(elp-functionp): New function.
[emacs.git] / lispref / lists.texi
blobda9d57319edf789e7e423f5917870b75febaf47b
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc. 
4 @c See the file elisp.texi for copying conditions.
5 @setfilename ../info/lists
6 @node Lists, Sequences Arrays Vectors, Strings and Characters, Top
7 @chapter Lists
8 @cindex list
9 @cindex element (of list)
11   A @dfn{list} represents a sequence of zero or more elements (which may
12 be any Lisp objects).  The important difference between lists and
13 vectors is that two or more lists can share part of their structure; in
14 addition, you can insert or delete elements in a list without copying
15 the whole list.
17 @menu
18 * Cons Cells::          How lists are made out of cons cells.
19 * Lists as Boxes::                 Graphical notation to explain lists.
20 * List-related Predicates::        Is this object a list?  Comparing two lists.
21 * List Elements::       Extracting the pieces of a list.
22 * Building Lists::      Creating list structure.
23 * Modifying Lists::     Storing new pieces into an existing list.
24 * Sets And Lists::      A list can represent a finite mathematical set.
25 * Association Lists::   A list can represent a finite relation or mapping.
26 @end menu
28 @node Cons Cells
29 @section Lists and Cons Cells
30 @cindex lists and cons cells
31 @cindex @code{nil} and lists
33   Lists in Lisp are not a primitive data type; they are built up from
34 @dfn{cons cells}.  A cons cell is a data object that represents an
35 ordered pair.  It records two Lisp objects, one labeled as the @sc{car},
36 and the other labeled as the @sc{cdr}.  These names are traditional; see
37 @ref{Cons Cell Type}.  @sc{cdr} is pronounced ``could-er.''
39   A list is a series of cons cells chained together, one cons cell per
40 element of the list.  By convention, the @sc{car}s of the cons cells are
41 the elements of the list, and the @sc{cdr}s are used to chain the list:
42 the @sc{cdr} of each cons cell is the following cons cell.  The @sc{cdr}
43 of the last cons cell is @code{nil}.  This asymmetry between the
44 @sc{car} and the @sc{cdr} is entirely a matter of convention; at the
45 level of cons cells, the @sc{car} and @sc{cdr} slots have the same
46 characteristics.
48 @cindex list structure
49   Because most cons cells are used as part of lists, the phrase
50 @dfn{list structure} has come to mean any structure made out of cons
51 cells.
53   The symbol @code{nil} is considered a list as well as a symbol; it is
54 the list with no elements.  For convenience, the symbol @code{nil} is
55 considered to have @code{nil} as its @sc{cdr} (and also as its
56 @sc{car}).
58   The @sc{cdr} of any nonempty list @var{l} is a list containing all the
59 elements of @var{l} except the first.
61 @node Lists as Boxes
62 @comment  node-name,  next,  previous,  up
63 @section Lists as Linked Pairs of Boxes
64 @cindex box representation for lists
65 @cindex lists represented as boxes
66 @cindex cons cell as box
68   A cons cell can be illustrated as a pair of boxes.  The first box
69 represents the @sc{car} and the second box represents the @sc{cdr}.
70 Here is an illustration of the two-element list, @code{(tulip lily)},
71 made from two cons cells:
73 @example
74 @group
75  ---------------         ---------------
76 | car   | cdr   |       | car   | cdr   |
77 | tulip |   o---------->| lily  |  nil  |
78 |       |       |       |       |       |
79  ---------------         ---------------
80 @end group
81 @end example
83   Each pair of boxes represents a cons cell.  Each box ``refers to'',
84 ``points to'' or ``contains'' a Lisp object.  (These terms are
85 synonymous.)  The first box, which is the @sc{car} of the first cons
86 cell, contains the symbol @code{tulip}.  The arrow from the @sc{cdr} of
87 the first cons cell to the second cons cell indicates that the @sc{cdr}
88 of the first cons cell points to the second cons cell.
90   The same list can be illustrated in a different sort of box notation
91 like this:
93 @example
94 @group
95     ___ ___      ___ ___
96    |___|___|--> |___|___|--> nil
97      |            |
98      |            |
99       --> tulip    --> lily
100 @end group
101 @end example
103   Here is a more complex illustration, showing the three-element list,
104 @code{((pine needles) oak maple)}, the first element of which is a
105 two-element list:
107 @example
108 @group
109     ___ ___      ___ ___      ___ ___
110    |___|___|--> |___|___|--> |___|___|--> nil
111      |            |            |
112      |            |            |
113      |             --> oak      --> maple
114      |
115      |     ___ ___      ___ ___
116       --> |___|___|--> |___|___|--> nil
117             |            |
118             |            |
119              --> pine     --> needles
120 @end group
121 @end example
123   The same list represented in the first box notation looks like this:
125 @example
126 @group
127  --------------       --------------       --------------
128 | car   | cdr  |     | car   | cdr  |     | car   | cdr  |
129 |   o   |   o------->| oak   |   o------->| maple |  nil |
130 |   |   |      |     |       |      |     |       |      |
131  -- | ---------       --------------       --------------
132     |
133     |
134     |        --------------       ----------------
135     |       | car   | cdr  |     | car     | cdr  |
136      ------>| pine  |   o------->| needles |  nil |
137             |       |      |     |         |      |
138              --------------       ----------------
139 @end group
140 @end example
142   @xref{Cons Cell Type}, for the read and print syntax of cons cells and
143 lists, and for more ``box and arrow'' illustrations of lists.
145 @node List-related Predicates
146 @section Predicates on Lists
148   The following predicates test whether a Lisp object is an atom, is a
149 cons cell or is a list, or whether it is the distinguished object
150 @code{nil}.  (Many of these predicates can be defined in terms of the
151 others, but they are used so often that it is worth having all of them.)
153 @defun consp object
154 This function returns @code{t} if @var{object} is a cons cell, @code{nil}
155 otherwise.  @code{nil} is not a cons cell, although it @emph{is} a list.
156 @end defun
158 @defun atom object
159 @cindex atoms
160 This function returns @code{t} if @var{object} is an atom, @code{nil}
161 otherwise.  All objects except cons cells are atoms.  The symbol
162 @code{nil} is an atom and is also a list; it is the only Lisp object
163 that is both.
165 @example
166 (atom @var{object}) @equiv{} (not (consp @var{object}))
167 @end example
168 @end defun
170 @defun listp object
171 This function returns @code{t} if @var{object} is a cons cell or
172 @code{nil}.  Otherwise, it returns @code{nil}.
174 @example
175 @group
176 (listp '(1))
177      @result{} t
178 @end group
179 @group
180 (listp '())
181      @result{} t
182 @end group
183 @end example
184 @end defun
186 @defun nlistp object
187 This function is the opposite of @code{listp}: it returns @code{t} if
188 @var{object} is not a list.  Otherwise, it returns @code{nil}.
190 @example
191 (listp @var{object}) @equiv{} (not (nlistp @var{object}))
192 @end example
193 @end defun
195 @defun null object
196 This function returns @code{t} if @var{object} is @code{nil}, and
197 returns @code{nil} otherwise.  This function is identical to @code{not},
198 but as a matter of clarity we use @code{null} when @var{object} is
199 considered a list and @code{not} when it is considered a truth value
200 (see @code{not} in @ref{Combining Conditions}).
202 @example
203 @group
204 (null '(1))
205      @result{} nil
206 @end group
207 @group
208 (null '())
209      @result{} t
210 @end group
211 @end example
212 @end defun
214 @need 2000
216 @node List Elements
217 @section Accessing Elements of Lists
218 @cindex list elements
220 @defun car cons-cell
221 This function returns the value pointed to by the first pointer of the
222 cons cell @var{cons-cell}.  Expressed another way, this function
223 returns the @sc{car} of @var{cons-cell}.
225 As a special case, if @var{cons-cell} is @code{nil}, then @code{car}
226 is defined to return @code{nil}; therefore, any list is a valid argument
227 for @code{car}.  An error is signaled if the argument is not a cons cell
228 or @code{nil}.
230 @example
231 @group
232 (car '(a b c))
233      @result{} a
234 @end group
235 @group
236 (car '())
237      @result{} nil
238 @end group
239 @end example
240 @end defun
242 @defun cdr cons-cell
243 This function returns the value pointed to by the second pointer of
244 the cons cell @var{cons-cell}.  Expressed another way, this function
245 returns the @sc{cdr} of @var{cons-cell}.
247 As a special case, if @var{cons-cell} is @code{nil}, then @code{cdr}
248 is defined to return @code{nil}; therefore, any list is a valid argument
249 for @code{cdr}.  An error is signaled if the argument is not a cons cell
250 or @code{nil}.
252 @example
253 @group
254 (cdr '(a b c))
255      @result{} (b c)
256 @end group
257 @group
258 (cdr '())
259      @result{} nil
260 @end group
261 @end example
262 @end defun
264 @defun car-safe object
265 This function lets you take the @sc{car} of a cons cell while avoiding
266 errors for other data types.  It returns the @sc{car} of @var{object} if
267 @var{object} is a cons cell, @code{nil} otherwise.  This is in contrast
268 to @code{car}, which signals an error if @var{object} is not a list.
270 @example
271 @group
272 (car-safe @var{object})
273 @equiv{}
274 (let ((x @var{object}))
275   (if (consp x)
276       (car x)
277     nil))
278 @end group
279 @end example
280 @end defun
282 @defun cdr-safe object
283 This function lets you take the @sc{cdr} of a cons cell while
284 avoiding errors for other data types.  It returns the @sc{cdr} of
285 @var{object} if @var{object} is a cons cell, @code{nil} otherwise.
286 This is in contrast to @code{cdr}, which signals an error if
287 @var{object} is not a list.
289 @example
290 @group
291 (cdr-safe @var{object})
292 @equiv{}
293 (let ((x @var{object}))
294   (if (consp x)
295       (cdr x)
296     nil))
297 @end group
298 @end example
299 @end defun
301 @defun nth n list
302 This function returns the @var{n}th element of @var{list}.  Elements
303 are numbered starting with zero, so the @sc{car} of @var{list} is
304 element number zero.  If the length of @var{list} is @var{n} or less,
305 the value is @code{nil}.
307 If @var{n} is negative, @code{nth} returns the first element of
308 @var{list}.
310 @example
311 @group
312 (nth 2 '(1 2 3 4))
313      @result{} 3
314 @end group
315 @group
316 (nth 10 '(1 2 3 4))
317      @result{} nil
318 @end group
319 @group
320 (nth -3 '(1 2 3 4))
321      @result{} 1
323 (nth n x) @equiv{} (car (nthcdr n x))
324 @end group
325 @end example
326 @end defun
328 @defun nthcdr n list
329 This function returns the @var{n}th @sc{cdr} of @var{list}.  In other
330 words, it removes the first @var{n} links of @var{list} and returns
331 what follows.
333 If @var{n} is zero or negative, @code{nthcdr} returns all of
334 @var{list}.  If the length of @var{list} is @var{n} or less,
335 @code{nthcdr} returns @code{nil}.
337 @example
338 @group
339 (nthcdr 1 '(1 2 3 4))
340      @result{} (2 3 4)
341 @end group
342 @group
343 (nthcdr 10 '(1 2 3 4))
344      @result{} nil
345 @end group
346 @group
347 (nthcdr -3 '(1 2 3 4))
348      @result{} (1 2 3 4)
349 @end group
350 @end example
351 @end defun
353 @node Building Lists
354 @comment  node-name,  next,  previous,  up
355 @section Building Cons Cells and Lists
356 @cindex cons cells
357 @cindex building lists
359   Many functions build lists, as lists reside at the very heart of Lisp.
360 @code{cons} is the fundamental list-building function; however, it is
361 interesting to note that @code{list} is used more times in the source
362 code for Emacs than @code{cons}.
364 @defun cons object1 object2
365 This function is the fundamental function used to build new list
366 structure.  It creates a new cons cell, making @var{object1} the
367 @sc{car}, and @var{object2} the @sc{cdr}.  It then returns the new cons
368 cell.  The arguments @var{object1} and @var{object2} may be any Lisp
369 objects, but most often @var{object2} is a list.
371 @example
372 @group
373 (cons 1 '(2))
374      @result{} (1 2)
375 @end group
376 @group
377 (cons 1 '())
378      @result{} (1)
379 @end group
380 @group
381 (cons 1 2)
382      @result{} (1 . 2)
383 @end group
384 @end example
386 @cindex consing
387 @code{cons} is often used to add a single element to the front of a
388 list.  This is called @dfn{consing the element onto the list}.  For
389 example:
391 @example
392 (setq list (cons newelt list))
393 @end example
395 Note that there is no conflict between the variable named @code{list}
396 used in this example and the function named @code{list} described below;
397 any symbol can serve both purposes.
398 @end defun
400 @defun list &rest objects
401 This function creates a list with @var{objects} as its elements.  The
402 resulting list is always @code{nil}-terminated.  If no @var{objects}
403 are given, the empty list is returned.
405 @example
406 @group
407 (list 1 2 3 4 5)
408      @result{} (1 2 3 4 5)
409 @end group
410 @group
411 (list 1 2 '(3 4 5) 'foo)
412      @result{} (1 2 (3 4 5) foo)
413 @end group
414 @group
415 (list)
416      @result{} nil
417 @end group
418 @end example
419 @end defun
421 @defun make-list length object
422 This function creates a list of length @var{length}, in which all the
423 elements have the identical value @var{object}.  Compare
424 @code{make-list} with @code{make-string} (@pxref{Creating Strings}).
426 @example
427 @group
428 (make-list 3 'pigs)
429      @result{} (pigs pigs pigs)
430 @end group
431 @group
432 (make-list 0 'pigs)
433      @result{} nil
434 @end group
435 @end example
436 @end defun
438 @defun append &rest sequences
439 @cindex copying lists
440 This function returns a list containing all the elements of
441 @var{sequences}.  The @var{sequences} may be lists, vectors, or strings,
442 but the last one should be a list.  All arguments except the last one
443 are copied, so none of them are altered.
445 More generally, the final argument to @code{append} may be any Lisp
446 object.  The final argument is not copied or converted; it becomes the
447 @sc{cdr} of the last cons cell in the new list.  If the final argument
448 is itself a list, then its elements become in effect elements of the
449 result list.  If the final element is not a list, the result is a
450 ``dotted list'' since its final @sc{cdr} is not @code{nil} as required
451 in a true list.
453 See @code{nconc} in @ref{Rearrangement}, for a way to join lists with no
454 copying.
456 Here is an example of using @code{append}:
458 @example
459 @group
460 (setq trees '(pine oak))
461      @result{} (pine oak)
462 (setq more-trees (append '(maple birch) trees))
463      @result{} (maple birch pine oak)
464 @end group
466 @group
467 trees
468      @result{} (pine oak)
469 more-trees
470      @result{} (maple birch pine oak)
471 @end group
472 @group
473 (eq trees (cdr (cdr more-trees)))
474      @result{} t
475 @end group
476 @end example
478 You can see how @code{append} works by looking at a box diagram.  The
479 variable @code{trees} is set to the list @code{(pine oak)} and then the
480 variable @code{more-trees} is set to the list @code{(maple birch pine
481 oak)}.  However, the variable @code{trees} continues to refer to the
482 original list:
484 @smallexample
485 @group
486 more-trees                trees
487 |                           |
488 |     ___ ___      ___ ___   -> ___ ___      ___ ___
489  --> |___|___|--> |___|___|--> |___|___|--> |___|___|--> nil
490        |            |            |            |
491        |            |            |            |
492         --> maple    -->birch     --> pine     --> oak
493 @end group
494 @end smallexample
496 An empty sequence contributes nothing to the value returned by
497 @code{append}.  As a consequence of this, a final @code{nil} argument
498 forces a copy of the previous argument.
500 @example
501 @group
502 trees
503      @result{} (pine oak)
504 @end group
505 @group
506 (setq wood (append trees ()))
507      @result{} (pine oak)
508 @end group
509 @group
510 wood
511      @result{} (pine oak)
512 @end group
513 @group
514 (eq wood trees)
515      @result{} nil
516 @end group
517 @end example
519 @noindent
520 This once was the usual way to copy a list, before the function
521 @code{copy-sequence} was invented.  @xref{Sequences Arrays Vectors}.
523 With the help of @code{apply}, we can append all the lists in a list of
524 lists:
526 @example
527 @group
528 (apply 'append '((a b c) nil (x y z) nil))
529      @result{} (a b c x y z)
530 @end group
531 @end example
533 If no @var{sequences} are given, @code{nil} is returned:
535 @example
536 @group
537 (append)
538      @result{} nil
539 @end group
540 @end example
542 Here are some examples where the final argument is not a list:
544 @example
545 (append '(x y) 'z)
546      @result{} (x y . z)
547 (append '(x y) [z])
548      @result{} (x y . [z])
549 @end example
551 @noindent
552 The second example shows that when the final argument is a sequence but
553 not a list, the sequence's elements do not become elements of the
554 resulting list.  Instead, the sequence becomes the final @sc{cdr}, like
555 any other non-list final argument.
557 The @code{append} function also allows integers as arguments.  It
558 converts them to strings of digits, making up the decimal print
559 representation of the integer, and then uses the strings instead of the
560 original integers.  @strong{Don't use this feature; we plan to eliminate
561 it.  If you already use this feature, change your programs now!}  The
562 proper way to convert an integer to a decimal number in this way is with
563 @code{format} (@pxref{Formatting Strings}) or @code{number-to-string}
564 (@pxref{String Conversion}).
565 @end defun
567 @defun reverse list
568 This function creates a new list whose elements are the elements of
569 @var{list}, but in reverse order.  The original argument @var{list} is
570 @emph{not} altered.
572 @example
573 @group
574 (setq x '(1 2 3 4))
575      @result{} (1 2 3 4)
576 @end group
577 @group
578 (reverse x)
579      @result{} (4 3 2 1)
581      @result{} (1 2 3 4)
582 @end group
583 @end example
584 @end defun
586 @node Modifying Lists
587 @section Modifying Existing List Structure
589   You can modify the @sc{car} and @sc{cdr} contents of a cons cell with the
590 primitives @code{setcar} and @code{setcdr}.
592 @cindex CL note---@code{rplaca} vrs @code{setcar}
593 @quotation
594 @findex rplaca
595 @findex rplacd
596 @b{Common Lisp note:} Common Lisp uses functions @code{rplaca} and
597 @code{rplacd} to alter list structure; they change structure the same
598 way as @code{setcar} and @code{setcdr}, but the Common Lisp functions
599 return the cons cell while @code{setcar} and @code{setcdr} return the
600 new @sc{car} or @sc{cdr}.
601 @end quotation
603 @menu
604 * Setcar::          Replacing an element in a list.
605 * Setcdr::          Replacing part of the list backbone.
606                       This can be used to remove or add elements.
607 * Rearrangement::   Reordering the elements in a list; combining lists.
608 @end menu
610 @node Setcar
611 @subsection Altering List Elements with @code{setcar}
613   Changing the @sc{car} of a cons cell is done with @code{setcar}.  When
614 used on a list, @code{setcar} replaces one element of a list with a
615 different element.
617 @defun setcar cons object
618 This function stores @var{object} as the new @sc{car} of @var{cons},
619 replacing its previous @sc{car}.  It returns the value @var{object}.
620 For example:
622 @example
623 @group
624 (setq x '(1 2))
625      @result{} (1 2)
626 @end group
627 @group
628 (setcar x 4)
629      @result{} 4
630 @end group
631 @group
633      @result{} (4 2)
634 @end group
635 @end example
636 @end defun
638   When a cons cell is part of the shared structure of several lists,
639 storing a new @sc{car} into the cons changes one element of each of
640 these lists.  Here is an example:
642 @example
643 @group
644 ;; @r{Create two lists that are partly shared.}
645 (setq x1 '(a b c))
646      @result{} (a b c)
647 (setq x2 (cons 'z (cdr x1)))
648      @result{} (z b c)
649 @end group
651 @group
652 ;; @r{Replace the @sc{car} of a shared link.}
653 (setcar (cdr x1) 'foo)
654      @result{} foo
655 x1                           ; @r{Both lists are changed.}
656      @result{} (a foo c)
658      @result{} (z foo c)
659 @end group
661 @group
662 ;; @r{Replace the @sc{car} of a link that is not shared.}
663 (setcar x1 'baz)
664      @result{} baz
665 x1                           ; @r{Only one list is changed.}
666      @result{} (baz foo c)
668      @result{} (z foo c)
669 @end group
670 @end example
672   Here is a graphical depiction of the shared structure of the two lists
673 in the variables @code{x1} and @code{x2}, showing why replacing @code{b}
674 changes them both:
676 @example
677 @group
678         ___ ___        ___ ___      ___ ___
679 x1---> |___|___|----> |___|___|--> |___|___|--> nil
680          |        -->   |            |
681          |       |      |            |
682           --> a  |       --> b        --> c
683                  |
684        ___ ___   |
685 x2--> |___|___|--
686         |
687         |
688          --> z
689 @end group
690 @end example
692   Here is an alternative form of box diagram, showing the same relationship:
694 @example
695 @group
697  --------------       --------------       --------------
698 | car   | cdr  |     | car   | cdr  |     | car   | cdr  |
699 |   a   |   o------->|   b   |   o------->|   c   |  nil |
700 |       |      |  -->|       |      |     |       |      |
701  --------------  |    --------------       --------------
702                  |
703 x2:              |
704  --------------  |
705 | car   | cdr  | |
706 |   z   |   o----
707 |       |      |
708  --------------
709 @end group
710 @end example
712 @node Setcdr
713 @subsection Altering the CDR of a List
715   The lowest-level primitive for modifying a @sc{cdr} is @code{setcdr}:
717 @defun setcdr cons object
718 This function stores @var{object} as the new @sc{cdr} of @var{cons},
719 replacing its previous @sc{cdr}.  It returns the value @var{object}.
720 @end defun
722   Here is an example of replacing the @sc{cdr} of a list with a
723 different list.  All but the first element of the list are removed in
724 favor of a different sequence of elements.  The first element is
725 unchanged, because it resides in the @sc{car} of the list, and is not
726 reached via the @sc{cdr}.
728 @example
729 @group
730 (setq x '(1 2 3))
731      @result{} (1 2 3)
732 @end group
733 @group
734 (setcdr x '(4))
735      @result{} (4)
736 @end group
737 @group
739      @result{} (1 4)
740 @end group
741 @end example
743   You can delete elements from the middle of a list by altering the
744 @sc{cdr}s of the cons cells in the list.  For example, here we delete
745 the second element, @code{b}, from the list @code{(a b c)}, by changing
746 the @sc{cdr} of the first cell:
748 @example
749 @group
750 (setq x1 '(a b c))
751      @result{} (a b c)
752 (setcdr x1 (cdr (cdr x1)))
753      @result{} (c)
755      @result{} (a c)
756 @end group
757 @end example
759 @need 4000
760   Here is the result in box notation:
762 @example
763 @group
764                    --------------------
765                   |                    |
766  --------------   |   --------------   |    --------------
767 | car   | cdr  |  |  | car   | cdr  |   -->| car   | cdr  |
768 |   a   |   o-----   |   b   |   o-------->|   c   |  nil |
769 |       |      |     |       |      |      |       |      |
770  --------------       --------------        --------------
771 @end group
772 @end example
774 @noindent
775 The second cons cell, which previously held the element @code{b}, still
776 exists and its @sc{car} is still @code{b}, but it no longer forms part
777 of this list.
779   It is equally easy to insert a new element by changing @sc{cdr}s:
781 @example
782 @group
783 (setq x1 '(a b c))
784      @result{} (a b c)
785 (setcdr x1 (cons 'd (cdr x1)))
786      @result{} (d b c)
788      @result{} (a d b c)
789 @end group
790 @end example
792   Here is this result in box notation:
794 @smallexample
795 @group
796  --------------        -------------       -------------
797 | car  | cdr   |      | car  | cdr  |     | car  | cdr  |
798 |   a  |   o   |   -->|   b  |   o------->|   c  |  nil |
799 |      |   |   |  |   |      |      |     |      |      |
800  --------- | --   |    -------------       -------------
801            |      |
802      -----         --------
803     |                      |
804     |    ---------------   |
805     |   | car   | cdr   |  |
806      -->|   d   |   o------
807         |       |       |
808          ---------------
809 @end group
810 @end smallexample
812 @node Rearrangement
813 @subsection Functions that Rearrange Lists
814 @cindex rearrangement of lists
815 @cindex modification of lists
817   Here are some functions that rearrange lists ``destructively'' by
818 modifying the @sc{cdr}s of their component cons cells.  We call these
819 functions ``destructive'' because they chew up the original lists passed
820 to them as arguments, to produce a new list that is the returned value.
822 @ifinfo
823   See @code{delq}, in @ref{Sets And Lists}, for another function
824 that modifies cons cells.
825 @end ifinfo
826 @iftex
827    The function @code{delq} in the following section is another example
828 of destructive list manipulation.
829 @end iftex
831 @defun nconc &rest lists
832 @cindex concatenating lists
833 @cindex joining lists
834 This function returns a list containing all the elements of @var{lists}.
835 Unlike @code{append} (@pxref{Building Lists}), the @var{lists} are
836 @emph{not} copied.  Instead, the last @sc{cdr} of each of the
837 @var{lists} is changed to refer to the following list.  The last of the
838 @var{lists} is not altered.  For example:
840 @example
841 @group
842 (setq x '(1 2 3))
843      @result{} (1 2 3)
844 @end group
845 @group
846 (nconc x '(4 5))
847      @result{} (1 2 3 4 5)
848 @end group
849 @group
851      @result{} (1 2 3 4 5)
852 @end group
853 @end example
855    Since the last argument of @code{nconc} is not itself modified, it is
856 reasonable to use a constant list, such as @code{'(4 5)}, as in the
857 above example.  For the same reason, the last argument need not be a
858 list:
860 @example
861 @group
862 (setq x '(1 2 3))
863      @result{} (1 2 3)
864 @end group
865 @group
866 (nconc x 'z)
867      @result{} (1 2 3 . z)
868 @end group
869 @group
871      @result{} (1 2 3 . z)
872 @end group
873 @end example
875 A common pitfall is to use a quoted constant list as a non-last
876 argument to @code{nconc}.  If you do this, your program will change
877 each time you run it!  Here is what happens:
879 @smallexample
880 @group
881 (defun add-foo (x)            ; @r{We want this function to add}
882   (nconc '(foo) x))           ;   @r{@code{foo} to the front of its arg.}
883 @end group
885 @group
886 (symbol-function 'add-foo)
887      @result{} (lambda (x) (nconc (quote (foo)) x))
888 @end group
890 @group
891 (setq xx (add-foo '(1 2)))    ; @r{It seems to work.}
892      @result{} (foo 1 2)
893 @end group
894 @group
895 (setq xy (add-foo '(3 4)))    ; @r{What happened?}
896      @result{} (foo 1 2 3 4)
897 @end group
898 @group
899 (eq xx xy)
900      @result{} t
901 @end group
903 @group
904 (symbol-function 'add-foo)
905      @result{} (lambda (x) (nconc (quote (foo 1 2 3 4) x)))
906 @end group
907 @end smallexample
908 @end defun
910 @defun nreverse list
911 @cindex reversing a list
912   This function reverses the order of the elements of @var{list}.
913 Unlike @code{reverse}, @code{nreverse} alters its argument by reversing
914 the @sc{cdr}s in the cons cells forming the list.  The cons cell that
915 used to be the last one in @var{list} becomes the first cell of the
916 value.
918   For example:
920 @example
921 @group
922 (setq x '(1 2 3 4))
923      @result{} (1 2 3 4)
924 @end group
925 @group
927      @result{} (1 2 3 4)
928 (nreverse x)
929      @result{} (4 3 2 1)
930 @end group
931 @group
932 ;; @r{The cell that was first is now last.}
934      @result{} (1)
935 @end group
936 @end example
938   To avoid confusion, we usually store the result of @code{nreverse}
939 back in the same variable which held the original list:
941 @example
942 (setq x (nreverse x))
943 @end example
945   Here is the @code{nreverse} of our favorite example, @code{(a b c)},
946 presented graphically:
948 @smallexample
949 @group
950 @r{Original list head:}                       @r{Reversed list:}
951  -------------        -------------        ------------
952 | car  | cdr  |      | car  | cdr  |      | car | cdr  |
953 |   a  |  nil |<--   |   b  |   o  |<--   |   c |   o  |
954 |      |      |   |  |      |   |  |   |  |     |   |  |
955  -------------    |   --------- | -    |   -------- | -
956                   |             |      |            |
957                    -------------        ------------
958 @end group
959 @end smallexample
960 @end defun
962 @defun sort list predicate
963 @cindex stable sort
964 @cindex sorting lists
965 This function sorts @var{list} stably, though destructively, and
966 returns the sorted list.  It compares elements using @var{predicate}.  A
967 stable sort is one in which elements with equal sort keys maintain their
968 relative order before and after the sort.  Stability is important when
969 successive sorts are used to order elements according to different
970 criteria.
972 The argument @var{predicate} must be a function that accepts two
973 arguments.  It is called with two elements of @var{list}.  To get an
974 increasing order sort, the @var{predicate} should return @code{t} if the
975 first element is ``less than'' the second, or @code{nil} if not.
977 The destructive aspect of @code{sort} is that it rearranges the cons
978 cells forming @var{list} by changing @sc{cdr}s.  A nondestructive sort
979 function would create new cons cells to store the elements in their
980 sorted order.  If you wish to make a sorted copy without destroying the
981 original, copy it first with @code{copy-sequence} and then sort.
983 Sorting does not change the @sc{car}s of the cons cells in @var{list};
984 the cons cell that originally contained the element @code{a} in
985 @var{list} still has @code{a} in its @sc{car} after sorting, but it now
986 appears in a different position in the list due to the change of
987 @sc{cdr}s.  For example:
989 @example
990 @group
991 (setq nums '(1 3 2 6 5 4 0))
992      @result{} (1 3 2 6 5 4 0)
993 @end group
994 @group
995 (sort nums '<)
996      @result{} (0 1 2 3 4 5 6)
997 @end group
998 @group
999 nums
1000      @result{} (1 2 3 4 5 6)
1001 @end group
1002 @end example
1004 @noindent
1005 Note that the list in @code{nums} no longer contains 0; this is the same
1006 cons cell that it was before, but it is no longer the first one in the
1007 list.  Don't assume a variable that formerly held the argument now holds
1008 the entire sorted list!  Instead, save the result of @code{sort} and use
1009 that.  Most often we store the result back into the variable that held
1010 the original list:
1012 @example
1013 (setq nums (sort nums '<))
1014 @end example
1016 @xref{Sorting}, for more functions that perform sorting.
1017 See @code{documentation} in @ref{Accessing Documentation}, for a
1018 useful example of @code{sort}.
1019 @end defun
1021 @node Sets And Lists
1022 @section Using Lists as Sets
1023 @cindex lists as sets
1024 @cindex sets
1026   A list can represent an unordered mathematical set---simply consider a
1027 value an element of a set if it appears in the list, and ignore the
1028 order of the list.  To form the union of two sets, use @code{append} (as
1029 long as you don't mind having duplicate elements).  Other useful
1030 functions for sets include @code{memq} and @code{delq}, and their
1031 @code{equal} versions, @code{member} and @code{delete}.
1033 @cindex CL note---lack @code{union}, @code{intersection}
1034 @quotation
1035 @b{Common Lisp note:} Common Lisp has functions @code{union} (which
1036 avoids duplicate elements) and @code{intersection} for set operations,
1037 but GNU Emacs Lisp does not have them.  You can write them in Lisp if
1038 you wish.
1039 @end quotation
1041 @defun memq object list
1042 @cindex membership in a list
1043 This function tests to see whether @var{object} is a member of
1044 @var{list}.  If it is, @code{memq} returns a list starting with the
1045 first occurrence of @var{object}.  Otherwise, it returns @code{nil}.
1046 The letter @samp{q} in @code{memq} says that it uses @code{eq} to
1047 compare @var{object} against the elements of the list.  For example:
1049 @example
1050 @group
1051 (memq 'b '(a b c b a))
1052      @result{} (b c b a)
1053 @end group
1054 @group
1055 (memq '(2) '((1) (2)))    ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1056      @result{} nil
1057 @end group
1058 @end example
1059 @end defun
1061 @defun delq object list
1062 @cindex deletion of elements
1063 This function destructively removes all elements @code{eq} to
1064 @var{object} from @var{list}.  The letter @samp{q} in @code{delq} says
1065 that it uses @code{eq} to compare @var{object} against the elements of
1066 the list, like @code{memq}.
1067 @end defun
1069 When @code{delq} deletes elements from the front of the list, it does so
1070 simply by advancing down the list and returning a sublist that starts
1071 after those elements:
1073 @example
1074 @group
1075 (delq 'a '(a b c)) @equiv{} (cdr '(a b c))
1076 @end group
1077 @end example
1079 When an element to be deleted appears in the middle of the list,
1080 removing it involves changing the @sc{cdr}s (@pxref{Setcdr}).
1082 @example
1083 @group
1084 (setq sample-list '(a b c (4)))
1085      @result{} (a b c (4))
1086 @end group
1087 @group
1088 (delq 'a sample-list)
1089      @result{} (b c (4))
1090 @end group
1091 @group
1092 sample-list
1093      @result{} (a b c (4))
1094 @end group
1095 @group
1096 (delq 'c sample-list)
1097      @result{} (a b (4))
1098 @end group
1099 @group
1100 sample-list
1101      @result{} (a b (4))
1102 @end group
1103 @end example
1105 Note that @code{(delq 'c sample-list)} modifies @code{sample-list} to
1106 splice out the third element, but @code{(delq 'a sample-list)} does not
1107 splice anything---it just returns a shorter list.  Don't assume that a
1108 variable which formerly held the argument @var{list} now has fewer
1109 elements, or that it still holds the original list!  Instead, save the
1110 result of @code{delq} and use that.  Most often we store the result back
1111 into the variable that held the original list:
1113 @example
1114 (setq flowers (delq 'rose flowers))
1115 @end example
1117 In the following example, the @code{(4)} that @code{delq} attempts to match
1118 and the @code{(4)} in the @code{sample-list} are not @code{eq}:
1120 @example
1121 @group
1122 (delq '(4) sample-list)
1123      @result{} (a c (4))
1124 @end group
1125 @end example
1127 The following two functions are like @code{memq} and @code{delq} but use
1128 @code{equal} rather than @code{eq} to compare elements.  They are new in
1129 Emacs 19.
1131 @defun member object list
1132 The function @code{member} tests to see whether @var{object} is a member
1133 of @var{list}, comparing members with @var{object} using @code{equal}.
1134 If @var{object} is a member, @code{member} returns a list starting with
1135 its first occurrence in @var{list}.  Otherwise, it returns @code{nil}.
1137 Compare this with @code{memq}:
1139 @example
1140 @group
1141 (member '(2) '((1) (2)))  ; @r{@code{(2)} and @code{(2)} are @code{equal}.}
1142      @result{} ((2))
1143 @end group
1144 @group
1145 (memq '(2) '((1) (2)))    ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1146      @result{} nil
1147 @end group
1148 @group
1149 ;; @r{Two strings with the same contents are @code{equal}.}
1150 (member "foo" '("foo" "bar"))
1151      @result{} ("foo" "bar")
1152 @end group
1153 @end example
1154 @end defun
1156 @defun delete object list
1157 This function destructively removes all elements @code{equal} to
1158 @var{object} from @var{list}.  It is to @code{delq} as @code{member} is
1159 to @code{memq}: it uses @code{equal} to compare elements with
1160 @var{object}, like @code{member}; when it finds an element that matches,
1161 it removes the element just as @code{delq} would.  For example:
1163 @example
1164 @group
1165 (delete '(2) '((2) (1) (2)))
1166      @result{} ((1))
1167 @end group
1168 @end example
1169 @end defun
1171 @quotation
1172 @b{Common Lisp note:} The functions @code{member} and @code{delete} in
1173 GNU Emacs Lisp are derived from Maclisp, not Common Lisp.  The Common
1174 Lisp versions do not use @code{equal} to compare elements.
1175 @end quotation
1177   See also the function @code{add-to-list}, in @ref{Setting Variables},
1178 for another way to add an element to a list stored in a variable.
1180 @node Association Lists
1181 @section Association Lists
1182 @cindex association list
1183 @cindex alist
1185   An @dfn{association list}, or @dfn{alist} for short, records a mapping
1186 from keys to values.  It is a list of cons cells called
1187 @dfn{associations}: the @sc{car} of each cell is the @dfn{key}, and the
1188 @sc{cdr} is the @dfn{associated value}.@footnote{This usage of ``key''
1189 is not related to the term ``key sequence''; it means a value used to
1190 look up an item in a table.  In this case, the table is the alist, and
1191 the alist associations are the items.}
1193   Here is an example of an alist.  The key @code{pine} is associated with
1194 the value @code{cones}; the key @code{oak} is associated with
1195 @code{acorns}; and the key @code{maple} is associated with @code{seeds}.
1197 @example
1198 @group
1199 '((pine . cones)
1200   (oak . acorns)
1201   (maple . seeds))
1202 @end group
1203 @end example
1205   The associated values in an alist may be any Lisp objects; so may the
1206 keys.  For example, in the following alist, the symbol @code{a} is
1207 associated with the number @code{1}, and the string @code{"b"} is
1208 associated with the @emph{list} @code{(2 3)}, which is the @sc{cdr} of
1209 the alist element:
1211 @example
1212 ((a . 1) ("b" 2 3))
1213 @end example
1215   Sometimes it is better to design an alist to store the associated
1216 value in the @sc{car} of the @sc{cdr} of the element.  Here is an
1217 example:
1219 @example
1220 '((rose red) (lily white) (buttercup yellow))
1221 @end example
1223 @noindent
1224 Here we regard @code{red} as the value associated with @code{rose}.  One
1225 advantage of this method is that you can store other related
1226 information---even a list of other items---in the @sc{cdr} of the
1227 @sc{cdr}.  One disadvantage is that you cannot use @code{rassq} (see
1228 below) to find the element containing a given value.  When neither of
1229 these considerations is important, the choice is a matter of taste, as
1230 long as you are consistent about it for any given alist.
1232   Note that the same alist shown above could be regarded as having the
1233 associated value in the @sc{cdr} of the element; the value associated
1234 with @code{rose} would be the list @code{(red)}.
1236   Association lists are often used to record information that you might
1237 otherwise keep on a stack, since new associations may be added easily to
1238 the front of the list.  When searching an association list for an
1239 association with a given key, the first one found is returned, if there
1240 is more than one.
1242   In Emacs Lisp, it is @emph{not} an error if an element of an
1243 association list is not a cons cell.  The alist search functions simply
1244 ignore such elements.  Many other versions of Lisp signal errors in such
1245 cases.
1247   Note that property lists are similar to association lists in several
1248 respects.  A property list behaves like an association list in which
1249 each key can occur only once.  @xref{Property Lists}, for a comparison
1250 of property lists and association lists.
1252 @defun assoc key alist
1253 This function returns the first association for @var{key} in
1254 @var{alist}.  It compares @var{key} against the alist elements using
1255 @code{equal} (@pxref{Equality Predicates}).  It returns @code{nil} if no
1256 association in @var{alist} has a @sc{car} @code{equal} to @var{key}.
1257 For example:
1259 @smallexample
1260 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1261      @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1262 (assoc 'oak trees)
1263      @result{} (oak . acorns)
1264 (cdr (assoc 'oak trees))
1265      @result{} acorns
1266 (assoc 'birch trees)
1267      @result{} nil
1268 @end smallexample
1270 Here is another example, in which the keys and values are not symbols:
1272 @smallexample
1273 (setq needles-per-cluster
1274       '((2 "Austrian Pine" "Red Pine")
1275         (3 "Pitch Pine")
1276         (5 "White Pine")))
1278 (cdr (assoc 3 needles-per-cluster))
1279      @result{} ("Pitch Pine")
1280 (cdr (assoc 2 needles-per-cluster))
1281      @result{} ("Austrian Pine" "Red Pine")
1282 @end smallexample
1283 @end defun
1285 @defun rassoc value alist
1286 This function returns the first association with value @var{value} in
1287 @var{alist}.  It returns @code{nil} if no association in @var{alist} has
1288 a @sc{cdr} @code{equal} to @var{value}.
1290 @code{rassoc} is like @code{assoc} except that it compares the @sc{cdr} of
1291 each @var{alist} association instead of the @sc{car}.  You can think of
1292 this as ``reverse @code{assoc}'', finding the key for a given value.
1293 @end defun
1295 @defun assq key alist
1296 This function is like @code{assoc} in that it returns the first
1297 association for @var{key} in @var{alist}, but it makes the comparison
1298 using @code{eq} instead of @code{equal}.  @code{assq} returns @code{nil}
1299 if no association in @var{alist} has a @sc{car} @code{eq} to @var{key}.
1300 This function is used more often than @code{assoc}, since @code{eq} is
1301 faster than @code{equal} and most alists use symbols as keys.
1302 @xref{Equality Predicates}.
1304 @smallexample
1305 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1306      @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1307 (assq 'pine trees)
1308      @result{} (pine . cones)
1309 @end smallexample
1311 On the other hand, @code{assq} is not usually useful in alists where the
1312 keys may not be symbols:
1314 @smallexample
1315 (setq leaves
1316       '(("simple leaves" . oak)
1317         ("compound leaves" . horsechestnut)))
1319 (assq "simple leaves" leaves)
1320      @result{} nil
1321 (assoc "simple leaves" leaves)
1322      @result{} ("simple leaves" . oak)
1323 @end smallexample
1324 @end defun
1326 @defun rassq value alist
1327 This function returns the first association with value @var{value} in
1328 @var{alist}.  It returns @code{nil} if no association in @var{alist} has
1329 a @sc{cdr} @code{eq} to @var{value}.
1331 @code{rassq} is like @code{assq} except that it compares the @sc{cdr} of
1332 each @var{alist} association instead of the @sc{car}.  You can think of
1333 this as ``reverse @code{assq}'', finding the key for a given value.
1335 For example:
1337 @smallexample
1338 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1340 (rassq 'acorns trees)
1341      @result{} (oak . acorns)
1342 (rassq 'spores trees)
1343      @result{} nil
1344 @end smallexample
1346 Note that @code{rassq} cannot search for a value stored in the @sc{car}
1347 of the @sc{cdr} of an element:
1349 @smallexample
1350 (setq colors '((rose red) (lily white) (buttercup yellow)))
1352 (rassq 'white colors)
1353      @result{} nil
1354 @end smallexample
1356 In this case, the @sc{cdr} of the association @code{(lily white)} is not
1357 the symbol @code{white}, but rather the list @code{(white)}.  This
1358 becomes clearer if the association is written in dotted pair notation:
1360 @smallexample
1361 (lily white) @equiv{} (lily . (white))
1362 @end smallexample
1363 @end defun
1365 @defun copy-alist alist
1366 @cindex copying alists
1367 This function returns a two-level deep copy of @var{alist}: it creates a
1368 new copy of each association, so that you can alter the associations of
1369 the new alist without changing the old one.
1371 @smallexample
1372 @group
1373 (setq needles-per-cluster
1374       '((2 . ("Austrian Pine" "Red Pine"))
1375         (3 . ("Pitch Pine"))
1376 @end group
1377         (5 . ("White Pine"))))
1378 @result{}
1379 ((2 "Austrian Pine" "Red Pine")
1380  (3 "Pitch Pine")
1381  (5 "White Pine"))
1383 (setq copy (copy-alist needles-per-cluster))
1384 @result{}
1385 ((2 "Austrian Pine" "Red Pine")
1386  (3 "Pitch Pine")
1387  (5 "White Pine"))
1389 (eq needles-per-cluster copy)
1390      @result{} nil
1391 (equal needles-per-cluster copy)
1392      @result{} t
1393 (eq (car needles-per-cluster) (car copy))
1394      @result{} nil
1395 (cdr (car (cdr needles-per-cluster)))
1396      @result{} ("Pitch Pine")
1397 @group
1398 (eq (cdr (car (cdr needles-per-cluster)))
1399     (cdr (car (cdr copy))))
1400      @result{} t
1401 @end group
1402 @end smallexample
1404   This example shows how @code{copy-alist} makes it possible to change
1405 the associations of one copy without affecting the other:
1407 @smallexample
1408 @group
1409 (setcdr (assq 3 copy) '("Martian Vacuum Pine"))
1410 (cdr (assq 3 needles-per-cluster))
1411      @result{} ("Pitch Pine")
1412 @end group
1413 @end smallexample
1414 @end defun