv(rate, [a, b, c]) =  a*(1 + rate)   + b*(1 + rate)   + c*(1 + rate)
17675                                         -1               -2
17676 npvb(rate, [a, b, c]) = a + b*(1 + rate)   + c*(1 + rate)
17678                                              -n
17679                         (amt - x * (1 + rate)  ) * rate
17680 pmt(rate, n, amt, x) =  -------------------------------
17681                                              -n
17682                                1 - (1 + rate)
17684                                              -n
17685                         (amt - x * (1 + rate)  ) * rate
17686 pmtb(rate, n, amt, x) = -------------------------------
17687                                         -n
17688                          (1 - (1 + rate)  ) (1 + rate)
17690                                    amt * rate
17691 nper(rate, pmt, amt) =  - log(1 - ------------, 1 + rate)
17692                                       pmt
17694                                     amt * rate
17695 nperb(rate, pmt, amt) = - log(1 - ---------------, 1 + rate)
17696                                   pmt * (1 + rate)
17698                               amt
17699 nperl(rate, pmt, amt) = - log(---, 1 + rate)
17700                               pmt
17702                            1/n
17703                         pmt
17704 ratel(n, pmt, amt) =    ------ - 1
17705                            1/n
17706                         amt
17708                         cost - salv
17709 sln(cost, salv, life) = -----------
17710                            life
17712                              (cost - salv) * (life - per + 1)
17713 syd(cost, salv, life, per) = --------------------------------
17714                                   life * (life + 1) / 2
17716                              book * 2
17717 ddb(cost, salv, life, per) = --------,  book = cost - depreciation so far
17718                                life
17719 @end example
17720 @end ifinfo
17721 @tex
17722 \turnoffactive
17723 $$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$
17724 $$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$
17725 $$ \code{fvl}(r, n, p) = p (1 + r)^n $$
17726 $$ \code{pv}(r, n, p) = p { 1 - (1 + r)^{-n} \over r } $$
17727 $$ \code{pvb}(r, n, p) = p { (1 - (1 + r)^{-n}) (1 + r) \over r } $$
17728 $$ \code{pvl}(r, n, p) = p (1 + r)^{-n} $$
17729 $$ \code{npv}(r, [a,b,c]) = a (1 + r)^{-1} + b (1 + r)^{-2} + c (1 + r)^{-3} $$
17730 $$ \code{npvb}(r, [a,b,c]) = a + b (1 + r)^{-1} + c (1 + r)^{-2} $$
17731 $$ \code{pmt}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over 1 - (1 + r)^{-n} }$$
17732 $$ \code{pmtb}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over
17733                                (1 - (1 + r)^{-n}) (1 + r) } $$
17734 $$ \code{nper}(r, p, a) = -\code{log}(1 - { a r \over p }, 1 + r) $$
17735 $$ \code{nperb}(r, p, a) = -\code{log}(1 - { a r \over p (1 + r) }, 1 + r) $$
17736 $$ \code{nperl}(r, p, a) = -\code{log}({a \over p}, 1 + r) $$
17737 $$ \code{ratel}(n, p, a) = { p^{1/n} \over a^{1/n} } - 1 $$
17738 $$ \code{sln}(c, s, l) = { c - s \over l } $$
17739 $$ \code{syd}(c, s, l, p) = { (c - s) (l - p + 1) \over l (l+1) / 2 } $$
17740 $$ \code{ddb}(c, s, l, p) = { 2 (c - \hbox{depreciation so far}) \over l } $$
17741 @end tex
17743 @noindent
17744 In @code{pmt} and @code{pmtb}, @expr{x=0} if omitted.
17746 These functions accept any numeric objects, including error forms,
17747 intervals, and even (though not very usefully) complex numbers.  The
17748 above formulas specify exactly the behavior of these functions with
17749 all sorts of inputs.
17751 Note that if the first argument to the @code{log} in @code{nper} is
17752 negative, @code{nper} leaves itself in symbolic form rather than
17753 returning a (financially meaningless) complex number.
17755 @samp{rate(num, pmt, amt)} solves the equation
17756 @samp{pv(rate, num, pmt) = amt} for @samp{rate} using @kbd{H a R}
17757 (@code{calc-find-root}), with the interval @samp{[.01% .. 100%]}
17758 for an initial guess.  The @code{rateb} function is the same except
17759 that it uses @code{pvb}.  Note that @code{ratel} can be solved
17760 directly; its formula is shown in the above list.
17762 Similarly, @samp{irr(pmts)} solves the equation @samp{npv(rate, pmts) = 0}
17763 for @samp{rate}.
17765 If you give a fourth argument to @code{nper} or @code{nperb}, Calc
17766 will also use @kbd{H a R} to solve the equation using an initial
17767 guess interval of @samp{[0 .. 100]}.
17769 A fourth argument to @code{fv} simply sums the two components
17770 calculated from the above formulas for @code{fv} and @code{fvl}.
17771 The same is true of @code{fvb}, @code{pv}, and @code{pvb}.
17773 The @kbd{ddb} function is computed iteratively; the ``book'' value
17774 starts out equal to @var{cost}, and decreases according to the above
17775 formula for the specified number of periods.  If the book value
17776 would decrease below @var{salvage}, it only decreases to @var{salvage}
17777 and the depreciation is zero for all subsequent periods.  The @code{ddb}
17778 function returns the amount the book value decreased in the specified
17779 period.
17781 @node Binary Functions,  , Financial Functions, Arithmetic
17782 @section Binary Number Functions
17784 @noindent
17785 The commands in this chapter all use two-letter sequences beginning with
17786 the @kbd{b} prefix.
17788 @cindex Binary numbers
17789 The ``binary'' operations actually work regardless of the currently
17790 displayed radix, although their results make the most sense in a radix
17791 like 2, 8, or 16 (as obtained by the @kbd{d 2}, @kbd{d 8}, or @w{@kbd{d 6}}
17792 commands, respectively).  You may also wish to enable display of leading
17793 zeros with @kbd{d z}.  @xref{Radix Modes}.
17795 @cindex Word size for binary operations
17796 The Calculator maintains a current @dfn{word size} @expr{w}, an
17797 arbitrary positive or negative integer.  For a positive word size, all
17798 of the binary operations described here operate modulo @expr{2^w}.  In
17799 particular, negative arguments are converted to positive integers modulo
17800 @expr{2^w} by all binary functions.
17802 If the word size is negative, binary operations produce 2's complement
17803 integers from 
17804 @texline @math{-2^{-w-1}}
17805 @infoline @expr{-(2^(-w-1))} 
17806 to 
17807 @texline @math{2^{-w-1}-1}
17808 @infoline @expr{2^(-w-1)-1} 
17809 inclusive.  Either mode accepts inputs in any range; the sign of
17810 @expr{w} affects only the results produced.
17812 @kindex b c
17813 @pindex calc-clip
17814 @tindex clip
17815 The @kbd{b c} (@code{calc-clip})
17816 [@code{clip}] command can be used to clip a number by reducing it modulo
17817 @expr{2^w}.  The commands described in this chapter automatically clip
17818 their results to the current word size.  Note that other operations like
17819 addition do not use the current word size, since integer addition
17820 generally is not ``binary.''  (However, @pxref{Simplification Modes},
17821 @code{calc-bin-simplify-mode}.)  For example, with a word size of 8
17822 bits @kbd{b c} converts a number to the range 0 to 255; with a word
17823 size of @mathit{-8} @kbd{b c} converts to the range @mathit{-128} to 127.
17825 @kindex b w
17826 @pindex calc-word-size
17827 The default word size is 32 bits.  All operations except the shifts and
17828 rotates allow you to specify a different word size for that one
17829 operation by giving a numeric prefix argument:  @kbd{C-u 8 b c} clips the
17830 top of stack to the range 0 to 255 regardless of the current word size.
17831 To set the word size permanently, use @kbd{b w} (@code{calc-word-size}).
17832 This command displays a prompt with the current word size; press @key{RET}
17833 immediately to keep this word size, or type a new word size at the prompt.
17835 When the binary operations are written in symbolic form, they take an
17836 optional second (or third) word-size parameter.  When a formula like
17837 @samp{and(a,b)} is finally evaluated, the word size current at that time
17838 will be used, but when @samp{and(a,b,-8)} is evaluated, a word size of
17839 @mathit{-8} will always be used.  A symbolic binary function will be left
17840 in symbolic form unless the all of its argument(s) are integers or
17841 integer-valued floats.
17843 If either or both arguments are modulo forms for which @expr{M} is a
17844 power of two, that power of two is taken as the word size unless a
17845 numeric prefix argument overrides it.  The current word size is never
17846 consulted when modulo-power-of-two forms are involved.
17848 @kindex b a
17849 @pindex calc-and
17850 @tindex and
17851 The @kbd{b a} (@code{calc-and}) [@code{and}] command computes the bitwise
17852 AND of the two numbers on the top of the stack.  In other words, for each
17853 of the @expr{w} binary digits of the two numbers (pairwise), the corresponding
17854 bit of the result is 1 if and only if both input bits are 1:
17855 @samp{and(2#1100, 2#1010) = 2#1000}.
17857 @kindex b o
17858 @pindex calc-or
17859 @tindex or
17860 The @kbd{b o} (@code{calc-or}) [@code{or}] command computes the bitwise
17861 inclusive OR of two numbers.  A bit is 1 if either of the input bits, or
17862 both, are 1:  @samp{or(2#1100, 2#1010) = 2#1110}.
17864 @kindex b x
17865 @pindex calc-xor
17866 @tindex xor
17867 The @kbd{b x} (@code{calc-xor}) [@code{xor}] command computes the bitwise
17868 exclusive OR of two numbers.  A bit is 1 if exactly one of the input bits
17869 is 1:  @samp{xor(2#1100, 2#1010) = 2#0110}.
17871 @kindex b d
17872 @pindex calc-diff
17873 @tindex diff
17874 The @kbd{b d} (@code{calc-diff}) [@code{diff}] command computes the bitwise
17875 difference of two numbers; this is defined by @samp{diff(a,b) = and(a,not(b))},
17876 so that @samp{diff(2#1100, 2#1010) = 2#0100}.
17878 @kindex b n
17879 @pindex calc-not
17880 @tindex not
17881 The @kbd{b n} (@code{calc-not}) [@code{not}] command computes the bitwise
17882 NOT of a number.  A bit is 1 if the input bit is 0 and vice-versa.
17884 @kindex b l
17885 @pindex calc-lshift-binary
17886 @tindex lsh
17887 The @kbd{b l} (@code{calc-lshift-binary}) [@code{lsh}] command shifts a
17888 number left by one bit, or by the number of bits specified in the numeric
17889 prefix argument.  A negative prefix argument performs a logical right shift,
17890 in which zeros are shifted in on the left.  In symbolic form, @samp{lsh(a)}
17891 is short for @samp{lsh(a,1)}, which in turn is short for @samp{lsh(a,n,w)}.
17892 Bits shifted ``off the end,'' according to the current word size, are lost.
17894 @kindex H b l
17895 @kindex H b r
17896 @ignore
17897 @mindex @idots
17898 @end ignore
17899 @kindex H b L
17900 @ignore
17901 @mindex @null
17902 @end ignore
17903 @kindex H b R
17904 @ignore
17905 @mindex @null
17906 @end ignore
17907 @kindex H b t
17908 The @kbd{H b l} command also does a left shift, but it takes two arguments
17909 from the stack (the value to shift, and, at top-of-stack, the number of
17910 bits to shift).  This version interprets the prefix argument just like
17911 the regular binary operations, i.e., as a word size.  The Hyperbolic flag
17912 has a similar effect on the rest of the binary shift and rotate commands.
17914 @kindex b r
17915 @pindex calc-rshift-binary
17916 @tindex rsh
17917 The @kbd{b r} (@code{calc-rshift-binary}) [@code{rsh}] command shifts a
17918 number right by one bit, or by the number of bits specified in the numeric
17919 prefix argument:  @samp{rsh(a,n) = lsh(a,-n)}.
17921 @kindex b L
17922 @pindex calc-lshift-arith
17923 @tindex ash
17924 The @kbd{b L} (@code{calc-lshift-arith}) [@code{ash}] command shifts a
17925 number left.  It is analogous to @code{lsh}, except that if the shift
17926 is rightward (the prefix argument is negative), an arithmetic shift
17927 is performed as described below.
17929 @kindex b R
17930 @pindex calc-rshift-arith
17931 @tindex rash
17932 The @kbd{b R} (@code{calc-rshift-arith}) [@code{rash}] command performs
17933 an ``arithmetic'' shift to the right, in which the leftmost bit (according
17934 to the current word size) is duplicated rather than shifting in zeros.
17935 This corresponds to dividing by a power of two where the input is interpreted
17936 as a signed, twos-complement number.  (The distinction between the @samp{rsh}
17937 and @samp{rash} operations is totally independent from whether the word
17938 size is positive or negative.)  With a negative prefix argument, this
17939 performs a standard left shift.
17941 @kindex b t
17942 @pindex calc-rotate-binary
17943 @tindex rot
17944 The @kbd{b t} (@code{calc-rotate-binary}) [@code{rot}] command rotates a
17945 number one bit to the left.  The leftmost bit (according to the current
17946 word size) is dropped off the left and shifted in on the right.  With a
17947 numeric prefix argument, the number is rotated that many bits to the left
17948 or right.
17950 @xref{Set Operations}, for the @kbd{b p} and @kbd{b u} commands that
17951 pack and unpack binary integers into sets.  (For example, @kbd{b u}
17952 unpacks the number @samp{2#11001} to the set of bit-numbers
17953 @samp{[0, 3, 4]}.)  Type @kbd{b u V #} to count the number of ``1''
17954 bits in a binary integer.
17956 Another interesting use of the set representation of binary integers
17957 is to reverse the bits in, say, a 32-bit integer.  Type @kbd{b u} to
17958 unpack; type @kbd{31 @key{TAB} -} to replace each bit-number in the set
17959 with 31 minus that bit-number; type @kbd{b p} to pack the set back
17960 into a binary integer.
17962 @node Scientific Functions, Matrix Functions, Arithmetic, Top
17963 @chapter Scientific Functions
17965 @noindent
17966 The functions described here perform trigonometric and other transcendental
17967 calculations.  They generally produce floating-point answers correct to the
17968 full current precision.  The @kbd{H} (Hyperbolic) and @kbd{I} (Inverse)
17969 flag keys must be used to get some of these functions from the keyboard.
17971 @kindex P
17972 @pindex calc-pi
17973 @cindex @code{pi} variable
17974 @vindex pi
17975 @kindex H P
17976 @cindex @code{e} variable
17977 @vindex e
17978 @kindex I P
17979 @cindex @code{gamma} variable
17980 @vindex gamma
17981 @cindex Gamma constant, Euler's
17982 @cindex Euler's gamma constant
17983 @kindex H I P
17984 @cindex @code{phi} variable
17985 @cindex Phi, golden ratio
17986 @cindex Golden ratio
17987 One miscellaneous command is shift-@kbd{P} (@code{calc-pi}), which pushes
17988 the value of @cpi{} (at the current precision) onto the stack.  With the
17989 Hyperbolic flag, it pushes the value @expr{e}, the base of natural logarithms.
17990 With the Inverse flag, it pushes Euler's constant 
17991 @texline @math{\gamma}
17992 @infoline @expr{gamma} 
17993 (about 0.5772).  With both Inverse and Hyperbolic, it
17994 pushes the ``golden ratio'' 
17995 @texline @math{\phi}
17996 @infoline @expr{phi} 
17997 (about 1.618).  (At present, Euler's constant is not available
17998 to unlimited precision; Calc knows only the first 100 digits.)
17999 In Symbolic mode, these commands push the
18000 actual variables @samp{pi}, @samp{e}, @samp{gamma}, and @samp{phi},
18001 respectively, instead of their values; @pxref{Symbolic Mode}.
18003 @ignore
18004 @mindex Q
18005 @end ignore
18006 @ignore
18007 @mindex I Q
18008 @end ignore
18009 @kindex I Q
18010 @tindex sqr
18011 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] function is described elsewhere;
18012 @pxref{Basic Arithmetic}.  With the Inverse flag [@code{sqr}], this command
18013 computes the square of the argument.
18015 @xref{Prefix Arguments}, for a discussion of the effect of numeric
18016 prefix arguments on commands in this chapter which do not otherwise
18017 interpret a prefix argument.
18019 @menu
18020 * Logarithmic Functions::
18021 * Trigonometric and Hyperbolic Functions::
18022 * Advanced Math Functions::
18023 * Branch Cuts::
18024 * Random Numbers::
18025 * Combinatorial Functions::
18026 * Probability Distribution Functions::
18027 @end menu
18029 @node Logarithmic Functions, Trigonometric and Hyperbolic Functions, Scientific Functions, Scientific Functions
18030 @section Logarithmic Functions
18032 @noindent
18033 @kindex L
18034 @pindex calc-ln
18035 @tindex ln
18036 @ignore
18037 @mindex @null
18038 @end ignore
18039 @kindex I E
18040 The shift-@kbd{L} (@code{calc-ln}) [@code{ln}] command computes the natural
18041 logarithm of the real or complex number on the top of the stack.  With
18042 the Inverse flag it computes the exponential function instead, although
18043 this is redundant with the @kbd{E} command.
18045 @kindex E
18046 @pindex calc-exp
18047 @tindex exp
18048 @ignore
18049 @mindex @null
18050 @end ignore
18051 @kindex I L
18052 The shift-@kbd{E} (@code{calc-exp}) [@code{exp}] command computes the
18053 exponential, i.e., @expr{e} raised to the power of the number on the stack.
18054 The meanings of the Inverse and Hyperbolic flags follow from those for
18055 the @code{calc-ln} command.
18057 @kindex H L
18058 @kindex H E
18059 @pindex calc-log10
18060 @tindex log10
18061 @tindex exp10
18062 @ignore
18063 @mindex @null
18064 @end ignore
18065 @kindex H I L
18066 @ignore
18067 @mindex @null
18068 @end ignore
18069 @kindex H I E
18070 The @kbd{H L} (@code{calc-log10}) [@code{log10}] command computes the common
18071 (base-10) logarithm of a number.  (With the Inverse flag [@code{exp10}],
18072 it raises ten to a given power.)  Note that the common logarithm of a
18073 complex number is computed by taking the natural logarithm and dividing
18074 by 
18075 @texline @math{\ln10}.
18076 @infoline @expr{ln(10)}.
18078 @kindex B
18079 @kindex I B
18080 @pindex calc-log
18081 @tindex log
18082 @tindex alog
18083 The @kbd{B} (@code{calc-log}) [@code{log}] command computes a logarithm
18084 to any base.  For example, @kbd{1024 @key{RET} 2 B} produces 10, since
18085 @texline @math{2^{10} = 1024}.
18086 @infoline @expr{2^10 = 1024}.  
18087 In certain cases like @samp{log(3,9)}, the result
18088 will be either @expr{1:2} or @expr{0.5} depending on the current Fraction
18089 mode setting.  With the Inverse flag [@code{alog}], this command is
18090 similar to @kbd{^} except that the order of the arguments is reversed.
18092 @kindex f I
18093 @pindex calc-ilog
18094 @tindex ilog
18095 The @kbd{f I} (@code{calc-ilog}) [@code{ilog}] command computes the
18096 integer logarithm of a number to any base.  The number and the base must
18097 themselves be positive integers.  This is the true logarithm, rounded
18098 down to an integer.  Thus @kbd{ilog(x,10)} is 3 for all @expr{x} in the
18099 range from 1000 to 9999.  If both arguments are positive integers, exact
18100 integer arithmetic is used; otherwise, this is equivalent to
18101 @samp{floor(log(x,b))}.
18103 @kindex f E
18104 @pindex calc-expm1
18105 @tindex expm1
18106 The @kbd{f E} (@code{calc-expm1}) [@code{expm1}] command computes
18107 @texline @math{e^x - 1},
18108 @infoline @expr{exp(x)-1}, 
18109 but using an algorithm that produces a more accurate
18110 answer when the result is close to zero, i.e., when 
18111 @texline @math{e^x}
18112 @infoline @expr{exp(x)} 
18113 is close to one.
18115 @kindex f L
18116 @pindex calc-lnp1
18117 @tindex lnp1
18118 The @kbd{f L} (@code{calc-lnp1}) [@code{lnp1}] command computes
18119 @texline @math{\ln(x+1)},
18120 @infoline @expr{ln(x+1)}, 
18121 producing a more accurate answer when @expr{x} is close to zero.
18123 @node Trigonometric and Hyperbolic Functions, Advanced Math Functions, Logarithmic Functions, Scientific Functions
18124 @section Trigonometric/Hyperbolic Functions
18126 @noindent
18127 @kindex S
18128 @pindex calc-sin
18129 @tindex sin
18130 The shift-@kbd{S} (@code{calc-sin}) [@code{sin}] command computes the sine
18131 of an angle or complex number.  If the input is an HMS form, it is interpreted
18132 as degrees-minutes-seconds; otherwise, the input is interpreted according
18133 to the current angular mode.  It is best to use Radians mode when operating
18134 on complex numbers.
18136 Calc's ``units'' mechanism includes angular units like @code{deg},
18137 @code{rad}, and @code{grad}.  While @samp{sin(45 deg)} is not evaluated
18138 all the time, the @kbd{u s} (@code{calc-simplify-units}) command will
18139 simplify @samp{sin(45 deg)} by taking the sine of 45 degrees, regardless
18140 of the current angular mode.  @xref{Basic Operations on Units}.
18142 Also, the symbolic variable @code{pi} is not ordinarily recognized in
18143 arguments to trigonometric functions, as in @samp{sin(3 pi / 4)}, but
18144 the @kbd{a s} (@code{calc-simplify}) command recognizes many such
18145 formulas when the current angular mode is Radians @emph{and} Symbolic
18146 mode is enabled; this example would be replaced by @samp{sqrt(2) / 2}.
18147 @xref{Symbolic Mode}.  Beware, this simplification occurs even if you
18148 have stored a different value in the variable @samp{pi}; this is one
18149 reason why changing built-in variables is a bad idea.  Arguments of
18150 the form @expr{x} plus a multiple of @cpiover{2} are also simplified.
18151 Calc includes similar formulas for @code{cos} and @code{tan}.
18153 The @kbd{a s} command knows all angles which are integer multiples of
18154 @cpiover{12}, @cpiover{10}, or @cpiover{8} radians.  In Degrees mode,
18155 analogous simplifications occur for integer multiples of 15 or 18
18156 degrees, and for arguments plus multiples of 90 degrees.
18158 @kindex I S
18159 @pindex calc-arcsin
18160 @tindex arcsin
18161 With the Inverse flag, @code{calc-sin} computes an arcsine.  This is also
18162 available as the @code{calc-arcsin} command or @code{arcsin} algebraic
18163 function.  The returned argument is converted to degrees, radians, or HMS
18164 notation depending on the current angular mode.
18166 @kindex H S
18167 @pindex calc-sinh
18168 @tindex sinh
18169 @kindex H I S
18170 @pindex calc-arcsinh
18171 @tindex arcsinh
18172 With the Hyperbolic flag, @code{calc-sin} computes the hyperbolic
18173 sine, also available as @code{calc-sinh} [@code{sinh}].  With the
18174 Hyperbolic and Inverse flags, it computes the hyperbolic arcsine
18175 (@code{calc-arcsinh}) [@code{arcsinh}].
18177 @kindex C
18178 @pindex calc-cos
18179 @tindex cos
18180 @ignore
18181 @mindex @idots
18182 @end ignore
18183 @kindex I C
18184 @pindex calc-arccos
18185 @ignore
18186 @mindex @null
18187 @end ignore
18188 @tindex arccos
18189 @ignore
18190 @mindex @null
18191 @end ignore
18192 @kindex H C
18193 @pindex calc-cosh
18194 @ignore
18195 @mindex @null
18196 @end ignore
18197 @tindex cosh
18198 @ignore
18199 @mindex @null
18200 @end ignore
18201 @kindex H I C
18202 @pindex calc-arccosh
18203 @ignore
18204 @mindex @null
18205 @end ignore
18206 @tindex arccosh
18207 @ignore
18208 @mindex @null
18209 @end ignore
18210 @kindex T
18211 @pindex calc-tan
18212 @ignore
18213 @mindex @null
18214 @end ignore
18215 @tindex tan
18216 @ignore
18217 @mindex @null
18218 @end ignore
18219 @kindex I T
18220 @pindex calc-arctan
18221 @ignore
18222 @mindex @null
18223 @end ignore
18224 @tindex arctan
18225 @ignore
18226 @mindex @null
18227 @end ignore
18228 @kindex H T
18229 @pindex calc-tanh
18230 @ignore
18231 @mindex @null
18232 @end ignore
18233 @tindex tanh
18234 @ignore
18235 @mindex @null
18236 @end ignore
18237 @kindex H I T
18238 @pindex calc-arctanh
18239 @ignore
18240 @mindex @null
18241 @end ignore
18242 @tindex arctanh
18243 The shift-@kbd{C} (@code{calc-cos}) [@code{cos}] command computes the cosine
18244 of an angle or complex number, and shift-@kbd{T} (@code{calc-tan}) [@code{tan}]
18245 computes the tangent, along with all the various inverse and hyperbolic
18246 variants of these functions.
18248 @kindex f T
18249 @pindex calc-arctan2
18250 @tindex arctan2
18251 The @kbd{f T} (@code{calc-arctan2}) [@code{arctan2}] command takes two
18252 numbers from the stack and computes the arc tangent of their ratio.  The
18253 result is in the full range from @mathit{-180} (exclusive) to @mathit{+180}
18254 (inclusive) degrees, or the analogous range in radians.  A similar
18255 result would be obtained with @kbd{/} followed by @kbd{I T}, but the
18256 value would only be in the range from @mathit{-90} to @mathit{+90} degrees
18257 since the division loses information about the signs of the two
18258 components, and an error might result from an explicit division by zero
18259 which @code{arctan2} would avoid.  By (arbitrary) definition,
18260 @samp{arctan2(0,0)=0}.
18262 @pindex calc-sincos
18263 @ignore
18264 @starindex
18265 @end ignore
18266 @tindex sincos
18267 @ignore
18268 @starindex
18269 @end ignore
18270 @ignore
18271 @mindex arc@idots
18272 @end ignore
18273 @tindex arcsincos
18274 The @code{calc-sincos} [@code{sincos}] command computes the sine and
18275 cosine of a number, returning them as a vector of the form
18276 @samp{[@var{cos}, @var{sin}]}.
18277 With the Inverse flag [@code{arcsincos}], this command takes a two-element
18278 vector as an argument and computes @code{arctan2} of the elements.
18279 (This command does not accept the Hyperbolic flag.)
18281 @pindex calc-sec
18282 @tindex sec
18283 @pindex calc-csc
18284 @tindex csc
18285 @pindex calc-cot
18286 @tindex cot
18287 @pindex calc-sech
18288 @tindex sech
18289 @pindex calc-csch
18290 @tindex csch
18291 @pindex calc-coth
18292 @tindex coth
18293 The remaining trigonometric functions, @code{calc-sec} [@code{sec}],
18294 @code{calc-csc} [@code{csc}] and @code{calc-sec} [@code{sec}], are also
18295 available.  With the Hyperbolic flag, these compute their hyperbolic
18296 counterparts, which are also available separately as @code{calc-sech}
18297 [@code{sech}], @code{calc-csch} [@code{csch}] and @code{calc-sech}
18298 [@code{sech}].  (These commmands do not accept the Inverse flag.)
18300 @node Advanced Math Functions, Branch Cuts, Trigonometric and Hyperbolic Functions, Scientific Functions
18301 @section Advanced Mathematical Functions
18303 @noindent
18304 Calc can compute a variety of less common functions that arise in
18305 various branches of mathematics.  All of the functions described in
18306 this section allow arbitrary complex arguments and, except as noted,
18307 will work to arbitrarily large precisions.  They can not at present
18308 handle error forms or intervals as arguments.
18310 NOTE:  These functions are still experimental.  In particular, their
18311 accuracy is not guaranteed in all domains.  It is advisable to set the
18312 current precision comfortably higher than you actually need when
18313 using these functions.  Also, these functions may be impractically
18314 slow for some values of the arguments.
18316 @kindex f g
18317 @pindex calc-gamma
18318 @tindex gamma
18319 The @kbd{f g} (@code{calc-gamma}) [@code{gamma}] command computes the Euler
18320 gamma function.  For positive integer arguments, this is related to the
18321 factorial function:  @samp{gamma(n+1) = fact(n)}.  For general complex
18322 arguments the gamma function can be defined by the following definite
18323 integral:  
18324 @texline @math{\Gamma(a) = \int_0^\infty t^{a-1} e^t dt}.
18325 @infoline @expr{gamma(a) = integ(t^(a-1) exp(t), t, 0, inf)}.  
18326 (The actual implementation uses far more efficient computational methods.)
18328 @kindex f G
18329 @tindex gammaP
18330 @ignore
18331 @mindex @idots
18332 @end ignore
18333 @kindex I f G
18334 @ignore
18335 @mindex @null
18336 @end ignore
18337 @kindex H f G
18338 @ignore
18339 @mindex @null
18340 @end ignore
18341 @kindex H I f G
18342 @pindex calc-inc-gamma
18343 @ignore
18344 @mindex @null
18345 @end ignore
18346 @tindex gammaQ
18347 @ignore
18348 @mindex @null
18349 @end ignore
18350 @tindex gammag
18351 @ignore
18352 @mindex @null
18353 @end ignore
18354 @tindex gammaG
18355 The @kbd{f G} (@code{calc-inc-gamma}) [@code{gammaP}] command computes
18356 the incomplete gamma function, denoted @samp{P(a,x)}.  This is defined by
18357 the integral, 
18358 @texline @math{P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)}.
18359 @infoline @expr{gammaP(a,x) = integ(t^(a-1) exp(t), t, 0, x) / gamma(a)}.
18360 This implies that @samp{gammaP(a,inf) = 1} for any @expr{a} (see the
18361 definition of the normal gamma function).
18363 Several other varieties of incomplete gamma function are defined.
18364 The complement of @expr{P(a,x)}, called @expr{Q(a,x) = 1-P(a,x)} by
18365 some authors, is computed by the @kbd{I f G} [@code{gammaQ}] command.
18366 You can think of this as taking the other half of the integral, from
18367 @expr{x} to infinity.
18369 @ifinfo
18370 The functions corresponding to the integrals that define @expr{P(a,x)}
18371 and @expr{Q(a,x)} but without the normalizing @expr{1/gamma(a)}
18372 factor are called @expr{g(a,x)} and @expr{G(a,x)}, respectively
18373 (where @expr{g} and @expr{G} represent the lower- and upper-case Greek
18374 letter gamma).  You can obtain these using the @kbd{H f G} [@code{gammag}]
18375 and @kbd{H I f G} [@code{gammaG}] commands.
18376 @end ifinfo
18377 @tex
18378 \turnoffactive
18379 The functions corresponding to the integrals that define $P(a,x)$
18380 and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$
18381 factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively.
18382 You can obtain these using the \kbd{H f G} [\code{gammag}] and
18383 \kbd{I H f G} [\code{gammaG}] commands.
18384 @end tex
18386 @kindex f b
18387 @pindex calc-beta
18388 @tindex beta
18389 The @kbd{f b} (@code{calc-beta}) [@code{beta}] command computes the
18390 Euler beta function, which is defined in terms of the gamma function as
18391 @texline @math{B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)},
18392 @infoline @expr{beta(a,b) = gamma(a) gamma(b) / gamma(a+b)}, 
18393 or by
18394 @texline @math{B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt}.
18395 @infoline @expr{beta(a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, 1)}.
18397 @kindex f B
18398 @kindex H f B
18399 @pindex calc-inc-beta
18400 @tindex betaI
18401 @tindex betaB
18402 The @kbd{f B} (@code{calc-inc-beta}) [@code{betaI}] command computes
18403 the incomplete beta function @expr{I(x,a,b)}.  It is defined by
18404 @texline @math{I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)}.
18405 @infoline @expr{betaI(x,a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, x) / beta(a,b)}.
18406 Once again, the @kbd{H} (hyperbolic) prefix gives the corresponding
18407 un-normalized version [@code{betaB}].
18409 @kindex f e
18410 @kindex I f e
18411 @pindex calc-erf
18412 @tindex erf
18413 @tindex erfc
18414 The @kbd{f e} (@code{calc-erf}) [@code{erf}] command computes the
18415 error function 
18416 @texline @math{\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt}.
18417 @infoline @expr{erf(x) = 2 integ(exp(-(t^2)), t, 0, x) / sqrt(pi)}.
18418 The complementary error function @kbd{I f e} (@code{calc-erfc}) [@code{erfc}]
18419 is the corresponding integral from @samp{x} to infinity; the sum
18420 @texline @math{\hbox{erf}(x) + \hbox{erfc}(x) = 1}.
18421 @infoline @expr{erf(x) + erfc(x) = 1}.
18423 @kindex f j
18424 @kindex f y
18425 @pindex calc-bessel-J
18426 @pindex calc-bessel-Y
18427 @tindex besJ
18428 @tindex besY
18429 The @kbd{f j} (@code{calc-bessel-J}) [@code{besJ}] and @kbd{f y}
18430 (@code{calc-bessel-Y}) [@code{besY}] commands compute the Bessel
18431 functions of the first and second kinds, respectively.
18432 In @samp{besJ(n,x)} and @samp{besY(n,x)} the ``order'' parameter
18433 @expr{n} is often an integer, but is not required to be one.
18434 Calc's implementation of the Bessel functions currently limits the
18435 precision to 8 digits, and may not be exact even to that precision.
18436 Use with care!
18438 @node Branch Cuts, Random Numbers, Advanced Math Functions, Scientific Functions
18439 @section Branch Cuts and Principal Values
18441 @noindent
18442 @cindex Branch cuts
18443 @cindex Principal values
18444 All of the logarithmic, trigonometric, and other scientific functions are
18445 defined for complex numbers as well as for reals.
18446 This section describes the values
18447 returned in cases where the general result is a family of possible values.
18448 Calc follows section 12.5.3 of Steele's @dfn{Common Lisp, the Language},
18449 second edition, in these matters.  This section will describe each
18450 function briefly; for a more detailed discussion (including some nifty
18451 diagrams), consult Steele's book.
18453 Note that the branch cuts for @code{arctan} and @code{arctanh} were
18454 changed between the first and second editions of Steele.  Versions of
18455 Calc starting with 2.00 follow the second edition.
18457 The new branch cuts exactly match those of the HP-28/48 calculators.
18458 They also match those of Mathematica 1.2, except that Mathematica's
18459 @code{arctan} cut is always in the right half of the complex plane,
18460 and its @code{arctanh} cut is always in the top half of the plane.
18461 Calc's cuts are continuous with quadrants I and III for @code{arctan},
18462 or II and IV for @code{arctanh}.
18464 Note:  The current implementations of these functions with complex arguments
18465 are designed with proper behavior around the branch cuts in mind, @emph{not}
18466 efficiency or accuracy.  You may need to increase the floating precision
18467 and wait a while to get suitable answers from them.
18469 For @samp{sqrt(a+bi)}:  When @expr{a<0} and @expr{b} is small but positive
18470 or zero, the result is close to the @expr{+i} axis.  For @expr{b} small and
18471 negative, the result is close to the @expr{-i} axis.  The result always lies
18472 in the right half of the complex plane.
18474 For @samp{ln(a+bi)}:  The real part is defined as @samp{ln(abs(a+bi))}.
18475 The imaginary part is defined as @samp{arg(a+bi) = arctan2(b,a)}.
18476 Thus the branch cuts for @code{sqrt} and @code{ln} both lie on the
18477 negative real axis.
18479 The following table describes these branch cuts in another way.
18480 If the real and imaginary parts of @expr{z} are as shown, then
18481 the real and imaginary parts of @expr{f(z)} will be as shown.
18482 Here @code{eps} stands for a small positive value; each
18483 occurrence of @code{eps} may stand for a different small value.
18485 @smallexample
18486      z           sqrt(z)       ln(z)
18487 ----------------------------------------
18488    +,   0         +,  0       any, 0
18489    -,   0         0,  +       any, pi
18490    -, +eps      +eps, +      +eps, +
18491    -, -eps      +eps, -      +eps, -
18492 @end smallexample
18494 For @samp{z1^z2}:  This is defined by @samp{exp(ln(z1)*z2)}.
18495 One interesting consequence of this is that @samp{(-8)^1:3} does
18496 not evaluate to @mathit{-2} as you might expect, but to the complex
18497 number @expr{(1., 1.732)}.  Both of these are valid cube roots
18498 of @mathit{-8} (as is @expr{(1., -1.732)}); Calc chooses a perhaps
18499 less-obvious root for the sake of mathematical consistency.
18501 For @samp{arcsin(z)}:  This is defined by @samp{-i*ln(i*z + sqrt(1-z^2))}.
18502 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18504 For @samp{arccos(z)}:  This is defined by @samp{-i*ln(z + i*sqrt(1-z^2))},
18505 or equivalently by @samp{pi/2 - arcsin(z)}.  The branch cuts are on
18506 the real axis, less than @mathit{-1} and greater than 1.
18508 For @samp{arctan(z)}:  This is defined by
18509 @samp{(ln(1+i*z) - ln(1-i*z)) / (2*i)}.  The branch cuts are on the
18510 imaginary axis, below @expr{-i} and above @expr{i}.
18512 For @samp{arcsinh(z)}:  This is defined by @samp{ln(z + sqrt(1+z^2))}.
18513 The branch cuts are on the imaginary axis, below @expr{-i} and
18514 above @expr{i}.
18516 For @samp{arccosh(z)}:  This is defined by
18517 @samp{ln(z + (z+1)*sqrt((z-1)/(z+1)))}.  The branch cut is on the
18518 real axis less than 1.
18520 For @samp{arctanh(z)}:  This is defined by @samp{(ln(1+z) - ln(1-z)) / 2}.
18521 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18523 The following tables for @code{arcsin}, @code{arccos}, and
18524 @code{arctan} assume the current angular mode is Radians.  The
18525 hyperbolic functions operate independently of the angular mode.
18527 @smallexample
18528        z             arcsin(z)            arccos(z)
18529 -------------------------------------------------------
18530  (-1..1),  0      (-pi/2..pi/2), 0       (0..pi), 0
18531  (-1..1), +eps    (-pi/2..pi/2), +eps    (0..pi), -eps
18532  (-1..1), -eps    (-pi/2..pi/2), -eps    (0..pi), +eps
18533    <-1,    0          -pi/2,     +         pi,    -
18534    <-1,  +eps      -pi/2 + eps,  +      pi - eps, -
18535    <-1,  -eps      -pi/2 + eps,  -      pi - eps, +
18536     >1,    0           pi/2,     -          0,    +
18537     >1,  +eps       pi/2 - eps,  +        +eps,   -
18538     >1,  -eps       pi/2 - eps,  -        +eps,   +
18539 @end smallexample
18541 @smallexample
18542        z            arccosh(z)         arctanh(z)
18543 -----------------------------------------------------
18544  (-1..1),  0        0,  (0..pi)       any,     0
18545  (-1..1), +eps    +eps, (0..pi)       any,    +eps
18546  (-1..1), -eps    +eps, (-pi..0)      any,    -eps
18547    <-1,    0        +,    pi           -,     pi/2
18548    <-1,  +eps       +,  pi - eps       -,  pi/2 - eps
18549    <-1,  -eps       +, -pi + eps       -, -pi/2 + eps
18550     >1,    0        +,     0           +,    -pi/2
18551     >1,  +eps       +,   +eps          +,  pi/2 - eps
18552     >1,  -eps       +,   -eps          +, -pi/2 + eps
18553 @end smallexample
18555 @smallexample
18556        z           arcsinh(z)           arctan(z)
18557 -----------------------------------------------------
18558    0, (-1..1)    0, (-pi/2..pi/2)         0,     any
18559    0,   <-1      -,    -pi/2            -pi/2,    -
18560  +eps,  <-1      +, -pi/2 + eps       pi/2 - eps, -
18561  -eps,  <-1      -, -pi/2 + eps      -pi/2 + eps, -
18562    0,    >1      +,     pi/2             pi/2,    +
18563  +eps,   >1      +,  pi/2 - eps       pi/2 - eps, +
18564  -eps,   >1      -,  pi/2 - eps      -pi/2 + eps, +
18565 @end smallexample
18567 Finally, the following identities help to illustrate the relationship
18568 between the complex trigonometric and hyperbolic functions.  They
18569 are valid everywhere, including on the branch cuts.
18571 @smallexample
18572 sin(i*z)  = i*sinh(z)       arcsin(i*z)  = i*arcsinh(z)
18573 cos(i*z)  =   cosh(z)       arcsinh(i*z) = i*arcsin(z)
18574 tan(i*z)  = i*tanh(z)       arctan(i*z)  = i*arctanh(z)
18575 sinh(i*z) = i*sin(z)        cosh(i*z)    =   cos(z)
18576 @end smallexample
18578 The ``advanced math'' functions (gamma, Bessel, etc.@:) are also defined
18579 for general complex arguments, but their branch cuts and principal values
18580 are not rigorously specified at present.
18582 @node Random Numbers, Combinatorial Functions, Branch Cuts, Scientific Functions
18583 @section Random Numbers
18585 @noindent
18586 @kindex k r
18587 @pindex calc-random
18588 @tindex random
18589 The @kbd{k r} (@code{calc-random}) [@code{random}] command produces
18590 random numbers of various sorts.
18592 Given a positive numeric prefix argument @expr{M}, it produces a random
18593 integer @expr{N} in the range 
18594 @texline @math{0 \le N < M}.
18595 @infoline @expr{0 <= N < M}.  
18596 Each of the @expr{M} values appears with equal probability.
18598 With no numeric prefix argument, the @kbd{k r} command takes its argument
18599 from the stack instead.  Once again, if this is a positive integer @expr{M}
18600 the result is a random integer less than @expr{M}.  However, note that
18601 while numeric prefix arguments are limited to six digits or so, an @expr{M}
18602 taken from the stack can be arbitrarily large.  If @expr{M} is negative,
18603 the result is a random integer in the range 
18604 @texline @math{M < N \le 0}.
18605 @infoline @expr{M < N <= 0}.
18607 If the value on the stack is a floating-point number @expr{M}, the result
18608 is a random floating-point number @expr{N} in the range 
18609 @texline @math{0 \le N < M}
18610 @infoline @expr{0 <= N < M}
18611 or 
18612 @texline @math{M < N \le 0},
18613 @infoline @expr{M < N <= 0}, 
18614 according to the sign of @expr{M}.
18616 If @expr{M} is zero, the result is a Gaussian-distributed random real
18617 number; the distribution has a mean of zero and a standard deviation
18618 of one.  The algorithm used generates random numbers in pairs; thus,
18619 every other call to this function will be especially fast.
18621 If @expr{M} is an error form 
18622 @texline @math{m} @code{+/-} @math{\sigma}
18623 @infoline @samp{m +/- s} 
18624 where @var{m} and 
18625 @texline @math{\sigma}
18626 @infoline @var{s} 
18627 are both real numbers, the result uses a Gaussian distribution with mean
18628 @var{m} and standard deviation 
18629 @texline @math{\sigma}.
18630 @infoline @var{s}.
18632 If @expr{M} is an interval form, the lower and upper bounds specify the
18633 acceptable limits of the random numbers.  If both bounds are integers,
18634 the result is a random integer in the specified range.  If either bound
18635 is floating-point, the result is a random real number in the specified
18636 range.  If the interval is open at either end, the result will be sure
18637 not to equal that end value.  (This makes a big difference for integer
18638 intervals, but for floating-point intervals it's relatively minor:
18639 with a precision of 6, @samp{random([1.0..2.0))} will return any of one
18640 million numbers from 1.00000 to 1.99999; @samp{random([1.0..2.0])} may
18641 additionally return 2.00000, but the probability of this happening is
18642 extremely small.)
18644 If @expr{M} is a vector, the result is one element taken at random from
18645 the vector.  All elements of the vector are given equal probabilities.
18647 @vindex RandSeed
18648 The sequence of numbers produced by @kbd{k r} is completely random by
18649 default, i.e., the sequence is seeded each time you start Calc using
18650 the current time and other information.  You can get a reproducible
18651 sequence by storing a particular ``seed value'' in the Calc variable
18652 @code{RandSeed}.  Any integer will do for a seed; integers of from 1
18653 to 12 digits are good.  If you later store a different integer into
18654 @code{RandSeed}, Calc will switch to a different pseudo-random
18655 sequence.  If you ``unstore'' @code{RandSeed}, Calc will re-seed itself
18656 from the current time.  If you store the same integer that you used
18657 before back into @code{RandSeed}, you will get the exact same sequence
18658 of random numbers as before.
18660 @pindex calc-rrandom
18661 The @code{calc-rrandom} command (not on any key) produces a random real
18662 number between zero and one.  It is equivalent to @samp{random(1.0)}.
18664 @kindex k a
18665 @pindex calc-random-again
18666 The @kbd{k a} (@code{calc-random-again}) command produces another random
18667 number, re-using the most recent value of @expr{M}.  With a numeric
18668 prefix argument @var{n}, it produces @var{n} more random numbers using
18669 that value of @expr{M}.
18671 @kindex k h
18672 @pindex calc-shuffle
18673 @tindex shuffle
18674 The @kbd{k h} (@code{calc-shuffle}) command produces a vector of several
18675 random values with no duplicates.  The value on the top of the stack
18676 specifies the set from which the random values are drawn, and may be any
18677 of the @expr{M} formats described above.  The numeric prefix argument
18678 gives the length of the desired list.  (If you do not provide a numeric
18679 prefix argument, the length of the list is taken from the top of the
18680 stack, and @expr{M} from second-to-top.)
18682 If @expr{M} is a floating-point number, zero, or an error form (so
18683 that the random values are being drawn from the set of real numbers)
18684 there is little practical difference between using @kbd{k h} and using
18685 @kbd{k r} several times.  But if the set of possible values consists
18686 of just a few integers, or the elements of a vector, then there is
18687 a very real chance that multiple @kbd{k r}'s will produce the same
18688 number more than once.  The @kbd{k h} command produces a vector whose
18689 elements are always distinct.  (Actually, there is a slight exception:
18690 If @expr{M} is a vector, no given vector element will be drawn more
18691 than once, but if several elements of @expr{M} are equal, they may
18692 each make it into the result vector.)
18694 One use of @kbd{k h} is to rearrange a list at random.  This happens
18695 if the prefix argument is equal to the number of values in the list:
18696 @kbd{[1, 1.5, 2, 2.5, 3] 5 k h} might produce the permuted list
18697 @samp{[2.5, 1, 1.5, 3, 2]}.  As a convenient feature, if the argument
18698 @var{n} is negative it is replaced by the size of the set represented
18699 by @expr{M}.  Naturally, this is allowed only when @expr{M} specifies
18700 a small discrete set of possibilities.
18702 To do the equivalent of @kbd{k h} but with duplications allowed,
18703 given @expr{M} on the stack and with @var{n} just entered as a numeric
18704 prefix, use @kbd{v b} to build a vector of copies of @expr{M}, then use
18705 @kbd{V M k r} to ``map'' the normal @kbd{k r} function over the
18706 elements of this vector.  @xref{Matrix Functions}.
18708 @menu
18709 * Random Number Generator::     (Complete description of Calc's algorithm)
18710 @end menu
18712 @node Random Number Generator,  , Random Numbers, Random Numbers
18713 @subsection Random Number Generator
18715 Calc's random number generator uses several methods to ensure that
18716 the numbers it produces are highly random.  Knuth's @emph{Art of
18717 Computer Programming}, Volume II, contains a thorough description
18718 of the theory of random number generators and their measurement and
18719 characterization.
18721 If @code{RandSeed} has no stored value, Calc calls Emacs' built-in
18722 @code{random} function to get a stream of random numbers, which it
18723 then treats in various ways to avoid problems inherent in the simple
18724 random number generators that many systems use to implement @code{random}.
18726 When Calc's random number generator is first invoked, it ``seeds''
18727 the low-level random sequence using the time of day, so that the
18728 random number sequence will be different every time you use Calc.
18730 Since Emacs Lisp doesn't specify the range of values that will be
18731 returned by its @code{random} function, Calc exercises the function
18732 several times to estimate the range.  When Calc subsequently uses
18733 the @code{random} function, it takes only 10 bits of the result
18734 near the most-significant end.  (It avoids at least the bottom
18735 four bits, preferably more, and also tries to avoid the top two
18736 bits.)  This strategy works well with the linear congruential
18737 generators that are typically used to implement @code{random}.
18739 If @code{RandSeed} contains an integer, Calc uses this integer to
18740 seed an ``additive congruential'' method (Knuth's algorithm 3.2.2A,
18741 computing 
18742 @texline @math{X_{n-55} - X_{n-24}}.
18743 @infoline @expr{X_n-55 - X_n-24}).  
18744 This method expands the seed
18745 value into a large table which is maintained internally; the variable
18746 @code{RandSeed} is changed from, e.g., 42 to the vector @expr{[42]}
18747 to indicate that the seed has been absorbed into this table.  When
18748 @code{RandSeed} contains a vector, @kbd{k r} and related commands
18749 continue to use the same internal table as last time.  There is no
18750 way to extract the complete state of the random number generator
18751 so that you can restart it from any point; you can only restart it
18752 from the same initial seed value.  A simple way to restart from the
18753 same seed is to type @kbd{s r RandSeed} to get the seed vector,
18754 @kbd{v u} to unpack it back into a number, then @kbd{s t RandSeed}
18755 to reseed the generator with that number.
18757 Calc uses a ``shuffling'' method as described in algorithm 3.2.2B
18758 of Knuth.  It fills a table with 13 random 10-bit numbers.  Then,
18759 to generate a new random number, it uses the previous number to
18760 index into the table, picks the value it finds there as the new
18761 random number, then replaces that table entry with a new value
18762 obtained from a call to the base random number generator (either
18763 the additive congruential generator or the @code{random} function
18764 supplied by the system).  If there are any flaws in the base
18765 generator, shuffling will tend to even them out.  But if the system
18766 provides an excellent @code{random} function, shuffling will not
18767 damage its randomness.
18769 To create a random integer of a certain number of digits, Calc
18770 builds the integer three decimal digits at a time.  For each group
18771 of three digits, Calc calls its 10-bit shuffling random number generator
18772 (which returns a value from 0 to 1023); if the random value is 1000
18773 or more, Calc throws it out and tries again until it gets a suitable
18774 value.
18776 To create a random floating-point number with precision @var{p}, Calc
18777 simply creates a random @var{p}-digit integer and multiplies by
18778 @texline @math{10^{-p}}.
18779 @infoline @expr{10^-p}.  
18780 The resulting random numbers should be very clean, but note
18781 that relatively small numbers will have few significant random digits.
18782 In other words, with a precision of 12, you will occasionally get
18783 numbers on the order of 
18784 @texline @math{10^{-9}}
18785 @infoline @expr{10^-9} 
18786 or 
18787 @texline @math{10^{-10}},
18788 @infoline @expr{10^-10}, 
18789 but those numbers will only have two or three random digits since they
18790 correspond to small integers times 
18791 @texline @math{10^{-12}}.
18792 @infoline @expr{10^-12}.
18794 To create a random integer in the interval @samp{[0 .. @var{m})}, Calc
18795 counts the digits in @var{m}, creates a random integer with three
18796 additional digits, then reduces modulo @var{m}.  Unless @var{m} is a
18797 power of ten the resulting values will be very slightly biased toward
18798 the lower numbers, but this bias will be less than 0.1%.  (For example,
18799 if @var{m} is 42, Calc will reduce a random integer less than 100000
18800 modulo 42 to get a result less than 42.  It is easy to show that the
18801 numbers 40 and 41 will be only 2380/2381 as likely to result from this
18802 modulo operation as numbers 39 and below.)  If @var{m} is a power of
18803 ten, however, the numbers should be completely unbiased.
18805 The Gaussian random numbers generated by @samp{random(0.0)} use the
18806 ``polar'' method described in Knuth section 3.4.1C.  This method
18807 generates a pair of Gaussian random numbers at a time, so only every
18808 other call to @samp{random(0.0)} will require significant calculations.
18810 @node Combinatorial Functions, Probability Distribution Functions, Random Numbers, Scientific Functions
18811 @section Combinatorial Functions
18813 @noindent
18814 Commands relating to combinatorics and number theory begin with the
18815 @kbd{k} key prefix.
18817 @kindex k g
18818 @pindex calc-gcd
18819 @tindex gcd
18820 The @kbd{k g} (@code{calc-gcd}) [@code{gcd}] command computes the
18821 Greatest Common Divisor of two integers.  It also accepts fractions;
18822 the GCD of two fractions is defined by taking the GCD of the
18823 numerators, and the LCM of the denominators.  This definition is
18824 consistent with the idea that @samp{a / gcd(a,x)} should yield an
18825 integer for any @samp{a} and @samp{x}.  For other types of arguments,
18826 the operation is left in symbolic form.
18828 @kindex k l
18829 @pindex calc-lcm
18830 @tindex lcm
18831 The @kbd{k l} (@code{calc-lcm}) [@code{lcm}] command computes the
18832 Least Common Multiple of two integers or fractions.  The product of
18833 the LCM and GCD of two numbers is equal to the product of the
18834 numbers.
18836 @kindex k E
18837 @pindex calc-extended-gcd
18838 @tindex egcd
18839 The @kbd{k E} (@code{calc-extended-gcd}) [@code{egcd}] command computes
18840 the GCD of two integers @expr{x} and @expr{y} and returns a vector
18841 @expr{[g, a, b]} where 
18842 @texline @math{g = \gcd(x,y) = a x + b y}.
18843 @infoline @expr{g = gcd(x,y) = a x + b y}.
18845 @kindex !
18846 @pindex calc-factorial
18847 @tindex fact
18848 @ignore
18849 @mindex @null
18850 @end ignore
18851 @tindex !
18852 The @kbd{!} (@code{calc-factorial}) [@code{fact}] command computes the
18853 factorial of the number at the top of the stack.  If the number is an
18854 integer, the result is an exact integer.  If the number is an
18855 integer-valued float, the result is a floating-point approximation.  If
18856 the number is a non-integral real number, the generalized factorial is used,
18857 as defined by the Euler Gamma function.  Please note that computation of
18858 large factorials can be slow; using floating-point format will help
18859 since fewer digits must be maintained.  The same is true of many of
18860 the commands in this section.
18862 @kindex k d
18863 @pindex calc-double-factorial
18864 @tindex dfact
18865 @ignore
18866 @mindex @null
18867 @end ignore
18868 @tindex !!
18869 The @kbd{k d} (@code{calc-double-factorial}) [@code{dfact}] command
18870 computes the ``double factorial'' of an integer.  For an even integer,
18871 this is the product of even integers from 2 to @expr{N}.  For an odd
18872 integer, this is the product of odd integers from 3 to @expr{N}.  If
18873 the argument is an integer-valued float, the result is a floating-point
18874 approximation.  This function is undefined for negative even integers.
18875 The notation @expr{N!!} is also recognized for double factorials.
18877 @kindex k c
18878 @pindex calc-choose
18879 @tindex choose
18880 The @kbd{k c} (@code{calc-choose}) [@code{choose}] command computes the
18881 binomial coefficient @expr{N}-choose-@expr{M}, where @expr{M} is the number
18882 on the top of the stack and @expr{N} is second-to-top.  If both arguments
18883 are integers, the result is an exact integer.  Otherwise, the result is a
18884 floating-point approximation.  The binomial coefficient is defined for all
18885 real numbers by
18886 @texline @math{N! \over M! (N-M)!\,}.
18887 @infoline @expr{N! / M! (N-M)!}.
18889 @kindex H k c
18890 @pindex calc-perm
18891 @tindex perm
18892 @ifinfo
18893 The @kbd{H k c} (@code{calc-perm}) [@code{perm}] command computes the
18894 number-of-permutations function @expr{N! / (N-M)!}.
18895 @end ifinfo
18896 @tex
18897 The \kbd{H k c} (\code{calc-perm}) [\code{perm}] command computes the
18898 number-of-perm\-utations function $N! \over (N-M)!\,$.
18899 @end tex
18901 @kindex k b
18902 @kindex H k b
18903 @pindex calc-bernoulli-number
18904 @tindex bern
18905 The @kbd{k b} (@code{calc-bernoulli-number}) [@code{bern}] command
18906 computes a given Bernoulli number.  The value at the top of the stack
18907 is a nonnegative integer @expr{n} that specifies which Bernoulli number
18908 is desired.  The @kbd{H k b} command computes a Bernoulli polynomial,
18909 taking @expr{n} from the second-to-top position and @expr{x} from the
18910 top of the stack.  If @expr{x} is a variable or formula the result is
18911 a polynomial in @expr{x}; if @expr{x} is a number the result is a number.
18913 @kindex k e
18914 @kindex H k e
18915 @pindex calc-euler-number
18916 @tindex euler
18917 The @kbd{k e} (@code{calc-euler-number}) [@code{euler}] command similarly
18918 computes an Euler number, and @w{@kbd{H k e}} computes an Euler polynomial.
18919 Bernoulli and Euler numbers occur in the Taylor expansions of several
18920 functions.
18922 @kindex k s
18923 @kindex H k s
18924 @pindex calc-stirling-number
18925 @tindex stir1
18926 @tindex stir2
18927 The @kbd{k s} (@code{calc-stirling-number}) [@code{stir1}] command
18928 computes a Stirling number of the first 
18929 @texline kind@tie{}@math{n \brack m},
18930 @infoline kind,
18931 given two integers @expr{n} and @expr{m} on the stack.  The @kbd{H k s}
18932 [@code{stir2}] command computes a Stirling number of the second 
18933 @texline kind@tie{}@math{n \brace m}.
18934 @infoline kind.
18935 These are the number of @expr{m}-cycle permutations of @expr{n} objects,
18936 and the number of ways to partition @expr{n} objects into @expr{m}
18937 non-empty sets, respectively.
18939 @kindex k p
18940 @pindex calc-prime-test
18941 @cindex Primes
18942 The @kbd{k p} (@code{calc-prime-test}) command checks if the integer on
18943 the top of the stack is prime.  For integers less than eight million, the
18944 answer is always exact and reasonably fast.  For larger integers, a
18945 probabilistic method is used (see Knuth vol. II, section 4.5.4, algorithm P).
18946 The number is first checked against small prime factors (up to 13).  Then,
18947 any number of iterations of the algorithm are performed.  Each step either
18948 discovers that the number is non-prime, or substantially increases the
18949 certainty that the number is prime.  After a few steps, the chance that
18950 a number was mistakenly described as prime will be less than one percent.
18951 (Indeed, this is a worst-case estimate of the probability; in practice
18952 even a single iteration is quite reliable.)  After the @kbd{k p} command,
18953 the number will be reported as definitely prime or non-prime if possible,
18954 or otherwise ``probably'' prime with a certain probability of error.
18956 @ignore
18957 @starindex
18958 @end ignore
18959 @tindex prime
18960 The normal @kbd{k p} command performs one iteration of the primality
18961 test.  Pressing @kbd{k p} repeatedly for the same integer will perform
18962 additional iterations.  Also, @kbd{k p} with a numeric prefix performs
18963 the specified number of iterations.  There is also an algebraic function
18964 @samp{prime(n)} or @samp{prime(n,iters)} which returns 1 if @expr{n}
18965 is (probably) prime and 0 if not.
18967 @kindex k f
18968 @pindex calc-prime-factors
18969 @tindex prfac
18970 The @kbd{k f} (@code{calc-prime-factors}) [@code{prfac}] command
18971 attempts to decompose an integer into its prime factors.  For numbers up
18972 to 25 million, the answer is exact although it may take some time.  The
18973 result is a vector of the prime factors in increasing order.  For larger
18974 inputs, prime factors above 5000 may not be found, in which case the
18975 last number in the vector will be an unfactored integer greater than 25
18976 million (with a warning message).  For negative integers, the first
18977 element of the list will be @mathit{-1}.  For inputs @mathit{-1}, @mathit{0}, and
18978 @mathit{1}, the result is a list of the same number.
18980 @kindex k n
18981 @pindex calc-next-prime
18982 @ignore
18983 @mindex nextpr@idots
18984 @end ignore
18985 @tindex nextprime
18986 The @kbd{k n} (@code{calc-next-prime}) [@code{nextprime}] command finds
18987 the next prime above a given number.  Essentially, it searches by calling
18988 @code{calc-prime-test} on successive integers until it finds one that
18989 passes the test.  This is quite fast for integers less than eight million,
18990 but once the probabilistic test comes into play the search may be rather
18991 slow.  Ordinarily this command stops for any prime that passes one iteration
18992 of the primality test.  With a numeric prefix argument, a number must pass
18993 the specified number of iterations before the search stops.  (This only
18994 matters when searching above eight million.)  You can always use additional
18995 @kbd{k p} commands to increase your certainty that the number is indeed
18996 prime.
18998 @kindex I k n
18999 @pindex calc-prev-prime
19000 @ignore
19001 @mindex prevpr@idots
19002 @end ignore
19003 @tindex prevprime
19004 The @kbd{I k n} (@code{calc-prev-prime}) [@code{prevprime}] command
19005 analogously finds the next prime less than a given number.
19007 @kindex k t
19008 @pindex calc-totient
19009 @tindex totient
19010 The @kbd{k t} (@code{calc-totient}) [@code{totient}] command computes the
19011 Euler ``totient'' 
19012 @texline function@tie{}@math{\phi(n)},
19013 @infoline function,
19014 the number of integers less than @expr{n} which
19015 are relatively prime to @expr{n}.
19017 @kindex k m
19018 @pindex calc-moebius
19019 @tindex moebius
19020 The @kbd{k m} (@code{calc-moebius}) [@code{moebius}] command computes the
19021 @texline M@"obius @math{\mu}
19022 @infoline Moebius ``mu''
19023 function.  If the input number is a product of @expr{k}
19024 distinct factors, this is @expr{(-1)^k}.  If the input number has any
19025 duplicate factors (i.e., can be divided by the same prime more than once),
19026 the result is zero.
19028 @node Probability Distribution Functions,  , Combinatorial Functions, Scientific Functions
19029 @section Probability Distribution Functions
19031 @noindent
19032 The functions in this section compute various probability distributions.
19033 For continuous distributions, this is the integral of the probability
19034 density function from @expr{x} to infinity.  (These are the ``upper
19035 tail'' distribution functions; there are also corresponding ``lower
19036 tail'' functions which integrate from minus infinity to @expr{x}.)
19037 For discrete distributions, the upper tail function gives the sum
19038 from @expr{x} to infinity; the lower tail function gives the sum
19039 from minus infinity up to, but not including,@w{ }@expr{x}.
19041 To integrate from @expr{x} to @expr{y}, just use the distribution
19042 function twice and subtract.  For example, the probability that a
19043 Gaussian random variable with mean 2 and standard deviation 1 will
19044 lie in the range from 2.5 to 2.8 is @samp{utpn(2.5,2,1) - utpn(2.8,2,1)}
19045 (``the probability that it is greater than 2.5, but not greater than 2.8''),
19046 or equivalently @samp{ltpn(2.8,2,1) - ltpn(2.5,2,1)}.
19048 @kindex k B
19049 @kindex I k B
19050 @pindex calc-utpb
19051 @tindex utpb
19052 @tindex ltpb
19053 The @kbd{k B} (@code{calc-utpb}) [@code{utpb}] function uses the
19054 binomial distribution.  Push the parameters @var{n}, @var{p}, and
19055 then @var{x} onto the stack; the result (@samp{utpb(x,n,p)}) is the
19056 probability that an event will occur @var{x} or more times out
19057 of @var{n} trials, if its probability of occurring in any given
19058 trial is @var{p}.  The @kbd{I k B} [@code{ltpb}] function is
19059 the probability that the event will occur fewer than @var{x} times.
19061 The other probability distribution functions similarly take the
19062 form @kbd{k @var{X}} (@code{calc-utp@var{x}}) [@code{utp@var{x}}]
19063 and @kbd{I k @var{X}} [@code{ltp@var{x}}], for various letters
19064 @var{x}.  The arguments to the algebraic functions are the value of
19065 the random variable first, then whatever other parameters define the
19066 distribution.  Note these are among the few Calc functions where the
19067 order of the arguments in algebraic form differs from the order of
19068 arguments as found on the stack.  (The random variable comes last on
19069 the stack, so that you can type, e.g., @kbd{2 @key{RET} 1 @key{RET} 2.5
19070 k N M-@key{RET} @key{DEL} 2.8 k N -}, using @kbd{M-@key{RET} @key{DEL}} to
19071 recover the original arguments but substitute a new value for @expr{x}.)
19073 @kindex k C
19074 @pindex calc-utpc
19075 @tindex utpc
19076 @ignore
19077 @mindex @idots
19078 @end ignore
19079 @kindex I k C
19080 @ignore
19081 @mindex @null
19082 @end ignore
19083 @tindex ltpc
19084 The @samp{utpc(x,v)} function uses the chi-square distribution with
19085 @texline @math{\nu}
19086 @infoline @expr{v} 
19087 degrees of freedom.  It is the probability that a model is
19088 correct if its chi-square statistic is @expr{x}.
19090 @kindex k F
19091 @pindex calc-utpf
19092 @tindex utpf
19093 @ignore
19094 @mindex @idots
19095 @end ignore
19096 @kindex I k F
19097 @ignore
19098 @mindex @null
19099 @end ignore
19100 @tindex ltpf
19101 The @samp{utpf(F,v1,v2)} function uses the F distribution, used in
19102 various statistical tests.  The parameters 
19103 @texline @math{\nu_1}
19104 @infoline @expr{v1} 
19105 and 
19106 @texline @math{\nu_2}
19107 @infoline @expr{v2}
19108 are the degrees of freedom in the numerator and denominator,
19109 respectively, used in computing the statistic @expr{F}.
19111 @kindex k N
19112 @pindex calc-utpn
19113 @tindex utpn
19114 @ignore
19115 @mindex @idots
19116 @end ignore
19117 @kindex I k N
19118 @ignore
19119 @mindex @null
19120 @end ignore
19121 @tindex ltpn
19122 The @samp{utpn(x,m,s)} function uses a normal (Gaussian) distribution
19123 with mean @expr{m} and standard deviation 
19124 @texline @math{\sigma}.
19125 @infoline @expr{s}.  
19126 It is the probability that such a normal-distributed random variable
19127 would exceed @expr{x}.
19129 @kindex k P
19130 @pindex calc-utpp
19131 @tindex utpp
19132 @ignore
19133 @mindex @idots
19134 @end ignore
19135 @kindex I k P
19136 @ignore
19137 @mindex @null
19138 @end ignore
19139 @tindex ltpp
19140 The @samp{utpp(n,x)} function uses a Poisson distribution with
19141 mean @expr{x}.  It is the probability that @expr{n} or more such
19142 Poisson random events will occur.
19144 @kindex k T
19145 @pindex calc-ltpt
19146 @tindex utpt
19147 @ignore
19148 @mindex @idots
19149 @end ignore
19150 @kindex I k T
19151 @ignore
19152 @mindex @null
19153 @end ignore
19154 @tindex ltpt
19155 The @samp{utpt(t,v)} function uses the Student's ``t'' distribution
19156 with 
19157 @texline @math{\nu}
19158 @infoline @expr{v} 
19159 degrees of freedom.  It is the probability that a
19160 t-distributed random variable will be greater than @expr{t}.
19161 (Note:  This computes the distribution function 
19162 @texline @math{A(t|\nu)}
19163 @infoline @expr{A(t|v)}
19164 where 
19165 @texline @math{A(0|\nu) = 1}
19166 @infoline @expr{A(0|v) = 1} 
19167 and 
19168 @texline @math{A(\infty|\nu) \to 0}.
19169 @infoline @expr{A(inf|v) -> 0}.  
19170 The @code{UTPT} operation on the HP-48 uses a different definition which
19171 returns half of Calc's value:  @samp{UTPT(t,v) = .5*utpt(t,v)}.)
19173 While Calc does not provide inverses of the probability distribution
19174 functions, the @kbd{a R} command can be used to solve for the inverse.
19175 Since the distribution functions are monotonic, @kbd{a R} is guaranteed
19176 to be able to find a solution given any initial guess.
19177 @xref{Numerical Solutions}.
19179 @node Matrix Functions, Algebra, Scientific Functions, Top
19180 @chapter Vector/Matrix Functions
19182 @noindent
19183 Many of the commands described here begin with the @kbd{v} prefix.
19184 (For convenience, the shift-@kbd{V} prefix is equivalent to @kbd{v}.)
19185 The commands usually apply to both plain vectors and matrices; some
19186 apply only to matrices or only to square matrices.  If the argument
19187 has the wrong dimensions the operation is left in symbolic form.
19189 Vectors are entered and displayed using @samp{[a,b,c]} notation.
19190 Matrices are vectors of which all elements are vectors of equal length.
19191 (Though none of the standard Calc commands use this concept, a
19192 three-dimensional matrix or rank-3 tensor could be defined as a
19193 vector of matrices, and so on.)
19195 @menu
19196 * Packing and Unpacking::
19197 * Building Vectors::
19198 * Extracting Elements::
19199 * Manipulating Vectors::
19200 * Vector and Matrix Arithmetic::
19201 * Set Operations::
19202 * Statistical Operations::
19203 * Reducing and Mapping::
19204 * Vector and Matrix Formats::
19205 @end menu
19207 @node Packing and Unpacking, Building Vectors, Matrix Functions, Matrix Functions
19208 @section Packing and Unpacking
19210 @noindent
19211 Calc's ``pack'' and ``unpack'' commands collect stack entries to build
19212 composite objects such as vectors and complex numbers.  They are
19213 described in this chapter because they are most often used to build
19214 vectors.
19216 @kindex v p
19217 @pindex calc-pack
19218 The @kbd{v p} (@code{calc-pack}) [@code{pack}] command collects several
19219 elements from the stack into a matrix, complex number, HMS form, error
19220 form, etc.  It uses a numeric prefix argument to specify the kind of
19221 object to be built; this argument is referred to as the ``packing mode.''
19222 If the packing mode is a nonnegative integer, a vector of that
19223 length is created.  For example, @kbd{C-u 5 v p} will pop the top
19224 five stack elements and push back a single vector of those five
19225 elements.  (@kbd{C-u 0 v p} simply creates an empty vector.)
19227 The same effect can be had by pressing @kbd{[} to push an incomplete
19228 vector on the stack, using @key{TAB} (@code{calc-roll-down}) to sneak
19229 the incomplete object up past a certain number of elements, and
19230 then pressing @kbd{]} to complete the vector.
19232 Negative packing modes create other kinds of composite objects:
19234 @table @cite
19235 @item -1
19236 Two values are collected to build a complex number.  For example,
19237 @kbd{5 @key{RET} 7 C-u -1 v p} creates the complex number
19238 @expr{(5, 7)}.  The result is always a rectangular complex
19239 number.  The two input values must both be real numbers,
19240 i.e., integers, fractions, or floats.  If they are not, Calc
19241 will instead build a formula like @samp{a + (0, 1) b}.  (The
19242 other packing modes also create a symbolic answer if the
19243 components are not suitable.)
19245 @item -2
19246 Two values are collected to build a polar complex number.
19247 The first is the magnitude; the second is the phase expressed
19248 in either degrees or radians according to the current angular
19249 mode.
19251 @item -3
19252 Three values are collected into an HMS form.  The first
19253 two values (hours and minutes) must be integers or
19254 integer-valued floats.  The third value may be any real
19255 number.
19257 @item -4
19258 Two values are collected into an error form.  The inputs
19259 may be real numbers or formulas.
19261 @item -5
19262 Two values are collected into a modulo form.  The inputs
19263 must be real numbers.
19265 @item -6
19266 Two values are collected into the interval @samp{[a .. b]}.
19267 The inputs may be real numbers, HMS or date forms, or formulas.
19269 @item -7
19270 Two values are collected into the interval @samp{[a .. b)}.
19272 @item -8
19273 Two values are collected into the interval @samp{(a .. b]}.
19275 @item -9
19276 Two values are collected into the interval @samp{(a .. b)}.
19278 @item -10
19279 Two integer values are collected into a fraction.
19281 @item -11
19282 Two values are collected into a floating-point number.
19283 The first is the mantissa; the second, which must be an
19284 integer, is the exponent.  The result is the mantissa
19285 times ten to the power of the exponent.
19287 @item -12
19288 This is treated the same as @mathit{-11} by the @kbd{v p} command.
19289 When unpacking, @mathit{-12} specifies that a floating-point mantissa
19290 is desired.
19292 @item -13
19293 A real number is converted into a date form.
19295 @item -14
19296 Three numbers (year, month, day) are packed into a pure date form.
19298 @item -15
19299 Six numbers are packed into a date/time form.
19300 @end table
19302 With any of the two-input negative packing modes, either or both
19303 of the inputs may be vectors.  If both are vectors of the same
19304 length, the result is another vector made by packing corresponding
19305 elements of the input vectors.  If one input is a vector and the
19306 other is a plain number, the number is packed along with each vector
19307 element to produce a new vector.  For example, @kbd{C-u -4 v p}
19308 could be used to convert a vector of numbers and a vector of errors
19309 into a single vector of error forms; @kbd{C-u -5 v p} could convert
19310 a vector of numbers and a single number @var{M} into a vector of
19311 numbers modulo @var{M}.
19313 If you don't give a prefix argument to @kbd{v p}, it takes
19314 the packing mode from the top of the stack.  The elements to
19315 be packed then begin at stack level 2.  Thus
19316 @kbd{1 @key{RET} 2 @key{RET} 4 n v p} is another way to
19317 enter the error form @samp{1 +/- 2}.
19319 If the packing mode taken from the stack is a vector, the result is a
19320 matrix with the dimensions specified by the elements of the vector,
19321 which must each be integers.  For example, if the packing mode is
19322 @samp{[2, 3]}, then six numbers will be taken from the stack and
19323 returned in the form @samp{[@w{[a, b, c]}, [d, e, f]]}.
19325 If any elements of the vector are negative, other kinds of
19326 packing are done at that level as described above.  For
19327 example, @samp{[2, 3, -4]} takes 12 objects and creates a
19328 @texline @math{2\times3}
19329 @infoline 2x3
19330 matrix of error forms: @samp{[[a +/- b, c +/- d ... ]]}.
19331 Also, @samp{[-4, -10]} will convert four integers into an
19332 error form consisting of two fractions:  @samp{a:b +/- c:d}.
19334 @ignore
19335 @starindex
19336 @end ignore
19337 @tindex pack
19338 There is an equivalent algebraic function,
19339 @samp{pack(@var{mode}, @var{items})} where @var{mode} is a
19340 packing mode (an integer or a vector of integers) and @var{items}
19341 is a vector of objects to be packed (re-packed, really) according
19342 to that mode.  For example, @samp{pack([3, -4], [a,b,c,d,e,f])}
19343 yields @samp{[a +/- b, @w{c +/- d}, e +/- f]}.  The function is
19344 left in symbolic form if the packing mode is invalid, or if the
19345 number of data items does not match the number of items required
19346 by the mode.
19348 @kindex v u
19349 @pindex calc-unpack
19350 The @kbd{v u} (@code{calc-unpack}) command takes the vector, complex
19351 number, HMS form, or other composite object on the top of the stack and
19352 ``unpacks'' it, pushing each of its elements onto the stack as separate
19353 objects.  Thus, it is the ``inverse'' of @kbd{v p}.  If the value
19354 at the top of the stack is a formula, @kbd{v u} unpacks it by pushing
19355 each of the arguments of the top-level operator onto the stack.
19357 You can optionally give a numeric prefix argument to @kbd{v u}
19358 to specify an explicit (un)packing mode.  If the packing mode is
19359 negative and the input is actually a vector or matrix, the result
19360 will be two or more similar vectors or matrices of the elements.
19361 For example, given the vector @samp{[@w{a +/- b}, c^2, d +/- 7]},
19362 the result of @kbd{C-u -4 v u} will be the two vectors
19363 @samp{[a, c^2, d]} and @w{@samp{[b, 0, 7]}}.
19365 Note that the prefix argument can have an effect even when the input is
19366 not a vector.  For example, if the input is the number @mathit{-5}, then
19367 @kbd{c-u -1 v u} yields @mathit{-5} and 0 (the components of @mathit{-5}
19368 when viewed as a rectangular complex number); @kbd{C-u -2 v u} yields 5
19369 and 180 (assuming Degrees mode); and @kbd{C-u -10 v u} yields @mathit{-5}
19370 and 1 (the numerator and denominator of @mathit{-5}, viewed as a rational
19371 number).  Plain @kbd{v u} with this input would complain that the input
19372 is not a composite object.
19374 Unpacking mode @mathit{-11} converts a float into an integer mantissa and
19375 an integer exponent, where the mantissa is not divisible by 10
19376 (except that 0.0 is represented by a mantissa and exponent of 0).
19377 Unpacking mode @mathit{-12} converts a float into a floating-point mantissa
19378 and integer exponent, where the mantissa (for non-zero numbers)
19379 is guaranteed to lie in the range [1 .. 10).  In both cases,
19380 the mantissa is shifted left or right (and the exponent adjusted
19381 to compensate) in order to satisfy these constraints.
19383 Positive unpacking modes are treated differently than for @kbd{v p}.
19384 A mode of 1 is much like plain @kbd{v u} with no prefix argument,
19385 except that in addition to the components of the input object,
19386 a suitable packing mode to re-pack the object is also pushed.
19387 Thus, @kbd{C-u 1 v u} followed by @kbd{v p} will re-build the
19388 original object.
19390 A mode of 2 unpacks two levels of the object; the resulting
19391 re-packing mode will be a vector of length 2.  This might be used
19392 to unpack a matrix, say, or a vector of error forms.  Higher
19393 unpacking modes unpack the input even more deeply.
19395 @ignore
19396 @starindex
19397 @end ignore
19398 @tindex unpack
19399 There are two algebraic functions analogous to @kbd{v u}.
19400 The @samp{unpack(@var{mode}, @var{item})} function unpacks the
19401 @var{item} using the given @var{mode}, returning the result as
19402 a vector of components.  Here the @var{mode} must be an
19403 integer, not a vector.  For example, @samp{unpack(-4, a +/- b)}
19404 returns @samp{[a, b]}, as does @samp{unpack(1, a +/- b)}.
19406 @ignore
19407 @starindex
19408 @end ignore
19409 @tindex unpackt
19410 The @code{unpackt} function is like @code{unpack} but instead
19411 of returning a simple vector of items, it returns a vector of
19412 two things:  The mode, and the vector of items.  For example,
19413 @samp{unpackt(1, 2:3 +/- 1:4)} returns @samp{[-4, [2:3, 1:4]]},
19414 and @samp{unpackt(2, 2:3 +/- 1:4)} returns @samp{[[-4, -10], [2, 3, 1, 4]]}.
19415 The identity for re-building the original object is
19416 @samp{apply(pack, unpackt(@var{n}, @var{x})) = @var{x}}.  (The
19417 @code{apply} function builds a function call given the function
19418 name and a vector of arguments.)
19420 @cindex Numerator of a fraction, extracting
19421 Subscript notation is a useful way to extract a particular part
19422 of an object.  For example, to get the numerator of a rational
19423 number, you can use @samp{unpack(-10, @var{x})_1}.
19425 @node Building Vectors, Extracting Elements, Packing and Unpacking, Matrix Functions
19426 @section Building Vectors
19428 @noindent
19429 Vectors and matrices can be added,
19430 subtracted, multiplied, and divided; @pxref{Basic Arithmetic}.
19432 @kindex |
19433 @pindex calc-concat
19434 @ignore
19435 @mindex @null
19436 @end ignore
19437 @tindex |
19438 The @kbd{|} (@code{calc-concat}) [@code{vconcat}] command ``concatenates'' two vectors
19439 into one.  For example, after @kbd{@w{[ 1 , 2 ]} [ 3 , 4 ] |}, the stack
19440 will contain the single vector @samp{[1, 2, 3, 4]}.  If the arguments
19441 are matrices, the rows of the first matrix are concatenated with the
19442 rows of the second.  (In other words, two matrices are just two vectors
19443 of row-vectors as far as @kbd{|} is concerned.)
19445 If either argument to @kbd{|} is a scalar (a non-vector), it is treated
19446 like a one-element vector for purposes of concatenation:  @kbd{1 [ 2 , 3 ] |}
19447 produces the vector @samp{[1, 2, 3]}.  Likewise, if one argument is a
19448 matrix and the other is a plain vector, the vector is treated as a
19449 one-row matrix.
19451 @kindex H |
19452 @tindex append
19453 The @kbd{H |} (@code{calc-append}) [@code{append}] command concatenates
19454 two vectors without any special cases.  Both inputs must be vectors.
19455 Whether or not they are matrices is not taken into account.  If either
19456 argument is a scalar, the @code{append} function is left in symbolic form.
19457 See also @code{cons} and @code{rcons} below.
19459 @kindex I |
19460 @kindex H I |
19461 The @kbd{I |} and @kbd{H I |} commands are similar, but they use their
19462 two stack arguments in the opposite order.  Thus @kbd{I |} is equivalent
19463 to @kbd{@key{TAB} |}, but possibly more convenient and also a bit faster.
19465 @kindex v d
19466 @pindex calc-diag
19467 @tindex diag
19468 The @kbd{v d} (@code{calc-diag}) [@code{diag}] function builds a diagonal
19469 square matrix.  The optional numeric prefix gives the number of rows
19470 and columns in the matrix.  If the value at the top of the stack is a
19471 vector, the elements of the vector are used as the diagonal elements; the
19472 prefix, if specified, must match the size of the vector.  If the value on
19473 the stack is a scalar, it is used for each element on the diagonal, and
19474 the prefix argument is required.
19476 To build a constant square matrix, e.g., a 
19477 @texline @math{3\times3}
19478 @infoline 3x3
19479 matrix filled with ones, use @kbd{0 M-3 v d 1 +}, i.e., build a zero
19480 matrix first and then add a constant value to that matrix.  (Another
19481 alternative would be to use @kbd{v b} and @kbd{v a}; see below.)
19483 @kindex v i
19484 @pindex calc-ident
19485 @tindex idn
19486 The @kbd{v i} (@code{calc-ident}) [@code{idn}] function builds an identity
19487 matrix of the specified size.  It is a convenient form of @kbd{v d}
19488 where the diagonal element is always one.  If no prefix argument is given,
19489 this command prompts for one.
19491 In algebraic notation, @samp{idn(a,n)} acts much like @samp{diag(a,n)},
19492 except that @expr{a} is required to be a scalar (non-vector) quantity.
19493 If @expr{n} is omitted, @samp{idn(a)} represents @expr{a} times an
19494 identity matrix of unknown size.  Calc can operate algebraically on
19495 such generic identity matrices, and if one is combined with a matrix
19496 whose size is known, it is converted automatically to an identity
19497 matrix of a suitable matching size.  The @kbd{v i} command with an
19498 argument of zero creates a generic identity matrix, @samp{idn(1)}.
19499 Note that in dimensioned Matrix mode (@pxref{Matrix Mode}), generic
19500 identity matrices are immediately expanded to the current default
19501 dimensions.
19503 @kindex v x
19504 @pindex calc-index
19505 @tindex index
19506 The @kbd{v x} (@code{calc-index}) [@code{index}] function builds a vector
19507 of consecutive integers from 1 to @var{n}, where @var{n} is the numeric
19508 prefix argument.  If you do not provide a prefix argument, you will be
19509 prompted to enter a suitable number.  If @var{n} is negative, the result
19510 is a vector of negative integers from @var{n} to @mathit{-1}.
19512 With a prefix argument of just @kbd{C-u}, the @kbd{v x} command takes
19513 three values from the stack: @var{n}, @var{start}, and @var{incr} (with
19514 @var{incr} at top-of-stack).  Counting starts at @var{start} and increases
19515 by @var{incr} for successive vector elements.  If @var{start} or @var{n}
19516 is in floating-point format, the resulting vector elements will also be
19517 floats.  Note that @var{start} and @var{incr} may in fact be any kind
19518 of numbers or formulas.
19520 When @var{start} and @var{incr} are specified, a negative @var{n} has a
19521 different interpretation:  It causes a geometric instead of arithmetic
19522 sequence to be generated.  For example, @samp{index(-3, a, b)} produces
19523 @samp{[a, a b, a b^2]}.  If you omit @var{incr} in the algebraic form,
19524 @samp{index(@var{n}, @var{start})}, the default value for @var{incr}
19525 is one for positive @var{n} or two for negative @var{n}.
19527 @kindex v b
19528 @pindex calc-build-vector
19529 @tindex cvec
19530 The @kbd{v b} (@code{calc-build-vector}) [@code{cvec}] function builds a
19531 vector of @var{n} copies of the value on the top of the stack, where @var{n}
19532 is the numeric prefix argument.  In algebraic formulas, @samp{cvec(x,n,m)}
19533 can also be used to build an @var{n}-by-@var{m} matrix of copies of @var{x}.
19534 (Interactively, just use @kbd{v b} twice: once to build a row, then again
19535 to build a matrix of copies of that row.)
19537 @kindex v h
19538 @kindex I v h
19539 @pindex calc-head
19540 @pindex calc-tail
19541 @tindex head
19542 @tindex tail
19543 The @kbd{v h} (@code{calc-head}) [@code{head}] function returns the first
19544 element of a vector.  The @kbd{I v h} (@code{calc-tail}) [@code{tail}]
19545 function returns the vector with its first element removed.  In both
19546 cases, the argument must be a non-empty vector.
19548 @kindex v k
19549 @pindex calc-cons
19550 @tindex cons
19551 The @kbd{v k} (@code{calc-cons}) [@code{cons}] function takes a value @var{h}
19552 and a vector @var{t} from the stack, and produces the vector whose head is
19553 @var{h} and whose tail is @var{t}.  This is similar to @kbd{|}, except
19554 if @var{h} is itself a vector, @kbd{|} will concatenate the two vectors
19555 whereas @code{cons} will insert @var{h} at the front of the vector @var{t}.
19557 @kindex H v h
19558 @tindex rhead
19559 @ignore
19560 @mindex @idots
19561 @end ignore
19562 @kindex H I v h
19563 @ignore
19564 @mindex @null
19565 @end ignore
19566 @kindex H v k
19567 @ignore
19568 @mindex @null
19569 @end ignore
19570 @tindex rtail
19571 @ignore
19572 @mindex @null
19573 @end ignore
19574 @tindex rcons
19575 Each of these three functions also accepts the Hyperbolic flag [@code{rhead},
19576 @code{rtail}, @code{rcons}] in which case @var{t} instead represents
19577 the @emph{last} single element of the vector, with @var{h}
19578 representing the remainder of the vector.  Thus the vector
19579 @samp{[a, b, c, d] = cons(a, [b, c, d]) = rcons([a, b, c], d)}.
19580 Also, @samp{head([a, b, c, d]) = a}, @samp{tail([a, b, c, d]) = [b, c, d]},
19581 @samp{rhead([a, b, c, d]) = [a, b, c]}, and @samp{rtail([a, b, c, d]) = d}.
19583 @node Extracting Elements, Manipulating Vectors, Building Vectors, Matrix Functions
19584 @section Extracting Vector Elements
19586 @noindent
19587 @kindex v r
19588 @pindex calc-mrow
19589 @tindex mrow
19590 The @kbd{v r} (@code{calc-mrow}) [@code{mrow}] command extracts one row of
19591 the matrix on the top of the stack, or one element of the plain vector on
19592 the top of the stack.  The row or element is specified by the numeric
19593 prefix argument; the default is to prompt for the row or element number.
19594 The matrix or vector is replaced by the specified row or element in the
19595 form of a vector or scalar, respectively.
19597 @cindex Permutations, applying
19598 With a prefix argument of @kbd{C-u} only, @kbd{v r} takes the index of
19599 the element or row from the top of the stack, and the vector or matrix
19600 from the second-to-top position.  If the index is itself a vector of
19601 integers, the result is a vector of the corresponding elements of the
19602 input vector, or a matrix of the corresponding rows of the input matrix.
19603 This command can be used to obtain any permutation of a vector.
19605 With @kbd{C-u}, if the index is an interval form with integer components,
19606 it is interpreted as a range of indices and the corresponding subvector or
19607 submatrix is returned.
19609 @cindex Subscript notation
19610 @kindex a _
19611 @pindex calc-subscript
19612 @tindex subscr
19613 @tindex _
19614 Subscript notation in algebraic formulas (@samp{a_b}) stands for the
19615 Calc function @code{subscr}, which is synonymous with @code{mrow}.
19616 Thus, @samp{[x, y, z]_k} produces @expr{x}, @expr{y}, or @expr{z} if
19617 @expr{k} is one, two, or three, respectively.  A double subscript
19618 (@samp{M_i_j}, equivalent to @samp{subscr(subscr(M, i), j)}) will
19619 access the element at row @expr{i}, column @expr{j} of a matrix.
19620 The @kbd{a _} (@code{calc-subscript}) command creates a subscript
19621 formula @samp{a_b} out of two stack entries.  (It is on the @kbd{a}
19622 ``algebra'' prefix because subscripted variables are often used
19623 purely as an algebraic notation.)
19625 @tindex mrrow
19626 Given a negative prefix argument, @kbd{v r} instead deletes one row or
19627 element from the matrix or vector on the top of the stack.  Thus
19628 @kbd{C-u 2 v r} replaces a matrix with its second row, but @kbd{C-u -2 v r}
19629 replaces the matrix with the same matrix with its second row removed.
19630 In algebraic form this function is called @code{mrrow}.
19632 @tindex getdiag
19633 Given a prefix argument of zero, @kbd{v r} extracts the diagonal elements
19634 of a square matrix in the form of a vector.  In algebraic form this
19635 function is called @code{getdiag}.
19637 @kindex v c
19638 @pindex calc-mcol
19639 @tindex mcol
19640 @tindex mrcol
19641 The @kbd{v c} (@code{calc-mcol}) [@code{mcol} or @code{mrcol}] command is
19642 the analogous operation on columns of a matrix.  Given a plain vector
19643 it extracts (or removes) one element, just like @kbd{v r}.  If the
19644 index in @kbd{C-u v c} is an interval or vector and the argument is a
19645 matrix, the result is a submatrix with only the specified columns
19646 retained (and possibly permuted in the case of a vector index).
19648 To extract a matrix element at a given row and column, use @kbd{v r} to
19649 extract the row as a vector, then @kbd{v c} to extract the column element
19650 from that vector.  In algebraic formulas, it is often more convenient to
19651 use subscript notation:  @samp{m_i_j} gives row @expr{i}, column @expr{j}
19652 of matrix @expr{m}.
19654 @kindex v s
19655 @pindex calc-subvector
19656 @tindex subvec
19657 The @kbd{v s} (@code{calc-subvector}) [@code{subvec}] command extracts
19658 a subvector of a vector.  The arguments are the vector, the starting
19659 index, and the ending index, with the ending index in the top-of-stack
19660 position.  The starting index indicates the first element of the vector
19661 to take.  The ending index indicates the first element @emph{past} the
19662 range to be taken.  Thus, @samp{subvec([a, b, c, d, e], 2, 4)} produces
19663 the subvector @samp{[b, c]}.  You could get the same result using
19664 @samp{mrow([a, b, c, d, e], @w{[2 .. 4)})}.
19666 If either the start or the end index is zero or negative, it is
19667 interpreted as relative to the end of the vector.  Thus
19668 @samp{subvec([a, b, c, d, e], 2, -2)} also produces @samp{[b, c]}.  In
19669 the algebraic form, the end index can be omitted in which case it
19670 is taken as zero, i.e., elements from the starting element to the
19671 end of the vector are used.  The infinity symbol, @code{inf}, also
19672 has this effect when used as the ending index.
19674 @kindex I v s
19675 @tindex rsubvec
19676 With the Inverse flag, @kbd{I v s} [@code{rsubvec}] removes a subvector
19677 from a vector.  The arguments are interpreted the same as for the
19678 normal @kbd{v s} command.  Thus, @samp{rsubvec([a, b, c, d, e], 2, 4)}
19679 produces @samp{[a, d, e]}.  It is always true that @code{subvec} and
19680 @code{rsubvec} return complementary parts of the input vector.
19682 @xref{Selecting Subformulas}, for an alternative way to operate on
19683 vectors one element at a time.
19685 @node Manipulating Vectors, Vector and Matrix Arithmetic, Extracting Elements, Matrix Functions
19686 @section Manipulating Vectors
19688 @noindent
19689 @kindex v l
19690 @pindex calc-vlength
19691 @tindex vlen
19692 The @kbd{v l} (@code{calc-vlength}) [@code{vlen}] command computes the
19693 length of a vector.  The length of a non-vector is considered to be zero.
19694 Note that matrices are just vectors of vectors for the purposes of this
19695 command.
19697 @kindex H v l
19698 @tindex mdims
19699 With the Hyperbolic flag, @kbd{H v l} [@code{mdims}] computes a vector
19700 of the dimensions of a vector, matrix, or higher-order object.  For
19701 example, @samp{mdims([[a,b,c],[d,e,f]])} returns @samp{[2, 3]} since
19702 its argument is a 
19703 @texline @math{2\times3}
19704 @infoline 2x3
19705 matrix.
19707 @kindex v f
19708 @pindex calc-vector-find
19709 @tindex find
19710 The @kbd{v f} (@code{calc-vector-find}) [@code{find}] command searches
19711 along a vector for the first element equal to a given target.  The target
19712 is on the top of the stack; the vector is in the second-to-top position.
19713 If a match is found, the result is the index of the matching element.
19714 Otherwise, the result is zero.  The numeric prefix argument, if given,
19715 allows you to select any starting index for the search.
19717 @kindex v a
19718 @pindex calc-arrange-vector
19719 @tindex arrange
19720 @cindex Arranging a matrix
19721 @cindex Reshaping a matrix
19722 @cindex Flattening a matrix
19723 The @kbd{v a} (@code{calc-arrange-vector}) [@code{arrange}] command
19724 rearranges a vector to have a certain number of columns and rows.  The
19725 numeric prefix argument specifies the number of columns; if you do not
19726 provide an argument, you will be prompted for the number of columns.
19727 The vector or matrix on the top of the stack is @dfn{flattened} into a
19728 plain vector.  If the number of columns is nonzero, this vector is
19729 then formed into a matrix by taking successive groups of @var{n} elements.
19730 If the number of columns does not evenly divide the number of elements
19731 in the vector, the last row will be short and the result will not be
19732 suitable for use as a matrix.  For example, with the matrix
19733 @samp{[[1, 2], @w{[3, 4]}]} on the stack, @kbd{v a 4} produces
19734 @samp{[[1, 2, 3, 4]]} (a 
19735 @texline @math{1\times4}
19736 @infoline 1x4
19737 matrix), @kbd{v a 1} produces @samp{[[1], [2], [3], [4]]} (a 
19738 @texline @math{4\times1}
19739 @infoline 4x1
19740 matrix), @kbd{v a 2} produces @samp{[[1, 2], [3, 4]]} (the original 
19741 @texline @math{2\times2}
19742 @infoline 2x2
19743 matrix), @w{@kbd{v a 3}} produces @samp{[[1, 2, 3], [4]]} (not a
19744 matrix), and @kbd{v a 0} produces the flattened list 
19745 @samp{[1, 2, @w{3, 4}]}.
19747 @cindex Sorting data
19748 @kindex V S
19749 @kindex I V S
19750 @pindex calc-sort
19751 @tindex sort
19752 @tindex rsort
19753 The @kbd{V S} (@code{calc-sort}) [@code{sort}] command sorts the elements of
19754 a vector into increasing order.  Real numbers, real infinities, and
19755 constant interval forms come first in this ordering; next come other
19756 kinds of numbers, then variables (in alphabetical order), then finally
19757 come formulas and other kinds of objects; these are sorted according
19758 to a kind of lexicographic ordering with the useful property that
19759 one vector is less or greater than another if the first corresponding
19760 unequal elements are less or greater, respectively.  Since quoted strings
19761 are stored by Calc internally as vectors of ASCII character codes
19762 (@pxref{Strings}), this means vectors of strings are also sorted into
19763 alphabetical order by this command.
19765 The @kbd{I V S} [@code{rsort}] command sorts a vector into decreasing order.
19767 @cindex Permutation, inverse of
19768 @cindex Inverse of permutation
19769 @cindex Index tables
19770 @cindex Rank tables
19771 @kindex V G
19772 @kindex I V G
19773 @pindex calc-grade
19774 @tindex grade
19775 @tindex rgrade
19776 The @kbd{V G} (@code{calc-grade}) [@code{grade}, @code{rgrade}] command
19777 produces an index table or permutation vector which, if applied to the
19778 input vector (as the index of @kbd{C-u v r}, say), would sort the vector.
19779 A permutation vector is just a vector of integers from 1 to @var{n}, where
19780 each integer occurs exactly once.  One application of this is to sort a
19781 matrix of data rows using one column as the sort key; extract that column,
19782 grade it with @kbd{V G}, then use the result to reorder the original matrix
19783 with @kbd{C-u v r}.  Another interesting property of the @code{V G} command
19784 is that, if the input is itself a permutation vector, the result will
19785 be the inverse of the permutation.  The inverse of an index table is
19786 a rank table, whose @var{k}th element says where the @var{k}th original
19787 vector element will rest when the vector is sorted.  To get a rank
19788 table, just use @kbd{V G V G}.
19790 With the Inverse flag, @kbd{I V G} produces an index table that would
19791 sort the input into decreasing order.  Note that @kbd{V S} and @kbd{V G}
19792 use a ``stable'' sorting algorithm, i.e., any two elements which are equal
19793 will not be moved out of their original order.  Generally there is no way
19794 to tell with @kbd{V S}, since two elements which are equal look the same,
19795 but with @kbd{V G} this can be an important issue.  In the matrix-of-rows
19796 example, suppose you have names and telephone numbers as two columns and
19797 you wish to sort by phone number primarily, and by name when the numbers
19798 are equal.  You can sort the data matrix by names first, and then again
19799 by phone numbers.  Because the sort is stable, any two rows with equal
19800 phone numbers will remain sorted by name even after the second sort.
19802 @cindex Histograms
19803 @kindex V H
19804 @pindex calc-histogram
19805 @ignore
19806 @mindex histo@idots
19807 @end ignore
19808 @tindex histogram
19809 The @kbd{V H} (@code{calc-histogram}) [@code{histogram}] command builds a
19810 histogram of a vector of numbers.  Vector elements are assumed to be
19811 integers or real numbers in the range [0..@var{n}) for some ``number of
19812 bins'' @var{n}, which is the numeric prefix argument given to the
19813 command.  The result is a vector of @var{n} counts of how many times
19814 each value appeared in the original vector.  Non-integers in the input
19815 are rounded down to integers.  Any vector elements outside the specified
19816 range are ignored.  (You can tell if elements have been ignored by noting
19817 that the counts in the result vector don't add up to the length of the
19818 input vector.)
19820 @kindex H V H
19821 With the Hyperbolic flag, @kbd{H V H} pulls two vectors from the stack.
19822 The second-to-top vector is the list of numbers as before.  The top
19823 vector is an equal-sized list of ``weights'' to attach to the elements
19824 of the data vector.  For example, if the first data element is 4.2 and
19825 the first weight is 10, then 10 will be added to bin 4 of the result
19826 vector.  Without the hyperbolic flag, every element has a weight of one.
19828 @kindex v t
19829 @pindex calc-transpose
19830 @tindex trn
19831 The @kbd{v t} (@code{calc-transpose}) [@code{trn}] command computes
19832 the transpose of the matrix at the top of the stack.  If the argument
19833 is a plain vector, it is treated as a row vector and transposed into
19834 a one-column matrix.
19836 @kindex v v
19837 @pindex calc-reverse-vector
19838 @tindex rev
19839 The @kbd{v v} (@code{calc-reverse-vector}) [@code{rev}] command reverses
19840 a vector end-for-end.  Given a matrix, it reverses the order of the rows.
19841 (To reverse the columns instead, just use @kbd{v t v v v t}.  The same
19842 principle can be used to apply other vector commands to the columns of
19843 a matrix.)
19845 @kindex v m
19846 @pindex calc-mask-vector
19847 @tindex vmask
19848 The @kbd{v m} (@code{calc-mask-vector}) [@code{vmask}] command uses
19849 one vector as a mask to extract elements of another vector.  The mask
19850 is in the second-to-top position; the target vector is on the top of
19851 the stack.  These vectors must have the same length.  The result is
19852 the same as the target vector, but with all elements which correspond
19853 to zeros in the mask vector deleted.  Thus, for example,
19854 @samp{vmask([1, 0, 1, 0, 1], [a, b, c, d, e])} produces @samp{[a, c, e]}.
19855 @xref{Logical Operations}.
19857 @kindex v e
19858 @pindex calc-expand-vector
19859 @tindex vexp
19860 The @kbd{v e} (@code{calc-expand-vector}) [@code{vexp}] command
19861 expands a vector according to another mask vector.  The result is a
19862 vector the same length as the mask, but with nonzero elements replaced
19863 by successive elements from the target vector.  The length of the target
19864 vector is normally the number of nonzero elements in the mask.  If the
19865 target vector is longer, its last few elements are lost.  If the target
19866 vector is shorter, the last few nonzero mask elements are left
19867 unreplaced in the result.  Thus @samp{vexp([2, 0, 3, 0, 7], [a, b])}
19868 produces @samp{[a, 0, b, 0, 7]}.
19870 @kindex H v e
19871 With the Hyperbolic flag, @kbd{H v e} takes a filler value from the
19872 top of the stack; the mask and target vectors come from the third and
19873 second elements of the stack.  This filler is used where the mask is
19874 zero:  @samp{vexp([2, 0, 3, 0, 7], [a, b], z)} produces
19875 @samp{[a, z, c, z, 7]}.  If the filler value is itself a vector,
19876 then successive values are taken from it, so that the effect is to
19877 interleave two vectors according to the mask:
19878 @samp{vexp([2, 0, 3, 7, 0, 0], [a, b], [x, y])} produces
19879 @samp{[a, x, b, 7, y, 0]}.
19881 Another variation on the masking idea is to combine @samp{[a, b, c, d, e]}
19882 with the mask @samp{[1, 0, 1, 0, 1]} to produce @samp{[a, 0, c, 0, e]}.
19883 You can accomplish this with @kbd{V M a &}, mapping the logical ``and''
19884 operation across the two vectors.  @xref{Logical Operations}.  Note that
19885 the @code{? :} operation also discussed there allows other types of
19886 masking using vectors.
19888 @node Vector and Matrix Arithmetic, Set Operations, Manipulating Vectors, Matrix Functions
19889 @section Vector and Matrix Arithmetic
19891 @noindent
19892 Basic arithmetic operations like addition and multiplication are defined
19893 for vectors and matrices as well as for numbers.  Division of matrices, in
19894 the sense of multiplying by the inverse, is supported.  (Division by a
19895 matrix actually uses LU-decomposition for greater accuracy and speed.)
19896 @xref{Basic Arithmetic}.
19898 The following functions are applied element-wise if their arguments are
19899 vectors or matrices: @code{change-sign}, @code{conj}, @code{arg},
19900 @code{re}, @code{im}, @code{polar}, @code{rect}, @code{clean},
19901 @code{float}, @code{frac}.  @xref{Function Index}.
19903 @kindex V J
19904 @pindex calc-conj-transpose
19905 @tindex ctrn
19906 The @kbd{V J} (@code{calc-conj-transpose}) [@code{ctrn}] command computes
19907 the conjugate transpose of its argument, i.e., @samp{conj(trn(x))}.
19909 @ignore
19910 @mindex A
19911 @end ignore
19912 @kindex A (vectors)
19913 @pindex calc-abs (vectors)
19914 @ignore
19915 @mindex abs
19916 @end ignore
19917 @tindex abs (vectors)
19918 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the
19919 Frobenius norm of a vector or matrix argument.  This is the square
19920 root of the sum of the squares of the absolute values of the
19921 elements of the vector or matrix.  If the vector is interpreted as
19922 a point in two- or three-dimensional space, this is the distance
19923 from that point to the origin.
19925 @kindex v n
19926 @pindex calc-rnorm
19927 @tindex rnorm
19928 The @kbd{v n} (@code{calc-rnorm}) [@code{rnorm}] command computes
19929 the row norm, or infinity-norm, of a vector or matrix.  For a plain
19930 vector, this is the maximum of the absolute values of the elements.
19931 For a matrix, this is the maximum of the row-absolute-value-sums,
19932 i.e., of the sums of the absolute values of the elements along the
19933 various rows.
19935 @kindex V N
19936 @pindex calc-cnorm
19937 @tindex cnorm
19938 The @kbd{V N} (@code{calc-cnorm}) [@code{cnorm}] command computes
19939 the column norm, or one-norm, of a vector or matrix.  For a plain
19940 vector, this is the sum of the absolute values of the elements.
19941 For a matrix, this is the maximum of the column-absolute-value-sums.
19942 General @expr{k}-norms for @expr{k} other than one or infinity are
19943 not provided.
19945 @kindex V C
19946 @pindex calc-cross
19947 @tindex cross
19948 The @kbd{V C} (@code{calc-cross}) [@code{cross}] command computes the
19949 right-handed cross product of two vectors, each of which must have
19950 exactly three elements.
19952 @ignore
19953 @mindex &
19954 @end ignore
19955 @kindex & (matrices)
19956 @pindex calc-inv (matrices)
19957 @ignore
19958 @mindex inv
19959 @end ignore
19960 @tindex inv (matrices)
19961 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
19962 inverse of a square matrix.  If the matrix is singular, the inverse
19963 operation is left in symbolic form.  Matrix inverses are recorded so
19964 that once an inverse (or determinant) of a particular matrix has been
19965 computed, the inverse and determinant of the matrix can be recomputed
19966 quickly in the future.
19968 If the argument to @kbd{&} is a plain number @expr{x}, this
19969 command simply computes @expr{1/x}.  This is okay, because the
19970 @samp{/} operator also does a matrix inversion when dividing one
19971 by a matrix.
19973 @kindex V D
19974 @pindex calc-mdet
19975 @tindex det
19976 The @kbd{V D} (@code{calc-mdet}) [@code{det}] command computes the
19977 determinant of a square matrix.
19979 @kindex V L
19980 @pindex calc-mlud
19981 @tindex lud
19982 The @kbd{V L} (@code{calc-mlud}) [@code{lud}] command computes the
19983 LU decomposition of a matrix.  The result is a list of three matrices
19984 which, when multiplied together left-to-right, form the original matrix.
19985 The first is a permutation matrix that arises from pivoting in the
19986 algorithm, the second is lower-triangular with ones on the diagonal,
19987 and the third is upper-triangular.
19989 @kindex V T
19990 @pindex calc-mtrace
19991 @tindex tr
19992 The @kbd{V T} (@code{calc-mtrace}) [@code{tr}] command computes the
19993 trace of a square matrix.  This is defined as the sum of the diagonal
19994 elements of the matrix.
19996 @node Set Operations, Statistical Operations, Vector and Matrix Arithmetic, Matrix Functions
19997 @section Set Operations using Vectors
19999 @noindent
20000 @cindex Sets, as vectors
20001 Calc includes several commands which interpret vectors as @dfn{sets} of
20002 objects.  A set is a collection of objects; any given object can appear
20003 only once in the set.  Calc stores sets as vectors of objects in
20004 sorted order.  Objects in a Calc set can be any of the usual things,
20005 such as numbers, variables, or formulas.  Two set elements are considered
20006 equal if they are identical, except that numerically equal numbers like
20007 the integer 4 and the float 4.0 are considered equal even though they
20008 are not ``identical.''  Variables are treated like plain symbols without
20009 attached values by the set operations; subtracting the set @samp{[b]}
20010 from @samp{[a, b]} always yields the set @samp{[a]} even though if
20011 the variables @samp{a} and @samp{b} both equaled 17, you might
20012 expect the answer @samp{[]}.
20014 If a set contains interval forms, then it is assumed to be a set of
20015 real numbers.  In this case, all set operations require the elements
20016 of the set to be only things that are allowed in intervals:  Real
20017 numbers, plus and minus infinity, HMS forms, and date forms.  If
20018 there are variables or other non-real objects present in a real set,
20019 all set operations on it will be left in unevaluated form.
20021 If the input to a set operation is a plain number or interval form
20022 @var{a}, it is treated like the one-element vector @samp{[@var{a}]}.
20023 The result is always a vector, except that if the set consists of a
20024 single interval, the interval itself is returned instead.
20026 @xref{Logical Operations}, for the @code{in} function which tests if
20027 a certain value is a member of a given set.  To test if the set @expr{A}
20028 is a subset of the set @expr{B}, use @samp{vdiff(A, B) = []}.
20030 @kindex V +
20031 @pindex calc-remove-duplicates
20032 @tindex rdup
20033 The @kbd{V +} (@code{calc-remove-duplicates}) [@code{rdup}] command
20034 converts an arbitrary vector into set notation.  It works by sorting
20035 the vector as if by @kbd{V S}, then removing duplicates.  (For example,
20036 @kbd{[a, 5, 4, a, 4.0]} is sorted to @samp{[4, 4.0, 5, a, a]} and then
20037 reduced to @samp{[4, 5, a]}).  Overlapping intervals are merged as
20038 necessary.  You rarely need to use @kbd{V +} explicitly, since all the
20039 other set-based commands apply @kbd{V +} to their inputs before using
20040 them.
20042 @kindex V V
20043 @pindex calc-set-union
20044 @tindex vunion
20045 The @kbd{V V} (@code{calc-set-union}) [@code{vunion}] command computes
20046 the union of two sets.  An object is in the union of two sets if and
20047 only if it is in either (or both) of the input sets.  (You could
20048 accomplish the same thing by concatenating the sets with @kbd{|},
20049 then using @kbd{V +}.)
20051 @kindex V ^
20052 @pindex calc-set-intersect
20053 @tindex vint
20054 The @kbd{V ^} (@code{calc-set-intersect}) [@code{vint}] command computes
20055 the intersection of two sets.  An object is in the intersection if
20056 and only if it is in both of the input sets.  Thus if the input
20057 sets are disjoint, i.e., if they share no common elements, the result
20058 will be the empty vector @samp{[]}.  Note that the characters @kbd{V}
20059 and @kbd{^} were chosen to be close to the conventional mathematical
20060 notation for set 
20061 @texline union@tie{}(@math{A \cup B})
20062 @infoline union
20063 and 
20064 @texline intersection@tie{}(@math{A \cap B}).
20065 @infoline intersection.
20067 @kindex V -
20068 @pindex calc-set-difference
20069 @tindex vdiff
20070 The @kbd{V -} (@code{calc-set-difference}) [@code{vdiff}] command computes
20071 the difference between two sets.  An object is in the difference
20072 @expr{A - B} if and only if it is in @expr{A} but not in @expr{B}.
20073 Thus subtracting @samp{[y,z]} from a set will remove the elements
20074 @samp{y} and @samp{z} if they are present.  You can also think of this
20075 as a general @dfn{set complement} operator; if @expr{A} is the set of
20076 all possible values, then @expr{A - B} is the ``complement'' of @expr{B}.
20077 Obviously this is only practical if the set of all possible values in
20078 your problem is small enough to list in a Calc vector (or simple
20079 enough to express in a few intervals).
20081 @kindex V X
20082 @pindex calc-set-xor
20083 @tindex vxor
20084 The @kbd{V X} (@code{calc-set-xor}) [@code{vxor}] command computes
20085 the ``exclusive-or,'' or ``symmetric difference'' of two sets.
20086 An object is in the symmetric difference of two sets if and only
20087 if it is in one, but @emph{not} both, of the sets.  Objects that
20088 occur in both sets ``cancel out.''
20090 @kindex V ~
20091 @pindex calc-set-complement
20092 @tindex vcompl
20093 The @kbd{V ~} (@code{calc-set-complement}) [@code{vcompl}] command
20094 computes the complement of a set with respect to the real numbers.
20095 Thus @samp{vcompl(x)} is equivalent to @samp{vdiff([-inf .. inf], x)}.
20096 For example, @samp{vcompl([2, (3 .. 4]])} evaluates to
20097 @samp{[[-inf .. 2), (2 .. 3], (4 .. inf]]}.
20099 @kindex V F
20100 @pindex calc-set-floor
20101 @tindex vfloor
20102 The @kbd{V F} (@code{calc-set-floor}) [@code{vfloor}] command
20103 reinterprets a set as a set of integers.  Any non-integer values,
20104 and intervals that do not enclose any integers, are removed.  Open
20105 intervals are converted to equivalent closed intervals.  Successive
20106 integers are converted into intervals of integers.  For example, the
20107 complement of the set @samp{[2, 6, 7, 8]} is messy, but if you wanted
20108 the complement with respect to the set of integers you could type
20109 @kbd{V ~ V F} to get @samp{[[-inf .. 1], [3 .. 5], [9 .. inf]]}.
20111 @kindex V E
20112 @pindex calc-set-enumerate
20113 @tindex venum
20114 The @kbd{V E} (@code{calc-set-enumerate}) [@code{venum}] command
20115 converts a set of integers into an explicit vector.  Intervals in
20116 the set are expanded out to lists of all integers encompassed by
20117 the intervals.  This only works for finite sets (i.e., sets which
20118 do not involve @samp{-inf} or @samp{inf}).
20120 @kindex V :
20121 @pindex calc-set-span
20122 @tindex vspan
20123 The @kbd{V :} (@code{calc-set-span}) [@code{vspan}] command converts any
20124 set of reals into an interval form that encompasses all its elements.
20125 The lower limit will be the smallest element in the set; the upper
20126 limit will be the largest element.  For an empty set, @samp{vspan([])}
20127 returns the empty interval @w{@samp{[0 .. 0)}}.
20129 @kindex V #
20130 @pindex calc-set-cardinality
20131 @tindex vcard
20132 The @kbd{V #} (@code{calc-set-cardinality}) [@code{vcard}] command counts
20133 the number of integers in a set.  The result is the length of the vector
20134 that would be produced by @kbd{V E}, although the computation is much
20135 more efficient than actually producing that vector.
20137 @cindex Sets, as binary numbers
20138 Another representation for sets that may be more appropriate in some
20139 cases is binary numbers.  If you are dealing with sets of integers
20140 in the range 0 to 49, you can use a 50-bit binary number where a
20141 particular bit is 1 if the corresponding element is in the set.
20142 @xref{Binary Functions}, for a list of commands that operate on
20143 binary numbers.  Note that many of the above set operations have
20144 direct equivalents in binary arithmetic:  @kbd{b o} (@code{calc-or}),
20145 @kbd{b a} (@code{calc-and}), @kbd{b d} (@code{calc-diff}),
20146 @kbd{b x} (@code{calc-xor}), and @kbd{b n} (@code{calc-not}),
20147 respectively.  You can use whatever representation for sets is most
20148 convenient to you.
20150 @kindex b p
20151 @kindex b u
20152 @pindex calc-pack-bits
20153 @pindex calc-unpack-bits
20154 @tindex vpack
20155 @tindex vunpack
20156 The @kbd{b u} (@code{calc-unpack-bits}) [@code{vunpack}] command
20157 converts an integer that represents a set in binary into a set
20158 in vector/interval notation.  For example, @samp{vunpack(67)}
20159 returns @samp{[[0 .. 1], 6]}.  If the input is negative, the set
20160 it represents is semi-infinite: @samp{vunpack(-4) = [2 .. inf)}.
20161 Use @kbd{V E} afterwards to expand intervals to individual
20162 values if you wish.  Note that this command uses the @kbd{b}
20163 (binary) prefix key.
20165 The @kbd{b p} (@code{calc-pack-bits}) [@code{vpack}] command
20166 converts the other way, from a vector or interval representing
20167 a set of nonnegative integers into a binary integer describing
20168 the same set.  The set may include positive infinity, but must
20169 not include any negative numbers.  The input is interpreted as a
20170 set of integers in the sense of @kbd{V F} (@code{vfloor}).  Beware
20171 that a simple input like @samp{[100]} can result in a huge integer
20172 representation 
20173 @texline (@math{2^{100}}, a 31-digit integer, in this case).
20174 @infoline (@expr{2^100}, a 31-digit integer, in this case).
20176 @node Statistical Operations, Reducing and Mapping, Set Operations, Matrix Functions
20177 @section Statistical Operations on Vectors
20179 @noindent
20180 @cindex Statistical functions
20181 The commands in this section take vectors as arguments and compute
20182 various statistical measures on the data stored in the vectors.  The
20183 references used in the definitions of these functions are Bevington's
20184 @emph{Data Reduction and Error Analysis for the Physical Sciences},
20185 and @emph{Numerical Recipes} by Press, Flannery, Teukolsky and
20186 Vetterling.
20188 The statistical commands use the @kbd{u} prefix key followed by
20189 a shifted letter or other character.
20191 @xref{Manipulating Vectors}, for a description of @kbd{V H}
20192 (@code{calc-histogram}).
20194 @xref{Curve Fitting}, for the @kbd{a F} command for doing
20195 least-squares fits to statistical data.
20197 @xref{Probability Distribution Functions}, for several common
20198 probability distribution functions.
20200 @menu
20201 * Single-Variable Statistics::
20202 * Paired-Sample Statistics::
20203 @end menu
20205 @node Single-Variable Statistics, Paired-Sample Statistics, Statistical Operations, Statistical Operations
20206 @subsection Single-Variable Statistics
20208 @noindent
20209 These functions do various statistical computations on single
20210 vectors.  Given a numeric prefix argument, they actually pop
20211 @var{n} objects from the stack and combine them into a data
20212 vector.  Each object may be either a number or a vector; if a
20213 vector, any sub-vectors inside it are ``flattened'' as if by
20214 @kbd{v a 0}; @pxref{Manipulating Vectors}.  By default one object
20215 is popped, which (in order to be useful) is usually a vector.
20217 If an argument is a variable name, and the value stored in that
20218 variable is a vector, then the stored vector is used.  This method
20219 has the advantage that if your data vector is large, you can avoid
20220 the slow process of manipulating it directly on the stack.
20222 These functions are left in symbolic form if any of their arguments
20223 are not numbers or vectors, e.g., if an argument is a formula, or
20224 a non-vector variable.  However, formulas embedded within vector
20225 arguments are accepted; the result is a symbolic representation
20226 of the computation, based on the assumption that the formula does
20227 not itself represent a vector.  All varieties of numbers such as
20228 error forms and interval forms are acceptable.
20230 Some of the functions in this section also accept a single error form
20231 or interval as an argument.  They then describe a property of the
20232 normal or uniform (respectively) statistical distribution described
20233 by the argument.  The arguments are interpreted in the same way as
20234 the @var{M} argument of the random number function @kbd{k r}.  In
20235 particular, an interval with integer limits is considered an integer
20236 distribution, so that @samp{[2 .. 6)} is the same as @samp{[2 .. 5]}.
20237 An interval with at least one floating-point limit is a continuous
20238 distribution:  @samp{[2.0 .. 6.0)} is @emph{not} the same as
20239 @samp{[2.0 .. 5.0]}!
20241 @kindex u #
20242 @pindex calc-vector-count
20243 @tindex vcount
20244 The @kbd{u #} (@code{calc-vector-count}) [@code{vcount}] command
20245 computes the number of data values represented by the inputs.
20246 For example, @samp{vcount(1, [2, 3], [[4, 5], [], x, y])} returns 7.
20247 If the argument is a single vector with no sub-vectors, this
20248 simply computes the length of the vector.
20250 @kindex u +
20251 @kindex u *
20252 @pindex calc-vector-sum
20253 @pindex calc-vector-prod
20254 @tindex vsum
20255 @tindex vprod
20256 @cindex Summations (statistical)
20257 The @kbd{u +} (@code{calc-vector-sum}) [@code{vsum}] command
20258 computes the sum of the data values.  The @kbd{u *}
20259 (@code{calc-vector-prod}) [@code{vprod}] command computes the
20260 product of the data values.  If the input is a single flat vector,
20261 these are the same as @kbd{V R +} and @kbd{V R *}
20262 (@pxref{Reducing and Mapping}).
20264 @kindex u X
20265 @kindex u N
20266 @pindex calc-vector-max
20267 @pindex calc-vector-min
20268 @tindex vmax
20269 @tindex vmin
20270 The @kbd{u X} (@code{calc-vector-max}) [@code{vmax}] command
20271 computes the maximum of the data values, and the @kbd{u N}
20272 (@code{calc-vector-min}) [@code{vmin}] command computes the minimum.
20273 If the argument is an interval, this finds the minimum or maximum
20274 value in the interval.  (Note that @samp{vmax([2..6)) = 5} as
20275 described above.)  If the argument is an error form, this returns
20276 plus or minus infinity.
20278 @kindex u M
20279 @pindex calc-vector-mean
20280 @tindex vmean
20281 @cindex Mean of data values
20282 The @kbd{u M} (@code{calc-vector-mean}) [@code{vmean}] command
20283 computes the average (arithmetic mean) of the data values.
20284 If the inputs are error forms 
20285 @texline @math{x \pm \sigma},
20286 @infoline @samp{x +/- s}, 
20287 this is the weighted mean of the @expr{x} values with weights 
20288 @texline @math{1 /\sigma^2}.
20289 @infoline @expr{1 / s^2}.
20290 @tex
20291 \turnoffactive
20292 $$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over
20293            \displaystyle \sum { 1 \over \sigma_i^2 } } $$
20294 @end tex
20295 If the inputs are not error forms, this is simply the sum of the
20296 values divided by the count of the values.
20298 Note that a plain number can be considered an error form with
20299 error 
20300 @texline @math{\sigma = 0}.
20301 @infoline @expr{s = 0}.  
20302 If the input to @kbd{u M} is a mixture of
20303 plain numbers and error forms, the result is the mean of the
20304 plain numbers, ignoring all values with non-zero errors.  (By the
20305 above definitions it's clear that a plain number effectively
20306 has an infinite weight, next to which an error form with a finite
20307 weight is completely negligible.)
20309 This function also works for distributions (error forms or
20310 intervals).  The mean of an error form `@var{a} @tfn{+/-} @var{b}' is simply
20311 @expr{a}.  The mean of an interval is the mean of the minimum
20312 and maximum values of the interval.
20314 @kindex I u M
20315 @pindex calc-vector-mean-error
20316 @tindex vmeane
20317 The @kbd{I u M} (@code{calc-vector-mean-error}) [@code{vmeane}]
20318 command computes the mean of the data points expressed as an
20319 error form.  This includes the estimated error associated with
20320 the mean.  If the inputs are error forms, the error is the square
20321 root of the reciprocal of the sum of the reciprocals of the squares
20322 of the input errors.  (I.e., the variance is the reciprocal of the
20323 sum of the reciprocals of the variances.)
20324 @tex
20325 \turnoffactive
20326 $$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$
20327 @end tex
20328 If the inputs are plain
20329 numbers, the error is equal to the standard deviation of the values
20330 divided by the square root of the number of values.  (This works
20331 out to be equivalent to calculating the standard deviation and
20332 then assuming each value's error is equal to this standard
20333 deviation.)
20334 @tex
20335 \turnoffactive
20336 $$ \sigma_\mu^2 = {\sigma^2 \over N} $$
20337 @end tex
20339 @kindex H u M
20340 @pindex calc-vector-median
20341 @tindex vmedian
20342 @cindex Median of data values
20343 The @kbd{H u M} (@code{calc-vector-median}) [@code{vmedian}]
20344 command computes the median of the data values.  The values are
20345 first sorted into numerical order; the median is the middle
20346 value after sorting.  (If the number of data values is even,
20347 the median is taken to be the average of the two middle values.)
20348 The median function is different from the other functions in
20349 this section in that the arguments must all be real numbers;
20350 variables are not accepted even when nested inside vectors.
20351 (Otherwise it is not possible to sort the data values.)  If
20352 any of the input values are error forms, their error parts are
20353 ignored.
20355 The median function also accepts distributions.  For both normal
20356 (error form) and uniform (interval) distributions, the median is
20357 the same as the mean.
20359 @kindex H I u M
20360 @pindex calc-vector-harmonic-mean
20361 @tindex vhmean
20362 @cindex Harmonic mean
20363 The @kbd{H I u M} (@code{calc-vector-harmonic-mean}) [@code{vhmean}]
20364 command computes the harmonic mean of the data values.  This is
20365 defined as the reciprocal of the arithmetic mean of the reciprocals
20366 of the values.
20367 @tex
20368 \turnoffactive
20369 $$ { N \over \displaystyle \sum {1 \over x_i} } $$
20370 @end tex
20372 @kindex u G
20373 @pindex calc-vector-geometric-mean
20374 @tindex vgmean
20375 @cindex Geometric mean
20376 The @kbd{u G} (@code{calc-vector-geometric-mean}) [@code{vgmean}]
20377 command computes the geometric mean of the data values.  This
20378 is the @var{n}th root of the product of the values.  This is also
20379 equal to the @code{exp} of the arithmetic mean of the logarithms
20380 of the data values.
20381 @tex
20382 \turnoffactive
20383 $$ \exp \left ( \sum { \ln x_i } \right ) =
20384    \left ( \prod { x_i } \right)^{1 / N} $$
20385 @end tex
20387 @kindex H u G
20388 @tindex agmean
20389 The @kbd{H u G} [@code{agmean}] command computes the ``arithmetic-geometric
20390 mean'' of two numbers taken from the stack.  This is computed by
20391 replacing the two numbers with their arithmetic mean and geometric
20392 mean, then repeating until the two values converge.
20393 @tex
20394 \turnoffactive
20395 $$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$
20396 @end tex
20398 @cindex Root-mean-square
20399 Another commonly used mean, the RMS (root-mean-square), can be computed
20400 for a vector of numbers simply by using the @kbd{A} command.
20402 @kindex u S
20403 @pindex calc-vector-sdev
20404 @tindex vsdev
20405 @cindex Standard deviation
20406 @cindex Sample statistics
20407 The @kbd{u S} (@code{calc-vector-sdev}) [@code{vsdev}] command
20408 computes the standard 
20409 @texline deviation@tie{}@math{\sigma}
20410 @infoline deviation
20411 of the data values.  If the values are error forms, the errors are used
20412 as weights just as for @kbd{u M}.  This is the @emph{sample} standard
20413 deviation, whose value is the square root of the sum of the squares of
20414 the differences between the values and the mean of the @expr{N} values,
20415 divided by @expr{N-1}.
20416 @tex
20417 \turnoffactive
20418 $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$
20419 @end tex
20421 This function also applies to distributions.  The standard deviation
20422 of a single error form is simply the error part.  The standard deviation
20423 of a continuous interval happens to equal the difference between the
20424 limits, divided by 
20425 @texline @math{\sqrt{12}}.
20426 @infoline @expr{sqrt(12)}.  
20427 The standard deviation of an integer interval is the same as the
20428 standard deviation of a vector of those integers.
20430 @kindex I u S
20431 @pindex calc-vector-pop-sdev
20432 @tindex vpsdev
20433 @cindex Population statistics
20434 The @kbd{I u S} (@code{calc-vector-pop-sdev}) [@code{vpsdev}]
20435 command computes the @emph{population} standard deviation.
20436 It is defined by the same formula as above but dividing
20437 by @expr{N} instead of by @expr{N-1}.  The population standard
20438 deviation is used when the input represents the entire set of
20439 data values in the distribution; the sample standard deviation
20440 is used when the input represents a sample of the set of all
20441 data values, so that the mean computed from the input is itself
20442 only an estimate of the true mean.
20443 @tex
20444 \turnoffactive
20445 $$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$
20446 @end tex
20448 For error forms and continuous intervals, @code{vpsdev} works
20449 exactly like @code{vsdev}.  For integer intervals, it computes the
20450 population standard deviation of the equivalent vector of integers.
20452 @kindex H u S
20453 @kindex H I u S
20454 @pindex calc-vector-variance
20455 @pindex calc-vector-pop-variance
20456 @tindex vvar
20457 @tindex vpvar
20458 @cindex Variance of data values
20459 The @kbd{H u S} (@code{calc-vector-variance}) [@code{vvar}] and
20460 @kbd{H I u S} (@code{calc-vector-pop-variance}) [@code{vpvar}]
20461 commands compute the variance of the data values.  The variance
20462 is the 
20463 @texline square@tie{}@math{\sigma^2}
20464 @infoline square
20465 of the standard deviation, i.e., the sum of the
20466 squares of the deviations of the data values from the mean.
20467 (This definition also applies when the argument is a distribution.)
20469 @ignore
20470 @starindex
20471 @end ignore
20472 @tindex vflat
20473 The @code{vflat} algebraic function returns a vector of its
20474 arguments, interpreted in the same way as the other functions
20475 in this section.  For example, @samp{vflat(1, [2, [3, 4]], 5)}
20476 returns @samp{[1, 2, 3, 4, 5]}.
20478 @node Paired-Sample Statistics,  , Single-Variable Statistics, Statistical Operations
20479 @subsection Paired-Sample Statistics
20481 @noindent
20482 The functions in this section take two arguments, which must be
20483 vectors of equal size.  The vectors are each flattened in the same
20484 way as by the single-variable statistical functions.  Given a numeric
20485 prefix argument of 1, these functions instead take one object from
20486 the stack, which must be an 
20487 @texline @math{N\times2}
20488 @infoline Nx2
20489 matrix of data values.  Once again, variable names can be used in place
20490 of actual vectors and matrices.
20492 @kindex u C
20493 @pindex calc-vector-covariance
20494 @tindex vcov
20495 @cindex Covariance
20496 The @kbd{u C} (@code{calc-vector-covariance}) [@code{vcov}] command
20497 computes the sample covariance of two vectors.  The covariance
20498 of vectors @var{x} and @var{y} is the sum of the products of the
20499 differences between the elements of @var{x} and the mean of @var{x}
20500 times the differences between the corresponding elements of @var{y}
20501 and the mean of @var{y}, all divided by @expr{N-1}.  Note that
20502 the variance of a vector is just the covariance of the vector
20503 with itself.  Once again, if the inputs are error forms the
20504 errors are used as weight factors.  If both @var{x} and @var{y}
20505 are composed of error forms, the error for a given data point
20506 is taken as the square root of the sum of the squares of the two
20507 input errors.
20508 @tex
20509 \turnoffactive
20510 $$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$
20511 $$ \sigma_{x\!y}^2 =
20512     {\displaystyle {1 \over N-1}
20513                    \sum {(x_i - \mu_x) (y_i - \mu_y) \over \sigma_i^2}
20514      \over \displaystyle {1 \over N} \sum {1 \over \sigma_i^2}}
20516 @end tex
20518 @kindex I u C
20519 @pindex calc-vector-pop-covariance
20520 @tindex vpcov
20521 The @kbd{I u C} (@code{calc-vector-pop-covariance}) [@code{vpcov}]
20522 command computes the population covariance, which is the same as the
20523 sample covariance computed by @kbd{u C} except dividing by @expr{N}
20524 instead of @expr{N-1}.
20526 @kindex H u C
20527 @pindex calc-vector-correlation
20528 @tindex vcorr
20529 @cindex Correlation coefficient
20530 @cindex Linear correlation
20531 The @kbd{H u C} (@code{calc-vector-correlation}) [@code{vcorr}]
20532 command computes the linear correlation coefficient of two vectors.
20533 This is defined by the covariance of the vectors divided by the
20534 product of their standard deviations.  (There is no difference
20535 between sample or population statistics here.)
20536 @tex
20537 \turnoffactive
20538 $$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$
20539 @end tex
20541 @node Reducing and Mapping, Vector and Matrix Formats, Statistical Operations, Matrix Functions
20542 @section Reducing and Mapping Vectors
20544 @noindent
20545 The commands in this section allow for more general operations on the
20546 elements of vectors.
20548 @kindex V A
20549 @pindex calc-apply
20550 @tindex apply
20551 The simplest of these operations is @kbd{V A} (@code{calc-apply})
20552 [@code{apply}], which applies a given operator to the elements of a vector.
20553 For example, applying the hypothetical function @code{f} to the vector
20554 @w{@samp{[1, 2, 3]}} would produce the function call @samp{f(1, 2, 3)}.
20555 Applying the @code{+} function to the vector @samp{[a, b]} gives
20556 @samp{a + b}.  Applying @code{+} to the vector @samp{[a, b, c]} is an
20557 error, since the @code{+} function expects exactly two arguments.
20559 While @kbd{V A} is useful in some cases, you will usually find that either
20560 @kbd{V R} or @kbd{V M}, described below, is closer to what you want.
20562 @menu
20563 * Specifying Operators::
20564 * Mapping::
20565 * Reducing::
20566 * Nesting and Fixed Points::
20567 * Generalized Products::
20568 @end menu
20570 @node Specifying Operators, Mapping, Reducing and Mapping, Reducing and Mapping
20571 @subsection Specifying Operators
20573 @noindent
20574 Commands in this section (like @kbd{V A}) prompt you to press the key
20575 corresponding to the desired operator.  Press @kbd{?} for a partial
20576 list of the available operators.  Generally, an operator is any key or
20577 sequence of keys that would normally take one or more arguments from
20578 the stack and replace them with a result.  For example, @kbd{V A H C}
20579 uses the hyperbolic cosine operator, @code{cosh}.  (Since @code{cosh}
20580 expects one argument, @kbd{V A H C} requires a vector with a single
20581 element as its argument.)
20583 You can press @kbd{x} at the operator prompt to select any algebraic
20584 function by name to use as the operator.  This includes functions you
20585 have defined yourself using the @kbd{Z F} command.  (@xref{Algebraic
20586 Definitions}.)  If you give a name for which no function has been
20587 defined, the result is left in symbolic form, as in @samp{f(1, 2, 3)}.
20588 Calc will prompt for the number of arguments the function takes if it
20589 can't figure it out on its own (say, because you named a function that
20590 is currently undefined).  It is also possible to type a digit key before
20591 the function name to specify the number of arguments, e.g.,
20592 @kbd{V M 3 x f @key{RET}} calls @code{f} with three arguments even if it
20593 looks like it ought to have only two.  This technique may be necessary
20594 if the function allows a variable number of arguments.  For example,
20595 the @kbd{v e} [@code{vexp}] function accepts two or three arguments;
20596 if you want to map with the three-argument version, you will have to
20597 type @kbd{V M 3 v e}.
20599 It is also possible to apply any formula to a vector by treating that
20600 formula as a function.  When prompted for the operator to use, press
20601 @kbd{'} (the apostrophe) and type your formula as an algebraic entry.
20602 You will then be prompted for the argument list, which defaults to a
20603 list of all variables that appear in the formula, sorted into alphabetic
20604 order.  For example, suppose you enter the formula @w{@samp{x + 2y^x}}.
20605 The default argument list would be @samp{(x y)}, which means that if
20606 this function is applied to the arguments @samp{[3, 10]} the result will
20607 be @samp{3 + 2*10^3}.  (If you plan to use a certain formula in this
20608 way often, you might consider defining it as a function with @kbd{Z F}.)
20610 Another way to specify the arguments to the formula you enter is with
20611 @kbd{$}, @kbd{$$}, and so on.  For example, @kbd{V A ' $$ + 2$^$$}
20612 has the same effect as the previous example.  The argument list is
20613 automatically taken to be @samp{($$ $)}.  (The order of the arguments
20614 may seem backwards, but it is analogous to the way normal algebraic
20615 entry interacts with the stack.)
20617 If you press @kbd{$} at the operator prompt, the effect is similar to
20618 the apostrophe except that the relevant formula is taken from top-of-stack
20619 instead.  The actual vector arguments of the @kbd{V A $} or related command
20620 then start at the second-to-top stack position.  You will still be
20621 prompted for an argument list.
20623 @cindex Nameless functions
20624 @cindex Generic functions
20625 A function can be written without a name using the notation @samp{<#1 - #2>},
20626 which means ``a function of two arguments that computes the first
20627 argument minus the second argument.''  The symbols @samp{#1} and @samp{#2}
20628 are placeholders for the arguments.  You can use any names for these
20629 placeholders if you wish, by including an argument list followed by a
20630 colon:  @samp{<x, y : x - y>}.  When you type @kbd{V A ' $$ + 2$^$$ @key{RET}},
20631 Calc builds the nameless function @samp{<#1 + 2 #2^#1>} as the function
20632 to map across the vectors.  When you type @kbd{V A ' x + 2y^x @key{RET} @key{RET}},
20633 Calc builds the nameless function @w{@samp{<x, y : x + 2 y^x>}}.  In both
20634 cases, Calc also writes the nameless function to the Trail so that you
20635 can get it back later if you wish.
20637 If there is only one argument, you can write @samp{#} in place of @samp{#1}.
20638 (Note that @samp{< >} notation is also used for date forms.  Calc tells
20639 that @samp{<@var{stuff}>} is a nameless function by the presence of
20640 @samp{#} signs inside @var{stuff}, or by the fact that @var{stuff}
20641 begins with a list of variables followed by a colon.)
20643 You can type a nameless function directly to @kbd{V A '}, or put one on
20644 the stack and use it with @w{@kbd{V A $}}.  Calc will not prompt for an
20645 argument list in this case, since the nameless function specifies the
20646 argument list as well as the function itself.  In @kbd{V A '}, you can
20647 omit the @samp{< >} marks if you use @samp{#} notation for the arguments,
20648 so that @kbd{V A ' #1+#2 @key{RET}} is the same as @kbd{V A ' <#1+#2> @key{RET}},
20649 which in turn is the same as @kbd{V A ' $$+$ @key{RET}}.
20651 @cindex Lambda expressions
20652 @ignore
20653 @starindex
20654 @end ignore
20655 @tindex lambda
20656 The internal format for @samp{<x, y : x + y>} is @samp{lambda(x, y, x + y)}.
20657 (The word @code{lambda} derives from Lisp notation and the theory of
20658 functions.)  The internal format for @samp{<#1 + #2>} is @samp{lambda(ArgA,
20659 ArgB, ArgA + ArgB)}.  Note that there is no actual Calc function called
20660 @code{lambda}; the whole point is that the @code{lambda} expression is
20661 used in its symbolic form, not evaluated for an answer until it is applied
20662 to specific arguments by a command like @kbd{V A} or @kbd{V M}.
20664 (Actually, @code{lambda} does have one special property:  Its arguments
20665 are never evaluated; for example, putting @samp{<(2/3) #>} on the stack
20666 will not simplify the @samp{2/3} until the nameless function is actually
20667 called.)
20669 @tindex add
20670 @tindex sub
20671 @ignore
20672 @mindex @idots
20673 @end ignore
20674 @tindex mul
20675 @ignore
20676 @mindex @null
20677 @end ignore
20678 @tindex div
20679 @ignore
20680 @mindex @null
20681 @end ignore
20682 @tindex pow
20683 @ignore
20684 @mindex @null
20685 @end ignore
20686 @tindex neg
20687 @ignore
20688 @mindex @null
20689 @end ignore
20690 @tindex mod
20691 @ignore
20692 @mindex @null
20693 @end ignore
20694 @tindex vconcat
20695 As usual, commands like @kbd{V A} have algebraic function name equivalents.
20696 For example, @kbd{V A k g} with an argument of @samp{v} is equivalent to
20697 @samp{apply(gcd, v)}.  The first argument specifies the operator name,
20698 and is either a variable whose name is the same as the function name,
20699 or a nameless function like @samp{<#^3+1>}.  Operators that are normally
20700 written as algebraic symbols have the names @code{add}, @code{sub},
20701 @code{mul}, @code{div}, @code{pow}, @code{neg}, @code{mod}, and
20702 @code{vconcat}.
20704 @ignore
20705 @starindex
20706 @end ignore
20707 @tindex call
20708 The @code{call} function builds a function call out of several arguments:
20709 @samp{call(gcd, x, y)} is the same as @samp{apply(gcd, [x, y])}, which
20710 in turn is the same as @samp{gcd(x, y)}.  The first argument of @code{call},
20711 like the other functions described here, may be either a variable naming a
20712 function, or a nameless function (@samp{call(<#1+2#2>, x, y)} is the same
20713 as @samp{x + 2y}).
20715 (Experts will notice that it's not quite proper to use a variable to name
20716 a function, since the name @code{gcd} corresponds to the Lisp variable
20717 @code{var-gcd} but to the Lisp function @code{calcFunc-gcd}.  Calc
20718 automatically makes this translation, so you don't have to worry
20719 about it.)
20721 @node Mapping, Reducing, Specifying Operators, Reducing and Mapping
20722 @subsection Mapping
20724 @noindent
20725 @kindex V M
20726 @pindex calc-map
20727 @tindex map
20728 The @kbd{V M} (@code{calc-map}) [@code{map}] command applies a given
20729 operator elementwise to one or more vectors.  For example, mapping
20730 @code{A} [@code{abs}] produces a vector of the absolute values of the
20731 elements in the input vector.  Mapping @code{+} pops two vectors from
20732 the stack, which must be of equal length, and produces a vector of the
20733 pairwise sums of the elements.  If either argument is a non-vector, it
20734 is duplicated for each element of the other vector.  For example,
20735 @kbd{[1,2,3] 2 V M ^} squares the elements of the specified vector.
20736 With the 2 listed first, it would have computed a vector of powers of
20737 two.  Mapping a user-defined function pops as many arguments from the
20738 stack as the function requires.  If you give an undefined name, you will
20739 be prompted for the number of arguments to use.
20741 If any argument to @kbd{V M} is a matrix, the operator is normally mapped
20742 across all elements of the matrix.  For example, given the matrix
20743 @expr{[[1, -2, 3], [-4, 5, -6]]}, @kbd{V M A} takes six absolute values to
20744 produce another 
20745 @texline @math{3\times2}
20746 @infoline 3x2
20747 matrix, @expr{[[1, 2, 3], [4, 5, 6]]}.
20749 @tindex mapr
20750 The command @kbd{V M _} [@code{mapr}] (i.e., type an underscore at the
20751 operator prompt) maps by rows instead.  For example, @kbd{V M _ A} views
20752 the above matrix as a vector of two 3-element row vectors.  It produces
20753 a new vector which contains the absolute values of those row vectors,
20754 namely @expr{[3.74, 8.77]}.  (Recall, the absolute value of a vector is
20755 defined as the square root of the sum of the squares of the elements.)
20756 Some operators accept vectors and return new vectors; for example,
20757 @kbd{v v} reverses a vector, so @kbd{V M _ v v} would reverse each row
20758 of the matrix to get a new matrix, @expr{[[3, -2, 1], [-6, 5, -4]]}.
20760 Sometimes a vector of vectors (representing, say, strings, sets, or lists)
20761 happens to look like a matrix.  If so, remember to use @kbd{V M _} if you
20762 want to map a function across the whole strings or sets rather than across
20763 their individual elements.
20765 @tindex mapc
20766 The command @kbd{V M :} [@code{mapc}] maps by columns.  Basically, it
20767 transposes the input matrix, maps by rows, and then, if the result is a
20768 matrix, transposes again.  For example, @kbd{V M : A} takes the absolute
20769 values of the three columns of the matrix, treating each as a 2-vector,
20770 and @kbd{V M : v v} reverses the columns to get the matrix
20771 @expr{[[-4, 5, -6], [1, -2, 3]]}.
20773 (The symbols @kbd{_} and @kbd{:} were chosen because they had row-like
20774 and column-like appearances, and were not already taken by useful
20775 operators.  Also, they appear shifted on most keyboards so they are easy
20776 to type after @kbd{V M}.)
20778 The @kbd{_} and @kbd{:} modifiers have no effect on arguments that are
20779 not matrices (so if none of the arguments are matrices, they have no
20780 effect at all).  If some of the arguments are matrices and others are
20781 plain numbers, the plain numbers are held constant for all rows of the
20782 matrix (so that @kbd{2 V M _ ^} squares every row of a matrix; squaring
20783 a vector takes a dot product of the vector with itself).
20785 If some of the arguments are vectors with the same lengths as the
20786 rows (for @kbd{V M _}) or columns (for @kbd{V M :}) of the matrix
20787 arguments, those vectors are also held constant for every row or
20788 column.
20790 Sometimes it is useful to specify another mapping command as the operator
20791 to use with @kbd{V M}.  For example, @kbd{V M _ V A +} applies @kbd{V A +}
20792 to each row of the input matrix, which in turn adds the two values on that
20793 row.  If you give another vector-operator command as the operator for
20794 @kbd{V M}, it automatically uses map-by-rows mode if you don't specify
20795 otherwise; thus @kbd{V M V A +} is equivalent to @kbd{V M _ V A +}.  (If
20796 you really want to map-by-elements another mapping command, you can use
20797 a triple-nested mapping command:  @kbd{V M V M V A +} means to map
20798 @kbd{V M V A +} over the rows of the matrix; in turn, @kbd{V A +} is
20799 mapped over the elements of each row.)
20801 @tindex mapa
20802 @tindex mapd
20803 Previous versions of Calc had ``map across'' and ``map down'' modes
20804 that are now considered obsolete; the old ``map across'' is now simply
20805 @kbd{V M V A}, and ``map down'' is now @kbd{V M : V A}.  The algebraic
20806 functions @code{mapa} and @code{mapd} are still supported, though.
20807 Note also that, while the old mapping modes were persistent (once you
20808 set the mode, it would apply to later mapping commands until you reset
20809 it), the new @kbd{:} and @kbd{_} modifiers apply only to the current
20810 mapping command.  The default @kbd{V M} always means map-by-elements.
20812 @xref{Algebraic Manipulation}, for the @kbd{a M} command, which is like
20813 @kbd{V M} but for equations and inequalities instead of vectors.
20814 @xref{Storing Variables}, for the @kbd{s m} command which modifies a
20815 variable's stored value using a @kbd{V M}-like operator.
20817 @node Reducing, Nesting and Fixed Points, Mapping, Reducing and Mapping
20818 @subsection Reducing
20820 @noindent
20821 @kindex V R
20822 @pindex calc-reduce
20823 @tindex reduce
20824 The @kbd{V R} (@code{calc-reduce}) [@code{reduce}] command applies a given
20825 binary operator across all the elements of a vector.  A binary operator is
20826 a function such as @code{+} or @code{max} which takes two arguments.  For
20827 example, reducing @code{+} over a vector computes the sum of the elements
20828 of the vector.  Reducing @code{-} computes the first element minus each of
20829 the remaining elements.  Reducing @code{max} computes the maximum element
20830 and so on.  In general, reducing @code{f} over the vector @samp{[a, b, c, d]}
20831 produces @samp{f(f(f(a, b), c), d)}.
20833 @kindex I V R
20834 @tindex rreduce
20835 The @kbd{I V R} [@code{rreduce}] command is similar to @kbd{V R} except
20836 that works from right to left through the vector.  For example, plain
20837 @kbd{V R -} on the vector @samp{[a, b, c, d]} produces @samp{a - b - c - d}
20838 but @kbd{I V R -} on the same vector produces @samp{a - (b - (c - d))},
20839 or @samp{a - b + c - d}.  This ``alternating sum'' occurs frequently
20840 in power series expansions.
20842 @kindex V U
20843 @tindex accum
20844 The @kbd{V U} (@code{calc-accumulate}) [@code{accum}] command does an
20845 accumulation operation.  Here Calc does the corresponding reduction
20846 operation, but instead of producing only the final result, it produces
20847 a vector of all the intermediate results.  Accumulating @code{+} over
20848 the vector @samp{[a, b, c, d]} produces the vector
20849 @samp{[a, a + b, a + b + c, a + b + c + d]}.
20851 @kindex I V U
20852 @tindex raccum
20853 The @kbd{I V U} [@code{raccum}] command does a right-to-left accumulation.
20854 For example, @kbd{I V U -} on the vector @samp{[a, b, c, d]} produces the
20855 vector @samp{[a - b + c - d, b - c + d, c - d, d]}.
20857 @tindex reducea
20858 @tindex rreducea
20859 @tindex reduced
20860 @tindex rreduced
20861 As for @kbd{V M}, @kbd{V R} normally reduces a matrix elementwise.  For
20862 example, given the matrix @expr{[[a, b, c], [d, e, f]]}, @kbd{V R +} will
20863 compute @expr{a + b + c + d + e + f}.  You can type @kbd{V R _} or
20864 @kbd{V R :} to modify this behavior.  The @kbd{V R _} [@code{reducea}]
20865 command reduces ``across'' the matrix; it reduces each row of the matrix
20866 as a vector, then collects the results.  Thus @kbd{V R _ +} of this
20867 matrix would produce @expr{[a + b + c, d + e + f]}.  Similarly, @kbd{V R :}
20868 [@code{reduced}] reduces down; @kbd{V R : +} would produce @expr{[a + d,
20869 b + e, c + f]}.
20871 @tindex reducer
20872 @tindex rreducer
20873 There is a third ``by rows'' mode for reduction that is occasionally
20874 useful; @kbd{V R =} [@code{reducer}] simply reduces the operator over
20875 the rows of the matrix themselves.  Thus @kbd{V R = +} on the above
20876 matrix would get the same result as @kbd{V R : +}, since adding two
20877 row vectors is equivalent to adding their elements.  But @kbd{V R = *}
20878 would multiply the two rows (to get a single number, their dot product),
20879 while @kbd{V R : *} would produce a vector of the products of the columns.
20881 These three matrix reduction modes work with @kbd{V R} and @kbd{I V R},
20882 but they are not currently supported with @kbd{V U} or @kbd{I V U}.
20884 @tindex reducec
20885 @tindex rreducec
20886 The obsolete reduce-by-columns function, @code{reducec}, is still
20887 supported but there is no way to get it through the @kbd{V R} command.
20889 The commands @kbd{C-x * :} and @kbd{C-x * _} are equivalent to typing
20890 @kbd{C-x * r} to grab a rectangle of data into Calc, and then typing
20891 @kbd{V R : +} or @kbd{V R _ +}, respectively, to sum the columns or
20892 rows of the matrix.  @xref{Grabbing From Buffers}.
20894 @node Nesting and Fixed Points, Generalized Products, Reducing, Reducing and Mapping
20895 @subsection Nesting and Fixed Points
20897 @noindent
20898 @kindex H V R
20899 @tindex nest
20900 The @kbd{H V R} [@code{nest}] command applies a function to a given
20901 argument repeatedly.  It takes two values, @samp{a} and @samp{n}, from
20902 the stack, where @samp{n} must be an integer.  It then applies the
20903 function nested @samp{n} times; if the function is @samp{f} and @samp{n}
20904 is 3, the result is @samp{f(f(f(a)))}.  The number @samp{n} may be
20905 negative if Calc knows an inverse for the function @samp{f}; for
20906 example, @samp{nest(sin, a, -2)} returns @samp{arcsin(arcsin(a))}.
20908 @kindex H V U
20909 @tindex anest
20910 The @kbd{H V U} [@code{anest}] command is an accumulating version of
20911 @code{nest}:  It returns a vector of @samp{n+1} values, e.g.,
20912 @samp{[a, f(a), f(f(a)), f(f(f(a)))]}.  If @samp{n} is negative and
20913 @samp{F} is the inverse of @samp{f}, then the result is of the
20914 form @samp{[a, F(a), F(F(a)), F(F(F(a)))]}.
20916 @kindex H I V R
20917 @tindex fixp
20918 @cindex Fixed points
20919 The @kbd{H I V R} [@code{fixp}] command is like @kbd{H V R}, except
20920 that it takes only an @samp{a} value from the stack; the function is
20921 applied until it reaches a ``fixed point,'' i.e., until the result
20922 no longer changes.
20924 @kindex H I V U
20925 @tindex afixp
20926 The @kbd{H I V U} [@code{afixp}] command is an accumulating @code{fixp}.
20927 The first element of the return vector will be the initial value @samp{a};
20928 the last element will be the final result that would have been returned
20929 by @code{fixp}.
20931 For example, 0.739085 is a fixed point of the cosine function (in radians):
20932 @samp{cos(0.739085) = 0.739085}.  You can find this value by putting, say,
20933 1.0 on the stack and typing @kbd{H I V U C}.  (We use the accumulating
20934 version so we can see the intermediate results:  @samp{[1, 0.540302, 0.857553,
20935 0.65329, ...]}.  With a precision of six, this command will take 36 steps
20936 to converge to 0.739085.)
20938 Newton's method for finding roots is a classic example of iteration
20939 to a fixed point.  To find the square root of five starting with an
20940 initial guess, Newton's method would look for a fixed point of the
20941 function @samp{(x + 5/x) / 2}.  Putting a guess of 1 on the stack
20942 and typing @kbd{H I V R ' ($ + 5/$)/2 @key{RET}} quickly yields the result
20943 2.23607.  This is equivalent to using the @kbd{a R} (@code{calc-find-root})
20944 command to find a root of the equation @samp{x^2 = 5}.
20946 These examples used numbers for @samp{a} values.  Calc keeps applying
20947 the function until two successive results are equal to within the
20948 current precision.  For complex numbers, both the real parts and the
20949 imaginary parts must be equal to within the current precision.  If
20950 @samp{a} is a formula (say, a variable name), then the function is
20951 applied until two successive results are exactly the same formula.
20952 It is up to you to ensure that the function will eventually converge;
20953 if it doesn't, you may have to press @kbd{C-g} to stop the Calculator.
20955 The algebraic @code{fixp} function takes two optional arguments, @samp{n}
20956 and @samp{tol}.  The first is the maximum number of steps to be allowed,
20957 and must be either an integer or the symbol @samp{inf} (infinity, the
20958 default).  The second is a convergence tolerance.  If a tolerance is
20959 specified, all results during the calculation must be numbers, not
20960 formulas, and the iteration stops when the magnitude of the difference
20961 between two successive results is less than or equal to the tolerance.
20962 (This implies that a tolerance of zero iterates until the results are
20963 exactly equal.)
20965 Putting it all together, @samp{fixp(<(# + A/#)/2>, B, 20, 1e-10)}
20966 computes the square root of @samp{A} given the initial guess @samp{B},
20967 stopping when the result is correct within the specified tolerance, or
20968 when 20 steps have been taken, whichever is sooner.
20970 @node Generalized Products,  , Nesting and Fixed Points, Reducing and Mapping
20971 @subsection Generalized Products
20973 @kindex V O
20974 @pindex calc-outer-product
20975 @tindex outer
20976 The @kbd{V O} (@code{calc-outer-product}) [@code{outer}] command applies
20977 a given binary operator to all possible pairs of elements from two
20978 vectors, to produce a matrix.  For example, @kbd{V O *} with @samp{[a, b]}
20979 and @samp{[x, y, z]} on the stack produces a multiplication table:
20980 @samp{[[a x, a y, a z], [b x, b y, b z]]}.  Element @var{r},@var{c} of
20981 the result matrix is obtained by applying the operator to element @var{r}
20982 of the lefthand vector and element @var{c} of the righthand vector.
20984 @kindex V I
20985 @pindex calc-inner-product
20986 @tindex inner
20987 The @kbd{V I} (@code{calc-inner-product}) [@code{inner}] command computes
20988 the generalized inner product of two vectors or matrices, given a
20989 ``multiplicative'' operator and an ``additive'' operator.  These can each
20990 actually be any binary operators; if they are @samp{*} and @samp{+},
20991 respectively, the result is a standard matrix multiplication.  Element
20992 @var{r},@var{c} of the result matrix is obtained by mapping the
20993 multiplicative operator across row @var{r} of the lefthand matrix and
20994 column @var{c} of the righthand matrix, and then reducing with the additive
20995 operator.  Just as for the standard @kbd{*} command, this can also do a
20996 vector-matrix or matrix-vector inner product, or a vector-vector
20997 generalized dot product.
20999 Since @kbd{V I} requires two operators, it prompts twice.  In each case,
21000 you can use any of the usual methods for entering the operator.  If you
21001 use @kbd{$} twice to take both operator formulas from the stack, the
21002 first (multiplicative) operator is taken from the top of the stack
21003 and the second (additive) operator is taken from second-to-top.
21005 @node Vector and Matrix Formats,  , Reducing and Mapping, Matrix Functions
21006 @section Vector and Matrix Display Formats
21008 @noindent
21009 Commands for controlling vector and matrix display use the @kbd{v} prefix
21010 instead of the usual @kbd{d} prefix.  But they are display modes; in
21011 particular, they are influenced by the @kbd{I} and @kbd{H} prefix keys
21012 in the same way (@pxref{Display Modes}).  Matrix display is also
21013 influenced by the @kbd{d O} (@code{calc-flat-language}) mode;
21014 @pxref{Normal Language Modes}.
21016 @kindex V <
21017 @pindex calc-matrix-left-justify
21018 @kindex V =
21019 @pindex calc-matrix-center-justify
21020 @kindex V >
21021 @pindex calc-matrix-right-justify
21022 The commands @kbd{v <} (@code{calc-matrix-left-justify}), @kbd{v >}
21023 (@code{calc-matrix-right-justify}), and @w{@kbd{v =}}
21024 (@code{calc-matrix-center-justify}) control whether matrix elements
21025 are justified to the left, right, or center of their columns.
21027 @kindex V [
21028 @pindex calc-vector-brackets
21029 @kindex V @{
21030 @pindex calc-vector-braces
21031 @kindex V (
21032 @pindex calc-vector-parens
21033 The @kbd{v [} (@code{calc-vector-brackets}) command turns the square
21034 brackets that surround vectors and matrices displayed in the stack on
21035 and off.  The @kbd{v @{} (@code{calc-vector-braces}) and @kbd{v (}
21036 (@code{calc-vector-parens}) commands use curly braces or parentheses,
21037 respectively, instead of square brackets.  For example, @kbd{v @{} might
21038 be used in preparation for yanking a matrix into a buffer running
21039 Mathematica.  (In fact, the Mathematica language mode uses this mode;
21040 @pxref{Mathematica Language Mode}.)  Note that, regardless of the
21041 display mode, either brackets or braces may be used to enter vectors,
21042 and parentheses may never be used for this purpose.
21044 @kindex V ]
21045 @pindex calc-matrix-brackets
21046 The @kbd{v ]} (@code{calc-matrix-brackets}) command controls the
21047 ``big'' style display of matrices.  It prompts for a string of code
21048 letters; currently implemented letters are @code{R}, which enables
21049 brackets on each row of the matrix; @code{O}, which enables outer
21050 brackets in opposite corners of the matrix; and @code{C}, which
21051 enables commas or semicolons at the ends of all rows but the last.
21052 The default format is @samp{RO}.  (Before Calc 2.00, the format
21053 was fixed at @samp{ROC}.)  Here are some example matrices:
21055 @example
21056 @group
21057 [ [ 123,  0,   0  ]       [ [ 123,  0,   0  ],
21058   [  0,  123,  0  ]         [  0,  123,  0  ],
21059   [  0,   0,  123 ] ]       [  0,   0,  123 ] ]
21061          RO                        ROC
21063 @end group
21064 @end example
21065 @noindent
21066 @example
21067 @group
21068   [ 123,  0,   0            [ 123,  0,   0 ;
21069      0,  123,  0               0,  123,  0 ;
21070      0,   0,  123 ]            0,   0,  123 ]
21072           O                        OC
21074 @end group
21075 @end example
21076 @noindent
21077 @example
21078 @group
21079   [ 123,  0,   0  ]           123,  0,   0
21080   [  0,  123,  0  ]            0,  123,  0
21081   [  0,   0,  123 ]            0,   0,  123
21083           R                       @r{blank}
21084 @end group
21085 @end example
21087 @noindent
21088 Note that of the formats shown here, @samp{RO}, @samp{ROC}, and
21089 @samp{OC} are all recognized as matrices during reading, while
21090 the others are useful for display only.
21092 @kindex V ,
21093 @pindex calc-vector-commas
21094 The @kbd{v ,} (@code{calc-vector-commas}) command turns commas on and
21095 off in vector and matrix display.
21097 In vectors of length one, and in all vectors when commas have been
21098 turned off, Calc adds extra parentheses around formulas that might
21099 otherwise be ambiguous.  For example, @samp{[a b]} could be a vector
21100 of the one formula @samp{a b}, or it could be a vector of two
21101 variables with commas turned off.  Calc will display the former
21102 case as @samp{[(a b)]}.  You can disable these extra parentheses
21103 (to make the output less cluttered at the expense of allowing some
21104 ambiguity) by adding the letter @code{P} to the control string you
21105 give to @kbd{v ]} (as described above).
21107 @kindex V .
21108 @pindex calc-full-vectors
21109 The @kbd{v .} (@code{calc-full-vectors}) command turns abbreviated
21110 display of long vectors on and off.  In this mode, vectors of six
21111 or more elements, or matrices of six or more rows or columns, will
21112 be displayed in an abbreviated form that displays only the first
21113 three elements and the last element:  @samp{[a, b, c, ..., z]}.
21114 When very large vectors are involved this will substantially
21115 improve Calc's display speed.
21117 @kindex t .
21118 @pindex calc-full-trail-vectors
21119 The @kbd{t .} (@code{calc-full-trail-vectors}) command controls a
21120 similar mode for recording vectors in the Trail.  If you turn on
21121 this mode, vectors of six or more elements and matrices of six or
21122 more rows or columns will be abbreviated when they are put in the
21123 Trail.  The @kbd{t y} (@code{calc-trail-yank}) command will be
21124 unable to recover those vectors.  If you are working with very
21125 large vectors, this mode will improve the speed of all operations
21126 that involve the trail.
21128 @kindex V /
21129 @pindex calc-break-vectors
21130 The @kbd{v /} (@code{calc-break-vectors}) command turns multi-line
21131 vector display on and off.  Normally, matrices are displayed with one
21132 row per line but all other types of vectors are displayed in a single
21133 line.  This mode causes all vectors, whether matrices or not, to be
21134 displayed with a single element per line.  Sub-vectors within the
21135 vectors will still use the normal linear form.
21137 @node Algebra, Units, Matrix Functions, Top
21138 @chapter Algebra
21140 @noindent
21141 This section covers the Calc features that help you work with
21142 algebraic formulas.  First, the general sub-formula selection
21143 mechanism is described; this works in conjunction with any Calc
21144 commands.  Then, commands for specific algebraic operations are
21145 described.  Finally, the flexible @dfn{rewrite rule} mechanism
21146 is discussed.
21148 The algebraic commands use the @kbd{a} key prefix; selection
21149 commands use the @kbd{j} (for ``just a letter that wasn't used
21150 for anything else'') prefix.
21152 @xref{Editing Stack Entries}, to see how to manipulate formulas
21153 using regular Emacs editing commands.
21155 When doing algebraic work, you may find several of the Calculator's
21156 modes to be helpful, including Algebraic Simplification mode (@kbd{m A})
21157 or No-Simplification mode (@kbd{m O}),
21158 Algebraic entry mode (@kbd{m a}), Fraction mode (@kbd{m f}), and
21159 Symbolic mode (@kbd{m s}).  @xref{Mode Settings}, for discussions
21160 of these modes.  You may also wish to select Big display mode (@kbd{d B}).
21161 @xref{Normal Language Modes}.
21163 @menu
21164 * Selecting Subformulas::
21165 * Algebraic Manipulation::
21166 * Simplifying Formulas::
21167 * Polynomials::
21168 * Calculus::
21169 * Solving Equations::
21170 * Numerical Solutions::
21171 * Curve Fitting::
21172 * Summations::
21173 * Logical Operations::
21174 * Rewrite Rules::
21175 @end menu
21177 @node Selecting Subformulas, Algebraic Manipulation, Algebra, Algebra
21178 @section Selecting Sub-Formulas
21180 @noindent
21181 @cindex Selections
21182 @cindex Sub-formulas
21183 @cindex Parts of formulas
21184 When working with an algebraic formula it is often necessary to
21185 manipulate a portion of the formula rather than the formula as a
21186 whole.  Calc allows you to ``select'' a portion of any formula on
21187 the stack.  Commands which would normally operate on that stack
21188 entry will now operate only on the sub-formula, leaving the
21189 surrounding part of the stack entry alone.
21191 One common non-algebraic use for selection involves vectors.  To work
21192 on one element of a vector in-place, simply select that element as a
21193 ``sub-formula'' of the vector.
21195 @menu
21196 * Making Selections::
21197 * Changing Selections::
21198 * Displaying Selections::
21199 * Operating on Selections::
21200 * Rearranging with Selections::
21201 @end menu
21203 @node Making Selections, Changing Selections, Selecting Subformulas, Selecting Subformulas
21204 @subsection Making Selections
21206 @noindent
21207 @kindex j s
21208 @pindex calc-select-here
21209 To select a sub-formula, move the Emacs cursor to any character in that
21210 sub-formula, and press @w{@kbd{j s}} (@code{calc-select-here}).  Calc will
21211 highlight the smallest portion of the formula that contains that
21212 character.  By default the sub-formula is highlighted by blanking out
21213 all of the rest of the formula with dots.  Selection works in any
21214 display mode but is perhaps easiest in Big mode (@kbd{d B}).
21215 Suppose you enter the following formula:
21217 @smallexample
21218 @group
21219            3    ___
21220     (a + b)  + V c
21221 1:  ---------------
21222         2 x + 1
21223 @end group
21224 @end smallexample
21226 @noindent
21227 (by typing @kbd{' ((a+b)^3 + sqrt(c)) / (2x+1)}).  If you move the
21228 cursor to the letter @samp{b} and press @w{@kbd{j s}}, the display changes
21231 @smallexample
21232 @group
21233            .    ...
21234     .. . b.  . . .
21235 1*  ...............
21236         . . . .
21237 @end group
21238 @end smallexample
21240 @noindent
21241 Every character not part of the sub-formula @samp{b} has been changed
21242 to a dot.  The @samp{*} next to the line number is to remind you that
21243 the formula has a portion of it selected.  (In this case, it's very
21244 obvious, but it might not always be.  If Embedded mode is enabled,
21245 the word @samp{Sel} also appears in the mode line because the stack
21246 may not be visible.  @pxref{Embedded Mode}.)
21248 If you had instead placed the cursor on the parenthesis immediately to
21249 the right of the @samp{b}, the selection would have been:
21251 @smallexample
21252 @group
21253            .    ...
21254     (a + b)  . . .
21255 1*  ...............
21256         . . . .
21257 @end group
21258 @end smallexample
21260 @noindent
21261 The portion selected is always large enough to be considered a complete
21262 formula all by itself, so selecting the parenthesis selects the whole
21263 formula that it encloses.  Putting the cursor on the @samp{+} sign
21264 would have had the same effect.
21266 (Strictly speaking, the Emacs cursor is really the manifestation of
21267 the Emacs ``point,'' which is a position @emph{between} two characters
21268 in the buffer.  So purists would say that Calc selects the smallest
21269 sub-formula which contains the character to the right of ``point.'')
21271 If you supply a numeric prefix argument @var{n}, the selection is
21272 expanded to the @var{n}th enclosing sub-formula.  Thus, positioning
21273 the cursor on the @samp{b} and typing @kbd{C-u 1 j s} will select
21274 @samp{a + b}; typing @kbd{C-u 2 j s} will select @samp{(a + b)^3},
21275 and so on.
21277 If the cursor is not on any part of the formula, or if you give a
21278 numeric prefix that is too large, the entire formula is selected.
21280 If the cursor is on the @samp{.} line that marks the top of the stack
21281 (i.e., its normal ``rest position''), this command selects the entire
21282 formula at stack level 1.  Most selection commands similarly operate
21283 on the formula at the top of the stack if you haven't positioned the
21284 cursor on any stack entry.
21286 @kindex j a
21287 @pindex calc-select-additional
21288 The @kbd{j a} (@code{calc-select-additional}) command enlarges the
21289 current selection to encompass the cursor.  To select the smallest
21290 sub-formula defined by two different points, move to the first and
21291 press @kbd{j s}, then move to the other and press @kbd{j a}.  This
21292 is roughly analogous to using @kbd{C-@@} (@code{set-mark-command}) to
21293 select the two ends of a region of text during normal Emacs editing.
21295 @kindex j o
21296 @pindex calc-select-once
21297 The @kbd{j o} (@code{calc-select-once}) command selects a formula in
21298 exactly the same way as @kbd{j s}, except that the selection will
21299 last only as long as the next command that uses it.  For example,
21300 @kbd{j o 1 +} is a handy way to add one to the sub-formula indicated
21301 by the cursor.
21303 (A somewhat more precise definition: The @kbd{j o} command sets a flag
21304 such that the next command involving selected stack entries will clear
21305 the selections on those stack entries afterwards.  All other selection
21306 commands except @kbd{j a} and @kbd{j O} clear this flag.)
21308 @kindex j S
21309 @kindex j O
21310 @pindex calc-select-here-maybe
21311 @pindex calc-select-once-maybe
21312 The @kbd{j S} (@code{calc-select-here-maybe}) and @kbd{j O}
21313 (@code{calc-select-once-maybe}) commands are equivalent to @kbd{j s}
21314 and @kbd{j o}, respectively, except that if the formula already
21315 has a selection they have no effect.  This is analogous to the
21316 behavior of some commands such as @kbd{j r} (@code{calc-rewrite-selection};
21317 @pxref{Selections with Rewrite Rules}) and is mainly intended to be
21318 used in keyboard macros that implement your own selection-oriented
21319 commands.
21321 Selection of sub-formulas normally treats associative terms like
21322 @samp{a + b - c + d} and @samp{x * y * z} as single levels of the formula.
21323 If you place the cursor anywhere inside @samp{a + b - c + d} except
21324 on one of the variable names and use @kbd{j s}, you will select the
21325 entire four-term sum.
21327 @kindex j b
21328 @pindex calc-break-selections
21329 The @kbd{j b} (@code{calc-break-selections}) command controls a mode
21330 in which the ``deep structure'' of these associative formulas shows
21331 through.  Calc actually stores the above formulas as @samp{((a + b) - c) + d}
21332 and @samp{x * (y * z)}.  (Note that for certain obscure reasons, Calc
21333 treats multiplication as right-associative.)  Once you have enabled
21334 @kbd{j b} mode, selecting with the cursor on the @samp{-} sign would
21335 only select the @samp{a + b - c} portion, which makes sense when the
21336 deep structure of the sum is considered.  There is no way to select
21337 the @samp{b - c + d} portion; although this might initially look
21338 like just as legitimate a sub-formula as @samp{a + b - c}, the deep
21339 structure shows that it isn't.  The @kbd{d U} command can be used
21340 to view the deep structure of any formula (@pxref{Normal Language Modes}).
21342 When @kbd{j b} mode has not been enabled, the deep structure is
21343 generally hidden by the selection commands---what you see is what
21344 you get.
21346 @kindex j u
21347 @pindex calc-unselect
21348 The @kbd{j u} (@code{calc-unselect}) command unselects the formula
21349 that the cursor is on.  If there was no selection in the formula,
21350 this command has no effect.  With a numeric prefix argument, it
21351 unselects the @var{n}th stack element rather than using the cursor
21352 position.
21354 @kindex j c
21355 @pindex calc-clear-selections
21356 The @kbd{j c} (@code{calc-clear-selections}) command unselects all
21357 stack elements.
21359 @node Changing Selections, Displaying Selections, Making Selections, Selecting Subformulas
21360 @subsection Changing Selections
21362 @noindent
21363 @kindex j m
21364 @pindex calc-select-more
21365 Once you have selected a sub-formula, you can expand it using the
21366 @w{@kbd{j m}} (@code{calc-select-more}) command.  If @samp{a + b} is
21367 selected, pressing @w{@kbd{j m}} repeatedly works as follows:
21369 @smallexample
21370 @group
21371            3    ...                3    ___                3    ___
21372     (a + b)  . . .          (a + b)  + V c          (a + b)  + V c
21373 1*  ...............     1*  ...............     1*  ---------------
21374         . . . .                 . . . .                 2 x + 1
21375 @end group
21376 @end smallexample
21378 @noindent
21379 In the last example, the entire formula is selected.  This is roughly
21380 the same as having no selection at all, but because there are subtle
21381 differences the @samp{*} character is still there on the line number.
21383 With a numeric prefix argument @var{n}, @kbd{j m} expands @var{n}
21384 times (or until the entire formula is selected).  Note that @kbd{j s}
21385 with argument @var{n} is equivalent to plain @kbd{j s} followed by
21386 @kbd{j m} with argument @var{n}.  If @w{@kbd{j m}} is used when there
21387 is no current selection, it is equivalent to @w{@kbd{j s}}.
21389 Even though @kbd{j m} does not explicitly use the location of the
21390 cursor within the formula, it nevertheless uses the cursor to determine
21391 which stack element to operate on.  As usual, @kbd{j m} when the cursor
21392 is not on any stack element operates on the top stack element.
21394 @kindex j l
21395 @pindex calc-select-less
21396 The @kbd{j l} (@code{calc-select-less}) command reduces the current
21397 selection around the cursor position.  That is, it selects the
21398 immediate sub-formula of the current selection which contains the
21399 cursor, the opposite of @kbd{j m}.  If the cursor is not inside the
21400 current selection, the command de-selects the formula.
21402 @kindex j 1-9
21403 @pindex calc-select-part
21404 The @kbd{j 1} through @kbd{j 9} (@code{calc-select-part}) commands
21405 select the @var{n}th sub-formula of the current selection.  They are
21406 like @kbd{j l} (@code{calc-select-less}) except they use counting
21407 rather than the cursor position to decide which sub-formula to select.
21408 For example, if the current selection is @kbd{a + b + c} or
21409 @kbd{f(a, b, c)} or @kbd{[a, b, c]}, then @kbd{j 1} selects @samp{a},
21410 @kbd{j 2} selects @samp{b}, and @kbd{j 3} selects @samp{c}; in each of
21411 these cases, @kbd{j 4} through @kbd{j 9} would be errors.
21413 If there is no current selection, @kbd{j 1} through @kbd{j 9} select
21414 the @var{n}th top-level sub-formula.  (In other words, they act as if
21415 the entire stack entry were selected first.)  To select the @var{n}th
21416 sub-formula where @var{n} is greater than nine, you must instead invoke
21417 @w{@kbd{j 1}} with @var{n} as a numeric prefix argument.
21419 @kindex j n
21420 @kindex j p
21421 @pindex calc-select-next
21422 @pindex calc-select-previous
21423 The @kbd{j n} (@code{calc-select-next}) and @kbd{j p}
21424 (@code{calc-select-previous}) commands change the current selection
21425 to the next or previous sub-formula at the same level.  For example,
21426 if @samp{b} is selected in @w{@samp{2 + a*b*c + x}}, then @kbd{j n}
21427 selects @samp{c}.  Further @kbd{j n} commands would be in error because,
21428 even though there is something to the right of @samp{c} (namely, @samp{x}),
21429 it is not at the same level; in this case, it is not a term of the
21430 same product as @samp{b} and @samp{c}.  However, @kbd{j m} (to select
21431 the whole product @samp{a*b*c} as a term of the sum) followed by
21432 @w{@kbd{j n}} would successfully select the @samp{x}.
21434 Similarly, @kbd{j p} moves the selection from the @samp{b} in this
21435 sample formula to the @samp{a}.  Both commands accept numeric prefix
21436 arguments to move several steps at a time.
21438 It is interesting to compare Calc's selection commands with the
21439 Emacs Info system's commands for navigating through hierarchically
21440 organized documentation.  Calc's @kbd{j n} command is completely
21441 analogous to Info's @kbd{n} command.  Likewise, @kbd{j p} maps to
21442 @kbd{p}, @kbd{j 2} maps to @kbd{2}, and Info's @kbd{u} is like @kbd{j m}.
21443 (Note that @kbd{j u} stands for @code{calc-unselect}, not ``up''.)
21444 The Info @kbd{m} command is somewhat similar to Calc's @kbd{j s} and
21445 @kbd{j l}; in each case, you can jump directly to a sub-component
21446 of the hierarchy simply by pointing to it with the cursor.
21448 @node Displaying Selections, Operating on Selections, Changing Selections, Selecting Subformulas
21449 @subsection Displaying Selections
21451 @noindent
21452 @kindex j d
21453 @pindex calc-show-selections
21454 The @kbd{j d} (@code{calc-show-selections}) command controls how
21455 selected sub-formulas are displayed.  One of the alternatives is
21456 illustrated in the above examples; if we press @kbd{j d} we switch
21457 to the other style in which the selected portion itself is obscured
21458 by @samp{#} signs:
21460 @smallexample
21461 @group
21462            3    ...                  #    ___
21463     (a + b)  . . .            ## # ##  + V c
21464 1*  ...............       1*  ---------------
21465         . . . .                   2 x + 1
21466 @end group
21467 @end smallexample
21469 @node Operating on Selections, Rearranging with Selections, Displaying Selections, Selecting Subformulas
21470 @subsection Operating on Selections
21472 @noindent
21473 Once a selection is made, all Calc commands that manipulate items
21474 on the stack will operate on the selected portions of the items
21475 instead.  (Note that several stack elements may have selections
21476 at once, though there can be only one selection at a time in any
21477 given stack element.)
21479 @kindex j e
21480 @pindex calc-enable-selections
21481 The @kbd{j e} (@code{calc-enable-selections}) command disables the
21482 effect that selections have on Calc commands.  The current selections
21483 still exist, but Calc commands operate on whole stack elements anyway.
21484 This mode can be identified by the fact that the @samp{*} markers on
21485 the line numbers are gone, even though selections are visible.  To
21486 reactivate the selections, press @kbd{j e} again.
21488 To extract a sub-formula as a new formula, simply select the
21489 sub-formula and press @key{RET}.  This normally duplicates the top
21490 stack element; here it duplicates only the selected portion of that
21491 element.
21493 To replace a sub-formula with something different, you can enter the
21494 new value onto the stack and press @key{TAB}.  This normally exchanges
21495 the top two stack elements; here it swaps the value you entered into
21496 the selected portion of the formula, returning the old selected
21497 portion to the top of the stack.
21499 @smallexample
21500 @group
21501            3    ...                    ...                    ___
21502     (a + b)  . . .           17 x y . . .           17 x y + V c
21503 2*  ...............      2*  .............      2:  -------------
21504         . . . .                 . . . .                2 x + 1
21506                                     3                      3
21507 1:  17 x y               1:  (a + b)            1:  (a + b)
21508 @end group
21509 @end smallexample
21511 In this example we select a sub-formula of our original example,
21512 enter a new formula, @key{TAB} it into place, then deselect to see
21513 the complete, edited formula.
21515 If you want to swap whole formulas around even though they contain
21516 selections, just use @kbd{j e} before and after.
21518 @kindex j '
21519 @pindex calc-enter-selection
21520 The @kbd{j '} (@code{calc-enter-selection}) command is another way
21521 to replace a selected sub-formula.  This command does an algebraic
21522 entry just like the regular @kbd{'} key.  When you press @key{RET},
21523 the formula you type replaces the original selection.  You can use
21524 the @samp{$} symbol in the formula to refer to the original
21525 selection.  If there is no selection in the formula under the cursor,
21526 the cursor is used to make a temporary selection for the purposes of
21527 the command.  Thus, to change a term of a formula, all you have to
21528 do is move the Emacs cursor to that term and press @kbd{j '}.
21530 @kindex j `
21531 @pindex calc-edit-selection
21532 The @kbd{j `} (@code{calc-edit-selection}) command is a similar
21533 analogue of the @kbd{`} (@code{calc-edit}) command.  It edits the
21534 selected sub-formula in a separate buffer.  If there is no
21535 selection, it edits the sub-formula indicated by the cursor.
21537 To delete a sub-formula, press @key{DEL}.  This generally replaces
21538 the sub-formula with the constant zero, but in a few suitable contexts
21539 it uses the constant one instead.  The @key{DEL} key automatically
21540 deselects and re-simplifies the entire formula afterwards.  Thus:
21542 @smallexample
21543 @group
21544               ###
21545     17 x y + # #          17 x y         17 # y          17 y
21546 1*  -------------     1:  -------    1*  -------    1:  -------
21547        2 x + 1            2 x + 1        2 x + 1        2 x + 1
21548 @end group
21549 @end smallexample
21551 In this example, we first delete the @samp{sqrt(c)} term; Calc
21552 accomplishes this by replacing @samp{sqrt(c)} with zero and
21553 resimplifying.  We then delete the @kbd{x} in the numerator;
21554 since this is part of a product, Calc replaces it with @samp{1}
21555 and resimplifies.
21557 If you select an element of a vector and press @key{DEL}, that
21558 element is deleted from the vector.  If you delete one side of
21559 an equation or inequality, only the opposite side remains.
21561 @kindex j @key{DEL}
21562 @pindex calc-del-selection
21563 The @kbd{j @key{DEL}} (@code{calc-del-selection}) command is like
21564 @key{DEL} but with the auto-selecting behavior of @kbd{j '} and
21565 @kbd{j `}.  It deletes the selected portion of the formula
21566 indicated by the cursor, or, in the absence of a selection, it
21567 deletes the sub-formula indicated by the cursor position.
21569 @kindex j @key{RET}
21570 @pindex calc-grab-selection
21571 (There is also an auto-selecting @kbd{j @key{RET}} (@code{calc-copy-selection})
21572 command.)
21574 Normal arithmetic operations also apply to sub-formulas.  Here we
21575 select the denominator, press @kbd{5 -} to subtract five from the
21576 denominator, press @kbd{n} to negate the denominator, then
21577 press @kbd{Q} to take the square root.
21579 @smallexample
21580 @group
21581      .. .           .. .           .. .             .. .
21582 1*  .......    1*  .......    1*  .......    1*  ..........
21583     2 x + 1        2 x - 4        4 - 2 x         _________
21584                                                  V 4 - 2 x
21585 @end group
21586 @end smallexample
21588 Certain types of operations on selections are not allowed.  For
21589 example, for an arithmetic function like @kbd{-} no more than one of
21590 the arguments may be a selected sub-formula.  (As the above example
21591 shows, the result of the subtraction is spliced back into the argument
21592 which had the selection; if there were more than one selection involved,
21593 this would not be well-defined.)  If you try to subtract two selections,
21594 the command will abort with an error message.
21596 Operations on sub-formulas sometimes leave the formula as a whole
21597 in an ``un-natural'' state.  Consider negating the @samp{2 x} term
21598 of our sample formula by selecting it and pressing @kbd{n}
21599 (@code{calc-change-sign}).
21601 @smallexample
21602 @group
21603        .. .                .. .
21604 1*  ..........      1*  ...........
21605      .........           ..........
21606     . . . 2 x           . . . -2 x
21607 @end group
21608 @end smallexample
21610 Unselecting the sub-formula reveals that the minus sign, which would
21611 normally have cancelled out with the subtraction automatically, has
21612 not been able to do so because the subtraction was not part of the
21613 selected portion.  Pressing @kbd{=} (@code{calc-evaluate}) or doing
21614 any other mathematical operation on the whole formula will cause it
21615 to be simplified.
21617 @smallexample
21618 @group
21619        17 y                17 y
21620 1:  -----------     1:  ----------
21621      __________          _________
21622     V 4 - -2 x          V 4 + 2 x
21623 @end group
21624 @end smallexample
21626 @node Rearranging with Selections,  , Operating on Selections, Selecting Subformulas
21627 @subsection Rearranging Formulas using Selections
21629 @noindent
21630 @kindex j R
21631 @pindex calc-commute-right
21632 The @kbd{j R} (@code{calc-commute-right}) command moves the selected
21633 sub-formula to the right in its surrounding formula.  Generally the
21634 selection is one term of a sum or product; the sum or product is
21635 rearranged according to the commutative laws of algebra.
21637 As with @kbd{j '} and @kbd{j @key{DEL}}, the term under the cursor is used
21638 if there is no selection in the current formula.  All commands described
21639 in this section share this property.  In this example, we place the
21640 cursor on the @samp{a} and type @kbd{j R}, then repeat.
21642 @smallexample
21643 1:  a + b - c          1:  b + a - c          1:  b - c + a
21644 @end smallexample
21646 @noindent
21647 Note that in the final step above, the @samp{a} is switched with
21648 the @samp{c} but the signs are adjusted accordingly.  When moving
21649 terms of sums and products, @kbd{j R} will never change the
21650 mathematical meaning of the formula.
21652 The selected term may also be an element of a vector or an argument
21653 of a function.  The term is exchanged with the one to its right.
21654 In this case, the ``meaning'' of the vector or function may of
21655 course be drastically changed.
21657 @smallexample
21658 1:  [a, b, c]          1:  [b, a, c]          1:  [b, c, a]
21660 1:  f(a, b, c)         1:  f(b, a, c)         1:  f(b, c, a)
21661 @end smallexample
21663 @kindex j L
21664 @pindex calc-commute-left
21665 The @kbd{j L} (@code{calc-commute-left}) command is like @kbd{j R}
21666 except that it swaps the selected term with the one to its left.
21668 With numeric prefix arguments, these commands move the selected
21669 term several steps at a time.  It is an error to try to move a
21670 term left or right past the end of its enclosing formula.
21671 With numeric prefix arguments of zero, these commands move the
21672 selected term as far as possible in the given direction.
21674 @kindex j D
21675 @pindex calc-sel-distribute
21676 The @kbd{j D} (@code{calc-sel-distribute}) command mixes the selected
21677 sum or product into the surrounding formula using the distributive
21678 law.  For example, in @samp{a * (b - c)} with the @samp{b - c}
21679 selected, the result is @samp{a b - a c}.  This also distributes
21680 products or quotients into surrounding powers, and can also do
21681 transformations like @samp{exp(a + b)} to @samp{exp(a) exp(b)},
21682 where @samp{a + b} is the selected term, and @samp{ln(a ^ b)}
21683 to @samp{ln(a) b}, where @samp{a ^ b} is the selected term.
21685 For multiple-term sums or products, @kbd{j D} takes off one term
21686 at a time:  @samp{a * (b + c - d)} goes to @samp{a * (c - d) + a b}
21687 with the @samp{c - d} selected so that you can type @kbd{j D}
21688 repeatedly to expand completely.  The @kbd{j D} command allows a
21689 numeric prefix argument which specifies the maximum number of
21690 times to expand at once; the default is one time only.
21692 @vindex DistribRules
21693 The @kbd{j D} command is implemented using rewrite rules.
21694 @xref{Selections with Rewrite Rules}.  The rules are stored in
21695 the Calc variable @code{DistribRules}.  A convenient way to view
21696 these rules is to use @kbd{s e} (@code{calc-edit-variable}) which
21697 displays and edits the stored value of a variable.  Press @kbd{C-c C-c}
21698 to return from editing mode; be careful not to make any actual changes
21699 or else you will affect the behavior of future @kbd{j D} commands!
21701 To extend @kbd{j D} to handle new cases, just edit @code{DistribRules}
21702 as described above.  You can then use the @kbd{s p} command to save
21703 this variable's value permanently for future Calc sessions.
21704 @xref{Operations on Variables}.
21706 @kindex j M
21707 @pindex calc-sel-merge
21708 @vindex MergeRules
21709 The @kbd{j M} (@code{calc-sel-merge}) command is the complement
21710 of @kbd{j D}; given @samp{a b - a c} with either @samp{a b} or
21711 @samp{a c} selected, the result is @samp{a * (b - c)}.  Once
21712 again, @kbd{j M} can also merge calls to functions like @code{exp}
21713 and @code{ln}; examine the variable @code{MergeRules} to see all
21714 the relevant rules.
21716 @kindex j C
21717 @pindex calc-sel-commute
21718 @vindex CommuteRules
21719 The @kbd{j C} (@code{calc-sel-commute}) command swaps the arguments
21720 of the selected sum, product, or equation.  It always behaves as
21721 if @kbd{j b} mode were in effect, i.e., the sum @samp{a + b + c} is
21722 treated as the nested sums @samp{(a + b) + c} by this command.
21723 If you put the cursor on the first @samp{+}, the result is
21724 @samp{(b + a) + c}; if you put the cursor on the second @samp{+}, the
21725 result is @samp{c + (a + b)} (which the default simplifications
21726 will rearrange to @samp{(c + a) + b}).  The relevant rules are stored
21727 in the variable @code{CommuteRules}.
21729 You may need to turn default simplifications off (with the @kbd{m O}
21730 command) in order to get the full benefit of @kbd{j C}.  For example,
21731 commuting @samp{a - b} produces @samp{-b + a}, but the default
21732 simplifications will ``simplify'' this right back to @samp{a - b} if
21733 you don't turn them off.  The same is true of some of the other
21734 manipulations described in this section.
21736 @kindex j N
21737 @pindex calc-sel-negate
21738 @vindex NegateRules
21739 The @kbd{j N} (@code{calc-sel-negate}) command replaces the selected
21740 term with the negative of that term, then adjusts the surrounding
21741 formula in order to preserve the meaning.  For example, given
21742 @samp{exp(a - b)} where @samp{a - b} is selected, the result is
21743 @samp{1 / exp(b - a)}.  By contrast, selecting a term and using the
21744 regular @kbd{n} (@code{calc-change-sign}) command negates the
21745 term without adjusting the surroundings, thus changing the meaning
21746 of the formula as a whole.  The rules variable is @code{NegateRules}.
21748 @kindex j &
21749 @pindex calc-sel-invert
21750 @vindex InvertRules
21751 The @kbd{j &} (@code{calc-sel-invert}) command is similar to @kbd{j N}
21752 except it takes the reciprocal of the selected term.  For example,
21753 given @samp{a - ln(b)} with @samp{b} selected, the result is
21754 @samp{a + ln(1/b)}.  The rules variable is @code{InvertRules}.
21756 @kindex j E
21757 @pindex calc-sel-jump-equals
21758 @vindex JumpRules
21759 The @kbd{j E} (@code{calc-sel-jump-equals}) command moves the
21760 selected term from one side of an equation to the other.  Given
21761 @samp{a + b = c + d} with @samp{c} selected, the result is
21762 @samp{a + b - c = d}.  This command also works if the selected
21763 term is part of a @samp{*}, @samp{/}, or @samp{^} formula.  The
21764 relevant rules variable is @code{JumpRules}.
21766 @kindex j I
21767 @kindex H j I
21768 @pindex calc-sel-isolate
21769 The @kbd{j I} (@code{calc-sel-isolate}) command isolates the
21770 selected term on its side of an equation.  It uses the @kbd{a S}
21771 (@code{calc-solve-for}) command to solve the equation, and the
21772 Hyperbolic flag affects it in the same way.  @xref{Solving Equations}.
21773 When it applies, @kbd{j I} is often easier to use than @kbd{j E}.
21774 It understands more rules of algebra, and works for inequalities
21775 as well as equations.
21777 @kindex j *
21778 @kindex j /
21779 @pindex calc-sel-mult-both-sides
21780 @pindex calc-sel-div-both-sides
21781 The @kbd{j *} (@code{calc-sel-mult-both-sides}) command prompts for a
21782 formula using algebraic entry, then multiplies both sides of the
21783 selected quotient or equation by that formula.  It simplifies each
21784 side with @kbd{a s} (@code{calc-simplify}) before re-forming the
21785 quotient or equation.  You can suppress this simplification by
21786 providing any numeric prefix argument.  There is also a @kbd{j /}
21787 (@code{calc-sel-div-both-sides}) which is similar to @kbd{j *} but
21788 dividing instead of multiplying by the factor you enter.
21790 As a special feature, if the numerator of the quotient is 1, then
21791 the denominator is expanded at the top level using the distributive
21792 law (i.e., using the @kbd{C-u -1 a x} command).  Suppose the
21793 formula on the stack is @samp{1 / (sqrt(a) + 1)}, and you wish
21794 to eliminate the square root in the denominator by multiplying both
21795 sides by @samp{sqrt(a) - 1}.  Calc's default simplifications would
21796 change the result @samp{(sqrt(a) - 1) / (sqrt(a) - 1) (sqrt(a) + 1)}
21797 right back to the original form by cancellation; Calc expands the
21798 denominator to @samp{sqrt(a) (sqrt(a) - 1) + sqrt(a) - 1} to prevent
21799 this.  (You would now want to use an @kbd{a x} command to expand
21800 the rest of the way, whereupon the denominator would cancel out to
21801 the desired form, @samp{a - 1}.)  When the numerator is not 1, this
21802 initial expansion is not necessary because Calc's default
21803 simplifications will not notice the potential cancellation.
21805 If the selection is an inequality, @kbd{j *} and @kbd{j /} will
21806 accept any factor, but will warn unless they can prove the factor
21807 is either positive or negative.  (In the latter case the direction
21808 of the inequality will be switched appropriately.)  @xref{Declarations},
21809 for ways to inform Calc that a given variable is positive or
21810 negative.  If Calc can't tell for sure what the sign of the factor
21811 will be, it will assume it is positive and display a warning
21812 message.
21814 For selections that are not quotients, equations, or inequalities,
21815 these commands pull out a multiplicative factor:  They divide (or
21816 multiply) by the entered formula, simplify, then multiply (or divide)
21817 back by the formula.
21819 @kindex j +
21820 @kindex j -
21821 @pindex calc-sel-add-both-sides
21822 @pindex calc-sel-sub-both-sides
21823 The @kbd{j +} (@code{calc-sel-add-both-sides}) and @kbd{j -}
21824 (@code{calc-sel-sub-both-sides}) commands analogously add to or
21825 subtract from both sides of an equation or inequality.  For other
21826 types of selections, they extract an additive factor.  A numeric
21827 prefix argument suppresses simplification of the intermediate
21828 results.
21830 @kindex j U
21831 @pindex calc-sel-unpack
21832 The @kbd{j U} (@code{calc-sel-unpack}) command replaces the
21833 selected function call with its argument.  For example, given
21834 @samp{a + sin(x^2)} with @samp{sin(x^2)} selected, the result
21835 is @samp{a + x^2}.  (The @samp{x^2} will remain selected; if you
21836 wanted to change the @code{sin} to @code{cos}, just press @kbd{C}
21837 now to take the cosine of the selected part.)
21839 @kindex j v
21840 @pindex calc-sel-evaluate
21841 The @kbd{j v} (@code{calc-sel-evaluate}) command performs the
21842 normal default simplifications on the selected sub-formula.
21843 These are the simplifications that are normally done automatically
21844 on all results, but which may have been partially inhibited by
21845 previous selection-related operations, or turned off altogether
21846 by the @kbd{m O} command.  This command is just an auto-selecting
21847 version of the @w{@kbd{a v}} command (@pxref{Algebraic Manipulation}).
21849 With a numeric prefix argument of 2, @kbd{C-u 2 j v} applies
21850 the @kbd{a s} (@code{calc-simplify}) command to the selected
21851 sub-formula.  With a prefix argument of 3 or more, e.g., @kbd{C-u j v}
21852 applies the @kbd{a e} (@code{calc-simplify-extended}) command.
21853 @xref{Simplifying Formulas}.  With a negative prefix argument
21854 it simplifies at the top level only, just as with @kbd{a v}.
21855 Here the ``top'' level refers to the top level of the selected
21856 sub-formula.
21858 @kindex j "
21859 @pindex calc-sel-expand-formula
21860 The @kbd{j "} (@code{calc-sel-expand-formula}) command is to @kbd{a "}
21861 (@pxref{Algebraic Manipulation}) what @kbd{j v} is to @kbd{a v}.
21863 You can use the @kbd{j r} (@code{calc-rewrite-selection}) command
21864 to define other algebraic operations on sub-formulas.  @xref{Rewrite Rules}.
21866 @node Algebraic Manipulation, Simplifying Formulas, Selecting Subformulas, Algebra
21867 @section Algebraic Manipulation
21869 @noindent
21870 The commands in this section perform general-purpose algebraic
21871 manipulations.  They work on the whole formula at the top of the
21872 stack (unless, of course, you have made a selection in that
21873 formula).
21875 Many algebra commands prompt for a variable name or formula.  If you
21876 answer the prompt with a blank line, the variable or formula is taken
21877 from top-of-stack, and the normal argument for the command is taken
21878 from the second-to-top stack level.
21880 @kindex a v
21881 @pindex calc-alg-evaluate
21882 The @kbd{a v} (@code{calc-alg-evaluate}) command performs the normal
21883 default simplifications on a formula; for example, @samp{a - -b} is
21884 changed to @samp{a + b}.  These simplifications are normally done
21885 automatically on all Calc results, so this command is useful only if
21886 you have turned default simplifications off with an @kbd{m O}
21887 command.  @xref{Simplification Modes}.
21889 It is often more convenient to type @kbd{=}, which is like @kbd{a v}
21890 but which also substitutes stored values for variables in the formula.
21891 Use @kbd{a v} if you want the variables to ignore their stored values.
21893 If you give a numeric prefix argument of 2 to @kbd{a v}, it simplifies
21894 as if in Algebraic Simplification mode.  This is equivalent to typing
21895 @kbd{a s}; @pxref{Simplifying Formulas}.  If you give a numeric prefix
21896 of 3 or more, it uses Extended Simplification mode (@kbd{a e}).
21898 If you give a negative prefix argument @mathit{-1}, @mathit{-2}, or @mathit{-3},
21899 it simplifies in the corresponding mode but only works on the top-level
21900 function call of the formula.  For example, @samp{(2 + 3) * (2 + 3)} will
21901 simplify to @samp{(2 + 3)^2}, without simplifying the sub-formulas
21902 @samp{2 + 3}.  As another example, typing @kbd{V R +} to sum the vector
21903 @samp{[1, 2, 3, 4]} produces the formula @samp{reduce(add, [1, 2, 3, 4])}
21904 in No-Simplify mode.  Using @kbd{a v} will evaluate this all the way to
21905 10; using @kbd{C-u - a v} will evaluate it only to @samp{1 + 2 + 3 + 4}.
21906 (@xref{Reducing and Mapping}.)
21908 @tindex evalv
21909 @tindex evalvn
21910 The @kbd{=} command corresponds to the @code{evalv} function, and
21911 the related @kbd{N} command, which is like @kbd{=} but temporarily
21912 disables Symbolic mode (@kbd{m s}) during the evaluation, corresponds
21913 to the @code{evalvn} function.  (These commands interpret their prefix
21914 arguments differently than @kbd{a v}; @kbd{=} treats the prefix as
21915 the number of stack elements to evaluate at once, and @kbd{N} treats
21916 it as a temporary different working precision.)
21918 The @code{evalvn} function can take an alternate working precision
21919 as an optional second argument.  This argument can be either an
21920 integer, to set the precision absolutely, or a vector containing
21921 a single integer, to adjust the precision relative to the current
21922 precision.  Note that @code{evalvn} with a larger than current
21923 precision will do the calculation at this higher precision, but the
21924 result will as usual be rounded back down to the current precision
21925 afterward.  For example, @samp{evalvn(pi - 3.1415)} at a precision
21926 of 12 will return @samp{9.265359e-5}; @samp{evalvn(pi - 3.1415, 30)}
21927 will return @samp{9.26535897932e-5} (computing a 25-digit result which
21928 is then rounded down to 12); and @samp{evalvn(pi - 3.1415, [-2])}
21929 will return @samp{9.2654e-5}.
21931 @kindex a "
21932 @pindex calc-expand-formula
21933 The @kbd{a "} (@code{calc-expand-formula}) command expands functions
21934 into their defining formulas wherever possible.  For example,
21935 @samp{deg(x^2)} is changed to @samp{180 x^2 / pi}.  Most functions,
21936 like @code{sin} and @code{gcd}, are not defined by simple formulas
21937 and so are unaffected by this command.  One important class of
21938 functions which @emph{can} be expanded is the user-defined functions
21939 created by the @kbd{Z F} command.  @xref{Algebraic Definitions}.
21940 Other functions which @kbd{a "} can expand include the probability
21941 distribution functions, most of the financial functions, and the
21942 hyperbolic and inverse hyperbolic functions.  A numeric prefix argument
21943 affects @kbd{a "} in the same way as it does @kbd{a v}:  A positive
21944 argument expands all functions in the formula and then simplifies in
21945 various ways; a negative argument expands and simplifies only the
21946 top-level function call.
21948 @kindex a M
21949 @pindex calc-map-equation
21950 @tindex mapeq
21951 The @kbd{a M} (@code{calc-map-equation}) [@code{mapeq}] command applies
21952 a given function or operator to one or more equations.  It is analogous
21953 to @kbd{V M}, which operates on vectors instead of equations.
21954 @pxref{Reducing and Mapping}.  For example, @kbd{a M S} changes
21955 @samp{x = y+1} to @samp{sin(x) = sin(y+1)}, and @kbd{a M +} with
21956 @samp{x = y+1} and @expr{6} on the stack produces @samp{x+6 = y+7}.
21957 With two equations on the stack, @kbd{a M +} would add the lefthand
21958 sides together and the righthand sides together to get the two
21959 respective sides of a new equation.
21961 Mapping also works on inequalities.  Mapping two similar inequalities
21962 produces another inequality of the same type.  Mapping an inequality
21963 with an equation produces an inequality of the same type.  Mapping a
21964 @samp{<=} with a @samp{<} or @samp{!=} (not-equal) produces a @samp{<}.
21965 If inequalities with opposite direction (e.g., @samp{<} and @samp{>})
21966 are mapped, the direction of the second inequality is reversed to
21967 match the first:  Using @kbd{a M +} on @samp{a < b} and @samp{a > 2}
21968 reverses the latter to get @samp{2 < a}, which then allows the
21969 combination @samp{a + 2 < b + a}, which the @kbd{a s} command can
21970 then simplify to get @samp{2 < b}.
21972 Using @kbd{a M *}, @kbd{a M /}, @kbd{a M n}, or @kbd{a M &} to negate
21973 or invert an inequality will reverse the direction of the inequality.
21974 Other adjustments to inequalities are @emph{not} done automatically;
21975 @kbd{a M S} will change @w{@samp{x < y}} to @samp{sin(x) < sin(y)} even
21976 though this is not true for all values of the variables.
21978 @kindex H a M
21979 @tindex mapeqp
21980 With the Hyperbolic flag, @kbd{H a M} [@code{mapeqp}] does a plain
21981 mapping operation without reversing the direction of any inequalities.
21982 Thus, @kbd{H a M &} would change @kbd{x > 2} to @kbd{1/x > 0.5}.
21983 (This change is mathematically incorrect, but perhaps you were
21984 fixing an inequality which was already incorrect.)
21986 @kindex I a M
21987 @tindex mapeqr
21988 With the Inverse flag, @kbd{I a M} [@code{mapeqr}] always reverses
21989 the direction of the inequality.  You might use @kbd{I a M C} to
21990 change @samp{x < y} to @samp{cos(x) > cos(y)} if you know you are
21991 working with small positive angles.
21993 @kindex a b
21994 @pindex calc-substitute
21995 @tindex subst
21996 The @kbd{a b} (@code{calc-substitute}) [@code{subst}] command substitutes
21997 all occurrences
21998 of some variable or sub-expression of an expression with a new
21999 sub-expression.  For example, substituting @samp{sin(x)} with @samp{cos(y)}
22000 in @samp{2 sin(x)^2 + x sin(x) + sin(2 x)} produces
22001 @samp{2 cos(y)^2 + x cos(y) + @w{sin(2 x)}}.
22002 Note that this is a purely structural substitution; the lone @samp{x} and
22003 the @samp{sin(2 x)} stayed the same because they did not look like
22004 @samp{sin(x)}.  @xref{Rewrite Rules}, for a more general method for
22005 doing substitutions.
22007 The @kbd{a b} command normally prompts for two formulas, the old
22008 one and the new one.  If you enter a blank line for the first
22009 prompt, all three arguments are taken from the stack (new, then old,
22010 then target expression).  If you type an old formula but then enter a
22011 blank line for the new one, the new formula is taken from top-of-stack
22012 and the target from second-to-top.  If you answer both prompts, the
22013 target is taken from top-of-stack as usual.
22015 Note that @kbd{a b} has no understanding of commutativity or
22016 associativity.  The pattern @samp{x+y} will not match the formula
22017 @samp{y+x}.  Also, @samp{y+z} will not match inside the formula @samp{x+y+z}
22018 because the @samp{+} operator is left-associative, so the ``deep
22019 structure'' of that formula is @samp{(x+y) + z}.  Use @kbd{d U}
22020 (@code{calc-unformatted-language}) mode to see the true structure of
22021 a formula.  The rewrite rule mechanism, discussed later, does not have
22022 these limitations.
22024 As an algebraic function, @code{subst} takes three arguments:
22025 Target expression, old, new.  Note that @code{subst} is always
22026 evaluated immediately, even if its arguments are variables, so if
22027 you wish to put a call to @code{subst} onto the stack you must
22028 turn the default simplifications off first (with @kbd{m O}).
22030 @node Simplifying Formulas, Polynomials, Algebraic Manipulation, Algebra
22031 @section Simplifying Formulas
22033 @noindent
22034 @kindex a s
22035 @pindex calc-simplify
22036 @tindex simplify
22037 The @kbd{a s} (@code{calc-simplify}) [@code{simplify}] command applies
22038 various algebraic rules to simplify a formula.  This includes rules which
22039 are not part of the default simplifications because they may be too slow
22040 to apply all the time, or may not be desirable all of the time.  For
22041 example, non-adjacent terms of sums are combined, as in @samp{a + b + 2 a}
22042 to @samp{b + 3 a}, and some formulas like @samp{sin(arcsin(x))} are
22043 simplified to @samp{x}.
22045 The sections below describe all the various kinds of algebraic
22046 simplifications Calc provides in full detail.  None of Calc's
22047 simplification commands are designed to pull rabbits out of hats;
22048 they simply apply certain specific rules to put formulas into
22049 less redundant or more pleasing forms.  Serious algebra in Calc
22050 must be done manually, usually with a combination of selections
22051 and rewrite rules.  @xref{Rearranging with Selections}.
22052 @xref{Rewrite Rules}.
22054 @xref{Simplification Modes}, for commands to control what level of
22055 simplification occurs automatically.  Normally only the ``default
22056 simplifications'' occur.
22058 @menu
22059 * Default Simplifications::
22060 * Algebraic Simplifications::
22061 * Unsafe Simplifications::
22062 * Simplification of Units::
22063 @end menu
22065 @node Default Simplifications, Algebraic Simplifications, Simplifying Formulas, Simplifying Formulas
22066 @subsection Default Simplifications
22068 @noindent
22069 @cindex Default simplifications
22070 This section describes the ``default simplifications,'' those which are
22071 normally applied to all results.  For example, if you enter the variable
22072 @expr{x} on the stack twice and push @kbd{+}, Calc's default
22073 simplifications automatically change @expr{x + x} to @expr{2 x}.
22075 The @kbd{m O} command turns off the default simplifications, so that
22076 @expr{x + x} will remain in this form unless you give an explicit
22077 ``simplify'' command like @kbd{=} or @kbd{a v}.  @xref{Algebraic
22078 Manipulation}.  The @kbd{m D} command turns the default simplifications
22079 back on.
22081 The most basic default simplification is the evaluation of functions.
22082 For example, @expr{2 + 3} is evaluated to @expr{5}, and @expr{@tfn{sqrt}(9)}
22083 is evaluated to @expr{3}.  Evaluation does not occur if the arguments
22084 to a function are somehow of the wrong type @expr{@tfn{tan}([2,3,4])}),
22085 range (@expr{@tfn{tan}(90)}), or number (@expr{@tfn{tan}(3,5)}), 
22086 or if the function name is not recognized (@expr{@tfn{f}(5)}), or if
22087 Symbolic mode (@pxref{Symbolic Mode}) prevents evaluation
22088 (@expr{@tfn{sqrt}(2)}).
22090 Calc simplifies (evaluates) the arguments to a function before it
22091 simplifies the function itself.  Thus @expr{@tfn{sqrt}(5+4)} is
22092 simplified to @expr{@tfn{sqrt}(9)} before the @code{sqrt} function
22093 itself is applied.  There are very few exceptions to this rule:
22094 @code{quote}, @code{lambda}, and @code{condition} (the @code{::}
22095 operator) do not evaluate their arguments, @code{if} (the @code{? :}
22096 operator) does not evaluate all of its arguments, and @code{evalto}
22097 does not evaluate its lefthand argument.
22099 Most commands apply the default simplifications to all arguments they
22100 take from the stack, perform a particular operation, then simplify
22101 the result before pushing it back on the stack.  In the common special
22102 case of regular arithmetic commands like @kbd{+} and @kbd{Q} [@code{sqrt}],
22103 the arguments are simply popped from the stack and collected into a
22104 suitable function call, which is then simplified (the arguments being
22105 simplified first as part of the process, as described above).
22107 The default simplifications are too numerous to describe completely
22108 here, but this section will describe the ones that apply to the
22109 major arithmetic operators.  This list will be rather technical in
22110 nature, and will probably be interesting to you only if you are
22111 a serious user of Calc's algebra facilities.
22113 @tex
22114 \bigskip
22115 @end tex
22117 As well as the simplifications described here, if you have stored
22118 any rewrite rules in the variable @code{EvalRules} then these rules
22119 will also be applied before any built-in default simplifications.
22120 @xref{Automatic Rewrites}, for details.
22122 @tex
22123 \bigskip
22124 @end tex
22126 And now, on with the default simplifications:
22128 Arithmetic operators like @kbd{+} and @kbd{*} always take two
22129 arguments in Calc's internal form.  Sums and products of three or
22130 more terms are arranged by the associative law of algebra into
22131 a left-associative form for sums, @expr{((a + b) + c) + d}, and
22132 a right-associative form for products, @expr{a * (b * (c * d))}.
22133 Formulas like @expr{(a + b) + (c + d)} are rearranged to
22134 left-associative form, though this rarely matters since Calc's
22135 algebra commands are designed to hide the inner structure of
22136 sums and products as much as possible.  Sums and products in
22137 their proper associative form will be written without parentheses
22138 in the examples below.
22140 Sums and products are @emph{not} rearranged according to the
22141 commutative law (@expr{a + b} to @expr{b + a}) except in a few
22142 special cases described below.  Some algebra programs always
22143 rearrange terms into a canonical order, which enables them to
22144 see that @expr{a b + b a} can be simplified to @expr{2 a b}.
22145 Calc assumes you have put the terms into the order you want
22146 and generally leaves that order alone, with the consequence
22147 that formulas like the above will only be simplified if you
22148 explicitly give the @kbd{a s} command.  @xref{Algebraic
22149 Simplifications}.
22151 Differences @expr{a - b} are treated like sums @expr{a + (-b)}
22152 for purposes of simplification; one of the default simplifications
22153 is to rewrite @expr{a + (-b)} or @expr{(-b) + a}, where @expr{-b}
22154 represents a ``negative-looking'' term, into @expr{a - b} form.
22155 ``Negative-looking'' means negative numbers, negated formulas like
22156 @expr{-x}, and products or quotients in which either term is
22157 negative-looking.
22159 Other simplifications involving negation are @expr{-(-x)} to @expr{x};
22160 @expr{-(a b)} or @expr{-(a/b)} where either @expr{a} or @expr{b} is
22161 negative-looking, simplified by negating that term, or else where
22162 @expr{a} or @expr{b} is any number, by negating that number;
22163 @expr{-(a + b)} to @expr{-a - b}, and @expr{-(b - a)} to @expr{a - b}.
22164 (This, and rewriting @expr{(-b) + a} to @expr{a - b}, are the only
22165 cases where the order of terms in a sum is changed by the default
22166 simplifications.)
22168 The distributive law is used to simplify sums in some cases:
22169 @expr{a x + b x} to @expr{(a + b) x}, where @expr{a} represents
22170 a number or an implicit 1 or @mathit{-1} (as in @expr{x} or @expr{-x})
22171 and similarly for @expr{b}.  Use the @kbd{a c}, @w{@kbd{a f}}, or
22172 @kbd{j M} commands to merge sums with non-numeric coefficients
22173 using the distributive law.
22175 The distributive law is only used for sums of two terms, or
22176 for adjacent terms in a larger sum.  Thus @expr{a + b + b + c}
22177 is simplified to @expr{a + 2 b + c}, but @expr{a + b + c + b}
22178 is not simplified.  The reason is that comparing all terms of a
22179 sum with one another would require time proportional to the
22180 square of the number of terms; Calc relegates potentially slow
22181 operations like this to commands that have to be invoked
22182 explicitly, like @kbd{a s}.
22184 Finally, @expr{a + 0} and @expr{0 + a} are simplified to @expr{a}.
22185 A consequence of the above rules is that @expr{0 - a} is simplified
22186 to @expr{-a}.
22188 @tex
22189 \bigskip
22190 @end tex
22192 The products @expr{1 a} and @expr{a 1} are simplified to @expr{a};
22193 @expr{(-1) a} and @expr{a (-1)} are simplified to @expr{-a};
22194 @expr{0 a} and @expr{a 0} are simplified to @expr{0}, except that
22195 in Matrix mode where @expr{a} is not provably scalar the result
22196 is the generic zero matrix @samp{idn(0)}, and that if @expr{a} is
22197 infinite the result is @samp{nan}.
22199 Also, @expr{(-a) b} and @expr{a (-b)} are simplified to @expr{-(a b)},
22200 where this occurs for negated formulas but not for regular negative
22201 numbers.
22203 Products are commuted only to move numbers to the front:
22204 @expr{a b 2} is commuted to @expr{2 a b}.
22206 The product @expr{a (b + c)} is distributed over the sum only if
22207 @expr{a} and at least one of @expr{b} and @expr{c} are numbers:
22208 @expr{2 (x + 3)} goes to @expr{2 x + 6}.  The formula
22209 @expr{(-a) (b - c)}, where @expr{-a} is a negative number, is
22210 rewritten to @expr{a (c - b)}.
22212 The distributive law of products and powers is used for adjacent
22213 terms of the product: @expr{x^a x^b} goes to 
22214 @texline @math{x^{a+b}}
22215 @infoline @expr{x^(a+b)}
22216 where @expr{a} is a number, or an implicit 1 (as in @expr{x}),
22217 or the implicit one-half of @expr{@tfn{sqrt}(x)}, and similarly for
22218 @expr{b}.  The result is written using @samp{sqrt} or @samp{1/sqrt}
22219 if the sum of the powers is @expr{1/2} or @expr{-1/2}, respectively.
22220 If the sum of the powers is zero, the product is simplified to
22221 @expr{1} or to @samp{idn(1)} if Matrix mode is enabled.
22223 The product of a negative power times anything but another negative
22224 power is changed to use division:  
22225 @texline @math{x^{-2} y}
22226 @infoline @expr{x^(-2) y} 
22227 goes to @expr{y / x^2} unless Matrix mode is
22228 in effect and neither @expr{x} nor @expr{y} are scalar (in which
22229 case it is considered unsafe to rearrange the order of the terms).
22231 Finally, @expr{a (b/c)} is rewritten to @expr{(a b)/c}, and also
22232 @expr{(a/b) c} is changed to @expr{(a c)/b} unless in Matrix mode.
22234 @tex
22235 \bigskip
22236 @end tex
22238 Simplifications for quotients are analogous to those for products.
22239 The quotient @expr{0 / x} is simplified to @expr{0}, with the same
22240 exceptions that were noted for @expr{0 x}.  Likewise, @expr{x / 1}
22241 and @expr{x / (-1)} are simplified to @expr{x} and @expr{-x},
22242 respectively.
22244 The quotient @expr{x / 0} is left unsimplified or changed to an
22245 infinite quantity, as directed by the current infinite mode.
22246 @xref{Infinite Mode}.
22248 The expression 
22249 @texline @math{a / b^{-c}}
22250 @infoline @expr{a / b^(-c)} 
22251 is changed to @expr{a b^c}, where @expr{-c} is any negative-looking
22252 power.  Also, @expr{1 / b^c} is changed to 
22253 @texline @math{b^{-c}}
22254 @infoline @expr{b^(-c)} 
22255 for any power @expr{c}.
22257 Also, @expr{(-a) / b} and @expr{a / (-b)} go to @expr{-(a/b)};
22258 @expr{(a/b) / c} goes to @expr{a / (b c)}; and @expr{a / (b/c)}
22259 goes to @expr{(a c) / b} unless Matrix mode prevents this
22260 rearrangement.  Similarly, @expr{a / (b:c)} is simplified to
22261 @expr{(c:b) a} for any fraction @expr{b:c}.
22263 The distributive law is applied to @expr{(a + b) / c} only if
22264 @expr{c} and at least one of @expr{a} and @expr{b} are numbers.
22265 Quotients of powers and square roots are distributed just as
22266 described for multiplication.
22268 Quotients of products cancel only in the leading terms of the
22269 numerator and denominator.  In other words, @expr{a x b / a y b}
22270 is cancelled to @expr{x b / y b} but not to @expr{x / y}.  Once
22271 again this is because full cancellation can be slow; use @kbd{a s}
22272 to cancel all terms of the quotient.
22274 Quotients of negative-looking values are simplified according
22275 to @expr{(-a) / (-b)} to @expr{a / b}, @expr{(-a) / (b - c)}
22276 to @expr{a / (c - b)}, and @expr{(a - b) / (-c)} to @expr{(b - a) / c}.
22278 @tex
22279 \bigskip
22280 @end tex
22282 The formula @expr{x^0} is simplified to @expr{1}, or to @samp{idn(1)}
22283 in Matrix mode.  The formula @expr{0^x} is simplified to @expr{0}
22284 unless @expr{x} is a negative number, complex number or zero.
22285 If @expr{x} is negative, complex or @expr{0.0}, @expr{0^x} is an
22286 infinity or an unsimplified formula according to the current infinite
22287 mode.  The expression @expr{0^0} is simplified to @expr{1}.
22289 Powers of products or quotients @expr{(a b)^c}, @expr{(a/b)^c}
22290 are distributed to @expr{a^c b^c}, @expr{a^c / b^c} only if @expr{c}
22291 is an integer, or if either @expr{a} or @expr{b} are nonnegative
22292 real numbers.  Powers of powers @expr{(a^b)^c} are simplified to
22293 @texline @math{a^{b c}}
22294 @infoline @expr{a^(b c)} 
22295 only when @expr{c} is an integer and @expr{b c} also
22296 evaluates to an integer.  Without these restrictions these simplifications
22297 would not be safe because of problems with principal values.
22298 (In other words, 
22299 @texline @math{((-3)^{1/2})^2}
22300 @infoline @expr{((-3)^1:2)^2} 
22301 is safe to simplify, but
22302 @texline @math{((-3)^2)^{1/2}}
22303 @infoline @expr{((-3)^2)^1:2} 
22304 is not.)  @xref{Declarations}, for ways to inform Calc that your
22305 variables satisfy these requirements.
22307 As a special case of this rule, @expr{@tfn{sqrt}(x)^n} is simplified to
22308 @texline @math{x^{n/2}}
22309 @infoline @expr{x^(n/2)} 
22310 only for even integers @expr{n}.
22312 If @expr{a} is known to be real, @expr{b} is an even integer, and
22313 @expr{c} is a half- or quarter-integer, then @expr{(a^b)^c} is
22314 simplified to @expr{@tfn{abs}(a^(b c))}.
22316 Also, @expr{(-a)^b} is simplified to @expr{a^b} if @expr{b} is an
22317 even integer, or to @expr{-(a^b)} if @expr{b} is an odd integer,
22318 for any negative-looking expression @expr{-a}.
22320 Square roots @expr{@tfn{sqrt}(x)} generally act like one-half powers
22321 @texline @math{x^{1:2}}
22322 @infoline @expr{x^1:2} 
22323 for the purposes of the above-listed simplifications.
22325 Also, note that 
22326 @texline @math{1 / x^{1:2}}
22327 @infoline @expr{1 / x^1:2} 
22328 is changed to 
22329 @texline @math{x^{-1:2}},
22330 @infoline @expr{x^(-1:2)},
22331 but @expr{1 / @tfn{sqrt}(x)} is left alone.
22333 @tex
22334 \bigskip
22335 @end tex
22337 Generic identity matrices (@pxref{Matrix Mode}) are simplified by the
22338 following rules:  @expr{@tfn{idn}(a) + b} to @expr{a + b} if @expr{b}
22339 is provably scalar, or expanded out if @expr{b} is a matrix;
22340 @expr{@tfn{idn}(a) + @tfn{idn}(b)} to @expr{@tfn{idn}(a + b)}; 
22341 @expr{-@tfn{idn}(a)} to @expr{@tfn{idn}(-a)}; @expr{a @tfn{idn}(b)} to 
22342 @expr{@tfn{idn}(a b)} if @expr{a} is provably scalar, or to @expr{a b} 
22343 if @expr{a} is provably non-scalar;  @expr{@tfn{idn}(a) @tfn{idn}(b)} to
22344 @expr{@tfn{idn}(a b)}; analogous simplifications for quotients involving
22345 @code{idn}; and @expr{@tfn{idn}(a)^n} to @expr{@tfn{idn}(a^n)} where
22346 @expr{n} is an integer.
22348 @tex
22349 \bigskip
22350 @end tex
22352 The @code{floor} function and other integer truncation functions
22353 vanish if the argument is provably integer-valued, so that
22354 @expr{@tfn{floor}(@tfn{round}(x))} simplifies to @expr{@tfn{round}(x)}.
22355 Also, combinations of @code{float}, @code{floor} and its friends,
22356 and @code{ffloor} and its friends, are simplified in appropriate
22357 ways.  @xref{Integer Truncation}.
22359 The expression @expr{@tfn{abs}(-x)} changes to @expr{@tfn{abs}(x)}.
22360 The expression @expr{@tfn{abs}(@tfn{abs}(x))} changes to
22361 @expr{@tfn{abs}(x)};  in fact, @expr{@tfn{abs}(x)} changes to @expr{x} or
22362 @expr{-x} if @expr{x} is provably nonnegative or nonpositive
22363 (@pxref{Declarations}). 
22365 While most functions do not recognize the variable @code{i} as an
22366 imaginary number, the @code{arg} function does handle the two cases
22367 @expr{@tfn{arg}(@tfn{i})} and @expr{@tfn{arg}(-@tfn{i})} just for convenience.
22369 The expression @expr{@tfn{conj}(@tfn{conj}(x))} simplifies to @expr{x}.
22370 Various other expressions involving @code{conj}, @code{re}, and
22371 @code{im} are simplified, especially if some of the arguments are
22372 provably real or involve the constant @code{i}.  For example,
22373 @expr{@tfn{conj}(a + b i)} is changed to 
22374 @expr{@tfn{conj}(a) - @tfn{conj}(b) i},  or to @expr{a - b i} if @expr{a}
22375 and @expr{b} are known to be real.
22377 Functions like @code{sin} and @code{arctan} generally don't have
22378 any default simplifications beyond simply evaluating the functions
22379 for suitable numeric arguments and infinity.  The @kbd{a s} command
22380 described in the next section does provide some simplifications for
22381 these functions, though.
22383 One important simplification that does occur is that
22384 @expr{@tfn{ln}(@tfn{e})} is simplified to 1, and @expr{@tfn{ln}(@tfn{e}^x)} is
22385 simplified to @expr{x} for any @expr{x}.  This occurs even if you have
22386 stored a different value in the Calc variable @samp{e}; but this would
22387 be a bad idea in any case if you were also using natural logarithms!
22389 Among the logical functions, @tfn{!(@var{a} <= @var{b})} changes to
22390 @tfn{@var{a} > @var{b}} and so on.  Equations and inequalities where both sides
22391 are either negative-looking or zero are simplified by negating both sides
22392 and reversing the inequality.  While it might seem reasonable to simplify
22393 @expr{!!x} to @expr{x}, this would not be valid in general because
22394 @expr{!!2} is 1, not 2.
22396 Most other Calc functions have few if any default simplifications
22397 defined, aside of course from evaluation when the arguments are
22398 suitable numbers.
22400 @node Algebraic Simplifications, Unsafe Simplifications, Default Simplifications, Simplifying Formulas
22401 @subsection Algebraic Simplifications
22403 @noindent
22404 @cindex Algebraic simplifications
22405 The @kbd{a s} command makes simplifications that may be too slow to
22406 do all the time, or that may not be desirable all of the time.
22407 If you find these simplifications are worthwhile, you can type
22408 @kbd{m A} to have Calc apply them automatically.
22410 This section describes all simplifications that are performed by
22411 the @kbd{a s} command.  Note that these occur in addition to the
22412 default simplifications; even if the default simplifications have
22413 been turned off by an @kbd{m O} command, @kbd{a s} will turn them
22414 back on temporarily while it simplifies the formula.
22416 There is a variable, @code{AlgSimpRules}, in which you can put rewrites
22417 to be applied by @kbd{a s}.  Its use is analogous to @code{EvalRules},
22418 but without the special restrictions.  Basically, the simplifier does
22419 @samp{@w{a r} AlgSimpRules} with an infinite repeat count on the whole
22420 expression being simplified, then it traverses the expression applying
22421 the built-in rules described below.  If the result is different from
22422 the original expression, the process repeats with the default
22423 simplifications (including @code{EvalRules}), then @code{AlgSimpRules},
22424 then the built-in simplifications, and so on.
22426 @tex
22427 \bigskip
22428 @end tex
22430 Sums are simplified in two ways.  Constant terms are commuted to the
22431 end of the sum, so that @expr{a + 2 + b} changes to @expr{a + b + 2}.
22432 The only exception is that a constant will not be commuted away
22433 from the first position of a difference, i.e., @expr{2 - x} is not
22434 commuted to @expr{-x + 2}.
22436 Also, terms of sums are combined by the distributive law, as in
22437 @expr{x + y + 2 x} to @expr{y + 3 x}.  This always occurs for
22438 adjacent terms, but @kbd{a s} compares all pairs of terms including
22439 non-adjacent ones.
22441 @tex
22442 \bigskip
22443 @end tex
22445 Products are sorted into a canonical order using the commutative
22446 law.  For example, @expr{b c a} is commuted to @expr{a b c}.
22447 This allows easier comparison of products; for example, the default
22448 simplifications will not change @expr{x y + y x} to @expr{2 x y},
22449 but @kbd{a s} will; it first rewrites the sum to @expr{x y + x y},
22450 and then the default simplifications are able to recognize a sum
22451 of identical terms.
22453 The canonical ordering used to sort terms of products has the
22454 property that real-valued numbers, interval forms and infinities
22455 come first, and are sorted into increasing order.  The @kbd{V S}
22456 command uses the same ordering when sorting a vector.
22458 Sorting of terms of products is inhibited when Matrix mode is
22459 turned on; in this case, Calc will never exchange the order of
22460 two terms unless it knows at least one of the terms is a scalar.
22462 Products of powers are distributed by comparing all pairs of
22463 terms, using the same method that the default simplifications
22464 use for adjacent terms of products.
22466 Even though sums are not sorted, the commutative law is still
22467 taken into account when terms of a product are being compared.
22468 Thus @expr{(x + y) (y + x)} will be simplified to @expr{(x + y)^2}.
22469 A subtle point is that @expr{(x - y) (y - x)} will @emph{not}
22470 be simplified to @expr{-(x - y)^2}; Calc does not notice that
22471 one term can be written as a constant times the other, even if
22472 that constant is @mathit{-1}.
22474 A fraction times any expression, @expr{(a:b) x}, is changed to
22475 a quotient involving integers:  @expr{a x / b}.  This is not
22476 done for floating-point numbers like @expr{0.5}, however.  This
22477 is one reason why you may find it convenient to turn Fraction mode
22478 on while doing algebra; @pxref{Fraction Mode}.
22480 @tex
22481 \bigskip
22482 @end tex
22484 Quotients are simplified by comparing all terms in the numerator
22485 with all terms in the denominator for possible cancellation using
22486 the distributive law.  For example, @expr{a x^2 b / c x^3 d} will
22487 cancel @expr{x^2} from the top and bottom to get @expr{a b / c x d}.
22488 (The terms in the denominator will then be rearranged to @expr{c d x}
22489 as described above.)  If there is any common integer or fractional
22490 factor in the numerator and denominator, it is cancelled out;
22491 for example, @expr{(4 x + 6) / 8 x} simplifies to @expr{(2 x + 3) / 4 x}.
22493 Non-constant common factors are not found even by @kbd{a s}.  To
22494 cancel the factor @expr{a} in @expr{(a x + a) / a^2} you could first
22495 use @kbd{j M} on the product @expr{a x} to Merge the numerator to
22496 @expr{a (1+x)}, which can then be simplified successfully.
22498 @tex
22499 \bigskip
22500 @end tex
22502 Integer powers of the variable @code{i} are simplified according
22503 to the identity @expr{i^2 = -1}.  If you store a new value other
22504 than the complex number @expr{(0,1)} in @code{i}, this simplification
22505 will no longer occur.  This is done by @kbd{a s} instead of by default
22506 in case someone (unwisely) uses the name @code{i} for a variable
22507 unrelated to complex numbers; it would be unfortunate if Calc
22508 quietly and automatically changed this formula for reasons the
22509 user might not have been thinking of.
22511 Square roots of integer or rational arguments are simplified in
22512 several ways.  (Note that these will be left unevaluated only in
22513 Symbolic mode.)  First, square integer or rational factors are
22514 pulled out so that @expr{@tfn{sqrt}(8)} is rewritten as
22515 @texline @math{2\,@tfn{sqrt}(2)}.
22516 @infoline @expr{2 sqrt(2)}.  
22517 Conceptually speaking this implies factoring the argument into primes
22518 and moving pairs of primes out of the square root, but for reasons of
22519 efficiency Calc only looks for primes up to 29.
22521 Square roots in the denominator of a quotient are moved to the
22522 numerator:  @expr{1 / @tfn{sqrt}(3)} changes to @expr{@tfn{sqrt}(3) / 3}.
22523 The same effect occurs for the square root of a fraction:
22524 @expr{@tfn{sqrt}(2:3)} changes to @expr{@tfn{sqrt}(6) / 3}.
22526 @tex
22527 \bigskip
22528 @end tex
22530 The @code{%} (modulo) operator is simplified in several ways
22531 when the modulus @expr{M} is a positive real number.  First, if
22532 the argument is of the form @expr{x + n} for some real number
22533 @expr{n}, then @expr{n} is itself reduced modulo @expr{M}.  For
22534 example, @samp{(x - 23) % 10} is simplified to @samp{(x + 7) % 10}.
22536 If the argument is multiplied by a constant, and this constant
22537 has a common integer divisor with the modulus, then this factor is
22538 cancelled out.  For example, @samp{12 x % 15} is changed to
22539 @samp{3 (4 x % 5)} by factoring out 3.  Also, @samp{(12 x + 1) % 15}
22540 is changed to @samp{3 ((4 x + 1:3) % 5)}.  While these forms may
22541 not seem ``simpler,'' they allow Calc to discover useful information
22542 about modulo forms in the presence of declarations.
22544 If the modulus is 1, then Calc can use @code{int} declarations to
22545 evaluate the expression.  For example, the idiom @samp{x % 2} is
22546 often used to check whether a number is odd or even.  As described
22547 above, @w{@samp{2 n % 2}} and @samp{(2 n + 1) % 2} are simplified to
22548 @samp{2 (n % 1)} and @samp{2 ((n + 1:2) % 1)}, respectively; Calc
22549 can simplify these to 0 and 1 (respectively) if @code{n} has been
22550 declared to be an integer.
22552 @tex
22553 \bigskip
22554 @end tex
22556 Trigonometric functions are simplified in several ways.  Whenever a
22557 products of two trigonometric functions can be replaced by a single
22558 function, the replacement is made; for example,
22559 @expr{@tfn{tan}(x) @tfn{cos}(x)} is simplified to @expr{@tfn{sin}(x)}. 
22560 Reciprocals of trigonometric functions are replaced by their reciprocal
22561 function; for example, @expr{1/@tfn{sec}(x)} is simplified to
22562 @expr{@tfn{cos}(x)}.  The corresponding simplifications for the
22563 hyperbolic functions are also handled.
22565 Trigonometric functions of their inverse functions are
22566 simplified. The expression @expr{@tfn{sin}(@tfn{arcsin}(x))} is
22567 simplified to @expr{x}, and similarly for @code{cos} and @code{tan}.  
22568 Trigonometric functions of inverses of different trigonometric
22569 functions can also be simplified, as in @expr{@tfn{sin}(@tfn{arccos}(x))}
22570 to @expr{@tfn{sqrt}(1 - x^2)}.
22572 If the argument to @code{sin} is negative-looking, it is simplified to
22573 @expr{-@tfn{sin}(x)}, and similarly for @code{cos} and @code{tan}.
22574 Finally, certain special values of the argument are recognized;
22575 @pxref{Trigonometric and Hyperbolic Functions}.
22577 Hyperbolic functions of their inverses and of negative-looking
22578 arguments are also handled, as are exponentials of inverse
22579 hyperbolic functions.
22581 No simplifications for inverse trigonometric and hyperbolic
22582 functions are known, except for negative arguments of @code{arcsin},
22583 @code{arctan}, @code{arcsinh}, and @code{arctanh}.  Note that
22584 @expr{@tfn{arcsin}(@tfn{sin}(x))} can @emph{not} safely change to
22585 @expr{x}, since this only correct within an integer multiple of 
22586 @texline @math{2 \pi}
22587 @infoline @expr{2 pi} 
22588 radians or 360 degrees.  However, @expr{@tfn{arcsinh}(@tfn{sinh}(x))} is
22589 simplified to @expr{x} if @expr{x} is known to be real.
22591 Several simplifications that apply to logarithms and exponentials
22592 are that @expr{@tfn{exp}(@tfn{ln}(x))}, 
22593 @texline @tfn{e}@math{^{\ln(x)}},
22594 @infoline @expr{e^@tfn{ln}(x)}, 
22596 @texline @math{10^{{\rm log10}(x)}}
22597 @infoline @expr{10^@tfn{log10}(x)} 
22598 all reduce to @expr{x}.  Also, @expr{@tfn{ln}(@tfn{exp}(x))}, etc., can
22599 reduce to @expr{x} if @expr{x} is provably real.  The form
22600 @expr{@tfn{exp}(x)^y} is simplified to @expr{@tfn{exp}(x y)}.  If @expr{x}
22601 is a suitable multiple of 
22602 @texline @math{\pi i} 
22603 @infoline @expr{pi i}
22604 (as described above for the trigonometric functions), then
22605 @expr{@tfn{exp}(x)} or @expr{e^x} will be expanded.  Finally,
22606 @expr{@tfn{ln}(x)} is simplified to a form involving @code{pi} and
22607 @code{i} where @expr{x} is provably negative, positive imaginary, or
22608 negative imaginary. 
22610 The error functions @code{erf} and @code{erfc} are simplified when
22611 their arguments are negative-looking or are calls to the @code{conj}
22612 function.
22614 @tex
22615 \bigskip
22616 @end tex
22618 Equations and inequalities are simplified by cancelling factors
22619 of products, quotients, or sums on both sides.  Inequalities
22620 change sign if a negative multiplicative factor is cancelled.
22621 Non-constant multiplicative factors as in @expr{a b = a c} are
22622 cancelled from equations only if they are provably nonzero (generally
22623 because they were declared so; @pxref{Declarations}).  Factors
22624 are cancelled from inequalities only if they are nonzero and their
22625 sign is known.
22627 Simplification also replaces an equation or inequality with
22628 1 or 0 (``true'' or ``false'') if it can through the use of
22629 declarations.  If @expr{x} is declared to be an integer greater
22630 than 5, then @expr{x < 3}, @expr{x = 3}, and @expr{x = 7.5} are
22631 all simplified to 0, but @expr{x > 3} is simplified to 1.
22632 By a similar analysis, @expr{abs(x) >= 0} is simplified to 1,
22633 as is @expr{x^2 >= 0} if @expr{x} is known to be real.
22635 @node Unsafe Simplifications, Simplification of Units, Algebraic Simplifications, Simplifying Formulas
22636 @subsection ``Unsafe'' Simplifications
22638 @noindent
22639 @cindex Unsafe simplifications
22640 @cindex Extended simplification
22641 @kindex a e
22642 @pindex calc-simplify-extended
22643 @ignore
22644 @mindex esimpl@idots
22645 @end ignore
22646 @tindex esimplify
22647 The @kbd{a e} (@code{calc-simplify-extended}) [@code{esimplify}] command
22648 is like @kbd{a s}
22649 except that it applies some additional simplifications which are not
22650 ``safe'' in all cases.  Use this only if you know the values in your
22651 formula lie in the restricted ranges for which these simplifications
22652 are valid.  The symbolic integrator uses @kbd{a e};
22653 one effect of this is that the integrator's results must be used with
22654 caution.  Where an integral table will often attach conditions like
22655 ``for positive @expr{a} only,'' Calc (like most other symbolic
22656 integration programs) will simply produce an unqualified result.
22658 Because @kbd{a e}'s simplifications are unsafe, it is sometimes better
22659 to type @kbd{C-u -3 a v}, which does extended simplification only
22660 on the top level of the formula without affecting the sub-formulas.
22661 In fact, @kbd{C-u -3 j v} allows you to target extended simplification
22662 to any specific part of a formula.
22664 The variable @code{ExtSimpRules} contains rewrites to be applied by
22665 the @kbd{a e} command.  These are applied in addition to
22666 @code{EvalRules} and @code{AlgSimpRules}.  (The @kbd{a r AlgSimpRules}
22667 step described above is simply followed by an @kbd{a r ExtSimpRules} step.)
22669 Following is a complete list of ``unsafe'' simplifications performed
22670 by @kbd{a e}.
22672 @tex
22673 \bigskip
22674 @end tex
22676 Inverse trigonometric or hyperbolic functions, called with their
22677 corresponding non-inverse functions as arguments, are simplified
22678 by @kbd{a e}.  For example, @expr{@tfn{arcsin}(@tfn{sin}(x))} changes
22679 to @expr{x}.  Also, @expr{@tfn{arcsin}(@tfn{cos}(x))} and
22680 @expr{@tfn{arccos}(@tfn{sin}(x))} both change to @expr{@tfn{pi}/2 - x}.
22681 These simplifications are unsafe because they are valid only for
22682 values of @expr{x} in a certain range; outside that range, values
22683 are folded down to the 360-degree range that the inverse trigonometric
22684 functions always produce.
22686 Powers of powers @expr{(x^a)^b} are simplified to 
22687 @texline @math{x^{a b}}
22688 @infoline @expr{x^(a b)}
22689 for all @expr{a} and @expr{b}.  These results will be valid only
22690 in a restricted range of @expr{x}; for example, in 
22691 @texline @math{(x^2)^{1:2}}
22692 @infoline @expr{(x^2)^1:2}
22693 the powers cancel to get @expr{x}, which is valid for positive values
22694 of @expr{x} but not for negative or complex values.
22696 Similarly, @expr{@tfn{sqrt}(x^a)} and @expr{@tfn{sqrt}(x)^a} are both
22697 simplified (possibly unsafely) to 
22698 @texline @math{x^{a/2}}.
22699 @infoline @expr{x^(a/2)}.
22701 Forms like @expr{@tfn{sqrt}(1 - sin(x)^2)} are simplified to, e.g.,
22702 @expr{@tfn{cos}(x)}.  Calc has identities of this sort for @code{sin},
22703 @code{cos}, @code{tan}, @code{sinh}, and @code{cosh}.
22705 Arguments of square roots are partially factored to look for
22706 squared terms that can be extracted.  For example,
22707 @expr{@tfn{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to 
22708 @expr{a b @tfn{sqrt}(a+b)}.
22710 The simplifications of @expr{@tfn{ln}(@tfn{exp}(x))},
22711 @expr{@tfn{ln}(@tfn{e}^x)}, and @expr{@tfn{log10}(10^x)} to @expr{x} are also
22712 unsafe because of problems with principal values (although these
22713 simplifications are safe if @expr{x} is known to be real).
22715 Common factors are cancelled from products on both sides of an
22716 equation, even if those factors may be zero:  @expr{a x / b x}
22717 to @expr{a / b}.  Such factors are never cancelled from
22718 inequalities:  Even @kbd{a e} is not bold enough to reduce
22719 @expr{a x < b x} to @expr{a < b} (or @expr{a > b}, depending
22720 on whether you believe @expr{x} is positive or negative).
22721 The @kbd{a M /} command can be used to divide a factor out of
22722 both sides of an inequality.
22724 @node Simplification of Units,  , Unsafe Simplifications, Simplifying Formulas
22725 @subsection Simplification of Units
22727 @noindent
22728 The simplifications described in this section are applied by the
22729 @kbd{u s} (@code{calc-simplify-units}) command.  These are in addition
22730 to the regular @kbd{a s} (but not @kbd{a e}) simplifications described
22731 earlier.  @xref{Basic Operations on Units}.
22733 The variable @code{UnitSimpRules} contains rewrites to be applied by
22734 the @kbd{u s} command.  These are applied in addition to @code{EvalRules}
22735 and @code{AlgSimpRules}.
22737 Scalar mode is automatically put into effect when simplifying units.
22738 @xref{Matrix Mode}.
22740 Sums @expr{a + b} involving units are simplified by extracting the
22741 units of @expr{a} as if by the @kbd{u x} command (call the result
22742 @expr{u_a}), then simplifying the expression @expr{b / u_a}
22743 using @kbd{u b} and @kbd{u s}.  If the result has units then the sum
22744 is inconsistent and is left alone.  Otherwise, it is rewritten
22745 in terms of the units @expr{u_a}.
22747 If units auto-ranging mode is enabled, products or quotients in
22748 which the first argument is a number which is out of range for the
22749 leading unit are modified accordingly.
22751 When cancelling and combining units in products and quotients,
22752 Calc accounts for unit names that differ only in the prefix letter.
22753 For example, @samp{2 km m} is simplified to @samp{2000 m^2}.
22754 However, compatible but different units like @code{ft} and @code{in}
22755 are not combined in this way.
22757 Quotients @expr{a / b} are simplified in three additional ways.  First,
22758 if @expr{b} is a number or a product beginning with a number, Calc
22759 computes the reciprocal of this number and moves it to the numerator.
22761 Second, for each pair of unit names from the numerator and denominator
22762 of a quotient, if the units are compatible (e.g., they are both
22763 units of area) then they are replaced by the ratio between those
22764 units.  For example, in @samp{3 s in N / kg cm} the units
22765 @samp{in / cm} will be replaced by @expr{2.54}.
22767 Third, if the units in the quotient exactly cancel out, so that
22768 a @kbd{u b} command on the quotient would produce a dimensionless
22769 number for an answer, then the quotient simplifies to that number.
22771 For powers and square roots, the ``unsafe'' simplifications
22772 @expr{(a b)^c} to @expr{a^c b^c}, @expr{(a/b)^c} to @expr{a^c / b^c},
22773 and @expr{(a^b)^c} to 
22774 @texline @math{a^{b c}}
22775 @infoline @expr{a^(b c)} 
22776 are done if the powers are real numbers.  (These are safe in the context
22777 of units because all numbers involved can reasonably be assumed to be
22778 real.)
22780 Also, if a unit name is raised to a fractional power, and the
22781 base units in that unit name all occur to powers which are a
22782 multiple of the denominator of the power, then the unit name
22783 is expanded out into its base units, which can then be simplified
22784 according to the previous paragraph.  For example, @samp{acre^1.5}
22785 is simplified by noting that @expr{1.5 = 3:2}, that @samp{acre}
22786 is defined in terms of @samp{m^2}, and that the 2 in the power of
22787 @code{m} is a multiple of 2 in @expr{3:2}.  Thus, @code{acre^1.5} is
22788 replaced by approximately 
22789 @texline @math{(4046 m^2)^{1.5}}
22790 @infoline @expr{(4046 m^2)^1.5}, 
22791 which is then changed to 
22792 @texline @math{4046^{1.5} \, (m^2)^{1.5}},
22793 @infoline @expr{4046^1.5 (m^2)^1.5}, 
22794 then to @expr{257440 m^3}.
22796 The functions @code{float}, @code{frac}, @code{clean}, @code{abs},
22797 as well as @code{floor} and the other integer truncation functions,
22798 applied to unit names or products or quotients involving units, are
22799 simplified.  For example, @samp{round(1.6 in)} is changed to
22800 @samp{round(1.6) round(in)}; the lefthand term evaluates to 2,
22801 and the righthand term simplifies to @code{in}.
22803 The functions @code{sin}, @code{cos}, and @code{tan} with arguments
22804 that have angular units like @code{rad} or @code{arcmin} are
22805 simplified by converting to base units (radians), then evaluating
22806 with the angular mode temporarily set to radians.
22808 @node Polynomials, Calculus, Simplifying Formulas, Algebra
22809 @section Polynomials
22811 A @dfn{polynomial} is a sum of terms which are coefficients times
22812 various powers of a ``base'' variable.  For example, @expr{2 x^2 + 3 x - 4}
22813 is a polynomial in @expr{x}.  Some formulas can be considered
22814 polynomials in several different variables:  @expr{1 + 2 x + 3 y + 4 x y^2}
22815 is a polynomial in both @expr{x} and @expr{y}.  Polynomial coefficients
22816 are often numbers, but they may in general be any formulas not
22817 involving the base variable.
22819 @kindex a f
22820 @pindex calc-factor
22821 @tindex factor
22822 The @kbd{a f} (@code{calc-factor}) [@code{factor}] command factors a
22823 polynomial into a product of terms.  For example, the polynomial
22824 @expr{x^3 + 2 x^2 + x} is factored into @samp{x*(x+1)^2}.  As another
22825 example, @expr{a c + b d + b c + a d} is factored into the product
22826 @expr{(a + b) (c + d)}.
22828 Calc currently has three algorithms for factoring.  Formulas which are
22829 linear in several variables, such as the second example above, are
22830 merged according to the distributive law.  Formulas which are
22831 polynomials in a single variable, with constant integer or fractional
22832 coefficients, are factored into irreducible linear and/or quadratic
22833 terms.  The first example above factors into three linear terms
22834 (@expr{x}, @expr{x+1}, and @expr{x+1} again).  Finally, formulas
22835 which do not fit the above criteria are handled by the algebraic
22836 rewrite mechanism.
22838 Calc's polynomial factorization algorithm works by using the general
22839 root-finding command (@w{@kbd{a P}}) to solve for the roots of the
22840 polynomial.  It then looks for roots which are rational numbers
22841 or complex-conjugate pairs, and converts these into linear and
22842 quadratic terms, respectively.  Because it uses floating-point
22843 arithmetic, it may be unable to find terms that involve large
22844 integers (whose number of digits approaches the current precision).
22845 Also, irreducible factors of degree higher than quadratic are not
22846 found, and polynomials in more than one variable are not treated.
22847 (A more robust factorization algorithm may be included in a future
22848 version of Calc.)
22850 @vindex FactorRules
22851 @ignore
22852 @starindex
22853 @end ignore
22854 @tindex thecoefs
22855 @ignore
22856 @starindex
22857 @end ignore
22858 @ignore
22859 @mindex @idots
22860 @end ignore
22861 @tindex thefactors
22862 The rewrite-based factorization method uses rules stored in the variable
22863 @code{FactorRules}.  @xref{Rewrite Rules}, for a discussion of the
22864 operation of rewrite rules.  The default @code{FactorRules} are able
22865 to factor quadratic forms symbolically into two linear terms,
22866 @expr{(a x + b) (c x + d)}.  You can edit these rules to include other
22867 cases if you wish.  To use the rules, Calc builds the formula
22868 @samp{thecoefs(x, [a, b, c, ...])} where @code{x} is the polynomial
22869 base variable and @code{a}, @code{b}, etc., are polynomial coefficients
22870 (which may be numbers or formulas).  The constant term is written first,
22871 i.e., in the @code{a} position.  When the rules complete, they should have
22872 changed the formula into the form @samp{thefactors(x, [f1, f2, f3, ...])}
22873 where each @code{fi} should be a factored term, e.g., @samp{x - ai}.
22874 Calc then multiplies these terms together to get the complete
22875 factored form of the polynomial.  If the rules do not change the
22876 @code{thecoefs} call to a @code{thefactors} call, @kbd{a f} leaves the
22877 polynomial alone on the assumption that it is unfactorable.  (Note that
22878 the function names @code{thecoefs} and @code{thefactors} are used only
22879 as placeholders; there are no actual Calc functions by those names.)
22881 @kindex H a f
22882 @tindex factors
22883 The @kbd{H a f} [@code{factors}] command also factors a polynomial,
22884 but it returns a list of factors instead of an expression which is the
22885 product of the factors.  Each factor is represented by a sub-vector
22886 of the factor, and the power with which it appears.  For example,
22887 @expr{x^5 + x^4 - 33 x^3 + 63 x^2} factors to @expr{(x + 7) x^2 (x - 3)^2}
22888 in @kbd{a f}, or to @expr{[ [x, 2], [x+7, 1], [x-3, 2] ]} in @kbd{H a f}.
22889 If there is an overall numeric factor, it always comes first in the list.
22890 The functions @code{factor} and @code{factors} allow a second argument
22891 when written in algebraic form; @samp{factor(x,v)} factors @expr{x} with
22892 respect to the specific variable @expr{v}.  The default is to factor with
22893 respect to all the variables that appear in @expr{x}.
22895 @kindex a c
22896 @pindex calc-collect
22897 @tindex collect
22898 The @kbd{a c} (@code{calc-collect}) [@code{collect}] command rearranges a
22899 formula as a
22900 polynomial in a given variable, ordered in decreasing powers of that
22901 variable.  For example, given @expr{1 + 2 x + 3 y + 4 x y^2} on
22902 the stack, @kbd{a c x} would produce @expr{(2 + 4 y^2) x + (1 + 3 y)},
22903 and @kbd{a c y} would produce @expr{(4 x) y^2 + 3 y + (1 + 2 x)}.
22904 The polynomial will be expanded out using the distributive law as
22905 necessary:  Collecting @expr{x} in @expr{(x - 1)^3} produces
22906 @expr{x^3 - 3 x^2 + 3 x - 1}.  Terms not involving @expr{x} will
22907 not be expanded.
22909 The ``variable'' you specify at the prompt can actually be any
22910 expression: @kbd{a c ln(x+1)} will collect together all terms multiplied
22911 by @samp{ln(x+1)} or integer powers thereof.  If @samp{x} also appears
22912 in the formula in a context other than @samp{ln(x+1)}, @kbd{a c} will
22913 treat those occurrences as unrelated to @samp{ln(x+1)}, i.e., as constants.
22915 @kindex a x
22916 @pindex calc-expand
22917 @tindex expand
22918 The @kbd{a x} (@code{calc-expand}) [@code{expand}] command expands an
22919 expression by applying the distributive law everywhere.  It applies to
22920 products, quotients, and powers involving sums.  By default, it fully
22921 distributes all parts of the expression.  With a numeric prefix argument,
22922 the distributive law is applied only the specified number of times, then
22923 the partially expanded expression is left on the stack.
22925 The @kbd{a x} and @kbd{j D} commands are somewhat redundant.  Use
22926 @kbd{a x} if you want to expand all products of sums in your formula.
22927 Use @kbd{j D} if you want to expand a particular specified term of
22928 the formula.  There is an exactly analogous correspondence between
22929 @kbd{a f} and @kbd{j M}.  (The @kbd{j D} and @kbd{j M} commands
22930 also know many other kinds of expansions, such as
22931 @samp{exp(a + b) = exp(a) exp(b)}, which @kbd{a x} and @kbd{a f}
22932 do not do.)
22934 Calc's automatic simplifications will sometimes reverse a partial
22935 expansion.  For example, the first step in expanding @expr{(x+1)^3} is
22936 to write @expr{(x+1) (x+1)^2}.  If @kbd{a x} stops there and tries
22937 to put this formula onto the stack, though, Calc will automatically
22938 simplify it back to @expr{(x+1)^3} form.  The solution is to turn
22939 simplification off first (@pxref{Simplification Modes}), or to run
22940 @kbd{a x} without a numeric prefix argument so that it expands all
22941 the way in one step.
22943 @kindex a a
22944 @pindex calc-apart
22945 @tindex apart
22946 The @kbd{a a} (@code{calc-apart}) [@code{apart}] command expands a
22947 rational function by partial fractions.  A rational function is the
22948 quotient of two polynomials; @code{apart} pulls this apart into a
22949 sum of rational functions with simple denominators.  In algebraic
22950 notation, the @code{apart} function allows a second argument that
22951 specifies which variable to use as the ``base''; by default, Calc
22952 chooses the base variable automatically.
22954 @kindex a n
22955 @pindex calc-normalize-rat
22956 @tindex nrat
22957 The @kbd{a n} (@code{calc-normalize-rat}) [@code{nrat}] command
22958 attempts to arrange a formula into a quotient of two polynomials.
22959 For example, given @expr{1 + (a + b/c) / d}, the result would be
22960 @expr{(b + a c + c d) / c d}.  The quotient is reduced, so that
22961 @kbd{a n} will simplify @expr{(x^2 + 2x + 1) / (x^2 - 1)} by dividing
22962 out the common factor @expr{x + 1}, yielding @expr{(x + 1) / (x - 1)}.
22964 @kindex a \
22965 @pindex calc-poly-div
22966 @tindex pdiv
22967 The @kbd{a \} (@code{calc-poly-div}) [@code{pdiv}] command divides
22968 two polynomials @expr{u} and @expr{v}, yielding a new polynomial
22969 @expr{q}.  If several variables occur in the inputs, the inputs are
22970 considered multivariate polynomials.  (Calc divides by the variable
22971 with the largest power in @expr{u} first, or, in the case of equal
22972 powers, chooses the variables in alphabetical order.)  For example,
22973 dividing @expr{x^2 + 3 x + 2} by @expr{x + 2} yields @expr{x + 1}.
22974 The remainder from the division, if any, is reported at the bottom
22975 of the screen and is also placed in the Trail along with the quotient.
22977 Using @code{pdiv} in algebraic notation, you can specify the particular
22978 variable to be used as the base: @code{pdiv(@var{a},@var{b},@var{x})}.
22979 If @code{pdiv} is given only two arguments (as is always the case with
22980 the @kbd{a \} command), then it does a multivariate division as outlined
22981 above.
22983 @kindex a %
22984 @pindex calc-poly-rem
22985 @tindex prem
22986 The @kbd{a %} (@code{calc-poly-rem}) [@code{prem}] command divides
22987 two polynomials and keeps the remainder @expr{r}.  The quotient
22988 @expr{q} is discarded.  For any formulas @expr{a} and @expr{b}, the
22989 results of @kbd{a \} and @kbd{a %} satisfy @expr{a = q b + r}.
22990 (This is analogous to plain @kbd{\} and @kbd{%}, which compute the
22991 integer quotient and remainder from dividing two numbers.)
22993 @kindex a /
22994 @kindex H a /
22995 @pindex calc-poly-div-rem
22996 @tindex pdivrem
22997 @tindex pdivide
22998 The @kbd{a /} (@code{calc-poly-div-rem}) [@code{pdivrem}] command
22999 divides two polynomials and reports both the quotient and the
23000 remainder as a vector @expr{[q, r]}.  The @kbd{H a /} [@code{pdivide}]
23001 command divides two polynomials and constructs the formula
23002 @expr{q + r/b} on the stack.  (Naturally if the remainder is zero,
23003 this will immediately simplify to @expr{q}.)
23005 @kindex a g
23006 @pindex calc-poly-gcd
23007 @tindex pgcd
23008 The @kbd{a g} (@code{calc-poly-gcd}) [@code{pgcd}] command computes
23009 the greatest common divisor of two polynomials.  (The GCD actually
23010 is unique only to within a constant multiplier; Calc attempts to
23011 choose a GCD which will be unsurprising.)  For example, the @kbd{a n}
23012 command uses @kbd{a g} to take the GCD of the numerator and denominator
23013 of a quotient, then divides each by the result using @kbd{a \}.  (The
23014 definition of GCD ensures that this division can take place without
23015 leaving a remainder.)
23017 While the polynomials used in operations like @kbd{a /} and @kbd{a g}
23018 often have integer coefficients, this is not required.  Calc can also
23019 deal with polynomials over the rationals or floating-point reals.
23020 Polynomials with modulo-form coefficients are also useful in many
23021 applications; if you enter @samp{(x^2 + 3 x - 1) mod 5}, Calc
23022 automatically transforms this into a polynomial over the field of
23023 integers mod 5:  @samp{(1 mod 5) x^2 + (3 mod 5) x + (4 mod 5)}.
23025 Congratulations and thanks go to Ove Ewerlid
23026 (@code{ewerlid@@mizar.DoCS.UU.SE}), who contributed many of the
23027 polynomial routines used in the above commands.
23029 @xref{Decomposing Polynomials}, for several useful functions for
23030 extracting the individual coefficients of a polynomial.
23032 @node Calculus, Solving Equations, Polynomials, Algebra
23033 @section Calculus
23035 @noindent
23036 The following calculus commands do not automatically simplify their
23037 inputs or outputs using @code{calc-simplify}.  You may find it helps
23038 to do this by hand by typing @kbd{a s} or @kbd{a e}.  It may also help
23039 to use @kbd{a x} and/or @kbd{a c} to arrange a result in the most
23040 readable way.
23042 @menu
23043 * Differentiation::
23044 * Integration::
23045 * Customizing the Integrator::
23046 * Numerical Integration::
23047 * Taylor Series::
23048 @end menu
23050 @node Differentiation, Integration, Calculus, Calculus
23051 @subsection Differentiation
23053 @noindent
23054 @kindex a d
23055 @kindex H a d
23056 @pindex calc-derivative
23057 @tindex deriv
23058 @tindex tderiv
23059 The @kbd{a d} (@code{calc-derivative}) [@code{deriv}] command computes
23060 the derivative of the expression on the top of the stack with respect to
23061 some variable, which it will prompt you to enter.  Normally, variables
23062 in the formula other than the specified differentiation variable are
23063 considered constant, i.e., @samp{deriv(y,x)} is reduced to zero.  With
23064 the Hyperbolic flag, the @code{tderiv} (total derivative) operation is used
23065 instead, in which derivatives of variables are not reduced to zero
23066 unless those variables are known to be ``constant,'' i.e., independent
23067 of any other variables.  (The built-in special variables like @code{pi}
23068 are considered constant, as are variables that have been declared
23069 @code{const}; @pxref{Declarations}.)
23071 With a numeric prefix argument @var{n}, this command computes the
23072 @var{n}th derivative.
23074 When working with trigonometric functions, it is best to switch to
23075 Radians mode first (with @w{@kbd{m r}}).  The derivative of @samp{sin(x)}
23076 in degrees is @samp{(pi/180) cos(x)}, probably not the expected
23077 answer!
23079 If you use the @code{deriv} function directly in an algebraic formula,
23080 you can write @samp{deriv(f,x,x0)} which represents the derivative
23081 of @expr{f} with respect to @expr{x}, evaluated at the point 
23082 @texline @math{x=x_0}.
23083 @infoline @expr{x=x0}.
23085 If the formula being differentiated contains functions which Calc does
23086 not know, the derivatives of those functions are produced by adding
23087 primes (apostrophe characters).  For example, @samp{deriv(f(2x), x)}
23088 produces @samp{2 f'(2 x)}, where the function @code{f'} represents the
23089 derivative of @code{f}.
23091 For functions you have defined with the @kbd{Z F} command, Calc expands
23092 the functions according to their defining formulas unless you have
23093 also defined @code{f'} suitably.  For example, suppose we define
23094 @samp{sinc(x) = sin(x)/x} using @kbd{Z F}.  If we then differentiate
23095 the formula @samp{sinc(2 x)}, the formula will be expanded to
23096 @samp{sin(2 x) / (2 x)} and differentiated.  However, if we also
23097 define @samp{sinc'(x) = dsinc(x)}, say, then Calc will write the
23098 result as @samp{2 dsinc(2 x)}.  @xref{Algebraic Definitions}.
23100 For multi-argument functions @samp{f(x,y,z)}, the derivative with respect
23101 to the first argument is written @samp{f'(x,y,z)}; derivatives with
23102 respect to the other arguments are @samp{f'2(x,y,z)} and @samp{f'3(x,y,z)}.
23103 Various higher-order derivatives can be formed in the obvious way, e.g.,
23104 @samp{f'@var{}'(x)} (the second derivative of @code{f}) or
23105 @samp{f'@var{}'2'3(x,y,z)} (@code{f} differentiated with respect to each
23106 argument once).
23108 @node Integration, Customizing the Integrator, Differentiation, Calculus
23109 @subsection Integration
23111 @noindent
23112 @kindex a i
23113 @pindex calc-integral
23114 @tindex integ
23115 The @kbd{a i} (@code{calc-integral}) [@code{integ}] command computes the
23116 indefinite integral of the expression on the top of the stack with
23117 respect to a prompted-for variable.  The integrator is not guaranteed to
23118 work for all integrable functions, but it is able to integrate several
23119 large classes of formulas.  In particular, any polynomial or rational
23120 function (a polynomial divided by a polynomial) is acceptable.
23121 (Rational functions don't have to be in explicit quotient form, however; 
23122 @texline @math{x/(1+x^{-2})}
23123 @infoline @expr{x/(1+x^-2)}
23124 is not strictly a quotient of polynomials, but it is equivalent to
23125 @expr{x^3/(x^2+1)}, which is.)  Also, square roots of terms involving
23126 @expr{x} and @expr{x^2} may appear in rational functions being
23127 integrated.  Finally, rational functions involving trigonometric or
23128 hyperbolic functions can be integrated.
23130 With an argument (@kbd{C-u a i}), this command will compute the definite
23131 integral of the expression on top of the stack.  In this case, the
23132 command will again prompt for an integration variable, then prompt for a
23133 lower limit and an upper limit.
23135 @ifinfo
23136 If you use the @code{integ} function directly in an algebraic formula,
23137 you can also write @samp{integ(f,x,v)} which expresses the resulting
23138 indefinite integral in terms of variable @code{v} instead of @code{x}.
23139 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23140 integral from @code{a} to @code{b}.
23141 @end ifinfo
23142 @tex
23143 If you use the @code{integ} function directly in an algebraic formula,
23144 you can also write @samp{integ(f,x,v)} which expresses the resulting
23145 indefinite integral in terms of variable @code{v} instead of @code{x}.
23146 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23147 integral $\int_a^b f(x) \, dx$.
23148 @end tex
23150 Please note that the current implementation of Calc's integrator sometimes
23151 produces results that are significantly more complex than they need to
23152 be.  For example, the integral Calc finds for 
23153 @texline @math{1/(x+\sqrt{x^2+1})}
23154 @infoline @expr{1/(x+sqrt(x^2+1))}
23155 is several times more complicated than the answer Mathematica
23156 returns for the same input, although the two forms are numerically
23157 equivalent.  Also, any indefinite integral should be considered to have
23158 an arbitrary constant of integration added to it, although Calc does not
23159 write an explicit constant of integration in its result.  For example,
23160 Calc's solution for 
23161 @texline @math{1/(1+\tan x)}
23162 @infoline @expr{1/(1+tan(x))} 
23163 differs from the solution given in the @emph{CRC Math Tables} by a
23164 constant factor of  
23165 @texline @math{\pi i / 2}
23166 @infoline @expr{pi i / 2},
23167 due to a different choice of constant of integration.
23169 The Calculator remembers all the integrals it has done.  If conditions
23170 change in a way that would invalidate the old integrals, say, a switch
23171 from Degrees to Radians mode, then they will be thrown out.  If you
23172 suspect this is not happening when it should, use the
23173 @code{calc-flush-caches} command; @pxref{Caches}.
23175 @vindex IntegLimit
23176 Calc normally will pursue integration by substitution or integration by
23177 parts up to 3 nested times before abandoning an approach as fruitless.
23178 If the integrator is taking too long, you can lower this limit by storing
23179 a number (like 2) in the variable @code{IntegLimit}.  (The @kbd{s I}
23180 command is a convenient way to edit @code{IntegLimit}.)  If this variable
23181 has no stored value or does not contain a nonnegative integer, a limit
23182 of 3 is used.  The lower this limit is, the greater the chance that Calc
23183 will be unable to integrate a function it could otherwise handle.  Raising
23184 this limit allows the Calculator to solve more integrals, though the time
23185 it takes may grow exponentially.  You can monitor the integrator's actions
23186 by creating an Emacs buffer called @code{*Trace*}.  If such a buffer
23187 exists, the @kbd{a i} command will write a log of its actions there.
23189 If you want to manipulate integrals in a purely symbolic way, you can
23190 set the integration nesting limit to 0 to prevent all but fast
23191 table-lookup solutions of integrals.  You might then wish to define
23192 rewrite rules for integration by parts, various kinds of substitutions,
23193 and so on.  @xref{Rewrite Rules}.
23195 @node Customizing the Integrator, Numerical Integration, Integration, Calculus
23196 @subsection Customizing the Integrator
23198 @noindent
23199 @vindex IntegRules
23200 Calc has two built-in rewrite rules called @code{IntegRules} and
23201 @code{IntegAfterRules} which you can edit to define new integration
23202 methods.  @xref{Rewrite Rules}.  At each step of the integration process,
23203 Calc wraps the current integrand in a call to the fictitious function
23204 @samp{integtry(@var{expr},@var{var})}, where @var{expr} is the
23205 integrand and @var{var} is the integration variable.  If your rules
23206 rewrite this to be a plain formula (not a call to @code{integtry}), then
23207 Calc will use this formula as the integral of @var{expr}.  For example,
23208 the rule @samp{integtry(mysin(x),x) := -mycos(x)} would define a rule to
23209 integrate a function @code{mysin} that acts like the sine function.
23210 Then, putting @samp{4 mysin(2y+1)} on the stack and typing @kbd{a i y}
23211 will produce the integral @samp{-2 mycos(2y+1)}.  Note that Calc has
23212 automatically made various transformations on the integral to allow it
23213 to use your rule; integral tables generally give rules for
23214 @samp{mysin(a x + b)}, but you don't need to use this much generality
23215 in your @code{IntegRules}.
23217 @cindex Exponential integral Ei(x)
23218 @ignore
23219 @starindex
23220 @end ignore
23221 @tindex Ei
23222 As a more serious example, the expression @samp{exp(x)/x} cannot be
23223 integrated in terms of the standard functions, so the ``exponential
23224 integral'' function 
23225 @texline @math{{\rm Ei}(x)}
23226 @infoline @expr{Ei(x)} 
23227 was invented to describe it.
23228 We can get Calc to do this integral in terms of a made-up @code{Ei}
23229 function by adding the rule @samp{[integtry(exp(x)/x, x) := Ei(x)]}
23230 to @code{IntegRules}.  Now entering @samp{exp(2x)/x} on the stack
23231 and typing @kbd{a i x} yields @samp{Ei(2 x)}.  This new rule will
23232 work with Calc's various built-in integration methods (such as
23233 integration by substitution) to solve a variety of other problems
23234 involving @code{Ei}:  For example, now Calc will also be able to
23235 integrate @samp{exp(exp(x))} and @samp{ln(ln(x))} (to get @samp{Ei(exp(x))}
23236 and @samp{x ln(ln(x)) - Ei(ln(x))}, respectively).
23238 Your rule may do further integration by calling @code{integ}.  For
23239 example, @samp{integtry(twice(u),x) := twice(integ(u))} allows Calc
23240 to integrate @samp{twice(sin(x))} to get @samp{twice(-cos(x))}.
23241 Note that @code{integ} was called with only one argument.  This notation
23242 is allowed only within @code{IntegRules}; it means ``integrate this
23243 with respect to the same integration variable.''  If Calc is unable
23244 to integrate @code{u}, the integration that invoked @code{IntegRules}
23245 also fails.  Thus integrating @samp{twice(f(x))} fails, returning the
23246 unevaluated integral @samp{integ(twice(f(x)), x)}.  It is still valid
23247 to call @code{integ} with two or more arguments, however; in this case,
23248 if @code{u} is not integrable, @code{twice} itself will still be
23249 integrated:  If the above rule is changed to @samp{... := twice(integ(u,x))},
23250 then integrating @samp{twice(f(x))} will yield @samp{twice(integ(f(x),x))}.
23252 If a rule instead produces the formula @samp{integsubst(@var{sexpr},
23253 @var{svar})}, either replacing the top-level @code{integtry} call or
23254 nested anywhere inside the expression, then Calc will apply the
23255 substitution @samp{@var{u} = @var{sexpr}(@var{svar})} to try to
23256 integrate the original @var{expr}.  For example, the rule
23257 @samp{sqrt(a) := integsubst(sqrt(x),x)} says that if Calc ever finds
23258 a square root in the integrand, it should attempt the substitution
23259 @samp{u = sqrt(x)}.  (This particular rule is unnecessary because
23260 Calc always tries ``obvious'' substitutions where @var{sexpr} actually
23261 appears in the integrand.)  The variable @var{svar} may be the same
23262 as the @var{var} that appeared in the call to @code{integtry}, but
23263 it need not be.
23265 When integrating according to an @code{integsubst}, Calc uses the
23266 equation solver to find the inverse of @var{sexpr} (if the integrand
23267 refers to @var{var} anywhere except in subexpressions that exactly
23268 match @var{sexpr}).  It uses the differentiator to find the derivative
23269 of @var{sexpr} and/or its inverse (it has two methods that use one
23270 derivative or the other).  You can also specify these items by adding
23271 extra arguments to the @code{integsubst} your rules construct; the
23272 general form is @samp{integsubst(@var{sexpr}, @var{svar}, @var{sinv},
23273 @var{sprime})}, where @var{sinv} is the inverse of @var{sexpr} (still
23274 written as a function of @var{svar}), and @var{sprime} is the
23275 derivative of @var{sexpr} with respect to @var{svar}.  If you don't
23276 specify these things, and Calc is not able to work them out on its
23277 own with the information it knows, then your substitution rule will
23278 work only in very specific, simple cases.
23280 Calc applies @code{IntegRules} as if by @kbd{C-u 1 a r IntegRules};
23281 in other words, Calc stops rewriting as soon as any rule in your rule
23282 set succeeds.  (If it weren't for this, the @samp{integsubst(sqrt(x),x)}
23283 example above would keep on adding layers of @code{integsubst} calls
23284 forever!)
23286 @vindex IntegSimpRules
23287 Another set of rules, stored in @code{IntegSimpRules}, are applied
23288 every time the integrator uses @kbd{a s} to simplify an intermediate
23289 result.  For example, putting the rule @samp{twice(x) := 2 x} into
23290 @code{IntegSimpRules} would tell Calc to convert the @code{twice}
23291 function into a form it knows whenever integration is attempted.
23293 One more way to influence the integrator is to define a function with
23294 the @kbd{Z F} command (@pxref{Algebraic Definitions}).  Calc's
23295 integrator automatically expands such functions according to their
23296 defining formulas, even if you originally asked for the function to
23297 be left unevaluated for symbolic arguments.  (Certain other Calc
23298 systems, such as the differentiator and the equation solver, also
23299 do this.)
23301 @vindex IntegAfterRules
23302 Sometimes Calc is able to find a solution to your integral, but it
23303 expresses the result in a way that is unnecessarily complicated.  If
23304 this happens, you can either use @code{integsubst} as described
23305 above to try to hint at a more direct path to the desired result, or
23306 you can use @code{IntegAfterRules}.  This is an extra rule set that
23307 runs after the main integrator returns its result; basically, Calc does
23308 an @kbd{a r IntegAfterRules} on the result before showing it to you.
23309 (It also does an @kbd{a s}, without @code{IntegSimpRules}, after that
23310 to further simplify the result.)  For example, Calc's integrator
23311 sometimes produces expressions of the form @samp{ln(1+x) - ln(1-x)};
23312 the default @code{IntegAfterRules} rewrite this into the more readable
23313 form @samp{2 arctanh(x)}.  Note that, unlike @code{IntegRules},
23314 @code{IntegSimpRules} and @code{IntegAfterRules} are applied any number
23315 of times until no further changes are possible.  Rewriting by
23316 @code{IntegAfterRules} occurs only after the main integrator has
23317 finished, not at every step as for @code{IntegRules} and
23318 @code{IntegSimpRules}.
23320 @node Numerical Integration, Taylor Series, Customizing the Integrator, Calculus
23321 @subsection Numerical Integration
23323 @noindent
23324 @kindex a I
23325 @pindex calc-num-integral
23326 @tindex ninteg
23327 If you want a purely numerical answer to an integration problem, you can
23328 use the @kbd{a I} (@code{calc-num-integral}) [@code{ninteg}] command.  This
23329 command prompts for an integration variable, a lower limit, and an
23330 upper limit.  Except for the integration variable, all other variables
23331 that appear in the integrand formula must have stored values.  (A stored
23332 value, if any, for the integration variable itself is ignored.)
23334 Numerical integration works by evaluating your formula at many points in
23335 the specified interval.  Calc uses an ``open Romberg'' method; this means
23336 that it does not evaluate the formula actually at the endpoints (so that
23337 it is safe to integrate @samp{sin(x)/x} from zero, for example).  Also,
23338 the Romberg method works especially well when the function being
23339 integrated is fairly smooth.  If the function is not smooth, Calc will
23340 have to evaluate it at quite a few points before it can accurately
23341 determine the value of the integral.
23343 Integration is much faster when the current precision is small.  It is
23344 best to set the precision to the smallest acceptable number of digits
23345 before you use @kbd{a I}.  If Calc appears to be taking too long, press
23346 @kbd{C-g} to halt it and try a lower precision.  If Calc still appears
23347 to need hundreds of evaluations, check to make sure your function is
23348 well-behaved in the specified interval.
23350 It is possible for the lower integration limit to be @samp{-inf} (minus
23351 infinity).  Likewise, the upper limit may be plus infinity.  Calc
23352 internally transforms the integral into an equivalent one with finite
23353 limits.  However, integration to or across singularities is not supported:
23354 The integral of @samp{1/sqrt(x)} from 0 to 1 exists (it can be found
23355 by Calc's symbolic integrator, for example), but @kbd{a I} will fail
23356 because the integrand goes to infinity at one of the endpoints.
23358 @node Taylor Series,  , Numerical Integration, Calculus
23359 @subsection Taylor Series
23361 @noindent
23362 @kindex a t
23363 @pindex calc-taylor
23364 @tindex taylor
23365 The @kbd{a t} (@code{calc-taylor}) [@code{taylor}] command computes a
23366 power series expansion or Taylor series of a function.  You specify the
23367 variable and the desired number of terms.  You may give an expression of
23368 the form @samp{@var{var} = @var{a}} or @samp{@var{var} - @var{a}} instead
23369 of just a variable to produce a Taylor expansion about the point @var{a}.
23370 You may specify the number of terms with a numeric prefix argument;
23371 otherwise the command will prompt you for the number of terms.  Note that
23372 many series expansions have coefficients of zero for some terms, so you
23373 may appear to get fewer terms than you asked for.
23375 If the @kbd{a i} command is unable to find a symbolic integral for a
23376 function, you can get an approximation by integrating the function's
23377 Taylor series.
23379 @node Solving Equations, Numerical Solutions, Calculus, Algebra
23380 @section Solving Equations
23382 @noindent
23383 @kindex a S
23384 @pindex calc-solve-for
23385 @tindex solve
23386 @cindex Equations, solving
23387 @cindex Solving equations
23388 The @kbd{a S} (@code{calc-solve-for}) [@code{solve}] command rearranges
23389 an equation to solve for a specific variable.  An equation is an
23390 expression of the form @expr{L = R}.  For example, the command @kbd{a S x}
23391 will rearrange @expr{y = 3x + 6} to the form, @expr{x = y/3 - 2}.  If the
23392 input is not an equation, it is treated like an equation of the
23393 form @expr{X = 0}.
23395 This command also works for inequalities, as in @expr{y < 3x + 6}.
23396 Some inequalities cannot be solved where the analogous equation could
23397 be; for example, solving 
23398 @texline @math{a < b \, c}
23399 @infoline @expr{a < b c} 
23400 for @expr{b} is impossible
23401 without knowing the sign of @expr{c}.  In this case, @kbd{a S} will
23402 produce the result 
23403 @texline @math{b \mathbin{\hbox{\code{!=}}} a/c}
23404 @infoline @expr{b != a/c} 
23405 (using the not-equal-to operator) to signify that the direction of the
23406 inequality is now unknown.  The inequality 
23407 @texline @math{a \le b \, c}
23408 @infoline @expr{a <= b c} 
23409 is not even partially solved.  @xref{Declarations}, for a way to tell
23410 Calc that the signs of the variables in a formula are in fact known.
23412 Two useful commands for working with the result of @kbd{a S} are
23413 @kbd{a .} (@pxref{Logical Operations}), which converts @expr{x = y/3 - 2}
23414 to @expr{y/3 - 2}, and @kbd{s l} (@pxref{Let Command}) which evaluates
23415 another formula with @expr{x} set equal to @expr{y/3 - 2}.
23417 @menu
23418 * Multiple Solutions::
23419 * Solving Systems of Equations::
23420 * Decomposing Polynomials::
23421 @end menu
23423 @node Multiple Solutions, Solving Systems of Equations, Solving Equations, Solving Equations
23424 @subsection Multiple Solutions
23426 @noindent
23427 @kindex H a S
23428 @tindex fsolve
23429 Some equations have more than one solution.  The Hyperbolic flag
23430 (@code{H a S}) [@code{fsolve}] tells the solver to report the fully
23431 general family of solutions.  It will invent variables @code{n1},
23432 @code{n2}, @dots{}, which represent independent arbitrary integers, and
23433 @code{s1}, @code{s2}, @dots{}, which represent independent arbitrary
23434 signs (either @mathit{+1} or @mathit{-1}).  If you don't use the Hyperbolic
23435 flag, Calc will use zero in place of all arbitrary integers, and plus
23436 one in place of all arbitrary signs.  Note that variables like @code{n1}
23437 and @code{s1} are not given any special interpretation in Calc except by
23438 the equation solver itself.  As usual, you can use the @w{@kbd{s l}}
23439 (@code{calc-let}) command to obtain solutions for various actual values
23440 of these variables.
23442 For example, @kbd{' x^2 = y @key{RET} H a S x @key{RET}} solves to
23443 get @samp{x = s1 sqrt(y)}, indicating that the two solutions to the
23444 equation are @samp{sqrt(y)} and @samp{-sqrt(y)}.  Another way to
23445 think about it is that the square-root operation is really a
23446 two-valued function; since every Calc function must return a
23447 single result, @code{sqrt} chooses to return the positive result.
23448 Then @kbd{H a S} doctors this result using @code{s1} to indicate
23449 the full set of possible values of the mathematical square-root.
23451 There is a similar phenomenon going the other direction:  Suppose
23452 we solve @samp{sqrt(y) = x} for @code{y}.  Calc squares both sides
23453 to get @samp{y = x^2}.  This is correct, except that it introduces
23454 some dubious solutions.  Consider solving @samp{sqrt(y) = -3}:
23455 Calc will report @expr{y = 9} as a valid solution, which is true
23456 in the mathematical sense of square-root, but false (there is no
23457 solution) for the actual Calc positive-valued @code{sqrt}.  This
23458 happens for both @kbd{a S} and @kbd{H a S}.
23460 @cindex @code{GenCount} variable
23461 @vindex GenCount
23462 @ignore
23463 @starindex
23464 @end ignore
23465 @tindex an
23466 @ignore
23467 @starindex
23468 @end ignore
23469 @tindex as
23470 If you store a positive integer in the Calc variable @code{GenCount},
23471 then Calc will generate formulas of the form @samp{as(@var{n})} for
23472 arbitrary signs, and @samp{an(@var{n})} for arbitrary integers,
23473 where @var{n} represents successive values taken by incrementing
23474 @code{GenCount} by one.  While the normal arbitrary sign and
23475 integer symbols start over at @code{s1} and @code{n1} with each
23476 new Calc command, the @code{GenCount} approach will give each
23477 arbitrary value a name that is unique throughout the entire Calc
23478 session.  Also, the arbitrary values are function calls instead
23479 of variables, which is advantageous in some cases.  For example,
23480 you can make a rewrite rule that recognizes all arbitrary signs
23481 using a pattern like @samp{as(n)}.  The @kbd{s l} command only works
23482 on variables, but you can use the @kbd{a b} (@code{calc-substitute})
23483 command to substitute actual values for function calls like @samp{as(3)}.
23485 The @kbd{s G} (@code{calc-edit-GenCount}) command is a convenient
23486 way to create or edit this variable.  Press @kbd{C-c C-c} to finish.
23488 If you have not stored a value in @code{GenCount}, or if the value
23489 in that variable is not a positive integer, the regular
23490 @code{s1}/@code{n1} notation is used.
23492 @kindex I a S
23493 @kindex H I a S
23494 @tindex finv
23495 @tindex ffinv
23496 With the Inverse flag, @kbd{I a S} [@code{finv}] treats the expression
23497 on top of the stack as a function of the specified variable and solves
23498 to find the inverse function, written in terms of the same variable.
23499 For example, @kbd{I a S x} inverts @expr{2x + 6} to @expr{x/2 - 3}.
23500 You can use both Inverse and Hyperbolic [@code{ffinv}] to obtain a
23501 fully general inverse, as described above.
23503 @kindex a P
23504 @pindex calc-poly-roots
23505 @tindex roots
23506 Some equations, specifically polynomials, have a known, finite number
23507 of solutions.  The @kbd{a P} (@code{calc-poly-roots}) [@code{roots}]
23508 command uses @kbd{H a S} to solve an equation in general form, then, for
23509 all arbitrary-sign variables like @code{s1}, and all arbitrary-integer
23510 variables like @code{n1} for which @code{n1} only usefully varies over
23511 a finite range, it expands these variables out to all their possible
23512 values.  The results are collected into a vector, which is returned.
23513 For example, @samp{roots(x^4 = 1, x)} returns the four solutions
23514 @samp{[1, -1, (0, 1), (0, -1)]}.  Generally an @var{n}th degree
23515 polynomial will always have @var{n} roots on the complex plane.
23516 (If you have given a @code{real} declaration for the solution
23517 variable, then only the real-valued solutions, if any, will be
23518 reported; @pxref{Declarations}.)
23520 Note that because @kbd{a P} uses @kbd{H a S}, it is able to deliver
23521 symbolic solutions if the polynomial has symbolic coefficients.  Also
23522 note that Calc's solver is not able to get exact symbolic solutions
23523 to all polynomials.  Polynomials containing powers up to @expr{x^4}
23524 can always be solved exactly; polynomials of higher degree sometimes
23525 can be:  @expr{x^6 + x^3 + 1} is converted to @expr{(x^3)^2 + (x^3) + 1},
23526 which can be solved for @expr{x^3} using the quadratic equation, and then
23527 for @expr{x} by taking cube roots.  But in many cases, like
23528 @expr{x^6 + x + 1}, Calc does not know how to rewrite the polynomial
23529 into a form it can solve.  The @kbd{a P} command can still deliver a
23530 list of numerical roots, however, provided that Symbolic mode (@kbd{m s})
23531 is not turned on.  (If you work with Symbolic mode on, recall that the
23532 @kbd{N} (@code{calc-eval-num}) key is a handy way to reevaluate the
23533 formula on the stack with Symbolic mode temporarily off.)  Naturally,
23534 @kbd{a P} can only provide numerical roots if the polynomial coefficients
23535 are all numbers (real or complex).
23537 @node Solving Systems of Equations, Decomposing Polynomials, Multiple Solutions, Solving Equations
23538 @subsection Solving Systems of Equations
23540 @noindent
23541 @cindex Systems of equations, symbolic
23542 You can also use the commands described above to solve systems of
23543 simultaneous equations.  Just create a vector of equations, then
23544 specify a vector of variables for which to solve.  (You can omit
23545 the surrounding brackets when entering the vector of variables
23546 at the prompt.)
23548 For example, putting @samp{[x + y = a, x - y = b]} on the stack
23549 and typing @kbd{a S x,y @key{RET}} produces the vector of solutions
23550 @samp{[x = a - (a-b)/2, y = (a-b)/2]}.  The result vector will
23551 have the same length as the variables vector, and the variables
23552 will be listed in the same order there.  Note that the solutions
23553 are not always simplified as far as possible; the solution for
23554 @expr{x} here could be improved by an application of the @kbd{a n}
23555 command.
23557 Calc's algorithm works by trying to eliminate one variable at a
23558 time by solving one of the equations for that variable and then
23559 substituting into the other equations.  Calc will try all the
23560 possibilities, but you can speed things up by noting that Calc
23561 first tries to eliminate the first variable with the first
23562 equation, then the second variable with the second equation,
23563 and so on.  It also helps to put the simpler (e.g., more linear)
23564 equations toward the front of the list.  Calc's algorithm will
23565 solve any system of linear equations, and also many kinds of
23566 nonlinear systems.
23568 @ignore
23569 @starindex
23570 @end ignore
23571 @tindex elim
23572 Normally there will be as many variables as equations.  If you
23573 give fewer variables than equations (an ``over-determined'' system
23574 of equations), Calc will find a partial solution.  For example,
23575 typing @kbd{a S y @key{RET}} with the above system of equations
23576 would produce @samp{[y = a - x]}.  There are now several ways to
23577 express this solution in terms of the original variables; Calc uses
23578 the first one that it finds.  You can control the choice by adding
23579 variable specifiers of the form @samp{elim(@var{v})} to the
23580 variables list.  This says that @var{v} should be eliminated from
23581 the equations; the variable will not appear at all in the solution.
23582 For example, typing @kbd{a S y,elim(x)} would yield
23583 @samp{[y = a - (b+a)/2]}.
23585 If the variables list contains only @code{elim} specifiers,
23586 Calc simply eliminates those variables from the equations
23587 and then returns the resulting set of equations.  For example,
23588 @kbd{a S elim(x)} produces @samp{[a - 2 y = b]}.  Every variable
23589 eliminated will reduce the number of equations in the system
23590 by one.
23592 Again, @kbd{a S} gives you one solution to the system of
23593 equations.  If there are several solutions, you can use @kbd{H a S}
23594 to get a general family of solutions, or, if there is a finite
23595 number of solutions, you can use @kbd{a P} to get a list.  (In
23596 the latter case, the result will take the form of a matrix where
23597 the rows are different solutions and the columns correspond to the
23598 variables you requested.)
23600 Another way to deal with certain kinds of overdetermined systems of
23601 equations is the @kbd{a F} command, which does least-squares fitting
23602 to satisfy the equations.  @xref{Curve Fitting}.
23604 @node Decomposing Polynomials,  , Solving Systems of Equations, Solving Equations
23605 @subsection Decomposing Polynomials
23607 @noindent
23608 @ignore
23609 @starindex
23610 @end ignore
23611 @tindex poly
23612 The @code{poly} function takes a polynomial and a variable as
23613 arguments, and returns a vector of polynomial coefficients (constant
23614 coefficient first).  For example, @samp{poly(x^3 + 2 x, x)} returns
23615 @expr{[0, 2, 0, 1]}.  If the input is not a polynomial in @expr{x},
23616 the call to @code{poly} is left in symbolic form.  If the input does
23617 not involve the variable @expr{x}, the input is returned in a list
23618 of length one, representing a polynomial with only a constant
23619 coefficient.  The call @samp{poly(x, x)} returns the vector @expr{[0, 1]}.
23620 The last element of the returned vector is guaranteed to be nonzero;
23621 note that @samp{poly(0, x)} returns the empty vector @expr{[]}.
23622 Note also that @expr{x} may actually be any formula; for example,
23623 @samp{poly(sin(x)^2 - sin(x) + 3, sin(x))} returns @expr{[3, -1, 1]}.
23625 @cindex Coefficients of polynomial
23626 @cindex Degree of polynomial
23627 To get the @expr{x^k} coefficient of polynomial @expr{p}, use
23628 @samp{poly(p, x)_(k+1)}.  To get the degree of polynomial @expr{p},
23629 use @samp{vlen(poly(p, x)) - 1}.  For example, @samp{poly((x+1)^4, x)}
23630 returns @samp{[1, 4, 6, 4, 1]}, so @samp{poly((x+1)^4, x)_(2+1)}
23631 gives the @expr{x^2} coefficient of this polynomial, 6.
23633 @ignore
23634 @starindex
23635 @end ignore
23636 @tindex gpoly
23637 One important feature of the solver is its ability to recognize
23638 formulas which are ``essentially'' polynomials.  This ability is
23639 made available to the user through the @code{gpoly} function, which
23640 is used just like @code{poly}:  @samp{gpoly(@var{expr}, @var{var})}.
23641 If @var{expr} is a polynomial in some term which includes @var{var}, then
23642 this function will return a vector @samp{[@var{x}, @var{c}, @var{a}]}
23643 where @var{x} is the term that depends on @var{var}, @var{c} is a
23644 vector of polynomial coefficients (like the one returned by @code{poly}),
23645 and @var{a} is a multiplier which is usually 1.  Basically,
23646 @samp{@var{expr} = @var{a}*(@var{c}_1 + @var{c}_2 @var{x} +
23647 @var{c}_3 @var{x}^2 + ...)}.  The last element of @var{c} is
23648 guaranteed to be non-zero, and @var{c} will not equal @samp{[1]}
23649 (i.e., the trivial decomposition @var{expr} = @var{x} is not
23650 considered a polynomial).  One side effect is that @samp{gpoly(x, x)}
23651 and @samp{gpoly(6, x)}, both of which might be expected to recognize
23652 their arguments as polynomials, will not because the decomposition
23653 is considered trivial.
23655 For example, @samp{gpoly((x-2)^2, x)} returns @samp{[x, [4, -4, 1], 1]},
23656 since the expanded form of this polynomial is @expr{4 - 4 x + x^2}.
23658 The term @var{x} may itself be a polynomial in @var{var}.  This is
23659 done to reduce the size of the @var{c} vector.  For example,
23660 @samp{gpoly(x^4 + x^2 - 1, x)} returns @samp{[x^2, [-1, 1, 1], 1]},
23661 since a quadratic polynomial in @expr{x^2} is easier to solve than
23662 a quartic polynomial in @expr{x}.
23664 A few more examples of the kinds of polynomials @code{gpoly} can
23665 discover:
23667 @smallexample
23668 sin(x) - 1               [sin(x), [-1, 1], 1]
23669 x + 1/x - 1              [x, [1, -1, 1], 1/x]
23670 x + 1/x                  [x^2, [1, 1], 1/x]
23671 x^3 + 2 x                [x^2, [2, 1], x]
23672 x + x^2:3 + sqrt(x)      [x^1:6, [1, 1, 0, 1], x^1:2]
23673 x^(2a) + 2 x^a + 5       [x^a, [5, 2, 1], 1]
23674 (exp(-x) + exp(x)) / 2   [e^(2 x), [0.5, 0.5], e^-x]
23675 @end smallexample
23677 The @code{poly} and @code{gpoly} functions accept a third integer argument
23678 which specifies the largest degree of polynomial that is acceptable.
23679 If this is @expr{n}, then only @var{c} vectors of length @expr{n+1}
23680 or less will be returned.  Otherwise, the @code{poly} or @code{gpoly}
23681 call will remain in symbolic form.  For example, the equation solver
23682 can handle quartics and smaller polynomials, so it calls
23683 @samp{gpoly(@var{expr}, @var{var}, 4)} to discover whether @var{expr}
23684 can be treated by its linear, quadratic, cubic, or quartic formulas.
23686 @ignore
23687 @starindex
23688 @end ignore
23689 @tindex pdeg
23690 The @code{pdeg} function computes the degree of a polynomial;
23691 @samp{pdeg(p,x)} is the highest power of @code{x} that appears in
23692 @code{p}.  This is the same as @samp{vlen(poly(p,x))-1}, but is
23693 much more efficient.  If @code{p} is constant with respect to @code{x},
23694 then @samp{pdeg(p,x) = 0}.  If @code{p} is not a polynomial in @code{x}
23695 (e.g., @samp{pdeg(2 cos(x), x)}, the function remains unevaluated.
23696 It is possible to omit the second argument @code{x}, in which case
23697 @samp{pdeg(p)} returns the highest total degree of any term of the
23698 polynomial, counting all variables that appear in @code{p}.  Note
23699 that @code{pdeg(c) = pdeg(c,x) = 0} for any nonzero constant @code{c};
23700 the degree of the constant zero is considered to be @code{-inf}
23701 (minus infinity).
23703 @ignore
23704 @starindex
23705 @end ignore
23706 @tindex plead
23707 The @code{plead} function finds the leading term of a polynomial.
23708 Thus @samp{plead(p,x)} is equivalent to @samp{poly(p,x)_vlen(poly(p,x))},
23709 though again more efficient.  In particular, @samp{plead((2x+1)^10, x)}
23710 returns 1024 without expanding out the list of coefficients.  The
23711 value of @code{plead(p,x)} will be zero only if @expr{p = 0}.
23713 @ignore
23714 @starindex
23715 @end ignore
23716 @tindex pcont
23717 The @code{pcont} function finds the @dfn{content} of a polynomial.  This
23718 is the greatest common divisor of all the coefficients of the polynomial.
23719 With two arguments, @code{pcont(p,x)} effectively uses @samp{poly(p,x)}
23720 to get a list of coefficients, then uses @code{pgcd} (the polynomial
23721 GCD function) to combine these into an answer.  For example,
23722 @samp{pcont(4 x y^2 + 6 x^2 y, x)} is @samp{2 y}.  The content is
23723 basically the ``biggest'' polynomial that can be divided into @code{p}
23724 exactly.  The sign of the content is the same as the sign of the leading
23725 coefficient.
23727 With only one argument, @samp{pcont(p)} computes the numerical
23728 content of the polynomial, i.e., the @code{gcd} of the numerical
23729 coefficients of all the terms in the formula.  Note that @code{gcd}
23730 is defined on rational numbers as well as integers; it computes
23731 the @code{gcd} of the numerators and the @code{lcm} of the
23732 denominators.  Thus @samp{pcont(4:3 x y^2 + 6 x^2 y)} returns 2:3.
23733 Dividing the polynomial by this number will clear all the
23734 denominators, as well as dividing by any common content in the
23735 numerators.  The numerical content of a polynomial is negative only
23736 if all the coefficients in the polynomial are negative.
23738 @ignore
23739 @starindex
23740 @end ignore
23741 @tindex pprim
23742 The @code{pprim} function finds the @dfn{primitive part} of a
23743 polynomial, which is simply the polynomial divided (using @code{pdiv}
23744 if necessary) by its content.  If the input polynomial has rational
23745 coefficients, the result will have integer coefficients in simplest
23746 terms.
23748 @node Numerical Solutions, Curve Fitting, Solving Equations, Algebra
23749 @section Numerical Solutions
23751 @noindent
23752 Not all equations can be solved symbolically.  The commands in this
23753 section use numerical algorithms that can find a solution to a specific
23754 instance of an equation to any desired accuracy.  Note that the
23755 numerical commands are slower than their algebraic cousins; it is a
23756 good idea to try @kbd{a S} before resorting to these commands.
23758 (@xref{Curve Fitting}, for some other, more specialized, operations
23759 on numerical data.)
23761 @menu
23762 * Root Finding::
23763 * Minimization::
23764 * Numerical Systems of Equations::
23765 @end menu
23767 @node Root Finding, Minimization, Numerical Solutions, Numerical Solutions
23768 @subsection Root Finding
23770 @noindent
23771 @kindex a R
23772 @pindex calc-find-root
23773 @tindex root
23774 @cindex Newton's method
23775 @cindex Roots of equations
23776 @cindex Numerical root-finding
23777 The @kbd{a R} (@code{calc-find-root}) [@code{root}] command finds a
23778 numerical solution (or @dfn{root}) of an equation.  (This command treats
23779 inequalities the same as equations.  If the input is any other kind
23780 of formula, it is interpreted as an equation of the form @expr{X = 0}.)
23782 The @kbd{a R} command requires an initial guess on the top of the
23783 stack, and a formula in the second-to-top position.  It prompts for a
23784 solution variable, which must appear in the formula.  All other variables
23785 that appear in the formula must have assigned values, i.e., when
23786 a value is assigned to the solution variable and the formula is
23787 evaluated with @kbd{=}, it should evaluate to a number.  Any assigned
23788 value for the solution variable itself is ignored and unaffected by
23789 this command.
23791 When the command completes, the initial guess is replaced on the stack
23792 by a vector of two numbers:  The value of the solution variable that
23793 solves the equation, and the difference between the lefthand and
23794 righthand sides of the equation at that value.  Ordinarily, the second
23795 number will be zero or very nearly zero.  (Note that Calc uses a
23796 slightly higher precision while finding the root, and thus the second
23797 number may be slightly different from the value you would compute from
23798 the equation yourself.)
23800 The @kbd{v h} (@code{calc-head}) command is a handy way to extract
23801 the first element of the result vector, discarding the error term.
23803 The initial guess can be a real number, in which case Calc searches
23804 for a real solution near that number, or a complex number, in which
23805 case Calc searches the whole complex plane near that number for a
23806 solution, or it can be an interval form which restricts the search
23807 to real numbers inside that interval.
23809 Calc tries to use @kbd{a d} to take the derivative of the equation.
23810 If this succeeds, it uses Newton's method.  If the equation is not
23811 differentiable Calc uses a bisection method.  (If Newton's method
23812 appears to be going astray, Calc switches over to bisection if it
23813 can, or otherwise gives up.  In this case it may help to try again
23814 with a slightly different initial guess.)  If the initial guess is a
23815 complex number, the function must be differentiable.
23817 If the formula (or the difference between the sides of an equation)
23818 is negative at one end of the interval you specify and positive at
23819 the other end, the root finder is guaranteed to find a root.
23820 Otherwise, Calc subdivides the interval into small parts looking for
23821 positive and negative values to bracket the root.  When your guess is
23822 an interval, Calc will not look outside that interval for a root.
23824 @kindex H a R
23825 @tindex wroot
23826 The @kbd{H a R} [@code{wroot}] command is similar to @kbd{a R}, except
23827 that if the initial guess is an interval for which the function has
23828 the same sign at both ends, then rather than subdividing the interval
23829 Calc attempts to widen it to enclose a root.  Use this mode if
23830 you are not sure if the function has a root in your interval.
23832 If the function is not differentiable, and you give a simple number
23833 instead of an interval as your initial guess, Calc uses this widening
23834 process even if you did not type the Hyperbolic flag.  (If the function
23835 @emph{is} differentiable, Calc uses Newton's method which does not
23836 require a bounding interval in order to work.)
23838 If Calc leaves the @code{root} or @code{wroot} function in symbolic
23839 form on the stack, it will normally display an explanation for why
23840 no root was found.  If you miss this explanation, press @kbd{w}
23841 (@code{calc-why}) to get it back.
23843 @node Minimization, Numerical Systems of Equations, Root Finding, Numerical Solutions
23844 @subsection Minimization
23846 @noindent
23847 @kindex a N
23848 @kindex H a N
23849 @kindex a X
23850 @kindex H a X
23851 @pindex calc-find-minimum
23852 @pindex calc-find-maximum
23853 @tindex minimize
23854 @tindex maximize
23855 @cindex Minimization, numerical
23856 The @kbd{a N} (@code{calc-find-minimum}) [@code{minimize}] command
23857 finds a minimum value for a formula.  It is very similar in operation
23858 to @kbd{a R} (@code{calc-find-root}):  You give the formula and an initial
23859 guess on the stack, and are prompted for the name of a variable.  The guess
23860 may be either a number near the desired minimum, or an interval enclosing
23861 the desired minimum.  The function returns a vector containing the
23862 value of the variable which minimizes the formula's value, along
23863 with the minimum value itself.
23865 Note that this command looks for a @emph{local} minimum.  Many functions
23866 have more than one minimum; some, like 
23867 @texline @math{x \sin x},
23868 @infoline @expr{x sin(x)}, 
23869 have infinitely many.  In fact, there is no easy way to define the
23870 ``global'' minimum of 
23871 @texline @math{x \sin x}
23872 @infoline @expr{x sin(x)} 
23873 but Calc can still locate any particular local minimum
23874 for you.  Calc basically goes downhill from the initial guess until it
23875 finds a point at which the function's value is greater both to the left
23876 and to the right.  Calc does not use derivatives when minimizing a function.
23878 If your initial guess is an interval and it looks like the minimum
23879 occurs at one or the other endpoint of the interval, Calc will return
23880 that endpoint only if that endpoint is closed; thus, minimizing @expr{17 x}
23881 over @expr{[2..3]} will return @expr{[2, 38]}, but minimizing over
23882 @expr{(2..3]} would report no minimum found.  In general, you should
23883 use closed intervals to find literally the minimum value in that
23884 range of @expr{x}, or open intervals to find the local minimum, if
23885 any, that happens to lie in that range.
23887 Most functions are smooth and flat near their minimum values.  Because
23888 of this flatness, if the current precision is, say, 12 digits, the
23889 variable can only be determined meaningfully to about six digits.  Thus
23890 you should set the precision to twice as many digits as you need in your
23891 answer.
23893 @ignore
23894 @mindex wmin@idots
23895 @end ignore
23896 @tindex wminimize
23897 @ignore
23898 @mindex wmax@idots
23899 @end ignore
23900 @tindex wmaximize
23901 The @kbd{H a N} [@code{wminimize}] command, analogously to @kbd{H a R},
23902 expands the guess interval to enclose a minimum rather than requiring
23903 that the minimum lie inside the interval you supply.
23905 The @kbd{a X} (@code{calc-find-maximum}) [@code{maximize}] and
23906 @kbd{H a X} [@code{wmaximize}] commands effectively minimize the
23907 negative of the formula you supply.
23909 The formula must evaluate to a real number at all points inside the
23910 interval (or near the initial guess if the guess is a number).  If
23911 the initial guess is a complex number the variable will be minimized
23912 over the complex numbers; if it is real or an interval it will
23913 be minimized over the reals.
23915 @node Numerical Systems of Equations,  , Minimization, Numerical Solutions
23916 @subsection Systems of Equations
23918 @noindent
23919 @cindex Systems of equations, numerical
23920 The @kbd{a R} command can also solve systems of equations.  In this
23921 case, the equation should instead be a vector of equations, the
23922 guess should instead be a vector of numbers (intervals are not
23923 supported), and the variable should be a vector of variables.  You
23924 can omit the brackets while entering the list of variables.  Each
23925 equation must be differentiable by each variable for this mode to
23926 work.  The result will be a vector of two vectors:  The variable
23927 values that solved the system of equations, and the differences
23928 between the sides of the equations with those variable values.
23929 There must be the same number of equations as variables.  Since
23930 only plain numbers are allowed as guesses, the Hyperbolic flag has
23931 no effect when solving a system of equations.
23933 It is also possible to minimize over many variables with @kbd{a N}
23934 (or maximize with @kbd{a X}).  Once again the variable name should
23935 be replaced by a vector of variables, and the initial guess should
23936 be an equal-sized vector of initial guesses.  But, unlike the case of
23937 multidimensional @kbd{a R}, the formula being minimized should
23938 still be a single formula, @emph{not} a vector.  Beware that
23939 multidimensional minimization is currently @emph{very} slow.
23941 @node Curve Fitting, Summations, Numerical Solutions, Algebra
23942 @section Curve Fitting
23944 @noindent
23945 The @kbd{a F} command fits a set of data to a @dfn{model formula},
23946 such as @expr{y = m x + b} where @expr{m} and @expr{b} are parameters
23947 to be determined.  For a typical set of measured data there will be
23948 no single @expr{m} and @expr{b} that exactly fit the data; in this
23949 case, Calc chooses values of the parameters that provide the closest
23950 possible fit.
23952 @menu
23953 * Linear Fits::
23954 * Polynomial and Multilinear Fits::
23955 * Error Estimates for Fits::
23956 * Standard Nonlinear Models::
23957 * Curve Fitting Details::
23958 * Interpolation::
23959 @end menu
23961 @node Linear Fits, Polynomial and Multilinear Fits, Curve Fitting, Curve Fitting
23962 @subsection Linear Fits
23964 @noindent
23965 @kindex a F
23966 @pindex calc-curve-fit
23967 @tindex fit
23968 @cindex Linear regression
23969 @cindex Least-squares fits
23970 The @kbd{a F} (@code{calc-curve-fit}) [@code{fit}] command attempts
23971 to fit a set of data (@expr{x} and @expr{y} vectors of numbers) to a
23972 straight line, polynomial, or other function of @expr{x}.  For the
23973 moment we will consider only the case of fitting to a line, and we
23974 will ignore the issue of whether or not the model was in fact a good
23975 fit for the data.
23977 In a standard linear least-squares fit, we have a set of @expr{(x,y)}
23978 data points that we wish to fit to the model @expr{y = m x + b}
23979 by adjusting the parameters @expr{m} and @expr{b} to make the @expr{y}
23980 values calculated from the formula be as close as possible to the actual
23981 @expr{y} values in the data set.  (In a polynomial fit, the model is
23982 instead, say, @expr{y = a x^3 + b x^2 + c x + d}.  In a multilinear fit,
23983 we have data points of the form @expr{(x_1,x_2,x_3,y)} and our model is
23984 @expr{y = a x_1 + b x_2 + c x_3 + d}.  These will be discussed later.)
23986 In the model formula, variables like @expr{x} and @expr{x_2} are called
23987 the @dfn{independent variables}, and @expr{y} is the @dfn{dependent
23988 variable}.  Variables like @expr{m}, @expr{a}, and @expr{b} are called
23989 the @dfn{parameters} of the model.
23991 The @kbd{a F} command takes the data set to be fitted from the stack.
23992 By default, it expects the data in the form of a matrix.  For example,
23993 for a linear or polynomial fit, this would be a 
23994 @texline @math{2\times N}
23995 @infoline 2xN
23996 matrix where the first row is a list of @expr{x} values and the second
23997 row has the corresponding @expr{y} values.  For the multilinear fit
23998 shown above, the matrix would have four rows (@expr{x_1}, @expr{x_2},
23999 @expr{x_3}, and @expr{y}, respectively).
24001 If you happen to have an 
24002 @texline @math{N\times2}
24003 @infoline Nx2
24004 matrix instead of a 
24005 @texline @math{2\times N}
24006 @infoline 2xN
24007 matrix, just press @kbd{v t} first to transpose the matrix.
24009 After you type @kbd{a F}, Calc prompts you to select a model.  For a
24010 linear fit, press the digit @kbd{1}.
24012 Calc then prompts for you to name the variables.  By default it chooses
24013 high letters like @expr{x} and @expr{y} for independent variables and
24014 low letters like @expr{a} and @expr{b} for parameters.  (The dependent
24015 variable doesn't need a name.)  The two kinds of variables are separated
24016 by a semicolon.  Since you generally care more about the names of the
24017 independent variables than of the parameters, Calc also allows you to
24018 name only those and let the parameters use default names.
24020 For example, suppose the data matrix
24022 @ifinfo
24023 @example
24024 @group
24025 [ [ 1, 2, 3, 4,  5  ]
24026   [ 5, 7, 9, 11, 13 ] ]
24027 @end group
24028 @end example
24029 @end ifinfo
24030 @tex
24031 \turnoffactive
24032 \turnoffactive
24033 \beforedisplay
24034 $$ \pmatrix{ 1 & 2 & 3 & 4  & 5  \cr
24035              5 & 7 & 9 & 11 & 13 }
24037 \afterdisplay
24038 @end tex
24040 @noindent
24041 is on the stack and we wish to do a simple linear fit.  Type
24042 @kbd{a F}, then @kbd{1} for the model, then @key{RET} to use
24043 the default names.  The result will be the formula @expr{3 + 2 x}
24044 on the stack.  Calc has created the model expression @kbd{a + b x},
24045 then found the optimal values of @expr{a} and @expr{b} to fit the
24046 data.  (In this case, it was able to find an exact fit.)  Calc then
24047 substituted those values for @expr{a} and @expr{b} in the model
24048 formula.
24050 The @kbd{a F} command puts two entries in the trail.  One is, as
24051 always, a copy of the result that went to the stack; the other is
24052 a vector of the actual parameter values, written as equations:
24053 @expr{[a = 3, b = 2]}, in case you'd rather read them in a list
24054 than pick them out of the formula.  (You can type @kbd{t y}
24055 to move this vector to the stack; see @ref{Trail Commands}.
24057 Specifying a different independent variable name will affect the
24058 resulting formula: @kbd{a F 1 k @key{RET}} produces @kbd{3 + 2 k}.
24059 Changing the parameter names (say, @kbd{a F 1 k;b,m @key{RET}}) will affect
24060 the equations that go into the trail.
24062 @tex
24063 \bigskip
24064 @end tex
24066 To see what happens when the fit is not exact, we could change
24067 the number 13 in the data matrix to 14 and try the fit again.
24068 The result is:
24070 @example
24071 2.6 + 2.2 x
24072 @end example
24074 Evaluating this formula, say with @kbd{v x 5 @key{RET} @key{TAB} V M $ @key{RET}}, shows
24075 a reasonably close match to the y-values in the data.
24077 @example
24078 [4.8, 7., 9.2, 11.4, 13.6]
24079 @end example
24081 Since there is no line which passes through all the @var{n} data points,
24082 Calc has chosen a line that best approximates the data points using
24083 the method of least squares.  The idea is to define the @dfn{chi-square}
24084 error measure
24086 @ifinfo
24087 @example
24088 chi^2 = sum((y_i - (a + b x_i))^2, i, 1, N)
24089 @end example
24090 @end ifinfo
24091 @tex
24092 \turnoffactive
24093 \beforedisplay
24094 $$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$
24095 \afterdisplay
24096 @end tex
24098 @noindent
24099 which is clearly zero if @expr{a + b x} exactly fits all data points,
24100 and increases as various @expr{a + b x_i} values fail to match the
24101 corresponding @expr{y_i} values.  There are several reasons why the
24102 summand is squared, one of them being to ensure that 
24103 @texline @math{\chi^2 \ge 0}.
24104 @infoline @expr{chi^2 >= 0}.
24105 Least-squares fitting simply chooses the values of @expr{a} and @expr{b}
24106 for which the error 
24107 @texline @math{\chi^2}
24108 @infoline @expr{chi^2} 
24109 is as small as possible.
24111 Other kinds of models do the same thing but with a different model
24112 formula in place of @expr{a + b x_i}.
24114 @tex
24115 \bigskip
24116 @end tex
24118 A numeric prefix argument causes the @kbd{a F} command to take the
24119 data in some other form than one big matrix.  A positive argument @var{n}
24120 will take @var{N} items from the stack, corresponding to the @var{n} rows
24121 of a data matrix.  In the linear case, @var{n} must be 2 since there
24122 is always one independent variable and one dependent variable.
24124 A prefix of zero or plain @kbd{C-u} is a compromise; Calc takes two
24125 items from the stack, an @var{n}-row matrix of @expr{x} values, and a
24126 vector of @expr{y} values.  If there is only one independent variable,
24127 the @expr{x} values can be either a one-row matrix or a plain vector,
24128 in which case the @kbd{C-u} prefix is the same as a @w{@kbd{C-u 2}} prefix.
24130 @node Polynomial and Multilinear Fits, Error Estimates for Fits, Linear Fits, Curve Fitting
24131 @subsection Polynomial and Multilinear Fits
24133 @noindent
24134 To fit the data to higher-order polynomials, just type one of the
24135 digits @kbd{2} through @kbd{9} when prompted for a model.  For example,
24136 we could fit the original data matrix from the previous section
24137 (with 13, not 14) to a parabola instead of a line by typing
24138 @kbd{a F 2 @key{RET}}.
24140 @example
24141 2.00000000001 x - 1.5e-12 x^2 + 2.99999999999
24142 @end example
24144 Note that since the constant and linear terms are enough to fit the
24145 data exactly, it's no surprise that Calc chose a tiny contribution
24146 for @expr{x^2}.  (The fact that it's not exactly zero is due only
24147 to roundoff error.  Since our data are exact integers, we could get
24148 an exact answer by typing @kbd{m f} first to get Fraction mode.
24149 Then the @expr{x^2} term would vanish altogether.  Usually, though,
24150 the data being fitted will be approximate floats so Fraction mode
24151 won't help.)
24153 Doing the @kbd{a F 2} fit on the data set with 14 instead of 13
24154 gives a much larger @expr{x^2} contribution, as Calc bends the
24155 line slightly to improve the fit.
24157 @example
24158 0.142857142855 x^2 + 1.34285714287 x + 3.59999999998
24159 @end example
24161 An important result from the theory of polynomial fitting is that it
24162 is always possible to fit @var{n} data points exactly using a polynomial
24163 of degree @mathit{@var{n}-1}, sometimes called an @dfn{interpolating polynomial}.
24164 Using the modified (14) data matrix, a model number of 4 gives
24165 a polynomial that exactly matches all five data points:
24167 @example
24168 0.04167 x^4 - 0.4167 x^3 + 1.458 x^2 - 0.08333 x + 4.
24169 @end example
24171 The actual coefficients we get with a precision of 12, like
24172 @expr{0.0416666663588}, clearly suffer from loss of precision.
24173 It is a good idea to increase the working precision to several
24174 digits beyond what you need when you do a fitting operation.
24175 Or, if your data are exact, use Fraction mode to get exact
24176 results.
24178 You can type @kbd{i} instead of a digit at the model prompt to fit
24179 the data exactly to a polynomial.  This just counts the number of
24180 columns of the data matrix to choose the degree of the polynomial
24181 automatically.
24183 Fitting data ``exactly'' to high-degree polynomials is not always
24184 a good idea, though.  High-degree polynomials have a tendency to
24185 wiggle uncontrollably in between the fitting data points.  Also,
24186 if the exact-fit polynomial is going to be used to interpolate or
24187 extrapolate the data, it is numerically better to use the @kbd{a p}
24188 command described below.  @xref{Interpolation}.
24190 @tex
24191 \bigskip
24192 @end tex
24194 Another generalization of the linear model is to assume the
24195 @expr{y} values are a sum of linear contributions from several
24196 @expr{x} values.  This is a @dfn{multilinear} fit, and it is also
24197 selected by the @kbd{1} digit key.  (Calc decides whether the fit
24198 is linear or multilinear by counting the rows in the data matrix.)
24200 Given the data matrix,
24202 @example
24203 @group
24204 [ [  1,   2,   3,    4,   5  ]
24205   [  7,   2,   3,    5,   2  ]
24206   [ 14.5, 15, 18.5, 22.5, 24 ] ]
24207 @end group
24208 @end example
24210 @noindent
24211 the command @kbd{a F 1 @key{RET}} will call the first row @expr{x} and the
24212 second row @expr{y}, and will fit the values in the third row to the
24213 model @expr{a + b x + c y}.
24215 @example
24216 8. + 3. x + 0.5 y
24217 @end example
24219 Calc can do multilinear fits with any number of independent variables
24220 (i.e., with any number of data rows).
24222 @tex
24223 \bigskip
24224 @end tex
24226 Yet another variation is @dfn{homogeneous} linear models, in which
24227 the constant term is known to be zero.  In the linear case, this
24228 means the model formula is simply @expr{a x}; in the multilinear
24229 case, the model might be @expr{a x + b y + c z}; and in the polynomial
24230 case, the model could be @expr{a x + b x^2 + c x^3}.  You can get
24231 a homogeneous linear or multilinear model by pressing the letter
24232 @kbd{h} followed by a regular model key, like @kbd{1} or @kbd{2}.
24234 It is certainly possible to have other constrained linear models,
24235 like @expr{2.3 + a x} or @expr{a - 4 x}.  While there is no single
24236 key to select models like these, a later section shows how to enter
24237 any desired model by hand.  In the first case, for example, you
24238 would enter @kbd{a F ' 2.3 + a x}.
24240 Another class of models that will work but must be entered by hand
24241 are multinomial fits, e.g., @expr{a + b x + c y + d x^2 + e y^2 + f x y}.
24243 @node Error Estimates for Fits, Standard Nonlinear Models, Polynomial and Multilinear Fits, Curve Fitting
24244 @subsection Error Estimates for Fits
24246 @noindent
24247 @kindex H a F
24248 @tindex efit
24249 With the Hyperbolic flag, @kbd{H a F} [@code{efit}] performs the same
24250 fitting operation as @kbd{a F}, but reports the coefficients as error
24251 forms instead of plain numbers.  Fitting our two data matrices (first
24252 with 13, then with 14) to a line with @kbd{H a F} gives the results,
24254 @example
24255 3. + 2. x
24256 2.6 +/- 0.382970843103 + 2.2 +/- 0.115470053838 x
24257 @end example
24259 In the first case the estimated errors are zero because the linear
24260 fit is perfect.  In the second case, the errors are nonzero but
24261 moderately small, because the data are still very close to linear.
24263 It is also possible for the @emph{input} to a fitting operation to
24264 contain error forms.  The data values must either all include errors
24265 or all be plain numbers.  Error forms can go anywhere but generally
24266 go on the numbers in the last row of the data matrix.  If the last
24267 row contains error forms
24268 @texline `@var{y_i}@w{ @tfn{+/-} }@math{\sigma_i}', 
24269 @infoline `@var{y_i}@w{ @tfn{+/-} }@var{sigma_i}', 
24270 then the 
24271 @texline @math{\chi^2}
24272 @infoline @expr{chi^2}
24273 statistic is now,
24275 @ifinfo
24276 @example
24277 chi^2 = sum(((y_i - (a + b x_i)) / sigma_i)^2, i, 1, N)
24278 @end example
24279 @end ifinfo
24280 @tex
24281 \turnoffactive
24282 \beforedisplay
24283 $$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$
24284 \afterdisplay
24285 @end tex
24287 @noindent
24288 so that data points with larger error estimates contribute less to
24289 the fitting operation.
24291 If there are error forms on other rows of the data matrix, all the
24292 errors for a given data point are combined; the square root of the
24293 sum of the squares of the errors forms the 
24294 @texline @math{\sigma_i}
24295 @infoline @expr{sigma_i} 
24296 used for the data point.
24298 Both @kbd{a F} and @kbd{H a F} can accept error forms in the input
24299 matrix, although if you are concerned about error analysis you will
24300 probably use @kbd{H a F} so that the output also contains error
24301 estimates.
24303 If the input contains error forms but all the 
24304 @texline @math{\sigma_i}
24305 @infoline @expr{sigma_i} 
24306 values are the same, it is easy to see that the resulting fitted model
24307 will be the same as if the input did not have error forms at all 
24308 @texline (@math{\chi^2}
24309 @infoline (@expr{chi^2}
24310 is simply scaled uniformly by 
24311 @texline @math{1 / \sigma^2},
24312 @infoline @expr{1 / sigma^2}, 
24313 which doesn't affect where it has a minimum).  But there @emph{will} be
24314 a difference in the estimated errors of the coefficients reported by
24315 @kbd{H a F}. 
24317 Consult any text on statistical modeling of data for a discussion
24318 of where these error estimates come from and how they should be
24319 interpreted.
24321 @tex
24322 \bigskip
24323 @end tex
24325 @kindex I a F
24326 @tindex xfit
24327 With the Inverse flag, @kbd{I a F} [@code{xfit}] produces even more
24328 information.  The result is a vector of six items:
24330 @enumerate
24331 @item
24332 The model formula with error forms for its coefficients or
24333 parameters.  This is the result that @kbd{H a F} would have
24334 produced.
24336 @item
24337 A vector of ``raw'' parameter values for the model.  These are the
24338 polynomial coefficients or other parameters as plain numbers, in the
24339 same order as the parameters appeared in the final prompt of the
24340 @kbd{I a F} command.  For polynomials of degree @expr{d}, this vector
24341 will have length @expr{M = d+1} with the constant term first.
24343 @item
24344 The covariance matrix @expr{C} computed from the fit.  This is
24345 an @var{m}x@var{m} symmetric matrix; the diagonal elements
24346 @texline @math{C_{jj}}
24347 @infoline @expr{C_j_j} 
24348 are the variances 
24349 @texline @math{\sigma_j^2}
24350 @infoline @expr{sigma_j^2} 
24351 of the parameters.  The other elements are covariances
24352 @texline @math{\sigma_{ij}^2} 
24353 @infoline @expr{sigma_i_j^2} 
24354 that describe the correlation between pairs of parameters.  (A related
24355 set of numbers, the @dfn{linear correlation coefficients} 
24356 @texline @math{r_{ij}},
24357 @infoline @expr{r_i_j},
24358 are defined as 
24359 @texline @math{\sigma_{ij}^2 / \sigma_i \, \sigma_j}.)
24360 @infoline @expr{sigma_i_j^2 / sigma_i sigma_j}.)
24362 @item
24363 A vector of @expr{M} ``parameter filter'' functions whose
24364 meanings are described below.  If no filters are necessary this
24365 will instead be an empty vector; this is always the case for the
24366 polynomial and multilinear fits described so far.
24368 @item
24369 The value of 
24370 @texline @math{\chi^2}
24371 @infoline @expr{chi^2} 
24372 for the fit, calculated by the formulas shown above.  This gives a
24373 measure of the quality of the fit; statisticians consider
24374 @texline @math{\chi^2 \approx N - M}
24375 @infoline @expr{chi^2 = N - M} 
24376 to indicate a moderately good fit (where again @expr{N} is the number of
24377 data points and @expr{M} is the number of parameters).
24379 @item
24380 A measure of goodness of fit expressed as a probability @expr{Q}.
24381 This is computed from the @code{utpc} probability distribution
24382 function using 
24383 @texline @math{\chi^2}
24384 @infoline @expr{chi^2} 
24385 with @expr{N - M} degrees of freedom.  A
24386 value of 0.5 implies a good fit; some texts recommend that often
24387 @expr{Q = 0.1} or even 0.001 can signify an acceptable fit.  In
24388 particular, 
24389 @texline @math{\chi^2}
24390 @infoline @expr{chi^2} 
24391 statistics assume the errors in your inputs
24392 follow a normal (Gaussian) distribution; if they don't, you may
24393 have to accept smaller values of @expr{Q}.
24395 The @expr{Q} value is computed only if the input included error
24396 estimates.  Otherwise, Calc will report the symbol @code{nan}
24397 for @expr{Q}.  The reason is that in this case the 
24398 @texline @math{\chi^2}
24399 @infoline @expr{chi^2}
24400 value has effectively been used to estimate the original errors
24401 in the input, and thus there is no redundant information left
24402 over to use for a confidence test.
24403 @end enumerate
24405 @node Standard Nonlinear Models, Curve Fitting Details, Error Estimates for Fits, Curve Fitting
24406 @subsection Standard Nonlinear Models
24408 @noindent
24409 The @kbd{a F} command also accepts other kinds of models besides
24410 lines and polynomials.  Some common models have quick single-key
24411 abbreviations; others must be entered by hand as algebraic formulas.
24413 Here is a complete list of the standard models recognized by @kbd{a F}:
24415 @table @kbd
24416 @item 1
24417 Linear or multilinear.  @mathit{a + b x + c y + d z}.
24418 @item 2-9
24419 Polynomials.  @mathit{a + b x + c x^2 + d x^3}.
24420 @item e
24421 Exponential.  @mathit{a} @tfn{exp}@mathit{(b x)} @tfn{exp}@mathit{(c y)}.
24422 @item E
24423 Base-10 exponential.  @mathit{a} @tfn{10^}@mathit{(b x)} @tfn{10^}@mathit{(c y)}.
24424 @item x
24425 Exponential (alternate notation).  @tfn{exp}@mathit{(a + b x + c y)}.
24426 @item X
24427 Base-10 exponential (alternate).  @tfn{10^}@mathit{(a + b x + c y)}.
24428 @item l
24429 Logarithmic.  @mathit{a + b} @tfn{ln}@mathit{(x) + c} @tfn{ln}@mathit{(y)}.
24430 @item L
24431 Base-10 logarithmic.  @mathit{a + b} @tfn{log10}@mathit{(x) + c} @tfn{log10}@mathit{(y)}.
24432 @item ^
24433 General exponential.  @mathit{a b^x c^y}.
24434 @item p
24435 Power law.  @mathit{a x^b y^c}.
24436 @item q
24437 Quadratic.  @mathit{a + b (x-c)^2 + d (x-e)^2}.
24438 @item g
24439 Gaussian.  
24440 @texline @math{{a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)}.
24441 @infoline @mathit{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}.
24442 @end table
24444 All of these models are used in the usual way; just press the appropriate
24445 letter at the model prompt, and choose variable names if you wish.  The
24446 result will be a formula as shown in the above table, with the best-fit
24447 values of the parameters substituted.  (You may find it easier to read
24448 the parameter values from the vector that is placed in the trail.)
24450 All models except Gaussian and polynomials can generalize as shown to any
24451 number of independent variables.  Also, all the built-in models have an
24452 additive or multiplicative parameter shown as @expr{a} in the above table
24453 which can be replaced by zero or one, as appropriate, by typing @kbd{h}
24454 before the model key.
24456 Note that many of these models are essentially equivalent, but express
24457 the parameters slightly differently.  For example, @expr{a b^x} and
24458 the other two exponential models are all algebraic rearrangements of
24459 each other.  Also, the ``quadratic'' model is just a degree-2 polynomial
24460 with the parameters expressed differently.  Use whichever form best
24461 matches the problem.
24463 The HP-28/48 calculators support four different models for curve
24464 fitting, called @code{LIN}, @code{LOG}, @code{EXP}, and @code{PWR}.
24465 These correspond to Calc models @samp{a + b x}, @samp{a + b ln(x)},
24466 @samp{a exp(b x)}, and @samp{a x^b}, respectively.  In each case,
24467 @expr{a} is what the HP-48 identifies as the ``intercept,'' and
24468 @expr{b} is what it calls the ``slope.''
24470 @tex
24471 \bigskip
24472 @end tex
24474 If the model you want doesn't appear on this list, press @kbd{'}
24475 (the apostrophe key) at the model prompt to enter any algebraic
24476 formula, such as @kbd{m x - b}, as the model.  (Not all models
24477 will work, though---see the next section for details.)
24479 The model can also be an equation like @expr{y = m x + b}.
24480 In this case, Calc thinks of all the rows of the data matrix on
24481 equal terms; this model effectively has two parameters
24482 (@expr{m} and @expr{b}) and two independent variables (@expr{x}
24483 and @expr{y}), with no ``dependent'' variables.  Model equations
24484 do not need to take this @expr{y =} form.  For example, the
24485 implicit line equation @expr{a x + b y = 1} works fine as a
24486 model.
24488 When you enter a model, Calc makes an alphabetical list of all
24489 the variables that appear in the model.  These are used for the
24490 default parameters, independent variables, and dependent variable
24491 (in that order).  If you enter a plain formula (not an equation),
24492 Calc assumes the dependent variable does not appear in the formula
24493 and thus does not need a name.
24495 For example, if the model formula has the variables @expr{a,mu,sigma,t,x},
24496 and the data matrix has three rows (meaning two independent variables),
24497 Calc will use @expr{a,mu,sigma} as the default parameters, and the
24498 data rows will be named @expr{t} and @expr{x}, respectively.  If you
24499 enter an equation instead of a plain formula, Calc will use @expr{a,mu}
24500 as the parameters, and @expr{sigma,t,x} as the three independent
24501 variables.
24503 You can, of course, override these choices by entering something
24504 different at the prompt.  If you leave some variables out of the list,
24505 those variables must have stored values and those stored values will
24506 be used as constants in the model.  (Stored values for the parameters
24507 and independent variables are ignored by the @kbd{a F} command.)
24508 If you list only independent variables, all the remaining variables
24509 in the model formula will become parameters.
24511 If there are @kbd{$} signs in the model you type, they will stand
24512 for parameters and all other variables (in alphabetical order)
24513 will be independent.  Use @kbd{$} for one parameter, @kbd{$$} for
24514 another, and so on.  Thus @kbd{$ x + $$} is another way to describe
24515 a linear model.
24517 If you type a @kbd{$} instead of @kbd{'} at the model prompt itself,
24518 Calc will take the model formula from the stack.  (The data must then
24519 appear at the second stack level.)  The same conventions are used to
24520 choose which variables in the formula are independent by default and
24521 which are parameters.
24523 Models taken from the stack can also be expressed as vectors of
24524 two or three elements, @expr{[@var{model}, @var{vars}]} or
24525 @expr{[@var{model}, @var{vars}, @var{params}]}.  Each of @var{vars}
24526 and @var{params} may be either a variable or a vector of variables.
24527 (If @var{params} is omitted, all variables in @var{model} except
24528 those listed as @var{vars} are parameters.)
24530 When you enter a model manually with @kbd{'}, Calc puts a 3-vector
24531 describing the model in the trail so you can get it back if you wish.
24533 @tex
24534 \bigskip
24535 @end tex
24537 @vindex Model1
24538 @vindex Model2
24539 Finally, you can store a model in one of the Calc variables
24540 @code{Model1} or @code{Model2}, then use this model by typing
24541 @kbd{a F u} or @kbd{a F U} (respectively).  The value stored in
24542 the variable can be any of the formats that @kbd{a F $} would
24543 accept for a model on the stack.
24545 @tex
24546 \bigskip
24547 @end tex
24549 Calc uses the principal values of inverse functions like @code{ln}
24550 and @code{arcsin} when doing fits.  For example, when you enter
24551 the model @samp{y = sin(a t + b)} Calc actually uses the easier
24552 form @samp{arcsin(y) = a t + b}.  The @code{arcsin} function always
24553 returns results in the range from @mathit{-90} to 90 degrees (or the
24554 equivalent range in radians).  Suppose you had data that you
24555 believed to represent roughly three oscillations of a sine wave,
24556 so that the argument of the sine might go from zero to 
24557 @texline @math{3\times360}
24558 @infoline @mathit{3*360} 
24559 degrees.
24560 The above model would appear to be a good way to determine the
24561 true frequency and phase of the sine wave, but in practice it
24562 would fail utterly.  The righthand side of the actual model
24563 @samp{arcsin(y) = a t + b} will grow smoothly with @expr{t}, but
24564 the lefthand side will bounce back and forth between @mathit{-90} and 90.
24565 No values of @expr{a} and @expr{b} can make the two sides match,
24566 even approximately.
24568 There is no good solution to this problem at present.  You could
24569 restrict your data to small enough ranges so that the above problem
24570 doesn't occur (i.e., not straddling any peaks in the sine wave).
24571 Or, in this case, you could use a totally different method such as
24572 Fourier analysis, which is beyond the scope of the @kbd{a F} command.
24573 (Unfortunately, Calc does not currently have any facilities for
24574 taking Fourier and related transforms.)
24576 @node Curve Fitting Details, Interpolation, Standard Nonlinear Models, Curve Fitting
24577 @subsection Curve Fitting Details
24579 @noindent
24580 Calc's internal least-squares fitter can only handle multilinear
24581 models.  More precisely, it can handle any model of the form
24582 @expr{a f(x,y,z) + b g(x,y,z) + c h(x,y,z)}, where @expr{a,b,c}
24583 are the parameters and @expr{x,y,z} are the independent variables
24584 (of course there can be any number of each, not just three).
24586 In a simple multilinear or polynomial fit, it is easy to see how
24587 to convert the model into this form.  For example, if the model
24588 is @expr{a + b x + c x^2}, then @expr{f(x) = 1}, @expr{g(x) = x},
24589 and @expr{h(x) = x^2} are suitable functions.
24591 For other models, Calc uses a variety of algebraic manipulations
24592 to try to put the problem into the form
24594 @smallexample
24595 Y(x,y,z) = A(a,b,c) F(x,y,z) + B(a,b,c) G(x,y,z) + C(a,b,c) H(x,y,z)
24596 @end smallexample
24598 @noindent
24599 where @expr{Y,A,B,C,F,G,H} are arbitrary functions.  It computes
24600 @expr{Y}, @expr{F}, @expr{G}, and @expr{H} for all the data points,
24601 does a standard linear fit to find the values of @expr{A}, @expr{B},
24602 and @expr{C}, then uses the equation solver to solve for @expr{a,b,c}
24603 in terms of @expr{A,B,C}.
24605 A remarkable number of models can be cast into this general form.
24606 We'll look at two examples here to see how it works.  The power-law
24607 model @expr{y = a x^b} with two independent variables and two parameters
24608 can be rewritten as follows:
24610 @example
24611 y = a x^b
24612 y = a exp(b ln(x))
24613 y = exp(ln(a) + b ln(x))
24614 ln(y) = ln(a) + b ln(x)
24615 @end example
24617 @noindent
24618 which matches the desired form with 
24619 @texline @math{Y = \ln(y)},
24620 @infoline @expr{Y = ln(y)}, 
24621 @texline @math{A = \ln(a)},
24622 @infoline @expr{A = ln(a)},
24623 @expr{F = 1}, @expr{B = b}, and 
24624 @texline @math{G = \ln(x)}.
24625 @infoline @expr{G = ln(x)}.  
24626 Calc thus computes the logarithms of your @expr{y} and @expr{x} values,
24627 does a linear fit for @expr{A} and @expr{B}, then solves to get 
24628 @texline @math{a = \exp(A)} 
24629 @infoline @expr{a = exp(A)} 
24630 and @expr{b = B}.
24632 Another interesting example is the ``quadratic'' model, which can
24633 be handled by expanding according to the distributive law.
24635 @example
24636 y = a + b*(x - c)^2
24637 y = a + b c^2 - 2 b c x + b x^2
24638 @end example
24640 @noindent
24641 which matches with @expr{Y = y}, @expr{A = a + b c^2}, @expr{F = 1},
24642 @expr{B = -2 b c}, @expr{G = x} (the @mathit{-2} factor could just as easily
24643 have been put into @expr{G} instead of @expr{B}), @expr{C = b}, and
24644 @expr{H = x^2}.
24646 The Gaussian model looks quite complicated, but a closer examination
24647 shows that it's actually similar to the quadratic model but with an
24648 exponential that can be brought to the top and moved into @expr{Y}.
24650 An example of a model that cannot be put into general linear
24651 form is a Gaussian with a constant background added on, i.e.,
24652 @expr{d} + the regular Gaussian formula.  If you have a model like
24653 this, your best bet is to replace enough of your parameters with
24654 constants to make the model linearizable, then adjust the constants
24655 manually by doing a series of fits.  You can compare the fits by
24656 graphing them, by examining the goodness-of-fit measures returned by
24657 @kbd{I a F}, or by some other method suitable to your application.
24658 Note that some models can be linearized in several ways.  The
24659 Gaussian-plus-@var{d} model can be linearized by setting @expr{d}
24660 (the background) to a constant, or by setting @expr{b} (the standard
24661 deviation) and @expr{c} (the mean) to constants.
24663 To fit a model with constants substituted for some parameters, just
24664 store suitable values in those parameter variables, then omit them
24665 from the list of parameters when you answer the variables prompt.
24667 @tex
24668 \bigskip
24669 @end tex
24671 A last desperate step would be to use the general-purpose
24672 @code{minimize} function rather than @code{fit}.  After all, both
24673 functions solve the problem of minimizing an expression (the 
24674 @texline @math{\chi^2}
24675 @infoline @expr{chi^2}
24676 sum) by adjusting certain parameters in the expression.  The @kbd{a F}
24677 command is able to use a vastly more efficient algorithm due to its
24678 special knowledge about linear chi-square sums, but the @kbd{a N}
24679 command can do the same thing by brute force.
24681 A compromise would be to pick out a few parameters without which the
24682 fit is linearizable, and use @code{minimize} on a call to @code{fit}
24683 which efficiently takes care of the rest of the parameters.  The thing
24684 to be minimized would be the value of 
24685 @texline @math{\chi^2}
24686 @infoline @expr{chi^2} 
24687 returned as the fifth result of the @code{xfit} function:
24689 @smallexample
24690 minimize(xfit(gaus(a,b,c,d,x), x, [a,b,c], data)_5, d, guess)
24691 @end smallexample
24693 @noindent
24694 where @code{gaus} represents the Gaussian model with background,
24695 @code{data} represents the data matrix, and @code{guess} represents
24696 the initial guess for @expr{d} that @code{minimize} requires.
24697 This operation will only be, shall we say, extraordinarily slow
24698 rather than astronomically slow (as would be the case if @code{minimize}
24699 were used by itself to solve the problem).
24701 @tex
24702 \bigskip
24703 @end tex
24705 The @kbd{I a F} [@code{xfit}] command is somewhat trickier when
24706 nonlinear models are used.  The second item in the result is the
24707 vector of ``raw'' parameters @expr{A}, @expr{B}, @expr{C}.  The
24708 covariance matrix is written in terms of those raw parameters.
24709 The fifth item is a vector of @dfn{filter} expressions.  This
24710 is the empty vector @samp{[]} if the raw parameters were the same
24711 as the requested parameters, i.e., if @expr{A = a}, @expr{B = b},
24712 and so on (which is always true if the model is already linear
24713 in the parameters as written, e.g., for polynomial fits).  If the
24714 parameters had to be rearranged, the fifth item is instead a vector
24715 of one formula per parameter in the original model.  The raw
24716 parameters are expressed in these ``filter'' formulas as
24717 @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)} for @expr{B},
24718 and so on.
24720 When Calc needs to modify the model to return the result, it replaces
24721 @samp{fitdummy(1)} in all the filters with the first item in the raw
24722 parameters list, and so on for the other raw parameters, then
24723 evaluates the resulting filter formulas to get the actual parameter
24724 values to be substituted into the original model.  In the case of
24725 @kbd{H a F} and @kbd{I a F} where the parameters must be error forms,
24726 Calc uses the square roots of the diagonal entries of the covariance
24727 matrix as error values for the raw parameters, then lets Calc's
24728 standard error-form arithmetic take it from there.
24730 If you use @kbd{I a F} with a nonlinear model, be sure to remember
24731 that the covariance matrix is in terms of the raw parameters,
24732 @emph{not} the actual requested parameters.  It's up to you to
24733 figure out how to interpret the covariances in the presence of
24734 nontrivial filter functions.
24736 Things are also complicated when the input contains error forms.
24737 Suppose there are three independent and dependent variables, @expr{x},
24738 @expr{y}, and @expr{z}, one or more of which are error forms in the
24739 data.  Calc combines all the error values by taking the square root
24740 of the sum of the squares of the errors.  It then changes @expr{x}
24741 and @expr{y} to be plain numbers, and makes @expr{z} into an error
24742 form with this combined error.  The @expr{Y(x,y,z)} part of the
24743 linearized model is evaluated, and the result should be an error
24744 form.  The error part of that result is used for 
24745 @texline @math{\sigma_i}
24746 @infoline @expr{sigma_i} 
24747 for the data point.  If for some reason @expr{Y(x,y,z)} does not return 
24748 an error form, the combined error from @expr{z} is used directly for 
24749 @texline @math{\sigma_i}.
24750 @infoline @expr{sigma_i}.  
24751 Finally, @expr{z} is also stripped of its error
24752 for use in computing @expr{F(x,y,z)}, @expr{G(x,y,z)} and so on;
24753 the righthand side of the linearized model is computed in regular
24754 arithmetic with no error forms.
24756 (While these rules may seem complicated, they are designed to do
24757 the most reasonable thing in the typical case that @expr{Y(x,y,z)}
24758 depends only on the dependent variable @expr{z}, and in fact is
24759 often simply equal to @expr{z}.  For common cases like polynomials
24760 and multilinear models, the combined error is simply used as the
24761 @texline @math{\sigma}
24762 @infoline @expr{sigma} 
24763 for the data point with no further ado.)
24765 @tex
24766 \bigskip
24767 @end tex
24769 @vindex FitRules
24770 It may be the case that the model you wish to use is linearizable,
24771 but Calc's built-in rules are unable to figure it out.  Calc uses
24772 its algebraic rewrite mechanism to linearize a model.  The rewrite
24773 rules are kept in the variable @code{FitRules}.  You can edit this
24774 variable using the @kbd{s e FitRules} command; in fact, there is
24775 a special @kbd{s F} command just for editing @code{FitRules}.
24776 @xref{Operations on Variables}.
24778 @xref{Rewrite Rules}, for a discussion of rewrite rules.
24780 @ignore
24781 @starindex
24782 @end ignore
24783 @tindex fitvar
24784 @ignore
24785 @starindex
24786 @end ignore
24787 @ignore
24788 @mindex @idots
24789 @end ignore
24790 @tindex fitparam
24791 @ignore
24792 @starindex
24793 @end ignore
24794 @ignore
24795 @mindex @null
24796 @end ignore
24797 @tindex fitmodel
24798 @ignore
24799 @starindex
24800 @end ignore
24801 @ignore
24802 @mindex @null
24803 @end ignore
24804 @tindex fitsystem
24805 @ignore
24806 @starindex
24807 @end ignore
24808 @ignore
24809 @mindex @null
24810 @end ignore
24811 @tindex fitdummy
24812 Calc uses @code{FitRules} as follows.  First, it converts the model
24813 to an equation if necessary and encloses the model equation in a
24814 call to the function @code{fitmodel} (which is not actually a defined
24815 function in Calc; it is only used as a placeholder by the rewrite rules).
24816 Parameter variables are renamed to function calls @samp{fitparam(1)},
24817 @samp{fitparam(2)}, and so on, and independent variables are renamed
24818 to @samp{fitvar(1)}, @samp{fitvar(2)}, etc.  The dependent variable
24819 is the highest-numbered @code{fitvar}.  For example, the power law
24820 model @expr{a x^b} is converted to @expr{y = a x^b}, then to
24822 @smallexample
24823 @group
24824 fitmodel(fitvar(2) = fitparam(1) fitvar(1)^fitparam(2))
24825 @end group
24826 @end smallexample
24828 Calc then applies the rewrites as if by @samp{C-u 0 a r FitRules}.
24829 (The zero prefix means that rewriting should continue until no further
24830 changes are possible.)
24832 When rewriting is complete, the @code{fitmodel} call should have
24833 been replaced by a @code{fitsystem} call that looks like this:
24835 @example
24836 fitsystem(@var{Y}, @var{FGH}, @var{abc})
24837 @end example
24839 @noindent
24840 where @var{Y} is a formula that describes the function @expr{Y(x,y,z)},
24841 @var{FGH} is the vector of formulas @expr{[F(x,y,z), G(x,y,z), H(x,y,z)]},
24842 and @var{abc} is the vector of parameter filters which refer to the
24843 raw parameters as @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)}
24844 for @expr{B}, etc.  While the number of raw parameters (the length of
24845 the @var{FGH} vector) is usually the same as the number of original
24846 parameters (the length of the @var{abc} vector), this is not required.
24848 The power law model eventually boils down to
24850 @smallexample
24851 @group
24852 fitsystem(ln(fitvar(2)),
24853           [1, ln(fitvar(1))],
24854           [exp(fitdummy(1)), fitdummy(2)])
24855 @end group
24856 @end smallexample
24858 The actual implementation of @code{FitRules} is complicated; it
24859 proceeds in four phases.  First, common rearrangements are done
24860 to try to bring linear terms together and to isolate functions like
24861 @code{exp} and @code{ln} either all the way ``out'' (so that they
24862 can be put into @var{Y}) or all the way ``in'' (so that they can
24863 be put into @var{abc} or @var{FGH}).  In particular, all
24864 non-constant powers are converted to logs-and-exponentials form,
24865 and the distributive law is used to expand products of sums.
24866 Quotients are rewritten to use the @samp{fitinv} function, where
24867 @samp{fitinv(x)} represents @expr{1/x} while the @code{FitRules}
24868 are operating.  (The use of @code{fitinv} makes recognition of
24869 linear-looking forms easier.)  If you modify @code{FitRules}, you
24870 will probably only need to modify the rules for this phase.
24872 Phase two, whose rules can actually also apply during phases one
24873 and three, first rewrites @code{fitmodel} to a two-argument
24874 form @samp{fitmodel(@var{Y}, @var{model})}, where @var{Y} is
24875 initially zero and @var{model} has been changed from @expr{a=b}
24876 to @expr{a-b} form.  It then tries to peel off invertible functions
24877 from the outside of @var{model} and put them into @var{Y} instead,
24878 calling the equation solver to invert the functions.  Finally, when
24879 this is no longer possible, the @code{fitmodel} is changed to a
24880 four-argument @code{fitsystem}, where the fourth argument is
24881 @var{model} and the @var{FGH} and @var{abc} vectors are initially
24882 empty.  (The last vector is really @var{ABC}, corresponding to
24883 raw parameters, for now.)
24885 Phase three converts a sum of items in the @var{model} to a sum
24886 of @samp{fitpart(@var{a}, @var{b}, @var{c})} terms which represent
24887 terms @samp{@var{a}*@var{b}*@var{c}} of the sum, where @var{a}
24888 is all factors that do not involve any variables, @var{b} is all
24889 factors that involve only parameters, and @var{c} is the factors
24890 that involve only independent variables.  (If this decomposition
24891 is not possible, the rule set will not complete and Calc will
24892 complain that the model is too complex.)  Then @code{fitpart}s
24893 with equal @var{b} or @var{c} components are merged back together
24894 using the distributive law in order to minimize the number of
24895 raw parameters needed.
24897 Phase four moves the @code{fitpart} terms into the @var{FGH} and
24898 @var{ABC} vectors.  Also, some of the algebraic expansions that
24899 were done in phase 1 are undone now to make the formulas more
24900 computationally efficient.  Finally, it calls the solver one more
24901 time to convert the @var{ABC} vector to an @var{abc} vector, and
24902 removes the fourth @var{model} argument (which by now will be zero)
24903 to obtain the three-argument @code{fitsystem} that the linear
24904 least-squares solver wants to see.
24906 @ignore
24907 @starindex
24908 @end ignore
24909 @ignore
24910 @mindex hasfit@idots
24911 @end ignore
24912 @tindex hasfitparams
24913 @ignore
24914 @starindex
24915 @end ignore
24916 @ignore
24917 @mindex @null
24918 @end ignore
24919 @tindex hasfitvars
24920 Two functions which are useful in connection with @code{FitRules}
24921 are @samp{hasfitparams(x)} and @samp{hasfitvars(x)}, which check
24922 whether @expr{x} refers to any parameters or independent variables,
24923 respectively.  Specifically, these functions return ``true'' if the
24924 argument contains any @code{fitparam} (or @code{fitvar}) function
24925 calls, and ``false'' otherwise.  (Recall that ``true'' means a
24926 nonzero number, and ``false'' means zero.  The actual nonzero number
24927 returned is the largest @var{n} from all the @samp{fitparam(@var{n})}s
24928 or @samp{fitvar(@var{n})}s, respectively, that appear in the formula.)
24930 @tex
24931 \bigskip
24932 @end tex
24934 The @code{fit} function in algebraic notation normally takes four
24935 arguments, @samp{fit(@var{model}, @var{vars}, @var{params}, @var{data})},
24936 where @var{model} is the model formula as it would be typed after
24937 @kbd{a F '}, @var{vars} is the independent variable or a vector of
24938 independent variables, @var{params} likewise gives the parameter(s),
24939 and @var{data} is the data matrix.  Note that the length of @var{vars}
24940 must be equal to the number of rows in @var{data} if @var{model} is
24941 an equation, or one less than the number of rows if @var{model} is
24942 a plain formula.  (Actually, a name for the dependent variable is
24943 allowed but will be ignored in the plain-formula case.)
24945 If @var{params} is omitted, the parameters are all variables in
24946 @var{model} except those that appear in @var{vars}.  If @var{vars}
24947 is also omitted, Calc sorts all the variables that appear in
24948 @var{model} alphabetically and uses the higher ones for @var{vars}
24949 and the lower ones for @var{params}.
24951 Alternatively, @samp{fit(@var{modelvec}, @var{data})} is allowed
24952 where @var{modelvec} is a 2- or 3-vector describing the model
24953 and variables, as discussed previously.
24955 If Calc is unable to do the fit, the @code{fit} function is left
24956 in symbolic form, ordinarily with an explanatory message.  The
24957 message will be ``Model expression is too complex'' if the
24958 linearizer was unable to put the model into the required form.
24960 The @code{efit} (corresponding to @kbd{H a F}) and @code{xfit}
24961 (for @kbd{I a F}) functions are completely analogous.
24963 @node Interpolation,  , Curve Fitting Details, Curve Fitting
24964 @subsection Polynomial Interpolation
24966 @kindex a p
24967 @pindex calc-poly-interp
24968 @tindex polint
24969 The @kbd{a p} (@code{calc-poly-interp}) [@code{polint}] command does
24970 a polynomial interpolation at a particular @expr{x} value.  It takes
24971 two arguments from the stack:  A data matrix of the sort used by
24972 @kbd{a F}, and a single number which represents the desired @expr{x}
24973 value.  Calc effectively does an exact polynomial fit as if by @kbd{a F i},
24974 then substitutes the @expr{x} value into the result in order to get an
24975 approximate @expr{y} value based on the fit.  (Calc does not actually
24976 use @kbd{a F i}, however; it uses a direct method which is both more
24977 efficient and more numerically stable.)
24979 The result of @kbd{a p} is actually a vector of two values:  The @expr{y}
24980 value approximation, and an error measure @expr{dy} that reflects Calc's
24981 estimation of the probable error of the approximation at that value of
24982 @expr{x}.  If the input @expr{x} is equal to any of the @expr{x} values
24983 in the data matrix, the output @expr{y} will be the corresponding @expr{y}
24984 value from the matrix, and the output @expr{dy} will be exactly zero.
24986 A prefix argument of 2 causes @kbd{a p} to take separate x- and
24987 y-vectors from the stack instead of one data matrix.
24989 If @expr{x} is a vector of numbers, @kbd{a p} will return a matrix of
24990 interpolated results for each of those @expr{x} values.  (The matrix will
24991 have two columns, the @expr{y} values and the @expr{dy} values.)
24992 If @expr{x} is a formula instead of a number, the @code{polint} function
24993 remains in symbolic form; use the @kbd{a "} command to expand it out to
24994 a formula that describes the fit in symbolic terms.
24996 In all cases, the @kbd{a p} command leaves the data vectors or matrix
24997 on the stack.  Only the @expr{x} value is replaced by the result.
24999 @kindex H a p
25000 @tindex ratint
25001 The @kbd{H a p} [@code{ratint}] command does a rational function
25002 interpolation.  It is used exactly like @kbd{a p}, except that it
25003 uses as its model the quotient of two polynomials.  If there are
25004 @expr{N} data points, the numerator and denominator polynomials will
25005 each have degree @expr{N/2} (if @expr{N} is odd, the denominator will
25006 have degree one higher than the numerator).
25008 Rational approximations have the advantage that they can accurately
25009 describe functions that have poles (points at which the function's value
25010 goes to infinity, so that the denominator polynomial of the approximation
25011 goes to zero).  If @expr{x} corresponds to a pole of the fitted rational
25012 function, then the result will be a division by zero.  If Infinite mode
25013 is enabled, the result will be @samp{[uinf, uinf]}.
25015 There is no way to get the actual coefficients of the rational function
25016 used by @kbd{H a p}.  (The algorithm never generates these coefficients
25017 explicitly, and quotients of polynomials are beyond @w{@kbd{a F}}'s
25018 capabilities to fit.)
25020 @node Summations, Logical Operations, Curve Fitting, Algebra
25021 @section Summations
25023 @noindent
25024 @cindex Summation of a series
25025 @kindex a +
25026 @pindex calc-summation
25027 @tindex sum
25028 The @kbd{a +} (@code{calc-summation}) [@code{sum}] command computes
25029 the sum of a formula over a certain range of index values.  The formula
25030 is taken from the top of the stack; the command prompts for the
25031 name of the summation index variable, the lower limit of the
25032 sum (any formula), and the upper limit of the sum.  If you
25033 enter a blank line at any of these prompts, that prompt and
25034 any later ones are answered by reading additional elements from
25035 the stack.  Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}}
25036 produces the result 55.
25037 @tex
25038 \turnoffactive
25039 $$ \sum_{k=1}^5 k^2 = 55 $$
25040 @end tex
25042 The choice of index variable is arbitrary, but it's best not to
25043 use a variable with a stored value.  In particular, while
25044 @code{i} is often a favorite index variable, it should be avoided
25045 in Calc because @code{i} has the imaginary constant @expr{(0, 1)}
25046 as a value.  If you pressed @kbd{=} on a sum over @code{i}, it would
25047 be changed to a nonsensical sum over the ``variable'' @expr{(0, 1)}!
25048 If you really want to use @code{i} as an index variable, use
25049 @w{@kbd{s u i @key{RET}}} first to ``unstore'' this variable.
25050 (@xref{Storing Variables}.)
25052 A numeric prefix argument steps the index by that amount rather
25053 than by one.  Thus @kbd{' a_k @key{RET} C-u -2 a + k @key{RET} 10 @key{RET} 0 @key{RET}}
25054 yields @samp{a_10 + a_8 + a_6 + a_4 + a_2 + a_0}.  A prefix
25055 argument of plain @kbd{C-u} causes @kbd{a +} to prompt for the
25056 step value, in which case you can enter any formula or enter
25057 a blank line to take the step value from the stack.  With the
25058 @kbd{C-u} prefix, @kbd{a +} can take up to five arguments from
25059 the stack:  The formula, the variable, the lower limit, the
25060 upper limit, and (at the top of the stack), the step value.
25062 Calc knows how to do certain sums in closed form.  For example,
25063 @samp{sum(6 k^2, k, 1, n) = @w{2 n^3} + 3 n^2 + n}.  In particular,
25064 this is possible if the formula being summed is polynomial or
25065 exponential in the index variable.  Sums of logarithms are
25066 transformed into logarithms of products.  Sums of trigonometric
25067 and hyperbolic functions are transformed to sums of exponentials
25068 and then done in closed form.  Also, of course, sums in which the
25069 lower and upper limits are both numbers can always be evaluated
25070 just by grinding them out, although Calc will use closed forms
25071 whenever it can for the sake of efficiency.
25073 The notation for sums in algebraic formulas is
25074 @samp{sum(@var{expr}, @var{var}, @var{low}, @var{high}, @var{step})}.
25075 If @var{step} is omitted, it defaults to one.  If @var{high} is
25076 omitted, @var{low} is actually the upper limit and the lower limit
25077 is one.  If @var{low} is also omitted, the limits are @samp{-inf}
25078 and @samp{inf}, respectively.
25080 Infinite sums can sometimes be evaluated:  @samp{sum(.5^k, k, 1, inf)}
25081 returns @expr{1}.  This is done by evaluating the sum in closed
25082 form (to @samp{1. - 0.5^n} in this case), then evaluating this
25083 formula with @code{n} set to @code{inf}.  Calc's usual rules
25084 for ``infinite'' arithmetic can find the answer from there.  If
25085 infinite arithmetic yields a @samp{nan}, or if the sum cannot be
25086 solved in closed form, Calc leaves the @code{sum} function in
25087 symbolic form.  @xref{Infinities}.
25089 As a special feature, if the limits are infinite (or omitted, as
25090 described above) but the formula includes vectors subscripted by
25091 expressions that involve the iteration variable, Calc narrows
25092 the limits to include only the range of integers which result in
25093 valid subscripts for the vector.  For example, the sum
25094 @samp{sum(k [a,b,c,d,e,f,g]_(2k),k)} evaluates to @samp{b + 2 d + 3 f}.
25096 The limits of a sum do not need to be integers.  For example,
25097 @samp{sum(a_k, k, 0, 2 n, n)} produces @samp{a_0 + a_n + a_(2 n)}.
25098 Calc computes the number of iterations using the formula
25099 @samp{1 + (@var{high} - @var{low}) / @var{step}}, which must,
25100 after simplification as if by @kbd{a s}, evaluate to an integer.
25102 If the number of iterations according to the above formula does
25103 not come out to an integer, the sum is invalid and will be left
25104 in symbolic form.  However, closed forms are still supplied, and
25105 you are on your honor not to misuse the resulting formulas by
25106 substituting mismatched bounds into them.  For example,
25107 @samp{sum(k, k, 1, 10, 2)} is invalid, but Calc will go ahead and
25108 evaluate the closed form solution for the limits 1 and 10 to get
25109 the rather dubious answer, 29.25.
25111 If the lower limit is greater than the upper limit (assuming a
25112 positive step size), the result is generally zero.  However,
25113 Calc only guarantees a zero result when the upper limit is
25114 exactly one step less than the lower limit, i.e., if the number
25115 of iterations is @mathit{-1}.  Thus @samp{sum(f(k), k, n, n-1)} is zero
25116 but the sum from @samp{n} to @samp{n-2} may report a nonzero value
25117 if Calc used a closed form solution.
25119 Calc's logical predicates like @expr{a < b} return 1 for ``true''
25120 and 0 for ``false.''  @xref{Logical Operations}.  This can be
25121 used to advantage for building conditional sums.  For example,
25122 @samp{sum(prime(k)*k^2, k, 1, 20)} is the sum of the squares of all
25123 prime numbers from 1 to 20; the @code{prime} predicate returns 1 if
25124 its argument is prime and 0 otherwise.  You can read this expression
25125 as ``the sum of @expr{k^2}, where @expr{k} is prime.''  Indeed,
25126 @samp{sum(prime(k)*k^2, k)} would represent the sum of @emph{all} primes
25127 squared, since the limits default to plus and minus infinity, but
25128 there are no such sums that Calc's built-in rules can do in
25129 closed form.
25131 As another example, @samp{sum((k != k_0) * f(k), k, 1, n)} is the
25132 sum of @expr{f(k)} for all @expr{k} from 1 to @expr{n}, excluding
25133 one value @expr{k_0}.  Slightly more tricky is the summand
25134 @samp{(k != k_0) / (k - k_0)}, which is an attempt to describe
25135 the sum of all @expr{1/(k-k_0)} except at @expr{k = k_0}, where
25136 this would be a division by zero.  But at @expr{k = k_0}, this
25137 formula works out to the indeterminate form @expr{0 / 0}, which
25138 Calc will not assume is zero.  Better would be to use
25139 @samp{(k != k_0) ? 1/(k-k_0) : 0}; the @samp{? :} operator does
25140 an ``if-then-else'' test:  This expression says, ``if 
25141 @texline @math{k \ne k_0},
25142 @infoline @expr{k != k_0},
25143 then @expr{1/(k-k_0)}, else zero.''  Now the formula @expr{1/(k-k_0)}
25144 will not even be evaluated by Calc when @expr{k = k_0}.
25146 @cindex Alternating sums
25147 @kindex a -
25148 @pindex calc-alt-summation
25149 @tindex asum
25150 The @kbd{a -} (@code{calc-alt-summation}) [@code{asum}] command
25151 computes an alternating sum.  Successive terms of the sequence
25152 are given alternating signs, with the first term (corresponding
25153 to the lower index value) being positive.  Alternating sums
25154 are converted to normal sums with an extra term of the form
25155 @samp{(-1)^(k-@var{low})}.  This formula is adjusted appropriately
25156 if the step value is other than one.  For example, the Taylor
25157 series for the sine function is @samp{asum(x^k / k!, k, 1, inf, 2)}.
25158 (Calc cannot evaluate this infinite series, but it can approximate
25159 it if you replace @code{inf} with any particular odd number.)
25160 Calc converts this series to a regular sum with a step of one,
25161 namely @samp{sum((-1)^k x^(2k+1) / (2k+1)!, k, 0, inf)}.
25163 @cindex Product of a sequence
25164 @kindex a *
25165 @pindex calc-product
25166 @tindex prod
25167 The @kbd{a *} (@code{calc-product}) [@code{prod}] command is
25168 the analogous way to take a product of many terms.  Calc also knows
25169 some closed forms for products, such as @samp{prod(k, k, 1, n) = n!}.
25170 Conditional products can be written @samp{prod(k^prime(k), k, 1, n)}
25171 or @samp{prod(prime(k) ? k : 1, k, 1, n)}.
25173 @kindex a T
25174 @pindex calc-tabulate
25175 @tindex table
25176 The @kbd{a T} (@code{calc-tabulate}) [@code{table}] command
25177 evaluates a formula at a series of iterated index values, just
25178 like @code{sum} and @code{prod}, but its result is simply a
25179 vector of the results.  For example, @samp{table(a_i, i, 1, 7, 2)}
25180 produces @samp{[a_1, a_3, a_5, a_7]}.
25182 @node Logical Operations, Rewrite Rules, Summations, Algebra
25183 @section Logical Operations
25185 @noindent
25186 The following commands and algebraic functions return true/false values,
25187 where 1 represents ``true'' and 0 represents ``false.''  In cases where
25188 a truth value is required (such as for the condition part of a rewrite
25189 rule, or as the condition for a @w{@kbd{Z [ Z ]}} control structure), any
25190 nonzero value is accepted to mean ``true.''  (Specifically, anything
25191 for which @code{dnonzero} returns 1 is ``true,'' and anything for
25192 which @code{dnonzero} returns 0 or cannot decide is assumed ``false.''
25193 Note that this means that @w{@kbd{Z [ Z ]}} will execute the ``then''
25194 portion if its condition is provably true, but it will execute the
25195 ``else'' portion for any condition like @expr{a = b} that is not
25196 provably true, even if it might be true.  Algebraic functions that
25197 have conditions as arguments, like @code{? :} and @code{&&}, remain
25198 unevaluated if the condition is neither provably true nor provably
25199 false.  @xref{Declarations}.)
25201 @kindex a =
25202 @pindex calc-equal-to
25203 @tindex eq
25204 @tindex =
25205 @tindex ==
25206 The @kbd{a =} (@code{calc-equal-to}) command, or @samp{eq(a,b)} function
25207 (which can also be written @samp{a = b} or @samp{a == b} in an algebraic
25208 formula) is true if @expr{a} and @expr{b} are equal, either because they
25209 are identical expressions, or because they are numbers which are
25210 numerically equal.  (Thus the integer 1 is considered equal to the float
25211 1.0.)  If the equality of @expr{a} and @expr{b} cannot be determined,
25212 the comparison is left in symbolic form.  Note that as a command, this
25213 operation pops two values from the stack and pushes back either a 1 or
25214 a 0, or a formula @samp{a = b} if the values' equality cannot be determined.
25216 Many Calc commands use @samp{=} formulas to represent @dfn{equations}.
25217 For example, the @kbd{a S} (@code{calc-solve-for}) command rearranges
25218 an equation to solve for a given variable.  The @kbd{a M}
25219 (@code{calc-map-equation}) command can be used to apply any
25220 function to both sides of an equation; for example, @kbd{2 a M *}
25221 multiplies both sides of the equation by two.  Note that just
25222 @kbd{2 *} would not do the same thing; it would produce the formula
25223 @samp{2 (a = b)} which represents 2 if the equality is true or
25224 zero if not.
25226 The @code{eq} function with more than two arguments (e.g., @kbd{C-u 3 a =}
25227 or @samp{a = b = c}) tests if all of its arguments are equal.  In
25228 algebraic notation, the @samp{=} operator is unusual in that it is
25229 neither left- nor right-associative:  @samp{a = b = c} is not the
25230 same as @samp{(a = b) = c} or @samp{a = (b = c)} (which each compare
25231 one variable with the 1 or 0 that results from comparing two other
25232 variables).
25234 @kindex a #
25235 @pindex calc-not-equal-to
25236 @tindex neq
25237 @tindex !=
25238 The @kbd{a #} (@code{calc-not-equal-to}) command, or @samp{neq(a,b)} or
25239 @samp{a != b} function, is true if @expr{a} and @expr{b} are not equal.
25240 This also works with more than two arguments; @samp{a != b != c != d}
25241 tests that all four of @expr{a}, @expr{b}, @expr{c}, and @expr{d} are
25242 distinct numbers.
25244 @kindex a <
25245 @tindex lt
25246 @ignore
25247 @mindex @idots
25248 @end ignore
25249 @kindex a >
25250 @ignore
25251 @mindex @null
25252 @end ignore
25253 @kindex a [
25254 @ignore
25255 @mindex @null
25256 @end ignore
25257 @kindex a ]
25258 @pindex calc-less-than
25259 @pindex calc-greater-than
25260 @pindex calc-less-equal
25261 @pindex calc-greater-equal
25262 @ignore
25263 @mindex @null
25264 @end ignore
25265 @tindex gt
25266 @ignore
25267 @mindex @null
25268 @end ignore
25269 @tindex leq
25270 @ignore
25271 @mindex @null
25272 @end ignore
25273 @tindex geq
25274 @ignore
25275 @mindex @null
25276 @end ignore
25277 @tindex <
25278 @ignore
25279 @mindex @null
25280 @end ignore
25281 @tindex >
25282 @ignore
25283 @mindex @null
25284 @end ignore
25285 @tindex <=
25286 @ignore
25287 @mindex @null
25288 @end ignore
25289 @tindex >=
25290 The @kbd{a <} (@code{calc-less-than}) [@samp{lt(a,b)} or @samp{a < b}]
25291 operation is true if @expr{a} is less than @expr{b}.  Similar functions
25292 are @kbd{a >} (@code{calc-greater-than}) [@samp{gt(a,b)} or @samp{a > b}],
25293 @kbd{a [} (@code{calc-less-equal}) [@samp{leq(a,b)} or @samp{a <= b}], and
25294 @kbd{a ]} (@code{calc-greater-equal}) [@samp{geq(a,b)} or @samp{a >= b}].
25296 While the inequality functions like @code{lt} do not accept more
25297 than two arguments, the syntax @w{@samp{a <= b < c}} is translated to an
25298 equivalent expression involving intervals: @samp{b in [a .. c)}.
25299 (See the description of @code{in} below.)  All four combinations
25300 of @samp{<} and @samp{<=} are allowed, or any of the four combinations
25301 of @samp{>} and @samp{>=}.  Four-argument constructions like
25302 @samp{a < b < c < d}, and mixtures like @w{@samp{a < b = c}} that
25303 involve both equalities and inequalities, are not allowed.
25305 @kindex a .
25306 @pindex calc-remove-equal
25307 @tindex rmeq
25308 The @kbd{a .} (@code{calc-remove-equal}) [@code{rmeq}] command extracts
25309 the righthand side of the equation or inequality on the top of the
25310 stack.  It also works elementwise on vectors.  For example, if
25311 @samp{[x = 2.34, y = z / 2]} is on the stack, then @kbd{a .} produces
25312 @samp{[2.34, z / 2]}.  As a special case, if the righthand side is a
25313 variable and the lefthand side is a number (as in @samp{2.34 = x}), then
25314 Calc keeps the lefthand side instead.  Finally, this command works with
25315 assignments @samp{x := 2.34} as well as equations, always taking the
25316 righthand side, and for @samp{=>} (evaluates-to) operators, always
25317 taking the lefthand side.
25319 @kindex a &
25320 @pindex calc-logical-and
25321 @tindex land
25322 @tindex &&
25323 The @kbd{a &} (@code{calc-logical-and}) [@samp{land(a,b)} or @samp{a && b}]
25324 function is true if both of its arguments are true, i.e., are
25325 non-zero numbers.  In this case, the result will be either @expr{a} or
25326 @expr{b}, chosen arbitrarily.  If either argument is zero, the result is
25327 zero.  Otherwise, the formula is left in symbolic form.
25329 @kindex a |
25330 @pindex calc-logical-or
25331 @tindex lor
25332 @tindex ||
25333 The @kbd{a |} (@code{calc-logical-or}) [@samp{lor(a,b)} or @samp{a || b}]
25334 function is true if either or both of its arguments are true (nonzero).
25335 The result is whichever argument was nonzero, choosing arbitrarily if both
25336 are nonzero.  If both @expr{a} and @expr{b} are zero, the result is
25337 zero.
25339 @kindex a !
25340 @pindex calc-logical-not
25341 @tindex lnot
25342 @tindex !
25343 The @kbd{a !} (@code{calc-logical-not}) [@samp{lnot(a)} or @samp{!@: a}]
25344 function is true if @expr{a} is false (zero), or false if @expr{a} is
25345 true (nonzero).  It is left in symbolic form if @expr{a} is not a
25346 number.
25348 @kindex a :
25349 @pindex calc-logical-if
25350 @tindex if
25351 @ignore
25352 @mindex ? :
25353 @end ignore
25354 @tindex ?
25355 @ignore
25356 @mindex @null
25357 @end ignore
25358 @tindex :
25359 @cindex Arguments, not evaluated
25360 The @kbd{a :} (@code{calc-logical-if}) [@samp{if(a,b,c)} or @samp{a ? b :@: c}]
25361 function is equal to either @expr{b} or @expr{c} if @expr{a} is a nonzero
25362 number or zero, respectively.  If @expr{a} is not a number, the test is
25363 left in symbolic form and neither @expr{b} nor @expr{c} is evaluated in
25364 any way.  In algebraic formulas, this is one of the few Calc functions
25365 whose arguments are not automatically evaluated when the function itself
25366 is evaluated.  The others are @code{lambda}, @code{quote}, and
25367 @code{condition}.
25369 One minor surprise to watch out for is that the formula @samp{a?3:4}
25370 will not work because the @samp{3:4} is parsed as a fraction instead of
25371 as three separate symbols.  Type something like @samp{a ? 3 : 4} or
25372 @samp{a?(3):4} instead.
25374 As a special case, if @expr{a} evaluates to a vector, then both @expr{b}
25375 and @expr{c} are evaluated; the result is a vector of the same length
25376 as @expr{a} whose elements are chosen from corresponding elements of
25377 @expr{b} and @expr{c} according to whether each element of @expr{a}
25378 is zero or nonzero.  Each of @expr{b} and @expr{c} must be either a
25379 vector of the same length as @expr{a}, or a non-vector which is matched
25380 with all elements of @expr{a}.
25382 @kindex a @{
25383 @pindex calc-in-set
25384 @tindex in
25385 The @kbd{a @{} (@code{calc-in-set}) [@samp{in(a,b)}] function is true if
25386 the number @expr{a} is in the set of numbers represented by @expr{b}.
25387 If @expr{b} is an interval form, @expr{a} must be one of the values
25388 encompassed by the interval.  If @expr{b} is a vector, @expr{a} must be
25389 equal to one of the elements of the vector.  (If any vector elements are
25390 intervals, @expr{a} must be in any of the intervals.)  If @expr{b} is a
25391 plain number, @expr{a} must be numerically equal to @expr{b}.
25392 @xref{Set Operations}, for a group of commands that manipulate sets
25393 of this sort.
25395 @ignore
25396 @starindex
25397 @end ignore
25398 @tindex typeof
25399 The @samp{typeof(a)} function produces an integer or variable which
25400 characterizes @expr{a}.  If @expr{a} is a number, vector, or variable,
25401 the result will be one of the following numbers:
25403 @example
25404  1   Integer
25405  2   Fraction
25406  3   Floating-point number
25407  4   HMS form
25408  5   Rectangular complex number
25409  6   Polar complex number
25410  7   Error form
25411  8   Interval form
25412  9   Modulo form
25413 10   Date-only form
25414 11   Date/time form
25415 12   Infinity (inf, uinf, or nan)
25416 100  Variable
25417 101  Vector (but not a matrix)
25418 102  Matrix
25419 @end example
25421 Otherwise, @expr{a} is a formula, and the result is a variable which
25422 represents the name of the top-level function call.
25424 @ignore
25425 @starindex
25426 @end ignore
25427 @tindex integer
25428 @ignore
25429 @starindex
25430 @end ignore
25431 @tindex real
25432 @ignore
25433 @starindex
25434 @end ignore
25435 @tindex constant
25436 The @samp{integer(a)} function returns true if @expr{a} is an integer.
25437 The @samp{real(a)} function
25438 is true if @expr{a} is a real number, either integer, fraction, or
25439 float.  The @samp{constant(a)} function returns true if @expr{a} is
25440 any of the objects for which @code{typeof} would produce an integer
25441 code result except for variables, and provided that the components of
25442 an object like a vector or error form are themselves constant.
25443 Note that infinities do not satisfy any of these tests, nor do
25444 special constants like @code{pi} and @code{e}.
25446 @xref{Declarations}, for a set of similar functions that recognize
25447 formulas as well as actual numbers.  For example, @samp{dint(floor(x))}
25448 is true because @samp{floor(x)} is provably integer-valued, but
25449 @samp{integer(floor(x))} does not because @samp{floor(x)} is not
25450 literally an integer constant.
25452 @ignore
25453 @starindex
25454 @end ignore
25455 @tindex refers
25456 The @samp{refers(a,b)} function is true if the variable (or sub-expression)
25457 @expr{b} appears in @expr{a}, or false otherwise.  Unlike the other
25458 tests described here, this function returns a definite ``no'' answer
25459 even if its arguments are still in symbolic form.  The only case where
25460 @code{refers} will be left unevaluated is if @expr{a} is a plain
25461 variable (different from @expr{b}).
25463 @ignore
25464 @starindex
25465 @end ignore
25466 @tindex negative
25467 The @samp{negative(a)} function returns true if @expr{a} ``looks'' negative,
25468 because it is a negative number, because it is of the form @expr{-x},
25469 or because it is a product or quotient with a term that looks negative.
25470 This is most useful in rewrite rules.  Beware that @samp{negative(a)}
25471 evaluates to 1 or 0 for @emph{any} argument @expr{a}, so it can only
25472 be stored in a formula if the default simplifications are turned off
25473 first with @kbd{m O} (or if it appears in an unevaluated context such
25474 as a rewrite rule condition).
25476 @ignore
25477 @starindex
25478 @end ignore
25479 @tindex variable
25480 The @samp{variable(a)} function is true if @expr{a} is a variable,
25481 or false if not.  If @expr{a} is a function call, this test is left
25482 in symbolic form.  Built-in variables like @code{pi} and @code{inf}
25483 are considered variables like any others by this test.
25485 @ignore
25486 @starindex
25487 @end ignore
25488 @tindex nonvar
25489 The @samp{nonvar(a)} function is true if @expr{a} is a non-variable.
25490 If its argument is a variable it is left unsimplified; it never
25491 actually returns zero.  However, since Calc's condition-testing
25492 commands consider ``false'' anything not provably true, this is
25493 often good enough.
25495 @ignore
25496 @starindex
25497 @end ignore
25498 @tindex lin
25499 @ignore
25500 @starindex
25501 @end ignore
25502 @tindex linnt
25503 @ignore
25504 @starindex
25505 @end ignore
25506 @tindex islin
25507 @ignore
25508 @starindex
25509 @end ignore
25510 @tindex islinnt
25511 @cindex Linearity testing
25512 The functions @code{lin}, @code{linnt}, @code{islin}, and @code{islinnt}
25513 check if an expression is ``linear,'' i.e., can be written in the form
25514 @expr{a + b x} for some constants @expr{a} and @expr{b}, and some
25515 variable or subformula @expr{x}.  The function @samp{islin(f,x)} checks
25516 if formula @expr{f} is linear in @expr{x}, returning 1 if so.  For
25517 example, @samp{islin(x,x)}, @samp{islin(-x,x)}, @samp{islin(3,x)}, and
25518 @samp{islin(x y / 3 - 2, x)} all return 1.  The @samp{lin(f,x)} function
25519 is similar, except that instead of returning 1 it returns the vector
25520 @expr{[a, b, x]}.  For the above examples, this vector would be
25521 @expr{[0, 1, x]}, @expr{[0, -1, x]}, @expr{[3, 0, x]}, and
25522 @expr{[-2, y/3, x]}, respectively.  Both @code{lin} and @code{islin}
25523 generally remain unevaluated for expressions which are not linear,
25524 e.g., @samp{lin(2 x^2, x)} and @samp{lin(sin(x), x)}.  The second
25525 argument can also be a formula; @samp{islin(2 + 3 sin(x), sin(x))}
25526 returns true.
25528 The @code{linnt} and @code{islinnt} functions perform a similar check,
25529 but require a ``non-trivial'' linear form, which means that the
25530 @expr{b} coefficient must be non-zero.  For example, @samp{lin(2,x)}
25531 returns @expr{[2, 0, x]} and @samp{lin(y,x)} returns @expr{[y, 0, x]},
25532 but @samp{linnt(2,x)} and @samp{linnt(y,x)} are left unevaluated
25533 (in other words, these formulas are considered to be only ``trivially''
25534 linear in @expr{x}).
25536 All four linearity-testing functions allow you to omit the second
25537 argument, in which case the input may be linear in any non-constant
25538 formula.  Here, the @expr{a=0}, @expr{b=1} case is also considered
25539 trivial, and only constant values for @expr{a} and @expr{b} are
25540 recognized.  Thus, @samp{lin(2 x y)} returns @expr{[0, 2, x y]},
25541 @samp{lin(2 - x y)} returns @expr{[2, -1, x y]}, and @samp{lin(x y)}
25542 returns @expr{[0, 1, x y]}.  The @code{linnt} function would allow the
25543 first two cases but not the third.  Also, neither @code{lin} nor
25544 @code{linnt} accept plain constants as linear in the one-argument
25545 case: @samp{islin(2,x)} is true, but @samp{islin(2)} is false.
25547 @ignore
25548 @starindex
25549 @end ignore
25550 @tindex istrue
25551 The @samp{istrue(a)} function returns 1 if @expr{a} is a nonzero
25552 number or provably nonzero formula, or 0 if @expr{a} is anything else.
25553 Calls to @code{istrue} can only be manipulated if @kbd{m O} mode is
25554 used to make sure they are not evaluated prematurely.  (Note that
25555 declarations are used when deciding whether a formula is true;
25556 @code{istrue} returns 1 when @code{dnonzero} would return 1, and
25557 it returns 0 when @code{dnonzero} would return 0 or leave itself
25558 in symbolic form.)
25560 @node Rewrite Rules,  , Logical Operations, Algebra
25561 @section Rewrite Rules
25563 @noindent
25564 @cindex Rewrite rules
25565 @cindex Transformations
25566 @cindex Pattern matching
25567 @kindex a r
25568 @pindex calc-rewrite
25569 @tindex rewrite
25570 The @kbd{a r} (@code{calc-rewrite}) [@code{rewrite}] command makes
25571 substitutions in a formula according to a specified pattern or patterns
25572 known as @dfn{rewrite rules}.  Whereas @kbd{a b} (@code{calc-substitute})
25573 matches literally, so that substituting @samp{sin(x)} with @samp{cos(x)}
25574 matches only the @code{sin} function applied to the variable @code{x},
25575 rewrite rules match general kinds of formulas; rewriting using the rule
25576 @samp{sin(x) := cos(x)} matches @code{sin} of any argument and replaces
25577 it with @code{cos} of that same argument.  The only significance of the
25578 name @code{x} is that the same name is used on both sides of the rule.
25580 Rewrite rules rearrange formulas already in Calc's memory.
25581 @xref{Syntax Tables}, to read about @dfn{syntax rules}, which are
25582 similar to algebraic rewrite rules but operate when new algebraic
25583 entries are being parsed, converting strings of characters into
25584 Calc formulas.
25586 @menu
25587 * Entering Rewrite Rules::
25588 * Basic Rewrite Rules::
25589 * Conditional Rewrite Rules::
25590 * Algebraic Properties of Rewrite Rules::
25591 * Other Features of Rewrite Rules::
25592 * Composing Patterns in Rewrite Rules::
25593 * Nested Formulas with Rewrite Rules::
25594 * Multi-Phase Rewrite Rules::
25595 * Selections with Rewrite Rules::
25596 * Matching Commands::
25597 * Automatic Rewrites::
25598 * Debugging Rewrites::
25599 * Examples of Rewrite Rules::
25600 @end menu
25602 @node Entering Rewrite Rules, Basic Rewrite Rules, Rewrite Rules, Rewrite Rules
25603 @subsection Entering Rewrite Rules
25605 @noindent
25606 Rewrite rules normally use the ``assignment'' operator
25607 @samp{@var{old} := @var{new}}.
25608 This operator is equivalent to the function call @samp{assign(old, new)}.
25609 The @code{assign} function is undefined by itself in Calc, so an
25610 assignment formula such as a rewrite rule will be left alone by ordinary
25611 Calc commands.  But certain commands, like the rewrite system, interpret
25612 assignments in special ways.
25614 For example, the rule @samp{sin(x)^2 := 1-cos(x)^2} says to replace
25615 every occurrence of the sine of something, squared, with one minus the
25616 square of the cosine of that same thing.  All by itself as a formula
25617 on the stack it does nothing, but when given to the @kbd{a r} command
25618 it turns that command into a sine-squared-to-cosine-squared converter.
25620 To specify a set of rules to be applied all at once, make a vector of
25621 rules.
25623 When @kbd{a r} prompts you to enter the rewrite rules, you can answer
25624 in several ways:
25626 @enumerate
25627 @item
25628 With a rule:  @kbd{f(x) := g(x) @key{RET}}.
25629 @item
25630 With a vector of rules:  @kbd{[f1(x) := g1(x), f2(x) := g2(x)] @key{RET}}.
25631 (You can omit the enclosing square brackets if you wish.)
25632 @item
25633 With the name of a variable that contains the rule or rules vector:
25634 @kbd{myrules @key{RET}}.
25635 @item
25636 With any formula except a rule, a vector, or a variable name; this
25637 will be interpreted as the @var{old} half of a rewrite rule,
25638 and you will be prompted a second time for the @var{new} half:
25639 @kbd{f(x) @key{RET} g(x) @key{RET}}.
25640 @item
25641 With a blank line, in which case the rule, rules vector, or variable
25642 will be taken from the top of the stack (and the formula to be
25643 rewritten will come from the second-to-top position).
25644 @end enumerate
25646 If you enter the rules directly (as opposed to using rules stored
25647 in a variable), those rules will be put into the Trail so that you
25648 can retrieve them later.  @xref{Trail Commands}.
25650 It is most convenient to store rules you use often in a variable and
25651 invoke them by giving the variable name.  The @kbd{s e}
25652 (@code{calc-edit-variable}) command is an easy way to create or edit a
25653 rule set stored in a variable.  You may also wish to use @kbd{s p}
25654 (@code{calc-permanent-variable}) to save your rules permanently;
25655 @pxref{Operations on Variables}.
25657 Rewrite rules are compiled into a special internal form for faster
25658 matching.  If you enter a rule set directly it must be recompiled
25659 every time.  If you store the rules in a variable and refer to them
25660 through that variable, they will be compiled once and saved away
25661 along with the variable for later reference.  This is another good
25662 reason to store your rules in a variable.
25664 Calc also accepts an obsolete notation for rules, as vectors
25665 @samp{[@var{old}, @var{new}]}.  But because it is easily confused with a
25666 vector of two rules, the use of this notation is no longer recommended.
25668 @node Basic Rewrite Rules, Conditional Rewrite Rules, Entering Rewrite Rules, Rewrite Rules
25669 @subsection Basic Rewrite Rules
25671 @noindent
25672 To match a particular formula @expr{x} with a particular rewrite rule
25673 @samp{@var{old} := @var{new}}, Calc compares the structure of @expr{x} with
25674 the structure of @var{old}.  Variables that appear in @var{old} are
25675 treated as @dfn{meta-variables}; the corresponding positions in @expr{x}
25676 may contain any sub-formulas.  For example, the pattern @samp{f(x,y)}
25677 would match the expression @samp{f(12, a+1)} with the meta-variable
25678 @samp{x} corresponding to 12 and with @samp{y} corresponding to
25679 @samp{a+1}.  However, this pattern would not match @samp{f(12)} or
25680 @samp{g(12, a+1)}, since there is no assignment of the meta-variables
25681 that will make the pattern match these expressions.  Notice that if
25682 the pattern is a single meta-variable, it will match any expression.
25684 If a given meta-variable appears more than once in @var{old}, the
25685 corresponding sub-formulas of @expr{x} must be identical.  Thus
25686 the pattern @samp{f(x,x)} would match @samp{f(12, 12)} and
25687 @samp{f(a+1, a+1)} but not @samp{f(12, a+1)} or @samp{f(a+b, b+a)}.
25688 (@xref{Conditional Rewrite Rules}, for a way to match the latter.)
25690 Things other than variables must match exactly between the pattern
25691 and the target formula.  To match a particular variable exactly, use
25692 the pseudo-function @samp{quote(v)} in the pattern.  For example, the
25693 pattern @samp{x+quote(y)} matches @samp{x+y}, @samp{2+y}, or
25694 @samp{sin(a)+y}.
25696 The special variable names @samp{e}, @samp{pi}, @samp{i}, @samp{phi},
25697 @samp{gamma}, @samp{inf}, @samp{uinf}, and @samp{nan} always match
25698 literally.  Thus the pattern @samp{sin(d + e + f)} acts exactly like
25699 @samp{sin(d + quote(e) + f)}.
25701 If the @var{old} pattern is found to match a given formula, that
25702 formula is replaced by @var{new}, where any occurrences in @var{new}
25703 of meta-variables from the pattern are replaced with the sub-formulas
25704 that they matched.  Thus, applying the rule @samp{f(x,y) := g(y+x,x)}
25705 to @samp{f(12, a+1)} would produce @samp{g(a+13, 12)}.
25707 The normal @kbd{a r} command applies rewrite rules over and over
25708 throughout the target formula until no further changes are possible
25709 (up to a limit of 100 times).  Use @kbd{C-u 1 a r} to make only one
25710 change at a time.
25712 @node Conditional Rewrite Rules, Algebraic Properties of Rewrite Rules, Basic Rewrite Rules, Rewrite Rules
25713 @subsection Conditional Rewrite Rules
25715 @noindent
25716 A rewrite rule can also be @dfn{conditional}, written in the form
25717 @samp{@var{old} := @var{new} :: @var{cond}}.  (There is also the obsolete
25718 form @samp{[@var{old}, @var{new}, @var{cond}]}.)  If a @var{cond} part
25719 is present in the
25720 rule, this is an additional condition that must be satisfied before
25721 the rule is accepted.  Once @var{old} has been successfully matched
25722 to the target expression, @var{cond} is evaluated (with all the
25723 meta-variables substituted for the values they matched) and simplified
25724 with @kbd{a s} (@code{calc-simplify}).  If the result is a nonzero
25725 number or any other object known to be nonzero (@pxref{Declarations}),
25726 the rule is accepted.  If the result is zero or if it is a symbolic
25727 formula that is not known to be nonzero, the rule is rejected.
25728 @xref{Logical Operations}, for a number of functions that return
25729 1 or 0 according to the results of various tests.
25731 For example, the formula @samp{n > 0} simplifies to 1 or 0 if @expr{n}
25732 is replaced by a positive or nonpositive number, respectively (or if
25733 @expr{n} has been declared to be positive or nonpositive).  Thus,
25734 the rule @samp{f(x,y) := g(y+x,x) :: x+y > 0} would apply to
25735 @samp{f(0, 4)} but not to @samp{f(-3, 2)} or @samp{f(12, a+1)}
25736 (assuming no outstanding declarations for @expr{a}).  In the case of
25737 @samp{f(-3, 2)}, the condition can be shown not to be satisfied; in
25738 the case of @samp{f(12, a+1)}, the condition merely cannot be shown
25739 to be satisfied, but that is enough to reject the rule.
25741 While Calc will use declarations to reason about variables in the
25742 formula being rewritten, declarations do not apply to meta-variables.
25743 For example, the rule @samp{f(a) := g(a+1)} will match for any values
25744 of @samp{a}, such as complex numbers, vectors, or formulas, even if
25745 @samp{a} has been declared to be real or scalar.  If you want the
25746 meta-variable @samp{a} to match only literal real numbers, use
25747 @samp{f(a) := g(a+1) :: real(a)}.  If you want @samp{a} to match only
25748 reals and formulas which are provably real, use @samp{dreal(a)} as
25749 the condition.
25751 The @samp{::} operator is a shorthand for the @code{condition}
25752 function; @samp{@var{old} := @var{new} :: @var{cond}} is equivalent to
25753 the formula @samp{condition(assign(@var{old}, @var{new}), @var{cond})}.
25755 If you have several conditions, you can use @samp{... :: c1 :: c2 :: c3}
25756 or @samp{... :: c1 && c2 && c3}.  The two are entirely equivalent.
25758 It is also possible to embed conditions inside the pattern:
25759 @samp{f(x :: x>0, y) := g(y+x, x)}.  This is purely a notational
25760 convenience, though; where a condition appears in a rule has no
25761 effect on when it is tested.  The rewrite-rule compiler automatically
25762 decides when it is best to test each condition while a rule is being
25763 matched.
25765 Certain conditions are handled as special cases by the rewrite rule
25766 system and are tested very efficiently:  Where @expr{x} is any
25767 meta-variable, these conditions are @samp{integer(x)}, @samp{real(x)},
25768 @samp{constant(x)}, @samp{negative(x)}, @samp{x >= y} where @expr{y}
25769 is either a constant or another meta-variable and @samp{>=} may be
25770 replaced by any of the six relational operators, and @samp{x % a = b}
25771 where @expr{a} and @expr{b} are constants.  Other conditions, like
25772 @samp{x >= y+1} or @samp{dreal(x)}, will be less efficient to check
25773 since Calc must bring the whole evaluator and simplifier into play.
25775 An interesting property of @samp{::} is that neither of its arguments
25776 will be touched by Calc's default simplifications.  This is important
25777 because conditions often are expressions that cannot safely be
25778 evaluated early.  For example, the @code{typeof} function never
25779 remains in symbolic form; entering @samp{typeof(a)} will put the
25780 number 100 (the type code for variables like @samp{a}) on the stack.
25781 But putting the condition @samp{... :: typeof(a) = 6} on the stack
25782 is safe since @samp{::} prevents the @code{typeof} from being
25783 evaluated until the condition is actually used by the rewrite system.
25785 Since @samp{::} protects its lefthand side, too, you can use a dummy
25786 condition to protect a rule that must itself not evaluate early.
25787 For example, it's not safe to put @samp{a(f,x) := apply(f, [x])} on
25788 the stack because it will immediately evaluate to @samp{a(f,x) := f(x)},
25789 where the meta-variable-ness of @code{f} on the righthand side has been
25790 lost.  But @samp{a(f,x) := apply(f, [x]) :: 1} is safe, and of course
25791 the condition @samp{1} is always true (nonzero) so it has no effect on
25792 the functioning of the rule.  (The rewrite compiler will ensure that
25793 it doesn't even impact the speed of matching the rule.)
25795 @node Algebraic Properties of Rewrite Rules, Other Features of Rewrite Rules, Conditional Rewrite Rules, Rewrite Rules
25796 @subsection Algebraic Properties of Rewrite Rules
25798 @noindent
25799 The rewrite mechanism understands the algebraic properties of functions
25800 like @samp{+} and @samp{*}.  In particular, pattern matching takes
25801 the associativity and commutativity of the following functions into
25802 account:
25804 @smallexample
25805 + - *  = !=  && ||  and or xor  vint vunion vxor  gcd lcm  max min  beta
25806 @end smallexample
25808 For example, the rewrite rule:
25810 @example
25811 a x + b x  :=  (a + b) x
25812 @end example
25814 @noindent
25815 will match formulas of the form,
25817 @example
25818 a x + b x,  x a + x b,  a x + x b,  x a + b x
25819 @end example
25821 Rewrites also understand the relationship between the @samp{+} and @samp{-}
25822 operators.  The above rewrite rule will also match the formulas,
25824 @example
25825 a x - b x,  x a - x b,  a x - x b,  x a - b x
25826 @end example
25828 @noindent
25829 by matching @samp{b} in the pattern to @samp{-b} from the formula.
25831 Applied to a sum of many terms like @samp{r + a x + s + b x + t}, this
25832 pattern will check all pairs of terms for possible matches.  The rewrite
25833 will take whichever suitable pair it discovers first.
25835 In general, a pattern using an associative operator like @samp{a + b}
25836 will try @var{2 n} different ways to match a sum of @var{n} terms
25837 like @samp{x + y + z - w}.  First, @samp{a} is matched against each
25838 of @samp{x}, @samp{y}, @samp{z}, and @samp{-w} in turn, with @samp{b}
25839 being matched to the remainders @samp{y + z - w}, @samp{x + z - w}, etc.
25840 If none of these succeed, then @samp{b} is matched against each of the
25841 four terms with @samp{a} matching the remainder.  Half-and-half matches,
25842 like @samp{(x + y) + (z - w)}, are not tried.
25844 Note that @samp{*} is not commutative when applied to matrices, but
25845 rewrite rules pretend that it is.  If you type @kbd{m v} to enable
25846 Matrix mode (@pxref{Matrix Mode}), rewrite rules will match @samp{*}
25847 literally, ignoring its usual commutativity property.  (In the
25848 current implementation, the associativity also vanishes---it is as
25849 if the pattern had been enclosed in a @code{plain} marker; see below.)
25850 If you are applying rewrites to formulas with matrices, it's best to
25851 enable Matrix mode first to prevent algebraically incorrect rewrites
25852 from occurring.
25854 The pattern @samp{-x} will actually match any expression.  For example,
25855 the rule
25857 @example
25858 f(-x)  :=  -f(x)
25859 @end example
25861 @noindent
25862 will rewrite @samp{f(a)} to @samp{-f(-a)}.  To avoid this, either use
25863 a @code{plain} marker as described below, or add a @samp{negative(x)}
25864 condition.  The @code{negative} function is true if its argument
25865 ``looks'' negative, for example, because it is a negative number or
25866 because it is a formula like @samp{-x}.  The new rule using this
25867 condition is:
25869 @example
25870 f(x)  :=  -f(-x)  :: negative(x)    @r{or, equivalently,}
25871 f(-x)  :=  -f(x)  :: negative(-x)
25872 @end example
25874 In the same way, the pattern @samp{x - y} will match the sum @samp{a + b}
25875 by matching @samp{y} to @samp{-b}.
25877 The pattern @samp{a b} will also match the formula @samp{x/y} if
25878 @samp{y} is a number.  Thus the rule @samp{a x + @w{b x} := (a+b) x}
25879 will also convert @samp{a x + x / 2} to @samp{(a + 0.5) x} (or
25880 @samp{(a + 1:2) x}, depending on the current fraction mode).
25882 Calc will @emph{not} take other liberties with @samp{*}, @samp{/}, and
25883 @samp{^}.  For example, the pattern @samp{f(a b)} will not match
25884 @samp{f(x^2)}, and @samp{f(a + b)} will not match @samp{f(2 x)}, even
25885 though conceivably these patterns could match with @samp{a = b = x}.
25886 Nor will @samp{f(a b)} match @samp{f(x / y)} if @samp{y} is not a
25887 constant, even though it could be considered to match with @samp{a = x}
25888 and @samp{b = 1/y}.  The reasons are partly for efficiency, and partly
25889 because while few mathematical operations are substantively different
25890 for addition and subtraction, often it is preferable to treat the cases
25891 of multiplication, division, and integer powers separately.
25893 Even more subtle is the rule set
25895 @example
25896 [ f(a) + f(b) := f(a + b),  -f(a) := f(-a) ]
25897 @end example
25899 @noindent
25900 attempting to match @samp{f(x) - f(y)}.  You might think that Calc
25901 will view this subtraction as @samp{f(x) + (-f(y))} and then apply
25902 the above two rules in turn, but actually this will not work because
25903 Calc only does this when considering rules for @samp{+} (like the
25904 first rule in this set).  So it will see first that @samp{f(x) + (-f(y))}
25905 does not match @samp{f(a) + f(b)} for any assignments of the
25906 meta-variables, and then it will see that @samp{f(x) - f(y)} does
25907 not match @samp{-f(a)} for any assignment of @samp{a}.  Because Calc
25908 tries only one rule at a time, it will not be able to rewrite
25909 @samp{f(x) - f(y)} with this rule set.  An explicit @samp{f(a) - f(b)}
25910 rule will have to be added.
25912 Another thing patterns will @emph{not} do is break up complex numbers.
25913 The pattern @samp{myconj(a + @w{b i)} := a - b i} will work for formulas
25914 involving the special constant @samp{i} (such as @samp{3 - 4 i}), but
25915 it will not match actual complex numbers like @samp{(3, -4)}.  A version
25916 of the above rule for complex numbers would be
25918 @example
25919 myconj(a)  :=  re(a) - im(a) (0,1)  :: im(a) != 0
25920 @end example
25922 @noindent
25923 (Because the @code{re} and @code{im} functions understand the properties
25924 of the special constant @samp{i}, this rule will also work for
25925 @samp{3 - 4 i}.  In fact, this particular rule would probably be better
25926 without the @samp{im(a) != 0} condition, since if @samp{im(a) = 0} the
25927 righthand side of the rule will still give the correct answer for the
25928 conjugate of a real number.)
25930 It is also possible to specify optional arguments in patterns.  The rule
25932 @example
25933 opt(a) x + opt(b) (x^opt(c) + opt(d))  :=  f(a, b, c, d)
25934 @end example
25936 @noindent
25937 will match the formula
25939 @example
25940 5 (x^2 - 4) + 3 x
25941 @end example
25943 @noindent
25944 in a fairly straightforward manner, but it will also match reduced
25945 formulas like
25947 @example
25948 x + x^2,    2(x + 1) - x,    x + x
25949 @end example
25951 @noindent
25952 producing, respectively,
25954 @example
25955 f(1, 1, 2, 0),   f(-1, 2, 1, 1),   f(1, 1, 1, 0)
25956 @end example
25958 (The latter two formulas can be entered only if default simplifications
25959 have been turned off with @kbd{m O}.)
25961 The default value for a term of a sum is zero.  The default value
25962 for a part of a product, for a power, or for the denominator of a
25963 quotient, is one.  Also, @samp{-x} matches the pattern @samp{opt(a) b}
25964 with @samp{a = -1}.
25966 In particular, the distributive-law rule can be refined to
25968 @example
25969 opt(a) x + opt(b) x  :=  (a + b) x
25970 @end example
25972 @noindent
25973 so that it will convert, e.g., @samp{a x - x}, to @samp{(a - 1) x}.
25975 The pattern @samp{opt(a) + opt(b) x} matches almost any formulas which
25976 are linear in @samp{x}.  You can also use the @code{lin} and @code{islin}
25977 functions with rewrite conditions to test for this; @pxref{Logical
25978 Operations}.  These functions are not as convenient to use in rewrite
25979 rules, but they recognize more kinds of formulas as linear:
25980 @samp{x/z} is considered linear with @expr{b = 1/z} by @code{lin},
25981 but it will not match the above pattern because that pattern calls
25982 for a multiplication, not a division.
25984 As another example, the obvious rule to replace @samp{sin(x)^2 + cos(x)^2}
25985 by 1,
25987 @example
25988 sin(x)^2 + cos(x)^2  :=  1
25989 @end example
25991 @noindent
25992 misses many cases because the sine and cosine may both be multiplied by
25993 an equal factor.  Here's a more successful rule:
25995 @example
25996 opt(a) sin(x)^2 + opt(a) cos(x)^2  :=  a
25997 @end example
25999 Note that this rule will @emph{not} match @samp{sin(x)^2 + 6 cos(x)^2}
26000 because one @expr{a} would have ``matched'' 1 while the other matched 6.
26002 Calc automatically converts a rule like
26004 @example
26005 f(x-1, x)  :=  g(x)
26006 @end example
26008 @noindent
26009 into the form
26011 @example
26012 f(temp, x)  :=  g(x)  :: temp = x-1
26013 @end example
26015 @noindent
26016 (where @code{temp} stands for a new, invented meta-variable that
26017 doesn't actually have a name).  This modified rule will successfully
26018 match @samp{f(6, 7)}, binding @samp{temp} and @samp{x} to 6 and 7,
26019 respectively, then verifying that they differ by one even though
26020 @samp{6} does not superficially look like @samp{x-1}.
26022 However, Calc does not solve equations to interpret a rule.  The
26023 following rule,
26025 @example
26026 f(x-1, x+1)  :=  g(x)
26027 @end example
26029 @noindent
26030 will not work.  That is, it will match @samp{f(a - 1 + b, a + 1 + b)}
26031 but not @samp{f(6, 8)}.  Calc always interprets at least one occurrence
26032 of a variable by literal matching.  If the variable appears ``isolated''
26033 then Calc is smart enough to use it for literal matching.  But in this
26034 last example, Calc is forced to rewrite the rule to @samp{f(x-1, temp)
26035 := g(x) :: temp = x+1} where the @samp{x-1} term must correspond to an
26036 actual ``something-minus-one'' in the target formula.
26038 A successful way to write this would be @samp{f(x, x+2) := g(x+1)}.
26039 You could make this resemble the original form more closely by using
26040 @code{let} notation, which is described in the next section:
26042 @example
26043 f(xm1, x+1)  :=  g(x)  :: let(x := xm1+1)
26044 @end example
26046 Calc does this rewriting or ``conditionalizing'' for any sub-pattern
26047 which involves only the functions in the following list, operating
26048 only on constants and meta-variables which have already been matched
26049 elsewhere in the pattern.  When matching a function call, Calc is
26050 careful to match arguments which are plain variables before arguments
26051 which are calls to any of the functions below, so that a pattern like
26052 @samp{f(x-1, x)} can be conditionalized even though the isolated
26053 @samp{x} comes after the @samp{x-1}.
26055 @smallexample
26056 + - * / \ % ^  abs sign  round rounde roundu trunc floor ceil
26057 max min  re im conj arg
26058 @end smallexample
26060 You can suppress all of the special treatments described in this
26061 section by surrounding a function call with a @code{plain} marker.
26062 This marker causes the function call which is its argument to be
26063 matched literally, without regard to commutativity, associativity,
26064 negation, or conditionalization.  When you use @code{plain}, the
26065 ``deep structure'' of the formula being matched can show through.
26066 For example,
26068 @example
26069 plain(a - a b)  :=  f(a, b)
26070 @end example
26072 @noindent
26073 will match only literal subtractions.  However, the @code{plain}
26074 marker does not affect its arguments' arguments.  In this case,
26075 commutativity and associativity is still considered while matching
26076 the @w{@samp{a b}} sub-pattern, so the whole pattern will match
26077 @samp{x - y x} as well as @samp{x - x y}.  We could go still
26078 further and use
26080 @example
26081 plain(a - plain(a b))  :=  f(a, b)
26082 @end example
26084 @noindent
26085 which would do a completely strict match for the pattern.
26087 By contrast, the @code{quote} marker means that not only the
26088 function name but also the arguments must be literally the same.
26089 The above pattern will match @samp{x - x y} but
26091 @example
26092 quote(a - a b)  :=  f(a, b)
26093 @end example
26095 @noindent
26096 will match only the single formula @samp{a - a b}.  Also,
26098 @example
26099 quote(a - quote(a b))  :=  f(a, b)
26100 @end example
26102 @noindent
26103 will match only @samp{a - quote(a b)}---probably not the desired
26104 effect!
26106 A certain amount of algebra is also done when substituting the
26107 meta-variables on the righthand side of a rule.  For example,
26108 in the rule
26110 @example
26111 a + f(b)  :=  f(a + b)
26112 @end example
26114 @noindent
26115 matching @samp{f(x) - y} would produce @samp{f((-y) + x)} if
26116 taken literally, but the rewrite mechanism will simplify the
26117 righthand side to @samp{f(x - y)} automatically.  (Of course,
26118 the default simplifications would do this anyway, so this
26119 special simplification is only noticeable if you have turned the
26120 default simplifications off.)  This rewriting is done only when
26121 a meta-variable expands to a ``negative-looking'' expression.
26122 If this simplification is not desirable, you can use a @code{plain}
26123 marker on the righthand side:
26125 @example
26126 a + f(b)  :=  f(plain(a + b))
26127 @end example
26129 @noindent
26130 In this example, we are still allowing the pattern-matcher to
26131 use all the algebra it can muster, but the righthand side will
26132 always simplify to a literal addition like @samp{f((-y) + x)}.
26134 @node Other Features of Rewrite Rules, Composing Patterns in Rewrite Rules, Algebraic Properties of Rewrite Rules, Rewrite Rules
26135 @subsection Other Features of Rewrite Rules
26137 @noindent
26138 Certain ``function names'' serve as markers in rewrite rules.
26139 Here is a complete list of these markers.  First are listed the
26140 markers that work inside a pattern; then come the markers that
26141 work in the righthand side of a rule.
26143 @ignore
26144 @starindex
26145 @end ignore
26146 @tindex import
26147 One kind of marker, @samp{import(x)}, takes the place of a whole
26148 rule.  Here @expr{x} is the name of a variable containing another
26149 rule set; those rules are ``spliced into'' the rule set that
26150 imports them.  For example, if @samp{[f(a+b) := f(a) + f(b),
26151 f(a b) := a f(b) :: real(a)]} is stored in variable @samp{linearF},
26152 then the rule set @samp{[f(0) := 0, import(linearF)]} will apply
26153 all three rules.  It is possible to modify the imported rules
26154 slightly:  @samp{import(x, v1, x1, v2, x2, @dots{})} imports
26155 the rule set @expr{x} with all occurrences of 
26156 @texline @math{v_1},
26157 @infoline @expr{v1}, 
26158 as either a variable name or a function name, replaced with 
26159 @texline @math{x_1}
26160 @infoline @expr{x1} 
26161 and so on.  (If 
26162 @texline @math{v_1}
26163 @infoline @expr{v1} 
26164 is used as a function name, then 
26165 @texline @math{x_1}
26166 @infoline @expr{x1}
26167 must be either a function name itself or a @w{@samp{< >}} nameless
26168 function; @pxref{Specifying Operators}.)  For example, @samp{[g(0) := 0,
26169 import(linearF, f, g)]} applies the linearity rules to the function
26170 @samp{g} instead of @samp{f}.  Imports can be nested, but the
26171 import-with-renaming feature may fail to rename sub-imports properly.
26173 The special functions allowed in patterns are:
26175 @table @samp
26176 @item quote(x)
26177 @ignore
26178 @starindex
26179 @end ignore
26180 @tindex quote
26181 This pattern matches exactly @expr{x}; variable names in @expr{x} are
26182 not interpreted as meta-variables.  The only flexibility is that
26183 numbers are compared for numeric equality, so that the pattern
26184 @samp{f(quote(12))} will match both @samp{f(12)} and @samp{f(12.0)}.
26185 (Numbers are always treated this way by the rewrite mechanism:
26186 The rule @samp{f(x,x) := g(x)} will match @samp{f(12, 12.0)}.
26187 The rewrite may produce either @samp{g(12)} or @samp{g(12.0)}
26188 as a result in this case.)
26190 @item plain(x)
26191 @ignore
26192 @starindex
26193 @end ignore
26194 @tindex plain
26195 Here @expr{x} must be a function call @samp{f(x1,x2,@dots{})}.  This
26196 pattern matches a call to function @expr{f} with the specified
26197 argument patterns.  No special knowledge of the properties of the
26198 function @expr{f} is used in this case; @samp{+} is not commutative or
26199 associative.  Unlike @code{quote}, the arguments @samp{x1,x2,@dots{}}
26200 are treated as patterns.  If you wish them to be treated ``plainly''
26201 as well, you must enclose them with more @code{plain} markers:
26202 @samp{plain(plain(@w{-a}) + plain(b c))}.
26204 @item opt(x,def)
26205 @ignore
26206 @starindex
26207 @end ignore
26208 @tindex opt
26209 Here @expr{x} must be a variable name.  This must appear as an
26210 argument to a function or an element of a vector; it specifies that
26211 the argument or element is optional.
26212 As an argument to @samp{+}, @samp{-}, @samp{*}, @samp{&&}, or @samp{||},
26213 or as the second argument to @samp{/} or @samp{^}, the value @var{def}
26214 may be omitted.  The pattern @samp{x + opt(y)} matches a sum by
26215 binding one summand to @expr{x} and the other to @expr{y}, and it
26216 matches anything else by binding the whole expression to @expr{x} and
26217 zero to @expr{y}.  The other operators above work similarly.
26219 For general miscellaneous functions, the default value @code{def}
26220 must be specified.  Optional arguments are dropped starting with
26221 the rightmost one during matching.  For example, the pattern
26222 @samp{f(opt(a,0), b, opt(c,b))} will match @samp{f(b)}, @samp{f(a,b)},
26223 or @samp{f(a,b,c)}.  Default values of zero and @expr{b} are
26224 supplied in this example for the omitted arguments.  Note that
26225 the literal variable @expr{b} will be the default in the latter
26226 case, @emph{not} the value that matched the meta-variable @expr{b}.
26227 In other words, the default @var{def} is effectively quoted.
26229 @item condition(x,c)
26230 @ignore
26231 @starindex
26232 @end ignore
26233 @tindex condition
26234 @tindex ::
26235 This matches the pattern @expr{x}, with the attached condition
26236 @expr{c}.  It is the same as @samp{x :: c}.
26238 @item pand(x,y)
26239 @ignore
26240 @starindex
26241 @end ignore
26242 @tindex pand
26243 @tindex &&&
26244 This matches anything that matches both pattern @expr{x} and
26245 pattern @expr{y}.  It is the same as @samp{x &&& y}.
26246 @pxref{Composing Patterns in Rewrite Rules}.
26248 @item por(x,y)
26249 @ignore
26250 @starindex
26251 @end ignore
26252 @tindex por
26253 @tindex |||
26254 This matches anything that matches either pattern @expr{x} or
26255 pattern @expr{y}.  It is the same as @w{@samp{x ||| y}}.
26257 @item pnot(x)
26258 @ignore
26259 @starindex
26260 @end ignore
26261 @tindex pnot
26262 @tindex !!!
26263 This matches anything that does not match pattern @expr{x}.
26264 It is the same as @samp{!!! x}.
26266 @item cons(h,t)
26267 @ignore
26268 @mindex cons
26269 @end ignore
26270 @tindex cons (rewrites)
26271 This matches any vector of one or more elements.  The first
26272 element is matched to @expr{h}; a vector of the remaining
26273 elements is matched to @expr{t}.  Note that vectors of fixed
26274 length can also be matched as actual vectors:  The rule
26275 @samp{cons(a,cons(b,[])) := cons(a+b,[])} is equivalent
26276 to the rule @samp{[a,b] := [a+b]}.
26278 @item rcons(t,h)
26279 @ignore
26280 @mindex rcons
26281 @end ignore
26282 @tindex rcons (rewrites)
26283 This is like @code{cons}, except that the @emph{last} element
26284 is matched to @expr{h}, with the remaining elements matched
26285 to @expr{t}.
26287 @item apply(f,args)
26288 @ignore
26289 @mindex apply
26290 @end ignore
26291 @tindex apply (rewrites)
26292 This matches any function call.  The name of the function, in
26293 the form of a variable, is matched to @expr{f}.  The arguments
26294 of the function, as a vector of zero or more objects, are
26295 matched to @samp{args}.  Constants, variables, and vectors
26296 do @emph{not} match an @code{apply} pattern.  For example,
26297 @samp{apply(f,x)} matches any function call, @samp{apply(quote(f),x)}
26298 matches any call to the function @samp{f}, @samp{apply(f,[a,b])}
26299 matches any function call with exactly two arguments, and
26300 @samp{apply(quote(f), cons(a,cons(b,x)))} matches any call
26301 to the function @samp{f} with two or more arguments.  Another
26302 way to implement the latter, if the rest of the rule does not
26303 need to refer to the first two arguments of @samp{f} by name,
26304 would be @samp{apply(quote(f), x :: vlen(x) >= 2)}.
26305 Here's a more interesting sample use of @code{apply}:
26307 @example
26308 apply(f,[x+n])  :=  n + apply(f,[x])
26309    :: in(f, [floor,ceil,round,trunc]) :: integer(n)
26310 @end example
26312 Note, however, that this will be slower to match than a rule
26313 set with four separate rules.  The reason is that Calc sorts
26314 the rules of a rule set according to top-level function name;
26315 if the top-level function is @code{apply}, Calc must try the
26316 rule for every single formula and sub-formula.  If the top-level
26317 function in the pattern is, say, @code{floor}, then Calc invokes
26318 the rule only for sub-formulas which are calls to @code{floor}.
26320 Formulas normally written with operators like @code{+} are still
26321 considered function calls:  @code{apply(f,x)} matches @samp{a+b}
26322 with @samp{f = add}, @samp{x = [a,b]}.
26324 You must use @code{apply} for meta-variables with function names
26325 on both sides of a rewrite rule:  @samp{apply(f, [x]) := f(x+1)}
26326 is @emph{not} correct, because it rewrites @samp{spam(6)} into
26327 @samp{f(7)}.  The righthand side should be @samp{apply(f, [x+1])}.
26328 Also note that you will have to use No-Simplify mode (@kbd{m O})
26329 when entering this rule so that the @code{apply} isn't
26330 evaluated immediately to get the new rule @samp{f(x) := f(x+1)}.
26331 Or, use @kbd{s e} to enter the rule without going through the stack,
26332 or enter the rule as @samp{apply(f, [x]) := apply(f, [x+1]) @w{:: 1}}.
26333 @xref{Conditional Rewrite Rules}.
26335 @item select(x)
26336 @ignore
26337 @starindex
26338 @end ignore
26339 @tindex select
26340 This is used for applying rules to formulas with selections;
26341 @pxref{Selections with Rewrite Rules}.
26342 @end table
26344 Special functions for the righthand sides of rules are:
26346 @table @samp
26347 @item quote(x)
26348 The notation @samp{quote(x)} is changed to @samp{x} when the
26349 righthand side is used.  As far as the rewrite rule is concerned,
26350 @code{quote} is invisible.  However, @code{quote} has the special
26351 property in Calc that its argument is not evaluated.  Thus,
26352 while it will not work to put the rule @samp{t(a) := typeof(a)}
26353 on the stack because @samp{typeof(a)} is evaluated immediately
26354 to produce @samp{t(a) := 100}, you can use @code{quote} to
26355 protect the righthand side:  @samp{t(a) := quote(typeof(a))}.
26356 (@xref{Conditional Rewrite Rules}, for another trick for
26357 protecting rules from evaluation.)
26359 @item plain(x)
26360 Special properties of and simplifications for the function call
26361 @expr{x} are not used.  One interesting case where @code{plain}
26362 is useful is the rule, @samp{q(x) := quote(x)}, trying to expand a
26363 shorthand notation for the @code{quote} function.  This rule will
26364 not work as shown; instead of replacing @samp{q(foo)} with
26365 @samp{quote(foo)}, it will replace it with @samp{foo}!  The correct
26366 rule would be @samp{q(x) := plain(quote(x))}.
26368 @item cons(h,t)
26369 Where @expr{t} is a vector, this is converted into an expanded
26370 vector during rewrite processing.  Note that @code{cons} is a regular
26371 Calc function which normally does this anyway; the only way @code{cons}
26372 is treated specially by rewrites is that @code{cons} on the righthand
26373 side of a rule will be evaluated even if default simplifications
26374 have been turned off.
26376 @item rcons(t,h)
26377 Analogous to @code{cons} except putting @expr{h} at the @emph{end} of
26378 the vector @expr{t}.
26380 @item apply(f,args)
26381 Where @expr{f} is a variable and @var{args} is a vector, this
26382 is converted to a function call.  Once again, note that @code{apply}
26383 is also a regular Calc function.
26385 @item eval(x)
26386 @ignore
26387 @starindex
26388 @end ignore
26389 @tindex eval
26390 The formula @expr{x} is handled in the usual way, then the
26391 default simplifications are applied to it even if they have
26392 been turned off normally.  This allows you to treat any function
26393 similarly to the way @code{cons} and @code{apply} are always
26394 treated.  However, there is a slight difference:  @samp{cons(2+3, [])}
26395 with default simplifications off will be converted to @samp{[2+3]},
26396 whereas @samp{eval(cons(2+3, []))} will be converted to @samp{[5]}.
26398 @item evalsimp(x)
26399 @ignore
26400 @starindex
26401 @end ignore
26402 @tindex evalsimp
26403 The formula @expr{x} has meta-variables substituted in the usual
26404 way, then algebraically simplified as if by the @kbd{a s} command.
26406 @item evalextsimp(x)
26407 @ignore
26408 @starindex
26409 @end ignore
26410 @tindex evalextsimp
26411 The formula @expr{x} has meta-variables substituted in the normal
26412 way, then ``extendedly'' simplified as if by the @kbd{a e} command.
26414 @item select(x)
26415 @xref{Selections with Rewrite Rules}.
26416 @end table
26418 There are also some special functions you can use in conditions.
26420 @table @samp
26421 @item let(v := x)
26422 @ignore
26423 @starindex
26424 @end ignore
26425 @tindex let
26426 The expression @expr{x} is evaluated with meta-variables substituted.
26427 The @kbd{a s} command's simplifications are @emph{not} applied by
26428 default, but @expr{x} can include calls to @code{evalsimp} or
26429 @code{evalextsimp} as described above to invoke higher levels
26430 of simplification.  The
26431 result of @expr{x} is then bound to the meta-variable @expr{v}.  As
26432 usual, if this meta-variable has already been matched to something
26433 else the two values must be equal; if the meta-variable is new then
26434 it is bound to the result of the expression.  This variable can then
26435 appear in later conditions, and on the righthand side of the rule.
26436 In fact, @expr{v} may be any pattern in which case the result of
26437 evaluating @expr{x} is matched to that pattern, binding any
26438 meta-variables that appear in that pattern.  Note that @code{let}
26439 can only appear by itself as a condition, or as one term of an
26440 @samp{&&} which is a whole condition:  It cannot be inside
26441 an @samp{||} term or otherwise buried.
26443 The alternate, equivalent form @samp{let(v, x)} is also recognized.
26444 Note that the use of @samp{:=} by @code{let}, while still being
26445 assignment-like in character, is unrelated to the use of @samp{:=}
26446 in the main part of a rewrite rule.
26448 As an example, @samp{f(a) := g(ia) :: let(ia := 1/a) :: constant(ia)}
26449 replaces @samp{f(a)} with @samp{g} of the inverse of @samp{a}, if
26450 that inverse exists and is constant.  For example, if @samp{a} is a
26451 singular matrix the operation @samp{1/a} is left unsimplified and
26452 @samp{constant(ia)} fails, but if @samp{a} is an invertible matrix
26453 then the rule succeeds.  Without @code{let} there would be no way
26454 to express this rule that didn't have to invert the matrix twice.
26455 Note that, because the meta-variable @samp{ia} is otherwise unbound
26456 in this rule, the @code{let} condition itself always ``succeeds''
26457 because no matter what @samp{1/a} evaluates to, it can successfully
26458 be bound to @code{ia}.
26460 Here's another example, for integrating cosines of linear
26461 terms:  @samp{myint(cos(y),x) := sin(y)/b :: let([a,b,x] := lin(y,x))}.
26462 The @code{lin} function returns a 3-vector if its argument is linear,
26463 or leaves itself unevaluated if not.  But an unevaluated @code{lin}
26464 call will not match the 3-vector on the lefthand side of the @code{let},
26465 so this @code{let} both verifies that @code{y} is linear, and binds
26466 the coefficients @code{a} and @code{b} for use elsewhere in the rule.
26467 (It would have been possible to use @samp{sin(a x + b)/b} for the
26468 righthand side instead, but using @samp{sin(y)/b} avoids gratuitous
26469 rearrangement of the argument of the sine.)
26471 @ignore
26472 @starindex
26473 @end ignore
26474 @tindex ierf
26475 Similarly, here is a rule that implements an inverse-@code{erf}
26476 function.  It uses @code{root} to search for a solution.  If
26477 @code{root} succeeds, it will return a vector of two numbers
26478 where the first number is the desired solution.  If no solution
26479 is found, @code{root} remains in symbolic form.  So we use
26480 @code{let} to check that the result was indeed a vector.
26482 @example
26483 ierf(x)  :=  y  :: let([y,z] := root(erf(a) = x, a, .5))
26484 @end example
26486 @item matches(v,p)
26487 The meta-variable @var{v}, which must already have been matched
26488 to something elsewhere in the rule, is compared against pattern
26489 @var{p}.  Since @code{matches} is a standard Calc function, it
26490 can appear anywhere in a condition.  But if it appears alone or
26491 as a term of a top-level @samp{&&}, then you get the special
26492 extra feature that meta-variables which are bound to things
26493 inside @var{p} can be used elsewhere in the surrounding rewrite
26494 rule.
26496 The only real difference between @samp{let(p := v)} and
26497 @samp{matches(v, p)} is that the former evaluates @samp{v} using
26498 the default simplifications, while the latter does not.
26500 @item remember
26501 @vindex remember
26502 This is actually a variable, not a function.  If @code{remember}
26503 appears as a condition in a rule, then when that rule succeeds
26504 the original expression and rewritten expression are added to the
26505 front of the rule set that contained the rule.  If the rule set
26506 was not stored in a variable, @code{remember} is ignored.  The
26507 lefthand side is enclosed in @code{quote} in the added rule if it
26508 contains any variables.
26510 For example, the rule @samp{f(n) := n f(n-1) :: remember} applied
26511 to @samp{f(7)} will add the rule @samp{f(7) := 7 f(6)} to the front
26512 of the rule set.  The rule set @code{EvalRules} works slightly
26513 differently:  There, the evaluation of @samp{f(6)} will complete before
26514 the result is added to the rule set, in this case as @samp{f(7) := 5040}.
26515 Thus @code{remember} is most useful inside @code{EvalRules}.
26517 It is up to you to ensure that the optimization performed by
26518 @code{remember} is safe.  For example, the rule @samp{foo(n) := n
26519 :: evalv(eatfoo) > 0 :: remember} is a bad idea (@code{evalv} is
26520 the function equivalent of the @kbd{=} command); if the variable
26521 @code{eatfoo} ever contains 1, rules like @samp{foo(7) := 7} will
26522 be added to the rule set and will continue to operate even if
26523 @code{eatfoo} is later changed to 0.
26525 @item remember(c)
26526 @ignore
26527 @starindex
26528 @end ignore
26529 @tindex remember
26530 Remember the match as described above, but only if condition @expr{c}
26531 is true.  For example, @samp{remember(n % 4 = 0)} in the above factorial
26532 rule remembers only every fourth result.  Note that @samp{remember(1)}
26533 is equivalent to @samp{remember}, and @samp{remember(0)} has no effect.
26534 @end table
26536 @node Composing Patterns in Rewrite Rules, Nested Formulas with Rewrite Rules, Other Features of Rewrite Rules, Rewrite Rules
26537 @subsection Composing Patterns in Rewrite Rules
26539 @noindent
26540 There are three operators, @samp{&&&}, @samp{|||}, and @samp{!!!},
26541 that combine rewrite patterns to make larger patterns.  The
26542 combinations are ``and,'' ``or,'' and ``not,'' respectively, and
26543 these operators are the pattern equivalents of @samp{&&}, @samp{||}
26544 and @samp{!} (which operate on zero-or-nonzero logical values).
26546 Note that @samp{&&&}, @samp{|||}, and @samp{!!!} are left in symbolic
26547 form by all regular Calc features; they have special meaning only in
26548 the context of rewrite rule patterns.
26550 The pattern @samp{@var{p1} &&& @var{p2}} matches anything that
26551 matches both @var{p1} and @var{p2}.  One especially useful case is
26552 when one of @var{p1} or @var{p2} is a meta-variable.  For example,
26553 here is a rule that operates on error forms:
26555 @example
26556 f(x &&& a +/- b, x)  :=  g(x)
26557 @end example
26559 This does the same thing, but is arguably simpler than, the rule
26561 @example
26562 f(a +/- b, a +/- b)  :=  g(a +/- b)
26563 @end example
26565 @ignore
26566 @starindex
26567 @end ignore
26568 @tindex ends
26569 Here's another interesting example:
26571 @example
26572 ends(cons(a, x) &&& rcons(y, b))  :=  [a, b]
26573 @end example
26575 @noindent
26576 which effectively clips out the middle of a vector leaving just
26577 the first and last elements.  This rule will change a one-element
26578 vector @samp{[a]} to @samp{[a, a]}.  The similar rule
26580 @example
26581 ends(cons(a, rcons(y, b)))  :=  [a, b]
26582 @end example
26584 @noindent
26585 would do the same thing except that it would fail to match a
26586 one-element vector.
26588 @tex
26589 \bigskip
26590 @end tex
26592 The pattern @samp{@var{p1} ||| @var{p2}} matches anything that
26593 matches either @var{p1} or @var{p2}.  Calc first tries matching
26594 against @var{p1}; if that fails, it goes on to try @var{p2}.
26596 @ignore
26597 @starindex
26598 @end ignore
26599 @tindex curve
26600 A simple example of @samp{|||} is
26602 @example
26603 curve(inf ||| -inf)  :=  0
26604 @end example
26606 @noindent
26607 which converts both @samp{curve(inf)} and @samp{curve(-inf)} to zero.
26609 Here is a larger example:
26611 @example
26612 log(a, b) ||| (ln(a) :: let(b := e))  :=  mylog(a, b)
26613 @end example
26615 This matches both generalized and natural logarithms in a single rule.
26616 Note that the @samp{::} term must be enclosed in parentheses because
26617 that operator has lower precedence than @samp{|||} or @samp{:=}.
26619 (In practice this rule would probably include a third alternative,
26620 omitted here for brevity, to take care of @code{log10}.)
26622 While Calc generally treats interior conditions exactly the same as
26623 conditions on the outside of a rule, it does guarantee that if all the
26624 variables in the condition are special names like @code{e}, or already
26625 bound in the pattern to which the condition is attached (say, if
26626 @samp{a} had appeared in this condition), then Calc will process this
26627 condition right after matching the pattern to the left of the @samp{::}.
26628 Thus, we know that @samp{b} will be bound to @samp{e} only if the
26629 @code{ln} branch of the @samp{|||} was taken.
26631 Note that this rule was careful to bind the same set of meta-variables
26632 on both sides of the @samp{|||}.  Calc does not check this, but if
26633 you bind a certain meta-variable only in one branch and then use that
26634 meta-variable elsewhere in the rule, results are unpredictable:
26636 @example
26637 f(a,b) ||| g(b)  :=  h(a,b)
26638 @end example
26640 Here if the pattern matches @samp{g(17)}, Calc makes no promises about
26641 the value that will be substituted for @samp{a} on the righthand side.
26643 @tex
26644 \bigskip
26645 @end tex
26647 The pattern @samp{!!! @var{pat}} matches anything that does not
26648 match @var{pat}.  Any meta-variables that are bound while matching
26649 @var{pat} remain unbound outside of @var{pat}.
26651 For example,
26653 @example
26654 f(x &&& !!! a +/- b, !!![])  :=  g(x)
26655 @end example
26657 @noindent
26658 converts @code{f} whose first argument is anything @emph{except} an
26659 error form, and whose second argument is not the empty vector, into
26660 a similar call to @code{g} (but without the second argument).
26662 If we know that the second argument will be a vector (empty or not),
26663 then an equivalent rule would be:
26665 @example
26666 f(x, y)  :=  g(x)  :: typeof(x) != 7 :: vlen(y) > 0
26667 @end example
26669 @noindent
26670 where of course 7 is the @code{typeof} code for error forms.
26671 Another final condition, that works for any kind of @samp{y},
26672 would be @samp{!istrue(y == [])}.  (The @code{istrue} function
26673 returns an explicit 0 if its argument was left in symbolic form;
26674 plain @samp{!(y == [])} or @samp{y != []} would not work to replace
26675 @samp{!!![]} since these would be left unsimplified, and thus cause
26676 the rule to fail, if @samp{y} was something like a variable name.)
26678 It is possible for a @samp{!!!} to refer to meta-variables bound
26679 elsewhere in the pattern.  For example,
26681 @example
26682 f(a, !!!a)  :=  g(a)
26683 @end example
26685 @noindent
26686 matches any call to @code{f} with different arguments, changing
26687 this to @code{g} with only the first argument.
26689 If a function call is to be matched and one of the argument patterns
26690 contains a @samp{!!!} somewhere inside it, that argument will be
26691 matched last.  Thus
26693 @example
26694 f(!!!a, a)  :=  g(a)
26695 @end example
26697 @noindent
26698 will be careful to bind @samp{a} to the second argument of @code{f}
26699 before testing the first argument.  If Calc had tried to match the
26700 first argument of @code{f} first, the results would have been
26701 disastrous: since @code{a} was unbound so far, the pattern @samp{a}
26702 would have matched anything at all, and the pattern @samp{!!!a}
26703 therefore would @emph{not} have matched anything at all!
26705 @node Nested Formulas with Rewrite Rules, Multi-Phase Rewrite Rules, Composing Patterns in Rewrite Rules, Rewrite Rules
26706 @subsection Nested Formulas with Rewrite Rules
26708 @noindent
26709 When @kbd{a r} (@code{calc-rewrite}) is used, it takes an expression from
26710 the top of the stack and attempts to match any of the specified rules
26711 to any part of the expression, starting with the whole expression
26712 and then, if that fails, trying deeper and deeper sub-expressions.
26713 For each part of the expression, the rules are tried in the order
26714 they appear in the rules vector.  The first rule to match the first
26715 sub-expression wins; it replaces the matched sub-expression according
26716 to the @var{new} part of the rule.
26718 Often, the rule set will match and change the formula several times.
26719 The top-level formula is first matched and substituted repeatedly until
26720 it no longer matches the pattern; then, sub-formulas are tried, and
26721 so on.  Once every part of the formula has gotten its chance, the
26722 rewrite mechanism starts over again with the top-level formula
26723 (in case a substitution of one of its arguments has caused it again
26724 to match).  This continues until no further matches can be made
26725 anywhere in the formula.
26727 It is possible for a rule set to get into an infinite loop.  The
26728 most obvious case, replacing a formula with itself, is not a problem
26729 because a rule is not considered to ``succeed'' unless the righthand
26730 side actually comes out to something different than the original
26731 formula or sub-formula that was matched.  But if you accidentally
26732 had both @samp{ln(a b) := ln(a) + ln(b)} and the reverse
26733 @samp{ln(a) + ln(b) := ln(a b)} in your rule set, Calc would
26734 run forever switching a formula back and forth between the two
26735 forms.
26737 To avoid disaster, Calc normally stops after 100 changes have been
26738 made to the formula.  This will be enough for most multiple rewrites,
26739 but it will keep an endless loop of rewrites from locking up the
26740 computer forever.  (On most systems, you can also type @kbd{C-g} to
26741 halt any Emacs command prematurely.)
26743 To change this limit, give a positive numeric prefix argument.
26744 In particular, @kbd{M-1 a r} applies only one rewrite at a time,
26745 useful when you are first testing your rule (or just if repeated
26746 rewriting is not what is called for by your application).
26748 @ignore
26749 @starindex
26750 @end ignore
26751 @ignore
26752 @mindex iter@idots
26753 @end ignore
26754 @tindex iterations
26755 You can also put a ``function call'' @samp{iterations(@var{n})}
26756 in place of a rule anywhere in your rules vector (but usually at
26757 the top).  Then, @var{n} will be used instead of 100 as the default
26758 number of iterations for this rule set.  You can use
26759 @samp{iterations(inf)} if you want no iteration limit by default.
26760 A prefix argument will override the @code{iterations} limit in the
26761 rule set.
26763 @example
26764 [ iterations(1),
26765   f(x) := f(x+1) ]
26766 @end example
26768 More precisely, the limit controls the number of ``iterations,''
26769 where each iteration is a successful matching of a rule pattern whose
26770 righthand side, after substituting meta-variables and applying the
26771 default simplifications, is different from the original sub-formula
26772 that was matched.
26774 A prefix argument of zero sets the limit to infinity.  Use with caution!
26776 Given a negative numeric prefix argument, @kbd{a r} will match and
26777 substitute the top-level expression up to that many times, but
26778 will not attempt to match the rules to any sub-expressions.
26780 In a formula, @code{rewrite(@var{expr}, @var{rules}, @var{n})}
26781 does a rewriting operation.  Here @var{expr} is the expression
26782 being rewritten, @var{rules} is the rule, vector of rules, or
26783 variable containing the rules, and @var{n} is the optional
26784 iteration limit, which may be a positive integer, a negative
26785 integer, or @samp{inf} or @samp{-inf}.  If @var{n} is omitted
26786 the @code{iterations} value from the rule set is used; if both
26787 are omitted, 100 is used.
26789 @node Multi-Phase Rewrite Rules, Selections with Rewrite Rules, Nested Formulas with Rewrite Rules, Rewrite Rules
26790 @subsection Multi-Phase Rewrite Rules
26792 @noindent
26793 It is possible to separate a rewrite rule set into several @dfn{phases}.
26794 During each phase, certain rules will be enabled while certain others
26795 will be disabled.  A @dfn{phase schedule} controls the order in which
26796 phases occur during the rewriting process.
26798 @ignore
26799 @starindex
26800 @end ignore
26801 @tindex phase
26802 @vindex all
26803 If a call to the marker function @code{phase} appears in the rules
26804 vector in place of a rule, all rules following that point will be
26805 members of the phase(s) identified in the arguments to @code{phase}.
26806 Phases are given integer numbers.  The markers @samp{phase()} and
26807 @samp{phase(all)} both mean the following rules belong to all phases;
26808 this is the default at the start of the rule set.
26810 If you do not explicitly schedule the phases, Calc sorts all phase
26811 numbers that appear in the rule set and executes the phases in
26812 ascending order.  For example, the rule set
26814 @example
26815 @group
26816 [ f0(x) := g0(x),
26817   phase(1),
26818   f1(x) := g1(x),
26819   phase(2),
26820   f2(x) := g2(x),
26821   phase(3),
26822   f3(x) := g3(x),
26823   phase(1,2),
26824   f4(x) := g4(x) ]
26825 @end group
26826 @end example
26828 @noindent
26829 has three phases, 1 through 3.  Phase 1 consists of the @code{f0},
26830 @code{f1}, and @code{f4} rules (in that order).  Phase 2 consists of
26831 @code{f0}, @code{f2}, and @code{f4}.  Phase 3 consists of @code{f0}
26832 and @code{f3}.
26834 When Calc rewrites a formula using this rule set, it first rewrites
26835 the formula using only the phase 1 rules until no further changes are
26836 possible.  Then it switches to the phase 2 rule set and continues
26837 until no further changes occur, then finally rewrites with phase 3.
26838 When no more phase 3 rules apply, rewriting finishes.  (This is
26839 assuming @kbd{a r} with a large enough prefix argument to allow the
26840 rewriting to run to completion; the sequence just described stops
26841 early if the number of iterations specified in the prefix argument,
26842 100 by default, is reached.)
26844 During each phase, Calc descends through the nested levels of the
26845 formula as described previously.  (@xref{Nested Formulas with Rewrite
26846 Rules}.)  Rewriting starts at the top of the formula, then works its
26847 way down to the parts, then goes back to the top and works down again.
26848 The phase 2 rules do not begin until no phase 1 rules apply anywhere
26849 in the formula.
26851 @ignore
26852 @starindex
26853 @end ignore
26854 @tindex schedule
26855 A @code{schedule} marker appearing in the rule set (anywhere, but
26856 conventionally at the top) changes the default schedule of phases.
26857 In the simplest case, @code{schedule} has a sequence of phase numbers
26858 for arguments; each phase number is invoked in turn until the
26859 arguments to @code{schedule} are exhausted.  Thus adding
26860 @samp{schedule(3,2,1)} at the top of the above rule set would
26861 reverse the order of the phases; @samp{schedule(1,2,3)} would have
26862 no effect since this is the default schedule; and @samp{schedule(1,2,1,3)}
26863 would give phase 1 a second chance after phase 2 has completed, before
26864 moving on to phase 3.
26866 Any argument to @code{schedule} can instead be a vector of phase
26867 numbers (or even of sub-vectors).  Then the sub-sequence of phases
26868 described by the vector are tried repeatedly until no change occurs
26869 in any phase in the sequence.  For example, @samp{schedule([1, 2], 3)}
26870 tries phase 1, then phase 2, then, if either phase made any changes
26871 to the formula, repeats these two phases until they can make no
26872 further progress.  Finally, it goes on to phase 3 for finishing
26873 touches.
26875 Also, items in @code{schedule} can be variable names as well as
26876 numbers.  A variable name is interpreted as the name of a function
26877 to call on the whole formula.  For example, @samp{schedule(1, simplify)}
26878 says to apply the phase-1 rules (presumably, all of them), then to
26879 call @code{simplify} which is the function name equivalent of @kbd{a s}.
26880 Likewise, @samp{schedule([1, simplify])} says to alternate between
26881 phase 1 and @kbd{a s} until no further changes occur.
26883 Phases can be used purely to improve efficiency; if it is known that
26884 a certain group of rules will apply only at the beginning of rewriting,
26885 and a certain other group will apply only at the end, then rewriting
26886 will be faster if these groups are identified as separate phases.
26887 Once the phase 1 rules are done, Calc can put them aside and no longer
26888 spend any time on them while it works on phase 2.
26890 There are also some problems that can only be solved with several
26891 rewrite phases.  For a real-world example of a multi-phase rule set,
26892 examine the set @code{FitRules}, which is used by the curve-fitting
26893 command to convert a model expression to linear form.
26894 @xref{Curve Fitting Details}.  This set is divided into four phases.
26895 The first phase rewrites certain kinds of expressions to be more
26896 easily linearizable, but less computationally efficient.  After the
26897 linear components have been picked out, the final phase includes the
26898 opposite rewrites to put each component back into an efficient form.
26899 If both sets of rules were included in one big phase, Calc could get
26900 into an infinite loop going back and forth between the two forms.
26902 Elsewhere in @code{FitRules}, the components are first isolated,
26903 then recombined where possible to reduce the complexity of the linear
26904 fit, then finally packaged one component at a time into vectors.
26905 If the packaging rules were allowed to begin before the recombining
26906 rules were finished, some components might be put away into vectors
26907 before they had a chance to recombine.  By putting these rules in
26908 two separate phases, this problem is neatly avoided.
26910 @node Selections with Rewrite Rules, Matching Commands, Multi-Phase Rewrite Rules, Rewrite Rules
26911 @subsection Selections with Rewrite Rules
26913 @noindent
26914 If a sub-formula of the current formula is selected (as by @kbd{j s};
26915 @pxref{Selecting Subformulas}), the @kbd{a r} (@code{calc-rewrite})
26916 command applies only to that sub-formula.  Together with a negative
26917 prefix argument, you can use this fact to apply a rewrite to one
26918 specific part of a formula without affecting any other parts.
26920 @kindex j r
26921 @pindex calc-rewrite-selection
26922 The @kbd{j r} (@code{calc-rewrite-selection}) command allows more
26923 sophisticated operations on selections.  This command prompts for
26924 the rules in the same way as @kbd{a r}, but it then applies those
26925 rules to the whole formula in question even though a sub-formula
26926 of it has been selected.  However, the selected sub-formula will
26927 first have been surrounded by a @samp{select( )} function call.
26928 (Calc's evaluator does not understand the function name @code{select};
26929 this is only a tag used by the @kbd{j r} command.)
26931 For example, suppose the formula on the stack is @samp{2 (a + b)^2}
26932 and the sub-formula @samp{a + b} is selected.  This formula will
26933 be rewritten to @samp{2 select(a + b)^2} and then the rewrite
26934 rules will be applied in the usual way.  The rewrite rules can
26935 include references to @code{select} to tell where in the pattern
26936 the selected sub-formula should appear.
26938 If there is still exactly one @samp{select( )} function call in
26939 the formula after rewriting is done, it indicates which part of
26940 the formula should be selected afterwards.  Otherwise, the
26941 formula will be unselected.
26943 You can make @kbd{j r} act much like @kbd{a r} by enclosing both parts
26944 of the rewrite rule with @samp{select()}.  However, @kbd{j r}
26945 allows you to use the current selection in more flexible ways.
26946 Suppose you wished to make a rule which removed the exponent from
26947 the selected term; the rule @samp{select(a)^x := select(a)} would
26948 work.  In the above example, it would rewrite @samp{2 select(a + b)^2}
26949 to @samp{2 select(a + b)}.  This would then be returned to the
26950 stack as @samp{2 (a + b)} with the @samp{a + b} selected.
26952 The @kbd{j r} command uses one iteration by default, unlike
26953 @kbd{a r} which defaults to 100 iterations.  A numeric prefix
26954 argument affects @kbd{j r} in the same way as @kbd{a r}.
26955 @xref{Nested Formulas with Rewrite Rules}.
26957 As with other selection commands, @kbd{j r} operates on the stack
26958 entry that contains the cursor.  (If the cursor is on the top-of-stack
26959 @samp{.} marker, it works as if the cursor were on the formula
26960 at stack level 1.)
26962 If you don't specify a set of rules, the rules are taken from the
26963 top of the stack, just as with @kbd{a r}.  In this case, the
26964 cursor must indicate stack entry 2 or above as the formula to be
26965 rewritten (otherwise the same formula would be used as both the
26966 target and the rewrite rules).
26968 If the indicated formula has no selection, the cursor position within
26969 the formula temporarily selects a sub-formula for the purposes of this
26970 command.  If the cursor is not on any sub-formula (e.g., it is in
26971 the line-number area to the left of the formula), the @samp{select( )}
26972 markers are ignored by the rewrite mechanism and the rules are allowed
26973 to apply anywhere in the formula.
26975 As a special feature, the normal @kbd{a r} command also ignores
26976 @samp{select( )} calls in rewrite rules.  For example, if you used the
26977 above rule @samp{select(a)^x := select(a)} with @kbd{a r}, it would apply
26978 the rule as if it were @samp{a^x := a}.  Thus, you can write general
26979 purpose rules with @samp{select( )} hints inside them so that they
26980 will ``do the right thing'' in both @kbd{a r} and @kbd{j r},
26981 both with and without selections.
26983 @node Matching Commands, Automatic Rewrites, Selections with Rewrite Rules, Rewrite Rules
26984 @subsection Matching Commands
26986 @noindent
26987 @kindex a m
26988 @pindex calc-match
26989 @tindex match
26990 The @kbd{a m} (@code{calc-match}) [@code{match}] function takes a
26991 vector of formulas and a rewrite-rule-style pattern, and produces
26992 a vector of all formulas which match the pattern.  The command
26993 prompts you to enter the pattern; as for @kbd{a r}, you can enter
26994 a single pattern (i.e., a formula with meta-variables), or a
26995 vector of patterns, or a variable which contains patterns, or
26996 you can give a blank response in which case the patterns are taken
26997 from the top of the stack.  The pattern set will be compiled once
26998 and saved if it is stored in a variable.  If there are several
26999 patterns in the set, vector elements are kept if they match any
27000 of the patterns.
27002 For example, @samp{match(a+b, [x, x+y, x-y, 7, x+y+z])}
27003 will return @samp{[x+y, x-y, x+y+z]}.
27005 The @code{import} mechanism is not available for pattern sets.
27007 The @kbd{a m} command can also be used to extract all vector elements
27008 which satisfy any condition:  The pattern @samp{x :: x>0} will select
27009 all the positive vector elements.
27011 @kindex I a m
27012 @tindex matchnot
27013 With the Inverse flag [@code{matchnot}], this command extracts all
27014 vector elements which do @emph{not} match the given pattern.
27016 @ignore
27017 @starindex
27018 @end ignore
27019 @tindex matches
27020 There is also a function @samp{matches(@var{x}, @var{p})} which
27021 evaluates to 1 if expression @var{x} matches pattern @var{p}, or
27022 to 0 otherwise.  This is sometimes useful for including into the
27023 conditional clauses of other rewrite rules.
27025 @ignore
27026 @starindex
27027 @end ignore
27028 @tindex vmatches
27029 The function @code{vmatches} is just like @code{matches}, except
27030 that if the match succeeds it returns a vector of assignments to
27031 the meta-variables instead of the number 1.  For example,
27032 @samp{vmatches(f(1,2), f(a,b))} returns @samp{[a := 1, b := 2]}.
27033 If the match fails, the function returns the number 0.
27035 @node Automatic Rewrites, Debugging Rewrites, Matching Commands, Rewrite Rules
27036 @subsection Automatic Rewrites
27038 @noindent
27039 @cindex @code{EvalRules} variable
27040 @vindex EvalRules
27041 It is possible to get Calc to apply a set of rewrite rules on all
27042 results, effectively adding to the built-in set of default
27043 simplifications.  To do this, simply store your rule set in the
27044 variable @code{EvalRules}.  There is a convenient @kbd{s E} command
27045 for editing @code{EvalRules}; @pxref{Operations on Variables}.
27047 For example, suppose you want @samp{sin(a + b)} to be expanded out
27048 to @samp{sin(b) cos(a) + cos(b) sin(a)} wherever it appears, and
27049 similarly for @samp{cos(a + b)}.  The corresponding rewrite rule
27050 set would be,
27052 @smallexample
27053 @group
27054 [ sin(a + b)  :=  cos(a) sin(b) + sin(a) cos(b),
27055   cos(a + b)  :=  cos(a) cos(b) - sin(a) sin(b) ]
27056 @end group
27057 @end smallexample
27059 To apply these manually, you could put them in a variable called
27060 @code{trigexp} and then use @kbd{a r trigexp} every time you wanted
27061 to expand trig functions.  But if instead you store them in the
27062 variable @code{EvalRules}, they will automatically be applied to all
27063 sines and cosines of sums.  Then, with @samp{2 x} and @samp{45} on
27064 the stack, typing @kbd{+ S} will (assuming Degrees mode) result in
27065 @samp{0.7071 sin(2 x) + 0.7071 cos(2 x)} automatically.
27067 As each level of a formula is evaluated, the rules from
27068 @code{EvalRules} are applied before the default simplifications.
27069 Rewriting continues until no further @code{EvalRules} apply.
27070 Note that this is different from the usual order of application of
27071 rewrite rules:  @code{EvalRules} works from the bottom up, simplifying
27072 the arguments to a function before the function itself, while @kbd{a r}
27073 applies rules from the top down.
27075 Because the @code{EvalRules} are tried first, you can use them to
27076 override the normal behavior of any built-in Calc function.
27078 It is important not to write a rule that will get into an infinite
27079 loop.  For example, the rule set @samp{[f(0) := 1, f(n) := n f(n-1)]}
27080 appears to be a good definition of a factorial function, but it is
27081 unsafe.  Imagine what happens if @samp{f(2.5)} is simplified.  Calc
27082 will continue to subtract 1 from this argument forever without reaching
27083 zero.  A safer second rule would be @samp{f(n) := n f(n-1) :: n>0}.
27084 Another dangerous rule is @samp{g(x, y) := g(y, x)}.  Rewriting
27085 @samp{g(2, 4)}, this would bounce back and forth between that and
27086 @samp{g(4, 2)} forever.  If an infinite loop in @code{EvalRules}
27087 occurs, Emacs will eventually stop with a ``Computation got stuck
27088 or ran too long'' message.
27090 Another subtle difference between @code{EvalRules} and regular rewrites
27091 concerns rules that rewrite a formula into an identical formula.  For
27092 example, @samp{f(n) := f(floor(n))} ``fails to match'' when @expr{n} is
27093 already an integer.  But in @code{EvalRules} this case is detected only
27094 if the righthand side literally becomes the original formula before any
27095 further simplification.  This means that @samp{f(n) := f(floor(n))} will
27096 get into an infinite loop if it occurs in @code{EvalRules}.  Calc will
27097 replace @samp{f(6)} with @samp{f(floor(6))}, which is different from
27098 @samp{f(6)}, so it will consider the rule to have matched and will
27099 continue simplifying that formula; first the argument is simplified
27100 to get @samp{f(6)}, then the rule matches again to get @samp{f(floor(6))}
27101 again, ad infinitum.  A much safer rule would check its argument first,
27102 say, with @samp{f(n) := f(floor(n)) :: !dint(n)}.
27104 (What really happens is that the rewrite mechanism substitutes the
27105 meta-variables in the righthand side of a rule, compares to see if the
27106 result is the same as the original formula and fails if so, then uses
27107 the default simplifications to simplify the result and compares again
27108 (and again fails if the formula has simplified back to its original
27109 form).  The only special wrinkle for the @code{EvalRules} is that the
27110 same rules will come back into play when the default simplifications
27111 are used.  What Calc wants to do is build @samp{f(floor(6))}, see that
27112 this is different from the original formula, simplify to @samp{f(6)},
27113 see that this is the same as the original formula, and thus halt the
27114 rewriting.  But while simplifying, @samp{f(6)} will again trigger
27115 the same @code{EvalRules} rule and Calc will get into a loop inside
27116 the rewrite mechanism itself.)
27118 The @code{phase}, @code{schedule}, and @code{iterations} markers do
27119 not work in @code{EvalRules}.  If the rule set is divided into phases,
27120 only the phase 1 rules are applied, and the schedule is ignored.
27121 The rules are always repeated as many times as possible.
27123 The @code{EvalRules} are applied to all function calls in a formula,
27124 but not to numbers (and other number-like objects like error forms),
27125 nor to vectors or individual variable names.  (Though they will apply
27126 to @emph{components} of vectors and error forms when appropriate.)  You
27127 might try to make a variable @code{phihat} which automatically expands
27128 to its definition without the need to press @kbd{=} by writing the
27129 rule @samp{quote(phihat) := (1-sqrt(5))/2}, but unfortunately this rule
27130 will not work as part of @code{EvalRules}.
27132 Finally, another limitation is that Calc sometimes calls its built-in
27133 functions directly rather than going through the default simplifications.
27134 When it does this, @code{EvalRules} will not be able to override those
27135 functions.  For example, when you take the absolute value of the complex
27136 number @expr{(2, 3)}, Calc computes @samp{sqrt(2*2 + 3*3)} by calling
27137 the multiplication, addition, and square root functions directly rather
27138 than applying the default simplifications to this formula.  So an
27139 @code{EvalRules} rule that (perversely) rewrites @samp{sqrt(13) := 6}
27140 would not apply.  (However, if you put Calc into Symbolic mode so that
27141 @samp{sqrt(13)} will be left in symbolic form by the built-in square
27142 root function, your rule will be able to apply.  But if the complex
27143 number were @expr{(3,4)}, so that @samp{sqrt(25)} must be calculated,
27144 then Symbolic mode will not help because @samp{sqrt(25)} can be
27145 evaluated exactly to 5.)
27147 One subtle restriction that normally only manifests itself with
27148 @code{EvalRules} is that while a given rewrite rule is in the process
27149 of being checked, that same rule cannot be recursively applied.  Calc
27150 effectively removes the rule from its rule set while checking the rule,
27151 then puts it back once the match succeeds or fails.  (The technical
27152 reason for this is that compiled pattern programs are not reentrant.)
27153 For example, consider the rule @samp{foo(x) := x :: foo(x/2) > 0}
27154 attempting to match @samp{foo(8)}.  This rule will be inactive while
27155 the condition @samp{foo(4) > 0} is checked, even though it might be
27156 an integral part of evaluating that condition.  Note that this is not
27157 a problem for the more usual recursive type of rule, such as
27158 @samp{foo(x) := foo(x/2)}, because there the rule has succeeded and
27159 been reactivated by the time the righthand side is evaluated.
27161 If @code{EvalRules} has no stored value (its default state), or if
27162 anything but a vector is stored in it, then it is ignored.
27164 Even though Calc's rewrite mechanism is designed to compare rewrite
27165 rules to formulas as quickly as possible, storing rules in
27166 @code{EvalRules} may make Calc run substantially slower.  This is
27167 particularly true of rules where the top-level call is a commonly used
27168 function, or is not fixed.  The rule @samp{f(n) := n f(n-1) :: n>0} will
27169 only activate the rewrite mechanism for calls to the function @code{f},
27170 but @samp{lg(n) + lg(m) := lg(n m)} will check every @samp{+} operator.
27172 @smallexample
27173 apply(f, [a*b]) := apply(f, [a]) + apply(f, [b]) :: in(f, [ln, log10])
27174 @end smallexample
27176 @noindent
27177 may seem more ``efficient'' than two separate rules for @code{ln} and
27178 @code{log10}, but actually it is vastly less efficient because rules
27179 with @code{apply} as the top-level pattern must be tested against
27180 @emph{every} function call that is simplified.
27182 @cindex @code{AlgSimpRules} variable
27183 @vindex AlgSimpRules
27184 Suppose you want @samp{sin(a + b)} to be expanded out not all the time,
27185 but only when @kbd{a s} is used to simplify the formula.  The variable
27186 @code{AlgSimpRules} holds rules for this purpose.  The @kbd{a s} command
27187 will apply @code{EvalRules} and @code{AlgSimpRules} to the formula, as
27188 well as all of its built-in simplifications.
27190 Most of the special limitations for @code{EvalRules} don't apply to
27191 @code{AlgSimpRules}.  Calc simply does an @kbd{a r AlgSimpRules}
27192 command with an infinite repeat count as the first step of @kbd{a s}.
27193 It then applies its own built-in simplifications throughout the
27194 formula, and then repeats these two steps (along with applying the
27195 default simplifications) until no further changes are possible.
27197 @cindex @code{ExtSimpRules} variable
27198 @cindex @code{UnitSimpRules} variable
27199 @vindex ExtSimpRules
27200 @vindex UnitSimpRules
27201 There are also @code{ExtSimpRules} and @code{UnitSimpRules} variables
27202 that are used by @kbd{a e} and @kbd{u s}, respectively; these commands
27203 also apply @code{EvalRules} and @code{AlgSimpRules}.  The variable
27204 @code{IntegSimpRules} contains simplification rules that are used
27205 only during integration by @kbd{a i}.
27207 @node Debugging Rewrites, Examples of Rewrite Rules, Automatic Rewrites, Rewrite Rules
27208 @subsection Debugging Rewrites
27210 @noindent
27211 If a buffer named @samp{*Trace*} exists, the rewrite mechanism will
27212 record some useful information there as it operates.  The original
27213 formula is written there, as is the result of each successful rewrite,
27214 and the final result of the rewriting.  All phase changes are also
27215 noted.
27217 Calc always appends to @samp{*Trace*}.  You must empty this buffer
27218 yourself periodically if it is in danger of growing unwieldy.
27220 Note that the rewriting mechanism is substantially slower when the
27221 @samp{*Trace*} buffer exists, even if the buffer is not visible on
27222 the screen.  Once you are done, you will probably want to kill this
27223 buffer (with @kbd{C-x k *Trace* @key{RET}}).  If you leave it in
27224 existence and forget about it, all your future rewrite commands will
27225 be needlessly slow.
27227 @node Examples of Rewrite Rules,  , Debugging Rewrites, Rewrite Rules
27228 @subsection Examples of Rewrite Rules
27230 @noindent
27231 Returning to the example of substituting the pattern
27232 @samp{sin(x)^2 + cos(x)^2} with 1, we saw that the rule
27233 @samp{opt(a) sin(x)^2 + opt(a) cos(x)^2 := a} does a good job of
27234 finding suitable cases.  Another solution would be to use the rule
27235 @samp{cos(x)^2 := 1 - sin(x)^2}, followed by algebraic simplification
27236 if necessary.  This rule will be the most effective way to do the job,
27237 but at the expense of making some changes that you might not desire.
27239 Another algebraic rewrite rule is @samp{exp(x+y) := exp(x) exp(y)}.
27240 To make this work with the @w{@kbd{j r}} command so that it can be
27241 easily targeted to a particular exponential in a large formula,
27242 you might wish to write the rule as @samp{select(exp(x+y)) :=
27243 select(exp(x) exp(y))}.  The @samp{select} markers will be
27244 ignored by the regular @kbd{a r} command
27245 (@pxref{Selections with Rewrite Rules}).
27247 A surprisingly useful rewrite rule is @samp{a/(b-c) := a*(b+c)/(b^2-c^2)}.
27248 This will simplify the formula whenever @expr{b} and/or @expr{c} can
27249 be made simpler by squaring.  For example, applying this rule to
27250 @samp{2 / (sqrt(2) + 3)} yields @samp{6:7 - 2:7 sqrt(2)} (assuming
27251 Symbolic mode has been enabled to keep the square root from being
27252 evaluated to a floating-point approximation).  This rule is also
27253 useful when working with symbolic complex numbers, e.g.,
27254 @samp{(a + b i) / (c + d i)}.
27256 As another example, we could define our own ``triangular numbers'' function
27257 with the rules @samp{[tri(0) := 0, tri(n) := n + tri(n-1) :: n>0]}.  Enter
27258 this vector and store it in a variable:  @kbd{@w{s t} trirules}.  Now, given
27259 a suitable formula like @samp{tri(5)} on the stack, type @samp{a r trirules}
27260 to apply these rules repeatedly.  After six applications, @kbd{a r} will
27261 stop with 15 on the stack.  Once these rules are debugged, it would probably
27262 be most useful to add them to @code{EvalRules} so that Calc will evaluate
27263 the new @code{tri} function automatically.  We could then use @kbd{Z K} on
27264 the keyboard macro @kbd{' tri($) @key{RET}} to make a command that applies
27265 @code{tri} to the value on the top of the stack.  @xref{Programming}.
27267 @cindex Quaternions
27268 The following rule set, contributed by 
27269 @texline Fran\c cois
27270 @infoline Francois
27271 Pinard, implements @dfn{quaternions}, a generalization of the concept of
27272 complex numbers.  Quaternions have four components, and are here
27273 represented by function calls @samp{quat(@var{w}, [@var{x}, @var{y},
27274 @var{z}])} with ``real part'' @var{w} and the three ``imaginary'' parts
27275 collected into a vector.  Various arithmetical operations on quaternions
27276 are supported.  To use these rules, either add them to @code{EvalRules},
27277 or create a command based on @kbd{a r} for simplifying quaternion
27278 formulas.  A convenient way to enter quaternions would be a command
27279 defined by a keyboard macro containing: @kbd{' quat($$$$, [$$$, $$, $])
27280 @key{RET}}.
27282 @smallexample
27283 [ quat(w, x, y, z) := quat(w, [x, y, z]),
27284   quat(w, [0, 0, 0]) := w,
27285   abs(quat(w, v)) := hypot(w, v),
27286   -quat(w, v) := quat(-w, -v),
27287   r + quat(w, v) := quat(r + w, v) :: real(r),
27288   r - quat(w, v) := quat(r - w, -v) :: real(r),
27289   quat(w1, v1) + quat(w2, v2) := quat(w1 + w2, v1 + v2),
27290   r * quat(w, v) := quat(r * w, r * v) :: real(r),
27291   plain(quat(w1, v1) * quat(w2, v2))
27292      := quat(w1 * w2 - v1 * v2, w1 * v2 + w2 * v1 + cross(v1, v2)),
27293   quat(w1, v1) / r := quat(w1 / r, v1 / r) :: real(r),
27294   z / quat(w, v) := z * quatinv(quat(w, v)),
27295   quatinv(quat(w, v)) := quat(w, -v) / (w^2 + v^2),
27296   quatsqr(quat(w, v)) := quat(w^2 - v^2, 2 * w * v),
27297   quat(w, v)^k := quatsqr(quat(w, v)^(k / 2))
27298                :: integer(k) :: k > 0 :: k % 2 = 0,
27299   quat(w, v)^k := quatsqr(quat(w, v)^((k - 1) / 2)) * quat(w, v)
27300                :: integer(k) :: k > 2,
27301   quat(w, v)^-k := quatinv(quat(w, v)^k) :: integer(k) :: k > 0 ]
27302 @end smallexample
27304 Quaternions, like matrices, have non-commutative multiplication.
27305 In other words, @expr{q1 * q2 = q2 * q1} is not necessarily true if
27306 @expr{q1} and @expr{q2} are @code{quat} forms.  The @samp{quat*quat}
27307 rule above uses @code{plain} to prevent Calc from rearranging the
27308 product.  It may also be wise to add the line @samp{[quat(), matrix]}
27309 to the @code{Decls} matrix, to ensure that Calc's other algebraic
27310 operations will not rearrange a quaternion product.  @xref{Declarations}.
27312 These rules also accept a four-argument @code{quat} form, converting
27313 it to the preferred form in the first rule.  If you would rather see
27314 results in the four-argument form, just append the two items
27315 @samp{phase(2), quat(w, [x, y, z]) := quat(w, x, y, z)} to the end
27316 of the rule set.  (But remember that multi-phase rule sets don't work
27317 in @code{EvalRules}.)
27319 @node Units, Store and Recall, Algebra, Top
27320 @chapter Operating on Units
27322 @noindent
27323 One special interpretation of algebraic formulas is as numbers with units.
27324 For example, the formula @samp{5 m / s^2} can be read ``five meters
27325 per second squared.''  The commands in this chapter help you
27326 manipulate units expressions in this form.  Units-related commands
27327 begin with the @kbd{u} prefix key.
27329 @menu
27330 * Basic Operations on Units::
27331 * The Units Table::
27332 * Predefined Units::
27333 * User-Defined Units::
27334 @end menu
27336 @node Basic Operations on Units, The Units Table, Units, Units
27337 @section Basic Operations on Units
27339 @noindent
27340 A @dfn{units expression} is a formula which is basically a number
27341 multiplied and/or divided by one or more @dfn{unit names}, which may
27342 optionally be raised to integer powers.  Actually, the value part need not
27343 be a number; any product or quotient involving unit names is a units
27344 expression.  Many of the units commands will also accept any formula,
27345 where the command applies to all units expressions which appear in the
27346 formula.
27348 A unit name is a variable whose name appears in the @dfn{unit table},
27349 or a variable whose name is a prefix character like @samp{k} (for ``kilo'')
27350 or @samp{u} (for ``micro'') followed by a name in the unit table.
27351 A substantial table of built-in units is provided with Calc;
27352 @pxref{Predefined Units}.  You can also define your own unit names;
27353 @pxref{User-Defined Units}.
27355 Note that if the value part of a units expression is exactly @samp{1},
27356 it will be removed by the Calculator's automatic algebra routines:  The
27357 formula @samp{1 mm} is ``simplified'' to @samp{mm}.  This is only a
27358 display anomaly, however; @samp{mm} will work just fine as a
27359 representation of one millimeter.
27361 You may find that Algebraic mode (@pxref{Algebraic Entry}) makes working
27362 with units expressions easier.  Otherwise, you will have to remember
27363 to hit the apostrophe key every time you wish to enter units.
27365 @kindex u s
27366 @pindex calc-simplify-units
27367 @ignore
27368 @mindex usimpl@idots
27369 @end ignore
27370 @tindex usimplify
27371 The @kbd{u s} (@code{calc-simplify-units}) [@code{usimplify}] command
27372 simplifies a units
27373 expression.  It uses @kbd{a s} (@code{calc-simplify}) to simplify the
27374 expression first as a regular algebraic formula; it then looks for
27375 features that can be further simplified by converting one object's units
27376 to be compatible with another's.  For example, @samp{5 m + 23 mm} will
27377 simplify to @samp{5.023 m}.  When different but compatible units are
27378 added, the righthand term's units are converted to match those of the
27379 lefthand term.  @xref{Simplification Modes}, for a way to have this done
27380 automatically at all times.
27382 Units simplification also handles quotients of two units with the same
27383 dimensionality, as in @w{@samp{2 in s/L cm}} to @samp{5.08 s/L}; fractional
27384 powers of unit expressions, as in @samp{sqrt(9 mm^2)} to @samp{3 mm} and
27385 @samp{sqrt(9 acre)} to a quantity in meters; and @code{floor},
27386 @code{ceil}, @code{round}, @code{rounde}, @code{roundu}, @code{trunc},
27387 @code{float}, @code{frac}, @code{abs}, and @code{clean}
27388 applied to units expressions, in which case
27389 the operation in question is applied only to the numeric part of the
27390 expression.  Finally, trigonometric functions of quantities with units
27391 of angle are evaluated, regardless of the current angular mode.
27393 @kindex u c
27394 @pindex calc-convert-units
27395 The @kbd{u c} (@code{calc-convert-units}) command converts a units
27396 expression to new, compatible units.  For example, given the units
27397 expression @samp{55 mph}, typing @kbd{u c m/s @key{RET}} produces
27398 @samp{24.5872 m/s}.  If the units you request are inconsistent with
27399 the original units, the number will be converted into your units
27400 times whatever ``remainder'' units are left over.  For example,
27401 converting @samp{55 mph} into acres produces @samp{6.08e-3 acre / m s}.
27402 (Recall that multiplication binds more strongly than division in Calc
27403 formulas, so the units here are acres per meter-second.)  Remainder
27404 units are expressed in terms of ``fundamental'' units like @samp{m} and
27405 @samp{s}, regardless of the input units.
27407 One special exception is that if you specify a single unit name, and
27408 a compatible unit appears somewhere in the units expression, then
27409 that compatible unit will be converted to the new unit and the
27410 remaining units in the expression will be left alone.  For example,
27411 given the input @samp{980 cm/s^2}, the command @kbd{u c ms} will
27412 change the @samp{s} to @samp{ms} to get @samp{9.8e-4 cm/ms^2}.
27413 The ``remainder unit'' @samp{cm} is left alone rather than being
27414 changed to the base unit @samp{m}.
27416 You can use explicit unit conversion instead of the @kbd{u s} command
27417 to gain more control over the units of the result of an expression.
27418 For example, given @samp{5 m + 23 mm}, you can type @kbd{u c m} or
27419 @kbd{u c mm} to express the result in either meters or millimeters.
27420 (For that matter, you could type @kbd{u c fath} to express the result
27421 in fathoms, if you preferred!)
27423 In place of a specific set of units, you can also enter one of the
27424 units system names @code{si}, @code{mks} (equivalent), or @code{cgs}.
27425 For example, @kbd{u c si @key{RET}} converts the expression into
27426 International System of Units (SI) base units.  Also, @kbd{u c base}
27427 converts to Calc's base units, which are the same as @code{si} units
27428 except that @code{base} uses @samp{g} as the fundamental unit of mass
27429 whereas @code{si} uses @samp{kg}.
27431 @cindex Composite units
27432 The @kbd{u c} command also accepts @dfn{composite units}, which
27433 are expressed as the sum of several compatible unit names.  For
27434 example, converting @samp{30.5 in} to units @samp{mi+ft+in} (miles,
27435 feet, and inches) produces @samp{2 ft + 6.5 in}.  Calc first
27436 sorts the unit names into order of decreasing relative size.
27437 It then accounts for as much of the input quantity as it can
27438 using an integer number times the largest unit, then moves on
27439 to the next smaller unit, and so on.  Only the smallest unit
27440 may have a non-integer amount attached in the result.  A few
27441 standard unit names exist for common combinations, such as
27442 @code{mfi} for @samp{mi+ft+in}, and @code{tpo} for @samp{ton+lb+oz}.
27443 Composite units are expanded as if by @kbd{a x}, so that
27444 @samp{(ft+in)/hr} is first converted to @samp{ft/hr+in/hr}.
27446 If the value on the stack does not contain any units, @kbd{u c} will
27447 prompt first for the old units which this value should be considered
27448 to have, then for the new units.  Assuming the old and new units you
27449 give are consistent with each other, the result also will not contain
27450 any units.  For example, @kbd{@w{u c} cm @key{RET} in @key{RET}} converts the number
27451 2 on the stack to 5.08.
27453 @kindex u b
27454 @pindex calc-base-units
27455 The @kbd{u b} (@code{calc-base-units}) command is shorthand for
27456 @kbd{u c base}; it converts the units expression on the top of the
27457 stack into @code{base} units.  If @kbd{u s} does not simplify a
27458 units expression as far as you would like, try @kbd{u b}.
27460 The @kbd{u c} and @kbd{u b} commands treat temperature units (like
27461 @samp{degC} and @samp{K}) as relative temperatures.  For example,
27462 @kbd{u c} converts @samp{10 degC} to @samp{18 degF}: A change of 10
27463 degrees Celsius corresponds to a change of 18 degrees Fahrenheit.
27465 @kindex u t
27466 @pindex calc-convert-temperature
27467 @cindex Temperature conversion
27468 The @kbd{u t} (@code{calc-convert-temperature}) command converts
27469 absolute temperatures.  The value on the stack must be a simple units
27470 expression with units of temperature only.  This command would convert
27471 @samp{10 degC} to @samp{50 degF}, the equivalent temperature on the
27472 Fahrenheit scale.
27474 @kindex u r
27475 @pindex calc-remove-units
27476 @kindex u x
27477 @pindex calc-extract-units
27478 The @kbd{u r} (@code{calc-remove-units}) command removes units from the
27479 formula at the top of the stack.  The @kbd{u x}
27480 (@code{calc-extract-units}) command extracts only the units portion of a
27481 formula.  These commands essentially replace every term of the formula
27482 that does or doesn't (respectively) look like a unit name by the
27483 constant 1, then resimplify the formula.
27485 @kindex u a
27486 @pindex calc-autorange-units
27487 The @kbd{u a} (@code{calc-autorange-units}) command turns on and off a
27488 mode in which unit prefixes like @code{k} (``kilo'') are automatically
27489 applied to keep the numeric part of a units expression in a reasonable
27490 range.  This mode affects @kbd{u s} and all units conversion commands
27491 except @kbd{u b}.  For example, with autoranging on, @samp{12345 Hz}
27492 will be simplified to @samp{12.345 kHz}.  Autoranging is useful for
27493 some kinds of units (like @code{Hz} and @code{m}), but is probably
27494 undesirable for non-metric units like @code{ft} and @code{tbsp}.
27495 (Composite units are more appropriate for those; see above.)
27497 Autoranging always applies the prefix to the leftmost unit name.
27498 Calc chooses the largest prefix that causes the number to be greater
27499 than or equal to 1.0.  Thus an increasing sequence of adjusted times
27500 would be @samp{1 ms, 10 ms, 100 ms, 1 s, 10 s, 100 s, 1 ks}.
27501 Generally the rule of thumb is that the number will be adjusted
27502 to be in the interval @samp{[1 .. 1000)}, although there are several
27503 exceptions to this rule.  First, if the unit has a power then this
27504 is not possible; @samp{0.1 s^2} simplifies to @samp{100000 ms^2}.
27505 Second, the ``centi-'' prefix is allowed to form @code{cm} (centimeters),
27506 but will not apply to other units.  The ``deci-,'' ``deka-,'' and
27507 ``hecto-'' prefixes are never used.  Thus the allowable interval is
27508 @samp{[1 .. 10)} for millimeters and @samp{[1 .. 100)} for centimeters.
27509 Finally, a prefix will not be added to a unit if the resulting name
27510 is also the actual name of another unit; @samp{1e-15 t} would normally
27511 be considered a ``femto-ton,'' but it is written as @samp{1000 at}
27512 (1000 atto-tons) instead because @code{ft} would be confused with feet.
27514 @node The Units Table, Predefined Units, Basic Operations on Units, Units
27515 @section The Units Table
27517 @noindent
27518 @kindex u v
27519 @pindex calc-enter-units-table
27520 The @kbd{u v} (@code{calc-enter-units-table}) command displays the units table
27521 in another buffer called @code{*Units Table*}.  Each entry in this table
27522 gives the unit name as it would appear in an expression, the definition
27523 of the unit in terms of simpler units, and a full name or description of
27524 the unit.  Fundamental units are defined as themselves; these are the
27525 units produced by the @kbd{u b} command.  The fundamental units are
27526 meters, seconds, grams, kelvins, amperes, candelas, moles, radians,
27527 and steradians.
27529 The Units Table buffer also displays the Unit Prefix Table.  Note that
27530 two prefixes, ``kilo'' and ``hecto,'' accept either upper- or lower-case
27531 prefix letters.  @samp{Meg} is also accepted as a synonym for the @samp{M}
27532 prefix.  Whenever a unit name can be interpreted as either a built-in name
27533 or a prefix followed by another built-in name, the former interpretation
27534 wins.  For example, @samp{2 pt} means two pints, not two pico-tons.
27536 The Units Table buffer, once created, is not rebuilt unless you define
27537 new units.  To force the buffer to be rebuilt, give any numeric prefix
27538 argument to @kbd{u v}.
27540 @kindex u V
27541 @pindex calc-view-units-table
27542 The @kbd{u V} (@code{calc-view-units-table}) command is like @kbd{u v} except
27543 that the cursor is not moved into the Units Table buffer.  You can
27544 type @kbd{u V} again to remove the Units Table from the display.  To
27545 return from the Units Table buffer after a @kbd{u v}, type @kbd{C-x * c}
27546 again or use the regular Emacs @w{@kbd{C-x o}} (@code{other-window})
27547 command.  You can also kill the buffer with @kbd{C-x k} if you wish;
27548 the actual units table is safely stored inside the Calculator.
27550 @kindex u g
27551 @pindex calc-get-unit-definition
27552 The @kbd{u g} (@code{calc-get-unit-definition}) command retrieves a unit's
27553 defining expression and pushes it onto the Calculator stack.  For example,
27554 @kbd{u g in} will produce the expression @samp{2.54 cm}.  This is the
27555 same definition for the unit that would appear in the Units Table buffer.
27556 Note that this command works only for actual unit names; @kbd{u g km}
27557 will report that no such unit exists, for example, because @code{km} is
27558 really the unit @code{m} with a @code{k} (``kilo'') prefix.  To see a
27559 definition of a unit in terms of base units, it is easier to push the
27560 unit name on the stack and then reduce it to base units with @kbd{u b}.
27562 @kindex u e
27563 @pindex calc-explain-units
27564 The @kbd{u e} (@code{calc-explain-units}) command displays an English
27565 description of the units of the expression on the stack.  For example,
27566 for the expression @samp{62 km^2 g / s^2 mol K}, the description is
27567 ``Square-Kilometer Gram per (Second-squared Mole Degree-Kelvin).''  This
27568 command uses the English descriptions that appear in the righthand
27569 column of the Units Table.
27571 @node Predefined Units, User-Defined Units, The Units Table, Units
27572 @section Predefined Units
27574 @noindent
27575 Since the exact definitions of many kinds of units have evolved over the
27576 years, and since certain countries sometimes have local differences in
27577 their definitions, it is a good idea to examine Calc's definition of a
27578 unit before depending on its exact value.  For example, there are three
27579 different units for gallons, corresponding to the US (@code{gal}),
27580 Canadian (@code{galC}), and British (@code{galUK}) definitions.  Also,
27581 note that @code{oz} is a standard ounce of mass, @code{ozt} is a Troy
27582 ounce, and @code{ozfl} is a fluid ounce.
27584 The temperature units corresponding to degrees Kelvin and Centigrade
27585 (Celsius) are the same in this table, since most units commands treat
27586 temperatures as being relative.  The @code{calc-convert-temperature}
27587 command has special rules for handling the different absolute magnitudes
27588 of the various temperature scales.
27590 The unit of volume ``liters'' can be referred to by either the lower-case
27591 @code{l} or the upper-case @code{L}.
27593 The unit @code{A} stands for Amperes; the name @code{Ang} is used
27594 @tex
27595 for \AA ngstroms.
27596 @end tex
27597 @ifinfo
27598 for Angstroms.
27599 @end ifinfo
27601 The unit @code{pt} stands for pints; the name @code{point} stands for
27602 a typographical point, defined by @samp{72 point = 1 in}.  This is
27603 slightly different than the point defined by the American Typefounder's
27604 Association in 1886, but the point used by Calc has become standard
27605 largely due to its use by the PostScript page description language.
27606 There is also @code{texpt}, which stands for a printer's point as
27607 defined by the @TeX{} typesetting system:  @samp{72.27 texpt = 1 in}.
27608 Other units used by @TeX{} are available; they are @code{texpc} (a pica),
27609 @code{texbp} (a ``big point'', equal to a standard point which is larger
27610 than the point used by @TeX{}), @code{texdd} (a Didot point),
27611 @code{texcc} (a Cicero) and @code{texsp} (a scaled @TeX{} point, 
27612 all dimensions representable in @TeX{} are multiples of this value).
27614 The unit @code{e} stands for the elementary (electron) unit of charge;
27615 because algebra command could mistake this for the special constant
27616 @expr{e}, Calc provides the alternate unit name @code{ech} which is
27617 preferable to @code{e}.
27619 The name @code{g} stands for one gram of mass; there is also @code{gf},
27620 one gram of force.  (Likewise for @kbd{lb}, pounds, and @kbd{lbf}.)
27621 Meanwhile, one ``@expr{g}'' of acceleration is denoted @code{ga}.
27623 The unit @code{ton} is a U.S. ton of @samp{2000 lb}, and @code{t} is
27624 a metric ton of @samp{1000 kg}.
27626 The names @code{s} (or @code{sec}) and @code{min} refer to units of
27627 time; @code{arcsec} and @code{arcmin} are units of angle.
27629 Some ``units'' are really physical constants; for example, @code{c}
27630 represents the speed of light, and @code{h} represents Planck's
27631 constant.  You can use these just like other units: converting
27632 @samp{.5 c} to @samp{m/s} expresses one-half the speed of light in
27633 meters per second.  You can also use this merely as a handy reference;
27634 the @kbd{u g} command gets the definition of one of these constants
27635 in its normal terms, and @kbd{u b} expresses the definition in base
27636 units.
27638 Two units, @code{pi} and @code{alpha} (the fine structure constant,
27639 approximately @mathit{1/137}) are dimensionless.  The units simplification
27640 commands simply treat these names as equivalent to their corresponding
27641 values.  However you can, for example, use @kbd{u c} to convert a pure
27642 number into multiples of the fine structure constant, or @kbd{u b} to
27643 convert this back into a pure number.  (When @kbd{u c} prompts for the
27644 ``old units,'' just enter a blank line to signify that the value
27645 really is unitless.)
27647 @c Describe angular units, luminosity vs. steradians problem.
27649 @node User-Defined Units,  , Predefined Units, Units
27650 @section User-Defined Units
27652 @noindent
27653 Calc provides ways to get quick access to your selected ``favorite''
27654 units, as well as ways to define your own new units.
27656 @kindex u 0-9
27657 @pindex calc-quick-units
27658 @vindex Units
27659 @cindex @code{Units} variable
27660 @cindex Quick units
27661 To select your favorite units, store a vector of unit names or
27662 expressions in the Calc variable @code{Units}.  The @kbd{u 1}
27663 through @kbd{u 9} commands (@code{calc-quick-units}) provide access
27664 to these units.  If the value on the top of the stack is a plain
27665 number (with no units attached), then @kbd{u 1} gives it the
27666 specified units.  (Basically, it multiplies the number by the
27667 first item in the @code{Units} vector.)  If the number on the
27668 stack @emph{does} have units, then @kbd{u 1} converts that number
27669 to the new units.  For example, suppose the vector @samp{[in, ft]}
27670 is stored in @code{Units}.  Then @kbd{30 u 1} will create the
27671 expression @samp{30 in}, and @kbd{u 2} will convert that expression
27672 to @samp{2.5 ft}.
27674 The @kbd{u 0} command accesses the tenth element of @code{Units}.
27675 Only ten quick units may be defined at a time.  If the @code{Units}
27676 variable has no stored value (the default), or if its value is not
27677 a vector, then the quick-units commands will not function.  The
27678 @kbd{s U} command is a convenient way to edit the @code{Units}
27679 variable; @pxref{Operations on Variables}.
27681 @kindex u d
27682 @pindex calc-define-unit
27683 @cindex User-defined units
27684 The @kbd{u d} (@code{calc-define-unit}) command records the units
27685 expression on the top of the stack as the definition for a new,
27686 user-defined unit.  For example, putting @samp{16.5 ft} on the stack and
27687 typing @kbd{u d rod} defines the new unit @samp{rod} to be equivalent to
27688 16.5 feet.  The unit conversion and simplification commands will now
27689 treat @code{rod} just like any other unit of length.  You will also be
27690 prompted for an optional English description of the unit, which will
27691 appear in the Units Table.
27693 @kindex u u
27694 @pindex calc-undefine-unit
27695 The @kbd{u u} (@code{calc-undefine-unit}) command removes a user-defined
27696 unit.  It is not possible to remove one of the predefined units,
27697 however.
27699 If you define a unit with an existing unit name, your new definition
27700 will replace the original definition of that unit.  If the unit was a
27701 predefined unit, the old definition will not be replaced, only
27702 ``shadowed.''  The built-in definition will reappear if you later use
27703 @kbd{u u} to remove the shadowing definition.
27705 To create a new fundamental unit, use either 1 or the unit name itself
27706 as the defining expression.  Otherwise the expression can involve any
27707 other units that you like (except for composite units like @samp{mfi}).
27708 You can create a new composite unit with a sum of other units as the
27709 defining expression.  The next unit operation like @kbd{u c} or @kbd{u v}
27710 will rebuild the internal unit table incorporating your modifications.
27711 Note that erroneous definitions (such as two units defined in terms of
27712 each other) will not be detected until the unit table is next rebuilt;
27713 @kbd{u v} is a convenient way to force this to happen.
27715 Temperature units are treated specially inside the Calculator; it is not
27716 possible to create user-defined temperature units.
27718 @kindex u p
27719 @pindex calc-permanent-units
27720 @cindex Calc init file, user-defined units
27721 The @kbd{u p} (@code{calc-permanent-units}) command stores the user-defined
27722 units in your Calc init file (the file given by the variable
27723 @code{calc-settings-file}, typically @file{~/.calc.el}), so that the
27724 units will still be available in subsequent Emacs sessions.  If there
27725 was already a set of user-defined units in your Calc init file, it
27726 is replaced by the new set.  (@xref{General Mode Commands}, for a way to
27727 tell Calc to use a different file for the Calc init file.)
27729 @node Store and Recall, Graphics, Units, Top
27730 @chapter Storing and Recalling
27732 @noindent
27733 Calculator variables are really just Lisp variables that contain numbers
27734 or formulas in a form that Calc can understand.  The commands in this
27735 section allow you to manipulate variables conveniently.  Commands related
27736 to variables use the @kbd{s} prefix key.
27738 @menu
27739 * Storing Variables::
27740 * Recalling Variables::
27741 * Operations on Variables::
27742 * Let Command::
27743 * Evaluates-To Operator::
27744 @end menu
27746 @node Storing Variables, Recalling Variables, Store and Recall, Store and Recall
27747 @section Storing Variables
27749 @noindent
27750 @kindex s s
27751 @pindex calc-store
27752 @cindex Storing variables
27753 @cindex Quick variables
27754 @vindex q0
27755 @vindex q9
27756 The @kbd{s s} (@code{calc-store}) command stores the value at the top of
27757 the stack into a specified variable.  It prompts you to enter the
27758 name of the variable.  If you press a single digit, the value is stored
27759 immediately in one of the ``quick'' variables @code{q0} through
27760 @code{q9}.  Or you can enter any variable name.  
27762 @kindex s t
27763 @pindex calc-store-into
27764 The @kbd{s s} command leaves the stored value on the stack.  There is
27765 also an @kbd{s t} (@code{calc-store-into}) command, which removes a
27766 value from the stack and stores it in a variable.
27768 If the top of stack value is an equation @samp{a = 7} or assignment
27769 @samp{a := 7} with a variable on the lefthand side, then Calc will
27770 assign that variable with that value by default, i.e., if you type
27771 @kbd{s s @key{RET}} or @kbd{s t @key{RET}}.  In this example, the
27772 value 7 would be stored in the variable @samp{a}.  (If you do type
27773 a variable name at the prompt, the top-of-stack value is stored in
27774 its entirety, even if it is an equation:  @samp{s s b @key{RET}}
27775 with @samp{a := 7} on the stack stores @samp{a := 7} in @code{b}.)
27777 In fact, the top of stack value can be a vector of equations or
27778 assignments with different variables on their lefthand sides; the
27779 default will be to store all the variables with their corresponding
27780 righthand sides simultaneously.
27782 It is also possible to type an equation or assignment directly at
27783 the prompt for the @kbd{s s} or @kbd{s t} command:  @kbd{s s foo = 7}.
27784 In this case the expression to the right of the @kbd{=} or @kbd{:=}
27785 symbol is evaluated as if by the @kbd{=} command, and that value is
27786 stored in the variable.  No value is taken from the stack; @kbd{s s}
27787 and @kbd{s t} are equivalent when used in this way.
27789 @kindex s 0-9
27790 @kindex t 0-9
27791 The prefix keys @kbd{s} and @kbd{t} may be followed immediately by a
27792 digit; @kbd{s 9} is equivalent to @kbd{s s 9}, and @kbd{t 9} is
27793 equivalent to @kbd{s t 9}.  (The @kbd{t} prefix is otherwise used
27794 for trail and time/date commands.)
27796 @kindex s +
27797 @kindex s -
27798 @ignore
27799 @mindex @idots
27800 @end ignore
27801 @kindex s *
27802 @ignore
27803 @mindex @null
27804 @end ignore
27805 @kindex s /
27806 @ignore
27807 @mindex @null
27808 @end ignore
27809 @kindex s ^
27810 @ignore
27811 @mindex @null
27812 @end ignore
27813 @kindex s |
27814 @ignore
27815 @mindex @null
27816 @end ignore
27817 @kindex s n
27818 @ignore
27819 @mindex @null
27820 @end ignore
27821 @kindex s &
27822 @ignore
27823 @mindex @null
27824 @end ignore
27825 @kindex s [
27826 @ignore
27827 @mindex @null
27828 @end ignore
27829 @kindex s ]
27830 @pindex calc-store-plus
27831 @pindex calc-store-minus
27832 @pindex calc-store-times
27833 @pindex calc-store-div
27834 @pindex calc-store-power
27835 @pindex calc-store-concat
27836 @pindex calc-store-neg
27837 @pindex calc-store-inv
27838 @pindex calc-store-decr
27839 @pindex calc-store-incr
27840 There are also several ``arithmetic store'' commands.  For example,
27841 @kbd{s +} removes a value from the stack and adds it to the specified
27842 variable.  The other arithmetic stores are @kbd{s -}, @kbd{s *}, @kbd{s /},
27843 @kbd{s ^}, and @w{@kbd{s |}} (vector concatenation), plus @kbd{s n} and
27844 @kbd{s &} which negate or invert the value in a variable, and @w{@kbd{s [}}
27845 and @kbd{s ]} which decrease or increase a variable by one.
27847 All the arithmetic stores accept the Inverse prefix to reverse the
27848 order of the operands.  If @expr{v} represents the contents of the
27849 variable, and @expr{a} is the value drawn from the stack, then regular
27850 @w{@kbd{s -}} assigns 
27851 @texline @math{v \coloneq v - a},
27852 @infoline @expr{v := v - a}, 
27853 but @kbd{I s -} assigns
27854 @texline @math{v \coloneq a - v}.
27855 @infoline @expr{v := a - v}.  
27856 While @kbd{I s *} might seem pointless, it is
27857 useful if matrix multiplication is involved.  Actually, all the
27858 arithmetic stores use formulas designed to behave usefully both
27859 forwards and backwards:
27861 @example
27862 @group
27863 s +        v := v + a          v := a + v
27864 s -        v := v - a          v := a - v
27865 s *        v := v * a          v := a * v
27866 s /        v := v / a          v := a / v
27867 s ^        v := v ^ a          v := a ^ v
27868 s |        v := v | a          v := a | v
27869 s n        v := v / (-1)       v := (-1) / v
27870 s &        v := v ^ (-1)       v := (-1) ^ v
27871 s [        v := v - 1          v := 1 - v
27872 s ]        v := v - (-1)       v := (-1) - v
27873 @end group
27874 @end example
27876 In the last four cases, a numeric prefix argument will be used in
27877 place of the number one.  (For example, @kbd{M-2 s ]} increases
27878 a variable by 2, and @kbd{M-2 I s ]} replaces a variable by
27879 minus-two minus the variable.
27881 The first six arithmetic stores can also be typed @kbd{s t +}, @kbd{s t -},
27882 etc.  The commands @kbd{s s +}, @kbd{s s -}, and so on are analogous
27883 arithmetic stores that don't remove the value @expr{a} from the stack.
27885 All arithmetic stores report the new value of the variable in the
27886 Trail for your information.  They signal an error if the variable
27887 previously had no stored value.  If default simplifications have been
27888 turned off, the arithmetic stores temporarily turn them on for numeric
27889 arguments only (i.e., they temporarily do an @kbd{m N} command).
27890 @xref{Simplification Modes}.  Large vectors put in the trail by
27891 these commands always use abbreviated (@kbd{t .}) mode.
27893 @kindex s m
27894 @pindex calc-store-map
27895 The @kbd{s m} command is a general way to adjust a variable's value
27896 using any Calc function.  It is a ``mapping'' command analogous to
27897 @kbd{V M}, @kbd{V R}, etc.  @xref{Reducing and Mapping}, to see
27898 how to specify a function for a mapping command.  Basically,
27899 all you do is type the Calc command key that would invoke that
27900 function normally.  For example, @kbd{s m n} applies the @kbd{n}
27901 key to negate the contents of the variable, so @kbd{s m n} is
27902 equivalent to @kbd{s n}.  Also, @kbd{s m Q} takes the square root
27903 of the value stored in a variable, @kbd{s m v v} uses @kbd{v v} to
27904 reverse the vector stored in the variable, and @kbd{s m H I S}
27905 takes the hyperbolic arcsine of the variable contents.
27907 If the mapping function takes two or more arguments, the additional
27908 arguments are taken from the stack; the old value of the variable
27909 is provided as the first argument.  Thus @kbd{s m -} with @expr{a}
27910 on the stack computes @expr{v - a}, just like @kbd{s -}.  With the
27911 Inverse prefix, the variable's original value becomes the @emph{last}
27912 argument instead of the first.  Thus @kbd{I s m -} is also
27913 equivalent to @kbd{I s -}.
27915 @kindex s x
27916 @pindex calc-store-exchange
27917 The @kbd{s x} (@code{calc-store-exchange}) command exchanges the value
27918 of a variable with the value on the top of the stack.  Naturally, the
27919 variable must already have a stored value for this to work.
27921 You can type an equation or assignment at the @kbd{s x} prompt.  The
27922 command @kbd{s x a=6} takes no values from the stack; instead, it
27923 pushes the old value of @samp{a} on the stack and stores @samp{a = 6}.
27925 @kindex s u
27926 @pindex calc-unstore
27927 @cindex Void variables
27928 @cindex Un-storing variables
27929 Until you store something in them, most variables are ``void,'' that is,
27930 they contain no value at all.  If they appear in an algebraic formula
27931 they will be left alone even if you press @kbd{=} (@code{calc-evaluate}).
27932 The @kbd{s u} (@code{calc-unstore}) command returns a variable to the
27933 void state.
27935 @kindex s c
27936 @pindex calc-copy-variable
27937 The @kbd{s c} (@code{calc-copy-variable}) command copies the stored
27938 value of one variable to another.  One way it differs from a simple
27939 @kbd{s r} followed by an @kbd{s t} (aside from saving keystrokes) is
27940 that the value never goes on the stack and thus is never rounded,
27941 evaluated, or simplified in any way; it is not even rounded down to the
27942 current precision.
27944 The only variables with predefined values are the ``special constants''
27945 @code{pi}, @code{e}, @code{i}, @code{phi}, and @code{gamma}.  You are free
27946 to unstore these variables or to store new values into them if you like,
27947 although some of the algebraic-manipulation functions may assume these
27948 variables represent their standard values.  Calc displays a warning if
27949 you change the value of one of these variables, or of one of the other
27950 special variables @code{inf}, @code{uinf}, and @code{nan} (which are
27951 normally void).
27953 Note that @code{pi} doesn't actually have 3.14159265359 stored in it,
27954 but rather a special magic value that evaluates to @cpi{} at the current
27955 precision.  Likewise @code{e}, @code{i}, and @code{phi} evaluate
27956 according to the current precision or polar mode.  If you recall a value
27957 from @code{pi} and store it back, this magic property will be lost.  The
27958 magic property is preserved, however, when a variable is copied with
27959 @kbd{s c}.
27961 @kindex s k
27962 @pindex calc-copy-special-constant
27963 If one of the ``special constants'' is redefined (or undefined) so that
27964 it no longer has its magic property, the property can be restored with 
27965 @kbd{s k} (@code{calc-copy-special-constant}).  This command will prompt
27966 for a special constant and a variable to store it in, and so a special
27967 constant can be stored in any variable.  Here, the special constant that
27968 you enter doesn't depend on the value of the corresponding variable;
27969 @code{pi} will represent 3.14159@dots{} regardless of what is currently
27970 stored in the Calc variable @code{pi}.  If one of the other special
27971 variables, @code{inf}, @code{uinf} or @code{nan}, is given a value, its
27972 original behavior can be restored by voiding it with @kbd{s u}.
27974 @node Recalling Variables, Operations on Variables, Storing Variables, Store and Recall
27975 @section Recalling Variables
27977 @noindent
27978 @kindex s r
27979 @pindex calc-recall
27980 @cindex Recalling variables
27981 The most straightforward way to extract the stored value from a variable
27982 is to use the @kbd{s r} (@code{calc-recall}) command.  This command prompts
27983 for a variable name (similarly to @code{calc-store}), looks up the value
27984 of the specified variable, and pushes that value onto the stack.  It is
27985 an error to try to recall a void variable.
27987 It is also possible to recall the value from a variable by evaluating a
27988 formula containing that variable.  For example, @kbd{' a @key{RET} =} is
27989 the same as @kbd{s r a @key{RET}} except that if the variable is void, the
27990 former will simply leave the formula @samp{a} on the stack whereas the
27991 latter will produce an error message.
27993 @kindex r 0-9
27994 The @kbd{r} prefix may be followed by a digit, so that @kbd{r 9} is
27995 equivalent to @kbd{s r 9}.  (The @kbd{r} prefix is otherwise unused
27996 in the current version of Calc.)
27998 @node Operations on Variables, Let Command, Recalling Variables, Store and Recall
27999 @section Other Operations on Variables
28001 @noindent
28002 @kindex s e
28003 @pindex calc-edit-variable
28004 The @kbd{s e} (@code{calc-edit-variable}) command edits the stored
28005 value of a variable without ever putting that value on the stack
28006 or simplifying or evaluating the value.  It prompts for the name of
28007 the variable to edit.  If the variable has no stored value, the
28008 editing buffer will start out empty.  If the editing buffer is
28009 empty when you press @kbd{C-c C-c} to finish, the variable will
28010 be made void.  @xref{Editing Stack Entries}, for a general
28011 description of editing.
28013 The @kbd{s e} command is especially useful for creating and editing
28014 rewrite rules which are stored in variables.  Sometimes these rules
28015 contain formulas which must not be evaluated until the rules are
28016 actually used.  (For example, they may refer to @samp{deriv(x,y)},
28017 where @code{x} will someday become some expression involving @code{y};
28018 if you let Calc evaluate the rule while you are defining it, Calc will
28019 replace @samp{deriv(x,y)} with 0 because the formula @code{x} does
28020 not itself refer to @code{y}.)  By contrast, recalling the variable,
28021 editing with @kbd{`}, and storing will evaluate the variable's value
28022 as a side effect of putting the value on the stack.
28024 @kindex s A
28025 @kindex s D
28026 @ignore
28027 @mindex @idots
28028 @end ignore
28029 @kindex s E
28030 @ignore
28031 @mindex @null
28032 @end ignore
28033 @kindex s F
28034 @ignore
28035 @mindex @null
28036 @end ignore
28037 @kindex s G
28038 @ignore
28039 @mindex @null
28040 @end ignore
28041 @kindex s H
28042 @ignore
28043 @mindex @null
28044 @end ignore
28045 @kindex s I
28046 @ignore
28047 @mindex @null
28048 @end ignore
28049 @kindex s L
28050 @ignore
28051 @mindex @null
28052 @end ignore
28053 @kindex s P
28054 @ignore
28055 @mindex @null
28056 @end ignore
28057 @kindex s R
28058 @ignore
28059 @mindex @null
28060 @end ignore
28061 @kindex s T
28062 @ignore
28063 @mindex @null
28064 @end ignore
28065 @kindex s U
28066 @ignore
28067 @mindex @null
28068 @end ignore
28069 @kindex s X
28070 @pindex calc-store-AlgSimpRules
28071 @pindex calc-store-Decls
28072 @pindex calc-store-EvalRules
28073 @pindex calc-store-FitRules
28074 @pindex calc-store-GenCount
28075 @pindex calc-store-Holidays
28076 @pindex calc-store-IntegLimit
28077 @pindex calc-store-LineStyles
28078 @pindex calc-store-PointStyles
28079 @pindex calc-store-PlotRejects
28080 @pindex calc-store-TimeZone
28081 @pindex calc-store-Units
28082 @pindex calc-store-ExtSimpRules
28083 There are several special-purpose variable-editing commands that
28084 use the @kbd{s} prefix followed by a shifted letter:
28086 @table @kbd
28087 @item s A
28088 Edit @code{AlgSimpRules}.  @xref{Algebraic Simplifications}.
28089 @item s D
28090 Edit @code{Decls}.  @xref{Declarations}.
28091 @item s E
28092 Edit @code{EvalRules}.  @xref{Default Simplifications}.
28093 @item s F
28094 Edit @code{FitRules}.  @xref{Curve Fitting}.
28095 @item s G
28096 Edit @code{GenCount}.  @xref{Solving Equations}.
28097 @item s H
28098 Edit @code{Holidays}.  @xref{Business Days}.
28099 @item s I
28100 Edit @code{IntegLimit}.  @xref{Calculus}.
28101 @item s L
28102 Edit @code{LineStyles}.  @xref{Graphics}.
28103 @item s P
28104 Edit @code{PointStyles}.  @xref{Graphics}.
28105 @item s R
28106 Edit @code{PlotRejects}.  @xref{Graphics}.
28107 @item s T
28108 Edit @code{TimeZone}.  @xref{Time Zones}.
28109 @item s U
28110 Edit @code{Units}.  @xref{User-Defined Units}.
28111 @item s X
28112 Edit @code{ExtSimpRules}.  @xref{Unsafe Simplifications}.
28113 @end table
28115 These commands are just versions of @kbd{s e} that use fixed variable
28116 names rather than prompting for the variable name.
28118 @kindex s p
28119 @pindex calc-permanent-variable
28120 @cindex Storing variables
28121 @cindex Permanent variables
28122 @cindex Calc init file, variables
28123 The @kbd{s p} (@code{calc-permanent-variable}) command saves a
28124 variable's value permanently in your Calc init file (the file given by
28125 the variable @code{calc-settings-file}, typically @file{~/.calc.el}), so
28126 that its value will still be available in future Emacs sessions.  You
28127 can re-execute @w{@kbd{s p}} later on to update the saved value, but the
28128 only way to remove a saved variable is to edit your calc init file
28129 by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
28130 use a different file for the Calc init file.)
28132 If you do not specify the name of a variable to save (i.e.,
28133 @kbd{s p @key{RET}}), all Calc variables with defined values
28134 are saved except for the special constants @code{pi}, @code{e},
28135 @code{i}, @code{phi}, and @code{gamma}; the variables @code{TimeZone}
28136 and @code{PlotRejects};
28137 @code{FitRules}, @code{DistribRules}, and other built-in rewrite
28138 rules; and @code{PlotData@var{n}} variables generated
28139 by the graphics commands.  (You can still save these variables by
28140 explicitly naming them in an @kbd{s p} command.)
28142 @kindex s i
28143 @pindex calc-insert-variables
28144 The @kbd{s i} (@code{calc-insert-variables}) command writes
28145 the values of all Calc variables into a specified buffer.
28146 The variables are written with the prefix @code{var-} in the form of
28147 Lisp @code{setq} commands 
28148 which store the values in string form.  You can place these commands
28149 in your Calc init file (or @file{.emacs}) if you wish, though in this case it
28150 would be easier to use @kbd{s p @key{RET}}.  (Note that @kbd{s i}
28151 omits the same set of variables as @w{@kbd{s p @key{RET}}}; the difference
28152 is that @kbd{s i} will store the variables in any buffer, and it also
28153 stores in a more human-readable format.)
28155 @node Let Command, Evaluates-To Operator, Operations on Variables, Store and Recall
28156 @section The Let Command
28158 @noindent
28159 @kindex s l
28160 @pindex calc-let
28161 @cindex Variables, temporary assignment
28162 @cindex Temporary assignment to variables
28163 If you have an expression like @samp{a+b^2} on the stack and you wish to
28164 compute its value where @expr{b=3}, you can simply store 3 in @expr{b} and
28165 then press @kbd{=} to reevaluate the formula.  This has the side-effect
28166 of leaving the stored value of 3 in @expr{b} for future operations.
28168 The @kbd{s l} (@code{calc-let}) command evaluates a formula under a
28169 @emph{temporary} assignment of a variable.  It stores the value on the
28170 top of the stack into the specified variable, then evaluates the
28171 second-to-top stack entry, then restores the original value (or lack of one)
28172 in the variable.  Thus after @kbd{'@w{ }a+b^2 @key{RET} 3 s l b @key{RET}},
28173 the stack will contain the formula @samp{a + 9}.  The subsequent command
28174 @kbd{@w{5 s l a} @key{RET}} will replace this formula with the number 14.
28175 The variables @samp{a} and @samp{b} are not permanently affected in any way
28176 by these commands.
28178 The value on the top of the stack may be an equation or assignment, or
28179 a vector of equations or assignments, in which case the default will be
28180 analogous to the case of @kbd{s t @key{RET}}.  @xref{Storing Variables}.
28182 Also, you can answer the variable-name prompt with an equation or
28183 assignment:  @kbd{s l b=3 @key{RET}} is the same as storing 3 on the stack
28184 and typing @kbd{s l b @key{RET}}.
28186 The @kbd{a b} (@code{calc-substitute}) command is another way to substitute
28187 a variable with a value in a formula.  It does an actual substitution
28188 rather than temporarily assigning the variable and evaluating.  For
28189 example, letting @expr{n=2} in @samp{f(n pi)} with @kbd{a b} will
28190 produce @samp{f(2 pi)}, whereas @kbd{s l} would give @samp{f(6.28)}
28191 since the evaluation step will also evaluate @code{pi}.
28193 @node Evaluates-To Operator,  , Let Command, Store and Recall
28194 @section The Evaluates-To Operator
28196 @noindent
28197 @tindex evalto
28198 @tindex =>
28199 @cindex Evaluates-to operator
28200 @cindex @samp{=>} operator
28201 The special algebraic symbol @samp{=>} is known as the @dfn{evaluates-to
28202 operator}.  (It will show up as an @code{evalto} function call in
28203 other language modes like Pascal and La@TeX{}.)  This is a binary
28204 operator, that is, it has a lefthand and a righthand argument,
28205 although it can be entered with the righthand argument omitted.
28207 A formula like @samp{@var{a} => @var{b}} is evaluated by Calc as
28208 follows:  First, @var{a} is not simplified or modified in any
28209 way.  The previous value of argument @var{b} is thrown away; the
28210 formula @var{a} is then copied and evaluated as if by the @kbd{=}
28211 command according to all current modes and stored variable values,
28212 and the result is installed as the new value of @var{b}.
28214 For example, suppose you enter the algebraic formula @samp{2 + 3 => 17}.
28215 The number 17 is ignored, and the lefthand argument is left in its
28216 unevaluated form; the result is the formula @samp{2 + 3 => 5}.
28218 @kindex s =
28219 @pindex calc-evalto
28220 You can enter an @samp{=>} formula either directly using algebraic
28221 entry (in which case the righthand side may be omitted since it is
28222 going to be replaced right away anyhow), or by using the @kbd{s =}
28223 (@code{calc-evalto}) command, which takes @var{a} from the stack
28224 and replaces it with @samp{@var{a} => @var{b}}.
28226 Calc keeps track of all @samp{=>} operators on the stack, and
28227 recomputes them whenever anything changes that might affect their
28228 values, i.e., a mode setting or variable value.  This occurs only
28229 if the @samp{=>} operator is at the top level of the formula, or
28230 if it is part of a top-level vector.  In other words, pushing
28231 @samp{2 + (a => 17)} will change the 17 to the actual value of
28232 @samp{a} when you enter the formula, but the result will not be
28233 dynamically updated when @samp{a} is changed later because the
28234 @samp{=>} operator is buried inside a sum.  However, a vector
28235 of @samp{=>} operators will be recomputed, since it is convenient
28236 to push a vector like @samp{[a =>, b =>, c =>]} on the stack to
28237 make a concise display of all the variables in your problem.
28238 (Another way to do this would be to use @samp{[a, b, c] =>},
28239 which provides a slightly different format of display.  You
28240 can use whichever you find easiest to read.)
28242 @kindex m C
28243 @pindex calc-auto-recompute
28244 The @kbd{m C} (@code{calc-auto-recompute}) command allows you to
28245 turn this automatic recomputation on or off.  If you turn
28246 recomputation off, you must explicitly recompute an @samp{=>}
28247 operator on the stack in one of the usual ways, such as by
28248 pressing @kbd{=}.  Turning recomputation off temporarily can save
28249 a lot of time if you will be changing several modes or variables
28250 before you look at the @samp{=>} entries again.
28252 Most commands are not especially useful with @samp{=>} operators
28253 as arguments.  For example, given @samp{x + 2 => 17}, it won't
28254 work to type @kbd{1 +} to get @samp{x + 3 => 18}.  If you want
28255 to operate on the lefthand side of the @samp{=>} operator on
28256 the top of the stack, type @kbd{j 1} (that's the digit ``one'')
28257 to select the lefthand side, execute your commands, then type
28258 @kbd{j u} to unselect.
28260 All current modes apply when an @samp{=>} operator is computed,
28261 including the current simplification mode.  Recall that the
28262 formula @samp{x + y + x} is not handled by Calc's default
28263 simplifications, but the @kbd{a s} command will reduce it to
28264 the simpler form @samp{y + 2 x}.  You can also type @kbd{m A}
28265 to enable an Algebraic Simplification mode in which the
28266 equivalent of @kbd{a s} is used on all of Calc's results.
28267 If you enter @samp{x + y + x =>} normally, the result will
28268 be @samp{x + y + x => x + y + x}.  If you change to
28269 Algebraic Simplification mode, the result will be
28270 @samp{x + y + x => y + 2 x}.  However, just pressing @kbd{a s}
28271 once will have no effect on @samp{x + y + x => x + y + x},
28272 because the righthand side depends only on the lefthand side
28273 and the current mode settings, and the lefthand side is not
28274 affected by commands like @kbd{a s}.
28276 The ``let'' command (@kbd{s l}) has an interesting interaction
28277 with the @samp{=>} operator.  The @kbd{s l} command evaluates the
28278 second-to-top stack entry with the top stack entry supplying
28279 a temporary value for a given variable.  As you might expect,
28280 if that stack entry is an @samp{=>} operator its righthand
28281 side will temporarily show this value for the variable.  In
28282 fact, all @samp{=>}s on the stack will be updated if they refer
28283 to that variable.  But this change is temporary in the sense
28284 that the next command that causes Calc to look at those stack
28285 entries will make them revert to the old variable value.
28287 @smallexample
28288 @group
28289 2:  a => a             2:  a => 17         2:  a => a
28290 1:  a + 1 => a + 1     1:  a + 1 => 18     1:  a + 1 => a + 1
28291     .                      .                   .
28293                            17 s l a @key{RET}        p 8 @key{RET}
28294 @end group
28295 @end smallexample
28297 Here the @kbd{p 8} command changes the current precision,
28298 thus causing the @samp{=>} forms to be recomputed after the
28299 influence of the ``let'' is gone.  The @kbd{d @key{SPC}} command
28300 (@code{calc-refresh}) is a handy way to force the @samp{=>}
28301 operators on the stack to be recomputed without any other
28302 side effects.
28304 @kindex s :
28305 @pindex calc-assign
28306 @tindex assign
28307 @tindex :=
28308 Embedded mode also uses @samp{=>} operators.  In Embedded mode,
28309 the lefthand side of an @samp{=>} operator can refer to variables
28310 assigned elsewhere in the file by @samp{:=} operators.  The
28311 assignment operator @samp{a := 17} does not actually do anything
28312 by itself.  But Embedded mode recognizes it and marks it as a sort
28313 of file-local definition of the variable.  You can enter @samp{:=}
28314 operators in Algebraic mode, or by using the @kbd{s :}
28315 (@code{calc-assign}) [@code{assign}] command which takes a variable
28316 and value from the stack and replaces them with an assignment.
28318 @xref{TeX and LaTeX Language Modes}, for the way @samp{=>} appears in
28319 @TeX{} language output.  The @dfn{eqn} mode gives similar
28320 treatment to @samp{=>}.
28322 @node Graphics, Kill and Yank, Store and Recall, Top
28323 @chapter Graphics
28325 @noindent
28326 The commands for graphing data begin with the @kbd{g} prefix key.  Calc
28327 uses GNUPLOT 2.0 or later to do graphics.  These commands will only work
28328 if GNUPLOT is available on your system.  (While GNUPLOT sounds like
28329 a relative of GNU Emacs, it is actually completely unrelated.
28330 However, it is free software.   It can be obtained from
28331 @samp{http://www.gnuplot.info}.)
28333 @vindex calc-gnuplot-name
28334 If you have GNUPLOT installed on your system but Calc is unable to
28335 find it, you may need to set the @code{calc-gnuplot-name} variable
28336 in your Calc init file or @file{.emacs}.  You may also need to set some Lisp
28337 variables to show Calc how to run GNUPLOT on your system; these
28338 are described under @kbd{g D} and @kbd{g O} below.  If you are
28339 using the X window system, Calc will configure GNUPLOT for you
28340 automatically.  If you have GNUPLOT 3.0 or later and you are not using X,
28341 Calc will configure GNUPLOT to display graphs using simple character
28342 graphics that will work on any terminal.
28344 @menu
28345 * Basic Graphics::
28346 * Three Dimensional Graphics::
28347 * Managing Curves::
28348 * Graphics Options::
28349 * Devices::
28350 @end menu
28352 @node Basic Graphics, Three Dimensional Graphics, Graphics, Graphics
28353 @section Basic Graphics
28355 @noindent
28356 @kindex g f
28357 @pindex calc-graph-fast
28358 The easiest graphics command is @kbd{g f} (@code{calc-graph-fast}).
28359 This command takes two vectors of equal length from the stack.
28360 The vector at the top of the stack represents the ``y'' values of
28361 the various data points.  The vector in the second-to-top position
28362 represents the corresponding ``x'' values.  This command runs
28363 GNUPLOT (if it has not already been started by previous graphing
28364 commands) and displays the set of data points.  The points will
28365 be connected by lines, and there will also be some kind of symbol
28366 to indicate the points themselves.
28368 The ``x'' entry may instead be an interval form, in which case suitable
28369 ``x'' values are interpolated between the minimum and maximum values of
28370 the interval (whether the interval is open or closed is ignored).
28372 The ``x'' entry may also be a number, in which case Calc uses the
28373 sequence of ``x'' values @expr{x}, @expr{x+1}, @expr{x+2}, etc.
28374 (Generally the number 0 or 1 would be used for @expr{x} in this case.)
28376 The ``y'' entry may be any formula instead of a vector.  Calc effectively
28377 uses @kbd{N} (@code{calc-eval-num}) to evaluate variables in the formula;
28378 the result of this must be a formula in a single (unassigned) variable.
28379 The formula is plotted with this variable taking on the various ``x''
28380 values.  Graphs of formulas by default use lines without symbols at the
28381 computed data points.  Note that if neither ``x'' nor ``y'' is a vector,
28382 Calc guesses at a reasonable number of data points to use.  See the
28383 @kbd{g N} command below.  (The ``x'' values must be either a vector
28384 or an interval if ``y'' is a formula.)
28386 @ignore
28387 @starindex
28388 @end ignore
28389 @tindex xy
28390 If ``y'' is (or evaluates to) a formula of the form
28391 @samp{xy(@var{x}, @var{y})} then the result is a
28392 parametric plot.  The two arguments of the fictitious @code{xy} function
28393 are used as the ``x'' and ``y'' coordinates of the curve, respectively.
28394 In this case the ``x'' vector or interval you specified is not directly
28395 visible in the graph.  For example, if ``x'' is the interval @samp{[0..360]}
28396 and ``y'' is the formula @samp{xy(sin(t), cos(t))}, the resulting graph
28397 will be a circle.
28399 Also, ``x'' and ``y'' may each be variable names, in which case Calc
28400 looks for suitable vectors, intervals, or formulas stored in those
28401 variables.
28403 The ``x'' and ``y'' values for the data points (as pulled from the vectors,
28404 calculated from the formulas, or interpolated from the intervals) should
28405 be real numbers (integers, fractions, or floats).  If either the ``x''
28406 value or the ``y'' value of a given data point is not a real number, that
28407 data point will be omitted from the graph.  The points on either side
28408 of the invalid point will @emph{not} be connected by a line.
28410 See the documentation for @kbd{g a} below for a description of the way
28411 numeric prefix arguments affect @kbd{g f}.
28413 @cindex @code{PlotRejects} variable
28414 @vindex PlotRejects
28415 If you store an empty vector in the variable @code{PlotRejects}
28416 (i.e., @kbd{[ ] s t PlotRejects}), Calc will append information to
28417 this vector for every data point which was rejected because its
28418 ``x'' or ``y'' values were not real numbers.  The result will be
28419 a matrix where each row holds the curve number, data point number,
28420 ``x'' value, and ``y'' value for a rejected data point.
28421 @xref{Evaluates-To Operator}, for a handy way to keep tabs on the
28422 current value of @code{PlotRejects}.  @xref{Operations on Variables},
28423 for the @kbd{s R} command which is another easy way to examine
28424 @code{PlotRejects}.
28426 @kindex g c
28427 @pindex calc-graph-clear
28428 To clear the graphics display, type @kbd{g c} (@code{calc-graph-clear}).
28429 If the GNUPLOT output device is an X window, the window will go away.
28430 Effects on other kinds of output devices will vary.  You don't need
28431 to use @kbd{g c} if you don't want to---if you give another @kbd{g f}
28432 or @kbd{g p} command later on, it will reuse the existing graphics
28433 window if there is one.
28435 @node Three Dimensional Graphics, Managing Curves, Basic Graphics, Graphics
28436 @section Three-Dimensional Graphics
28438 @kindex g F
28439 @pindex calc-graph-fast-3d
28440 The @kbd{g F} (@code{calc-graph-fast-3d}) command makes a three-dimensional
28441 graph.  It works only if you have GNUPLOT 3.0 or later; with GNUPLOT 2.0,
28442 you will see a GNUPLOT error message if you try this command.
28444 The @kbd{g F} command takes three values from the stack, called ``x'',
28445 ``y'', and ``z'', respectively.  As was the case for 2D graphs, there
28446 are several options for these values.
28448 In the first case, ``x'' and ``y'' are each vectors (not necessarily of
28449 the same length); either or both may instead be interval forms.  The
28450 ``z'' value must be a matrix with the same number of rows as elements
28451 in ``x'', and the same number of columns as elements in ``y''.  The
28452 result is a surface plot where 
28453 @texline @math{z_{ij}}
28454 @infoline @expr{z_ij} 
28455 is the height of the point
28456 at coordinate @expr{(x_i, y_j)} on the surface.  The 3D graph will
28457 be displayed from a certain default viewpoint; you can change this
28458 viewpoint by adding a @samp{set view} to the @samp{*Gnuplot Commands*}
28459 buffer as described later.  See the GNUPLOT documentation for a
28460 description of the @samp{set view} command.
28462 Each point in the matrix will be displayed as a dot in the graph,
28463 and these points will be connected by a grid of lines (@dfn{isolines}).
28465 In the second case, ``x'', ``y'', and ``z'' are all vectors of equal
28466 length.  The resulting graph displays a 3D line instead of a surface,
28467 where the coordinates of points along the line are successive triplets
28468 of values from the input vectors.
28470 In the third case, ``x'' and ``y'' are vectors or interval forms, and
28471 ``z'' is any formula involving two variables (not counting variables
28472 with assigned values).  These variables are sorted into alphabetical
28473 order; the first takes on values from ``x'' and the second takes on
28474 values from ``y'' to form a matrix of results that are graphed as a
28475 3D surface.
28477 @ignore
28478 @starindex
28479 @end ignore
28480 @tindex xyz
28481 If the ``z'' formula evaluates to a call to the fictitious function
28482 @samp{xyz(@var{x}, @var{y}, @var{z})}, then the result is a
28483 ``parametric surface.''  In this case, the axes of the graph are
28484 taken from the @var{x} and @var{y} values in these calls, and the
28485 ``x'' and ``y'' values from the input vectors or intervals are used only
28486 to specify the range of inputs to the formula.  For example, plotting
28487 @samp{[0..360], [0..180], xyz(sin(x)*sin(y), cos(x)*sin(y), cos(y))}
28488 will draw a sphere.  (Since the default resolution for 3D plots is
28489 5 steps in each of ``x'' and ``y'', this will draw a very crude
28490 sphere.  You could use the @kbd{g N} command, described below, to
28491 increase this resolution, or specify the ``x'' and ``y'' values as
28492 vectors with more than 5 elements.
28494 It is also possible to have a function in a regular @kbd{g f} plot
28495 evaluate to an @code{xyz} call.  Since @kbd{g f} plots a line, not
28496 a surface, the result will be a 3D parametric line.  For example,
28497 @samp{[[0..720], xyz(sin(x), cos(x), x)]} will plot two turns of a
28498 helix (a three-dimensional spiral).
28500 As for @kbd{g f}, each of ``x'', ``y'', and ``z'' may instead be
28501 variables containing the relevant data.
28503 @node Managing Curves, Graphics Options, Three Dimensional Graphics, Graphics
28504 @section Managing Curves
28506 @noindent
28507 The @kbd{g f} command is really shorthand for the following commands:
28508 @kbd{C-u g d  g a  g p}.  Likewise, @w{@kbd{g F}} is shorthand for
28509 @kbd{C-u g d  g A  g p}.  You can gain more control over your graph
28510 by using these commands directly.
28512 @kindex g a
28513 @pindex calc-graph-add
28514 The @kbd{g a} (@code{calc-graph-add}) command adds the ``curve''
28515 represented by the two values on the top of the stack to the current
28516 graph.  You can have any number of curves in the same graph.  When
28517 you give the @kbd{g p} command, all the curves will be drawn superimposed
28518 on the same axes.
28520 The @kbd{g a} command (and many others that affect the current graph)
28521 will cause a special buffer, @samp{*Gnuplot Commands*}, to be displayed
28522 in another window.  This buffer is a template of the commands that will
28523 be sent to GNUPLOT when it is time to draw the graph.  The first
28524 @kbd{g a} command adds a @code{plot} command to this buffer.  Succeeding
28525 @kbd{g a} commands add extra curves onto that @code{plot} command.
28526 Other graph-related commands put other GNUPLOT commands into this
28527 buffer.  In normal usage you never need to work with this buffer
28528 directly, but you can if you wish.  The only constraint is that there
28529 must be only one @code{plot} command, and it must be the last command
28530 in the buffer.  If you want to save and later restore a complete graph
28531 configuration, you can use regular Emacs commands to save and restore
28532 the contents of the @samp{*Gnuplot Commands*} buffer.
28534 @vindex PlotData1
28535 @vindex PlotData2
28536 If the values on the stack are not variable names, @kbd{g a} will invent
28537 variable names for them (of the form @samp{PlotData@var{n}}) and store
28538 the values in those variables.  The ``x'' and ``y'' variables are what
28539 go into the @code{plot} command in the template.  If you add a curve
28540 that uses a certain variable and then later change that variable, you
28541 can replot the graph without having to delete and re-add the curve.
28542 That's because the variable name, not the vector, interval or formula
28543 itself, is what was added by @kbd{g a}.
28545 A numeric prefix argument on @kbd{g a} or @kbd{g f} changes the way
28546 stack entries are interpreted as curves.  With a positive prefix
28547 argument @expr{n}, the top @expr{n} stack entries are ``y'' values
28548 for @expr{n} different curves which share a common ``x'' value in
28549 the @expr{n+1}st stack entry.  (Thus @kbd{g a} with no prefix
28550 argument is equivalent to @kbd{C-u 1 g a}.)
28552 A prefix of zero or plain @kbd{C-u} means to take two stack entries,
28553 ``x'' and ``y'' as usual, but to interpret ``y'' as a vector of
28554 ``y'' values for several curves that share a common ``x''.
28556 A negative prefix argument tells Calc to read @expr{n} vectors from
28557 the stack; each vector @expr{[x, y]} describes an independent curve.
28558 This is the only form of @kbd{g a} that creates several curves at once
28559 that don't have common ``x'' values.  (Of course, the range of ``x''
28560 values covered by all the curves ought to be roughly the same if
28561 they are to look nice on the same graph.)
28563 For example, to plot 
28564 @texline @math{\sin n x}
28565 @infoline @expr{sin(n x)} 
28566 for integers @expr{n}
28567 from 1 to 5, you could use @kbd{v x} to create a vector of integers
28568 (@expr{n}), then @kbd{V M '} or @kbd{V M $} to map @samp{sin(n x)}
28569 across this vector.  The resulting vector of formulas is suitable
28570 for use as the ``y'' argument to a @kbd{C-u g a} or @kbd{C-u g f}
28571 command.
28573 @kindex g A
28574 @pindex calc-graph-add-3d
28575 The @kbd{g A} (@code{calc-graph-add-3d}) command adds a 3D curve
28576 to the graph.  It is not valid to intermix 2D and 3D curves in a
28577 single graph.  This command takes three arguments, ``x'', ``y'',
28578 and ``z'', from the stack.  With a positive prefix @expr{n}, it
28579 takes @expr{n+2} arguments (common ``x'' and ``y'', plus @expr{n}
28580 separate ``z''s).  With a zero prefix, it takes three stack entries
28581 but the ``z'' entry is a vector of curve values.  With a negative
28582 prefix @expr{-n}, it takes @expr{n} vectors of the form @expr{[x, y, z]}.
28583 The @kbd{g A} command works by adding a @code{splot} (surface-plot)
28584 command to the @samp{*Gnuplot Commands*} buffer.
28586 (Although @kbd{g a} adds a 2D @code{plot} command to the
28587 @samp{*Gnuplot Commands*} buffer, Calc changes this to @code{splot}
28588 before sending it to GNUPLOT if it notices that the data points are
28589 evaluating to @code{xyz} calls.  It will not work to mix 2D and 3D
28590 @kbd{g a} curves in a single graph, although Calc does not currently
28591 check for this.)
28593 @kindex g d
28594 @pindex calc-graph-delete
28595 The @kbd{g d} (@code{calc-graph-delete}) command deletes the most
28596 recently added curve from the graph.  It has no effect if there are
28597 no curves in the graph.  With a numeric prefix argument of any kind,
28598 it deletes all of the curves from the graph.
28600 @kindex g H
28601 @pindex calc-graph-hide
28602 The @kbd{g H} (@code{calc-graph-hide}) command ``hides'' or ``unhides''
28603 the most recently added curve.  A hidden curve will not appear in
28604 the actual plot, but information about it such as its name and line and
28605 point styles will be retained.
28607 @kindex g j
28608 @pindex calc-graph-juggle
28609 The @kbd{g j} (@code{calc-graph-juggle}) command moves the curve
28610 at the end of the list (the ``most recently added curve'') to the
28611 front of the list.  The next-most-recent curve is thus exposed for
28612 @w{@kbd{g d}} or similar commands to use.  With @kbd{g j} you can work
28613 with any curve in the graph even though curve-related commands only
28614 affect the last curve in the list.
28616 @kindex g p
28617 @pindex calc-graph-plot
28618 The @kbd{g p} (@code{calc-graph-plot}) command uses GNUPLOT to draw
28619 the graph described in the @samp{*Gnuplot Commands*} buffer.  Any
28620 GNUPLOT parameters which are not defined by commands in this buffer
28621 are reset to their default values.  The variables named in the @code{plot}
28622 command are written to a temporary data file and the variable names
28623 are then replaced by the file name in the template.  The resulting
28624 plotting commands are fed to the GNUPLOT program.  See the documentation
28625 for the GNUPLOT program for more specific information.  All temporary
28626 files are removed when Emacs or GNUPLOT exits.
28628 If you give a formula for ``y'', Calc will remember all the values that
28629 it calculates for the formula so that later plots can reuse these values.
28630 Calc throws out these saved values when you change any circumstances
28631 that may affect the data, such as switching from Degrees to Radians
28632 mode, or changing the value of a parameter in the formula.  You can
28633 force Calc to recompute the data from scratch by giving a negative
28634 numeric prefix argument to @kbd{g p}.
28636 Calc uses a fairly rough step size when graphing formulas over intervals.
28637 This is to ensure quick response.  You can ``refine'' a plot by giving
28638 a positive numeric prefix argument to @kbd{g p}.  Calc goes through
28639 the data points it has computed and saved from previous plots of the
28640 function, and computes and inserts a new data point midway between
28641 each of the existing points.  You can refine a plot any number of times,
28642 but beware that the amount of calculation involved doubles each time.
28644 Calc does not remember computed values for 3D graphs.  This means the
28645 numerix prefix argument, if any, to @kbd{g p} is effectively ignored if
28646 the current graph is three-dimensional.
28648 @kindex g P
28649 @pindex calc-graph-print
28650 The @kbd{g P} (@code{calc-graph-print}) command is like @kbd{g p},
28651 except that it sends the output to a printer instead of to the
28652 screen.  More precisely, @kbd{g p} looks for @samp{set terminal}
28653 or @samp{set output} commands in the @samp{*Gnuplot Commands*} buffer;
28654 lacking these it uses the default settings.  However, @kbd{g P}
28655 ignores @samp{set terminal} and @samp{set output} commands and
28656 uses a different set of default values.  All of these values are
28657 controlled by the @kbd{g D} and @kbd{g O} commands discussed below.
28658 Provided everything is set up properly, @kbd{g p} will plot to
28659 the screen unless you have specified otherwise and @kbd{g P} will
28660 always plot to the printer.
28662 @node Graphics Options, Devices, Managing Curves, Graphics
28663 @section Graphics Options
28665 @noindent
28666 @kindex g g
28667 @pindex calc-graph-grid
28668 The @kbd{g g} (@code{calc-graph-grid}) command turns the ``grid''
28669 on and off.  It is off by default; tick marks appear only at the
28670 edges of the graph.  With the grid turned on, dotted lines appear
28671 across the graph at each tick mark.  Note that this command only
28672 changes the setting in @samp{*Gnuplot Commands*}; to see the effects
28673 of the change you must give another @kbd{g p} command.
28675 @kindex g b
28676 @pindex calc-graph-border
28677 The @kbd{g b} (@code{calc-graph-border}) command turns the border
28678 (the box that surrounds the graph) on and off.  It is on by default.
28679 This command will only work with GNUPLOT 3.0 and later versions.
28681 @kindex g k
28682 @pindex calc-graph-key
28683 The @kbd{g k} (@code{calc-graph-key}) command turns the ``key''
28684 on and off.  The key is a chart in the corner of the graph that
28685 shows the correspondence between curves and line styles.  It is
28686 off by default, and is only really useful if you have several
28687 curves on the same graph.
28689 @kindex g N
28690 @pindex calc-graph-num-points
28691 The @kbd{g N} (@code{calc-graph-num-points}) command allows you
28692 to select the number of data points in the graph.  This only affects
28693 curves where neither ``x'' nor ``y'' is specified as a vector.
28694 Enter a blank line to revert to the default value (initially 15).
28695 With no prefix argument, this command affects only the current graph.
28696 With a positive prefix argument this command changes or, if you enter
28697 a blank line, displays the default number of points used for all
28698 graphs created by @kbd{g a} that don't specify the resolution explicitly.
28699 With a negative prefix argument, this command changes or displays
28700 the default value (initially 5) used for 3D graphs created by @kbd{g A}.
28701 Note that a 3D setting of 5 means that a total of @expr{5^2 = 25} points
28702 will be computed for the surface.
28704 Data values in the graph of a function are normally computed to a
28705 precision of five digits, regardless of the current precision at the
28706 time. This is usually more than adequate, but there are cases where
28707 it will not be.  For example, plotting @expr{1 + x} with @expr{x} in the
28708 interval @samp{[0 ..@: 1e-6]} will round all the data points down
28709 to 1.0!  Putting the command @samp{set precision @var{n}} in the
28710 @samp{*Gnuplot Commands*} buffer will cause the data to be computed
28711 at precision @var{n} instead of 5.  Since this is such a rare case,
28712 there is no keystroke-based command to set the precision.
28714 @kindex g h
28715 @pindex calc-graph-header
28716 The @kbd{g h} (@code{calc-graph-header}) command sets the title
28717 for the graph.  This will show up centered above the graph.
28718 The default title is blank (no title).
28720 @kindex g n
28721 @pindex calc-graph-name
28722 The @kbd{g n} (@code{calc-graph-name}) command sets the title of an
28723 individual curve.  Like the other curve-manipulating commands, it
28724 affects the most recently added curve, i.e., the last curve on the
28725 list in the @samp{*Gnuplot Commands*} buffer.  To set the title of
28726 the other curves you must first juggle them to the end of the list
28727 with @kbd{g j}, or edit the @samp{*Gnuplot Commands*} buffer by hand.
28728 Curve titles appear in the key; if the key is turned off they are
28729 not used.
28731 @kindex g t
28732 @kindex g T
28733 @pindex calc-graph-title-x
28734 @pindex calc-graph-title-y
28735 The @kbd{g t} (@code{calc-graph-title-x}) and @kbd{g T}
28736 (@code{calc-graph-title-y}) commands set the titles on the ``x''
28737 and ``y'' axes, respectively.  These titles appear next to the
28738 tick marks on the left and bottom edges of the graph, respectively.
28739 Calc does not have commands to control the tick marks themselves,
28740 but you can edit them into the @samp{*Gnuplot Commands*} buffer if
28741 you wish.  See the GNUPLOT documentation for details.
28743 @kindex g r
28744 @kindex g R
28745 @pindex calc-graph-range-x
28746 @pindex calc-graph-range-y
28747 The @kbd{g r} (@code{calc-graph-range-x}) and @kbd{g R}
28748 (@code{calc-graph-range-y}) commands set the range of values on the
28749 ``x'' and ``y'' axes, respectively.  You are prompted to enter a
28750 suitable range.  This should be either a pair of numbers of the
28751 form, @samp{@var{min}:@var{max}}, or a blank line to revert to the
28752 default behavior of setting the range based on the range of values
28753 in the data, or @samp{$} to take the range from the top of the stack.
28754 Ranges on the stack can be represented as either interval forms or
28755 vectors:  @samp{[@var{min} ..@: @var{max}]} or @samp{[@var{min}, @var{max}]}.
28757 @kindex g l
28758 @kindex g L
28759 @pindex calc-graph-log-x
28760 @pindex calc-graph-log-y
28761 The @kbd{g l} (@code{calc-graph-log-x}) and @kbd{g L} (@code{calc-graph-log-y})
28762 commands allow you to set either or both of the axes of the graph to
28763 be logarithmic instead of linear.
28765 @kindex g C-l
28766 @kindex g C-r
28767 @kindex g C-t
28768 @pindex calc-graph-log-z
28769 @pindex calc-graph-range-z
28770 @pindex calc-graph-title-z
28771 For 3D plots, @kbd{g C-t}, @kbd{g C-r}, and @kbd{g C-l} (those are
28772 letters with the Control key held down) are the corresponding commands
28773 for the ``z'' axis.
28775 @kindex g z
28776 @kindex g Z
28777 @pindex calc-graph-zero-x
28778 @pindex calc-graph-zero-y
28779 The @kbd{g z} (@code{calc-graph-zero-x}) and @kbd{g Z}
28780 (@code{calc-graph-zero-y}) commands control whether a dotted line is
28781 drawn to indicate the ``x'' and/or ``y'' zero axes.  (These are the same
28782 dotted lines that would be drawn there anyway if you used @kbd{g g} to
28783 turn the ``grid'' feature on.)  Zero-axis lines are on by default, and
28784 may be turned off only in GNUPLOT 3.0 and later versions.  They are
28785 not available for 3D plots.
28787 @kindex g s
28788 @pindex calc-graph-line-style
28789 The @kbd{g s} (@code{calc-graph-line-style}) command turns the connecting
28790 lines on or off for the most recently added curve, and optionally selects
28791 the style of lines to be used for that curve.  Plain @kbd{g s} simply
28792 toggles the lines on and off.  With a numeric prefix argument, @kbd{g s}
28793 turns lines on and sets a particular line style.  Line style numbers
28794 start at one and their meanings vary depending on the output device.
28795 GNUPLOT guarantees that there will be at least six different line styles
28796 available for any device.
28798 @kindex g S
28799 @pindex calc-graph-point-style
28800 The @kbd{g S} (@code{calc-graph-point-style}) command similarly turns
28801 the symbols at the data points on or off, or sets the point style.
28802 If you turn both lines and points off, the data points will show as
28803 tiny dots.
28805 @cindex @code{LineStyles} variable
28806 @cindex @code{PointStyles} variable
28807 @vindex LineStyles
28808 @vindex PointStyles
28809 Another way to specify curve styles is with the @code{LineStyles} and
28810 @code{PointStyles} variables.  These variables initially have no stored
28811 values, but if you store a vector of integers in one of these variables,
28812 the @kbd{g a} and @kbd{g f} commands will use those style numbers
28813 instead of the defaults for new curves that are added to the graph.
28814 An entry should be a positive integer for a specific style, or 0 to let
28815 the style be chosen automatically, or @mathit{-1} to turn off lines or points
28816 altogether.  If there are more curves than elements in the vector, the
28817 last few curves will continue to have the default styles.  Of course,
28818 you can later use @kbd{g s} and @kbd{g S} to change any of these styles.
28820 For example, @kbd{'[2 -1 3] @key{RET} s t LineStyles} causes the first curve
28821 to have lines in style number 2, the second curve to have no connecting
28822 lines, and the third curve to have lines in style 3.  Point styles will
28823 still be assigned automatically, but you could store another vector in
28824 @code{PointStyles} to define them, too.
28826 @node Devices,  , Graphics Options, Graphics
28827 @section Graphical Devices
28829 @noindent
28830 @kindex g D
28831 @pindex calc-graph-device
28832 The @kbd{g D} (@code{calc-graph-device}) command sets the device name
28833 (or ``terminal name'' in GNUPLOT lingo) to be used by @kbd{g p} commands
28834 on this graph.  It does not affect the permanent default device name.
28835 If you enter a blank name, the device name reverts to the default.
28836 Enter @samp{?} to see a list of supported devices.
28838 With a positive numeric prefix argument, @kbd{g D} instead sets
28839 the default device name, used by all plots in the future which do
28840 not override it with a plain @kbd{g D} command.  If you enter a
28841 blank line this command shows you the current default.  The special
28842 name @code{default} signifies that Calc should choose @code{x11} if
28843 the X window system is in use (as indicated by the presence of a
28844 @code{DISPLAY} environment variable), or otherwise @code{dumb} under
28845 GNUPLOT 3.0 and later, or @code{postscript} under GNUPLOT 2.0.
28846 This is the initial default value.
28848 The @code{dumb} device is an interface to ``dumb terminals,'' i.e.,
28849 terminals with no special graphics facilities.  It writes a crude
28850 picture of the graph composed of characters like @code{-} and @code{|}
28851 to a buffer called @samp{*Gnuplot Trail*}, which Calc then displays.
28852 The graph is made the same size as the Emacs screen, which on most
28853 dumb terminals will be 
28854 @texline @math{80\times24}
28855 @infoline 80x24
28856 characters.  The graph is displayed in
28857 an Emacs ``recursive edit''; type @kbd{q} or @kbd{C-c C-c} to exit
28858 the recursive edit and return to Calc.  Note that the @code{dumb}
28859 device is present only in GNUPLOT 3.0 and later versions.
28861 The word @code{dumb} may be followed by two numbers separated by
28862 spaces.  These are the desired width and height of the graph in
28863 characters.  Also, the device name @code{big} is like @code{dumb}
28864 but creates a graph four times the width and height of the Emacs
28865 screen.  You will then have to scroll around to view the entire
28866 graph.  In the @samp{*Gnuplot Trail*} buffer, @key{SPC}, @key{DEL},
28867 @kbd{<}, and @kbd{>} are defined to scroll by one screenful in each
28868 of the four directions.
28870 With a negative numeric prefix argument, @kbd{g D} sets or displays
28871 the device name used by @kbd{g P} (@code{calc-graph-print}).  This
28872 is initially @code{postscript}.  If you don't have a PostScript
28873 printer, you may decide once again to use @code{dumb} to create a
28874 plot on any text-only printer.
28876 @kindex g O
28877 @pindex calc-graph-output
28878 The @kbd{g O} (@code{calc-graph-output}) command sets the name of
28879 the output file used by GNUPLOT.  For some devices, notably @code{x11},
28880 there is no output file and this information is not used.  Many other
28881 ``devices'' are really file formats like @code{postscript}; in these
28882 cases the output in the desired format goes into the file you name
28883 with @kbd{g O}.  Type @kbd{g O stdout @key{RET}} to set GNUPLOT to write
28884 to its standard output stream, i.e., to @samp{*Gnuplot Trail*}.
28885 This is the default setting.
28887 Another special output name is @code{tty}, which means that GNUPLOT
28888 is going to write graphics commands directly to its standard output,
28889 which you wish Emacs to pass through to your terminal.  Tektronix
28890 graphics terminals, among other devices, operate this way.  Calc does
28891 this by telling GNUPLOT to write to a temporary file, then running a
28892 sub-shell executing the command @samp{cat tempfile >/dev/tty}.  On
28893 typical Unix systems, this will copy the temporary file directly to
28894 the terminal, bypassing Emacs entirely.  You will have to type @kbd{C-l}
28895 to Emacs afterwards to refresh the screen.
28897 Once again, @kbd{g O} with a positive or negative prefix argument
28898 sets the default or printer output file names, respectively.  In each
28899 case you can specify @code{auto}, which causes Calc to invent a temporary
28900 file name for each @kbd{g p} (or @kbd{g P}) command.  This temporary file
28901 will be deleted once it has been displayed or printed.  If the output file
28902 name is not @code{auto}, the file is not automatically deleted.
28904 The default and printer devices and output files can be saved
28905 permanently by the @kbd{m m} (@code{calc-save-modes}) command.  The
28906 default number of data points (see @kbd{g N}) and the X geometry
28907 (see @kbd{g X}) are also saved.  Other graph information is @emph{not}
28908 saved; you can save a graph's configuration simply by saving the contents
28909 of the @samp{*Gnuplot Commands*} buffer.
28911 @vindex calc-gnuplot-plot-command
28912 @vindex calc-gnuplot-default-device
28913 @vindex calc-gnuplot-default-output
28914 @vindex calc-gnuplot-print-command
28915 @vindex calc-gnuplot-print-device
28916 @vindex calc-gnuplot-print-output
28917 You may wish to configure the default and
28918 printer devices and output files for the whole system.  The relevant
28919 Lisp variables are @code{calc-gnuplot-default-device} and @code{-output},
28920 and @code{calc-gnuplot-print-device} and @code{-output}.  The output
28921 file names must be either strings as described above, or Lisp
28922 expressions which are evaluated on the fly to get the output file names.
28924 Other important Lisp variables are @code{calc-gnuplot-plot-command} and
28925 @code{calc-gnuplot-print-command}, which give the system commands to
28926 display or print the output of GNUPLOT, respectively.  These may be
28927 @code{nil} if no command is necessary, or strings which can include
28928 @samp{%s} to signify the name of the file to be displayed or printed.
28929 Or, these variables may contain Lisp expressions which are evaluated
28930 to display or print the output.  These variables are customizable
28931 (@pxref{Customizing Calc}).
28933 @kindex g x
28934 @pindex calc-graph-display
28935 The @kbd{g x} (@code{calc-graph-display}) command lets you specify
28936 on which X window system display your graphs should be drawn.  Enter
28937 a blank line to see the current display name.  This command has no
28938 effect unless the current device is @code{x11}.
28940 @kindex g X
28941 @pindex calc-graph-geometry
28942 The @kbd{g X} (@code{calc-graph-geometry}) command is a similar
28943 command for specifying the position and size of the X window.
28944 The normal value is @code{default}, which generally means your
28945 window manager will let you place the window interactively.
28946 Entering @samp{800x500+0+0} would create an 800-by-500 pixel
28947 window in the upper-left corner of the screen.
28949 The buffer called @samp{*Gnuplot Trail*} holds a transcript of the
28950 session with GNUPLOT.  This shows the commands Calc has ``typed'' to
28951 GNUPLOT and the responses it has received.  Calc tries to notice when an
28952 error message has appeared here and display the buffer for you when
28953 this happens.  You can check this buffer yourself if you suspect
28954 something has gone wrong.
28956 @kindex g C
28957 @pindex calc-graph-command
28958 The @kbd{g C} (@code{calc-graph-command}) command prompts you to
28959 enter any line of text, then simply sends that line to the current
28960 GNUPLOT process.  The @samp{*Gnuplot Trail*} buffer looks deceptively
28961 like a Shell buffer but you can't type commands in it yourself.
28962 Instead, you must use @kbd{g C} for this purpose.
28964 @kindex g v
28965 @kindex g V
28966 @pindex calc-graph-view-commands
28967 @pindex calc-graph-view-trail
28968 The @kbd{g v} (@code{calc-graph-view-commands}) and @kbd{g V}
28969 (@code{calc-graph-view-trail}) commands display the @samp{*Gnuplot Commands*}
28970 and @samp{*Gnuplot Trail*} buffers, respectively, in another window.
28971 This happens automatically when Calc thinks there is something you
28972 will want to see in either of these buffers.  If you type @kbd{g v}
28973 or @kbd{g V} when the relevant buffer is already displayed, the
28974 buffer is hidden again.
28976 One reason to use @kbd{g v} is to add your own commands to the
28977 @samp{*Gnuplot Commands*} buffer.  Press @kbd{g v}, then use
28978 @kbd{C-x o} to switch into that window.  For example, GNUPLOT has
28979 @samp{set label} and @samp{set arrow} commands that allow you to
28980 annotate your plots.  Since Calc doesn't understand these commands,
28981 you have to add them to the @samp{*Gnuplot Commands*} buffer
28982 yourself, then use @w{@kbd{g p}} to replot using these new commands.  Note
28983 that your commands must appear @emph{before} the @code{plot} command.
28984 To get help on any GNUPLOT feature, type, e.g., @kbd{g C help set label}.
28985 You may have to type @kbd{g C @key{RET}} a few times to clear the
28986 ``press return for more'' or ``subtopic of @dots{}'' requests.
28987 Note that Calc always sends commands (like @samp{set nolabel}) to
28988 reset all plotting parameters to the defaults before each plot, so
28989 to delete a label all you need to do is delete the @samp{set label}
28990 line you added (or comment it out with @samp{#}) and then replot
28991 with @kbd{g p}.
28993 @kindex g q
28994 @pindex calc-graph-quit
28995 You can use @kbd{g q} (@code{calc-graph-quit}) to kill the GNUPLOT
28996 process that is running.  The next graphing command you give will
28997 start a fresh GNUPLOT process.  The word @samp{Graph} appears in
28998 the Calc window's mode line whenever a GNUPLOT process is currently
28999 running.  The GNUPLOT process is automatically killed when you
29000 exit Emacs if you haven't killed it manually by then.
29002 @kindex g K
29003 @pindex calc-graph-kill
29004 The @kbd{g K} (@code{calc-graph-kill}) command is like @kbd{g q}
29005 except that it also views the @samp{*Gnuplot Trail*} buffer so that
29006 you can see the process being killed.  This is better if you are
29007 killing GNUPLOT because you think it has gotten stuck.
29009 @node Kill and Yank, Keypad Mode, Graphics, Top
29010 @chapter Kill and Yank Functions
29012 @noindent
29013 The commands in this chapter move information between the Calculator and
29014 other Emacs editing buffers.
29016 In many cases Embedded mode is an easier and more natural way to
29017 work with Calc from a regular editing buffer.  @xref{Embedded Mode}.
29019 @menu
29020 * Killing From Stack::
29021 * Yanking Into Stack::
29022 * Grabbing From Buffers::
29023 * Yanking Into Buffers::
29024 * X Cut and Paste::
29025 @end menu
29027 @node Killing From Stack, Yanking Into Stack, Kill and Yank, Kill and Yank
29028 @section Killing from the Stack
29030 @noindent
29031 @kindex C-k
29032 @pindex calc-kill
29033 @kindex M-k
29034 @pindex calc-copy-as-kill
29035 @kindex C-w
29036 @pindex calc-kill-region
29037 @kindex M-w
29038 @pindex calc-copy-region-as-kill
29039 @cindex Kill ring
29040 @dfn{Kill} commands are Emacs commands that insert text into the
29041 ``kill ring,'' from which it can later be ``yanked'' by a @kbd{C-y}
29042 command.  Three common kill commands in normal Emacs are @kbd{C-k}, which
29043 kills one line, @kbd{C-w}, which kills the region between mark and point,
29044 and @kbd{M-w}, which puts the region into the kill ring without actually
29045 deleting it.  All of these commands work in the Calculator, too.  Also,
29046 @kbd{M-k} has been provided to complete the set; it puts the current line
29047 into the kill ring without deleting anything.
29049 The kill commands are unusual in that they pay attention to the location
29050 of the cursor in the Calculator buffer.  If the cursor is on or below the
29051 bottom line, the kill commands operate on the top of the stack.  Otherwise,
29052 they operate on whatever stack element the cursor is on.  Calc's kill
29053 commands always operate on whole stack entries.  (They act the same as their
29054 standard Emacs cousins except they ``round up'' the specified region to
29055 encompass full lines.)  The text is copied into the kill ring exactly as
29056 it appears on the screen, including line numbers if they are enabled.
29058 A numeric prefix argument to @kbd{C-k} or @kbd{M-k} affects the number
29059 of lines killed.  A positive argument kills the current line and @expr{n-1}
29060 lines below it.  A negative argument kills the @expr{-n} lines above the
29061 current line.  Again this mirrors the behavior of the standard Emacs
29062 @kbd{C-k} command.  Although a whole line is always deleted, @kbd{C-k}
29063 with no argument copies only the number itself into the kill ring, whereas
29064 @kbd{C-k} with a prefix argument of 1 copies the number with its trailing
29065 newline.
29067 @node Yanking Into Stack, Grabbing From Buffers, Killing From Stack, Kill and Yank
29068 @section Yanking into the Stack
29070 @noindent
29071 @kindex C-y
29072 @pindex calc-yank
29073 The @kbd{C-y} command yanks the most recently killed text back into the
29074 Calculator.  It pushes this value onto the top of the stack regardless of
29075 the cursor position.  In general it re-parses the killed text as a number
29076 or formula (or a list of these separated by commas or newlines).  However if
29077 the thing being yanked is something that was just killed from the Calculator
29078 itself, its full internal structure is yanked.  For example, if you have
29079 set the floating-point display mode to show only four significant digits,
29080 then killing and re-yanking 3.14159 (which displays as 3.142) will yank the
29081 full 3.14159, even though yanking it into any other buffer would yank the
29082 number in its displayed form, 3.142.  (Since the default display modes
29083 show all objects to their full precision, this feature normally makes no
29084 difference.)
29086 @node Grabbing From Buffers, Yanking Into Buffers, Yanking Into Stack, Kill and Yank
29087 @section Grabbing from Other Buffers
29089 @noindent
29090 @kindex C-x * g
29091 @pindex calc-grab-region
29092 The @kbd{C-x * g} (@code{calc-grab-region}) command takes the text between
29093 point and mark in the current buffer and attempts to parse it as a
29094 vector of values.  Basically, it wraps the text in vector brackets
29095 @samp{[ ]} unless the text already is enclosed in vector brackets,
29096 then reads the text as if it were an algebraic entry.  The contents
29097 of the vector may be numbers, formulas, or any other Calc objects.
29098 If the @kbd{C-x * g} command works successfully, it does an automatic
29099 @kbd{C-x * c} to enter the Calculator buffer.
29101 A numeric prefix argument grabs the specified number of lines around
29102 point, ignoring the mark.  A positive prefix grabs from point to the
29103 @expr{n}th following newline (so that @kbd{M-1 C-x * g} grabs from point
29104 to the end of the current line); a negative prefix grabs from point
29105 back to the @expr{n+1}st preceding newline.  In these cases the text
29106 that is grabbed is exactly the same as the text that @kbd{C-k} would
29107 delete given that prefix argument.
29109 A prefix of zero grabs the current line; point may be anywhere on the
29110 line.
29112 A plain @kbd{C-u} prefix interprets the region between point and mark
29113 as a single number or formula rather than a vector.  For example,
29114 @kbd{C-x * g} on the text @samp{2 a b} produces the vector of three
29115 values @samp{[2, a, b]}, but @kbd{C-u C-x * g} on the same region
29116 reads a formula which is a product of three things:  @samp{2 a b}.
29117 (The text @samp{a + b}, on the other hand, will be grabbed as a
29118 vector of one element by plain @kbd{C-x * g} because the interpretation
29119 @samp{[a, +, b]} would be a syntax error.)
29121 If a different language has been specified (@pxref{Language Modes}),
29122 the grabbed text will be interpreted according to that language.
29124 @kindex C-x * r
29125 @pindex calc-grab-rectangle
29126 The @kbd{C-x * r} (@code{calc-grab-rectangle}) command takes the text between
29127 point and mark and attempts to parse it as a matrix.  If point and mark
29128 are both in the leftmost column, the lines in between are parsed in their
29129 entirety.  Otherwise, point and mark define the corners of a rectangle
29130 whose contents are parsed.
29132 Each line of the grabbed area becomes a row of the matrix.  The result
29133 will actually be a vector of vectors, which Calc will treat as a matrix
29134 only if every row contains the same number of values.
29136 If a line contains a portion surrounded by square brackets (or curly
29137 braces), that portion is interpreted as a vector which becomes a row
29138 of the matrix.  Any text surrounding the bracketed portion on the line
29139 is ignored.
29141 Otherwise, the entire line is interpreted as a row vector as if it
29142 were surrounded by square brackets.  Leading line numbers (in the
29143 format used in the Calc stack buffer) are ignored.  If you wish to
29144 force this interpretation (even if the line contains bracketed
29145 portions), give a negative numeric prefix argument to the
29146 @kbd{C-x * r} command.
29148 If you give a numeric prefix argument of zero or plain @kbd{C-u}, each
29149 line is instead interpreted as a single formula which is converted into
29150 a one-element vector.  Thus the result of @kbd{C-u C-x * r} will be a
29151 one-column matrix.  For example, suppose one line of the data is the
29152 expression @samp{2 a}.  A plain @w{@kbd{C-x * r}} will interpret this as
29153 @samp{[2 a]}, which in turn is read as a two-element vector that forms
29154 one row of the matrix.  But a @kbd{C-u C-x * r} will interpret this row
29155 as @samp{[2*a]}.
29157 If you give a positive numeric prefix argument @var{n}, then each line
29158 will be split up into columns of width @var{n}; each column is parsed
29159 separately as a matrix element.  If a line contained
29160 @w{@samp{2 +/- 3 4 +/- 5}}, then grabbing with a prefix argument of 8
29161 would correctly split the line into two error forms.
29163 @xref{Matrix Functions}, to see how to pull the matrix apart into its
29164 constituent rows and columns.  (If it is a 
29165 @texline @math{1\times1}
29166 @infoline 1x1
29167 matrix, just hit @kbd{v u} (@code{calc-unpack}) twice.)
29169 @kindex C-x * :
29170 @kindex C-x * _
29171 @pindex calc-grab-sum-across
29172 @pindex calc-grab-sum-down
29173 @cindex Summing rows and columns of data
29174 The @kbd{C-x * :} (@code{calc-grab-sum-down}) command is a handy way to
29175 grab a rectangle of data and sum its columns.  It is equivalent to
29176 typing @kbd{C-x * r}, followed by @kbd{V R : +} (the vector reduction
29177 command that sums the columns of a matrix; @pxref{Reducing}).  The
29178 result of the command will be a vector of numbers, one for each column
29179 in the input data.  The @kbd{C-x * _} (@code{calc-grab-sum-across}) command
29180 similarly grabs a rectangle and sums its rows by executing @w{@kbd{V R _ +}}.
29182 As well as being more convenient, @kbd{C-x * :} and @kbd{C-x * _} are also
29183 much faster because they don't actually place the grabbed vector on
29184 the stack.  In a @kbd{C-x * r V R : +} sequence, formatting the vector
29185 for display on the stack takes a large fraction of the total time
29186 (unless you have planned ahead and used @kbd{v .} and @kbd{t .} modes).
29188 For example, suppose we have a column of numbers in a file which we
29189 wish to sum.  Go to one corner of the column and press @kbd{C-@@} to
29190 set the mark; go to the other corner and type @kbd{C-x * :}.  Since there
29191 is only one column, the result will be a vector of one number, the sum.
29192 (You can type @kbd{v u} to unpack this vector into a plain number if
29193 you want to do further arithmetic with it.)
29195 To compute the product of the column of numbers, we would have to do
29196 it ``by hand'' since there's no special grab-and-multiply command.
29197 Use @kbd{C-x * r} to grab the column of numbers into the calculator in
29198 the form of a column matrix.  The statistics command @kbd{u *} is a
29199 handy way to find the product of a vector or matrix of numbers.
29200 @xref{Statistical Operations}.  Another approach would be to use
29201 an explicit column reduction command, @kbd{V R : *}.
29203 @node Yanking Into Buffers, X Cut and Paste, Grabbing From Buffers, Kill and Yank
29204 @section Yanking into Other Buffers
29206 @noindent
29207 @kindex y
29208 @pindex calc-copy-to-buffer
29209 The plain @kbd{y} (@code{calc-copy-to-buffer}) command inserts the number
29210 at the top of the stack into the most recently used normal editing buffer.
29211 (More specifically, this is the most recently used buffer which is displayed
29212 in a window and whose name does not begin with @samp{*}.  If there is no
29213 such buffer, this is the most recently used buffer except for Calculator
29214 and Calc Trail buffers.)  The number is inserted exactly as it appears and
29215 without a newline.  (If line-numbering is enabled, the line number is
29216 normally not included.)  The number is @emph{not} removed from the stack.
29218 With a prefix argument, @kbd{y} inserts several numbers, one per line.
29219 A positive argument inserts the specified number of values from the top
29220 of the stack.  A negative argument inserts the @expr{n}th value from the
29221 top of the stack.  An argument of zero inserts the entire stack.  Note
29222 that @kbd{y} with an argument of 1 is slightly different from @kbd{y}
29223 with no argument; the former always copies full lines, whereas the
29224 latter strips off the trailing newline.
29226 With a lone @kbd{C-u} as a prefix argument, @kbd{y} @emph{replaces} the
29227 region in the other buffer with the yanked text, then quits the
29228 Calculator, leaving you in that buffer.  A typical use would be to use
29229 @kbd{C-x * g} to read a region of data into the Calculator, operate on the
29230 data to produce a new matrix, then type @kbd{C-u y} to replace the
29231 original data with the new data.  One might wish to alter the matrix
29232 display style (@pxref{Vector and Matrix Formats}) or change the current
29233 display language (@pxref{Language Modes}) before doing this.  Also, note
29234 that this command replaces a linear region of text (as grabbed by
29235 @kbd{C-x * g}), not a rectangle (as grabbed by @kbd{C-x * r}).
29237 If the editing buffer is in overwrite (as opposed to insert) mode,
29238 and the @kbd{C-u} prefix was not used, then the yanked number will
29239 overwrite the characters following point rather than being inserted
29240 before those characters.  The usual conventions of overwrite mode
29241 are observed; for example, characters will be inserted at the end of
29242 a line rather than overflowing onto the next line.  Yanking a multi-line
29243 object such as a matrix in overwrite mode overwrites the next @var{n}
29244 lines in the buffer, lengthening or shortening each line as necessary.
29245 Finally, if the thing being yanked is a simple integer or floating-point
29246 number (like @samp{-1.2345e-3}) and the characters following point also
29247 make up such a number, then Calc will replace that number with the new
29248 number, lengthening or shortening as necessary.  The concept of
29249 ``overwrite mode'' has thus been generalized from overwriting characters
29250 to overwriting one complete number with another.
29252 @kindex C-x * y
29253 The @kbd{C-x * y} key sequence is equivalent to @kbd{y} except that
29254 it can be typed anywhere, not just in Calc.  This provides an easy
29255 way to guarantee that Calc knows which editing buffer you want to use!
29257 @node X Cut and Paste,  , Yanking Into Buffers, Kill and Yank
29258 @section X Cut and Paste
29260 @noindent
29261 If you are using Emacs with the X window system, there is an easier
29262 way to move small amounts of data into and out of the calculator:
29263 Use the mouse-oriented cut and paste facilities of X.
29265 The default bindings for a three-button mouse cause the left button
29266 to move the Emacs cursor to the given place, the right button to
29267 select the text between the cursor and the clicked location, and
29268 the middle button to yank the selection into the buffer at the
29269 clicked location.  So, if you have a Calc window and an editing
29270 window on your Emacs screen, you can use left-click/right-click
29271 to select a number, vector, or formula from one window, then
29272 middle-click to paste that value into the other window.  When you
29273 paste text into the Calc window, Calc interprets it as an algebraic
29274 entry.  It doesn't matter where you click in the Calc window; the
29275 new value is always pushed onto the top of the stack.
29277 The @code{xterm} program that is typically used for general-purpose
29278 shell windows in X interprets the mouse buttons in the same way.
29279 So you can use the mouse to move data between Calc and any other
29280 Unix program.  One nice feature of @code{xterm} is that a double
29281 left-click selects one word, and a triple left-click selects a
29282 whole line.  So you can usually transfer a single number into Calc
29283 just by double-clicking on it in the shell, then middle-clicking
29284 in the Calc window.
29286 @node Keypad Mode, Embedded Mode, Kill and Yank, Top
29287 @chapter Keypad Mode
29289 @noindent
29290 @kindex C-x * k
29291 @pindex calc-keypad
29292 The @kbd{C-x * k} (@code{calc-keypad}) command starts the Calculator
29293 and displays a picture of a calculator-style keypad.  If you are using
29294 the X window system, you can click on any of the ``keys'' in the
29295 keypad using the left mouse button to operate the calculator.
29296 The original window remains the selected window; in Keypad mode
29297 you can type in your file while simultaneously performing
29298 calculations with the mouse.
29300 @pindex full-calc-keypad
29301 If you have used @kbd{C-x * b} first, @kbd{C-x * k} instead invokes
29302 the @code{full-calc-keypad} command, which takes over the whole
29303 Emacs screen and displays the keypad, the Calc stack, and the Calc
29304 trail all at once.  This mode would normally be used when running
29305 Calc standalone (@pxref{Standalone Operation}).
29307 If you aren't using the X window system, you must switch into
29308 the @samp{*Calc Keypad*} window, place the cursor on the desired
29309 ``key,'' and type @key{SPC} or @key{RET}.  If you think this
29310 is easier than using Calc normally, go right ahead.
29312 Calc commands are more or less the same in Keypad mode.  Certain
29313 keypad keys differ slightly from the corresponding normal Calc
29314 keystrokes; all such deviations are described below.
29316 Keypad mode includes many more commands than will fit on the keypad
29317 at once.  Click the right mouse button [@code{calc-keypad-menu}]
29318 to switch to the next menu.  The bottom five rows of the keypad
29319 stay the same; the top three rows change to a new set of commands.
29320 To return to earlier menus, click the middle mouse button
29321 [@code{calc-keypad-menu-back}] or simply advance through the menus
29322 until you wrap around.  Typing @key{TAB} inside the keypad window
29323 is equivalent to clicking the right mouse button there.
29325 You can always click the @key{EXEC} button and type any normal
29326 Calc key sequence.  This is equivalent to switching into the
29327 Calc buffer, typing the keys, then switching back to your
29328 original buffer.
29330 @menu
29331 * Keypad Main Menu::
29332 * Keypad Functions Menu::
29333 * Keypad Binary Menu::
29334 * Keypad Vectors Menu::
29335 * Keypad Modes Menu::
29336 @end menu
29338 @node Keypad Main Menu, Keypad Functions Menu, Keypad Mode, Keypad Mode
29339 @section Main Menu
29341 @smallexample
29342 @group
29343 |----+-----Calc 2.1------+----1
29344 |FLR |CEIL|RND |TRNC|CLN2|FLT |
29345 |----+----+----+----+----+----|
29346 | LN |EXP |    |ABS |IDIV|MOD |
29347 |----+----+----+----+----+----|
29348 |SIN |COS |TAN |SQRT|y^x |1/x |
29349 |----+----+----+----+----+----|
29350 |  ENTER  |+/- |EEX |UNDO| <- |
29351 |-----+---+-+--+--+-+---++----|
29352 | INV |  7  |  8  |  9  |  /  |
29353 |-----+-----+-----+-----+-----|
29354 | HYP |  4  |  5  |  6  |  *  |
29355 |-----+-----+-----+-----+-----|
29356 |EXEC |  1  |  2  |  3  |  -  |
29357 |-----+-----+-----+-----+-----|
29358 | OFF |  0  |  .  | PI  |  +  |
29359 |-----+-----+-----+-----+-----+
29360 @end group
29361 @end smallexample
29363 @noindent
29364 This is the menu that appears the first time you start Keypad mode.
29365 It will show up in a vertical window on the right side of your screen.
29366 Above this menu is the traditional Calc stack display.  On a 24-line
29367 screen you will be able to see the top three stack entries.
29369 The ten digit keys, decimal point, and @key{EEX} key are used for
29370 entering numbers in the obvious way.  @key{EEX} begins entry of an
29371 exponent in scientific notation.  Just as with regular Calc, the
29372 number is pushed onto the stack as soon as you press @key{ENTER}
29373 or any other function key.
29375 The @key{+/-} key corresponds to normal Calc's @kbd{n} key.  During
29376 numeric entry it changes the sign of the number or of the exponent.
29377 At other times it changes the sign of the number on the top of the
29378 stack.
29380 The @key{INV} and @key{HYP} keys modify other keys.  As well as
29381 having the effects described elsewhere in this manual, Keypad mode
29382 defines several other ``inverse'' operations.  These are described
29383 below and in the following sections.
29385 The @key{ENTER} key finishes the current numeric entry, or otherwise
29386 duplicates the top entry on the stack.
29388 The @key{UNDO} key undoes the most recent Calc operation.
29389 @kbd{INV UNDO} is the ``redo'' command, and @kbd{HYP UNDO} is
29390 ``last arguments'' (@kbd{M-@key{RET}}).
29392 The @key{<-} key acts as a ``backspace'' during numeric entry.
29393 At other times it removes the top stack entry.  @kbd{INV <-}
29394 clears the entire stack.  @kbd{HYP <-} takes an integer from
29395 the stack, then removes that many additional stack elements.
29397 The @key{EXEC} key prompts you to enter any keystroke sequence
29398 that would normally work in Calc mode.  This can include a
29399 numeric prefix if you wish.  It is also possible simply to
29400 switch into the Calc window and type commands in it; there is
29401 nothing ``magic'' about this window when Keypad mode is active.
29403 The other keys in this display perform their obvious calculator
29404 functions.  @key{CLN2} rounds the top-of-stack by temporarily
29405 reducing the precision by 2 digits.  @key{FLT} converts an
29406 integer or fraction on the top of the stack to floating-point.
29408 The @key{INV} and @key{HYP} keys combined with several of these keys
29409 give you access to some common functions even if the appropriate menu
29410 is not displayed.  Obviously you don't need to learn these keys
29411 unless you find yourself wasting time switching among the menus.
29413 @table @kbd
29414 @item INV +/-
29415 is the same as @key{1/x}.
29416 @item INV +
29417 is the same as @key{SQRT}.
29418 @item INV -
29419 is the same as @key{CONJ}.
29420 @item INV *
29421 is the same as @key{y^x}.
29422 @item INV /
29423 is the same as @key{INV y^x} (the @expr{x}th root of @expr{y}).
29424 @item HYP/INV 1
29425 are the same as @key{SIN} / @kbd{INV SIN}.
29426 @item HYP/INV 2
29427 are the same as @key{COS} / @kbd{INV COS}.
29428 @item HYP/INV 3
29429 are the same as @key{TAN} / @kbd{INV TAN}.
29430 @item INV/HYP 4
29431 are the same as @key{LN} / @kbd{HYP LN}.
29432 @item INV/HYP 5
29433 are the same as @key{EXP} / @kbd{HYP EXP}.
29434 @item INV 6
29435 is the same as @key{ABS}.
29436 @item INV 7
29437 is the same as @key{RND} (@code{calc-round}).
29438 @item INV 8
29439 is the same as @key{CLN2}.
29440 @item INV 9
29441 is the same as @key{FLT} (@code{calc-float}).
29442 @item INV 0
29443 is the same as @key{IMAG}.
29444 @item INV .
29445 is the same as @key{PREC}.
29446 @item INV ENTER
29447 is the same as @key{SWAP}.
29448 @item HYP ENTER
29449 is the same as @key{RLL3}.
29450 @item INV HYP ENTER
29451 is the same as @key{OVER}.
29452 @item HYP +/-
29453 packs the top two stack entries as an error form.
29454 @item HYP EEX
29455 packs the top two stack entries as a modulo form.
29456 @item INV EEX
29457 creates an interval form; this removes an integer which is one
29458 of 0 @samp{[]}, 1 @samp{[)}, 2 @samp{(]} or 3 @samp{()}, followed
29459 by the two limits of the interval.
29460 @end table
29462 The @kbd{OFF} key turns Calc off; typing @kbd{C-x * k} or @kbd{C-x * *}
29463 again has the same effect.  This is analogous to typing @kbd{q} or
29464 hitting @kbd{C-x * c} again in the normal calculator.  If Calc is
29465 running standalone (the @code{full-calc-keypad} command appeared in the
29466 command line that started Emacs), then @kbd{OFF} is replaced with
29467 @kbd{EXIT}; clicking on this actually exits Emacs itself.
29469 @node Keypad Functions Menu, Keypad Binary Menu, Keypad Main Menu, Keypad Mode
29470 @section Functions Menu
29472 @smallexample
29473 @group
29474 |----+----+----+----+----+----2
29475 |IGAM|BETA|IBET|ERF |BESJ|BESY|
29476 |----+----+----+----+----+----|
29477 |IMAG|CONJ| RE |ATN2|RAND|RAGN|
29478 |----+----+----+----+----+----|
29479 |GCD |FACT|DFCT|BNOM|PERM|NXTP|
29480 |----+----+----+----+----+----|
29481 @end group
29482 @end smallexample
29484 @noindent
29485 This menu provides various operations from the @kbd{f} and @kbd{k}
29486 prefix keys.
29488 @key{IMAG} multiplies the number on the stack by the imaginary
29489 number @expr{i = (0, 1)}.
29491 @key{RE} extracts the real part a complex number.  @kbd{INV RE}
29492 extracts the imaginary part.
29494 @key{RAND} takes a number from the top of the stack and computes
29495 a random number greater than or equal to zero but less than that
29496 number.  (@xref{Random Numbers}.)  @key{RAGN} is the ``random
29497 again'' command; it computes another random number using the
29498 same limit as last time.
29500 @key{INV GCD} computes the LCM (least common multiple) function.
29502 @key{INV FACT} is the gamma function.  
29503 @texline @math{\Gamma(x) = (x-1)!}.
29504 @infoline @expr{gamma(x) = (x-1)!}.
29506 @key{PERM} is the number-of-permutations function, which is on the
29507 @kbd{H k c} key in normal Calc.
29509 @key{NXTP} finds the next prime after a number.  @kbd{INV NXTP}
29510 finds the previous prime.
29512 @node Keypad Binary Menu, Keypad Vectors Menu, Keypad Functions Menu, Keypad Mode
29513 @section Binary Menu
29515 @smallexample
29516 @group
29517 |----+----+----+----+----+----3
29518 |AND | OR |XOR |NOT |LSH |RSH |
29519 |----+----+----+----+----+----|
29520 |DEC |HEX |OCT |BIN |WSIZ|ARSH|
29521 |----+----+----+----+----+----|
29522 | A  | B  | C  | D  | E  | F  |
29523 |----+----+----+----+----+----|
29524 @end group
29525 @end smallexample
29527 @noindent
29528 The keys in this menu perform operations on binary integers.
29529 Note that both logical and arithmetic right-shifts are provided.
29530 @key{INV LSH} rotates one bit to the left.
29532 The ``difference'' function (normally on @kbd{b d}) is on @key{INV AND}.
29533 The ``clip'' function (normally on @w{@kbd{b c}}) is on @key{INV NOT}.
29535 The @key{DEC}, @key{HEX}, @key{OCT}, and @key{BIN} keys select the
29536 current radix for display and entry of numbers:  Decimal, hexadecimal,
29537 octal, or binary.  The six letter keys @key{A} through @key{F} are used
29538 for entering hexadecimal numbers.
29540 The @key{WSIZ} key displays the current word size for binary operations
29541 and allows you to enter a new word size.  You can respond to the prompt
29542 using either the keyboard or the digits and @key{ENTER} from the keypad.
29543 The initial word size is 32 bits.
29545 @node Keypad Vectors Menu, Keypad Modes Menu, Keypad Binary Menu, Keypad Mode
29546 @section Vectors Menu
29548 @smallexample
29549 @group
29550 |----+----+----+----+----+----4
29551 |SUM |PROD|MAX |MAP*|MAP^|MAP$|
29552 |----+----+----+----+----+----|
29553 |MINV|MDET|MTRN|IDNT|CRSS|"x" |
29554 |----+----+----+----+----+----|
29555 |PACK|UNPK|INDX|BLD |LEN |... |
29556 |----+----+----+----+----+----|
29557 @end group
29558 @end smallexample
29560 @noindent
29561 The keys in this menu operate on vectors and matrices.
29563 @key{PACK} removes an integer @var{n} from the top of the stack;
29564 the next @var{n} stack elements are removed and packed into a vector,
29565 which is replaced onto the stack.  Thus the sequence
29566 @kbd{1 ENTER 3 ENTER 5 ENTER 3 PACK} enters the vector
29567 @samp{[1, 3, 5]} onto the stack.  To enter a matrix, build each row
29568 on the stack as a vector, then use a final @key{PACK} to collect the
29569 rows into a matrix.
29571 @key{UNPK} unpacks the vector on the stack, pushing each of its
29572 components separately.
29574 @key{INDX} removes an integer @var{n}, then builds a vector of
29575 integers from 1 to @var{n}.  @kbd{INV INDX} takes three numbers
29576 from the stack:  The vector size @var{n}, the starting number,
29577 and the increment.  @kbd{BLD} takes an integer @var{n} and any
29578 value @var{x} and builds a vector of @var{n} copies of @var{x}.
29580 @key{IDNT} removes an integer @var{n}, then builds an @var{n}-by-@var{n}
29581 identity matrix.
29583 @key{LEN} replaces a vector by its length, an integer.
29585 @key{...} turns on or off ``abbreviated'' display mode for large vectors.
29587 @key{MINV}, @key{MDET}, @key{MTRN}, and @key{CROSS} are the matrix
29588 inverse, determinant, and transpose, and vector cross product.
29590 @key{SUM} replaces a vector by the sum of its elements.  It is
29591 equivalent to @kbd{u +} in normal Calc (@pxref{Statistical Operations}).
29592 @key{PROD} computes the product of the elements of a vector, and
29593 @key{MAX} computes the maximum of all the elements of a vector.
29595 @key{INV SUM} computes the alternating sum of the first element
29596 minus the second, plus the third, minus the fourth, and so on.
29597 @key{INV MAX} computes the minimum of the vector elements.
29599 @key{HYP SUM} computes the mean of the vector elements.
29600 @key{HYP PROD} computes the sample standard deviation.
29601 @key{HYP MAX} computes the median.
29603 @key{MAP*} multiplies two vectors elementwise.  It is equivalent
29604 to the @kbd{V M *} command.  @key{MAP^} computes powers elementwise.
29605 The arguments must be vectors of equal length, or one must be a vector
29606 and the other must be a plain number.  For example, @kbd{2 MAP^} squares
29607 all the elements of a vector.
29609 @key{MAP$} maps the formula on the top of the stack across the
29610 vector in the second-to-top position.  If the formula contains
29611 several variables, Calc takes that many vectors starting at the
29612 second-to-top position and matches them to the variables in
29613 alphabetical order.  The result is a vector of the same size as
29614 the input vectors, whose elements are the formula evaluated with
29615 the variables set to the various sets of numbers in those vectors.
29616 For example, you could simulate @key{MAP^} using @key{MAP$} with
29617 the formula @samp{x^y}.
29619 The @kbd{"x"} key pushes the variable name @expr{x} onto the
29620 stack.  To build the formula @expr{x^2 + 6}, you would use the
29621 key sequence @kbd{"x" 2 y^x 6 +}.  This formula would then be
29622 suitable for use with the @key{MAP$} key described above.
29623 With @key{INV}, @key{HYP}, or @key{INV} and @key{HYP}, the
29624 @kbd{"x"} key pushes the variable names @expr{y}, @expr{z}, and
29625 @expr{t}, respectively.
29627 @node Keypad Modes Menu,  , Keypad Vectors Menu, Keypad Mode
29628 @section Modes Menu
29630 @smallexample
29631 @group
29632 |----+----+----+----+----+----5
29633 |FLT |FIX |SCI |ENG |GRP |    |
29634 |----+----+----+----+----+----|
29635 |RAD |DEG |FRAC|POLR|SYMB|PREC|
29636 |----+----+----+----+----+----|
29637 |SWAP|RLL3|RLL4|OVER|STO |RCL |
29638 |----+----+----+----+----+----|
29639 @end group
29640 @end smallexample
29642 @noindent
29643 The keys in this menu manipulate modes, variables, and the stack.
29645 The @key{FLT}, @key{FIX}, @key{SCI}, and @key{ENG} keys select
29646 floating-point, fixed-point, scientific, or engineering notation.
29647 @key{FIX} displays two digits after the decimal by default; the
29648 others display full precision.  With the @key{INV} prefix, these
29649 keys pop a number-of-digits argument from the stack.
29651 The @key{GRP} key turns grouping of digits with commas on or off.
29652 @kbd{INV GRP} enables grouping to the right of the decimal point as
29653 well as to the left.
29655 The @key{RAD} and @key{DEG} keys switch between radians and degrees
29656 for trigonometric functions.
29658 The @key{FRAC} key turns Fraction mode on or off.  This affects
29659 whether commands like @kbd{/} with integer arguments produce
29660 fractional or floating-point results.
29662 The @key{POLR} key turns Polar mode on or off, determining whether
29663 polar or rectangular complex numbers are used by default.
29665 The @key{SYMB} key turns Symbolic mode on or off, in which
29666 operations that would produce inexact floating-point results
29667 are left unevaluated as algebraic formulas.
29669 The @key{PREC} key selects the current precision.  Answer with
29670 the keyboard or with the keypad digit and @key{ENTER} keys.
29672 The @key{SWAP} key exchanges the top two stack elements.
29673 The @key{RLL3} key rotates the top three stack elements upwards.
29674 The @key{RLL4} key rotates the top four stack elements upwards.
29675 The @key{OVER} key duplicates the second-to-top stack element.
29677 The @key{STO} and @key{RCL} keys are analogous to @kbd{s t} and
29678 @kbd{s r} in regular Calc.  @xref{Store and Recall}.  Click the
29679 @key{STO} or @key{RCL} key, then one of the ten digits.  (Named
29680 variables are not available in Keypad mode.)  You can also use,
29681 for example, @kbd{STO + 3} to add to register 3.
29683 @node Embedded Mode, Programming, Keypad Mode, Top
29684 @chapter Embedded Mode
29686 @noindent
29687 Embedded mode in Calc provides an alternative to copying numbers
29688 and formulas back and forth between editing buffers and the Calc
29689 stack.  In Embedded mode, your editing buffer becomes temporarily
29690 linked to the stack and this copying is taken care of automatically.
29692 @menu
29693 * Basic Embedded Mode::
29694 * More About Embedded Mode::
29695 * Assignments in Embedded Mode::
29696 * Mode Settings in Embedded Mode::
29697 * Customizing Embedded Mode::
29698 @end menu
29700 @node Basic Embedded Mode, More About Embedded Mode, Embedded Mode, Embedded Mode
29701 @section Basic Embedded Mode
29703 @noindent
29704 @kindex C-x * e
29705 @pindex calc-embedded
29706 To enter Embedded mode, position the Emacs point (cursor) on a
29707 formula in any buffer and press @kbd{C-x * e} (@code{calc-embedded}).
29708 Note that @kbd{C-x * e} is not to be used in the Calc stack buffer
29709 like most Calc commands, but rather in regular editing buffers that
29710 are visiting your own files.
29712 Calc will try to guess an appropriate language based on the major mode
29713 of the editing buffer. (@xref{Language Modes}.) If the current buffer is
29714 in @code{latex-mode}, for example, Calc will set its language to La@TeX{}.
29715 Similarly, Calc will use @TeX{} language for @code{tex-mode},
29716 @code{plain-tex-mode} and @code{context-mode}, C language for
29717 @code{c-mode} and @code{c++-mode}, FORTRAN language for
29718 @code{fortran-mode} and @code{f90-mode}, Pascal for @code{pascal-mode},
29719 and eqn for @code{nroff-mode} (@pxref{Customizing Calc}).  
29720 These can be overridden with Calc's mode
29721 changing commands (@pxref{Mode Settings in Embedded Mode}).  If no
29722 suitable language is available, Calc will continue with its current language.
29724 Calc normally scans backward and forward in the buffer for the
29725 nearest opening and closing @dfn{formula delimiters}.  The simplest
29726 delimiters are blank lines.  Other delimiters that Embedded mode
29727 understands are:
29729 @enumerate
29730 @item
29731 The @TeX{} and La@TeX{} math delimiters @samp{$ $}, @samp{$$ $$},
29732 @samp{\[ \]}, and @samp{\( \)};
29733 @item
29734 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
29735 @item
29736 Lines beginning with @samp{@@} (Texinfo delimiters).
29737 @item
29738 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
29739 @item
29740 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
29741 @end enumerate
29743 @xref{Customizing Embedded Mode}, to see how to make Calc recognize
29744 your own favorite delimiters.  Delimiters like @samp{$ $} can appear
29745 on their own separate lines or in-line with the formula.
29747 If you give a positive or negative numeric prefix argument, Calc
29748 instead uses the current point as one end of the formula, and includes
29749 that many lines forward or backward (respectively, including the current
29750 line). Explicit delimiters are not necessary in this case.
29752 With a prefix argument of zero, Calc uses the current region (delimited
29753 by point and mark) instead of formula delimiters.  With a prefix
29754 argument of @kbd{C-u} only, Calc uses the current line as the formula.
29756 @kindex C-x * w
29757 @pindex calc-embedded-word
29758 The @kbd{C-x * w} (@code{calc-embedded-word}) command will start Embedded
29759 mode on the current ``word''; in this case Calc will scan for the first
29760 non-numeric character (i.e., the first character that is not a digit,
29761 sign, decimal point, or upper- or lower-case @samp{e}) forward and
29762 backward to delimit the formula.
29764 When you enable Embedded mode for a formula, Calc reads the text
29765 between the delimiters and tries to interpret it as a Calc formula.
29766 Calc can generally identify @TeX{} formulas and
29767 Big-style formulas even if the language mode is wrong.  If Calc
29768 can't make sense of the formula, it beeps and refuses to enter
29769 Embedded mode.  But if the current language is wrong, Calc can
29770 sometimes parse the formula successfully (but incorrectly);
29771 for example, the C expression @samp{atan(a[1])} can be parsed
29772 in Normal language mode, but the @code{atan} won't correspond to
29773 the built-in @code{arctan} function, and the @samp{a[1]} will be
29774 interpreted as @samp{a} times the vector @samp{[1]}!
29776 If you press @kbd{C-x * e} or @kbd{C-x * w} to activate an embedded
29777 formula which is blank, say with the cursor on the space between
29778 the two delimiters @samp{$ $}, Calc will immediately prompt for
29779 an algebraic entry.
29781 Only one formula in one buffer can be enabled at a time.  If you
29782 move to another area of the current buffer and give Calc commands,
29783 Calc turns Embedded mode off for the old formula and then tries
29784 to restart Embedded mode at the new position.  Other buffers are
29785 not affected by Embedded mode.
29787 When Embedded mode begins, Calc pushes the current formula onto
29788 the stack.  No Calc stack window is created; however, Calc copies
29789 the top-of-stack position into the original buffer at all times.
29790 You can create a Calc window by hand with @kbd{C-x * o} if you
29791 find you need to see the entire stack.
29793 For example, typing @kbd{C-x * e} while somewhere in the formula
29794 @samp{n>2} in the following line enables Embedded mode on that
29795 inequality:
29797 @example
29798 We define $F_n = F_(n-1)+F_(n-2)$ for all $n>2$.
29799 @end example
29801 @noindent
29802 The formula @expr{n>2} will be pushed onto the Calc stack, and
29803 the top of stack will be copied back into the editing buffer.
29804 This means that spaces will appear around the @samp{>} symbol
29805 to match Calc's usual display style:
29807 @example
29808 We define $F_n = F_(n-1)+F_(n-2)$ for all $n > 2$.
29809 @end example
29811 @noindent
29812 No spaces have appeared around the @samp{+} sign because it's
29813 in a different formula, one which we have not yet touched with
29814 Embedded mode.
29816 Now that Embedded mode is enabled, keys you type in this buffer
29817 are interpreted as Calc commands.  At this point we might use
29818 the ``commute'' command @kbd{j C} to reverse the inequality.
29819 This is a selection-based command for which we first need to
29820 move the cursor onto the operator (@samp{>} in this case) that
29821 needs to be commuted.
29823 @example
29824 We define $F_n = F_(n-1)+F_(n-2)$ for all $2 < n$.
29825 @end example
29827 The @kbd{C-x * o} command is a useful way to open a Calc window
29828 without actually selecting that window.  Giving this command
29829 verifies that @samp{2 < n} is also on the Calc stack.  Typing
29830 @kbd{17 @key{RET}} would produce:
29832 @example
29833 We define $F_n = F_(n-1)+F_(n-2)$ for all $17$.
29834 @end example
29836 @noindent
29837 with @samp{2 < n} and @samp{17} on the stack; typing @key{TAB}
29838 at this point will exchange the two stack values and restore
29839 @samp{2 < n} to the embedded formula.  Even though you can't
29840 normally see the stack in Embedded mode, it is still there and
29841 it still operates in the same way.  But, as with old-fashioned
29842 RPN calculators, you can only see the value at the top of the
29843 stack at any given time (unless you use @kbd{C-x * o}).
29845 Typing @kbd{C-x * e} again turns Embedded mode off.  The Calc
29846 window reveals that the formula @w{@samp{2 < n}} is automatically
29847 removed from the stack, but the @samp{17} is not.  Entering
29848 Embedded mode always pushes one thing onto the stack, and
29849 leaving Embedded mode always removes one thing.  Anything else
29850 that happens on the stack is entirely your business as far as
29851 Embedded mode is concerned.
29853 If you press @kbd{C-x * e} in the wrong place by accident, it is
29854 possible that Calc will be able to parse the nearby text as a
29855 formula and will mangle that text in an attempt to redisplay it
29856 ``properly'' in the current language mode.  If this happens,
29857 press @kbd{C-x * e} again to exit Embedded mode, then give the
29858 regular Emacs ``undo'' command (@kbd{C-_} or @kbd{C-x u}) to put
29859 the text back the way it was before Calc edited it.  Note that Calc's
29860 own Undo command (typed before you turn Embedded mode back off)
29861 will not do you any good, because as far as Calc is concerned
29862 you haven't done anything with this formula yet.
29864 @node More About Embedded Mode, Assignments in Embedded Mode, Basic Embedded Mode, Embedded Mode
29865 @section More About Embedded Mode
29867 @noindent
29868 When Embedded mode ``activates'' a formula, i.e., when it examines
29869 the formula for the first time since the buffer was created or
29870 loaded, Calc tries to sense the language in which the formula was
29871 written.  If the formula contains any La@TeX{}-like @samp{\} sequences,
29872 it is parsed (i.e., read) in La@TeX{} mode.  If the formula appears to
29873 be written in multi-line Big mode, it is parsed in Big mode.  Otherwise,
29874 it is parsed according to the current language mode.
29876 Note that Calc does not change the current language mode according
29877 the formula it reads in.  Even though it can read a La@TeX{} formula when
29878 not in La@TeX{} mode, it will immediately rewrite this formula using
29879 whatever language mode is in effect.
29881 @tex
29882 \bigskip
29883 @end tex
29885 @kindex d p
29886 @pindex calc-show-plain
29887 Calc's parser is unable to read certain kinds of formulas.  For
29888 example, with @kbd{v ]} (@code{calc-matrix-brackets}) you can
29889 specify matrix display styles which the parser is unable to
29890 recognize as matrices.  The @kbd{d p} (@code{calc-show-plain})
29891 command turns on a mode in which a ``plain'' version of a
29892 formula is placed in front of the fully-formatted version.
29893 When Calc reads a formula that has such a plain version in
29894 front, it reads the plain version and ignores the formatted
29895 version.
29897 Plain formulas are preceded and followed by @samp{%%%} signs
29898 by default.  This notation has the advantage that the @samp{%}
29899 character begins a comment in @TeX{} and La@TeX{}, so if your formula is 
29900 embedded in a @TeX{} or La@TeX{} document its plain version will be
29901 invisible in the final printed copy.  Certain major modes have different
29902 delimiters to ensure that the ``plain'' version will be 
29903 in a comment for those modes, also.  
29904 See @ref{Customizing Embedded Mode} to see how to change the ``plain''
29905 formula delimiters. 
29907 There are several notations which Calc's parser for ``big''
29908 formatted formulas can't yet recognize.  In particular, it can't
29909 read the large symbols for @code{sum}, @code{prod}, and @code{integ},
29910 and it can't handle @samp{=>} with the righthand argument omitted.
29911 Also, Calc won't recognize special formats you have defined with
29912 the @kbd{Z C} command (@pxref{User-Defined Compositions}).  In
29913 these cases it is important to use ``plain'' mode to make sure
29914 Calc will be able to read your formula later.
29916 Another example where ``plain'' mode is important is if you have
29917 specified a float mode with few digits of precision.  Normally
29918 any digits that are computed but not displayed will simply be
29919 lost when you save and re-load your embedded buffer, but ``plain''
29920 mode allows you to make sure that the complete number is present
29921 in the file as well as the rounded-down number.
29923 @tex
29924 \bigskip
29925 @end tex
29927 Embedded buffers remember active formulas for as long as they
29928 exist in Emacs memory.  Suppose you have an embedded formula
29929 which is @cpi{} to the normal 12 decimal places, and then
29930 type @w{@kbd{C-u 5 d n}} to display only five decimal places.
29931 If you then type @kbd{d n}, all 12 places reappear because the
29932 full number is still there on the Calc stack.  More surprisingly,
29933 even if you exit Embedded mode and later re-enter it for that
29934 formula, typing @kbd{d n} will restore all 12 places because
29935 each buffer remembers all its active formulas.  However, if you
29936 save the buffer in a file and reload it in a new Emacs session,
29937 all non-displayed digits will have been lost unless you used
29938 ``plain'' mode.
29940 @tex
29941 \bigskip
29942 @end tex
29944 In some applications of Embedded mode, you will want to have a
29945 sequence of copies of a formula that show its evolution as you
29946 work on it.  For example, you might want to have a sequence
29947 like this in your file (elaborating here on the example from
29948 the ``Getting Started'' chapter):
29950 @smallexample
29951 The derivative of
29953                               ln(ln(x))
29957                   @r{(the derivative of }ln(ln(x))@r{)}
29959 whose value at x = 2 is
29961                             @r{(the value)}
29963 and at x = 3 is
29965                             @r{(the value)}
29966 @end smallexample
29968 @kindex C-x * d
29969 @pindex calc-embedded-duplicate
29970 The @kbd{C-x * d} (@code{calc-embedded-duplicate}) command is a
29971 handy way to make sequences like this.  If you type @kbd{C-x * d},
29972 the formula under the cursor (which may or may not have Embedded
29973 mode enabled for it at the time) is copied immediately below and
29974 Embedded mode is then enabled for that copy.
29976 For this example, you would start with just
29978 @smallexample
29979 The derivative of
29981                               ln(ln(x))
29982 @end smallexample
29984 @noindent
29985 and press @kbd{C-x * d} with the cursor on this formula.  The result
29988 @smallexample
29989 The derivative of
29991                               ln(ln(x))
29994                               ln(ln(x))
29995 @end smallexample
29997 @noindent
29998 with the second copy of the formula enabled in Embedded mode.
29999 You can now press @kbd{a d x @key{RET}} to take the derivative, and
30000 @kbd{C-x * d C-x * d} to make two more copies of the derivative.
30001 To complete the computations, type @kbd{3 s l x @key{RET}} to evaluate
30002 the last formula, then move up to the second-to-last formula
30003 and type @kbd{2 s l x @key{RET}}.
30005 Finally, you would want to press @kbd{C-x * e} to exit Embedded
30006 mode, then go up and insert the necessary text in between the
30007 various formulas and numbers.
30009 @tex
30010 \bigskip
30011 @end tex
30013 @kindex C-x * f
30014 @kindex C-x * '
30015 @pindex calc-embedded-new-formula
30016 The @kbd{C-x * f} (@code{calc-embedded-new-formula}) command
30017 creates a new embedded formula at the current point.  It inserts
30018 some default delimiters, which are usually just blank lines,
30019 and then does an algebraic entry to get the formula (which is
30020 then enabled for Embedded mode).  This is just shorthand for
30021 typing the delimiters yourself, positioning the cursor between
30022 the new delimiters, and pressing @kbd{C-x * e}.  The key sequence
30023 @kbd{C-x * '} is equivalent to @kbd{C-x * f}.
30025 @kindex C-x * n
30026 @kindex C-x * p
30027 @pindex calc-embedded-next
30028 @pindex calc-embedded-previous
30029 The @kbd{C-x * n} (@code{calc-embedded-next}) and @kbd{C-x * p}
30030 (@code{calc-embedded-previous}) commands move the cursor to the
30031 next or previous active embedded formula in the buffer.  They
30032 can take positive or negative prefix arguments to move by several
30033 formulas.  Note that these commands do not actually examine the
30034 text of the buffer looking for formulas; they only see formulas
30035 which have previously been activated in Embedded mode.  In fact,
30036 @kbd{C-x * n} and @kbd{C-x * p} are a useful way to tell which
30037 embedded formulas are currently active.  Also, note that these
30038 commands do not enable Embedded mode on the next or previous
30039 formula, they just move the cursor.
30041 @kindex C-x * `
30042 @pindex calc-embedded-edit
30043 The @kbd{C-x * `} (@code{calc-embedded-edit}) command edits the
30044 embedded formula at the current point as if by @kbd{`} (@code{calc-edit}).
30045 Embedded mode does not have to be enabled for this to work.  Press
30046 @kbd{C-c C-c} to finish the edit, or @kbd{C-x k} to cancel.
30048 @node Assignments in Embedded Mode, Mode Settings in Embedded Mode, More About Embedded Mode, Embedded Mode
30049 @section Assignments in Embedded Mode
30051 @noindent
30052 The @samp{:=} (assignment) and @samp{=>} (``evaluates-to'') operators
30053 are especially useful in Embedded mode.  They allow you to make
30054 a definition in one formula, then refer to that definition in
30055 other formulas embedded in the same buffer.
30057 An embedded formula which is an assignment to a variable, as in
30059 @example
30060 foo := 5
30061 @end example
30063 @noindent
30064 records @expr{5} as the stored value of @code{foo} for the
30065 purposes of Embedded mode operations in the current buffer.  It
30066 does @emph{not} actually store @expr{5} as the ``global'' value
30067 of @code{foo}, however.  Regular Calc operations, and Embedded
30068 formulas in other buffers, will not see this assignment.
30070 One way to use this assigned value is simply to create an
30071 Embedded formula elsewhere that refers to @code{foo}, and to press
30072 @kbd{=} in that formula.  However, this permanently replaces the
30073 @code{foo} in the formula with its current value.  More interesting
30074 is to use @samp{=>} elsewhere:
30076 @example
30077 foo + 7 => 12
30078 @end example
30080 @xref{Evaluates-To Operator}, for a general discussion of @samp{=>}.
30082 If you move back and change the assignment to @code{foo}, any
30083 @samp{=>} formulas which refer to it are automatically updated.
30085 @example
30086 foo := 17
30088 foo + 7 => 24
30089 @end example
30091 The obvious question then is, @emph{how} can one easily change the
30092 assignment to @code{foo}?  If you simply select the formula in
30093 Embedded mode and type 17, the assignment itself will be replaced
30094 by the 17.  The effect on the other formula will be that the
30095 variable @code{foo} becomes unassigned:
30097 @example
30100 foo + 7 => foo + 7
30101 @end example
30103 The right thing to do is first to use a selection command (@kbd{j 2}
30104 will do the trick) to select the righthand side of the assignment.
30105 Then, @kbd{17 @key{TAB} @key{DEL}} will swap the 17 into place (@pxref{Selecting
30106 Subformulas}, to see how this works).
30108 @kindex C-x * j
30109 @pindex calc-embedded-select
30110 The @kbd{C-x * j} (@code{calc-embedded-select}) command provides an
30111 easy way to operate on assignments.  It is just like @kbd{C-x * e},
30112 except that if the enabled formula is an assignment, it uses
30113 @kbd{j 2} to select the righthand side.  If the enabled formula
30114 is an evaluates-to, it uses @kbd{j 1} to select the lefthand side.
30115 A formula can also be a combination of both:
30117 @example
30118 bar := foo + 3 => 20
30119 @end example
30121 @noindent
30122 in which case @kbd{C-x * j} will select the middle part (@samp{foo + 3}).
30124 The formula is automatically deselected when you leave Embedded
30125 mode.
30127 @kindex C-x * u
30128 @pindex calc-embedded-update-formula
30129 Another way to change the assignment to @code{foo} would simply be
30130 to edit the number using regular Emacs editing rather than Embedded
30131 mode.  Then, we have to find a way to get Embedded mode to notice
30132 the change.  The @kbd{C-x * u} (@code{calc-embedded-update-formula})
30133 command is a convenient way to do this.
30135 @example
30136 foo := 6
30138 foo + 7 => 13
30139 @end example
30141 Pressing @kbd{C-x * u} is much like pressing @kbd{C-x * e = C-x * e}, that
30142 is, temporarily enabling Embedded mode for the formula under the
30143 cursor and then evaluating it with @kbd{=}.  But @kbd{C-x * u} does
30144 not actually use @kbd{C-x * e}, and in fact another formula somewhere
30145 else can be enabled in Embedded mode while you use @kbd{C-x * u} and
30146 that formula will not be disturbed.
30148 With a numeric prefix argument, @kbd{C-x * u} updates all active
30149 @samp{=>} formulas in the buffer.  Formulas which have not yet
30150 been activated in Embedded mode, and formulas which do not have
30151 @samp{=>} as their top-level operator, are not affected by this.
30152 (This is useful only if you have used @kbd{m C}; see below.)
30154 With a plain @kbd{C-u} prefix, @kbd{C-u C-x * u} updates only in the
30155 region between mark and point rather than in the whole buffer.
30157 @kbd{C-x * u} is also a handy way to activate a formula, such as an
30158 @samp{=>} formula that has freshly been typed in or loaded from a
30159 file.
30161 @kindex C-x * a
30162 @pindex calc-embedded-activate
30163 The @kbd{C-x * a} (@code{calc-embedded-activate}) command scans
30164 through the current buffer and activates all embedded formulas
30165 that contain @samp{:=} or @samp{=>} symbols.  This does not mean
30166 that Embedded mode is actually turned on, but only that the
30167 formulas' positions are registered with Embedded mode so that
30168 the @samp{=>} values can be properly updated as assignments are
30169 changed.
30171 It is a good idea to type @kbd{C-x * a} right after loading a file
30172 that uses embedded @samp{=>} operators.  Emacs includes a nifty
30173 ``buffer-local variables'' feature that you can use to do this
30174 automatically.  The idea is to place near the end of your file
30175 a few lines that look like this:
30177 @example
30178 --- Local Variables: ---
30179 --- eval:(calc-embedded-activate) ---
30180 --- End: ---
30181 @end example
30183 @noindent
30184 where the leading and trailing @samp{---} can be replaced by
30185 any suitable strings (which must be the same on all three lines)
30186 or omitted altogether; in a @TeX{} or La@TeX{} file, @samp{%} would be a good
30187 leading string and no trailing string would be necessary.  In a
30188 C program, @samp{/*} and @samp{*/} would be good leading and
30189 trailing strings.
30191 When Emacs loads a file into memory, it checks for a Local Variables
30192 section like this one at the end of the file.  If it finds this
30193 section, it does the specified things (in this case, running
30194 @kbd{C-x * a} automatically) before editing of the file begins.
30195 The Local Variables section must be within 3000 characters of the
30196 end of the file for Emacs to find it, and it must be in the last
30197 page of the file if the file has any page separators.
30198 @xref{File Variables, , Local Variables in Files, emacs, the
30199 Emacs manual}.
30201 Note that @kbd{C-x * a} does not update the formulas it finds.
30202 To do this, type, say, @kbd{M-1 C-x * u} after @w{@kbd{C-x * a}}.
30203 Generally this should not be a problem, though, because the
30204 formulas will have been up-to-date already when the file was
30205 saved.
30207 Normally, @kbd{C-x * a} activates all the formulas it finds, but
30208 any previous active formulas remain active as well.  With a
30209 positive numeric prefix argument, @kbd{C-x * a} first deactivates
30210 all current active formulas, then actives the ones it finds in
30211 its scan of the buffer.  With a negative prefix argument,
30212 @kbd{C-x * a} simply deactivates all formulas.
30214 Embedded mode has two symbols, @samp{Active} and @samp{~Active},
30215 which it puts next to the major mode name in a buffer's mode line.
30216 It puts @samp{Active} if it has reason to believe that all
30217 formulas in the buffer are active, because you have typed @kbd{C-x * a}
30218 and Calc has not since had to deactivate any formulas (which can
30219 happen if Calc goes to update an @samp{=>} formula somewhere because
30220 a variable changed, and finds that the formula is no longer there
30221 due to some kind of editing outside of Embedded mode).  Calc puts
30222 @samp{~Active} in the mode line if some, but probably not all,
30223 formulas in the buffer are active.  This happens if you activate
30224 a few formulas one at a time but never use @kbd{C-x * a}, or if you
30225 used @kbd{C-x * a} but then Calc had to deactivate a formula
30226 because it lost track of it.  If neither of these symbols appears
30227 in the mode line, no embedded formulas are active in the buffer
30228 (e.g., before Embedded mode has been used, or after a @kbd{M-- C-x * a}).
30230 Embedded formulas can refer to assignments both before and after them
30231 in the buffer.  If there are several assignments to a variable, the
30232 nearest preceding assignment is used if there is one, otherwise the
30233 following assignment is used.
30235 @example
30236 x => 1
30238 x := 1
30240 x => 1
30242 x := 2
30244 x => 2
30245 @end example
30247 As well as simple variables, you can also assign to subscript
30248 expressions of the form @samp{@var{var}_@var{number}} (as in
30249 @code{x_0}), or @samp{@var{var}_@var{var}} (as in @code{x_max}).
30250 Assignments to other kinds of objects can be represented by Calc,
30251 but the automatic linkage between assignments and references works
30252 only for plain variables and these two kinds of subscript expressions.
30254 If there are no assignments to a given variable, the global
30255 stored value for the variable is used (@pxref{Storing Variables}),
30256 or, if no value is stored, the variable is left in symbolic form.
30257 Note that global stored values will be lost when the file is saved
30258 and loaded in a later Emacs session, unless you have used the
30259 @kbd{s p} (@code{calc-permanent-variable}) command to save them;
30260 @pxref{Operations on Variables}.
30262 The @kbd{m C} (@code{calc-auto-recompute}) command turns automatic
30263 recomputation of @samp{=>} forms on and off.  If you turn automatic
30264 recomputation off, you will have to use @kbd{C-x * u} to update these
30265 formulas manually after an assignment has been changed.  If you
30266 plan to change several assignments at once, it may be more efficient
30267 to type @kbd{m C}, change all the assignments, then use @kbd{M-1 C-x * u}
30268 to update the entire buffer afterwards.  The @kbd{m C} command also
30269 controls @samp{=>} formulas on the stack; @pxref{Evaluates-To
30270 Operator}.  When you turn automatic recomputation back on, the
30271 stack will be updated but the Embedded buffer will not; you must
30272 use @kbd{C-x * u} to update the buffer by hand.
30274 @node Mode Settings in Embedded Mode, Customizing Embedded Mode, Assignments in Embedded Mode, Embedded Mode
30275 @section Mode Settings in Embedded Mode
30277 @kindex m e
30278 @pindex calc-embedded-preserve-modes
30279 @noindent
30280 The mode settings can be changed while Calc is in embedded mode, but
30281 by default they will revert to their original values when embedded mode
30282 is ended. However, the modes saved when the mode-recording mode is
30283 @code{Save} (see below) and the modes in effect when the @kbd{m e}
30284 (@code{calc-embedded-preserve-modes}) command is given
30285 will be preserved when embedded mode is ended.
30287 Embedded mode has a rather complicated mechanism for handling mode
30288 settings in Embedded formulas.  It is possible to put annotations
30289 in the file that specify mode settings either global to the entire
30290 file or local to a particular formula or formulas.  In the latter
30291 case, different modes can be specified for use when a formula
30292 is the enabled Embedded mode formula.
30294 When you give any mode-setting command, like @kbd{m f} (for Fraction
30295 mode) or @kbd{d s} (for scientific notation), Embedded mode adds
30296 a line like the following one to the file just before the opening
30297 delimiter of the formula.
30299 @example
30300 % [calc-mode: fractions: t]
30301 % [calc-mode: float-format: (sci 0)]
30302 @end example
30304 When Calc interprets an embedded formula, it scans the text before
30305 the formula for mode-setting annotations like these and sets the
30306 Calc buffer to match these modes.  Modes not explicitly described
30307 in the file are not changed.  Calc scans all the way to the top of
30308 the file, or up to a line of the form
30310 @example
30311 % [calc-defaults]
30312 @end example
30314 @noindent
30315 which you can insert at strategic places in the file if this backward
30316 scan is getting too slow, or just to provide a barrier between one
30317 ``zone'' of mode settings and another.
30319 If the file contains several annotations for the same mode, the
30320 closest one before the formula is used.  Annotations after the
30321 formula are never used (except for global annotations, described
30322 below).
30324 The scan does not look for the leading @samp{% }, only for the
30325 square brackets and the text they enclose.  In fact, the leading
30326 characters are different for different major modes.  You can edit the
30327 mode annotations to a style that works better in context if you wish.
30328 @xref{Customizing Embedded Mode}, to see how to change the style
30329 that Calc uses when it generates the annotations.  You can write
30330 mode annotations into the file yourself if you know the syntax;
30331 the easiest way to find the syntax for a given mode is to let
30332 Calc write the annotation for it once and see what it does.
30334 If you give a mode-changing command for a mode that already has
30335 a suitable annotation just above the current formula, Calc will
30336 modify that annotation rather than generating a new, conflicting
30337 one.
30339 Mode annotations have three parts, separated by colons.  (Spaces
30340 after the colons are optional.)  The first identifies the kind
30341 of mode setting, the second is a name for the mode itself, and
30342 the third is the value in the form of a Lisp symbol, number,
30343 or list.  Annotations with unrecognizable text in the first or
30344 second parts are ignored.  The third part is not checked to make
30345 sure the value is of a valid type or range; if you write an
30346 annotation by hand, be sure to give a proper value or results
30347 will be unpredictable.  Mode-setting annotations are case-sensitive.
30349 While Embedded mode is enabled, the word @code{Local} appears in
30350 the mode line.  This is to show that mode setting commands generate
30351 annotations that are ``local'' to the current formula or set of
30352 formulas.  The @kbd{m R} (@code{calc-mode-record-mode}) command
30353 causes Calc to generate different kinds of annotations.  Pressing
30354 @kbd{m R} repeatedly cycles through the possible modes.
30356 @code{LocEdit} and @code{LocPerm} modes generate annotations
30357 that look like this, respectively:
30359 @example
30360 % [calc-edit-mode: float-format: (sci 0)]
30361 % [calc-perm-mode: float-format: (sci 5)]
30362 @end example
30364 The first kind of annotation will be used only while a formula
30365 is enabled in Embedded mode.  The second kind will be used only
30366 when the formula is @emph{not} enabled.  (Whether the formula
30367 is ``active'' or not, i.e., whether Calc has seen this formula
30368 yet, is not relevant here.)
30370 @code{Global} mode generates an annotation like this at the end
30371 of the file:
30373 @example
30374 % [calc-global-mode: fractions t]
30375 @end example
30377 Global mode annotations affect all formulas throughout the file,
30378 and may appear anywhere in the file.  This allows you to tuck your
30379 mode annotations somewhere out of the way, say, on a new page of
30380 the file, as long as those mode settings are suitable for all
30381 formulas in the file.
30383 Enabling a formula with @kbd{C-x * e} causes a fresh scan for local
30384 mode annotations; you will have to use this after adding annotations
30385 above a formula by hand to get the formula to notice them.  Updating
30386 a formula with @kbd{C-x * u} will also re-scan the local modes, but
30387 global modes are only re-scanned by @kbd{C-x * a}.
30389 Another way that modes can get out of date is if you add a local
30390 mode annotation to a formula that has another formula after it.
30391 In this example, we have used the @kbd{d s} command while the
30392 first of the two embedded formulas is active.  But the second
30393 formula has not changed its style to match, even though by the
30394 rules of reading annotations the @samp{(sci 0)} applies to it, too.
30396 @example
30397 % [calc-mode: float-format: (sci 0)]
30398 1.23e2
30400 456.
30401 @end example
30403 We would have to go down to the other formula and press @kbd{C-x * u}
30404 on it in order to get it to notice the new annotation.
30406 Two more mode-recording modes selectable by @kbd{m R} are available
30407 which are also available outside of Embedded mode.  
30408 (@pxref{General Mode Commands}.) They are @code{Save},  in which mode
30409 settings are recorded permanently in your Calc init file (the file given
30410 by the variable @code{calc-settings-file}, typically @file{~/.calc.el})
30411 rather than by annotating the current document, and no-recording
30412 mode (where there is no symbol like @code{Save} or @code{Local} in
30413 the mode line), in which mode-changing commands do not leave any
30414 annotations at all.
30416 When Embedded mode is not enabled, mode-recording modes except
30417 for @code{Save} have no effect.
30419 @node Customizing Embedded Mode,  , Mode Settings in Embedded Mode, Embedded Mode
30420 @section Customizing Embedded Mode
30422 @noindent
30423 You can modify Embedded mode's behavior by setting various Lisp
30424 variables described here.  These variables are customizable 
30425 (@pxref{Customizing Calc}), or you can use @kbd{M-x set-variable}
30426 or @kbd{M-x edit-options} to adjust a variable on the fly.
30427 (Another possibility would be to use a file-local variable annotation at
30428 the end of the file; 
30429 @pxref{File Variables, , Local Variables in Files, emacs, the Emacs manual}.)
30430 Many of the variables given mentioned here can be set to depend on the
30431 major mode of the editing buffer (@pxref{Customizing Calc}).
30433 @vindex calc-embedded-open-formula
30434 The @code{calc-embedded-open-formula} variable holds a regular
30435 expression for the opening delimiter of a formula.  @xref{Regexp Search,
30436 , Regular Expression Search, emacs, the Emacs manual}, to see
30437 how regular expressions work.  Basically, a regular expression is a
30438 pattern that Calc can search for.  A regular expression that considers
30439 blank lines, @samp{$}, and @samp{$$} to be opening delimiters is
30440 @code{"\\`\\|^\n\\|\\$\\$?"}.  Just in case the meaning of this
30441 regular expression is not completely plain, let's go through it
30442 in detail.
30444 The surrounding @samp{" "} marks quote the text between them as a
30445 Lisp string.  If you left them off, @code{set-variable} or
30446 @code{edit-options} would try to read the regular expression as a
30447 Lisp program.
30449 The most obvious property of this regular expression is that it
30450 contains indecently many backslashes.  There are actually two levels
30451 of backslash usage going on here.  First, when Lisp reads a quoted
30452 string, all pairs of characters beginning with a backslash are
30453 interpreted as special characters.  Here, @code{\n} changes to a
30454 new-line character, and @code{\\} changes to a single backslash.
30455 So the actual regular expression seen by Calc is
30456 @samp{\`\|^ @r{(newline)} \|\$\$?}.
30458 Regular expressions also consider pairs beginning with backslash
30459 to have special meanings.  Sometimes the backslash is used to quote
30460 a character that otherwise would have a special meaning in a regular
30461 expression, like @samp{$}, which normally means ``end-of-line,''
30462 or @samp{?}, which means that the preceding item is optional.  So
30463 @samp{\$\$?} matches either one or two dollar signs.
30465 The other codes in this regular expression are @samp{^}, which matches
30466 ``beginning-of-line,'' @samp{\|}, which means ``or,'' and @samp{\`},
30467 which matches ``beginning-of-buffer.''  So the whole pattern means
30468 that a formula begins at the beginning of the buffer, or on a newline
30469 that occurs at the beginning of a line (i.e., a blank line), or at
30470 one or two dollar signs.
30472 The default value of @code{calc-embedded-open-formula} looks just
30473 like this example, with several more alternatives added on to
30474 recognize various other common kinds of delimiters.
30476 By the way, the reason to use @samp{^\n} rather than @samp{^$}
30477 or @samp{\n\n}, which also would appear to match blank lines,
30478 is that the former expression actually ``consumes'' only one
30479 newline character as @emph{part of} the delimiter, whereas the
30480 latter expressions consume zero or two newlines, respectively.
30481 The former choice gives the most natural behavior when Calc
30482 must operate on a whole formula including its delimiters.
30484 See the Emacs manual for complete details on regular expressions.
30485 But just for your convenience, here is a list of all characters
30486 which must be quoted with backslash (like @samp{\$}) to avoid
30487 some special interpretation:  @samp{. * + ? [ ] ^ $ \}.  (Note
30488 the backslash in this list; for example, to match @samp{\[} you
30489 must use @code{"\\\\\\["}.  An exercise for the reader is to
30490 account for each of these six backslashes!)
30492 @vindex calc-embedded-close-formula
30493 The @code{calc-embedded-close-formula} variable holds a regular
30494 expression for the closing delimiter of a formula.  A closing
30495 regular expression to match the above example would be
30496 @code{"\\'\\|\n$\\|\\$\\$?"}.  This is almost the same as the
30497 other one, except it now uses @samp{\'} (``end-of-buffer'') and
30498 @samp{\n$} (newline occurring at end of line, yet another way
30499 of describing a blank line that is more appropriate for this
30500 case).
30502 @vindex calc-embedded-open-word
30503 @vindex calc-embedded-close-word
30504 The @code{calc-embedded-open-word} and @code{calc-embedded-close-word}
30505 variables are similar expressions used when you type @kbd{C-x * w}
30506 instead of @kbd{C-x * e} to enable Embedded mode.
30508 @vindex calc-embedded-open-plain
30509 The @code{calc-embedded-open-plain} variable is a string which
30510 begins a ``plain'' formula written in front of the formatted
30511 formula when @kbd{d p} mode is turned on.  Note that this is an
30512 actual string, not a regular expression, because Calc must be able
30513 to write this string into a buffer as well as to recognize it.
30514 The default string is @code{"%%% "} (note the trailing space), but may
30515 be different for certain major modes.
30517 @vindex calc-embedded-close-plain
30518 The @code{calc-embedded-close-plain} variable is a string which
30519 ends a ``plain'' formula.  The default is @code{" %%%\n"}, but may be
30520 different for different major modes.  Without
30521 the trailing newline here, the first line of a Big mode formula
30522 that followed might be shifted over with respect to the other lines.
30524 @vindex calc-embedded-open-new-formula
30525 The @code{calc-embedded-open-new-formula} variable is a string
30526 which is inserted at the front of a new formula when you type
30527 @kbd{C-x * f}.  Its default value is @code{"\n\n"}.  If this
30528 string begins with a newline character and the @kbd{C-x * f} is
30529 typed at the beginning of a line, @kbd{C-x * f} will skip this
30530 first newline to avoid introducing unnecessary blank lines in
30531 the file.
30533 @vindex calc-embedded-close-new-formula
30534 The @code{calc-embedded-close-new-formula} variable is the corresponding
30535 string which is inserted at the end of a new formula.  Its default
30536 value is also @code{"\n\n"}.  The final newline is omitted by
30537 @w{@kbd{C-x * f}} if typed at the end of a line.  (It follows that if
30538 @kbd{C-x * f} is typed on a blank line, both a leading opening
30539 newline and a trailing closing newline are omitted.)
30541 @vindex calc-embedded-announce-formula
30542 The @code{calc-embedded-announce-formula} variable is a regular
30543 expression which is sure to be followed by an embedded formula.
30544 The @kbd{C-x * a} command searches for this pattern as well as for
30545 @samp{=>} and @samp{:=} operators.  Note that @kbd{C-x * a} will
30546 not activate just anything surrounded by formula delimiters; after
30547 all, blank lines are considered formula delimiters by default!
30548 But if your language includes a delimiter which can only occur
30549 actually in front of a formula, you can take advantage of it here.
30550 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, but may be
30551 different for different major modes.
30552 This pattern will check for @samp{%Embed} followed by any number of
30553 lines beginning with @samp{%} and a space.  This last is important to
30554 make Calc consider mode annotations part of the pattern, so that the
30555 formula's opening delimiter really is sure to follow the pattern.
30557 @vindex calc-embedded-open-mode
30558 The @code{calc-embedded-open-mode} variable is a string (not a
30559 regular expression) which should precede a mode annotation.
30560 Calc never scans for this string; Calc always looks for the
30561 annotation itself.  But this is the string that is inserted before
30562 the opening bracket when Calc adds an annotation on its own.
30563 The default is @code{"% "}, but may be different for different major
30564 modes. 
30566 @vindex calc-embedded-close-mode
30567 The @code{calc-embedded-close-mode} variable is a string which
30568 follows a mode annotation written by Calc.  Its default value
30569 is simply a newline, @code{"\n"}, but may be different for different
30570 major modes.  If you change this, it is a good idea still to end with a
30571 newline so that mode annotations will appear on lines by themselves.
30573 @node Programming, Copying, Embedded Mode, Top
30574 @chapter Programming
30576 @noindent
30577 There are several ways to ``program'' the Emacs Calculator, depending
30578 on the nature of the problem you need to solve.
30580 @enumerate
30581 @item
30582 @dfn{Keyboard macros} allow you to record a sequence of keystrokes
30583 and play them back at a later time.  This is just the standard Emacs
30584 keyboard macro mechanism, dressed up with a few more features such
30585 as loops and conditionals.
30587 @item
30588 @dfn{Algebraic definitions} allow you to use any formula to define a
30589 new function.  This function can then be used in algebraic formulas or
30590 as an interactive command.
30592 @item
30593 @dfn{Rewrite rules} are discussed in the section on algebra commands.
30594 @xref{Rewrite Rules}.  If you put your rewrite rules in the variable
30595 @code{EvalRules}, they will be applied automatically to all Calc
30596 results in just the same way as an internal ``rule'' is applied to
30597 evaluate @samp{sqrt(9)} to 3 and so on.  @xref{Automatic Rewrites}.
30599 @item
30600 @dfn{Lisp} is the programming language that Calc (and most of Emacs)
30601 is written in.  If the above techniques aren't powerful enough, you
30602 can write Lisp functions to do anything that built-in Calc commands
30603 can do.  Lisp code is also somewhat faster than keyboard macros or
30604 rewrite rules.
30605 @end enumerate
30607 @kindex z
30608 Programming features are available through the @kbd{z} and @kbd{Z}
30609 prefix keys.  New commands that you define are two-key sequences
30610 beginning with @kbd{z}.  Commands for managing these definitions
30611 use the shift-@kbd{Z} prefix.  (The @kbd{Z T} (@code{calc-timing})
30612 command is described elsewhere; @pxref{Troubleshooting Commands}.
30613 The @kbd{Z C} (@code{calc-user-define-composition}) command is also
30614 described elsewhere; @pxref{User-Defined Compositions}.)
30616 @menu
30617 * Creating User Keys::
30618 * Keyboard Macros::
30619 * Invocation Macros::
30620 * Algebraic Definitions::
30621 * Lisp Definitions::
30622 @end menu
30624 @node Creating User Keys, Keyboard Macros, Programming, Programming
30625 @section Creating User Keys
30627 @noindent
30628 @kindex Z D
30629 @pindex calc-user-define
30630 Any Calculator command may be bound to a key using the @kbd{Z D}
30631 (@code{calc-user-define}) command.  Actually, it is bound to a two-key
30632 sequence beginning with the lower-case @kbd{z} prefix.
30634 The @kbd{Z D} command first prompts for the key to define.  For example,
30635 press @kbd{Z D a} to define the new key sequence @kbd{z a}.  You are then
30636 prompted for the name of the Calculator command that this key should
30637 run.  For example, the @code{calc-sincos} command is not normally
30638 available on a key.  Typing @kbd{Z D s sincos @key{RET}} programs the
30639 @kbd{z s} key sequence to run @code{calc-sincos}.  This definition will remain
30640 in effect for the rest of this Emacs session, or until you redefine
30641 @kbd{z s} to be something else.
30643 You can actually bind any Emacs command to a @kbd{z} key sequence by
30644 backspacing over the @samp{calc-} when you are prompted for the command name.
30646 As with any other prefix key, you can type @kbd{z ?} to see a list of
30647 all the two-key sequences you have defined that start with @kbd{z}.
30648 Initially, no @kbd{z} sequences (except @kbd{z ?} itself) are defined.
30650 User keys are typically letters, but may in fact be any key.
30651 (@key{META}-keys are not permitted, nor are a terminal's special
30652 function keys which generate multi-character sequences when pressed.)
30653 You can define different commands on the shifted and unshifted versions
30654 of a letter if you wish.
30656 @kindex Z U
30657 @pindex calc-user-undefine
30658 The @kbd{Z U} (@code{calc-user-undefine}) command unbinds a user key.
30659 For example, the key sequence @kbd{Z U s} will undefine the @code{sincos}
30660 key we defined above.
30662 @kindex Z P
30663 @pindex calc-user-define-permanent
30664 @cindex Storing user definitions
30665 @cindex Permanent user definitions
30666 @cindex Calc init file, user-defined commands
30667 The @kbd{Z P} (@code{calc-user-define-permanent}) command makes a key
30668 binding permanent so that it will remain in effect even in future Emacs
30669 sessions.  (It does this by adding a suitable bit of Lisp code into
30670 your Calc init file; that is, the file given by the variable
30671 @code{calc-settings-file}, typically @file{~/.calc.el}.)  For example,
30672 @kbd{Z P s} would register our @code{sincos} command permanently.  If
30673 you later wish to unregister this command you must edit your Calc init
30674 file by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
30675 use a different file for the Calc init file.)
30677 The @kbd{Z P} command also saves the user definition, if any, for the
30678 command bound to the key.  After @kbd{Z F} and @kbd{Z C}, a given user
30679 key could invoke a command, which in turn calls an algebraic function,
30680 which might have one or more special display formats.  A single @kbd{Z P}
30681 command will save all of these definitions.
30682 To save an algebraic function, type @kbd{'} (the apostrophe)
30683 when prompted for a key, and type the function name.  To save a command
30684 without its key binding, type @kbd{M-x} and enter a function name.  (The
30685 @samp{calc-} prefix will automatically be inserted for you.)
30686 (If the command you give implies a function, the function will be saved,
30687 and if the function has any display formats, those will be saved, but
30688 not the other way around:  Saving a function will not save any commands
30689 or key bindings associated with the function.) 
30691 @kindex Z E
30692 @pindex calc-user-define-edit
30693 @cindex Editing user definitions
30694 The @kbd{Z E} (@code{calc-user-define-edit}) command edits the definition
30695 of a user key.  This works for keys that have been defined by either
30696 keyboard macros or formulas; further details are contained in the relevant
30697 following sections.
30699 @node Keyboard Macros, Invocation Macros, Creating User Keys, Programming
30700 @section Programming with Keyboard Macros
30702 @noindent
30703 @kindex X
30704 @cindex Programming with keyboard macros
30705 @cindex Keyboard macros
30706 The easiest way to ``program'' the Emacs Calculator is to use standard
30707 keyboard macros.  Press @w{@kbd{C-x (}} to begin recording a macro.  From
30708 this point on, keystrokes you type will be saved away as well as
30709 performing their usual functions.  Press @kbd{C-x )} to end recording.
30710 Press shift-@kbd{X} (or the standard Emacs key sequence @kbd{C-x e}) to
30711 execute your keyboard macro by replaying the recorded keystrokes.
30712 @xref{Keyboard Macros, , , emacs, the Emacs Manual}, for further
30713 information.
30715 When you use @kbd{X} to invoke a keyboard macro, the entire macro is
30716 treated as a single command by the undo and trail features.  The stack
30717 display buffer is not updated during macro execution, but is instead
30718 fixed up once the macro completes.  Thus, commands defined with keyboard
30719 macros are convenient and efficient.  The @kbd{C-x e} command, on the
30720 other hand, invokes the keyboard macro with no special treatment: Each
30721 command in the macro will record its own undo information and trail entry,
30722 and update the stack buffer accordingly.  If your macro uses features
30723 outside of Calc's control to operate on the contents of the Calc stack
30724 buffer, or if it includes Undo, Redo, or last-arguments commands, you
30725 must use @kbd{C-x e} to make sure the buffer and undo list are up-to-date
30726 at all times.  You could also consider using @kbd{K} (@code{calc-keep-args})
30727 instead of @kbd{M-@key{RET}} (@code{calc-last-args}).
30729 Calc extends the standard Emacs keyboard macros in several ways.
30730 Keyboard macros can be used to create user-defined commands.  Keyboard
30731 macros can include conditional and iteration structures, somewhat
30732 analogous to those provided by a traditional programmable calculator.
30734 @menu
30735 * Naming Keyboard Macros::
30736 * Conditionals in Macros::
30737 * Loops in Macros::
30738 * Local Values in Macros::
30739 * Queries in Macros::
30740 @end menu
30742 @node Naming Keyboard Macros, Conditionals in Macros, Keyboard Macros, Keyboard Macros
30743 @subsection Naming Keyboard Macros
30745 @noindent
30746 @kindex Z K
30747 @pindex calc-user-define-kbd-macro
30748 Once you have defined a keyboard macro, you can bind it to a @kbd{z}
30749 key sequence with the @kbd{Z K} (@code{calc-user-define-kbd-macro}) command.
30750 This command prompts first for a key, then for a command name.  For
30751 example, if you type @kbd{C-x ( n @key{TAB} n @key{TAB} C-x )} you will
30752 define a keyboard macro which negates the top two numbers on the stack
30753 (@key{TAB} swaps the top two stack elements).  Now you can type
30754 @kbd{Z K n @key{RET}} to define this keyboard macro onto the @kbd{z n} key
30755 sequence.  The default command name (if you answer the second prompt with
30756 just the @key{RET} key as in this example) will be something like
30757 @samp{calc-User-n}.  The keyboard macro will now be available as both
30758 @kbd{z n} and @kbd{M-x calc-User-n}.  You can backspace and enter a more
30759 descriptive command name if you wish.
30761 Macros defined by @kbd{Z K} act like single commands; they are executed
30762 in the same way as by the @kbd{X} key.  If you wish to define the macro
30763 as a standard no-frills Emacs macro (to be executed as if by @kbd{C-x e}),
30764 give a negative prefix argument to @kbd{Z K}.
30766 Once you have bound your keyboard macro to a key, you can use
30767 @kbd{Z P} to register it permanently with Emacs.  @xref{Creating User Keys}.
30769 @cindex Keyboard macros, editing
30770 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
30771 been defined by a keyboard macro tries to use the @code{edmacro} package
30772 edit the macro.  Type @kbd{C-c C-c} to finish editing and update 
30773 the definition stored on the key, or, to cancel the edit, kill the
30774 buffer with @kbd{C-x k}.
30775 The special characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC},
30776 @code{DEL}, and @code{NUL} must be entered as these three character
30777 sequences, written in all uppercase, as must the prefixes @code{C-} and
30778 @code{M-}.  Spaces and line breaks are ignored.  Other characters are
30779 copied verbatim into the keyboard macro.  Basically, the notation is the
30780 same as is used in all of this manual's examples, except that the manual
30781 takes some liberties with spaces: When we say @kbd{' [1 2 3] @key{RET}},
30782 we take it for granted that it is clear we really mean 
30783 @kbd{' [1 @key{SPC} 2 @key{SPC} 3] @key{RET}}.
30785 @kindex C-x * m
30786 @pindex read-kbd-macro
30787 The @kbd{C-x * m} (@code{read-kbd-macro}) command reads an Emacs ``region''
30788 of spelled-out keystrokes and defines it as the current keyboard macro.
30789 It is a convenient way to define a keyboard macro that has been stored
30790 in a file, or to define a macro without executing it at the same time.
30792 @node Conditionals in Macros, Loops in Macros, Naming Keyboard Macros, Keyboard Macros
30793 @subsection Conditionals in Keyboard Macros
30795 @noindent
30796 @kindex Z [
30797 @kindex Z ]
30798 @pindex calc-kbd-if
30799 @pindex calc-kbd-else
30800 @pindex calc-kbd-else-if
30801 @pindex calc-kbd-end-if
30802 @cindex Conditional structures
30803 The @kbd{Z [} (@code{calc-kbd-if}) and @kbd{Z ]} (@code{calc-kbd-end-if})
30804 commands allow you to put simple tests in a keyboard macro.  When Calc
30805 sees the @kbd{Z [}, it pops an object from the stack and, if the object is
30806 a non-zero value, continues executing keystrokes.  But if the object is
30807 zero, or if it is not provably nonzero, Calc skips ahead to the matching
30808 @kbd{Z ]} keystroke.  @xref{Logical Operations}, for a set of commands for
30809 performing tests which conveniently produce 1 for true and 0 for false.
30811 For example, @kbd{@key{RET} 0 a < Z [ n Z ]} implements an absolute-value
30812 function in the form of a keyboard macro.  This macro duplicates the
30813 number on the top of the stack, pushes zero and compares using @kbd{a <}
30814 (@code{calc-less-than}), then, if the number was less than zero,
30815 executes @kbd{n} (@code{calc-change-sign}).  Otherwise, the change-sign
30816 command is skipped.
30818 To program this macro, type @kbd{C-x (}, type the above sequence of
30819 keystrokes, then type @kbd{C-x )}.  Note that the keystrokes will be
30820 executed while you are making the definition as well as when you later
30821 re-execute the macro by typing @kbd{X}.  Thus you should make sure a
30822 suitable number is on the stack before defining the macro so that you
30823 don't get a stack-underflow error during the definition process.
30825 Conditionals can be nested arbitrarily.  However, there should be exactly
30826 one @kbd{Z ]} for each @kbd{Z [} in a keyboard macro.
30828 @kindex Z :
30829 The @kbd{Z :} (@code{calc-kbd-else}) command allows you to choose between
30830 two keystroke sequences.  The general format is @kbd{@var{cond} Z [
30831 @var{then-part} Z : @var{else-part} Z ]}.  If @var{cond} is true
30832 (i.e., if the top of stack contains a non-zero number after @var{cond}
30833 has been executed), the @var{then-part} will be executed and the
30834 @var{else-part} will be skipped.  Otherwise, the @var{then-part} will
30835 be skipped and the @var{else-part} will be executed.
30837 @kindex Z |
30838 The @kbd{Z |} (@code{calc-kbd-else-if}) command allows you to choose
30839 between any number of alternatives.  For example,
30840 @kbd{@var{cond1} Z [ @var{part1} Z : @var{cond2} Z | @var{part2} Z :
30841 @var{part3} Z ]} will execute @var{part1} if @var{cond1} is true,
30842 otherwise it will execute @var{part2} if @var{cond2} is true, otherwise
30843 it will execute @var{part3}.
30845 More precisely, @kbd{Z [} pops a number and conditionally skips to the
30846 next matching @kbd{Z :} or @kbd{Z ]} key.  @w{@kbd{Z ]}} has no effect when
30847 actually executed.  @kbd{Z :} skips to the next matching @kbd{Z ]}.
30848 @kbd{Z |} pops a number and conditionally skips to the next matching
30849 @kbd{Z :} or @kbd{Z ]}; thus, @kbd{Z [} and @kbd{Z |} are functionally
30850 equivalent except that @kbd{Z [} participates in nesting but @kbd{Z |}
30851 does not.
30853 Calc's conditional and looping constructs work by scanning the
30854 keyboard macro for occurrences of character sequences like @samp{Z:}
30855 and @samp{Z]}.  One side-effect of this is that if you use these
30856 constructs you must be careful that these character pairs do not
30857 occur by accident in other parts of the macros.  Since Calc rarely
30858 uses shift-@kbd{Z} for any purpose except as a prefix character, this
30859 is not likely to be a problem.  Another side-effect is that it will
30860 not work to define your own custom key bindings for these commands.
30861 Only the standard shift-@kbd{Z} bindings will work correctly.
30863 @kindex Z C-g
30864 If Calc gets stuck while skipping characters during the definition of a
30865 macro, type @kbd{Z C-g} to cancel the definition.  (Typing plain @kbd{C-g}
30866 actually adds a @kbd{C-g} keystroke to the macro.)
30868 @node Loops in Macros, Local Values in Macros, Conditionals in Macros, Keyboard Macros
30869 @subsection Loops in Keyboard Macros
30871 @noindent
30872 @kindex Z <
30873 @kindex Z >
30874 @pindex calc-kbd-repeat
30875 @pindex calc-kbd-end-repeat
30876 @cindex Looping structures
30877 @cindex Iterative structures
30878 The @kbd{Z <} (@code{calc-kbd-repeat}) and @kbd{Z >}
30879 (@code{calc-kbd-end-repeat}) commands pop a number from the stack,
30880 which must be an integer, then repeat the keystrokes between the brackets
30881 the specified number of times.  If the integer is zero or negative, the
30882 body is skipped altogether.  For example, @kbd{1 @key{TAB} Z < 2 * Z >}
30883 computes two to a nonnegative integer power.  First, we push 1 on the
30884 stack and then swap the integer argument back to the top.  The @kbd{Z <}
30885 pops that argument leaving the 1 back on top of the stack.  Then, we
30886 repeat a multiply-by-two step however many times.
30888 Once again, the keyboard macro is executed as it is being entered.
30889 In this case it is especially important to set up reasonable initial
30890 conditions before making the definition:  Suppose the integer 1000 just
30891 happened to be sitting on the stack before we typed the above definition!
30892 Another approach is to enter a harmless dummy definition for the macro,
30893 then go back and edit in the real one with a @kbd{Z E} command.  Yet
30894 another approach is to type the macro as written-out keystroke names
30895 in a buffer, then use @kbd{C-x * m} (@code{read-kbd-macro}) to read the
30896 macro.
30898 @kindex Z /
30899 @pindex calc-break
30900 The @kbd{Z /} (@code{calc-kbd-break}) command allows you to break out
30901 of a keyboard macro loop prematurely.  It pops an object from the stack;
30902 if that object is true (a non-zero number), control jumps out of the
30903 innermost enclosing @kbd{Z <} @dots{} @kbd{Z >} loop and continues
30904 after the @kbd{Z >}.  If the object is false, the @kbd{Z /} has no
30905 effect.  Thus @kbd{@var{cond} Z /} is similar to @samp{if (@var{cond}) break;}
30906 in the C language.
30908 @kindex Z (
30909 @kindex Z )
30910 @pindex calc-kbd-for
30911 @pindex calc-kbd-end-for
30912 The @kbd{Z (} (@code{calc-kbd-for}) and @kbd{Z )} (@code{calc-kbd-end-for})
30913 commands are similar to @kbd{Z <} and @kbd{Z >}, except that they make the
30914 value of the counter available inside the loop.  The general layout is
30915 @kbd{@var{init} @var{final} Z ( @var{body} @var{step} Z )}.  The @kbd{Z (}
30916 command pops initial and final values from the stack.  It then creates
30917 a temporary internal counter and initializes it with the value @var{init}.
30918 The @kbd{Z (} command then repeatedly pushes the counter value onto the
30919 stack and executes @var{body} and @var{step}, adding @var{step} to the
30920 counter each time until the loop finishes.
30922 @cindex Summations (by keyboard macros)
30923 By default, the loop finishes when the counter becomes greater than (or
30924 less than) @var{final}, assuming @var{initial} is less than (greater
30925 than) @var{final}.  If @var{initial} is equal to @var{final}, the body
30926 executes exactly once.  The body of the loop always executes at least
30927 once.  For example, @kbd{0 1 10 Z ( 2 ^ + 1 Z )} computes the sum of the
30928 squares of the integers from 1 to 10, in steps of 1.
30930 If you give a numeric prefix argument of 1 to @kbd{Z (}, the loop is
30931 forced to use upward-counting conventions.  In this case, if @var{initial}
30932 is greater than @var{final} the body will not be executed at all.
30933 Note that @var{step} may still be negative in this loop; the prefix
30934 argument merely constrains the loop-finished test.  Likewise, a prefix
30935 argument of @mathit{-1} forces downward-counting conventions.
30937 @kindex Z @{
30938 @kindex Z @}
30939 @pindex calc-kbd-loop
30940 @pindex calc-kbd-end-loop
30941 The @kbd{Z @{} (@code{calc-kbd-loop}) and @kbd{Z @}}
30942 (@code{calc-kbd-end-loop}) commands are similar to @kbd{Z <} and
30943 @kbd{Z >}, except that they do not pop a count from the stack---they
30944 effectively create an infinite loop.  Every @kbd{Z @{} @dots{} @kbd{Z @}}
30945 loop ought to include at least one @kbd{Z /} to make sure the loop
30946 doesn't run forever.  (If any error message occurs which causes Emacs
30947 to beep, the keyboard macro will also be halted; this is a standard
30948 feature of Emacs.  You can also generally press @kbd{C-g} to halt a
30949 running keyboard macro, although not all versions of Unix support
30950 this feature.)
30952 The conditional and looping constructs are not actually tied to
30953 keyboard macros, but they are most often used in that context.
30954 For example, the keystrokes @kbd{10 Z < 23 @key{RET} Z >} push
30955 ten copies of 23 onto the stack.  This can be typed ``live'' just
30956 as easily as in a macro definition.
30958 @xref{Conditionals in Macros}, for some additional notes about
30959 conditional and looping commands.
30961 @node Local Values in Macros, Queries in Macros, Loops in Macros, Keyboard Macros
30962 @subsection Local Values in Macros
30964 @noindent
30965 @cindex Local variables
30966 @cindex Restoring saved modes
30967 Keyboard macros sometimes want to operate under known conditions
30968 without affecting surrounding conditions.  For example, a keyboard
30969 macro may wish to turn on Fraction mode, or set a particular
30970 precision, independent of the user's normal setting for those
30971 modes.
30973 @kindex Z `
30974 @kindex Z '
30975 @pindex calc-kbd-push
30976 @pindex calc-kbd-pop
30977 Macros also sometimes need to use local variables.  Assignments to
30978 local variables inside the macro should not affect any variables
30979 outside the macro.  The @kbd{Z `} (@code{calc-kbd-push}) and @kbd{Z '}
30980 (@code{calc-kbd-pop}) commands give you both of these capabilities.
30982 When you type @kbd{Z `} (with a backquote or accent grave character),
30983 the values of various mode settings are saved away.  The ten ``quick''
30984 variables @code{q0} through @code{q9} are also saved.  When
30985 you type @w{@kbd{Z '}} (with an apostrophe), these values are restored.
30986 Pairs of @kbd{Z `} and @kbd{Z '} commands may be nested.
30988 If a keyboard macro halts due to an error in between a @kbd{Z `} and
30989 a @kbd{Z '}, the saved values will be restored correctly even though
30990 the macro never reaches the @kbd{Z '} command.  Thus you can use
30991 @kbd{Z `} and @kbd{Z '} without having to worry about what happens
30992 in exceptional conditions.
30994 If you type @kbd{Z `} ``live'' (not in a keyboard macro), Calc puts
30995 you into a ``recursive edit.''  You can tell you are in a recursive
30996 edit because there will be extra square brackets in the mode line,
30997 as in @samp{[(Calculator)]}.  These brackets will go away when you
30998 type the matching @kbd{Z '} command.  The modes and quick variables
30999 will be saved and restored in just the same way as if actual keyboard
31000 macros were involved.
31002 The modes saved by @kbd{Z `} and @kbd{Z '} are the current precision
31003 and binary word size, the angular mode (Deg, Rad, or HMS), the
31004 simplification mode, Algebraic mode, Symbolic mode, Infinite mode,
31005 Matrix or Scalar mode, Fraction mode, and the current complex mode
31006 (Polar or Rectangular).  The ten ``quick'' variables' values (or lack
31007 thereof) are also saved.
31009 Most mode-setting commands act as toggles, but with a numeric prefix
31010 they force the mode either on (positive prefix) or off (negative
31011 or zero prefix).  Since you don't know what the environment might
31012 be when you invoke your macro, it's best to use prefix arguments
31013 for all mode-setting commands inside the macro.
31015 In fact, @kbd{C-u Z `} is like @kbd{Z `} except that it sets the modes
31016 listed above to their default values.  As usual, the matching @kbd{Z '}
31017 will restore the modes to their settings from before the @kbd{C-u Z `}.
31018 Also, @w{@kbd{Z `}} with a negative prefix argument resets the algebraic mode
31019 to its default (off) but leaves the other modes the same as they were
31020 outside the construct.
31022 The contents of the stack and trail, values of non-quick variables, and
31023 other settings such as the language mode and the various display modes,
31024 are @emph{not} affected by @kbd{Z `} and @kbd{Z '}.
31026 @node Queries in Macros,  , Local Values in Macros, Keyboard Macros
31027 @subsection Queries in Keyboard Macros
31029 @c @noindent
31030 @c @kindex Z =
31031 @c @pindex calc-kbd-report
31032 @c The @kbd{Z =} (@code{calc-kbd-report}) command displays an informative
31033 @c message including the value on the top of the stack.  You are prompted
31034 @c to enter a string.  That string, along with the top-of-stack value,
31035 @c is displayed unless @kbd{m w} (@code{calc-working}) has been used
31036 @c to turn such messages off.
31038 @noindent
31039 @kindex Z #
31040 @pindex calc-kbd-query
31041 The @kbd{Z #} (@code{calc-kbd-query}) command prompts for an algebraic
31042 entry which takes its input from the keyboard, even during macro
31043 execution.  All the normal conventions of algebraic input, including the
31044 use of @kbd{$} characters, are supported.  The prompt message itself is
31045 taken from the top of the stack, and so must be entered (as a string)
31046 before the @kbd{Z #} command.  (Recall, as a string it can be entered by
31047 pressing the @kbd{"} key and will appear as a vector when it is put on
31048 the stack.  The prompt message is only put on the stack to provide a
31049 prompt for the @kbd{Z #} command; it will not play any role in any
31050 subsequent calculations.)  This command allows your keyboard macros to
31051 accept numbers or formulas as interactive input.
31053 As an example, 
31054 @kbd{2 @key{RET} "Power: " @key{RET} Z # 3 @key{RET} ^} will prompt for
31055 input with ``Power: '' in the minibuffer, then return 2 to the provided
31056 power.  (The response to the prompt that's given, 3 in this example,
31057 will not be part of the macro.)
31059 @xref{Keyboard Macro Query, , , emacs, the Emacs Manual}, for a description of
31060 @kbd{C-x q} (@code{kbd-macro-query}), the standard Emacs way to accept
31061 keyboard input during a keyboard macro.  In particular, you can use
31062 @kbd{C-x q} to enter a recursive edit, which allows the user to perform
31063 any Calculator operations interactively before pressing @kbd{C-M-c} to
31064 return control to the keyboard macro.
31066 @node Invocation Macros, Algebraic Definitions, Keyboard Macros, Programming
31067 @section Invocation Macros
31069 @kindex C-x * z
31070 @kindex Z I
31071 @pindex calc-user-invocation
31072 @pindex calc-user-define-invocation
31073 Calc provides one special keyboard macro, called up by @kbd{C-x * z}
31074 (@code{calc-user-invocation}), that is intended to allow you to define
31075 your own special way of starting Calc.  To define this ``invocation
31076 macro,'' create the macro in the usual way with @kbd{C-x (} and
31077 @kbd{C-x )}, then type @kbd{Z I} (@code{calc-user-define-invocation}).
31078 There is only one invocation macro, so you don't need to type any
31079 additional letters after @kbd{Z I}.  From now on, you can type
31080 @kbd{C-x * z} at any time to execute your invocation macro.
31082 For example, suppose you find yourself often grabbing rectangles of
31083 numbers into Calc and multiplying their columns.  You can do this
31084 by typing @kbd{C-x * r} to grab, and @kbd{V R : *} to multiply columns.
31085 To make this into an invocation macro, just type @kbd{C-x ( C-x * r
31086 V R : * C-x )}, then @kbd{Z I}.  Then, to multiply a rectangle of data,
31087 just mark the data in its buffer in the usual way and type @kbd{C-x * z}.
31089 Invocation macros are treated like regular Emacs keyboard macros;
31090 all the special features described above for @kbd{Z K}-style macros
31091 do not apply.  @kbd{C-x * z} is just like @kbd{C-x e}, except that it
31092 uses the macro that was last stored by @kbd{Z I}.  (In fact, the
31093 macro does not even have to have anything to do with Calc!)
31095 The @kbd{m m} command saves the last invocation macro defined by
31096 @kbd{Z I} along with all the other Calc mode settings.
31097 @xref{General Mode Commands}.
31099 @node Algebraic Definitions, Lisp Definitions, Invocation Macros, Programming
31100 @section Programming with Formulas
31102 @noindent
31103 @kindex Z F
31104 @pindex calc-user-define-formula
31105 @cindex Programming with algebraic formulas
31106 Another way to create a new Calculator command uses algebraic formulas.
31107 The @kbd{Z F} (@code{calc-user-define-formula}) command stores the
31108 formula at the top of the stack as the definition for a key.  This
31109 command prompts for five things: The key, the command name, the function
31110 name, the argument list, and the behavior of the command when given
31111 non-numeric arguments.
31113 For example, suppose we type @kbd{' a+2b @key{RET}} to push the formula
31114 @samp{a + 2*b} onto the stack.  We now type @kbd{Z F m} to define this
31115 formula on the @kbd{z m} key sequence.  The next prompt is for a command
31116 name, beginning with @samp{calc-}, which should be the long (@kbd{M-x}) form
31117 for the new command.  If you simply press @key{RET}, a default name like
31118 @code{calc-User-m} will be constructed.  In our example, suppose we enter
31119 @kbd{spam @key{RET}} to define the new command as @code{calc-spam}.
31121 If you want to give the formula a long-style name only, you can press
31122 @key{SPC} or @key{RET} when asked which single key to use.  For example
31123 @kbd{Z F @key{RET} spam @key{RET}} defines the new command as
31124 @kbd{M-x calc-spam}, with no keyboard equivalent.
31126 The third prompt is for an algebraic function name.  The default is to
31127 use the same name as the command name but without the @samp{calc-}
31128 prefix.  (If this is of the form @samp{User-m}, the hyphen is removed so
31129 it won't be taken for a minus sign in algebraic formulas.)
31130 This is the name you will use if you want to enter your 
31131 new function in an algebraic formula.  Suppose we enter @kbd{yow @key{RET}}.
31132 Then the new function can be invoked by pushing two numbers on the
31133 stack and typing @kbd{z m} or @kbd{x spam}, or by entering the algebraic
31134 formula @samp{yow(x,y)}.
31136 The fourth prompt is for the function's argument list.  This is used to
31137 associate values on the stack with the variables that appear in the formula.
31138 The default is a list of all variables which appear in the formula, sorted
31139 into alphabetical order.  In our case, the default would be @samp{(a b)}.
31140 This means that, when the user types @kbd{z m}, the Calculator will remove
31141 two numbers from the stack, substitute these numbers for @samp{a} and
31142 @samp{b} (respectively) in the formula, then simplify the formula and
31143 push the result on the stack.  In other words, @kbd{10 @key{RET} 100 z m}
31144 would replace the 10 and 100 on the stack with the number 210, which is
31145 @expr{a + 2 b} with @expr{a=10} and @expr{b=100}.  Likewise, the formula
31146 @samp{yow(10, 100)} will be evaluated by substituting @expr{a=10} and
31147 @expr{b=100} in the definition.
31149 You can rearrange the order of the names before pressing @key{RET} to
31150 control which stack positions go to which variables in the formula.  If
31151 you remove a variable from the argument list, that variable will be left
31152 in symbolic form by the command.  Thus using an argument list of @samp{(b)}
31153 for our function would cause @kbd{10 z m} to replace the 10 on the stack
31154 with the formula @samp{a + 20}.  If we had used an argument list of
31155 @samp{(b a)}, the result with inputs 10 and 100 would have been 120.
31157 You can also put a nameless function on the stack instead of just a
31158 formula, as in @samp{<a, b : a + 2 b>}.  @xref{Specifying Operators}.
31159 In this example, the command will be defined by the formula @samp{a + 2 b}
31160 using the argument list @samp{(a b)}.
31162 The final prompt is a y-or-n question concerning what to do if symbolic
31163 arguments are given to your function.  If you answer @kbd{y}, then
31164 executing @kbd{z m} (using the original argument list @samp{(a b)}) with
31165 arguments @expr{10} and @expr{x} will leave the function in symbolic
31166 form, i.e., @samp{yow(10,x)}.  On the other hand, if you answer @kbd{n},
31167 then the formula will always be expanded, even for non-constant
31168 arguments: @samp{10 + 2 x}.  If you never plan to feed algebraic
31169 formulas to your new function, it doesn't matter how you answer this
31170 question.
31172 If you answered @kbd{y} to this question you can still cause a function
31173 call to be expanded by typing @kbd{a "} (@code{calc-expand-formula}).
31174 Also, Calc will expand the function if necessary when you take a
31175 derivative or integral or solve an equation involving the function.
31177 @kindex Z G
31178 @pindex calc-get-user-defn
31179 Once you have defined a formula on a key, you can retrieve this formula
31180 with the @kbd{Z G} (@code{calc-user-define-get-defn}) command.  Press a
31181 key, and this command pushes the formula that was used to define that
31182 key onto the stack.  Actually, it pushes a nameless function that
31183 specifies both the argument list and the defining formula.  You will get
31184 an error message if the key is undefined, or if the key was not defined
31185 by a @kbd{Z F} command.
31187 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
31188 been defined by a formula uses a variant of the @code{calc-edit} command
31189 to edit the defining formula.  Press @kbd{C-c C-c} to finish editing and
31190 store the new formula back in the definition, or kill the buffer with
31191 @kbd{C-x k} to
31192 cancel the edit.  (The argument list and other properties of the
31193 definition are unchanged; to adjust the argument list, you can use
31194 @kbd{Z G} to grab the function onto the stack, edit with @kbd{`}, and
31195 then re-execute the @kbd{Z F} command.)
31197 As usual, the @kbd{Z P} command records your definition permanently.
31198 In this case it will permanently record all three of the relevant
31199 definitions: the key, the command, and the function.
31201 You may find it useful to turn off the default simplifications with
31202 @kbd{m O} (@code{calc-no-simplify-mode}) when entering a formula to be
31203 used as a function definition.  For example, the formula @samp{deriv(a^2,v)}
31204 which might be used to define a new function @samp{dsqr(a,v)} will be
31205 ``simplified'' to 0 immediately upon entry since @code{deriv} considers
31206 @expr{a} to be constant with respect to @expr{v}.  Turning off
31207 default simplifications cures this problem:  The definition will be stored
31208 in symbolic form without ever activating the @code{deriv} function.  Press
31209 @kbd{m D} to turn the default simplifications back on afterwards.
31211 @node Lisp Definitions,  , Algebraic Definitions, Programming
31212 @section Programming with Lisp
31214 @noindent
31215 The Calculator can be programmed quite extensively in Lisp.  All you
31216 do is write a normal Lisp function definition, but with @code{defmath}
31217 in place of @code{defun}.  This has the same form as @code{defun}, but it
31218 automagically replaces calls to standard Lisp functions like @code{+} and
31219 @code{zerop} with calls to the corresponding functions in Calc's own library.
31220 Thus you can write natural-looking Lisp code which operates on all of the
31221 standard Calculator data types.  You can then use @kbd{Z D} if you wish to
31222 bind your new command to a @kbd{z}-prefix key sequence.  The @kbd{Z E} command
31223 will not edit a Lisp-based definition.
31225 Emacs Lisp is described in the GNU Emacs Lisp Reference Manual.  This section
31226 assumes a familiarity with Lisp programming concepts; if you do not know
31227 Lisp, you may find keyboard macros or rewrite rules to be an easier way
31228 to program the Calculator.
31230 This section first discusses ways to write commands, functions, or
31231 small programs to be executed inside of Calc.  Then it discusses how
31232 your own separate programs are able to call Calc from the outside.
31233 Finally, there is a list of internal Calc functions and data structures
31234 for the true Lisp enthusiast.
31236 @menu
31237 * Defining Functions::
31238 * Defining Simple Commands::
31239 * Defining Stack Commands::
31240 * Argument Qualifiers::
31241 * Example Definitions::
31243 * Calling Calc from Your Programs::
31244 * Internals::
31245 @end menu
31247 @node Defining Functions, Defining Simple Commands, Lisp Definitions, Lisp Definitions
31248 @subsection Defining New Functions
31250 @noindent
31251 @findex defmath
31252 The @code{defmath} function (actually a Lisp macro) is like @code{defun}
31253 except that code in the body of the definition can make use of the full
31254 range of Calculator data types.  The prefix @samp{calcFunc-} is added
31255 to the specified name to get the actual Lisp function name.  As a simple
31256 example,
31258 @example
31259 (defmath myfact (n)
31260   (if (> n 0)
31261       (* n (myfact (1- n)))
31262     1))
31263 @end example
31265 @noindent
31266 This actually expands to the code,
31268 @example
31269 (defun calcFunc-myfact (n)
31270   (if (math-posp n)
31271       (math-mul n (calcFunc-myfact (math-add n -1)))
31272     1))
31273 @end example
31275 @noindent
31276 This function can be used in algebraic expressions, e.g., @samp{myfact(5)}.
31278 The @samp{myfact} function as it is defined above has the bug that an
31279 expression @samp{myfact(a+b)} will be simplified to 1 because the
31280 formula @samp{a+b} is not considered to be @code{posp}.  A robust
31281 factorial function would be written along the following lines:
31283 @smallexample
31284 (defmath myfact (n)
31285   (if (> n 0)
31286       (* n (myfact (1- n)))
31287     (if (= n 0)
31288         1
31289       nil)))    ; this could be simplified as: (and (= n 0) 1)
31290 @end smallexample
31292 If a function returns @code{nil}, it is left unsimplified by the Calculator
31293 (except that its arguments will be simplified).  Thus, @samp{myfact(a+1+2)}
31294 will be simplified to @samp{myfact(a+3)} but no further.  Beware that every
31295 time the Calculator reexamines this formula it will attempt to resimplify
31296 it, so your function ought to detect the returning-@code{nil} case as
31297 efficiently as possible.
31299 The following standard Lisp functions are treated by @code{defmath}:
31300 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^} or
31301 @code{expt}, @code{=}, @code{<}, @code{>}, @code{<=}, @code{>=},
31302 @code{/=}, @code{1+}, @code{1-}, @code{logand}, @code{logior}, @code{logxor},
31303 @code{logandc2}, @code{lognot}.  Also, @code{~=} is an abbreviation for
31304 @code{math-nearly-equal}, which is useful in implementing Taylor series.
31306 For other functions @var{func}, if a function by the name
31307 @samp{calcFunc-@var{func}} exists it is used, otherwise if a function by the
31308 name @samp{math-@var{func}} exists it is used, otherwise if @var{func} itself
31309 is defined as a function it is used, otherwise @samp{calcFunc-@var{func}} is
31310 used on the assumption that this is a to-be-defined math function.  Also, if
31311 the function name is quoted as in @samp{('integerp a)} the function name is
31312 always used exactly as written (but not quoted).
31314 Variable names have @samp{var-} prepended to them unless they appear in
31315 the function's argument list or in an enclosing @code{let}, @code{let*},
31316 @code{for}, or @code{foreach} form,
31317 or their names already contain a @samp{-} character.  Thus a reference to
31318 @samp{foo} is the same as a reference to @samp{var-foo}.
31320 A few other Lisp extensions are available in @code{defmath} definitions:
31322 @itemize @bullet
31323 @item
31324 The @code{elt} function accepts any number of index variables.
31325 Note that Calc vectors are stored as Lisp lists whose first
31326 element is the symbol @code{vec}; thus, @samp{(elt v 2)} yields
31327 the second element of vector @code{v}, and @samp{(elt m i j)}
31328 yields one element of a Calc matrix.
31330 @item
31331 The @code{setq} function has been extended to act like the Common
31332 Lisp @code{setf} function.  (The name @code{setf} is recognized as
31333 a synonym of @code{setq}.)  Specifically, the first argument of
31334 @code{setq} can be an @code{nth}, @code{elt}, @code{car}, or @code{cdr} form,
31335 in which case the effect is to store into the specified
31336 element of a list.  Thus, @samp{(setq (elt m i j) x)} stores @expr{x}
31337 into one element of a matrix.
31339 @item
31340 A @code{for} looping construct is available.  For example,
31341 @samp{(for ((i 0 10)) body)} executes @code{body} once for each
31342 binding of @expr{i} from zero to 10.  This is like a @code{let}
31343 form in that @expr{i} is temporarily bound to the loop count
31344 without disturbing its value outside the @code{for} construct.
31345 Nested loops, as in @samp{(for ((i 0 10) (j 0 (1- i) 2)) body)},
31346 are also available.  For each value of @expr{i} from zero to 10,
31347 @expr{j} counts from 0 to @expr{i-1} in steps of two.  Note that
31348 @code{for} has the same general outline as @code{let*}, except
31349 that each element of the header is a list of three or four
31350 things, not just two.
31352 @item
31353 The @code{foreach} construct loops over elements of a list.
31354 For example, @samp{(foreach ((x (cdr v))) body)} executes
31355 @code{body} with @expr{x} bound to each element of Calc vector
31356 @expr{v} in turn.  The purpose of @code{cdr} here is to skip over
31357 the initial @code{vec} symbol in the vector.
31359 @item
31360 The @code{break} function breaks out of the innermost enclosing
31361 @code{while}, @code{for}, or @code{foreach} loop.  If given a
31362 value, as in @samp{(break x)}, this value is returned by the
31363 loop.  (Lisp loops otherwise always return @code{nil}.)
31365 @item
31366 The @code{return} function prematurely returns from the enclosing
31367 function.  For example, @samp{(return (+ x y))} returns @expr{x+y}
31368 as the value of a function.  You can use @code{return} anywhere
31369 inside the body of the function.
31370 @end itemize
31372 Non-integer numbers (and extremely large integers) cannot be included
31373 directly into a @code{defmath} definition.  This is because the Lisp
31374 reader will fail to parse them long before @code{defmath} ever gets control.
31375 Instead, use the notation, @samp{:"3.1415"}.  In fact, any algebraic
31376 formula can go between the quotes.  For example,
31378 @smallexample
31379 (defmath sqexp (x)     ; sqexp(x) == sqrt(exp(x)) == exp(x*0.5)
31380   (and (numberp x)
31381        (exp :"x * 0.5")))
31382 @end smallexample
31384 expands to
31386 @smallexample
31387 (defun calcFunc-sqexp (x)
31388   (and (math-numberp x)
31389        (calcFunc-exp (math-mul x '(float 5 -1)))))
31390 @end smallexample
31392 Note the use of @code{numberp} as a guard to ensure that the argument is
31393 a number first, returning @code{nil} if not.  The exponential function
31394 could itself have been included in the expression, if we had preferred:
31395 @samp{:"exp(x * 0.5)"}.  As another example, the multiplication-and-recursion
31396 step of @code{myfact} could have been written
31398 @example
31399 :"n * myfact(n-1)"
31400 @end example
31402 A good place to put your @code{defmath} commands is your Calc init file
31403 (the file given by @code{calc-settings-file}, typically
31404 @file{~/.calc.el}), which will not be loaded until Calc starts.
31405 If a file named @file{.emacs} exists in your home directory, Emacs reads
31406 and executes the Lisp forms in this file as it starts up.  While it may
31407 seem reasonable to put your favorite @code{defmath} commands there,
31408 this has the unfortunate side-effect that parts of the Calculator must be
31409 loaded in to process the @code{defmath} commands whether or not you will
31410 actually use the Calculator!  If you want to put the @code{defmath}
31411 commands there (for example, if you redefine @code{calc-settings-file}
31412 to be @file{.emacs}), a better effect can be had by writing
31414 @example
31415 (put 'calc-define 'thing '(progn
31416  (defmath ... )
31417  (defmath ... )
31419 @end example
31421 @noindent
31422 @vindex calc-define
31423 The @code{put} function adds a @dfn{property} to a symbol.  Each Lisp
31424 symbol has a list of properties associated with it.  Here we add a
31425 property with a name of @code{thing} and a @samp{(progn ...)} form as
31426 its value.  When Calc starts up, and at the start of every Calc command,
31427 the property list for the symbol @code{calc-define} is checked and the
31428 values of any properties found are evaluated as Lisp forms.  The
31429 properties are removed as they are evaluated.  The property names
31430 (like @code{thing}) are not used; you should choose something like the
31431 name of your project so as not to conflict with other properties.
31433 The net effect is that you can put the above code in your @file{.emacs}
31434 file and it will not be executed until Calc is loaded.  Or, you can put
31435 that same code in another file which you load by hand either before or
31436 after Calc itself is loaded.
31438 The properties of @code{calc-define} are evaluated in the same order
31439 that they were added.  They can assume that the Calc modules @file{calc.el},
31440 @file{calc-ext.el}, and @file{calc-macs.el} have been fully loaded, and
31441 that the @samp{*Calculator*} buffer will be the current buffer.
31443 If your @code{calc-define} property only defines algebraic functions,
31444 you can be sure that it will have been evaluated before Calc tries to
31445 call your function, even if the file defining the property is loaded
31446 after Calc is loaded.  But if the property defines commands or key
31447 sequences, it may not be evaluated soon enough.  (Suppose it defines the
31448 new command @code{tweak-calc}; the user can load your file, then type
31449 @kbd{M-x tweak-calc} before Calc has had chance to do anything.)  To
31450 protect against this situation, you can put
31452 @example
31453 (run-hooks 'calc-check-defines)
31454 @end example
31456 @findex calc-check-defines
31457 @noindent
31458 at the end of your file.  The @code{calc-check-defines} function is what
31459 looks for and evaluates properties on @code{calc-define}; @code{run-hooks}
31460 has the advantage that it is quietly ignored if @code{calc-check-defines}
31461 is not yet defined because Calc has not yet been loaded.
31463 Examples of things that ought to be enclosed in a @code{calc-define}
31464 property are @code{defmath} calls, @code{define-key} calls that modify
31465 the Calc key map, and any calls that redefine things defined inside Calc.
31466 Ordinary @code{defun}s need not be enclosed with @code{calc-define}.
31468 @node Defining Simple Commands, Defining Stack Commands, Defining Functions, Lisp Definitions
31469 @subsection Defining New Simple Commands
31471 @noindent
31472 @findex interactive
31473 If a @code{defmath} form contains an @code{interactive} clause, it defines
31474 a Calculator command.  Actually such a @code{defmath} results in @emph{two}
31475 function definitions:  One, a @samp{calcFunc-} function as was just described,
31476 with the @code{interactive} clause removed.  Two, a @samp{calc-} function
31477 with a suitable @code{interactive} clause and some sort of wrapper to make
31478 the command work in the Calc environment.
31480 In the simple case, the @code{interactive} clause has the same form as
31481 for normal Emacs Lisp commands:
31483 @smallexample
31484 (defmath increase-precision (delta)
31485   "Increase precision by DELTA."     ; This is the "documentation string"
31486   (interactive "p")                  ; Register this as a M-x-able command
31487   (setq calc-internal-prec (+ calc-internal-prec delta)))
31488 @end smallexample
31490 This expands to the pair of definitions,
31492 @smallexample
31493 (defun calc-increase-precision (delta)
31494   "Increase precision by DELTA."
31495   (interactive "p")
31496   (calc-wrapper
31497    (setq calc-internal-prec (math-add calc-internal-prec delta))))
31499 (defun calcFunc-increase-precision (delta)
31500   "Increase precision by DELTA."
31501   (setq calc-internal-prec (math-add calc-internal-prec delta)))
31502 @end smallexample
31504 @noindent
31505 where in this case the latter function would never really be used!  Note
31506 that since the Calculator stores small integers as plain Lisp integers,
31507 the @code{math-add} function will work just as well as the native
31508 @code{+} even when the intent is to operate on native Lisp integers.
31510 @findex calc-wrapper
31511 The @samp{calc-wrapper} call invokes a macro which surrounds the body of
31512 the function with code that looks roughly like this:
31514 @smallexample
31515 (let ((calc-command-flags nil))
31516   (unwind-protect
31517       (save-excursion
31518         (calc-select-buffer)
31519         @emph{body of function}
31520         @emph{renumber stack}
31521         @emph{clear} Working @emph{message})
31522     @emph{realign cursor and window}
31523     @emph{clear Inverse, Hyperbolic, and Keep Args flags}
31524     @emph{update Emacs mode line}))
31525 @end smallexample
31527 @findex calc-select-buffer
31528 The @code{calc-select-buffer} function selects the @samp{*Calculator*}
31529 buffer if necessary, say, because the command was invoked from inside
31530 the @samp{*Calc Trail*} window.
31532 @findex calc-set-command-flag
31533 You can call, for example, @code{(calc-set-command-flag 'no-align)} to
31534 set the above-mentioned command flags.  Calc routines recognize the
31535 following command flags:
31537 @table @code
31538 @item renum-stack
31539 Stack line numbers @samp{1:}, @samp{2:}, and so on must be renumbered
31540 after this command completes.  This is set by routines like
31541 @code{calc-push}.
31543 @item clear-message
31544 Calc should call @samp{(message "")} if this command completes normally
31545 (to clear a ``Working@dots{}'' message out of the echo area).
31547 @item no-align
31548 Do not move the cursor back to the @samp{.} top-of-stack marker.
31550 @item position-point
31551 Use the variables @code{calc-position-point-line} and
31552 @code{calc-position-point-column} to position the cursor after
31553 this command finishes.
31555 @item keep-flags
31556 Do not clear @code{calc-inverse-flag}, @code{calc-hyperbolic-flag},
31557 and @code{calc-keep-args-flag} at the end of this command.
31559 @item do-edit
31560 Switch to buffer @samp{*Calc Edit*} after this command.
31562 @item hold-trail
31563 Do not move trail pointer to end of trail when something is recorded
31564 there.
31565 @end table
31567 @kindex Y
31568 @kindex Y ?
31569 @vindex calc-Y-help-msgs
31570 Calc reserves a special prefix key, shift-@kbd{Y}, for user-written
31571 extensions to Calc.  There are no built-in commands that work with
31572 this prefix key; you must call @code{define-key} from Lisp (probably
31573 from inside a @code{calc-define} property) to add to it.  Initially only
31574 @kbd{Y ?} is defined; it takes help messages from a list of strings
31575 (initially @code{nil}) in the variable @code{calc-Y-help-msgs}.  All
31576 other undefined keys except for @kbd{Y} are reserved for use by
31577 future versions of Calc.
31579 If you are writing a Calc enhancement which you expect to give to
31580 others, it is best to minimize the number of @kbd{Y}-key sequences
31581 you use.  In fact, if you have more than one key sequence you should
31582 consider defining three-key sequences with a @kbd{Y}, then a key that
31583 stands for your package, then a third key for the particular command
31584 within your package.
31586 Users may wish to install several Calc enhancements, and it is possible
31587 that several enhancements will choose to use the same key.  In the
31588 example below, a variable @code{inc-prec-base-key} has been defined
31589 to contain the key that identifies the @code{inc-prec} package.  Its
31590 value is initially @code{"P"}, but a user can change this variable
31591 if necessary without having to modify the file.
31593 Here is a complete file, @file{inc-prec.el}, which makes a @kbd{Y P I}
31594 command that increases the precision, and a @kbd{Y P D} command that
31595 decreases the precision.
31597 @smallexample
31598 ;;; Increase and decrease Calc precision.  Dave Gillespie, 5/31/91.
31599 ;; (Include copyright or copyleft stuff here.)
31601 (defvar inc-prec-base-key "P"
31602   "Base key for inc-prec.el commands.")
31604 (put 'calc-define 'inc-prec '(progn
31606 (define-key calc-mode-map (format "Y%sI" inc-prec-base-key)
31607             'increase-precision)
31608 (define-key calc-mode-map (format "Y%sD" inc-prec-base-key)
31609             'decrease-precision)
31611 (setq calc-Y-help-msgs
31612       (cons (format "%s + Inc-prec, Dec-prec" inc-prec-base-key)
31613             calc-Y-help-msgs))
31615 (defmath increase-precision (delta)
31616   "Increase precision by DELTA."
31617   (interactive "p")
31618   (setq calc-internal-prec (+ calc-internal-prec delta)))
31620 (defmath decrease-precision (delta)
31621   "Decrease precision by DELTA."
31622   (interactive "p")
31623   (setq calc-internal-prec (- calc-internal-prec delta)))
31625 ))  ; end of calc-define property
31627 (run-hooks 'calc-check-defines)
31628 @end smallexample
31630 @node Defining Stack Commands, Argument Qualifiers, Defining Simple Commands, Lisp Definitions
31631 @subsection Defining New Stack-Based Commands
31633 @noindent
31634 To define a new computational command which takes and/or leaves arguments
31635 on the stack, a special form of @code{interactive} clause is used.
31637 @example
31638 (interactive @var{num} @var{tag})
31639 @end example
31641 @noindent
31642 where @var{num} is an integer, and @var{tag} is a string.  The effect is
31643 to pop @var{num} values off the stack, resimplify them by calling
31644 @code{calc-normalize}, and hand them to your function according to the
31645 function's argument list.  Your function may include @code{&optional} and
31646 @code{&rest} parameters, so long as calling the function with @var{num}
31647 parameters is valid.
31649 Your function must return either a number or a formula in a form
31650 acceptable to Calc, or a list of such numbers or formulas.  These value(s)
31651 are pushed onto the stack when the function completes.  They are also
31652 recorded in the Calc Trail buffer on a line beginning with @var{tag},
31653 a string of (normally) four characters or less.  If you omit @var{tag}
31654 or use @code{nil} as a tag, the result is not recorded in the trail.
31656 As an example, the definition
31658 @smallexample
31659 (defmath myfact (n)
31660   "Compute the factorial of the integer at the top of the stack."
31661   (interactive 1 "fact")
31662   (if (> n 0)
31663       (* n (myfact (1- n)))
31664     (and (= n 0) 1)))
31665 @end smallexample
31667 @noindent
31668 is a version of the factorial function shown previously which can be used
31669 as a command as well as an algebraic function.  It expands to
31671 @smallexample
31672 (defun calc-myfact ()
31673   "Compute the factorial of the integer at the top of the stack."
31674   (interactive)
31675   (calc-slow-wrapper
31676    (calc-enter-result 1 "fact"
31677      (cons 'calcFunc-myfact (calc-top-list-n 1)))))
31679 (defun calcFunc-myfact (n)
31680   "Compute the factorial of the integer at the top of the stack."
31681   (if (math-posp n)
31682       (math-mul n (calcFunc-myfact (math-add n -1)))
31683     (and (math-zerop n) 1)))
31684 @end smallexample
31686 @findex calc-slow-wrapper
31687 The @code{calc-slow-wrapper} function is a version of @code{calc-wrapper}
31688 that automatically puts up a @samp{Working...} message before the
31689 computation begins.  (This message can be turned off by the user
31690 with an @kbd{m w} (@code{calc-working}) command.)
31692 @findex calc-top-list-n
31693 The @code{calc-top-list-n} function returns a list of the specified number
31694 of values from the top of the stack.  It resimplifies each value by
31695 calling @code{calc-normalize}.  If its argument is zero it returns an
31696 empty list.  It does not actually remove these values from the stack.
31698 @findex calc-enter-result
31699 The @code{calc-enter-result} function takes an integer @var{num} and string
31700 @var{tag} as described above, plus a third argument which is either a
31701 Calculator data object or a list of such objects.  These objects are
31702 resimplified and pushed onto the stack after popping the specified number
31703 of values from the stack.  If @var{tag} is non-@code{nil}, the values
31704 being pushed are also recorded in the trail.
31706 Note that if @code{calcFunc-myfact} returns @code{nil} this represents
31707 ``leave the function in symbolic form.''  To return an actual empty list,
31708 in the sense that @code{calc-enter-result} will push zero elements back
31709 onto the stack, you should return the special value @samp{'(nil)}, a list
31710 containing the single symbol @code{nil}.
31712 The @code{interactive} declaration can actually contain a limited
31713 Emacs-style code string as well which comes just before @var{num} and
31714 @var{tag}.  Currently the only Emacs code supported is @samp{"p"}, as in
31716 @example
31717 (defmath foo (a b &optional c)
31718   (interactive "p" 2 "foo")
31719   @var{body})
31720 @end example
31722 In this example, the command @code{calc-foo} will evaluate the expression
31723 @samp{foo(a,b)} if executed with no argument, or @samp{foo(a,b,n)} if
31724 executed with a numeric prefix argument of @expr{n}.
31726 The other code string allowed is @samp{"m"} (unrelated to the usual @samp{"m"}
31727 code as used with @code{defun}).  It uses the numeric prefix argument as the
31728 number of objects to remove from the stack and pass to the function.
31729 In this case, the integer @var{num} serves as a default number of
31730 arguments to be used when no prefix is supplied.
31732 @node Argument Qualifiers, Example Definitions, Defining Stack Commands, Lisp Definitions
31733 @subsection Argument Qualifiers
31735 @noindent
31736 Anywhere a parameter name can appear in the parameter list you can also use
31737 an @dfn{argument qualifier}.  Thus the general form of a definition is:
31739 @example
31740 (defmath @var{name} (@var{param} @var{param...}
31741                &optional @var{param} @var{param...}
31742                &rest @var{param})
31743   @var{body})
31744 @end example
31746 @noindent
31747 where each @var{param} is either a symbol or a list of the form
31749 @example
31750 (@var{qual} @var{param})
31751 @end example
31753 The following qualifiers are recognized:
31755 @table @samp
31756 @item complete
31757 @findex complete
31758 The argument must not be an incomplete vector, interval, or complex number.
31759 (This is rarely needed since the Calculator itself will never call your
31760 function with an incomplete argument.  But there is nothing stopping your
31761 own Lisp code from calling your function with an incomplete argument.)
31763 @item integer
31764 @findex integer
31765 The argument must be an integer.  If it is an integer-valued float
31766 it will be accepted but converted to integer form.  Non-integers and
31767 formulas are rejected.
31769 @item natnum
31770 @findex natnum
31771 Like @samp{integer}, but the argument must be non-negative.
31773 @item fixnum
31774 @findex fixnum
31775 Like @samp{integer}, but the argument must fit into a native Lisp integer,
31776 which on most systems means less than 2^23 in absolute value.  The
31777 argument is converted into Lisp-integer form if necessary.
31779 @item float
31780 @findex float
31781 The argument is converted to floating-point format if it is a number or
31782 vector.  If it is a formula it is left alone.  (The argument is never
31783 actually rejected by this qualifier.)
31785 @item @var{pred}
31786 The argument must satisfy predicate @var{pred}, which is one of the
31787 standard Calculator predicates.  @xref{Predicates}.
31789 @item not-@var{pred}
31790 The argument must @emph{not} satisfy predicate @var{pred}.
31791 @end table
31793 For example,
31795 @example
31796 (defmath foo (a (constp (not-matrixp b)) &optional (float c)
31797               &rest (integer d))
31798   @var{body})
31799 @end example
31801 @noindent
31802 expands to
31804 @example
31805 (defun calcFunc-foo (a b &optional c &rest d)
31806   (and (math-matrixp b)
31807        (math-reject-arg b 'not-matrixp))
31808   (or (math-constp b)
31809       (math-reject-arg b 'constp))
31810   (and c (setq c (math-check-float c)))
31811   (setq d (mapcar 'math-check-integer d))
31812   @var{body})
31813 @end example
31815 @noindent
31816 which performs the necessary checks and conversions before executing the
31817 body of the function.
31819 @node Example Definitions, Calling Calc from Your Programs, Argument Qualifiers, Lisp Definitions
31820 @subsection Example Definitions
31822 @noindent
31823 This section includes some Lisp programming examples on a larger scale.
31824 These programs make use of some of the Calculator's internal functions;
31825 @pxref{Internals}.
31827 @menu
31828 * Bit Counting Example::
31829 * Sine Example::
31830 @end menu
31832 @node Bit Counting Example, Sine Example, Example Definitions, Example Definitions
31833 @subsubsection Bit-Counting
31835 @noindent
31836 @ignore
31837 @starindex
31838 @end ignore
31839 @tindex bcount
31840 Calc does not include a built-in function for counting the number of
31841 ``one'' bits in a binary integer.  It's easy to invent one using @kbd{b u}
31842 to convert the integer to a set, and @kbd{V #} to count the elements of
31843 that set; let's write a function that counts the bits without having to
31844 create an intermediate set.
31846 @smallexample
31847 (defmath bcount ((natnum n))
31848   (interactive 1 "bcnt")
31849   (let ((count 0))
31850     (while (> n 0)
31851       (if (oddp n)
31852           (setq count (1+ count)))
31853       (setq n (lsh n -1)))
31854     count))
31855 @end smallexample
31857 @noindent
31858 When this is expanded by @code{defmath}, it will become the following
31859 Emacs Lisp function:
31861 @smallexample
31862 (defun calcFunc-bcount (n)
31863   (setq n (math-check-natnum n))
31864   (let ((count 0))
31865     (while (math-posp n)
31866       (if (math-oddp n)
31867           (setq count (math-add count 1)))
31868       (setq n (calcFunc-lsh n -1)))
31869     count))
31870 @end smallexample
31872 If the input numbers are large, this function involves a fair amount
31873 of arithmetic.  A binary right shift is essentially a division by two;
31874 recall that Calc stores integers in decimal form so bit shifts must
31875 involve actual division.
31877 To gain a bit more efficiency, we could divide the integer into
31878 @var{n}-bit chunks, each of which can be handled quickly because
31879 they fit into Lisp integers.  It turns out that Calc's arithmetic
31880 routines are especially fast when dividing by an integer less than
31881 1000, so we can set @var{n = 9} bits and use repeated division by 512:
31883 @smallexample
31884 (defmath bcount ((natnum n))
31885   (interactive 1 "bcnt")
31886   (let ((count 0))
31887     (while (not (fixnump n))
31888       (let ((qr (idivmod n 512)))
31889         (setq count (+ count (bcount-fixnum (cdr qr)))
31890               n (car qr))))
31891     (+ count (bcount-fixnum n))))
31893 (defun bcount-fixnum (n)
31894   (let ((count 0))
31895     (while (> n 0)
31896       (setq count (+ count (logand n 1))
31897             n (lsh n -1)))
31898     count))
31899 @end smallexample
31901 @noindent
31902 Note that the second function uses @code{defun}, not @code{defmath}.
31903 Because this function deals only with native Lisp integers (``fixnums''),
31904 it can use the actual Emacs @code{+} and related functions rather
31905 than the slower but more general Calc equivalents which @code{defmath}
31906 uses.
31908 The @code{idivmod} function does an integer division, returning both
31909 the quotient and the remainder at once.  Again, note that while it
31910 might seem that @samp{(logand n 511)} and @samp{(lsh n -9)} are
31911 more efficient ways to split off the bottom nine bits of @code{n},
31912 actually they are less efficient because each operation is really
31913 a division by 512 in disguise; @code{idivmod} allows us to do the
31914 same thing with a single division by 512.
31916 @node Sine Example,  , Bit Counting Example, Example Definitions
31917 @subsubsection The Sine Function
31919 @noindent
31920 @ignore
31921 @starindex
31922 @end ignore
31923 @tindex mysin
31924 A somewhat limited sine function could be defined as follows, using the
31925 well-known Taylor series expansion for 
31926 @texline @math{\sin x}:
31927 @infoline @samp{sin(x)}:
31929 @smallexample
31930 (defmath mysin ((float (anglep x)))
31931   (interactive 1 "mysn")
31932   (setq x (to-radians x))    ; Convert from current angular mode.
31933   (let ((sum x)              ; Initial term of Taylor expansion of sin.
31934         newsum
31935         (nfact 1)            ; "nfact" equals "n" factorial at all times.
31936         (xnegsqr :"-(x^2)")) ; "xnegsqr" equals -x^2.
31937     (for ((n 3 100 2))       ; Upper limit of 100 is a good precaution.
31938       (working "mysin" sum)  ; Display "Working" message, if enabled.
31939       (setq nfact (* nfact (1- n) n)
31940             x (* x xnegsqr)
31941             newsum (+ sum (/ x nfact)))
31942       (if (~= newsum sum)    ; If newsum is "nearly equal to" sum,
31943           (break))           ;  then we are done.
31944       (setq sum newsum))
31945     sum))
31946 @end smallexample
31948 The actual @code{sin} function in Calc works by first reducing the problem
31949 to a sine or cosine of a nonnegative number less than @cpiover{4}.  This
31950 ensures that the Taylor series will converge quickly.  Also, the calculation
31951 is carried out with two extra digits of precision to guard against cumulative
31952 round-off in @samp{sum}.  Finally, complex arguments are allowed and handled
31953 by a separate algorithm.
31955 @smallexample
31956 (defmath mysin ((float (scalarp x)))
31957   (interactive 1 "mysn")
31958   (setq x (to-radians x))    ; Convert from current angular mode.
31959   (with-extra-prec 2         ; Evaluate with extra precision.
31960     (cond ((complexp x)
31961            (mysin-complex x))
31962           ((< x 0)
31963            (- (mysin-raw (- x)))    ; Always call mysin-raw with x >= 0.
31964           (t (mysin-raw x))))))
31966 (defmath mysin-raw (x)
31967   (cond ((>= x 7)
31968          (mysin-raw (% x (two-pi))))     ; Now x < 7.
31969         ((> x (pi-over-2))
31970          (- (mysin-raw (- x (pi)))))     ; Now -pi/2 <= x <= pi/2.
31971         ((> x (pi-over-4))
31972          (mycos-raw (- x (pi-over-2))))  ; Now -pi/2 <= x <= pi/4.
31973         ((< x (- (pi-over-4)))
31974          (- (mycos-raw (+ x (pi-over-2)))))  ; Now -pi/4 <= x <= pi/4,
31975         (t (mysin-series x))))           ; so the series will be efficient.
31976 @end smallexample
31978 @noindent
31979 where @code{mysin-complex} is an appropriate function to handle complex
31980 numbers, @code{mysin-series} is the routine to compute the sine Taylor
31981 series as before, and @code{mycos-raw} is a function analogous to
31982 @code{mysin-raw} for cosines.
31984 The strategy is to ensure that @expr{x} is nonnegative before calling
31985 @code{mysin-raw}.  This function then recursively reduces its argument
31986 to a suitable range, namely, plus-or-minus @cpiover{4}.  Note that each
31987 test, and particularly the first comparison against 7, is designed so
31988 that small roundoff errors cannot produce an infinite loop.  (Suppose
31989 we compared with @samp{(two-pi)} instead; if due to roundoff problems
31990 the modulo operator ever returned @samp{(two-pi)} exactly, an infinite
31991 recursion could result!)  We use modulo only for arguments that will
31992 clearly get reduced, knowing that the next rule will catch any reductions
31993 that this rule misses.
31995 If a program is being written for general use, it is important to code
31996 it carefully as shown in this second example.  For quick-and-dirty programs,
31997 when you know that your own use of the sine function will never encounter
31998 a large argument, a simpler program like the first one shown is fine.
32000 @node Calling Calc from Your Programs, Internals, Example Definitions, Lisp Definitions
32001 @subsection Calling Calc from Your Lisp Programs
32003 @noindent
32004 A later section (@pxref{Internals}) gives a full description of
32005 Calc's internal Lisp functions.  It's not hard to call Calc from
32006 inside your programs, but the number of these functions can be daunting.
32007 So Calc provides one special ``programmer-friendly'' function called
32008 @code{calc-eval} that can be made to do just about everything you
32009 need.  It's not as fast as the low-level Calc functions, but it's
32010 much simpler to use!
32012 It may seem that @code{calc-eval} itself has a daunting number of
32013 options, but they all stem from one simple operation.
32015 In its simplest manifestation, @samp{(calc-eval "1+2")} parses the
32016 string @code{"1+2"} as if it were a Calc algebraic entry and returns
32017 the result formatted as a string: @code{"3"}.
32019 Since @code{calc-eval} is on the list of recommended @code{autoload}
32020 functions, you don't need to make any special preparations to load
32021 Calc before calling @code{calc-eval} the first time.  Calc will be
32022 loaded and initialized for you.
32024 All the Calc modes that are currently in effect will be used when
32025 evaluating the expression and formatting the result.
32027 @ifinfo
32028 @example
32030 @end example
32031 @end ifinfo
32032 @subsubsection Additional Arguments to @code{calc-eval}
32034 @noindent
32035 If the input string parses to a list of expressions, Calc returns
32036 the results separated by @code{", "}.  You can specify a different
32037 separator by giving a second string argument to @code{calc-eval}:
32038 @samp{(calc-eval "1+2,3+4" ";")} returns @code{"3;7"}.
32040 The ``separator'' can also be any of several Lisp symbols which
32041 request other behaviors from @code{calc-eval}.  These are discussed
32042 one by one below.
32044 You can give additional arguments to be substituted for
32045 @samp{$}, @samp{$$}, and so on in the main expression.  For
32046 example, @samp{(calc-eval "$/$$" nil "7" "1+1")} evaluates the
32047 expression @code{"7/(1+1)"} to yield the result @code{"3.5"}
32048 (assuming Fraction mode is not in effect).  Note the @code{nil}
32049 used as a placeholder for the item-separator argument.
32051 @ifinfo
32052 @example
32054 @end example
32055 @end ifinfo
32056 @subsubsection Error Handling
32058 @noindent
32059 If @code{calc-eval} encounters an error, it returns a list containing
32060 the character position of the error, plus a suitable message as a
32061 string.  Note that @samp{1 / 0} is @emph{not} an error by Calc's
32062 standards; it simply returns the string @code{"1 / 0"} which is the
32063 division left in symbolic form.  But @samp{(calc-eval "1/")} will
32064 return the list @samp{(2 "Expected a number")}.
32066 If you bind the variable @code{calc-eval-error} to @code{t}
32067 using a @code{let} form surrounding the call to @code{calc-eval},
32068 errors instead call the Emacs @code{error} function which aborts
32069 to the Emacs command loop with a beep and an error message.
32071 If you bind this variable to the symbol @code{string}, error messages
32072 are returned as strings instead of lists.  The character position is
32073 ignored.
32075 As a courtesy to other Lisp code which may be using Calc, be sure
32076 to bind @code{calc-eval-error} using @code{let} rather than changing
32077 it permanently with @code{setq}.
32079 @ifinfo
32080 @example
32082 @end example
32083 @end ifinfo
32084 @subsubsection Numbers Only
32086 @noindent
32087 Sometimes it is preferable to treat @samp{1 / 0} as an error
32088 rather than returning a symbolic result.  If you pass the symbol
32089 @code{num} as the second argument to @code{calc-eval}, results
32090 that are not constants are treated as errors.  The error message
32091 reported is the first @code{calc-why} message if there is one,
32092 or otherwise ``Number expected.''
32094 A result is ``constant'' if it is a number, vector, or other
32095 object that does not include variables or function calls.  If it
32096 is a vector, the components must themselves be constants.
32098 @ifinfo
32099 @example
32101 @end example
32102 @end ifinfo
32103 @subsubsection Default Modes
32105 @noindent
32106 If the first argument to @code{calc-eval} is a list whose first
32107 element is a formula string, then @code{calc-eval} sets all the
32108 various Calc modes to their default values while the formula is
32109 evaluated and formatted.  For example, the precision is set to 12
32110 digits, digit grouping is turned off, and the Normal language
32111 mode is used.
32113 This same principle applies to the other options discussed below.
32114 If the first argument would normally be @var{x}, then it can also
32115 be the list @samp{(@var{x})} to use the default mode settings.
32117 If there are other elements in the list, they are taken as
32118 variable-name/value pairs which override the default mode
32119 settings.  Look at the documentation at the front of the
32120 @file{calc.el} file to find the names of the Lisp variables for
32121 the various modes.  The mode settings are restored to their
32122 original values when @code{calc-eval} is done.
32124 For example, @samp{(calc-eval '("$+$$" calc-internal-prec 8) 'num a b)}
32125 computes the sum of two numbers, requiring a numeric result, and
32126 using default mode settings except that the precision is 8 instead
32127 of the default of 12.
32129 It's usually best to use this form of @code{calc-eval} unless your
32130 program actually considers the interaction with Calc's mode settings
32131 to be a feature.  This will avoid all sorts of potential ``gotchas'';
32132 consider what happens with @samp{(calc-eval "sqrt(2)" 'num)}
32133 when the user has left Calc in Symbolic mode or No-Simplify mode.
32135 As another example, @samp{(equal (calc-eval '("$<$$") nil a b) "1")}
32136 checks if the number in string @expr{a} is less than the one in
32137 string @expr{b}.  Without using a list, the integer 1 might
32138 come out in a variety of formats which would be hard to test for
32139 conveniently: @code{"1"}, @code{"8#1"}, @code{"00001"}.  (But
32140 see ``Predicates'' mode, below.)
32142 @ifinfo
32143 @example
32145 @end example
32146 @end ifinfo
32147 @subsubsection Raw Numbers
32149 @noindent
32150 Normally all input and output for @code{calc-eval} is done with strings.
32151 You can do arithmetic with, say, @samp{(calc-eval "$+$$" nil a b)}
32152 in place of @samp{(+ a b)}, but this is very inefficient since the
32153 numbers must be converted to and from string format as they are passed
32154 from one @code{calc-eval} to the next.
32156 If the separator is the symbol @code{raw}, the result will be returned
32157 as a raw Calc data structure rather than a string.  You can read about
32158 how these objects look in the following sections, but usually you can
32159 treat them as ``black box'' objects with no important internal
32160 structure.
32162 There is also a @code{rawnum} symbol, which is a combination of
32163 @code{raw} (returning a raw Calc object) and @code{num} (signaling
32164 an error if that object is not a constant).
32166 You can pass a raw Calc object to @code{calc-eval} in place of a
32167 string, either as the formula itself or as one of the @samp{$}
32168 arguments.  Thus @samp{(calc-eval "$+$$" 'raw a b)} is an
32169 addition function that operates on raw Calc objects.  Of course
32170 in this case it would be easier to call the low-level @code{math-add}
32171 function in Calc, if you can remember its name.
32173 In particular, note that a plain Lisp integer is acceptable to Calc
32174 as a raw object.  (All Lisp integers are accepted on input, but
32175 integers of more than six decimal digits are converted to ``big-integer''
32176 form for output.  @xref{Data Type Formats}.)
32178 When it comes time to display the object, just use @samp{(calc-eval a)}
32179 to format it as a string.
32181 It is an error if the input expression evaluates to a list of
32182 values.  The separator symbol @code{list} is like @code{raw}
32183 except that it returns a list of one or more raw Calc objects.
32185 Note that a Lisp string is not a valid Calc object, nor is a list
32186 containing a string.  Thus you can still safely distinguish all the
32187 various kinds of error returns discussed above.
32189 @ifinfo
32190 @example
32192 @end example
32193 @end ifinfo
32194 @subsubsection Predicates
32196 @noindent
32197 If the separator symbol is @code{pred}, the result of the formula is
32198 treated as a true/false value; @code{calc-eval} returns @code{t} or
32199 @code{nil}, respectively.  A value is considered ``true'' if it is a
32200 non-zero number, or false if it is zero or if it is not a number.
32202 For example, @samp{(calc-eval "$<$$" 'pred a b)} tests whether
32203 one value is less than another.
32205 As usual, it is also possible for @code{calc-eval} to return one of
32206 the error indicators described above.  Lisp will interpret such an
32207 indicator as ``true'' if you don't check for it explicitly.  If you
32208 wish to have an error register as ``false'', use something like
32209 @samp{(eq (calc-eval ...) t)}.
32211 @ifinfo
32212 @example
32214 @end example
32215 @end ifinfo
32216 @subsubsection Variable Values
32218 @noindent
32219 Variables in the formula passed to @code{calc-eval} are not normally
32220 replaced by their values.  If you wish this, you can use the
32221 @code{evalv} function (@pxref{Algebraic Manipulation}).  For example,
32222 if 4 is stored in Calc variable @code{a} (i.e., in Lisp variable
32223 @code{var-a}), then @samp{(calc-eval "a+pi")} will return the
32224 formula @code{"a + pi"}, but @samp{(calc-eval "evalv(a+pi)")}
32225 will return @code{"7.14159265359"}.
32227 To store in a Calc variable, just use @code{setq} to store in the
32228 corresponding Lisp variable.  (This is obtained by prepending
32229 @samp{var-} to the Calc variable name.)  Calc routines will
32230 understand either string or raw form values stored in variables,
32231 although raw data objects are much more efficient.  For example,
32232 to increment the Calc variable @code{a}:
32234 @example
32235 (setq var-a (calc-eval "evalv(a+1)" 'raw))
32236 @end example
32238 @ifinfo
32239 @example
32241 @end example
32242 @end ifinfo
32243 @subsubsection Stack Access
32245 @noindent
32246 If the separator symbol is @code{push}, the formula argument is
32247 evaluated (with possible @samp{$} expansions, as usual).  The
32248 result is pushed onto the Calc stack.  The return value is @code{nil}
32249 (unless there is an error from evaluating the formula, in which
32250 case the return value depends on @code{calc-eval-error} in the
32251 usual way).
32253 If the separator symbol is @code{pop}, the first argument to
32254 @code{calc-eval} must be an integer instead of a string.  That
32255 many values are popped from the stack and thrown away.  A negative
32256 argument deletes the entry at that stack level.  The return value
32257 is the number of elements remaining in the stack after popping;
32258 @samp{(calc-eval 0 'pop)} is a good way to measure the size of
32259 the stack.
32261 If the separator symbol is @code{top}, the first argument to
32262 @code{calc-eval} must again be an integer.  The value at that
32263 stack level is formatted as a string and returned.  Thus
32264 @samp{(calc-eval 1 'top)} returns the top-of-stack value.  If the
32265 integer is out of range, @code{nil} is returned.
32267 The separator symbol @code{rawtop} is just like @code{top} except
32268 that the stack entry is returned as a raw Calc object instead of
32269 as a string.
32271 In all of these cases the first argument can be made a list in
32272 order to force the default mode settings, as described above.
32273 Thus @samp{(calc-eval '(2 calc-number-radix 16) 'top)} returns the
32274 second-to-top stack entry, formatted as a string using the default
32275 instead of current display modes, except that the radix is
32276 hexadecimal instead of decimal.
32278 It is, of course, polite to put the Calc stack back the way you
32279 found it when you are done, unless the user of your program is
32280 actually expecting it to affect the stack.
32282 Note that you do not actually have to switch into the @samp{*Calculator*}
32283 buffer in order to use @code{calc-eval}; it temporarily switches into
32284 the stack buffer if necessary.
32286 @ifinfo
32287 @example
32289 @end example
32290 @end ifinfo
32291 @subsubsection Keyboard Macros
32293 @noindent
32294 If the separator symbol is @code{macro}, the first argument must be a
32295 string of characters which Calc can execute as a sequence of keystrokes.
32296 This switches into the Calc buffer for the duration of the macro.
32297 For example, @samp{(calc-eval "vx5\rVR+" 'macro)} pushes the
32298 vector @samp{[1,2,3,4,5]} on the stack and then replaces it
32299 with the sum of those numbers.  Note that @samp{\r} is the Lisp
32300 notation for the carriage-return, @key{RET}, character.
32302 If your keyboard macro wishes to pop the stack, @samp{\C-d} is
32303 safer than @samp{\177} (the @key{DEL} character) because some
32304 installations may have switched the meanings of @key{DEL} and
32305 @kbd{C-h}.  Calc always interprets @kbd{C-d} as a synonym for
32306 ``pop-stack'' regardless of key mapping.
32308 If you provide a third argument to @code{calc-eval}, evaluation
32309 of the keyboard macro will leave a record in the Trail using
32310 that argument as a tag string.  Normally the Trail is unaffected.
32312 The return value in this case is always @code{nil}.
32314 @ifinfo
32315 @example
32317 @end example
32318 @end ifinfo
32319 @subsubsection Lisp Evaluation
32321 @noindent
32322 Finally, if the separator symbol is @code{eval}, then the Lisp
32323 @code{eval} function is called on the first argument, which must
32324 be a Lisp expression rather than a Calc formula.  Remember to
32325 quote the expression so that it is not evaluated until inside
32326 @code{calc-eval}.
32328 The difference from plain @code{eval} is that @code{calc-eval}
32329 switches to the Calc buffer before evaluating the expression.
32330 For example, @samp{(calc-eval '(setq calc-internal-prec 17) 'eval)}
32331 will correctly affect the buffer-local Calc precision variable.
32333 An alternative would be @samp{(calc-eval '(calc-precision 17) 'eval)}.
32334 This is evaluating a call to the function that is normally invoked
32335 by the @kbd{p} key, giving it 17 as its ``numeric prefix argument.''
32336 Note that this function will leave a message in the echo area as
32337 a side effect.  Also, all Calc functions switch to the Calc buffer
32338 automatically if not invoked from there, so the above call is
32339 also equivalent to @samp{(calc-precision 17)} by itself.
32340 In all cases, Calc uses @code{save-excursion} to switch back to
32341 your original buffer when it is done.
32343 As usual the first argument can be a list that begins with a Lisp
32344 expression to use default instead of current mode settings.
32346 The result of @code{calc-eval} in this usage is just the result
32347 returned by the evaluated Lisp expression.
32349 @ifinfo
32350 @example
32352 @end example
32353 @end ifinfo
32354 @subsubsection Example
32356 @noindent
32357 @findex convert-temp
32358 Here is a sample Emacs command that uses @code{calc-eval}.  Suppose
32359 you have a document with lots of references to temperatures on the
32360 Fahrenheit scale, say ``98.6 F'', and you wish to convert these
32361 references to Centigrade.  The following command does this conversion.
32362 Place the Emacs cursor right after the letter ``F'' and invoke the
32363 command to change ``98.6 F'' to ``37 C''.  Or, if the temperature is
32364 already in Centigrade form, the command changes it back to Fahrenheit.
32366 @example
32367 (defun convert-temp ()
32368   (interactive)
32369   (save-excursion
32370     (re-search-backward "[^-.0-9]\\([-.0-9]+\\) *\\([FC]\\)")
32371     (let* ((top1 (match-beginning 1))
32372            (bot1 (match-end 1))
32373            (number (buffer-substring top1 bot1))
32374            (top2 (match-beginning 2))
32375            (bot2 (match-end 2))
32376            (type (buffer-substring top2 bot2)))
32377       (if (equal type "F")
32378           (setq type "C"
32379                 number (calc-eval "($ - 32)*5/9" nil number))
32380         (setq type "F"
32381               number (calc-eval "$*9/5 + 32" nil number)))
32382       (goto-char top2)
32383       (delete-region top2 bot2)
32384       (insert-before-markers type)
32385       (goto-char top1)
32386       (delete-region top1 bot1)
32387       (if (string-match "\\.$" number)   ; change "37." to "37"
32388           (setq number (substring number 0 -1)))
32389       (insert number))))
32390 @end example
32392 Note the use of @code{insert-before-markers} when changing between
32393 ``F'' and ``C'', so that the character winds up before the cursor
32394 instead of after it.
32396 @node Internals,  , Calling Calc from Your Programs, Lisp Definitions
32397 @subsection Calculator Internals
32399 @noindent
32400 This section describes the Lisp functions defined by the Calculator that
32401 may be of use to user-written Calculator programs (as described in the
32402 rest of this chapter).  These functions are shown by their names as they
32403 conventionally appear in @code{defmath}.  Their full Lisp names are
32404 generally gotten by prepending @samp{calcFunc-} or @samp{math-} to their
32405 apparent names.  (Names that begin with @samp{calc-} are already in
32406 their full Lisp form.)  You can use the actual full names instead if you
32407 prefer them, or if you are calling these functions from regular Lisp.
32409 The functions described here are scattered throughout the various
32410 Calc component files.  Note that @file{calc.el} includes @code{autoload}s
32411 for only a few component files; when Calc wants to call an advanced
32412 function it calls @samp{(calc-extensions)} first; this function
32413 autoloads @file{calc-ext.el}, which in turn autoloads all the functions
32414 in the remaining component files.
32416 Because @code{defmath} itself uses the extensions, user-written code
32417 generally always executes with the extensions already loaded, so
32418 normally you can use any Calc function and be confident that it will
32419 be autoloaded for you when necessary.  If you are doing something
32420 special, check carefully to make sure each function you are using is
32421 from @file{calc.el} or its components, and call @samp{(calc-extensions)}
32422 before using any function based in @file{calc-ext.el} if you can't
32423 prove this file will already be loaded.
32425 @menu
32426 * Data Type Formats::
32427 * Interactive Lisp Functions::
32428 * Stack Lisp Functions::
32429 * Predicates::
32430 * Computational Lisp Functions::
32431 * Vector Lisp Functions::
32432 * Symbolic Lisp Functions::
32433 * Formatting Lisp Functions::
32434 * Hooks::
32435 @end menu
32437 @node Data Type Formats, Interactive Lisp Functions, Internals, Internals
32438 @subsubsection Data Type Formats
32440 @noindent
32441 Integers are stored in either of two ways, depending on their magnitude.
32442 Integers less than one million in absolute value are stored as standard
32443 Lisp integers.  This is the only storage format for Calc data objects
32444 which is not a Lisp list.
32446 Large integers are stored as lists of the form @samp{(bigpos @var{d0}
32447 @var{d1} @var{d2} @dots{})} for positive integers 1000000 or more, or
32448 @samp{(bigneg @var{d0} @var{d1} @var{d2} @dots{})} for negative integers
32449 @mathit{-1000000} or less.  Each @var{d} is a base-1000 ``digit,'' a Lisp integer
32450 from 0 to 999.  The least significant digit is @var{d0}; the last digit,
32451 @var{dn}, which is always nonzero, is the most significant digit.  For
32452 example, the integer @mathit{-12345678} is stored as @samp{(bigneg 678 345 12)}.
32454 The distinction between small and large integers is entirely hidden from
32455 the user.  In @code{defmath} definitions, the Lisp predicate @code{integerp}
32456 returns true for either kind of integer, and in general both big and small
32457 integers are accepted anywhere the word ``integer'' is used in this manual.
32458 If the distinction must be made, native Lisp integers are called @dfn{fixnums}
32459 and large integers are called @dfn{bignums}.
32461 Fractions are stored as a list of the form, @samp{(frac @var{n} @var{d})}
32462 where @var{n} is an integer (big or small) numerator, @var{d} is an
32463 integer denominator greater than one, and @var{n} and @var{d} are relatively
32464 prime.  Note that fractions where @var{d} is one are automatically converted
32465 to plain integers by all math routines; fractions where @var{d} is negative
32466 are normalized by negating the numerator and denominator.
32468 Floating-point numbers are stored in the form, @samp{(float @var{mant}
32469 @var{exp})}, where @var{mant} (the ``mantissa'') is an integer less than
32470 @samp{10^@var{p}} in absolute value (@var{p} represents the current
32471 precision), and @var{exp} (the ``exponent'') is a fixnum.  The value of
32472 the float is @samp{@var{mant} * 10^@var{exp}}.  For example, the number
32473 @mathit{-3.14} is stored as @samp{(float -314 -2) = -314*10^-2}.  Other constraints
32474 are that the number 0.0 is always stored as @samp{(float 0 0)}, and,
32475 except for the 0.0 case, the rightmost base-10 digit of @var{mant} is
32476 always nonzero.  (If the rightmost digit is zero, the number is
32477 rearranged by dividing @var{mant} by ten and incrementing @var{exp}.)
32479 Rectangular complex numbers are stored in the form @samp{(cplx @var{re}
32480 @var{im})}, where @var{re} and @var{im} are each real numbers, either
32481 integers, fractions, or floats.  The value is @samp{@var{re} + @var{im}i}.
32482 The @var{im} part is nonzero; complex numbers with zero imaginary
32483 components are converted to real numbers automatically.
32485 Polar complex numbers are stored in the form @samp{(polar @var{r}
32486 @var{theta})}, where @var{r} is a positive real value and @var{theta}
32487 is a real value or HMS form representing an angle.  This angle is
32488 usually normalized to lie in the interval @samp{(-180 ..@: 180)} degrees,
32489 or @samp{(-pi ..@: pi)} radians, according to the current angular mode.
32490 If the angle is 0 the value is converted to a real number automatically.
32491 (If the angle is 180 degrees, the value is usually also converted to a
32492 negative real number.)
32494 Hours-minutes-seconds forms are stored as @samp{(hms @var{h} @var{m}
32495 @var{s})}, where @var{h} is an integer or an integer-valued float (i.e.,
32496 a float with @samp{@var{exp} >= 0}), @var{m} is an integer or integer-valued
32497 float in the range @w{@samp{[0 ..@: 60)}}, and @var{s} is any real number
32498 in the range @samp{[0 ..@: 60)}.
32500 Date forms are stored as @samp{(date @var{n})}, where @var{n} is
32501 a real number that counts days since midnight on the morning of
32502 January 1, 1 AD.  If @var{n} is an integer, this is a pure date
32503 form.  If @var{n} is a fraction or float, this is a date/time form.
32505 Modulo forms are stored as @samp{(mod @var{n} @var{m})}, where @var{m} is a
32506 positive real number or HMS form, and @var{n} is a real number or HMS
32507 form in the range @samp{[0 ..@: @var{m})}.
32509 Error forms are stored as @samp{(sdev @var{x} @var{sigma})}, where @var{x}
32510 is the mean value and @var{sigma} is the standard deviation.  Each
32511 component is either a number, an HMS form, or a symbolic object
32512 (a variable or function call).  If @var{sigma} is zero, the value is
32513 converted to a plain real number.  If @var{sigma} is negative or
32514 complex, it is automatically normalized to be a positive real.
32516 Interval forms are stored as @samp{(intv @var{mask} @var{lo} @var{hi})},
32517 where @var{mask} is one of the integers 0, 1, 2, or 3, and @var{lo} and
32518 @var{hi} are real numbers, HMS forms, or symbolic objects.  The @var{mask}
32519 is a binary integer where 1 represents the fact that the interval is
32520 closed on the high end, and 2 represents the fact that it is closed on
32521 the low end.  (Thus 3 represents a fully closed interval.)  The interval
32522 @w{@samp{(intv 3 @var{x} @var{x})}} is converted to the plain number @var{x};
32523 intervals @samp{(intv @var{mask} @var{x} @var{x})} for any other @var{mask}
32524 represent empty intervals.  If @var{hi} is less than @var{lo}, the interval
32525 is converted to a standard empty interval by replacing @var{hi} with @var{lo}.
32527 Vectors are stored as @samp{(vec @var{v1} @var{v2} @dots{})}, where @var{v1}
32528 is the first element of the vector, @var{v2} is the second, and so on.
32529 An empty vector is stored as @samp{(vec)}.  A matrix is simply a vector
32530 where all @var{v}'s are themselves vectors of equal lengths.  Note that
32531 Calc vectors are unrelated to the Emacs Lisp ``vector'' type, which is
32532 generally unused by Calc data structures.
32534 Variables are stored as @samp{(var @var{name} @var{sym})}, where
32535 @var{name} is a Lisp symbol whose print name is used as the visible name
32536 of the variable, and @var{sym} is a Lisp symbol in which the variable's
32537 value is actually stored.  Thus, @samp{(var pi var-pi)} represents the
32538 special constant @samp{pi}.  Almost always, the form is @samp{(var
32539 @var{v} var-@var{v})}.  If the variable name was entered with @code{#}
32540 signs (which are converted to hyphens internally), the form is
32541 @samp{(var @var{u} @var{v})}, where @var{u} is a symbol whose name
32542 contains @code{#} characters, and @var{v} is a symbol that contains
32543 @code{-} characters instead.  The value of a variable is the Calc
32544 object stored in its @var{sym} symbol's value cell.  If the symbol's
32545 value cell is void or if it contains @code{nil}, the variable has no
32546 value.  Special constants have the form @samp{(special-const
32547 @var{value})} stored in their value cell, where @var{value} is a formula
32548 which is evaluated when the constant's value is requested.  Variables
32549 which represent units are not stored in any special way; they are units
32550 only because their names appear in the units table.  If the value
32551 cell contains a string, it is parsed to get the variable's value when
32552 the variable is used.
32554 A Lisp list with any other symbol as the first element is a function call.
32555 The symbols @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^},
32556 and @code{|} represent special binary operators; these lists are always
32557 of the form @samp{(@var{op} @var{lhs} @var{rhs})} where @var{lhs} is the
32558 sub-formula on the lefthand side and @var{rhs} is the sub-formula on the
32559 right.  The symbol @code{neg} represents unary negation; this list is always
32560 of the form @samp{(neg @var{arg})}.  Any other symbol @var{func} represents a
32561 function that would be displayed in function-call notation; the symbol
32562 @var{func} is in general always of the form @samp{calcFunc-@var{name}}.
32563 The function cell of the symbol @var{func} should contain a Lisp function
32564 for evaluating a call to @var{func}.  This function is passed the remaining
32565 elements of the list (themselves already evaluated) as arguments; such
32566 functions should return @code{nil} or call @code{reject-arg} to signify
32567 that they should be left in symbolic form, or they should return a Calc
32568 object which represents their value, or a list of such objects if they
32569 wish to return multiple values.  (The latter case is allowed only for
32570 functions which are the outer-level call in an expression whose value is
32571 about to be pushed on the stack; this feature is considered obsolete
32572 and is not used by any built-in Calc functions.)
32574 @node Interactive Lisp Functions, Stack Lisp Functions, Data Type Formats, Internals
32575 @subsubsection Interactive Functions
32577 @noindent
32578 The functions described here are used in implementing interactive Calc
32579 commands.  Note that this list is not exhaustive!  If there is an
32580 existing command that behaves similarly to the one you want to define,
32581 you may find helpful tricks by checking the source code for that command.
32583 @defun calc-set-command-flag flag
32584 Set the command flag @var{flag}.  This is generally a Lisp symbol, but
32585 may in fact be anything.  The effect is to add @var{flag} to the list
32586 stored in the variable @code{calc-command-flags}, unless it is already
32587 there.  @xref{Defining Simple Commands}.
32588 @end defun
32590 @defun calc-clear-command-flag flag
32591 If @var{flag} appears among the list of currently-set command flags,
32592 remove it from that list.
32593 @end defun
32595 @defun calc-record-undo rec
32596 Add the ``undo record'' @var{rec} to the list of steps to take if the
32597 current operation should need to be undone.  Stack push and pop functions
32598 automatically call @code{calc-record-undo}, so the kinds of undo records
32599 you might need to create take the form @samp{(set @var{sym} @var{value})},
32600 which says that the Lisp variable @var{sym} was changed and had previously
32601 contained @var{value}; @samp{(store @var{var} @var{value})} which says that
32602 the Calc variable @var{var} (a string which is the name of the symbol that
32603 contains the variable's value) was stored and its previous value was
32604 @var{value} (either a Calc data object, or @code{nil} if the variable was
32605 previously void); or @samp{(eval @var{undo} @var{redo} @var{args} @dots{})},
32606 which means that to undo requires calling the function @samp{(@var{undo}
32607 @var{args} @dots{})} and, if the undo is later redone, calling
32608 @samp{(@var{redo} @var{args} @dots{})}.
32609 @end defun
32611 @defun calc-record-why msg args
32612 Record the error or warning message @var{msg}, which is normally a string.
32613 This message will be replayed if the user types @kbd{w} (@code{calc-why});
32614 if the message string begins with a @samp{*}, it is considered important
32615 enough to display even if the user doesn't type @kbd{w}.  If one or more
32616 @var{args} are present, the displayed message will be of the form,
32617 @samp{@var{msg}: @var{arg1}, @var{arg2}, @dots{}}, where the arguments are
32618 formatted on the assumption that they are either strings or Calc objects of
32619 some sort.  If @var{msg} is a symbol, it is the name of a Calc predicate
32620 (such as @code{integerp} or @code{numvecp}) which the arguments did not
32621 satisfy; it is expanded to a suitable string such as ``Expected an
32622 integer.''  The @code{reject-arg} function calls @code{calc-record-why}
32623 automatically; @pxref{Predicates}.
32624 @end defun
32626 @defun calc-is-inverse
32627 This predicate returns true if the current command is inverse,
32628 i.e., if the Inverse (@kbd{I} key) flag was set.
32629 @end defun
32631 @defun calc-is-hyperbolic
32632 This predicate is the analogous function for the @kbd{H} key.
32633 @end defun
32635 @node Stack Lisp Functions, Predicates, Interactive Lisp Functions, Internals
32636 @subsubsection Stack-Oriented Functions
32638 @noindent
32639 The functions described here perform various operations on the Calc
32640 stack and trail.  They are to be used in interactive Calc commands.
32642 @defun calc-push-list vals n
32643 Push the Calc objects in list @var{vals} onto the stack at stack level
32644 @var{n}.  If @var{n} is omitted it defaults to 1, so that the elements
32645 are pushed at the top of the stack.  If @var{n} is greater than 1, the
32646 elements will be inserted into the stack so that the last element will
32647 end up at level @var{n}, the next-to-last at level @var{n}+1, etc.
32648 The elements of @var{vals} are assumed to be valid Calc objects, and
32649 are not evaluated, rounded, or renormalized in any way.  If @var{vals}
32650 is an empty list, nothing happens.
32652 The stack elements are pushed without any sub-formula selections.
32653 You can give an optional third argument to this function, which must
32654 be a list the same size as @var{vals} of selections.  Each selection
32655 must be @code{eq} to some sub-formula of the corresponding formula
32656 in @var{vals}, or @code{nil} if that formula should have no selection.
32657 @end defun
32659 @defun calc-top-list n m
32660 Return a list of the @var{n} objects starting at level @var{m} of the
32661 stack.  If @var{m} is omitted it defaults to 1, so that the elements are
32662 taken from the top of the stack.  If @var{n} is omitted, it also
32663 defaults to 1, so that the top stack element (in the form of a
32664 one-element list) is returned.  If @var{m} is greater than 1, the
32665 @var{m}th stack element will be at the end of the list, the @var{m}+1st
32666 element will be next-to-last, etc.  If @var{n} or @var{m} are out of
32667 range, the command is aborted with a suitable error message.  If @var{n}
32668 is zero, the function returns an empty list.  The stack elements are not
32669 evaluated, rounded, or renormalized.
32671 If any stack elements contain selections, and selections have not
32672 been disabled by the @kbd{j e} (@code{calc-enable-selections}) command,
32673 this function returns the selected portions rather than the entire
32674 stack elements.  It can be given a third ``selection-mode'' argument
32675 which selects other behaviors.  If it is the symbol @code{t}, then
32676 a selection in any of the requested stack elements produces an
32677 ``invalid operation on selections'' error.  If it is the symbol @code{full},
32678 the whole stack entry is always returned regardless of selections.
32679 If it is the symbol @code{sel}, the selected portion is always returned,
32680 or @code{nil} if there is no selection.  (This mode ignores the @kbd{j e}
32681 command.)  If the symbol is @code{entry}, the complete stack entry in
32682 list form is returned; the first element of this list will be the whole
32683 formula, and the third element will be the selection (or @code{nil}).
32684 @end defun
32686 @defun calc-pop-stack n m
32687 Remove the specified elements from the stack.  The parameters @var{n}
32688 and @var{m} are defined the same as for @code{calc-top-list}.  The return
32689 value of @code{calc-pop-stack} is uninteresting.
32691 If there are any selected sub-formulas among the popped elements, and
32692 @kbd{j e} has not been used to disable selections, this produces an
32693 error without changing the stack.  If you supply an optional third
32694 argument of @code{t}, the stack elements are popped even if they
32695 contain selections.
32696 @end defun
32698 @defun calc-record-list vals tag
32699 This function records one or more results in the trail.  The @var{vals}
32700 are a list of strings or Calc objects.  The @var{tag} is the four-character
32701 tag string to identify the values.  If @var{tag} is omitted, a blank tag
32702 will be used.
32703 @end defun
32705 @defun calc-normalize n
32706 This function takes a Calc object and ``normalizes'' it.  At the very
32707 least this involves re-rounding floating-point values according to the
32708 current precision and other similar jobs.  Also, unless the user has
32709 selected No-Simplify mode (@pxref{Simplification Modes}), this involves
32710 actually evaluating a formula object by executing the function calls
32711 it contains, and possibly also doing algebraic simplification, etc.
32712 @end defun
32714 @defun calc-top-list-n n m
32715 This function is identical to @code{calc-top-list}, except that it calls
32716 @code{calc-normalize} on the values that it takes from the stack.  They
32717 are also passed through @code{check-complete}, so that incomplete
32718 objects will be rejected with an error message.  All computational
32719 commands should use this in preference to @code{calc-top-list}; the only
32720 standard Calc commands that operate on the stack without normalizing
32721 are stack management commands like @code{calc-enter} and @code{calc-roll-up}.
32722 This function accepts the same optional selection-mode argument as
32723 @code{calc-top-list}.
32724 @end defun
32726 @defun calc-top-n m
32727 This function is a convenient form of @code{calc-top-list-n} in which only
32728 a single element of the stack is taken and returned, rather than a list
32729 of elements.  This also accepts an optional selection-mode argument.
32730 @end defun
32732 @defun calc-enter-result n tag vals
32733 This function is a convenient interface to most of the above functions.
32734 The @var{vals} argument should be either a single Calc object, or a list
32735 of Calc objects; the object or objects are normalized, and the top @var{n}
32736 stack entries are replaced by the normalized objects.  If @var{tag} is
32737 non-@code{nil}, the normalized objects are also recorded in the trail.
32738 A typical stack-based computational command would take the form,
32740 @smallexample
32741 (calc-enter-result @var{n} @var{tag} (cons 'calcFunc-@var{func}
32742                                (calc-top-list-n @var{n})))
32743 @end smallexample
32745 If any of the @var{n} stack elements replaced contain sub-formula
32746 selections, and selections have not been disabled by @kbd{j e},
32747 this function takes one of two courses of action.  If @var{n} is
32748 equal to the number of elements in @var{vals}, then each element of
32749 @var{vals} is spliced into the corresponding selection; this is what
32750 happens when you use the @key{TAB} key, or when you use a unary
32751 arithmetic operation like @code{sqrt}.  If @var{vals} has only one
32752 element but @var{n} is greater than one, there must be only one
32753 selection among the top @var{n} stack elements; the element from
32754 @var{vals} is spliced into that selection.  This is what happens when
32755 you use a binary arithmetic operation like @kbd{+}.  Any other
32756 combination of @var{n} and @var{vals} is an error when selections
32757 are present.
32758 @end defun
32760 @defun calc-unary-op tag func arg
32761 This function implements a unary operator that allows a numeric prefix
32762 argument to apply the operator over many stack entries.  If the prefix
32763 argument @var{arg} is @code{nil}, this uses @code{calc-enter-result}
32764 as outlined above.  Otherwise, it maps the function over several stack
32765 elements; @pxref{Prefix Arguments}.  For example,
32767 @smallexample
32768 (defun calc-zeta (arg)
32769   (interactive "P")
32770   (calc-unary-op "zeta" 'calcFunc-zeta arg))
32771 @end smallexample
32772 @end defun
32774 @defun calc-binary-op tag func arg ident unary
32775 This function implements a binary operator, analogously to
32776 @code{calc-unary-op}.  The optional @var{ident} and @var{unary}
32777 arguments specify the behavior when the prefix argument is zero or
32778 one, respectively.  If the prefix is zero, the value @var{ident}
32779 is pushed onto the stack, if specified, otherwise an error message
32780 is displayed.  If the prefix is one, the unary function @var{unary}
32781 is applied to the top stack element, or, if @var{unary} is not
32782 specified, nothing happens.  When the argument is two or more,
32783 the binary function @var{func} is reduced across the top @var{arg}
32784 stack elements; when the argument is negative, the function is
32785 mapped between the next-to-top @mathit{-@var{arg}} stack elements and the
32786 top element.
32787 @end defun
32789 @defun calc-stack-size
32790 Return the number of elements on the stack as an integer.  This count
32791 does not include elements that have been temporarily hidden by stack
32792 truncation; @pxref{Truncating the Stack}.
32793 @end defun
32795 @defun calc-cursor-stack-index n
32796 Move the point to the @var{n}th stack entry.  If @var{n} is zero, this
32797 will be the @samp{.} line.  If @var{n} is from 1 to the current stack size,
32798 this will be the beginning of the first line of that stack entry's display.
32799 If line numbers are enabled, this will move to the first character of the
32800 line number, not the stack entry itself.
32801 @end defun
32803 @defun calc-substack-height n
32804 Return the number of lines between the beginning of the @var{n}th stack
32805 entry and the bottom of the buffer.  If @var{n} is zero, this
32806 will be one (assuming no stack truncation).  If all stack entries are
32807 one line long (i.e., no matrices are displayed), the return value will
32808 be equal @var{n}+1 as long as @var{n} is in range.  (Note that in Big
32809 mode, the return value includes the blank lines that separate stack
32810 entries.)
32811 @end defun
32813 @defun calc-refresh
32814 Erase the @code{*Calculator*} buffer and reformat its contents from memory.
32815 This must be called after changing any parameter, such as the current
32816 display radix, which might change the appearance of existing stack
32817 entries.  (During a keyboard macro invoked by the @kbd{X} key, refreshing
32818 is suppressed, but a flag is set so that the entire stack will be refreshed
32819 rather than just the top few elements when the macro finishes.)
32820 @end defun
32822 @node Predicates, Computational Lisp Functions, Stack Lisp Functions, Internals
32823 @subsubsection Predicates
32825 @noindent
32826 The functions described here are predicates, that is, they return a
32827 true/false value where @code{nil} means false and anything else means
32828 true.  These predicates are expanded by @code{defmath}, for example,
32829 from @code{zerop} to @code{math-zerop}.  In many cases they correspond
32830 to native Lisp functions by the same name, but are extended to cover
32831 the full range of Calc data types.
32833 @defun zerop x
32834 Returns true if @var{x} is numerically zero, in any of the Calc data
32835 types.  (Note that for some types, such as error forms and intervals,
32836 it never makes sense to return true.)  In @code{defmath}, the expression
32837 @samp{(= x 0)} will automatically be converted to @samp{(math-zerop x)},
32838 and @samp{(/= x 0)} will be converted to @samp{(not (math-zerop x))}.
32839 @end defun
32841 @defun negp x
32842 Returns true if @var{x} is negative.  This accepts negative real numbers
32843 of various types, negative HMS and date forms, and intervals in which
32844 all included values are negative.  In @code{defmath}, the expression
32845 @samp{(< x 0)} will automatically be converted to @samp{(math-negp x)},
32846 and @samp{(>= x 0)} will be converted to @samp{(not (math-negp x))}.
32847 @end defun
32849 @defun posp x
32850 Returns true if @var{x} is positive (and non-zero).  For complex
32851 numbers, none of these three predicates will return true.
32852 @end defun
32854 @defun looks-negp x
32855 Returns true if @var{x} is ``negative-looking.''  This returns true if
32856 @var{x} is a negative number, or a formula with a leading minus sign
32857 such as @samp{-a/b}.  In other words, this is an object which can be
32858 made simpler by calling @code{(- @var{x})}.
32859 @end defun
32861 @defun integerp x
32862 Returns true if @var{x} is an integer of any size.
32863 @end defun
32865 @defun fixnump x
32866 Returns true if @var{x} is a native Lisp integer.
32867 @end defun
32869 @defun natnump x
32870 Returns true if @var{x} is a nonnegative integer of any size.
32871 @end defun
32873 @defun fixnatnump x
32874 Returns true if @var{x} is a nonnegative Lisp integer.
32875 @end defun
32877 @defun num-integerp x
32878 Returns true if @var{x} is numerically an integer, i.e., either a
32879 true integer or a float with no significant digits to the right of
32880 the decimal point.
32881 @end defun
32883 @defun messy-integerp x
32884 Returns true if @var{x} is numerically, but not literally, an integer.
32885 A value is @code{num-integerp} if it is @code{integerp} or
32886 @code{messy-integerp} (but it is never both at once).
32887 @end defun
32889 @defun num-natnump x
32890 Returns true if @var{x} is numerically a nonnegative integer.
32891 @end defun
32893 @defun evenp x
32894 Returns true if @var{x} is an even integer.
32895 @end defun
32897 @defun looks-evenp x
32898 Returns true if @var{x} is an even integer, or a formula with a leading
32899 multiplicative coefficient which is an even integer.
32900 @end defun
32902 @defun oddp x
32903 Returns true if @var{x} is an odd integer.
32904 @end defun
32906 @defun ratp x
32907 Returns true if @var{x} is a rational number, i.e., an integer or a
32908 fraction.
32909 @end defun
32911 @defun realp x
32912 Returns true if @var{x} is a real number, i.e., an integer, fraction,
32913 or floating-point number.
32914 @end defun
32916 @defun anglep x
32917 Returns true if @var{x} is a real number or HMS form.
32918 @end defun
32920 @defun floatp x
32921 Returns true if @var{x} is a float, or a complex number, error form,
32922 interval, date form, or modulo form in which at least one component
32923 is a float.
32924 @end defun
32926 @defun complexp x
32927 Returns true if @var{x} is a rectangular or polar complex number
32928 (but not a real number).
32929 @end defun
32931 @defun rect-complexp x
32932 Returns true if @var{x} is a rectangular complex number.
32933 @end defun
32935 @defun polar-complexp x
32936 Returns true if @var{x} is a polar complex number.
32937 @end defun
32939 @defun numberp x
32940 Returns true if @var{x} is a real number or a complex number.
32941 @end defun
32943 @defun scalarp x
32944 Returns true if @var{x} is a real or complex number or an HMS form.
32945 @end defun
32947 @defun vectorp x
32948 Returns true if @var{x} is a vector (this simply checks if its argument
32949 is a list whose first element is the symbol @code{vec}).
32950 @end defun
32952 @defun numvecp x
32953 Returns true if @var{x} is a number or vector.
32954 @end defun
32956 @defun matrixp x
32957 Returns true if @var{x} is a matrix, i.e., a vector of one or more vectors,
32958 all of the same size.
32959 @end defun
32961 @defun square-matrixp x
32962 Returns true if @var{x} is a square matrix.
32963 @end defun
32965 @defun objectp x
32966 Returns true if @var{x} is any numeric Calc object, including real and
32967 complex numbers, HMS forms, date forms, error forms, intervals, and
32968 modulo forms.  (Note that error forms and intervals may include formulas
32969 as their components; see @code{constp} below.)
32970 @end defun
32972 @defun objvecp x
32973 Returns true if @var{x} is an object or a vector.  This also accepts
32974 incomplete objects, but it rejects variables and formulas (except as
32975 mentioned above for @code{objectp}).
32976 @end defun
32978 @defun primp x
32979 Returns true if @var{x} is a ``primitive'' or ``atomic'' Calc object,
32980 i.e., one whose components cannot be regarded as sub-formulas.  This
32981 includes variables, and all @code{objectp} types except error forms
32982 and intervals.
32983 @end defun
32985 @defun constp x
32986 Returns true if @var{x} is constant, i.e., a real or complex number,
32987 HMS form, date form, or error form, interval, or vector all of whose
32988 components are @code{constp}.
32989 @end defun
32991 @defun lessp x y
32992 Returns true if @var{x} is numerically less than @var{y}.  Returns false
32993 if @var{x} is greater than or equal to @var{y}, or if the order is
32994 undefined or cannot be determined.  Generally speaking, this works
32995 by checking whether @samp{@var{x} - @var{y}} is @code{negp}.  In
32996 @code{defmath}, the expression @samp{(< x y)} will automatically be
32997 converted to @samp{(lessp x y)}; expressions involving @code{>}, @code{<=},
32998 and @code{>=} are similarly converted in terms of @code{lessp}.
32999 @end defun
33001 @defun beforep x y
33002 Returns true if @var{x} comes before @var{y} in a canonical ordering
33003 of Calc objects.  If @var{x} and @var{y} are both real numbers, this
33004 will be the same as @code{lessp}.  But whereas @code{lessp} considers
33005 other types of objects to be unordered, @code{beforep} puts any two
33006 objects into a definite, consistent order.  The @code{beforep}
33007 function is used by the @kbd{V S} vector-sorting command, and also
33008 by @kbd{a s} to put the terms of a product into canonical order:
33009 This allows @samp{x y + y x} to be simplified easily to @samp{2 x y}.
33010 @end defun
33012 @defun equal x y
33013 This is the standard Lisp @code{equal} predicate; it returns true if
33014 @var{x} and @var{y} are structurally identical.  This is the usual way
33015 to compare numbers for equality, but note that @code{equal} will treat
33016 0 and 0.0 as different.
33017 @end defun
33019 @defun math-equal x y
33020 Returns true if @var{x} and @var{y} are numerically equal, either because
33021 they are @code{equal}, or because their difference is @code{zerop}.  In
33022 @code{defmath}, the expression @samp{(= x y)} will automatically be
33023 converted to @samp{(math-equal x y)}.
33024 @end defun
33026 @defun equal-int x n
33027 Returns true if @var{x} and @var{n} are numerically equal, where @var{n}
33028 is a fixnum which is not a multiple of 10.  This will automatically be
33029 used by @code{defmath} in place of the more general @code{math-equal}
33030 whenever possible.
33031 @end defun
33033 @defun nearly-equal x y
33034 Returns true if @var{x} and @var{y}, as floating-point numbers, are
33035 equal except possibly in the last decimal place.  For example,
33036 314.159 and 314.166 are considered nearly equal if the current
33037 precision is 6 (since they differ by 7 units), but not if the current
33038 precision is 7 (since they differ by 70 units).  Most functions which
33039 use series expansions use @code{with-extra-prec} to evaluate the
33040 series with 2 extra digits of precision, then use @code{nearly-equal}
33041 to decide when the series has converged; this guards against cumulative
33042 error in the series evaluation without doing extra work which would be
33043 lost when the result is rounded back down to the current precision.
33044 In @code{defmath}, this can be written @samp{(~= @var{x} @var{y})}.
33045 The @var{x} and @var{y} can be numbers of any kind, including complex.
33046 @end defun
33048 @defun nearly-zerop x y
33049 Returns true if @var{x} is nearly zero, compared to @var{y}.  This
33050 checks whether @var{x} plus @var{y} would by be @code{nearly-equal}
33051 to @var{y} itself, to within the current precision, in other words,
33052 if adding @var{x} to @var{y} would have a negligible effect on @var{y}
33053 due to roundoff error.  @var{X} may be a real or complex number, but
33054 @var{y} must be real.
33055 @end defun
33057 @defun is-true x
33058 Return true if the formula @var{x} represents a true value in
33059 Calc, not Lisp, terms.  It tests if @var{x} is a non-zero number
33060 or a provably non-zero formula.
33061 @end defun
33063 @defun reject-arg val pred
33064 Abort the current function evaluation due to unacceptable argument values.
33065 This calls @samp{(calc-record-why @var{pred} @var{val})}, then signals a
33066 Lisp error which @code{normalize} will trap.  The net effect is that the
33067 function call which led here will be left in symbolic form.
33068 @end defun
33070 @defun inexact-value
33071 If Symbolic mode is enabled, this will signal an error that causes
33072 @code{normalize} to leave the formula in symbolic form, with the message
33073 ``Inexact result.''  (This function has no effect when not in Symbolic mode.)
33074 Note that if your function calls @samp{(sin 5)} in Symbolic mode, the
33075 @code{sin} function will call @code{inexact-value}, which will cause your
33076 function to be left unsimplified.  You may instead wish to call
33077 @samp{(normalize (list 'calcFunc-sin 5))}, which in Symbolic mode will
33078 return the formula @samp{sin(5)} to your function.
33079 @end defun
33081 @defun overflow
33082 This signals an error that will be reported as a floating-point overflow.
33083 @end defun
33085 @defun underflow
33086 This signals a floating-point underflow.
33087 @end defun
33089 @node Computational Lisp Functions, Vector Lisp Functions, Predicates, Internals
33090 @subsubsection Computational Functions
33092 @noindent
33093 The functions described here do the actual computational work of the
33094 Calculator.  In addition to these, note that any function described in
33095 the main body of this manual may be called from Lisp; for example, if
33096 the documentation refers to the @code{calc-sqrt} [@code{sqrt}] command,
33097 this means @code{calc-sqrt} is an interactive stack-based square-root
33098 command and @code{sqrt} (which @code{defmath} expands to @code{calcFunc-sqrt})
33099 is the actual Lisp function for taking square roots.
33101 The functions @code{math-add}, @code{math-sub}, @code{math-mul},
33102 @code{math-div}, @code{math-mod}, and @code{math-neg} are not included
33103 in this list, since @code{defmath} allows you to write native Lisp
33104 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, and unary @code{-},
33105 respectively, instead.
33107 @defun normalize val
33108 (Full form: @code{math-normalize}.)
33109 Reduce the value @var{val} to standard form.  For example, if @var{val}
33110 is a fixnum, it will be converted to a bignum if it is too large, and
33111 if @var{val} is a bignum it will be normalized by clipping off trailing
33112 (i.e., most-significant) zero digits and converting to a fixnum if it is
33113 small.  All the various data types are similarly converted to their standard
33114 forms.  Variables are left alone, but function calls are actually evaluated
33115 in formulas.  For example, normalizing @samp{(+ 2 (calcFunc-abs -4))} will
33116 return 6.
33118 If a function call fails, because the function is void or has the wrong
33119 number of parameters, or because it returns @code{nil} or calls
33120 @code{reject-arg} or @code{inexact-result}, @code{normalize} returns
33121 the formula still in symbolic form.
33123 If the current simplification mode is ``none'' or ``numeric arguments
33124 only,'' @code{normalize} will act appropriately.  However, the more
33125 powerful simplification modes (like Algebraic Simplification) are
33126 not handled by @code{normalize}.  They are handled by @code{calc-normalize},
33127 which calls @code{normalize} and possibly some other routines, such
33128 as @code{simplify} or @code{simplify-units}.  Programs generally will
33129 never call @code{calc-normalize} except when popping or pushing values
33130 on the stack.
33131 @end defun
33133 @defun evaluate-expr expr
33134 Replace all variables in @var{expr} that have values with their values,
33135 then use @code{normalize} to simplify the result.  This is what happens
33136 when you press the @kbd{=} key interactively.
33137 @end defun
33139 @defmac with-extra-prec n body
33140 Evaluate the Lisp forms in @var{body} with precision increased by @var{n}
33141 digits.  This is a macro which expands to
33143 @smallexample
33144 (math-normalize
33145   (let ((calc-internal-prec (+ calc-internal-prec @var{n})))
33146     @var{body}))
33147 @end smallexample
33149 The surrounding call to @code{math-normalize} causes a floating-point
33150 result to be rounded down to the original precision afterwards.  This
33151 is important because some arithmetic operations assume a number's
33152 mantissa contains no more digits than the current precision allows.
33153 @end defmac
33155 @defun make-frac n d
33156 Build a fraction @samp{@var{n}:@var{d}}.  This is equivalent to calling
33157 @samp{(normalize (list 'frac @var{n} @var{d}))}, but more efficient.
33158 @end defun
33160 @defun make-float mant exp
33161 Build a floating-point value out of @var{mant} and @var{exp}, both
33162 of which are arbitrary integers.  This function will return a
33163 properly normalized float value, or signal an overflow or underflow
33164 if @var{exp} is out of range.
33165 @end defun
33167 @defun make-sdev x sigma
33168 Build an error form out of @var{x} and the absolute value of @var{sigma}.
33169 If @var{sigma} is zero, the result is the number @var{x} directly.
33170 If @var{sigma} is negative or complex, its absolute value is used.
33171 If @var{x} or @var{sigma} is not a valid type of object for use in
33172 error forms, this calls @code{reject-arg}.
33173 @end defun
33175 @defun make-intv mask lo hi
33176 Build an interval form out of @var{mask} (which is assumed to be an
33177 integer from 0 to 3), and the limits @var{lo} and @var{hi}.  If
33178 @var{lo} is greater than @var{hi}, an empty interval form is returned.
33179 This calls @code{reject-arg} if @var{lo} or @var{hi} is unsuitable.
33180 @end defun
33182 @defun sort-intv mask lo hi
33183 Build an interval form, similar to @code{make-intv}, except that if
33184 @var{lo} is less than @var{hi} they are simply exchanged, and the
33185 bits of @var{mask} are swapped accordingly.
33186 @end defun
33188 @defun make-mod n m
33189 Build a modulo form out of @var{n} and the modulus @var{m}.  Since modulo
33190 forms do not allow formulas as their components, if @var{n} or @var{m}
33191 is not a real number or HMS form the result will be a formula which
33192 is a call to @code{makemod}, the algebraic version of this function.
33193 @end defun
33195 @defun float x
33196 Convert @var{x} to floating-point form.  Integers and fractions are
33197 converted to numerically equivalent floats; components of complex
33198 numbers, vectors, HMS forms, date forms, error forms, intervals, and
33199 modulo forms are recursively floated.  If the argument is a variable
33200 or formula, this calls @code{reject-arg}.
33201 @end defun
33203 @defun compare x y
33204 Compare the numbers @var{x} and @var{y}, and return @mathit{-1} if
33205 @samp{(lessp @var{x} @var{y})}, 1 if @samp{(lessp @var{y} @var{x})},
33206 0 if @samp{(math-equal @var{x} @var{y})}, or 2 if the order is
33207 undefined or cannot be determined.
33208 @end defun
33210 @defun numdigs n
33211 Return the number of digits of integer @var{n}, effectively
33212 @samp{ceil(log10(@var{n}))}, but much more efficient.  Zero is
33213 considered to have zero digits.
33214 @end defun
33216 @defun scale-int x n
33217 Shift integer @var{x} left @var{n} decimal digits, or right @mathit{-@var{n}}
33218 digits with truncation toward zero.
33219 @end defun
33221 @defun scale-rounding x n
33222 Like @code{scale-int}, except that a right shift rounds to the nearest
33223 integer rather than truncating.
33224 @end defun
33226 @defun fixnum n
33227 Return the integer @var{n} as a fixnum, i.e., a native Lisp integer.
33228 If @var{n} is outside the permissible range for Lisp integers (usually
33229 24 binary bits) the result is undefined.
33230 @end defun
33232 @defun sqr x
33233 Compute the square of @var{x}; short for @samp{(* @var{x} @var{x})}.
33234 @end defun
33236 @defun quotient x y
33237 Divide integer @var{x} by integer @var{y}; return an integer quotient
33238 and discard the remainder.  If @var{x} or @var{y} is negative, the
33239 direction of rounding is undefined.
33240 @end defun
33242 @defun idiv x y
33243 Perform an integer division; if @var{x} and @var{y} are both nonnegative
33244 integers, this uses the @code{quotient} function, otherwise it computes
33245 @samp{floor(@var{x}/@var{y})}.  Thus the result is well-defined but
33246 slower than for @code{quotient}.
33247 @end defun
33249 @defun imod x y
33250 Divide integer @var{x} by integer @var{y}; return the integer remainder
33251 and discard the quotient.  Like @code{quotient}, this works only for
33252 integer arguments and is not well-defined for negative arguments.
33253 For a more well-defined result, use @samp{(% @var{x} @var{y})}.
33254 @end defun
33256 @defun idivmod x y
33257 Divide integer @var{x} by integer @var{y}; return a cons cell whose
33258 @code{car} is @samp{(quotient @var{x} @var{y})} and whose @code{cdr}
33259 is @samp{(imod @var{x} @var{y})}.
33260 @end defun
33262 @defun pow x y
33263 Compute @var{x} to the power @var{y}.  In @code{defmath} code, this can
33264 also be written @samp{(^ @var{x} @var{y})} or
33265 @w{@samp{(expt @var{x} @var{y})}}.
33266 @end defun
33268 @defun abs-approx x
33269 Compute a fast approximation to the absolute value of @var{x}.  For
33270 example, for a rectangular complex number the result is the sum of
33271 the absolute values of the components.
33272 @end defun
33274 @findex e
33275 @findex gamma-const
33276 @findex ln-2
33277 @findex ln-10
33278 @findex phi
33279 @findex pi-over-2
33280 @findex pi-over-4
33281 @findex pi-over-180
33282 @findex sqrt-two-pi
33283 @findex sqrt-e
33284 @findex two-pi
33285 @defun pi
33286 The function @samp{(pi)} computes @samp{pi} to the current precision.
33287 Other related constant-generating functions are @code{two-pi},
33288 @code{pi-over-2}, @code{pi-over-4}, @code{pi-over-180}, @code{sqrt-two-pi},
33289 @code{e}, @code{sqrt-e}, @code{ln-2}, @code{ln-10}, @code{phi} and
33290 @code{gamma-const}.  Each function returns a floating-point value in the
33291 current precision, and each uses caching so that all calls after the
33292 first are essentially free.
33293 @end defun
33295 @defmac math-defcache @var{func} @var{initial} @var{form}
33296 This macro, usually used as a top-level call like @code{defun} or
33297 @code{defvar}, defines a new cached constant analogous to @code{pi}, etc.
33298 It defines a function @code{func} which returns the requested value;
33299 if @var{initial} is non-@code{nil} it must be a @samp{(float @dots{})}
33300 form which serves as an initial value for the cache.  If @var{func}
33301 is called when the cache is empty or does not have enough digits to
33302 satisfy the current precision, the Lisp expression @var{form} is evaluated
33303 with the current precision increased by four, and the result minus its
33304 two least significant digits is stored in the cache.  For example,
33305 calling @samp{(pi)} with a precision of 30 computes @samp{pi} to 34
33306 digits, rounds it down to 32 digits for future use, then rounds it
33307 again to 30 digits for use in the present request.
33308 @end defmac
33310 @findex half-circle
33311 @findex quarter-circle
33312 @defun full-circle symb
33313 If the current angular mode is Degrees or HMS, this function returns the
33314 integer 360.  In Radians mode, this function returns either the
33315 corresponding value in radians to the current precision, or the formula
33316 @samp{2*pi}, depending on the Symbolic mode.  There are also similar
33317 function @code{half-circle} and @code{quarter-circle}.
33318 @end defun
33320 @defun power-of-2 n
33321 Compute two to the integer power @var{n}, as a (potentially very large)
33322 integer.  Powers of two are cached, so only the first call for a
33323 particular @var{n} is expensive.
33324 @end defun
33326 @defun integer-log2 n
33327 Compute the base-2 logarithm of @var{n}, which must be an integer which
33328 is a power of two.  If @var{n} is not a power of two, this function will
33329 return @code{nil}.
33330 @end defun
33332 @defun div-mod a b m
33333 Divide @var{a} by @var{b}, modulo @var{m}.  This returns @code{nil} if
33334 there is no solution, or if any of the arguments are not integers.
33335 @end defun
33337 @defun pow-mod a b m
33338 Compute @var{a} to the power @var{b}, modulo @var{m}.  If @var{a},
33339 @var{b}, and @var{m} are integers, this uses an especially efficient
33340 algorithm.  Otherwise, it simply computes @samp{(% (^ a b) m)}.
33341 @end defun
33343 @defun isqrt n
33344 Compute the integer square root of @var{n}.  This is the square root
33345 of @var{n} rounded down toward zero, i.e., @samp{floor(sqrt(@var{n}))}.
33346 If @var{n} is itself an integer, the computation is especially efficient.
33347 @end defun
33349 @defun to-hms a ang
33350 Convert the argument @var{a} into an HMS form.  If @var{ang} is specified,
33351 it is the angular mode in which to interpret @var{a}, either @code{deg}
33352 or @code{rad}.  Otherwise, the current angular mode is used.  If @var{a}
33353 is already an HMS form it is returned as-is.
33354 @end defun
33356 @defun from-hms a ang
33357 Convert the HMS form @var{a} into a real number.  If @var{ang} is specified,
33358 it is the angular mode in which to express the result, otherwise the
33359 current angular mode is used.  If @var{a} is already a real number, it
33360 is returned as-is.
33361 @end defun
33363 @defun to-radians a
33364 Convert the number or HMS form @var{a} to radians from the current
33365 angular mode.
33366 @end defun
33368 @defun from-radians a
33369 Convert the number @var{a} from radians to the current angular mode.
33370 If @var{a} is a formula, this returns the formula @samp{deg(@var{a})}.
33371 @end defun
33373 @defun to-radians-2 a
33374 Like @code{to-radians}, except that in Symbolic mode a degrees to
33375 radians conversion yields a formula like @samp{@var{a}*pi/180}.
33376 @end defun
33378 @defun from-radians-2 a
33379 Like @code{from-radians}, except that in Symbolic mode a radians to
33380 degrees conversion yields a formula like @samp{@var{a}*180/pi}.
33381 @end defun
33383 @defun random-digit
33384 Produce a random base-1000 digit in the range 0 to 999.
33385 @end defun
33387 @defun random-digits n
33388 Produce a random @var{n}-digit integer; this will be an integer
33389 in the interval @samp{[0, 10^@var{n})}.
33390 @end defun
33392 @defun random-float
33393 Produce a random float in the interval @samp{[0, 1)}.
33394 @end defun
33396 @defun prime-test n iters
33397 Determine whether the integer @var{n} is prime.  Return a list which has
33398 one of these forms: @samp{(nil @var{f})} means the number is non-prime
33399 because it was found to be divisible by @var{f}; @samp{(nil)} means it
33400 was found to be non-prime by table look-up (so no factors are known);
33401 @samp{(nil unknown)} means it is definitely non-prime but no factors
33402 are known because @var{n} was large enough that Fermat's probabilistic
33403 test had to be used; @samp{(t)} means the number is definitely prime;
33404 and @samp{(maybe @var{i} @var{p})} means that Fermat's test, after @var{i}
33405 iterations, is @var{p} percent sure that the number is prime.  The
33406 @var{iters} parameter is the number of Fermat iterations to use, in the
33407 case that this is necessary.  If @code{prime-test} returns ``maybe,''
33408 you can call it again with the same @var{n} to get a greater certainty;
33409 @code{prime-test} remembers where it left off.
33410 @end defun
33412 @defun to-simple-fraction f
33413 If @var{f} is a floating-point number which can be represented exactly
33414 as a small rational number. return that number, else return @var{f}.
33415 For example, 0.75 would be converted to 3:4.  This function is very
33416 fast.
33417 @end defun
33419 @defun to-fraction f tol
33420 Find a rational approximation to floating-point number @var{f} to within
33421 a specified tolerance @var{tol}; this corresponds to the algebraic
33422 function @code{frac}, and can be rather slow.
33423 @end defun
33425 @defun quarter-integer n
33426 If @var{n} is an integer or integer-valued float, this function
33427 returns zero.  If @var{n} is a half-integer (i.e., an integer plus
33428 @mathit{1:2} or 0.5), it returns 2.  If @var{n} is a quarter-integer,
33429 it returns 1 or 3.  If @var{n} is anything else, this function
33430 returns @code{nil}.
33431 @end defun
33433 @node Vector Lisp Functions, Symbolic Lisp Functions, Computational Lisp Functions, Internals
33434 @subsubsection Vector Functions
33436 @noindent
33437 The functions described here perform various operations on vectors and
33438 matrices.
33440 @defun math-concat x y
33441 Do a vector concatenation; this operation is written @samp{@var{x} | @var{y}}
33442 in a symbolic formula.  @xref{Building Vectors}.
33443 @end defun
33445 @defun vec-length v
33446 Return the length of vector @var{v}.  If @var{v} is not a vector, the
33447 result is zero.  If @var{v} is a matrix, this returns the number of
33448 rows in the matrix.
33449 @end defun
33451 @defun mat-dimens m
33452 Determine the dimensions of vector or matrix @var{m}.  If @var{m} is not
33453 a vector, the result is an empty list.  If @var{m} is a plain vector
33454 but not a matrix, the result is a one-element list containing the length
33455 of the vector.  If @var{m} is a matrix with @var{r} rows and @var{c} columns,
33456 the result is the list @samp{(@var{r} @var{c})}.  Higher-order tensors
33457 produce lists of more than two dimensions.  Note that the object
33458 @samp{[[1, 2, 3], [4, 5]]} is a vector of vectors not all the same size,
33459 and is treated by this and other Calc routines as a plain vector of two
33460 elements.
33461 @end defun
33463 @defun dimension-error
33464 Abort the current function with a message of ``Dimension error.''
33465 The Calculator will leave the function being evaluated in symbolic
33466 form; this is really just a special case of @code{reject-arg}.
33467 @end defun
33469 @defun build-vector args
33470 Return a Calc vector with @var{args} as elements.
33471 For example, @samp{(build-vector 1 2 3)} returns the Calc vector
33472 @samp{[1, 2, 3]}, stored internally as the list @samp{(vec 1 2 3)}.
33473 @end defun
33475 @defun make-vec obj dims
33476 Return a Calc vector or matrix all of whose elements are equal to
33477 @var{obj}.  For example, @samp{(make-vec 27 3 4)} returns a 3x4 matrix
33478 filled with 27's.
33479 @end defun
33481 @defun row-matrix v
33482 If @var{v} is a plain vector, convert it into a row matrix, i.e.,
33483 a matrix whose single row is @var{v}.  If @var{v} is already a matrix,
33484 leave it alone.
33485 @end defun
33487 @defun col-matrix v
33488 If @var{v} is a plain vector, convert it into a column matrix, i.e., a
33489 matrix with each element of @var{v} as a separate row.  If @var{v} is
33490 already a matrix, leave it alone.
33491 @end defun
33493 @defun map-vec f v
33494 Map the Lisp function @var{f} over the Calc vector @var{v}.  For example,
33495 @samp{(map-vec 'math-floor v)} returns a vector of the floored components
33496 of vector @var{v}.
33497 @end defun
33499 @defun map-vec-2 f a b
33500 Map the Lisp function @var{f} over the two vectors @var{a} and @var{b}.
33501 If @var{a} and @var{b} are vectors of equal length, the result is a
33502 vector of the results of calling @samp{(@var{f} @var{ai} @var{bi})}
33503 for each pair of elements @var{ai} and @var{bi}.  If either @var{a} or
33504 @var{b} is a scalar, it is matched with each value of the other vector.
33505 For example, @samp{(map-vec-2 'math-add v 1)} returns the vector @var{v}
33506 with each element increased by one.  Note that using @samp{'+} would not
33507 work here, since @code{defmath} does not expand function names everywhere,
33508 just where they are in the function position of a Lisp expression.
33509 @end defun
33511 @defun reduce-vec f v
33512 Reduce the function @var{f} over the vector @var{v}.  For example, if
33513 @var{v} is @samp{[10, 20, 30, 40]}, this calls @samp{(f (f (f 10 20) 30) 40)}.
33514 If @var{v} is a matrix, this reduces over the rows of @var{v}.
33515 @end defun
33517 @defun reduce-cols f m
33518 Reduce the function @var{f} over the columns of matrix @var{m}.  For
33519 example, if @var{m} is @samp{[[1, 2], [3, 4], [5, 6]]}, the result
33520 is a vector of the two elements @samp{(f (f 1 3) 5)} and @samp{(f (f 2 4) 6)}.
33521 @end defun
33523 @defun mat-row m n
33524 Return the @var{n}th row of matrix @var{m}.  This is equivalent to
33525 @samp{(elt m n)}.  For a slower but safer version, use @code{mrow}.
33526 (@xref{Extracting Elements}.)
33527 @end defun
33529 @defun mat-col m n
33530 Return the @var{n}th column of matrix @var{m}, in the form of a vector.
33531 The arguments are not checked for correctness.
33532 @end defun
33534 @defun mat-less-row m n
33535 Return a copy of matrix @var{m} with its @var{n}th row deleted.  The
33536 number @var{n} must be in range from 1 to the number of rows in @var{m}.
33537 @end defun
33539 @defun mat-less-col m n
33540 Return a copy of matrix @var{m} with its @var{n}th column deleted.
33541 @end defun
33543 @defun transpose m
33544 Return the transpose of matrix @var{m}.
33545 @end defun
33547 @defun flatten-vector v
33548 Flatten nested vector @var{v} into a vector of scalars.  For example,
33549 if @var{v} is @samp{[[1, 2, 3], [4, 5]]} the result is @samp{[1, 2, 3, 4, 5]}.
33550 @end defun
33552 @defun copy-matrix m
33553 If @var{m} is a matrix, return a copy of @var{m}.  This maps
33554 @code{copy-sequence} over the rows of @var{m}; in Lisp terms, each
33555 element of the result matrix will be @code{eq} to the corresponding
33556 element of @var{m}, but none of the @code{cons} cells that make up
33557 the structure of the matrix will be @code{eq}.  If @var{m} is a plain
33558 vector, this is the same as @code{copy-sequence}.
33559 @end defun
33561 @defun swap-rows m r1 r2
33562 Exchange rows @var{r1} and @var{r2} of matrix @var{m} in-place.  In
33563 other words, unlike most of the other functions described here, this
33564 function changes @var{m} itself rather than building up a new result
33565 matrix.  The return value is @var{m}, i.e., @samp{(eq (swap-rows m 1 2) m)}
33566 is true, with the side effect of exchanging the first two rows of
33567 @var{m}.
33568 @end defun
33570 @node Symbolic Lisp Functions, Formatting Lisp Functions, Vector Lisp Functions, Internals
33571 @subsubsection Symbolic Functions
33573 @noindent
33574 The functions described here operate on symbolic formulas in the
33575 Calculator.
33577 @defun calc-prepare-selection num
33578 Prepare a stack entry for selection operations.  If @var{num} is
33579 omitted, the stack entry containing the cursor is used; otherwise,
33580 it is the number of the stack entry to use.  This function stores
33581 useful information about the current stack entry into a set of
33582 variables.  @code{calc-selection-cache-num} contains the number of
33583 the stack entry involved (equal to @var{num} if you specified it);
33584 @code{calc-selection-cache-entry} contains the stack entry as a
33585 list (such as @code{calc-top-list} would return with @code{entry}
33586 as the selection mode); and @code{calc-selection-cache-comp} contains
33587 a special ``tagged'' composition (@pxref{Formatting Lisp Functions})
33588 which allows Calc to relate cursor positions in the buffer with
33589 their corresponding sub-formulas.
33591 A slight complication arises in the selection mechanism because
33592 formulas may contain small integers.  For example, in the vector
33593 @samp{[1, 2, 1]} the first and last elements are @code{eq} to each
33594 other; selections are recorded as the actual Lisp object that
33595 appears somewhere in the tree of the whole formula, but storing
33596 @code{1} would falsely select both @code{1}'s in the vector.  So
33597 @code{calc-prepare-selection} also checks the stack entry and
33598 replaces any plain integers with ``complex number'' lists of the form
33599 @samp{(cplx @var{n} 0)}.  This list will be displayed the same as a
33600 plain @var{n} and the change will be completely invisible to the
33601 user, but it will guarantee that no two sub-formulas of the stack
33602 entry will be @code{eq} to each other.  Next time the stack entry
33603 is involved in a computation, @code{calc-normalize} will replace
33604 these lists with plain numbers again, again invisibly to the user.
33605 @end defun
33607 @defun calc-encase-atoms x
33608 This modifies the formula @var{x} to ensure that each part of the
33609 formula is a unique atom, using the @samp{(cplx @var{n} 0)} trick
33610 described above.  This function may use @code{setcar} to modify
33611 the formula in-place.
33612 @end defun
33614 @defun calc-find-selected-part
33615 Find the smallest sub-formula of the current formula that contains
33616 the cursor.  This assumes @code{calc-prepare-selection} has been
33617 called already.  If the cursor is not actually on any part of the
33618 formula, this returns @code{nil}.
33619 @end defun
33621 @defun calc-change-current-selection selection
33622 Change the currently prepared stack element's selection to
33623 @var{selection}, which should be @code{eq} to some sub-formula
33624 of the stack element, or @code{nil} to unselect the formula.
33625 The stack element's appearance in the Calc buffer is adjusted
33626 to reflect the new selection.
33627 @end defun
33629 @defun calc-find-nth-part expr n
33630 Return the @var{n}th sub-formula of @var{expr}.  This function is used
33631 by the selection commands, and (unless @kbd{j b} has been used) treats
33632 sums and products as flat many-element formulas.  Thus if @var{expr}
33633 is @samp{((a + b) - c) + d}, calling @code{calc-find-nth-part} with
33634 @var{n} equal to four will return @samp{d}.
33635 @end defun
33637 @defun calc-find-parent-formula expr part
33638 Return the sub-formula of @var{expr} which immediately contains
33639 @var{part}.  If @var{expr} is @samp{a*b + (c+1)*d} and @var{part}
33640 is @code{eq} to the @samp{c+1} term of @var{expr}, then this function
33641 will return @samp{(c+1)*d}.  If @var{part} turns out not to be a
33642 sub-formula of @var{expr}, the function returns @code{nil}.  If
33643 @var{part} is @code{eq} to @var{expr}, the function returns @code{t}.
33644 This function does not take associativity into account.
33645 @end defun
33647 @defun calc-find-assoc-parent-formula expr part
33648 This is the same as @code{calc-find-parent-formula}, except that
33649 (unless @kbd{j b} has been used) it continues widening the selection
33650 to contain a complete level of the formula.  Given @samp{a} from
33651 @samp{((a + b) - c) + d}, @code{calc-find-parent-formula} will
33652 return @samp{a + b} but @code{calc-find-assoc-parent-formula} will
33653 return the whole expression.
33654 @end defun
33656 @defun calc-grow-assoc-formula expr part
33657 This expands sub-formula @var{part} of @var{expr} to encompass a
33658 complete level of the formula.  If @var{part} and its immediate
33659 parent are not compatible associative operators, or if @kbd{j b}
33660 has been used, this simply returns @var{part}.
33661 @end defun
33663 @defun calc-find-sub-formula expr part
33664 This finds the immediate sub-formula of @var{expr} which contains
33665 @var{part}.  It returns an index @var{n} such that
33666 @samp{(calc-find-nth-part @var{expr} @var{n})} would return @var{part}.
33667 If @var{part} is not a sub-formula of @var{expr}, it returns @code{nil}.
33668 If @var{part} is @code{eq} to @var{expr}, it returns @code{t}.  This
33669 function does not take associativity into account.
33670 @end defun
33672 @defun calc-replace-sub-formula expr old new
33673 This function returns a copy of formula @var{expr}, with the
33674 sub-formula that is @code{eq} to @var{old} replaced by @var{new}.
33675 @end defun
33677 @defun simplify expr
33678 Simplify the expression @var{expr} by applying various algebraic rules.
33679 This is what the @w{@kbd{a s}} (@code{calc-simplify}) command uses.  This
33680 always returns a copy of the expression; the structure @var{expr} points
33681 to remains unchanged in memory.
33683 More precisely, here is what @code{simplify} does:  The expression is
33684 first normalized and evaluated by calling @code{normalize}.  If any
33685 @code{AlgSimpRules} have been defined, they are then applied.  Then
33686 the expression is traversed in a depth-first, bottom-up fashion; at
33687 each level, any simplifications that can be made are made until no
33688 further changes are possible.  Once the entire formula has been
33689 traversed in this way, it is compared with the original formula (from
33690 before the call to @code{normalize}) and, if it has changed,
33691 the entire procedure is repeated (starting with @code{normalize})
33692 until no further changes occur.  Usually only two iterations are
33693 needed:@: one to simplify the formula, and another to verify that no
33694 further simplifications were possible.
33695 @end defun
33697 @defun simplify-extended expr
33698 Simplify the expression @var{expr}, with additional rules enabled that
33699 help do a more thorough job, while not being entirely ``safe'' in all
33700 circumstances.  (For example, this mode will simplify @samp{sqrt(x^2)}
33701 to @samp{x}, which is only valid when @var{x} is positive.)  This is
33702 implemented by temporarily binding the variable @code{math-living-dangerously}
33703 to @code{t} (using a @code{let} form) and calling @code{simplify}.
33704 Dangerous simplification rules are written to check this variable
33705 before taking any action.
33706 @end defun
33708 @defun simplify-units expr
33709 Simplify the expression @var{expr}, treating variable names as units
33710 whenever possible.  This works by binding the variable
33711 @code{math-simplifying-units} to @code{t} while calling @code{simplify}.
33712 @end defun
33714 @defmac math-defsimplify funcs body
33715 Register a new simplification rule; this is normally called as a top-level
33716 form, like @code{defun} or @code{defmath}.  If @var{funcs} is a symbol
33717 (like @code{+} or @code{calcFunc-sqrt}), this simplification rule is
33718 applied to the formulas which are calls to the specified function.  Or,
33719 @var{funcs} can be a list of such symbols; the rule applies to all
33720 functions on the list.  The @var{body} is written like the body of a
33721 function with a single argument called @code{expr}.  The body will be
33722 executed with @code{expr} bound to a formula which is a call to one of
33723 the functions @var{funcs}.  If the function body returns @code{nil}, or
33724 if it returns a result @code{equal} to the original @code{expr}, it is
33725 ignored and Calc goes on to try the next simplification rule that applies.
33726 If the function body returns something different, that new formula is
33727 substituted for @var{expr} in the original formula.
33729 At each point in the formula, rules are tried in the order of the
33730 original calls to @code{math-defsimplify}; the search stops after the
33731 first rule that makes a change.  Thus later rules for that same
33732 function will not have a chance to trigger until the next iteration
33733 of the main @code{simplify} loop.
33735 Note that, since @code{defmath} is not being used here, @var{body} must
33736 be written in true Lisp code without the conveniences that @code{defmath}
33737 provides.  If you prefer, you can have @var{body} simply call another
33738 function (defined with @code{defmath}) which does the real work.
33740 The arguments of a function call will already have been simplified
33741 before any rules for the call itself are invoked.  Since a new argument
33742 list is consed up when this happens, this means that the rule's body is
33743 allowed to rearrange the function's arguments destructively if that is
33744 convenient.  Here is a typical example of a simplification rule:
33746 @smallexample
33747 (math-defsimplify calcFunc-arcsinh
33748   (or (and (math-looks-negp (nth 1 expr))
33749            (math-neg (list 'calcFunc-arcsinh
33750                            (math-neg (nth 1 expr)))))
33751       (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
33752            (or math-living-dangerously
33753                (math-known-realp (nth 1 (nth 1 expr))))
33754            (nth 1 (nth 1 expr)))))
33755 @end smallexample
33757 This is really a pair of rules written with one @code{math-defsimplify}
33758 for convenience; the first replaces @samp{arcsinh(-x)} with
33759 @samp{-arcsinh(x)}, and the second, which is safe only for real @samp{x},
33760 replaces @samp{arcsinh(sinh(x))} with @samp{x}.
33761 @end defmac
33763 @defun common-constant-factor expr
33764 Check @var{expr} to see if it is a sum of terms all multiplied by the
33765 same rational value.  If so, return this value.  If not, return @code{nil}.
33766 For example, if called on @samp{6x + 9y + 12z}, it would return 3, since
33767 3 is a common factor of all the terms.
33768 @end defun
33770 @defun cancel-common-factor expr factor
33771 Assuming @var{expr} is a sum with @var{factor} as a common factor,
33772 divide each term of the sum by @var{factor}.  This is done by
33773 destructively modifying parts of @var{expr}, on the assumption that
33774 it is being used by a simplification rule (where such things are
33775 allowed; see above).  For example, consider this built-in rule for
33776 square roots:
33778 @smallexample
33779 (math-defsimplify calcFunc-sqrt
33780   (let ((fac (math-common-constant-factor (nth 1 expr))))
33781     (and fac (not (eq fac 1))
33782          (math-mul (math-normalize (list 'calcFunc-sqrt fac))
33783                    (math-normalize
33784                     (list 'calcFunc-sqrt
33785                           (math-cancel-common-factor
33786                            (nth 1 expr) fac)))))))
33787 @end smallexample
33788 @end defun
33790 @defun frac-gcd a b
33791 Compute a ``rational GCD'' of @var{a} and @var{b}, which must both be
33792 rational numbers.  This is the fraction composed of the GCD of the
33793 numerators of @var{a} and @var{b}, over the GCD of the denominators.
33794 It is used by @code{common-constant-factor}.  Note that the standard
33795 @code{gcd} function uses the LCM to combine the denominators.
33796 @end defun
33798 @defun map-tree func expr many
33799 Try applying Lisp function @var{func} to various sub-expressions of
33800 @var{expr}.  Initially, call @var{func} with @var{expr} itself as an
33801 argument.  If this returns an expression which is not @code{equal} to
33802 @var{expr}, apply @var{func} again until eventually it does return
33803 @var{expr} with no changes.  Then, if @var{expr} is a function call,
33804 recursively apply @var{func} to each of the arguments.  This keeps going
33805 until no changes occur anywhere in the expression; this final expression
33806 is returned by @code{map-tree}.  Note that, unlike simplification rules,
33807 @var{func} functions may @emph{not} make destructive changes to
33808 @var{expr}.  If a third argument @var{many} is provided, it is an
33809 integer which says how many times @var{func} may be applied; the
33810 default, as described above, is infinitely many times.
33811 @end defun
33813 @defun compile-rewrites rules
33814 Compile the rewrite rule set specified by @var{rules}, which should
33815 be a formula that is either a vector or a variable name.  If the latter,
33816 the compiled rules are saved so that later @code{compile-rules} calls
33817 for that same variable can return immediately.  If there are problems
33818 with the rules, this function calls @code{error} with a suitable
33819 message.
33820 @end defun
33822 @defun apply-rewrites expr crules heads
33823 Apply the compiled rewrite rule set @var{crules} to the expression
33824 @var{expr}.  This will make only one rewrite and only checks at the
33825 top level of the expression.  The result @code{nil} if no rules
33826 matched, or if the only rules that matched did not actually change
33827 the expression.  The @var{heads} argument is optional; if is given,
33828 it should be a list of all function names that (may) appear in
33829 @var{expr}.  The rewrite compiler tags each rule with the
33830 rarest-looking function name in the rule; if you specify @var{heads},
33831 @code{apply-rewrites} can use this information to narrow its search
33832 down to just a few rules in the rule set.
33833 @end defun
33835 @defun rewrite-heads expr
33836 Compute a @var{heads} list for @var{expr} suitable for use with
33837 @code{apply-rewrites}, as discussed above.
33838 @end defun
33840 @defun rewrite expr rules many
33841 This is an all-in-one rewrite function.  It compiles the rule set
33842 specified by @var{rules}, then uses @code{map-tree} to apply the
33843 rules throughout @var{expr} up to @var{many} (default infinity)
33844 times.
33845 @end defun
33847 @defun match-patterns pat vec not-flag
33848 Given a Calc vector @var{vec} and an uncompiled pattern set or
33849 pattern set variable @var{pat}, this function returns a new vector
33850 of all elements of @var{vec} which do (or don't, if @var{not-flag} is
33851 non-@code{nil}) match any of the patterns in @var{pat}.
33852 @end defun
33854 @defun deriv expr var value symb
33855 Compute the derivative of @var{expr} with respect to variable @var{var}
33856 (which may actually be any sub-expression).  If @var{value} is specified,
33857 the derivative is evaluated at the value of @var{var}; otherwise, the
33858 derivative is left in terms of @var{var}.  If the expression contains
33859 functions for which no derivative formula is known, new derivative
33860 functions are invented by adding primes to the names; @pxref{Calculus}.
33861 However, if @var{symb} is non-@code{nil}, the presence of undifferentiable
33862 functions in @var{expr} instead cancels the whole differentiation, and
33863 @code{deriv} returns @code{nil} instead.
33865 Derivatives of an @var{n}-argument function can be defined by
33866 adding a @code{math-derivative-@var{n}} property to the property list
33867 of the symbol for the function's derivative, which will be the
33868 function name followed by an apostrophe.  The value of the property
33869 should be a Lisp function; it is called with the same arguments as the
33870 original function call that is being differentiated.  It should return
33871 a formula for the derivative.  For example, the derivative of @code{ln}
33872 is defined by
33874 @smallexample
33875 (put 'calcFunc-ln\' 'math-derivative-1
33876      (function (lambda (u) (math-div 1 u))))
33877 @end smallexample
33879 The two-argument @code{log} function has two derivatives,
33880 @smallexample
33881 (put 'calcFunc-log\' 'math-derivative-2     ; d(log(x,b)) / dx
33882      (function (lambda (x b) ... )))
33883 (put 'calcFunc-log\'2 'math-derivative-2    ; d(log(x,b)) / db
33884      (function (lambda (x b) ... )))
33885 @end smallexample
33886 @end defun
33888 @defun tderiv expr var value symb
33889 Compute the total derivative of @var{expr}.  This is the same as
33890 @code{deriv}, except that variables other than @var{var} are not
33891 assumed to be constant with respect to @var{var}.
33892 @end defun
33894 @defun integ expr var low high
33895 Compute the integral of @var{expr} with respect to @var{var}.
33896 @xref{Calculus}, for further details.
33897 @end defun
33899 @defmac math-defintegral funcs body
33900 Define a rule for integrating a function or functions of one argument;
33901 this macro is very similar in format to @code{math-defsimplify}.
33902 The main difference is that here @var{body} is the body of a function
33903 with a single argument @code{u} which is bound to the argument to the
33904 function being integrated, not the function call itself.  Also, the
33905 variable of integration is available as @code{math-integ-var}.  If
33906 evaluation of the integral requires doing further integrals, the body
33907 should call @samp{(math-integral @var{x})} to find the integral of
33908 @var{x} with respect to @code{math-integ-var}; this function returns
33909 @code{nil} if the integral could not be done.  Some examples:
33911 @smallexample
33912 (math-defintegral calcFunc-conj
33913   (let ((int (math-integral u)))
33914     (and int
33915          (list 'calcFunc-conj int))))
33917 (math-defintegral calcFunc-cos
33918   (and (equal u math-integ-var)
33919        (math-from-radians-2 (list 'calcFunc-sin u))))
33920 @end smallexample
33922 In the @code{cos} example, we define only the integral of @samp{cos(x) dx},
33923 relying on the general integration-by-substitution facility to handle
33924 cosines of more complicated arguments.  An integration rule should return
33925 @code{nil} if it can't do the integral; if several rules are defined for
33926 the same function, they are tried in order until one returns a non-@code{nil}
33927 result.
33928 @end defmac
33930 @defmac math-defintegral-2 funcs body
33931 Define a rule for integrating a function or functions of two arguments.
33932 This is exactly analogous to @code{math-defintegral}, except that @var{body}
33933 is written as the body of a function with two arguments, @var{u} and
33934 @var{v}.
33935 @end defmac
33937 @defun solve-for lhs rhs var full
33938 Attempt to solve the equation @samp{@var{lhs} = @var{rhs}} by isolating
33939 the variable @var{var} on the lefthand side; return the resulting righthand
33940 side, or @code{nil} if the equation cannot be solved.  The variable
33941 @var{var} must appear at least once in @var{lhs} or @var{rhs}.  Note that
33942 the return value is a formula which does not contain @var{var}; this is
33943 different from the user-level @code{solve} and @code{finv} functions,
33944 which return a rearranged equation or a functional inverse, respectively.
33945 If @var{full} is non-@code{nil}, a full solution including dummy signs
33946 and dummy integers will be produced.  User-defined inverses are provided
33947 as properties in a manner similar to derivatives:
33949 @smallexample
33950 (put 'calcFunc-ln 'math-inverse
33951      (function (lambda (x) (list 'calcFunc-exp x))))
33952 @end smallexample
33954 This function can call @samp{(math-solve-get-sign @var{x})} to create
33955 a new arbitrary sign variable, returning @var{x} times that sign, and
33956 @samp{(math-solve-get-int @var{x})} to create a new arbitrary integer
33957 variable multiplied by @var{x}.  These functions simply return @var{x}
33958 if the caller requested a non-``full'' solution.
33959 @end defun
33961 @defun solve-eqn expr var full
33962 This version of @code{solve-for} takes an expression which will
33963 typically be an equation or inequality.  (If it is not, it will be
33964 interpreted as the equation @samp{@var{expr} = 0}.)  It returns an
33965 equation or inequality, or @code{nil} if no solution could be found.
33966 @end defun
33968 @defun solve-system exprs vars full
33969 This function solves a system of equations.  Generally, @var{exprs}
33970 and @var{vars} will be vectors of equal length.
33971 @xref{Solving Systems of Equations}, for other options.
33972 @end defun
33974 @defun expr-contains expr var
33975 Returns a non-@code{nil} value if @var{var} occurs as a subexpression
33976 of @var{expr}.
33978 This function might seem at first to be identical to
33979 @code{calc-find-sub-formula}.  The key difference is that
33980 @code{expr-contains} uses @code{equal} to test for matches, whereas
33981 @code{calc-find-sub-formula} uses @code{eq}.  In the formula
33982 @samp{f(a, a)}, the two @samp{a}s will be @code{equal} but not
33983 @code{eq} to each other.
33984 @end defun
33986 @defun expr-contains-count expr var
33987 Returns the number of occurrences of @var{var} as a subexpression
33988 of @var{expr}, or @code{nil} if there are no occurrences.
33989 @end defun
33991 @defun expr-depends expr var
33992 Returns true if @var{expr} refers to any variable the occurs in @var{var}.
33993 In other words, it checks if @var{expr} and @var{var} have any variables
33994 in common.
33995 @end defun
33997 @defun expr-contains-vars expr
33998 Return true if @var{expr} contains any variables, or @code{nil} if @var{expr}
33999 contains only constants and functions with constant arguments.
34000 @end defun
34002 @defun expr-subst expr old new
34003 Returns a copy of @var{expr}, with all occurrences of @var{old} replaced
34004 by @var{new}.  This treats @code{lambda} forms specially with respect
34005 to the dummy argument variables, so that the effect is always to return
34006 @var{expr} evaluated at @var{old} = @var{new}.
34007 @end defun
34009 @defun multi-subst expr old new
34010 This is like @code{expr-subst}, except that @var{old} and @var{new}
34011 are lists of expressions to be substituted simultaneously.  If one
34012 list is shorter than the other, trailing elements of the longer list
34013 are ignored.
34014 @end defun
34016 @defun expr-weight expr
34017 Returns the ``weight'' of @var{expr}, basically a count of the total
34018 number of objects and function calls that appear in @var{expr}.  For
34019 ``primitive'' objects, this will be one.
34020 @end defun
34022 @defun expr-height expr
34023 Returns the ``height'' of @var{expr}, which is the deepest level to
34024 which function calls are nested.  (Note that @samp{@var{a} + @var{b}}
34025 counts as a function call.)  For primitive objects, this returns zero.
34026 @end defun
34028 @defun polynomial-p expr var
34029 Check if @var{expr} is a polynomial in variable (or sub-expression)
34030 @var{var}.  If so, return the degree of the polynomial, that is, the
34031 highest power of @var{var} that appears in @var{expr}.  For example,
34032 for @samp{(x^2 + 3)^3 + 4} this would return 6.  This function returns
34033 @code{nil} unless @var{expr}, when expanded out by @kbd{a x}
34034 (@code{calc-expand}), would consist of a sum of terms in which @var{var}
34035 appears only raised to nonnegative integer powers.  Note that if
34036 @var{var} does not occur in @var{expr}, then @var{expr} is considered
34037 a polynomial of degree 0.
34038 @end defun
34040 @defun is-polynomial expr var degree loose
34041 Check if @var{expr} is a polynomial in variable or sub-expression
34042 @var{var}, and, if so, return a list representation of the polynomial
34043 where the elements of the list are coefficients of successive powers of
34044 @var{var}: @samp{@var{a} + @var{b} x + @var{c} x^3} would produce the
34045 list @samp{(@var{a} @var{b} 0 @var{c})}, and @samp{(x + 1)^2} would
34046 produce the list @samp{(1 2 1)}.  The highest element of the list will
34047 be non-zero, with the special exception that if @var{expr} is the
34048 constant zero, the returned value will be @samp{(0)}.  Return @code{nil}
34049 if @var{expr} is not a polynomial in @var{var}.  If @var{degree} is
34050 specified, this will not consider polynomials of degree higher than that
34051 value.  This is a good precaution because otherwise an input of
34052 @samp{(x+1)^1000} will cause a huge coefficient list to be built.  If
34053 @var{loose} is non-@code{nil}, then a looser definition of a polynomial
34054 is used in which coefficients are no longer required not to depend on
34055 @var{var}, but are only required not to take the form of polynomials
34056 themselves.  For example, @samp{sin(x) x^2 + cos(x)} is a loose
34057 polynomial with coefficients @samp{((calcFunc-cos x) 0 (calcFunc-sin
34058 x))}.  The result will never be @code{nil} in loose mode, since any
34059 expression can be interpreted as a ``constant'' loose polynomial.
34060 @end defun
34062 @defun polynomial-base expr pred
34063 Check if @var{expr} is a polynomial in any variable that occurs in it;
34064 if so, return that variable.  (If @var{expr} is a multivariate polynomial,
34065 this chooses one variable arbitrarily.)  If @var{pred} is specified, it should
34066 be a Lisp function which is called as @samp{(@var{pred} @var{subexpr})},
34067 and which should return true if @code{mpb-top-expr} (a global name for
34068 the original @var{expr}) is a suitable polynomial in @var{subexpr}.
34069 The default predicate uses @samp{(polynomial-p mpb-top-expr @var{subexpr})};
34070 you can use @var{pred} to specify additional conditions.  Or, you could
34071 have @var{pred} build up a list of every suitable @var{subexpr} that
34072 is found.
34073 @end defun
34075 @defun poly-simplify poly
34076 Simplify polynomial coefficient list @var{poly} by (destructively)
34077 clipping off trailing zeros.
34078 @end defun
34080 @defun poly-mix a ac b bc
34081 Mix two polynomial lists @var{a} and @var{b} (in the form returned by
34082 @code{is-polynomial}) in a linear combination with coefficient expressions
34083 @var{ac} and @var{bc}.  The result is a (not necessarily simplified)
34084 polynomial list representing @samp{@var{ac} @var{a} + @var{bc} @var{b}}.
34085 @end defun
34087 @defun poly-mul a b
34088 Multiply two polynomial coefficient lists @var{a} and @var{b}.  The
34089 result will be in simplified form if the inputs were simplified.
34090 @end defun
34092 @defun build-polynomial-expr poly var
34093 Construct a Calc formula which represents the polynomial coefficient
34094 list @var{poly} applied to variable @var{var}.  The @kbd{a c}
34095 (@code{calc-collect}) command uses @code{is-polynomial} to turn an
34096 expression into a coefficient list, then @code{build-polynomial-expr}
34097 to turn the list back into an expression in regular form.
34098 @end defun
34100 @defun check-unit-name var
34101 Check if @var{var} is a variable which can be interpreted as a unit
34102 name.  If so, return the units table entry for that unit.  This
34103 will be a list whose first element is the unit name (not counting
34104 prefix characters) as a symbol and whose second element is the
34105 Calc expression which defines the unit.  (Refer to the Calc sources
34106 for details on the remaining elements of this list.)  If @var{var}
34107 is not a variable or is not a unit name, return @code{nil}.
34108 @end defun
34110 @defun units-in-expr-p expr sub-exprs
34111 Return true if @var{expr} contains any variables which can be
34112 interpreted as units.  If @var{sub-exprs} is @code{t}, the entire
34113 expression is searched.  If @var{sub-exprs} is @code{nil}, this
34114 checks whether @var{expr} is directly a units expression.
34115 @end defun
34117 @defun single-units-in-expr-p expr
34118 Check whether @var{expr} contains exactly one units variable.  If so,
34119 return the units table entry for the variable.  If @var{expr} does
34120 not contain any units, return @code{nil}.  If @var{expr} contains
34121 two or more units, return the symbol @code{wrong}.
34122 @end defun
34124 @defun to-standard-units expr which
34125 Convert units expression @var{expr} to base units.  If @var{which}
34126 is @code{nil}, use Calc's native base units.  Otherwise, @var{which}
34127 can specify a units system, which is a list of two-element lists,
34128 where the first element is a Calc base symbol name and the second
34129 is an expression to substitute for it.
34130 @end defun
34132 @defun remove-units expr
34133 Return a copy of @var{expr} with all units variables replaced by ones.
34134 This expression is generally normalized before use.
34135 @end defun
34137 @defun extract-units expr
34138 Return a copy of @var{expr} with everything but units variables replaced
34139 by ones.
34140 @end defun
34142 @node Formatting Lisp Functions, Hooks, Symbolic Lisp Functions, Internals
34143 @subsubsection I/O and Formatting Functions
34145 @noindent
34146 The functions described here are responsible for parsing and formatting
34147 Calc numbers and formulas.
34149 @defun calc-eval str sep arg1 arg2 @dots{}
34150 This is the simplest interface to the Calculator from another Lisp program.
34151 @xref{Calling Calc from Your Programs}.
34152 @end defun
34154 @defun read-number str
34155 If string @var{str} contains a valid Calc number, either integer,
34156 fraction, float, or HMS form, this function parses and returns that
34157 number.  Otherwise, it returns @code{nil}.
34158 @end defun
34160 @defun read-expr str
34161 Read an algebraic expression from string @var{str}.  If @var{str} does
34162 not have the form of a valid expression, return a list of the form
34163 @samp{(error @var{pos} @var{msg})} where @var{pos} is an integer index
34164 into @var{str} of the general location of the error, and @var{msg} is
34165 a string describing the problem.
34166 @end defun
34168 @defun read-exprs str
34169 Read a list of expressions separated by commas, and return it as a
34170 Lisp list.  If an error occurs in any expressions, an error list as
34171 shown above is returned instead.
34172 @end defun
34174 @defun calc-do-alg-entry initial prompt no-norm
34175 Read an algebraic formula or formulas using the minibuffer.  All
34176 conventions of regular algebraic entry are observed.  The return value
34177 is a list of Calc formulas; there will be more than one if the user
34178 entered a list of values separated by commas.  The result is @code{nil}
34179 if the user presses Return with a blank line.  If @var{initial} is
34180 given, it is a string which the minibuffer will initially contain.
34181 If @var{prompt} is given, it is the prompt string to use; the default
34182 is ``Algebraic:''.  If @var{no-norm} is @code{t}, the formulas will
34183 be returned exactly as parsed; otherwise, they will be passed through
34184 @code{calc-normalize} first.
34186 To support the use of @kbd{$} characters in the algebraic entry, use
34187 @code{let} to bind @code{calc-dollar-values} to a list of the values
34188 to be substituted for @kbd{$}, @kbd{$$}, and so on, and bind
34189 @code{calc-dollar-used} to 0.  Upon return, @code{calc-dollar-used}
34190 will have been changed to the highest number of consecutive @kbd{$}s
34191 that actually appeared in the input.
34192 @end defun
34194 @defun format-number a
34195 Convert the real or complex number or HMS form @var{a} to string form.
34196 @end defun
34198 @defun format-flat-expr a prec
34199 Convert the arbitrary Calc number or formula @var{a} to string form,
34200 in the style used by the trail buffer and the @code{calc-edit} command.
34201 This is a simple format designed
34202 mostly to guarantee the string is of a form that can be re-parsed by
34203 @code{read-expr}.  Most formatting modes, such as digit grouping,
34204 complex number format, and point character, are ignored to ensure the
34205 result will be re-readable.  The @var{prec} parameter is normally 0; if
34206 you pass a large integer like 1000 instead, the expression will be
34207 surrounded by parentheses unless it is a plain number or variable name.
34208 @end defun
34210 @defun format-nice-expr a width
34211 This is like @code{format-flat-expr} (with @var{prec} equal to 0),
34212 except that newlines will be inserted to keep lines down to the
34213 specified @var{width}, and vectors that look like matrices or rewrite
34214 rules are written in a pseudo-matrix format.  The @code{calc-edit}
34215 command uses this when only one stack entry is being edited.
34216 @end defun
34218 @defun format-value a width
34219 Convert the Calc number or formula @var{a} to string form, using the
34220 format seen in the stack buffer.  Beware the string returned may
34221 not be re-readable by @code{read-expr}, for example, because of digit
34222 grouping.  Multi-line objects like matrices produce strings that
34223 contain newline characters to separate the lines.  The @var{w}
34224 parameter, if given, is the target window size for which to format
34225 the expressions.  If @var{w} is omitted, the width of the Calculator
34226 window is used.
34227 @end defun
34229 @defun compose-expr a prec
34230 Format the Calc number or formula @var{a} according to the current
34231 language mode, returning a ``composition.''  To learn about the
34232 structure of compositions, see the comments in the Calc source code.
34233 You can specify the format of a given type of function call by putting
34234 a @code{math-compose-@var{lang}} property on the function's symbol,
34235 whose value is a Lisp function that takes @var{a} and @var{prec} as
34236 arguments and returns a composition.  Here @var{lang} is a language
34237 mode name, one of @code{normal}, @code{big}, @code{c}, @code{pascal},
34238 @code{fortran}, @code{tex}, @code{eqn}, @code{math}, or @code{maple}.
34239 In Big mode, Calc actually tries @code{math-compose-big} first, then
34240 tries @code{math-compose-normal}.  If this property does not exist,
34241 or if the function returns @code{nil}, the function is written in the
34242 normal function-call notation for that language.
34243 @end defun
34245 @defun composition-to-string c w
34246 Convert a composition structure returned by @code{compose-expr} into
34247 a string.  Multi-line compositions convert to strings containing
34248 newline characters.  The target window size is given by @var{w}.
34249 The @code{format-value} function basically calls @code{compose-expr}
34250 followed by @code{composition-to-string}.
34251 @end defun
34253 @defun comp-width c
34254 Compute the width in characters of composition @var{c}.
34255 @end defun
34257 @defun comp-height c
34258 Compute the height in lines of composition @var{c}.
34259 @end defun
34261 @defun comp-ascent c
34262 Compute the portion of the height of composition @var{c} which is on or
34263 above the baseline.  For a one-line composition, this will be one.
34264 @end defun
34266 @defun comp-descent c
34267 Compute the portion of the height of composition @var{c} which is below
34268 the baseline.  For a one-line composition, this will be zero.
34269 @end defun
34271 @defun comp-first-char c
34272 If composition @var{c} is a ``flat'' composition, return the first
34273 (leftmost) character of the composition as an integer.  Otherwise,
34274 return @code{nil}.
34275 @end defun
34277 @defun comp-last-char c
34278 If composition @var{c} is a ``flat'' composition, return the last
34279 (rightmost) character, otherwise return @code{nil}.
34280 @end defun
34282 @comment @node Lisp Variables, Hooks, Formatting Lisp Functions, Internals
34283 @comment @subsubsection Lisp Variables
34284 @comment
34285 @comment @noindent
34286 @comment (This section is currently unfinished.)
34288 @node Hooks,  , Formatting Lisp Functions, Internals
34289 @subsubsection Hooks
34291 @noindent
34292 Hooks are variables which contain Lisp functions (or lists of functions)
34293 which are called at various times.  Calc defines a number of hooks
34294 that help you to customize it in various ways.  Calc uses the Lisp
34295 function @code{run-hooks} to invoke the hooks shown below.  Several
34296 other customization-related variables are also described here.
34298 @defvar calc-load-hook
34299 This hook is called at the end of @file{calc.el}, after the file has
34300 been loaded, before any functions in it have been called, but after
34301 @code{calc-mode-map} and similar variables have been set up.
34302 @end defvar
34304 @defvar calc-ext-load-hook
34305 This hook is called at the end of @file{calc-ext.el}.
34306 @end defvar
34308 @defvar calc-start-hook
34309 This hook is called as the last step in a @kbd{M-x calc} command.
34310 At this point, the Calc buffer has been created and initialized if
34311 necessary, the Calc window and trail window have been created,
34312 and the ``Welcome to Calc'' message has been displayed.
34313 @end defvar
34315 @defvar calc-mode-hook
34316 This hook is called when the Calc buffer is being created.  Usually
34317 this will only happen once per Emacs session.  The hook is called
34318 after Emacs has switched to the new buffer, the mode-settings file
34319 has been read if necessary, and all other buffer-local variables
34320 have been set up.  After this hook returns, Calc will perform a
34321 @code{calc-refresh} operation, set up the mode line display, then
34322 evaluate any deferred @code{calc-define} properties that have not
34323 been evaluated yet.
34324 @end defvar
34326 @defvar calc-trail-mode-hook
34327 This hook is called when the Calc Trail buffer is being created.
34328 It is called as the very last step of setting up the Trail buffer.
34329 Like @code{calc-mode-hook}, this will normally happen only once
34330 per Emacs session.
34331 @end defvar
34333 @defvar calc-end-hook
34334 This hook is called by @code{calc-quit}, generally because the user
34335 presses @kbd{q} or @kbd{C-x * c} while in Calc.  The Calc buffer will
34336 be the current buffer.  The hook is called as the very first
34337 step, before the Calc window is destroyed.
34338 @end defvar
34340 @defvar calc-window-hook
34341 If this hook is non-@code{nil}, it is called to create the Calc window.
34342 Upon return, this new Calc window should be the current window.
34343 (The Calc buffer will already be the current buffer when the
34344 hook is called.)  If the hook is not defined, Calc will
34345 generally use @code{split-window}, @code{set-window-buffer},
34346 and @code{select-window} to create the Calc window.
34347 @end defvar
34349 @defvar calc-trail-window-hook
34350 If this hook is non-@code{nil}, it is called to create the Calc Trail
34351 window.  The variable @code{calc-trail-buffer} will contain the buffer
34352 which the window should use.  Unlike @code{calc-window-hook}, this hook
34353 must @emph{not} switch into the new window.
34354 @end defvar
34356 @defvar calc-embedded-mode-hook
34357 This hook is called the first time that Embedded mode is entered.
34358 @end defvar
34360 @defvar calc-embedded-new-buffer-hook
34361 This hook is called each time that Embedded mode is entered in a
34362 new buffer.
34363 @end defvar
34365 @defvar calc-embedded-new-formula-hook
34366 This hook is called each time that Embedded mode is enabled for a
34367 new formula.
34368 @end defvar
34370 @defvar calc-edit-mode-hook
34371 This hook is called by @code{calc-edit} (and the other ``edit''
34372 commands) when the temporary editing buffer is being created.
34373 The buffer will have been selected and set up to be in
34374 @code{calc-edit-mode}, but will not yet have been filled with
34375 text.  (In fact it may still have leftover text from a previous
34376 @code{calc-edit} command.)
34377 @end defvar
34379 @defvar calc-mode-save-hook
34380 This hook is called by the @code{calc-save-modes} command,
34381 after Calc's own mode features have been inserted into the
34382 Calc init file and just before the ``End of mode settings''
34383 message is inserted.
34384 @end defvar
34386 @defvar calc-reset-hook
34387 This hook is called after @kbd{C-x * 0} (@code{calc-reset}) has
34388 reset all modes.  The Calc buffer will be the current buffer.
34389 @end defvar
34391 @defvar calc-other-modes
34392 This variable contains a list of strings.  The strings are
34393 concatenated at the end of the modes portion of the Calc
34394 mode line (after standard modes such as ``Deg'', ``Inv'' and
34395 ``Hyp'').  Each string should be a short, single word followed
34396 by a space.  The variable is @code{nil} by default.
34397 @end defvar
34399 @defvar calc-mode-map
34400 This is the keymap that is used by Calc mode.  The best time
34401 to adjust it is probably in a @code{calc-mode-hook}.  If the
34402 Calc extensions package (@file{calc-ext.el}) has not yet been
34403 loaded, many of these keys will be bound to @code{calc-missing-key},
34404 which is a command that loads the extensions package and
34405 ``retypes'' the key.  If your @code{calc-mode-hook} rebinds
34406 one of these keys, it will probably be overridden when the
34407 extensions are loaded.
34408 @end defvar
34410 @defvar calc-digit-map
34411 This is the keymap that is used during numeric entry.  Numeric
34412 entry uses the minibuffer, but this map binds every non-numeric
34413 key to @code{calcDigit-nondigit} which generally calls
34414 @code{exit-minibuffer} and ``retypes'' the key.
34415 @end defvar
34417 @defvar calc-alg-ent-map
34418 This is the keymap that is used during algebraic entry.  This is
34419 mostly a copy of @code{minibuffer-local-map}.
34420 @end defvar
34422 @defvar calc-store-var-map
34423 This is the keymap that is used during entry of variable names for
34424 commands like @code{calc-store} and @code{calc-recall}.  This is
34425 mostly a copy of @code{minibuffer-local-completion-map}.
34426 @end defvar
34428 @defvar calc-edit-mode-map
34429 This is the (sparse) keymap used by @code{calc-edit} and other
34430 temporary editing commands.  It binds @key{RET}, @key{LFD},
34431 and @kbd{C-c C-c} to @code{calc-edit-finish}.
34432 @end defvar
34434 @defvar calc-mode-var-list
34435 This is a list of variables which are saved by @code{calc-save-modes}.
34436 Each entry is a list of two items, the variable (as a Lisp symbol)
34437 and its default value.  When modes are being saved, each variable
34438 is compared with its default value (using @code{equal}) and any
34439 non-default variables are written out.
34440 @end defvar
34442 @defvar calc-local-var-list
34443 This is a list of variables which should be buffer-local to the
34444 Calc buffer.  Each entry is a variable name (as a Lisp symbol).
34445 These variables also have their default values manipulated by
34446 the @code{calc} and @code{calc-quit} commands; @pxref{Multiple Calculators}.
34447 Since @code{calc-mode-hook} is called after this list has been
34448 used the first time, your hook should add a variable to the
34449 list and also call @code{make-local-variable} itself.
34450 @end defvar
34452 @node Copying, GNU Free Documentation License, Programming, Top
34453 @appendix GNU GENERAL PUBLIC LICENSE
34454 @include gpl.texi
34456 @node GNU Free Documentation License, Customizing Calc, Copying, Top
34457 @appendix GNU Free Documentation License
34458 @include doclicense.texi
34460 @node Customizing Calc, Reporting Bugs, GNU Free Documentation License, Top
34461 @appendix Customizing Calc
34463 The usual prefix for Calc is the key sequence @kbd{C-x *}.  If you wish
34464 to use a different prefix, you can put
34466 @example
34467 (global-set-key "NEWPREFIX" 'calc-dispatch)
34468 @end example
34470 @noindent
34471 in your .emacs file.  
34472 (@xref{Key Bindings,,Customizing Key Bindings,emacs,
34473 The GNU Emacs Manual}, for more information on binding keys.)
34474 A convenient way to start Calc is with @kbd{C-x * *}; to make it equally
34475 convenient for users who use a different prefix, the prefix can be
34476 followed by  @kbd{=}, @kbd{&}, @kbd{#}, @kbd{\}, @kbd{/}, @kbd{+} or
34477 @kbd{-} as well as @kbd{*} to start Calc, and so in many cases the last
34478 character of the prefix can simply be typed twice.
34480 Calc is controlled by many variables, most of which can be reset
34481 from within Calc.  Some variables are less involved with actual
34482 calculation, and can be set outside of Calc using Emacs's
34483 customization facilities.  These variables are listed below.
34484 Typing @kbd{M-x customize-variable RET @var{variable-name} RET}
34485 will bring up a buffer in which the variable's value can be redefined.
34486 Typing @kbd{M-x customize-group RET calc RET} will bring up a buffer which
34487 contains all of Calc's customizable variables.  (These variables can
34488 also be reset by putting the appropriate lines in your .emacs file;
34489 @xref{Init File, ,Init File, emacs, The GNU Emacs Manual}.)
34491 Some of the customizable variables are regular expressions.  A regular
34492 expression is basically a pattern that Calc can search for.
34493 See @ref{Regexp Search,, Regular Expression Search, emacs, The GNU Emacs Manual}
34494 to see how regular expressions work.
34496 @defvar calc-settings-file
34497 The variable @code{calc-settings-file} holds the file name in
34498 which commands like @kbd{m m} and @kbd{Z P} store ``permanent''
34499 definitions.  
34500 If @code{calc-settings-file} is not your user init file (typically
34501 @file{~/.emacs}) and if the variable @code{calc-loaded-settings-file} is
34502 @code{nil}, then Calc will automatically load your settings file (if it
34503 exists) the first time Calc is invoked.
34505 The default value for this variable is @code{"~/.calc.el"}.
34506 @end defvar
34508 @defvar calc-gnuplot-name
34509 See @ref{Graphics}.@*
34510 The variable @code{calc-gnuplot-name} should be the name of the
34511 GNUPLOT program (a string).  If you have GNUPLOT installed on your
34512 system but Calc is unable to find it, you may need to set this
34513 variable.  (@pxref{Customizing Calc})
34514 You may also need to set some Lisp variables to show Calc how to run
34515 GNUPLOT on your system, see @ref{Devices, ,Graphical Devices} .  The default value
34516 of @code{calc-gnuplot-name} is @code{"gnuplot"}.
34517 @end defvar
34519 @defvar  calc-gnuplot-plot-command
34520 @defvarx calc-gnuplot-print-command
34521 See @ref{Devices, ,Graphical Devices}.@*
34522 The variables @code{calc-gnuplot-plot-command} and
34523 @code{calc-gnuplot-print-command} represent system commands to
34524 display and print the output of GNUPLOT, respectively.  These may be
34525 @code{nil} if no command is necessary, or strings which can include
34526 @samp{%s} to signify the name of the file to be displayed or printed.
34527 Or, these variables may contain Lisp expressions which are evaluated
34528 to display or print the output.
34530 The default value of @code{calc-gnuplot-plot-command} is @code{nil},
34531 and the default value of @code{calc-gnuplot-print-command} is
34532 @code{"lp %s"}.
34533 @end defvar
34535 @defvar calc-language-alist
34536 See @ref{Basic Embedded Mode}.@*
34537 The variable @code{calc-language-alist} controls the languages that
34538 Calc will associate with major modes.  When Calc embedded mode is
34539 enabled, it will try to use the current major mode to
34540 determine what language should be used.  (This can be overridden using
34541 Calc's mode changing commands, @xref{Mode Settings in Embedded Mode}.)
34542 The variable @code{calc-language-alist} consists of a list of pairs of
34543 the form  @code{(@var{MAJOR-MODE} . @var{LANGUAGE})}; for example, 
34544 @code{(latex-mode . latex)} is one such pair.  If Calc embedded is
34545 activated in a buffer whose major mode is @var{MAJOR-MODE}, it will set itself
34546 to use the language @var{LANGUAGE}.
34548 The default value of @code{calc-language-alist} is
34549 @example
34550    ((latex-mode . latex)
34551     (tex-mode   . tex)
34552     (plain-tex-mode . tex)
34553     (context-mode . tex)
34554     (nroff-mode . eqn)
34555     (pascal-mode . pascal)
34556     (c-mode . c)
34557     (c++-mode . c)
34558     (fortran-mode . fortran)
34559     (f90-mode . fortran))
34560 @end example
34561 @end defvar
34563 @defvar calc-embedded-announce-formula
34564 @defvarx calc-embedded-announce-formula-alist
34565 See @ref{Customizing Embedded Mode}.@*
34566 The variable @code{calc-embedded-announce-formula} helps determine
34567 what formulas @kbd{C-x * a} will activate in a buffer.  It is a
34568 regular expression, and when activating embedded formulas with
34569 @kbd{C-x * a}, it will tell Calc that what follows is a formula to be
34570 activated.  (Calc also uses other patterns to find formulas, such as
34571 @samp{=>} and @samp{:=}.)  
34573 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, which checks
34574 for @samp{%Embed} followed by any number of lines beginning with
34575 @samp{%} and a space.
34577 The variable @code{calc-embedded-announce-formula-alist} is used to
34578 set @code{calc-embedded-announce-formula} to different regular
34579 expressions depending on the major mode of the editing buffer.
34580 It consists of a list of pairs of the form @code{(@var{MAJOR-MODE} .
34581 @var{REGEXP})}, and its default value is
34582 @example
34583    ((c++-mode     . "//Embed\n\\(// .*\n\\)*")
34584     (c-mode       . "/\\*Embed\\*/\n\\(/\\* .*\\*/\n\\)*")
34585     (f90-mode     . "!Embed\n\\(! .*\n\\)*")
34586     (fortran-mode . "C Embed\n\\(C .*\n\\)*")
34587     (html-helper-mode . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34588     (html-mode    . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34589     (nroff-mode   . "\\\\\"Embed\n\\(\\\\\" .*\n\\)*")
34590     (pascal-mode  . "@{Embed@}\n\\(@{.*@}\n\\)*")
34591     (sgml-mode    . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34592     (xml-mode     . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34593     (texinfo-mode . "@@c Embed\n\\(@@c .*\n\\)*"))
34594 @end example
34595 Any major modes added to @code{calc-embedded-announce-formula-alist}
34596 should also be added to @code{calc-embedded-open-close-plain-alist} 
34597 and @code{calc-embedded-open-close-mode-alist}.
34598 @end defvar
34600 @defvar  calc-embedded-open-formula
34601 @defvarx calc-embedded-close-formula
34602 @defvarx calc-embedded-open-close-formula-alist
34603 See @ref{Customizing Embedded Mode}.@*
34604 The variables @code{calc-embedded-open-formula} and
34605 @code{calc-embedded-open-formula} control the region that Calc will
34606 activate as a formula when Embedded mode is entered with @kbd{C-x * e}.
34607 They are regular expressions; 
34608 Calc normally scans backward and forward in the buffer for the
34609 nearest text matching these regular expressions to be the ``formula
34610 delimiters''.
34612 The simplest delimiters are blank lines.  Other delimiters that
34613 Embedded mode understands by default are:
34614 @enumerate
34615 @item
34616 The @TeX{} and La@TeX{} math delimiters @samp{$ $}, @samp{$$ $$},
34617 @samp{\[ \]}, and @samp{\( \)};
34618 @item
34619 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
34620 @item
34621 Lines beginning with @samp{@@} (Texinfo delimiters).
34622 @item
34623 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
34624 @item
34625 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
34626 @end enumerate
34628 The variable @code{calc-embedded-open-close-formula-alist} is used to
34629 set @code{calc-embedded-open-formula} and
34630 @code{calc-embedded-close-formula} to different regular
34631 expressions depending on the major mode of the editing buffer.
34632 It consists of a list of lists of the form 
34633 @code{(@var{MAJOR-MODE}  @var{OPEN-FORMULA-REGEXP}
34634 @var{CLOSE-FORMULA-REGEXP})}, and its default value is
34635 @code{nil}.
34636 @end defvar
34638 @defvar  calc-embedded-open-word
34639 @defvarx calc-embedded-close-word
34640 @defvarx calc-embedded-open-close-word-alist
34641 See @ref{Customizing Embedded Mode}.@*
34642 The variables @code{calc-embedded-open-word} and
34643 @code{calc-embedded-close-word} control the region that Calc will
34644 activate when Embedded mode is entered with @kbd{C-x * w}.  They are
34645 regular expressions.
34647 The default values of @code{calc-embedded-open-word} and
34648 @code{calc-embedded-close-word} are @code{"^\\|[^-+0-9.eE]"} and 
34649 @code{"$\\|[^-+0-9.eE]"} respectively.
34651 The variable @code{calc-embedded-open-close-word-alist} is used to
34652 set @code{calc-embedded-open-word} and
34653 @code{calc-embedded-close-word} to different regular
34654 expressions depending on the major mode of the editing buffer.
34655 It consists of a list of lists of the form 
34656 @code{(@var{MAJOR-MODE}  @var{OPEN-WORD-REGEXP}
34657 @var{CLOSE-WORD-REGEXP})}, and its default value is
34658 @code{nil}.
34659 @end defvar
34661 @defvar  calc-embedded-open-plain
34662 @defvarx calc-embedded-close-plain
34663 @defvarx calc-embedded-open-close-plain-alist
34664 See @ref{Customizing Embedded Mode}.@*
34665 The variables @code{calc-embedded-open-plain} and
34666 @code{calc-embedded-open-plain} are used to delimit ``plain''
34667 formulas.  Note that these are actual strings, not regular
34668 expressions, because Calc must be able to write these string into a
34669 buffer as well as to recognize them.
34671 The default string for @code{calc-embedded-open-plain} is 
34672 @code{"%%% "}, note the trailing space.  The default string for 
34673 @code{calc-embedded-close-plain} is @code{" %%%\n"}, without
34674 the trailing newline here, the first line of a Big mode formula
34675 that followed might be shifted over with respect to the other lines.
34677 The variable @code{calc-embedded-open-close-plain-alist} is used to
34678 set @code{calc-embedded-open-plain} and
34679 @code{calc-embedded-close-plain} to different strings
34680 depending on the major mode of the editing buffer.
34681 It consists of a list of lists of the form 
34682 @code{(@var{MAJOR-MODE}  @var{OPEN-PLAIN-STRING}
34683 @var{CLOSE-PLAIN-STRING})}, and its default value is
34684 @example
34685    ((c++-mode     "// %% "   " %%\n")
34686     (c-mode       "/* %% "   " %% */\n")
34687     (f90-mode     "! %% "    " %%\n")
34688     (fortran-mode "C %% "    " %%\n")
34689     (html-helper-mode "<!-- %% " " %% -->\n")
34690     (html-mode "<!-- %% " " %% -->\n")
34691     (nroff-mode   "\\\" %% " " %%\n")
34692     (pascal-mode  "@{%% "    " %%@}\n")
34693     (sgml-mode     "<!-- %% " " %% -->\n")
34694     (xml-mode     "<!-- %% " " %% -->\n")
34695     (texinfo-mode "@@c %% "   " %%\n"))
34696 @end example
34697 Any major modes added to @code{calc-embedded-open-close-plain-alist}
34698 should also be added to @code{calc-embedded-announce-formula-alist}
34699 and @code{calc-embedded-open-close-mode-alist}.
34700 @end defvar
34702 @defvar  calc-embedded-open-new-formula
34703 @defvarx calc-embedded-close-new-formula
34704 @defvarx calc-embedded-open-close-new-formula-alist
34705 See @ref{Customizing Embedded Mode}.@*
34706 The variables @code{calc-embedded-open-new-formula} and
34707 @code{calc-embedded-close-new-formula} are strings which are
34708 inserted before and after a new formula when you type @kbd{C-x * f}.
34710 The default value of @code{calc-embedded-open-new-formula} is
34711 @code{"\n\n"}.  If this string begins with a newline character and the
34712 @kbd{C-x * f} is typed at the beginning of a line, @kbd{C-x * f} will skip
34713 this first newline to avoid introducing unnecessary blank lines in the
34714 file.  The default value of @code{calc-embedded-close-new-formula} is
34715 also @code{"\n\n"}.  The final newline is omitted by @w{@kbd{C-x * f}}
34716 if typed at the end of a line.  (It follows that if @kbd{C-x * f} is
34717 typed on a blank line, both a leading opening newline and a trailing
34718 closing newline are omitted.)
34720 The variable @code{calc-embedded-open-close-new-formula-alist} is used to
34721 set @code{calc-embedded-open-new-formula} and
34722 @code{calc-embedded-close-new-formula} to different strings
34723 depending on the major mode of the editing buffer.
34724 It consists of a list of lists of the form 
34725 @code{(@var{MAJOR-MODE}  @var{OPEN-NEW-FORMULA-STRING}
34726 @var{CLOSE-NEW-FORMULA-STRING})}, and its default value is
34727 @code{nil}.
34728 @end defvar
34730 @defvar  calc-embedded-open-mode
34731 @defvarx calc-embedded-close-mode
34732 @defvarx calc-embedded-open-close-mode-alist
34733 See @ref{Customizing Embedded Mode}.@*
34734 The variables @code{calc-embedded-open-mode} and
34735 @code{calc-embedded-close-mode} are strings which Calc will place before
34736 and after any mode annotations that it inserts.  Calc never scans for
34737 these strings; Calc always looks for the annotation itself, so it is not
34738 necessary to add them to user-written annotations.
34740 The default value of @code{calc-embedded-open-mode} is @code{"% "}
34741 and the default value of @code{calc-embedded-close-mode} is
34742 @code{"\n"}.  
34743 If you change the value of @code{calc-embedded-close-mode}, it is a good
34744 idea still to end with a newline so that mode annotations will appear on
34745 lines by themselves.
34747 The variable @code{calc-embedded-open-close-mode-alist} is used to
34748 set @code{calc-embedded-open-mode} and
34749 @code{calc-embedded-close-mode} to different strings
34750 expressions depending on the major mode of the editing buffer.
34751 It consists of a list of lists of the form 
34752 @code{(@var{MAJOR-MODE}  @var{OPEN-MODE-STRING}
34753 @var{CLOSE-MODE-STRING})}, and its default value is
34754 @example
34755    ((c++-mode     "// "   "\n")
34756     (c-mode       "/* "   " */\n")
34757     (f90-mode     "! "    "\n")
34758     (fortran-mode "C "    "\n")
34759     (html-helper-mode "<!-- " " -->\n")
34760     (html-mode    "<!-- " " -->\n")
34761     (nroff-mode   "\\\" " "\n")
34762     (pascal-mode  "@{ "    " @}\n")
34763     (sgml-mode    "<!-- " " -->\n")
34764     (xml-mode     "<!-- " " -->\n")
34765     (texinfo-mode "@@c "   "\n"))
34766 @end example
34767 Any major modes added to @code{calc-embedded-open-close-mode-alist}
34768 should also be added to @code{calc-embedded-announce-formula-alist}
34769 and @code{calc-embedded-open-close-plain-alist}.
34770 @end defvar
34772 @node Reporting Bugs, Summary, Customizing Calc, Top
34773 @appendix Reporting Bugs
34775 @noindent
34776 If you find a bug in Calc, send e-mail to Jay Belanger,
34778 @example
34779 jay.p.belanger@@gmail.com
34780 @end example
34782 @noindent
34783 There is an automatic command @kbd{M-x report-calc-bug} which helps
34784 you to report bugs.  This command prompts you for a brief subject
34785 line, then leaves you in a mail editing buffer.  Type @kbd{C-c C-c} to
34786 send your mail.  Make sure your subject line indicates that you are
34787 reporting a Calc bug; this command sends mail to the maintainer's
34788 regular mailbox.
34790 If you have suggestions for additional features for Calc, please send
34791 them.  Some have dared to suggest that Calc is already top-heavy with
34792 features; this obviously cannot be the case, so if you have ideas, send
34793 them right in.
34795 At the front of the source file, @file{calc.el}, is a list of ideas for
34796 future work.  If any enthusiastic souls wish to take it upon themselves
34797 to work on these, please send a message (using @kbd{M-x report-calc-bug})
34798 so any efforts can be coordinated.
34800 The latest version of Calc is available from Savannah, in the Emacs
34801 CVS tree.  See @uref{http://savannah.gnu.org/projects/emacs}.
34803 @c [summary]
34804 @node Summary, Key Index, Reporting Bugs, Top
34805 @appendix Calc Summary
34807 @noindent
34808 This section includes a complete list of Calc 2.1 keystroke commands.
34809 Each line lists the stack entries used by the command (top-of-stack
34810 last), the keystrokes themselves, the prompts asked by the command,
34811 and the result of the command (also with top-of-stack last).
34812 The result is expressed using the equivalent algebraic function.
34813 Commands which put no results on the stack show the full @kbd{M-x}
34814 command name in that position.  Numbers preceding the result or
34815 command name refer to notes at the end.
34817 Algebraic functions and @kbd{M-x} commands that don't have corresponding
34818 keystrokes are not listed in this summary.
34819 @xref{Command Index}.  @xref{Function Index}.
34821 @iftex
34822 @begingroup
34823 @tex
34824 \vskip-2\baselineskip \null
34825 \gdef\sumrow#1{\sumrowx#1\relax}%
34826 \gdef\sumrowx#1\:#2\:#3\:#4\:#5\:#6\relax{%
34827 \leavevmode%
34828 {\smallfonts
34829 \hbox to5em{\sl\hss#1}%
34830 \hbox to5em{\tt#2\hss}%
34831 \hbox to4em{\sl#3\hss}%
34832 \hbox to5em{\rm\hss#4}%
34833 \thinspace%
34834 {\tt#5}%
34835 {\sl#6}%
34837 \gdef\sumlpar{{\rm(}}%
34838 \gdef\sumrpar{{\rm)}}%
34839 \gdef\sumcomma{{\rm,\thinspace}}%
34840 \gdef\sumexcl{{\rm!}}%
34841 \gdef\sumbreak{\vskip-2.5\baselineskip\goodbreak}%
34842 \gdef\minus#1{{\tt-}}%
34843 @end tex
34844 @let@:=@sumsep
34845 @let@r=@sumrow
34846 @catcode`@(=@active @let(=@sumlpar
34847 @catcode`@)=@active @let)=@sumrpar
34848 @catcode`@,=@active @let,=@sumcomma
34849 @catcode`@!=@active @let!=@sumexcl
34850 @end iftex
34851 @format
34852 @iftex
34853 @advance@baselineskip-2.5pt
34854 @let@c@sumbreak
34855 @end iftex
34856 @r{       @:     C-x * a  @:             @:    33  @:calc-embedded-activate@:}
34857 @r{       @:     C-x * b  @:             @:        @:calc-big-or-small@:}
34858 @r{       @:     C-x * c  @:             @:        @:calc@:}
34859 @r{       @:     C-x * d  @:             @:        @:calc-embedded-duplicate@:}
34860 @r{       @:     C-x * e  @:             @:    34  @:calc-embedded@:}
34861 @r{       @:     C-x * f  @:formula      @:        @:calc-embedded-new-formula@:}
34862 @r{       @:     C-x * g  @:             @:    35  @:calc-grab-region@:}
34863 @r{       @:     C-x * i  @:             @:        @:calc-info@:}
34864 @r{       @:     C-x * j  @:             @:        @:calc-embedded-select@:}
34865 @r{       @:     C-x * k  @:             @:        @:calc-keypad@:}
34866 @r{       @:     C-x * l  @:             @:        @:calc-load-everything@:}
34867 @r{       @:     C-x * m  @:             @:        @:read-kbd-macro@:}
34868 @r{       @:     C-x * n  @:             @:     4  @:calc-embedded-next@:}
34869 @r{       @:     C-x * o  @:             @:        @:calc-other-window@:}
34870 @r{       @:     C-x * p  @:             @:     4  @:calc-embedded-previous@:}
34871 @r{       @:     C-x * q  @:formula      @:        @:quick-calc@:}
34872 @r{       @:     C-x * r  @:             @:    36  @:calc-grab-rectangle@:}
34873 @r{       @:     C-x * s  @:             @:        @:calc-info-summary@:}
34874 @r{       @:     C-x * t  @:             @:        @:calc-tutorial@:}
34875 @r{       @:     C-x * u  @:             @:        @:calc-embedded-update-formula@:}
34876 @r{       @:     C-x * w  @:             @:        @:calc-embedded-word@:}
34877 @r{       @:     C-x * x  @:             @:        @:calc-quit@:}
34878 @r{       @:     C-x * y  @:            @:1,28,49  @:calc-copy-to-buffer@:}
34879 @r{       @:     C-x * z  @:             @:        @:calc-user-invocation@:}
34880 @r{       @:     C-x * :  @:             @:    36  @:calc-grab-sum-down@:}
34881 @r{       @:     C-x * _  @:             @:    36  @:calc-grab-sum-across@:}
34882 @r{       @:     C-x * `  @:editing      @:    30  @:calc-embedded-edit@:}
34883 @r{       @:     C-x * 0  @:(zero)       @:        @:calc-reset@:}
34886 @r{       @:      0-9   @:number       @:        @:@:number}
34887 @r{       @:      .     @:number       @:        @:@:0.number}
34888 @r{       @:      _     @:number       @:        @:-@:number}
34889 @r{       @:      e     @:number       @:        @:@:1e number}
34890 @r{       @:      #     @:number       @:        @:@:current-radix@tfn{#}number}
34891 @r{       @:      P     @:(in number)  @:        @:+/-@:}
34892 @r{       @:      M     @:(in number)  @:        @:mod@:}
34893 @r{       @:      @@ ' " @:  (in number)@:        @:@:HMS form}
34894 @r{       @:      h m s @:  (in number)@:        @:@:HMS form}
34897 @r{       @:      '     @:formula      @: 37,46  @:@:formula}
34898 @r{       @:      $     @:formula      @: 37,46  @:$@:formula}
34899 @r{       @:      "     @:string       @: 37,46  @:@:string}
34902 @r{    a b@:      +     @:             @:     2  @:add@:(a,b)  a+b}
34903 @r{    a b@:      -     @:             @:     2  @:sub@:(a,b)  a@minus{}b}
34904 @r{    a b@:      *     @:             @:     2  @:mul@:(a,b)  a b, a*b}
34905 @r{    a b@:      /     @:             @:     2  @:div@:(a,b)  a/b}
34906 @r{    a b@:      ^     @:             @:     2  @:pow@:(a,b)  a^b}
34907 @r{    a b@:    I ^     @:             @:     2  @:nroot@:(a,b)  a^(1/b)}
34908 @r{    a b@:      %     @:             @:     2  @:mod@:(a,b)  a%b}
34909 @r{    a b@:      \     @:             @:     2  @:idiv@:(a,b)  a\b}
34910 @r{    a b@:      :     @:             @:     2  @:fdiv@:(a,b)}
34911 @r{    a b@:      |     @:             @:     2  @:vconcat@:(a,b)  a|b}
34912 @r{    a b@:    I |     @:             @:        @:vconcat@:(b,a)  b|a}
34913 @r{    a b@:    H |     @:             @:     2  @:append@:(a,b)}
34914 @r{    a b@:  I H |     @:             @:        @:append@:(b,a)}
34915 @r{      a@:      &     @:             @:     1  @:inv@:(a)  1/a}
34916 @r{      a@:      !     @:             @:     1  @:fact@:(a)  a!}
34917 @r{      a@:      =     @:             @:     1  @:evalv@:(a)}
34918 @r{      a@:      M-%   @:             @:        @:percent@:(a)  a%}
34921 @r{  ... a@:      @key{RET}   @:             @:     1  @:@:... a a}
34922 @r{  ... a@:      @key{SPC}   @:             @:     1  @:@:... a a}
34923 @r{... a b@:      @key{TAB}   @:             @:     3  @:@:... b a}
34924 @r{. a b c@:      M-@key{TAB} @:             @:     3  @:@:... b c a}
34925 @r{... a b@:      @key{LFD}   @:             @:     1  @:@:... a b a}
34926 @r{  ... a@:      @key{DEL}   @:             @:     1  @:@:...}
34927 @r{... a b@:      M-@key{DEL} @:             @:     1  @:@:... b}
34928 @r{       @:      M-@key{RET} @:             @:     4  @:calc-last-args@:}
34929 @r{      a@:      `     @:editing      @:  1,30  @:calc-edit@:}
34932 @r{  ... a@:      C-d   @:             @:     1  @:@:...}
34933 @r{       @:      C-k   @:             @:    27  @:calc-kill@:}
34934 @r{       @:      C-w   @:             @:    27  @:calc-kill-region@:}
34935 @r{       @:      C-y   @:             @:        @:calc-yank@:}
34936 @r{       @:      C-_   @:             @:     4  @:calc-undo@:}
34937 @r{       @:      M-k   @:             @:    27  @:calc-copy-as-kill@:}
34938 @r{       @:      M-w   @:             @:    27  @:calc-copy-region-as-kill@:}
34941 @r{       @:      [     @:             @:        @:@:[...}
34942 @r{[.. a b@:      ]     @:             @:        @:@:[a,b]}
34943 @r{       @:      (     @:             @:        @:@:(...}
34944 @r{(.. a b@:      )     @:             @:        @:@:(a,b)}
34945 @r{       @:      ,     @:             @:        @:@:vector or rect complex}
34946 @r{       @:      ;     @:             @:        @:@:matrix or polar complex}
34947 @r{       @:      ..    @:             @:        @:@:interval}
34950 @r{       @:      ~     @:             @:        @:calc-num-prefix@:}
34951 @r{       @:      <     @:             @:     4  @:calc-scroll-left@:}
34952 @r{       @:      >     @:             @:     4  @:calc-scroll-right@:}
34953 @r{       @:      @{     @:             @:     4  @:calc-scroll-down@:}
34954 @r{       @:      @}     @:             @:     4  @:calc-scroll-up@:}
34955 @r{       @:      ?     @:             @:        @:calc-help@:}
34958 @r{      a@:      n     @:             @:     1  @:neg@:(a)  @minus{}a}
34959 @r{       @:      o     @:             @:     4  @:calc-realign@:}
34960 @r{       @:      p     @:precision    @:    31  @:calc-precision@:}
34961 @r{       @:      q     @:             @:        @:calc-quit@:}
34962 @r{       @:      w     @:             @:        @:calc-why@:}
34963 @r{       @:      x     @:command      @:        @:M-x calc-@:command}
34964 @r{      a@:      y     @:            @:1,28,49  @:calc-copy-to-buffer@:}
34967 @r{      a@:      A     @:             @:     1  @:abs@:(a)}
34968 @r{    a b@:      B     @:             @:     2  @:log@:(a,b)}
34969 @r{    a b@:    I B     @:             @:     2  @:alog@:(a,b)  b^a}
34970 @r{      a@:      C     @:             @:     1  @:cos@:(a)}
34971 @r{      a@:    I C     @:             @:     1  @:arccos@:(a)}
34972 @r{      a@:    H C     @:             @:     1  @:cosh@:(a)}
34973 @r{      a@:  I H C     @:             @:     1  @:arccosh@:(a)}
34974 @r{       @:      D     @:             @:     4  @:calc-redo@:}
34975 @r{      a@:      E     @:             @:     1  @:exp@:(a)}
34976 @r{      a@:    H E     @:             @:     1  @:exp10@:(a)  10.^a}
34977 @r{      a@:      F     @:             @:  1,11  @:floor@:(a,d)}
34978 @r{      a@:    I F     @:             @:  1,11  @:ceil@:(a,d)}
34979 @r{      a@:    H F     @:             @:  1,11  @:ffloor@:(a,d)}
34980 @r{      a@:  I H F     @:             @:  1,11  @:fceil@:(a,d)}
34981 @r{      a@:      G     @:             @:     1  @:arg@:(a)}
34982 @r{       @:      H     @:command      @:    32  @:@:Hyperbolic}
34983 @r{       @:      I     @:command      @:    32  @:@:Inverse}
34984 @r{      a@:      J     @:             @:     1  @:conj@:(a)}
34985 @r{       @:      K     @:command      @:    32  @:@:Keep-args}
34986 @r{      a@:      L     @:             @:     1  @:ln@:(a)}
34987 @r{      a@:    H L     @:             @:     1  @:log10@:(a)}
34988 @r{       @:      M     @:             @:        @:calc-more-recursion-depth@:}
34989 @r{       @:    I M     @:             @:        @:calc-less-recursion-depth@:}
34990 @r{      a@:      N     @:             @:     5  @:evalvn@:(a)}
34991 @r{       @:      P     @:             @:        @:@:pi}
34992 @r{       @:    I P     @:             @:        @:@:gamma}
34993 @r{       @:    H P     @:             @:        @:@:e}
34994 @r{       @:  I H P     @:             @:        @:@:phi}
34995 @r{      a@:      Q     @:             @:     1  @:sqrt@:(a)}
34996 @r{      a@:    I Q     @:             @:     1  @:sqr@:(a)  a^2}
34997 @r{      a@:      R     @:             @:  1,11  @:round@:(a,d)}
34998 @r{      a@:    I R     @:             @:  1,11  @:trunc@:(a,d)}
34999 @r{      a@:    H R     @:             @:  1,11  @:fround@:(a,d)}
35000 @r{      a@:  I H R     @:             @:  1,11  @:ftrunc@:(a,d)}
35001 @r{      a@:      S     @:             @:     1  @:sin@:(a)}
35002 @r{      a@:    I S     @:             @:     1  @:arcsin@:(a)}
35003 @r{      a@:    H S     @:             @:     1  @:sinh@:(a)}
35004 @r{      a@:  I H S     @:             @:     1  @:arcsinh@:(a)}
35005 @r{      a@:      T     @:             @:     1  @:tan@:(a)}
35006 @r{      a@:    I T     @:             @:     1  @:arctan@:(a)}
35007 @r{      a@:    H T     @:             @:     1  @:tanh@:(a)}
35008 @r{      a@:  I H T     @:             @:     1  @:arctanh@:(a)}
35009 @r{       @:      U     @:             @:     4  @:calc-undo@:}
35010 @r{       @:      X     @:             @:     4  @:calc-call-last-kbd-macro@:}
35013 @r{    a b@:      a =   @:             @:     2  @:eq@:(a,b)  a=b}
35014 @r{    a b@:      a #   @:             @:     2  @:neq@:(a,b)  a!=b}
35015 @r{    a b@:      a <   @:             @:     2  @:lt@:(a,b)  a<b}
35016 @r{    a b@:      a >   @:             @:     2  @:gt@:(a,b)  a>b}
35017 @r{    a b@:      a [   @:             @:     2  @:leq@:(a,b)  a<=b}
35018 @r{    a b@:      a ]   @:             @:     2  @:geq@:(a,b)  a>=b}
35019 @r{    a b@:      a @{   @:             @:     2  @:in@:(a,b)}
35020 @r{    a b@:      a &   @:             @:  2,45  @:land@:(a,b)  a&&b}
35021 @r{    a b@:      a |   @:             @:  2,45  @:lor@:(a,b)  a||b}
35022 @r{      a@:      a !   @:             @:  1,45  @:lnot@:(a)  !a}
35023 @r{  a b c@:      a :   @:             @:    45  @:if@:(a,b,c)  a?b:c}
35024 @r{      a@:      a .   @:             @:     1  @:rmeq@:(a)}
35025 @r{      a@:      a "   @:             @:   7,8  @:calc-expand-formula@:}
35028 @r{      a@:      a +   @:i, l, h      @:  6,38  @:sum@:(a,i,l,h)}
35029 @r{      a@:      a -   @:i, l, h      @:  6,38  @:asum@:(a,i,l,h)}
35030 @r{      a@:      a *   @:i, l, h      @:  6,38  @:prod@:(a,i,l,h)}
35031 @r{    a b@:      a _   @:             @:     2  @:subscr@:(a,b)  a_b}
35034 @r{    a b@:      a \   @:             @:     2  @:pdiv@:(a,b)}
35035 @r{    a b@:      a %   @:             @:     2  @:prem@:(a,b)}
35036 @r{    a b@:      a /   @:             @:     2  @:pdivrem@:(a,b)  [q,r]}
35037 @r{    a b@:    H a /   @:             @:     2  @:pdivide@:(a,b)  q+r/b}
35040 @r{      a@:      a a   @:             @:     1  @:apart@:(a)}
35041 @r{      a@:      a b   @:old, new     @:    38  @:subst@:(a,old,new)}
35042 @r{      a@:      a c   @:v            @:    38  @:collect@:(a,v)}
35043 @r{      a@:      a d   @:v            @:  4,38  @:deriv@:(a,v)}
35044 @r{      a@:    H a d   @:v            @:  4,38  @:tderiv@:(a,v)}
35045 @r{      a@:      a e   @:             @:        @:esimplify@:(a)}
35046 @r{      a@:      a f   @:             @:     1  @:factor@:(a)}
35047 @r{      a@:    H a f   @:             @:     1  @:factors@:(a)}
35048 @r{    a b@:      a g   @:             @:     2  @:pgcd@:(a,b)}
35049 @r{      a@:      a i   @:v            @:    38  @:integ@:(a,v)}
35050 @r{      a@:      a m   @:pats         @:    38  @:match@:(a,pats)}
35051 @r{      a@:    I a m   @:pats         @:    38  @:matchnot@:(a,pats)}
35052 @r{ data x@:      a p   @:             @:    28  @:polint@:(data,x)}
35053 @r{ data x@:    H a p   @:             @:    28  @:ratint@:(data,x)}
35054 @r{      a@:      a n   @:             @:     1  @:nrat@:(a)}
35055 @r{      a@:      a r   @:rules        @:4,8,38  @:rewrite@:(a,rules,n)}
35056 @r{      a@:      a s   @:             @:        @:simplify@:(a)}
35057 @r{      a@:      a t   @:v, n         @: 31,39  @:taylor@:(a,v,n)}
35058 @r{      a@:      a v   @:             @:   7,8  @:calc-alg-evaluate@:}
35059 @r{      a@:      a x   @:             @:   4,8  @:expand@:(a)}
35062 @r{   data@:      a F   @:model, vars  @:    48  @:fit@:(m,iv,pv,data)}
35063 @r{   data@:    I a F   @:model, vars  @:    48  @:xfit@:(m,iv,pv,data)}
35064 @r{   data@:    H a F   @:model, vars  @:    48  @:efit@:(m,iv,pv,data)}
35065 @r{      a@:      a I   @:v, l, h      @:    38  @:ninteg@:(a,v,l,h)}
35066 @r{    a b@:      a M   @:op           @:    22  @:mapeq@:(op,a,b)}
35067 @r{    a b@:    I a M   @:op           @:    22  @:mapeqr@:(op,a,b)}
35068 @r{    a b@:    H a M   @:op           @:    22  @:mapeqp@:(op,a,b)}
35069 @r{    a g@:      a N   @:v            @:    38  @:minimize@:(a,v,g)}
35070 @r{    a g@:    H a N   @:v            @:    38  @:wminimize@:(a,v,g)}
35071 @r{      a@:      a P   @:v            @:    38  @:roots@:(a,v)}
35072 @r{    a g@:      a R   @:v            @:    38  @:root@:(a,v,g)}
35073 @r{    a g@:    H a R   @:v            @:    38  @:wroot@:(a,v,g)}
35074 @r{      a@:      a S   @:v            @:    38  @:solve@:(a,v)}
35075 @r{      a@:    I a S   @:v            @:    38  @:finv@:(a,v)}
35076 @r{      a@:    H a S   @:v            @:    38  @:fsolve@:(a,v)}
35077 @r{      a@:  I H a S   @:v            @:    38  @:ffinv@:(a,v)}
35078 @r{      a@:      a T   @:i, l, h      @:  6,38  @:table@:(a,i,l,h)}
35079 @r{    a g@:      a X   @:v            @:    38  @:maximize@:(a,v,g)}
35080 @r{    a g@:    H a X   @:v            @:    38  @:wmaximize@:(a,v,g)}
35083 @r{    a b@:      b a   @:             @:     9  @:and@:(a,b,w)}
35084 @r{      a@:      b c   @:             @:     9  @:clip@:(a,w)}
35085 @r{    a b@:      b d   @:             @:     9  @:diff@:(a,b,w)}
35086 @r{      a@:      b l   @:             @:    10  @:lsh@:(a,n,w)}
35087 @r{    a n@:    H b l   @:             @:     9  @:lsh@:(a,n,w)}
35088 @r{      a@:      b n   @:             @:     9  @:not@:(a,w)}
35089 @r{    a b@:      b o   @:             @:     9  @:or@:(a,b,w)}
35090 @r{      v@:      b p   @:             @:     1  @:vpack@:(v)}
35091 @r{      a@:      b r   @:             @:    10  @:rsh@:(a,n,w)}
35092 @r{    a n@:    H b r   @:             @:     9  @:rsh@:(a,n,w)}
35093 @r{      a@:      b t   @:             @:    10  @:rot@:(a,n,w)}
35094 @r{    a n@:    H b t   @:             @:     9  @:rot@:(a,n,w)}
35095 @r{      a@:      b u   @:             @:     1  @:vunpack@:(a)}
35096 @r{       @:      b w   @:w            @:  9,50  @:calc-word-size@:}
35097 @r{    a b@:      b x   @:             @:     9  @:xor@:(a,b,w)}
35100 @r{c s l p@:      b D   @:             @:        @:ddb@:(c,s,l,p)}
35101 @r{  r n p@:      b F   @:             @:        @:fv@:(r,n,p)}
35102 @r{  r n p@:    I b F   @:             @:        @:fvb@:(r,n,p)}
35103 @r{  r n p@:    H b F   @:             @:        @:fvl@:(r,n,p)}
35104 @r{      v@:      b I   @:             @:    19  @:irr@:(v)}
35105 @r{      v@:    I b I   @:             @:    19  @:irrb@:(v)}
35106 @r{      a@:      b L   @:             @:    10  @:ash@:(a,n,w)}
35107 @r{    a n@:    H b L   @:             @:     9  @:ash@:(a,n,w)}
35108 @r{  r n a@:      b M   @:             @:        @:pmt@:(r,n,a)}
35109 @r{  r n a@:    I b M   @:             @:        @:pmtb@:(r,n,a)}
35110 @r{  r n a@:    H b M   @:             @:        @:pmtl@:(r,n,a)}
35111 @r{    r v@:      b N   @:             @:    19  @:npv@:(r,v)}
35112 @r{    r v@:    I b N   @:             @:    19  @:npvb@:(r,v)}
35113 @r{  r n p@:      b P   @:             @:        @:pv@:(r,n,p)}
35114 @r{  r n p@:    I b P   @:             @:        @:pvb@:(r,n,p)}
35115 @r{  r n p@:    H b P   @:             @:        @:pvl@:(r,n,p)}
35116 @r{      a@:      b R   @:             @:    10  @:rash@:(a,n,w)}
35117 @r{    a n@:    H b R   @:             @:     9  @:rash@:(a,n,w)}
35118 @r{  c s l@:      b S   @:             @:        @:sln@:(c,s,l)}
35119 @r{  n p a@:      b T   @:             @:        @:rate@:(n,p,a)}
35120 @r{  n p a@:    I b T   @:             @:        @:rateb@:(n,p,a)}
35121 @r{  n p a@:    H b T   @:             @:        @:ratel@:(n,p,a)}
35122 @r{c s l p@:      b Y   @:             @:        @:syd@:(c,s,l,p)}
35124 @r{  r p a@:      b #   @:             @:        @:nper@:(r,p,a)}
35125 @r{  r p a@:    I b #   @:             @:        @:nperb@:(r,p,a)}
35126 @r{  r p a@:    H b #   @:             @:        @:nperl@:(r,p,a)}
35127 @r{    a b@:      b %   @:             @:        @:relch@:(a,b)}
35130 @r{      a@:      c c   @:             @:     5  @:pclean@:(a,p)}
35131 @r{      a@:      c 0-9 @:             @:        @:pclean@:(a,p)}
35132 @r{      a@:    H c c   @:             @:     5  @:clean@:(a,p)}
35133 @r{      a@:    H c 0-9 @:             @:        @:clean@:(a,p)}
35134 @r{      a@:      c d   @:             @:     1  @:deg@:(a)}
35135 @r{      a@:      c f   @:             @:     1  @:pfloat@:(a)}
35136 @r{      a@:    H c f   @:             @:     1  @:float@:(a)}
35137 @r{      a@:      c h   @:             @:     1  @:hms@:(a)}
35138 @r{      a@:      c p   @:             @:        @:polar@:(a)}
35139 @r{      a@:    I c p   @:             @:        @:rect@:(a)}
35140 @r{      a@:      c r   @:             @:     1  @:rad@:(a)}
35143 @r{      a@:      c F   @:             @:     5  @:pfrac@:(a,p)}
35144 @r{      a@:    H c F   @:             @:     5  @:frac@:(a,p)}
35147 @r{      a@:      c %   @:             @:        @:percent@:(a*100)}
35150 @r{       @:      d .   @:char         @:    50  @:calc-point-char@:}
35151 @r{       @:      d ,   @:char         @:    50  @:calc-group-char@:}
35152 @r{       @:      d <   @:             @: 13,50  @:calc-left-justify@:}
35153 @r{       @:      d =   @:             @: 13,50  @:calc-center-justify@:}
35154 @r{       @:      d >   @:             @: 13,50  @:calc-right-justify@:}
35155 @r{       @:      d @{   @:label        @:    50  @:calc-left-label@:}
35156 @r{       @:      d @}   @:label        @:    50  @:calc-right-label@:}
35157 @r{       @:      d [   @:             @:     4  @:calc-truncate-up@:}
35158 @r{       @:      d ]   @:             @:     4  @:calc-truncate-down@:}
35159 @r{       @:      d "   @:             @: 12,50  @:calc-display-strings@:}
35160 @r{       @:      d @key{SPC} @:             @:        @:calc-refresh@:}
35161 @r{       @:      d @key{RET} @:             @:     1  @:calc-refresh-top@:}
35164 @r{       @:      d 0   @:             @:    50  @:calc-decimal-radix@:}
35165 @r{       @:      d 2   @:             @:    50  @:calc-binary-radix@:}
35166 @r{       @:      d 6   @:             @:    50  @:calc-hex-radix@:}
35167 @r{       @:      d 8   @:             @:    50  @:calc-octal-radix@:}
35170 @r{       @:      d b   @:           @:12,13,50  @:calc-line-breaking@:}
35171 @r{       @:      d c   @:             @:    50  @:calc-complex-notation@:}
35172 @r{       @:      d d   @:format       @:    50  @:calc-date-notation@:}
35173 @r{       @:      d e   @:             @:  5,50  @:calc-eng-notation@:}
35174 @r{       @:      d f   @:num          @: 31,50  @:calc-fix-notation@:}
35175 @r{       @:      d g   @:           @:12,13,50  @:calc-group-digits@:}
35176 @r{       @:      d h   @:format       @:    50  @:calc-hms-notation@:}
35177 @r{       @:      d i   @:             @:    50  @:calc-i-notation@:}
35178 @r{       @:      d j   @:             @:    50  @:calc-j-notation@:}
35179 @r{       @:      d l   @:             @: 12,50  @:calc-line-numbering@:}
35180 @r{       @:      d n   @:             @:  5,50  @:calc-normal-notation@:}
35181 @r{       @:      d o   @:format       @:    50  @:calc-over-notation@:}
35182 @r{       @:      d p   @:             @: 12,50  @:calc-show-plain@:}
35183 @r{       @:      d r   @:radix        @: 31,50  @:calc-radix@:}
35184 @r{       @:      d s   @:             @:  5,50  @:calc-sci-notation@:}
35185 @r{       @:      d t   @:             @:    27  @:calc-truncate-stack@:}
35186 @r{       @:      d w   @:             @: 12,13  @:calc-auto-why@:}
35187 @r{       @:      d z   @:             @: 12,50  @:calc-leading-zeros@:}
35190 @r{       @:      d B   @:             @:    50  @:calc-big-language@:}
35191 @r{       @:      d C   @:             @:    50  @:calc-c-language@:}
35192 @r{       @:      d E   @:             @:    50  @:calc-eqn-language@:}
35193 @r{       @:      d F   @:             @:    50  @:calc-fortran-language@:}
35194 @r{       @:      d M   @:             @:    50  @:calc-mathematica-language@:}
35195 @r{       @:      d N   @:             @:    50  @:calc-normal-language@:}
35196 @r{       @:      d O   @:             @:    50  @:calc-flat-language@:}
35197 @r{       @:      d P   @:             @:    50  @:calc-pascal-language@:}
35198 @r{       @:      d T   @:             @:    50  @:calc-tex-language@:}
35199 @r{       @:      d L   @:             @:    50  @:calc-latex-language@:}
35200 @r{       @:      d U   @:             @:    50  @:calc-unformatted-language@:}
35201 @r{       @:      d W   @:             @:    50  @:calc-maple-language@:}
35204 @r{      a@:      f [   @:             @:     4  @:decr@:(a,n)}
35205 @r{      a@:      f ]   @:             @:     4  @:incr@:(a,n)}
35208 @r{    a b@:      f b   @:             @:     2  @:beta@:(a,b)}
35209 @r{      a@:      f e   @:             @:     1  @:erf@:(a)}
35210 @r{      a@:    I f e   @:             @:     1  @:erfc@:(a)}
35211 @r{      a@:      f g   @:             @:     1  @:gamma@:(a)}
35212 @r{    a b@:      f h   @:             @:     2  @:hypot@:(a,b)}
35213 @r{      a@:      f i   @:             @:     1  @:im@:(a)}
35214 @r{    n a@:      f j   @:             @:     2  @:besJ@:(n,a)}
35215 @r{    a b@:      f n   @:             @:     2  @:min@:(a,b)}
35216 @r{      a@:      f r   @:             @:     1  @:re@:(a)}
35217 @r{      a@:      f s   @:             @:     1  @:sign@:(a)}
35218 @r{    a b@:      f x   @:             @:     2  @:max@:(a,b)}
35219 @r{    n a@:      f y   @:             @:     2  @:besY@:(n,a)}
35222 @r{      a@:      f A   @:             @:     1  @:abssqr@:(a)}
35223 @r{  x a b@:      f B   @:             @:        @:betaI@:(x,a,b)}
35224 @r{  x a b@:    H f B   @:             @:        @:betaB@:(x,a,b)}
35225 @r{      a@:      f E   @:             @:     1  @:expm1@:(a)}
35226 @r{    a x@:      f G   @:             @:     2  @:gammaP@:(a,x)}
35227 @r{    a x@:    I f G   @:             @:     2  @:gammaQ@:(a,x)}
35228 @r{    a x@:    H f G   @:             @:     2  @:gammag@:(a,x)}
35229 @r{    a x@:  I H f G   @:             @:     2  @:gammaG@:(a,x)}
35230 @r{    a b@:      f I   @:             @:     2  @:ilog@:(a,b)}
35231 @r{    a b@:    I f I   @:             @:     2  @:alog@:(a,b)  b^a}
35232 @r{      a@:      f L   @:             @:     1  @:lnp1@:(a)}
35233 @r{      a@:      f M   @:             @:     1  @:mant@:(a)}
35234 @r{      a@:      f Q   @:             @:     1  @:isqrt@:(a)}
35235 @r{      a@:    I f Q   @:             @:     1  @:sqr@:(a)  a^2}
35236 @r{    a n@:      f S   @:             @:     2  @:scf@:(a,n)}
35237 @r{    y x@:      f T   @:             @:        @:arctan2@:(y,x)}
35238 @r{      a@:      f X   @:             @:     1  @:xpon@:(a)}
35241 @r{    x y@:      g a   @:             @: 28,40  @:calc-graph-add@:}
35242 @r{       @:      g b   @:             @:    12  @:calc-graph-border@:}
35243 @r{       @:      g c   @:             @:        @:calc-graph-clear@:}
35244 @r{       @:      g d   @:             @:    41  @:calc-graph-delete@:}
35245 @r{    x y@:      g f   @:             @: 28,40  @:calc-graph-fast@:}
35246 @r{       @:      g g   @:             @:    12  @:calc-graph-grid@:}
35247 @r{       @:      g h   @:title        @:        @:calc-graph-header@:}
35248 @r{       @:      g j   @:             @:     4  @:calc-graph-juggle@:}
35249 @r{       @:      g k   @:             @:    12  @:calc-graph-key@:}
35250 @r{       @:      g l   @:             @:    12  @:calc-graph-log-x@:}
35251 @r{       @:      g n   @:name         @:        @:calc-graph-name@:}
35252 @r{       @:      g p   @:             @:    42  @:calc-graph-plot@:}
35253 @r{       @:      g q   @:             @:        @:calc-graph-quit@:}
35254 @r{       @:      g r   @:range        @:        @:calc-graph-range-x@:}
35255 @r{       @:      g s   @:             @: 12,13  @:calc-graph-line-style@:}
35256 @r{       @:      g t   @:title        @:        @:calc-graph-title-x@:}
35257 @r{       @:      g v   @:             @:        @:calc-graph-view-commands@:}
35258 @r{       @:      g x   @:display      @:        @:calc-graph-display@:}
35259 @r{       @:      g z   @:             @:    12  @:calc-graph-zero-x@:}
35262 @r{  x y z@:      g A   @:             @: 28,40  @:calc-graph-add-3d@:}
35263 @r{       @:      g C   @:command      @:        @:calc-graph-command@:}
35264 @r{       @:      g D   @:device       @: 43,44  @:calc-graph-device@:}
35265 @r{  x y z@:      g F   @:             @: 28,40  @:calc-graph-fast-3d@:}
35266 @r{       @:      g H   @:             @:    12  @:calc-graph-hide@:}
35267 @r{       @:      g K   @:             @:        @:calc-graph-kill@:}
35268 @r{       @:      g L   @:             @:    12  @:calc-graph-log-y@:}
35269 @r{       @:      g N   @:number       @: 43,51  @:calc-graph-num-points@:}
35270 @r{       @:      g O   @:filename     @: 43,44  @:calc-graph-output@:}
35271 @r{       @:      g P   @:             @:    42  @:calc-graph-print@:}
35272 @r{       @:      g R   @:range        @:        @:calc-graph-range-y@:}
35273 @r{       @:      g S   @:             @: 12,13  @:calc-graph-point-style@:}
35274 @r{       @:      g T   @:title        @:        @:calc-graph-title-y@:}
35275 @r{       @:      g V   @:             @:        @:calc-graph-view-trail@:}
35276 @r{       @:      g X   @:format       @:        @:calc-graph-geometry@:}
35277 @r{       @:      g Z   @:             @:    12  @:calc-graph-zero-y@:}
35280 @r{       @:      g C-l @:             @:    12  @:calc-graph-log-z@:}
35281 @r{       @:      g C-r @:range        @:        @:calc-graph-range-z@:}
35282 @r{       @:      g C-t @:title        @:        @:calc-graph-title-z@:}
35285 @r{       @:      h b   @:             @:        @:calc-describe-bindings@:}
35286 @r{       @:      h c   @:key          @:        @:calc-describe-key-briefly@:}
35287 @r{       @:      h f   @:function     @:        @:calc-describe-function@:}
35288 @r{       @:      h h   @:             @:        @:calc-full-help@:}
35289 @r{       @:      h i   @:             @:        @:calc-info@:}
35290 @r{       @:      h k   @:key          @:        @:calc-describe-key@:}
35291 @r{       @:      h n   @:             @:        @:calc-view-news@:}
35292 @r{       @:      h s   @:             @:        @:calc-info-summary@:}
35293 @r{       @:      h t   @:             @:        @:calc-tutorial@:}
35294 @r{       @:      h v   @:var          @:        @:calc-describe-variable@:}
35297 @r{       @:      j 1-9 @:             @:        @:calc-select-part@:}
35298 @r{       @:      j @key{RET} @:             @:    27  @:calc-copy-selection@:}
35299 @r{       @:      j @key{DEL} @:             @:    27  @:calc-del-selection@:}
35300 @r{       @:      j '   @:formula      @:    27  @:calc-enter-selection@:}
35301 @r{       @:      j `   @:editing      @: 27,30  @:calc-edit-selection@:}
35302 @r{       @:      j "   @:             @:  7,27  @:calc-sel-expand-formula@:}
35305 @r{       @:      j +   @:formula      @:    27  @:calc-sel-add-both-sides@:}
35306 @r{       @:      j -   @:formula      @:    27  @:calc-sel-sub-both-sides@:}
35307 @r{       @:      j *   @:formula      @:    27  @:calc-sel-mul-both-sides@:}
35308 @r{       @:      j /   @:formula      @:    27  @:calc-sel-div-both-sides@:}
35309 @r{       @:      j &   @:             @:    27  @:calc-sel-invert@:}
35312 @r{       @:      j a   @:             @:    27  @:calc-select-additional@:}
35313 @r{       @:      j b   @:             @:    12  @:calc-break-selections@:}
35314 @r{       @:      j c   @:             @:        @:calc-clear-selections@:}
35315 @r{       @:      j d   @:             @: 12,50  @:calc-show-selections@:}
35316 @r{       @:      j e   @:             @:    12  @:calc-enable-selections@:}
35317 @r{       @:      j l   @:             @:  4,27  @:calc-select-less@:}
35318 @r{       @:      j m   @:             @:  4,27  @:calc-select-more@:}
35319 @r{       @:      j n   @:             @:     4  @:calc-select-next@:}
35320 @r{       @:      j o   @:             @:  4,27  @:calc-select-once@:}
35321 @r{       @:      j p   @:             @:     4  @:calc-select-previous@:}
35322 @r{       @:      j r   @:rules        @:4,8,27  @:calc-rewrite-selection@:}
35323 @r{       @:      j s   @:             @:  4,27  @:calc-select-here@:}
35324 @r{       @:      j u   @:             @:    27  @:calc-unselect@:}
35325 @r{       @:      j v   @:             @:  7,27  @:calc-sel-evaluate@:}
35328 @r{       @:      j C   @:             @:    27  @:calc-sel-commute@:}
35329 @r{       @:      j D   @:             @:  4,27  @:calc-sel-distribute@:}
35330 @r{       @:      j E   @:             @:    27  @:calc-sel-jump-equals@:}
35331 @r{       @:      j I   @:             @:    27  @:calc-sel-isolate@:}
35332 @r{       @:    H j I   @:             @:    27  @:calc-sel-isolate@: (full)}
35333 @r{       @:      j L   @:             @:  4,27  @:calc-commute-left@:}
35334 @r{       @:      j M   @:             @:    27  @:calc-sel-merge@:}
35335 @r{       @:      j N   @:             @:    27  @:calc-sel-negate@:}
35336 @r{       @:      j O   @:             @:  4,27  @:calc-select-once-maybe@:}
35337 @r{       @:      j R   @:             @:  4,27  @:calc-commute-right@:}
35338 @r{       @:      j S   @:             @:  4,27  @:calc-select-here-maybe@:}
35339 @r{       @:      j U   @:             @:    27  @:calc-sel-unpack@:}
35342 @r{       @:      k a   @:             @:        @:calc-random-again@:}
35343 @r{      n@:      k b   @:             @:     1  @:bern@:(n)}
35344 @r{    n x@:    H k b   @:             @:     2  @:bern@:(n,x)}
35345 @r{    n m@:      k c   @:             @:     2  @:choose@:(n,m)}
35346 @r{    n m@:    H k c   @:             @:     2  @:perm@:(n,m)}
35347 @r{      n@:      k d   @:             @:     1  @:dfact@:(n)  n!!}
35348 @r{      n@:      k e   @:             @:     1  @:euler@:(n)}
35349 @r{    n x@:    H k e   @:             @:     2  @:euler@:(n,x)}
35350 @r{      n@:      k f   @:             @:     4  @:prfac@:(n)}
35351 @r{    n m@:      k g   @:             @:     2  @:gcd@:(n,m)}
35352 @r{    m n@:      k h   @:             @:    14  @:shuffle@:(n,m)}
35353 @r{    n m@:      k l   @:             @:     2  @:lcm@:(n,m)}
35354 @r{      n@:      k m   @:             @:     1  @:moebius@:(n)}
35355 @r{      n@:      k n   @:             @:     4  @:nextprime@:(n)}
35356 @r{      n@:    I k n   @:             @:     4  @:prevprime@:(n)}
35357 @r{      n@:      k p   @:             @:  4,28  @:calc-prime-test@:}
35358 @r{      m@:      k r   @:             @:    14  @:random@:(m)}
35359 @r{    n m@:      k s   @:             @:     2  @:stir1@:(n,m)}
35360 @r{    n m@:    H k s   @:             @:     2  @:stir2@:(n,m)}
35361 @r{      n@:      k t   @:             @:     1  @:totient@:(n)}
35364 @r{  n p x@:      k B   @:             @:        @:utpb@:(x,n,p)}
35365 @r{  n p x@:    I k B   @:             @:        @:ltpb@:(x,n,p)}
35366 @r{    v x@:      k C   @:             @:        @:utpc@:(x,v)}
35367 @r{    v x@:    I k C   @:             @:        @:ltpc@:(x,v)}
35368 @r{    n m@:      k E   @:             @:        @:egcd@:(n,m)}
35369 @r{v1 v2 x@:      k F   @:             @:        @:utpf@:(x,v1,v2)}
35370 @r{v1 v2 x@:    I k F   @:             @:        @:ltpf@:(x,v1,v2)}
35371 @r{  m s x@:      k N   @:             @:        @:utpn@:(x,m,s)}
35372 @r{  m s x@:    I k N   @:             @:        @:ltpn@:(x,m,s)}
35373 @r{    m x@:      k P   @:             @:        @:utpp@:(x,m)}
35374 @r{    m x@:    I k P   @:             @:        @:ltpp@:(x,m)}
35375 @r{    v x@:      k T   @:             @:        @:utpt@:(x,v)}
35376 @r{    v x@:    I k T   @:             @:        @:ltpt@:(x,v)}
35379 @r{       @:      m a   @:             @: 12,13  @:calc-algebraic-mode@:}
35380 @r{       @:      m d   @:             @:        @:calc-degrees-mode@:}
35381 @r{       @:      m e   @:             @:        @:calc-embedded-preserve-modes@:}
35382 @r{       @:      m f   @:             @:    12  @:calc-frac-mode@:}
35383 @r{       @:      m g   @:             @:    52  @:calc-get-modes@:}
35384 @r{       @:      m h   @:             @:        @:calc-hms-mode@:}
35385 @r{       @:      m i   @:             @: 12,13  @:calc-infinite-mode@:}
35386 @r{       @:      m m   @:             @:        @:calc-save-modes@:}
35387 @r{       @:      m p   @:             @:    12  @:calc-polar-mode@:}
35388 @r{       @:      m r   @:             @:        @:calc-radians-mode@:}
35389 @r{       @:      m s   @:             @:    12  @:calc-symbolic-mode@:}
35390 @r{       @:      m t   @:             @:    12  @:calc-total-algebraic-mode@:}
35391 @r{       @:      m v   @:             @: 12,13  @:calc-matrix-mode@:}
35392 @r{       @:      m w   @:             @:    13  @:calc-working@:}
35393 @r{       @:      m x   @:             @:        @:calc-always-load-extensions@:}
35396 @r{       @:      m A   @:             @:    12  @:calc-alg-simplify-mode@:}
35397 @r{       @:      m B   @:             @:    12  @:calc-bin-simplify-mode@:}
35398 @r{       @:      m C   @:             @:    12  @:calc-auto-recompute@:}
35399 @r{       @:      m D   @:             @:        @:calc-default-simplify-mode@:}
35400 @r{       @:      m E   @:             @:    12  @:calc-ext-simplify-mode@:}
35401 @r{       @:      m F   @:filename     @:    13  @:calc-settings-file-name@:}
35402 @r{       @:      m N   @:             @:    12  @:calc-num-simplify-mode@:}
35403 @r{       @:      m O   @:             @:    12  @:calc-no-simplify-mode@:}
35404 @r{       @:      m R   @:             @: 12,13  @:calc-mode-record-mode@:}
35405 @r{       @:      m S   @:             @:    12  @:calc-shift-prefix@:}
35406 @r{       @:      m U   @:             @:    12  @:calc-units-simplify-mode@:}
35409 @r{       @:      s c   @:var1, var2   @:    29  @:calc-copy-variable@:}
35410 @r{       @:      s d   @:var, decl    @:        @:calc-declare-variable@:}
35411 @r{       @:      s e   @:var, editing @: 29,30  @:calc-edit-variable@:}
35412 @r{       @:      s i   @:buffer       @:        @:calc-insert-variables@:}
35413 @r{       @:      s k   @:const, var   @:    29  @:calc-copy-special-constant@:}
35414 @r{    a b@:      s l   @:var          @:    29  @:@:a  (letting var=b)}
35415 @r{  a ...@:      s m   @:op, var      @: 22,29  @:calc-store-map@:}
35416 @r{       @:      s n   @:var          @: 29,47  @:calc-store-neg@:  (v/-1)}
35417 @r{       @:      s p   @:var          @:    29  @:calc-permanent-variable@:}
35418 @r{       @:      s r   @:var          @:    29  @:@:v  (recalled value)}
35419 @r{       @:      r 0-9 @:             @:        @:calc-recall-quick@:}
35420 @r{      a@:      s s   @:var          @: 28,29  @:calc-store@:}
35421 @r{      a@:      s 0-9 @:             @:        @:calc-store-quick@:}
35422 @r{      a@:      s t   @:var          @:    29  @:calc-store-into@:}
35423 @r{      a@:      t 0-9 @:             @:        @:calc-store-into-quick@:}
35424 @r{       @:      s u   @:var          @:    29  @:calc-unstore@:}
35425 @r{      a@:      s x   @:var          @:    29  @:calc-store-exchange@:}
35428 @r{       @:      s A   @:editing      @:    30  @:calc-edit-AlgSimpRules@:}
35429 @r{       @:      s D   @:editing      @:    30  @:calc-edit-Decls@:}
35430 @r{       @:      s E   @:editing      @:    30  @:calc-edit-EvalRules@:}
35431 @r{       @:      s F   @:editing      @:    30  @:calc-edit-FitRules@:}
35432 @r{       @:      s G   @:editing      @:    30  @:calc-edit-GenCount@:}
35433 @r{       @:      s H   @:editing      @:    30  @:calc-edit-Holidays@:}
35434 @r{       @:      s I   @:editing      @:    30  @:calc-edit-IntegLimit@:}
35435 @r{       @:      s L   @:editing      @:    30  @:calc-edit-LineStyles@:}
35436 @r{       @:      s P   @:editing      @:    30  @:calc-edit-PointStyles@:}
35437 @r{       @:      s R   @:editing      @:    30  @:calc-edit-PlotRejects@:}
35438 @r{       @:      s T   @:editing      @:    30  @:calc-edit-TimeZone@:}
35439 @r{       @:      s U   @:editing      @:    30  @:calc-edit-Units@:}
35440 @r{       @:      s X   @:editing      @:    30  @:calc-edit-ExtSimpRules@:}
35443 @r{      a@:      s +   @:var          @: 29,47  @:calc-store-plus@:  (v+a)}
35444 @r{      a@:      s -   @:var          @: 29,47  @:calc-store-minus@:  (v-a)}
35445 @r{      a@:      s *   @:var          @: 29,47  @:calc-store-times@:  (v*a)}
35446 @r{      a@:      s /   @:var          @: 29,47  @:calc-store-div@:  (v/a)}
35447 @r{      a@:      s ^   @:var          @: 29,47  @:calc-store-power@:  (v^a)}
35448 @r{      a@:      s |   @:var          @: 29,47  @:calc-store-concat@:  (v|a)}
35449 @r{       @:      s &   @:var          @: 29,47  @:calc-store-inv@:  (v^-1)}
35450 @r{       @:      s [   @:var          @: 29,47  @:calc-store-decr@:  (v-1)}
35451 @r{       @:      s ]   @:var          @: 29,47  @:calc-store-incr@:  (v-(-1))}
35452 @r{    a b@:      s :   @:             @:     2  @:assign@:(a,b)  a @tfn{:=} b}
35453 @r{      a@:      s =   @:             @:     1  @:evalto@:(a,b)  a @tfn{=>}}
35456 @r{       @:      t [   @:             @:     4  @:calc-trail-first@:}
35457 @r{       @:      t ]   @:             @:     4  @:calc-trail-last@:}
35458 @r{       @:      t <   @:             @:     4  @:calc-trail-scroll-left@:}
35459 @r{       @:      t >   @:             @:     4  @:calc-trail-scroll-right@:}
35460 @r{       @:      t .   @:             @:    12  @:calc-full-trail-vectors@:}
35463 @r{       @:      t b   @:             @:     4  @:calc-trail-backward@:}
35464 @r{       @:      t d   @:             @: 12,50  @:calc-trail-display@:}
35465 @r{       @:      t f   @:             @:     4  @:calc-trail-forward@:}
35466 @r{       @:      t h   @:             @:        @:calc-trail-here@:}
35467 @r{       @:      t i   @:             @:        @:calc-trail-in@:}
35468 @r{       @:      t k   @:             @:     4  @:calc-trail-kill@:}
35469 @r{       @:      t m   @:string       @:        @:calc-trail-marker@:}
35470 @r{       @:      t n   @:             @:     4  @:calc-trail-next@:}
35471 @r{       @:      t o   @:             @:        @:calc-trail-out@:}
35472 @r{       @:      t p   @:             @:     4  @:calc-trail-previous@:}
35473 @r{       @:      t r   @:string       @:        @:calc-trail-isearch-backward@:}
35474 @r{       @:      t s   @:string       @:        @:calc-trail-isearch-forward@:}
35475 @r{       @:      t y   @:             @:     4  @:calc-trail-yank@:}
35478 @r{      d@:      t C   @:oz, nz       @:        @:tzconv@:(d,oz,nz)}
35479 @r{d oz nz@:      t C   @:$            @:        @:tzconv@:(d,oz,nz)}
35480 @r{      d@:      t D   @:             @:    15  @:date@:(d)}
35481 @r{      d@:      t I   @:             @:     4  @:incmonth@:(d,n)}
35482 @r{      d@:      t J   @:             @:    16  @:julian@:(d,z)}
35483 @r{      d@:      t M   @:             @:    17  @:newmonth@:(d,n)}
35484 @r{       @:      t N   @:             @:    16  @:now@:(z)}
35485 @r{      d@:      t P   @:1            @:    31  @:year@:(d)}
35486 @r{      d@:      t P   @:2            @:    31  @:month@:(d)}
35487 @r{      d@:      t P   @:3            @:    31  @:day@:(d)}
35488 @r{      d@:      t P   @:4            @:    31  @:hour@:(d)}
35489 @r{      d@:      t P   @:5            @:    31  @:minute@:(d)}
35490 @r{      d@:      t P   @:6            @:    31  @:second@:(d)}
35491 @r{      d@:      t P   @:7            @:    31  @:weekday@:(d)}
35492 @r{      d@:      t P   @:8            @:    31  @:yearday@:(d)}
35493 @r{      d@:      t P   @:9            @:    31  @:time@:(d)}
35494 @r{      d@:      t U   @:             @:    16  @:unixtime@:(d,z)}
35495 @r{      d@:      t W   @:             @:    17  @:newweek@:(d,w)}
35496 @r{      d@:      t Y   @:             @:    17  @:newyear@:(d,n)}
35499 @r{    a b@:      t +   @:             @:     2  @:badd@:(a,b)}
35500 @r{    a b@:      t -   @:             @:     2  @:bsub@:(a,b)}
35503 @r{       @:      u a   @:             @:    12  @:calc-autorange-units@:}
35504 @r{      a@:      u b   @:             @:        @:calc-base-units@:}
35505 @r{      a@:      u c   @:units        @:    18  @:calc-convert-units@:}
35506 @r{   defn@:      u d   @:unit, descr  @:        @:calc-define-unit@:}
35507 @r{       @:      u e   @:             @:        @:calc-explain-units@:}
35508 @r{       @:      u g   @:unit         @:        @:calc-get-unit-definition@:}
35509 @r{       @:      u p   @:             @:        @:calc-permanent-units@:}
35510 @r{      a@:      u r   @:             @:        @:calc-remove-units@:}
35511 @r{      a@:      u s   @:             @:        @:usimplify@:(a)}
35512 @r{      a@:      u t   @:units        @:    18  @:calc-convert-temperature@:}
35513 @r{       @:      u u   @:unit         @:        @:calc-undefine-unit@:}
35514 @r{       @:      u v   @:             @:        @:calc-enter-units-table@:}
35515 @r{      a@:      u x   @:             @:        @:calc-extract-units@:}
35516 @r{      a@:      u 0-9 @:             @:        @:calc-quick-units@:}
35519 @r{  v1 v2@:      u C   @:             @:    20  @:vcov@:(v1,v2)}
35520 @r{  v1 v2@:    I u C   @:             @:    20  @:vpcov@:(v1,v2)}
35521 @r{  v1 v2@:    H u C   @:             @:    20  @:vcorr@:(v1,v2)}
35522 @r{      v@:      u G   @:             @:    19  @:vgmean@:(v)}
35523 @r{    a b@:    H u G   @:             @:     2  @:agmean@:(a,b)}
35524 @r{      v@:      u M   @:             @:    19  @:vmean@:(v)}
35525 @r{      v@:    I u M   @:             @:    19  @:vmeane@:(v)}
35526 @r{      v@:    H u M   @:             @:    19  @:vmedian@:(v)}
35527 @r{      v@:  I H u M   @:             @:    19  @:vhmean@:(v)}
35528 @r{      v@:      u N   @:             @:    19  @:vmin@:(v)}
35529 @r{      v@:      u S   @:             @:    19  @:vsdev@:(v)}
35530 @r{      v@:    I u S   @:             @:    19  @:vpsdev@:(v)}
35531 @r{      v@:    H u S   @:             @:    19  @:vvar@:(v)}
35532 @r{      v@:  I H u S   @:             @:    19  @:vpvar@:(v)}
35533 @r{       @:      u V   @:             @:        @:calc-view-units-table@:}
35534 @r{      v@:      u X   @:             @:    19  @:vmax@:(v)}
35537 @r{      v@:      u +   @:             @:    19  @:vsum@:(v)}
35538 @r{      v@:      u *   @:             @:    19  @:vprod@:(v)}
35539 @r{      v@:      u #   @:             @:    19  @:vcount@:(v)}
35542 @r{       @:      V (   @:             @:    50  @:calc-vector-parens@:}
35543 @r{       @:      V @{   @:             @:    50  @:calc-vector-braces@:}
35544 @r{       @:      V [   @:             @:    50  @:calc-vector-brackets@:}
35545 @r{       @:      V ]   @:ROCP         @:    50  @:calc-matrix-brackets@:}
35546 @r{       @:      V ,   @:             @:    50  @:calc-vector-commas@:}
35547 @r{       @:      V <   @:             @:    50  @:calc-matrix-left-justify@:}
35548 @r{       @:      V =   @:             @:    50  @:calc-matrix-center-justify@:}
35549 @r{       @:      V >   @:             @:    50  @:calc-matrix-right-justify@:}
35550 @r{       @:      V /   @:             @: 12,50  @:calc-break-vectors@:}
35551 @r{       @:      V .   @:             @: 12,50  @:calc-full-vectors@:}
35554 @r{    s t@:      V ^   @:             @:     2  @:vint@:(s,t)}
35555 @r{    s t@:      V -   @:             @:     2  @:vdiff@:(s,t)}
35556 @r{      s@:      V ~   @:             @:     1  @:vcompl@:(s)}
35557 @r{      s@:      V #   @:             @:     1  @:vcard@:(s)}
35558 @r{      s@:      V :   @:             @:     1  @:vspan@:(s)}
35559 @r{      s@:      V +   @:             @:     1  @:rdup@:(s)}
35562 @r{      m@:      V &   @:             @:     1  @:inv@:(m)  1/m}
35565 @r{      v@:      v a   @:n            @:        @:arrange@:(v,n)}
35566 @r{      a@:      v b   @:n            @:        @:cvec@:(a,n)}
35567 @r{      v@:      v c   @:n >0         @: 21,31  @:mcol@:(v,n)}
35568 @r{      v@:      v c   @:n <0         @:    31  @:mrcol@:(v,-n)}
35569 @r{      m@:      v c   @:0            @:    31  @:getdiag@:(m)}
35570 @r{      v@:      v d   @:             @:    25  @:diag@:(v,n)}
35571 @r{    v m@:      v e   @:             @:     2  @:vexp@:(v,m)}
35572 @r{  v m f@:    H v e   @:             @:     2  @:vexp@:(v,m,f)}
35573 @r{    v a@:      v f   @:             @:    26  @:find@:(v,a,n)}
35574 @r{      v@:      v h   @:             @:     1  @:head@:(v)}
35575 @r{      v@:    I v h   @:             @:     1  @:tail@:(v)}
35576 @r{      v@:    H v h   @:             @:     1  @:rhead@:(v)}
35577 @r{      v@:  I H v h   @:             @:     1  @:rtail@:(v)}
35578 @r{       @:      v i   @:n            @:    31  @:idn@:(1,n)}
35579 @r{       @:      v i   @:0            @:    31  @:idn@:(1)}
35580 @r{    h t@:      v k   @:             @:     2  @:cons@:(h,t)}
35581 @r{    h t@:    H v k   @:             @:     2  @:rcons@:(h,t)}
35582 @r{      v@:      v l   @:             @:     1  @:vlen@:(v)}
35583 @r{      v@:    H v l   @:             @:     1  @:mdims@:(v)}
35584 @r{    v m@:      v m   @:             @:     2  @:vmask@:(v,m)}
35585 @r{      v@:      v n   @:             @:     1  @:rnorm@:(v)}
35586 @r{  a b c@:      v p   @:             @:    24  @:calc-pack@:}
35587 @r{      v@:      v r   @:n >0         @: 21,31  @:mrow@:(v,n)}
35588 @r{      v@:      v r   @:n <0         @:    31  @:mrrow@:(v,-n)}
35589 @r{      m@:      v r   @:0            @:    31  @:getdiag@:(m)}
35590 @r{  v i j@:      v s   @:             @:        @:subvec@:(v,i,j)}
35591 @r{  v i j@:    I v s   @:             @:        @:rsubvec@:(v,i,j)}
35592 @r{      m@:      v t   @:             @:     1  @:trn@:(m)}
35593 @r{      v@:      v u   @:             @:    24  @:calc-unpack@:}
35594 @r{      v@:      v v   @:             @:     1  @:rev@:(v)}
35595 @r{       @:      v x   @:n            @:    31  @:index@:(n)}
35596 @r{  n s i@:  C-u v x   @:             @:        @:index@:(n,s,i)}
35599 @r{      v@:      V A   @:op           @:    22  @:apply@:(op,v)}
35600 @r{  v1 v2@:      V C   @:             @:     2  @:cross@:(v1,v2)}
35601 @r{      m@:      V D   @:             @:     1  @:det@:(m)}
35602 @r{      s@:      V E   @:             @:     1  @:venum@:(s)}
35603 @r{      s@:      V F   @:             @:     1  @:vfloor@:(s)}
35604 @r{      v@:      V G   @:             @:        @:grade@:(v)}
35605 @r{      v@:    I V G   @:             @:        @:rgrade@:(v)}
35606 @r{      v@:      V H   @:n            @:    31  @:histogram@:(v,n)}
35607 @r{    v w@:    H V H   @:n            @:    31  @:histogram@:(v,w,n)}
35608 @r{  v1 v2@:      V I   @:mop aop      @:    22  @:inner@:(mop,aop,v1,v2)}
35609 @r{      m@:      V J   @:             @:     1  @:ctrn@:(m)}
35610 @r{      m@:      V L   @:             @:     1  @:lud@:(m)}
35611 @r{      v@:      V M   @:op           @: 22,23  @:map@:(op,v)}
35612 @r{      v@:      V N   @:             @:     1  @:cnorm@:(v)}
35613 @r{  v1 v2@:      V O   @:op           @:    22  @:outer@:(op,v1,v2)}
35614 @r{      v@:      V R   @:op           @: 22,23  @:reduce@:(op,v)}
35615 @r{      v@:    I V R   @:op           @: 22,23  @:rreduce@:(op,v)}
35616 @r{    a n@:    H V R   @:op           @:    22  @:nest@:(op,a,n)}
35617 @r{      a@:  I H V R   @:op           @:    22  @:fixp@:(op,a)}
35618 @r{      v@:      V S   @:             @:        @:sort@:(v)}
35619 @r{      v@:    I V S   @:             @:        @:rsort@:(v)}
35620 @r{      m@:      V T   @:             @:     1  @:tr@:(m)}
35621 @r{      v@:      V U   @:op           @:    22  @:accum@:(op,v)}
35622 @r{      v@:    I V U   @:op           @:    22  @:raccum@:(op,v)}
35623 @r{    a n@:    H V U   @:op           @:    22  @:anest@:(op,a,n)}
35624 @r{      a@:  I H V U   @:op           @:    22  @:afixp@:(op,a)}
35625 @r{    s t@:      V V   @:             @:     2  @:vunion@:(s,t)}
35626 @r{    s t@:      V X   @:             @:     2  @:vxor@:(s,t)}
35629 @r{       @:      Y     @:             @:        @:@:user commands}
35632 @r{       @:      z     @:             @:        @:@:user commands}
35635 @r{      c@:      Z [   @:             @:    45  @:calc-kbd-if@:}
35636 @r{      c@:      Z |   @:             @:    45  @:calc-kbd-else-if@:}
35637 @r{       @:      Z :   @:             @:        @:calc-kbd-else@:}
35638 @r{       @:      Z ]   @:             @:        @:calc-kbd-end-if@:}
35641 @r{       @:      Z @{   @:             @:     4  @:calc-kbd-loop@:}
35642 @r{      c@:      Z /   @:             @:    45  @:calc-kbd-break@:}
35643 @r{       @:      Z @}   @:             @:        @:calc-kbd-end-loop@:}
35644 @r{      n@:      Z <   @:             @:        @:calc-kbd-repeat@:}
35645 @r{       @:      Z >   @:             @:        @:calc-kbd-end-repeat@:}
35646 @r{    n m@:      Z (   @:             @:        @:calc-kbd-for@:}
35647 @r{      s@:      Z )   @:             @:        @:calc-kbd-end-for@:}
35650 @r{       @:      Z C-g @:             @:        @:@:cancel if/loop command}
35653 @r{       @:      Z `   @:             @:        @:calc-kbd-push@:}
35654 @r{       @:      Z '   @:             @:        @:calc-kbd-pop@:}
35655 @r{       @:      Z #   @:             @:        @:calc-kbd-query@:}
35658 @r{   comp@:      Z C   @:func, args   @:    50  @:calc-user-define-composition@:}
35659 @r{       @:      Z D   @:key, command @:        @:calc-user-define@:}
35660 @r{       @:      Z E   @:key, editing @:    30  @:calc-user-define-edit@:}
35661 @r{   defn@:      Z F   @:k, c, f, a, n@:    28  @:calc-user-define-formula@:}
35662 @r{       @:      Z G   @:key          @:        @:calc-get-user-defn@:}
35663 @r{       @:      Z I   @:             @:        @:calc-user-define-invocation@:}
35664 @r{       @:      Z K   @:key, command @:        @:calc-user-define-kbd-macro@:}
35665 @r{       @:      Z P   @:key          @:        @:calc-user-define-permanent@:}
35666 @r{       @:      Z S   @:             @:    30  @:calc-edit-user-syntax@:}
35667 @r{       @:      Z T   @:             @:    12  @:calc-timing@:}
35668 @r{       @:      Z U   @:key          @:        @:calc-user-undefine@:}
35670 @end format
35672 @noindent
35673 NOTES
35675 @enumerate
35676 @c 1
35677 @item
35678 Positive prefix arguments apply to @expr{n} stack entries.
35679 Negative prefix arguments apply to the @expr{-n}th stack entry.
35680 A prefix of zero applies to the entire stack.  (For @key{LFD} and
35681 @kbd{M-@key{DEL}}, the meaning of the sign is reversed.)
35683 @c 2
35684 @item
35685 Positive prefix arguments apply to @expr{n} stack entries.
35686 Negative prefix arguments apply to the top stack entry
35687 and the next @expr{-n} stack entries.
35689 @c 3
35690 @item
35691 Positive prefix arguments rotate top @expr{n} stack entries by one.
35692 Negative prefix arguments rotate the entire stack by @expr{-n}.
35693 A prefix of zero reverses the entire stack.
35695 @c 4
35696 @item
35697 Prefix argument specifies a repeat count or distance.
35699 @c 5
35700 @item
35701 Positive prefix arguments specify a precision @expr{p}.
35702 Negative prefix arguments reduce the current precision by @expr{-p}.
35704 @c 6
35705 @item
35706 A prefix argument is interpreted as an additional step-size parameter.
35707 A plain @kbd{C-u} prefix means to prompt for the step size.
35709 @c 7
35710 @item
35711 A prefix argument specifies simplification level and depth.
35712 1=Default, 2=like @kbd{a s}, 3=like @kbd{a e}.
35714 @c 8
35715 @item
35716 A negative prefix operates only on the top level of the input formula.
35718 @c 9
35719 @item
35720 Positive prefix arguments specify a word size of @expr{w} bits, unsigned.
35721 Negative prefix arguments specify a word size of @expr{w} bits, signed.
35723 @c 10
35724 @item
35725 Prefix arguments specify the shift amount @expr{n}.  The @expr{w} argument
35726 cannot be specified in the keyboard version of this command.
35728 @c 11
35729 @item
35730 From the keyboard, @expr{d} is omitted and defaults to zero.
35732 @c 12
35733 @item
35734 Mode is toggled; a positive prefix always sets the mode, and a negative
35735 prefix always clears the mode.
35737 @c 13
35738 @item
35739 Some prefix argument values provide special variations of the mode.
35741 @c 14
35742 @item
35743 A prefix argument, if any, is used for @expr{m} instead of taking
35744 @expr{m} from the stack.  @expr{M} may take any of these values:
35745 @iftex
35746 {@advance@tableindent10pt
35747 @end iftex
35748 @table @asis
35749 @item Integer
35750 Random integer in the interval @expr{[0 .. m)}.
35751 @item Float
35752 Random floating-point number in the interval @expr{[0 .. m)}.
35753 @item 0.0
35754 Gaussian with mean 1 and standard deviation 0.
35755 @item Error form
35756 Gaussian with specified mean and standard deviation.
35757 @item Interval
35758 Random integer or floating-point number in that interval.
35759 @item Vector
35760 Random element from the vector.
35761 @end table
35762 @iftex
35764 @end iftex
35766 @c 15
35767 @item
35768 A prefix argument from 1 to 6 specifies number of date components
35769 to remove from the stack.  @xref{Date Conversions}.
35771 @c 16
35772 @item
35773 A prefix argument specifies a time zone; @kbd{C-u} says to take the
35774 time zone number or name from the top of the stack.  @xref{Time Zones}.
35776 @c 17
35777 @item
35778 A prefix argument specifies a day number (0-6, 0-31, or 0-366).
35780 @c 18
35781 @item
35782 If the input has no units, you will be prompted for both the old and
35783 the new units.
35785 @c 19
35786 @item
35787 With a prefix argument, collect that many stack entries to form the
35788 input data set.  Each entry may be a single value or a vector of values.
35790 @c 20
35791 @item
35792 With a prefix argument of 1, take a single 
35793 @texline @var{n}@math{\times2}
35794 @infoline @mathit{@var{N}x2} 
35795 matrix from the stack instead of two separate data vectors.
35797 @c 21
35798 @item
35799 The row or column number @expr{n} may be given as a numeric prefix
35800 argument instead.  A plain @kbd{C-u} prefix says to take @expr{n}
35801 from the top of the stack.  If @expr{n} is a vector or interval,
35802 a subvector/submatrix of the input is created.
35804 @c 22
35805 @item
35806 The @expr{op} prompt can be answered with the key sequence for the
35807 desired function, or with @kbd{x} or @kbd{z} followed by a function name,
35808 or with @kbd{$} to take a formula from the top of the stack, or with
35809 @kbd{'} and a typed formula.  In the last two cases, the formula may
35810 be a nameless function like @samp{<#1+#2>} or @samp{<x, y : x+y>}, or it
35811 may include @kbd{$}, @kbd{$$}, etc. (where @kbd{$} will correspond to the
35812 last argument of the created function), or otherwise you will be
35813 prompted for an argument list.  The number of vectors popped from the
35814 stack by @kbd{V M} depends on the number of arguments of the function.
35816 @c 23
35817 @item
35818 One of the mapping direction keys @kbd{_} (horizontal, i.e., map
35819 by rows or reduce across), @kbd{:} (vertical, i.e., map by columns or
35820 reduce down), or @kbd{=} (map or reduce by rows) may be used before
35821 entering @expr{op}; these modify the function name by adding the letter
35822 @code{r} for ``rows,'' @code{c} for ``columns,'' @code{a} for ``across,''
35823 or @code{d} for ``down.''
35825 @c 24
35826 @item
35827 The prefix argument specifies a packing mode.  A nonnegative mode
35828 is the number of items (for @kbd{v p}) or the number of levels
35829 (for @kbd{v u}).  A negative mode is as described below.  With no
35830 prefix argument, the mode is taken from the top of the stack and
35831 may be an integer or a vector of integers.
35832 @iftex
35833 {@advance@tableindent-20pt
35834 @end iftex
35835 @table @cite
35836 @item -1
35837 (@var{2})  Rectangular complex number.
35838 @item -2
35839 (@var{2})  Polar complex number.
35840 @item -3
35841 (@var{3})  HMS form.
35842 @item -4
35843 (@var{2})  Error form.
35844 @item -5
35845 (@var{2})  Modulo form.
35846 @item -6
35847 (@var{2})  Closed interval.
35848 @item -7
35849 (@var{2})  Closed .. open interval.
35850 @item -8
35851 (@var{2})  Open .. closed interval.
35852 @item -9
35853 (@var{2})  Open interval.
35854 @item -10
35855 (@var{2})  Fraction.
35856 @item -11
35857 (@var{2})  Float with integer mantissa.
35858 @item -12
35859 (@var{2})  Float with mantissa in @expr{[1 .. 10)}.
35860 @item -13
35861 (@var{1})  Date form (using date numbers).
35862 @item -14
35863 (@var{3})  Date form (using year, month, day).
35864 @item -15
35865 (@var{6})  Date form (using year, month, day, hour, minute, second).
35866 @end table
35867 @iftex
35869 @end iftex
35871 @c 25
35872 @item
35873 A prefix argument specifies the size @expr{n} of the matrix.  With no
35874 prefix argument, @expr{n} is omitted and the size is inferred from
35875 the input vector.
35877 @c 26
35878 @item
35879 The prefix argument specifies the starting position @expr{n} (default 1).
35881 @c 27
35882 @item
35883 Cursor position within stack buffer affects this command.
35885 @c 28
35886 @item
35887 Arguments are not actually removed from the stack by this command.
35889 @c 29
35890 @item
35891 Variable name may be a single digit or a full name.
35893 @c 30
35894 @item
35895 Editing occurs in a separate buffer.  Press @kbd{C-c C-c} (or 
35896 @key{LFD}, or in some cases @key{RET}) to finish the edit, or kill the
35897 buffer with @kbd{C-x k} to cancel the edit.  The @key{LFD} key prevents evaluation
35898 of the result of the edit.
35900 @c 31
35901 @item
35902 The number prompted for can also be provided as a prefix argument.
35904 @c 32
35905 @item
35906 Press this key a second time to cancel the prefix.
35908 @c 33
35909 @item
35910 With a negative prefix, deactivate all formulas.  With a positive
35911 prefix, deactivate and then reactivate from scratch.
35913 @c 34
35914 @item
35915 Default is to scan for nearest formula delimiter symbols.  With a
35916 prefix of zero, formula is delimited by mark and point.  With a
35917 non-zero prefix, formula is delimited by scanning forward or
35918 backward by that many lines.
35920 @c 35
35921 @item
35922 Parse the region between point and mark as a vector.  A nonzero prefix
35923 parses @var{n} lines before or after point as a vector.  A zero prefix
35924 parses the current line as a vector.  A @kbd{C-u} prefix parses the
35925 region between point and mark as a single formula.
35927 @c 36
35928 @item
35929 Parse the rectangle defined by point and mark as a matrix.  A positive
35930 prefix @var{n} divides the rectangle into columns of width @var{n}.
35931 A zero or @kbd{C-u} prefix parses each line as one formula.  A negative
35932 prefix suppresses special treatment of bracketed portions of a line.
35934 @c 37
35935 @item
35936 A numeric prefix causes the current language mode to be ignored.
35938 @c 38
35939 @item
35940 Responding to a prompt with a blank line answers that and all
35941 later prompts by popping additional stack entries.
35943 @c 39
35944 @item
35945 Answer for @expr{v} may also be of the form @expr{v = v_0} or
35946 @expr{v - v_0}.
35948 @c 40
35949 @item
35950 With a positive prefix argument, stack contains many @expr{y}'s and one
35951 common @expr{x}.  With a zero prefix, stack contains a vector of
35952 @expr{y}s and a common @expr{x}.  With a negative prefix, stack
35953 contains many @expr{[x,y]} vectors.  (For 3D plots, substitute
35954 @expr{z} for @expr{y} and @expr{x,y} for @expr{x}.)
35956 @c 41
35957 @item
35958 With any prefix argument, all curves in the graph are deleted.
35960 @c 42
35961 @item
35962 With a positive prefix, refines an existing plot with more data points.
35963 With a negative prefix, forces recomputation of the plot data.
35965 @c 43
35966 @item
35967 With any prefix argument, set the default value instead of the
35968 value for this graph.
35970 @c 44
35971 @item
35972 With a negative prefix argument, set the value for the printer.
35974 @c 45
35975 @item
35976 Condition is considered ``true'' if it is a nonzero real or complex
35977 number, or a formula whose value is known to be nonzero; it is ``false''
35978 otherwise.
35980 @c 46
35981 @item
35982 Several formulas separated by commas are pushed as multiple stack
35983 entries.  Trailing @kbd{)}, @kbd{]}, @kbd{@}}, @kbd{>}, and @kbd{"}
35984 delimiters may be omitted.  The notation @kbd{$$$} refers to the value
35985 in stack level three, and causes the formula to replace the top three
35986 stack levels.  The notation @kbd{$3} refers to stack level three without
35987 causing that value to be removed from the stack.  Use @key{LFD} in place
35988 of @key{RET} to prevent evaluation; use @kbd{M-=} in place of @key{RET}
35989 to evaluate variables.
35991 @c 47
35992 @item
35993 The variable is replaced by the formula shown on the right.  The
35994 Inverse flag reverses the order of the operands, e.g., @kbd{I s - x}
35995 assigns 
35996 @texline @math{x \coloneq a-x}.
35997 @infoline @expr{x := a-x}.
35999 @c 48
36000 @item
36001 Press @kbd{?} repeatedly to see how to choose a model.  Answer the
36002 variables prompt with @expr{iv} or @expr{iv;pv} to specify
36003 independent and parameter variables.  A positive prefix argument
36004 takes @mathit{@var{n}+1} vectors from the stack; a zero prefix takes a matrix
36005 and a vector from the stack.
36007 @c 49
36008 @item
36009 With a plain @kbd{C-u} prefix, replace the current region of the
36010 destination buffer with the yanked text instead of inserting.
36012 @c 50
36013 @item
36014 All stack entries are reformatted; the @kbd{H} prefix inhibits this.
36015 The @kbd{I} prefix sets the mode temporarily, redraws the top stack
36016 entry, then restores the original setting of the mode.
36018 @c 51
36019 @item
36020 A negative prefix sets the default 3D resolution instead of the
36021 default 2D resolution.
36023 @c 52
36024 @item
36025 This grabs a vector of the form [@var{prec}, @var{wsize}, @var{ssize},
36026 @var{radix}, @var{flfmt}, @var{ang}, @var{frac}, @var{symb}, @var{polar},
36027 @var{matrix}, @var{simp}, @var{inf}].  A prefix argument from 1 to 12
36028 grabs the @var{n}th mode value only.
36029 @end enumerate
36031 @iftex
36032 (Space is provided below for you to keep your own written notes.)
36033 @page
36034 @endgroup
36035 @end iftex
36038 @c [end-summary]
36040 @node Key Index, Command Index, Summary, Top
36041 @unnumbered Index of Key Sequences
36043 @printindex ky
36045 @node Command Index, Function Index, Key Index, Top
36046 @unnumbered Index of Calculator Commands
36048 Since all Calculator commands begin with the prefix @samp{calc-}, the
36049 @kbd{x} key has been provided as a variant of @kbd{M-x} which automatically
36050 types @samp{calc-} for you.  Thus, @kbd{x last-args} is short for
36051 @kbd{M-x calc-last-args}.
36053 @printindex pg
36055 @node Function Index, Concept Index, Command Index, Top
36056 @unnumbered Index of Algebraic Functions
36058 This is a list of built-in functions and operators usable in algebraic
36059 expressions.  Their full Lisp names are derived by adding the prefix
36060 @samp{calcFunc-}, as in @code{calcFunc-sqrt}.
36061 @iftex
36062 All functions except those noted with ``*'' have corresponding
36063 Calc keystrokes and can also be found in the Calc Summary.
36064 @end iftex
36066 @printindex tp
36068 @node Concept Index, Variable Index, Function Index, Top
36069 @unnumbered Concept Index
36071 @printindex cp
36073 @node Variable Index, Lisp Function Index, Concept Index, Top
36074 @unnumbered Index of Variables
36076 The variables in this list that do not contain dashes are accessible
36077 as Calc variables.  Add a @samp{var-} prefix to get the name of the
36078 corresponding Lisp variable.
36080 The remaining variables are Lisp variables suitable for @code{setq}ing
36081 in your Calc init file or @file{.emacs} file.
36083 @printindex vr
36085 @node Lisp Function Index,  , Variable Index, Top
36086 @unnumbered Index of Lisp Math Functions
36088 The following functions are meant to be used with @code{defmath}, not
36089 @code{defun} definitions.  For names that do not start with @samp{calc-},
36090 the corresponding full Lisp name is derived by adding a prefix of
36091 @samp{math-}.
36093 @printindex fn
36095 @summarycontents
36097 @c [end]
36099 @contents
36100 @bye
36103 @ignore
36104    arch-tag: 77a71809-fa4d-40be-b2cc-da3e8fb137c0
36105 @end ignore