1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001-2011 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19 /* Contributed by Andrew Choi (akochoi@mac.com). */
21 /* Documentation note.
23 Consult the following documents/files for a description of the
24 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
25 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
26 mach header (-h option) and the load commands (-l option) in a
27 Mach-O file. The tool nm on Mac OS X displays the symbol table in
28 a Mach-O file. For examples of unexec for the Mach-O format, see
29 the file unexnext.c in the GNU Emacs distribution, the file
30 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
31 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
32 contains the source code for malloc_freezedry and malloc_jumpstart.
33 Read that to see what they do. This file was written completely
34 from scratch, making use of information from the above sources. */
36 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
37 memory allocator. All calls to malloc, realloc, and free in Emacs
38 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
39 this file. When temacs is run, all memory requests are handled in
40 the zone EmacsZone. The Darwin memory allocator library calls
41 maintain the data structures to manage this zone. Dumping writes
42 its contents to data segments of the executable file. When emacs
43 is run, the loader recreates the contents of the zone in memory.
44 However since the initialization routine of the zone memory
45 allocator is run again, this `zone' can no longer be used as a
46 heap. That is why emacs uses the ordinary malloc system call to
47 allocate memory. Also, when a block of memory needs to be
48 reallocated and the new size is larger than the old one, a new
49 block must be obtained by malloc and the old contents copied to
52 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
53 (possible causes of future bugs if changed).
55 The file offset of the start of the __TEXT segment is zero. Since
56 the Mach header and load commands are located at the beginning of a
57 Mach-O file, copying the contents of the __TEXT segment from the
58 input file overwrites them in the output file. Despite this,
59 unexec works fine as written below because the segment load command
60 for __TEXT appears, and is therefore processed, before all other
61 load commands except the segment load command for __PAGEZERO, which
64 Although the file offset of the start of the __TEXT segment is
65 zero, none of the sections it contains actually start there. In
66 fact, the earliest one starts a few hundred bytes beyond the end of
67 the last load command. The linker option -headerpad controls the
68 minimum size of this padding. Its setting can be changed in
69 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
70 load commands for the newly created __DATA segments (at 56 bytes
71 each). Unexec fails if there is not enough room for these new
74 The __TEXT segment contains the sections __text, __cstring,
75 __picsymbol_stub, and __const and the __DATA segment contains the
76 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
77 and __common. The other segments do not contain any sections.
78 These sections are copied from the input file to the output file,
79 except for __data, __bss, and __common, which are dumped from
80 memory. The types of the sections __bss and __common are changed
81 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
82 their relative order in the input and output files remain
83 unchanged. Otherwise all n_sect fields in the nlist records in the
84 symbol table (specified by the LC_SYMTAB load command) will have to
85 be changed accordingly.
88 /* config.h #define:s malloc/realloc/free and then includes stdlib.h.
89 We want the undefined versions, but if config.h includes stdlib.h
90 with the #define:s in place, the prototypes will be wrong and we get
91 warnings. To prevent that, include stdlib.h before config.h. */
104 #include <sys/types.h>
106 #include <mach/mach.h>
107 #include <mach-o/loader.h>
108 #include <mach-o/reloc.h>
109 #if defined (__ppc__)
110 #include <mach-o/ppc/reloc.h>
112 #ifdef HAVE_MALLOC_MALLOC_H
113 #include <malloc/malloc.h>
115 #include <objc/malloc.h>
121 #define mach_header mach_header_64
122 #define segment_command segment_command_64
123 #undef VM_REGION_BASIC_INFO_COUNT
124 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
125 #undef VM_REGION_BASIC_INFO
126 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
128 #define LC_SEGMENT LC_SEGMENT_64
129 #define vm_region vm_region_64
130 #define section section_64
132 #define MH_MAGIC MH_MAGIC_64
137 /* Size of buffer used to copy data from the input file to the output
138 file in function unexec_copy. */
139 #define UNEXEC_COPY_BUFSZ 1024
141 /* Regions with memory addresses above this value are assumed to be
142 mapped to dynamically loaded libraries and will not be dumped. */
143 #define VM_DATA_TOP (20 * 1024 * 1024)
145 /* Type of an element on the list of regions to be dumped. */
147 vm_address_t address
;
149 vm_prot_t protection
;
150 vm_prot_t max_protection
;
152 struct region_t
*next
;
155 /* Head and tail of the list of regions to be dumped. */
156 static struct region_t
*region_list_head
= 0;
157 static struct region_t
*region_list_tail
= 0;
159 /* Pointer to array of load commands. */
160 static struct load_command
**lca
;
162 /* Number of load commands. */
165 /* The highest VM address of segments loaded by the input file.
166 Regions with addresses beyond this are assumed to be allocated
167 dynamically and thus require dumping. */
168 static vm_address_t infile_lc_highest_addr
= 0;
170 /* The lowest file offset used by the all sections in the __TEXT
171 segments. This leaves room at the beginning of the file to store
172 the Mach-O header. Check this value against header size to ensure
173 the added load commands for the new __DATA segments did not
174 overwrite any of the sections in the __TEXT segment. */
175 static unsigned long text_seg_lowest_offset
= 0x10000000;
178 static struct mach_header mh
;
180 /* Offset at which the next load command should be written. */
181 static unsigned long curr_header_offset
= sizeof (struct mach_header
);
183 /* Offset at which the next segment should be written. */
184 static unsigned long curr_file_offset
= 0;
186 static unsigned long pagesize
;
187 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
189 static int infd
, outfd
;
191 static int in_dumped_exec
= 0;
193 static malloc_zone_t
*emacs_zone
;
195 /* file offset of input file's data segment */
196 static off_t data_segment_old_fileoff
= 0;
198 static struct segment_command
*data_segment_scp
;
200 static void unexec_error (const char *format
, ...) NO_RETURN
;
202 /* Read N bytes from infd into memory starting at address DEST.
203 Return true if successful, false otherwise. */
205 unexec_read (void *dest
, size_t n
)
207 return n
== read (infd
, dest
, n
);
210 /* Write COUNT bytes from memory starting at address SRC to outfd
211 starting at offset DEST. Return true if successful, false
214 unexec_write (off_t dest
, const void *src
, size_t count
)
216 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
219 return write (outfd
, src
, count
) == count
;
222 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
223 Return true if successful, false otherwise. */
225 unexec_write_zero (off_t dest
, size_t count
)
227 char buf
[UNEXEC_COPY_BUFSZ
];
230 memset (buf
, 0, UNEXEC_COPY_BUFSZ
);
231 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
236 bytes
= count
> UNEXEC_COPY_BUFSZ
? UNEXEC_COPY_BUFSZ
: count
;
237 if (write (outfd
, buf
, bytes
) != bytes
)
245 /* Copy COUNT bytes from starting offset SRC in infd to starting
246 offset DEST in outfd. Return true if successful, false
249 unexec_copy (off_t dest
, off_t src
, ssize_t count
)
252 ssize_t bytes_to_read
;
254 char buf
[UNEXEC_COPY_BUFSZ
];
256 if (lseek (infd
, src
, SEEK_SET
) != src
)
259 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
264 bytes_to_read
= count
> UNEXEC_COPY_BUFSZ
? UNEXEC_COPY_BUFSZ
: count
;
265 bytes_read
= read (infd
, buf
, bytes_to_read
);
268 if (write (outfd
, buf
, bytes_read
) != bytes_read
)
276 /* Debugging and informational messages routines. */
279 unexec_error (const char *format
, ...)
283 va_start (ap
, format
);
284 fprintf (stderr
, "unexec: ");
285 vfprintf (stderr
, format
, ap
);
286 fprintf (stderr
, "\n");
292 print_prot (vm_prot_t prot
)
294 if (prot
== VM_PROT_NONE
)
298 putchar (prot
& VM_PROT_READ
? 'r' : ' ');
299 putchar (prot
& VM_PROT_WRITE
? 'w' : ' ');
300 putchar (prot
& VM_PROT_EXECUTE
? 'x' : ' ');
306 print_region (vm_address_t address
, vm_size_t size
, vm_prot_t prot
,
309 printf ("%#10lx %#8lx ", (long) address
, (long) size
);
312 print_prot (max_prot
);
317 print_region_list (void)
321 printf (" address size prot maxp\n");
323 for (r
= region_list_head
; r
; r
= r
->next
)
324 print_region (r
->address
, r
->size
, r
->protection
, r
->max_protection
);
330 task_t target_task
= mach_task_self ();
331 vm_address_t address
= (vm_address_t
) 0;
333 struct vm_region_basic_info info
;
334 mach_msg_type_number_t info_count
= VM_REGION_BASIC_INFO_COUNT
;
335 mach_port_t object_name
;
337 printf (" address size prot maxp\n");
339 while (vm_region (target_task
, &address
, &size
, VM_REGION_BASIC_INFO
,
340 (vm_region_info_t
) &info
, &info_count
, &object_name
)
341 == KERN_SUCCESS
&& info_count
== VM_REGION_BASIC_INFO_COUNT
)
343 print_region (address
, size
, info
.protection
, info
.max_protection
);
345 if (object_name
!= MACH_PORT_NULL
)
346 mach_port_deallocate (target_task
, object_name
);
352 /* Build the list of regions that need to be dumped. Regions with
353 addresses above VM_DATA_TOP are omitted. Adjacent regions with
354 identical protection are merged. Note that non-writable regions
355 cannot be omitted because they some regions created at run time are
358 build_region_list (void)
360 task_t target_task
= mach_task_self ();
361 vm_address_t address
= (vm_address_t
) 0;
363 struct vm_region_basic_info info
;
364 mach_msg_type_number_t info_count
= VM_REGION_BASIC_INFO_COUNT
;
365 mach_port_t object_name
;
369 printf ("--- List of All Regions ---\n");
370 printf (" address size prot maxp\n");
373 while (vm_region (target_task
, &address
, &size
, VM_REGION_BASIC_INFO
,
374 (vm_region_info_t
) &info
, &info_count
, &object_name
)
375 == KERN_SUCCESS
&& info_count
== VM_REGION_BASIC_INFO_COUNT
)
377 /* Done when we reach addresses of shared libraries, which are
378 loaded in high memory. */
379 if (address
>= VM_DATA_TOP
)
383 print_region (address
, size
, info
.protection
, info
.max_protection
);
386 /* If a region immediately follows the previous one (the one
387 most recently added to the list) and has identical
388 protection, merge it with the latter. Otherwise create a
389 new list element for it. */
391 && info
.protection
== region_list_tail
->protection
392 && info
.max_protection
== region_list_tail
->max_protection
393 && region_list_tail
->address
+ region_list_tail
->size
== address
)
395 region_list_tail
->size
+= size
;
399 r
= (struct region_t
*) malloc (sizeof (struct region_t
));
402 unexec_error ("cannot allocate region structure");
404 r
->address
= address
;
406 r
->protection
= info
.protection
;
407 r
->max_protection
= info
.max_protection
;
410 if (region_list_head
== 0)
412 region_list_head
= r
;
413 region_list_tail
= r
;
417 region_list_tail
->next
= r
;
418 region_list_tail
= r
;
421 /* Deallocate (unused) object name returned by
423 if (object_name
!= MACH_PORT_NULL
)
424 mach_port_deallocate (target_task
, object_name
);
430 printf ("--- List of Regions to be Dumped ---\n");
431 print_region_list ();
435 #define MAX_UNEXEC_REGIONS 400
437 static int num_unexec_regions
;
441 } unexec_region_info
;
442 static unexec_region_info unexec_regions
[MAX_UNEXEC_REGIONS
];
445 unexec_regions_recorder (task_t task
, void *rr
, unsigned type
,
446 vm_range_t
*ranges
, unsigned num
)
451 while (num
&& num_unexec_regions
< MAX_UNEXEC_REGIONS
)
453 /* Subtract the size of trailing null bytes from filesize. It
454 can be smaller than vmsize in segment commands. In such a
455 case, trailing bytes are initialized with zeros. */
456 for (p
= ranges
->address
+ ranges
->size
; p
> ranges
->address
; p
--)
457 if (*(((char *) p
)-1))
459 filesize
= p
- ranges
->address
;
461 unexec_regions
[num_unexec_regions
].filesize
= filesize
;
462 unexec_regions
[num_unexec_regions
++].range
= *ranges
;
463 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges
->address
),
464 (long) filesize
, (long) (ranges
->size
));
470 unexec_reader (task_t task
, vm_address_t address
, vm_size_t size
, void **ptr
)
472 *ptr
= (void *) address
;
477 find_emacs_zone_regions (void)
479 num_unexec_regions
= 0;
481 emacs_zone
->introspect
->enumerator (mach_task_self(), 0,
482 MALLOC_PTR_REGION_RANGE_TYPE
483 | MALLOC_ADMIN_REGION_RANGE_TYPE
,
484 (vm_address_t
) emacs_zone
,
486 unexec_regions_recorder
);
488 if (num_unexec_regions
== MAX_UNEXEC_REGIONS
)
489 unexec_error ("find_emacs_zone_regions: too many regions");
493 unexec_regions_sort_compare (const void *a
, const void *b
)
495 vm_address_t aa
= ((unexec_region_info
*) a
)->range
.address
;
496 vm_address_t bb
= ((unexec_region_info
*) b
)->range
.address
;
507 unexec_regions_merge (void)
510 unexec_region_info r
;
513 qsort (unexec_regions
, num_unexec_regions
, sizeof (unexec_regions
[0]),
514 &unexec_regions_sort_compare
);
516 r
= unexec_regions
[0];
517 padsize
= r
.range
.address
& (pagesize
- 1);
520 r
.range
.address
-= padsize
;
521 r
.range
.size
+= padsize
;
522 r
.filesize
+= padsize
;
524 for (i
= 1; i
< num_unexec_regions
; i
++)
526 if (r
.range
.address
+ r
.range
.size
== unexec_regions
[i
].range
.address
527 && r
.range
.size
- r
.filesize
< 2 * pagesize
)
529 r
.filesize
= r
.range
.size
+ unexec_regions
[i
].filesize
;
530 r
.range
.size
+= unexec_regions
[i
].range
.size
;
534 unexec_regions
[n
++] = r
;
535 r
= unexec_regions
[i
];
536 padsize
= r
.range
.address
& (pagesize
- 1);
539 if ((unexec_regions
[n
-1].range
.address
540 + unexec_regions
[n
-1].range
.size
) == r
.range
.address
)
541 unexec_regions
[n
-1].range
.size
-= padsize
;
543 r
.range
.address
-= padsize
;
544 r
.range
.size
+= padsize
;
545 r
.filesize
+= padsize
;
549 unexec_regions
[n
++] = r
;
550 num_unexec_regions
= n
;
554 /* More informational messages routines. */
557 print_load_command_name (int lc
)
563 printf ("LC_SEGMENT ");
565 printf ("LC_SEGMENT_64 ");
568 case LC_LOAD_DYLINKER
:
569 printf ("LC_LOAD_DYLINKER ");
572 printf ("LC_LOAD_DYLIB ");
575 printf ("LC_SYMTAB ");
578 printf ("LC_DYSYMTAB ");
581 printf ("LC_UNIXTHREAD ");
583 case LC_PREBOUND_DYLIB
:
584 printf ("LC_PREBOUND_DYLIB");
586 case LC_TWOLEVEL_HINTS
:
587 printf ("LC_TWOLEVEL_HINTS");
596 printf ("LC_DYLD_INFO ");
598 case LC_DYLD_INFO_ONLY
:
599 printf ("LC_DYLD_INFO_ONLY");
608 print_load_command (struct load_command
*lc
)
610 print_load_command_name (lc
->cmd
);
611 printf ("%8d", lc
->cmdsize
);
613 if (lc
->cmd
== LC_SEGMENT
)
615 struct segment_command
*scp
;
616 struct section
*sectp
;
619 scp
= (struct segment_command
*) lc
;
620 printf (" %-16.16s %#10lx %#8lx\n",
621 scp
->segname
, (long) (scp
->vmaddr
), (long) (scp
->vmsize
));
623 sectp
= (struct section
*) (scp
+ 1);
624 for (j
= 0; j
< scp
->nsects
; j
++)
626 printf (" %-16.16s %#10lx %#8lx\n",
627 sectp
->sectname
, (long) (sectp
->addr
), (long) (sectp
->size
));
635 /* Read header and load commands from input file. Store the latter in
636 the global array lca. Store the total number of load commands in
637 global variable nlc. */
639 read_load_commands (void)
643 if (!unexec_read (&mh
, sizeof (struct mach_header
)))
644 unexec_error ("cannot read mach-o header");
646 if (mh
.magic
!= MH_MAGIC
)
647 unexec_error ("input file not in Mach-O format");
649 if (mh
.filetype
!= MH_EXECUTE
)
650 unexec_error ("input Mach-O file is not an executable object file");
653 printf ("--- Header Information ---\n");
654 printf ("Magic = 0x%08x\n", mh
.magic
);
655 printf ("CPUType = %d\n", mh
.cputype
);
656 printf ("CPUSubType = %d\n", mh
.cpusubtype
);
657 printf ("FileType = 0x%x\n", mh
.filetype
);
658 printf ("NCmds = %d\n", mh
.ncmds
);
659 printf ("SizeOfCmds = %d\n", mh
.sizeofcmds
);
660 printf ("Flags = 0x%08x\n", mh
.flags
);
664 lca
= (struct load_command
**) malloc (nlc
* sizeof (struct load_command
*));
666 for (i
= 0; i
< nlc
; i
++)
668 struct load_command lc
;
669 /* Load commands are variable-size: so read the command type and
670 size first and then read the rest. */
671 if (!unexec_read (&lc
, sizeof (struct load_command
)))
672 unexec_error ("cannot read load command");
673 lca
[i
] = (struct load_command
*) malloc (lc
.cmdsize
);
674 memcpy (lca
[i
], &lc
, sizeof (struct load_command
));
675 if (!unexec_read (lca
[i
] + 1, lc
.cmdsize
- sizeof (struct load_command
)))
676 unexec_error ("cannot read content of load command");
677 if (lc
.cmd
== LC_SEGMENT
)
679 struct segment_command
*scp
= (struct segment_command
*) lca
[i
];
681 if (scp
->vmaddr
+ scp
->vmsize
> infile_lc_highest_addr
)
682 infile_lc_highest_addr
= scp
->vmaddr
+ scp
->vmsize
;
684 if (strncmp (scp
->segname
, SEG_TEXT
, 16) == 0)
686 struct section
*sectp
= (struct section
*) (scp
+ 1);
689 for (j
= 0; j
< scp
->nsects
; j
++)
690 if (sectp
->offset
< text_seg_lowest_offset
)
691 text_seg_lowest_offset
= sectp
->offset
;
696 printf ("Highest address of load commands in input file: %#8lx\n",
697 (unsigned long)infile_lc_highest_addr
);
699 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
700 text_seg_lowest_offset
);
702 printf ("--- List of Load Commands in Input File ---\n");
703 printf ("# cmd cmdsize name address size\n");
705 for (i
= 0; i
< nlc
; i
++)
708 print_load_command (lca
[i
]);
712 /* Copy a LC_SEGMENT load command other than the __DATA segment from
713 the input file to the output file, adjusting the file offset of the
714 segment and the file offsets of sections contained in it. */
716 copy_segment (struct load_command
*lc
)
718 struct segment_command
*scp
= (struct segment_command
*) lc
;
719 unsigned long old_fileoff
= scp
->fileoff
;
720 struct section
*sectp
;
723 scp
->fileoff
= curr_file_offset
;
725 sectp
= (struct section
*) (scp
+ 1);
726 for (j
= 0; j
< scp
->nsects
; j
++)
728 sectp
->offset
+= curr_file_offset
- old_fileoff
;
732 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
733 scp
->segname
, (long) (scp
->fileoff
), (long) (scp
->filesize
),
734 (long) (scp
->vmsize
), (long) (scp
->vmaddr
));
736 if (!unexec_copy (scp
->fileoff
, old_fileoff
, scp
->filesize
))
737 unexec_error ("cannot copy segment from input to output file");
738 curr_file_offset
+= ROUNDUP_TO_PAGE_BOUNDARY (scp
->filesize
);
740 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
741 unexec_error ("cannot write load command to header");
743 curr_header_offset
+= lc
->cmdsize
;
746 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
747 file to the output file. We assume that only one such segment load
748 command exists in the input file and it contains the sections
749 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
750 __dyld. The first three of these should be dumped from memory and
751 the rest should be copied from the input file. Note that the
752 sections __bss and __common contain no data in the input file
753 because their flag fields have the value S_ZEROFILL. Dumping these
754 from memory makes it necessary to adjust file offset fields in
755 subsequently dumped load commands. Then, create new __DATA segment
756 load commands for regions on the region list other than the one
757 corresponding to the __DATA segment in the input file. */
759 copy_data_segment (struct load_command
*lc
)
761 struct segment_command
*scp
= (struct segment_command
*) lc
;
762 struct section
*sectp
;
764 unsigned long header_offset
, old_file_offset
;
766 /* The new filesize of the segment is set to its vmsize because data
767 blocks for segments must start at region boundaries. Note that
768 this may leave unused locations at the end of the segment data
769 block because the total of the sizes of all sections in the
770 segment is generally smaller than vmsize. */
771 scp
->filesize
= scp
->vmsize
;
773 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
774 scp
->segname
, curr_file_offset
, (long)(scp
->filesize
),
775 (long)(scp
->vmsize
), (long) (scp
->vmaddr
));
777 /* Offsets in the output file for writing the next section structure
778 and segment data block, respectively. */
779 header_offset
= curr_header_offset
+ sizeof (struct segment_command
);
781 sectp
= (struct section
*) (scp
+ 1);
782 for (j
= 0; j
< scp
->nsects
; j
++)
784 old_file_offset
= sectp
->offset
;
785 sectp
->offset
= sectp
->addr
- scp
->vmaddr
+ curr_file_offset
;
786 /* The __data section is dumped from memory. The __bss and
787 __common sections are also dumped from memory but their flag
788 fields require changing (from S_ZEROFILL to S_REGULAR). The
789 other three kinds of sections are just copied from the input
791 if (strncmp (sectp
->sectname
, SECT_DATA
, 16) == 0)
793 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, sectp
->size
))
794 unexec_error ("cannot write section %s", SECT_DATA
);
795 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
796 unexec_error ("cannot write section %s's header", SECT_DATA
);
798 else if (strncmp (sectp
->sectname
, SECT_COMMON
, 16) == 0)
800 sectp
->flags
= S_REGULAR
;
801 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, sectp
->size
))
802 unexec_error ("cannot write section %s", sectp
->sectname
);
803 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
804 unexec_error ("cannot write section %s's header", sectp
->sectname
);
806 else if (strncmp (sectp
->sectname
, SECT_BSS
, 16) == 0)
808 extern char *my_endbss_static
;
809 unsigned long my_size
;
811 sectp
->flags
= S_REGULAR
;
813 /* Clear uninitialized local variables in statically linked
814 libraries. In particular, function pointers stored by
815 libSystemStub.a, which is introduced in Mac OS X 10.4 for
816 binary compatibility with respect to long double, are
817 cleared so that they will be reinitialized when the
818 dumped binary is executed on other versions of OS. */
819 my_size
= (unsigned long)my_endbss_static
- sectp
->addr
;
820 if (!(sectp
->addr
<= (unsigned long)my_endbss_static
821 && my_size
<= sectp
->size
))
822 unexec_error ("my_endbss_static is not in section %s",
824 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, my_size
))
825 unexec_error ("cannot write section %s", sectp
->sectname
);
826 if (!unexec_write_zero (sectp
->offset
+ my_size
,
827 sectp
->size
- my_size
))
828 unexec_error ("cannot write section %s", sectp
->sectname
);
829 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
830 unexec_error ("cannot write section %s's header", sectp
->sectname
);
832 else if (strncmp (sectp
->sectname
, "__la_symbol_ptr", 16) == 0
833 || strncmp (sectp
->sectname
, "__nl_symbol_ptr", 16) == 0
834 || strncmp (sectp
->sectname
, "__got", 16) == 0
835 || strncmp (sectp
->sectname
, "__la_sym_ptr2", 16) == 0
836 || strncmp (sectp
->sectname
, "__dyld", 16) == 0
837 || strncmp (sectp
->sectname
, "__const", 16) == 0
838 || strncmp (sectp
->sectname
, "__cfstring", 16) == 0
839 || strncmp (sectp
->sectname
, "__gcc_except_tab", 16) == 0
840 || strncmp (sectp
->sectname
, "__program_vars", 16) == 0
841 || strncmp (sectp
->sectname
, "__objc_", 7) == 0)
843 if (!unexec_copy (sectp
->offset
, old_file_offset
, sectp
->size
))
844 unexec_error ("cannot copy section %s", sectp
->sectname
);
845 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
846 unexec_error ("cannot write section %s's header", sectp
->sectname
);
849 unexec_error ("unrecognized section name in __DATA segment");
851 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
852 sectp
->sectname
, (long) (sectp
->offset
),
853 (long) (sectp
->offset
+ sectp
->size
), (long) (sectp
->size
));
855 header_offset
+= sizeof (struct section
);
859 curr_file_offset
+= ROUNDUP_TO_PAGE_BOUNDARY (scp
->filesize
);
861 if (!unexec_write (curr_header_offset
, scp
, sizeof (struct segment_command
)))
862 unexec_error ("cannot write header of __DATA segment");
863 curr_header_offset
+= lc
->cmdsize
;
865 /* Create new __DATA segment load commands for regions on the region
866 list that do not corresponding to any segment load commands in
869 for (j
= 0; j
< num_unexec_regions
; j
++)
871 struct segment_command sc
;
874 sc
.cmdsize
= sizeof (struct segment_command
);
875 strncpy (sc
.segname
, SEG_DATA
, 16);
876 sc
.vmaddr
= unexec_regions
[j
].range
.address
;
877 sc
.vmsize
= unexec_regions
[j
].range
.size
;
878 sc
.fileoff
= curr_file_offset
;
879 sc
.filesize
= unexec_regions
[j
].filesize
;
880 sc
.maxprot
= VM_PROT_READ
| VM_PROT_WRITE
;
881 sc
.initprot
= VM_PROT_READ
| VM_PROT_WRITE
;
885 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
886 sc
.segname
, (long) (sc
.fileoff
), (long) (sc
.filesize
),
887 (long) (sc
.vmsize
), (long) (sc
.vmaddr
));
889 if (!unexec_write (sc
.fileoff
, (void *) sc
.vmaddr
, sc
.filesize
))
890 unexec_error ("cannot write new __DATA segment");
891 curr_file_offset
+= ROUNDUP_TO_PAGE_BOUNDARY (sc
.filesize
);
893 if (!unexec_write (curr_header_offset
, &sc
, sc
.cmdsize
))
894 unexec_error ("cannot write new __DATA segment's header");
895 curr_header_offset
+= sc
.cmdsize
;
900 /* Copy a LC_SYMTAB load command from the input file to the output
901 file, adjusting the file offset fields. */
903 copy_symtab (struct load_command
*lc
, long delta
)
905 struct symtab_command
*stp
= (struct symtab_command
*) lc
;
907 stp
->symoff
+= delta
;
908 stp
->stroff
+= delta
;
910 printf ("Writing LC_SYMTAB command\n");
912 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
913 unexec_error ("cannot write symtab command to header");
915 curr_header_offset
+= lc
->cmdsize
;
918 /* Fix up relocation entries. */
920 unrelocate (const char *name
, off_t reloff
, int nrel
, vm_address_t base
)
922 int i
, unreloc_count
;
923 struct relocation_info reloc_info
;
924 struct scattered_relocation_info
*sc_reloc_info
925 = (struct scattered_relocation_info
*) &reloc_info
;
926 vm_address_t location
;
928 for (unreloc_count
= 0, i
= 0; i
< nrel
; i
++)
930 if (lseek (infd
, reloff
, L_SET
) != reloff
)
931 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name
, i
);
932 if (!unexec_read (&reloc_info
, sizeof (reloc_info
)))
933 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name
, i
);
934 reloff
+= sizeof (reloc_info
);
936 if (sc_reloc_info
->r_scattered
== 0)
937 switch (reloc_info
.r_type
)
939 case GENERIC_RELOC_VANILLA
:
940 location
= base
+ reloc_info
.r_address
;
941 if (location
>= data_segment_scp
->vmaddr
942 && location
< (data_segment_scp
->vmaddr
943 + data_segment_scp
->vmsize
))
945 off_t src_off
= data_segment_old_fileoff
946 + (location
- data_segment_scp
->vmaddr
);
947 off_t dst_off
= data_segment_scp
->fileoff
948 + (location
- data_segment_scp
->vmaddr
);
950 if (!unexec_copy (dst_off
, src_off
, 1 << reloc_info
.r_length
))
951 unexec_error ("unrelocate: %s:%d cannot copy original value",
957 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
958 name
, i
, reloc_info
.r_type
);
961 switch (sc_reloc_info
->r_type
)
963 #if defined (__ppc__)
964 case PPC_RELOC_PB_LA_PTR
:
965 /* nothing to do for prebound lazy pointer */
969 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
970 name
, i
, sc_reloc_info
->r_type
);
975 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
976 unreloc_count
, nrel
, name
);
980 /* Rebase r_address in the relocation table. */
982 rebase_reloc_address (off_t reloff
, int nrel
, long linkedit_delta
, long diff
)
985 struct relocation_info reloc_info
;
986 struct scattered_relocation_info
*sc_reloc_info
987 = (struct scattered_relocation_info
*) &reloc_info
;
989 for (i
= 0; i
< nrel
; i
++, reloff
+= sizeof (reloc_info
))
991 if (lseek (infd
, reloff
- linkedit_delta
, L_SET
)
992 != reloff
- linkedit_delta
)
993 unexec_error ("rebase_reloc_table: cannot seek to reloc_info");
994 if (!unexec_read (&reloc_info
, sizeof (reloc_info
)))
995 unexec_error ("rebase_reloc_table: cannot read reloc_info");
997 if (sc_reloc_info
->r_scattered
== 0
998 && reloc_info
.r_type
== GENERIC_RELOC_VANILLA
)
1000 reloc_info
.r_address
-= diff
;
1001 if (!unexec_write (reloff
, &reloc_info
, sizeof (reloc_info
)))
1002 unexec_error ("rebase_reloc_table: cannot write reloc_info");
1008 /* Copy a LC_DYSYMTAB load command from the input file to the output
1009 file, adjusting the file offset fields. */
1011 copy_dysymtab (struct load_command
*lc
, long delta
)
1013 struct dysymtab_command
*dstp
= (struct dysymtab_command
*) lc
;
1022 for (i
= 0; i
< nlc
; i
++)
1023 if (lca
[i
]->cmd
== LC_SEGMENT
)
1025 struct segment_command
*scp
= (struct segment_command
*) lca
[i
];
1027 if (scp
->vmaddr
+ scp
->vmsize
> 0x100000000
1028 && (scp
->initprot
& VM_PROT_WRITE
) != 0)
1030 base
= data_segment_scp
->vmaddr
;
1036 /* First writable segment address. */
1037 base
= data_segment_scp
->vmaddr
;
1040 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1044 unrelocate ("local", dstp
->locreloff
, dstp
->nlocrel
, base
);
1045 unrelocate ("external", dstp
->extreloff
, dstp
->nextrel
, base
);
1047 if (dstp
->nextrel
> 0) {
1048 dstp
->extreloff
+= delta
;
1051 if (dstp
->nlocrel
> 0) {
1052 dstp
->locreloff
+= delta
;
1055 if (dstp
->nindirectsyms
> 0)
1056 dstp
->indirectsymoff
+= delta
;
1058 printf ("Writing LC_DYSYMTAB command\n");
1060 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1061 unexec_error ("cannot write symtab command to header");
1063 curr_header_offset
+= lc
->cmdsize
;
1066 /* Check if the relocation base needs to be changed. */
1069 vm_address_t newbase
= 0;
1072 for (i
= 0; i
< num_unexec_regions
; i
++)
1073 if (unexec_regions
[i
].range
.address
+ unexec_regions
[i
].range
.size
1076 newbase
= data_segment_scp
->vmaddr
;
1082 rebase_reloc_address (dstp
->locreloff
, dstp
->nlocrel
, delta
, newbase
);
1083 rebase_reloc_address (dstp
->extreloff
, dstp
->nextrel
, delta
, newbase
);
1089 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1090 file, adjusting the file offset fields. */
1092 copy_twolevelhints (struct load_command
*lc
, long delta
)
1094 struct twolevel_hints_command
*tlhp
= (struct twolevel_hints_command
*) lc
;
1096 if (tlhp
->nhints
> 0) {
1097 tlhp
->offset
+= delta
;
1100 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1102 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1103 unexec_error ("cannot write two level hint command to header");
1105 curr_header_offset
+= lc
->cmdsize
;
1109 /* Copy a LC_DYLD_INFO(_ONLY) load command from the input file to the output
1110 file, adjusting the file offset fields. */
1112 copy_dyld_info (struct load_command
*lc
, long delta
)
1114 struct dyld_info_command
*dip
= (struct dyld_info_command
*) lc
;
1116 if (dip
->rebase_off
> 0)
1117 dip
->rebase_off
+= delta
;
1118 if (dip
->bind_off
> 0)
1119 dip
->bind_off
+= delta
;
1120 if (dip
->weak_bind_off
> 0)
1121 dip
->weak_bind_off
+= delta
;
1122 if (dip
->lazy_bind_off
> 0)
1123 dip
->lazy_bind_off
+= delta
;
1124 if (dip
->export_off
> 0)
1125 dip
->export_off
+= delta
;
1127 printf ("Writing ");
1128 print_load_command_name (lc
->cmd
);
1129 printf (" command\n");
1131 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1132 unexec_error ("cannot write dyld info command to header");
1134 curr_header_offset
+= lc
->cmdsize
;
1138 /* Copy other kinds of load commands from the input file to the output
1139 file, ones that do not require adjustments of file offsets. */
1141 copy_other (struct load_command
*lc
)
1143 printf ("Writing ");
1144 print_load_command_name (lc
->cmd
);
1145 printf (" command\n");
1147 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1148 unexec_error ("cannot write symtab command to header");
1150 curr_header_offset
+= lc
->cmdsize
;
1153 /* Loop through all load commands and dump them. Then write the Mach
1159 long linkedit_delta
= 0;
1161 printf ("--- Load Commands written to Output File ---\n");
1163 for (i
= 0; i
< nlc
; i
++)
1164 switch (lca
[i
]->cmd
)
1168 struct segment_command
*scp
= (struct segment_command
*) lca
[i
];
1169 if (strncmp (scp
->segname
, SEG_DATA
, 16) == 0)
1171 /* save data segment file offset and segment_command for
1173 if (data_segment_old_fileoff
)
1174 unexec_error ("cannot handle multiple DATA segments"
1176 data_segment_old_fileoff
= scp
->fileoff
;
1177 data_segment_scp
= scp
;
1179 copy_data_segment (lca
[i
]);
1183 if (strncmp (scp
->segname
, SEG_LINKEDIT
, 16) == 0)
1186 unexec_error ("cannot handle multiple LINKEDIT segments"
1188 linkedit_delta
= curr_file_offset
- scp
->fileoff
;
1191 copy_segment (lca
[i
]);
1196 copy_symtab (lca
[i
], linkedit_delta
);
1199 copy_dysymtab (lca
[i
], linkedit_delta
);
1201 case LC_TWOLEVEL_HINTS
:
1202 copy_twolevelhints (lca
[i
], linkedit_delta
);
1206 case LC_DYLD_INFO_ONLY
:
1207 copy_dyld_info (lca
[i
], linkedit_delta
);
1211 copy_other (lca
[i
]);
1215 if (curr_header_offset
> text_seg_lowest_offset
)
1216 unexec_error ("not enough room for load commands for new __DATA segments");
1218 printf ("%ld unused bytes follow Mach-O header\n",
1219 text_seg_lowest_offset
- curr_header_offset
);
1221 mh
.sizeofcmds
= curr_header_offset
- sizeof (struct mach_header
);
1222 if (!unexec_write (0, &mh
, sizeof (struct mach_header
)))
1223 unexec_error ("cannot write final header contents");
1226 /* Take a snapshot of Emacs and make a Mach-O format executable file
1227 from it. The file names of the output and input files are outfile
1228 and infile, respectively. The three other parameters are
1231 unexec (const char *outfile
, const char *infile
)
1234 unexec_error ("Unexec from a dumped executable is not supported.");
1236 pagesize
= getpagesize ();
1237 infd
= open (infile
, O_RDONLY
, 0);
1240 unexec_error ("cannot open input file `%s'", infile
);
1243 outfd
= open (outfile
, O_WRONLY
| O_TRUNC
| O_CREAT
, 0755);
1247 unexec_error ("cannot open output file `%s'", outfile
);
1250 build_region_list ();
1251 read_load_commands ();
1253 find_emacs_zone_regions ();
1254 unexec_regions_merge ();
1265 unexec_init_emacs_zone (void)
1267 emacs_zone
= malloc_create_zone (0, 0);
1268 malloc_set_zone_name (emacs_zone
, "EmacsZone");
1271 #ifndef MACOSX_MALLOC_MULT16
1272 #define MACOSX_MALLOC_MULT16 1
1275 typedef struct unexec_malloc_header
{
1280 } unexec_malloc_header_t
;
1282 #if MACOSX_MALLOC_MULT16
1284 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1289 ptr_in_unexec_regions (void *ptr
)
1293 for (i
= 0; i
< num_unexec_regions
; i
++)
1294 if ((vm_address_t
) ptr
- unexec_regions
[i
].range
.address
1295 < unexec_regions
[i
].range
.size
)
1304 unexec_malloc (size_t size
)
1311 #if MACOSX_MALLOC_MULT16
1312 assert (((vm_address_t
) p
% 16) == 0);
1318 unexec_malloc_header_t
*ptr
;
1320 ptr
= (unexec_malloc_header_t
*)
1321 malloc_zone_malloc (emacs_zone
, size
+ sizeof (unexec_malloc_header_t
));
1324 #if MACOSX_MALLOC_MULT16
1325 assert (((vm_address_t
) ptr
% 16) == 8);
1327 return (void *) ptr
;
1332 unexec_realloc (void *old_ptr
, size_t new_size
)
1338 if (ptr_in_unexec_regions (old_ptr
))
1340 size_t old_size
= ((unexec_malloc_header_t
*) old_ptr
)[-1].u
.size
;
1341 size_t size
= new_size
> old_size
? old_size
: new_size
;
1343 p
= (size_t *) malloc (new_size
);
1345 memcpy (p
, old_ptr
, size
);
1349 p
= realloc (old_ptr
, new_size
);
1351 #if MACOSX_MALLOC_MULT16
1352 assert (((vm_address_t
) p
% 16) == 0);
1358 unexec_malloc_header_t
*ptr
;
1360 ptr
= (unexec_malloc_header_t
*)
1361 malloc_zone_realloc (emacs_zone
, (unexec_malloc_header_t
*) old_ptr
- 1,
1362 new_size
+ sizeof (unexec_malloc_header_t
));
1363 ptr
->u
.size
= new_size
;
1365 #if MACOSX_MALLOC_MULT16
1366 assert (((vm_address_t
) ptr
% 16) == 8);
1368 return (void *) ptr
;
1373 unexec_free (void *ptr
)
1379 if (!ptr_in_unexec_regions (ptr
))
1383 malloc_zone_free (emacs_zone
, (unexec_malloc_header_t
*) ptr
- 1);